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ABSTRACT

This thesis is devoted to the theoretical and computational study of electron transport

in molecular junctions where one or more hydrogen bonds are involved in the process.

While electron transport through covalent bonds has been extensively studied, in

recent work the focus has been shifted towards hydrogen-bonded systems due to

their ubiquitous presence in biological systems and their potential in forming nano-

junctions between molecular electronic devices and biological systems.

This analysis allows us to significantly expand our comprehension of the experi-

mentally observed result that the inclusion of hydrogen bonding in a molecular junc-

tion significantly impacts its transport properties, a fact that has important implica-

tions for our understanding of transport through DNA, and nano-biological interfaces

in general. In part of this work I have explored the implications of quasiresonant

transport in short chains of weakly-bonded molecular junctions involving hydrogen

bonds. I used theoretical and computational analysis to interpret recent experiments

and explain the role of Fano resonances in the transmission properties of the junction.

In a different direction, I have undertaken the study of the transversal conduc-

tion through nucleotide chains that involve a variable number of different hydrogen

bonds, e.g. NH · · ·O, OH · · ·O, and NH · · ·N, which are the three most prevalent

hydrogen bonds in biological systems and organic electronics. My effort here has fo-

cused on the analysis of electronic descriptors that allow a simplified conceptual and

computational understanding of transport properties. Specifically, I have expanded

our previous work where the molecular polarizability was used as a conductance de-

scriptor to include the possibility of atomic and bond partitions of the molecular

polarizability. This is important because it affords an alternative molecular descrip-

tion of conductance that is not based on the conventional view of molecular orbitals as

transport channels. My findings suggest that the hydrogen-bond networks are crucial
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in understanding the conductance of these junctions.

A broader impact of this work pertains the fact that characterizing transport

through hydrogen bonding networks may help in developing faster and cost-effective

approaches to personalized medicine, to advance DNA sequencing and implantable

electronics, and to progress in the design and application of new drugs.
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Eric and Rachel Hannah, the critiques of Hagit Levin, the whimsy of Maura, and the

professional opportunities offered by Dr. James Klemaszewski. I am also thankful to

my Brothers of Masonry who stood by me during the highs and lows (they specifically

know who they are!).

I simply would not have made it to graduate school without the input of three

amazing people. The first is my grandfather who raised me to understand that there

is no path in life but that of hard work and perseverance. Without him and my

late grandmother I would not have had the privilege of academic pursuit. Next, I

would never have believed in my abilities if not for my high school geometry teacher

Ms. Gail Tibbals who took a chance on me and gave me an opportunity that forever

changed my life.

Nobody has been more important to me in the pursuit of this project than my

wife, Andrea. If not for her eternal love (and patience!), I may not have completed

this endeavor. She has inspired me to be better every day and I simply owe her more

than a few sentences could ever convey.

∴

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Brief History of Molecular Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 From Electron Transfer to Electron Transport . . . . . . . . . . . . . . . . . . . . 6

1.3 Electron Transport in Molecular Junctions . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Potential Barriers and Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Transport Through Weak Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Quality of Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Hydrogen Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Polarizability as a Descriptor for Conductance . . . . . . . . . . . . . . . . . . . . 22

2 THEORETICAL AND COMPUTATIONAL METHODOLOGY . . . . . . . . 25

2.1 Standard Electron Transfer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Transmission Between Conducting Leads . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 The Landauer Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Molecular Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Conduction Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Quantum Interference and Fano Resonances . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 CALCULATED PROPERTIES OF SELECTED MONOMERS . . . . . . . . . 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



CHAPTER Page

4 SINGLE-MOLECULE CONDUCTANCE THROUGH HYDROGEN BONDS.

THE ROLE OF RESONANCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 CALCULATED PROPERTIES OF SELECTED DIMERS AND DNA/RNA

BASE PAIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX

A COMPUTATION: THE NITTY-GRITTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Relating to the Electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2.1 Sample Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2.2 XYZ Files -Electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 Relating to Hydrogen Bonded Dimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3.1 Sample Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3.2 XYZ Files - H4 Dimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



APPENDIX Page

A.3.3 ORCA Input File - H4 Dimer Optimization . . . . . . . . . . . . . . . . 105

A.3.4 SIESTA Input FDF File - H4 Dimer. . . . . . . . . . . . . . . . . . . . . . . 106

A.3.5 Gaussian 09 Input File - H4 Dimer Polarizability . . . . . . . . . . . 107

A.4 Relating to Alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.4.1 Sample Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.4.2 XYZ Files - A6 Alkane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.4.3 ORCA Input File - A6 Optimization . . . . . . . . . . . . . . . . . . . . . . 110

A.4.4 SIESTA Input FDF File - A6 Alkane . . . . . . . . . . . . . . . . . . . . . . 111

A.5 Relating to Monomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.5.1 Sample Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.5.2 XYZ File - Adenine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.5.3 Gaussian 09 Input File - Adenine . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.6 Relating to DNA/RNA Base Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.6.1 Sample Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.6.2 XYZ File - A-T Base Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.6.3 Gaussian 09 Input File - A-T Base Pair . . . . . . . . . . . . . . . . . . . . 117

A.6.4 SIESTA Input FDF File - A-T Base Pair . . . . . . . . . . . . . . . . . . 118

A.6.5 Gaussian 09 Input File - A-T Base Pair . . . . . . . . . . . . . . . . . . . . 119

B REPRINT PERMISSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1 Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

viii



LIST OF TABLES

Table Page

1.1 Hydrogen Bond Strengths Defined By Jeffrey [1] and Adapted from

Steiner et al. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 HOMO-LUMO Gap Energies of Considered Systems. . . . . . . . . . . . . . . . . . 51

3.2 Calculated Atomic Polarizability and Other Geometric Parameters in

Comparison to Their NH · · ·O Bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Calculated Atomic Polarizability and Other Geometric Parameters in

Comparison to Their NH · · ·N Bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Calculated Polarizabilities of Purine and Derivatives. . . . . . . . . . . . . . . . . . 56

3.5 Calculated Polarizabilities of Pyrimidine - Different Levels of Theory. . . 57

3.6 Calculated Polarizabilities of Pyrimidine and Derivatives. . . . . . . . . . . . . . 58

5.1 Atomic Polarizability of the Hydrogen Acceptor Atom (αO) in the Pres-

ence of EDG and EDW Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 HOMO-LUMO Gap Energies of Considered Systems . . . . . . . . . . . . . . . . . . 79

5.3 Calculated Atomic Polarizability, Conductance, and Other Geomet-

ric Parameters of Different Systems from the Perspective of Their

NH · · ·O Bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Calculated Atomic Polarizability, Conductance, and Other Geomet-

ric Parameters of Different Systems from the Perspective of Their

NH · · ·N Bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



LIST OF FIGURES

Figure Page

1.1 Overview of Multimodal AFM and STM Techniques. Figure and Cap-

tion Reproduced from Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Comparison: Molecular Wire Transport and Nonadiabatic Intramolec-

ular Electron Transfer. Figure Reproduced and Modified from Ref.

[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 A Potential Barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Electron Tunneling Through a Barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Classical View of the Hydrogen Bond. Here, d = H · · ·O Distance, and

D = O · · ·O Distance. Figure Reproduced from Ref. [2]. . . . . . . . . . . . . . . 16

1.6 Comparing Hydrogen Bond Bridges. a) A Normal hHydrogen Bond

with a Single Acceptor. b) Bifurcated Hydrogen Bond. c) Trifurcated

Hydrogen Bond. Figure Reproduced from Ref. [2]. . . . . . . . . . . . . . . . . . . . 19

1.7 Electrostatic Potential Profile of a Molecular Junction for a) No Molecule

Present, and b) Molecule Present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Common Types of Molecular Junctions with Transmission Profiles. (a)

2-Site, (b) T-Shaped, (c) Cyclic, and (d) Odd-membered Molecular

Junctions. Figure Reproduced from Nozaki et al. [5] . . . . . . . . . . . . . . . . . . 40

2.2 Illustration of the Fano Formula (Equation 2.65) as a Superposition of

the Lorentzian Line Shape of the Discrete Level with a Flat Continuous

Background. Caption and Figure Adopted From Ref. [6] . . . . . . . . . . . . . . 43

2.3 Normalized Fano Profiles (1) with the Prefactor 1/(1 + q2) (2) for

Various Values of the Asymmetry Parameter q. Caption and Figure

Adopted From Ref. [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



Figure Page

3.1 (a) Measured Conductance (G) [7] Versus Total Polarizability. (b)

Measured Conductance (G) [7] Versus the Polarizability of the Proton

Acceptor Atom in the NH · · ·O Bond. Here, O is the Proton Acceptor. 53

3.2 Purine and Its Derivatives. Nitrogen Atoms in the 6-Membered Ring

are Labeled A and B; All Nitrogen Atoms in the 5-Membered Ring are

Labeled C and D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Pyrimidine and Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Summary of Results for Monomer Structures. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Original TOC Graphic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Considered Systems and Electrode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Natural Log of Conductance Verses S-S Distance of H-bonded (Pink

Circles) and Alkane Systems (Blue Squares). The H-bonded Systems

Have an Increased Conductance Over the Alkanes Until the Turnover
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Chapter 1

INTRODUCTION

1.1 A Brief History of Molecular Electronics

An interesting topic in chemistry and physics regards trying to answer the ques-

tion, how do electrons move through molecules? One method to investigate this topic

deals with molecular charge transport where current is passed through a molecule

sandwiched between two electrodes. The other deals with electron transfer which is

a charge moving from an electron donating moiety to an electron accepting one. In

this introduction, a brief history of molecular electronics and a few interesting exper-

imental and theoretical techniques used in this field will be explored. The chapter

will then conclude with an explanation of an often overlooked (but an unquestionably

important) aspect of molecular electronics and its importance to today’s research in

this area.

The field of molecular electronics emerged in the early 1970’s with the work of

many researchers including Arieh Aviram, Mark Ratner, Hans Kuhn, Bernhard Mann,

and others [8, 9]. In 1971, Kuhn and Mann reported conductance measurements

through monolayers of cadmium salts. Their measurements revealed that conduc-

tance decreases exponentially with the thickness of the layer. This meant that electron

tunneling was taking place through the organic monolayer. Tunneling is a quantum

mechanical feature where particles (in this case, electrons), are sent through a clas-

sically forbidden region where there is a probability that they will pass through the

region. Since then, another major advancement in molecular electronics took place

- using a single molecule as an electrical component whereby a single molecule was
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sandwiched between two electrodes and a bias applied. In fact, Aviram and Ratner

first proposed the construction of a specific type of electronic device, a rectifier, in

1974 [9, 10].

One of the most important advancements in molecular electronics occurred in the

1980’s with the development of the scanning tunneling microscope (STM) by IBM

laboratories in Zurich [11]. Later, the atomic force microscope (AFM) was invented

by the same. Both of these advancements allowed for the direct measurement of con-

ductance through single molecules. Figure 1.1 demonstrates some of the differences

between AFM and STM. STM has played an important role in our understanding

of transport phenomena and remains important due to its dual use in microscopy

and tunneling spectroscopy [10]. However, STM requires well-defined surfaces (such

as single crystals) and is thus not suitable for many experimental setups [10]. Here

is where AFM plays a role as another useful structural characterization tool. While

AFM typically has lower resolution than STM, it allows for the combined force and

conductance measurements providing information concerning the bonding nature of

the molecule-electrode contacts [10, 12].

Mark Reed’s group at Yale University was the first to make significant progress

in measuring single molecule transport. This was done in collaboration with James

Tour and resulted in publications in the 1990’s and early 2000’s which provided in-

sights into the transport properties of different molecules [13]. Their work resulted in

collaborations across many different disciplines.

One of the first challenges in obtaining conductance measurements through single

molecules is the number of different fields involved. To properly characterize conduc-

tance through a molecule, the combined effort of synthetic chemists, experimental

physicists and physical chemists, and theoreticians was needed [14]. The synthetic

chemists faced the problem of attaching a single molecule to electrodes. They found
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Figure 1.1: Overview of Multimodal AFM and STM Techniques. Figure and Caption

Reproduced from Ref. [3].

that it was reasonable to attach the molecule to preferably gold or platinum electrodes

(to reduce oxidation and degradation) and that sulphur, amine, or other lone-pair

species could be used as anchoring groups for the molecule to the gold electrode and

lone-pair species as anchoring groups for attaching a molecule to platinum electrodes

[15].

Experimentalists faced the problem of accurately measuring the single molecule

conductance of the systems previously developed. Often, large fluctuations in ex-

perimental data would lead experimentalists to create new schemes for better mea-

surements. In order to not only measure the current accurately, but to also create a

useful physical device, molecules needed to be electrically wired reliably to its elec-

trodes [10]. The conductance of a molecule is sensitive to not only the chemical

bonds [16] between itself and the electrodes but also to the atomic-scale details of

the molecule-electrode contact geometry [17]. Having precise control over the contact
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geometry has been a challenge for many research groups [18]. One available method

for reliably attaching a molecule to an electrode is to functionalize the molecule with

a thiol group and then connecting it to gold electrodes. This approach works well

but comes with its own disadvantage, for example, high metal-atom mobility and a

large polarization field at the contact interface [10]. Researchers have explored other

‘linker groups’ outside of thiols. Some groups have used linker groups comprised of

C-C [19, 20], C-Si [21], and other bond arrangements [22, 23] to differing degrees of

success.

Another challenge faced by experimentalists that has been observed is stochastic

fluctuations where unwanted random telegraphic switching of conductance has been

observed in metal-molecule-metal junctions [24, 10]. Explanations for this behavior

include molecular motion due to conformational changes and bond fluctuation due to

molecules tethered to the gold surface becoming attached or detached randomly [10].

This behavior has been reported in the conductance measurements of many systems,

for example, Si-metal-oxide field effect transistors [24]. Similar stochastic fluctuations

have been observed in the optical spectroscopy of single molecules. While not a severe

limitation in the actualization of nanoscale devices, this type of challenge should be

understood [10].

Another important topic for consideration is the current-induced instability and

local heating experienced by the molecule during these experiments. Electromigra-

tion and local heating are well known in conventional electronics and become even

more important at the nanoscale [25]. Current-induced instability and local heat-

ing affects arise from the energy exchanged between electrons and phonons [26, 10].

While in a nanoscale junction the inelastic electron mean free path is relatively large

compared to the junction size, substantial effects still often arise due to the large

current density in the nanojunction [10]. Local heating can be assessed by measuring
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the force required to detach molecules bound to their electrodes [27]. Detachment in

this case is thermally activated and directly related to the force required to separate

the molecule from its electrodes. By measuring this force requirement, one can get

an idea of the effective temperature of the molecular junction as a function of the

applied bias voltage [27].

Theoreticians approached the question concerning the movement of electrons through

molecules using a modified technique originally developed by Rolf Landauer, Markus

Buttiker, Yigal Meir and Ned Wingreen [8, 28, 29]. This technique, referred to as the

non-equilibrium Green’s function, is a type of correlation function that demonstrates

excellent agreement between computational work and experiment [8, 28, 29]. Much

of this work was expanded by Mujica and coworkers later with this inclusion of scat-

tering methods to calculate conductance in molecular wires [29]. Another theoretical

technique is based on the Simmons model from the early 1960’s and takes into ac-

count the concept of barrier tunneling and the dependence of the tunneling process

on the shape and size of the barrier [8, 30]. Useful predictions based on this model

come in the form, ‘π systems will conduct better than σ systems’, ‘current decays

exponentially with the length of the molecule’, and ‘frontier molecular orbitals and

their structures will determine molecular conductance’ [8]. Still, elegant and striking

measurements have been made on a number of designed organic molecular systems

where these rules of thumb hold true. For example, the Simmons analysis and the

HOMO/LUMO (Highest Occupied Molecular Orbital / Lowest Unoccupied Molecular

Orbital) analysis are standard for explaining molecular transport [8].

While these simple predictions have been useful, research has moved beyond the

simple transport model and now incorporates more advanced areas of molecular elec-

tronics such as molecular spintronics (closed-shell and odd-spin molecular species),

the investigation of vibronic effects (interaction between electronic and vibrational de-
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grees of freedom), excitation of the molecular junction using polarized light, quantum

interference and decoherence, molecular chirality, molecular stretching and distortion,

and thermoelectric response in junctions [8, 31].

As we can see, from 1971 to present much advancement has been made in the

field and techniques of molecular electronics. This field is still relatively new when

we consider the vast number of systems still to be analyzed (there are estimated to

be about 1060 organic compounds with 15 atoms or fewer) and the types of systems

that exist - from single molecule to complex organic structures like those of DNA and

RNA [8]. This ends our brief overview on the history of molecular electronics. Next,

we will discuss more on the theory behind how molecules and electrons interact with

each other in a nanojunction.

1.2 From Electron Transfer to Electron Transport

Intramolecular electron transfer and charge transport in molecular wires are closely

related areas [4, 8]. In the case of intramolecular electron transfer, reactions are ei-

ther photo-induced or initially deposited non-equilibrium electron density transfers,

in a rate process between sites linked by a molecular bridge. These types of elec-

tron transfer reactions are exceptionally important in areas of investigation such as

chemical corrosion and photosynthesis and have been of interest to physical chemists

for decades [4]. Since intramolecular electron transfer takes place by an electron tun-

neling from an initial state to a final state through a bridging medium, it is directly

related to transport through a molecular wire [4]. We can see the equivalent concepts

between these two ideas in Figure 1.2. The individual concepts behind encapsulated

in this figure including the underlying mathematics are discussed later in Chapter 2.

The simplest example of a molecular junction analyzed for transport is the molecu-

lar wire. This wire simply serves to convey either charge or excitation energy from one
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Figure 1.2: Comparison: Molecular Wire Transport and Nonadiabatic Intramolecular

Electron Transfer. Figure Reproduced and Modified from Ref. [4]

electrode to another [4]. The two types of molecular wires that have been widely inves-

tigated are photonic molecular wires that transfer excitation and electronic molecular

wires which move either electrons or hole charges. Molecular wires differ from macro-

scopic conductive wires in size which in turn changes the nature of its energy levels

and transport processes. Varying conditions have been explored to study molecular

wires from synthetic techniques based on molecular self-assembly, to nano-assembled

circuitry.

One way of computing the conductance across a molecular wire in a simple way

is via the Landauer approach. In a steady state, the Landauer formalism states that

the conductance is proportional to the transmission probability t2 of the electronic

states around the Fermi energy level (the energy up to which states are occupied)

[32, 33, 4].
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g ∝ 2e2

π~
t2 (1.1)

Equation 1.1 assumes that an electron in the donor electrode moves to the accep-

tor electrode via an elastic scattering medium (a molecule or system of molecules).

Landauer observed that even in the absence of inelastic mechanisms that the sys-

tem will still have a well defined conductance and noted that the traveling electron

arrives in the acceptor electrode in a hot state that then thermalizes to the Fermi

level of the second electrode through scattering [4]. Landauer’s formula has been

accepted among theoretical calculations as robust due to its expressing a connection

between the transmission probability and the conductance. His formula also shows

that minimal resistance (optimal conductance), is finite. Since the number of con-

duction channels is discrete, the maximum possible conductance in a system is an

integer multiple of the quantum of conductance [4]. The quantum of conductance is

defined as [34]:

G0 =
2e2

h
= 7.748 091 7310(18)× 10−5 S (1.2)

Though Landauer’s expression is fundamental, other approaches such as cluster

analysis have been useful from a computational standpoint [4, 35, 36, 37]. For exam-

ple, based on Bardeen’s analysis of tunneling, in the case of low voltage we can obtain

an expression for one-dimensional conductance in a form similar to Landauer’s

g ∝ 2e2

π~
∆D∆A |G1N |2 (1.3)

where the ∆s are chemisorption couplings to the donor and acceptor electrodes, and

G1N is the 1, N element of the total molecular Green’s function. G1N is the relevant

matrix element of the Green’s function whereby conductance is calculated. It is

defined as

G1N =
(−1)N−1

∏N−1
i=1 Vi,i+1

D1,N −D2,N

∑
N +D2, N − 1

∑
1

∑
N

(1.4)
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where N is the number of sites in the wire (tight-binding approximation), and Vi,i+1 is

the interaction between neighboring sites. The D components of the above equation

are determinants constructed from the wire Hamiltonian matrix [29].

Equation 1.3 demonstrates, just like Landauer’s, that the conductance depends

on the transmission probability [4]. However, 1.3 takes into account factors that

can influence the transmission probability. The chemisorption couplings ∆D and ∆A

enter here separately and also the conductance maxima relates to the poles of the

molecular Green’s function. This therefore takes into account the molecular orbital

(MO) energies of the isolated molecule [4].

By extending this formalism to cases with finite voltage, the current is given by:

I =

0∫
−eV

dEfD(E)(1− fA(E + eV ))g(E)/e (1.5)

where g(E) is the conductance corresponding to transmission at an energy E, and

where the Fermi level of the donor reservoir defines the zero of energy [4].

The interpretation of 1.5 can be explained simply as the total current as the sum

of all conductance coming from all energy states between both Fermi levels [4]. Due to

this, the current is linear for small voltages. Another result from this formalism is that

when any of the molecular energies cross one of the Fermi levels, the current increases

and will remain constant until the next energy crossing resulting in a current-voltage

curve resembling a staircase function [4]. This is due to the resonance-like structure

of the conductance spectrum g(E).[4]

1.3 Electron Transport in Molecular Junctions

As we mentioned earlier, the simplest setup for molecular electronics is a single

molecule transport junction where a molecule is connected to a source and a drain

electrode [38]. When the length of the molecule bridging the electrodes is relatively
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short and the gap between the injection energy and molecular eigenstates is large,

transport will occur via elastic tunneling. If stochastic switching occurs, the vibronic

signature can be found using a technique called inelastic electron tunneling spec-

troscopy (IETS).

One of the first concerns in using single molecule electronics was whether the cur-

rent passing through a single molecule was a measurable quantity [38, 39]. The first pi-

oneering experiments in this field revealed immediately that the current/voltage (I/V)

characteristics of a molecular junction revealed little about the particular molecule

being employed in the junction [38, 40]. The role of the molecule in the junction

acts as a tunneling barrier between the electrodes [38, 41]. Molecules can reveal

their individual presence in the junction when we couple electron transport with nu-

clear motions. While the conductance through a single molecule was observed, it

was learned that the nature of the electrode-molecule contact and the geometry of

the interface were the least controllable aspects of the experiment and it was these

considerations that affected the measured current the most [38, 18, 42, 10].

We can observe inelastic tunneling of the electrons in the junction if, during the

coherent tunneling transport process, they exchange energy with one or more of the

available vibrational levels of the junction [38, 43]. At low temperatures (<10 K),

it is assumed that all of the vibrational modes are in their ground state. In this

state, the electron can only lose a vibrational quanta of energy ~ωa. Here ωa is the

frequency of the molecular vibrational mode a. We can see that the inelastic channel

that causes the excitation of mode a is available only when the bias V is such that

|V | > ~ωa/e. This can be visualized by a small and sharp increase in conductance

(dI/dV ) every time a new inelastic channel becomes available as a peak in a plot

of d2I/dV 2 at |V | > ~ωa/e. Only a small percentage (< 2%) of electrons happen

to cross the junction inelastically. The measurement of d2I/dV 2 is what constitutes
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the methodology behind inelastic electron tunneling spectroscopy [38, 44]. It mainly

provides information on the vibrational levels of the junction and its applicability

remains in showing that a molecule is indeed bridging the two electrodes and forming

a junction [38].

Molecular junction transport can occur in different transport regimes and can be

distinguished by different energy scales. These regimes consider the injection gap

energy EG between the frontier molecular orbitals and the injection energy from the

molecule, the spectral density Γ (the coupling between the molecule and electrode)

which characterizes the orbital mixing at the molecule-electrode interface, the vi-

bronic coupling strength which is a measure of the energy associated with nuclear

reorganization, on-molecule Coulomb repulsion, and thermal energy [38].

The electrode-molecule electronic coupling is characterized by Γ. The transmission

peaks are broadened and the off-resonance injection is relatively easy when Γ is large.

We see sharper peaks and greatly reduced off-resonant injection when Γ is small. It’s

also necessary to note that vibronic couplings can change the transport mechanism

in both small and large Γ regimes [38, 45, 46].

1.4 Potential Barriers and Tunneling

Let us consider electrons in contact with a potential barrier such as one in Figure

1.3. Here we assume that electrons are approaching the barrier from the left and

has some probability of being reflected by the barrier. However, there is also the

probability that the electron will be transmitted through the barrier even though

its energy might be less than the barrier height. Transmission through this type of

barrier is referred to a tunneling. In later Chapters we will see that our systems are

in junctions where tunneling is the dominant method for electron transport. In much

longer systems, ‘hopping’ may occur - a multistep electron transport process [47].
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To address this model, we turn to the time-independent Schrodinger Equation. If

Figure 1.3: A Potential Barrier.

we look at either the left or right of the barrier, we can see that the electron is in a

classically allowed region. We can model the electron in this region using plane waves.

However, when the electron is within the barrier, if the energy E of the electron is

below that of the barrier potential V0, the barrier becomes a classically forbidden

region. The solution is described by expanding and decaying exponentials. We can

assume a solution in the form

ψ(x) =


eikx + re−ikx, for x ≤ 0

aeαx + be−αx, for 0 ≤ x ≤ L

teikx, for x ≥ L

(1.6)

where we have

k =

√
2mE

~2
(1.7)
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and

α =

√
2m(V0 − E)

~2
(1.8)

Here, the intensity of the incoming plane wave is unity where the amplitude of the

reflected wave r is the reflection coefficient and the amplitude of the transmitted wave

t is the transmission coefficient. The reflectivity is |r|2 and the transmissivity is |t|2.

We can now match the piecewise solutions at the left edge of the barrier by equating

the amplitude of the wavefunction to give

ψ(0) = 1 + r = a+ b (1.9)

where equating the slope of the wavefunction gives

ψ′(0) = ik − ikr = αa− αb (1.10)

At the right edge of the barrier

ψ(L) = aeαL + be−αL = teikL (1.11)

and

ψ′(L) = aαeαL − bαe−αL = ikteikL (1.12)

It is important to note here that the tunneling probability is enhanced when the

approaching electron has an energy close to that of the barrier height. Also, the

reflection of electrons off the barrier can lead to interference with electrons in contact

with the barrier. In the instance where the electron energy is much less than the

barrier height, the wavefunction within the barrier can be modeled as a decaying

exponential. The transmission probability is then approximately

T ≈ e−2αL (1.13)

Figure 1.4 shows the plot of a wavefunction for an electron approaching the barrier

from the left. When the electron energy is lower than the barrier height, tunneling
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is possible, but the probability is small. When the energy of the electron is close to

that of the barrier height, there is a non-zero transmission probability through the

barrier.

Figure 1.4: Electron Tunneling Through a Barrier.

1.5 Transport Through Weak Bonds

While time has been taken to discuss the history behind molecular electronics,

the relevance of this work in respect to this history has not yet been addressed.

We have seen how experimentalists and theorists alike have spent decades trying

to devise methods to not only sandwich a single molecule between electrodes but

to also measure its conductance. However, most of these researchers have focused

on molecular systems that resembled ’wires’ in order to accomplish this purpose.

Systems such as alkanes, alkenes, and alkynes have been used, as have systems more

complex like DNA and RNA. Intuitively this makes sense. However, if we are to

consider electrons moving through these types of systems, the question comes to

mind concerning the quality of bonds. What bond type is the best for transport?

In this work transport through a much less discussed medium: the hydrogen bond is

considered.
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1.6 Quality of Bonds

This work focuses on a type of bond typically considered a ’weak link’. Weak

links are of the nature of hydrogen bonds and bonds arising from van der Waal-like

interactions (through-space) and may be important for nanoscale devices. One reason

for this is that the pathways model assumes that through-bond connections (covalent-

like bonds), being much stronger than van der Waals contacts, should in principle

yield a weaker decay with the length of the junction for electron tunneling [48, 49, 50].

Therefore, it is assumed that tunneling should preferentially occur through bonded

connections [48].

A study by Kurlancheek et al. found that at most, there existed a modest dif-

ference observed between tunneling via H-bonded contacts and tunneling via van der

Waals contacts [48]. Also, Therien and co-workers previously studied the effect of

H-bonds on the coupling between a donor and acceptor atoms and found that the

coupling strength is comparable to that of some covalent bonds [48]. While this is

consistent with the pathways model, it brings to question the exact role that trans-

port through hydrogen bonds can play. Last, of particular relevance to our work,

Nishino et al. found that conductance through hydrogen bonds was actually higher

than through covalent σ bonds (alkanes) for short chains. This calls into question

whether there is a better bond for transport. This work seeks to explore the role of

transport through hydrogen bonds.

1.7 Hydrogen Bonding

The hydrogen bond was discovered almost 100 years ago and yet is still a hot

topic of discussion today. The long lasting interest in hydrogen bonding is due to its

importance for the structure, function, and dynamics of a large number of chemical
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systems ranging from inorganic to biological chemistry [2, 51]. Interest in hydrogen

bonding can be found in many disciplines including mineralogy, material science,

inorganic and organic chemistry, supramolecular chemistry, biochemistry, molecular

medicine, and pharmaceuticals [2, 52, 53]. When we compare hydrogen bonds to

other chemical bonds, the hydrogen bond is typically considered “weak” and is one

of the most important bonds in the chemistry of life [52]. Hydrogen bonds can be

made and broken at ambient temperatures, are important in determining the tertiary

structure of proteins and nucleic acids, dictate the thermal properties of polymers

like nylon, and participate in vital drug-receptor interactions [52]. Before we begin a

systematic overview of the hydrogen bond, let’s first review the classical definition of

the hydrogen bond.

Figure 1.5: Classical View of the Hydrogen Bond. Here, d = H · · ·O Distance, and

D = O · · ·O Distance. Figure Reproduced from Ref. [2].

The semi-classical view of hydrogen bonding can be visualized in Figure 1.5 where

we can see the interaction between two water molecules. This two-water system is

the classical basis where we see directional interaction between the molecules [2].

Differences in electronegativity between the hydrogen (H) and oxygen (O) atoms

makes the resulting O-H bond in the water molecule polar [2, 52]. There exists

a partial atomic charge of approximately +0.4 on each H atom and approximately

−0.8 on the O atom [2]. We can see here that the local dipoles resulting from these
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partial charges (Oδ−−Hδ+) point towards the negative partial charge (Oδ−) [2]. In the

resulting bond (O − H · · ·O), the intermolecular bond distance is shorter by around

1 Å when compared to the sum of the van der Waal radii for the H and O atoms [52].

This indicates that there is substantial overlap of the electron orbitals to form a three-

center four-electron bond. The total interaction in this bond is mostly electrostatic

with a dissociation energy around 3.5 kcal mol−1 [2]. This classical picture of the

hydrogen bond can be extended with small changes to include similar interaction of

the type X − H · · ·A. This bond is formed with strongly polar groups (Xδ− − Hδ+)

on one side of the bond and electronegative atoms (Aδ−) on the other side. In this

example, X=O, N, or a halogen and A=O, N, S, halide, etc.

While the hydrogen bond can in some instances be thought of in this classical

sense, we now know that the hydrogen bond can be much more complicated and

requires a quantum model. For example, there exists hydrogen bonds so strong that

they more closely resemble covalent bonding while in other examples the bond is so

weak that it more closely resembles van der Waal’s interactions [2]. The hydrogen

bond actually exists on a spectrum consisting of continuous transition regions repre-

senting effects ranging from covalent-like bonding, purely ionic bonding, the cation-π

bonding, and the van der Waal’s interaction-type bonding [2, 53]. The traditional

view encompassing the electrostatic dominance of the hydrogen bond is only accu-

rate for a subset of occasions while other times it behaves differently [2]. Whereas we

mentioned above in the classical view, the hydrogen bond (H · · ·A) distance in not

necessarily shorter than the sum of the van der Waal’s radii [2]. Also, for an X-H

group to form a hydrogen bond, X does not need to be especially electronegative; it

is only necessary for X-H to be slightly polar [2].

Now that we have briefly discussed an overview on the some of the complexities

demonstrated by a hydrogen bond, it would be prudent to define what a hydrogen
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bond actually is. An early definition proposed by Pimentel and McClellan posited

that a hydrogen bond exists if two conditions were present: 1) that there was evidence

of a bond in general, and 2) that there is evidence that the bond sterically involves

hydrogen already bonded to another atom [2, 54]. This definition clearly leaves out

any chemical information concerning the other atoms involved in the bond including

their polarities or net charges. Also, nothing is specified concerning the interaction

geometry of the hydrogen atom; only that the hydrogen atom must be present in or

around the bond. Another drawback of this definition is the fact that pure van der

Waal interactions (which do form bonds) are included in this definition. A better

definition proposed by Steiner et al. states, “An X − H · · ·A interaction is called a

hydrogen bond, if 1. it constitutes a local bond, and 2. X−H acts as a proton donor

to A.” [2, 52] We can immediately see that the second requirement is related to the

acid/base properties of the bond and also implies a proton-transfer reaction from X−H

to A. This definition also serves to exclude pure van der Waals contacts and agostic

interactions [2]. Point 2 of this definition also serves to include symmetric hydrogen

bonds (X−H−X) where the donor and acceptor atoms cannot be distinguished, but

nevertheless, the hydrogen bond exists [2].

In a hydrogen bond of the type X−H · · ·A, the group X−H is referred to as the

donor while A is called the acceptor [2, 53, 52]. In this nomenclature it is understood

that donor and acceptor means proton donor and proton acceptor, respectively. There

are cases in the literature where some authors prefer nomenclature where X − H is

the electron acceptor while A is the electron donor [2]. Both sets of nomenclature

are accepted. For the purpose of this thesis I will be using the former definitions of

donor and acceptor - referring exclusively to the proton.

Now that we have a sense of what a hydrogen bond is and the terminology, we can

discuss different types of hydrogen bond bridges - that is, a molecular systems contain-
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Figure 1.6: Comparing Hydrogen Bond Bridges. a) A Normal hHydrogen Bond with

a Single Acceptor. b) Bifurcated Hydrogen Bond. c) Trifurcated Hydrogen Bond.

Figure Reproduced from Ref. [2].

ing more than one hydrogen bond. Figure 1.6 shows the different types of hydrogen

bond bridges. In a simple hydrogen bond, the proton donor interacts with only one

acceptor atom. However, systems exist where a donor can interact with two or three

acceptors at the same time [2]. Hydrogen bonds with more than three acceptors are

possible but rare due to the very high spatial densities of the acceptors. In the case

where the proton is bonded to two acceptors simultaneously, the term “bifurcated”

is often used [52]. The term “two-centered” can also be used in this scenario. Last,

we can see that “trifurcated” systems also exist. While some authors have also used

the terminology “non-bonded interactions”, or “through-space interactions”, I will be

focusing on referring to hydrogen bonds as H-bond or through-space interactions, as I

have just shown that “non-bonded interactions” may cause confusion going forward.

Let us now focus on constituent interactions in the hydrogen bond. The hydrogen

bond is a complex interaction with multiple constituents, different in nature, playing

an important role [2]. The total energy of a hydrogen bond (Etot) is comprised of con-
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tributions from electrostatics (Eel), polarization (Epol), charge transfer (Ect), disper-

sion (Edisp), and exchange replusion (Eer) [2, 52]. The individual distance and angular

characteristics of these consituents are different from each other. The electrostatic

term is highly directional and distance dependant. For example, the electrostatic

term diminishes slowly as −r−3 for dipole-dipole interactions and −r−2 for dipole-

monopole interactions. The polarization constituent decreases even faster as −r−4

and the charge-tranfer constituent term decreases even faster than that as approxi-

mately e−r. If we consider natural bond orbital analysis [55], charge transfer occurs

from an electron lone pair on atom A to an antibonding orbital of X−H (nA → σ∗XH).

The dispersion constituent is isotropic and has a distance dependance of −r−6 while

the exchange-repulsion constituent term increases sharply with reducing distance as

+r−12. The prior two terms (dispersion and exchange-repulsion) are typically com-

bined into an isotropic “van der Waals” contribution term that is approximately de-

scribed by the widely known Lennard-Jones potential (EvdW ∼ Ar−12−Br−6). While

we can characterize the energy of a hydrogen bond with these constituent terms, each

term is weighted differently depending on the donor-acceptor combination and the

details surrounding the bond geometry. Therefore, no one term dominates the total

energy of the hydrogen bond (Etot). Due to these many constituents and the varying

types of hydrogen bond configurations discussed, it is not easy to pin down an average

hydrogen bond energy. Actually, the energy of the hydrogen bond covers more than

two orders of magnitude in experimental studies (−0.2 to −40 kcal mol−1) [2, 52].

Another interesting way of considering hydrogen bonds is to regard them as

proton-transfer chemical reactions. If we consider the hydrogen bond in this light,

then the notation X−H · · ·Y serves to illustrate a “picture” of the bond in the reac-

tion where: X− H · · ·Y � X− · · ·H− − Y+ or X+ − H · · ·Y � X · · ·H− − Y+. This

means that a partial X−H bond already exists and it is understood that the proton
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is “floating” between the other atoms forming the bond. Treating the hydrogen bond

as a proton-transfer reaction is complementary to electrostatic views on hydrogen

bonding and allows us to consider aspects such as acid/base affects, proton affinities,

and will allow us to address later the partially covalent nature of the bond.

A hydrogen bond is often considered to be “weak”, “strong”, and some cases

“in-between” depending on many factors. Here, we follow Jeffrey [1] to consider

“moderate” hydrogen bonding if the bond resembles those between water molecules

or in simple carbohydrates have bond energies in the range of 4 − 15 kcal mol1 .

Hydrogen bonds with energies above or below this range are considered strong or

weak, respectively. Steiner et al. created a simple table for reference which I have

reproduced here in part.

Strong Moderate Weak

Interaction Type Strongly Covalent Mostly Electrostatic Electro./Dispers.

Bond Lengths [Å]

H · · ·A 1.2− 1.5 1.5− 2.2 > 2.2

∆ X− H [Å] 0.08− 0.25 0.02− 0.08 < 0.02

X− H vs. H · · ·A X− H ≈ H · · ·A X− H < H · · ·A X− H� H · · ·A

X · · ·A [Å] 2.2− 2.5 2.5− 3.2 > 3.2

Directionality Strong Moderate Weak

Bond Angles [◦] 170− 180 > 130 > 90

Etot [kcal mol−1] 15− 40 4− 15 < 4

Table 1.1: Hydrogen Bond Strengths Defined By Jeffrey [1] and Adapted from Steiner

et al. [2]

Since hydrogen bonding interactions are dynamic and ubiquitous in nature, re-
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searchers have begun to study the use of H-bonded organic semiconductors [53]. For

example, Glowacki et al. has identified three main avenues of research for utiliz-

ing H-bonding in organic electronics and consists of the following: investigating the

conduction mechanism of the H-bond in biological materials like DNA, investigating

H-bonded organic pigments, and supramolecular H-bonded mediated self-assembly of

conducting moieties [53]. In my research I have investigated some of these avenues.

Specifically, I have looked at conduction through dimers and DNA base-pairs while

also looking for an easier and more cost effective molecular descriptor in order to gen-

eralize conductance trends without the computational cost of full-scale conductance

calculations.

1.8 Polarizability as a Descriptor for Conductance

Since the start of the field of molecular electronics many experimentalists have

tried to use molecular properties of the bridge as a way to make a quick judgment

about the transport properties of a molecular junction. Some of the most commonly

used properties are length [56], and the energy gap between HOMO (highest occupied

molecular orbital) and LUMO (lowest unoccupied molecular orbital [57]. Because of

the complex nature of transport, these rules have been proven ineffective in many cases

- particularly when the quantum effects become more dominant [58, 12]. Mazinani et

al. have suggested the use of molecular polarizability as a descriptor that can capture

the essence of transport through molecular junctions.

Mujica and coworker’s have shown that by self-consistently solving the Schrödinger

and Poisson equations, one can connect the quantum electronic density to the elec-

trostatic potential and therefor obtain the spatial profile of the electrostatic potential

[59]. The interesting result of this model is that molecules in the junction behave

mostly as a dielectric - that their polarization response counteracts the driving field.
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This is, in fact, a very different profile from the spatial profile of a vacuum junction.

Figure 1.7 schematically portrays the difference.

Figure 1.7: Electrostatic Potential Profile of a Molecular Junction for a) No Molecule

Present, and b) Molecule Present.

This picture, establishes the paramount role of the molecular bridge in determining

the local dielectric properties of the molecular junction. The connection between

molecular polarizability and dielectric constant can be set, in its simplest form, by

the Clausius- Mossotti relation

εr − 1

εr + 2
=
Nα

3ε0
(1.14)

where εr = ε/ε0 is the dielectric constant of the material, ε0 is the permittivity of

free space, N is the number density of the molecules (number of molecules per cubic

meter), and α is the molecular polarizability.

Mazinani et al. have approached this problem in its simplest form and showed

that the following relation between conductance and polarizability can be established

[60]

g = g1e
−β1α

(
C − β1

2
α + . . .

)
(1.15)

where β1 is the decay constant, g1 is the quantum of conductance, C is an expansion

constant, and α is the molecular polarizability.
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It is worth noting that increase in polarizability of the bridge results in a decrease

of the molecular conductance. In later chapters, we show that this connection works

even in systems with multiple hydrogen bonds.

Thus far, the history and importance of molecular electronics and the potential

role of hydrogen bonding within this framework has been reviewed. It is now necessary

to review the methodology behind the results contained in this work. Computational

chemists have many tools at their disposal to calculate a variety of molecular proper-

ties. In this work, computational packages such as ORCA, TranSIESTA, Gaussian,

and others were used. These programs use the same, or very similar mathematics

in their calculations. In the next chapter, the mathematics behind this work are

introduced.
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Chapter 2

THEORETICAL AND COMPUTATIONAL METHODOLOGY

2.1 Standard Electron Transfer Theory

This chapter begins by first focusing on a review of electron transfer processes.

The following equations and derivations are provided by Nitzan and coworkers [61].

To start, the expression for the electron transfer rate in the limit of non-adiabatic

transfer is given by the equation

ket =
2π

h
|VDA|2 F (2.1)

where VDA is the coupling between the donor (D) and acceptor (A) electronic states

and where

F = F (EAD) =
∑
VD

∑
VA

Pth(εD(VD))|〈VD|VA〉|2δ(εA(VA)− εD(VD) + EAD) (2.2)

is the thermally averaged Franck Condon (FC) weighted density of states. In Equation

2.2, VD and VA are the donor and acceptor states, Pth is the Boltzmann distribution

over donor states, εD(VD) and εA(VA) are nuclear energies above the corresponding

electronic origin and EAD = EA−ED is the electronic energy gap between the donor

and acceptor states. In the classical limit, F is given by,

F (EAD) =
e−(λ+EAD)2/4λkBΘ

√
4πλkBΘ

(2.3)

where kB is the Boltzmann constant, Θ is the temperature, and where λ is the reor-

ganization energy. If the donor is replaced by an electrode, we have to sum over all

occupied electrode states

|VDA|2F ⇒
∑
k

f(εk)F (εk−eΘ)|VkA|2 =

∫
dεf(ε)F (ε−eΘ)

∑
k

δ(ε−εk)|VkA|2 (2.4)
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where

f(ε) =
1

1 + eε/kBΘ
(2.5)

is the Fermi-Dirac distribution function with ε measured relative to the electron

chemical potential µ in the electrode and Θ which determines the position of the

acceptor level relative to µ is the overpotential. Defining

∑
k

δ(ε− εK)|VkA|2 ≡ |V (ε)|2 (2.6)

the electron transfer rate becomes

ket =
2π

~

∫
dε
e−(λ−eΘ+ε)2/4λkBΘ

√
eπλkBΘ

|V (ε)|2f(ε) (2.7)

Much of the early work on electron transfer have used equations like Equation 2.3

and Equation 2.7 with the electronic coupling term VDA used as a fitting parameter.

More recent work has focused on ways to characterize the dependence of this term on

the electronic structure of the donor/acceptor pair and on the environment. Studies

of bridge mediated electron transfer, where the donor and acceptor species are rigidly

separated by molecular bridges of well defined structure and geometry have been

valuable for characterizing the interrelationship between structure and functionality of

the separating environment in electron transfer processes. As expected for tunneling

processes, the rate is found to decrease exponentially with the donor-acceptor distance

ket = k0e
−β′RDA (2.8)

where β′ is the range parameter that characterizes the distance dependence of the

electron transfer rate. The appearance of the term VDA in Equation 2.1 is a low-

order perturbation theory result. A more general expression is obtained by replacing

VDA by TDA where the T operator is defined by T (E) = V + V G(E)V , with G(E) =

(E−H+(1/2)iΓ)−1, V is the electronic coupling between zero order molecular states,
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and where Γ stands for the inverse lifetime matrix of bridge levels. If we assume for

a moment that the donor level |D > is coupled only to bridge state |1 > and that the

acceptor level |A > is coupled only to the bridge level N , the effective coupling for a

one dimensional bridge between the donor and acceptor now becomes

TDA(E) = VDA + VD1G1N(E)VNA (2.9)

This represents the transition amplitude as a sum of a direct contribution, VDA, which

is usually disregarded for long bridges, and a bridge mediated contribution. In using

TDA instead of VDA in Equation 2.1 the energy parameter E in Equation 2.9 should

be taken to equal ED = EA at the point where the corresponding potential surfaces

cross. Now, the Green’s function element in Equation 2.9 is given by

G1N(E) =
1

E − EN

N−1∏
n=1

Vn,n+1

E − En
(2.10)

For a model with identical bridge segments En and Vn,n+1 are independent of n and

will be denoted En = EB and Vn,n+1 = VB. Using this in Equation 2.1 leads to

ket =
2π

~

∣∣∣∣V1DVNA
VB

∣∣∣∣2( VB
∆EB

)2N

F (2.11)

where ∆EB = EB − E. Also, for a bridge assisted transfer between a molecule and

an electrode, Equation 2.7 applies |V (ε)|2 given by

|V (ε)|2 =

(
VB

∆EB

)2N∑
k

δ(ε− εk)
∣∣∣∣V1kVNA

VB

∣∣∣∣2 (2.12)

These results imply a simple form for the distance parameter β′ of Equation 2.8,

β′ =
2

a
ln

(
∆EB
VB

)
(2.13)

where a measures the segment size, so that the bridge length is NA. The exponential

dependence on the bridge length is a manifestation of the tunneling character of this

process.
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2.2 Transmission Between Conducting Leads

Equation 2.1, Equation 2.7, and Equation 2.11 are expressions for the rate of

electron transfer between donor and acceptor molecules or between a molecule and a

metal electrode. For electron transfer in metal-molecule-metal junctions, the primary

observable is the current-voltage (I/V) characteristics of the system.

We will first consider a simple model for a metal-insulator-metal system where

the insulator is represented by a continuum characterized by a dielectric constant ε.

We will assume that the electrode surfaces are infinite parallel lines perpendicular to

the x direction. In this case, the transmission problem is essentially 1-dimensional

and depends only on the incident particle velocity in the x direction, vx =
√

2Ex/m.

In the WKB approximation (named after Wentzel-Kramers-Brillouin and also known

as the Liouville-Green method) the transmission probability is given by

T (Ex) = exp

[
−4π

~

∫ s2

s1

[2m(UB(x)− Ex)]1/2 dx
]

(2.14)

where UB(x) is the barrier potential that determines the turning points s1 and

s2 and m is the mass of the tunneling particle. The tunneling flux is given by

T (Ex)n(Ex)
√

2Ex/m, where n(Ex) is the density per unit volume of electrons of en-

ergy Ex in the x direction. n(Ex) is obtained by integrating the Fermi-Dirac function

with respect to Ey and Ez. When a potential Φ is applied so that the right electrode

is positively biased, the net current density is obtained in the form,

J =

∫ ∞
0

dExT (Ex)ξ(Ex) (2.15)

where

ξ(Ex) =
2m2e

(2π~)3

∫ ∞
−∞

dvy

∫ ∞
−∞

dvz [f(E)− f(E + eΦ)]

=
4πme

(2π~)3

∫ ∞
0

dEr [f(E)− f(E + eΦ)]

(2.16)
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and where Er = E−Ex = (1/2)m(v2
y−v2

z) is the energy in the direction perpendicular

to x. In obtaining this result it is assumed that the electrodes are chemically identical.

At zero temperature and when Φ → 0, f(E) − f(EeΦ) = eΦδ(E − EF ). Equation

2.15 and Equation 2.16 then lead to an expression for the conduction per unit area

(the conductivity per unit length)

σx =
4πme2

(2π~)2

∫ EF

0

dExT (Ex) (2.17)

For finite Φ these expressions provide a framework for predicting the current-voltage

characteristics of the junction where explicit approximate expressions were given by

Simmons. Here, it has been emphasized that the dependence on Φ arises in part from

the structure of Equation 2.15 and Equation 2.16. At zero temperature we have

J =
4πm2e2

(2π~)3

[
eΦ

∫ E−F−eΦ

0

dExT (Ex) +

∫ EF

EF−eΦ
dEx(EF − Ex)T (Ex)

]
(2.18)

but mainly from the voltage dependence of T . The simplest model for a metal-

vacuum-metal barrier between two identical electrodes without an external field is a

rectangular barrier of height above the Fermi energy given by the metal workfunction.

When a uniform electric field is imposed between the two metal a linear potential drop

from EF on one electrode to EF − eΦ on the other is often assumed. In addition, the

image potential experienced by the electron between the two metals will considerably

modify the potential barrier. For a point charge e, located at position x between two

conducting parallel plates that are a distance d apart, the image potential is

V1 =

(
− e2

4πε

)[
1

2x
+
∞∑
n=1

{
nd

[(nd)2 − x2]
− 1

nd

}]
(2.19)

where ε is the dielectric constant of the spacer. For x = d/2 this becomes

V1 =
e2 ln 2

2πεd
(2.20)
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This negative contribution to the electron’s energy reduces the barrier potential and

has been invoked to explain the lower than expected barrier observed in STM exper-

iments.

2.3 The Landauer Formula

Landauer’s original result was obtained for a system of two 1-dimensional leads

connecting two macroscopic electrodes (electron reservoirs) via a scattering object

or a barrier characterized by a transmission function T (E). The zero temperature

conductance, measured as the limit Φ→ 0 of the ration I/Φ between the current and

the voltage drop between the reservoirs was found to be

g =
e2

π~
T (EF ) (2.21)

This result is obtained by computing the total unidirectional current carried in an

ideal lead by electrons in the energy range (0, E) = (0, ~2k2
e/(2m)). In a 1-dimensional

system of length L the density of electrons, including spin, with wavevectors in the

range between k and k + dk is n(k)dk = 2(1/L)(L/2π)f(Ek)dk = f(Ek)dk/π. The

corresponding velocity is v = ~k/m. Thus,

I(E) = e

∫ kE

0

dkv(k)n(k) = e

∫ kE

0

dk(~k/m)f(Ek)/π =
e

π~

∫ E

0

dE ′f(E ′) (2.22)

At zero temperature, the net current carried under bias Φ is

I =
e

π~

∫ ∞
0

dE (f(E)− f(E + eΦ))
Θ→0−−−→ e2

π~
Φ (2.23)

Thus the conductance of an ideal 1-dimensional lead is I/Φ = e2/π~ = (12.9KΩ)−1.

In the presence of the scatterer this is replaced by

I =
e

π~

∫ ∞
0

dET (E) (f(E)− f(E + eΦ))
Θ→0,Φ→0−−−−−−→ e2

π~
T (EF )Φ (2.24)
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which leads to Equation 2.25. This result is valid for 1-dimensional leads. When the

leads have finite size in the direction normal to the propagation so that they support

traversal modes, a generalization of Equation 2.21 to this case yields

g =
e2

π~
∑
i,j

Tij(EF ) (2.25)

where Tij = |Sij|2 is the probability that a carrier coming from the left of the scatterer

in transversal mode i will be transmitted to the right into transversal mode j. The

sum in Equation 2.25 is over all traversal modes whose energy is smaller than EF .

More generally, the current for a voltage difference Φ between the electrodes is given

by

I =

∫ ∞
0

dE [f(E)− f(E + eΦ)]
g(E)

e
(2.26)

and

g(E) =
e2

π~
∑
i,j

Tij(E) (2.27)

Next, we can replace the expression based on transmission coefficient T by an equiv-

alent expression based on scattering amplitudes, or T matrix elements, between zero

order states localized on the electrodes. This can be derived directly from Equation

2.25 or Equation 2.27 by using the identity

∑
i,j

Tij(E) = 4π2
∑
l,r

|Tlr|2δ(E − El)δ(E − Er) (2.28)

On the left side of Equation 2.28 a pair of indices (i, j) denote an exact scattering

state of energy E, characterized by an incoming state i on the left electrode and

an outgoing state j on the right electrode. On the right, l and r donate zero order

states confined to the left and right electrodes, respectively. T is the corresponding

transition operator whose particular form depends on the details of this confinement.
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Alternatively, we can start from the golden-rule-like expression

I = e
4π

~
∑
l,r

[f(El)(1− f(Er + eΦ))− f(Er + eΦ)(1− f(El))] |Tlr|2δ(El − Er)

=
4πe

~
∑
l,r

[f(El)− f(Er + eΦ)] |Tlr|2δ(El − Er)

(2.29)

We can rewrite this in the form

I =
4πe

~

∫ ∞
0

dE [f(E)− f(E + eΦ)]
∑
l,r

|Tlr|2δ(E − El)δ(E − Er)

=

∫ ∞
0

dE [f(E)− f(E + eΦ)]
g(E)

e

(2.30)

where

g(E) ≡ 4πe2

~
∑
l,r

|Tlr|2δ(E − El)δ(E − Er) (2.31)

We can see here that Equation 2.28 and Equation 2.31 imply Equation 2.27. For

Φ→ 0 Equation 2.30 and Equation 2.31 lead to I = gΦ with

g = g(EF ) (2.32)

2.4 Molecular Conduction

Equation 2.30, Equation 2.31, and Equation 2.32 provide a convenient starting

point for most treatments of currents through molecular junctions where the coupling

between two metal electrodes is weak. In this case it is convenient to write the system’s

Hamiltonian as the sum, H = H0 + V , of a part H0 that represents the uncoupled

electrodes and spacer and the coupling V between them. As we have shown previously,

in the weak coupling limit, the T operator

T (E) = V + V G(E)V ; G(E) = (E −H + iε)−1 (2.33)

is usually replaced by its second term only. The first ‘direct’ term V can be disre-

garded if we assume that V couples the states l and r only via states of the molecular
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spacer. Consider now a simple model where this spacer is an N-site bridge connecting

two electrodes so that site 1 of the bridge is attached to the left electrode and site

N to right electrode. In this case we have Tlr = Vl1G1NVNr, so that that at zero

temperature ∑
i,j

Tij(E) = |G1N(EF )|2Γ
(L)
1 (EF )Γ

(R)
N (EF ) (2.34)

and by using Equation 2.30 and Equation 2.31,

I(Φ) =
e

π~

∫ EF

EF−eΦ
dE|G1N(E,Φ)|2Γ

(L)
1 (E)Γ

(R)
N (E + eΦ) (2.35)

with

Γ
(L)
1 (E) = 2π

∑
l

|Vl1|2δ(E1 − E) ; Γ
(R)
N (E) = 2π

∑
r

|VNr|2δ(EN − E) (2.36)

The Green’s function in Equation 2.34 is itself reduced to the bridge’s subspace by

projecting out the degrees of freedom of the electrode. This results in a renormaliza-

tion of the bridge Hamiltonian: in the bridge subspace

(E −H + iη)−1 → (E −HB − ΣB(E))−1 (2.37)

where HB = H0
B + VB is the Hamiltonian of the isolated bridge entity with

H0
B =

N∑
n=1

En|n >< n| ; VB =
N∑
n=1

N∑
n′−1

Vn,n′ |n >< n′| (2.38)

and where in the basis of eigenstates of H0
B

Σnn′(E) = δn,n′(δn,1 + δn,N)[Λn(E)− (1/2)iΓn(E)] (2.39)

Γn(E) = 2π
∑
j

|Vnj|2δ(E − Ej) (2.40)

Λn(E) =
PP

2π

∫ ∞
−∞

dE ′
Λn(E ′)

(E − E ′)
(2.41)

In Equation 2.42 the sum is over both the right and left manifolds (j goes over

all states {l} and {r} in these manifolds) so that Γn = Γ
(L)
n + Γ

(R)
n ; n = 1, N . The
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transmission problem is thus reduced to evaluating a Green’s function matrix element

and two width parameters. The first calculation is a simple inversion of a finite (order

N) matrix. The width Γ and the associated shift Λ, represent the finite lifetime of

an electron on a molecule adsorbed on the metal surface, and can be estimated for

example, using the Newns-Anderson model of chemisorption. In the simple tight

binding model of the bridge and in the weak coupling limit, G1N is given by Equation

2.10 modified by the inclusions of the self energy terms,

G1N(E) =
V1,2

(E − E1 − Σ1(E))(E − EN − ΣN(E))

N−1∏
j=2

Vj,j+1

E − Ej
(2.42)

Equation 2.34 through Equation 2.42 thus provide a complete simple model for molec-

ular conduction, equivalent to similar approximations used in theories of molecular

electron transfer.

2.5 Conduction Channels

Next, molecular conduction is broken down into channels based on the work and

derivations of Solomon and coworkers [62]. To start, the simplest form of the trans-

mission as given by

T (E) = Tr
[
ΓL(E)Gr(E)ΓR(E)Ga(E)

]
(2.43)

where Gr(E) and Ga(E) are the retarded and advanced Green’s function of the

molecule. We can then write ΓL and ΓR matrices as

ΓLij(E) = 2π
∑
α

V L
iαV

L
αjδ(E − εLα) (2.44)

ΓRij(E) = 2π
∑
β

V R
iβV

R
βjδ(E − εRβ ) (2.45)

where V L(R) are the coupling matrices connecting the the left and right electrodes to

the molecule in question. In this particular work, the indices α and β are the indices
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of the left and right electrodes and the indices i and j are the indices of the extended

molecule component (where we include a part of the molecule and its linker group to

the electrode). Now we can define

d
L(R)
α(β) (E) =

√
2πδ

(
E − εL(R)

α(β)

)
(2.46)

This is an unusual and well defined quantity which we will show is useful for the

manipulation of the equations. Next, ΓL and ΓR reduce to

ΓLij(E) =
∑
α

V L
iαd

L
α(E)dLα(E)V L

αj

ΓRij(E) =
∑
β

V R
iβ d

R
β (E)dRβ (E)V R

βj

(2.47)

From this reduction, we can rewrite Equation 2.43 as

T (E) = Tr
[
V LdL(E)dL(E)V L†Gr(E)V RdR(E)dR(E)V R†Ga(E)

]
(2.48)

The † denotes the conjugate transpose, or a simple transpose in the case of real

matrices. From here on V L(R) will occur with dL(R) so we can simplify the expression

by defining

γL(R)(E) = V L(R)dL(R)(E)

γL(R)†(E) = dL(R)(E)V L(R)†
(2.49)

Equation 2.48 can then be rearranged using the equivalence of a trace to cyclic per-

mutation and be expressed in its Hermitian form

T (E) = Tr
[(
γL†(E)Gr(E)γR(E)

) (
γR†(E)Ga(E)γL(E)

)]
= Tr

[(
γL†(E)Gr(E)γR(E)

) (
γL†(E)Gr(E)γR(E)

)†]
=
∑
α,β

∣∣∣∣∣∑
i,j

γL†α,i(E)Gr
i,j(E)γRj,β(E)

∣∣∣∣∣
2

(2.50)

The major advantage of writing the transmission in its Hermitian form instead of in

terms of Γ
1/2
L(R) is that it allows for further simplification of the equations and also
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clearly shows where the electrode and molecule couplings remain in the expression.

Also, this expression for transmission can easily be converted back to the normal

rate expression for electron transfer. This expression differs from standard electron

transfer rates because if we follow the work of Datta and Nitzan, we assume that

the effective state density for energy dissipation for an electron transfer process (in

coherent junction transport), is just the electrode’s density of states appearing in Γ.

Briefly

kET =
1

h

∫
dET (E)

=
2π

~

∫
dE
∑
α,β

∣∣∣∣∣∑
i,j

V L†
α,i (E)Gr

i,j(E)V R
j,β(E)

∣∣∣∣∣
2

× δ
(
E − εLα

)
δ
(
E − εRβ

)
=

2π

~
∑
α,β

∣∣∣∣∣∑
i,j

V L†
α,i

(
εLα
)
Gr
i,j

(
εLα
)
V R
j,β

(
εLα
)∣∣∣∣∣

2

δ
(
εLα − εRβ

)
=

2π

~
∑
α,β

∣∣tα,β (εLα)∣∣2 δ (εLα − εRβ )

(2.51)

This is now considered a “Golden Rule” type expression for the electron transfer rate

as derived from the Landauer equation and within the domain of scattering theory.

This derivation of the equation has served to transform the trace into a two-index

sum over α and β (the electrode dimensions). Also, the dimension of the matrix

under the trace is now left electrode by right electrode. We can use this in order to

make a few more salient points.

The first point we can note is that the expression derived above for Tαβ is equiva-

lent to another one derived earlier for the donor-acceptor coupling through the system.

tDAαβ (E) =
∑
i,j

V L
α,iG

r
i,j(E)V R

j,β (2.52)

This now conceptually provides a solid link between the Landauer equation, scattering

theory, and electron transfer theory. The coupling as calculated using this method-
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ology slightly differs from convention due to its inclusion of the self energy term in

Gr(E) which results in the self energy term being a complex number. If we consider

the intramolecular electron transfer instead of electrodes, the self energy terms in

Gr(E) will lack a significantly large complex component and therefore more closely

resemble the usual form. Also, this expression provides a relatively straightforward

approach to calculate coupling components though many extended systems since the

methods to calculate all the quantities in Equation 2.52 are well established in the

transport literature.

If we use a basis transformation, the coupling and transmission through a molecule

can be understood in terms of the contributions from different molecular conductance

orbitals. We can obtain the eigenvectors Cr and Ca by using the overlap matrix S

and diagonalize Gr and Ga.

Gr′(E) = C−1
r S−1Gr(E)Cr

Ga′(E) = C−1
a S−1Ga(E)Ca

= C†rG
a(E)S−1C−1†

r

(2.53)

We can see here that molecular orbitals differ from molecular conductance orbitals by

diagonalizing Gr(E) instead of the Hamiltonian of the isolated molecule we arrive at

complex numbers. However, the dominate component of the isolated molecule is its

molecular orbitals. In the case of complex coupling, the self energy terms will be such

that the molecular conductance orbitals can resemble the simpler molecular orbitals

than they will for a molecule in a junction bound to metal electrodes.
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We can now see that the transmission matrix can be transformed to give

T (E) = Tr[γL(E)γL†(E)SCrG
r′(E)C−1

r γR(E)

× γR†(E)SCaG
a′(E)C−1

a ]

T (E) = Tr[γL(E)γL†(E)SCrG
r′(E)C−1

r γR(E)γR†(E)

×
(
C†r
)−1

Ga′(E)C†rS
−1]

(2.54)

and can be further simplified if we define the transformed matrices

γL
′
(E) = C†rS

−1γL(E)

γR
′
(E) = C−1

r γR(E)

(2.55)

Equation 2.54 then reduces to

T (E) = Tr
[
γL

′†(E)Gr′(E)γR
′
(E)γR

′†(E)Ga′(E)γL
′
(E)
]

= Tr[(γL
′†(E)Gr′(E)γR

′
(E))

× (γL
′†(E)Gr′(E)γR

′
(E))†]

=
∑
α,β

∑
i

∣∣∣γL′†
α,i (E)Gr′

i,i(E)γR
′

i,β(E)
∣∣∣2

(2.56)

Next, we define the couplings, tαβ, as

tαβ(E) ≡
∑
i

V L′†
α,i (E)Gr′

i,i(E)V R′

i,β (E) (2.57)

where V L(R)′ are transformed by the same transformations as γL(R)′ . From this equa-

tion, we can define the quantity tαβi = V L′†
α,i (E)Gr′

i,i(E)V R′

i,β . This allows the coupling

to be written as

tαβ(E) =
∑
i

tαβi (2.58)

This now shows the result that the total transmission through the system is given

and the sum of contributions through each of the molecular conductance orbitals can

be read as each of the tαβ is given as a single index sum of the contributions (tαβi)
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from each of the eigenfunctions of Gr. Due to previous interference between pairs

of orbitals, such an attempt to separate the transmission into individual molecular

conductance orbital contributions failed, unlike the derivation above. Also, typically

the donor-acceptor coupling is given as a series of expansions, however, the main

advantage of this expression is that by diagonalizing Gr the series reduces to a single

index sum. Hence, through the use of these derivations, the transmission and coupling

through a molecule can be ascertained by summing the contributions from each of

the molecular conductance orbitals.

2.6 Quantum Interference and Fano Resonances

Similar to classical interference in which two traveling waves may interact (super-

pose) to form a new resultant wave of modified amplitude [63], quantum interference

(QI) is a phenomenon which is caused by the superposition of wave functions (or

propagating wavefunctions in nano-structures) [5]. The phenomenon of QI is not new

and the effect of QI on transport has been studied in the field of mesoscopic physics

[64, 65], quantum dots [66, 67], and electron transfer systems [68, 28, 69]. Due to

the increasing interest in tunable electronics, the effect of QI on electron transport

in molecular junctions has also benefited from an increase in attention and its pos-

sible applications in various fields [70, 71, 72, 73, 74, 75, 76]. The QI phenomenon

is visualized as additional peaks or dips in transmission spectra which is easily rec-

ognizable. The understanding of this phenomena can improve the performance of

molecular switches and sensors [71, 77], and thermoelectric devices [78, 79].

Figure 2.1 shows a schematic representation of four common QI effects with their

respective transmission spectra of various systems connected to two electrodes. Here,

due to the efforts of Nozaki and coworkers [5], it can be seen that the type of molec-

ular junctions affects the transmission spectra of that system. Figure 2.1 also shows

39



how modifying the junction can give rise to interesting spectral features such as the

appearance of resonance characteristics. The following equations and derivations are

idealized for the making of similar diagrams and illustrate how certain types of spec-

tral features can be described.

Figure 2.1: Common Types of Molecular Junctions with Transmission Profiles. (a)

2-Site, (b) T-Shaped, (c) Cyclic, and (d) Odd-membered Molecular Junctions. Figure

Reproduced from Nozaki et al. [5]

The electronic structure of the molecular junctions can be entirely captured by a

tight-binding Hamiltonian

H = HL + VL +HM + VR +HR (2.59)

where HL/R and HM represent the Hamiltonian for the left and right electrodes as

well as the molecule in the junction. VL/R defines how the molecule couples to the

left and right electrodes. The electronic propagator for the entire system is defined
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by a retarded Green’s function defined as

GR(E) = [(E + iη) I −HM − ΣL − ΣR]−1 (2.60)

where iη is the infinitesimal imaginary value and where ΣL/R are the self-energy

elements that include the influence of the electrodes on the coupling. At low bias and

within the coherent regime, the conduction through a junction can be obtained using

the Fisher-Lee relation

G =
2e2

h
Tr
[
GRΓLG

AΓR

]
(2.61)

where ΓL/R represents a spectral broadening function

ΓL/R(E) = i
[
ΣL/R − Σ†L/R

]
(2.62)

The self-energies of the electrodes can be given using the Newns-Anderson model

ΓL/R(E) = VL/RgL/R(E)V †L/R (2.63)

where gL/R(E) is the surface Green’s function [80, 81, 82, 83, 84]

gL/R(E) =
ieika

tL/R
(2.64)

where tL/R is the nearest-neighboring transfer integral in the left and right electrodes.

All energies in t are normalized while all on-site energies are set to zero for conve-

nience. Here, the nearest-neighbor couplings in the contacts are defined as tL/R = −t.

Tight-binding parameters used in this representation are given in units of eV (for ex-

ample, the energy for carbon-based π-electron systems is t = 2.66 eV). These on-site

energies are not always representative of the energies of atomic orbitals but rather

could represent the eigenenergies of the fragment molecular orbitals [5].

One of the more interesting types of resonance is the Fano resonance, exemplified

by its asymmetric line profile. As mentioned previously, in short molecular junctions,
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wave propagation distances can make the phase-coherent processes a very important

topic. The scattering of waves propagating along different paths can, as a conse-

quence, result in interference where either constructive interference corresponds to

resonant enhancement and destructive interference can correspond to suppression of

the transmission [6]. Resonances with asymmetric line shapes where first described

by Ugo Fano [85, 86] when he noticed unusual sharp peaks in the absorption spectra

of noble gases in the work of Beutler [87]. Fano interpreted these spectral absorption

lines based on the interaction of a discrete excited state of an atom with a continuum

sharing the same energy level. Fano resonances also appear in Raman spectra and

are characterized by asymmetric line broadening (expressed by the Breit-Wigner-

Fano line shape) [88]. These characteristic line shapes have been observed in the

Raman spectra of carbonic materials; for example, in the spectra of metallic single

wall carbon nanotubes [88].

As a result of his observations of Beutler’s work, Fano proposed a formula for the

shape of the resonance profile [85, 86] of a scattering cross section as

σ =
(ε+ q)2

ε2 + 1
(2.65)

where q is a phenomenological shape parameter and ε is a reduced energy defined by

2(E − EF )/Γ. The resonant energy is EF and Γ is the width of the spectral feature.

In Equation 2.65, there exists one maximum and one minimum in the Fano profile

σmin = 0 at ε = −q (2.66)

σmax = 1 + q2 at ε = 1/q (2.67)

Fano introduced in his original paper the asymmetry parameter q [86]. Here, q

is a ratio of the transition probabilities to the mixed state and to the continuum as

seen in Figure 2.2 and referred to as the asymmetry parameter. When q is on the

42



Figure 2.2: Illustration of the Fano Formula (Equation 2.65) as a Superposition of

the Lorentzian Line Shape of the Discrete Level with a Flat Continuous Background.

Caption and Figure Adopted From Ref. [6]

order of unity, the discrete state and continuum are of the same magnitude leading to

the asymmetric profile seen in Equation 2.65. Here, the maximum value at Emax =

EF + Γ/(2q) and minimum at Emin = EF − Γq/2. When q = 0 (a unique case of the

Fano resonance), a symmetrical dip occurs representing an antiresonance profile (See

Figure 2.3). The salient feature of the Fano resonance is the likelihood of destructive

interference which leads to the asymmetric line profile [89, 90, 91, 92, 93, 94].

2.7 Polarizability

Polarizability is a property of matter that describes the ability of a system to

respond to an external electric field. In the case of this study, polarizability describes

specifically how a cloud of electron density will deform in the presence of an electric

field. Polarizability as a property is involved in the modeling and study of dispersion

and dipole-dipole interactions [95]. When we consider the size domain of molecules,

polarizability is considered the first important term of the dipole moment expansion

as power series (contained within a uniform electric field) and is expressed by a

second-rank Cartesian tenor [96]. Polarizability has been used to understand other
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Figure 2.3: Normalized Fano Profiles (1) with the Prefactor 1/(1+q2) (2) for Various

Values of the Asymmetry Parameter q. Caption and Figure Adopted From Ref. [6]

properties of matter such as refraction indices and absorption coefficients while also

being important in optical cooling and the trapping of atoms [96, 97], also in the use

of optical tweezers [98]. In these areas, polarizability is considered a fundamental

electronic property user to determine optical properties. Last, polarizability plays an

important role in thermodynamic models; for instance, as an estimation of cohesive

energy density models [99].

The polarizability tensor, α, is linked to density functional theory (DFT) [100, 101]

through the linear response kernal
(
χ
(−→r ,−→r ′))

[102]. Here, polarizability can be

written exactly in terms of an integral over χ
(−→r ,−→r ′)

as

α = −
∫
d−→r d−→r ′

χ
(−→r ,−→r ′

)−→r ′
(2.68)

or by using the local polarization tensor α (−→r ) [103] defined as the vector derivative
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of the density over the electric field −→ε as

α (−→r ) = −
(
∂ρ (−→r )

∂−→ε

)
= −

∫
χ
(−→r ,−→r ′

)−→r ′
d−→r ′

(2.69)

The polarizability tensor on its own does not provide an interpretation for the

chemical description of the local changes in a molecule; it does not provide any infor-

mation concerning which atoms or groups of atoms are most involved in contributing

to the total polarizability of the molecule. Due to this, different molecular partition-

ing schemes have been created in order to “group or cluster” polarizabilities computed

via the dependency between the trace of the polarizability tensor (pertaining either

to an atom or a molecule) and its volume [104, 105]. There are typically two general

approaches to partition the total polarizability tensor into atomic contributions. The

first approach describes the response of an atom to the local field affected by the

“closeness” of other atoms in the molecule [106, 107, 108, 109, 110, 111, 112]. The

second approach examines the response of an atom to the applied field. This method

carries out partitioning that does not use empirical or point-dipole models for the

estimation of the induced field. Both avenues start at the atomic polarizability for

their characterizations of a system.

Different uses for the atomic polarizability have been proposed combining the

approach presented by Becke and Johnson [95, 113, 114] together with a Hirshfeld-

type partitioning for the molecular polarizabilities into atomic contributions [115,

116, 117].

We will focus on Hirshfeld-based partitioning schemes in this work. Any Hirshfeld-

based [118] partitioning scheme assumes that the electron density for each distinct

point, −→r , in a molecule consisting of N atoms is represented by the contribution of

all atoms. The contribution of atom A to total polarizability is based on a “weight-

function” (WA (−→r )), which is formed by the ratio between the atomic density of the
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isolated atom A (ρA (−→r )) and the sum of all other atomic contributions (promolecular

density) (ρmol (−→r ))

WA (−→r ) =
ρA (−→r )

ρmol (−→r )
=

ρA (−→r )∑N
n=1 ρn (−→r )

(2.70)

and satisfies the following requirements

N∑
n=1

Wn (−→r ) = 1 (2.71)

0 ≤ Wn (−→r ) ≤ 1 (2.72)

Here, the 9-component polarizability tensor α, combined with its local counter-

part α (−→r ) can be partitioned into atomic contributions when they are considered

with respect to the first-order perturbed electron density when integrated over the

molecular space

αij = −
∫
αij (−→r ) d−→r = −

∫
iρ(j) (−→r ) d−→r (2.73)

where ρ(j) (−→r ) is the electron density derivative with respect to an external (uniform

and time-independent) electric field −→ε j in the j direction. This is evaluated in the

limit of zero field strength where i corresponds to the Cartesian coordinate of (−→r ).

Polarizability is partitioned by the introduction of the previously mentioned “weight-

function” WA (−→r ) as

αij =
N∑
n=1

−
∫
Wn (−→r ) iρ(j) (−→r ) d−→r (2.74)

Equation 2.73 explicitly depends on an atoms position in a molecule and hinders

the comparison of equivalent atoms in different molecules. For example, a methyl

group attached to a small molecule vs a methyl group attached to a larger molecule

will not provide the same polarizability description. This would therefore hamper the

polarizability descriptor from being a reactivity index (if we were to consider a very

large molecule, then the outer regions would completely overshadow any information
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of the inner region). The preferred solution is then to sum and subtract the nuclear

position of atom A (RA) and then to multiply that by the corresponding atomic

perturbed population in Equation 2.74.

Therefore, the atomic polarizability for atom A is given by two resulting compo-

nents

αAij = −
∫
WA (−→r ) iρ(j) (−→r ) d−→r +

(
Ri
A −Ri

A

)
N

(j)
A

= −
∫
WA (−→r ) iρ(j) (−→r ) d−→r +

∫
WA (−→r )

[
Ri
A −Ri

A

]
ρ(j) (−→r ) d−→r

= −
∫
WA (−→r )

(
i−Ri

A

)
ρ(j) (−→r ) d−→r −

∫
WA (−→r )Ri

Aρ
(j) (−→r ) d−→r

= αA,intr
ij + αA,ct

ij

(2.75)

where αA,intr
ij and αA,ct

ij stand for the intrinsic and charge transfer component of the

polarizability, respectively.

When the polarizability is calculated by any of the many atomic partitioning

schemes, the polarizability represents the response of the atoms in the molecule to the

applied electric field. An important note is that the polarizability of a molecule does

not correspond to the simple sum of the polarizabilities of the isolated atoms. When

we consider the interactions between atoms (electrostatic, etc), the polarizability of

an atom depends not only on its location within a molecule, but also on the types

of bonds it makes. Therefore, the molecular polarizability is the sum of the atomic

polarizabilities coupled with their charge transfer contributions (in bonds, etc).

In this study, we also use the average of the polarizability tensor trace, also referred

to as isotropic polarizability

αiso =
αxx + αyy + αzz

3
(2.76)
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Chapter 3

CALCULATED PROPERTIES OF SELECTED MONOMERS

3.1 Introduction

Prior work by Meidanshahi et al. examined the effects of polarizability in molec-

ular junctions involving hydrogen bonds [119]. A very important feature of hydrogen

bonds is that they are characterized by high polarizabilities [120]. This feature is

increased in the presence of external electric fields [121]. This feature is important

to our study of transport through hydrogen bonds because polarizable systems have

an electron cloud that will deform in direct response to any bias modulation. This

bias modulation serves to modulate the tunneling current through changes in the

barrier properties of the junction [122]. Meidanshahi et al. found that the changes

in the conductance of some molecules adsorbed onto gold electrodes could be used

to calculate their polarizabilities [123]. Also, they found a direct connection between

conductance and polarizability that may allow for a simple descriptor of conductance.

In this section we look at the polarizability of selected monomers in order to ascer-

tain if polarizability can be used to predict simple trends in conductance. Later, in

Chapter 5, we will again look at polarizability but after these monomers have entered

into a hydrogen bond.

3.2 Computational Methods

Full geometry optimizations of all monomer conformations were carried out at the

density functional level of theory (DFT) using the Becke gradient-corrected exchange

functional and Lee-Yang-Parr correlation functional with three parameters (B3LYP)
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and the 6-311++G(2d,2p) basis set. Also, the total isotropic polarizability was cal-

culated and then partitioned into individual atomic components using an approach

based on Hirshfeld population analyses [124]. Both calculations were performed using

Gaussian 09.

In this method, the spherically averaged molecular static dipole polarizability αγγ

can be partitioned over all atoms i in a molecule as,

αγγ =
∑
i

αγγi (3.1)

using the following relation:

αγγi = lim
Fγ→0

µγi(Fγ)− µγi(0)

Fγi
(3.2)

In the above equation, the quantities µγi(Fγ) and µγi(0) are the distributed contribu-

tions to the dipole moment obtained from the Hirshfeld population analysis, where

the γγ component of the molecular static dipole polarizability is calculated as,

αγγ =

(
∂µγ
∂Fγ

)
0

= lim
Fγ→0

µγ(Fγ)− µγ(0)

Fγ
(3.3)

where µγ is the component of the dipole moment along the γ axis, with γ = x, y, or

z. Fγ is the magnitude of an auxiliary static electric field F used in the calculation,

oriented along the γ axis, and ’0’ indicates F = 0. Averaging over αxx, αyy, and αzz

yields the spherically averaged molecular dipole polarizability α. Each component of

the molecular polarizability tensor is then written as a sum of the individual atomic

polarizabilities.

Electronic transport calculations were performed using the NEGF+DFT approach

as implemented in the Tran-SIESTA computational package [125]. In order to appro-

priately capture the subtleties of the hydrogen bond in all considered systems [119],

we used a double-ζ basis set in our transport calculations. The generalized gradient
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approximation (GGA) was used as the exchange correlation functional. The energy

cutoff for the real space grid was 200 Ry.

The theoretical model that accounts for a quantitative interpretation of an experi-

mental setup corresponds to electron transport occurring via a one-electron tunneling

mechanism under the Landauer regime. In such a model the current is well described

by a dimensionless transmission coefficient, which depends on the nature of the tun-

neling barrier,

I(V ) =
4e

h

µL∫
µR

dEτ(E, V ) (3.4)

where E is the energy of the tunneling electron, V is the applied voltage, and µL,

µR are the electrochemical potentials in the left and right electrodes, respectively.

Equation 3.4 becomes the linearized expression for the current

I(V ) =
4e2

h
τ(EF )V (3.5)

In this regime the conductance is given by the Landauer expression,

G =
4e2

h
τ(EF ) (3.6)

where the transmission coefficient can be written as [126],

τ(EF ) = TLMR ξL(EF )ξR(EF ) (3.7)

and TLMR is the effective coupling to the left (L) and right (R) electrodes mediated by

the moleculeM and ξL/R(EF ) are the densities of states of the L/R electrode/molecule

contacts at the Fermi energy. Last, we use an implementation of the NEGF formal-

ism contained in the trans-SIESTA computational package [127] for our transport

calculations.
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3.3 Results and Discussion

Before we discuss the polarizability results of our calculations and how they re-

late to conductance, it is useful to note that the considered monomers have similar

gap energies between their highest occupied molecular orbital (HOMO) and lowest

unoccupied molecular orbital (LUMO). The results of these calculations can be seen

in Table 3.1.

System HOMO (eV) LUMO (eV) Gap (eV)

A -6.3 -0.9 5.4

T -6.9 -1.5 5.4

U -7.3 -1.7 5.6

C -6.5 -1.3 5.2

G -5.9 -1.0 4.9

Table 3.1: HOMO-LUMO Gap Energies of Considered Systems.

Next, we obtained conductance values from an experimental paper by Chang et

al. [7] for the considered monomers and plotted these values against total polariz-

ability and the proton acceptor’s atomic polarizability which can be seen in Figure

3.1. In Figure 3.1a, the measured conductance (G) was plotted against the total po-

larizability of the selected monomers. The measured conductance demonstrates the

trend: A > C > G > T while the polarizability demonstrates the trend: G > A >

T > C. The polarizability values demonstrate a trend when comparing purine versus

pyrimidine derivatives. A and G are 2-ringed purine derivatives while C and T are

1-ring pyrimidine derivatives. We can see that the polarizability is higher for A and

G versus C and T. In Figure 3.1b, we have the measured conductance plotted against

the atomic polarizability of the proton acceptor atom. The measured conductance
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values demonstrate the trend: C > G > T while the acceptor polarizability values

demonstrate the trend: G > C > T.

Table 3.2 and Table 3.3 show the atomic polarizabilities for the atoms participating

in a hydrogen bond when these systems are bound to their complement in either DNA

or RNA. Table 3.2 contains the atomic polarizabilities for atoms in the NH · · ·O bond

while Table 3.3 contains the atomic polarizabilities for atoms in the NH · · ·N bond.

52



(a) Measured G vs Σα for Selected Nucleotides

(b) Measured G vs αacc for Selected Nucleotides

Figure 3.1: (a) Measured Conductance (G) [7] Versus Total Polarizability. (b) Mea-

sured Conductance (G) [7] Versus the Polarizability of the Proton Acceptor Atom in

the NH · · ·O Bond. Here, O is the Proton Acceptor.
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System αN αH αO
∑
α

∑
αN

∑
αC rN−H

A 5.8 8.6 — 95 33.4 20.3 1.003

T — — 11.8 81 5.2 10.0 —

U — — 13.3 68 4.9 12.4 —

G 7.0 8.0 14.3 101 28.3 18.8 1.007

C — — 13.8 76 13.9 13.0 —

Table 3.2: Calculated Atomic Polarizability and Other Geometric Parameters in Com-

parison to Their NH · · ·O Bond.

System αN αH αN
∑
α

∑
αN

∑
αC rN−H

A — — 7.9 95 33.4 20.3 —

T 2.1 5.4 — 81 5.2 10.0 1.010

U 1.9 4.9 — 68 4.9 12.4 1.010

G 2.5 6.1 — 101 28.3 18.8 1.009

C — — 5.3 76 13.9 13.0 —

Table 3.3: Calculated Atomic Polarizability and Other Geometric Parameters in Com-

parison to Their NH · · ·N Bond.

Next we investigated the atomic polarizabilities of N atoms in the family of purines

to ascertain what effect, if any, neighboring electron withdrawing or electron donating

groups had on the polarizability of the atoms labeled αN−A, αN−B, αN−C , and αN−D.

The family of purines analyzed in this study with their labeled nitrogen atoms can

be seen in Figure 3.2.
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(a) P1 - Purine (b) P2 - Adenine (c) P3 - Guanine (d) P4 - Hypoxanthine

(e) P5 - Xanthine (f) P6 - Theobromine (g) P7 - Caffeine (h) P8 - Uric Acid

(i) P9 - Isoguanine

Figure 3.2: Purine and Its Derivatives. Nitrogen Atoms in the 6-Membered Ring are

Labeled A and B; All Nitrogen Atoms in the 5-Membered Ring are Labeled C and D.

Table 3.4 shows the relevant information on the polarizability data calculated for

the purine family.
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Label System
∑
α

∑
αN

∑
αC αN−A αN−B αN−C αN−D

P1 Purine 83 28.8 21.8 9.7 7.3 8.3 3.5

P2 Adenine 95 33.5 20.3 7.8 8.8 7.0 4.0

P3 Guanine 101 21.3 18.8 2.5 6.2 8.6 4.0

P4 Hypoxanthine 89 22.6 20.2 3.3 7.7 7.7 3.9

P5 Xanthine 92 16.9 17.2 2.3 2.6 8.0 3.9

P6 Theobromine 118 14.5 20.9 2.7 1.8 2.5 7.4

P7 Caffeine 131 14.3 23.7 1.8 1.9 2.5 8.0

P8 Uric Acid 99 11.3 13.6 2.8 2.6 2.6 3.3

P9 Isoguanine 102 28.6 18.8 2.8 8.0 7.6 4.1

Table 3.4: Calculated Polarizabilities of Purine and Derivatives.

Purines are a class of nitrogen-containing heterocycles that occur in natural sys-

tems. Purines consist of a pyrimidine ring fused into an imidazole ring (purine).

While the atomic polarizability of the nitrogen atoms in pyrimidine is equal (7.2

bohr3), purine’s nitrogen atoms (labeled as A and B in Figure 3.2 have very differ-

ent atomic polarizability as a result of the breaking the C2 symmetry due to the

imidazole-like ring. The atomic polarizability of the nitrogen atoms in purines is af-

fected by, the hybridization of nitrogen atom. The sp3 nitrogen atoms show a higher

atomic polarizability in comparison to sp2s. It is interesting to note that, the N-

methylation of the purines not only reduces the atomic polarizability of the nitrogen

atom, but also increases the electron donating abilities of purines. It is worth noting

that the sp3 nitrogens on the 5-member ring have higher atomic polarizability than

their counterparts in the 6-membered ring.

Since purines occur naturally in biological systems we can use them as a probe
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to interrogate electrochemical phenomenon that happens in biological systems, for

instance: mitochondria’s electron transport channel.

Last, we investigated the polarizability of pyrimidines. Table 3.5 shows differing

levels of theory used in our calculations as a benchmark. While all levels of theory

gave excellent data, we used the B3LYP/6-311++G(2d,2p) level of theory for all of

our monomer, and later, DNA base pair calculations.

Label System Level of Theory
∑
α αN−A αN−B

Py1 Pyrimidine PBEh1PBE/6-31G* 46 5.4 5.4

Py2 Pyrimidine PBEh1PBE/6-31+G* 54 6.9 6.9

Py3 Pyrimidine B3LYP/6-31++G** 56 7.1 7.1

Py4 Pyrimidine B3LYP/6-311++G(2d,2p) 57 7.2 7.2

Table 3.5: Calculated Polarizabilities of Pyrimidine - Different Levels of Theory.

Figure 3.3 shows the structures of the pyrimidine family with labeling of the

nitrogen atoms under investigation.

(a) Pyrimidine (b) Cytosine (c) Thymine (d) Uracil

Figure 3.3: Pyrimidine and Derivatives.

Last, Table 3.6 lists the values for the different αN−A, and αN−B values from the

pyrimidine calculations.
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System
∑
α

∑
αN

∑
αC αN−A αN−B

Pyrimidine 57 14.3 15.3 7.2 7.2

Cytosine 76 13.9 13.0 3.1 5.3

Thymine 81 5.2 10.0 2.1 3.1

Uracil 68 4.9 12.4 3.0 1.9

Table 3.6: Calculated Polarizabilities of Pyrimidine and Derivatives.

In summary, we have found that when comparing similar families of molecules,

that the polarizability of the hydrogen acceptor atom is proportional to the measured

conductance. Figure 3.4 shows a summary of our results. Here, we have separated the

purines (black) from the pyrimidines (red). When comparing pyrimidines, cytosine

demonstrates a higher conductance trend than thymine. The polarizability of the

hydrogen acceptor atom is also higher for cytosine than for thymine. These initial

Figure 3.4: Summary of Results for Monomer Structures.

calculations suggest that the trend in conductance in DNA/RNA monomers may

be ascertained by the hydrogen atom acceptors polarizability. Future work includes

creating an anchoring group that works for both families of monomers and would

allow us to calculate the conductance and other parameters for these systems to

create a more complete picture of the correlation between conductance and atomic

polarizability.
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Chapter 4

SINGLE-MOLECULE CONDUCTANCE THROUGH HYDROGEN BONDS. THE

ROLE OF RESONANCES.

4.1 Abstract

The single-molecule conductance of hydrogen-bonded and alkane systems are com-

pared in this theoretical investigation. The results indicate that for short chains, the

H-bonded molecules exhibit larger conductance than the alkanes. While earlier exper-

imental investigations attributed this observation to a large density of states (DOS)

corresponding to an occupied molecular orbital below the Fermi energy, the current

work indicates the presence of a Fano resonance in the transmission function in the

vicinity of the Fermi energy. The inclusion of this observation is essential in under-

standing the behavior of these systems. We also address the characteristics of the

H-bond for transport and provide an explanation for the presence of a turnover regime

wherein the conductance of the alkanes becomes larger than the H-bonded systems.

Incidentally, this feature cannot be explained using a simple DOS argument.

Figure 4.1: Original TOC Graphic.
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4.2 Introduction

As has been emphasized in earlier studies by Kurlancheek and Cave, bond strength

does not necessarily translate into better transport properties, and their calculations

show modest differences between tunneling mediated by weak bonds as compared to σ

and π-bonds [48]. Furthermore, it is not clear that molecular orbitals can be obviously

interpreted as conduction channels, as analyzed in detail in the work of Solomon et al

[62]. However, judging how the strength of a bond affects the transport effectiveness

through a molecule is an important subject. For example, in a recent study using

an STM break junction technique, Nishino et al found that nano-junctions including

molecules with hydrogen bonds exhibit enhanced electron transport compared with

alkanes for short inter-electrode distances (<13 Å) [128]. In both systems, the con-

ductance behavior corresponds to tunneling transport, exhibiting exponential decay

with length. This study demonstrates that under some conditions the inclusion of

H-bonding in a molecular junction significantly impacts its transport property, a fact

that has important implications for our understanding of transport through DNA, and

biological interfaces in general. A relevant example is the use of tunneling junctions

for DNA sequencing, as pioneered by Lindsay and co-workers [129, 7].

In this study we examine the DOS and transmission coefficients of H-bond systems

in the neighborhood of the Fermi energy. We observe that an appropriate description

of the transport properties of the H-bonded systems requires the consideration of

larger basis sets, as compared to the alkanes, something that could be expected solely

based on quantum chemical arguments. More importantly for the purpose of this

study, the calculated conductance closely resemble the experimental results, including

the exponential length decay for the two families of molecules and the turnover region

at large inter-electrode separation. This conductance pattern is partly determined by
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a feature of the DOS that can be interpreted as resulting from orbital resonances

in the H-bonded systems that are absent in the alkane chains, and partly by the

behavior of the transmission function, which differs markedly for the two systems

and corresponds to what other authors have identified as a Fano resonance [5, 130].

Despite our comparison being limited to a particular set of observations, our analysis

is related to the more general issue of the relative importance of the quasi-resonant

tunneling regime in molecular junctions. For instance, the influence of resonance

behavior in the interpretation of single-molecule experiments has been previously

investigated [131].

4.3 Theory

The theoretical model that accounts for a quantitative interpretation of the ex-

perimental results corresponds to electron transport occurring via a one-electron tun-

neling mechanism under the Landauer regime. In such a model the current is well

described by a dimensionless transmission coefficient, which depends on the nature

of the tunneling barrier,

I(V ) =
4e

h

µR∫
µL

dEτ(E, V ) (4.1)

where E is the energy of the tunneling electron, V is the applied bias voltage, and µL,

µR are the electrochemical potentials in the left and right electrodes, respectively. In

the linear regime of low bias voltage, which is the one we are concerned with, equation

4.1 becomes,

I(V ) =
4e2

h
τ(EF )V (4.2)

In this regime the conductance is given by the Landauer expression,

G =
4e2

h
τ(EF ) (4.3)
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where the transmission coefficient can be written as [126],

τ(EF ) = TLMR ξL(EF )ξR(EF ) (4.4)

and TLMR is the effective coupling to the left (L) and (R) electrodes mediated by the

molecule M and ξL/R(EF ) are the densities of states of the L/R electrode/molecule

contacts at the Fermi energy. The main reason to include here a discussion of the

Landauer formalism, is to emphasize that even in this simple model the effective

coupling is a product of a term connected to the propagation of electrons through

the molecule, and the chemisorption coupling of the molecule to the electrodes. As

discussed in the computational section, we use here an implementation of the NEGF

formalism contained in the trans-SIESTA computational package [127].

4.4 Computational Methods

Two families of systems were considered in this study. The first consists of a

set of alkanedithiols that range in length from 6 carbons to 10 carbons (A6-A10).

The second consists of two carboxylated alkanedithiol dimers that range in length

from 4 to 10 carbons (H4-H10) and are constructed such that each dimer results in a

semi-planer cyclic ring containing two hydrogen bonds. See Figure 4.2.

All molecular geometries were optimized at the DFT/B3YLP level using the Pople

style 6-31G*(d) basis set using the ORCA software package [132] in the form Au-S-

Molecule-S-Au. After optimization the two gold atoms were removed and the resulting

structure was covalently attached to gold electrodes in the atop position. All Au-S

distances were fixed at 2.240 Åand each gold electrode was modeled after Krsti et

al [133, 134]. Each gold unit cell contained two sub layers of either seven or three

gold atoms with periodic boundary conditions along the transport direction. Since

the contact geometry between the electrode and anchoring site can affect transport
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calculations [42], an extra 7-atom layer was inserted between the molecule and the

right lead to ensure the same attachment of the molecule to the left and right leads.
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(a) H4 (b) H5 (c) H6

(d) H7 (e) H8 (f) H10

(g) A6 (h) A7 (i) A8

(j) A9 (k) H4 with Electrode

(l) A10 (m) A6 with Electrode

Figure 4.2: Considered Systems and Electrode Setup

Electronic transport calculations were performed using the NEGF+DFT approach
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as implemented in the Tran-SIESTA computational package [127, 125]. In order to

appropriately capture the subtleties of the H-bonded systems [119], we used a double-

ζ basis set in our transport calculations while using single-ζ basis set for the alkanes to

avoid the potential issue of ghost transmissions as discussed by Hermann et al [126].

The generalized gradient approximation (GGA) was used as the exchange correlation

functional. The energy cutoff for the real space grid was 200 Ry.

4.5 Results and Discussion

Figure 4.3 displays a logarithmic plot of the conductance as a function of the

length of the molecular bridge separating the two Au electrodes as measured by the

S-S distance L. As expected for tunneling junctions, the conductance decreases ex-

ponentially as length increases. Our results agree reasonably well with the observed

experimental trend regarding the value of the β parameter controlling the exponential

decay. More importantly, our calculations show that the shorter H-bonded systems

(L<16Å) have larger conductance than the alkane chains and that there is a turnover

region at approximately L≥17Å. Figure 4.4 (Panel A) contains the results of our cal-

culations for the H-bonded systems. Here the dominant feature is a conspicuous peak

near the Fermi energy whose shape closely resembles the profile of a Fano resonance,

something that has been described in other works [5, 130, 135]. The transmission

values follow an inverse ordering to that of chain length with the shortest chain ex-

hibiting a higher transmission. This eventually decreases sharply for the H10 chain.

Figure 4.4 (Panel B) displays the transmission coefficient for the alkane systems. The

figure shows the peak for the HOMO but not the LUMO, which is several eV above

the Fermi energy, and is not relevant for the comparison with the experiment. Here

the resonant feature is absent around the Fermi energy and the transmission is con-

sistently smaller than the corresponding one for the H-bonded system of equivalent
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Figure 4.3: Natural Log of Conductance Verses S-S Distance of H-bonded (Pink Cir-

cles) and Alkane Systems (Blue Squares). The H-bonded Systems Have an Increased

Conductance Over the Alkanes Until the Turnover Regime at Approximately 17 Å.

The Beta Decay Factor is 1.32 ± 0.18 Å−1 for the H-bonded Systems and 0.95 ± 0.15

Å−1 for the Alkanes.

length until this trend is reversed for lengths corresponding to the A9/H8 systems.

This is naturally associated with the turnover region observed in the experiment. As

previously discussed, an analysis of conductance in a molecular junction based only

on state availability for transport is incomplete, especially if a quasi-resonance is in-

tervening in transport, because this feature might be difficult to identify in the DOS

and is clearly visible in the transmission function. In addition to this limitation, low

bias conductance involves mostly probing transmission around the Fermi energy. It

is true that conductance depends on the full energy spectrum, but the linear regime

is dominated by the behavior of the system close to the Fermi energy. Despite this

general consideration, we include here for completeness the analysis of the DOS be-

cause it sheds complementary information about the physical mechanism involved in

transport.
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Figure 4.4: Panel A - Log of the Transmission as a Function of Energy of the H-

bonded Systems Showing a Distinct Peak at the Fermi Energy. Panel B - Log of the

Transmission as a Function of Energy of the Alkane Systems.

Figure 4.5 displays the total DOS for a typical H-bonded junction. For comparison

we have included the results with and without the Au contacts. Once the chemical

bonding between the molecule and the contact is included, the DOS is a property

of the combined subsystems. However, the results indicate the presence of several

features, which are important for our discussion and can be directly attributed to the

presence of the molecular bridge. Since the inclusion of the much larger DOS arising
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from the contacts masks the analysis of the DOS close to the Fermi energy related

to the molecular electronic structure, in what follows we subtract the contribution

of the contacts. Figure 4.6 shows a comparison of the DOS corresponding to the H-

Figure 4.5: Density of States for the Shortest H-bonded Structure (H4). Red Line

- DOS Including Gold Atoms of the Electrodes. Black Line - DOS Excluding Gold

Atoms of the Electrodes.

bonded and alkane systems. There are two salient features. First, is the larger DOS

close to the Fermi energy and within the experimental bias window of 0.2 eV, for the

H-bonded systems, compared to the alkane chains. This difference would point out

to a larger contribution to the conductance of the former. Second, and perhaps more

important, is the fact that the large peak in the DOS for the H-bonded systems around

-1.5 eV, which is much reduced for the alkane systems, is essentially invariant and

therefore cannot account for the turnover region observed experimentally, as proposed

in Nishinos work. The seemingly counter-intuitive result that transport through a

hydrogen bond can be more efficient than through a sigma-bond, was interpreted

as due to a distinctive feature in the projected density of states (PDOS) that was

present for the hydrogen bonded systems only. An interpretation for the conductance

behavior of a molecular junction that is solely based on a DOS argument, is not as
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Figure 4.6: Panel A - DOS of the H-bonded Systems. Inset Shows the Region Around

the Fermi Energy Magnified. Panel B - DOS of the Alkane Systems.

complete as one based of a full theory of transport, such as the NEGF approach, that

in addition to state availability, takes into account the electron propagation ability

of the molecular bridge. This is particularly important in a situation, such as that in

the above-referred measurements, where a low bias voltage (0.2 V) is applied. This

corresponds to a small window around the Fermi energy whereas the PDOS peak

structure invoked to interpret the experiment lies at around -2 eV. Furthermore, even

if there is a consistent correlation between PDOS and conductance, this argument
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cannot explain the turnover region observed at larger electrode separation.

We have explored the implications of quasi-resonant transport in a particularly

important instance of a weakly bonded molecular junction involving hydrogen bonds.

This is a subject that has been almost completed ignored in McConnell-type analysis

[29], which is valid only for non-resonant transport that is the dominant mechanism

in most tunneling junctions studied so far. Although the possibility of quantum

interference [62] to be partly responsible for the peak in the transmission function

cannot be ruled out, we have identified it as a Fano resonance based on its profile.

The possible role of quantum interference due to the cyclic topology of the hydrogen-

bonded part of the molecule is currently under study.

Figure 4.7: Transmission Function Comparing the Modified H-bond Lengths.

We also looked at comparing the H-bond length and its affect on the transmis-

sion function. Figure 4.7 shows the results of these calculations. After geometry

optimization, the H-bond length was modified by elongating the bond by 10% and

by shortening it by 10%. The resulting transmission functions are graphed together

to show that when the H-bond is shortened by 10%, the transmission function peak

around the corrected Fermi energy is higher as when compared to the other two

systems. This directly translates into a higher conductance and shows that by phys-
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ically altering the dimensions of the H-bond in the junction, tunable electronics can

be realized in a practical way.

Our model provides for a comprehensive rationale for some recent experimental

results that indicate that under some conditions transport through a weak bond can

be more efficient than through a stronger chemical link. An alternative theoretical

explanation to this finding was given by Li et al who took into account an explicit self-

energy correction in their calculations [136]. In a more general context, our results

are also relevant for the issue of understanding the role of the chemical bond in

electron transfer and transport processes. In this connection, high-level calculations

are required to account both for the electronic structure of weakly bonded systems

and transport properties. The dependence of our results on the quality of the basis

set is also highlighted by the need to examine the onset of ghost transmission for

short chains.

Finally, our results may be significant for the design of devices and understanding

transport in DNA [137].
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Chapter 5

CALCULATED PROPERTIES OF SELECTED DIMERS AND DNA/RNA BASE

PAIRS

5.1 Introduction

While electron transport through covalent bonds has been extensively studied,

recent studies have shifted their focus towards hydrogen-bonded systems due to their

ubiquitous presence in biological systems and their potential in forming nanojunctions

between molecular electronic devices and our own biological systems. Moreover, our

prior study explored the implications of quasiresonant transport in a particularly im-

portant instance of a weakly bonded molecular junction involving hydrogen bonds.

This study demonstrated that under some conditions the inclusion of H-bonding in

a molecular junction significantly impacts its transport property, a fact that has im-

portant implications for our understanding of transport through DNA, and biological

interfaces in general [138]. The critical role of hydrogen-bonds in structure and electri-

cal conductance of the DNA, and the possibility of using molecular conductance and

the spectral features of it to characterize a base pair sequence of DNA[139, 140, 141]

makes studying and characterizing of hydrogen bond in DNA of paramount impor-

tance.

Characterizing the electrical conductivity of DNA nucleotides may lead to faster

and more cost effective personalized medicine and a revolution in the design and

application of new drugs [142, 139]. While significant progress has been achieved in

discovering more and more about electron transport through DNA, such as measuring

the conductance of double helical DNA, studying of modified DNA to alter its charge
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transport properties [143], the transversal conductance of DNA (i.e. conductance

across the nucleotides themselves) is mostly understudied. In one case, Tao et al.

recognized that long-range transport can occur along double helical DNA via the

overlapping π molecular orbitals of the DNA stacked bases [143]. They furthermore

replaced a DNA base with anthraquinone, a redox group, to demonstrate conductance

switching in DNA [143]. In this paper, we will focus on systematic study of electron

transport through DNA base pairs and will try to explore the use of polarizability as

a potential descriptor.

It has been shown that for a set of biologically relevant hydrogen bonded systems

that polarizability can be used as a guideline to qualitatively predict conductance

through the system [60].

Since NH · · ·O, OH · · ·O, and NH · · ·N are the three most widely prevalent hy-

drogen bonds in biological systems and organic electronics [119], DNA is a perfect

system to assess the qualitative properties of using polarizability to characterize hy-

drogen bonds. The connection between conductance and polarizability has already

been investigated in different families containing hydrogen bonds. In two studies,

the measured conductance of a few experimental design motifs were compared to the

molecular polarizability [60, 119]. In one paper, results show an inverse relationship

between conductance and polarizability; the conductance decreases as the molecular

polarizability increases [60].

5.2 Methods

Full geometry optimizations of all hydrogen bonded and DNA/RNA conforma-

tions were carried out at the density functional level of theory (DFT) using the

Becke gradient-corrected exchange functional and Lee-Yang-Parr correlation func-

tional with three parameters (B3LYP) and the 6-311++G(2d,2p) basis set. Also,
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the total isotropic polarizability was calculated and then partitioned into individual

atomic components using an approach based on Hirshfeld population analyses [? ].

Both calculations were performed using Gaussian 09.

Electronic transport calculations were performed using the NEGF+DFT approach

as implemented in the Tran-SIESTA computational package [125]. In order to appro-

priately capture the subtleties of the hydrogen bond in all considered systems [119],

we used a double-ζ basis set in our transport calculations. The generalized gradient

approximation (GGA) was used as the exchange correlation functional. The energy

cutoff for the real space grid was 200 Ry.

5.3 Results & Discussion

A hydrogen bond, by definition, results from an attractive interaction between the

hydrogen atom of a covalent bond containing a donor hydrogen and an electroneg-

ative acceptor atom. One important feature of a hydrogen bond is that it is highly

polarizable. This feature is extremely important in the context of electron transport

across hydrogen bonds. Polarizable systems have a soft electron cloud that deforms

in response to bias modification which then modulates the tunneling current [119].

Figure 5.1 shows the hydrogen bonded dimers that were first investigated in order

to understand conductance and polarizability trends in more complicated systems

than previously studied. Here we consider the H4, H6, H8, and H10 systems.
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(a) H4 (b) H6

(c) H8 (d) H10

Figure 5.1: H-bonded Dimers Considered in This Section

Figure 5.2a shows the natural log of conductance versus the total polarizability of

the hydrogen bonded dimers. We can see that as the total polarizability increases,

the overall conductance decreases. Next, we can see in Figure 5.2b that as the polar-

izability of the hydrogen acceptor atom increases, so does the conductance for these

simple systems; again we see a direct correlation between the polarizability of the

hydrogen acceptor atom and the conductance.
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(a) Avg G vs Total Polarizability

(b) Avg G vs Acc Polarizability

Figure 5.2: Conductance (G) Versus Total (a) and Acceptor Atom (b) Atomic Polar-

izabilities for the H-Bonded Systems.

Next, we investigated the polarizability sensitivity of the hydrogen bond acceptor

atom when changing a functional group near the acceptor atom. Figure 5.3 shows

the found hydrogen bonded dimer systems with a terminal methyl group changed for

either an electron withdrawing or an electron donating group.
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(a) H4 (b) H/NH2 (c) H/CF3 (d) H/NO2

Figure 5.3: H4 and CH3 Modified Terminal Groups.

Table 5.1 shows the results of the previous calculations. The hydrogen acceptor

atom is designated as the one closest to the changed functional group (right side of

each dimer in the previous image). We can see that changing the functional group

does indeed change the polarizability of the acceptor atom. If we compare system H4

(Figure 5.3a) to system H/NH2 (Figure 5.3b), the atomic polarizability increases from

3.8 to 3.9 by the addition of an electron donating group. However, when an electron

withdrawing group such as CF3 is used, then the polarizability decreases from 3.8 to

2.9. Again, we see that as an electron donating group can increase the local atomic

polarizability by pushing electron density into the bond, an electron withdrawing

group will decrease polarizability by decreasing electron density near the acceptor

atom.

System αO1 αO2 αO Group

H4 3.8 3.8 3.8 Ref

H/NH2 3.9 3.7 3.8 EDG

H/CF3 2.9 4.6 3.8 EWG

H/NO2 3.1 4.2 3.7 EWG

Table 5.1: Atomic Polarizability of the Hydrogen Acceptor Atom (αO) in the Presence

of EDG and EDW Groups.
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We next began to investigate the conductance and polarizability properties of

DNA and RNA base pairs. Figure 5.4 shows the transmission profile for A-T. A-U,

and C-G. As opposed to our hydrogen bonded work from earlier where the presence

of a Fano resonance helped to explain interesting results, the transmission profiles of

these base pairs show no striking features.

(a) T (E) vs E − EF

(b) Log T (E) vs E − EF

Figure 5.4: Transmission Curves for the A-T, A-U, and G-C Systems.
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System HOMO (eV) LUMO (eV) Gap (eV) rN ···N rO···N G (nS)

A-T -6.2 -1.4 4.7 2.837 2.911 1.69

A-U -6.2 -1.5 4.6 2.836 2.908 1.65

G-C -5.4 -1.7 3.8 2.914 2.894 6.83

A -6.3 -0.9 5.4 — — —

T -6.9 -1.5 5.4 — — —

U -7.3 -1.7 5.6 — — —

C -6.5 -1.3 5.2 — — —

G -5.9 -1.0 4.9 — — —

Table 5.2: HOMO-LUMO Gap Energies of Considered Systems

Studying of A-T and A-U systems can be very illuminating since A-T is the

methylated version of the A-U system. We have previously shown that for struc-

turally similar systems we can use polarizability as a descriptor for electron transport

in organic molecules. In the NH · · ·N and NH · · ·O bonds, N and O are acting

as hydrogen bond acceptors. It can be seen that the higher the polarizability of

the hydrogen bond acceptor the lower the conductance of the molecule. It is worth

noting that while many use HOMO-LUMO gap as a measure for the tunneling bar-

rier, A-U has a smaller HOMO-LUMO gap in comparison with A-T, but it has a

weaker ability to conduct transport electrons. Once again this proves that the as-

suming HOMO-LUMO gap as a measure of the tunneling barrier’s height fails for

relatively complicated systems, particularly when weak interactions are involved. It

is also important to note that the distance from the hydrogen bond donor and accep-

tor is slightly larger for A-T than A-U, hence intuitively one would imagine that the

conductance of A-T should be smaller while the opposite is true. The inverse corre-
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lation between the hydrogen bond acceptor’s atomic polarizability and conductance

was previously shown for simple hydrogen bonded systems. The more polarizable

an hydrogen bond acceptor atom is, the more resistance and change in the electron

density is present on the electron acceptor moiety which can result in partial charge

accumulation around the hydrogen bond.

Figure 5.5: Calculated Conductance (G) Versus Total Polarizability for A-T, A-U,

and C-G.

The polarizabilities of A-T, A-U, G-C, and their respective monomers were calcu-

lated using the B3LYP/6-311++G(2d,3p) level of theory. In Table 5.3 we consider the

base-pairs and monomer systems from the perspective of their NH · · ·O bond. We

consider the NH · · ·O bond as originating from the adenine and guanine molecules.

In this case, nitrogen acts as the hydrogen donor while oxygen is the acceptor. We

first see that the polarizability of the donor atom in adenine decreases from 5.8 to es-

sentially zero when compared to A-T while increasing to 7.2 when compared to A-U.

The polarizability of hydrogen in adenine decreases from 8.6 to 3.8 when compared

to A-T and 2.7 when compared to A-U. We can also see that the N-H bond length

is shortest in adenine as compared to the other two systems. Next, the polarizability
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Figure 5.6: Atomic Polarizabilities of Atoms Participating in the Junction Between

Nucleotides. The Images Located on the Left of each Panel Shows the Values of Each

Atom in the Junction When the Base Pairs are Analyzed Together. Images on the

Left of Each Panel are the Values of the Same Structures as Monomers.

System αN αH αO
∑
α rN−H rO···H rO···N G (nS)

A-T -1.3 3.8 4.5 178 1.023 1.891 2.911 1.69

A-U 7.2 2.7 6.4 170 1.023 1.887 2.908 1.65

G-C 7.4 3.2 13.0 177 1.023 1.871 2.894 6.83

A 5.8 8.6 — 95 1.003 — — —

T — — 11.8 81 — — — —

U — — 13.3 68 — — — —

G 7.0 8.0 — 101 1.007 — — —

C — — 13.8 76 — — — —

Table 5.3: Calculated Atomic Polarizability, Conductance, and Other Geometric Pa-

rameters of Different Systems from the Perspective of Their NH · · ·O Bond.

of the acceptor atom in thymine decreases from 11.8 to 4.5 when compared to A-T.

Likewise, the acceptor atom in uracil also decreases from 13.3 to 6.4 when compared
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to A-U. The polarizability of the donor atom in guanine increases from 7.0 to 7.4 when

compared to G-C. The polarizability of the hydrogen atom in guanine decreases from

8.0 to 3.2 when compared to G-C. The N-H bond length is also shortest when gua-

nine is a monomer. Next, the polarizability of the acceptor atom in cytosine decreases

from 13.8 to 13.0 when compared to G-C. Last, the O · · ·H distance is shortest in

the G-C base pair as compared to the other two systems and also demonstrates the

highest conductance.

System αN αH αN
∑
α rN−H rH···N rN ···N G (nS)

T-A 2.4 0.2 0.5 178 1.048 1.790 2.837 1.69

U-A -2.0 2.3 0.9 170 1.048 1.788 2.836 1.65

G-C 0.5 1.8 1.4 177 1.034 1.881 2.914 6.83

A — — 7.9 95 — — — —

T 2.1 5.4 — 81 1.010 — — —

U 1.9 4.9 — 68 1.010 — — —

G 2.5 6.1 — 101 1.009 — — —

C — — 5.3 76 — — — —

Table 5.4: Calculated Atomic Polarizability, Conductance, and Other Geometric Pa-

rameters of Different Systems from the Perspective of Their NH · · ·N Bond.

The polarizabilities of T-A, U-A, G-C, and their respective monomers were cal-

culated using the B3LYP/6-311++G(2d,3p) level of theory. In Table 5.3 we consider

the base-pairs and monomer systems from the perspective of their NH · · ·N bond.

We consider the NH · · ·N bond as originating from the thymine, uracil, and guanine

molecules. In this case, nitrogen can act as either the hydrogen bond acceptor or

donor. We first see that the polarizability of the acceptor nitrogen in adenine de-
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creases from 7.9 to 0.5 as compared to T-A and 0.9 as compared to U-A. Next, the

polarizability of the donor atom in thymine increases from 2.1 to 2.4 when compared

to T-A and the polarizability of it’s hydrogen atom decreases from 5.4 to 0.2. Next,

the polarizability of the donor atom in uracil decreases from 1.9 to essentially 0 when

compared to U-A and the polarizability of it’s hydrogen atom decreases from 4.9 to

2.3. Next, the polarizability of the donor atom in guanine decreases from 2.5 to 0.5

as compared to G-C and the polarizability of it’s hydrogen atom decreases from 6.1

to 1.8. We can also see that the polarizability of the acceptor atom in cytosine de-

creases from 5.3 to 1.4 as compared to G-C. Last, we can see that the N-H bond in

the monomer is consistently smaller than their associated base pairing.

In summary, Figure 5.7 shows the salient results from our hydrogen bonded dimer

calculations. Here, we can see that again that there is a correlation between the

conductance of a system and the polarizability of a hydrogen acceptor atom. Also, the

total polarizability of our system is inversely proportional to the conductance. This

makes intuitive sense: that the conductance would decrease as the volume increases

(hence it’s total polarizability increasing).

Figure 5.7: Summary of Results - Hydrogen Bonded Dimers.

We then observed that we can affect the atomic polarizability of an atom by

modifying a functional group close to the atom in question. In a previous section

we have shown that electron accepting and electron withdrawing groups close to an

atom in question affects its polarizability. In these calculations, we can modify the
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polarizability by carefully choosing an appropriate functional group.

Last, in Figure 5.8 we can see the results of our DNA/RNA calculations. Again,

the polarizability of the hydrogen acceptor atom correlates to the overall conductance

of the systems. As a preliminary results, this is an exciting development that may lead

to conductance trend analysis using a descriptor that is faster and computationally

cheaper than other methods.

Figure 5.8: Summary of Results - DNA/RNA Basepairs.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

As we saw in Chapter 4, hydrogen bonds can, in some instances, exhibit greater

conductance values than different systems (alkanes) of comparable size. We also

found that the shorter hydrogen bonded systems were higher in conductance not due

to a density of states argument as suggested by others, but by a feature contained in

the transmission profile of the systems in question. We found the presence of a Fano

resonance in the hydrogen bonded systems at short distance that was not present in

the transmission profile of the alkanes. This Fano resonance is a striking feature that

comes up in special circumstances and is the sole feature that explains the higher

conductance of the hydrogen bonded systems over alkanes. Also, we found that we

can artificially tune the hydrogen bond length in the shortest hydrogen bonded system

to attenuate the transmission profile and hence, the conductance of the system.

In Chapter 3 we assessed the role of atomic polarizability and conductance in

selected monomers. The monomers in question consisted of a set of purines and a

set of pyrimidines. We chose these monomers since they compose DNA and RNA

systems of interest to biological interactions. We found that the presence of electron

donating and electron withdrawing groups close to the nitrogen atoms responsible for

the hydrogen bonds in base pairing between these two families greatly affected the

atomic polarizability of the nitrogen atoms in predictable ways. We found that when

an electron donating group was in close proximity to a nitrogen atom, the atomic

polarizability was increased. Also, an electron withdrawing group reduced the atomic

polarizability of the atoms in question. We also found that when comparing the

polarizability of the hydrogen acceptor atom across a family of molecules, that the

85



conductance was proportional. Figure 6.1 shows the summary of results from Chapter

3 and Chapter 5 calculations. When comparing monomers of the same family (in this

case, cytosine and thymine), we can clearly see the correlation between conductance

and the hydrogen acceptors atomic polarizability.

In Chapter 5, we began to explore the atomic polarizability and the relationship

to conductance in more complicated hydrogen bonded networks. We started with

four hydrogen bonded dimers and observed that conductance decreased with length

but was proportional to the hydrogen acceptors atomic polarizability. We then chose

the smallest system and modified the end-group of each H4 dimer with either an

electron donating or electron withdrawing group to see how these groups would affect

the atomic polarizability of the hydrogen acceptor atom. We found that by changing

the group, we could affect the polarizability of the oxygen atom participating the

hydrogen bond in predictable ways. By changing the terminal methyl group to an

electron donating group, we observed an increase in polarizability while changing the

terminal group to an electron withdrawing group caused the polarizability to decrease.

We then analyzed the conductance and polarizability (both total and atomic) of

DNA/RNA base pairs. Our preliminary results indicate that as the polarizability of

the hydrogen bond acceptors atom increased, the conductance of the system increased.

Again, we have a direct correlation between conductance and atomic polarizability.

Once more we have a correlation between the atomic polarizability of the hydrogen

acceptor atom and conductance. This leads us to conclude that a connection between

these two phenomena does exist and that after further study, we may be able to show

that the atomic polarizability of certain atoms may reveal physical trends in a system

that is both faster and computationally cheaper to acquire.

86



Figure 6.1: Summary of Polarizability Studies.

6.1 Future Work

While we have seen that we can attenuate the transmission profile of the shortest

hydrogen bond system in Chapter 4, we would like to assess this phenomena in a

more systematic way. One way to accomplish this would be to change the hydrogen

bond length of each dimer in the series both by elongating the hydrogen bond and

by shortening it. We think it would be interesting to see the persistence of the Fano

resonance and at what configuration the resonance feature disappears. Another path

of investigation is to use the computational package KWANT [144] and model the

hydrogen bonded dimers and alkanes in a tight binding model. We would like to move

the hydrogen bonded junction of each structure closer and further to each electrode

to assess the role of topology in the conductance of these systems. We would also
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like to decompose our systems based on bond currents and see the role of symmetry

and quantum interference in the conductance of our systems. The main question to

be addressed in this future work is to ascertain the ideal parameters for conductance

in these hydrogen bonded systems.

Next, we would like to create an anchoring group to anchor the monomers from

the purine and pyrimidine families in Chapter 3 to calculated the conductance of

each system for a more systematic comparison to polarizability. Also, it would be

interesting to include electron donating and withdrawing groups to each monomer

to further elucidate the nature of conductance and polarizability in these systems.

We would also like to calculated the conductance of the hydrogen bonded dimers in

Chapter 5 before and after changing the terminal methyl group. We would like to

see whether we can predict the changes in conductance while modifying the hydrogen

acceptor atoms polarizability in a systematic way. By keeping the length of the system

constant (by only modifying one group), we believe that we may see a more concrete

trend between the conductance and atomic polarizability.

Last, we would like to conduct a further study into the transversal conductance

through DNA base pairs (conductance across the hydrogen bond) both with and

without the phosphate backbone.
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[66] P. Trocha and J. Barnaś. Dicke-like effect in spin-polarized transport through
coupled quantum dots. Journal of Physics: Condensed Matter, 20(12):125220,
2008.
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A.1 Computational Details

All geometry optimizations were performed using either ORCA 2.9.1 (hydrogen
bonded systems, alkanes) or Gaussian 09 (monomer, DNA/RNA basepairs). When
using ORCA, optimizations were performed using the B3LYP/6-31G* level of the-
ory and when using Gaussian, optimizations were performed using the B3LYP/6-
311++G(2d,2p) level of theory. Electronic structure calculations were performed
using the tranSIESTA computational package found in the SIESTA 3.1 computa-
tional platform. Since using large nonorthogonal atom-centered basis sets can lead
to erroneous results; using basis sets of triple-zeta quality or higher can occasionally
lead to artificially higher transmission results [126], we were careful in choosing ap-
propriately large basis sets to avoid ghost transmission artifacts. Hirshfeld population
analysis was employed using Gaussian 09 for our polarizability calculations. Sample
image, coordinate, and input files can be found in the following sections.

A.2 Relating to the Electrode

A.2.1 Sample Structure

Figure A.1: Structure of the Electrode
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A.2.2 XYZ Files -Electrode

(a) Electrode XYZ File (1st Half) (b) Electrode XYZ File (2nd Half)

Figure A.2: Electrode Structure’s XYZ Files
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A.3 Relating to Hydrogen Bonded Dimers

A.3.1 Sample Structure

Figure A.3: Structure of H4

Figure A.4: H4 Between Electrodes
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A.3.2 XYZ Files - H4 Dimer

(a) H4 (b) H4 with Electrode

Figure A.5: H4 Structure’s XYZ Files
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A.3.3 ORCA Input File - H4 Dimer Optimization

Figure A.6: H4 ORCA Input File

105



A.3.4 SIESTA Input FDF File - H4 Dimer

(a) SIESTA FDF File (1st Half) (b) SIESTA FDF File (2nd Half)

Figure A.7: H4 FDF File for Electronic Structure Calculations
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A.3.5 Gaussian 09 Input File - H4 Dimer Polarizability

Figure A.8: H4 Gaussian 09 Input File
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A.4 Relating to Alkanes

A.4.1 Sample Structure

Figure A.9: Structure of A6

Figure A.10: A6 Between Electrodes
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A.4.2 XYZ Files - A6 Alkane

(a) A6

(b) A6 with Electrode - Part 1 (c) A6 with Electrode - Part 2

Figure A.11: A6 Structure’s XYZ Files
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A.4.3 ORCA Input File - A6 Optimization

Figure A.12: A6 ORCA Input File
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A.4.4 SIESTA Input FDF File - A6 Alkane

(a) SIESTA FDF File (1st Half) (b) SIESTA FDF File (2nd Half)

Figure A.13: A6 FDF File for Electronic Structure Calculations
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A.5 Relating to Monomers

A.5.1 Sample Structure

Figure A.14: Structure of Adenine

A.5.2 XYZ File - Adenine

Figure A.15: Adenine Structure’s XYZ File

112



A.5.3 Gaussian 09 Input File - Adenine

Figure A.16: Adenine Optimization and Polarizability Input File
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A.6 Relating to DNA/RNA Base Pairs

A.6.1 Sample Structure

Figure A.17: Structure of Adenine-Thymine

Figure A.18: A-T Between Electrodes
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A.6.2 XYZ File - A-T Base Pair

Figure A.19: A-T Structure’s XYZ File
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(a) A-T with Electrode - Part 1 (b) A-T with Electrode - Part 2

Figure A.20: A-T Structure’s XYZ Files
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A.6.3 Gaussian 09 Input File - A-T Base Pair

Figure A.21: A-T Optimization Input File
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A.6.4 SIESTA Input FDF File - A-T Base Pair

(a) SIESTA FDF File (1st Half) (b) SIESTA FDF File (2nd Half)

Figure A.22: A-T FDF File for Electronic Structure Calculations
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A.6.5 Gaussian 09 Input File - A-T Base Pair

Figure A.23: A-T Polarizability Input File
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REPRINT PERMISSIONS
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B.1 Chapter 1

Figure B.1: Reprint Permission for Used Figure
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Figure B.2: Reprint Permission for Used Table
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B.2 Chapter 2

Figure B.3: Reprint Permission for Used Figure
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Figure B.4: Reprint Permission for Used Figures
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B.3 Chapter 4

Figure B.5: Reprint Permission for Original Work
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