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ABSTRACT

This dissertation discusses the Cournot competition and competitions in the exploita-

tion of common pool resources and its extension to the tragedy of the commons. I

address these models by using potential games and inquire how these models reflect

the real competitions for provisions of environmental resources. The Cournot models

are dependent upon how many firms there are so that the resultant Cournot-Nash

equilibrium is dependent upon the number of firms in oligopoly. But many studies

do not take into account how the resultant Cournot-Nash equilibrium is sensitive to

the change of the number of firms. Potential games can find out the outcome when

the number of firms changes in addition to providing the “traditional” Cournot-Nash

equilibrium when the number of firms is fixed. Hence, I use potential games to fill the

gaps that exist in the studies of competitions in oligopoly and common pool resources

and extend our knowledge in these topics. In specific, one of the rational conclusions

from the Cournot model is that a firm’s best policy is to split into separate firms. In

real life, we usually witness the other way around; i.e., several firms attempt to merge

and enjoy the monopoly profit by restricting the amount of output and raising the

price. I aim to solve this conundrum by using potential games. I also clarify, within

the Cournot competition model, how regulatory intervention in the management of

environmental pollution externalities affects the equilibrium number of polluters. In

addition, the tragedy of the commons is the term widely used to describe the overex-

ploitation of open-access common-pool resources. Open-access encourages potential

resource users to continue to enter the resource up to the point where rents are ex-

hausted. The resulting level of resource use is higher than is socially optimal, and

in extreme cases can lead to the collapse of the resource and the communities that

may depend on it. In this paper I use the concept of potential games to evaluate

the relation between the cost of resource use and the equilibrium number of resource
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users in open access regimes. I find that costs of access and costs of production are

sufficient to determine the equilibrium number of resource users, and that there is in

fact a continuum between Cournot competition and the tragedy of the commons. I

note that the various common pool resource management regimes identified in the

empirical literature are associated with particular cost structures, and hence that this

may be the mechanism that determines the number of resource users accessing the

resource.
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Chapter 1

INTRODUCTION

1.1 Motivation

This dissertation discusses the Cournot competition and competitions in the ex-

ploitation of common pool resources and its extention to the tragedy of the commons.

I address these models by using potential games and inquire how these models reflect

the real competitions for provisions of environmental resources.

There are three important empirical points that need to be addressed in the theory

of oligopoly. First, it is of our general knowledge that the number of suppliers of

environmental public goods has a significant impact on well-being via the effects

it has on prices, quantities, cooperation, and coordination. However, many studies

assume that the number of suppliers is fixed, and do not consider how the Cournot-

Nash equilibrium is sensitive to the change of the number of suppliers. Second, the

Cournot model makes it possible to identify the conditions under which monopoly

or oligopoly might be observed, but there is no general theory of the equilibrium

number of parties to an agreement or the equilibrium number of suppliers in resource

access game. Third, by extension of the Cournot model, it is possible to identify

the equilibrium number of firms as a function of the costs of engagement. However,

the theory of potential games can answer these points; i.e., potential games make it

possible to determine the number of firms involved in providing a public good.

There are several studies that analyze the oligopolistic industires. For instance,

the world oil market is a typical example of oligopoly, and it is often analyzed by

the Cournot model (Loury, 1986; McMillan and Sinn, 1984; Salant, 1976, 1982).
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Because these models are dependent upon how many firms there are, the resultant

Cournot-Nash equilibrium is dependent upon the number of firms in oligopoly. But

these studies do not take into account how the resultant Cournot-Nash equilibrium is

sensitive to the change of the number of firms. In fact, as mentioned above, potential

games can find out the outcome when the number of firms changes in addition to

providing the “traditional” Cournot-Nash equilibrium found in these studies.

Hence, I use potential games to fill the gaps that exist in the studies of compe-

titions in oligopoly and common pool resources and extend our knowledge in these

topics. In addition, the tragedy of the commons is the term widely used to describe

the overexploitation of open-access common-pool resources. Open access is argued

to encourage entry up to the point where rents are exhausted. In this dissertation,

I reexamine the number of users of common pool resources through the concept of

potential games. I show that the equilibrium number of users is sensitive to the struc-

ture of costs of entry. I find that costs of access and costs of production are sufficient

to determine the equilibrium number of resource users, and that there is in fact a con-

tinuum between Cournot competition and the tragedy of the commons. I note that

the various common pool resource management regimes identified in the empirical

literature are associated with particular cost structures, and hence that this may be

the mechanisms that determine the number of resource users accessing the resource.

Finally, I briefly consider the implication of my results to the recently discussed issue

of the common pool resource based collapse of societies (Butzer, 2012; Dasgupta and

Heal, 1979; Diamond, 2005).
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1.2 Cournot Competition

1.2.1 Description of Cournot Competition

In the mid-19th century, Antoine Augustine Cournot modeled competitions in

a market for environmental resources (spring water) that was dominated by two

suppliers (Cournot and Fisher, 1897). Today, economists use the Cournot model as

a model of oligopoly (i.e., a few firms competing in the same market) as well as a

model of competition in the provisions of environmental resources. In this model, each

firm adjusts output (supply) to maximize its profit. Unlike perfect competition, the

demand curve does not stay constant. Rather, as the quantity demanded increases,

the price decreases.

In the Cournot model, economists usually model the demand curve as a decreasing

linear function of the quantity demanded although other forms of demand curves are

possible. There is at least one attempt to model a Cournot model with a nonlinear

demand function in potential games (Dragone et al., 2012). However, to make the

problems tractable, the authors assume that the cost function is nil, which is unre-

alistic. I am unaware of Cournot models that assume both non-linear demand and

positive costs. In this dissertation, I use linear demand functions in accordance with

studies that discuss Cournot competition in the context of potential games (Monderer

and Shapley, 1996; Slade, 1994; Ui, 2000).

Here is the basic mathematical structure of the Cournot model. Suppose πi is the

profit of firm i, qi is the output of firm i, p is the price, and c is a positive constant.

This model assumes that each firm chooses its output supposing that the other firms

3



will not vary their output. Then

πi = pqi − cqi

=

(
l −
∑
j

qj

)
qi − cqi

where l is a positive constant and sufficiently large so that the equilibrium makes

sense (i.e., the output and the profit do not become negative).

In case of two firms, we have

π1 = (l − q1 − q2)q1 − cq1

π2 = (l − q1 − q2)q2 − cq2

The solution, (q∗1, q
∗
2), that maximizes a firm’s profit given the amount of output by

its opponent is called the Cournot-Nash equilibrium.

1.2.2 Unresolved Issues of the Cournot Model

Cournot competition is extremely popular among economists, partly because its

mathematical expression is relatively simple. As a result, it has appeared in many

economic studies of oligopoly, including some studies of oligopoly in the supply of

environmental goods and services (especially in the study of the world oil market)

(Loury, 1986; McMillan and Sinn, 1984; Salant, 1976, 1982). Most such studies assume

that the marginal cost is constant although we frequently observe that marginal costs

are an increasing function of output. There has been some limited effort to analyze

the Cournot model with increasing marginal costs (Canton et al., 2008; Lee, 1999;

McKitrick, 1999; Okuguchi, 2004; Schernikau, 2010). Most studies also assume that

the cost function insensitive to the number of firms in the game; i.e., suppose the

cost function in case of monopoly is cq where q is output and c is a constant. Most

treatments apply the same cost function for a firm when it is in duopoly or triopoly;

4



i.e., cqi, where qi is the output of firm i. As the number of firms changes, the cost

function of a firm is unlikely to stay the same because of the change of the scale of

its operation, the change of its transaction cost, etc.

The rational conclusion from the Cournot model is that a firm’s best policy is

frequently to split into separate firms (Rasmusen, 2007). For instance, suppose there

are two firms, Apex and Brydox. Obviously, Apex gets half the industry profits in

a duopoly game. If Apex splits into firms Apex 1 and Apex 2, the Cournot model

predicts that it would get two thirds of the profit in the Cournot triopoly game, even

though industry profit falls implying that Apex would indeed split into separate firms.

Furthermore, Gibbons (1992) argues that when there are two firms, both firms

have an incentive to deviate from the strategy of producing the monopoly output.

Both firms try to produce more output so that they can earn more profit. On the

other hand, when they are producing at the duopoly level (Nash equilibrium), neither

firm has an incentive to deviate because deviation does not change their profit.

Since the evidence indicates that environmental public goods are supplied in a

number of ways (i.e., extending from monopoly all the way to unlimited entry), we

need a more systematic understanding of what it is that determines the numbers of

firms.

1.2.3 Research Questions for Cournot Competitions

Based on the argument above, I address two research questions.

Research Question 1. In what conditions does Cournot competition in the supply

of environmental resources result in monopoly, and in what conditions does it result

in duopoly?

In reality, monopoly emerges far more frequently than a firm splitting into smaller

5



firms. Hence, in Chapter 3, I address how the Nash equilibrium changes as the number

of firms changes if I assume that the cost function of a firm becomes larger as the

number of firms increases. I also address how the equilibrium changes as the number

of firms changes if I assume that the marginal cost is an increasing function of the

output. When I address these issues, I aim to determine, under what forms of cost

functions, monopoly becomes the only Nash equilibrium.

Research Question 2. Within the Cournot competition model, how does regulatory

intervention in the management of environmental pollution externalities affect the

equilibrium number of polluters?

In Chapter 4, first I aim to determine how the equilibrium changes under the

presence of pollution and also determine the optimal rate of tax on effluent. In fact,

there have been many studies conducted on this issue; however, most of them do not

consider how the equilibrium and the optimal rate of taxation change as the number of

firms changes (Canton et al., 2008; Kennedy, 1994; Lee, 1999; Levin, 1985; McKitrick,

1999; Okuguchi, 2004; Requate, 1993; Simpson, 1995). These studies inquire the

output of each firm and the optimal rate of taxation at the Nash equilibrium given

the number of firms fixed. In Chapter 4, I identify the Nash equilibrium and the

optimal rate of taxation, too. However, my main focus is on the research question

mentioned above, not the appropriate amount of tax per se. In Chapter 3, I address

the research question without taking into account the abatement cost of pollution

and the tax on the amount of effluent. Hence, in Chapter 4, I inquire how regulatory

intervention in the management of environmental pollution externalities affects the

equilibrium number of polluters. As a result, I hope my result will provide a new

insight into the issue of pollution and tax on effluent in oligopoly as the number of

firms changes.
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1.3 The Tragedy of the Commons

1.3.1 Description of the Tragedy of the Commons

Ever since publication of Garrett Hardin’s influential paper (Hardin, 1968), the

causes and consequences of the tragedy of the commons have been a topic of debate

among social and life scientists. If there is a consensus, it is that the tragedy of

the commons involves the overexploitation of environmental resources that are open

access but also scarce (Dasgupta, 2001; Feeny et al., 1990; Libecap, 2009; McWhinnie,

2009; Ostrom, 2015; Ostrom et al., 2002; Perrings, 2014). Open access is critical.

Anderies and Janssen (2013) argue that it should properly be called the “tragedy

of open access” because the “tragedy” happens only if access to the commons is

open to anyone able to meet the cost of access. The same literature, however, draws

attention to the fact that in very many cases the number of resource users who actually

access the commons is considerably less than the number entitled to do so. Indeed,

there is now a large empirical literature on the conditions under which common pool

resources have been exploited around the world, focusing on the mechanisms that

limit the number of users (Berkes et al., 1989; Dolsak and Ostrom, 2003; Ostrom,

2015; Ostrom et al., 2002; Seabright, 1993). From a theoretical and experimental

perspective, there is an equally large literature exploring the effect of variations in

incentives on entry in commons games (see for example Dragone et al. (2013); Mason

and Polasky (1997)). In this paper I revisit the relationship between costs of access

and production in common pool resources, and the equilibrium number of resource

users.

The archetype of the tragedy of the commons is as follows. Suppose, in a rural

village, there are cattle herders sharing a common parcel of land on which each is

entitled to let his or her cattle graze. If there is open access to the resource, those
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entitled to access the resource have an incentive to add cattle as long as it is profitable

to do so (Hardin, 1968). It follows that the number of cattle on the commons will

depend on the factors that determine profitability: the marginal costs and benefits

of grazing. In what follows I focus on the structure of costs in the case where the

commons game is symmetric. That is, I consider common pool resources in which

resource users are homogeneous, so all users produce at the same level and face the

same costs, but costs vary with the number of users. I show that the equilibrium

number of entrants to the commons depends solely on costs. For particular cost

structures I find that the equilibrium number of users may be infinite, but for most

cost structures the number will be finite and decreasing in the cost of access or

production. In the limit, as costs of access or production rise, the equilibrium number

of users is one. Cournot competition and the tragedy of the commons belong to a

continuum in which the structure of costs uniquely determines the number of resource

users. If the institutional mechanisms explored by Ostrom and colleagues (Ostrom,

2015) have implications for cost structures, I can analyze the consequences for the

equilibrium number of resource users. But I do not concern myself with drivers of

changes in cost structures beyond the number of resource users.

The general problem of the tragedy of the commons is important precisely because

many environmental resources are open access—fisheries, forests, rangelands, water

resources, and the atmosphere all contain frequently cited examples (Anderies and

Janssen, 2013). A number of the regulating services, such as storm buffering, erosion

control, or pest predation, are also exploited in similar ways (Perrings, 2014). In

all cases, overexploitation of resources is argued to be a common consequence of

open access. Indeed, in the wake of Diamond (2005), it has been argued that the

depletion of common pool resources due to open access has been the trigger for more

fundamental societal collapse (Dasgupta et al., 2016). Since we know that open access
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has not always had the dire consequences for common pool resources described by

Dasgupta et al. (2016), it is worth asking when open access leads to the degradation

of resources, and when it does not.

One implication of the approach stimulated by Ostrom (2015) is that a necessary

condition for common pool resources to be conserved is the emergence of regula-

tory institutions. However, there are cases where open access does not lead to large

numbers of resource users or to the exhaustion of rents even without such institu-

tions. Indeed, it is arguable that the regulatory mechanisms described by Ostrom

and colleagues work precisely because they change the structure of costs, and that

other unrelated factors might have the same effect. Since the cost functions faced

by resource users are accessible to policy makers, this significantly widens the set of

instruments available to manage environmental resources in the public domain.

My approach treats the decision to enter the commons strategically. In particular,

I treat use of common pool resources as a congestion game, and exploit the potential

function corresponding to the game. The management of common pool resources

has often been modeled as a cooperative game (Funaki and Yamato, 1999; Uzawa,

2005). While the approach works well for some regulated access resources, however,

it is less helpful when access is open and there are no restrictions on entry to the

resource. The number of resource users matters. Establishing and enforcing binding

agreements among a small number of resource users is usually not difficult (Ostrom,

2015). However, as the number of resource users increases, cooperation is increasingly

less likely. Thus, it is often appropriate to model the tragedy of the commons as a

noncooperative game.

Among studies that have taken this approach, the study by Sandler and Arce M.

(2003) considers open access fisheries and concludes that the Nash equilibrium in-

volves overfishing as long as the average product of fishery assets exceeds the marginal
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product. They show that if each fishing firm receives a share of output equal to its

share of effort, then it will equate the price of fish to the weighted sum of its marginal

and average product. As the number of fishing firms increases, the weight assigned

to average product increases, and as the number of firms approaches infinity, profits

approach zero. As in most other papers treating the tragedy of the commons as a

noncooperative game (e.g., Dasgupta and Heal (1979); McCarthy et al. (2001)), they

treat both relative prices and the number of fishing firms as exogenous. In this paper I

follow these authors in treating strategic behavior as non-cooperative, but I also treat

the number of resource users in open access resources as endogenous. More particu-

larly, I identify the number of resource users at the Nash equilibrium corresponding

to the particular cost structure.

1.3.2 Research Question for the Tragedy of the Commons

In Chapter 5, based on the argument above, I address the following research

question.

Research Question 3. Under the condition of open access, what is the equilibrium

number of resource users in a common and how does it change with the costs?

1.4 Outline of the Dissertation

The outline of the dissertations is as follows. In Chapter 2, I briefly explain what

the potential game is and provide examples of stochastically stable equilibrium. In

Chapter 3, I address, in Cournot competition, how the Nash equilibrium changes as

the number of players changes under various assumptions on cost functions so that I

determine the conditions of the emergence of monopoly. The result obtained in this

chapter is compared with the empirical case of the merger of non-profit organizations

in the field of environmental protection. In Chapter 4, I address Cournot competition
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with pollution and taxation on effluent and determine how regulatory intervention

in the management of environmental pollution externalities affects the equilibrium

number of polluters. The analysis in this chapter indicates that the tax rate imposed

by the government is not influential on firms’ decisions as to whether they should

merge or stay split; i.e., as long as the profit per firm is highest for a monopoly,

then the firm “endures” the high tax rate so that the government’s “punishment”

against monopoly will fail. This result is in accordance with the empirical cases of

mergers and acquisitions in the oil and natural gas industry that are mentioned in

Chapter 4. However, the important thing to note is that the analysis in Chapter 4

is valid only when the price is stable. For a complete analysis, I need to take into

account environmental stochasticity of the price in the industry, and this is the topic

I will tackle in the future. In Chapter 5, I address competitions in the exploitation

of common pool resources. The base model is provided by Gibbons (1992), and by

using potential games, I analyze the case that the number of potential entrants to the

common is unlimited, and reconsider the relationship between the number of resource

users and the cost functions; i.e., the number of resource users is endogenous, and

I inquire how that number varies with the structure of costs. The result obtained

in this chapter is compared with the empirical example of Japanese fishery and the

lobster industry in Maine. Also I seek the implication of the results obtained in this

chapter to more general societal collapse mentioned in other studies (Butzer, 2012;

Dasgupta et al., 2016; Diamond, 2005). Lastly, in Chapter 6, I provide a general

conclusion.
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Chapter 2

POTENTIAL GAMES: DEFINITION AND THE EXISTENCE AND STABILITY

OF NASH EQUILIBRIA

2.1 Definition

This dissertation uses potential games to answer the research questions. Although

there are precursors to the idea of potential games in the literature on strategic be-

havior, it was the paper by Monderer and Shapley (1996) that formally organized

ideas about potentials that had been scattered across various disciplines and struc-

tured those ideas as a unified theory. Suppose Γ = (N,A, u) denotes a strategic

form game, and that there is a finite number of players, N = 1, ..., n. Ai is a set of

strategies for player i ∈ N where A = (Ai)i∈N , and ui ∈ R is a payoff function for

player i ∈ N . I use customary game-theoretic notations of a = (a1, a2, ..., an) and

a−i = (a1, a2, ..., ai−1, ai+1, ..., an) where ai ∈ Ai.

Definition. (Monderer and Shapley, 1996) Γ = (N,A, u) is called an exact potential

game if there exists a function Π : A→ R such that

ui(a
′

i, a−i)− ui(ai, a−i) = Π(a
′

i, a−i)− Π(ai, a−i)

for any i ∈ N , ai, a
′
i ∈ Ai and a ∈ A.

If set A is continuous and ui and Π are differentialble on Ai, then the differences

in the payoff function and the potential function are replaced by derivatives; i.e.,

Γ = (N,A, u) is an exact potential game if there exists a function Π : A → R such

that

∂ui
∂ai

=
∂Π

∂ai
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for any i ∈ N and ai ∈ Ai. Moreover, Monderer and Shapley (1996) clarify that

the necessary and sufficient condition for the continuous game to have a potential

function is

∂2ui
∂ai∂aj

=
∂2uj
∂ai∂aj

for all i and j. This condition provides a convenient criterion for testing whether

any continuous game is a potential game. Together with the relationship of the first-

order derivatives above, it can be used as a tool to find the potential function by

taking anti-derivatives. I note that this condition is related to the fact that costs and

revenues are shared by all resource users equally in symmetric games.

The usefulness of the potential game rests upon the following theorem.

Theorem. (Monderer and Shapley, 1996) Let Γ = (N,A, u) be an exact potential

game with a potential function Π. Let Γ be the game with (N,A,Π) in which every

player’s payoff function is Π. Then, the set of Nash equilibria of Γ coincides with that

of Γ.

This theorem ensures that a single potential function can be used to find all

the Nash equilibria of a game, so simplifying analysis of the game. Moreover, for

continuous exact potential game, if Ai is compact for all i ∈ N , then the game has at

least one pure strategy Nash equilibrium; i.e., a∗ ∈ arg max
a∈A

Π(a) is a Nash equilibrium

(Foster and Young, 1990; Monderer and Shapley, 1996; Ui, 2000). The implication

is that potential games can be studied from two different perspectives. First, they

can be studied within the classical framework of game theory. Second, they can be

studied through optimization of the potential function (Goyal, 2012; Monderer and

Shapley, 1996; Slade, 1994). In this paper, I use the optimization framework; i.e., the

Nash equilibrium is found by identifying the argmax of the potential function.
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2.2 Stochastically Stable Nash Equilibria and Potential Functions

2.2.1 Definition

I exploit the fact that the Nash equilibria found from potential functions have a

“stronger” property; i.e., the equilibria found from potential functions are “stochas-

tically stable equilibria,” a refinement of the evolutionarily stable strategies in con-

ventional game theory (Foster and Young, 1990). More particularly, a state P is a

stochastically stable equilibrium (SSE) if, in the long run, it is nearly certain that

the system lies within every small neighborhood of P as noise tends to zero. That is,

the stochastically stable set (SSS) is the set of states S such that, in the long run,

it is nearly certain that the system lies within every open set containing S as noise

tends to zero. This concept of equilibrium relates to the process of adaptive learning

in games. A player observes the history of how other players have played against him

or her in the past, and chooses a strategy for the future that is a best response to

the past play of others (Gintis, 2009). Adaptive learning in games allows players to

make errors when they perceive how others have behaved given past realizations of

the system. But as the game continues, players learn from these mistakes and the

frequency of errors becomes lower. In this way, the stochastically stable equilibrium

is attained.

What is significant is that the potential function of the game attains the global

maximum for maximization problems at the stochastically stable equilibrium (Alós-

Ferrer and Netzer, 2010; Foster and Young, 1990; Goyal, 2012). There is, however,

a restriction to this result. Alós-Ferrer and Netzer (2010) find that, for some exact

potential games, the stochastically stable equilibrium coincides with the argmax of

the potential function only if players revise their strategies based on “asynchronous

learning,”; i.e., exactly one player is randomly selected every period to revise his or
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her strategy. If revisions of the strategies are not asynchronous (e.g., every player

revises his or her strategy at the same time), the realized Nash equilibrium may not

maximize or minimize the potential.

Despite this limitation, potential functions can be used as equilibrium selection

tools when there are multiple Nash equilibria. The stochastically stable Nash equi-

librium is the one that maximizes the potential function when players revise their

strategies asynchronously. As a result, among all possible Nash equilibria, the stochas-

tically stable equilibrium that makes the potential function maximum is more likely

to emerge than other Nash equilibria when the game is played. Thus, throughout

this dissertation, I assume that players revise their strategies asynchronously.

2.2.2 Examples

Adaptive Learning

The example in this section is from Ui (2000) and called the bilateral symmetric

interaction game. Consider the strategic form game Γ = (N,A, u) with i, j ∈ N and

i 6= j. The functions wij and hi are defined such that wij : Ai × Aj → R and hi :

Ai → R. In addition, wij is assumed to be symmetric; i.e., wij(ai, aj) = wji(aj, ai).

Then, the payoff function for player i is defined as

ui(a) =
∑

j∈N\{i}

wij(ai, aj)− hi(ai)

With this payoff function, the potential function is defined as

V (a) =
∑
i<j

wij(ai, aj)−
∑
i

hi(ai)
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For the case of 2 × 2 games with two players, suppoese A1 = A2 = {0, 1}. Let’s

assume that wij and hi take the following values.

w12(0, 0) = w21(0, 0) = x

w12(0, 1) = w21(1, 0) = z

w12(1, 0) = w21(0, 1) = z

w12(1, 1) = w21(1, 1) = y + z − w

h1(0) = h2(0) = 0

h1(1) = h2(1) = z − w

Then, Table 2.1 is the game matrix.

Table 2.1: Bilateral Symmetric Interaction Game (General Form)

player 1 \player 2 0 1

0 x, x z, w

1 w, z y, y

(player 1’s payoff, player 2’s payoff)

With this construction of a game matrix, many games that are familiar to us

(e.g., coordination games, prisoner’s dilemma, etc.) can be constructed. For instance,

suppose x = 5, y = 5, and w = z = 0. Then, I obtain Table 2.2. This is obviously a

coordination game. Now, if I change the value of y from 5 to 3, I obtain Table 2.3.

16



Table 2.2: Bilateral Symmetric Interaction Game (Two Nash Equilibria with x = y =

5, and w = z = 0.)

player 1 \player 2 0 1

0 5, 5 0, 0

1 0, 0 5, 5

(player 1’s payoff, player 2’s payoff)

Table 2.3: Bilateral Symmetric Interaction Game (Two Nash Equilibria with x = 5,

y = 3, and w = z = 0.)

player 1 \player 2 0 1

0 5, 5 0, 0

1 0, 0 3, 3

(player 1’s payoff, player 2’s payoff)
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It is intuitive that, in case of Table 2.2, (0, 0) and (1, 1) will emerge with the same

frequency when players keep playing the game repeatedly, and in case of Table 2.3,

(0, 0) will emerge far more frequently than (1, 1). This intuition is correct, and there

are two ways to verify it. One is by using Markov chains, and the other is by using

potential functions.

First, I address the method by Markov chains. Before I begin the argument, I

define the states; i.e., state 1 is both players choose 0, state 2 is when one player

chooses 0 and the other player chooses 1, and state 3 is when both players choose

1. Suppose each player remembers the opponent’s last action. In addition, I assume

that each player knows the payoff matrix, and each player knows that the other player

knows the payoff matrix. Then, the transition matrix is defined as

M = (Pij)

where i, j = 1, 2, 3. Hence Pij is the probability that the state changes from i to j. In

case of Table 2.2, when the opponent played 0 and the player played 0 last time, then

the player should play 0 now. The same argument holds when the opponent played

1 and the player played 1 last time: then the player should play 1 now. When the

opponent played 0 and the player played 1 last time or vice versa, then the player

should play 0 with probability 0.5 and 1 with probability 0.5 now. As a result, there

is probability 0.5 that the state is in 2 again, probability 0.25 that the state changes

to 1, and probability 0.25 that the state changes to 3. Consequently, the transition

matrix becomes as below.

M =


1 0 0

0.25 0.5 0.25

0 0 1


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If players keep playing the game for sufficiently many times, the transition matrix

converges. For instance, when the game is repeated 20 times, I obtain

M20 =


1 0 0

0.5 0 0.5

0 0 1


Hence, our intuition is correct; i.e., when players started the game in states 1 or 3,

they would stay in 1 or 3. However, when they started the game in 2, there is a 50%

of chance that players will end up in either state 1 or 2.

For the case of Table 2.3, the situation is a little different. When the opponent

played 0 and the player played 0 last time, then the player should play 0 now. The

same argument holds when the opponent played 1 and the player played 1 last time:

then, the player should play 1 now. But when the opponent played 0 and the player

played 1 last time, then, the player should play 0. When the opponent played 1

and the player played 0 last time, the player should still play 0 because they can

increase their payoff when the opponent changes his or her strategy. Hence, there is

probability 0 that the state changes from 2 to 3. Thus, the transition matrix becomes

as follows:

M =


1 0 0

0.5 0.5 0

0 0 1


If players keep playing the game for sufficiently many times, the transition matrix

converges. For instance, when the game is repeated 20 times, I obtain

M20 =


1 0 0

1 0 0

0 0 1


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Hence, when the game starts at states 1 or 3, then the game will stay there. However,

if the game starts at state 2, then the game will converge to state 1. Consequently,

our intuition is once again correct; i.e., state 1 emerges unless the game starts at state

3.

Now, suppose that each player finds a best response to the other player’s previous

move with probability 1 − ε but chooses incorrectly with probability ε > 0 (Gintis,

2009). For the case of Table 2.2, when the other player played 0 last time, the players

responds “correctly” by choosing 0 with probability 1 − ε, and this is the same for

the other player. Hence, the probability that players stay at state 1 is (1 − ε)2.

In addition, when both players played 0, there is probability ε2 so that they both

incorrectly respond by choosing 1. The values of a row must sum up to 1, so M12

has to be 2ε(1 − ε). The same argument applies for the determination of the values

of row 3. As for row 2, suppose player 1 played 0 and player 2 played 1 last time.

Then, the probability that the state changes from 2 to 1 is ε(1 − ε) because player

1 needs to make an incorrect decision that player 2 chose 0, and player 2 needs to

make a correct decision that player 1 chose 0. So, the probability from state 2 to 1

is M21 = 2ε(1 − ε). The same conclusion holds for the state changing from 2 to 3.

Since a row must add up to 1, M22 = 1 + 4ε2− 4ε. As a result, the transition matrix

becomes as follows:

M =


(1− ε)2 2ε(1− ε) ε2

2ε(1− ε) 1 + 4ε2 − 4ε 2ε(1− ε)

ε2 2ε(1− ε) (1− ε)2


Suppose ε = 0.01. Then, M becomes
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M =


0.9801 0.0198 0.0001

0.0198 0.9604 0.0198

0.0001 0.0198 0.9801


If players keep playing the game for sufficiently many times, the transition matrix

converges. For instance, when the game is repeated 1,000 times, the game matrix

becomes

M1000 =


0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333


Hence, in this case the probability that if the players start at state 1 or 3, they will

stay in state 1 or 3 with probability 0.6666. This happens because the payoff for (0, 0)

and (1, 1) are the same.

As for Table 2.3, there are notable changes from Table 2.2; i.e., M13 = M23 = 0

because (1, 1) has a lower payoff for both players than (0, 0). Hence, changes from

state 1 to 3 and from 2 to 3 do not occur at all. Instead, these probabilities that exist

for Table 2.2 are now added to the probabilities from 1 to 1 and 2 to 1. Hence, the

transition matrix becomes as follows:

M =


ε2 + (1− ε)2 2ε(1− ε) 0

4ε(1− ε) 1 + 4ε2 − 4ε 0

ε2 2ε(1− ε) (1− ε)2


Suppose ε = 0.01. Then, M becomes

M =


0.9802 0.0198 0

0.0396 0.9604 0

0.0001 0.0198 0.9801


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If players keep playing the game for sufficiently many times, the transition matrix

converges. For instance, when the game is repeated 1,000 times, the transition matrix

becomes

M1000 =


0.6667 0.3333 0

0.6667 0.3333 0

0.6667 0.3333 0


Hence, the systems spends 66.67% of the time in (0, 0), and all of the remaining time

(33.33%) in the nearby state (i.e., not in (1, 1)). Consequently, the only stochastically

stable equilibrium is (0, 0).

Potentials of the Games

Now, I find the potentials of Tables 2.2 and 2.3. The potential function is as given

earlier:

V (a) =
∑
i<j

wij(ai, aj)−
∑
i

hi(ai)

For Table 2.2, x = 5, y = 5, and w = z = 0. For Table 2.3, x = 5, y = 3, and

w = z = 0. Hence, the potentials become as shown in Tables 2.4 and 2.5.

These results are consistent with the results obtained from Markov chains. For

Table 2.2, strategies (0, 0) and (1, 1) yield the same payoffs for both players. Hence, as

expected, the potentials are the same for both. In addition, the result from adaptive

learning confirms that (0, 0) and (1, 1) occur equally; i.e., if players start at state 1

or state 3, then they stay at these states. But when they start at state 2, the state

will change to state 1 with 50% of probability and to state 3 with 50% of probability.

Furthermore, when the possibility of error/noise is included, all entries of transition

matrix become identical, which is consistent with the fact that the potentials are
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Table 2.4: Potentials of Table 2.2

player 1 \player 2 0 1

0 5 0

1 0 5

Table 2.5: Potentials of Table 2.3

player 1 \player 2 0 1

0 5 0

1 0 3
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equal for pairs of strategies (0, 0) and (1, 1). Since there is no difference in potentials,

each state (1, 2, or 3) occurs equally, and this is represented in the identical entries

of the transition matrix.

For Table 2.3, each player earns more when both of them choose (0, 0) than when

they choose (1, 1) although (1, 1) is also a Nash equilibrium. If players play the game

repeatedly, then we expect that (0, 0) emerges more frequently than (1, 1). This is

verified from the transition matrix. If players start at state 1 or 3, then they will

remain in that state. However, when players start at state 2, they will eventually

converge on state 1. Moreover, when the possibility of error/noise is considered, the

transition matrix indicates that, for the 66.67% of the time, players are in state 1,

and for the 33.33% of the time, players are in nearby states (as argued by Foster and

Young (1990)). Note that it is shown above that (0, 0) has higher potential than state

(1, 1).

Consequently, as time passes, players settle at the Nash equilibrium or the neigh-

borhood of that Nash equilibrium that has the highest potential. Hence, in potential

games, rather than modeling the adaptive learning process, what we need to do is to

find the pair of strategies that has the highest potential, and that is the stochastically

stable equilibrium. Thus, in this research, I seek the stochastically stable equilibria

by finding the arguments of maximum of the potential functions.
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Chapter 3

COURNOT COMPETITION

3.1 Setting of the Game

In Chapters 3 and 4, sequential games are played. There are two firms, Apex and

Brydox, as in Rasmusen (2007). They play the sequential game as depicted in Figure

3.1. Apex moves first and decides whether to merge with Brydox, to split into Apex

1 and Apex 2, or neither to merge nor to split. Then, in response to the move by

Apex, Brydox moves. At node 2, Brydox decides whether to break away from the

merger with Apex or to not break away (i.e., Brydox keeps the merger with Apex ).

At node 3, Brydox decides whether to merge with Apex, to split into Brydox 1 and

Brydox 2, or neither to merge nor to split. At node 4, Brydox decides whether to

split into Brydox 1 and Brydox 2 or not to split. πA is the profit of Apex, and πB

is the profit of Brydox. Next to the profits of each firm is the outcome of the game.

Here, I need to remind you that if Apex or Brydox splits into two firms, they do not

become completely unrelated firms; i.e., Apex (Brydox ) splits into Apex 1 (Brydox 1 )

and Apex 2 (Brydox 2 ) to increase the profit as Apex (Brydox ); therefore, at the end

of the game, the profits of Apex 1 (Brydox 1 ) and Apex 2 (Brydox 2 ) are combined

and represented as the profit of Apex (Brydox ).

After Apex and Brydox make their moves, the profit of each firm is determined

by the Cournot model of the fixed number of firms. The calculations are shown in

the following sections.

In Chapter 3, I address Research Question 1 as the cost function takes various

forms. First, in Section 3.2, I analyze the “traditional” Cournot competition; i.e.,
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Brydox

3

(πA, πB), Duopoly

Not Split

(πA, πB), Triopoly
Split

(πA, πB), Monopoly

Merg
e

No Change

Brydox

2

(πA, πB), Monopoly

Not Break Away

(πA, πB), Duopoly

Break
Away

M
er
ge

Apex 1

Figure 3.1: The Sequential Game of Merger/Split
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the marginal cost is assumed to be constant and identical for the cases of monopoly,

duopoly, triopoly and quadopoly. In other words, regardless of the number of firms in

the market, a firm incurs a cost function cqi where qi is the output of firm i and c is

a constant. Hence, the result of this section will verify what we already know about

Cournot competitions from various literature; i.e., the result of this section should

reveal the issue Rasmusen (2007) has raised about the splitting of a firm into separate

firms as its best response.

In Section 3.3, I analyze the Cournot model when the marginal cost is an increasing

function of the output, as we always assume in microeconomic analyses. Hence, the

cost function is of the form C(q) = cq2. In this section, the cost function is of the

same form regardless of the number of firms in the market. Hence, for monopoly,

duopoly, triopoly and quadopoly, the cost function is cq2 for a firm.

In Section 3.4, as in Section 3.3, the marginal cost is increasing as the output

increases. In addition, I assume that the cost function becomes larger as the number

of firms increases; i.e., for monopoly, the cost function is cq2, but for duopoly, the

cost function is αcq2i where α > 1, and for triopoly, the cost function is βcq2i where

β > α. The assumption of a larger cost function as the number of firms increases is

consistent both with existence of scale economies at the level of the firm, and with

the existence of transaction costs at the level of the industry.

Sections 3.3 and 3.4 use a specific quadratic expression of the cost function, rather

than a general function. For instance, instead of cq2, I can use a smooth function,

C(q), such that C
′
(q) > 0 and C

′′
(q) > 0 for q > 0. However, in this case, I cannot

obtain the specific form of q∗, and this may hinder the clarity of my arguments.

Moreover, under the conditions of C
′
(q) > 0 and C

′′
(q) > 0 for q > 0, the marginal

cost function (the first derivative of the cost function) can be linearized around the

Nash equilibrium. For the analyses of Chapters 3 and 4, I do not concern myself
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with the global behavior of the marginal cost function. Rather, I am interested

in the intersection of the marginal revenue and the marginal cost curves, and in

such a case, the linearization of the marginal cost function can provide me with fair

approximations due to its smoothness at the intersection. Hence, I choose C(q) to be

a quadratic function so that the marginal cost function becomes a strictly increasing

linear function.

Now, based on the arguments in Chapters 1 and 2, I make the three claims below.

Claim (1). Suppose that marginal cost of production is constant and the cost function

stays the same as the number of firms increases (i.e., the cost function is cqi for

monopoly, duopoly, triopoly and quadopoly for firm i). Then the solution of Cournot

competition model is a quadopoly (i.e., firms keep splitting).

Claim (2). If the cost function is identical regardless of the number of firms but

marginal cost increases as an output increases, then the solution of Cournot Compe-

tition model is a monopoly (Schernikau, 2010).

Claim (3). Suppose the marginal cost becomes larger as the number of firms increases

and as output increases (i.e., the cost function is cq2i for monopoly, αcq2i for duopoly

and βcq2i for triopoly for firm i). Then there is a threshold value of α such that

the solution of Cournot Competition model is a monopoly if α is greater than the

threshold value, and there is a threshold value of β such that the solution of Cournot

competition model is a duopoly, not triopoly, if β is greater than the threshold value.

3.2 Identical and Constant Marginal Costs for Monopoly, Duopoly and Triopoly

3.2.1 Monopoly/Collusion

Consider the following profit function

π = pq − cq
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and let p = l − q and l > c > 0 so that

π = (l − q)q − cq

The first-order condition is

dπ

dq
= l − 2q − c

= 0

Hence,

q∗m =
l − c

2

where the subscript denotes that it is an output for monopoly.

I need to check the second-order condition to determine whether local maximum

or minimum occurs at q∗m.

The second-order condition is

d2π

dq2
= −2

Hence, π attains its local maximum at q∗m.

Now, I find the optimal profit.

π∗m = l

(
l − c

2

)
−
(
l − c

2

)2

− c
(
l − c

2

)
=

(l − c)2

4

where the subscript denotes that it is a profit function for monopoly.

Note that, in case of monopoly, there is only one player. Thus, the potential

function for this case is the profit function.
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3.2.2 Duopoly

Below is a two-player Cournot model.

πi = pqi − cqi

where p = l − q1 − q2 and i = 1, 2. Then,

πi = (l − q1 − q2)qi − cqi

for i = 1, 2. The first-order derivatives are

∂πi
∂qi

= l − q1 − q2 − qi − c

for i = 1, 2. The possible potential function, Πd, is

Πd = (l − q1 − q2)q1 + (l − q1 − q2)q2 − cq1 − cq2 + q1q2

where the subscript denotes that it is a possible potential function for duopoly.

The first-order derivative of Πd with respect to q1 is

∂Πd

∂q1
= l − q1 − q2 − q1 − q2 − c+ q2

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Πd

∂q2
=

∂π2
∂q2

. Hence, Πd is indeed a

potential function for this game.

The first-order conditions are

l − 2q1 − q2 − c = 0

l − q1 − 2q2 − c = 0

Since the game is symmetric, q∗1 = q∗2 = q∗d where the subscript denotes that it is an

output for duopoly. Hence,

l − 3q∗d − c = 0

⇔ q∗d =
l − c

3
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The second-order conditions for Π are

∂2Πd

∂q2i
= −2

for i = 1, 2 and

∂Π2
d

∂qi∂qj
= −1

for i 6= j. Hence, the Hessian matrix is

H =

 −2 −1

−1 −2


The eigenvalues are −3 and −1. Hence, H is negative definite so that Πd and πi

(i = 1, 2) attain their local maxima at q∗d.

Since the game is symmetric, π∗1 = π∗2 = π∗d where the subscript denotes that it is

a profit for duopoly. Hence,

π∗d = (l − 2q∗d)q
∗
d − cq∗d

=

(
l − 2(l − c)

3

)(
l − c

3

)
− c(l − c)

3

=
(l − c)2

9

Next, the maximum value of the potential function is

Π∗d = 2q∗d(l − 2q∗d)− 2cq∗d + q∗2d

= 2

(
l − 2(l − c)

3

)(
l − c

3

)
− 2c

(
l − c

3

)
+

(
l − c

3

)2

=
(l − c)2

3

3.2.3 Triopoly

Below is a three-player Cournot model.

πi = pqi − cqi
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where p = l − q1 − q2 − q3 and i = 1, 2, 3. Then,

πi = (l − q1 − q2 − q3)qi − cqi

for i = 1, 2, 3. The first-order derivatives are

∂πi
∂qi

= l − q1 − q2 − q3 − qi − c

for i = 1, 2, 3. The possible potential function, Πt, is

Πt = (l − q1 − q2 − q3)q1 + (l − q1 − q2 − q3)q2 + (l − q1 − q2 − q3)q3

−cq1 − cq2 − cq3 + q1q2 + q1q3 + q2q3

where the subscript denotes that it is a possible potential function for triopoly.

The first-order derivative of Πt with respect to q1 is

∂Πt

∂q1
= l − q1 − q2 − q3 − q1 − q2 − q3 − c+ q2 + q3

= l − q1 − q2 − q3 − q1 − c

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Πt

∂qi
=
∂πi
∂qi

for i = 2, 3. Hence, Πt is

indeed a potential function for this game.

The first-order conditions are

l − q1 − q2 − q3 − q1 − c = 0

l − q1 − q2 − q3 − q2 − c = 0

l − q1 − q2 − q3 − q3 − c = 0

Since the game is symmetric, q∗1 = q∗2 = q∗3 = q∗t where the subscript denotes that it

is an output for triopoly. Hence, the first-order conditions become

l − 4q∗t − c = 0

⇔ q∗t =
l − c

4
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The second-order conditions for Πt are

∂2Πt

∂q2i
= −2

for i = 1, 2, 3, and

∂2Πt

∂qi∂qj
= −1

for i 6= j. Hence, the Hessian matrix is

H =


−2 −1 −1

−1 −2 −1

−1 −1 −2


The eigenvalues are −4 and two multiplicities of −1. Hence, H is negative definite so

that Πt and πi (i = 1, 2, 3) attain their local maxima at q∗.

Since the game is symmetric, π∗i = π∗t where i = 1, 2, 3 and the subscript denotes

that it is a profit for triopoly. Hence,

π∗t =

{
l − 3

(
l − c

4

)}(
l − c

4

)
− c
(
l − c

4

)
=

(
l + 3c

4

)(
l − c

4

)
− c
(
l − c

4

)
=

(l − c)2

16

Next, the maximum value of the potential function is

Π∗t = 3(l − 3q∗t )q
∗
t − 3cq∗t + 3q∗2t

= 3lq∗t − 6q∗2t − 3cq∗t

= 3l

(
l − c

4

)
− 6

(
l − c

4

)2

− 3c

(
l − c

4

)
=

3(l − c)2

8
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3.2.4 Quadopoly

Below is a four-player Cournot model.

πi = pqi − cqi

where p = l − q1 − q2 − q3 − q4 and i = 1, 2, 3, 4. Then,

πi = (l − q1 − q2 − q3 − q4)qi − cqi

The first-order derivative is

∂πi
∂qi

= l − q1 − q2 − q3 − q4 − qi − c

for i = 1, 2, 3, 4. The possible potential function, Πq, is

Πq = (l − q1 − q2 − q3 − q4)q1 + (l − q1 − q2 − q3 − q4)q2 + (l − q1 − q2 − q3 − q4)q3

+(l − q1 − q2 − q3 − q4)q4 − cq1 − cq2 − cq3 − cq4

+q1q2 + q1q3 + q1q4 + q2q3 + q2q4 + q3q4

where the subscript denotes that it is a possible potential function for quadopoly.

The first-order derivative of Πq with respect to q1 is

∂Πq

∂q1
= l − q1 − q2 − q3 − q4 − q1 − q2 − q3 − q4 − c+ q2 + q3 + q4

= l − q1 − q2 − q3 − q4 − q1 − c

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Πq

∂qi
=
∂πi
∂qi

for i = 2, 3, 4. Hence, Πq is

indeed a potential function for this game.

34



The first-order conditions are

l − q1 − q2 − q3 − q4 − q1 − c = 0

l − q1 − q2 − q3 − q4 − q2 − c = 0

l − q1 − q2 − q3 − q4 − q3 − c = 0

l − q1 − q2 − q3 − q4 − q4 − c = 0

Since the game is symmetric, q∗1 = q∗2 = q∗3 = q∗4 = q∗q where the subscript denotes

that it is an output for quadopoly. Hence, the first-order conditions become

l − 5q∗q − c = 0

⇔ q∗q =
l − c

5

The second-order conditions for Πq are

∂2Πq

∂q2i
= −2

for i = 1, 2, 3, 4 and

∂2Πq

∂qi∂qj
= −1

when i 6= j. Hence, the Hessian matrix is

H =



−2 −1 −1 −1

−1 −2 −1 −1

−1 −1 −2 −1

−1 −1 −1 −2


The eigenvalues are −5 and three multiplicities of −1. Hence, H is negative definite

so that Πq and πi (i = 1, 2, 3, 4) attain their local maxima at q∗q . Since the game is

symmetric, π∗i = π∗q for i = 1, 2, 3, 4 and the subscript denotes that it is a profit for
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quadopoly.

π∗q =

{
l − 4

(
l − c

5

)}(
l − c

5

)
− c
(
l − c

5

)
=

(
l + 4c

5

)(
l − c

5

)
− c
(
l − c

5

)
=

(l − c)2

25

Next, the maximum value of the potential function is

Π∗q = 4(l − 4q∗)q∗ − 4cq∗ + 6q∗2

= 4lq∗ − 10q∗2 − 4cq∗

= 4l

(
l − c

5

)
− 10

(
l − c

5

)2

− 4c

(
l − c

5

)
=

2(l − c)2

5

3.2.5 Solution of the Game

The results of the calculations are summarized in Table 3.1, and using the values

of the profits from the table with l = 2 and c = 1, the game tree becomes as in Figure

3.2.

Note that when there is a monopoly, according to Table 3.1, the profit per firm is

(l − c)2/4. However, this monopoly is a result of the merger of Apex and Brydox so

that after they earn the monopoly profit as one firm, they will divide the profit equally.

This is the reason that the profit for monopoly in the game tree is (l − c)2/8 = 1/8

for Apex and Brydox.

By using the well-known method of the backward induction, I can identify the

subgame perfect equilibrium: Apex chooses Merge, and Brydox chooses Not Break

Away at node 2, Merge or Split at node 3 and split at node 4. Thus, the subgame

perfection predicts that the likely outcome is a monopoly. However, Table 3.1 clearly
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Table 3.1: Summary of Section 3.2

Monopoly Duopoly Triopoly Quadopoly

Equilibrium Output per Firm
l − c

2

l − c
3

l − c
4

l − c
5

Equilibrium Price
l + c

2

l + 2c

3

l + 3c

4

l + 4c

5

Combined Equilibrium Output
l − c

2

2(l − c)
3

3(l − c)
4

4(l − c)
5

Profit per Firm
(l − c)2

4

(l − c)2

9

(l − c)2

16

(l − c)2

25

Combined Profit
(l − c)2

4

2(l − c)2

9

3(l − c)2

16

4(l − c)2

25

Potential
(l − c)2

4

(l − c)2

3

3(l − c)2

8

2(l − c)2

5
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Brydox

4

(1/8, 1/16), Triopoly

Not Split

(2/25, 2/25), Quadopoly

Split

Split

Brydox

3

(1/9, 1/9), Duopoly

Not Split

(1/16, 1/8), Triopoly
Split

(1/8, 1/8), Monopoly

Merg
e

No Change

Brydox

2

(1/8, 1/8), Monopoly

Not Break Away

(1/9, 1/9), Duopoly

Break Away

M
er

ge

Apex 1

Figure 3.2: The Sequential Game with l = 2 and c = 1

38



shows that the potential attains the maximum value at the quadopoly and the min-

imum value at the monopoly. This is not surprising because some subgame perfect

equilibria are not evolutionarily stable (Samuelson, 1998); i.e., the equilibrium found

from the potentail functions are stochastically stable equilibria (refinement of the

evolutionarily stable strategies) so that they are not necessarily subgame perfect. For

instance, consider the game matrix of the same game below (Table 3.2).

Table 3.2: Game Matrix of Section 3.2

Apex \ Brydox B-M-S B-M-N B-S-S B-S-N B-N-S B-N-N N-M-S N-M-N N-S-S N-S-N N-N-S N-N-N

Merge

(
1

9
,
1

9

) (
1

9
,
1

9

) (
1

9
,
1

9

) (
1

9
,
1

9

) (
1

9
,
1

9

) (
1

9
,
1

9

) (
1

8
,
1

8

) (
1

8
,
1

8

) (
1

8
,
1

8

) (
1

8
,
1

8

) (
1

8
,
1

8

) (
1

8
,
1

8

)

No Change

(
1

8
,
1

8

) (
1

8
,
1

8

) (
1

16
,
1

8

) (
1

16
,
1

8

) (
1

9
,
1

9

) (
1

9
,
1

9

) (
1

8
,
1

8

) (
1

8
,
1

8

) (
1

16
,
1

8

) (
1

16
,
1

8

) (
1

9
,
1

9

) (
1

9
,
1

9

)

Split

(
2

25
,

2

25

) (
1

8
,

1

16

) (
2

25
,

2

25

) (
1

8
,

1

16

) (
2

25
,

2

25

) (
1

8
,

1

16

) (
2

25
,

2

25

) (
1

8
,

1

16

) (
2

25
,

2

25

) (
1

8
,

1

16

) (
2

25
,

2

25

) (
1

8
,

1

16

)

Note that Brydox’s strategies are represented in a format of the combination of

three letters with a dash between the letters; e.g., B-N-S. The first letter represents

Brydox’s choice at node 2, and it can be either “Break Away” (B) or “Not Break

Away” (N). The second letter represents Brydox’s choice at node 3. It can be “Merge”

(M), “Split” (S) or “Not Split” (N). The third letter represents Brydox’s choice at

node 4. It can be “Split” (S) or “Not Split” (N).

From Table 3.2, it is evident that the Nash equilibria are: (Apex, Brydox ) =

(Merge, N-M-S), (Merge, N-M-N), (Merge, N-S-S), (Merge, N-S-N), (Merge, N-N-

S), (Merge, N-N-N), (No Change, B-M-S), (No Change, B-M-N), (No Change, N-

M-S), (No Change, N-M-N). Clearly, a quadopoly is included in some of the Nash

equilibria. Consequently, this finding indicates that the subgame perfect equilibrium
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is not stochastically stable. Indeed, Slade (1994) argues, “Nash equilibria of the game

that are not maxima of the (potential) function are shown to be generically unstable”

(45). In Chapter 2, it is shown that if I consider the adaptive learning processes,

I will find that the likely outcome corresponds with the strategies with the highest

potential. Hence, in this case, although a monopoly is the outcome from subgame

perfection, it does not necessarily mean that we will witness a monopoly when the

game is played because the potential is minimal for the monopoly.

3.2.6 Conclusion of Section 3.2

For the case I consider in this section, we may observe the outcome other than a

monopoly when the game is played; however, without any noise and/or misperception,

the subgame perfection predicts that the monopoly is the most rational outcome.

Hence, this model does not clearly answer the “mystery” raised by Rasmusen (2007).

In fact, this model is based on one unrealistic assumption; i.e., constant marginal

cost. Consequently, I need to inquire the case that the marginal cost is an increasing

function of output and see whether the “mystery” raised by Rasmusen (2007) occurs.
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3.3 Identical Cost Function regardless of the Number of Firms, but Marginal Cost

Increasing in Output

3.3.1 Introduction

In this section, I reconsider π = pq−C(q), but this time, the marginal cost, C
′
(q),

is not constant. Rather, the marginal cost is a function of q. Specifically, I consider

C(q) = cq2 where c is a positive constant so that the marginal cost is 2cq; i.e., the

marginal cost increases as q increases.

3.3.2 Monopoly/Collusion

First, I consider π = pq − cq2 for one player where p = l − q and l > q.

π = pq − cq2

= (l − q)q − cq2

The first-order condition is

dπ

dq
= l − 2(c+ 1)q = 0

⇔ q∗m =
l

2(c+ 1)

where the subscript denotes that it is an output for monopoly.

The second-order condition is

d2π

dq2
= −2(c+ 1) < 0

Hence, π attains its local maximum at q∗m. Consequently,

π∗m = (l − q∗m)q∗m − cq∗2m

=

(
l −
(

l

2(c+ 1)

))(
l

2(c+ 1)

)
− c
(

l2

(2(c+ 1))2

)
=

l2

4(c+ 1)
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where the subscript denotes that it is a profit for monopoly

3.3.3 Duopoly

Below is a two-player Cournot model.

πi = pqi − cq2i

where p = l − q1 − q2 and i = 1, 2. Then

πi = (l − q1 − q2)qi − cq2i

for i = 1, 2. The first-order derivative is

∂πi
∂qi

= l − q1 − q2 − qi − 2cqi

for i = 1, 2. The possible potential function, Πd, is

Πd = (l − q1 − q2)q1 + (l − q1 − q2)q2 − cq21 − cq22 + q1q2

where the subscript denotes that it is a potential function for duopoly.

The first-order derivative of Πd with respect to q1 is

∂Πd

∂q1
= l − q1 − q2 − q1 − q2 − 2cq1 + q2

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Πd

∂q2
=
∂π2
∂q2

. Hence, Πd is a potential

function of the game.

The first-order conditions are

l − 2(c+ 1)q1 − q2 = 0

l − 2(c+ 1)q2 − q1 = 0
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Since the game is symmetric, q∗1 = q∗2 = q∗d where the subscript denotes that it is an

output for duopoly. Hence,

l − 2(c+ 1)q∗d − q∗d = 0

⇔ q∗d =
l

2c+ 3

The second-order conditions are

∂2Πd

∂q2i
= −2(c+ 1)

for i = 1, 2 and

∂2Πd

∂qi∂qj
= −1

for i 6= j. Hence, the Hessian matrix is

A =

 −2(c+ 1) −1

−1 −2(c+ 1)


The eigenvalues are −2c− 1 and −2c− 3: both of them are negative. Hence, Πd and

πi (i = 1, 2) attain their local maxima at q∗d. Since the game is symmetric, π∗i = π∗d

for i = 1, 2 and the subscript denotes that it is a profit for duopoly.

π∗d = (l − 2q∗d)q
∗
d − cq∗2d

=

(
l − 2

(
l

2c+ 3

))(
l

2c+ 3

)
− c
(

l

2c+ 3

)2

=
(c+ 1)l2

(2c+ 3)2

Next, the maximum value of the potential function is

Π∗d = 2(l − 2q∗d)q
∗
d − 2cq∗2d + q∗2d

= 2

(
l − 2

(
l

2c+ 3

))(
l

2c+ 3

)
− 2c

(
l

2c+ 3

)2

+

(
l

2c+ 3

)2

=
l2

2c+ 3
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3.3.4 Triopoly

Below is a three-player Cournot model.

πi = pqi − cq2i

where p = l − q1 − q2 − q3 and i = 1, 2, 3. Then

πi = (l − q1 − q2 − q3)qi − cq2i

for i = 1, 2, 3. The first-order derivative is

∂πi
∂qi

= l − q1 − q2 − q3 − qi − 2cqi

for i = 1, 2, 3. The possible potential function, Πt, is

Πt = (l − q1 − q2 − q3)q1 + (l − q1 − q2 − q3)q2 + (l − q1 − q2 − q3)q3

−cq21 − cq22 − cq23 + q1q2 + q1q3 + q2q3

where the subscript denotes that it is a possible potential function for triopoly.

Then, the first-order derivative of Πt with respect to q1 is

∂Πt

∂q1
= l − q1 − q2 − q3 − q1 − q2 − q3 − 2cq1 + q2 + q3

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Πt

∂qi
=
∂πi
∂qi

for i = 2, 3. Hence, Πt is the

potential function of the game.

Since the game is symmetric, q∗1 = q∗2 = q∗3 = q∗t where the subscript denotes that

it is an output for triopoly. Hence, the first-order conditions become

l − 2q∗t − 2(c+ 1)q∗t = 0

⇔ q∗t =
l

2(c+ 2)
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The second-order conditions are

∂2Πt

∂q2i
= −2(c+ 1)

for i = 1, 2, 3, and

∂2Πt

∂qi∂qj
= −1

for i 6= j. Hence, the Hessian matrix is

H =


−2(c+ 1) −1 −1

−1 −2(c+ 1) −1

−1 −1 −2(c+ 1)


The eigenvalues are −2c−4 and two multiplicities of −2c−1: all of them are negative.

Hence, Πt and πi for i = 1, 2, 3 attain their local maxima at q∗t . Since the game is

symmetric, π∗i = π∗t for i = 1, 2, 3 and the subscript denotes that it is a profit for

triopoly.

π∗t = (l − 3q∗t )q
∗
t − cq∗2t

= lq∗t − 3q∗2t − cq∗2t

=
l2

2(c+ 2)
− 3l2

4(c+ 2)2
− cl2

4(c+ 2)2

=
(c+ 1)l2

4(c+ 2)2

Next, the maximum value of the potential function is

Π∗t = 3(l − 3q∗t )q
∗
t − 3cq∗2t + 3q∗2t

= 3lq∗t − 6q∗2t − 3cq∗2t

= 3l

(
l

2c+ 4

)
− 6

(
l

2c+ 4

)2

− 3c

(
l

2c+ 4

)2

=
3l2

4(c+ 2)
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3.3.5 Quadopoly

Below is a four-player Cournot model.

πi = pqi − cq2i

where p = l − q1 − q2 − q3 − q4 and i = 1, 2, 3, 4. Then

πi = (l − q1 − q2 − q3 − q4)qi − cq2i

for i = 1, 2, 3, 4. The first-order derivative is

∂πi
∂qi

= l − q1 − q2 − q3 − q4 − qi − 2cqi

for i = 1, 2, 3, 4. The possible potential function, Πq, is

Πq = (l − q1 − q2 − q3 − q4)q1 + (l − q1 − q2 − q3 − q4)q2 + (l − q1 − q2 − q3 − q4)q3

+(l − q1 − q2 − q3 − q4)q4 − cq21 − cq22 − cq23 − cq24

+q1q2 + q1q3 + q1q4 + q2q3 + q2q4 + q3q4

where the subscript denotes that it is a possible potential function for quadopoly.

The first-order derivatives of Πq with respect to q1 is

∂Πq

∂q1
= l − q1 − q2 − q3 − q4 − q1 − q2 − q3 − q4 − 2cq1 + q2 + q3 + q4

= l − q1 − q2 − q3 − q4 − q1 − 2cq1

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Πq

∂qi
=
∂πi
∂qi

for i = 2, 3, 4. Hence, Πq is

indeed a potential function for this game.

The first-order condition is

l − q1 − q2 − q3 − q4 − qi − 2cqi = 0
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where i = 1, 2, 3, 4. Since the game is symmetric, q∗1 = q∗2 = q∗3 = q4 = q∗q where the

subscript denotes that it is an output for quadopoly. Hence, the first-order condition

becomes

l − 5q∗q − 2cq∗q = 0

⇔ q∗q =
l

5 + 2c

The second-order conditions for Πq are

∂2Πq

∂q2i
= −2− 2c

for i = 1, 2, 3, 4 and

∂2Πq

∂qi∂qj
= −1

when i 6= j. Hence, the Hessian matrix is

H =



−2c− 2 −1 −1 −1

−1 −2c− 2 −1 −1

−1 −1 −2c− 2 −1

−1 −1 −1 −2c− 2


The eigenvalues are −2c − 5 and three multiplicities of −2c − 1: all of them are

negative. Hence, Πq and πi (i = 1, 2, 3, 4) attain their local maxima at q∗q . Since the

game is symmetric, π∗i = π∗q for i = 1, 2, 3, 4 and the subscript denotes that it is a

profit for quadopoly.

π∗q = (l − 4q∗q )q
∗
q − cq∗2q

= lq∗q − 4q∗2q − cq∗2q

=
l2

2c+ 5
− 4l2

(2c+ 5)2
− cl2

(2c+ 5)2

=
(c+ 1)l2

(2c+ 5)2
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Next, the maximum value of the potential function is

Π∗q = 4(l − 4q∗q )q
∗ − 4cq∗2q + 6q∗2q

= 4lq∗q − 10q∗2q − 4cq∗2q

= 4l

(
l

2c+ 5

)
− 10

(
l

2c+ 5

)2

− 4c

(
l

2c+ 5

)2

=
2l2

(2c+ 5)2

3.3.6 Solution of the Game

The results of the calculations are summarized in Table 3.3, and using the values

of the profits from the table with l = 2 and c = 1, the game tree becomes as in Figure

3.3.

Note that, as in Section 3.2, when there is a monopoly, according to Table 3.3,

the profit per firm is l2/4(c+ 1). However, this monopoly is a result of the merger of

Apex and Brydox so that after they earn the monopoly profit as one firm, they will

divide the profit equally. This is the reason that the profit for monopoly in the game

tree is l2/8(c+ 1) = 1/4 for Apex and Brydox.

By using the well-known method of the backward induction, I can identify the

subgame perfect equilibrium: Apex chooses Split, and Brydox chooses Break Away at

node 2, Split at node 3 and split at node 4. Thus, the subgame perfection predicts that

the likely outcome is a quadopoly, and this is where the potential attains the maximum

value (Note: From Table 3.3, it is straightforward to show that π∗m < Π∗d < Π∗t < Π∗q).

3.3.7 Conclusion of Section 3.3

As evident from Table 3.3, the combined equilibrium output increases as the

number of players increases; consequently, the equilibrium price falls as the number

of players increases. Moreover, the profit per player and the combined profit both de-
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Table 3.3: Summary of Section 3.3

Monopoly Duopoly Triopoly Quadopoly

Equilibrium Output per Firm
l

2c+ 2

l

2c+ 3

l

2c+ 4

l

2c+ 5

Equilibrium Price
(2c+ 1)l

2c+ 2

(2c+ 1)l

2c+ 3

(2c+ 1)l

2c+ 4

(2c+ 1)l

2c+ 5

Combined Equilibrium Output
l

2c+ 2

2l

2c+ 3

3l

2c+ 4

4l

2c+ 5

Profit per Firm
l2

4(c+ 1)

(c+ 1)l2

(2c+ 3)2
(c+ 1)l2

4(c+ 2)2
(c+ 1)l2

(2c+ 5)2

Combined Profit
l2

4(c+ 1)

2(c+ 1)l2

(2c+ 3)2
3(c+ 1)l2

4(c+ 2)2
4(c+ 1)l2

(2c+ 5)2

Potential
l2

4(c+ 1)

l2

2c+ 3

3l2

4(c+ 2)

2l2

2c+ 5

49



Brydox

4

(4/9, 2/9), Triopoly

Not Split

(16/49, 16/49), Quadopoly

Split

Split

Brydox

3

(8/25, 8/25), Duopoly

Not Split

(2/9, 4/9), Triopoly
Split

(1/4, 1/4), Monopoly

Merg
e

No Change

Brydox

2

(1/4, 1/4), Monopoly

Not Break Away

(8/25, 8/25), Duopoly

Break Away

M
er

ge

Apex 1

Figure 3.3: The Sequential Game with l = 2 and c = 1
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crease as the number of players increases. Nevertheless, the only stochastically stable

equilibrium is quadopoly, and the subgame perfection coincides with the stochastic

stability. Hence, the model of this section, not the one from the previous section with

the consitant marginal cost, is consistent with what Rasmusen (2007) observes; i.e.,

a firm’s best policy is often to split into separate firms (Rasmusen, 2007). Schernikau

(2010) suggests that the marginal cost that increases as the output increases may

rectify the “mystery” pointed out by Rasmusen (2007), but the results of this section

indicate that the model of this section is actually a stereotypical model that exhibits

the “mystery” of a firm splitting in oligopoly.

3.4 The Marginal Cost of Production Increasing in Both Output and the Number

of Firms

3.4.1 Introduction

In this section, the marginal cost of production is assumed to be increasing as

output increases, and each firm faces the largest cost when there are three firms

(triopoly) and the smallest cost function when there is only one firm (monopoly).

Specifically, for the case of monopoly (one firm), a firm has a cost function cq2 where

c is a positive constant. For the case of duopoly (two firms), each firm has a cost

function αcq2 where α > 1. For the case of triopoly (three firms), each firm has a

cost function βcq2 where β > α. Thus, the profit function for the case of monopoly

becomes

π = pq − cq2

For the case of duopoly, firm i has a profit function

πi = pqi − αcq2i

51



where α > 1, and for the case of triopoly, firm i has a profit function

πi = pqi − βcq2i

where β > α.

Note that if both Apex and Brydox split, then there are four firms in the market:

Apex 1, Apex 2, Brydox 1 and Brydox 2. But what we observe in this situation

is a “quasi” duopoly because Apex 1 (Brydox 1 ) and Apex 2 (Brydox 2 ) together

occupy half of the market and try to maximize their profit jointly as Apex (Brydox ).

Moreover, as discussed above, it is more costly for firms if they split. As a result,

in this “quasi” duopoly of the four firms, Apex 1 (Brydox 1 ) and Apex 2 (Brydox

2 ) have incentives to merge to reduce the cost function so that we will witness the

duopoly of Apex and Brydox.

3.4.2 Monopoly/Collusion

The results for the monopoly/collusion have been provided in Section 3.3.2. q∗m =

l

2(c+ 1)
and π∗m =

l2

4(c+ 1)
.

3.4.3 Duopoly

Below is a two-player Cournot model.

πi = pqi − αcq2i

where p = l − q1 − q2, α > 1 and i = 1, 2. Then

πi = (l − q1 − q2)qi − αcq2i

for i = 1, 2.

The first-order derivative is

∂πi
∂qi

= l − q1 − q2 − qi − 2αcqi

52



for i = 1, 2. The possible potential function, Πd, is

Πd = (l − q1 − q2)q1 + (l − q1 − q2)q2 − αcq21 − αcq22 + q1q2

where the subscript denotes that it is a possible potential for duopoly.

The first-order derivative of Πd with respect to q1 is

∂Πd

∂q1
= l − q1 − q2 − q1 − q2 − 2αcq1 + q2

= l − 2q1 − q2 − 2αcq1

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Πd

∂q2
=
∂π2
∂q2

. Hence, Πd is a potential

function of the game.

The first-order conditions are

l − 2q1 − q2 − 2αcq1 = 0

l − q1 − 2q2 − 2αcq2 = 0

Since the game is symmetric, q∗1 = q∗2 = q∗d where the subscript denotes that it is an

output for duopoly. Hence,

l − 3q∗d − 2αcq∗d = 0

⇔ q∗d =
l

3 + 2αc

The second-order conditions are

∂2Πd

∂q2i
= −2− 2αc

for i = 1, 2 and

∂2Πd

∂qi∂qj
= −1
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for i 6= j. Consequently, the Hessian matrix is

H =

 −2− 2αc −1

−1 −2− 2αc


The eigenvalues are −2αc− 1 and −2αc− 3, and both of them are negative because

α > 1 and c > 0. So, H is negative definite. Hence, Πd and πi (i = 1, 2) attain their

local maxima at q∗d.

Since the game is symmetric, π∗i = π∗d for i = 1, 2 and the subscript denotes that

it is a profit for duopoly.

π∗d = (l − 2q∗d)q
∗
d − αcq∗2d

=

(
l − 2l

3 + 2αc

)(
l

3 + 2αc

)
− αc

(
l

3 + 2αc

)2

=

(
l + 2αcl

3 + 2αc

)(
l

3 + 2αc

)
− αc

(
l

3 + 2αc

)2

=
l2(1 + αc)

(3 + 2αc)2

Next, the maximum value of the potential function is

Π∗d = 2(l − 2q∗d)q
∗
d − 2αcq∗2d + q∗2d

= 2lq∗d − 2αcq∗2d − 3q∗2d

= 2l

(
l

3 + 2αc

)
− 2αc

(
l

3 + 2αc

)2

− 3

(
l

3 + 2αc

)2

=
2l2(3 + 2αc)− 2αcl2 − 3l2

(3 + 2αc)2

=
l2

2αc+ 3

3.4.4 Triopoly

Below is a three-player Cournot model.

πi = pqi − βcq2i
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where p = q1 − q2 − q3. β > α > 1 and i = 1, 2, 3. Then

πi = (l − q1 − q2 − q3)qi − βcq2i

for i = 1, 2, 3. The first-order derivative is

∂πi
∂qi

= l − q1 − q2 − q3 − qi − 2βcqi

for i = 1, 2, 3. The possible potential function, Πt, is

Πt = (l − q1 − q2 − q3)q1 + (l − q1 − q2 − q3)q2 + (l − q1 − q2 − q3)q3

−βcq21 − βcq22 − βcq23 + q1q2 + q1q3 + q2q3

where the subscript denotes that it is a possible potential for triopoly.

The first-order derivatives of Πt with respect to q1 is

∂Πt

∂q1
= l − q1 − q2 − q3 − q1 − q2 − q3 − 2βcq1 + q2 + q3

= l − 2q1 − q2 − q3 − 2βcq1

=
∂π1
∂q1

Similarly, it is straightforward to show that
∂Π

∂qi
=
∂πi
∂qi

for i = 2, 3. Hence, Πt is a

potential function of the game.

The first-order conditions are

l − 2q1 − q2 − q3 − 2βcq1 = 0

l − q1 − 2q2 − q3 − 2βcq2 = 0

l − q1 − q2 − 2q3 − 2βcq3 = 0

Since the game is symmetric, q∗1 = q∗2 = q∗3 = q∗t where the subscript denotes that it

is an output for triopoly. Hence,

l − 4q∗ − 2βcq∗t = 0

⇔ q∗t =
l

2βc+ 4
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The second-order conditions are

∂2Πt

∂q2i
= −2− 2βc

for i = 1, 2, 3 and

∂2Πt

∂qi∂qj
= −1

for i 6= j. Consequently, the Hessian matrix is

H =


−2− 2βc −1 −1

−1 −2− 2βc −1

−1 −1 −2− 2βc


The eigenvalues are two multiplicities of −2βc−1 and −2βc−4. Since β > α > 1,

they are all negative. So, H is negative definite. Hence, Πt and πi (i = 1, 2, 3) attain

their local maxima at q∗t .

Since the game is symmetric, π∗i = π∗t for i = 1, 2, 3 and the subscript denotes

that it is a profit for triopoly.

π∗t = (l − 3q∗t )q
∗
t − βcq∗2t

= lq∗t − 3q∗2t − βcq∗2t

= l

(
l

2βc+ 4

)
− 3

(
l

2βc+ 4

)2

− βc
(

l

2βc+ 4

)2

=
2βcl2 + 4l2 − 3l2 − βcl2

(2βc+ 4)2

=
l2(1 + βc)

(2βc+ 4)2
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Next, the maximum value of the potential function is

Π∗t = 3(l − 3q∗t )q
∗
t − 3βcq∗2t + 3q∗2t

= 3

{
l − 3

(
l

2βc+ 4

)}(
l

2βc+ 4

)
− 3βc

(
l

2βc+ 4

)2

+ 3

(
l

2βc+ 4

)2

= 3

(
l + 2βcl

2βc+ 4

)(
l

2βc+ 4

)
− 3βcl2

(2βc+ 4)2
+

3l2

(2βc+ 4)2

=
6l2 + 3βcl2

(2βc+ 4)2

=
3l2

4(βc+ 2)

3.4.5 Solution of the Game

The results of the calculations are summarized in Table 3.4. To find the solution

of the game, first I need to compare π∗m (monopoly) and Π∗d (potential of duopoly).

π∗m − Π∗d =
l2

4(c+ 1)
− l2

2αc+ 3

=
l2(2αc+ 3)− 4(c+ 1)l2

4(c+ 1)(2αc+ 3)

=
l2(2αc− 4c− 1)

4(c+ 1)(2αc+ 3)

> 0

if and only if 2αc− 4c− 1 > 0; i.e., if and only if α >
4c+ 1

2c
(Note: α is greater than

1). Hence, if α >
4c+ 1

2c
, then π∗m is greater than Π∗d.

Next, I need to compare Π∗d (duopoly) and Π∗t (triopoly).

Π∗d − Π∗t =
l2

2αc+ 3
− 3l2

4(βc+ 2)

=
4l2(βc+ 2)− 3l2(2αc+ 3)

4(2αc+ 3)(βc+ 2)

=
l2(4βc+ 8− 6αc− 9)

4(2αc+ 3)(βc+ 2)

> 0
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Table 3.4: Summary of Section 3.4

Monopoly Duopoly Triopoly

Equilibrium Output per Firm
l

2(c+ 1)

l

2αc+ 3

l

2βc+ 4

Equilibrium Price
(2c+ 1)l

2(c+ 1)

(2αc+ 1)l

2αc+ 3

(2βc+ 1)l

2βc+ 4

Combined Equilibrium Output
l

2(c+ 1)

2l

2αc+ 3

3l

2βc+ 4

Profit per Firm
l2

4(c+ 1)

l2(αc+ 1)

(2αc+ 3)2
l2(βc+ 1)

(2βc+ 4)2

Combined Profit
l2

4(c+ 1)

2l2(αc+ 1)

(2αc+ 3)2
3l2(βc+ 1)

(2βc+ 4)2

Potential
l2

4(c+ 1)

l2

2αc+ 3

3l2

4(βc+ 2)
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if and only if 4βc + 8 − 6αc − 9 > 0; i.e., if and only if β >
6αc+ 1

4c
. Hence, if

β >
6αc+ 1

4c
, then Π∗d is greater than Π∗t .

For ease of understanding, I specify some values of c, l, α and β that satisfy the

conditions found above, and the results are shown in Table 3.5. Now, I use the specific

values of the profits provided in Table 3.5 to find the solution of the game. The game

tree is provided in Figure 3.4 with the values of profits available from Table 3.5.

Note that when there is a monopoly, according to Table 3.5, the profit per firm is

12.5. However, this monopoly is a result of the merger of Apex and Brydox so that

after they earn the monopoly profit as one firm, they will divide the profit equally.

This is the reason that the profit for monopoly is 6.25 for Apex and Brydox.

By using the well-known method of the backward induction, I can identify the

subgame perfect equilibrium: Apex chooses either Merge or No Change, and Brydox

chooses Not Break Away at node 2, Merge at node 3 and split at node 4. Thus, the

outcome of the game is a monopoly, and as seen above, the potential function attains

the maximum value when there is a monopoly and the α and β satisfy the conditions

found above.

The argument above seems to suggest that the outcomes of subgame perfect equi-

libria are stochastically stable equilibria, but as explained in Section 3.2, this is not

true because some subgame perfect equilibria are not evolutionarily stable (Samuel-

son, 1998). Below, I show the example.

Let’s consider the case that c = 1, l = 10, β = 5, but α is changed to 2. In this

case, the per-firm-profit of monopoly is still larger than that of duopoly (the profit is

larger as long as α > 1.91); however, the potential of duopoly is now 14.29 while the

one of monopoly stays at 12.5. Figure 3.5 is the game tree for this case.

A simple inspection yields that the subgame perfect equilibrium is the same with

the case of Figure 3.4. However, this time, the potential is maximized at duopoly,
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Table 3.5: Summary of Section 3.4: c = 1, l = 10, α = 3, β = 5

Monopoly Duopoly Triopoly

Equilibrium Output per Firm 2.5 1.11 0.71

Equilibrium Price 7.5 7.78 7.86

Combined Equilibrium Output 2.5 2.22 2.14

Profit per Firm 12.5 4.94 3.06

Combined Profit 12.5 9.88 9.18

Potential 12.5 11.11 10.71
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Brydox

4

(6.12, 3.06), Triopoly

Not Split

(4.94, 4.94), Duopoly

Split

Split

Brydox

3

(4.94, 4.94), Duopoly

Not Split

(3.06, 6.12), Triopoly
Split

(6.25, 6.25), Monopoly

Merg
e

No Change

Brydox

2

(6.25, 6.25), Monopoly

Not Break Away

(4.94, 4.94), Duopoly

Break Away

M
er

ge

Apex 1

Figure 3.4: The Sequential Game with c = 1, l = 10, α = 3, β = 5
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Brydox

4

(6.12, 3.06), Triopoly

Not Split

(6.12, 6.12), Duopoly

Split

Split

Brydox

3

(6.12, 6.12), Duopoly

Not Split

(3.06, 6.12), Triopoly
Split

(6.25, 6.25), Monopoly

Merg
e

No Change

Brydox

2

(6.25, 6.25), Monopoly

Not Break Away

(6.12, 6.12), Duopoly

Break Away

M
er

ge

Apex 1

Figure 3.5: Game Tree When α = 2
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not at monopoly. This means, under the presence of noise, Brydox may make an

error of choosing “Break Away” at node 2. But if α > 2.5, then Brydox chooses “Not

Break Away” at node 2 even if there is noise. Hence, if α and β are greater than the

threshold values found above, then the outcome of the game is the subgame perfect

equilibrium and stochastically stable equilibrium.

3.4.6 Extension to the Case of n Firms

So far, I have found the potentials for duopoly and triopoly and determined the

coefficient of the cost function for each of them so that a monopoly becomes the

outcome of the game. Of course, there is no reason that I should stop at a triopoly;

rather, I can extend this case to the general case of n firms. This is the goal of this

subsection; i.e., I determine whether there is any general pattern that the coefficient

of the cost function satisfies for any number of firms in the market.

For the sake of argument, I need to make one assumption; i.e., in the previous

section, when there are four firms (i.e., Apex 1, Apex 2, Brydox 1 and Brydox 2 ),

I assume that this state should rather be considered as a duopoly rather than a

quadopoly because of their incentives to reduce costs. However, for the extension to

a general case, I assume that firms do not have incentives to re-merge (e.g., for the

case of the quadopoly mentioned above, Apex 1 and Apex 2 do not have incentives

to internalize the cost by re-merging). Consequently, the case of Apex 1 & 2 and

Brydox 1 & 2 is a quadopoly, not a duopoly. And the same reasoning applies for

other cases such as Apex 1, 2, & 3 and Brydox 1, 2, & 3, etc.

In the previous subsection, I use α for duopoly and β for triopoly. For the sake of

ease of argument, I change these notations. The coefficient for cq2 in case of duopoly
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(triopoly) is α2 (α3). In the previous subsection, I show that

α2 >
4c+ 1

2c

= 2 +
1

2c

and

α3 >
6α2c+ 1

4c

Now, I can work on α3 as below:

α3 >
6α2c+ 1

4c

=
3α2

2
+

1

4c

>
3

2

(
4c+ 1

2c

)
+

1

4c

= 3 +
1

c

The Nash equilibrium, q∗q , and the potential, Π∗q, for a quadopoly can be easily

found from the method used in the previous subsection. Hence,

q∗q =
l

2α4c+ 5

and

Π∗q =
2l2

2α4c+ 5

where α4 is the coefficient of cq2 in case of a quadopoly.

As in the previous section,

Π∗t − Π∗q =
3l2

4(α3c+ 2)
− 2l2

2α4c+ 5

=
3l2(2α4c+ 5)− 8l2(α3c+ 2)

4(2α4c+ 5)(α3c+ 2)

> 0
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if and only if 3l2(2α4c + 5) − 8l2(α3c + 2) > 0; i.e., if and only if α4 >
8α3c+ 1

6c
.

Hence, a triopoly emerges over a quadopoly if and only if α4 >
8α3c+ 1

6c
holds. But

it is already shown that α3 > 3 +
1

c
. Hence,

α4 >
4

3
(3 +

1

c
) +

1

6c

= 4 +
3

2c

Consequently, a monopoly emerges if and only if

α2 > 2 +
1

2c

α3 > 3 +
1

c

α4 > 4 +
3

2c

and the potentials are

π∗m =
l2

4c+ 4

Π∗d =
l2

2α2c+ 3

Π∗t =
3l2

4α3c+ 8

Π∗q =
2l2

2α4c+ 5

Hence, it is not difficult to show that, for any n,

Π∗n =
nl2

4αnc+ 2(n+ 1)

The results above are summarized in the proposition below.

Proposition 1. Assume there are two firms. They in turn decide to split or merge

so that the possible number of firms is 1, 2, 3, .... Then, a monopoly emerges if and

only if αn > n +
n− 1

2c
for all n = 2, 3, ... where αn is a coefficient of cost function,

cq2, of each firm when there are n firms in the market.
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Proof. I prove by induction. When n = 2, it is already shown that the proposition is

true. So, I assume that the proposition is true when n = k; i.e., I assume a monopoly

emerges if and only if αk > k +
k − 1

2c
.

Now,

αk + 1 +
1

2c
> k +

k − 1

2c
+ 1 +

1

2c

= k + 1 +
k

2c

But I know, from the argument preceding this proposition, that αk+1 − αk > 1 +
1

2c
.

Hence, a monopoly emerges if and only if αk+1 > k + 1 +
k

2c
. Thus, I have shown

that the proposition is true when n = k + 1. This proves the proposition.

The corollary of Proposition 1 is as below.

Corollary. Assume there are two firms. They in turn decide to split or merge so

that the possible number of firms is 1, 2, 3, .... Then, firms keep splitting if and only

if αn < n+
n− 1

2c
for all n = 2, 3, ... where αn is a coefficient of cost function, cq2, of

each firm when there are n firms in the market.

Proof. Appropriate changes of the order of subtractions and the direction of inequal-

ities in the argument that precedes the proposition and in the proof of Proposition 1

prove the corollary.

Proposition 1 and the corollary can be combined to show the condition of the

emergence of an n-poly. Note that the emergence of an n-poly is equivalent to the

argmax of the potential function being an n-poly.

Proposition 2. Assume there are two firms. They in turn decide to split or merge

so that the possible number of firms is 1, 2, 3, .... Then, an n-poly emerges if and only

if αk < k +
k − 1

2c
for k = 2, 3, 4, ..., n and αk > k +

k − 1

2c
for k = n + 1, n + 2, ...
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where αk is a coefficient of cost function, cq2, of each firm when there are k firms in

the market.

Proof. That Π∗k for k = 2, 3, 4, ..., n attains the maximum value at n if and only if

αk < k +
k − 1

2c
for k = 2, 3, 4, ..., n directly follows from the corollary.

Now, I need to show that, for k = n+1, n+2, ..., the argmax of Π∗k is n if and only

if αk > k +
k − 1

2c
. But this directly follows from Proposition 1. Hence, Proposition

2 is proved.

Consequently, identifying the outcome of the merger/split game by potential

games can be generalized to any number of firms; i.e., rather than constructing a

game tree for n-poly, we can identify the outcome by calculating the potential of the

game.

3.4.7 Conclusion of Section 3.4

The significant result obtained in this section is whether monopoly, duopoly or

triopoly occurs depends only on the form of cost functions. In addition, this re-

sult can be generalized to n-poly. Regardless of the resulting number of firms after

merger/split, we can identify the outcome of the game by finding the argmax of the

potential function rather than constructing a game tree. The number of firms in-

volved depends on how rapidly costs increase with output or the number of players;

i.e., marginal cost needs to be an increasing function of output, and the cost function

needs to be larger as the number of firms increases and the scale of operation of each

firm becomes smaller. Hence, the results of this section are likely an answer to the

“mystery” raised by Rasmusen (2007); i.e., where costs increase in a particular way,

I have an explanation for this finding.
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3.5 Conclusion of Chapter 3

At the beginning of Chapter 3, I raised these three claims:

Claim (1). Suppose the marginal cost is constant and the cost function stays the same

as the number of firms increases (i.e., the cost function is cqi for monopoly, duopoly,

triopoly and quadopoly for firm i). Then the solution of Cournot competition model

is a quadopoly.

Claim (2). If the cost function is identical regardless of the number of players but

the marginal cost increases as an output increases, then the solution of Cournot

Competition model is a monopoly (Schernikau, 2010).

Claim (3). Suppose the marginal cost becomes larger as the number of players in-

creases and as output increases (i.e., the cost function is cq2i for monopoly, αcq2i for

duopoly and βcq2i for triopoly for player i). Then there is a threshold value of α

that the solution of Cournot Competition model is a monopoly if α is greater than

the threshold value, and there is a threshold value of β that the solution of Cournot

competition model is a duopoly, not triopoly, if β is greater than the threshold value.

As for Claim 1, the outcome of the subgame perfect equilibrium is a monopoly;

however, the potential is highest at a quadopoly. Hence, as Slade (1994) argues, this

subgame perfect equilibrium is “unstable”; i.e., under the presence of errors and noise,

it is unlikely that a monopoly emerges although the subgame perfect equilibrium

predicts that it is the most rational outcome. Hence, when this game is played, we

will witness that firms keep splitting because the subgame perfect equilibrium and

the argmax of the potential function do not coincide. This “anomaly” occurs because

the assumption of the constant marginal cost is unrealistic. As a result, I need to

consider the cases that the marginal cost is increasing in the number of firms and/or

output of a firm.
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As for Claim 2, if the marginal cost is increasing in output but not in the number

of firms (i.e., the marginal cost is cq2 regardless of the number of firms in the market),

then the outcome of the subgame perfect equilibrium and the argmax of the potential

function coincide at the quadopoly. Thus, Claim 2 turns out to be false; however, this

case depicts what many economists (e.g., Rasmusen (2007)) observe as the theoretical

consequence of Cournot competitions; i.e., firms keep splitting into smaller firms.

Thus, this case should be considered as the “typical” Cournot competitions rather

than the case of the constant marginal cost.

As for Claim 3, the result indicates that this claim is compatible with the reality

of the cost functions (i.e., increasing as an output increases and becoming costly for

a smaller scale of operation). Hence, this claim answers Research Question 1. The

reason behind the “success” of Claim 3 is that it seems to incorporate two aspects

of cost function that I mentioned earlier: economies of scale and transaction costs.

Especially I believe transaction costs are the keys to explaining the validity of Claim 3.

When a firm splits into separate firms, coordination between them will be difficult and

costly. On the other hand, when separate firms merge and become a single firm, they

can internalize the transaction cost that they used to incur for coordinating their acts

so that their cost function will be cheaper after merger. In reality, many firms merge

so that they attempt to enjoy the monopoly profit; however, our casual observation

suggests that these firms also try to save a significant amount of transaction cost,

and their operation becomes much more efficient after merger because they succeed

to internalize these transaction costs they used to incur before merger.

Now it is unlikely that for-profit firms release the information about their business

operations; i.e., even if these firms do merge, they probably do not release the infor-

mation about the real reasons of their merger. However, for-profits organizations are

not the only organizations operating in the field of environment and natural resources.
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Indeed, there are numerous non-profit organizations operating in this field, and some

of them do merge frequently. They have no incentive to hide their true motives for

merging because they are not operating for profits. For instance, in January, 2015,

three environmental groups in North Carolina merged and became a single environ-

mental non-profit organization called the MountainTrue. According to their web site

(MountainTrue, 2016), the reasons they merge are

• to have a stronger influence on policy at all levels of government through in-

creased local presence

• to build a stronger organization and increase their geographic reach

• to strengthen their grassroots engagement and involve a broader spectrum of

the population

These statements are abstract; however, a common theme among these goals can be

identified; i.e., their merger is related to the issue of efficiency of their operation.

Wilder Research (2011) conducted a research on the operations of non-profit or-

ganizations, and they identified several reasons that non-profit organizations would

consider a merger. One of the main reasons they identified is that non-profit organi-

zations choose to merge when they wish to develop greater organizational efficiency.

They argue that “[e]fficiencies can be related to programming, administrative capac-

ity, or fundraising” (13), and they also emphasize that “cost savings is not a reason

to merge” (14); i.e., “saving money should not be a key motivator for merging” (14).

In this chapter, I draw the main result (Claim 3) according to the form of the cost

function, and as argued above, this cost function is not wholly a representation of the

monetary payment. Rather, the cost function of this chapter is an expression of the

transaction cost; i.e., if firms are separated, the transaction cost is high for cooper-

ating and/or coordinating their operations so that, by merging, they internalize such
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transaction costs and their operations become more efficient. Thus, if the transaction

cost is included in the argument of this chapter, then the empirical case of the merger

of non-profit organizations validates the result obtained in this chapter.
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Chapter 4

THE EFFECT OF GOVERNMENT INTERVENTION VIA A POLLUTION TAX

ON THE STOCHASTICALLY STABLE NASH EQUILIBRIUM

4.1 Introduction

There are several studies that discuss the Cournot model with pollution and

the taxation on effluent (Canton et al., 2008; Katsoulacos and Xepapadeas, 1995;

Kennedy, 1994; Lee, 1999; Levin, 1985; McKitrick, 1999; Okuguchi, 2004; Requate,

1993; Simpson, 1995). The goal of all these is to find the optimal rate of taxation

when there is pollution. In Chapter 4, I find the optimal taxation rate; however, my

main objective is to tackle a different research question from Chapter 3; i.e., what is

the effect of Pigovian taxes on the stochastically stable Nash equilibrium? Therefore,

as in Chapter 3, I observe how the Nash equilibrium changes as the number of players

changes. The studies mentioned above analyze the optimal taxation rate given a fixed

number of players and do not observe how the optimal rate of taxation changes as the

number of players changes. Thus, to my knowledge, an analysis of the Cournot model

with pollution and taxation when the number of players changes is unprecedented.

In addition, I contribute to our understanding of the relationship between the

marginal damage to the environment and the rate of taxation. Some studies argue

that the optimal tax rate could exceed the marginal damage (Katsoulacos and Xepa-

padeas, 1995; Simpson, 1995); some studies argue that the optimal tax rate is equal

to the marginal damage (Lee, 1999); others argue that the marginal damage exceed

the optimal tax rate (Kennedy, 1994; Okuguchi, 2004). In the course of answering

the research question mentioned above, I also ascertain the relationship between the
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marginal damage to the environment and the optimal tax rate.

As in Section 3.4, I assume a production cost function of the form C(qi) = cq2i

where c is a positive constant. As in a number of other studies of pollution taxes,

I assume that the marginal abatement cost of firm i,
dCa

i

dui
, is of the form

dCa
i

dui
=

b − dui ≥ 0 where b and d are positive constants, ui is the amount of effluent, and

0 ≤ ui ≤
b

d
. Furthermore, ui = εqi where ε is emission per output. Consequently, I

consider the following model:

πi =
(
l −
∑
i

qi
)
qi − cq2i − Ca − τu

=
(
l −
∑
i

qi
)
qi − cq2i − Ca − τεqi

where πi is the profit for firm i, l is a positive constant, and τ is the tax per unit

effluent.

The setting of the game is identical with that of Chapter 3; i.e., as in Figure 4.1,

first Apex decides its move, and then Brydox moves. The only difference with the

cases in Chapter 3 is that each firm in this chapter causes emissions. Note that, as

in Section 3.4, if both Apex and Brydox split, there will be four firms (Apex 1, Apex

2, Brydox 1 and Brydox 2 ) so that the outcome is quadopoly. However, in this case,

Apex occupies 50% of the market, and so does Brydox ; hence, in reality, this case is

a duopoly. As a result, they have incentive to merge again and internalize the cost

because, in Chapter 4, the assumption on cost functions is that they become larger

as the scale of operation becomes smaller (i.e., as a firm splits).

As in Chapter 3, I find profits of the firms and values of the potential functions

for monopoly, duopoly and triopoly and determine under what conditions of the tax

adjusted cost function, the solution of the game is a monopoly. Specifically, the cost

function is cq2+Ca for monopoly, α1cq
2
i +α2C

a
i for duopoly where α1 > 1 and α2 > 1,

and β1cq
2
i + β2C

a
i for triopoly where β1 > α1 and β2 > α2. Hence, I detemine how
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Brydox

4

(πA, πB), Triopoly

Not Split

(πA, πB), duopoly

Split

Split

Brydox

3

(πA, πB), Duopoly

Not Split

(πA, πB), Triopoly
Split

(πA, πB), Monopoly

Merg
e

No Change

Brydox

2

(πA, πB), Monopoly

Not Break Away

(πA, πB), Duopoly

Break
Away

M
er
ge

Apex 1

Figure 4.1: The Sequential Game of Merger/Split
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large the αi’s and βi’s must be so that the solution of the game becomes a monopoly.

4.2 Model and Analyses

4.2.1 Monopoly

The profit function for monopoly is

π = (l − q)q − cq2 − Ca − τu

As mentioned earlier,
dCa

i

dui
is a marginal abatement cost and

dCa
i

du
=


b− du (0 ≤ u ≤ b

d
)

0 (otherwise)

where u = εq. Hence, 0 ≤ εq ≤ b

d
must hold for any positive marginal abatement

cost; i.e., 0 ≤ q ≤ b

dε
must hold any positive marginal cost. In this chapter, I restrict

my analysis to the case where 0 ≤ q ≤ b

dε
.

The first-order condition is

dπ

dq
= l − 2q − 2cq − dCa

du

du

dq
− τ du

dq

= l − 2q − 2cq − (b− du)ε− τε

= l − 2q − 2cq − (b− εdq)ε− τε

= l − 2q − 2cq + dε2q − bε− τε

= 0

Hence,

q∗m =
l − bε− τε

2 + 2c− dε2

where the subscript denotes that it is an output for monopoly.
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The second-order condition is

d2π

dq2
= −2− 2c+ dε2

< 0

if dε2 < 2 + 2c. Hence, l − bε− τε > 0 must hold; i.e., l must satisfy l > bε+ τε.

To calculate the profit at the optimal level of output, first I need to know the

abatement cost; i.e.,

Ca = bu− d

2
u2 + e

where e is a constant of integration. But since pollution is zero when output is zero,

abatement cost is also zero when output is zero. Hence e = 0. As a result,

Ca = bεq − d

2
ε2q2

Consequently, the optimal profit is

π∗m = lq∗ − q∗2 − cq∗2 − bεq∗ +
d

2
ε2q∗2 − τεq∗

= (l − bε− τε)q∗ + (
dε2

2
− 1− c)q∗2

=
(l − bε− τε)2

2(2 + 2c− dε2)

where the subscript denotes that it is a profit for monopoly.

Next, I need to determine the optimal tax rate. Hence, I define the social welfare

function, W .

W = π∗m −D +R

where D is the damage caused by pollution to the society and R is the revenue from

taxation. The optimal rate of taxation is the rate that maximizes the social welfare,

W . Damage caused by pollution is a “bad” (opposite of a good) to the society;
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therefore, the opposite of the “Law of Diminishing Marginal Utility” holds; i.e., the

“Law of Increasing Marginal Disutility” holds. Thus, many economic studies assume

that a damage function is an increasing function of pollution, and it is also convex

(Kennedy, 1994; Lee, 1999; McKitrick, 1999; Requate, 1993). Hence, in this chapter,

I assume D = mu2 = mε2q∗2m where m is a positive constant and R = τεq∗m.

W = π∗m −mε2q∗2m + τεq∗m

=
(l − bε− τε)2

2(2 + 2c− dε2)
−mε2 (l − bε− τε)2

(2 + 2c− dε2)2

+τε
l − bε− τε

2 + 2c− dε2

The first-order condition is

dW

dτ
=

2(l − bε− τε)(−ε)
2(2 + 2c− dε2)

− 2mε2(l − bε− τε)(−ε)
(2 + 2c− dε2)2

+ τε
−ε

2 + 2c− dε2

+
ε(l − bε− τε)
2 + 2c− dε2

=
2mε3(l − bε− τε)− τε2(2 + 2c− dε2)

(2 + 2c− dε2)2

= 0

Consequently,

2mε(l − bε− τε)− τ(2 + 2c− dε2) = 0

Hence,

τ ∗m =
−2lmε+ 2bmε2

dε2 − 2− 2c− 2mε2

where the subscript denotes that it is a tax rate for monopoly.

Previously, I establish that dε2 < 2 + 2c. Hence, dε2 − 2 − 2c − 2mε2 < 0.

Consequently, for τm > 0 to hold, I need to have −2lmε + 2bmε2 < 0; i.e., l > bε

must hold. But previously, I establish that l > ε(b + τm) holds. Thus, l > bε always

holds.
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The second-order condition is

d2W

dτ 2
=

2mε3

(2 + 2c− dε2)2
(−ε)− ε2

2 + 2c− dε

=
−2mε4 − ε2(2 + 2c− dε2)

(2 + 2c− dε2)2

< 0

because dε2 < 2 + 2c. Hence, τ ∗m is indeed an optimal tax rate.

Now, given the optimal rate of taxation, the optimal profit becomes

π∗m =
(l − bε− τmε)2

2(2 + 2c− dε2)

=
(ldε2 − 2l − 2cl − bdε3 + 2bε+ 2bcε)2

2(dε2 − 2− 2c− 2mε2)2(2 + 2c− dε2)

=
(2 + 2c− dε2)(bε− l)2

2(dε2 − 2− 2c− 2mε2)2

Note that since dε2 < 2 + 2c, π∗m > 0 holds. Also, q∗m becomes

q∗m =
l − bε− τmε
2 + 2c− dε2

=
ldε2 − 2l − 2cl − bdε3 + 2bε+ 2bcε

(2 + 2c− dε2)(dε2 − 2− 2c− 2mε2)

=
l − bε

2mε2 + 2 + 2c− dε2

Since l > bε and dε2 < 2 + 2c, q∗ > 0 holds. Also, at the beginning, I restricted q∗m

to be in 0 ≤ q∗m ≤
b

dε
. Hence, I need to check whether the value of q∗m is indeed less

than or equal to
b

dε
.

b

dε
>

l − bε
2mε2 + 2 + 2c− dε2

⇔ l <
b

dε
(2mε2 + 2 + 2c− dε2) + bε

Hence, unlike the cases in Chapter 3, the Cournot model with pollution and optimal

taxation requires that l be bounded above.
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To clarify the intuition behind this result, consider the following parameter values.

Suppose b = c = d = m = ε = 1. Then, l must satisfy l < 6. So, let’s choose l = 5.

Then, τ ∗m = 1.6, π∗m = 0.96 and q∗m = 0.8. Note that q∗m <
b

dε
and ε(b + τm) = 2.6 <

5 = l. This shows that the results I have obtained do not have contradictions.

Lastly, I analyze the relationship between the marginal damage to the environment

dD

dq

∣∣∣∣
q∗m

and the optimal tax rate, τ ∗m.

dD

dq

∣∣∣∣
q∗m

=
d

dq
mε2q2

∣∣∣∣
qm∗

= 2mε2q∗m

= 2mε2
(

l − bε
2mε2 + 2 + 2c− dε2

)
and it is already shown that

τ ∗m =
2lmε− 2bmε2

2mε2 + 2 + 2c− dε2

Hence,

dD

dq

∣∣∣∣
q∗m

− τ ∗m =
2mε2(l − bε)− 2lmε+ 2bmε2

2mε2 + 2 + 2c− dε2

=
2mε(l − bε)(ε− 1)

2mε2 + 2 + 2c− dε2

I have already shown that l − bε > 0. Also, the second-order condition is −2− 2c +

dε2 < 0⇔ 2+2c−dε2 > 0. Hence, 2mε2 +2+2c−dε2 > 0. As a result, the marginal

damage to the environment is greater (less) than the optimal tax rate if ε > 1 (ε < 1)

and equal if ε = 1.
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4.2.2 Duopoly

The duopoly model of Cournot competition with pollution and taxation on effluent

is as follows

πi = (l − q1 − q2)qi − α1cq
2
i − α2C

a
i − τui

= (l − q1 − q2)qi − α1cq
2
i − α2C

a
i − τεqi

for i = 1, 2 and

dCa
i

dui
=


b− dui (0 ≤ ui ≤

b

d
)

0 (otherwise)

where ui = εqi and α1, α2 > 1. Hence, 0 ≤ εqi ≤
b

d
must hold for a positive

marginal abatement cost; i.e., 0 ≤ qi ≤
b

dε
must hold a positive marginal cost. In

this subsection, as in the previous subsection, I restrict my analysis to the case where

0 ≤ qi ≤
b

dε
so that marginal abatement cost is always positive. Note that for the

same reason from the previous subsection, Ca = bεq − d

2
ε2q2.

The possible potential function, Πd, is

Πd = (l − q1 − q2)q1 − α1cq
2
1 − α2C

a
1 − τu1

+(l − q1 − q2)q2 − α1cq
2
2 − α2C

a
2 − τu2

+q1q2

where the subscript denotes that it is a possible potential for duopoly.

The first-order derivative with respect to q1 is

∂π1
∂q1

= l − q1 − q2 − q1 − 2α1cq1 − α2
dCa

1

du1

du1
dq1
− τε

= l − 2q1 − q2 − 2α1cq1 − α2(b− dεq1)ε− τε

=
∂Π

∂q1
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and we can similarly show that
∂π2
∂q2

=
∂Π

∂q2
. Hence, Πd is a potential function.

The first-order necessary conditions are

l − 2q1 − q2 − 2α1cq1 − α2ε(b− dεq1)− τε = 0

l − q1 − 2q2 − 2α1cq2 − α2ε(b− dεq2)− τε = 0

Since the game is symmetric, q∗1 = q∗2 = q∗d where the subscript denotes that it is an

optimal output for duopoly. Hence,

l − 3q∗d − 2α1cq
∗
d − α2bε+ α2dε

2q∗d − τε = 0

⇔ q∗d =
l − α2bε− τε

3 + 2α1c− α2dε2

The second-order conditions are

∂2Π

∂q2i
= −2− 2α1c+ α2dε

2

for i = 1, 2 and

∂2Π

∂qi∂qj
= −1

for i 6= j. Hence, the Hessian matrix is

H =

 −2− 2α1c+ α2dε
2 −1

−1 −2− 2α1c+ α2dε
2


The eigenvalues are α2dε

2 − 2α1c − 1 and α2dε
2 − 2α1c − 3. For Πd to have a local

maximum at q∗d, both eigenvalues have to be negative. In particular, α2dε
2−2α1c−3 <

0 must hold. But this implies that for q∗d to be positive, l−α2bε− τε > 0 must hold;

i.e., l is bounded below by α2bε+ τε.

Since, the game is symmetric, π∗1 = π∗2 = π∗d where the subscript denotes that it
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is a profit for duopoly. Hence,

π∗d = (l − 2q∗)q∗d − α1cq
∗2
d − α2

(
bu− d

2
u2
)
− τεq∗d

= lq∗d − 2q∗2d − α1cq
∗2
d − α2bεq

∗
d +

1

2
α2dε

2q∗2d − τεq∗d

= (l − α2bε− τε)q∗d +

(
α2dε

2

2
− α1c− 2

)
q∗2d

=
(l − α2bε− τε)2

3 + 2α1c− α2dε2
+

(
α2dε

2 − 2α1c− 4

2

)
(l − α2bε− τε)2

(3 + 2α1c− α2dε2)2

= (l − α2bε− τε)2
(

2 + 2α1c− α2dε
2

2(3 + 2α1c− α2dε2)2

)
Since the eigenvalues are negative,

α2dε
2 − 2α1c− 1 < 0

α2dε
2 − 2α1c− 3 < 0

must be true. Hence,

1 + 2α1c− α2dε
2 > 0

3 + 2α1c− α2dε
2 > 0

As a result,

2 + 2α1c− α2dε
2 > 0

so that π∗d > 0.
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Next, the optimal value of potential function, Π∗d, is

Π∗d = (l − q1 − q2)q1 − α1cq
2
1 − α2C

a
1 − τu1

+(l − q1 − q2)q2 − α1cq
2
2 − α2C

a
2 − τu2

+q1q2

= π∗1 + π∗2 + q∗2d

= (l − α2bε− τε)2
(

2 + 2α1c− α2dε
2

(3 + 2α1c− α2dε2)2

)
+

(l − α2bε− τε)2

(3 + 2α1c− α2dε2)2

=
(l − α2bε− τε)2

3 + 2α1 − α2dε

Now, I need to determine the optimal tax rate. Hence, as in the previous subsec-

tion, I define the social welfare function, W .

W = π∗1 + π∗2 −mε2q∗21 −mε2q∗22 + τεq∗1 + τεq∗2

=
(l − α2bε− τε)2(2 + 2α1c− α2dε

2)

(3 + 2α1c− α2dε2)2
− 2mε2

(
l − α2bε− τε

3 + 2α1c− α2dε2

)2

+2τε

(
l − α2bε− τε

3 + 2α1c− α2dε2

)
The first-order necessary condition on τ is

∂W

∂τ
=
−2ε(2 + 2α1c− α2dε

2)(l − α2bε− τε)
(3 + 2α1c− α2dε2)2

+ 4mε3
(

l − α2bε− τε
(3 + 2α1c− α2dε2)2

)
+2ε

(
l − α2bε− τε

3 + 2α1c− α2dε2

)
− 2τε

(
ε

3 + 2α1c− α2dε2

)
= 0

Consequently, by using Matlab,

τ ∗d =
(l − α2bε)(2mε

2 + 1)

ε(2α1c+ 2mε2 − α2dε2 + 4)

where the subscript denotes that it is an optimal tax rate for duopoly.

Since one of the eigenvalues, α2dε
2−3−2α1c, is negative, 2α1c+2mε2−α2dε

2+4 >

0 holds. Hence, τ ∗d > 0.
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The second-order condition on τ is

∂2W

∂τ 2
=

2ε2(2 + 2α1c− α2dε
2)

(3 + 2α1c− α2dε2)2
− 4mε4

(3 + 2α1c− α2dε2)2
− 2ε2

3 + 2α1c− α2dε2

− 2ε2

3 + 2α1c− α2dε2

=
2ε2(2 + 2α1c− α2dε

2)− 4mε4

(3 + 2α1c− α2dε2)2
− 4ε2

3 + 2α1c− α2dε2

=
2ε2(−4− 2α1c+ α2dε

2 − 2mε2)

(3 + 2α1c− α2dε2)2

It has been shown that one of the eigenvalues satisfies α2dε
2 − 2α1c < 3. Hence,

−4 − 2α1 + α2dε
2 − 2mε2 < 0 so that

∂2W

∂τ 2
< 0. As a result, W attains a local

maximum at τ ∗d .

It has been shown that π∗d = (l − α2bε − τε)2
(

2 + 2α1c− α2dε
2

2(3 + 2α1c− α2dε2)2

)
. Hence, if

I plug in τ ∗d found above, I obtain

π∗d =
(l − α2bε)

2(−α2dε
2 + 2α1c+ 2)

2(2α1c+ 2mε2 − α2dε2 + 4)2

One of the eigenvalues satisfies α2dε
2− 2α1c− 1 < 0⇔ 1 + 2α1c−α2dε

2 > 0. Hence,

2 + 2α1c− α2dε
2 > 0. As a result, π∗d > 0.

It has been shown that Π∗d =
(l − α2bε− τε)2

3 + 2α1c− α2dε
. Hence, if I plug in τ ∗d found above,

I obtain

Π∗d =
(l − α2bε)

2(−α2dε
2 + 2α1c+ 3)

(2α1c+ 2mε2 − α2dε2 + 4)2

One of the eigenvalues satisfies α2dε
2− 2α1c− 3 < 0⇔ 3 + 2α1c−α2dε

2 > 0. Hence,

Π∗d > 0.

It has been shown that q∗d =
l − α2bε− τε

3 + 2α1c− α2dε2
. Hence, if I substitute τ ∗d found

above, I obtain

q∗d =
l − α2bε

2α1c+ 2mε2 − α2dε2 + 4
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It has been verified that 2α1c+ 2mε2 − α2dε
2 + 4 > 0. Hence, q∗d > 0. Note that the

values of π∗d, Π∗d and q∗d are computed by Matlab.

Next, by definition of the potential function, the potential for the case of monopoly

is πm. Now, I compute π∗m − Π∗d to determine whether the potential is larger at a

monopoly or at a duopoly.

π∗m − Π∗d =
(2 + 2c− dε2)(l − bε)2

2(2mε2 − dε2 + 2 + 2c)2
− (l − α2bε)

2(2α1c− α2dε
2 + 3)

(2α1c+ 2mε2 − α2dε2 + 4)2

Computation of the above expression by Matlab does not provide a tractable expres-

sion. Hence, I check the above subtraction numerically. In the previous subsection, I

have obtained that when b = c = d = m = ε = 1 and l = 5, π∗m = 0.96. Under the

same condition, for the case of duopoly, α1 and α2 must satisfy α2 < 2α1 + 1 from

the condition of eigenvalues. Hence, if α1 = 2, then α2 < 5 must be satisfied. So,

let’s choose α2 = 2. In this case, I obtain τ ∗d = 1.125, π∗d = 0.28125, Π∗d = 0.703125

and q∗d = 0.375. Hence, π∗m −Π∗d > 0. As a result, the value of the potential function

at monopoly is larger than its value at duopoly.

Lastly, I analyze the relationship between the marginal damage to the environment

dD

dqi

∣∣∣∣
q∗d

and the optimal tax rate, τ ∗d .

dDi

dqi

∣∣∣∣
q∗d

=
d

dqi
mε2q2i

∣∣∣∣
q∗d

= 2mε2q∗d

= 2mε2
(

l − α2bε

2mε2 + 4 + 2α1c− α2dε2

)
It is already shown that

τ ∗d =
(l − α2bε)(2mε

2 + 1)

ε(2mε2 + 4 + 2α1c− α2dε2)
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Hence,

dDi

dqi

∣∣∣∣
q∗d

− τ ∗d =
2mε3(l − α2bε)− (l − α2bε)(2mε

2 + 1)

ε(2mε2 + 4 + 2α1c− α2dε2)

=
(l − α2bε)(2mε

3 − 2mε2 − 1)

ε(2mε2 + 4 + 2α1c− α2dε2)

I have already shown that l − α2bε > 0. Also, the eigenvalues are negative; hence,

−3− 2α1c+α2dε
2 < 0⇔ 3 + 2α1c−α2dε

2 > 0. Hence, 2mε2 + 4 + 2α1c−α2dε
2 > 0.

As a result, the marginal damage to the environment is greater than the optimal tax

rate if 2mε3−2mε2−1 > 0; i.e., there is a threshold value of ε such that the marginal

damage is greater than the optimal tax rate if ε2(ε− 1) >
1

2m
. But it is known that

m is a positive constant; therefore, the threshold value of ε is greater than 1.

4.2.3 Triopoly

The triopoly model of Cournot competition with pollution and taxation on effluent

is as follows:

πi = (l − q1 − q2 − q3)qi − β1cq2i − β2Ca
i − τui

= (l − q1 − q2 − q3)qi − β1cq2i − β2Ca
i − τεqi

for i = 1, 2, 3 and

dCa
i

dui
=


b− dui (0 ≤ ui ≤

b

d
)

0 (otherwise)

where ui = εqi and β1 > α1 > 1 and β2 > α2 > 1. Hence, 0 ≤ εqi ≤
b

d
must

hold for a positive marginal abatement cost; i.e., 0 ≤ qi ≤
b

dε
must hold a positive

marginal cost. In this subsection, as in the previous subsection, I restrict my analysis

for 0 ≤ qi ≤
b

dε
so that the the marginal abatement cost always exists. Note that for

the same reason from the previous subsection, Ca = bεq − d

2
ε2q2.
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The possible potential function, Πt, is

Πt = (l − q1 − q2 − q3)q1 − β1cq21 − β2Ca
1 − τu1

+(l − q1 − q2 − q3)q2 − β1cq22 − β2Ca
2 − τu2

+(l − q1 − q2 − q3)q3 − β1cq23 − β2Ca
3 − τu3

+q1q2 + q2q3 + q1q3

where the subscript denotes that it is a possible potential for triopoly.

The first-order derivative with respect to q1 is

∂π1
∂q1

= l − q1 − q2 − q3 − q1 − 2β1cq1 − β2
dCa

1

du1

du1
dq1
− τε

= l − 2q1 − q2 − q3 − 2β1cq1 − β2(b− dεq1)ε− τε

=
∂Πt

∂q1

Similarly, we can show that
∂πi
∂qi

=
∂Πt

∂qi
for i = 2, 3. Hence, Πt is indeed a potential

function.

The first-order conditions are

l − 2q1 − q2 − q3 − 2β1cq1 − β2ε(b− dεq1)− τε = 0

l − q1 − 2q2 − q3 − 2β1cq2 − β2ε(b− dεq2)− τε = 0

l − q1 − q2 − 2q3 − 2β1cq3 − β2ε(b− dεq3)− τε = 0

Since the game is symmetric, q∗1 = q∗2 = q∗3 = q∗t where the subscript denotes that it

is an output for triopoly. Hence,

l − 4q∗t − 2β1cq
∗
t − β2bε+ β2dε

2q∗t − τε = 0

⇔ q∗t =
l − β2bε− τε

4 + 2β1c− β2dε2

The second-order conditions are

∂2Πt

∂q2i
= −2− 2β1c+ β2dε

2
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for i = 1, 2, 3 and

∂2Πt

∂qi∂qj
=

∂2Πt

∂qj∂qi
= −1

for i 6= j. Hence, the Hessian matrix is

H =


−2− 2β1c+ β2dε

2 −1 −1

−1 −2− 2β1c+ β2dε
2 −1

−1 −1 −2− 2β1c+ β2dε
2


The eigenvalues are two multiplicities of β2dε

2 − 2β1c− 1 and β2dε
2 − 2β1c− 4. For

Πt to have a local maximum at q∗t , both eigenvalues have to be negative. Especially,

β2dε
2− 2β1c− 4 < 0 must hold. But this implies that for q∗t to be positive, l−β2bε−

τε > 0 must hold; i.e., l is bounded below by β2bε+ τε.

Since the game is symmetric, π∗1 = π∗2 = π∗3 = π∗t where the subscript denotes that

it is a profit for triopoly. Hence,

π∗t = (l − 3q∗t )q
∗ − β1cq∗2t − β2

(
bu− d

2
u2
)
− τεq∗t

= lq∗t − 3q∗2t − β1cq∗2t − β2bεq∗t +
1

2
β2dε

2q∗2t − τεq∗t

= (l − β2bε− τε)q∗t +

(
β2dε

2

2
− β1c− 3

)
q∗2t

=
(l − β2bε− τε)2

4 + 2β1c− β2dε2
+

(
β2dε

2 − 2β1c− 6

2

)
(l − β2bε− τε)2

(4 + 2β1c− β2dε2)2

= (l − β2bε− τε)2
(

2 + 2β1c− β2dε2

2(4 + 2β1c− β2dε2)2

)
Since the eigenvalues are negative,

β2dε
2 − 2β1c− 1 < 0

β2dε
2 − 2β1c− 4 < 0

Hence,

1 + 2β1c− β2dε2 > 0

4 + 2β1c− β2dε2 > 0
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As a result,

2 + 2β1c− β2dε2 > 0

so that π∗t > 0.

Next, the optimal value of the potential function, Π∗t , is

Π∗t = (l − q1 − q2 − q3)q1 − β1cq21 − β2Ca
1 − τu1

+(l − q1 − q2 − q3)q2 − β1cq22 − β2Ca
2 − τu2

+(l − q1 − q2 − q3)q3 − β1cq23 − β2Ca
3 − τu3

+q1q2 + q2q3 + q1q3

= π∗1 + π∗2 + π∗3 + 3q∗2t

= 3(l − β2bε− τε)2
(

2 + 2β1c− β2dε2

2(4 + 2β1c− β2dε2)2

)
+

3(l − β2bε− τε)2

(4 + 2β1c− β2dε2)2

=
3(l − β2bε− τε)2

2(4 + 2β1c− β2dε)

Now, I need to determine the optimal tax rate. Hence, as in the previous subsection,

I define the social welfare function, W .

W = π∗1 + π∗2 + π∗3 −mε2q∗21 −mε2q∗22 −mε2q∗23 + τεq∗1 + τεq∗2 + τεq3 ∗

=
3(l − β2bε− τε)2(2 + 2β1c− β2dε2)

2(4 + 2β1c− β2dε2)2
− 3mε2

(
l − β2bε− τε

4 + 2β1c− β2dε2

)2

+3τε

(
l − β2bε− τε

4 + 2β1c− β2dε2

)
The first-order necessary condition on τ is

∂W

∂τ
=
−3ε(2 + 2β1c− β2dε2)(l − β2bε− τε)

(4 + 2β1c− β2dε2)2
+ 6mε3

(
l − β2bε− τε

(4 + 2β1c− β2dε2)2

)
+3ε

(
l − β2bε− τε

4 + 2β1c− β2dε2

)
− 3τε

(
ε

4 + 2β1c− β2dε2

)
= 0
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The usage of a computational software (Matlab) yields

τ ∗t =
(l − β2bε)(2mε2 + 2)

ε(2β1c+ 2mε2 − β2dε2 + 6)

where the subscript denotes that it is a tax rate for triopoly.

Since one of the eigenvalues, β2dε
2−4−2β1c, is negative, 2β1c+2mε2−β2dε2+6 > 0

holds. Hence, τ ∗t > 0.

The second-order condition on τ is

∂2W

∂τ 2
=

3ε2(2 + 2β1c− β2dε2)
(4 + 2β1c− β2dε2)2

− 6mε4

(4 + 2β1c− β2dε2)2
− 3ε2

4 + 2β1c− β2dε2

− 3ε2

4 + 2β1c− β2dε2

=
3ε2(2 + 2β1c− β2dε2)− 6mε4

(4 + 2β1c− β2dε2)2
− 6ε2

4 + 2β1c− β2dε2

=
3ε2(−6− 2β1c+ β2dε

2 − 2mε2)

(4 + 2β1c− β2dε2)2

It has been shown that one of the eigenvalues satisfies β2dε
2 − 2β1c < 4. Hence,

−6 − 2β1c + β2dε
2 − 2mε2 < 0 so that

∂2W

∂τ 2
< 0. As a result, W attains a local

maximum at τ ∗t .

It has been shown that π∗t = (l− β2bε− τε)2
(

2 + 2β1c− β2dε2

2(4 + 2β1c− β2dε2)2

)
. Hence, if I

plug in τ ∗t found above, I obtain

π∗t =
(l − β2bε)2(−β2dε2 + 2β1c+ 2)

2(2β1c+ 2mε2 − β2dε2 + 6)2

One of the eigenvalues satisfies β2dε
2− 2β1c− 1 < 0⇔ 1 + 2β1c− β2dε2 > 0. Hence,

2 + 2β1c− β2dε2 > 0. As a result, π∗t > 0.

It has been shown that Π∗t =
3(l − β2bε− τε)2

2(4 + 2β1c− β2dε)
. Hence, if I plug in τ ∗t found

above, I obtain

Π∗t =
3(l − β2bε)2(−β2dε2 + 2β1c+ 4)

2(2β1c+ 2mε2 − β2dε2 + 6)2
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One of the eigenvalues satisfies β2dε
2− 2β1c− 4 < 0⇔ 4 + 2β1c− β2dε2 > 0. Hence,

Π∗t > 0.

It has been shown that q∗t =
l − β2bε− τε

4 + 2β1c− β2dε2
. Hence, if I plug in τ ∗t found above,

I obtain

q∗t =
l − β2bε

2β1c+ 2mε2 − β2dε2 + 6

It has been verified that 2β1c+ 2mε2 − β2dε2 + 6 > 0. Hence, q∗t > 0. Note that the

values of π∗t , Π∗t and q∗t are computed by Matlab.

Next, the potential for the case of duopoly is Πd, that is found in the previous

subsection. I compute Π∗d − Π∗t to determine whether the potential is larger at a

duopoly or at a triopoly.

Π∗d − Π∗t =
(l − α2bε)

2(2α1c− α2dε
2 + 3)

(2α1c+ 2mε2 − α2dε2 + 4)2
− 3(l − β2bε)2(2β1c− β2dε2 + 4)

2(2β1c+ 2mε2 − β2dε2 + 6)2

Computation of the above expression by Matlab does not provide a tractable expres-

sion. Hence, I check the above subtraction by plugging in some appropriate values.

In the previous subsection, I have obtained that when b = c = d = m = ε = 1 and

l = 5, Π∗d = 0.703125. Under the same condition, for the case of triopoly, β1 and β2

must satisfy β2 < 2β1 + 1 from the condition of eigenvalues. Hence, if β1 = 3, then

β2 < 7 must be satisfied. So, let’s choose β2 = 3. In this case, I obtain τ ∗t = 0.727,

π∗t = 0.0826, Π∗t = 0.347 and q∗t = 0.182. Hence, Π∗d − Π∗t > 0. As a result, the value

of the potential function at duopoly is larger than its value at triopoly.

The results obtained so far are summarized in Table 4.1, and Table 4.2 for specific

parameter values.

Lastly, I analyze the relationship between the marginal damage to the environment
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Table 4.1: Summary of Chapter 4

Monopoly Duopoly Triopoly

Equilibrium Output per Firm
l − bε

2mε2 + 2 + 2c− dε2
l − α2bε

2α1c+ 2mε2 − α2dε2 + 4

l − β2bε
2β1c+ 2mε2 − β2dε2 + 6

Equilibrium Price
l(2mε2 + 1 + 2c− dε2) + bε

2mε2 + 2 + 2c− dε2
l(2mε2 + 2 + 2α1c− α2dε

2) + 2α2bε

2mε2 + 4 + 2α1c− α2dε2
l(2β1c+ 2mε2 − β2dε2 + 3) + 3β2bε

2β1c+ 2mε2 − β2dε2 + 6

Combined Equilibrium Output
l − bε

2mε2 + 2 + 2c− dε2
2(l − α2bε)

2α1c+ 2mε2 − α2dε2 + 4

3(l − β2bε)
2β1c+ 2mε2 − β2dε2 + 6

Profit per Firm
(2 + 2c− dε2)(bε− l)2

2(dε2 − 2− 2c− 2mε2)2
(l − α2bε)

2(−α2dε
2 + 2α1c+ 2)

2(2α1c+ 2mε2 − α2dε2 + 4)2
(l − β2bε)2(−β2dε2 + 2β1c+ 2)

2(2β1c+ 2mε2 − β2dε2 + 6)2

Combined Profit
(2 + 2c− dε2)(bε− l)2

2(dε2 − 2− 2c− 2mε2)2
(l − α2bε)

2(−α2dε
2 + 2α1c+ 2)

(2α1c+ 2mε2 − α2dε2 + 4)2
3(l − β2bε)2(−β2dε2 + 2β1c+ 2)

2(2β1c+ 2mε2 − β2dε2 + 6)2

Potential
(2 + 2c− dε2)(bε− l)2

2(dε2 − 2− 2c− 2mε2)2
(l − α2bε)

2(−α2dε
2 + 2α1c+ 3)

(2α1c+ 2mε2 − α2dε2 + 4)2
3(l − β2bε)2(−β2dε2 + 2β1c+ 4)

2(2β1c+ 2mε2 − β2dε2 + 6)2

Tax Rate per Firm
2bmε2 − 2lmε

dε2 − 2− 2c− 2mε2
(l − α2bε)(2mε

2 + 1)

ε(2mε2 + 4 + 2α1c− α2dε2)

(l − β2bε)(2mε2 + 2)

ε(2mε2 + 6 + 2β1c− β2dε2)

Marginal Damage per Firm
2mε2(l − bε)

2mε2 + 2 + 2c− dε2
2mε2(l − α2bε)

2mε2 + 4 + 2α1c− α2dε2
2mε2(l − β2bε)

2mε2 + 6 + 2β1c− β2dε2
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Table 4.2: Summary of Chapter 4 (b = c = d = m = ε = 1, l = 5, , α1 = α2 = 2, β1 =

β2 = 3)

Monopoly Duopoly Triopoly

Equilibrium Output per Firm 0.8 0.375 0.182

Equilibrium Price 4.2 4.25 4.454

Combined Equilibrium Output 0.8 0.75 0.546

Profit per Firm 0.96 0.28125 0.0826

Combined Profit 0.96 0.5625 0.2478

Potential 0.96 0.703125 0.347

Tax Rate per Firm 1.6 1.125 0.727

Total Tax Revenue 1.6 2.25 2.181

Total Marginal Damage 1.6 1.5 1.092
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dDi

dqi

∣∣∣∣
q∗t

and the optimal tax rate, τ ∗t .

dDi

dqi

∣∣∣∣
q∗t

=
d

dqi
mε2q2i

∣∣∣∣
q∗t

= 2mε2q∗t

= 2mε2
(

l − β2bε
2mε2 + 6 + 2β1c− β2dε2

)
It is already shown that

τ ∗t =
(l − β2bε)(2mε2 + 2)

ε(2mε2 + 6 + 2β1c− β2dε2)

Hence,

dDi

dqi

∣∣∣∣
q∗t

− τ ∗t =
2mε3(l − β2bε)− (l − β2bε)(2mε2 + 2)

ε(2mε2 + 6 + 2β1c− β2dε2)

=
(l − β2bε)(2mε3 − 2mε2 − 2)

ε(2mε2 + 6 + 2β1c− β2dε2)

I have already shown that l − β2bε > 0. Also, the eigenvalues are negative; hence,

−4− 2β1c+ β2dε
2 < 0⇔ 4 + 2β1c− β2dε2 > 0. Hence, 2mε2 + 6 + 2β1c− β2dε2 > 0.

As a result, the marginal damage to the environment is greater than the optimal tax

rate if 2mε3−2mε2−2 > 0; i.e., there is a threshold value of ε such that the marginal

damage is greater than the optimal tax rate if ε2(ε − 1) >
1

m
. But it is known that

m is a positive constant; therefore, the threshold value of ε is greater than 1.

4.3 Solution of the Game

Now, I use the specific values of the profits provided in Table 4.2 to find the

solution of the game. Note that when there is a monopoly, according to Table 4.2,

the profit per firm is 0.96. However, this monopoly is a result of the merger of Apex

and Brydox so that after they earn the monopoly profit as one firm, they will divide

the profit equally. This is the reason that the profit for monopoly is 0.48 for Apex

and Brydox.
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By using the well-known method of the backward induction, I can identify the

subgame perfect equilibrium: Apex chooses either Merge or No Change, and Brydox

chooses Not Break Away at node 2, Merge at node 3 and split at node 4. Thus,

the outcome of the game is a monopoly, and as seen above, the potential function

attains the maximum value when there is a monopoly and that the α and β satisfy

the conditions found above.

Brydox

4

(0.1652, 0.0826), Triopoly

Not Split

(0.28125, 0.28125), duopoly

Split

Split

Brydox

3

(0.28125, 0.28125), Duopoly

Not Split

(0.0826, 0.1652), Triopoly
Split

(0.48, 0.48), Monopoly

Merg
e

No Change

Brydox

2

(0.48, 0.48), Monopoly

Not Break Away

(0.28125, 0.28125), Duopoly

Break
Away

M
er
ge

Apex 1

Figure 4.2: The Sequential Game of Merger/Split
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Note that if αi and/or βi (i = 1, 2) were less than the threshold values, the out-

come of the subgame perfection could still be a monopoly as in Section 3.4; however,

the potential would attain its maximum value either at a duopoly or at a triopoly.

In such a case, the subgame perfection is not stochastically stable so that a duopoly

or a triopoly will emerge if the game is actually played out although the most ratio-

nal/efficient solution is a monopoly.

4.4 Conclusion of Chapter 4

As shown in Chapter 3, when the marginal cost is an increasing function of the

output and the cost function becomes larger as the scale of operation becomes smaller,

then there are threshold values for αi and βi (i = 1, 2) such that monopoly is a so-

lution. When monopoly is a solution, the total marginal damage is larger than that

under duopoly or triopoly, as evident from Table 4.2. In addition, what is significant

in Table 4.2 is that the tax rate per firm is highest for a monopoly and lowest for

a triopoly. The implication of this result is that even if the tax rate is highest for

a monopoly, a firm does not consider splitting into separate firms to avoid the high

tax rate; i.e., as long as the profit per firm is highest for a monopoly, then the firm

“endures” the high tax rate. There is a presumption that “tax considerations can

be a key enabler or inhibitor of M&A activity in specific cases, as companies look

to incorporate optimization of their tax exposure as an integral part of their assess-

ments of deal valuation and strategic fit” (Deloitte Center for Energy Solutions, 2015,

4); however this presumption turns out to be false. In fact, tax considerations are

probably not prime drivers of M&A activities (Deloitte Center for Energy Solutions,

2015), and the reason is as discussed above: A firm endures the high tax rate as long

as they earn enough profit. As a result, this result suggests that the tax rate may not

enable the government to control the number of firms in industry.
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As for the relationship between the marginal damage to the environment and the

optimal tax rate, there is a threshold value of ε (emissions per unit of output). For a

monopoly, the marginal damage is greater if ε > 1. For a duopoly, marginal damage is

greater than the marginal tax rate if ε(ε−1) >
1

2m
. For a triopoly, ε(ε−1) >

1

m
. Since

m determines the rate of growth of the marginal damage (2mε2q), the relationship

between the marginal damage to the environment and the optimal tax rate depends

on the rate of growth of the marginal damage for duopoly and triopoly; i.e., if m

becomes larger, then the marginal damage is likely to be more than the optimal tax

rate. On the other hand, if m becomes smaller, then the optimal tax rate is likely to

be more than the marginal damage.

Lastly, as for the empirical examples, first I observe the mining industry. Accord-

ing to PricewaterhouseCoopers (2008), year 2007 was the unprecedented “eat or be

eaten” year in the mining industry; i.e., the number and value of M&A in the indus-

try were record high. PricewaterhouseCoopers (2008) argues the reasons of extremely

active M&A as below:

With less recent exploration, resource pipelines need filling. At the same time,

exploration costs are at all-time highs, permitting is taking longer and compa-

nies also face skills’ shortages. These are significant barriers to meeting what

is a major upturn in world demand. With companies sitting on big cash posi-

tions, M&A is an important way of overcoming these challenges. In addition,

it is key to enabling companies to diversify portofolios, both across geographies

and commodities (5).

The above argument suggests that one of the major reasons of M&A is to reduce

and internalize the transaction costs (costs of obtaining permits, skilled laborers,

etc.). Hence, the analyses in this chapter is in accordance with this empirical result.

In addition, in 2015, Williams (2015) predicts that the coal industry will be wit-
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nessing a huge number of M&A in 2016 and beyond. He argues the reasons as below:

In terms of thousand megawatt hours, coal comprised 38.7% of net energy gen-

eration in 2014. In 2005, coal represented nearly half of net energy generation!

In short, coal is being replaced by cheap and cleaner natural gas, which is hurt-

ing demand and both thermal and metallurgical coal pricing. Coal companies

can choose to cut costs and production a bit, but the smarter move may be to

combine their forces in order to reduce competition, and enhance savings until

coal prices eventually find a bottom.

The above statement is exactly in accordance with the basic theory of oligopoly

that is used throughout this dissertation; i.e., if the price is low, firms should merge so

that the number of suppliers decreases; consequently, the price will be higher. Thus,

although the effects of emission and pollution tax are not explicitly mentioned in

these reports, these reports are deemed to warrant the validity of the analysis in this

chapter.

However, other reports suggest the validity of my analysis in this chapter may be

limited. For instance, according to EY (2015), the number and value of M&A were low

in 2014 because “[w]eak commodity prices and the uncertain outlook have created

nervousness around valuations” (27) so that the M&A activities were constricted

“until price stability, and in turn, confidence, returns” (7). Moreover, reports argue

that, in the oil and natural gas industry, the oil price was low, but the number of M&A

(mergers and acqusitions) was low in 2015 (A.T.Kearney, 2016; Deloitte Center for

Energy Solutions, 2015). However, this is a little puzzling because, when the oil price

is low, the number of M&A should increase (Agnihotri, 2016) so that, as evident from

the oligopoly theory, the oil price will increase. However, in 2015, we did not observe

the increase of the number of M&A (A.T.Kearney, 2016; Deloitte Center for Energy

Solutions, 2015). Reports argue that the reason of the low number of M&A was due
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to the volatility of oil price and the deep uncertainty it engendered (A.T.Kearney,

2016); i.e., according to Deloitte Center for Energy Solutions (2015), “the psychology

of the market saw many participants anticipating that the price downturn would be

relatively short-lived, such that short-term activity and cost adjustments would be

sufficient to ride out a limited period of reduced cash flow” (4). As a result, “oil price

volatility and differences in valuation expectations between buyers and sellers have

hindered deal-making (of M&A)” (A.T.Kearney, 2016, 7).

The model discussed in this chapter does not take into account the price volatility

and people’s belief on how long the volatility will last. Hence, this is the limitation

of my analysis. Indeed, the Nash equilibria discussed in this chapter are stochasti-

cally stable equilibria so that stochasticity is inherent in the model. However, this

stochasticity is associated with the learning processes of firms. The stochasticity the

participants of the mining and the oil and natural gas industry are observing is the

environmental stochasticity; i.e., the stochasticity is inherent in environment, not in

firm’s learning processes. To model the environmental stochasticity, I probably need

to change the Cournot model as below. For firm i,

πi = pqi − cq2i

where p = l −
∑
i

qi is deterministic if the economy is stable. But if the outlook of

economy is uncertain, we will end up with a stochastic differential equation because

the price becomes p = l −
∑
i

qi + ε where ε describes environmental stochasticity.

Unfortunately, to my knowledge, using stochastic differential equations is unprece-

dented in game theory. Moreover, there is another difficulty. Gintis (2009) argues

that “stochastic differential equations with more than one independent variable vir-

tually never have a close-form solution” (311) so that the analysis of a model will be

extremely difficult. Furthermore, the relationships between potential functions and
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stochastic differential equations are unknown.

However, it is worthwhile to consider the effect of ε in the price curve no matter

how difficult it is to include ε in the analysis: after all, empirical cases suggest that

the effect of ε is not negligible. Thus, economists probably need to use Itô’s Lemma,

which is frequently used in financial engineering, to extend our understanding on

firm’s behavior in oligopoly under environmental stochasticity.
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Chapter 5

THE TRAGEDY OF THE COMMONS

5.1 Potential Commons Games

5.1.1 Definition and Theory

My approach differs from the recent study by Dasgupta et al. (2016), which dis-

cusses commons games using the concept of Markov Perfect Equilibrium, a refinement

of subgame perfect equilibrium (Fudenberg and Tirole, 1991). In general, subgame

perfect equilibria are not evolutionarily stable (Samuelson, 1998). As a result, “the

set of Markov perfect equilibria can change discontinuously when the payoffs are per-

turbed” (Fudenberg and Tirole, 1991, 502). Exploiting this property, Dasgupta et al.

(2016) argue that, in case of the depletion of common pool resources, “[a] sudden

crash in productivity, population overshoot, or decline in harvesting costs can tip an

unmanaged common into ruin” (1). The problem I consider is slightly different. I am

not concerned with the likelihood that some perturbation may induce the collapse

of an open access resource, but the conditions in which open access makes collapse

inevitable. This is partly motivated by the evidence that collapse has rarely been

abrupt (Butzer, 2012). I look instead for properties of the system that lead it to

collapse, potentially over much longer periods of time.

Specifically, I consider a common pool resource in which potential users decide

sequentially whether to enter the resource. One potential reason why this might occur

is that individuals located nearer or further from the resource may face differential

costs of access. I make the following claim.
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Claim. If the marginal cost of access or effort increases as the number of resource

users increases, then we can identify the equilibrium number of resource users in the

commons.

In what follows I make use of an additional important property of potential games.

It is that all potential games with a finite number of players are congestion games with

the same potential function (Monderer and Shapley, 1996). The commons game is a

finite potential (congestion) game; i.e., the number of players, n, is finite, albeit large.

If the number of players is finite, potential games are always isomorphic to congestion

games. However, if the number of players is unlimited, I should ascertain whether

the result above is valid. Sandholm (2001) shows that if players are anonymous and

identical, then continuous congestion games can be defined as the limit of atomistic

congestion games (i.e., in which the number of players is finite). It follows that my

potential commons games are indeed isomorphic to congestion games.

5.1.2 Modeling the Commons Game

Our starting point is a model of the commons game by Gibbons (1992) in which

the number of players, n, is assumed to be fixed and finite. The net benefit to the ith

resource user is given by:

πi = v(G) · qi − cqi

where v
′
(G) < 0, v

′′
(G) < 0 and G =

∑
qi. In the open access, however, this model is

too restrictive. First, since the number of resource users is fixed, the Gibbons model

cannot address the case where the proportion of potential resource users who choose

to access the resource is endogenous. Second, since costs are also assumed to be fixed,

it cannot address the case where costs are sensitive to the number of resource users. I

therefore modify the Gibbons model to allow both variable cost and variable levels of
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resource use. Specifically, I work with two models, in which the net benefit functions

take the form:

πi = v(G) · qi − cnγqi − δ

= (l − f(G)) · qi − cnγqi − δ (5.1.1)

and

πi = v(G) · qi − cnγq2i − δ

= (l − f(G)) · qi − cnγq2i − δ (5.1.2)

where f(G) = (
∑n

k=1 qk)
2, 0 ≤ δ ≤ l, γ ≥ 0, and n = 1, 2, ..., n(0) where n(0) is

the number of potential users. In the limit, n(0) → ∞. In both models, costs are

increasing in n. In model (5.1.1), however, marginal cost is constant for a given n,

while in model (5.1.2) costs are also increasing in q. In both models, I include a

non-negative cost of access, δ, which I take to be constant (although it could also be

increasing in n). Note that v(G) = l − f(G) satisfies v
′
(G) < 0 and v

′′
(G) < 0.

In what follows I refer to δ as a cost of access, and cnγqi and cnγq2i as costs of

production. The costs of production are congestion costs since they are increasing in

the number of users.

Now, for our models to be a potential game, I linearize f(G). Since the game is

symmetric, for a fixed n, the Nash equilibrium is q∗1 = q∗2 = · · · = q∗n = q∗.

f(G) ≈ f(G)

∣∣∣∣
q∗

+
∂f

∂q1

∣∣∣∣
q∗

(q1 − q∗) +
∂f

∂q2

∣∣∣∣
q∗

(q2 − q∗) + · · ·+ ∂f

∂qn

∣∣∣∣
q∗

(qn − q∗)

= n2q∗2 + 2nq∗(q1 − q∗) + 2nq∗(q2 − q∗) + · · ·+ 2nq∗(qn − q∗)

= n2q∗2 + 2nq∗
( n∑

k=1

qk − nq∗
)

Hence,

πi =

{
l − n2q∗2 − 2nq∗

( n∑
k=1

qk − nq∗
)}

qi − cnγqi − δ (5.1.3)
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for (5.1.1), and

πi =

{
l − n2q∗2 − 2nq∗

( n∑
k=1

qk − nq∗
)}

qi − cnγq2i − δ (5.1.4)

for (5.1.2).

Next, I examine whether profit function (5.1.4) has a potential. The verification

for (5.1.3) is similar. For (5.1.4),

∂πi
∂qj

= −2nq∗qi ⇒
∂2πi
∂qi∂qj

= −2nq∗

and

∂πj
∂qj

= l − n2q∗2 − 2nq∗
( n∑

k=1

qk − nq∗
)
− 2nq∗qj − 2cnγqj

⇒ ∂2πj
∂qi∂qj

= −2nq∗

Consequently,

∂2πi
∂qi∂qj

=
∂2πj
∂qi∂qj

so that an exact potential exists for (5.1.4) for a given n. As a result, the models we

consider are potential games.

For profit function (5.1.3), I propose the following potential function

Π =
n∑
k=1

{
l − n2q∗2 − 2nq∗

( n∑
m=1

qm − nq∗
)}

qk − cnγ
n∑
k=1

qk

+nq∗
( n∑

k=1

qk

)2

− nq∗
n∑
k=1

q2k (5.1.5)

and for profit function (5.1.4),

Π =
n∑
k=1

{
l − n2q∗2 − 2nq∗

( n∑
m=1

qm − nq∗
)}

qk − cnγ
n∑
k=1

q2k

+nq∗
( n∑

k=1

qk

)2

− nq∗
n∑
k=1

q2k (5.1.6)
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For both models, Π is indeed a potential function, and the Nash equilibrium for a

given n is

q∗ =


√
l − cnγ

n2 + 2n
(n ≤ (l/c)1/γ)

0 (otherwise)

for (5.1.5) and

q∗ =

√
c2n2γ + l(n2 + 2n)− cnγ

n2 + 2n

for (5.1.6). The calculations for finding q∗ for (5.1.6) are as follows. The calculations

for finding q∗ for (5.1.5) are similar.

First, we verify the first-order condition for Π to be a potential.

∂Π

∂qi
= l − n2q∗2 − 2nq∗

( n∑
m=1

qm − nq∗
)
− 2nq∗qi − 2cnγqi

−2nq∗(q1 + q2 + · · ·+ qi−1 + qi+1 · · ·+qn)

+2nq∗(q1 + · · · ·+qn)− 2nq∗qi

= l − n2q∗2 − 2nq∗
( n∑
m=1

qm − nq∗
)
− 2nq∗qi − 2cnγqi

=
∂πi
∂qi

Hence, Π is a potential function.

To find the Nash equilibrium for a fixed n, first we examine the first-order condi-

tion.

∂Π

∂qi
= l − n2q∗2 − 2nq∗

( n∑
m=1

qm − nq∗
)
− 2nq∗qi − 2cnγqi

= 0

Since the game is symmetric, q∗1 = · · · = q∗n = q∗. Hence, the first-order condition

becomes

l − n2q∗2 − 2nq∗(nq∗ − nq∗)− 2nq∗2 − 2cnγq∗ = 0

⇔ (n2 + 2n)q∗2 + 2cnγq∗ − l = 0
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Consequently, the critical point is

q∗ =

√
c2n2γ + l(n2 + 2n)− cnγ

n2 + 2n

Note that
√
c2n2γ + l(n2 + 2n)− cnγ > 0 always holds.

Next, we verify the second-order condition.

∂2Π

∂q2i
= −4nq∗ − 2cnγ

∂Π

∂qj∂qi
= −2nq∗

Hence, the Hessian matrix is

H =



−4nq∗ − 2cnγ −2nq∗ . . . −2nq∗

−2nq∗ −4nq∗ − 2cnγ . . . −2nq∗

...
...

. . .
...

−2nq∗ −2nq∗ . . . −4nq∗ − 2cnγ


The eigenvalues are n−1 multiplicities of −2cnγ−2nq∗ and −2cnγ−2n(n+1)q∗, and

clearly, both of them are negative. Hence, H is negative definite so that Π attains a

local maximum at q∗.

5.2 The Equilibrium Number of Resource Users under Open Access

5.2.1 Model 1: Marginal Cost Constant in Output

Zero Access Cost

First, I consider the case the access cost being nil; i.e., δ = 0. For equation (5.1.5),

q∗ =
√

(l − cnγ)/(n2 + 2n). Hence, l − cnγ ≥ 0 must hold; i.e., n ≤ (l/c)1/γ must

hold for the real value of q∗ ≥ 0 to exist. Figure 5.1 shows the graph of equation

(5.1.3), a linear approximation of equation (5.1.1) as a function of n, for different

levels of congestion (γ) given δ = 0. If the number of people potentially having access
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Figure 5.1: Model 1

Profit of Access to the Common: l = 10, c = 1 and δ = 0

the resource is denoted n(0), and the equilibrium number of resource users is denoted

n∗ = n∗(γ, δ), it follows that n∗ ≤ n(0). Figure 5.1 shows that for γ = 0, n∗ = n(0),

whereas for γ > 0, n∗ < n(0) given δ = 0.

Two results follow directly from the restriction on n:

i If n = (l/c)1/γ then q∗ = 0, implying that πi(q
∗) = 0.

ii n∗ increases as γ decreases, and n∗ → n(0) as γ → 0, and n∗ → 0 as γ →∞
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Positive Access Cost

Next, I consider the case the access cost being positive; i.e., δ > 0. Figure 5.2 shows

the graph of equation (5.1.3), a linear approximation of equation (5.1.1) as a function

of n, for different levels of congestion (γ) given δ = 5. In this case, for all values of
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0 1 2 3

P
ro

fi
t

0

 1

 2

 3

 4

5

γ is 0

γ is 1
γ is 1.5

γ is 2
γ is 2.5

Figure 5.2: Model 1

Profit of Access to the Common: l = 10, c = 1 and δ = 5

γ ≥ 0, n∗ < n(0) so that unlimited entry never occurs. Otherwise, the results noted

for the zero access cost still hold.
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5.2.2 Model 2: Marginal Cost Increasing in Output

Zero Access Cost

First, I consider the case the access cost being nil; i.e., δ = 0. For equation (5.1.6),

q∗ = (
√
c2n2γ + l(n2 + 2n) − cnγ)/(n2 + 2n). Note that q∗ ≥ 0 if and only if√

c2n2γ + l(n2 + 2n) − cnγ ≥ 0; i.e., if and only if c2n2γ + l(n2 + 2n) ≥ c2n2γ, and

this is always true regardless of the values of c, l, n and γ. Thus, n is not limited

by the restriction n = (l/c)1/γ. Consequently, for all values of γ ≥ 0, each resource

user’s profit becomes positive for all values of n ≥ 0. Figure 5.3 shows the graph

of equation (5.1.4), a linear approximation of equation (5.1.2), for different levels of

congestion (γ) given δ = 0. Once again, let the number of people entitled to enter the

resource be denoted n(0), and the equilibrium number of resource users is denoted n∗.

It then follows that, for δ = 0, the equilibrium number of resource users is always the

maximum potential number of users regardless of the value of γ because each resource

user’s profit remains positive for all positive values of n. Moreover, for all values of

γ ≥ 0, q tends to 0 as n(0) approaches infinity. In addition, note that when there is

unlimited entry, each resource user is still producing optimally in the sense that they

are equating marginal revenue and marginal cost, and that this is independent of the

number of resource users in the commons.

Positive Access Cost

Next, I consider the case the access cost being positive; i.e., δ > 0. Figure 5.4 shows

the graph of equation (5.1.4), a linear approximation of equation (5.1.2), for different

levels of congestion (γ) given δ = 5. This time, δ shifts down all the curves so that

n∗ < n(0) always holds; i.e., unlimited entry does not occur. As before, each resource

user is producing optimally at n∗.
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Figure 5.3: Model 2

Profit of Access to the Common: l = 10, c = 1 and δ = 0

One intriguing example we should pay attention to is the following case. When

l = 10, c = 1, γ = 2 and δ = 0, we obtain

πi =

{
l − n2q∗2 − 2nq∗

( n∑
k=1

qk − nq∗
)}

qi − cnγq2i − δ

= (10− n2q∗2)q∗ − n2q∗2 − δ

because resource user i produces at q∗. At these values of l, c and γ, q∗ = 1.52 when

n = 1 and πi = 9.378 when δ does not exist. Hence, if δ = 9.378, πi = 0 at n = 1 so

that monopoly emerges.
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Figure 5.4: Model 2

Profit of Access to the Common: l = 10, c = 1 and δ = 5

5.3 Conclusion of Chapter 5

In this chapter, I have shown how the potential function in a commons game allows

me to identify the equilibrium number of resource users in an open access common

pool resource. Specifically, I have verified my claim that when the cost function

takes the form, cnγqi (i.e., the marginal cost is constant for a given n), I can identify

the finite equilibrium number of resource users in the commons. However, I have

also shown that if the cost function takes the form cnγq2i , the equilibrium number of

111



resource users is the number that is entitled to access the commons. This is because

each resource user’s profit is positive for all n ≥ 0.

My results provide a different perspective on the management of the commons

than that suggested by the work of Ostrom and colleagues, who tend to focus on the

institutional arrangements that structure access to common pool resources n(0). I

focus instead on the structure of costs, and the way that costs vary with the level of

output of resource users and the number of resource users. I find that the tragedy of

the commons is the product of a very particular set of cost structures in which either:

a) the cost of production is not increasing in the number of resource users or the

level of output, or

b) the cost of production is increasing in the number of resource users or the level

of output but at a lower rate than the increase in revenue.

I find that a cost function of the form cnγqi, γ > 0, always generates a finite equi-

librium number of resource users. There is, however, almost certainly a relation-

ship between the cost structures that determine the equilibrium number of resources

users under open access and institutional arrangements for managing common pool

resources observed in real systems. Since the regulatory regimes established by re-

source users have implications for the cost of access, Ostrom (2015) might well be

interpreted in terms of the cost structures they involve.

Aside from the many cases identified by Ostrom (2015), there are numerous ex-

amples of efforts to manage common pool resources through restrictions on n(0), the

maximum number of users potentially having access to the commons. An example of

a commons to which access is independent of costs is licensed common pool fisheries

in Japan (Government of Japan, 2016). Fishery licenses are issued by the governor

of a prefecture. Applicants are divided into two groups. The first group comprises
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fishers who reside in the local area and have historically practiced aquaculture, while

the second group comprises of fishers from elsewhere who plan to start aquaculture.

The first group is automatically given entry, but members of the second group must

wait until there is a vacancy. Other examples identified in the literature cover com-

mon pool forests, grasslands, wetlands, water resources, and hunting areas (Berkes

et al., 1989; Feeny et al., 1990; McWhinnie, 2009).

There are also many examples of common pool resources in which the number

of potential users has not been restricted, but in which the number of those who

actually access the resource has depended on costs —whether costs of access or costs

of production. One well known example of a common pool resource where the number

of resource users is effectively determined by the cost of access is the lobster industry

in Maine. Acheson (2003) described the system at that time as follows:

To go lobstering, one needs a state license, which ostensibly allows a person to

fish anywhere in state waters. In reality, more is required. One also needs to

gain admission to a “harbor gang” that maintains a fishing territory for the use

of its members (24).

Each harbor gang comprised a small group of fishers, perhaps as few as six or eight

boats, controlling territories 100 square miles or less in area. There were two types

of territories: nucleated and perimeter-defended. Acheson (2003) noted that entry

into the harbor gangs that controlled nucleated territories was easier than entry into

the perimeter-defended areas. Nevertheless, there were a range of informal “costs”

associated with entering both nucleated and perimeter defended territories, and these

were increasing in the number of fishers.

The reduction in the numbers of fishers allowed by the system has had positive

effects the productivity in the fishery. Catches that were reported to be at record-

high levels at the beginning of the Century (Acheson, 2003) have continued to rise. In
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2016, fishers landed more than 130 million pounds of lobster (valued at $533 million),

nearly three times the catch level in 2000 (centralmaine.com, 2017).

In addition, throughout history, we frequently observe several examples of success-

fully limiting access to common pool resources by enforcing informal “costs.” Uzawa

(2015) argues that, historically, open access to common pool resources have been

rare, and Ostrom (2015) provides several examples of such non-open access commons

including those of Japanese agrarian villages of Hirano, Nagaike and Yamanoka. The

common understanding about the common pool resources in Japanese agrarian vil-

lages is that resources were strictly for use by the villagers, and each villager must

perform a significant amount of cooperative work for the village. In addition, the

common understanding is that there was virtually no migration between their vil-

lages and other regions so that every household in a village was believed to have been

in the same village for hundreds of years. However, Miyamoto (2005) argues that this

understanding is inaccurate.

Miyamoto (2005) argues that, during the Tokugawa period (from the early 17th

century to the mid-19th century), villagers kept living in their villages when the

climate was favorable for their agrarian activities. However, once the climate be-

came unfavorable for raising crops, villagers abandoned their villages and migrated

to other regions although the Tokugawa shōgunate prohibited such migrations with

severe penalties. However, despite these penalties, villagers migrated, and it was

not uncommon that when the climate was unfavorable, villages were completely de-

serted. However, once the climate recovered, people (not the former villagers) came

to once abandoned villages from somewhere and started living there. This was possi-

ble because, when the former villagers deserted their villages, their houses, fields and

commons were left intact. As a result, new comers could come to these once deserted

villages and start living in those deserted houses. In other words, the “costs” of start-
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ing a new life in an once deserted village was very low, and the costs remained low

until all houses were occupied. Once all houses were occupied, the “costs” of starting

a life increased sharply because a new comer would have to build a new house and

cultivate a new field, and this refrained a further entry into a village. Thus, these

cases from Tokugawa period are the examples that fairly describe the effect of ac-

cess and/or production cost on limiting entry under the condition of open access as

discussed in the previous section.

Symmetrically, there are several common pool resources that have been depleted

because access and/or production costs fell as a result of either technological de-

velopments or government subsidies on effort or capital equipment. Several notable

examples stem from the exploitation of sea areas beyond national jurisdiction. Take

the case of whales. All countries have open access to the High Seas, and many coun-

tries have actively hunted whales in the past. Several whale species were severely

depleted in the 19th century. Baleen Whales targeted for their blubber included

the Bowhead, Grey, Humpback, and Right Whales. Amongst the toothed whales,

the Sperm Whale was hunted for spermaceti until the discovery of kerosene in the

1840s. In the 20th century the range of whales exploited widened, the number of

firms accessing whale fisheries increased, and the rate at which whale populations

were harvested rose dramatically. Several stocks were driven down to commercial

extinction. Aside from the Baleen Whales targeted in the 19th century these include

the Blue, Fin, Sei and Beluga Whales. It is estimated that just under 3 million whales

were harvested between 1900 and 1986 when the International Whaling Commission

approved a moratorium (Rocha et al., 2014).

The driver of changes in number of whaling firms, the species targeted and the

level of harvest was, in every case, a change in profitability caused by changes in the

cost of access or production, or by changes in demand (Davis et al., 2007). The rapid
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decrease of Bowhead Whale in Eastern Arctic between the late 18th and early 19th

centuries, for example, was due both to the payment of ‘revenue bounties’ aimed at

increasing the size of whaling vessels, and productivity improvements due to changes

in hull design that reduced the cost of whale hunting (Allen and Keay, 2001). In

the 20th century, the introduction of diesel engines, factory ships, and explosive har-

poons were amongst the supply side drivers of the growth in the numbers of whalers,

but profitability was also affected by demand side factors. At the time when the

moratorium was declared, whaling was a rapidly declining industry due to the com-

bined effects of declining stocks (which increased production costs), the emergence

of substitute products, rising incomes, and internationally increasing environmental-

ism. Regulation was argued to follow, rather than lead, catch changes (Schneider and

Pearce, 2004).

Other examples of cost-led declines in common pool marine resources include

the Atlantic Cod fishery in which overexploitation was due in part to the fact that

the predicted rate of growth of the stock was greatly overestimated (Hutchings and

Myers, 1994) which induced a significant amount of industrial investment, and in

part to the effect of government subsidies for new vessels and for upgrades to fishing

capacity particularly after 1985/1986 (Finlayson and McCay, 1998). Similarly, the

overexploitation of the Atlantic and Mediterranean Bluefin Tuna was due to the effect

on costs of an increase in the size and power of French seiners, the introduction of

new and powerful positioning and prospecting equipment, and the introduction of new

storage equipment from the late 1980s to mid-1990s (Fromentin and Ravier, 2005).

In terrestrial systems, there are many parallel examples of changes in the rate at

which common pool resources have been extracted that are driven by cost induced

changes in effort, rather than by changes in the number of those entitled to access

the resource. To take just one example, groundwater reserves are frequently available
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to anyone with the capacity to drill to the water table (the cost of access). The cost

of production in such cases is simply the cost of pumping plus the cost of surface

storage and distribution systems. A study of groundwater use by farmers in the

Hamadan-Bahar plain in Iran, for example, argued that groundwater depletion in the

area is due both to the fact that farmers are not required to pay for water, and to

the existence of a range of subsidies for agricultural production. The net effect is a

reduction in the cost of production that has led both to the sinking of new wells and

an increase in the rate at which water is pumped from existing wells (Balali et al.,

2011).

It is important to underline the fact that resource users may be behaving efficiently

even in the case where the structure of costs induce the tragedy of the commons. The

Nash equilibrium identified by the argmax of the potential function of the commons

game is one at which resource users equate marginal revenue and marginal cost.

If common pool resources or the societies dependent on them have collapsed, it is

because either access or congestion costs were simply inconsistent with the sustainable

use of the resources. I have made the point that congestion aside, the institutional

arrangements for the management of common pool resources recorded in the literature

are likely to have implications for the structure of both access and production costs.

The Maine lobster fishery is a case in point. There are, however, few attempts to

identify the consequences of different common pool resource management regimes for

access or production costs.

Uzawa (2015) argues that today’s discussions on commons overlook four issues.

First, historically, few commons have been genuinely “open access.” Second, resource

users are not always profit maximizing, but rather obey the rules of their commons.

Third, not all commons are destined to be ruined. Whether or not they are depleted

depends on the conditions ruling in each case. Fourth, the concept of commons
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includes the historical institutions and communities that govern the commons as well

as the commons themselves; i.e., commons do not exist in a vacuum; rather, they are

embedded in society so that when we analyze the fate of commons, we need to take into

account the micro-macro interactions between commons and society. I suggest that

the costs of access and production are, at least in part, functions of such institutional

arrangements. There may be cases where marginal costs do not increase with the

number of resource users in the common (i.e., γ = 0) or with output, and these may

reflect weaknesses of the institutional arrangements governing access and use as much

as the characteristics of common pool resources themselves. I nevertheless leave the

relation between institutions and cost structures to future research.
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Chapter 6

CONCLUSION

In this dissertation, the common theme I have discussed is the important role cost

functions play in Cournot competitions and the tragedy of the commons. For Cournot

competitions, my results indicate that the structure of cost functions determines

whether the market witnesses the emergence of a monopoly or an oligopoly. Moreover,

when I take into account taxation on effluent, the outcome is that the government

cannot control the emergence of a monopoly or an oligopoly by varying the taxation

rate on firms; i.e., even if the government wishes that a monopoly needs to be dissolved

so that it enforces the highest taxation rate on a monopoly, my finding indicates that

the firm survives such heavy taxation. Thus, if a policy maker wishes to influence on

the number of firms in a market, he or she should set up institutions that directly

influence on each firm’s cost function rather than establishing laws and/or measures

that blatantly aim to determine the number of firms in the market (e.g., anti-trust

law).

Speaking of the tragedy of the commons, the institutional approach by Ostrom

(2015) is popular among social and environmental scientists. The crux of her insti-

tutional approach is what we call the design principles, which Ostrom argues that

many successful commons have fulfilled with. These are her eight design principles

(Anderies and Janssen, 2013; Ostrom, 2015).

• The boundaries of the resource system (e.g., irrigation system or fishery) and

the individuals or households with rights to harvest resource units are clearly

defined.
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• Rules specifying the amount of resource products that a user is allocated are

related to local conditions and to rules requiring labor, materials, and/or money

inputs.

• Many of the individuals affected by harvesting and protection rules are included

in the group that can modify these rules.

• Monitors, who actively audit biophysical conditions and user behavior, are at

least partially accountable to the users and/or are the users themselves.

• Users who violate rules-in-use are likely to receive graduated sanctions (depend-

ing on the seriousness and context of the offense) from other users, from officials

accountable to these users, or from both.

• Users and their officials have rapid access to low-cost, local action situations to

resolve conflict among users or between users and officials.

• The rights of users to devise their own institutions are not challenged by external

governmental authorities, and users have long-term tenure rights to the resource.

• Appropriation, provision, monitoring, enforcement, conflict resolution, and gov-

ernance activities are organized in multiple layers of nested enterprises.

Anderies and Janssen (2013) argue that these “design principles hold up when chal-

lenged with data” (72) so that these principles meet scientific scrutiny.

But the problem about these principles is that it is still not clear, under what

mechanism, these principles enable resource users around the commons to maintain

the sustainable equilibrium number of users of natural resources for generations. We

can intuitively understand that these principles contribute to the persistence of sus-

tainable equilibrium number of users for generations, but Ostrom (2015) is not clear
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how these principles have contributed to its persistence. However, as mentioned ear-

lier, since the regulatory regimes established by resource users have implications for

the cost of access, the design principles might well be interpreted in terms of the cost

structures they involve.

My results on the tragedy of the commons indicate that if a policy maker is able

to influence on each resource user’s cost function, then the sustainable equilibrium

number of resource users can be identified when the cost function becomes costly

enough as more resource users enter the common. Hence, it is likely that these

principles could affect on each resource user’s cost function so that the sustainable

equilibrium number of resource users can be identified and maintained for generations.

But both my results and that of Ostrom (2015) suggest that identifying the sus-

tainable equilibrium number of resource users is not enough; i.e., this number needs

to be enforced and if there are violators, we need to have a system of punitive actions.

To consider the issue of enforcement, Uzawa (2005) provides an insightful suggestion.

Uzawa (2005) provides us an insight into the issue of the tragedy of the com-

mons by proposing the concept of “social common capital.” According to Uzawa,

social common capitals can be classified into three categories: natural capital, social

infrastructure and institutional capital. In particular, “[n]atural capital consists of

the natural environment and natural resources such as forests, rivers, lakes, wetlands,

coastal seas, oceans, water, soil, and above all, the earth’s atmosphere” (Uzawa, 2005,

vii). Hence, commons that have been discussed so far fall into the category of natural

capital of social common capitals. Uzawa (2005) argues that “[t]he management of

social common capital thus is entrusted on a fiduciary basis to autonomous social

institutions, to provide the environmental framework within which all human activ-

ities are conducted and the allocative mechanism through which market institutions

work” (8). However, Uzawa is not explicit about what these autonomous social in-

121



stitutions do on a fiduciary basis to protect the commons. Also he argues that social

common capitals are to be managed by experts who are professionally trained in such

capitals (Uzawa, 2000); however, Uzawa is not clear on the roles of these experts.

But, according to my results in Chapter 5, the roles played by Uzawa’s “entrusted

autonomous social institutions” and “experts of the commons” are clear; i.e., they

have to influence on each resource user’s cost function and enforce the sustainable

equilibrium number of resource users.

But economists who believe in laissez-faire may feel uncomfortable about the ar-

guments of the identification and enforcement of the sustainable equilibrium number

of resource users. Especially, they may feel uncomfortable with the need of “en-

trusted autonomous social institutions” and “experts of the commons” to manage

the commons because they believe that pareto-optimality can be reached only by

laissez-faire so that the only solution to the tragedy of the commons is privatization

of the commons. However, Roemer (1989) shows that laissez-faire is not the only

solution. He argues, “[P]ublic ownership can bring about Pareto-efficient solutions to

the tragedy of the commons, which are superior to private ownership solutions from

a distributional point of view” (75). Specifically, he considers the case of a lake and

fishermen and argues that “if each fisherman knows the preferences and labor capac-

ities of the others, then there is an allocation rule that is decentralizable..., and that

implements a conception of public ownership”(92) where “decentralizable” means an

“economy” that “the planner need only specify the rules of some non-cooperative

game, but need not elicit information from the players about their preferences, skills,

and endowment” (85). This is exactly what I have shown in this dissertation. If the

planner specifies cost functions, then the sustainable equilibrium number of resource

users can be identified and the tragedy of the commons can be avoided if there is

an institution of enforcement. As Uzawa (2000) claims, the planner needs to be an
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expert who can figure out the collect form of cost functions, and the contribution of

my dissertation is that I have shown such planning can realize the Nash equilibria of

the finite number of resource users in a common.

Lastly, as Diamond (2005) argues, the collapse of societies and civilizations are

(at least partly) attributed to their failure of management of common pool resources.

Dasgupta et al. (2016) attempt to relate the tragedy of the commons to such collapse

by using Markov Perfect Equilibrium (MPE). However, as argued earlier, MPE implies

that many changes are discontinuous although many cases of societal collapse have

gone through rather gradual processes (Butzer, 2012; Diamond, 2005). Hence, my

approach of using potential games seems to be more appropriate for the explanation of

gradual societal collapse. To my knowledge, there are not enough scientific evidences

to fully determine the causes of of such collapse at this moment. Hence, it is one of

my future agenda to work on the issues of societal collapse and provide its convincing

model.

123



REFERENCES

Acheson, J. M., Capturing the commons: devising institutions to manage the Maine
lobster industry (Upne, 2003).

Agnihotri, G., “This is the key to a successful merger and acquisi-
tion in the oil and gas industry”, URL http://seekingalpha.com/article/
3977829-key-successful-merger-acquisition-oil-gas-industry (2016).

Allen, R. C. and I. Keay, “The first great whale extinction: the end of the bowhead
whale in the eastern arctic”, Explorations in Economic History 38, 4, 448–477
(2001).

Alós-Ferrer, C. and N. Netzer, “The logit-response dynamics”, Games and Economic
Behavior 68, 2, 413–427 (2010).

Anderies, J. M. and M. A. Janssen, Sustaining the Commons (Center for Behavior,
Institutions and the Environment, Arizona State University, 2013).

A.T.Kearney, “Mergers and acquisitions in oil and gas”, URL https://www.atkearney.
com/oil-gas/ideas-insights/m-a/2016 (2016).

Balali, H., S. Khalilian, D. Viaggi, F. Bartolini and M. Ahmadian, “Groundwater
balance and conservation under different water pricing and agricultural policy sce-
narios: A case study of the hamadan-bahar plain”, Ecological Economics 70, 5,
863–872 (2011).

Berkes, F., D. Feeny, B. J. McCay and J. M. Acheson, “The benefits of the commons”,
Nature 340, 6229, 91–93 (1989).

Butzer, K. W., “Collapse, environment, and society”, Proceedings of the National
Academy of Sciences 109, 10, 3632–3639 (2012).

Canton, J., A. Soubeyran and H. Stahn, “Environmental taxation and vertical cournot
oligopolies: how eco-industries matter”, Environmental and Resource Economics
40, 3, 369–382 (2008).

centralmaine.com, B., “Maine lobster catch tipped the scale at a record
130 million pounds in 2016”, URL http://www.centralmaine.com/2017/03/03/
maine-lobsters-tipped-the-scale-at-a-record-130-million-pounds-in-2016/ (2017).

Cournot, A. A. and I. Fisher, Researches into the Mathematical Principles of the
Theory of Wealth (Macmillan Co., 1897).

Dasgupta, P., Human well-being and the natural environment (Oxford University
Press, 2001).

Dasgupta, P., T. Mitray and G. Sorgerz, “Harvesting the commons”, (2016).

124

http://seekingalpha.com/article/3977829-key-successful-merger-acquisition-oil-gas-industry
http://seekingalpha.com/article/3977829-key-successful-merger-acquisition-oil-gas-industry
https://www.atkearney.com/oil-gas/ideas-insights/m-a/2016
https://www.atkearney.com/oil-gas/ideas-insights/m-a/2016
http://www.centralmaine.com/2017/03/03/maine-lobsters-tipped-the-scale-at-a-record-130-million-pounds-in-2016/
http://www.centralmaine.com/2017/03/03/maine-lobsters-tipped-the-scale-at-a-record-130-million-pounds-in-2016/


Dasgupta, P. S. and G. M. Heal, Economic theory and exhaustible resources (Cam-
bridge University Press, 1979).

Davis, L. E., R. E. Gallman and K. Gleiter, In Pursuit of Leviathan: Technology,
Institutions, Productivity, and Profits in American Whaling, 1816-1906 (University
of Chicago Press, 2007).

Deloitte Center for Energy Solutions, “Deloitte oil & gas mergers and ac-
quisitions report – 2015 update adjusting to the new reality”, URL http:
//www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/
us-oil-and-gas-M&A-report-2015.pdf (2015).

Diamond, J., Collapse: How societies choose to fail or succeed (Penguin, 2005).

Dolsak, N. and E. Ostrom, “The commons in the new millennium: Challenges and
adaptations”, (2003).

Dragone, D., L. Lambertini and A. Palestini, “Static and dynamic best-response
potential functions for the non-linear cournot game”, Optimization 61, 11, 1283–
1293 (2012).

Dragone, D., L. Lambertini, A. Palestini and A. Tampieri, “On the optimal number
of firms in the commons: Cournot vs bertrand”, Mathematical Economics Letters
1, 1, 25–34 (2013).

EY, “Mergers, acquisitions and capital raising in mining and met-
als: 2014 trends, 2015 outlook”, URL http://www.ey.com/Publication/
vwLUAssets/EY-ma-and-capital-raising-in-mining-and-metals/$FILE/
EY-ma-and-capital-raising-in-mining-and-metals.pdf (2015).

Feeny, D., F. Berkes, B. J. McCay and J. M. Acheson, “The tragedy of the commons:
twenty-two years later”, Human ecology 18, 1, 1–19 (1990).

Finlayson, A. C. and B. J. McCay, “Crossing the threshold of ecosystem resilience:
the commercial extinction of northern cod”, Linking social and ecological systems:
management practices and social mechanisms for building resilience pp. 311–337
(1998).

Foster, D. and P. Young, “Stochastic evolutionary game dynamics”, Theoretical pop-
ulation biology 38, 2, 219–232 (1990).

Fromentin, J.-M. and C. Ravier, “The east atlantic and mediterranean bluefin tuna
stock: looking for sustainability in a context of large uncertainties and strong
political pressures”, Bulletin of Marine Science 76, 2, 353–362 (2005).

Fudenberg, D. and J. Tirole, Game theory (MIT Press Cambridge, MA, 1991).

Funaki, Y. and T. Yamato, “The core of an economy with a common pool resource:
A partition function form approach”, International Journal of Game Theory 28, 2,
157–171 (1999).

125

http://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/us-oil-and-gas-M&A-report-2015.pdf
http://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/us-oil-and-gas-M&A-report-2015.pdf
http://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/us-oil-and-gas-M&A-report-2015.pdf
http://www.ey.com/Publication/vwLUAssets/EY-ma-and-capital-raising-in-mining-and-metals/$FILE/EY-ma-and-capital-raising-in-mining-and-metals.pdf
http://www.ey.com/Publication/vwLUAssets/EY-ma-and-capital-raising-in-mining-and-metals/$FILE/EY-ma-and-capital-raising-in-mining-and-metals.pdf
http://www.ey.com/Publication/vwLUAssets/EY-ma-and-capital-raising-in-mining-and-metals/$FILE/EY-ma-and-capital-raising-in-mining-and-metals.pdf


Gibbons, R., Game Theory for Applied Economists (Princeton University Press,
1992), 4th edn.

Gintis, H., Game theory evolving: a problem-centered introduction to modeling strate-
gic interaction (Princeton University Press, 2009), second edn.
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