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ABSTRACT

Predictive analytics embraces an extensive area of techniques from statistical model-

ing to machine learning to data mining and is applied in business intelligence, public

health, disaster management and response, and many other fields. To date, visualiza-

tion has been broadly used to support tasks in the predictive analytics pipeline under

the underlying assumption that a human-in-the-loop can aid the analysis by integrat-

ing domain knowledge that might not be broadly captured by the system. Primary

uses of visualization in the predictive analytics pipeline have focused on data clean-

ing, exploratory analysis, and diagnostics. More recently, numerous visual analytics

systems for feature selection, incremental learning, and various prediction tasks have

been proposed to support the growing use of complex models, agent-specific opti-

mization, and comprehensive model comparison and result exploration. Such work is

being driven by advances in interactive machine learning and the desire of end-users

to understand and engage with the modeling process. However, despite the numerous

and promising applications of visual analytics to predictive analytics tasks, work to

assess the effectiveness of predictive visual analytics is lacking.

This thesis studies the current methodologies in predictive visual analytics. It

first defines the scope of predictive analytics and presents a predictive visual analytics

(PVA) pipeline. Following the proposed pipeline, a predictive visual analytics frame-

work is developed to be used to explore under what circumstances a human-in-the-

loop prediction process is most effective. This framework combines sentiment analy-

sis, feature selection mechanisms, similarity comparisons and model cross-validation

through a variety of interactive visualizations to support analysts in model building

and prediction. To test the proposed framework, an instantiation for movie box-office

prediction is developed and evaluated. Results from small-scale user studies are pre-
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sented and discussed, and a generalized user study is carried out to assess the role of

predictive visual analytics under a movie box-office prediction scenario.
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Chapter 1

INTRODUCTION

Predictive analytics is the practice of identifying patterns within data to predict future

outcomes and trends. Such work is relevant across all scientific disciplines as data

is constantly being collected to explain phenomena. In the Big Data era, increasing

amounts of data have accelerated the need for predictive analytics methods as the

ability to collect data has outstripped the pace of analysis. This has led to the

rapid development of novel predictive analytics algorithms, predominantly black-box

methods, where data is given as an input and prediction results are returned as output.

As predictive analytics methods have been refined, prediction models have achieved

high levels of accuracy in many applications. One success story is a partnership

between The Weather Company and IBM to predict the impact of weather on business

performance. They hypothesize that retailers can use such prediction models to

improve supply chain management and demand forecasting in the energy sector or

adjust staffing in retail sectors. Other examples include Kroger’s grocery stores,

which have seen revenue growth coming from behavioral models of individuals, using

big data to move from coarse demographic targeting to individualized coupons and

customized loyalty rewards [13]. However, as the models become more complex and

the size of the data grows, new challenges in predictive analytics have arisen.

One well-documented example of the complexities in predictive analytics is Google

Flu Trends [14]. Launched in 2008, Google had developed a linear model that touted

a 97% accuracy rate for predicting cases of influenza-like-illness based on word search

frequencies. However, in February 2013, Nature reported that Google Flu Trends was

predicting more than double the cases of influenza-like-illness than reported by the
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Centers for Disease Control [15]. Another classic example includes training a neural

network to detect camouflaged enemy tanks [16]. In this example, researchers used

pictures of forests with and without camouflaged tanks. However, the pictures with

tanks were taken on cloudy days and those without tanks were taken on sunny days

leading the classifier to identify cloudy versus non-cloudy, as opposed to identifying

tanks. Other such examples exist in domains that require a high-degree of expertise

for prediction, such as cyber security [17]. Such failures in predictive analytics ap-

plications have led to a demand for methods that can incorporate human-in-the-loop

intelligence as part of the predictive analytics pipeline [17]. Users report issues in

data reliability, a desire to understand the inner workings of a model, and a need

to update portions of the model to apply domain-specific content [18]. To facilitate

this, visualization has been used as a method to overview the data, illustrate the

model rationale, present the prediction result, and validate the model response. In

addition, visual analytics, as a means of supporting human-in-the-loop processes, has

been developed to integrate human knowledge and machine learning for predictions.

Given the highly specialized nature of many predictive analytics tasks, research

in the visual analytics community has focused on developing systems for explicit

predictive analytics methods including regression (e.g. [19]), classification (e.g. [2]),

clustering (e.g. [20]), and decision making (e.g. [9]). One major goal of such systems

is to improve model comprehension [21] and improving comprehensibility of various

phases of the predictive modeling process can lead to desirable outcomes including

optimized predictions. Visual analytics methods in this domain are referred to as

predictive visual analytics (PVA) in this thesis. Here, a PVA method is seen as a

complement to the traditional predictive analytics pipeline where PVA focuses on

utilizing visualization techniques to improve users’ performance, perception, and ex-

ternalization of insights.
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This thesis first reviews extant literature in PVA and proposes a PVA pipeline.

Following this pipeline, a PVA framework with novel visual analytics tools is pre-

sented and evaluated on revenue prediction for movie box-office using social media

data and movie’s meta data. Illustrated through the movie box-office prediction task,

this thesis shows that in many prediction analyses, experts’ domain knowledge is very

useful because they are sensitive to the data, such as noticing grouping of features,

abnormal signals, and multi-correlation. In this thesis, multiple machine learning

models are embedded to provide guidance for the analysts, and the raw data and

features not used in those models are all exposed to the end user. A parallel co-

ordinate plot (PCP) is used to show feature correlations, and a similarity widget is

used to explore the local performance of the embedded models. In the case studies

of the proposed visual analytics framework, an exploration and analysis procedure

is provided to guide the analysts through the exploration but still leaves interac-

tive modeling and decision making steps to the analyst. Different data sources can

provide complementary information, and different models can also contribute to the

same analytics task from multiple perspectives. Visual analytics tools display those

multi-facet data and data sources while integrating different models to provide a

comprehensive analysis toolkit for the analysts. In the movie box-office prediction

problem, three data sources (Twitter, IMDB, and YouTube) are integrated together

for the prediction of upcoming movies’ opening weekend gross. For the prediction of

each single movie’s revenue, this framework supports the creation of three different

types of models: Support Vector Machine (SVM) [22], Linear Regression (LIN) [23]

and Multilayer Perceptron (MLP) [24]. The results given by these models configured

by the user can be displayed together with the selected dataset and a 95% confi-

dence range. Considering the context of the movie industry, a temporal model is also

provided to estimate the total revenue available for the weekend for all new released
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movies. Those models, none of which are accurate enough to solve the problem alone,

can contribute to the prediction through the visual analytics toolkit.

This thesis discusses the proposed visual analytics framework and view designs, as

well as experimental studies for box office prediction. It shows that visual analytics

can help effectively analyze problematic datasets, integrating multiple data sources,

multiple learning models and experts’ domain knowledge into general and specific

analytics tasks. Inspired from the successful case studies on predicting movie revenue

with visual analytics on social media data, this thesis also analyzes and discusses the

visual characteristics of network properties in social media data. In addition, a user’s

role in predictive visual analytics will be discussed through a user study by testing

the prediction performance under conditions of different models and objects.
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Chapter 2

PROBLEM STATEMENT

This thesis studies the methodologies in predictive visual analytics through the prob-

lem of using social media data to predict movie box-office revenue. Although much

research has been done on social media data analysis and movie revenue prediction,

many challenges still exist in this field and the evaluation of predictive visual analyt-

ics. This section will discuss the problems in social media data analysis and the role

of human-in-the-loop in prediction, and develop a list of research questions studied

in this thesis.

2.1 Problems in Social Media Data Analysis

The noisy and unstructured nature of social media data presents opportunities

and challenges in knowledge mining and retrieval. Previous works have shown the

power of such data in many aspects, such as anomaly detection, human behavior

analysis, and sentiment analysis of election and product reviews. Many works from

the visualization community have emerged to explore social media data and analyze it

to study network structures [25, 26], spatiotemporal distributions [27, 28], and social

problems [29, 30]. However, the problems of using social media data for predictive

analytics caused by its content, format, volume and value are not yet solved. In

order to use social media data to develop prediction models, features are usually

extracted and selected to encode information from raw data that allows machine

learning algorithms to classify an unknown object or estimate an unknown value.

Features are important to predictive models; the quality and quantity of features

have great influence on whether the model is good or not. Feature engineering by
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itself is hard; however, problems with feature engineering are further exacerbated

in social media data due to the size and dimensionality of the data. Some of these

problems are discussed below.

Data Collection: In the scientific community, Twitter is a social media giant

famous not only for its popularity but also for sharing its data. Twitter provides a

glance into its millions of users and billions of tweets through a Streaming API which

provides a sample of all tweets matching some parameters preset by the API user.

The Twitter Streaming API [31] allows anyone to retrieve at most a 1% sample of

all the data by providing some parameters. According to the documentation, the

sample will return at most 1% of all the Tweets produced on Twitter at a given

time. Once the number of tweets matching the given parameters passes 1% of all

the tweets on Twitter, Twitter will begin to sample the data returned to the user.

The representative and bias of this sampled data in different applications has been

discussed [32, 33], and their results show that for some prediction tasks, this sampling

does affect the modeling process and model’s performance. Other than the sampling

in Twitter’s Streaming API, Twitter only allows users to crawl most recent tweets

posted within a time window (which is 7 days for now) using keyword search. It is

possible that the data collection process can be unexpectedly interrupted, which may

cause corruption and missing elements in the data.

Tweets Volume: The volume of the social media data, for instance the number

of tweets posted per day, has been used as a significant feature in prediction models.

Though this number can be understood as how popular a topic is, trust issues exist,

and whether the volume should be used after filtering out suspicious posts or not is a

question. Methods for detecting those suspicious posts and users is another research

question. Thus, based on different filtering strategies, the volume of tweets may

change, as well as the role of the volume in the modeling process.
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Sentiment Analysis: Opinion mining on social media data has been studied

widely in recent years. Sentiment classification has demonstrated its usefulness on

election prediction [34] and customer review analysis for product retooling [34]. How-

ever, the performance on social media data is still unsatisfactory due to the distinct

data characteristics [35, 36]. First, social media posts are mostly short and un-

structured. For example, Twitter allows no more than 140 characters and uses many

informal words such as “cooool” and “OMG”. The short texts can hardly provide

sufficient statistical information for learning based models. Second, it is laborious

and time consuming to obtain ground truth for training data, which is needed to

build an effective supervised learning model.

2.2 Problems in Human-in-the-Loop Process

Human-in-the-loop is a means of mitigating model complexity and specializing

on domains and problems. Human-in-the-loop solutions take advantage of human

knowledge and intelligence in the analytic process so that features that can hardly

been captured by automatic models are able to be used through human interactions.

Predictive visual analytics uses human-in-the-loop methods to solve prediction prob-

lems. Providing human knowledge in the predictive model construction process can

be beneficial. However, opening the black-box of predictive models for human inter-

vention is not without issues. By giving users the option to integrate their domain

knowledge, it has also allowed them to inject bias into the model. What’s the point

of using technology to learn something new when you are bending it to fit your pre-

existing notions? More seriously, how can the knowledge integration be regulated or

constrained so that it gets the benefits of domain knowledge, social and emotional

intuition, and minimizes the costs of introducing bias? How much human-in-the-loop

is the right amount? A recent study [18] ran experiments on incentivized forecasting
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tasks where participants could choose to use forecasting outputs from an algorithm

or provide their own inputs. The study found that letting people adjust an imperfect

algorithm’s forecasts would increase both their chances of using the algorithm and

their satisfaction with the results. However, the authors also found that participants

in the study often worsened the algorithm’s forecasts when given the ability to adjust

them. This further brings into question how much interaction should be provided in

the PVA pipeline. Results from the forecasting study also indicated that people were

insensitive to the amount that they could adjust the forecasts, which may indicate

that interaction as a placebo could be an option. Given these problems and studies,

it is clear that more research is needed to provide clear guidelines for predictive visual

analytics methodologies.

2.3 Research Problems

Considering the aforementioned problems in social media data analysis and human-

in-the-loop processes for prediction, this thesis focuses on developing visual analytics

frameworks for the following research questions:

• Propose a general predictive visual analytics pipeline.

• Develop visual analytics tools to analyze social media data with a goal of making

predictions.

• Analyze visual characteristics and their effects on predictive analytics.

• Evaluate the role of human in predictive visual analytics.

To study the role of human in predictive visual analytics, an evaluation environ-

ment is also developed.
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Chapter 3

RELATED WORK

Predictive analytics is a core research topic with roots in statistics, machine learn-

ing, data mining, and artificial intelligence. Definitions of predictive analytics ranged

from broad—every machine learning technique is predictive analytics—to narrow—

making empirical predictions for the future [37]. A discussion on predictive analytics

and predictive visual analytics will be first presented as related work to this the-

sis. Following the concepts in predictive analytics and the scope of predictive visual

analytics, representative predictive visual analytics techniques are categorized and

discussed as they are related to the development of the predictive visual analytics

framework in the thesis. Recent visual analytics systems for social media analysis

include Whisper [38], which focused on information propagation in Twitter, Sense-

Place2 [39], which focused on the analysis of geographically weighted Tweets, and

TweetXplorer [40] which combined geographical visualization of Tweets along with

their social networks. Other applications have explored the use of social media an-

alytics for improving situational awareness in emergency response. Thom et al. [41]

and Chae et al. [27] developed spatiotemporal visual analytics systems that integrated

various social media data sources for anomaly event detection and disaster manage-

ment. The proposed framework takes cues from this previous work and is developed

to integrate data from multiple sources and provide an environment for user-in-the-

loop predictive analytics. Relevant to the evaluations of predictive visual analytics in

the thesis, extant research work on evaluating predictive visual analytics is discussed.
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3.1 Predictive Analytics

Predictive analytics covers the practice of identifying patterns within data to pre-

dict future outcomes and trends. With respect to analytics, three common terms

are descriptive, prescriptive, and predictive analytics. Descriptive analytics focuses

on illustrating what has happened and what the current status of a system is. Pre-

scriptive analytics uses data to populate decision models that produce optimal (or

near-optimal) decisions of what should be done, and predictive analytics applies al-

gorithms to extrapolate and model the future based on available data. In this sense,

one can think of descriptive as a passive, historical analysis, prescriptive as active

analysis suggesting how to exploit new opportunities, and predictive as an intersect-

ing medium where historical data is used to produce knowledge of what is likely to

happen as a means of driving decisions. Predictive analytics uses predictive modeling

which should be empirical (based on observations) rather than theoretical (based on

hypothesis). Arguably, the main tasks in predictive analytics are relevant to numerical

predictions (where the most common predictive analytics methods are regressions),

and categorical predictions (where the most common methods focus on classification

and clustering) [42]. As an introduction to predictive analytics techniques, a brief

definition of regression, classification, and clustering is provided.

Regression analysis is a statistical technique for modeling the relationships be-

tween variables [23]. Specifically, regression analysis focuses on understanding how a

dependent variable changes when a predictor (or independent variable) is changed.

Linear regression is perhaps one of the most common predictive analytics techniques

available to analysts with implementations in Excel, SAS, JMP, and many other

common software packages. Much of its power comes from the interpretability of the

model, where relationships tend to be readily explorable by end users. For different
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relationships between variables, regression models can be linear and non-linear and to

explore local patterns, segmented or piecewise regression models can be used. Chal-

lenges exist in data transformation, feature selection, and model comparison, and

widely used techniques to address these challenges include stepwise feature screening

and comparing models through performance measures, such as the p-value and R2.

Classification broadly covers the problem of identifying which category a new

observation belongs to based on information from a training data set in which ob-

servations have known category memberships. Classifiers learn patterns using the

data attribute features from the training set and these patterns can be applied to

unknown instances to predict their categories. Well-known classification methods

include Bayesian classification, logistic regression, decision trees, support vector ma-

chines (SVM), and artificial neural networks (ANN). Challenges with classification ex-

ist in learning large and/or streaming data (e.g., real-time security classification [43]),

defining proper cost functions in model optimization for domain specific tasks where

the error cost varies on instances, obtaining enough labeled data samples, and under-

standing what characteristics the models have learned.

Similar to classification, clustering also attempts to categorize a new observation

into a class membership. However, clustering is an unsupervised method that dis-

covers the natural groupings of a data set with unknown class labels. Clustering has

been widely used in pattern recognition, information retrieval, and bioinformatics,

and popular applications include gene sequence analysis, image segmentation, docu-

ment summarization, and recommender systems. Challenges with clustering exist in

feature extraction due to the high dimensionality and unequal length of feature vec-

tors, metric learning, and clustering evaluation due to unknown ground truth. This

thesis specifically considers clustering as a prediction task given the current use of

11



clustering for prediction [44, 45] along with a variety of work in visualization focused

on clustering analysis.

In the context of the research presented here, predictive analytics is considered

to be the method of analysis in the process of prediction modeling which consists of

building and assessing a model aimed at making empirical predictions [37]. Predictive

analytics overlaps with the process of knowledge discovery, but the emphasis is on

predictions, specifically forecasts of the future, unknown, and ‘what if’ scenarios [46,

47]. The goal of prediction modeling is to make statements about an unknown or

uncertain event, which can be numerical (prediction), categorical (classification), or

ordinal (ranking) [37]. In this context, a paper falls into the scope of predictive

analytics if it satisfies the following conditions:

1. The analysis process has a clear prediction goal. While open-ended explorations

and exploratory data analysis play a role in predictive analysis, the task must

be to ultimately make a statement about an unknown event.

2. The analysis process uses quantitative algorithms, such as statistical methods,

machine learning models, and data mining techniques to make grounded and

reasonable predictions. This means the modeling process should be data-driven

as opposed to purely theory-driven.

3. The predictions or the prediction models themselves have a means of being

evaluated.

Finally, if the model developed only extracts or explains features, patterns, correla-

tions, and causalities but does not make reference to future predictions or ‘what if’

scenarios, it is not considered to fall under the scope of predictive analytics. The

reason for the chosen scope is that in order to make a prediction, the model needs to
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be applied to unknowns. This scope is useful in categorizing and reviewing predictive

visual analytics papers and clarifying the gap in this field.

3.2 Scope of Predictive Visual Analytics

Predictive analytics methods primarily rely on a black-box approach consisting of

a four-step process of data cleaning, feature selection, modeling, and validation [48,

49]. This thesis broadly considers predictive visual analytics to cover the domain of

visualization methods and techniques that have been used to support the predictive

analytics process. In the context of the research presented here, a paper falls into the

scope of predictive visual analytics if the paper satisfies the following conditions:

1. The predictive visual analytics method is specific to prediction problems, not

only confirmatory or explanatory problems. This means the task of the pre-

dictive visual analytics system, method, or technique, is to support analysts in

making predictions.

2. The predictive visual analytics method enables the user to interact with at least

one step in the predictive analytics process through exploratory visualization

(as opposed to traditional interactions in user interfaces such as save and undo).

3. The predictive visual analytics method supports both prediction and visual

explanation, which allows analysts either to improve model performance with

respect to the general accuracy or to improve an analyst’s understanding of the

modeling process and output.

Moreover, predictive visual analytics methods should share the same goal as predictive

analytics methods, which is to make accurate predictions. In addition, predictive

visual analytics could also focus on improving users’ satisfaction and confidence in

the resulting predictions. While decision-making systems overlap with this definition,
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this thesis does not specifically survey such tools as this falls more in the realm of

prescriptive analytics. If a system supports decision making, this decision has to be

made directly from predictive algorithms to be categorized in this survey.

To further clarify the scope of predictive visual analytics in this thesis, it is im-

portant to note that there are visual analytics papers that are related to predictive

analytics but are considered to be out of the scope. Specifically, visual analytics works

that use predictive analysis methods for guiding the design of a visualization (e.g.,

placing a flow field [50]) are not part of the definition as the goal of such papers is

not to make a prediction but to use prediction to help improve the rendering process.

Another example of a related, but excluded, work is the work by Tzeng and Ma [51]

which proposed a visualization method to explain the behavior of artificial neural

networks (ANNs). This paper focused on the design of a visualization but provided

no interactive analytics for the classification using the ANN. Such methods that do

not provide interactivity are also considered to be outside of the scope of predic-

tive visual analytics definition of predictive visual analytics. While not considered

in the above defined scope of predictive visual analytics, these works are still related

to this research as they contribute to the development of predictive visual analyt-

ics for broadening capabilities and improving presentations. Similarly, uncertainty

visualization [52], risk visualization, and ensemble visualization are also excluded.

3.3 Predictive Visual Analytics Techniques

Numerous solutions have been proposed to address predictive analytics for both

novice and expert users (e.g., R [53], SAS [54], Weka [55], JMP [56], Excel). These

software packages and tools provide a variety of machine learning algorithms that can

be used for predictive analytics tasks, such as feature selection, parameter optimiza-

tion and result validation. Many of these systems offer basic visualizations including

14



residual plots, scatterplots and linecharts. However, most visualizations are only used

to display the final results and statistical evaluation report but do not provide inter-

active means for manipulation, feature selection or model refinement; instead, these

systems often opt to show baseline models or simple statistical measures for result

validation, working as more of a black-box system. To support flexible modeling

procedure and exploration of the data and the model, researchers in the visual an-

alytics community have been developing methods for improving model building and

predictive analytics.

Besides improving prediction accuracy, predictive visual analytics also works to

supporting comprehensibility, which is required for domain experts to understand the

prediction model and integrate their knowledge in cases falling within their domain

of expertise and to make decisions with confidence. In terms of supporting different

analyses, predictive visual analytics techniques can be generally categorized into two

types. One is developed for a particular application scenario and therefore categorized

as an agent-based predictive visual analytics technique. The other is developed for

a type of prediction task, such as clustering or classification, which is categorized as

method-based predictive visual analytics technique.

Application-based techniques are usually proposed with specific needs and

applications, such as bioinformatics analysis (e.g, the work by Barlow et al. [57]) and

criminal analysis (e.g, the work by Malik et al. [58]). To support agent-based particu-

lar requirements, these techniques and systems often integrate specialized prediction

approaches, visualization views, and interactions for a special domain.

There are systems developed for special expertise. For example, in public health,

Afzal et al. [9] presents a decision history tree view for analyzing epidemic simulation

results and strategy decision making. This work has a specific application scenario

in epidemic predictions with large simulation data. It uses branching time paths to
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show prediction models’ results and allows users to add/remove mitigation measures

to explore different epidemic prediction trends over time. In bioinformatic analytics,

Barlow et al. [57] use prediction model and visual analytics to support the analysis

of protein flexibility neighborhoods. Model results are visualized on a color-coded

2D flexibility plot, where a slider can be adjusted by the user to scan any region.

Their system allows experts to understand what causes proteins to change shape

under varying empirical parameters. For law enforcement, Malik et al. [58] developed

a proactive and predictive environment for domain experts in decision making and

prediction problems about community policing and law enforcement. To support the

analysis, they proposed a spatiotemporal prediction method utilizing a Seasonal Trend

Decomposition based on Loess (STL) smoothing and a kernel density estimation

(KDE) approach. For video content filtering, Höferlin et al. [59] present an inter-

active learning approach integrating active learning, cascading classifiers, and visual

analytics for video frame classifier training. It visualizes the class distribution and

classification performance of each cascade node and enables the user to select video

instances for labeling with a 2D projection and a video context view to investigate

the video content. Taking new annotated data, active learning updates the classifier’s

predictions. For traffic control, Buchmüller et al. [60] develop a visual analytics

system for understanding airplane movements (trajectories) and predicting flights’

departure, arrival, and behaviors. Users are allowed to include/exclude flights based

on the trajectories and their domain knowledge. The prediction view visualizes the

predicted flight density over gridded areas, and it allows the user to manually change

feature values, such as weather conditions, to explore possible outcomes. In these

agent-based predictive visual analytics works, the user is often a domain expert with

some knowledge of how to improve the model performance.
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Other than these systems, some agent-based systems focus on problems requiring

more general domain knowledge. For example, the text document retrieval model

proposed by Heimerl et al. [1] is applicable to users with some experience in using a

document search engine. This is a knowledge many people have, or can be acquired in

a short time. This visual analytics approach is derived from active learning in which

the user participate in the loop of classifying documents into relevant and irrelevant

groups. In each iteration of the active learning classification, current model perfor-

mance is visualized. The system also visualizes some selective instances and their

distance to the classification boundary for the user to select and annotate the data.

Users can decide which data to include for the next model iteration and manually

assign the class label, and the system will highlight the data points whose prediction

will change based on this update for users to preview the result before running the

model. Another example lies in business intelligence. Lu et al. [61, 62] present a

visual analytics framework for box office prediction. This work integrated a linear

regression model, a time series model, and different visual analytics views for inves-

tigating social media data and model performance. The results have indicated that

users being familiar with movies or having experience in developing prediction models

could make comparable predictions to the experts from box office websites.

Method-based techniques are usually designed for a particular prediction model

or task regarding the modeling procedure, such as feature selection. For example, de-

cision tree construction is one of the most frequent problems that visual analytics

has tackled. Ankerst et al. [63] present a visual classification approach on decision

tree construction. They used the circle segments visualization to present data at-

tributes, and users can manually select features, split nodes, and change data labels

while constructing the tree, and backtrack previous interactions. More recent work

about decision trees, BaobabView [8], also enables the model developer to grow the
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tree, prune branches, split and merge nodes, and tune parameters as part of the

tree construction process. Baobabview presents an ad-hoc tree-look visualization and

interactions for decision tree construction.

In addition to decision trees, predictive visual analytics has also been used in

broader works for classification, clustering, and regression. For example, iVisClassi-

fier [2] proposed a classification system based on linear discriminant analysis (LDA).

This system links parallel coordinates plots, heat maps, and reconstructed images for

the user to explore the data structure with reduced dimensions. Users can manually

label unknown data and trigger a new round of LDA by removing/adding labeled

instances. iVisClustering [64] implements a document clustering system based on

Latent Dirichlet Allocation topic modeling (distinct from the LDA used in iVisClas-

sifier), and visualizes the output of LDA topic model by displaying cluster relation-

ships based on keyword similarity in a node-link cluster tree view. IVisClassifier also

supports the control of the model parameters through a Term-Weight view to update

the LDA model. Scatter/gather clustering [3] supports interactive clustering by en-

abling users to set soft constraints on the clustering method and compare clustering

results. Users can set the number of clusters, and the system will update the model

by applying scatter (changing to more clusters) or gather (changing to less clusters)

operations. Dis-Function [65] allows the user to interact directly with a multidi-

mensional scaling (MDS) scatter plot to update the underlying clustering distance

function. Mühlbacher et al. [6] propose a visual analytics system for segmented linear

regression. It allows users to analyze the prediction performance by setting different

regression targets with regressors being single features or pairwise interactions.

There are also visual analytics techniques focusing on a particular task in pre-

dictive analytics. For example, INFUSE [5] is a visual analytics system focusing on

feature selection for classification. It proposes a visual feature glyph which displays
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the feature performance by different measurements in cross-validation, according to

which users can select a feature subset for classification modeling. Squares [12] is a

visual analytics technique for comparing and selecting classification models by visu-

alizing the results of multiclass classification on both instance level and class level

performance. Small multiples are used to support the analysis of the probability dis-

tribution of each class label from one model, and Squares uses squares to visualize the

prediction result and error type for each instance. In these ways, users can discover

detail differences between classifiers which can hardly be compared by accuracy. For

more complex models, Rauber et al. [11] present a visual analytics work on under-

standing the prediction results and the hidden layer states of a neuron network. It

uses dimension reduction techniques to project data instances and neurons in multi-

layer perceptrons and convolutional neural networks to present both the classification

results and the relationships between artificial neurons.

Among these predictive visual analytics techniques, the benefit of using them

lies in improving prediction accuracy and model comprehension by enabling human-

in-the-loop approaches. To evaluate the effectiveness of predictive visual analytics

in terms of accuracy and domain knowledge integration, this thesis uses box office

prediction, which is a numerical prediction task which can be evaluated by different

measures.

3.4 Human Factors in Predictive Analytics

Researchers have also studied the effect of human adjustments to statistical fore-

casts in management science, such as sales forecasting [66], time series forecasting [67],

and hiring [68]. Here, controversial results emerge; some studies indicate that human

judgments when performing forecasting result in lower accuracy [69, 70], whereas

others indicate a significant benefit to forecasting accuracy [66, 71].
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The field of human factors has long been interested in the relationship of humans

and technology, and the effect of biases on human decision-making has been studied

in human factors throughout multiple different contexts. In particular, confirmation

bias- seeking out information to confirm decisions [72, 73], overconfidence bias- being

too confident in abilities which leads to taking risks [74], and anchoring- over-reliance

on first piece of information found [75] are specific human biases that are known to

affect decision-making. In regard to predictive analytics, each of these biases may

impact how humans utilize different analytical tools and methods. A human may be

more or less prone to utilize a predictive model depending on the bias that is in play.

The concept of trust can also effect biases, and thus the usage of predictive analytics.

A great deal of human factors work has focused on how humans trust machinery,

specifically automation and autonomy [76]. Recent work by Hoff and Bashir [77]

identified that human’s trust in automation is highly dynamic and dependent on a

multitude of factors. Those factors can be distilled into three main areas of trust:

dispositional trust (dependent on culture, age, gender, personality), situational trust

(type of system, system complexity, task, etc.), and learned trust (past or current

experience with systems). These aspects of trust in automation are likely relevant

and valuable to the context of predictive analytics.

With these uncertain human factors, researchers have also studied the reasons

why people prefer to use human predictions over automatic models in many sce-

narios [78, 79]. One reason is that humans seem to have an inherent distrust of

algorithmic models, and examples of this distrust are found in various fields includ-

ing organizational planning [80], hiring [68], and clinical predictions [81]. Here, people

rely on their judgment and intuition much more than prediction algorithms, although

investigations show that the prediction performance could be improved if they fol-

lowed some principles and computational models. Other studies have also indicated

20



that lack of trust stems from the limitation of automatic techniques and challenges

of model explainability [21, 82].

This algorithm aversion phenomenon is further discussed by Simmons and Massey [83]

where studies indicate that people are less likely to use forecasts from an algorithm

after seeing it perform and learning that it is imperfect, even if they also see that it

outperforms the human forecaster who serves as the alternative forecasting method.

A related study [18] found that people are much more willing to use forecasts from

an imperfect algorithm when they can retain a slight amount of control over the

algorithms forecasts. This study found that letting people adjust an imperfect algo-

rithm’s forecasts would increase both their chances of using the algorithm and their

satisfaction with the results. However, the authors also found that participants in

the study often worsened the algorithm’s forecasts when given the ability to adjust

them. Dietvorst [84] also studied the decision process that leads people to rely on

human predictions instead of algorithmic predictions. In this study, he identified

which prediction method to use depends on (1) the status quo prediction method

which is a default choice, and (2) whether an alternative method can meet people’s

counter-normative reference points.

Given these results, it is clear that more studies are needed to provide guidelines for

methodologies and designs in predictive visual analytics. By giving users the option

to integrate their domain knowledge, we have also allowed them to inject bias into

the model. What’s the point of using technology to learn something new when you

are bending it to fit your pre-existing notions? More seriously, how can we regulate

or constrain knowledge integration so that we get the benefits of user knowledge and

social and emotional intuition while minimizing the costs of introducing bias? How

much human-in-the-loop is the right amount?
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Chapter 4

PREDICTIVE VISUAL ANALYTICS PIPELINE

4.1 PVA Pipeline

This thesis considers predictive visual analytics to fall squarely under the umbrella

of human-machine integration and a key aspect of predictive visual analytics should

be supporting model comprehensibility [21]. This thesis defines predictive visual ana-

lytics as visualization techniques that are directly coupled (through user interaction)

to the predictive analytics process. The four steps of the predictive analytics pipeline

(data preprocessing, feature engineering, model building, and model selection and

validation) serve as a basis for defining the PVA pipeline (Figure 4.1). The definition

of the PVA pipeline is further informed by the knowledge discovery process of Pirolli

Figure 4.1: The Predictive Visual Analytics Pipeline

22



Table 4.1: The Goal of Each Step in the PVA Pipeline and the General Predictive

Analytics Procedure

PA PVA Exclusive

Overall Goal Make Prediction Support Explanation

Data Preprocessing Clean and format

data

Summarize and overview the

training data

Feature Selection

and Generation

Optimize prediction

accuracy

Support reasoning and domain

knowledge integration

Modeling Optimize prediction

accuracy

Support reasoning and domain

knowledge integration

Result Exploration

and Model Selection

Model quality analy-

sis

Get insights; Select the proper

model; Feedback for model up-

dates

Validation Test for overfitting Get insights from other datasets

and Card [49] and a variety of recent surveys on topics ranging from visual analyt-

ics pipelines and frameworks [85–87] to human-centered machine learning [88–90] to

knowledge discovery.

As a starting point for defining the PVA pipeline, a four step pipeline of predictive

analytics and general data mining [48] consisting of Data Preprocessing, Feature En-

gineering, Model Building, and Model Selection and Validation is developed. Chen et

al. [91] extended this pipeline by adding an Adjustment Loop and a Visualization step

allowing for the application of different visual analytics methods within the general

data mining framework. Similar to previously proposed frameworks, the proposed

PVA pipeline here is also built on top of the typical process of knowledge discov-
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(a) (b) (c)

Figure 4.2: Examples of PVA Systems Representing the Entire PVA pipeline: (a)A

Document Classifier Training System [1], (b)iVisClassifier [2], and (c) Scatter/Gather

Clustering [3]

ery. In this thesis, Chen et al.’s pipeline is extended, splitting the process into five

steps: Data Preprocessing, Feature Engineering, Modeling, Result Exploration and

Model Selection, and Validation, as shown in Figure 4.1. The step Model Selection

and Validation is separated into two distinct steps, Result Exploration and Model

Selection and Validation, and the interactive analytics loop is represented by bidirec-

tionally connecting the first four steps with Visual Analytics. The proposed pipeline

highlights two specific aspects of PVA systems:

• Visual Analytics can be integrated into any of the first four steps iteratively so

that these steps need not proceed in a specific order in every iteration.

• In the validation step, model testing can be applied. Users are able to go back

to the first four steps after validation, but the integration level must be shallow

to prevent overfitting and conflation of testing and training data.

Given the tight coupling of interaction in the pipeline, a detailed categorization of

interactions found in the predictive visual analytics literature, building off of Yi et

al.’s interaction taxonomy [92] is also provided. To illustrate the difference between
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PVA and the general predictive modeling process, the goals of predictive analytics

are summarized and compared to the goals of predictive visual analytics in Table 4.1.

To date, few visual analytics systems have been developed to support the entire

PVA pipeline. Some examples of the most comprehensive PVA systems are presented

in Figure 4.2. Heimerl et al. [1] discussed three text document classification methods

covering the first four steps in the PVA pipeline and used statistical model validation

on the test dataset to demonstrate the effectiveness of the interactive visual analytics

method (Figure 4.2a). iVisClassifier [2] (Figure 4.2b) proposed a classification system

based on linear discriminant analysis (LDA). This system emphasizes the data pre-

processing step by providing parallel coordinates plots, heat maps, and reconstructed

images for the user to explore the data structure with reduced dimensions. iVis-

Classifier’s feature engineering and modeling steps are embedded in the classification

and involve significant manual work where users need to label the unknown data and

trigger a new round of LDA by removing/adding labeled instances. However, iVis-

Classifier has only been demonstrated using case studies without a well-established

testing and validation step. Scatter/gather clustering [3] (Figure 4.2c) has black-box

data preprocessing and feature extraction steps, but the system supports interactive

clustering as part of the modeling phase where users can set soft constraints on the

clustering method and compare clustering results.

Other representative examples that cover the complete PVA process include a

visual analytics framework for box office prediction [62] using iterative data integra-

tion, feature selection, and modeling with results exploration and model validation

measure; a predictive policing visual analytics framework [58]; Peak-Preserving [93]

time series prediction; and iVisClustering [64] which implements a document clus-

tering system based on latent Dirichlet allocation topic modeling (distinct from the

LDA used in iVisClassifier). iVisClustering also supports relation analysis between
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clusters and documents by using multiple views to visualize the clustering results and

a Term-Weight view to control the parameters that update the clustering model.

The analysis of papers indicates that visual analytics developers tend to focus only

on portions of the PVA pipeline. Even in cases when all of the steps of the pipeline

are found within a single system, several steps will often lack a direct connection to

any visualization. Instead, many steps are often left as black-boxes to the user in

order to focus on a subset of steps within the PVA pipeline. The most commonly

neglected step tends to be the data preprocessing step and the formal validation step

that utilizes testing of the prediction model. The formal validation step is quite rare

in visual analytics papers, though simple performance measures are often reported.

Given the lack of full pipeline support, this thesis categorizes the surveyed papers

according to which of the PVA pipeline steps were supported.

4.2 Data Preprocessing

Data Preprocessing has two objectives. The first objective is to understand the

data, and the second objective is to prepare the data for analysis. Typical prepa-

ration approaches include data cleaning, encoding, and transformation. Examples

of systems where data preprocessing is firmly integrated into the predictive analysis

loop include the work by Krause et al. [4] which presents a visual analytics system,

COQUITO, focusing on cohort construction by iteratively updating queries through

a visual interface (Figure 4.3). The usability of this system has been demonstrated

in diabetes diagnosis and social media pattern analysis. Other examples include the

Peak-Preserving time series predictions by Hao et al. [93] which supports noise re-

moval prior to building prediction models for seasonal time series data. Lu et al. [61]

propose a system for predicting box-office revenue from social media data. Their sys-

tem allows users to refine features by deleting noisy Twitter data which then updates

26



Figure 4.3: An Example of PVA work on Data Preprocessing (COQUITO [4])

the feature values. Other systems, such as iVisClustering [64] and iVisClassifier [2],

mention the data encoding process (i.e., given a text document, iVisClustering en-

codes the document set as a term-document matrix using a bag-of-words model with

stemming and stop words removal) but offer no visual analytics support in prepro-

cessing.

What is found is that in predictive visual analytics, the data preprocessing step

is commonly removed from the main analytic workflow. This is likely due to the

time-consuming nature of data cleaning, and the fact that specific visualizations and

interactions may be used for data preprocessing but are unlikely to be returned to

during analysis. As such, visual analytics systems that focus solely on supporting

the preprocessing step (e.g., Wrangler [94]) are often preferred to implement data

preprocessing, and researchers should consider how to better integrate these tools to

support a full predictive analytics pipeline.
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4.3 Feature Engineering

Once data is ready for analysis, the second phase of the PVA pipeline is feature

engineering. Feature engineering covers both feature generation and feature selec-

tion techniques, and has become a key focus in many visual analytics systems (e.g.,

DimStiller [95], rank-by-feature framework [96]) due to the complexity of feature en-

gineering in large, high-dimensional datasets. A recent survey by Sacha et al. [97]

further documents the role of visualization in feature engineering, specifically dimen-

sionality reduction.

In PVA systems, feature selection has been supported by parallel coordinates [62,

98], scatter plots [99], and matrix views [100]. For example, INFUSE [5] (Figure 4.4a)

supports feature selection by comparing different measures in classification. INFUSE

proposes a visual feature glyph which displays the performance of the feature dur-

ing cross-validation, and users can select a feature subset for classification modeling.

Mühlbacher et al. [6] proposed a visual analytics system for segmented linear regres-

sion which supports feature selection and segmentation on single features as well as

pairwise feature interactions (Figure 4.4b). SmartStripes [7] helps experts identify

the most useful subset of features by enabling the investigation of dependencies and

interdependencies between different feature and entity subsets (Figure 4.4c).

Other relevant works have focused on feature space exploration coupled with vi-

sual interfaces to adjust feature metrics. For example, Guo et al. [101] developed a

visual analytics system to support the exploration of local linear relationships among

features in multivariate datasets. Dis-Function [65] allows the user to interact directly

with a visual representation of the data to define an appropriate distance function.

Dis-Function projects data points into a 2D scatter plot. The user may drag points

to the region of the scatterplot that they consider more appropriate, and the system
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(a) (b) (c)

Figure 4.4: Examples of Feature Engineering in the PVA pipeline: (a) INFUSE [5],

(b)Segmented Linear Regression [6], and (c) Work by May et al. [7]

adjusts the distance function accordingly. The weights of the learned distance func-

tion provide a human-interpretable measure of feature importance. Krause et al. [102]

proposed an interactive partial dependence diagnostics for users to understand how

features affect the classification and understand the local effect with detail inspec-

tions. “What if” questions are also supported and users can change feature values to

explore possible outcomes and this is useful for design medical treatment.

In surveying PVA papers, what is noted is that data transformation is often

treated as a second class citizen even though many predictive analytics algorithms

require data inputs to have certain statistical distribution properties [103]. Instead,

the majority of techniques focus on dimension reduction, reconstruction (e.g., [104]),

and feature space exploration. Currently, few systems provide support for feature

generation. Examples of systems that support feature generation include FeatureIn-

sight [105], which supports building new dictionary features for a binary text clas-

sification problem through visualizing summaries of errors and sets of errors, and

Prospect [106], which uses a scatterplot and confusion matrix to visualize model per-

formance and the agreement of multiple models so that the user can remove label

noise and select models as well as generate new features to differentiate samples.
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4.4 Modeling

Once features are selected by the analyst, the analyst enters the modeling stage

of the PVA pipeline. In this stage, machine learning and statistical models are typi-

cally applied to the data. The underlying goal is to fit a representation onto known

data to predict unknown data. It is observed that PVA methods often focus on ap-

plying a specific type of modeling process to the data (e.g., decision trees, support

vector machines, hierarchical clustering, linear regression). From this survey analysis,

PVA tools use three primary model types, regression, classification, and clustering.

What this survey reveals is that model building is not usually separated from feature

selection and result exploration, and interactions are often designed to support the

iterative refinement of the model while exploring data space, feature space, and the

results.

In predictive visual analytics, regression modeling has been used for box office

prediction [62], epidemic diffusion analysis [9], and ocean forecasts [107]. In these

systems, visual analytics methods have focused on data subspace exploration, train-

ing set modification, outlier removal, model parameter tuning, and modeling with

different targets and different optimization functions. For example, Guo et al. [101]

present a visual analytics system that helps analysts discover linear patterns and ex-

tract subsets of data following the patterns. They integrate automatic linear trend

discovery and the interactive exploration of the multidimensional attribute space to

support model refinement and data subset selection. Other work includes Mühlbacher

et al. [6] which developed a system to support segmented linear regression model

building. This system supports feature selection and local model exploration.

Clustering is a common prediction task in many applications where labeled data is

unavailable. Clustering challenges include choosing an appropriate similarity metric
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Figure 4.5: An Example of Modeling with Visual Analytics (BaobabView [8])

and validation due to the fact that models generated by clustering may not generalize.

In clustering, visual analytics has been used for clustering manipulation, exploration,

and evaluation. For example, ClusterSculptor [108] utilizes a fine-grained bottom-

up pre-clustering to reduce the data size and allows the user to apply a top-down

clustering strategy with visual regroup. Rules can be learned from the clustering built

by the user and used on more data points. Following a similar strategy, Andrienko

et al. [109] propose a visual analytics clustering method which starts by clustering a

small set of data and then assigning new data to existing clusters. Clustering results

are presented to the users, and users are able to interactively define new clusters and

revise results to boost performance. Scatter/Gather Clustering [3] allows the users to

set indirect constraints on the number of clusters, and the system will perform scatter

(changing from N clusters to N + 1 clusters) or gather (changing from N clusters to

N − 1 clusters) iterations to update the clustering result. Dis-Function [65] allows
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the user to move data points on a 2D projected view and the system will learn and

update its underlying distance function in the clustering method.

For classification, visual analytics has been extensively used to support active and

incremental learning models where users interactively label a subset of the data to

train the model. Heimerl et al. [1] presented a user-driven method that incorporates

active learning for document classification. Visual cues are overlaid on unlabeled text

documents representing their distance to the classification boundary and users can

decide which data to include for the next model iteration. Users can also manually

assign the class label as part of the incremental modeling approach, and the system

will highlight the data points whose prediction will change based on this update. Paiva

et al. [110] used a Neighbor Joining tree and a similarity layout view for interpreting

misclassified instances to support the labeling and training set selection as part of an

incremental learning procedure. This thesis finds that this concept of interactively

labeling data as part of a model learning process is also supported by other PVA

works [59, 104, 111].

Another focus of classification modeling in predictive visual analytics is decision

tree construction. Work here has been demonstrated to improve both model accu-

racy and model comprehensibility. For example, Ankerst et al. [63] presented a visual

classification approach on decision tree construction where circle segments are used

to visualize the data attributes and clustering results. Users can manually select fea-

tures, split nodes, and change data labels while constructing the tree. Backtracking

in the tree construction phase is also supported. More recent work includes Baobab-

View [8] (Figure 4.5) which supports manual decision tree construction through visual

analytics. BaobabView enables the model developer to grow the tree, prune branches,

split and merge nodes, and tune parameters as part of the tree construction process.

Additionally, neural networks and support vector machines have also been incorpo-
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rated into predictive visual analytics works where the focus is on enabling users to

understand the black-box modeling process of these algorithms [51, 112, 113].

What is found in the modeling stage of the PVA pipeline is that a major focus

is on both model configuration and model comprehensibility. Currently, some of the

most popular classification algorithms are inherently black-box in nature, which has

led to researchers asking questions about how and why certain algorithms come to

their conclusions. Challenges here include how much of the model should be open

and configurable to the user and what the best sets of views and interactions are

for supporting modeling. Again, one can observe a relatively tight coupling of this

stage in the PVA pipeline with the feature engineering stage. This is likely due to

the iterative nature of the knowledge foraging process [49].

4.5 Result Exploration and Model Selection

Once a model is generated, the next step in the PVA pipeline is to explore the

results and compare the performance among several model candidates (if more than

one model is generated). In this step, scatterplots, line charts, and other diagnostic

statistical graphics are often the primary means of visualization, and many varia-

tions of these statistical graphics have been proposed, e.g., the line chart with confi-

dence ranges and future projections [114], node-link layout for hierarchical clustering

results [115], etc. In this phase, systems tend to support connect interactions to

highlight and link relationships to explore and compare the outputs of the modeling

process under different feature inputs.

Examples of result exploration in PVA include Afzal et al. [9] which presents a

decision history tree view to analyze disease mitigation measures. Users can analyze

the future course of epidemic outbreaks and evaluate potential mitigation strategies

by flexibly exploring the simulation results and analyzing the local effects in the map
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(a) (b) (c)

Figure 4.6: Examples of Result Exploration for Predictive Analytics: (a) A Decision

History Tree View by Afzal et al. [9], (b) Uncertainty Visualization in Area Classifi-

cation Results [10], and (c)Similarities Between Artificial Neurons [11]

view (Figure 4.6a). Different paths can be displayed revealing prediction outcomes

under different settings by deploying selected strategies. In this way, the user can

explore model results and decide which strategy to use while comparing multiple

cases. Slingsby et al. [10] present geodemographic classification results using a map

view, parallel coordinates, and a hierarchical rectangular cartogram. The parallel

coordinates view is used to drive the Output Area Classification model and com-

pare classification results given different parameterizations (Figure 4.6b). Rauber et

al. [11] use dimension reduction techniques to project data instances and neurons in

multilayer perceptrons and convolutional neural networks to present both the clas-

sification results and the relationships between artificial neurons (Figure 4.6c), and

Dendrogramix [116] interactively visualizes clustering results and data patterns from

accumulated hierarchical clustering (AHC) by combining a dendrogram and similar-

ity matrix. iVisClustering [64] visualizes the output of Latent Dirichlet allocation by

displaying cluster relationships based on keyword similarity in a node-link cluster tree

view. Users can explore the model results, and interactions support model refinement.
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Figure 4.7: An Example of Model Selection (Squares [12])

Alsallakh et al. propose the confusion wheel [117] and visualize true positive, false

positive, false negative, and false positive classification results.

Along with result exploration, model selection methods have been employed to

compare prediction results and model quality under different parameterizations. For

example, Squares [12] is a visual analytics technique to visualize the results of mul-

ticlass classification on both instance level and class level performance (Figure 4.7).

Squares uses small multiples to support the analysis of the probability distribution of

each class label in a classification, and it uses squares to visualize the prediction result

and error type for each instance. Pilhöfer et al. [118] use Bertin’s Classification Crite-

rion to optimize the display order of clustering results from different models so that the

relationship between results can be explored. Other techniques have explored meth-

ods for visually comparing clustering results under different parameters [58, 119, 120]

in geographical displays.

From this survey, one can observe that there are many PVA works supporting

result exploration and model selection. However, one undersupported topic is model
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comparison, i.e., comparing the results of two different classifiers such as a decision

tree and a support vector machine. Furthermore, it is noted that many systems also

have a distinct lack of provenance and history support. Result exploration often gets

tied into the feature engineering process as many systems have been developed for

feature steering and selection. As features are modified, results from the model are

presented. Without the ability to save results, however, comparison can be difficult

even within a model.

4.6 Validation

Finally, once a model is generated and the results are explored, model validation

is performed to test its quality. After training, data that has not been used in the

first four stages of the PVA pipeline can be used to evaluate the performance of the

model. This step is critical to verify that the model created can be applied to future

or unknown data without a significant drop in accuracy. Statistical measures such as

accuracy, precision, recall, mean square error (MSE), and R2
predicted are commonly used

to evaluate model performance. Currently, the user’s enjoyment measurement [105]

is not considered as a part of the validation step in the PVA pipeline, but, arguably,

such measures should be an integral part of a PVA system. Similarly, efficiency and

scalability are also not considered. As such, validation in PVA has two forms. First,

visual analytics can be employed as part of the statistical model validation. Second,

validation with respect to the use of throughput and efficiency of the PVA system

should also be considered for validating the proposed PVA approach.

Common visualizations used in machine learning and data mining for model vali-

dation include residual plots, the receiver operating characteristic (ROC) curve, and

the auto-correlation function (ACF) plot. Hao et al. [93] present a visual analytics

approach for peak-preserving predictions where they visualize the certainty of the
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model on future data using a line chart with a certainty band. This work explores

model accuracy on the training time series data with color codes, and then discusses

the model accuracy as an offline comparison with the true value of the test data.

K-fold cross-validation is involved in INFUSE [5] for feature selection, and Andrienko

et al. [109] apply the classifier to a new set of large-scale trajectories and calculate the

mean distance of the class members to the prototype for validation after developing

a classifier using their PVA system.

While validation in the context of predictive analytics would refer to questions

of the model’s accuracy, predictive visual analytics must also be concerned with val-

idating the visualizations and interactions proposed. This is often done through

case studies. An example of this was the 2013 VAST Challenge on box office pre-

dictions [121, 122] where participating teams submitted predictions of future ticket

receipts and ratings of upcoming movies using their visual analytics system (over the

course of 23 weeks). The performance of these tools has been reported in follow-up

papers [61, 123] and provides insights into the current design space of PVA. Other

works have validated their PVA systems by including statistical tests for the mod-

els generated using their PVA systems compared to other approaches. For example,

BaobabView [8] compares its classification accuracy to the automatic implementation

of C4.5 [124] on an evaluation set. Heimer et al. [1] separate training and test data

and provide a detailed performance comparison of the three models they discussed to

illustrate that the user-driven classification model outperforms others. Similar exam-

ples can be found in works from Ankerst et al. [63], Kapoor et al. [125], and Seifert

and Granitzer [126].

What is observed in the survey is that validation is perhaps the most underserved

stage in the PVA pipeline, both from the statistical and user point of view. In many

PVA systems, the user is allowed to interact until the model outputs match their
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expectation; however, such a process may be dangerous as it allows the user to inject

their own biases into the process. More research should be done exploring to what

extent humans should be involved in the predictive analytics loop. This requires

validation on the user side and methods for measuring a user’s model comprehension.

Insight generation should also be considered alongside measures of the predictive

accuracy of the model.
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Chapter 5

A PREDICTIVE VISUAL ANALYTICS FRAMEWORK

Following the proposed predictive visual analytics pipeline, a predictive visual ana-

lytics framework consisting of several visual analytics tools is proposed in this thesis

and one particular real world prediction problem, movie box-office prediction, is used

to show the effectiveness of the framework. Movie box-office prediction, as one pre-

dictive analytics problem, is selected in this thesis for several reasons: First, the data

is public and easy to collect. In this thesis, movies released from 2013 to 2016 are

tracked and both IMDB movie data and Twitter data are collected. The true value

of movie revenue is also public and can be used to evaluate the prediction results.

Second, it is easy to find users with adequate knowledge of movies so that they can

be considered experts in the analysis. Experts have domain knowledge in making

predictions and predictive visual analytics can assist them to use such knowledge

to adjust the model’s prediction. Recruiting users familiar with movies, it is able

to support the integration of domain knowledge and machine learning and evaluate

human participation in such a predictive analytics process. To focus on the research

problems proposed in this thesis, some visual analytics tools in this framework are

specifically developed to support visual analytics on social media data.

5.1 Predictive Analytics for Movie Revenue

In the United States, social media platforms are being used by two out of three

adults and trends increasingly [127]. People use social media to read news, post

events, express opinions and share experiences. Because of the nature of such use,

social media data conveys information for business analysis and has caught attention
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in many marketing research topics, such as word-of-mouth [128], relational market-

ing [129], and products adoption and diffusion [130].

As a representative business analysis problem, movie revenue prediction has been

studied widely and many social media features have been explored for opening week-

end’s box office prediction before release. An early study by Simonoff et al. [131]

leveraged classical numerical and categorical movie features (e.g., time of year, genre,

MPAA rating, budget) and proposed a logged response regression model. Although

this work demonstrated that the first weekend gross is an effective predictor for the

total revenue of a movie, the prediction accuracy using data before release was lower

than 45%. To improve the prediction accuracy, researchers tried many social media

features and the power of social media data in box office prediction emerged quickly.

Zhang et al. [132] demonstrated that pre-release prediction of movie gross can be

enhanced by utilizing metrics extracted from news sources in both regression models

and k-nearest neighbor models. Focusing more on text features, Joshi et al. [133]

explored the relationship between film critic reviews and box office performance.

Turning from news and reviews to less structured and more enriched social media

posts, further work by Asur et al. [134] found that the rate of Tweets per day could

explain nearly 80% of the variance in movie revenue prediction. The predictive power

of search volume in different websites has been demonstrated [135], and a white-paper

report from Google [136] claimed a 94% prediction accuracy in box office prediction

by utilizing the volume of internet trailer searches for a given movie title. While many

factors have been analyzed, the integration of both classical factors and social factors

has been suggested for better predictions [137].

In this thesis, similar to previous works, classical movie features and social media

features are both used in the movie box-office prediction models, but different to

previous works, the emphasis here is on integrating experts’ domain knowledge and
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machine learning models through a predictive visual analytics framework to support

the predictive analytics.

5.2 Predictive Visual Analytics Toolkit

In prediction tasks, the visual analytics tools provide more comprehensive infor-

mation and allow users to interactively steer their exploration and bring in their own

domain knowledge. For a specific movie box-office prediction problem, the design

contains the following parts: single movie prediction, prediction for the total rev-

enue of the movies released at the weekend, feature exploration and selection, similar

movie’s performance comparison, sentiment analysis, and an interactive modeling.

The development of this toolkit started as part of the 2013 VAST Challenge, and the

environment of using some of the tools and models is also related to the contest.

5.2.1 Linear Regression for Movie Predictions

Traditional variables used in box office prediction models include structured vari-

ables (e.g., MPAA rating,movie budget) and derived measures (e.g., popularity of the

movie stars, popular sentiment regarding the movie). Based on an initial literature

search, multiple linear regression is chosen to produce an initial prediction range for

the opening weekend box-office revenue. As in a contest where traditional variables

used by other researchers were not always available (for example, theater count is

not provided for every movie in IMDB), a variety of different variables that could

be mined from the social media data and IMDB were explored, see Table 5.1. After

initial model fitting and evaluation using R [138], the best fit of this linear regression

model is found to be of the form:

OW = β0 + β1TBD + β2Budget+ ε (5.1)
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Table 5.1: Variable Description

Variable Description

OW 3-day Opening Weekend Gross

Budget Approximate movie budget from IMDB. (unit is “million”

of dollars)

Genre(category) The movie’s genre(s) according to IMDB

TUser Number of unique users who tweeted about a movie

TBD The average daily number of Tweets over the 2 weeks prior

to release

TSS Tweet Sentiment Score - A summation of each individ-

ual word’s sentiment polarity as calculated via SentiWord-

Net [139]

MSS Movie Sentiment Score - A derivation of the overall senti-

ment of a movie

MSP Movie Star Power - A summation of the Twitter followers

of the three highest billed movie stars (as listed by IMDB)

This model is used to predict upcoming movies’ opening weekend gross and the

model is updated weekly as new movies are entered into the dataset. Parameters are

fit using movie data beginning in January, 2013. The first prediction was for the May

17th weekend and used data from 39 movies for training. This weekly model reported

an R-adj2 ≈ 0.60 with p < .05. As more movies came in, this model became more

stable. The final parameters were β0 ≈ 4.9× 103, β1 ≈ 4462, and β2 ≈ 2.3× 105.

The drawback of this model is that it does not fit the data overly well and its

predictions have a large variance. The hypothesis was that a visual analytics toolkit
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Figure 5.1: The Weekend Prediction View for Newly Released Movies and the Pre-

diction Adjustment Widget

could partially enable analysts to overcome poor data (partially due to the noise in

social media data and partially due to the closed world nature of the contest). In

order to facilitate better model prediction, a simple bar graph view (Figure 5.1(a))

was created which, for historical movies, showed the model prediction and its 95%

confidence interval error range, the submitted prediction, and the actual box office

gross. For newly released movies, only the model prediction and user submission was

shown. This view was critical in the analysis process, and the primary view into the

data consists of an overview of the tweets per day and the model predictions of the

movies under analysis as shown in Figure 5.4(a).

5.2.2 Temporal Modeling for Weekend Prediction

While the regression model is able to provide one point for analysis, the goal

was to also provide a big picture overview. For any given weekend, there is likely

a maximum amount of money available in the market. In order to approximate

this value, a simple moving average model was employed. This model approximated

subsequent weekend grosses for movies under the assumption that movies would run

for three weeks following their opening weekend, and each weekend their box office
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take would be reduced by 50%. Thus, for any given weekend, it approximated the

gross as:

Weekend Gross(t) =
∑
∀i

OWi(t) +
j=3∑
∀i,j=1

.5jOWi(t− j),

where t is the current weekend and i is the index to a movie that exists at time t.

Then, the weekend gross prediction uses a moving average:

Weekend Gross(t+ 1) = 1
3

j=2∑
j=0

Weekend Gross(t− j).

Finally, it approximates the available revenue for new movies as:

New Movie Gross(t+ 1) = Weekend Gross(t+ 1)−
j=3∑
∀i,j=1

.5jOWi(t+ 1− j).

While this prediction is crude, it provided the analysts with a valuable bound in

which to explore the revenue predictions.

Results from the temporal weekend prediction and the linear regression models

were then visualized in two different views as shown in Figure 5.1. The first view

consists of a linked bar graph combined with stacked bars as shown in Figure 5.1

(b). The primary portion of the bar graph consists of light gray bars indicating

the predicted total weekend market for the new movies and the dark gray short line

indicates the actual weekend market for each calendar week whose date is shown on

the x-axis. The stacked color bar graph is visualized only for the weekend under

analysis, and the color design is the same as the movie’s color in the prediction bar

graph.

The second view, Figure 5.1 (c) and (d), is used to enable users to interactively

adjust predictions while also visualizing the bounds of the total weekend prediction.

In this view, a gray square is drawn, the area of which is scaled linearly to the total

weekend prediction. Colored rectangles are superimposed onto the gray square, where

the area of each colored rectangle represents the linear regression prediction for each
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movie being released on that weekend. If the sum of the individual predictions is equal

to the total prediction, the colored rectangles will fit exactly into the gray square in

both Figure 5.1 (c) and Figure 5.1 (d). The color design is the same as those of the

bar graph, and modifying the size of a bar in any view will modify the size across all

views.

The system was designed to allow for three types of prediction adjustments.

1) Users are allowed to change the amount of the total gross prediction but the

ratio between the movies will remain consistent.

2) Users are allowed to change the amount of an individual prediction but the total

weekend prediction is kept consistent.

3) Users are allowed to arbitrarily change each movie’s prediction and ignore the

weekend gross.

The first two adjustment functions are directly implemented in view (b). The white

translucent lines on the boundary and the top of the colored rectangles are control

bars used to modify the gross. The vertical control bar can be dragged from left

or right to change the predicted gross of adjacent movies without affecting the total

prediction. The top horizontal control bar can be moved up and down to change the

total prediction while keeping the original ratio of each movie’s take. In this view,

every colored rectangle has the same height, and their width represents the ratio of

their gross. View (c) provides a method for analysts to compare what proportion one

movie takes of the predicted total weekend gross and adjust each movie individually

without affecting others. In view (c), the height of each movie is equivalent to the

height of gray square, and the width of the bars is allowed to extend out of the square.

When one movie is aligned to the left in the gray square, the analysts can quickly

observe the proportion of the movie to the total predicted weekend gross.
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By implementing and integrating multiple comparison methods, the model anal-

ysis process found to be able to quickly bound user’s analysis. While flexible, these

bounds provided one with an early estimate of the total expected weekend gross in

which to compare the predictions of the linear regression models. This multiple model

comparison was a critical step for our overall box office prediction and was regularly

used for all movie analyses.

While the results of our temporal predictions were of low quality, the combination

of predictions and bounding of the problem space provided critical information for

comparison and analysis. This thesis will further discuss, in the case study section,

how the combination of both models was critical for successful predictions. Overall,

the addition of multiple models predicting similar information can help guide analysts

to a better ground truth. Similar to principles employed in the Delphi method [140],

where predictions are solicited from multiple experts and used to come to a common

conclusion, this system allows users to solicit predictions from multiple models to aid

in their analysis. This bounded adjustment widget can be used in other hierarchical

predictions which have both individual and total predictions, such as sub-topic trend

prediction in a time period.

5.2.3 Feature Analysis and Selection

Feature values of movies can give insights and hints about their box office success.

Moreover, they can be used as predictors for a movie’s opening weekend revenue.

Using Twitter, Youtube and IMDB data sources, four groups of features are extracted

for model building with 119 features listed in the Feature Selection Table (Figure 5.2).

Given the large number of features, it is necessary to provide the users with a suitable

starting point for analysis. As such, known predictive features for movie analysis from

previous work [131] (e.g., budget, number of screens the movie opens on, etc.) are
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Figure 5.2: Feature Selection Page with Frozen as an Example. View (a) is the

Feature Selection Table, View (b) is a Parallel Coordinate Plot, and View (c) is the

Most Similar Movies List.

utilized. Thus, when the users begin their exploration process, they are presented

with a baseline model to compare against. Other options would include integrating

automatic feature selection as an entry point for analysis (e.g., [141, 142]).

The goal was to augment model building by adding tools for a user to modify

and explore various features. In order to quickly enable this exploration, the Feature

Selection Table (Figure 5.2(a)) utilizes a variety of interactions and visual overlays.

First, for the candidate movie being predicted (in this case Frozen), features which

are not available are grayed out. Second, each of the columns in the feature selection

table provides the details of a movie. The first three columns include information on

the feature’s name, the correlation to the revenue, and the candidate movie’s value.

These columns can be automatically sorted from high to low or low to high simply

by clicking on the column header. The Revenue Correlation column is also color

coded to directly highlight correlated features. A myriad of work has been done in

feature selection [7, 143, 144] and correlation is traditionally used as one of the major
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factors in feature selection. A high correlation of a feature to the response variable

(in this case the movie revenue) indicates that this feature could greatly impact the

model. A green to red divergent color scale [145] is used to represent the correlation

value where green represents a high absolute value of correlation and red represents

a low value of correlation, with .5 being the midpoint value. Although correlation

here is univariate (meaning it does not show correlations between multiple features)

and non-linear dependencies are not taken into account, it still provides important

information to users for feature detection and analysis.

The final two columns in the Feature Selection Table are associated with the

parallel coordinate plot and the model training data selection. The “Show in PC”

column, when selected, will add that feature as an axis of the parallel coordinate plot.

The “Use in Training” column, when selected, will add all data elements that contain

all of the features selected into the training set. To quickly see what features have

been selected, the analyst can sort the features by clicking the column header. When

features are selected, the footer information about the Feature Selection Table will

update and tell the user how many features have been added to the training set, as

well as the amount of movies that exist having all of these features. In this manner,

the analyst can determine how many data elements can be used to train a model and

they can quickly make decisions about the tradeoff between the use of more features

or more training samples. For example, if a user chooses to select a Twitter feature,

only 112 movies in this data set have associated Twitter data. Thus, the number

of elements in the training set decreases. However, Twitter data may have a high

correlation to the opening weekend gross. As such, the analyst can actually build

multiple models with multiple features for training and analysis.

Another way to select the training data is through the interaction with the par-

allel coordinate plot view. Consider the case in which a user has sorted the features
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by correlation to revenue, selected some features with higher correlation to the gross,

and selected features that he/she suspects are important. These selected features can

now be further explored in the PCP view (Figure 5.2(b)) by simply activating the

“Show in PC” cell in the corresponding table row. Referring to the candidate movie’s

value, shown in the fourth column, the user can further filter out movies far away

from this value in the PCP view. Figure 5.2(b) shows features of the movie “Frozen”

with highly correlated features in different group and the movie’s genre, “Family”.

Pairwise correlations between features are explored in the PCP view. For example,

the WeekendScreens (the number of screens in which a movie was released during its

opening weekend) and the oneWeekBeforeReleeaseAVG (the daily average number of

Tweets that are related to a movie one week before its opening) variables are corre-

lated. These axes can be dragged and dropped to explore more pairwise dimension

correlations so that an analyst can choose features with low multi-correlation in or-

der to improve the model performance. Users can then interactively select ranges by

brushing on each axis to filter the data and can select an option to train the model

using only the selected data.

The PCP view can also be used to generate insight into the data. For example, by

brushing and selecting only Family movies using the Boolean genre feature “Family,”

one can define the training set to be only those movies that are considered to be

“Family” movies. Moreover, the PCP view allows the analyst to select a primary

axis, this selection defines the feature on which it bases the PCP line color scheme.

For example, if one colors the lines based on the genre axis “Family” it can be seen

that family movies rarely obtain a very high gross. From there, the user could train

the model for only Family movies or could look for genre crossover movies such as

Family and Animation.
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The final item in the Feature Analysis and Selection widget is the “Top 5 Similar

Movies by PCP Features” view, Figure 5.2(c). Given the feature vector corresponding

to the features selected in the parallel coordinate plot, the system automatically

calculates a Euclidean distance metric between the candidate movie and all other

movies that appear in the PCP view. The five movies with the smallest Euclidean

distance are then summarized in a tabular view.

5.2.4 Similarity Widget

While the Feature Analysis and Selection Tools show the top 5 most similar

movies, a series of tools have also been developed for enabling users to explore tempo-

ral and sentiment similarities with regards to social media trends and specific feature

similarities such as genre and ratings. Figure 5.3 shows the similarity widget page.

Items in this similarity view focus primarily on similarity across social media (as op-

posed to the previous widget which used a Euclidean distance metric across many

features, this view is a pairwise feature similarity). The left side of Figure 5.3 shows

the various similarity options provided while the center view displays line charts or

wordles depending on the selection. It has ten predefined metrics (eight of them are

described in Table 5.2 and one “Make Your Own Similarity” option. The rightmost

area shows the model predictions and the actual weekend gross for similar movies via

a bar graph.

This widget enables analysts to quickly find and compare the accuracy of predic-

tions based on various criteria of similarity, and to perceive if the given prediction

model typically underestimates, overestimates or is relatively accurate with regards

to movies that the analyst deems to be similar. In this manner, a user can further

refine their final prediction value. Ten similarity criteria are defined with distance

calculation methods focusing on matching temporal trends through sequential nor-
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Table 5.2: Calculations of Similarity Criteria

Similarity Criteria Distance Measurement

Tweet Number by

Day

Dis(v, s) =
14∑
i=1

|TBDi(v)− TBDi(s)|

Tweet Changing

Trend

Dis(v, s) =
14∑
i=1

∣∣∣ TBD i(v)
Max(TBD j(v),j=1,2,...14)

− TBD i(s)
Max(TBD j(s),j=1,2,...14)

∣∣∣
Sentiment River Dis(v, s) =

14∑
i=1

∣∣∣ MSS i(v)
Max(MSS j(v),j=1,2,...14)

− MSS i(s)
Max(MSS j(s),j=1,2,...14)

∣∣∣
MSS Dis(v, s) = |MSS(v)−MSS(s)|

MPAA same MPAA rating and close release date

Genre Dis(v, s) = 1− card(Genre(v)∩Genre(s))×2
card(Genre(v))+card(Genre(s))

MSP Dis(v, s) = |MSP (v)−MSP (s)|

Sentiment Wordle Dis(v, s) = 1− card(SWordle(v)∩SWordle(s))
card(SWordle(v))

malization or Euclidean distance metrics for magnitude comparisons. In all similarity

matches, this view shows the top five most similar movies. These views allow users

to directly compare Tweet trends and sentiment words between movies deemed to

be similar in a category. Figure 5.3 contains snapshots from Frozen’s similarity page

cropped to the top two most similar movies by Sentiment Wordle and Youtube Trailer

Comments.

Though similarity metrics used in this page are not directly transformed into

modeling features, by providing an analyst with insight into these secondary variables,

coupled with the model performance with similar movies included in the training set,

further refinement of the prediction is made possible. For example, an analyst may

compare the absolute difference between Tweets/Youtube comments of two movies,

or they can inspect the trend of the Tweets through line chart comparison using
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(a) Similarity by Sentiment Wordle

(b) Similarity by Youtube Trailer Trend

Figure 5.3: Similarity Widget View with Frozen as an Example.

the Tweets Changing Trend similarity metric. This tool also allows users to quickly

compare the current movies under analysis to recently released movies with the same

MPAA rating and genre. When the user builds a model involving Twitter features,

the top 5 most similar movies listed in the Feature Selection and the Explore Models

page can be compared in the similarity page.

5.2.5 Tweet Sentiment Visual Analytics

Sentiment embedded in social media has great value but is also hard to perceive

effectively. In sentiment visual anlayitcs, the goal is to visually represent the sentiment
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conveyed in social media data and support interactive analysis in the context of

sentiment classification problems on social media text.

While structured data is relatively straightforward to extract, unstructured data

requires a large amount of pre-processing and manipulation. In a box-office prediction

scenario, tweets were collected for the two-week period prior to the release date based

off the hashtag provided by a movie’s official Twitter account. In order to approximate

the popular sentiment of a movie, each tweet is processed using a dictionary based

classifier, SentiWordNet [139]. This process assigns each word in the tweet with a

score from −1 to 1 with −1 being the highest negative sentiment score and 1 being

the highest positive sentiment score. Next, each tweet is assigned a sentiment score

by summing the sentiment score of all words in the tweet and scaling the range from

−.5 to .5 (TSS in Table 1). Finally, the movie sentiment score (MSS in Table 1) is

calculated as

MSS =
Positive Score

Positive Score + Negative Score
(5.2)

where Positive Score is the sum of all tweets for a given movie with a TSS greater

than zero and Negative Score is the absolute value of the sum of all tweets for a given

movie with a TSS less than zero.

Once the sentiment scores for tweets were extracted, these values were then visu-

alized to the end user. Figure 5.4 (b-d) shows the bubble plot view, the sentiment

river view, and the sentiment wordle view. In the sentiment wordle view (Figure 5.4

(d)), the 200 most frequently mentioned words are extracted and visualized. Both

the bubble plot and the wordle plot enabled interactive searching and filtering by key-

words and users. Users posting irrelevant messages could be removed from the tweet

count and mismatched sentiment could be modified by the end user. One example

usage is that the user can first mouse over a bubble to see the user name and the

text content of this tweet and then a left click opens a pop-up dialog for sentiment

53



(a) Tweet Line Chart (b) Bubble Plot

(c) Sentiment River (d) Sentiment Wordle

Figure 5.4: Tweet Trend and Sentiment Views for Despicable Me 2

modification while a right click allows tweet removal. The primary use found for the

views in Figure 5.4 were for data cleaning. The primary lesson learned was that vi-

sualization tools are a necessity for data cleaning due to the noisiness of social media

data and the problems inherent in sentiment matching using a sentiment dictionary

(e.g., phrases such as “I want to see this movie so bad” are marked as negative due to

the word “bad”, and words such as “Despicable” give negative sentiment when they

are merely references to a movie title). While the wordle view provided a quick way

to assess the sentiment of popular words, it was necessary to hover over the bubble

plot or open a tweet list view through the search bar in order to fully explore the

context of a tweet. The bubble plot and wordle plot helped users to deal with the

challenge of sentiment analysis and cleaning of noise from social media data.

5.2.6 Interactive Model Building

Based on recent literature and the general use of prediction models, this framework

supports the creation of three different types of models: Support Vector Machine

(SVM) [22], Linear Regression (LIN) [23] and Multilayer Perceptron (MLP) [24]. A
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Figure 5.5: Front Page of the Frozen Weekend with View (a) the Tweet and Youtube

Comments Line Graph, View (b) the Opening Weekend Gross Bar Graph, and View

(c) the List of Tweets and Users

linear regression model is used as a baseline model that the system provides users

with its prediction result together with a 95% confidence interval for each movie.

The baseline model results are shown in both the front page (see Figure 5.5(b)) and

the similarity page’s right-hand bar graphs (Figure 5.3).

Besides exploring the baseline model, the user can build more complex models,

bringing in domain knowledge and analytic insights. For instance, the user is al-

lowed to interactively set up parameters and build models with different feature sets,

training instances (movies) and model types. Several error measures are used to give

the analyst feedback about the quality of fit and the prediction stability. By using

the interactive Feature Selection and Explore Models pages, the user can iteratively

change the features, training sets and model types to improve a model’s quality. The

model’s accuracy is measured using the adjusted R2, denoted R2
adj.
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Base Line Model

The model proposed in section 5.2.1 is used as the base line model, which is described

as follows:

OW = β0 + β1TBD + β2Budget+ ε (5.3)

It uses the budget and the average number of daily Tweet (TBD)s for a movie as

regressors and the opening weekend gross as response. With all 110 movies in the

training set, the estimation of parameters in Equation 5.3 are OW = 6.878 × 106 +

1303× TBD + 0.26×Budget with R2
adj ≈ 0.6 and P � 0.05.

Advanced Models

As most of the attributes are proportional to the box office success (e.g. the more

budget, the higher weekend gross potential) one can even achieve good results using

linear regression model. More advanced models can be built using a Support Vector

Machine (SVM) or a Neural Network, i.e. Multilayer Perceptron (MLP). To achieve

good results, these algorithms have to be finely configured by setting input parameters

based on the input data. A grid search (parameter optimization method) is run to

find out the best parameter settings. The SVM here uses a linear kernel and a nu-

parameter of 0.4, which constrains the influence of a single instance (movie) to the

model. Considering the relatively small number of movies when compared to the large

feature space we also tested an RBF kernel. However this did not achieve better R2
adj

results than with the linear kernel. The MLP here uses the backpropagation learning

rule and use a learning rate of 0.3, 200 training epochs and a momentum rate of 0.85

to achieve good results.
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Figure 5.6: Multiple Method Modeling with Frozen as the Candidate Movie with View

(a) a Model History Table, View (b) a Scatterplot, and View (c) a Model Prediction

Comparison Plot

Multiple Methods Modeling

Predictive models help to reveal relationships between the predictors and the response

variable, but no matter how good the prediction is, no cause-effect relationship can

be implied. Also, the accuracy of one prediction can hardly be generalized to all other

predictions. In statistical analysis, experts usually explore residual distributions, out-

liers, influential points, and model stability. In this system, besides using statistical

methods, visual analysis methods are applied for exploring the residual distribution.

In the page “Explore Models” the user can select which algorithm to use, set the

number of folds for the stability test, train models to predict the movie’s revenue,

and compare between models. The Explore Models view is shown in Figure 5.6. For

model building, the feature and training set configurations from the Feature Selection

page are applied. After the prediction is executed, the analyst can use the Actual

vs. Predicted Gross view (Figure 5.6(b)) to obtain an overview of the residuals, as
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was presented in [146]. A diagonal line indicating “the perfect prediction” is also

drawn. This means, the closer the data points lie to the reference line, the better

the overall fit of the model. The top 5 most similar movies are highlighted in red

to quickly guide comparison and analysis. The user can change these similar movies

based on adding/removing features in the parallel coordinates plot view (Feature

Selection page). To submit a good prediction for a particular movie, it may be more

important that the model fits for similar movies than fits the overall training set. In

other words, if the model predicts well for similar movies this may be an indicator

that it also gives good results for the prediction candidate.

These tools also enable the exploration of influential points. An influential point is

an outlier in both the predictor and the response domain, and these points are known

to have a noticeable impact on the model coefficients [23]. If an influential point is

removed from the training set, the fit of the model will change by a relatively large

degree and usually fit other points better. This fact can be used to improve prediction

results. Instead of using statistic diagnostics, such as Cook’s D and DFFITS [147], the

user is allowed to directly remove such instances and only train on selected movies. In

this way, influential points can be implicitly removed via exploring differences between

different models.

Finally, the Model History Table (Figure 5.6(a)) enables the comparison of mul-

tiple models so that the analyst can review the predictions by re-investigating their

scatterplots. In combination with the Model Comparison view (Figure 5.6(c)), the

user can also get an overview of the prediction deviations, review the increase or de-

crease of prediction precision and select his/her final prediction. The goal is to build

a model which can help the analyst to better predict the upcoming movie’s opening

weekend gross, not to build an adequate model that fits all the training data very

well.

58



To estimate the performance and to test the model’s stability, an n-fold cross-

validation [148, 149] is provided. For the cross-validation we partition the data

into n folds. Each fold includes nummovies/n instances. The movies of each fold

are predicted once, using the other folds for training. This way, the method ensures

that the model generalizes and is not overfit to the training data. For the prediction

candidate, every fold is used once to predict the outcome. Thus, for each prediction

the candidate movie gets n results. The dashed vertical line in the scatterplot shows

the range of these results. A smaller range indicates that the model is stable. This

range is also shown in the bar graph below the scatter plot, where all predictions can

be compared.

Auxiliary Analysis

Instead of depending totally on an automatic model, most industry predictions also

utilize an expert’s domain knowledge. For example, if a movie is released next to

an expected blockbuster, its performance could be also impacted. With the system,

analysts can query any movie by its title to investigate features. Users can also go

to previous weekends to see how much money those movies made. A user can also

investigate the Twitter and Youtube data to explore the advertising campaign and

public sentiment. Usually a successful movie has either an effective advertisement

campaign, positive public reactions, or both. From the bubble plot shown in Figure

5.4(a), large bubbles usually are Tweets from the movie production company and the

bubble size indicates the spread power. If the large bubbles separate along the time

line, it is likely that the company has continued advertising its movie.
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Chapter 6

CASE STUDIES

The proposed predictive visual analytics framework consists of several views and

interactive analytics tools. To show its effectiveness in movie box-office prediction,

some tools have been used in the 2013 VAST Box-office Challenge to predict movie’s

opening weekend gross weekly and the results were compared with peer teams. Adding

other features in the framework, a predictive analytics procedure has been proposed

after the contest and a small-scale user study was run to evaluate the framework

with a larger dataset. This section will discuss these two case studies on applying

the developed visual analytic framework on movie box-office predictions. The results

of these studies inspired a further study on the visual properties of the social media

data, which has been demonstrated to be useful in the case study. Therefore, the

network structure of the movie related Tweets is explored in this thesis as the third

case study to analyze its role in predicting movie box-office.

6.1 VAST Box Office Challenge: Predicting Despicable Me 2 and the Lone Ranger

A version of this framework (including tweets sentiment views shown in Figure 5.4,

temporal modeling shown in Figure 5.1, similarity widget shown in Figure 5.3 and

a linear regression baseline model) was used to predict 23 movies over the course of

3 months in the VAST 2013 Box Office Challenge. The VAST Box Office Challenge

was a closed world contest in which contestants were provided with a set of Twitter

indices, bitly links, and access to the Internet Movie Database. A web-enabled visual

analytics toolkit was developed to enable analysts to quickly extract, visualize and

clean information from social media sources (specifically bitly and Twitter). These
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tools were then combined with linear regression and temporal modeling for movie box

office prediction and sentiment analysis for movie review rating prediction. This sec-

tion will discuss the box office prediction process using these various tools developed

as well as lessons learned from the contest.

An example prediction process focuses on the July 4th holiday in the United

States when Despicable Me 2 and The Lone Ranger were released. This weekend

was challenging for two reasons. First, the data stream from the contest was broken,

providing only 6 days worth of Tweets, and, second, the predictions were for a five-

day weekend as opposed to the typical three-day weekend. Using the available data,

a rough estimate was obtained for the Despicable Me 2 box office value in the range

of $76M +/- $13M and $85M +/- $13M for The Lone Ranger. Next, the expected

three-day weekend total was explored and the time series model approximates that

$124M is available for the two movies for the three-day weekend. A quick look at

Figure 5.1 shows that the regression predictions are well outside the bounds of the

time series model prediction.

Given the misalignment between the two models, the similarity views were ex-

plored to determine which movies The Lone Ranger and Despicable Me 2 are most

similar to based on the predicted review score as well as various other metrics. De-

spicable Me 2 is compared to a variety of animated movies and one can see that the

predicted $73M is actually low when compared to animated movies such as Monsters

University. Next, various similarity views are explored for The Lone Ranger and one

can see that it is likely similar to World War Z, which had a weekend gross of $66M.

After looking at the available information, it’s determined that Despicable Me 2

should perform similarly to Monsters University, and a three-day gross was predicted

to be $85M. Based on the temporal prediction, this left only $39M for The Lone

Ranger; however, given the other evidence, it seemed likely that The Lone Ranger
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Table 6.1: Comparison With Peer Teams Predictions

Team
Gross Prediction

Entry Average Error STD MRAE

VADER(Interactive) 23 11.213 9.416 0.467

Team Prolix 23 16.466 15.195 0.424

Uni Konstanz Boxoffice 14 17.056 15.743 3.929

CinemAviz 21 17.219 17.677 1.970

Team Turboknopf 8 21.9 15.606 0.685

elvertoncf - UFMG 3 12.677 9.806 3.009

Philipp Omentisch 5 30.657 38.028 0.678

CDE IIIT 2 60.6 62.084 0.537

would underperform. Finally, the three-day prediction values were linearly scaled

to be a five day prediction, resulting in a final five day prediction of $116.5M for

Despicable Me 2 and $55.45M for The Lone Ranger. The actual three-day gross for

Despicable Me 2 was $83.5M and $29M for The Lone Ranger. The actual five-day

gross for Despicable Me 2 was $143M and $48.7M for The Lone Ranger.

6.1.1 Comparison With Peer Teams

Eight teams (Team VADER represents the predictions in this thesis) from various

research institutes participated in the VAST Box Office Challenge. Data was also

collected from 4 professional movie prediction websites. The prediction performance

is compared with respect to peer teams from the VAST challenge and professional

predictions.
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Table 6.1 provides summary statistics of the performance of each team that par-

ticipated in the VAST Box Office Challenge. For the gross prediction the measures

reported are the average error (in terms of millions of dollars), the standard deviation

(STD) of the average error term and the mean relative absolute error (MRAE), which

is the percentage of bias deviating from the real value.

MRAE =
1

N

N∑
i=1

|Predictioni −RealV aluei|
RealV aluei

(6.1)

These statistics can be interpreted by their magnitude, where smaller values indicate

more accurate predictions. Data collected in Table 6.1 was provided to all challenge

participants after the contest was closed.

In terms of average error and standard deviation, team VADER reported the

lowest values in gross prediction across all teams. With respect to the MRAE for

gross prediction and viewer rating, VADER’s results are slightly worse than Team

Prolix (MRAE of .424 for Prolix compared with VADER’s .467), and similar in range

to Philipp Omentisch, CDE IIIT and Team Turboknopf. While Team Prolix was able

to achieve a smaller MRAE over the contest than VADER team, comparatively, they

have a much larger average error and standard deviation indicating more inconsistency

in their predictions.

6.1.2 Comparison With Professional Predictions

In order to explore the hypothesis that the use of visual analytics will enable end-

users to develop better box-office predictions, corresponding movie predictions have

also been collected from four professional prediction websites for comparison. For the

comparison to the professional prediction websites, the results of the VAST Box Office

challenge are explored again. Given that these results were collected and verified by

the contest organizers, this should be considered as an adequate means of justifying
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Table 6.2: Comparison With Professional Predictions.

Prediction Source Entry Average Error STD Average MRAE

VADER(interactive) 21 12.729 9.425 0.285

VADER (No interaction) 21 23.051 22.011 0.501

boxoffice.com 21 8.538 7.466 0.191

filmgo.net 6 12.75 7.409 0.297

hsx 20 9.06 7.397 0.205

boxofficemojo 14 9.864 7.527 0.224

their validity. For the comparison in Table 6.2, only 21 movies are shown in the chart

as two movies, The Bling Ring and The To Do List, were limited release movies which

opened in only 5 and 591 theaters respectively and most expert prediction sites do

not provide predictions for limited release movies.

Results in terms of the MRAE are given in Figures 6.1 for the opening weekend

gross. It provides a comparison of the MRAE with that of several expert prediction

websites. From Figure 6.1, it is clear that VADER’s prediction outperformed the

experts in the case of three movies (Epic, Hangover 3 and Fast and Furious 6), and

in the case where VADER had the largest error (After Earth) the team relied heavily

on the analytical component with no interaction.

Table 6.2 gives the average error, standard deviation and MRAE for the predicted

movies. What the results show is that for the model used, the predictions of the

team utilizing an interactive tool were a dramatic improvement over just the model

itself (see Table 6.2 VADER (Interactive) versus VADER (No Interaction)). This

provides a strong indication that the hypothesis that the use of visual analytics will

enable end-users to develop better box-office predictions when compared to a purely
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Figure 6.1: The Relative Absolute Error of Box Office Weekend Gross Predictions,

Where the X-Axis is the Predicted Movies.

statistical solution is valid. However, this thesis does not wish to overstate its claims.

This contest provides only a single data point for exploring how one group of analysts

in a closed world setting were able to utilize a visual analytics toolkit for improved

prediction. What this demonstrates is the need for further controlled studies in

which a group of analysts perform similar model predictions and results are compared

between analysts using a visual analytics platform and analysts using only results from

a given regression model. However, results from the contest indicate that a visual

analytics toolkit can enhance business intelligence.

Further analysis of the data also indicates that these tools enabled the team of

novice box office analysts to quickly close the gap between the experts. Table 6.2

shows the average error and standard deviation for the team’s predictions and com-

pares them to four well known professional prediction websites. What one can see

is that both the average error and average MRAE are slightly lower than filmgo.net

indicating that the proposed methodology enabled the group of novice analysts to

be competitive when compared to expert analysts. The significance of this relies on

three major assumptions:

1. The professional prediction websites have more experience in box office predic-

tion than the team.
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2. The professional prediction websites have access to more data than the team

was allowed in the closed world contest.

3. Access to more data can enable better predictive models as evidenced by [132,

134, 136, 150]

First, it seems reasonable that a professional prediction website would have much

more experience than a computer science team who has never previously attempted

to predict box office sales. Second, it is clear that utilizing data sources (specifically

the number of theaters a movie is released in) will result in a better prediction model

(a larger R2). From these assumptions, it becomes clear that (in this instance) the

application of a visual analytics toolkit can enable individuals that are knowledgeable

with respect to data analysis to quickly understand information being presented to

them in new domains and make predictions that are in line with expert predictions.

Overall, the prediction error (.285) was slightly lower than that of filmgo (.297), but

approximately 50% worse than boxoffice.com (.191). However, if the After Earth and

Now You See Me weekend (during which the team relied heavily on the model and very

little on the interactive visuals) is removed, the MRAE drops to .239 which puts the

team’s performance near the prediction range of boxofficemojo. Other sources of error

can be accounted for in disrupted Twitter and bitly data feeds. These interruptions

were pronounced for The Heat, White House Down, Monsters University and World

War Z. However, even with those interruptions, the predictive analysis process was

still quite robust with only The Heat being a significantly worse prediction than the

professional sites.
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6.2 Using Multiple Models: Predicting Disney’s Frozen

This section demonstrates how an analyst would use the system (focusing on the

feature exploration and model building views shown in Figure 5.2 and Figure 5.6) to

predict Frozen’s opening weekend gross. This process consists of multiple steps, which

can be iteratively traversed in different ways. However, this thesis suggests the follow-

ing procedure. First, the user gets an overview of the Twitter and Youtube comments

using the dual-y-axis line chart (Figure 5.5 view (a)) to compare movies released to-

gether. Second, details can be investigated using the detail pages of the candidate

movie (the sentiment bubble plot and sentiment wordle shown in Figure 6.2). Third,

the user can explore similar movies and compare their gross (in Figure 5.3, as well as

how well the baseline model performed for them. After having a general impression

of the expected revenue, the user can navigate to the Feature Selection tab to explore

and select features or filter movies to create a model (Figure 5.2. Finally the user can

build and explore different models and their prediction ranges in the Explore Models

view (Figure 5.6). Step 4 and step 5 can be iteratively applied until the user feels

they can make a confident prediction.

To illustrate these 5 steps, Frozen is taken as an example. Starting on the overview

page, the line chart in Figure 5.5 (a) indicates that there are 4 movies released on the

same weekend (Frozen, Black Nativity, Homefront, and Oldboy). One can quickly

see that online chatter (Tweet and YouTube comment volume) about Frozen is not

dominating the other weekend movies, in fact it is trending similarly to the movie

Black Nativity. This phenomenon indicates that it is unlikely that Frozen will obtain

an anomalously large gross as the market will be shared by competitors.

In the second step, using the detailed view of Frozen (see Figure 6.2) the Tweet

sentiment is analyzed. One can see frequent Tweet keywords and the sentiment
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(a) Bubble Plot

(b) Sentiment Wordle

Figure 6.2: A Tweet Bubble Plot in (a) and a Sentiment Wordle in (b) for Movie

Frozen

polarity. Also, the retweet volumes provides information about users’ interest in

the movie and the advertisement campaign. For example in Figure 6.2 one can see

that Frozen does not have a large Tweet and retweet volume compared to other

blockbusters; however it does have a very positive sentiment (blueish dots). The

movie sentiment score for Frozen is approximately 0.8 which is very high among all

112 movies having Twitter data.

In the third step the similarity widget is explored (see Figure 5.3). This reveals

that movies similar to Frozen were under-predicted with the baseline model, which

predicts about $44M for Frozen. The fourth step focuses on the analysis and selection

of the movies features (see Figure 5.2). There are two main views for feature selection:

the correlation view showing relationships between a feature and the revenue, and; the
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Table 6.3: Results for Frozen and Hunger Games. The Opening Weekend Gross for

Frozen is $67M and for the Hunger Games it is $158M.

subject u
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se
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se
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se
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ox
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ce
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ox
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ce
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jo

Prediction (Frozen) 55.9 59 50 60 57.7 62.5 58 47 44.7

Abs Error 11.1 8 17 7 9.3 4.5 9 20 22.3

Prediction (Hunger Games) 71.1 135 NA 100 95.9 86 75 166 167

Abs Error 86.9 23 NA 58 62.1 72 83 8 9

relationship among features depicted in the PCP view. From the baseline model one

selects the number of opening screens, the budget and the weekly average of Tweet

counts as an initial feature selection. This gives us a model with R2
adj ≈ 0.58 (M1 in

Figure 5.6). To further improve the model, one adds another feature, view counts of

the movie’s YouTube trailers, and built both an SVM and LIN model. R2
adj improved

to approximately 0.6 while the prediction deviations from the different folds decreased.

Next, using the background knowledge, the user explores the genre of this movie (in

this case the genre is “Family”). While adding the Family feature to the Parallel

Coordinates, one finds that the gross distribution for Family movies is significantly

different to most non-Family genres. Thus, for the last prediction iteration, one adds

the family feature to the model. The model obtained an R2
adj score of 0.745. Finally,

the user reviews the Model Prediction Comparison graph and decided to finalize the

prediction between $60M to $70M based on the best performing models.
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Table 6.4: Results for Divergent and Muppets. The opening weekend gross for Di-

vergent is $56M and for the Muppets it is $16.5M.

subject u
se

r1
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Prediction (Divergent) 54.1 53 40 50 30.1 47.5 48 66 51

Abs Error 1.9 3 16 6 25.9 8.5 8 10 5

Prediction (Muppets) 50.6 21.5 28 15 35 21.4 20 25 22

Abs Error 34.1 5 11.5 1.5 18.5 4.9 3.5 8.5 5.5

6.2.1 User Study

In order to evaluate the effectiveness of this framework for predictive analytics, this

thesis performed a user study. On March 20th, 2014 seven graduate students from

China, India, the United States and Germany were enlisted and asked to predict

the results of four different movies. The first two movies predicted were to provide

them with baseline training, the next two movies were to be released on March 21st,

thus having them do an actual future prediction. The movies they were predicting

included Disney’s Frozen (2013) and The Hunger Games: Catching Fire (2013) (which

were used for training) and Divergent (March 21, 2014) and Muppets Most Wanted

(March 21, 2014) (which were the movies to be predicted). For Frozen and the Hunger

Games, their weekend box office data was removed for the training exercise in order

to simulate the prediction process.

Of the seven participants, six were male, one was female and all were PhD stu-

dents. Prior to participation, they were surveyed about their cinema affinity and
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data visualization knowledge on a scale from 1-5 (with 1 being the lowest). From

the seven participants four claimed to be visualization experts. Five subjects rated

their movie affinity as low (1-2), and two rated medium (3-4). Their machine learning

knowledge was mostly low, with only two participants claiming a basic knowledge of

machine learning and prediction related tasks (these students had all taken regres-

sion analysis and/or data mining courses, as such it feels that they can be considered

to have a relatively high level of expertise in the modeling and analysis process).

The two subjects that rated their movie affinity as low were those that rated their

machine learning and predictive analytics knowledge as high. Thus, there are three

subjects that were casual users with limited domain knowledge and limited analytics

experience, two subjects that had some domain knowledge and limited analytics ex-

perience, and two subjects that had expertise in data mining and predictive analytics

but limited domain knowledge.

To introduce the system, an example analysis of the movie After Earth was walked

through and the proposed analytics process (similar to the case study) was explained.

Subjects were then asked to predict Frozen and The Hunger Games. During the anal-

ysis and prediction process of these two movies, they were open to ask any questions,

such as the meaning of a feature, how to use a special function of the system, and

what information could help to choose proper features and improve the model per-

formance. After they submitted their final prediction about a movie, they were told

the real gross so that they could make a comparison and adjust their strategy for the

next movie. After practicing with these two movies, they used the system (unaided)

to predict the new movies Divergent and Muppets Most Wanted.

To get a deeper understanding of the users analysis processes this study was

carried out as talk-aloud [151] session. The users were asked to speak their thoughts

out loud explaining their actions. The voice and system interaction were recorded by
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video. After the study the key results were summarized and classified into System

Usability, Social Media Exploration, Feature Selection and Model Comparison.

6.2.2 System Usability

Key findings here indicated more details on system design. All subjects reported

ease of use and interaction with the system. Furthermore, the length of the user

study demonstrated the subjects’ engagement. No instructions were given on the

time needed to make a prediction; however, subjects spent over 1 hour on average

tuning system parameters and exploring the data. Subjects also were excited to

compare their results Monday and indicated they wanted to try this again. Design

issues they faced were that they wanted even more transparency in the data. As no

subject was a self-rated expert in cinema (most indicating they had seen less than two

movies in the past 6 months) many of the subjects wanted more information about

the movie features. They suggested direct links to the IMDB pages for the movies

to allow even greater detail views. Overall, the most used views were the similarity

page and the feature selection page.

Subjects all started their analysis on the overview page, exploring time series

trends and comparing how they felt the movies on the weekend would fare when

compared to others. They typically looked at the Twitter and YouTube volumes and

sentiment data. At the beginning they found it difficult to interpret those visualiza-

tions as they were unfamiliar to a user; however, by the end of the study the users

were requesting more features, wanting to create difference maps of the movies to

look for keyword differences in the sentiment analysis and also to identify what was

being discussed differently between YouTube and Twitter. As such, it is clear that

more text analysis is needed for further insight generation. A clear example of gain-

ing insight was shown during the analysis of the movie, Divergent. No subject had
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heard of this movie; however, when inspecting the data they saw that The Hunger

Games was often referred to in context with this movie. This grounding gave them

the contextual clues which they needed in order to analyze Divergent.

Negative comments focused on the disconnect between the similar movies and the

users’ thought process. In the Feature Selection page, users are presented with the five

most similar movies with respect to the selected PCP features. This is calculated as

a Euclidean distance metric, and the calculation is a black-box to the user. As such,

analysts were often wary of these movies and preferred to use the “create your own

similarity” option on the similarity widget page. However, this again required more

domain knowledge than some users had, with many again requesting details about

what genre, rating, etc. a particular movie had. Future work should include better

views for multi-dimensional similarity matches and more transparency in the simi-

larity metrics. Yet, what the process highlights is that all subjects, even those with

little self-proclaimed movie knowledge, are able to bring some background knowledge

into the prediction process, which could be used to add value when compared to a

purely automated prediction process.

6.2.3 Feature Selection

All users worked with the Feature Selection table to determine which data was

available for a movie and remarked on how they felt the prediction was more reliable

when they knew that the data existed. Again, this indicates that transparency in

the model training can improve an analyst’s confidence. During the feature selection

process, most users started with the baseline settings, inspected the results and then

iteratively chose more features with high correlations, reinspected and then iterated

again. Other users again applied their domain expertise and chose features that

seemed interesting to them. For example, the user that had seen 10 movies in the
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theater in the past six months used his domain knowledge to select features which

are not obviously highly correlated to the revenue, but these features considerably

improved that subject’s model.

Participants who decided to add Twitter related features typically based this

choice on the genre of the movie, stating that Twitter users would be interested in

Divergent but not in the Muppets. One user, with a basic background knowledge

in prediction tasks commented on how the Parallel Coordinate view enabled her

to choose features that were independent (i.e., not multi-correlated). Other users

engaged the PCP view to filter out movies to create models based on genre or movie

ratings. Overall, they spent a large amount of time exploring features and discussing

what they felt these features meant. They also found it extremely helpful to see

how the selection of different features impacted the amount of movies available for

training.

Negative comments revolved around users’ frustration in feature selection, noting

that there should be a way to provide more details on what is likely to be a good

feature. For the inspection of correlations, one user noted that it was hard to use the

PCP view and had difficulty distinguishing the highlights. However, the users all liked

the design of the framework, and commented on how it would be useful to change

the domain to look at other specific problems of interest. It shows that a future

work could be to explore how to improve the presentation of features. Obviously

showing all features (in this case 116) is a huge amount of information overload;

however, it is also desired to involve the user and allow him/her to use domain

knowledge to guide the modeling and prediction process. It could also to explore

several methods of automatic feature selection as a means of organizing information

for visual presentation and exploration and performing user studies across various

feature set visualizations in order to explore this area.

74



6.2.4 Model Comparison

As for the Feature Selection view, participants found the model comparison fea-

tures extremely useful. Starting with some initial predictions, they tried to improve

the model to reduce the errors. Users often focused on prequel movies (particularly

during the Hunger Games prediction) and focused on developing a model that was a

good fit for known prequels or known movies within a genre. One user repeated the

feature inspection, selection and modeling until he was able to create a model that

strongly fit to the prequel (in the case of the Hunger Games). Others tried to inspect

all outliers and then made decisions based on their domain expertise regarding movie

similarity. This would lead to an iterative model building and refinement loop. Users

also inspected the scatterplot and would then access the similarity comparison tools

to explore the impact of Twitter on the model prediction. Users noted that Twitter

seemed to have an impact depending on the type of movies, and many came to the

conclusion that Twitter was relevant when predicting Science Fiction movies (such as

Divergent) but less relevant when predicting Family movies (such as the Muppets).

Again, subjects indicated a desire for even further transparency of the inner workings

of the model prediction.

6.2.5 Prediction Results

Table 1 and 2 show the results of this user study in both the training trial and

the actual prediction trial. For the training results (Table 1), subjects were found

to have a lower error than that of the experts for Frozen; however, for the Hunger

Games, subjects found this very difficult to model. It is important to note that the

user study went through the example of After Earth, Frozen and the Hunger Games

for training in order to give subjects examples of a low outlier, a good fit, and a high
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outlier respectively. In this way they can explore all possible scenarios prior to the

actual prediction task.

For the actual results (Table 2), 5 of the 7 subjects were able to best BoxOffice.com

predictions for Divergent and 2 of the 7 subjects were able to best both expert pre-

diction websites. Only two subjects erred on the far low end of the spectrum for this

movie (subjects 3 and 5). For the Muppets, 4 of the 7 subjects were able to best the

experts, with one subject (subject 4) accurately predicting this would be a box office

failure. Again, subject 5 was an outlier, and subject 1 predicted that the Muppets

would be an outlier on the positive end of the spectrum.

Overall, the results of this study are quite positive. Given the subjects self-

reported lack of movie knowledge, it is clear that the integration of social media and

visual analytics for model building and prediction can quickly generate insight at

a near professional prediction level. Subjects 2 and 7 had the highest self-reported

domain knowledge and (as seen in Table 2) outperformed experts from BoxOffice.com

(and Subject 2 outperformed the BoxofficeMojo results as well). The machine learning

and regression experts were subjects 4 and 6 and they also outperformed the experts.

The remaining subjects can all be considered more casual users and had a higher

variability. In both future prediction cases, over half the subjects were able to best

the experts over the course of a one hour training session. Furthermore, such work

indicates that visual analytics can have a direct impact on the modeling and prediction

process. As noted by Lazer et al. [14], there is a need for tools that can improve

insight into large data analytics and an increased transparency can potentially lead

to improved model efficacy. Future work will look at doing a more formal evaluation

where a larger subject pool is recruited and more analysis between the three groups

is performed.
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6.3 Twitter Network Properties

Previous studies have indicated that social media data is useful for movie revenue

prediction. To better predict movies’ revenue, researchers have also explored more

complex models. For example, purchase intention was mined from social media text

and used to predict box office revenue through linear regression and support vector

machines [152]. Zhang et al. [153] used neural networks and 16 variables to predict

box office revenues and achieved a 75% accuracy one month before release. Social

influence has been studied to explain box office distributions [154]. Multiple social

media sources and many different metrics have been studied as predictors for the box

office. However, the previously explored features are mostly descriptive analytics (e.g.

number of tweets and distribution of different types of tweets) and content analytics

(e.g. text mining and sentiment analysis) but little work on network analytics has

been done. However, some work has shown that the network structure can be useful

in business analysis. For example, Marc A. Smith et al. [155] proposed six conver-

sational archetypes of Twitter social networks from the aspect of marketing. Seeing

the promising contribution of social media to predictive analytics, this thesis further

explored the Twitter network structure and properties with respect to movie revenue

prediction.

A social media community, such as Twitter, Facebook, and blogs, can be con-

sidered a copy of a human community of people but organized in a digital world.

There are different types of users, actions, messages, and behaviors. Questions ask-

ing for more than a single prediction number could be ‘Are different users playing the

same role in forecasting?’; ‘What are some network community structures for different

movies?’; and ‘Does the different structures represent different marketing strategies

and contribute differently to box office revenue?’ Motivated by such questions, this
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case study collected movie related tweets since 2013 and studied their Twitter network

features.

In this analysis, Twitter networks for different movies are explored in three steps.

First, the re-tweet network is extracted for each movie and the visual display of the

network structure is explored. Similar to [155], users are clustered and the group-

in-a-box layout [156] is generated for each movie. Exploring the network layouts,

this thesis proposes a set of conversational archetypes based on the categorization

proposed by Smith et al [155]. Two coders coded the re-tweet networks and further

analysis about box office and movie types were conducted. Second, this study extracts

a set of numeric network features (e.g., clustering coefficient, connected components,

and density) and uses linear regression analysis to explore the predictive power of these

network features. Third, ordinal logistic regression is used to see if network features

(including both the conversational types as categorical features and the numerical

network features) are useful to predict if a movie is a success or failure based on the

ratio of its total domestic gross and its budget.

The results of this analysis reveal the predictive value of network analysis in box

office prediction. From the conversational types, different social network organization

patterns can be discovered and the distribution of successful movies are different in

these types. Numerical network features have also been shown to be useful in opening

weekend prediction via a linear regression model. Consistent with the results of the

box office analysis across different conversational types, the ordinal logistic regression

analysis indicates that movie network type could be useful to indicate whether a movie

is successful or not when coupled with other movie meta data and network features.

Although more analysis is required, this study indicates that network analysis on

social media data could be useful for revenue prediction in short term and long term

(the opening weekend prediction and the total revenue prediction).
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6.3.1 Data Collection

Following the work of VAST Box Office Challenge 2013 [157], this thesis uses

the same data collection strategy and collects tweets for 400 movies released between

January 2013 and June 2016. These tweets are used in the network property analysis.

In addition to Twitter data, movies’ meta data from IMDB was also collected, parsed,

and cleaned for movies under analysis. Particularly, Screen (the number of theaters

a movie is released on at the opening weekend), Budget (the projected budget for a

movie, in million dollars), OWG (opening weekend gross, the 3-day box office of the

opening weekend in the U.S.) and Genre (the genre(s) of a movie) are used in this

analysis. Movies released in fewer than 1000 screens are filtered out, as well as movies

that had tweet collection interruptions.

This study uses 261 movies in total after filtering, and it uses tweets posted two

weeks prior to each movie’s release date, where 8,770,448 tweets and 4,666,243 distinct

users are under analysis.

6.3.2 Conversational Archetypes of Movie Twitter Network

Tweeting on the social network is one important advertising approach of movies.

Distribution companies, actors/actress, theaters and fans are all tweeting about their

movies to boost sales. There are a couple of hypotheses on successful social network

promotions [154]. For example, more discussions indicate more potential audiences,

and fewer isolates means tighter connections and maybe better diffusion of the ad-

vertisement. This section will analyze the Twitter network structure of the movie

related tweets and organize them into different archetypes for analysis. Inspired by

the six twitter conversational archetypes in marketing proposed by Smith et al. [155],
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this thesis provides a modified set of archetypes focusing on the movie marketing

problem.

Twitter Network Visualization

For each movie, a network graph is generated according to the following steps. First,

the retweet network is extracted where each user is a node and each retweet rela-

tionship is an edge pointing from the retweeting user to the original user. Second,

the Clauset-Newman-Moore clustering algorithm [158] is used to cluster nodes into

groups and the descriptive metrics for the clustering results are calculated. Third, the

network structure is visualized in a node-link diagram and organized using the group-

in-a-box layout [156], which assigns each group a region like treemap layout so that the

area is proportional to the number of nodes. The node-link layout algorithm within

one cluster is the Harel-Koren Fast Multiscale [159] or the Fruchteman-Reingold [160]

if the Harel-Koren method reached the memory limitation. The last two steps are

done using NodeXL [161]. Due to the machine’s memory limitation, 42 out of 261

movies have no visualized network graphs for their entire two weeks retweet network

(219, 84% of the movies have graphs). Figure 6.3e shows an example of the layout for

the movie Fast & Furious 6, and one can see big clusters in dark blue, light blue, dark

green, light green, red, etc. and many small isolated clusters on the right bottom of

the graph. Edges are displayed as gray lines.

Movie Tweets Conversational Archetypes

In a previous analysis on marketing related tweets [155], crowd network structure has

been organized into six types based on conversation styles. A brief summary of these

six types is listed as follows.
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• Polarized Crowd shows two big and dense groups that have few connections

between them.

• Tight Crowd shows highly interconnected people with few isolated partici-

pants.

• Brand Cluster has many disconnected participants with medium or small

sized communities low inter-connectivity.

• Community Clusters has many medium-sized communities that are some-

what connected, and a fair number of isolates.

• Broadcast Network has a hub which is the main media outlets and many

people repeat its posts.

• Support Network shows a hub replying to many other people.

According to the development scenario of these six types, almost all movie related

Twitter networks should belong to the Broadcast Network archetype because it

describes the conversational state that some influential promoters (e.g. the movie

company) are mainly repeated by others and there are few conversations between

those none-influential users. However, when trying to cluster the movie twitter net-

works, it is found that this set of archetypes is not very proper to describe the observed

properties and coders have difficulty agreeing with each other. Some problems are

encountered. First, in the movie Twitter network, one can barely see communities

where users are tightly connected to each other, but groups where most users are com-

municating with a center hub. This phenomenon indicates that most of the networks

are showing the properties of a Broadcast Network. Second, even if a Broadcast

Network is used to describe the Twitter networks for all of these movies, there are still

some properties that cannot be captured. Some of them also have large amounts of
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isolates, and some of them have multiple broadcasting centers. Third, in the context

of movie promotion, the Support Network and Tight Crowd archetypes are not

observed.

In order to better describe the conversational features represented in the network,

this thesis proposes a set of modified archetypes as below.

• Broadcast: The Broadcast conversational archetype describes the situation

that in which information posted by the main sources diffuses very well through

the whole network. It usually has one big group with a hub which is the infor-

mation source. It can have more than one big groups, but the groups should

be well connected. While there could be some middle-sized groups, the connec-

tions from the big group should cover the majority of the population, and there

should not be many isolated small groups.

• Community: The Community conversational archetype describes the situation

in which a couple of communities are obvious, and the information from the main

sources in each community does not diffuse very well to other communities.

This kind of archetype usually has some middle-sized groups, and there could

be some connections between different groups but no dense connections covering

the whole population. This archetype usually has many isolated small groups

(e.g. with fewer than 10 users) due to the lack of good connectivity. There

could be a hub within a group, but unlike Broadcast, the connections from a

hub do not cover the majority of the population.

• Broadcast with Community: The Broadcast with Community conversa-

tional archetype describes the situation in which some main sources diffuse

quite well and cover many users while the remaining users are forming poorly

connected communities. This archetype usually has a big group with a hub and
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(a) Polarized (The Lone

Ranger)

(b) Brand (Oz the Great

and Powerful)

(c) Community (Iron Man 3)

(d) Broadcast (Zootopia) (e) Broadcast with Isolates

(Fast & Furious 6)

(f) Broadcast with

Community (Walking With

Dinosaurs)

(g) Broadcast with

Community and Isolates

(Gangster Squad)

Figure 6.3: The Network Layout Examples for Different Conversational Archetypes
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many middle-sized groups. Some of the middle-sized groups are retweeting the

big group but other middle-sized groups are disconnected from the big group.

For those disconnected groups, there could exist inter-cluster connections, but

the center nodes are not connected directly to the hub of the main sources.

This means that even they are not absolutely isolated, but they are not likely

to spread the same information posted by the main source. To separate this

archetype from Broadcast with Community and Isolates, isolated small groups

in this type cover less than 1/3 of the population.

• Broadcast with Isolates: This is similar to Broadcast where it has a big

group and some middle-sized or small groups and many connections between

them. But this type also has many isolated small groups (more than 1/3 of the

population) which are not connected to the hub of the big group. This means

the information from the main sources diffuses well among the middle-sized

clusters but does not reach those small groups.

• Broadcast with Community and Isolates: This is a hybrid of broadcast,

community and isolates. It is similar to broadcast with community, but has

many isolated small groups.

• Brand: This is similar to Community, but has even fewer connections between

groups.

• Polarized: This type has two parties covering at least 2/3 population of the

network. Each of them may have a hub and most nodes are well connected

within the party. If many users of one party are retweeting the hub of the other

one, it should be a Broadcast network.
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Table 6.5: Conversational Archetype Distribution

Conversational

Archetype
N Decision

Opening Weekend Gross Total Domestic Gross
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00
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t

Polarized 18(4.1%) 0 0 10(55.6%) 0 0 7(38.9%)

Brand 8(1.8%) 0 0 4(50.0%) 0 2 2(25.0%)

Community 42(9.6%) 2 2 32(76.2%) 2 2 16(38.1%)

Broadcast 302(68.9%) 4 13 209(69.2%) 3 25 138(45.7%)

Broadcast with

Isolates

15(3.4%) 0 2 11(73.3%) 0 2 7(46.7%)

Broadcast with

Community

47(10.7%) 0 0 18(38.3%) 0 0 10(21.3%)

Broadcast with

Community and

Isolates

6(1.4%) 0 1 4(66.7%) 1 1 2(33.3%)

All 438(100%) 6 18 288(65.8%) 6 32 182(41.6%)

Figure 6.3 gives one example for each of the above seven archetypes. For the

219 movies that have the graph visualized for the whole data, two coders labeled

each graph into one of the above seven types after discussing and understanding the

description of these conversational types. Among the 219 cases with 438 decisions,

the coders agreed on 196 graphs and disagreed on 23 graphs. The percent agree-

ment is 89.5%, and the nominal Krippendorff’s α is 0.791, which can be considered

acceptable [162].
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Among these archetypes, Broadcast still covers the majority of the movies, 302

decisions among 438 (69%). The distribution of decisions for each archetype is sum-

marized in Table 6.5.

Movie Box Office Analysis by Network Archetypes

Different conversational archetypes represent different media information dissemina-

tion states, and social media platforms play an important role in advertisement and

may contribute to the gross of a movie. In box-office analysis, there are usually two

tasks. One is to look at the short-term gain and the other is to project the long-term

gain. The first task is usually framed by the opening weekend gross and the second

task is framed by the total gross of the movie. Both the actual value and the relative

value to the budget are of interest since high revenue movies are usually very popular

and also a successful movie should at least match its cost and make some profit.

To evaluate the value of different conversational archetype in box office prediction,

movie revenue distribution in each archetypes is explored under both short-term and

long-term analysis. For short-term analysis, the analyst first looks at the number of

movies having a high absolute opening weekend gross (more than $100M or more than

$80M) and then looks at the number of movies earning more than 30% (θ = 0.3) of

the budget on its opening weekend. Because the opening weekend of a movie’s release

typically accounts for 25% of the total domestic box-office gross [131], it is assumed

that if a movie can make more than 30% of the budget on its first weekend it should

match its cost and make some profit. For long-term analysis, these two aspects are

also studied, the number of movies with a high domestic gross (more than $200M)

and the ratio of a movie’s total revenue to its budget (greater than 1.5 times). The

descriptive analysis result is organized in table 6.5.
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Table 6.6: Movie Tweet Features

Feature Description

Vertics The number of vertices in the network

Edges U The number of unique edges in the network

Edges D The number of duplicated edges in the network

TBD7 The average daily number of tweets in one week(7 days)

prior to the movie’s release date

TBD14 The average daily number of tweets in two weeks(14 days)

prior to the movie’s release date

CC The number of connected components

CC S The number of single vertex connected components

CC MV The maximum number of vertices in one connected compo-

nent

CC ME The maximum number of edges in one connected component

Density Density of the network

ClusteringCoeff The global clustering coefficient of the network

Clusters The number of clusters given by Clauset-Newman-Moore

clustering algorithm

Cluster M The maximum size of the clusters

Modularity The modularity of the clustering result

Cluster 10 The number of clusters smaller than size 10 (inclusive)

Cluster 5 The number of clusters smaller than size 5 (inclusive)

Cluster 2 The number of clusters smaller than size 2 (inclusive)
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Looking at the first two columns (N Decision and Percentage), one can quickly

observe that Broadcast is the most commonly coded conversational archetype (about

70%) and Brand and Broadcast with Community and Isolates are coded in only

a few networks (they have 8 and 6 cases respectively). In the short-term analysis

for the opening weekend gross, 65.8% of all movies making more than 30% of their

budget. Two archetypes have much higher percentages than the average; Community

has 76.2% and Broadcast with Isolates has 73.3%. This seems to indicate that a

successful pre-release digital promotion needs more than one core information source,

and the interest from the public users should be reflected as many isolated groups

in the network. On the other side, Broadcast with Community has only a 38.3%

short-term success rate, ranking the lowest among all types. Polarized and Brand

are also much lower than the overall rate. This seems to be reasonable because such

conversational archetypes do not indicate a healthy information diffusion state; where

as both Polarized and Brand form disconnected groups where information is simply

blocked and is not diffused well, and the Broadcast with Community type lacks public

support (small isolates) and throughout connections like Broadcast.

In the long-term analysis for the total domestic gross, some similar patterns can

also be observed that Broadcast with Community has the lowest success rate with

only 21.3% of them making more than 1.5×Budget. Polarized (38.9%) and Brand

(25.0%) both make less than the overall rate (41.6%), and the Broadcast with Isolates

archetype still ranks highly with 46.7% of the movies making more than half of the

budget in the opening weekend. Different from the short-term analysis, the success

rate of Community drops below the overall rate in the analysis of the total domestic

gross, and similarly the Broadcast with Community and Isolates also has a relatively

lower long term revenue. These changes seem to indicate that community is not a pos-

itive feature in terms of a long-term projection because more intra-connections with
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fewer inter-connections may be unhealthy for the growth of the network, although

the influence on the short-term outcome is not obvious.

To analyze some specific high-revenue movies, it is found that the following three

have made more than $300M dollars: Iron Man Three, Frozen, and Despicable Me

2. These three also made more than 1.5 times of their budget. However, among the

movies that made more than $200M dollars, only 6 out of the 16 grossed more than

1.5 times their budget.

6.3.3 Network Factors in Predictive Modeling

In addition to looking at the layout of the network clustering result and analyz-

ing the conversational archetypes, this study also explores a list of numeric network

features (listed in Table 6.6). The first section contains five descriptive analytics fea-

tures, the following two sections contain six global network analysis features and 6

clustering network analysis features.

Linear regression is used to predict movies’ opening weekend gross, and ordinal

logistic regression is used to predict the successful level defined by the ratio or a

movie’s total revenue to its budget. By fitting such models, the goal is to quantita-

tively analyze how useful network features are to the prediction of box office revenue.

In the network graph analysis, only 219 movies are evaluated due to computation

limitations. Among the remaining 42 movies, some are quite popular, such as Godzilla,

X-Men: Days of Future Past, and The Maze Runner. Considering the importance

of these movies, the analysis also tries to include them in prediction modeling. The

reason why they have no graphs is that 25 movies failed to complete the clustering

algorithm, and another 17 failed to complete the layout algorithm after completing

the clustering algorithm. Therefore, in the following modeling exploration, 261 movies

will all be used in a full sample linear regression to predict the opening weekend gross
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using only 13 features (budget, screen, 5 descriptive features, and 6 global network

features). In addition, 236 movies (with 25 movies excluded for lacking clustering

features) will be used in a full feature linear regression to predict the opening weekend

gross using all 19 numerical features (budget, screen, 5 descriptive features, 6 global

network features, and 6 clustering network features). Finally, both 19 numerical

features and 7 categorical features (network conversational types) will be used in an

ordinal logistic regression on 219 movies to predict the success level of the movie.

Network Features in Opening Weekend Prediction

Linear regression analysis is used to evaluate the prediction power of the numerical

network features. For both the full sample linear regression and the full feature linear

regression, the same analysis pipeline, data transformation, feature selection, and

modeling and comparison [23], is followed. The analysis uses step-wise regression

to find the best variable subset. Given this feature subset, all possible models are

compared to explore the contribution of different features towards the box office

prediction problem.

Analysis on All Movies This analysis runs on all 261 movies with 13 features

through the following steps: data transformation, feature selection, and modeling

and comparison [23]. Based on previous work, it is already known that the screen

and budget are important variables and one can assume that when a movie has 0

screens and 0 budget, it makes 0 gross. Therefore, the full linear regression model is

defined as no intercept.

Data Transformation: Based on previous work, logged regression models have

been proposed with different predictors, such as screen, search volume, and tweet rate.

To choose data transformation function, full regression models and residual analysis

should be used. The residual plot for the initial full regression model without any
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(a) Before Transformation (b) Box-Cox Parameter Plot (c) After Transformation

Figure 6.4: Residual Plot Before and After Square Root Transformation for the Full

Model with 13 Features.

transformation is displayed in Figure 6.4a. This figure shows the residual distribution

and has an obvious pattern which indicates that the response variable may need

a non-linear transformation. A full regression model is run on all features and it

shows the residual plot and the suggested λ in box-cox transformation. A Box-Cox

parameter plot shown in Figure 6.4b suggests a square root transformation (λ ≈ 0.5).

Although λ ≈ 0.5 is not the optimal value, it is very close to the optimal and square

root transformation maintains more interpretability for the analysts. Taking this

transformation, the updated residual becomes normal shown in Figure 6.4c, and the

full model has R2
adj = 94.04% and p− value� 0.05. The following analysis is carried

out after this response transformation.

Variable Selection: After the response data transformation, variable selection

is carried out in two steps, stepwise regression for feature subset selection and all

possible regression models for model specific analysis. The stepwise regression is

needed here because all 13 variables can easily create 213 linear regression models

even prior to adding interaction terms and this could be too much work for the All

Possible Models analysis.
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Table 6.7: Best Subsets Regression

Var Mallows’s CP S R2
adj S

cr
ee

n

B
u
d
ge

t

C
C

S

D
en

si
ty

T
B

D
7

E
d
ge

D

1 236.0 1870.0 88.65% 5

1 875.5 2831.1 73.98% 5

2 60.1 1499.6 92.70% 5 5

2 68.4 1519.2 92.51% 5 5

3 19.7 1398.5 93.65% 5 5 5

3 25.0 1411.9 93.53% 5 5 5

4 11.7 1375.5 93.86% 5 5 5 5

4 12.2 1376.9 93.85% 5 5 5 5

5 6.1 1358.4 94.01% 5 5 5 5 5

5 7.9 1363.0 93.97% 5 5 5 5 5

6 6.0 1355.3 94.04% 5 5 5 5 5 5

Using forward-backward stepwise regression with α = 0.15 for both to enter and

to remove, the following variables are selected as a feature subset to minimize the

prediction error of the linear regression model: screen, budget, cc singlevertexcc,

edge duplicate, TBD7, and density (as used in Table 6.7). As it is no doubt that

screen and budget are important variables, three are also some network features

emerge in the model.

To find the best model subset, all possible regressions are performed. According

to Mallows’s Cp and the sum of squared error, the best models with different number

of regressors are displayed in Table 6.7. The best subsets table shows that screen is

a strong predictive indicator and as a simple linear regression model, it can achieve
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R2
adj = 88.65%. For the two-variable regression model, the best performing one

takes screen and CC S (the number of single vertex connected components) and its

R2
adj = 92.7%, while the second one with TBD7 and screen has its R2

adj = 92.51%.

Among the three-variable models, the best one also uses CC S and its R2
adj = 93.65%.

The goodness-of-fit (R2
adj = 93.53%) drops slightly when CC S is replaced by TBD7.

The Mallows’s Cp starts to become smaller when the fourth variable, density, is added

into the model. With screen, budget, density and TBD7, R2
adj = 93.86%, and with

screen, budget, density and CC S, R2
adj = 93.85%. With five and six variables, the

Mallows’s Cp reaches good values (close to the degree of freedom). The model with

screen, budget, CC S, density, and TBD7 has R2
adj = 94.01%. The model with screen,

budget, density, TBD7 and Edge D has R2
adj = 93.97%. The model with all six

variables has R2
adj = 94.04%, but the variable Edge D is not significant (it’s p-value

= 0.144, greater than 0.05) when the variable CC S is used.

Model Comparison: Instead of finding the best proper model in the subset, the

goal in the model comparison section is to explore how much accuracy Twitter features

and Twitter network features can add to the model. First of all, the CC S feature

is the best candidate once screen is in the model. Comparing the best models with

different number of variables, the statistical analysis on residuals for model evaluation

are plotted in Figure 6.5. Clearly, the model with only screen doesn’t fit very well

since obvious patterns are shown and the distribution of residual is too far from being

normal. When CC S, and Budget are added to the model, the residual distribution

becomes closer to normal, and this gets improved further when density and TBD7 are

added. Such analysis demonstrates that screen and budget are important features in

box office prediction. However, social media features do help fit the model, and using

multiple features from different aspects (e.g. CC S and density are global network

features while TBD7 is a volume-based descriptive feature) benefit the prediction.
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(a) Model with Screen (b) Model with Screen and

CC S

(c) Model with Screen,

Budget and CC S

(d) Model with Screen,

Budget, CC S and Density

(e) Model with Screen,

Budget, CC S, Density and

TBD7

Figure 6.5: Residual Analysis for Model Comparison with Different Features

Regression Analysis on All Features In order to evaluate the usability of network

clustering features, a second set of regression analysis is run using all the features but

only 236 movies having no missing data across the 19 numerical features.

Data Transformation: The residual plot of the full model is explored and the

box-cox parameter plot decides that a square root transformation on the response

should be proper. The residual plot before and after this transformation and the

box-cox plot are shown in Figure 6.6. The full model has its R2
adj = 94.35% and

p− value� 0.05.

Variable Selection: There are 19 continuous features in the full model. Be-

fore running all possible models with feature subsets, the forward-backward stepwise
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(a) Before Transformation (b) Box-Cox Parameter Plot (c) After Transformation

Figure 6.6: Residual Plot Before and After Square Root Transformation for the Full

Model with 19 Features

regression is also used first to screen features. The feature screening process used

α = 0.15 to be the F-to-enter and F-to-remove significant level thresholds. This step

selects eight features: screen, budget, Edge D, TBD7, CC, CC S, Modularity, and

Cluster M, while the variable density is also involved in the intermediate steps but

eventually gets removed. The 2 best models for each different number of variables

(only 1 when eight variables are all used) are listed in Table 6.8. Similar to the previ-

ous full sample regression and previous research works on box office prediction, screen

is the most powerful predictor among all variables and can explain up to 90% variance

of the data. However, this table also reveals that the network variable, Modularity, is

another potentially strong predictive indicator (R2
adj = 80.25%) although Modularity

does not fit as well as the model using screen. When more than one variable is used,

all models keep the variable screen because of its significance. For models with two

variables, CC and CC S are used as the second variable alternatively. This finding

supports the result in the previous analysis that connected component features are

significantly contributing to the modeling of box office prediction.
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Table 6.8: Best Subsets Regression for model with all features

Var Mallows’s CP S R2
adj S

cr
ee

n

B
u
d
ge

t

T
B

D
7

C
C

C
C

S

E
d
ge

D

C
lu

st
er

M

M
o
d
u
la

ri
ty

1 154.8 1555.0 90.69% 5

1 590.8 2264.8 80.25% 5

2 52.5 1333.0 93.16% 5 5

2 52.9 1334.0 93.15% 5 5

3 25.2 1265.1 93.84% 5 5 5

3 26.4 1268.1 93.81% 5 5 5

4 14.0 1234.6 94.13% 5 5 5 5

4 15.2 1237.7 94.10% 5 5 5 5

5 12.0 1227.1 94.20% 5 5 5 5 5

5 13.8 1231.7 94.16% 5 5 5 5 5

6 10.2 1219.8 94.27% 5 5 5 5 5 5

6 10.8 1221.3 94.26% 5 5 5 5 5 5

7 8.7 1213.2 94.33% 5 5 5 5 5 5 5

7 9.7 1216.0 94.31% 5 5 5 5 5 5 5

8 8.0 1208.9 94.37% 5 5 5 5 5 5 5 5
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Table 6.9: Success Level Definition

Success Level Threshold

Failure Revenue < 0.75 Budget

Expectation 0.75 Budget ≤ Revenue < 1.25 Budget

Making Profit 1.25 Budget ≤ Revenue < 2 Budget

Success Revenue ≥ 2 Budget

Model Comparison: Looking at the residual evaluation of the best models when

adding more features (Figure 6.7b), one can observe that the model fits better when

network features are used compared to the first model where only screen is used.

Network Features in Movie Success Level Prediction

Besides real gross value, the profit rate is another metric for movie success. There are

many movies that cannot meet the cost even if their opening weekend gross is high.

Therefore, it is desirable to explore whether network features are useful in predicting

the success level of movies, which measures that the movie is considered a failure,

expectation, making profit or a success by looking at the ratio of its total domestic

revenue to its budget. To define these success levels, the thresholds in Table 6.9 are

used, and the revenue indicates total domestic revenue.

Success Level is an ordinal response which has four categories ordered from low

(failure) to high (success). Ordinal logistic regression is chosen to use for Success

Level prediction, and the network conversational archetypes are coded into seven

binary variables. In order to find significant features in Success Level prediction,

backward stepwise regression is used. The feature screening process starts with a full

modeling using all features and removes one none-significant variable which has the
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(a) Model with Screen (b) Model with Screen and

CC

(c) Model with Screen, CC

and Budget

(d) Model with Screen, CC,

Budget and Cluster M

(e) Model with Screen,

CC S, Budget, Cluster M

and Modularity

(f) Model with Screen,

CC S, Budget, Cluster M,

Modularity and Edge D

(g) Model with Screen,

CC S, Budget, Cluster M,

Modularity, Edge D and

TBD7

Figure 6.7: Residual Analysis for Model Comparison
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largest p-value ( p� 0.05) in each fitting until all remaining variables are significant.

When the backward ordinal logistic regression stops, eight variables are left: screen,

budget, CC M, Edge D, Clusters, Cluster 10, Cluster 2, and Broadcast with Isolates.

The p-value of these variables are all smaller than 0.05 which means the they reach

the significance level of 95%. The p-value of a Pearson χ2 test equals 0.187, and the

p-value of the Deviance χ2 test is 1.0 which means the goodness-of-fit of this model is

not non-significant (where not significant is the null hypothesis and get rejected). In

the measures of association analysis between the response variable and the predictive

probabilities, 79% data pairs are concordant and the statistic measures Somers’ D =

0.58, Goodman-Kruskal Gamma = 0.59, and Kendall’s Tau-a = 0.43 which means

the model is adequate.

In this Success Level analysis, the value of screen and budget has also been sup-

ported. In addition, network features are also shown to be useful as significant vari-

ables. One point to state is that among the significant features, Broadcast with

Isolates is also selected and this type of network contains a high percentage of suc-

cessful movies (considering the OWG > 0.3 budget and the revenue > 1.5 budget) in

the analysis in section 4.3. The estimated coefficient in the ordinal logistic regression

for Broadcast with Isolates is positive ( Coef = 2.255) which also indicates that this

variable should positively contribute to the movie’s success level.
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Chapter 7

EVALUATING PREDICTIVE VISUAL ANALYTICS

Predictive visual analytics methods have been applied in a variety of domains ranging

from healthcare, intelligence analysis, and emergency crisis management [9, 60, 61],

and a great deal of research in the visual analytics community has focused on develop-

ing methods for explaining predictive models to users [11, 66, 102, 163] and enabling

interactive model steering [3, 8, 64]. Ideally, by opening the black-box of data mining

and machine learning algorithms, visual analytics can help users understand the rea-

soning behind prediction outcomes thereby improving model comprehensibility [21].

Along with opening the black-box, a variety of research methods advocate adding a

human-in-the-loop component not only as a part of the analytics process to improve

a user’s understanding of the model, but also to enable user knowledge injection into

the system [3, 5]. This intersection of human-machine analysis is seen as a critical

stage in the visual analytics pipeline. Yet, this potential for adding user knowledge

comes with increased risk. Inserting user knowledge into the modeling and prediction

process may inherently bias the model itself [78, 164] as humans, while a wealth of

contextual information, are biased in their own thought and knowledge [72, 75]. If

human input is too closely tied to the model then the model may become biased in

its assumptions and may, in general, become less accurate.

Such concerns are buoyed by research in the decision science field that has shown

that in forecasting tasks, machine predictions consistently outperform human fore-

casters [69, 70, 165, 166]. In fact, work by Akes, Dawes, and Christensen [167] found

that domain expertise diminished people’s reliance on algorithmic forecasts which led

to a worse performance. Studies have also shown that humans develop an algorithm
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aversion in forecasting tasks [83, 168]. Specifically, humans quickly lose confidence in

algorithmic forecasts after seeing algorithmic mistakes [169]. Given that the under-

lying goal of many predictive visual analytics methods is to inject domain knowledge

into the analysis and point out potential algorithmic errors to the end user for updat-

ing and correction, these goals may be at odds with human behavior. As such, visual

analytics could potentially contribute to algorithmic aversion during forecasting tasks

and lead to reduced performance. Conversely, studies report that forecasters may de-

sire to adjust algorithmic outputs to gain a sense of ownership of the forecasts due

to a lack of trust in statistical models [18], and the goal of many predictive visual

analtyics methods is to help a user develop trust in the model.

Given the conflicting demands of model accuracy, comprehensibility and trust-

worthiness, the question of how much human knowledge and interaction is needed or

warranted in relation to the model becomes a critical question for predictive visual

analytics. How much of the human is wanted in the loop of model prediction? Are

humans able to accurately make predictions or outperform models with the aid of

visual analytics? The goal of this study is to explore these questions. This research

seeks to better understand prediction accuracy when using visual analytics support

for human-in-the-loop predictions.

Inspired by work from the 2013 VAST Box Office Challenge [121–123], the goal of

this study is to explore forecasting in a predictive visual analytics setting. Based on

studies from management, economic sciences and psychology, it seems that algorith-

mic forecasts should outperform humans. However, the results in the VAST Chal-

lenge by team VADER [61] indicated that by leveraging visual analytics methods,

users were able to improve the model, and a study exploring managerial intervention

in sales forecasting did lead to an increase in the overall prediction accuracy [66].

101



As such, it is hypothesized that perhaps there is a range of algorithmic accuracy for

which a human-in-the-loop forecasting process may be an optimal configuration.

To explore the hypothesis and provide an empirical evaluation of predictive vi-

sual analytics, a controlled user study was conducted to test the hypothesis that

human-in-the-loop prediction, in the context of visual analytics, will outperform the

computational solution given by a model at the middling level of accuracy (e.g.,

.5 < R2 < .7). The visual analytics system used in this study is modified from a pre-

vious work [62, 170], and three prediction models varying at the goodness-of-fit were

developed. Subjects were asked to predict the opening weekend gross of 9 movies in

the same genre with similar levels of popularity using a box office predictive visual

analytics system. The goal of this experiment is to study users’ performance when

making predictions with the aid of visual analytics tools under different levels of model

accuracy. Critical relevant questions that this research seeks to better understand are

as follows:

• Can a user (with visual analytics support) develop more accurate predictions

than a middling level accuracy algorithmic model?

• How will a user respond to a predictive analytics task given black-box prediction

models with different accuracy levels?

• Do users have preferences regarding the design and utilization of visual analytics

tools for predictive analytics?

• Are there strategies that users implement during the analytics process that can

be learned from to improve the predictive visual analytics design?

To answer these questions, this thesis designed an experiment in the context of box of-

fice prediction. Participants were required to use a web-based visual analytics system
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to predict the box office gross of a movie during its opening weekend. Participants

were given baseline computational models at different levels of accuracy and visual

analytics tools on the movie’s meta-data and Twitter data.

7.1 Hypothesis

This experiment examines the role of humans (compared to automatic models

and/or pre-defined approaches) in predictive visual analytics. In this study, the hy-

potheses are focused on prediction performance, the relationship between a user’s

prediction and the model’s prediction, and a user’s analytic preference and patterns.

7.1.1 Prediction Performance

In many research scenarios, visual analytics use cases have shown that user’s

interactions can contribute to intelligence analysis, such as select features for modeling

and adjust model results. With the help of users, real world prediction problems may

be analyzed in a more comprehensive manner than simply relying purely on a model.

Therefore, the first hypothesis is based on understanding the user’s contribution to

the predictive analytics process. The impact of the user should be reflected in the

prediction performance when compared to using simple model’s predictions.

Hypothesis 1: Participants can make better predictions than purely

algorithmic models when using predictive visual analytics tools. The goal

here is to further explore the conflicting results of user knowledge when applied to

predictive analytics tasks. Whereas numerous studies indicate that users’ predic-

tions are generally worse than model predictions, other works have come to different

conclusions [66]. Furthermore, some research has shown that users’ confidence and

satisfaction improve after being allowed to make changes based on a model’s pre-
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diction [18], but prediction outcome does not. As a result, users’ contribution to

prediction accuracy may be limited.

Hypothesis 2: The improvement of a user’s prediction accuracy de-

creases when the model’s prediction accuracy increases. The goal here is to

explore if there seems to be a “sweet spot” for users to improve prediction accuracy.

For example, if a model is 90% accurate, it is likely human intervention can only

decrease the accuracy; however, if the model is 60% accurate, the integration of user

knowledge could help bolster results.

7.1.2 Influence by Default Model’s Prediction

In a previous research, which assessed the role of teamwork in predictive analyt-

ics [170], it was identified that participants tend to have prediction errors that are

correlated with the given model. It is reasonable to expect that a participant could

refer to the model’s prediction as one important factor in making their own prediction.

Hypothesis 3: The model’s prediction directly influences participants’

decisions and this will result in users having a higher prediction accuracy

when the underlying model has a higher prediction accuracy. It is expected

that participants’ performance will have a positive correlation with model accuracy

which would indicate that the model has an influence on the participants’ prediction

(as opposed to seeing random predictions).

7.1.3 Participants’ Behavior

Along with exploring prediction accuracy, this study can also be considered as an

opportunity to analyze the role of a user in predictive visual analytics. By capturing

their interaction logs, one can investigate the behavior patterns of participants to

help him/her to understand what types of analytical tools users want to use during
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their predictive analytics process. The following hypotheses are oriented to improve

the understanding of how users behave during the predictive visual analytics process.

Hypothesis 4: Participants use easy-to-interpret visualization methods

more than the complex methods.

Hypothesis 5: Participants develop a prediction strategy for repeating

tasks.

7.2 Experiment Design

In order to test the above hypotheses, a variety of predictive models were devel-

oped and particularly chosen for box office prediction.

7.2.1 Dataset

The box office prediction task uses a movie’s metadata and related tweets. The

metadata was collected from the Internet Movie Database (IMDB). The study has

used the movie’s release date, genre, MPAA rating, and estimated budget. For social

media data, following the data collection strategy of the 2013 VAST Box Office chal-

lenge [122], this study has collected movie related tweets from 280 movies that were

widely released in the United States from January 2013 to February 2016. Tweets

are crawled using the Twitter Streaming API [31] by searching the hashtag keywords

extracted from each movie’s official Twitter account. In this work, tweets posted two

weeks prior to each movie’s release date are used, totaling 13,415,382 tweets.

7.2.2 Default Models in the Experiment

Three models are established with varying degree of accuracy in order to evaluate

participants’ performance for varying model accuracies. The data is split into two

chunks, according to their release date, for a time series validation. The estimation
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data has 150 movies, and the validation data has 130 movies. All three models were

fit using a square root data transformation on the response for a normal residual

distribution. This results in the response for the model being the square root of the

opening weekend gross.

The first model uses budget and the average tweet rate for 7 days (tbd7) as

regressors.

Model 1: grosssr = β0 + β1budget+ β2tbd7

The goodness of fit measures are that R2 = 60.73%, R2
adj = 60.20%, R2

pred = 55.33%

and the mean squared error on the estimation data is 2,172,086. Applying this model

on the validation data, the mean squared error is 2,903,916.

The second model uses budget, tbd7, and the number of theaters a movie is

released in (screen).

Model 2: grosssr = β0 + β1budget+ β2tbd7 + β3screen.

The goodness of fit measures are that R2 = 69.28%, R2
adj = 68.65%, R2

pred = 64.89%

and the mean squared error on the estimation data is 1,710,968. Applying this model

on the validation data, the mean squared error is 2,125,388.

The third model uses budget, tbd7, screen, and the interaction of budget and

screen (budget×screen).

Model 3: grosssr = β0 + β1budget+ β2tbd7 + β3screen+ β3budgetscreen.

The goodness of fit measures are that R2 = 75.07%, R2
adj = 74.33%, R2

pred = 72.13%

and the mean squared error on the estimation data is 1,398,258. Applying this model

on the validation data, the mean squared error is 2,083,217.
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7.2.3 Other Factors

Beyond the model, there are many other factors that might impact participants’

performance. Based on the experience from previous studies, this study controls

specific factors to be held-constant and randomize other factors, while leaving some

to vary.

User bias: In the work by Buchanan et al. [170], participants’ collaboration

and communication styles have been shown to be an important factor in prediction

accuracy during teamwork, and personal bias has been studied in judgmental adjust-

ments [78]. Although this study is only focused on individual participants, varying

individual factors should not be ignored. To mitigate user bias, this study narrowed

down the user portfolio to be full-time undergraduate and master students with small

variance in age. In addition, this study increased the number of movies one partici-

pant predicts from 3 movies in the previous work [170] to 9 movies as additional data

tends to average out randomness.

Movie bias: A movie, as the object of this prediction task, might also impact

the performance and variance of different participants’ predictions. In the previous

study [170], a user’s familiarity with the movie greatly impacted their perception

and subsequent prediction procedures. The movie genre (the type of movie, such as

action or romance) is another crucial factor. In a previous study, participants were

unfamiliar with the movie About Last Night. In turn, this resulted in participants

having a difficult time analyzing the movie. In order to mitigate such movie bias, well-

known movies based on a high Tweet count were selected particularly. Additionally,

the all 9 movies were selected from the same genre (Action).

Order bias: For repeating experiments, a concern is that the participant may

becomes familiar with the system and the prediction task and perform differently

107



(a) Model Prediction Page (b) Weekend Market Share Page

(c) Sentiment Analysis Page (d) Movie Similarity Page

Figure 7.1: The Four Main Visual Components in the Experiment for Data Explo-

ration and Predictive Analytics

according to the occurrence order of these movies. To avoid such bias, the order was

randomized for the movies, as well as the models.

7.2.4 Interface Design

In the VAST box office challenge, different visual analytics systems were pro-

posed from several teams [121, 122, 171]. Common among these systems were vi-

sual analytics tools for sentiment classification to analyze movie related tweets where

detailed text was accessible through interactions. Prediction models (e.g, linear re-

gression [122], SVM [121], and weighted average [171]) are also used to assist the

analytics in the three systems. Major design differences occurred at the predictive

model interaction level. Kruger et al. [121] focused more on developing a complex

prediction model and relied on the model results greatly. Al-Masoudi et al. [171]
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relied on user refinement of selecting historical movies to be the training dataset for a

simple weighted average model. Lu et al. [122] combined two prediction models and

the visual exploration of user-defined similar movies for the prediction. This evalua-

tion experiment utilizes the previously developed visual analytics framework (where

the visual designs were comparable to other teams participating in the contest) for

box office analysis and prediction [170] that has been modified to: (1) facilitate the

recording and implementation of the experiment, and; (2) provide a convenient way

for analysts to explore and analyze the data.

Visual Interfaces

This visual analytics system consists of six visual components: Homepage, Model

Prediction, Weekend Market Share, Sentiment Analysis, Movie Similarity, and Make

Prediction. The system uses pre-processing to extract useful information from large-

scale, noisy, and unstructured social media data. These data are then integrated

into the visual analytics system so that the participants can easily use the abstracted

information. The numerical and nominal features used in this study are shown in

Table 7.1 and they are extracted from IMDB and Twitter.

The Homepage shows basic information for the weekend under prediction and a

tutorial on using the system. It contains the date of the weekend under analysis and

a brief introduction to the released movies on that weekend, so that the participant

has a general context for the movie under prediction. A tutorial can be opened from

the Homepage for a detailed introduction of each function in the system. The Make

Prediction page allows the participant to submit his or her final prediction. This page

also lists the prediction of the current default model and the weekend market share

model. These two predictions can be referred to by the participant while analyzing

the data and making a decision. The other four pages are the main exploration
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Table 7.1: Variables Used in the Experimental Visual Interface

Variable Description

Gross 3-day Opening Weekend Gross

Budget Approximate movie budget from IMDB (unit is “million” of dollars)

Genre The movie’s genre(s) according to IMDB

MPAA The movie’s MPAA rating according to IMDB

TBD The average daily number of Tweets over the 2 weeks prior to release

TSS Tweet Sentiment Score calculated via SentiWordNet [139]

MSS Movie Sentiment Score – A derivation of the overall sentiment of a movie

interfaces and the participants can move between these pages freely to interactively

explore the data.

The Model Prediction page (Figure 7.1a) shows the single movie prediction model’s

results and performance for the previous three weeks and its prediction for the current

week. These prediction values are given by one of the three default models randomly

selected for the current prediction, and the basic performance of this model is shown

on the bottom right corner of the page. This page uses a scatter plot with prediction

ranges where the x-axis is the revenue value and the y-axis lists the movies ordered by

their release date. Solid lines are used to separate movies by their release week and

the top movies are those released in the current week under prediction. The green

circle and a surrounding gray bar show the single movie model’s prediction value

and its 95% confidence range, whereas the black squares indicate the actual opening

weekend gross for previous movies. Mousing over the scatter plot shows a dashed line

referring to the opening weekend gross axis. To look at the exact values of a movie,
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the participant can simply click on the green circle to open a pop-up context window

and fill the content of the selected movie information on the right-hand side.

The Weekend Market Share page (Figure 7.1b) visualizes the result from the

temporal model of weekend market prediction for the participants to identify seasonal

patterns in the movie industry. This page has three horizontal bars where each one

consists of 55 squares covering a whole year’s weekends prior to the weekend under

prediction. The revenue of each weekend is shown by the color of its square according

to a sequential color scale where the light color means low revenue and the dark

color means high revenue. The three horizontal bars correspond to the temporal

model’s prediction, the real value of the sum of all newly released movies, and the

real total weekend gross of all currently playing movies. Mousing over these squares

will line up the weekends from these three bars and clicking on the square can highlight

this weekend and display the details of the released movies and the revenue of that

weekend. To highlight special days, holidays are listed on top. The exact values of

the temporal model’s prediction are visualized as pie charts for the current weekend

and the corresponding weekend in the last year for a convenient comparison.

The Sentiment Analysis page (Figure 7.1c) consists of a sentiment wordle and a

sentiment river plot [61]. By exploring these plots, participants can determine the

most frequent positive and negative words regarding a movie and perceive a gen-

eral understanding of the public’s review/expectation of a movie. Positive sentiment

is shown as blue and negative sentiment is shown as red. Participants can switch

between movies released on the same weekend to compare sentiment.

The visual analytics environment also supports the comparison of features between

movies in the Movie Similarity page (Figure 7.1d). Similar movies can be filtered by

selecting the movie’s MPAA rating, and its genre(s). Once a metric is selected, the

movies are first filtered by these metrics and the five most similar movies ordered by
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tweet volume trend are displayed. The user can compare their social media trends as

well as the regression model’s predictions for each movie. The left side of this page

lists the options of filtering for similar movies and the right side uses small multiple

views to show the five most similar movies and the current movie under prediction

(the top one). The view of each movie contains a line chart of the tweet volume trend

and the single movie model’s prediction.

System Utilities and Data Recording

In addition to supporting interactive analytics of the social media data, movie meta

data, and the given prediction models, the visual analytics system is also designed

to facilitate tutoring participants, guiding the experiment’s process, recording pre-

diction results, and saving interactions and durations for each user. The framework

begins with a tutorial, which is followed by a practice prediction, and then the nine

experimental predictions. Once started, a new record is created in the database to

save the experimental information for the current participant. The system will auto-

matically move to the next prediction after each submission and record the duration

time for each prediction and all prediction results after the entire process is complete.

In addition, the system records the analytics interactions, such as changing visual

interface, clicking on a particular weekend, filtering for similar movies, etc.

7.3 User Study

This study recruited 20 participants (18 males and 2 females) for this experiment.

Among the 20 participants, 3 are college undergraduate students and 17 are masters

students. The average age is 23.25, ranging from 21 to 26. Each participant partici-

pated in a training session, a practice prediction session, and nine prediction sessions.

Their workload was evaluated twice using the NASA Task Load Index (NASA TLX)
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measure; once after the practice session and once after the last prediction was cast.

Finally, the participants completed a demographic questionnaire about their back-

ground, knowledge of predictive analytics, computer usage, and familiarity with the

movies presented.

Training

Each participant was trained at the start of the experiment. Training was presented

using PowerPoint slides that covered the purpose of the study (to accurately predict

movie’s opening weekend gross), how to navigate through the visual analytics system,

what information is available to them, and why this information is useful when pre-

dicting opening weekend gross. The Disney movie, Frozen, was selected to illustrate

all points made during training. A short quiz was administered after the training

(10 questions, 5 minutes). The quiz was immediately reviewed by the experimenter

and participants were encouraged to ask questions about the tested material and the

movie interface. At the same time, the researcher provided feedback on the recently

tested material.

After taking the quiz, the researcher loaded the visual analytics interface, logged

in each participant, and prepared the system for the prediction session. Participants

were instructed to access the system “Tutorial” page in order to make sure they

know where it is located. The training PowerPoint and the “calculator” were also

opened for participants’ reference. A reference sheet with a list of box office related

concepts (e.g., MPAA rating, Opening Weekend Gross, etc.), scratch paper (for notes

or performing calculations), and a prediction sheet to write down their final prediction

for each movie.
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Predictions

Exploration and predictions consisted of 10 chunks, a practice session and nine real

predictions. The participants started with a 15-minute practice session. During the

practice session participants were given the movie Fast & Furious 6 to explore. The

default prediction model is randomly selected from the three models. An embed-

ded timer is shown in the system and participants were encouraged to finalize their

prediction when 10 minutes had elapsed. However, the system was designed so that

participants could take longer to cast their prediction if they needed to. Participants

were allowed to take longer because the primary focus of this study was to understand

the human participation during the predictive visual analytics task. Participants were

also encouraged to ask questions during and after the practice session to ensure com-

prehension of the task and interface. Once the participants completed the practice

session they were given a 10-minute break.

After the break, the participants completed nine real predictions. During each

session, participants were able to cast their prediction before the 15 minutes were up.

However, participants were given a maximum time limit of 20 minutes to cast their

prediction. The following movies were presented to the participants in a random or-

der: 300: Rise of An Empire, The Amazing Spider-Man 2, Maleficent, Transformers:

Age of Extinction, The Equalizer, Kingsman: The Secret Service, San Andreas, Ter-

minator Genisys, and Mission: Impossible - Rogue Nation. Their written predictions

are collected while the system also record their input values into the system and their

actions and duration during the exploration for predictions. For each movie presented

to the participant, the regression model being used in the visual analytics system was

randomized, where each model was presented three times.
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7.3.1 Questionnaires

Questionnaires

To evaluate the participants’ mental workload, a NASA TLX was administered twice

during the experiment, the first time after the practice session (the first prediction

of movie Fast & Furious 6) and the second time after the last prediction. It was

expected that participants’ workload reduced over time due to familiarity with the

task and system. A demographics questionnaire was also administered at the end of

the experiment to evaluate the participants’ background (age, gender, education), do-

main knowledge (movie familiarity, frequency of “going to the movies”), social media

usage (frequency), and knowledge of predictive analytics (familiarity with mathemat-

ical models). Finally, participants were also asked a free-response question aimed to

assess how they analyzed the data, as well as, whether they had used a particular

strategy to analyze the data.

7.4 Experiment Result and Analysis

The practice prediction is excluded from the analysis because participants were

able to ask questions about the prediction task during that time. As such, the analysis

uses the predictions made for the 9 movies. A total of 180 predictions were analyzed.

In addition, participants’ actions (e.g., what interface features they accessed) and

duration for each action taken (e.g. how long they viewed a particular data set) were

recorded. The demographics questionnaire and the NASA TLX evaluations were used

to gain a deeper understanding of how participants worked through the analysis tasks.
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Figure 7.2: The RAE Comparison Display for Every Prediction

7.4.1 Prediction Performance

To test hypothesis 1, the participants’ predictions were first compared to the model

predictions. To test hypothesis 2, a two part process was used. First, the participants’

predictions were grouped by the default model they used. Second, the participants’

predictions among the different model groups were compared. The relative absolute

error (RAE), which is the percentage bias deviating from the real value, is used to

measure each prediction’s accuracy.

RAE =
|Prediction−RealV alue|

RealV alue
(7.1)

Figure 7.2 displays the RAE for each participant prediction and the model he/she

was using. This display compares the RAE of each prediction between the participants

and the default model. The x-axis lists the 9 real movie predictions. The y-axis lists

the participant ids. Each cell has two bars displaying the error where overestimation

is to the right-side and underestimation is to the left-side, and both bars are aligned in

the middle. The top bar uses a lighter hue and represents the participant’s prediction
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Figure 7.3: The RAE Display of Each Prediction Organized by Movie and Model

error, and the bottom bar uses a darker hue and represents the model’s prediction

error. The bar length is scaled by the error with a cutoff at 1.The shorter the bar, the

more accurate the prediction. Among the 180 predictions, 72 (40%) have a lower RAE

than the corresponding model while 108 (60%) have a higher RAE. To analyze the

predictions in terms of different movies and different models, Figure 7.3 displays the

RAE for each model’s prediction and each participant prediction organized by movies

and models (9 movies × 3 models). The plot indicates that participant predictions

vary a great deal. For instance, some participants beat the model prediction whereas

over 50% of the participants’ error was larger than the model predictions. This was

seen across all three models.

A one-way ANOVA performed on these data revealed that there was a significant

difference between participants’ prediction and overall model’s prediction with a p-

value = 0.009. Test results are given in Table 7.2. The standard deviation of the

participants’ RAE is 0.4639 whereas the model’s RAE is 0.2589 indicating a larger

error variance for participants’ prediction outcomes. Next, a one-way ANOVA was

performed on each set of predictions for Model 1, Model 2, and Model 3. The follow-

ing rows in Table 7.2 show the result. Participants’ predictions were not significantly

different when using Model 1, Model 2, or Model 3 predictions with an α = 0.05 (all
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Table 7.2: Results of Four One-Way ANOVA Tests with Participant Prediction RAE

and Model Prediction RAE as Responses and Equal Mean as the Null Hypothesis

M
o
d
el

M
R

A
E

P
ar

ti
ci

p
an

t
M

R
A

E

P
-V

al
u
e

95
%

C
I

of
M

o
d
el

95
%

C
I

of
P

ar
ti

ci
p
an

t

All Three Models 0.2950 0.3994 0.009 (0.2399, 0.3501) (0.3442, 0.4544)

Model 1 0.2793 0.3608 0.214 (0.1880, 0.3707) (0.2694, 0.4521)

Model 2 0.2687 0.3801 0.131 (0.1661, 0.3713) (0.2775, 0.4827)

Model 3 0.3370 0.4572 0.076 (0.2429, 0.4310) (0.3631, 0.5513)

three p-values are greater than 0.05), and the result still clearly illustrates that partic-

ipants do not outperform the models with respect to predictive accuracy. Therefore,

the first hypothesis that participants supported by a visual analytics in-

terface can outperform algorithmic models in terms of accuracy, is not

supported. Instead, this experiment result showed the opposite, which was also

shown in other studies [18, 71, 166]. The model used in this movie prediction task

had a higher prediction accuracy than the average participant and was better than

60% of the participants’ single predictions.

To test the second hypothesis, users’ contribution decreases when model’s accu-

racy increases, the results were further analyzed by comparing the difference between

participants’ predictions and the model predictions across different models. This

analysis shows that, in Table 7.2, participants’ performance was worse when using

Model 3 (the most accurate model) and the best performance when they used Model
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1 (the least accurate model). This difference is indicated by the MRAE values (mean

RAE). ANOVA tests were performed with model RAE and Participant RAE being

the response variable and model type as the factor. The results revealed that Model

3 has the largest RAE and Model 2 the smallest RAE. However, the p-value = 0.487

indicating no significant difference in performance when using the different models.

Tests on the participants’ RAE also shows that Model 3 has the largest RAE, followed

by Model 1, and then Model 2. This difference is also not statistically significant with

a p-value = 0.3. Comparing the MRAE values between the participants and the mod-

els, one can see that the participants’ prediction accuracy increased from Model 3 to

Model 1, but not with Model 2. These results indicate that the participants tended to

perform better when the model performance improves from low accuracy to average

accuracy, but not with the higher accuracy. This shows that using a more accu-

rate reference prediction value may not necessarily improve participants’ prediction.

Though, this difference is not statistically significant and indicates only a slight trend.

As such, the hypothesis that a user’s prediction accuracy will decrease as

the model’s prediction accuracy increases is also not supported. However,

the underlying trend that was discovered indicates further studies in this direction are

needed to determine if increasing the levels of model accuracy tested will give insight

into a threshold at which user interaction further degrades the prediction accuracy.

7.4.2 Influence by Default Model’s Prediction

Each model has an overall accuracy; however, for any given movie the model may

overperform or underperform, thus biasing the experiment. In this study, Model 3

had the worst performance for each of the 9 selected movies even though it was the

most accurate one over all 280 movies. This occurred due to the constraints that

were used to select the movies. Likewise, similar situations can arise in real world
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applications. For instance, using a general model to predict a specific instance can

lead stakeholders astray because the model is poorly fit.

The difference between the participant predictions and the corresponding model

predictions is analyzed using one-way ANOVA test with model type being the fac-

tor. This difference indicates that participants tend to predict closer to the model’s

prediction when Model 2 was being used, although the difference is not statistically

significant (p-value = 0.69). This is striking given the fact that participants’ were told

the accuracy of the model being used for each experiment and would have knowledge

that Model 3 is the most accurate. What this indicates is that participants did not

exhibit a higher degree of trust in a model based on reported accuracy. Furthermore,

there is a decrease of the prediction difference from Model 1 to Model 2 as model accu-

racy improves. Therefore hypothesis 3, participants prediction is influenced

more by the model’s prediction when the accuracy of the model increase,

is not supported. One possible reason that participants chose not to base their

predictions on Model 3 may have been because they discovered that the model was

actually inaccurate for this particular set of movies. Consequently, the participants

may have been able to use the system, along with their own knowledge and intu-

ition to assess this discrepancy. As such, further experiments focusing specifically on

trustworthiness should be explored.

7.4.3 Participants’ Behavior Analysis

This study has collected participants’ answers from the demographics question-

naire and the NASA TLX. Additionally, the system recorded interface interactions

using the system’s log. These data was used to evaluate participants’ behavior during

their analysis process.
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Demographics Questionnaire Analysis

In order to gain a deeper understanding into which interface features were used and

why, a series of questions were asked regarding the ease/difficulty of use, frequency,

and ranking of interface features. Among the 20 participants, 19 completed the entire

questionnaire while 1 participant left some questions blank. Of the 19 participants

that answered, 16 of them marked the most used interface feature as the easiest one

to use. Overall, 17 participants marked the Sentiment Analysis Page as easiest to

use/most understandable interface feature. This result is also reflected when assessing

all 68 marked answers (some participants ranked more than 3 interfaces features).

Again, the most frequently used interface features was also selected as the easiest

to use/understand (49 marked responses, 72%). On the other hand, 9 participants

marked the Weekend Market Share and Movie Similarity Page as the least usable

and understandable interface. These two interface features were also the two least

used ones. These results support the fourth hypothesis which stated that

participants use easy-to-interpret visual analytics tools more than complex

tools.

Finally, understandability and ease of use does not necessarily determine the usage

of the computer-interface for all participants. For instance, out of the 9 participants

that marked the Weekend Market Share Page as difficult to use, four ended up still

using the Weekend Market Share data during their prediction tasks. Similarly, out

of the 9 participants who marked the Movie Similarity Page as difficult, only one

ended up not using the data presented on this page. As a result, it can be seen that

difficulty is not the only determining factor of whether certain views are considered

during predictive visual analytics tasks.
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One interesting finding that emerged was that though no significant difference be-

tween participants’ prediction performance was found, background knowledge seemed

to play an important role in the accuracy of the prediction outcome. For example,

participant No. 12, who had the lowest MRAE for all 9 predictions, described his

strategy as follows: “I read a lot about movies and have heard of almost all of these

movies. I recall descriptions about how people liked these movies and used the model

as a starting point. I notice the model was better at predicting movies that were con-

sidered average and movies that are considered good to do better than the model.”

Again, anecdotal evidence from the participants seems to indicate that user knowledge

can improve results; however, in this study, as well as others, the experimental re-

sults do not support such an anecdote. Furthermore, it has been tested if participants

have significant differences among themselves in terms of their prediction performance

and the influence of their performance by their familiarity to the movies (based on

their own self-assessment measure). A t-test of the prediction errors between famil-

iar movies and non familiar movies was performed and no significant difference was

found (p-value = 0.753) indicating that movie familiarity (which could translate to

user knowledge) does not improve prediction

System Log Analysis

To further explore how participants approached making a prediction, this system

recorded the participants’ interactions and the amount of time spent on each inter-

face feature via timestamps. Out of the 20 participants, one encountered repeated

system problems causing the experiment to be paused several times. Therefore, this

participant’s log was removed from the analysis. In the experiment, participants were

allowed to move at their own pace. They were able to cast their prediction before

the allotted time was up and after. However, participants were asked not to exceed
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20 minutes per prediction task. For each prediction session, the average time-on-task

was 7 minutes with a median time of 6 minutes. The shortest session lasted only

0.5 minutes and the longest one 16 minutes. Interestingly enough, the data indicates

that there is no correlation between time-on-task and participants’ prediction error

(Pearson correlation = 0.155, P-value = 0.043). The ANOVA on these data also

revealed that there is no significant difference between movie under prediction and

time-on-task (P-value = 0.631). However, there is a significant difference between

time-on-task across the 20 participants (p-value = 0.00). Hence, time-on-task seems

to be a personal factor. Some participants may have needed more time because they

were unfamiliar with the movies or did not understand the task or interface. Yet,

other participants may have needed less time for similar reasons. Lastly, it is likely

that additional factors contributed to the variation for time-on-task. For example,

additional factors such as personal commitment and motivational states may have im-

pacted participants’ time commitment during their analysis and future studies should

include such factors in the analysis.

The analysis of the log data revealed a significant (p-value = 0.000) difference

of the mean time-usage among the six interface tabs. This significant (p-value =

0.004) difference remains even if time-usage is only compared for the four analytics

tabs (Make Prediction, Weekend Market Share, Sentiment Analysis, and Movie Sim-

ilarity). Specifically, log data analysis indicates that participants spend most time

looking at the Model Prediction and Movie Similarity data. For example, average

time spend on the Movie Similarity Page was 1.523 minutes and 1.496 minutes for

the Model Prediction Page. In addition, participants spend an average of 1.196 min-

utes on the Sentiment Analysis Page and 1.107 minutes on the Weekend Market Share

Page. These findings match the previously reported results. Specifically, participants

reported that they found the Weekend Market Share Page as most difficult and least
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used interface feature. Yet, they still spend a considerable amount of time analyzing

the data presented here. Consequently, participants were willing to invest time to use

a relative difficult page; presumably this occurred because participants viewed the

data in the Weekend Market Share Page as significant. Lastly, these results illustrate

a key point – no matter how crucial certain analytical features are, users will not

invest the same amount of time purely based on criticality, but will consider ease of

use first.

In a next analysis whether time-on-task decreased as prediction session increased

was assessed. Figure 7.4b depicts the box plot for time-on-task by sessions. The

results show that there is a significant (p-value = 0.002) decrease on time-on-task as

sessions increase. Yet, participants’ prediction error did not increase with reduced

time-on-task indicating that repeated predictive analytics tasks leads to familiarity

of the interface and data presented.

This analysis also analyzed how many times participants switched between the

different interfaces. For the 19 participants a total number of 171 prediction sessions

were evaluated. The results indicate that the number of switches between interfaces

varied greatly among participants, ranging from 4 to 77, with mean = 16.89 and

median = 12. However, further analysis showed no significant relationship between

the number of switches to the number of prediction errors.Considering the wide range

of number of times participants switched between interface pages it seems that this

tendency may be due to personal preference during data analysis.

NASA TLX Analysis

The analysis on the participants’ NASA TLX responses revealed that there were no

significant differences in difficulty and task demand ratings between the two time

frames (after the practice session and after the last prediction). That is, participants
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(a) The Box Plot of the Time Participants

Used in Each Interface Tab

(b) The Box Plot of Time-on-Task per

Prediction Task

Figure 7.4: Time-on-Task Analysis Plots

did not rate the prediction task as becoming easier over time. There were also no sig-

nificant differences in the participants’ emotional states between the two time frames

(all p-values were well above p=.05). The NASA TLX results show that participants

felt the same, as well as, viewed task difficulty the same throughout the entire ex-

periment. However, ideally participants should have rated the task as easier as time

went on, partly because they were becoming more familiar with it. Yet, participants’

mental workload seemed to have remained high for the entire experimental session,

indicating the complexity of the prediction task.

7.5 Discussion

Work in the visual analytics community has demonstrated that experts could

benefit from tools that support the integration of domain knowledge with interac-

tive visual exploration. In terms of predictive analytics, visual analytic techniques

have also been used to help improve the comprehension of data, model, and pre-

diction results, and visual analytics techniques that enable users to interact within
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the predictive modeling process have also reported benefits. However, the social and

management science communities have deliberated for decades as to whether or not

humans can improve algorithmic prediction. Unfortunately, the literature does not

provide a clear answer given that conflicting results (that humans improve the accu-

racy and that humans decrease the accuracy) have been reported. In recent years,

researchers have also turned their focus to examining factors that may influence hu-

man prediction outcomes and which factors contribute to lower prediction outcomes.

However, controlled experimental studies are relatively rare within the domain of vi-

sual analytics. Therefore, there is a need to systematically study how humans can

improve predictive visual analytics outcomes. Specifically, in this study it examined

how humans perform over a range of model accuracies, the goal was to explore if there

was a model accuracy after which human returns diminished. Additionally, interac-

tions with the predictive analytics system were also studied in order to understand

what interface features were considered useful and which ones were not.

Aligned with the research from the Wharton School [18], the results proposed in

this thesis also indicate that human predictions were significantly worse than model

predictions. Although the hypotheses were not supported (i.e., a human-in-the-loop

did not lead to better predictions), this research study remains valuable as it is the first

(to the best of the author’s knowledge) controlled user study for evaluating human

participants during a predictive visual analytics task. Yet, numerous questions remain

to be answered. For instance, how to better prepare the user for this task? Another

question that would be worth exploring is, what type of knowledge is more beneficial

to have, knowledge of predictive models or domain knowledge (e.g., knowledge of

movies)? In this study, Participant 12 had an extensive knowledge of movies and,

in turn, had the lowest error rate. Another avenue worth exploring is how can the

usability of predictive tools themselves be improved (e.g., interfaces)? From the
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results here it was clear that users preferred easy-to-use visual analytical interfaces.

Furthermore, the participants may have performed worse because they shied away

from the more difficult data sets/interface features.

It is important to note that this study is not without limitations. First, evaluating

human participation in predictive visual analytics is breaking new ground. Hence,

it is still being explored for effective predictive visual analytic system designs and

methods of conducting controlled experiments where a complex cognitive process is

involved. Second, it is possible that the models used in this study were not accurate

enough for users to trust them. Third, different types of predictive visual analytics

procedures need to be compared. For example, future experiments should allow

participants to modify the models themselves. This interaction may foster a greater

understanding and trust for the models. The added benefit of this approach is that

one can investigate which predictive visual analytics approach leads to improved

prediction results both in terms of accuracy and user satisfaction.
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Chapter 8

CONCLUSION AND FUTURE WORK

In summary, this work has proposed and evaluated a framework of integrating so-

cial media and predictive analytics, and studied various predictive visual analytics

methodologies. This works major contributions are as follows:

1. A predictive visual analytics pipeline.

2. An integrative multi-source predictive visual analytics implementation.

3. A predictive visual analytics approach linking sentiment analysis tools, similar-

ity metrics, and regression models.

4. A predictive visual analytics framework derived from the Delphi method.

5. A visualization-centric categorization of social media network types.

6. An experiment to evaluate human participation in predictive visual analytics.

The effectiveness of the predictive visual analytics methodologies proposed in this

thesis was demonstrated through a series of case studies and user studies. These stud-

ies focused on the practical problem of box-office prediction. Results indicate that

predictive visual analytics technologies are effective for integrating multiple knowl-

edge sources and making predictions: users with background knowledge could better

predict box office revenue given a proper set of visual analytics tools and a suggested

analytics approach. However, a follow-up user study that evaluated the human effect

of predictive visual analytics revealed that users were liable to introduce bias into

the prediction process. Users attitudes toward, and preferences regarding, the use
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of visual analytics tools were analyzed to guide future design decisions. Given these

finding, I will direct my future research efforts to target the following areas:

1. Visualization designs for explainable AI.

2. HCI aspects of predictive visual analytics.

3. Methodologies to broaden the scope of prediction.

4. Comprehensive evaluations of predictive visual analytics.

8.1 Explainable AI (XAI)

Data and computational resources are rapidly becoming more widely available.

A central trend in modeling has been to employ increasingly large and sophisticated

models that exploit these. This trend is typified by “deep learning” approaches that

apply large scale network models to modeling problems such as prediction. Such

approaches are often able to leverage large data to achieve impressive performance.

However, this performance is not without a cost: such models are large, complex, and

constructed automatically (especially in terms of feature engineering), making them

difficult to interpret. While the predictive results may be accurate, if the generated

model lacks interpretable meaning, then its predictive power is hampered [82]. In-

terpretability is an important concern whenever AI techniques are utilized, and this

problem is exacerbated with the emergence of deep models. The challenges of inter-

preting complex models are often referred to as explainable AI (or XAI for short).

Interpretable models can serve many goals for a variety of stakeholders [21].

An example in the requirement of explainable AI is the self-driving car. Google’s

self-driving car project utilizes machine learning in order to generate models that

can accurately process and respond to input from its sensors [172]. The self-driving
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cars have now logged over 2 million miles on public roads with only a couple dozen

accidents, only one of which was caused by the autonomous vehicle [173]. This is

an impressive safety record, but given the complexity of input and response the cars

need to handle, it cannot be known if the cars will respond well in every situation.

This is a prime example of an accurate predictive model that lacks interpretability in

a domain where the interpretability of the model is of grave importance.

There has been a perceived trade-off between model interpretability and perfor-

mance, however there may be other pathways to improving interpretability besides

using simpler models with poorer performance. In terms of self-driving cars, it is

conceivable that a better safety record would be traded for a simpler model that

makes it easier to draft legislation and comply to regulations concerning autonomous

vehicles [174], however it is preferable to have both safety and comprehensibility. Re-

search in explainable AI has explored approaches including generating descriptions of

complex models and for interpreting complex models through a series of simpler ones

(e.g., LIME [175]).

8.2 Interactions with Predictive Visual Analytics System

In predictive visual analytics, interaction is the means by which experts explore

data, steer the model, and integrate their knowledge into the prediction process. Un-

derstanding how experts interact with the system is critical for developing efficient

and effective predictive visual analytics systems. Many advanced interaction tech-

niques have been developed and used in visualization systems. Semantic interactions

have been a hot topic recently in the visual analytics literature [176–178]. By al-

lowing users to directly manipulate data in the visualization space, updates to the

positions of data elements on the display can be tied back to weights in the ana-
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lytic modules, which can then be translated to model updates. This is also called

visual-to-parametric interaction.

Little work has been done to understand the reasoning process of the expert when

they interact with the modeling process. Thus, I plan to analyze the participants’

interactions through logging the timestamps and actions they perform on the system.

Having analyzed such log data, one could learn which views have been used most and

what are the procedures of using different views and tools; furthermore, one could

learn whether the analysts were confirming their findings or exploring other evidence.

The goal is to retrieve predictive analytics procedures and strategies of the analysts

(if any) and further improve the predictive visual analytics toolkits. Knowing what

kind of visualization tools have been used most and why participants use some tools

more than others could help us improve the usability of visual analytics systems.

Also, understanding the impact of different views on prediction performance could

help us and develop more effective tools for predictive analytics.

8.3 Generalization on Prediction Tasks

In past research, the predictive visual analytics framework was employed and

evaluated on box office prediction. However, the approach was not generalized to

other prediction problems, such as stock market prediction and student performance

prediction. The advantages of using box office prediction are twofold: 1) It is easy

to collect data on real box office to evaluate performance, and 2) it is easy to find

participants with some knowledge of movies who can quickly understand the rele-

vant concepts in predictive visual analytics. However, research on predictive visual

analytics should be applied to more applications, and similar to the user study in

chapter 7 more controlled experiments should be conducted to evaluate the effects of

predictive visual analytics. Thus, I plan to develop predictive visual analytics tools
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for other applications, such as stock price prediction, housing and income prediction,

and school performance prediction. In addition to real world problems, I also plan to

generate synthetic datasets or use well-established datasets to evaluate the efficacy of

predictive visual analytics so that fewer factors are uncontrolled.

8.4 Evaluations

Currently, only a preliminary evaluation has been done to investigate the role of

humans in predictive visual analytics box office prediction being a proxy. However,

many factors have not been tested yet and many other aspects and situations should

be analyzed. In the future, I plan to extend the evaluation of predictive visual analyt-

ics to the following two aspects: First, more advanced and accurate models should be

used as the default model to test participants trust and reliance on different models.

Second, different interactions on developing the prediction should be considered and

compared. For example, I want to conduct an experiment in which I allow some par-

ticipants to modify the prediction value through data explorations and allow other

participants to develop their own models to make predictions. In this way, in addition

to investigating the contribution from humans to predictive analytics, one could also

investigate which predictive visual analytics approach has better performance.
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APPENDIX A

DEMOGRAPHICS QUESTIONNAIRE
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Please answer the following to the best of your ability. All answers will be kept
confidential and will only be reported statistically (grouped with others’ responses).
Please feel free to leave a question blank if you feel uncomfortable answering it.

1. What is your age?

2. What is your gender? (circle):

a Male

b Female

3. What is your current level of educa-
tion?

a Less than High School

b High School/GED

c Some College

d 2 year degree

e 4 year degree

f Master’s

g Doctoral

h Professional (MD, JD, etc.)

4. If you have been or are enrolled in
a post high school institution, what
is your major?

5. Are you currently employed?

a Yes

b No

6. If yes to # 5, what is your job title?

7. Are you native English Speaker?

a Yes

b No

c If No, then what is your native
language?

8. How long have you lived in the
United States?

a Native (all my life)

b Less than 1 year

c 1 year

d 2 years

e 3 years

f 4 years

g Greater than 5 years

9. How long have you lived in the
United States?

a Native (all my life)

b Less than 1 year

c 1 year

d 2 years

e 3 years

f 4 years

g Greater than 5 years

10. Within a month: On average, how
often do you watch movies (The-
ater, TV, Internet)?

a 0

b 1-2

c 3-4

d 5-6

e 7-8

f 9-10

g 11 or more

11. Were you familiar with any of the
movies presented today?

a Yes

b No

c If, yes which one(s)? Please
mark ALL that apply.
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i Fast & Furious (2013,
Practice)

ii The Amazing Spider-
Man2 (2014)

iii The Equalizer (2014)

iv 300: Rise of an Empire
(2014)

v Maleficent (2014)

vi San Andreas (2015)

vii Transformers: Age of Ex-
tinction (2014)

viii Mission Impossible-Rouge
Nation (2014)

ix Terminator Genisys
(2015)

x Kingsman: The Secret
Service (2014)

12. If you answered Yes to # 10: Did
you know how much money the
movie(s) had made during the open-
ing weekend?

a Yes

b No

c If, yes which one(s)? Please
mark ALL that apply.

i Fast & Furious (2013,
Practice)

ii The Amazing Spider-
Man2 (2014)

iii The Equalizer (2014)

iv 300: Rise of an Empire
(2014)

v Maleficent (2014)

vi San Andreas (2015)

vii Transformers: Age of Ex-
tinction (2014)

viii Mission Impossible-Rouge
Nation (2014)

ix Terminator Genisys
(2015)

x Kingsman: The Secret
Service (2014)

13. Were you familiar with how popu-
lar any of these movies were opening
weekend?

a Yes

b No

c If, yes which one(s)? Please
mark ALL that apply.

i Fast & Furious (2013,
Practice)

ii The Amazing Spider-
Man2 (2014)

iii The Equalizer (2014)

iv 300: Rise of an Empire
(2014)

v Maleficent (2014)

vi San Andreas (2015)

vii Transformers: Age of Ex-
tinction (2014)

viii Mission Impossible-Rouge
Nation (2014)

ix Terminator Genisys
(2015)

x Kingsman: The Secret
Service (2014)

14. Do you follow new release movies on
Social Media?

a Yes

b No

15. How often do you use Social Media?

a Several times an hour

b Hourly

c Daily

d Every couple days

e Once a week

f Every couple weeks

g Less than once a month

h Every couple of months

i Once or twice a year
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j Never

16. Were you familiar with predictive
modelling prior to this experiment?

a Yes

b No

c If yes, how? Please de-
scribe/list briefly (For exam-
ple: learned in class, part of
my degree program, part of my
job, etc.)

17. How often have you used predictive
modeling prior to this experiment?

a Never

b Rarely

c Occasionally

d Frequently

e Very Frequently

18. How often do you use a computer?

a Hourly

b Daily

c Every couple days

d Once a week

e Every couple weeks

f Less than once a month

g I do not use computers

19. Please rate the degree to which you
agree with the following statement:
I am proficient with computers.

a Strongly Agree

b Slightly Agree

c Neutral

d Slightly Disagree

e Strongly Disagree

20. In what way do you use computers?
(Mark all that apply)

a I do not use computers

b Internet

c Email

d Word processing

e Spreadsheets

f Computer Games

g Other

21. This task was complicated.

a Strongly Agree

b Slightly Agree

c Neutral

d Slightly Disagree

e Strongly Disagree

22. This task was boring.

a Strongly Agree

b Slightly Agree

c Neutral

d Slightly Disagree

e Strongly Disagree

23. This task was easy.

a Strongly Agree

b Slightly Agree

c Neutral

d Slightly Disagree

e Strongly Disagree

24. The user-computer interface was
easy to use.

a Strongly Agree

b Slightly Agree

c Neutral
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d Slightly Disagree

e Strongly Disagree

25. What features of the movie inter-
face were easy to use/understand?
Please mark all that apply.

a None

b Home Page

c Model Prediction Page

d Weekend Market Share Page

e Sentiment Analysis Page

f Movie Similarity Page

g Make Prediction Page

Additional Comments:

26. What features of the movie in-
terface were difficult to work
with/understand? Please mark all
that apply.

a None

b Home Page

c Model Prediction Page

d Weekend Market Share Page

e Sentiment Analysis Page

f Movie Similarity Page

g Make Prediction Page

Additional Comments:

27. Which features of the movie inter-
face did you use to make your pre-
dictions? Please mark all that ap-
ply.

a Home Page

b Model Prediction Page

c Weekend Market Share Page

d Sentiment Analysis Page

e Movie Similarity Page

f Make Prediction Page

28. Which features of the movie inter-
face did you use the most to make
your predictions? Please rate the
3 most often used interface features
(1=most often, 2=second most of-
ten, 3=third most often).

a Home Page

b Model Prediction Page

c Weekend Market Share Page

d Sentiment Analysis Page

e Movie Similarity Page

f Make Prediction Page

29. I would use this interface again.

a Strongly Agree

b Slightly Agree

c Neutral

d Slightly Disagree

e Strongly Disagree

30. How did you go about analyzing the
presented data? Did you look at all
available data? Did you develop a
specific strategy? Did you only con-
sider certain pieces of data?

Please list/describe briefly.

31. I enjoyed participating in this study.
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a Strongly Agree

b Slightly Agree

c Neutral

d Slightly Disagree

e Strongly Disagree

32. Would you like to share anything
else about this experiment with us?
Please list/describe below.
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Instructions:

Below you will be asked some questions about the task you just completed. Please
read each question and think about the information being requested. Then, respond
on each scale about how you felt or what you experienced within the task. Please
consider each scale independent of the previous or following scales. If you have any
questions, please ask the experimenter.

1. How much mental and perceptual activity was required (e.g., thinking,
deciding, calculating, remembering, looking, searching, etc.)?

The task was easy 1 2 3 4 5 6 7 8 9 10 The task was demanding
The task was simple 1 2 3 4 5 6 7 8 9 10 The task was complex
The task was forgiving 1 2 3 4 5 6 7 8 9 10 The task was exacting
The task was mentally ef-
fortless

1 2 3 4 5 6 7 8 9 10 The task was mentally difficult

2. How much time pressure did you feel due to the rate or pace at which
the tasks or task elements occurred?

The task was slow 1 2 3 4 5 6 7 8 9 10 The task was rapid
The task was leisurely 1 2 3 4 5 6 7 8 9 10 The task was frantic

3. How successful do you think you were in accomplishing the goals of the
task set by the experimenter (or yourself)?

Unsuccessful 1 2 3 4 5 6 7 8 9 10 Successful

4. Please rate the following emotional dimensions felt during the task

Insecure 1 2 3 4 5 6 7 8 9 10 Secure
Discouraged 1 2 3 4 5 6 7 8 9 10 Gratified
Irritated 1 2 3 4 5 6 7 8 9 10 Content
Stressed 1 2 3 4 5 6 7 8 9 10 Relaxed
Annoyed 1 2 3 4 5 6 7 8 9 10 Complacent
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1) I have access to the tutorial page throughout the entire study.

a True

b False

2) The goal of this task is to predict as accurately as possible how much the movies
are going to make opening weekend.

a True

b False

3) I can get the actual gross amount for all movies displayed.

a True

b False

4) Each of the small green squares represent a week in a calendar year.

a True

b False

5) Why are some of the last squares in ‘Weekend to Predict’ colored black?

a I can’t remember.

b They are colored black because that is the weekend to be predicted.

c They are colored black because some of those values are not available.

6) The ‘Sentiment Analysis’ displays tweets about the given movie selected.

a True

b False

7) I can access the following data. Mark all that apply.

a MPAA Rating

b Genre/Category of movie

c Accuracy of Model

d Number of tweets per day

e Release date

f Prediction range

8) My prediction has to be within the given prediction range.

a True

b False

9) The ‘Total Opening Weekend Gross’ is:
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a Predicted amount for the movie under investigation.

b Predicted amount for all movies to be released that weekend.

c Not sure.

10) My prediction amount can be given with commas, periods, asterisks, etc.

a True

b False
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