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ABSTRACT 

Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical 

properties compared to their coarse-grained counterparts. Furthermore, the mechanical 

behavior and microstructure of nc films is intimately related.  Thus, precise control of the 

size, aspect ratio and spatial distribution of grains can enable the synthesis of thin films 

with exceptional mechanical properties. However, conventional bottom-up techniques for 

synthesizing thin films are incapable of achieving the microstructural control required to 

explicitly tune their properties.  This dissertation focuses on developing a novel technique 

to synthesize metallic alloy thin films with precisely controlled microstructures and 

subsequently characterizing their mechanical properties using in situ transmission 

electron microscopy (TEM). Control over the grain size and distribution was achieved by 

controlling the recrystallization process of amorphous films by the use of thin crystalline 

seed layers. The novel technique was used to manipulate the microstructure of structural 

(TiAl) and functional (NiTi) thin films thereby exhibiting its capability and versatility. 

Following the synthesis of thin films with tailored microstructures, in situ TEM 

techniques were employed to probe their mechanical properties. Firstly, a novel 

technique was developed to measure local atomic level elastic strains in metallic glass 

thin films during in situ TEM straining. This technique was used to detect structural 

changes and anelastic deformation in metallic glass thin films. Finally, as the electron 

beam (e-beam) in TEMs is known to cause radiation damage to specimen, systematic 

experiments were carried out to quantify the effect of the e-beam on the stress-strain 

response of nc metals. Experiments conducted on Al and Au films revealed that the e-

beam enhances dislocation activity leading to stress relaxation. 
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CHAPTER 1 

INTRODUCTION 

 

The motivation behind this thesis is the synthesis of nanocrystalline (nc) alloys 

with precisely tailored microstructures and the subsequent analysis of their mechanical 

behavior using in situ transmission electron microscopy (TEM) techniques. 

Nanocrystalline metals and alloys (Figure 1) have a mean grain size of less than 100 nm 

and are characterized by a larger volume fraction of grain boundaries compared to 

coarse-grained materials.  As a result, nc materials exhibit a wide range of enhanced 

mechanical and tribological properties and have been actively explored for potential 

structural applications.  In addition, at these small grain sizes, the mechanical properties 

of materials are extremely sensitive to the geometry, size and spatial distribution of 

grains. Furthermore, it has been shown that nc metals having a specific distribution of 

grain sizes can exhibit unique properties like recovery of inelastic strain. Thus, the ability 

to tailor the microstructure of nc alloys would allow us to meticulously engineer the 

mechanical behavior of these materials.   

 

In this thesis, a novel technique has been used to tailor the microstructures of 

sputter-deposited TiAl and TiNi thin films. This was accomplished by using intermediate 

crystalline seed layers that alter the crystallization kinetics of these materials that are 

amorphous in the as-deposited state. The seeds were found to aid crystallization, with 

seeded films crystallizing faster than non-seeded films for the same annealing 

temperature. Furthermore, the final microstructure of the seeded films was in the 
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nanocrystalline regime up to a temperature of 750oC, whereas the unseeded films 

underwent rapid recrystallization to form large microcrystalline grains. Moreover, cross-

sectional TEM analysis revealed that the grain height scaled with the seed spacing along 

the thickness of the film. Thus, this technique enabled control of the grain diameter, 

height and spatial distribution. The technique was used to synthesize intermetallic films 

with gradient structures that could potentially have a unique combination of enhanced 

strength and ductility. Additionally, the seed element was also found to influence the 

phase composition in NiTi thin films, with a Cr seed stabilizing austenitic nc grains.  

  

Having synthesized nc thin films with tailored microstructures, studying their 

mechanical behavior in situ was critical to understanding the deformation mechanisms 

that dictate their mechanical behavior.  With this in mind, in-situ TEM straining was used 

to study the mechanical behavior of NiTi thin films synthesized using the seed mediated 

crystallization technique. NiTi films were studied because they exhibit unique 

mechanical properties like shape memory behavior and pseudoelasticity. If stable 

nanocrystalline grains can be obtained in these materials, it could lead to the 

enhancement of strength and inelastic strain recovery. The TEM can be a vital tool to 

study the deformation mechanisms and microstructural evolution in such nc metals. The 

ability to track changes in the microstructure through high resolution imaging combined 

with the capability to measure crystal rotations and lattice strain using diffraction makes 

the TEM indispensable in the research of nc materials. In-situ experiments carried out in 

the TEM give us the unique capability to study the behavior of nc materials in real-time 

while applying a mechanical or thermal stimulus. In-situ TEM straining of the NiTi films 
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with tailored microstructures revealed an extremely high stress for martensite phase 

transformation in these materials. Plastic deformation in the austenite grains was also 

uncovered during the tests.  

 

As the films with tailored microstructures were amorphous in the as deposited 

state, there was a need to study the atomic scale behavior of amorphous films as well. 

Metallic glasses, which are amorphous metal alloys, exhibit excellent tensile strength and 

corrosion resistance. However, these materials are brittle and fail by the localization of 

deformation in shear bands. Moreover, these materials are known to undergo atomic level 

rearrangements when subjected to loading. Thus, micro strain characterization at the 

atomic scale can give us valuable information about the behavior of nanoscale metallic 

glasses. Although techniques exist to measure lattice strains in crystalline materials using 

the TEM, the lattice strain in amorphous thins films have not been measured in situ. A 

novel technique was employed to measure micro strains in metallic glass thin films by 

tracking geometric changes in the selected area diffraction (SAD) patterns during in-situ 

straining. Using this method, structural rearrangements induced by straining and the 

presence of anelastic deformation were detected. 

 

Finally, as in situ TEM straining was extensively used in this dissertation to study 

the mechanical behavior of nanoscale metals, it was important to uncover the artifacts 

that were induced in the experiments by the TEM electron beam (e-beam). While it is 

well known that the TEM electron beam can trigger changes in the mechanical behavior 

of the materials being probed, systematic investigations have not been performed to 
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determine the e-beam effect on the in-situ deformation response of nc materials. To 

address this issue, methodical experiments were performed to study the effect of the e-

beam on the deformation response of nc Al and Au thin films. The experiments revealed 

that the e-beam enhances dislocation activity in these materials leading to a relaxation in 

stress. The e-beam was also found to cause anomalous necking along the width of the 

specimen. These effects of the e-beam were found to be more pronounced at lower 

accelerating voltages. Inelastic scattering processes that led to the depinning of 

dislocations pinned at grain boundaries was found to be the major driver behind these 

anamolous effects.  The experiments suggested that using higher accelerating voltages 

while maintaining lower beam intensities could help minimize e-beam induced artifacts. 

Figure 1: (a) TEM micrograph of nc Al thin film with a mean grain size of 125nm. (b) TEM 
micrograph of a Ti45Al55 intermetallic thin film deposited by DC magnetron sputtering. 
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CHAPTER 2 
LITERATURE REVIEW 

 

Nanocrystalline and amorphous thin films have been the subject of extensive 

research in recent years. Specifically, many studies have focused on the microstructural 

evolution and mechanical behavior of these materials.  The following sections contain a 

review of the research most pertinent to this dissertation. 

 

2.1 Nanocrystalline Materials  

Nanocrystalline (nc) metals and alloys have a mean grain size less than 100 nm. 

This class of materials  exhibits  a wide range of enhanced mechanical properties 

including  high yield strength and wear resistance (Kumar, Van Swygenhoven, and 

Suresh 2003). The small grain size of these materials leads to a high volume fraction of 

grain boundaries (Meyers, Mishra, and Benson 2006), which results in significant grain 

boundary strengthening via the Hall-Petch effect (Figure 2). 

  

nc materials can be synthesized by top-down or bottom-up processes. Top down 

processes like cryomilling and compaction or severe plastic deformation can be used to 

synthesize bulk nanocrystalline materials (Valiev et al. 2006; C.C. Koch, 2003) . On the 

other hand, bottom up processes such as physical vapor deposition and electrodeposition 

enable the synthesis of nanoscale nc materials (C. J. Chen et al. 2009; Kumar et al. 2003).  
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The grain boundaries in these materials act as sources and sinks for dislocations 

and mediate deformation mechanisms like grain boundary sliding. Therefore, the 

character of these boundaries has been the subject of in-depth research. While grain 

boundaries in nc metals were previously considered to be fairly thick amorphous regions 

(Zhu et al. 1987), recent experiments using high resolution electron microscopy (Kumar 

et al. 2003) as well as molecular dynamics simulations (Van Swygenhoven, Farkas, and 

Caro 2000) have revealed that the crystalline order is only distorted over a distance of 

few atomic planes (typically less than 1 nm). 

Figure 2. (Top) Increase in yield strength with decreasing grain size in nc materials (Kumar et al., 
2003).  (Bottom) Model representing the structure of nc materials. Large fraction of atoms in grain 
boundaries (white circles) can be seen in nc materials  (Meyer et al, 2006). 
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  Nc metals have been shown to exhibit substantially higher hardness and yield 

strength compared to coarse grained materials (Sanders, Eastman, and Weertman 1997). 

However, these materials exhibit poor ductility as they do not strain harden through 

dislocation pileups at grain boundaries. These materials also show a dearth of intrinsic 

dislocations, with the majority of dislocations being nucleated and absorbed at grain 

boundaries during straining (Kumar, Van Swygenhoven, and Suresh 2003). It has also 

been shown that below grain sizes of 10 nm these materials become relatively weaker as 

phenomena like grain boundary sliding and coble creep start to dominate (Masumura, 

Hazzledine, and Pande 1998). Additionally, these materials also show high strain rate 

sensitivity, with their tensile strength increasing with loading rate (Lu, Sui, and Lu 2000). 

This has been attributed to the presence of different stress states at the grain boundaries 

compared to the grain interior.    

 

          In addition to enhanced mechanical properties, nanocrystalline materials 

have been shown to exhibit certain unusual properties, which are intimately related to 

their structures. For instance, Rajagopalan et al. have shown that by having a large 

distribution of grain sizes in nanocrystalline metals, recovery of plastic strain can be 

achieved (Rajagopalan, Han, and Saif 2007).  Therefore, it becomes clear that there is the 

need for the development of a technique that can enable the synthesis of nanocrystalline 

metals with tailored structures, which would enable the extraction of unique properties 

from nc metals. The synthesis-structure-property relationships in these materials also 

need further investigation. 
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2.2 Metallic Glasses 

Metallic glasses are amorphous metallic alloys that lack long range order and 

microstructural defects such as grain boundaries and dislocations that are present in 

crystalline metals and alloys (Ashby and Greer 2006).  These materials are known to 

have high yield strength, hardness and excellent corrosion resistance. Metallic glasses 

also show an extended elastic limit of up to 2% but have limited ductility and fail by the 

localization of plastic deformation in shear bands (Figure 3) (Pekarskaya, Kim, and 

Johnson 2001).   

 

Bulk metallic glasses are produced by rapid cooling from a metallic liquid 

(Klement, Willens, and Duwez 1960) while nanoscale metallic glasses can be synthesized 

by sputter deposition (Masui et al. 1985). Bernal et al. envisioned the structure of metallic 

glasses to be that of a frozen metallic liquid with a purely geometric atomic arrangement 

(Bernal 1960).  However, this model did not account for the short and medium range 

order that has is observed in metallic glasses. Recently, it has been suggested that 

metallic glasses can be modeled as consisting of effectively packed local structural units 

(Miracle 2004). These structural units however do not retain long range order due to 

internal strains and give rise to the amorphous structure beyond the nanoscale. 
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 While undergoing deformation, metallic glasses are known to undergo local 

structural rearrangements through the formation of shear transformation zones (STZ) 

(Schuh, Hufnagel, and Ramamurty 2007).  Furthermore, the formation of  these STZs has 

been found to depend on the presence of free volume zones (Figure 4) in these materials 

(Argon and Shi 1982). Therefore, the free volume zones influence the mechanical 

behavior of these materials (Z. Wang et al. 2012). The free volume zones represent the 

less densely packed spaces among the atomic clusters, where atoms have a lower co-

ordination number compared to more densely packed regions (Cohen, “Molecular 

Transport in Liquids and Glasses” 1959). The presence of free volume zones have also 

Figure 3. Images showing slip steps in a Zirconium based metallic glass that are associated with shear 
bands in metallic glasses. (Schuh et.al., 2007)  
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been linked to anelastic deformation (Caron et al. 2011) in metallic glasses that decrease 

their Young’s modulus (E) by almost 30% compared to their crystalline counterparts.  

 

Recently, a large volume of research has been focused on enhancing ductility in 

these materials by limiting their geometric size to the nanoscale (Jang and Greer 2010; 

Tian, Wang, and Shan 2016).  Wang et al. reported that when the size of Al based 

metallic glass micropilllars was decreased from a few microns to 100 nm a size 

dependent strengthening behavior was observed (C. C. Wang et al. 2012).  This size 

dependence of strength has been attributed to the balance between the strain energy 

buildup during yielding and the energy required to nucleate shear bands.  

 

Additionally, the formation of shear bands is also suppressed in nanoscale 

metallic glass specimen. As a result, the deformation mechanisms operating in these 

materials are markedly different. Compression experiments on metallic glass nanopillars 

by Volkert et al. have shown that the post mortem microstructure consists of smooth 

mushroom like morphology instead of  shear bands (Volkert, Donohue, and Spaepen 

2008).   

 

Thus, it is evidently clear that the deformation mechanisms operating at the 

nanoscale in metallic glasses need to be studied further. It also suggests that we need a 

new technique that can enable us to simultaneously image these materials at the 

nanoscale and obtain atomic scale strain information during deformation. 
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2.3 Microstructural Engineering of NC materials 

Comprehensive control over the microstructure would enable the design of 

material systems with specific mechanical, tribological and electrical properties. 

Techniques to synthesize nc materials can be broadly divided into “top down” or “bottom 

up” processes. Top down processes like cryo-milling involve attrition of larger sized 

particles to yield nanostructured materials while bottom up process comprise of building 

up nanostructures by the agglomeration of individual or clusters of atoms. Although both 

these approaches are extensively used, current methods that use either of these 

approaches have some inherent disadvantages. Top down methods like severe plastic 

deformation (SPD) yield highly heterogeneous microstructures which lead to variations 

in mechanical properties (Valiev et al. 2006) while bottom up processes like 

electrodeposition also offer limited control over the final microstructure (Xu et al. 2005). 

Figure 4: Atomic scale structure of metallic glasses showing anelastic flow units embedded in an elastic 
matrix. Reprinted from Wang et al. (2012).   
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Hence, here an alternate method to synthesize nc alloy films with tailored microstructures 

is developed that would address these issues.  

 

While some techniques provide the ability to control the grain size in vapor 

deposited thin films, they usually depend on the thickness of the film deposited (Girault 

et al. 2013), the rate of deposition (Vopsaroiu et al. 2004) or annealing during or post 

deposition (Drera et al. 2015). In such techniques, either the grain size and thickness 

cannot be decoupled or the control over the grain aspect ratio cannot be easily achieved. 

Thus, there is a need to develop a process that would allow us to have a high degree of 

control of the final microstructure in thin films. 

 

The process of grain growth in thin films formed from a vapor phase consists of 

the steps of nucleation, island formation, coalescence and grain coarsening (Petrov et al. 

2003). Controlling and manipulating any of these steps could enable us to tailor the grain 

structure in these films.  For example nano-diamond particles have been used to alter the 

nucleation kinetics in nanocrystalline diamond films formed by CVD, thereby achieving 

control over the microstructure (Buijnsters et al. 2013) (Figure 5). Palladium seed layers 

have been shown to enhance the epitaxial growth of sputter deposited Cu and Co films  

(Harp and Parkin 1994). Kwok et al. have used thin seed layers of PbTiO3 to aid the 

nucleation of lead zirconate titanate and alter its grain structure (Kwok and Desu 1993). 

Bias pretreatment has also been shown by Stoner et al. to modify the nucleation density 

of diamond deposited on silicon substrates by CVD (Stoner et al. 1992). Control over 

shape of PdSe nanocrystals has been achieved by altering the concentration of noble 
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metal nanoparticle seeds (Yong et al. 2006) . Dislocation bands remnant from severe 

rolling have also been used as heterogeneous nucleation sites to achieve grain refinement 

in Al–Mg–Si–Cu alloys during recrystallization (Troeger and Starke Jr 2000). Miller et 

al. show that isolated grains can act as seeds for the growth of highly oriented 

polycrystalline ZnO2 films (Miller and Lange 1991). Although such process do 

successfully alter the nucleation and growth mechanisms of nanocrystalline materials, 

there still remains the lack of a process that can comprehensively control the grain size, 

aspect ratio and spatial distribution of grains in polycrystalline thin films. 

 

Figure 5: SEM images showing the difference in surface morphology of diamond films grown on Si having 
different intermediate seed layers. Reprinted from (Buijnsters et al. 2013). 

 

2.4 Micro Strain Measurements in Metallic Glasses 

Several techniques have been recently developed to measure the lattice strain of 

crystalline materials using the TEM (Béché et al. 2013; Mahr et al. 2015) (Figure 6). The 

methods employ either (i) high resolution TEM  (Hüe et al. 2008) and dark field electron 

holography (Béché et al. 2011) or (ii) nano beam electron diffraction (Usuda et al. 2005) 

and convergent beam electron diffraction (Clément et al. 2004). However, the TEM has 

not been employed to measure micro strain in metallic glasses. 
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Figure 6: Images showing strain map obtained in SiGe multilayers using Graphical Phase Analysis (GPA) 
of HRTEM image. Reprinted from(Béché et al. 2013b). 

 

The micro strain in metallic glasses has only been evaluated by techniques that 

use high energy x-ray and neutron diffraction (Poulsen et al. 2005; X. D. Wang et al. 

2007; Mattern et al. 2009; T. C. Hufnagel, Ott, and Almer 2006). These techniques 

involve calculating the micro strain tensors by measuring the relative shift of diffraction 

peaks in reciprocal space during straining (Fig. 7). Such studies have helped shed new 

light into the behavior of metallic glasses. For example, it has been revealed that micro 

strains in metallic glasses are dependent on length scales. This implies that nearest 

neighbor shells are stiffer than distant atomic shells, which is contrary to the conventional 

understanding that the bonds in metallic glasses are isotropic in nature. Vempati et.al 

(Vempati et al. 2012) have postulated that this length scale dependence of strain in 

metallic glasses is due to heterogeneous non-affine atomic displacements. Ma et al. (Ma 

et al. 2012) have used in-situ neutron diffraction to show that the Young’s and shear 

modulus of various metallic glasses are similar to their base metal component. High 

energy x-ray scattering has also been employed to study the strain around crack-tips in 

metallic glasses (Todd C. Hufnagel, Vempati, and Almer 2013) and the mechanism of 
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nucleation and propagation of shear bands during loading (Y. Huang et al. 2014). Plastic 

deformation in metallic glasses has also been studied and Scudion et al. have found that 

shear strain and structural anisotropy play a major role in the plastic behavior of metallic 

glasses (Scudino et al. 2015). While these studies have revealed several important 

insights into the deformation behavior of metallic glasses, the use of x-ray or neutron 

diffraction has restricted them to bulk, macro scale samples because of their relatively 

large beam sizes. Therefore, deformation behavior of metallic glasses at the nanoscale 

has remained largely unexplored.  

 

Figure 7: Experimental setup for micro strain evaluation in metallic glasses using XRD. The shift of 
diffraction peaks on straining is used to extract the micro strain.  Reprinted from Mattern et.al., 2009. 

 

2.5 E-Beam Effects on the Mechanical Behavior of Nanostructured Materials 

It is well established that the TEM e-beam can cause radiation damage to the 

specimen being probed. Radiolysis, knock-on damage, and specimen heating are known 

to be the most common damage mechanisms (Williams and Carter 2009a). Crozier et al. 

have shown that the e-beam can cause sputtering damage on the exit surface of rutile 



16 

crystals (Crozier, McCartney, and Smith 1990). Intense nanometer sized beams have also 

been found to drill holes in thin specimens and cause accumulation of contaminants  

(Raymond F. Egerton, Wang, and Crozier 2006). Egerton et al have also had detailed 

discussions on the aspects of beam heating and shown that the increase in temperature 

caused by the e-beam is independent of specimen thickness (R. F. Egerton, Li, and Malac 

2004). Apart from these conventional damage mechanisms, the e-beam has also been 

shown to alter the deformation mechanisms in nanomaterials. The e-beam can activate 

dislocations, and defects generated by e-beam exposure can lead to additional 

deformation processes. For example, low to moderate intensity e-beam has been used to 

induce superplastic deformation in nanoscale silica particles and nanowires that are 

usually brittle at low temperatures (Figure 8) (Zheng et al. 2010). 

 

 
Figure 8: TEM images showing superplastic deformation induced in traditionally brittle amorphous silica 
particle by the TEM e-beam. Reprinted from Zheng et.al, 2010. 
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CHAPTER 3 

EXPERIMENTAL TOOLS AND METHODS 

 

This chapter describes the major tools and techniques that were used to synthesize the 

thin films and fabricate the MEMS based tensile testing stage.  

 

The following is the overview of the process flow for the fabrication of the MEMS 

device. 

1. Sputter deposition of thin film on Si wafer. 

2. Spin coating of photoresist on top and bottom surfaces of wafer. 

3. Alignment of the top side of the wafer with front side photomask and exposure of 

wafer to UV light through the mask. 

4. Development of alignment marks on the top side of the wafer. 

5. Alignment of back side mask with the developed alignment marks on the top side 

of the wafer.   

6. Development of all MEMS device features on the top and bottom side of the 

wafer. 

7. Reactive ion etching of metal from exposed regions on the top side of the wafer. 

8. Through-thickness, anisotropic, deep reactive ion etching of the wafer from the 

bottom side of the wafer. 

9. Removal of the remnant photoresist from the MEMS devices using an oxygen 

plasma asher. 
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3.1 Magnetron Sputtering System  

A magnetron sputtering system (Orion 5 system manufactured by AJA 

International) was employed to synthesize all the thin films studied in this dissertation 

(Figure 9). Sputtering is a form of physical vapor deposition in which inert gas ions are 

used to knock off atoms from the material target onto a substrate. It is an excellent 

technique to deposit uniform thin films with fine control over the film thickness and 

composition. The Orion 5 system has three confocal magnetron sputtering guns, which 

can be operated individually or simultaneously. Simultaneous deposition from multiple 

targets makes the growth of alloys and metallic glass films possible. The tool possesses 

two DC and one RF power sources. The DC power sources are used to deposit metals 

while the RF source can be used to deposit semiconductors and insulators. Each gun is 

equipped with a pneumatically operated shutter that can be used to stop deposition from 

that specific gun.  Ultra-high purity argon plasma is used to sputter off atoms from 2” 

diameter metallic or dielectric targets.  It is also possible to clean substrates by back 

sputtering using the argon plasma by employing a RF reverse bias. The tool can also be 

used to grow dielectric thin films (SiNx) by a reactive sputtering technique. This is 

achieved by introducing a gas like nitrogen along with the plasma forming argon. The 

main sputtering chamber is connected to a load lock through a gate valve. The presence 

of the load lock facilitates faster sample pump down and transfer times. The tool is 

equipped with two turbo molecular pumps (one for the main chamber and the other for 

the load-lock) backed up by mechanical pumps. This enables the system to routinely 

achieve base pressures better than 5×10-8 Torr upon proper chamber conditioning 

treatments. The conditioning steps include depositing gettering materials like titanium 
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and aluminum on the chamber walls and performing a bake-out of the chamber using 

heating strips.  The substrate holder is made of Inconel and can be heated up to 800oC by 

ceramic heating lamps. This enables the annealing of thin films during or post deposition.  

 

3.2 Plasma Enhanced Chemical Vapor Deposition 

An Oxford PECVD system (Figure 10) was used to grow SiNx films on the silicon 

wafers prior to depositing metallic thin films that were to be subjected to annealing at 

high temperatures. The layer of SiNx acts as an effective diffusion barrier and prevents 

the inter-diffusion of constituent elements of the thin film and the silicon substrate. The 

tool uses silane and ammonia as precursor gases to reactively grow SiNx films while 

argon is used as the carrier gas. The depositions are carried out at a temperature of 350oC. 

Figure 9: Left: Orion 5 Sputter Deposition Tool used to synthesize metallic and amorphous thin films. 
Right: Magnetron sputtering guns having copper targets. Pictures courtesy AJA International. 
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Figure 10: Layout of the Oxford PECVD tool. Picture courtesy Oxford Instruments. 

3.3 Microfabrication Tools 

Multiple microfabrication tools were employed to fabricate the MEMS tensile 

testing stage and to prepare TEM samples of the thin films. Photolithography and reactive 

ion etching techniques were extensively used to fabricate the MEMS device. The major 

tools are described below. 

 

3.3.1   Photoresist Spinner 

Photoresist spinners were used to spin coat AZ 4620 and AZ 4330 photoresists on 

the silicon wafers. A coat of HMDS (Hexamethlydisilazane) was initially applied on the 

wafers. Following this, photoresist was applied on the wafer using a pipette. The wafer 

was spun at speeds between 2000-4000 RPM to uniformly coat the photoresist on its 

surface. Depending on the spinning parameters and the kind of photoresist used, the 
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thickness of the resist layer obtained was between 3-6 µm. After spin coating, the wafers 

are subjected to a soft bake process at 1000C to prepare it for the alignment step.  

 

3.3.2 EVG 620 Aligner 

After spin coating the wafers with photoresist, the EVG 620 aligner was used to 

align the chrome mask containing the MEMS device design (Figure 11) and the wafer. 

After aligning the wafer to specific alignment marks on the mask, the tool exposed the 

wafer to UV light. The exposed photoresist was subsequently developed using AZ 

300MIF to reveal the MEMS device patterns on the wafer. 

 

Figure 11: Design of back-side mask used in the EVG 620 aligner to transfer MEMS device pattern onto 
the wafers. White represents the opaque regions while blue represent transparent regions.  

 

3.3.3 Oxford Plasmalab 80+ Reactive Ion Etcher (RIE) 

Following the transfer of the MEMS device pattern onto the wafer, the metallic 

thin film layer was etched away in specific locations using the RIE (Figure 12). The tool 

uses plasma of Cl2 and BCl3 gases to etch away the metal layer using a combination of 

physical and chemical etching.  The wafer is placed on the electrode of the tool to 

accelerate the plasma ions towards the wafer. This causes anisotropic etching of the metal 
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film with the etch rate normal to the wafer surface being greater than the etch rate in the 

plane of the wafer. 

 

Figure 12: Layout of the RIE chamber. The BCl3 and Cl2 gases are used to anisotropically etch metal films. 
Image courtesy Oxford Instruments. 

  

3.3.4 STS Advanced Silicon Etcher 

Fabrication of the MEMS device required the etching of high aspect ratio 

features. Large depths needed to be etched while simultaneously ensuring that the walls 

of MEMS device beams remained vertical. This was achieved by using an inductively 

couple plasma etcher. This tool uses a two-step “Bosch” process to achieve extremely 

anisotropic etch features (Figure 13) (Abdolvand and Ayazi 2008).  
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Figure 13 Schematic representation of the two step Bosch process (Abdolvand et. al, 2008).  

The first step is the deposition of a thin passivation layer of C4F8. This layer 

serves the purpose of protecting the side walls of the MEMS device. Following this step, 

a SF6 based plasma is used to etch away silicon in specific locations of the wafer. Cured 

photoresist acts as the etch mask while the developed regions of the photoresist are 

etched away. In this step, the electrode on which the wafer is placed accelerates the SF6 

ions towards it. As a result, a physical sputtering of atoms of the wafer takes place. Since 

the plasma ions are accelerated in a direction normal to the wafer surface, the passivation 

layer of C4F8, along with Si atoms, in the plane of the wafer surface are sputtered off 

more effectively. However, the passivation layer on features that are normal to plane of 

the wafer, do not get sputtered off by the plasma and are thus able to protect the vertical 

walls. Subsequently, chemical etching by the fluorine ions take place. Since the features 

in the plane of the wafer are not protected by the Teflon coating, they get etched away 

more easily while the side walls remain protected by the passivation layer. The tool 

continuously switches between the etching and passivation steps till the wafer is etched 

all the way through its thickness, thus, completing the fabrication of the MEMS device. 
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3.4 MEMS Tensile Testing Stage 

A MEMS based tensile testing stage was used to conduct uniaxial tensile tests on 

freestanding thin films (Fig. 14). The device has a number of features that give it the 

unique capability to measure macroscopic stress and strain acting on the thin films while 

carrying out in situ TEM and SEM experiments.  

 

The straining is achieved by pulling the device apart using pins that pass through 

the holes on each end. The pins are actuated by stages driven by motors or piezoelectric 

actuators. The freestanding thin film is connected to the MEMS device by a number of 

silicon beams. On one end of the beam, connecting the film to the device is a “T-bone” 

with a specific gap, which ensures that the sample does not accidentally get strained 

before an experiment (Figure 14).  As the MEMS device is stretched from one end, the 

U-beams (Figure 14) get deformed. The deformation of the U-beams causes the T-bone 

gap to close. When the T-bone gap is eliminated, the sample is engaged and starts getting 

strained.  

 

 

 

 

 

The device is equipped with a set of front beams, which eliminate any 

misalignment during the loading process and also protect the sample from damage from 

Figure 14: Image showing the operation of the MEMS device. 
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air pressure gradients while loading and unloading from vacuum chambers. Three gauges 

are designed into the device to measure the macroscopic stress and strain acting on the 

sample (Figure 15 d). The strain sensing gauges x and y are attached on opposite ends of 

the sample. Thus, the change in relative displacement between x and y gives a measure of 

the elongation on the sample.  The back beams of the device are designed to measure the 

stress acting on the sample. The sample and the back beams can be viewed as springs in 

series. As a result, the force acting on the back beams equals the force acting on the 

sample. The relative displacement between gauge x, connected to the back beams, and 

stationary gauge z is used to measure the deflection on the back beams. This deflection 

multiplied by the stiffness of the back beams, which is calibrated using a needle of 

standard stiffness, gives us the force acting on the sample. Due to the small footprint of 

the device, it can be used to carry out in situ TEM and SEM experiments. The device was 

developed in Prof Taher Saif’s group at UIUC (Han and Saif 2006; Haque and Saif 

2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Force 
sensing 
beams 

Freestanding 
sample 

x y 

z 

a b 

   c d 

Figure 15: (a) The MEMS based tensile testing holder loaded on a TEM straining holder. (b) The 
deflection of the force sensing back beams enables the measurement of the stress acting on the 
specimen. (c) Freestanding thin film specimen. (d)  The relative displacement between strain 
sensing gauges x and y corresponds to the elongation of the sample while the relative displacement 
of gauges x and z multiplied by the stiffness of the force sensing back beams gives a measure of 
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3.5 In situ TEM Setup 

The freestanding metallic and amorphous thin films were subjected to in-situ TEM 

straining and annealing. In situ annealing was carried out to study the crystallization 

behavior of amorphous thin films while the in situ straining was used to investigate the 

mechanical behavior of nanocrystalline and amorphous thin films. The Philips CM200 

and the FEI Tecnai F20 TEMs were used to carry out the in situ annealing. A Gatan 

single tilt heating holder having Tantalum heating elements was used to heat the thin 

films. The sample was resistively heated in the holder and the maximum annealing 

temperature achievable was 800oC. The in situ straining experiments were carried out in 

Philips CM200 and JEOL ARM200F TEMs. A Gatan single tilt straining holder was used 

to strain the MEMS devices (Figure 16). Displacement pulses of about 150 nm were 

applied to the sample in each step followed by capturing images and diffraction patterns 

at areas of interest. 

 

Figure 16: Left: TEM single tilt straining holder. Right: TEM heating holder. Pictures courtesy Gatan. 
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CHAPTER 4 

Synthesis of Thin Films with Precisely Controlled Microstructures 

4.1 Introduction 

Synthesis of nanostructured materials with an optimal combination of mechanical 

properties requires rigorous and independent control of a diverse set of microstructural 

parameters. For instance, to simultaneously realize high strength and considerable 

ductility, it is necessary to control not only the mean size but also the size dispersion and 

spatial distribution of grains (Fang et al. 2011; Kou, Lu, and Li 2014; X. Wu et al. 2014). 

Unfortunately, current methods to synthesize nanostructured materials (Meyers, Mishra, 

and Benson 2006) can seldom satisfy these requirements. Here, a new methodology to 

precisely tune the nanostructure of thin films and coatings via systematic, in-situ seeding 

of crystalline nanoscale domains (seeds) into amorphous precursor films is presented. 

When the amorphous films are subsequently crystallized by thermal annealing, the seeds 

serve as preferential grain nucleation sites and control their microstructure. The capability 

and generality of this approach is demonstrated by meticulously tailoring the mean size, 

geometry and spatial distribution of nanostructured grains in structural (TiAl) as well as 

functional (TiNi) thin films. This approach, which is applicable to a broad class of 

metallic alloys and ceramics, enables explicit microstructural control of thin film 

materials for a wide spectrum of applications. 

 

Nanostructured materials are typically synthesized using two distinct approaches - 

top down methods that involve attrition of bulk polycrystalline materials or bottom up 
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methods that involve the agglomeration of individual atoms or clusters. However, current 

synthesis methods that use either of these approaches provide little or no ability to tune a 

broad range of microstructural parameters simultaneously. Top-down methods like severe 

plastic deformation that are used to produce bulk nanostructured materials offer minimal 

capability to vary the grain size distribution or texture and often yield heterogeneous 

microstructures that exhibit large variation in mechanical properties (Valiev et al. 2006). 

Alternate bulk processing techniques like ball-milling and consolidation suffer from 

additional problems related to material purity and porosity (C. C. Koch, 2016). Bottom-

up methods provide a greater capability to control the microstructure compared to top-

down methods. In electrodeposition, for instance, the mean grain size can be reproducibly 

controlled by altering current densities or using additives (B. Y. C. Wu, Schuh, and 

Ferreira, 2005), but impurity contamination is still an issue. Physical vapor deposition 

(PVD) processes, which are typically used to synthesize nanostructured thin films, are 

cleaner than electrodeposition and allow us to vary the texture and mean grain size by 

changing the film thickness, substrate material, deposition rate or temperature (Thompson 

2000). Nevertheless, the mean grain size of the films and their thickness cannot be easily 

decoupled and there is little control over the grain size dispersion or spatial distribution. 

 

Hence, researchers have experimented with different methods to alter the various 

stages of microstructural evolution in thin films, which in the case of Volmer-Weber 

growth includes nucleation, island formation, coalescence and grain coarsening. In 

particular, several studies have focused on controlling the grain nucleation process 

through the use of seed layers or isolated seed crystals. However, these techniques have 
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only been used to control a narrow set of microstructural parameters in specific materials 

and their broader applicability is unclear.  

Here, a new methodology is described to meticulously control the nanostructure 

of metallic alloy and ceramic thin films and coatings. The first step of the process (Figure 

17a) is the deposition of a relatively thick (λ = 25-200 nm), amorphous layer of the thin 

film material at room temperature (RT). This can, for example, be accomplished by co-

sputtering the constitutive elements of a metallic alloy. The next step is the deposition of 

a seed layer (0.5-2 nm thick) that has a crystalline structure at RT. As this layer is very 

thin, it is non-contiguous and results in the formation of crystalline nanoscale domains 

(seeds). The size and average spacing (δ) of these seeds can be controlled by varying the 

thickness of the seed layer or the deposition rate and temperature (Thompson 2000). 

These steps are repeated until the desired overall film thickness is obtained. Finally, the 

amorphous matrix with the seeds is crystallized by annealing at high temperature. During 

annealing, the seeds serve as preferential grain nucleation sites and control the final 

microstructure of the films. Since both λ and δ can be independently varied during each 

step of the growth process, the size, dispersion and spatial distribution of grains can be 

explicitly controlled. 

 

4.2 Materials and Experimental Procedure 

Plasma enhanced chemical vapor deposition (PECVD) was used to deposit 60 nm 

thick SiNx onto 200 µm thick (100) silicon wafers. The SiNx was deposited to prevent 

inter-diffusion between the silicon substrate and the thin film during annealing. TiAl and 

TiNi thin films were then co-deposited on the Si/SiNx substrate by DC magnetron 



30 

sputtering using an ATC Orion 5 sputter system manufactured by AJA International. 

These films were deposited using 99.999 % pure Ti, Al, Cr and Ni targets manufactured 

by Kurt J. Lesker Company and were amorphous in the as-deposited state. The 

composition of the films was controlled by tuning the power of the individual sputtering 

guns. Rutherford backscattering spectrometry was used to determine the atomic 

composition of the films and X-ray diffraction was used to confirm the amorphous nature 

of the films. 

.  

Figure 17:  Schematic of the process: (a) First, an amorphous layer of the thin film material (TiAl/TiNi) is 
deposited on a substrate (Si/SiNx). Next, a thin crystalline seed layer (Ti/Al/Cr) is deposited on the 
amorphous layer. The seed material is chosen such that this layer is non-contiguous and leads to the 
formation of crystalline nanoscale domains (seeds). A second amorphous layer is then deposited to 
sandwich the seeds. These steps are repeated until the desired film thickness is obtained. λ is the spacing of 
the seed layers along the film thickness, while δ is the in-plane spacing between the seeds. Both λ and δ can 
be independently varied during each step by altering the deposition parameters. Following the deposition, 
the film is thermally annealed to crystallize it. The seeds serve as grain preferential nucleation sites during 
annealing and hence the grain heights and diameters scale with λ and δ, respectively. (b) TEM bright-field 
image showing a dispersion of crystalline Ti seeds on an amorphous TiAl layer. (c) HR-TEM image 
showing the atoms on the (0001) plane of a Ti seed (red circle) surrounded by the amorphous TiAl matrix. 
The CBED pattern of the seed is shown in the inset. 
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The co-deposition of the films was carried out at room temperature at a base 

pressure of 5×10-8 Torr and an argon deposition pressure of 3 mTorr. The co-deposition 

was stopped at specific periods and thin (0.5-2 nm thick) layers of pure Ti, Al or Cr was 

deposited on the amorphous TiAl and TiNi films. These thin Al, Ti or Cr layers were 

crystalline in nature and formed nanoscale domains (seeds), which acted as preferential 

grain nucleation sites when the amorphous films were crystallized by thermal annealing. 

After the deposition of the crystalline seed layer, the co-deposition of TiAl and TiNi was 

resumed so that the crystalline seeds were encapsulated by two amorphous layers. This 

process was repeated to obtain a film comprised of single or multiple seed layers and the 

desired thickness. The thickness of the seed layers and their number and spacing were 

systematically altered to study the effect of seeds on the final microstructure. After the 

deposition was complete, the films were either annealed under vacuum (< 10-6 Torr) in 

the sputtering chamber or annealed in a FEI Tecnai F20 transmission electron microscope 

(TEM) using a Gatan TEM heating holder. For annealing experiments inside the 

sputtering chamber, the temperature was increased to the final value within five minutes 

and held steady for the required amount of time. For the in-situ TEM annealing, the 

temperature was increased gradually to counteract the thermal drift of the specimen. 

 

TEM specimens were fabricated out of Si/SiNx wafers having the TiAl/TiNi films 

on the top surface using microfabrication techniques. First, photoresist was spin coated 

on back of the wafer. An EVG620 mask aligner was then used to align the coated wafer 

with a glass mask containing the TEM specimen patterns and exposed to UV light. The 

exposed photoresist was then developed to complete the pattern transfer. An STS deep 
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reactive ion etcher was then used to back etch the wafer to reveal the freestanding thin 

film TEM specimen. The plan-view microstructures of the films were then analyzed 

using a JEOL 2010F TEM while in-situ heating experiments were carried out using the 

FEI Tecnai F20 TEM. A FEI NOVA200 dual beam focused ion beam and scanning 

electron microscope was used to fabricate cross-sectional TEM samples using 

conventional lift out techniques. The mean grain size of the films was typically calculated 

from TEM bright-field images. When the mean grain size was found to be  <100 nm , the 

values were corroborated with measurements determined using the Scherrer formula from 

X-Ray Diffraction (XRD) peak profiles obtained using a PANalytical X’Pert PRO XRD 

tool.  

 

4.3 Results and Discussion 

A series of systematic studies were performed to test the viability of the process 

and uncover the effects of seed density and distribution on the microstructure of TiAl and 

TiNi thin films. The amorphous layers in the TiAl films had a nominal atomic 

composition of 45% Ti and 55% Al, whereas the TiNi films were equiatomic.  

 

First, whether the thin seed layers indeed lead to the formation of well-dispersed, 

nanosized seeds was verified (Figure 17b). The crystallinity of the seeds was confirmed 

(Figure 17c) using high resolution transmission electron microscopy (HR-TEM) and 

convergent beam electron diffraction (CBED), and their chemical composition was 

verified using energy dispersive X-ray spectroscopy (Figure 18).  
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It should be noted that the presence of well delineated seeds does not preclude the 

possibility of locally contiguous layers of the seed material. Similarly, only a fraction of 

the seeds, which are above a critical size and have appropriate crystal orientations to 

produce diffraction contrast, are visible in the bright-field TEM image. Nonetheless, the 

average size and spatial distribution of the seeds are significantly different for different 

seed layer thicknesses (Figure 19), which strongly suggests that seed formation is not 

controlled by defects on the surface of the amorphous layer. 

 

Figure 18:  Composition of seed crystals: TEM bright-field image of a 40 nm thick amorphous TiAl film 
with a 1 nm thick Ti seed layer in the middle, before annealing. Isolated Ti seeds are clearly visible. Energy 
dispersive X-ray spectroscopy (right) of the seed region (indicated by red arrow) and the amorphous matrix 
(indicated by blue arrow) reveals the difference in their composition. Note that the composition of the seed 
region also includes the amorphous matrix encapsulating the seed. The accuracy of the composition 
determined by the method is ±2 %. 

 

The seeds were found to modify both the crystallization kinetics and the final 

microstructure of the films. When seeded and unseeded amorphous TiAl films were 

annealed at 550oC for a period of two hours, partial crystallization in the seeded film was 

observed, whereas the unseeded film remained completely amorphous (Figure 20).  
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Figure 19: Effect of seed layer thickness on size and spatial distribution of seeds: TEM bright-field images 
of (a) 40 nm thick TiAl film with 0.5 nm thick Ti seed layer in the middle before annealing. (b) 40 nm thick 
TiAl film with 1.5 nm thick Ti seed layer in the middle before annealing. (c) 40 nm thick TiAl film with a 2 
nm thick seed layer in the middle before annealing. 

 

More interestingly, the seeded films exhibited a much smaller mean grain size 

(dm) compared to the unseeded films when the annealing temperature was increased. 

Figures 21a and 21b show microstructures of TiAl films without and with Ti seeds 

annealed at 600oC for a period of four hours. The unseeded films had dm ~ 1 μm, whereas 

the seeded film had a dm = 62 nm. Notably, the seeded film retained its nanostructure (dm 

Figure 20: Enhanced crystallization due to seeds: (a) TEM bright-field image of a TiAl film with no seed 
layer after 2 hours of annealing at 550oC. This film remains completely amorphous as indicated by the 
diffuse ring in the selected area diffraction (SAD) pattern (inset). (b) TEM bright-field image of the TiAl 
film with a single 1 nm thick Ti seed layer in the middle after 2 hours of annealing at 550oC. The film 
showed partial crystallization and spots started to appear in the SAD pattern (inset). (c) XRD pattern of 
the film in (b). The presence of a well-defined (111) ϒ-TiAl peak indicates that the film has started to 

t lli  
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= 63 nm) even upon annealing at 750oC (Figure 21c), which is approximately 0.6 times 

the melting temperature (Tm) of TiAl. This high thermal stability contrasts with the 

typical behavior of nanostructured metals, which show abnormal grain growth even at 

low temperatures (Ames et al. 2008; Kacher et al. 2011). The same microstructural 

stability was also observed when an Al seed layer was used instead (Figure 22).  This 

thermal stability can be due to two specific reasons. Firstly, most of the grains in the TiAl 

films had a (111) out-of-plane texture. Since this plane of atoms has the lowest surface 

energy (C. V. Thompson, 1990), further growth of the grains driven by surface energy 

minimizations would have been curtailed. Secondly, these films were found to buckle 

when they were released from their substrates. This indicates that the films were under 

compressive stresses because of the thermal mismatch between the substrate and the film. 

As compressive residual stresses retard diffusion processes, grain growth by diffusion 

would have been minimized. 

 

Figure 21: Grain growth inhibition by seed crystals: Bright-field TEM images of: (a) 100 nm thick TiAl 
film with no seed layer after annealing at 600oC for 4 hours showing large micrometer-sized grains (dm ~ 1 
μm). (b) 100 nm thick TiAl film with a single 1 nm Ti seed layer after annealing at 600oC for 4 hours (dm = 
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42 nm). (c) 100 nm thick TiAl film with a single 1 nm Ti seed layer after 4 hours of annealing at 750oC. 
The grains remain in the nanocrystalline regime (dm = 48 nm) and show little growth compared to (b). (d) 
100 nm thick TiNi film with no seed layer after annealing at 600oC for 4 hours. Large micrometer-sized 
grains are visible and dm = 1.4 µm. (e) 100 nm thick TiNi film with a single 1 nm thick Ti seed layer after 
annealing at 600oC for 4 hours (dm = 540 nm). (f) 100 nm thick TiNi film with a single 1 nm thick Ti seed 
layer after annealing at 750oC for 4 hours. The film had a smaller mean grain size (dm = 580 nm) compared 
to the unseeded film in (d) even at this temperature. For all the seeded films, the seed layer was deposited 
in the middle of the film. 

 

It is noted that the Ti and Al seed layers change the overall composition of Ti and 

Al in the film by less than 1% and do not induce the formation of additional phases, 

which may alter the grain size. Both the unseeded and seeded films are primarily 

composed of the gamma phase, as revealed by X-ray diffraction (Figure 23). The same 

trends in dm were observed in the unseeded and seeded TiNi films as well but dm was 

significantly higher compared to TiAl films (Figures 21d-f).    

 

Figure 22: TiAl films with Al seeds: TEM bright-field image of (a) TiAl film, 100 nm thick with a single 1 
nm Al seed layer in the middle after 4 hours of annealing at 650oC. The film was nanostructured at this 
temperature. (b) TiAl film, 100 nm thick with a single 1 nm Al seed layer in the middle after 4 hours of 
annealing at 750oC. The film retained its nanostructure even at this elevated temperature. 

 

As indicated in Figure 17, if the seeds act as preferential nucleation sites, the 

mean in-plane spacing between the grain nuclei should scale with δ and the number of 

grains across the thickness should scale with the number of seed layers. In effect, a larger 
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δ and λ should lead to a larger mean diameter and height, respectively, for the grains. To 

test this assumption, δ and λ were systematically varied and the resultant microstructures 

of the films analyzed. To increase δ for a given seed layer thickness, coarsening and 

coalescence of the seeds was induced (Thompson 2000) by increasing the film 

temperature (Tseed) for a short period of time immediately after the seed layer was 

deposited. We note that Tseed was sufficiently small (≤ 150oC) to avoid crystallization of 

the amorphous layer underneath. After this step, the film was allowed to cool back to RT 

and the subsequent amorphous layer was deposited. Figures 24 (a-c) provide direct 

evidence that by altering δ the mean grain size can be systematically varied. The mean 

grain size of the TiAl films was least (62 nm) when no seed coalescence was induced and 

progressively increased with increasing Tseed, even though all other material parameters 

(type, number and thickness of seed layers, and film composition) and annealing 

conditions for crystallization were identical.     

Figure 23: Texture of TiAl films: (a) XRD measurements show the strong (111) texture of a TiAl film with 
a 1 nm Al seed layer after 4 hours of annealing at 6500C. (b) XRD measurements of a TiAl film deposited 
without any seed layer after 4 hours of annealing at 6000C. This film also exhibits a strong (111) texture.  
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To ascertain the effect of λ, films with different number of seed layers were 

synthesized and their microstructures analyzed through cross-sectional TEM (Figure 25). 

The TEM analysis revealed that when a single seed layer is used, the grains in the 

crystallized film are columnar and typically traverse the entire thickness (Figures 25 a, d). 

In contrast, when more than one seed layer was used, multiple grains with more equiaxed 

structure were observed across the film thickness (Figures 25 b, e). More importantly, the 

average number of grains across the thickness scaled with the number of seed layers, 

which provides further proof that the seeds act as preferential grain nucleation sites and 

control the microstructure.  

    

 Apart from the ability to explicitly tailor the grain diameters and geometry, the 

method also enables systematic control of the size dispersion and spatial distribution of 

grains. To demonstrate this capability, λ and δ were varied across the thickness to create 

films with specific gradient microstructures. For instance, the films in Figures 25c and 

25f are composed of smaller, equiaxed grains near the top and bottom and larger grains in 

Figure 24: Tailoring the mean grain size (dm) of films: (a-c) TEM bright-field images of three different 
100 nm thick TiAl films with a single 1 nm Ti seed layer after annealing at 6000C for 4 hours. In 
addition to the final 6000C annealing, the films in (b) and (c) were subjected to a low temperature 
thermal anneal (Tseed) for 10 min immediately after the seed layer was deposited to increase the inter-
seed spacing (δ) by promoting seed coalescence. For the film in (a) which was not subjected to the low 
temperature anneal dm = 62 nm. The film in (b) was subjected to Tseed = 1000C and dm increased to 140 
nm. When Tseed was increased to 1500C for the film in (c), dm further increased to 170 nm. In all the 
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the middle, whereas the film in Figure 26  has ultrafine grains (dm > 200 nm) in one half 

and nanocrystalline grains (dm < 50 nm) in the other half. As mentioned earlier, such 

gradient/multimodal microstructures enable high strength, ductility and fatigue resistance 

(Yang et al. 2013) and promote significant deformability even in materials that exhibit 

limited plasticity (Edalati et al. 2012). The highly heterogeneous microstructure will also 

considerably enhance the capability of nanostructured materials to recover inelastic strain 

and dissipate energy (Rajagopalan, Han, and Saif 2007). 

 

 

Figure 25: Control of grain geometry, size dispersion and spatial distribution: TEM bright-field cross-
sectional images of: (a) A 100 nm thick TiAl film with a single 1 nm thick seed layer in the middle after 
annealing at 650oC for 4 hours. The grains typically traverse the entire thickness of the film and have a 
columnar structure. (b) A 200 nm thick TiAl film, with four 1 nm thick Ti seed layers spaced 50 nm apart, 
after annealing at 650oC for 4 hours. Multiple grains along the thickness are observed. (c) A TiAl film, with 
smaller seed layer spacing near the top and bottom and larger spacing in the middle, after annealing at 
650oC for 4 hours. A gradient microstructure is formed upon annealing. (d) A 100 nm thick TiNi film with 
a single 1 nm thick Ti seed layer in the middle after annealing at 650oC for 4 hours. Similar to (a) single 
grains traverse the thickness of the film. (e) A 200 nm thick TiNi film, with four 1 nm thick Ti seed layers, 
after annealing at 650oC for 4 hours. Multiple grains along the thickness are observed. (f) A TiNi film, with 
multiple seed layers and varying λ, after annealing at 650oC for 4 hours. A gradient in the grain size can be 
seen along the thickness similar to (c). The red arrows in the figures indicate the TiAl and TiNi film cross-
sections. 
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Figure 26: TiAl film with gradient microstructure: Cross-sectional TEM image of a TiAl film which was 
grown to have ultrafine grains (> 200 nm) in the bottom half and nanocrystalline grains (< 50 nm) in the 
top half. The gradient microstructure was obtained by having a much larger seed layer spacing (λ) in the 
bottom half of the film compared to the top half. 

   

To investigate how the seeds alter the crystallization process, in-situ TEM 

annealing of TiAl films with and without seed layers was carried out. The experiments 

reveal that the seeds indeed act as preferential grain nucleation sites and a large number 

of grains are simultaneously nucleated in the seeded films as the temperature is increased 

(Figure 27). Since the spacing between the grains is inversely related to their density, the 

average size of the grains when they impinge on each other is small. 

 

Furthermore, because the nucleated grains have a strong (111) texture (Figure 23), 

abnormal grain growth induced by surface energy minimization is restricted (Vitos et al. 

1998). Therefore, grain growth after impingement is minimal. In contrast, the 

crystallization process was significantly different in the unseeded films, where only a 
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small number of grains nucleated upon annealing. Typically, the spacing between the 

nuclei was in the order of micrometers, which led to a significantly larger mean grain size 

(Figures 27 c, d,). In other words, the crystallization of the unseeded metallic glass films 

was growth controlled and not nucleation controlled. Such growth controlled 

crystallization has been recently observed in other metallic glass thin films as well (Lee et 

al. 2016). 

 

Figure 27: In-situ TEM annealing: (a-b) TEM bright-field images taken during in-situ annealing of a 100 
nm thick TiAl film with a single 1 nm thick Ti seed layer in the middle. The image in (a) was taken after 
heating the film at 550oC for 1 hour and shows small grains with sizes ranging from 5-25 nm. Figure (b) 
corresponds to the film after heating at 650oC for 30 minutes and shows nanostructured grains. (c-d) TEM 
bright-field images taken during in-situ heating of a 100 nm thick TiAl film with no seed layer. The image 
in (c) was taken after heating the film at 600oC for 1 hour and shows the nucleation of a large crystalline 
phase (red arrow), as revealed by the corresponding selected area diffraction pattern. The rest of the film 
(blue arrow) still remained amorphous. Figure (d) corresponds to the film after heating at 650oC for 30 
minutes and shows the formation of large micrometer-sized grains. 

 

Having attained control over the grain size and dispersion using the seed mediated 

crystallization technique, the possibility of altering the phases of the films needed to be 
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investigated. To conduct this study, NiTi was chosen as the material system as its 

mechanical behavior changes significantly depending on whether it exists in the austenite 

or martensite phase (X. Huang, Ackland, and Rabe 2003). XRD and microstructural 

analysis of the NiTi films synthesized by using Ti seeds revealed that they were 

predominantly martensitic at room temperature (RT) (Figure 28a).   

 

Figure 28: The nature of the seed element was found to have an effect on the final phase of the films after 
annealing. In TiNi films, Ti seeds were found to stabilize the martensite phase as seen in (a) while Cr seeds 
stabilized the austenite phase as seen in (b).  This provides us with a template to control the phases 
emerging in an intermetallic system. 

 

With a stable martensite phase at RT, the only way to induce phase transformation 

in NiTi is by using a thermal stimulus. The pseudoelastic behavior of NiTi on the other 

hand, is driven by a stress induced phase transformation from the austenite to martensite 

phase. Thus to study the pseudoelasticity of NiTi, which plays a critical role in actuation 

and sensor applications, we require the material to be in its austenitic phase. In this 

regard,  it is known that adding a minute amount of chromium (1-2 atomic %) to NiTi can 

have an effect of stabilizing the austenitic phase (Hosoda et al. 1998). To combine the 

austenite stabilization effect of the Cr in conjunction with the seed mediated 

crystallization process, 100 nm thick NiTi thin films with 1nm thick Cr seed layers were 
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synthesized. Upon annealing at 6000C for 4 hours it was found that the Cr seeds 

stabilized the austenite phase and restricted the grain size to 120 nm (Figure 28b). Thus, 

control of the grain size as well as the phase in NiTi films was attained by using a Cr seed 

layer.   

 

4.4 Conclusions 

The results described above demonstrate the capability of the method to tune the 

mean size, geometry, size dispersion, spatial distribution and phase composition of grains 

in thin films. TiAl and TiNi have been used to demonstrate viability in this study, but this 

approach can be extended to a broad class of metallic alloys and ceramics that can be 

deposited in the amorphous state. Examples of such materials include binary (CuZr, 

FeAl, NiAl, ZrTi), ternary (ZrCuAl, PdCuSi) and quaternary (ZrAlCuNi) alloys and 

ceramics such as SiC and WC (Masui et al. 1985; C. J. Chen et al. 2009; El Khakani et al. 

1994; Rincón et al. 2003; Chu et al. 2012). In this context, it should be mentioned that 

materials synthesized by vapor deposition are farther from equilibrium compared to those 

obtained by liquid-to-solid processes, which are typically used to produce bulk metallic 

glasses. Thus, a larger spectrum of metallic alloys (over wider composition ranges) can 

be deposited as amorphous thin films (Chu et al. 2012). It is also relevant to note that 

seed layers have been shown to influence the growth of ceramic nanostructures (Greene 

et al. 2005) and nanostructuring leads to enhanced hardness and fracture toughness in SiC 

and WC (Szlufarska, Nakano, and Vashishta 2005). 
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While this chapter has focused on the control of grain size, structure and spatial 

distribution, the approach outlined here provides a rich design template to manipulate the 

microstructure of ceramic and metallic alloy films. For example, non-constituent 

elements can be used as seed layers to nucleate and stabilize metastable phases (Schleip, 

Herlach, and Feuerbacher 1990) that cannot be obtained by conventional processing 

routes. Note that many metals form isolated islands during the initial stages of film 

growth on amorphous substrates (Venables, Spiller, and Hanbucken 1984) and hence can 

be employed as seed layers. Likewise, seed layers can be used to precisely alter the local 

composition and nucleate additional phases that have complementary properties to the 

primary phase. For instance, by selectively using thicker Ti seed layers near the surface, 

the lamellar phase (higher Ti composition, better fracture toughness) can be nucleated to 

mitigate surface crack initiation in gamma TiAl films that have high specific strength and 

thermal conductivity (Westbrook, n.d.). Thus, this approach can enable the synthesis of 

novel thin film materials with unique microstructural features and physical properties, 

which are unattainable using current processing techniques. Finally, in addition to 

sputtering, the approach outlined here is directly applicable to other PVD processes such 

as evaporation and, in principle, can be adapted to electrodeposition, provided amorphous 

microstructures can be obtained (Moffat 1994; Trelewicz and Schuh 2007).  
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CHAPTER 5 

In situ TEM Straining of NiTi Thin Films with Tailored Microstructures  

5.1 Introduction 

Nickel-titanium alloys are known to exhibit shape memory behavior. These 

materials undergo a transformation from a high temperature austenite phase (B2) to a low 

temperature martensite phase (B19’) (X. Huang, Ackland, and Rabe 2003). This 

transformation can be induced by a thermal or mechanical stimulus. The transformation 

is usually reversible upon the removal of the thermal or mechanical stimulus and forms 

the basis for the shape memory or pseudoelastic behavior. These materials are 

technologically important as they exhibit extremely large transformation stresses and 

strains and thus can be used in a wide range of applications in the medical and aerospace 

industry (Fu et al. 2004). Moreover, nanoscale NiTi thin films also find applications as 

actuators and sensors in MEMS devices (Fu et al. 2001).  

 

In these materials the stress induced transformation from the austenite to 

martensite phase is known to be extremely sensitive to the composition and the 

microstructure (Otsuka and Ren 2005).  It has been shown the transformation paths 

change drastically with increasing Ni or Ti content in these materials (Hosoda et al. 

1998). Adding a third alloying element like Co or Cr has also been shown to have a 

significant effect on the shape memory behavior (Hosoda et al. 1998).  

 

Moreover, grain size also influences the transformation in NiTi. Research studies 

have shown that with decreasing grain size the transformation from the austenite to the 
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martensite phase becomes increasingly difficult (Waitz et al. 2007).  Thus, there are many 

nanoscale microstructural aspects that need to be investigated in this system. Although in 

situ TEM techniques have been used to study the behavior of microcrystalline and single 

crystal NiTi alloys (Waitz, Kazykhanov, and Karnthaler 2004; J. Ye et al. 2010), the 

behavior of these materials in the nanocrystalline regime remains relatively unexplored. 

Nanocrystalline metals and alloys are known to exhibit significantly higher yield strength 

and hardness compared to coarse grained materials (Kumar, Van Swygenhoven, and 

Suresh 2003). Thus combining the shape memory behavior of NiTi with a nanocrystalline 

grain structure could substantially increase the transformation stress in these materials. 

As the transformation stress influences functions like actuation and damping, 

nanocrystalline NiTi alloys could provide capabilities that are beyond the reach of 

conventional coarse-grained shape memory alloys. Additionally, nanocrystalline 

materials with a heterogeneous distribution of grain sizes have been shown to recover 

plastic strain (Rajagopalan, Han, and Saif 2007). This recovery is driven by 

inhomogeneous distribution of stresses within grains of different sizes. Thus keeping the 

grain size of NiTi in the nanocrystalline regime could potentially open up an additional 

pathway for strain recovery.   

 

In this study, nanocrystalline NiTi thin films were sputter deposited using the seed 

mediated crystallization process described in Chapter 4. Chromium seed layers were used 

to stabilize the austenitic phase and maintain a nanocrystalline grain size. These films 

were subjected to in situ TEM straining to study the stress induced martensite 

transformation. Experiments revealed that stress induced transformation in these 
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materials was accompanied by plastic deformation in austenitic grains. Moreover, the 

transformation stress was found to be extremely high.   

 

5.2 Materials and Experimental Procedure 

A 150 nm thick NiTi film was synthesized by co-deposition of Ti and Ni on a 4” 

diameter, 200 µm thick, (100)-oriented silicon wafer by DC Magnetron Sputtering at a 

base pressure of 5×10-8 Torr. A 300 nm thick SiNx layer was grown on the wafer prior to 

NiTi deposition using PECVD to act as a diffusion barrier. The composition of the film 

was controlled by varying the power on the individual sputtering guns containing 

99.999% pure Ti and Ni targets. The film was amorphous in the as-deposited state. After 

depositing 75 nm of the film, the deposition was halted. At this stage, a 1.5 nm thick Cr 

seed layer was deposited on the amorphous NiTi. This seed layer was then covered by a 

second 75nm thick NiTi layer, thus making the total thickness of the film 150 nm. The 

film was then crystallized by subjecting it to annealing at 600oC for 4 hours inside the 

sputtering chamber. Photolithography and reactive ion etching techniques described in 

pervious sections were then used to co-fabricate MEMS based tensile testing stages 

having built-in strain and force gauges along with dog-bone shaped freestanding film 

samples (Figure 15).  

For the in situ TEM experiments, MEMS devices containing the NiTi film 

samples were loaded onto a Gatan™ straining TEM holder and tensile tests were carried 

out in a JEOL ARM 200F microscope at an accelerating voltage of 200 kV. The samples 

were uniaxially strained in steps of 150 nm and bright-field images were recorded using a 

Gatan™ Orius CCD camera.  Ex-situ tensile experiments were also carried out to 
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measure the stress vs strain curve of these films. In these ex-situ experiments, the films 

were quasi-statically strained using a piezoelectric stage.   

 

5.3 Results and Discussion 

The NiTi films were found to have a mean grain size of 115 nm. The grains in the 

film were predominantly austenitic with a few larger grains showing martensitic needles 

(Figure 29a). When the films were strained in situ, a stress induced phase transformation 

was observed in these films at about 1% strain. Interestingly the stress for transformation 

was 900MPa which is significantly larger than that observed in coarse-grained NiTi 

(Otsuka and Ren 2005). Upon undergoing phase transformation the microstructure of the 

films became predominantly martensitic (Figure 29b). Bright field TEM images showed 

an abundance of the needle like martensitic phase.  When the films were unloaded, the 

reverse transformation from martensite to austenite was found to occur. After the films 

were completely unloaded, although most of the austenite phase was recovered, there 

were still some grains that remained martensitic (Figure 29c). 

Figure 29 TEM bright field images taken during in situ straining of NiTi. Image (a) was taken prior to 
straining and shows predominantly austenitic grains. Image (b) corresponds to the film at a strain of 1%. A 
large number of martensitic grains are visible. Image (c) was taken after unloading the film. Most of the 
austenite is recovered upon unloading. 
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 Ex situ tensile tests revealed that the stress induced transformation of the austenite 

to martensite phase leads to a drastic change in the stress vs strain curve slope (Figure 

30). In coarse grained NiTi this transformation usually manifests itself as a horizontal 

plateau in the stress strain curve. In our samples, although the slope of the stress vs strain 

curve decreases drastically, it does not plateau out completely. This behavior is 

reminiscent of the gradual elastic-plastic transition that has been observed in other 

nanocrystalline metals and alloys. In other words, the stress-strain behavior of the NiTi 

films suggests that the phase transformation is accompanied by plastic deformation. 

During unloading of the films, evidence of this plastic deformation was found in the form 

of dislocation events (Figure 37). Thus, in the films, we have a stress induced phase 

transformation and dislocation mediated plasticity occurring simultaneously.  

 

 

 

 

 

 

 

 

From the stress vs strain curve we also observe that most of the inelastic strain is 

recovered in these thin films upon unloading. The recovery of the inelastic strain is 

Figure 30: (a) Ex situ stress vs strain curve of NiTi. We can observe a drastic change in the slope of the 
curve which corresponds to the martensite transformation. We also see that the film recovers a majority 
of the plastic strain. (b) TEM image showing an austenitic structure prior to loading. (c) TEM image 
shows a majority of martensitic grains after a stress induced phase transformation. 
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predominantly driven by reverse phase transformation from the martensite to the 

austenite phase upon unloading. However, the observation of dislocation events in certain 

austenite grains suggests that reverse plastic deformation is also occurring 

simultaneously. The plastic strain recovery in these nanocrystalline grains might be 

driven by an inhomogeneous distribution of stresses in the film (Rajagopalan, Han, and 

Saif 2007). Thus, there could be two distinct mechanisms that lead to inelastic strain 

recovery in these films. 

 

Figure 31: TEM bright field images taken during unloading of the NiTi films. Dislocation events are 
represented by the colored circles. These images provide evidence of plastic deformation in the austenite 
grains during straining   

 

5.4 Conclusions 

 NiTi thin films with a stabilized austenite phase were synthesized using a seed 

layer mediated process. The films were subjected in situ TEM straining using MEMS 

devices. In situ experiments revealed stress included martensite transformations in the 

films. Dislocation events in the austenitic grains also suggested the presence of plastic 

deformation. This indicates that the films recover inelastic strain through two distinct 

mechanisms. 
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CHAPTER 6 

Decoupling Elastic and Anelastic Strains in Metallic Glass Thin Films using in situ 

TEM Diffraction  

6.1 Introduction 

Metallic glasses are known to have higher strength, hardness and corrosion 

resistance than conventional metals and better toughness than ceramics, making them 

highly attractive for a variety of applications  (Telford 2004; W. H. Wang, Dong, and 

Shek 2004; Löffler 2003). In spite of their limited ductility, metallic glasses have shown 

promise for structural applications due to their high elastic limit, which can extend up to 

2%  (Telford 2004; Ashby and Greer 2006). Nevertheless, significant efforts have been 

directed towards addressing this lack of ductility, which is attributed to highly localized 

plastic flow in shear bands (Ashby and Greer 2006). In one such study, Wang et al 

showed that enhanced plastic deformation in Zr based bulk metallic glasses is possible 

through the suppression of shear localization by using geometrical constraints (Z. T. 

Wang et al. 2013). Alternatively, researchers have shown that when sample dimensions 

are reduced to the nanoscale homogeneous flow supersedes shear band propagation as the 

dominant mode of deformation, resulting in enhanced ductility (Jang and Greer 2010). 

Furthermore, molecular dynamics (MD) simulations have revealed that metallic glass 

thin films can deform plastically below a critical thickness by non–localized flow (Zhong 

et al. 2016), providing further promise for increased ductility in these materials at the 

nanoscale. 

 



52 

In addition to enhancing the ductility, numerous studies have also focused on 

understanding the deformation processes in metallic glasses which are notably different 

from conventional metals due to the absence of long range order and defects such as 

dislocations and grain boundaries (Todd C. Hufnagel, Schuh, and Falk 2016; Dmowski et 

al. 2010; Antonaglia et al. 2014; Bruck et al. 1994; Bruck, Rosakis, and Johnson 1996; 

Hays, Kim, and Johnson 2000). In particular, in situ high energy X-ray and neutron 

diffraction techniques have been extensively used to measure micro strains in metallic 

glass systems (Poulsen et al. 2005; X. D. Wang et al. 2007; Mattern et al. 2009; T. C. 

Hufnagel, Ott, and Almer 2006). These techniques calculate the elastic micro strain 

tensor by measuring the relative shift of diffraction peaks in reciprocal space during 

straining. Such in situ deformation studies have helped to shed new light into the 

mechanical behavior of metallic glasses. While these studies have significantly enhanced 

our understanding of the deformation processes in metallic glasses, the use of X-ray or 

neutron diffraction has restricted the experiments to bulk, macroscopic samples. 

Therefore, the deformation behavior of metallic glasses at the micro and nanoscale has 

remained relatively unexplored.  

 

In this study, a novel technique (Ebner et al. 2016) was used to extract the local 

elastic strain tensor from selected area electron diffraction (SAD) patterns during in situ 

TEM tensile straining of freestanding Ti45Al55 metallic glass thin films. The local atomic-

level elastic strain was derived by analyzing the deformation induced anisotropic 

geometric changes in the first diffuse ring of the SAD patterns. The in situ TEM straining 

was enabled by MEMS based tensile testing stages that allow the concurrent 
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measurement of the macroscopic stress and strain (εmacro) on the thin film samples. The in 

situ experiments showed that the macroscopic stress-strain response of the film was 

linear. However, the local elastic strain derived from the SAD patterns was consistently 

lower than εmacro, revealing the presence of anelastic deformation. This anelasticity was 

independently confirmed by measuring the rate dependent stress-strain response of the 

film. In addition, the straining narrowed the spread of the nearest neighbor atomic 

distances as revealed by a reduction in the width of the SAD amorphous ring. 

 

The results show that in situ TEM electron diffraction can be used to detect 

deformation induced structural rearrangements, and decouple atomic-level elastic strain 

from anelastic deformation in metallic glasses. A unique advantage of this technique is 

that elastic strain can be measured at precise locations with sub-micrometer resolution, 

which is not possible using X-ray or neutron diffraction. This capability, for example, 

could be used to measure elastic strains near crystalline regions in a partially devitrified 

metallic glass. These crystallites have been shown to alter the fracture morphology 

(Nagendra et al. 2000) and knowledge of the near-field elastic strain can aid a deeper 

analysis of this phenomenon. In addition to the above, loading induced microstructural 

changes can potentially be monitored through special imaging techniques to obtain a 

more comprehensive picture of the deformation processes in metallic glasses. 

 

6.2 Materials and Experimental Procedure 

A 150 nm thick TiAl (45 atomic % Ti, 55 atomic % Al) film was synthesized by 

co-deposition of Ti and Al on a 4” diameter, 200 µm thick, (100)-oriented silicon wafer 
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by DC Magnetron Sputtering at a base pressure of 5×10-8 Torr. The composition of the 

film was controlled by varying the power on the individual sputtering guns containing 

99.999% pure Ti and Al targets. The film was amorphous in the as-deposited state. 

Rutherford backscattering spectrometry was used to determine the composition of the 

films and X-ray diffraction analysis confirmed the amorphous nature of the film. 

Photolithography and reactive ion etching techniques were then used to co-fabricate 

MEMS based tensile testing stages having built-in strain and force gauges along with 

dog-bone shaped freestanding film samples (Figure 15).  

 

For the in situ TEM experiments, MEMS devices containing the Ti45Al55 film 

samples were loaded onto a Philips™ straining TEM holder and tensile tests were carried 

out in a Philips CM200 TEM at an accelerating voltage of 200 kV. The samples were 

uniaxially strained in steps of 150 nm and bright-field images and SAD patterns were 

recorded using a Gatan™ Orius CCD camera after allowing the film to relax for 5 

minutes. The averaged strain rate over the duration of the experiments was ~ 10-6/s, 

essentially resulting in quasi-static loading.  

 

SAD patterns were taken from a circular area of diameter 1.2 μm with an 

exposure time of 10 s. Before each SAD pattern was acquired, a normalization procedure 

was performed to reduce the magnetic remanence of the lenses so that the variation of the 

camera length in different SAD patterns was minimized. The illumination condition of 

the TEM was also kept constant during the experiment. To ensure that the electron beam 

did not cause any stress relaxation or anomalous changes in sample geometry (Sarkar, 
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Rentenberger, and Rajagopalan 2015) one of the samples was continuously exposed to 

the electron beam for 60 minutes and the stress, εmacro and atomic-level elastic strain were 

recorded before and after exposure. No noticeable difference was seen in the any of these 

quantities.  

 

Three Ti45Al55 film samples were tested in situ in the TEM. The first sample was 

loaded up to εmacro = 0.6%, while the second and third samples were loaded until failure. 

The second sample was loaded and unloaded once before it was strained to failure 

whereas the first and third samples were subjected to a single loading. In addition, ex situ 

uniaxial tensile load-unload experiments were performed at different strain rates (10-6/s to 

10-2/s) on two samples. A piezoelectric actuator (Physik Instrumente) was used to load 

the MEMS devices and a CMOS camera (Thor Labs) was used to acquire images of the 

gauges during the experiments. A more detailed description of the procedure adopted for 

these strain rate experiments is provided in (Izadi and Rajagopalan 2016).  

 

The macroscopic stress and strain on the samples were measured using the built-

in gauges of the MEMS stage. A custom MATLABTM program, which tracks prescribed 

features across a series of images using cross-correlation techniques, was used to measure 

the displacement of the gauges and thus the sample stress and strain. The macroscopic 

stress and strain resolutions were 2 MPa and 0.005%, respectively, for the in situ TEM 

experiments and 5 MPa and 0.01%, respectively, for the ex situ strain rate experiments.  

A script (Ebner et al. 2016) written on the GATAN™ Digital-Micrograph platform was 

used to analyze the SAD patterns and extract the 2D strain tensor and the principal strain 
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along the longitudinal (e11) and transverse direction (e22). The script measures the 

ellipticity introduced in the SAD ring by the applied strain to extract the elastic strain 

(Figures 32b, c). Since these elastic strains correspond to the strain on an atomic level, 

they are denoted as atomic-level elastic strains to distinguish them from the macroscopic 

strain (εmacro) in the entire sample. The atomic-level elastic strain can be quantified on a 

micrometer scale using this technique with an accuracy and precision of 10-4 and 2×10-4, 

respectively. 

 

 

 

 

 

 

6.3 Results and Discussion 

TEM bright-field images of the film showed contrast that is characteristic of a 

metallic glass, containing no crystalline phases (Fig. 33a). It should be pointed out that 

the dark features present in the bright-field images are photoresist residues left from 

sample fabrication. The amorphous structure of the thin film was confirmed by the SAD 

pattern containing broad diffuse rings (Fig. 32a) as well as X-ray diffraction. RBS 

Figure 32: Evolution of the ellipticity of SAD pattern with strain: (a) SAD pattern of the amorphous film 
where q�⃗  corresponds to the reciprocal lattice vector of the first ring and χ is the azimuthal angle. (b) An 
ellipse being fitted to the SAD pattern of the strained film using a script written on the Digital Micrograph 
platform to extract the atomic-level elastic strain. (c) A plot of the reciprocal lattice vector (q�⃗ ) 
corresponding to the maxima positions of the SAD ring shows the peaks and valleys appearing at different 
azimuthal angles (χ) due to the ellipticity introduced by straining. 
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measurements revealed the composition of the film to be 45 atomic % Ti and 55 atomic 

% Al. 

 
 

 
 

Table 1: Elastic Modulus (E) for in situ TEM straining experiments calculated using εmacro 
and e11. For sample 2, the values reflect the average of two cycles. 

 

The in situ TEM tensile experiments revealed an absence of plasticity (Figure 34) 

with all three films exhibiting a linear macroscopic stress-strain behavior up to the 

maximum strain/failure. The failure occurred in a catastrophic manner due to localized 

deformation in a shear band (Figure 33b). Contrary to previous reports (H. Chen et al. 

1994), bright field, dark field and SAD images of the TiAl fracture surface did not 

indicate the formation of nanocrystals by the localized deformation. From the 

morphology of the fracture surface shown under dark-field condition in Figure 33b, small 

deflections of the catastrophic shear band propagating at a mean inclination angle of 60° 

with respect to the thin film surface can be revealed.  

 

Figure 33: Microstructure of TiAl film: (a) TEM bright field image of the Ti45Al55 film before straining, 
indicative of a typical amorphous microstructure. (b) TEM dark field image of the fractured edge of the 
third sample. The brightness gradient in the image points to shear banding as the mode of failure.  

 

Sample  E using εmacro (GPa) E using e11 (GPa) µ (−𝑒22) 
1 154 169 0.195 
2 152 176 0.245 
3 158 173 0.21 
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The calculated longitudinal principal strain e11 correlated well with εmacro in all 

three samples but it was on average about 10% smaller, leading to a similar difference in 

the calculated Young’s modulus (E). Specifically, E calculated using the applied stress 

and εmacro was found to be 155±3 GPa, which is lower than the E of bulk crystalline γ 

TiAl (175-188 GPa) (He et al. 1995). This lower E is consistent with the presence of 

anelastic deformation that is common in many metallic glasses (H. S. Chen, Krause, and 

Coleman 1975). The Young’s modulus computed using the longitudinal atomic-level 

elastic strain (e11) values, in contrast, was found to be 173±3 GPa, almost identical to that 

of crystalline TiAl. 

 

Figure 34: Macroscopic and atomic-level elastic strain versus stress: (a) The macroscopic and atomic-level 
elastic strains versus stress plot for the first TiAl sample. (b) Strain versus stress plot for the 1st cycle of the 
second sample. The sample was unloaded before failure. (c) Strain versus stress plot of the second sample 
for the 2nd cycle, where it was loaded until failure. (d) Strain versus stress plot of the third sample, which 
was loaded until failure. In all the plots, the black lines represent the lines of best fit whereas the symbols 
represent raw data points. 
 

The Poisson’s ratio (µ) calculated from the linear fit of the variation of e22 and e11 

from all three samples was found to be 0.215±0.02, in good agreement with the results 
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from other metallic glass systems containing Ti and Al (Telford 2004). The E and µ 

obtained from each in situ TEM experiment is listed in Table 1. The Poisson’s ratio was 

also independently calculated from in situ scanning electron microscopy (SEM) tensile 

experiments. In the in situ SEM experiments, the distances between markers (photoresist 

residue left from fabrication) along the longitudinal and transverse directions of a sample 

were tracked as a function of applied strain (Figure 35). By measuring the change in the 

transverse strain as a function of the longitudinal strain a Poisson’s ratio of 0.23±0.035 

was obtained, which is consistent with the in situ TEM measurements.  

 

 

Figure 35: In situ SEM straining experiments: (a) SEM image of a TiAl sample with some of the residual 
photoresist markers from sample fabrication indicated by red arrows. (b) Change in transverse strain as a 
function of axial strain for the sample. The slope of the red line is ~ 0.235, which corresponds to the 
Poisson’s ratio of the sample 
 

The full width at half maximum (FWHM) of the first diffraction ring (Figure 36) 

was also calculated along all directions for the samples. The FWHM measurements were 

then averaged and normalized by the mean of the major and minor semi-axis of the 

elliptic diffraction ring. The normalization was done to mitigate any effect from potential 

perturbations of the TEM camera length. These normalized FWHM values, which 

correspond to the spread of the first nearest neighbor atomic distances, for sample 2 is 

shown Figure 36c. The FWHM values decreased linearly with increasing stress in both 
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cycles but saturated at high stresses in the second one (Figure 36c). Interestingly, the 

FWHM versus stress curves for the two cycles do not overlap as the FWHM increased 

after unloading. The same trend of decreasing FWHM with increasing stress was 

obtained when only the longitudinal and transverse directions were considered. 

 

As mentioned previously, there was significant difference between the 

longitudinal elastic strain and macroscopic strain in the in situ TEM experiments. To 

explore the cause of this discrepancy, ex situ tensile load-unload experiments at different 

strain rates (10-6/s - 10-2/s) were conducted on two samples. The strain rates were chosen 

such that the lowest strain rate was roughly similar to the averaged strain rate during the 

in situ TEM experiments.  

 

The experiments showed that the stress-strain response was linear during both 

loading and unloading at all rates. There was also no residual strain after unloading in any 

Figure 36: FWHM measurements on metallic glass TiAl films: (a) A typical SAD pattern analyzed during 
the loading of Sample 2. The orange arrows indicate the width of the 1st amorphous ring, which corresponds 
to the spread in the first nearest neighbor atomic distances. The red line corresponds to the intensity curve in 
(b). (b) The background subtracted intensity plot corresponding to the red line in (a). The FWHM of the 
peak was found to change with loading.  (c) The normalized FWHM values of the first diffraction ring of 
the second sample during the two loading cycles. The FWHM values decrease with increasing stress, 
indicating a drop in the spread of nearest neighbor distances and an increase in short range order. The 
change in cycle 1 appears to be temporary as the initial FWHM value for the 2nd cycle is higher. 
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of the experiments, confirming the lack of plastic deformation. However, the 

measurements revealed a rate dependence of E (Figure 37), which increased from 156±1 

GPa at the lowest strain rate to 166±1 GPa (6-7% increase) at the highest strain rate (10-

2/s). Thus, for a given stress the measured εmacro at the highest rates was about 6-7% 

smaller than the strain at the lowest rate.  

 

The in situ TEM experiments of the TiAl thin films revealed failure stresses 

between 2.7-2.9 GPa and macroscopic failure strains between 1.7-1.9%. By tracking the 

geometric changes in the SAD patterns, we were able to measure the atomic-level elastic 

strain tensor, which showed that the longitudinal elastic strain (e11) was consistently 

smaller by about 10% compared to εmacro. No discernable plasticity was seen in any of the 

samples and failure occurred by shear localization (Schuh, Hufnagel, and Ramamurty 

2007). Nevertheless, an analysis of the atomic scale response and comparison of the 

macroscopic strain and atomic-level elastic strain reveals several interesting details about 

the deformation induced structural changes in the metallic glass film. 

 

First, we consider the discrepancy between εmacro and e11 in the amorphous TiAl 

film. The change in the geometry of the SAD patterns, from which e11  is obtained, is 

sensitive only to elastic strain. In the in situ TEM experiments, εmacro was about 10% 

larger than e11. The strain rate experiments (Figure 37) show that εmacro at the lowest rate 

is 6-7% higher than εmacro at the highest rate for a given stress. In effect, at least 6-7% of 

εmacro is due to anelastic deformation at rates (~10-6/s) comparable to those applied in the 
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in-situ TEM experiments. Thus, a major part of the observed difference between εmacro 

and e11 in the in situ TEM experiments can be accounted for by anelasticity.  

 

Furthermore, it has been shown that in metallic glasses atomic-level elastic strain 

in the nearest neighbor shells can be smaller than distant atomic shells (T. C. Hufnagel, 

Ott, and Almer 2006). Since the geometric changes in the first diffraction ring correspond 

to the nearest neighbor shell, it is possible that the calculated e11 underestimates the 

elastic strain in the film. This could, in principle explain why anelasticity does not fully 

account for the difference between εmacro and e11. 

 

In this context, it is worth noting that even in previous in situ XRD deformation 

studies on metallic glasses, E calculated using atomic-level elastic strain was about 5-6% 

greater than the value obtained using macroscopic strain (Mattern et al. 2009; T. C. 

Hufnagel, Ott, and Almer 2006). The results obtained in this study suggest that those 

differences might have been a result of anelasticity. Anelastic deformation in metallic 

glasses is often attributed to the presence of atomic free volume zones (J. C. Ye et al. 

Figure 37: Strain rate dependent Young’s modulus of TiAl films: (a, b) Stress-strain response of two 
TiAl thin film samples subjected to ex-situ straining at 3 different strain rates. The E obtained at the 
highest strain rate is about 7 % greater than the E obtained from the lowest rate. The strain values for the 
experiments carried out at 10-4/s and 10-2/s have been offset by 1 and 2 % strains respectively. 
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2010), the extent of which depends on the processing conditions and the 

thermal/mechanical history. Metallic glass thin films that are synthesized by sputtering 

are known to have a larger fraction of free volume zones (Chang et al. 2014) and this 

could be the reason for the higher anelastic strain observed in our samples.  

 

From a microscopic viewpoint, anelasticity can be seen as a manifestation of 

deformation-induced structural rearrangements (Tong et al. 2015) and MD simulations 

have found correlations between the short-range order of atomic clusters and the extent of 

their anelastic deformation (Ding, Cheng, and Ma 2012).  The FWHM measurements in 

this study support such an atomic scale interpretation of anelasticity. As shown in Figure 

36c, the normalized FWHM values of the amorphous ring decrease with increasing stress, 

which suggests a change in short-range order (narrower spread of first nearest neighbor 

distances). More importantly, the results indicate that these structural rearrangements 

start to occur from the initial stages of deformation, which is consistent with the presence 

of anelastic deformation even at low stresses/strains. The saturation of the FWHM values 

at very high stresses (> 2 GPa), however, does indicate that the structural rearrangements 

become progressively harder as the sample approaches catastrophic failure though the 

formation of shear bands. It is also worth noting that upon unloading after the first cycle, 

the normalized FWHM increased to a higher value (Figure 36c). This suggests that even 

in the absence of plasticity, the deformation resulted in a permanent change in the 

amorphous structure of the film. 

In addition to anelasticity, the elastic properties (E and µ) obtained from the in 

situ TEM experiments also provide some insights into the atomic-scale response. 
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Notably, the macroscopic E (155±3 GPa) of the metallic glass TiAl film is lower than the 

E of crystalline TiAl (175-188 GPa) due to the presence of anelastic deformation. 

However, the E (173±3 GPa) obtained from the atomic-level longitudinal elastic strain 

(e11) is nearly identical to that of crystalline TiAl. This suggests that the atomic-level 

stiffness of metallic bonds in amorphous TiAl is very similar to that of crystalline TiAl. 

Similarly, the relatively low Poisson’s ratio (µ = 0.215±0.02) of the TiAl metallic glass 

film is also consistent with small failure strains (~2%). Previous studies have shown that 

µ < 0.3 in metallic glass systems leads to a brittle failure (Lewandowski, Wang, and 

Greer 2005) and the lack of plasticity in our samples supports this conclusion.  

 

6.4 Conclusions 

To summarize, most prevalent techniques for calculating atomic-level strains in 

metallic glasses employ high energy X-ray or neutron diffraction. Here, it is shown that 

TEM electron diffraction can also be used to accurately calculate atomic-level elastic 

strains in metallic glass films. This technique has the advantage of measuring atomic-

level elastic strains from localized regions (< 1 µm2) while also allowing us to monitor 

changes in microstructure using special TEM imaging methods, which is not possible in 

X-ray or neutron diffraction. This capability, for example, could be used to study the 

origins of plastic flow in thin (< 100 nm) metallic glass films (Guo et al. 2007) or 

quantitatively analyze the elastic strain near crystalline inclusions. More importantly, the 

method allows us to detect mechanically induced structural rearrangements, and decouple 

atomic-level elastic strain from larger scale anelastic deformations without the need for 

experiments at multiple strain rates or frequencies.  
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CHAPTER 7 

Electron Beam Inducted Artifacts During in situ TEM Deformation of Nc and Ufg 

Aluminum  

7.1 Introduction 

A critical assumption underlying in situ transmission electron microscopy studies 

is that the electron beam (e-beam) exposure does not fundamentally alter the intrinsic 

deformation behavior of the materials being probed. In this research it was found that e-

beam exposure caused increased defect activation and marked stress relaxation in 

aluminum films spanning a range of thicknesses (225-400 nanometers) and grain sizes 

(125-220 nanometers). Furthermore, the e-beam induced anomalous sample necking, 

which unusually depends on beam diameter rather than intensity. Notably, the stress 

relaxation in aluminum occurred at beam energies well below the damage thresholds. 

More remarkably, the stress relaxation and/or sample necking is significantly more 

pronounced at lower accelerating voltages (120 kV versus 200 kV). These observations 

in aluminum were added to experiments done on gold in which similar results were seen. 

Thus the beam induced artifacts observed in two metals with highly dissimilar atomic 

weights and properties indicate that e-beam exposure can cause anomalous behavior in a 

broad spectrum of nanostructured materials, and simultaneously suggest a strategy to 

minimize such artifacts. 
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7.2 Materials and Experimental Procedure 

Two Al films, 225 nm and 400 nm thick, respectively were deposited on 200-µm 

thick, 100 mm diameter, (100) silicon (Si) wafers using DC magnetron sputtering. Before 

deposition, the Si wafers were etched with hydrofluoric acid to remove the native silicon 

dioxide layer.  Experiments had also been previously carried out on 80 nm thick Au films 

by Dr. Rajagopalan and Dr. Rentenberger. The 225 nm thick Al film (from here on 

referred to as Al-225 film) and the Au film were deposited immediately after the removal 

of the silicon dioxide layer at base pressures of 1.5x10-8 Torr and 5X10-8 Torr 

respectively. The 400 nm thick Al film (from here on referred to as Al-400 film) film was 

deposited at a base pressure of 1.5x10-7 Torr about 1.5 hours after the removal of the 

oxide layer. For all depositions, the argon pressure was 3 mTorr and the deposition rate 

was between 4-5 nm/minute. Dog-bone shaped freestanding samples of the two films 

were then co-fabricated with micro-electro-mechanical systems (MEMS) based tensile 

testing devices described earlier (Figure 15) using photolithography and plasma etching 

techniques.  

 

The MEMS devices with the freestanding film samples were mounted on a 

displacement controlled single tilt, straining holder and the films were subjected to cyclic 

deformation inside a Philips CM200 TEM equipped with a LaB6 cathode. In each of the 

straining cycles the beam condition was systematically controlled as follows. The beam 

intensity was varied for a given exposed area by changing the e-beam current. The beam 

current was controlled by altering the Wehnelt bias, the filament heating current of the 

TEM and the size of the condenser aperture. In all the experiments, the microstructure 
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was observed under TEM bright field conditions and recorded using an Orius GatanTM 

CCD camera.  

Strain pulses (typically corresponding to < 0.1% strain) were applied to the 

sample, following which the sample was allowed to relax for a period of 5 minutes and 

the stress-strain data was then recorded. Two types of experiments were performed to 

quantify the effect of e-beam exposure. In the first set of experiments, the stress-strain 

response of the Al-225, Al-400 and Au film during the first cycle was measured without 

e-beam exposure to serve as a reference. In the subsequent cycles, the films were exposed 

to the e-beam at different accelerating voltages and the beam diameter (area) and 

intensity were systematically varied. In the second set of experiments on the Al-225 film, 

the sample was exposed to the e-beam only at two points during each loading to quantify 

beam-induced stress relaxation. At both these points, stress-strain data was recorded for a 

period of 15 minutes, typically at 5-minute intervals. Table 2 and 3 show the beam 

conditions for all the experiments.  

 

The stress-strain response of the films was obtained by analyzing images of the 

built-in force and displacement gauges during deformation, using a custom MATLABTM 

program. The program tracks prescribed features using cross-correlation techniques 

across a series of images to calculate the displacement of the gauges. Using this process, 

stress and strain resolutions better than 2 MPa and 0.005%, respectively, were obtained 

for both Al and Au films.  
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Table 2: Beam condition and the corresponding stress response of the Al-225, Al-400 and Au-80 samples 
during cyclic deformation. 
 

 

 
Table 3: Beam condition and the corresponding stress response of the Al-225 sample during relaxation 
experiments 
 

Once the raw stress-strain data was obtained, the data was fitted with polynomial 

functions to obtain the stress at a given strain. To avoid over fitting, for both loading and 

unloading the polynomial order was chosen so that there were at least three data points 

for each coefficient. Typically, fourth order polynomials were used to fit the stress-strain 

Al 225 Cycle Voltage 
(kV) 

Area 
(μm2) 

Current 
(nA) 

 

Intensity 
(A/cm2) 

σ1% (MPa) 

1 0 0 0 0 380 
2 80 12.5 44 0.352 358 
3 120 201 103 0.051 362 
4 200 201 61 0.03 408 
5 200 804 61 0.007 419 
6 120 804 103 0.012 445 

Al-400  Cycle Voltage 
(kV) 

Area 
(μm2) 

Current 
(nA) 

 

Intensity 
(A/cm2) 

σ0.75% 
(MPa) 

1 0 0 0 0 120 
2 120 201 14 0.0069 109 
3 200 201 10 0.0049 167 

Au-80 Cycle Voltage 
(kV) 

Area 
(μm2) 

Current 
(nA) 

 

Intensity 
(A/cm2) 

σ1% (MPa) 

1 0 0 0 0 452 
2 120 7 95 1.357 369 
3 200 7 95 1.357 464 

Cycle Voltage 
(kV) 

Area 
(μm2) 

Current 
(nA) 

Intensity 
(A/cm2) 

1st Stress 
Drop (%) 

 

2nd Stress 
Drop (%) 

 
1 120 201 71 0.035 8.06 7.79 
2 200 201 71 0.035 2.88 6.24 
3 120 804 61 0.0075 7.37 10.63 
4 200 804 66 0.0082 4.32 7.79 
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data for loading and third order polynomials were used for unloading. For stress-

relaxation, for which only four or fewer data points were measured, a linear fit was 

chosen. The R2 value was higher than 0.995 for all the loading and unloading fits, except 

for the second loading of the Au film (R2 = 0.993). Similarly, the R2 value for fits to the 

Al-225 stress relaxation data exceeded 0.98 except for the 1st stress drop in cycle 2 (R2 = 

0.804), when the relaxation was very small (Table 3). The equations of the fitted curves 

were then used to extract the stress at 1% strain (σ1%) for the Al-225 and Au films, the 

stress at 0.75% strain (σ0.75%) for the Al-400 film and the stress drop for relaxation 

experiments on the Al-225 film. σ1% and σ0.75% were calculated for a particular cycle after 

offsetting the stress-strain curve to account for residual plastic strain from previous 

cycles. To ensure robustness of the fits, σ1% and σ0.75% were also calculated by fitting 

higher order and lower order polynomials and the values compared. No meaningful 

changes in the stress values were observed. 

 

7.3 Results and Discussion 

The microstructure of the films was characterized by TEM and x-ray diffraction 

(XRD). The analyses (Figure 38A, B) revealed a d of 120 nm and a nearly bicrystalline 

microstructure for the Al-225 film. The Al-400 film had a higher d of 220 nm and a mild 

(110) out-of-plane texture with random in-plane grain orientations (Figure 38C, D), 

whereas the Au film had a d of 50 nm and a strong (111) out-of-plane texture with 

random in-plane grain orientations (Figures 38E, F). 
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Figure 38: Microstructure of Al and Au Films: (A) Bright-field TEM image of the undeformed Al-225 film 
(d = 120 nm). Selected area diffraction (SAD) of the film showing an (110) out of plane texture with two 
in-plane variants rotated 900 with respect to each other (inset). (B) XRD scan of the Al-225 film showing a 
single (220) peak. (C) Bright-field TEM image of the undeformed Al-400 film (d = 220 nm). SAD of the 
film showing a mild (110) out of plane texture and random in-plane texture (inset). (D) XRD scan of the 
Al-400 film. The (111) and (220) peaks have similar intensities, whereas in random polycrystalline Al their 
ratio is 10:3, which shows a mild (110) texture in the film. (E) Bright-field TEM image of the undeformed 
Au-80 film (d = 50 nm). SAD of the film showing a (111) out of plane texture with random in-plane texture 
(inset). (F) XRD scan of the Au-80 film showing a single (111) peak. 

 

Figure 39 shows the stress-strain response of the films for the cyclic loading and 

stress relaxation experiments under different beam conditions. To quantify the e-beam 

effect on the stress-strain response during the cyclic loading experiments, the stress at the 

same strain level during each cycle are compared, after offsetting the stress-strain curve 

to account for residual plastic strain from previous cycles. For the Al-225 and Au film, 
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σ1% is used for comparison. The overall trend is very similar even if the stress at a lower 

strain level is used for comparison. The Al-400 film started deforming plastically at lower 

strain and hence was subjected to smaller strains during each cycle. Therefore, we 

compare the σ0.75% during each cycle. σ1% for the Al-225 and Au film and σ0.75% for the 

Al-400 film during each cycle is summarized in Table 2. 

 

Figure 39 Cyclic Stress-Strain Response and Stress Relaxation of Al and Au films: (A): Stress-strain 
response of Al-225 film over six cycles under different beam conditions. A relaxation in stress can be 
observed for the 2nd and 3rd cycle with respect to the 1st cycle when an 80 kV and 120 kV e-beam were 
incident on the film, respectively.  The imaging conditions for the different deformation cycles are 
summarized in Table 2. The green and black arrows correspond to Figure 40 and supplementary video 
2, respectively. (B): Beam induced stress relaxation in the Al-225 film. The film was exposed to the e-
beam only at two points during each loading (indicated by arrows) and stress-strain data was recorded 
over a period of 15 minutes. Stress relaxation was substantially higher at 120 kV compared to 200 kV. 
At the end of the 2nd and 3rd cycles, the e-beam was moved to a new location, which led to significant 
additional relaxation (indicated by the orange cross). (C): Stress-strain response of the Al-400 film over 
three cycles with different beam conditions. (D) Stress-strain response of the Au film over three cycles 
with different beam conditions. In all the figures the solid black lines corresponds to the fitted curves 
while the individual points correspond to the raw data. 
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As evident from Figure 39A as well as the tabulated values in Table 2, σ1% for the 

Al-225 film decreased from 380 MPa in the 1st cycle (no e-beam exposure) to 358 MPa 

and 362 MPa, respectively, in the 2nd  (80 kV) and 3rd cycle (120 kV). In cyclic loading 

of metal films, the stress for a given strain usually increases in subsequent cycles due to 

strain hardening. In contrast, σ1% during the 2nd cycle decreased by 5.7% with respect to 

the 1st cycle and was still lower by nearly 4.7% during the 3rd cycle, clearly indicating the 

effect of e-beam exposure. However, when the accelerating voltage was increased to 200 

kV in the 4th cycle, σ1% was significantly higher (408 MPa), a 7.4% increase over the 1st 

cycle and a 12.7% increase over the 3rd cycle.  

 

To study the effect of beam intensity, the accelerating voltage and beam current 

(area times intensity) were kept constant, while intensity was reduced 4-fold between the 

4th and 5th cycles. This resulted in an increase of σ1% to 419 MPa from 408 MPa. To 

confirm this trend, the accelerating voltage (120 kV) and beam current for the 6th cycle 

were made identical to the 3rd cycle but the intensity was again decreased 4-fold. σ1% 

during the 6th cycle (445 MPa) was nearly 23% higher than the 3rd cycle. The cyclic 

stress-strain data in Figure 39A strongly suggested that beam-induced stress relaxation is 

higher at 120 kV compared to 200 kV. To unambiguously verify this behavior, stress 

relaxation experiments were performed on the same film (Figure 39B) at 120 kV and 200 

kV. As evident from the data (Table 3), stress relaxation was significantly higher at 120 

kV, even though the intensity was identical or even larger at 200 kV (compare Cycle 4 

with Cycle 3). 
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To ensure that the larger stress relaxation observed at lower accelerating voltages 

is not unique to a particular grain size, specimen thickness or material, the cyclic load-

unload experiments were repeated on an Al film (Al-400) with a larger thickness and 

grain size and an Au film with much smaller thickness and grain size. The stress-strain 

response of the Al-400 and Au film (Figures 39C, 39D), were consistent with the 

behavior of the Al-225 film, showing significantly higher stress relaxation at 120 kV 

compared to 200 kV.  

 

In addition to the stress-strain response, the evolution of the microstructure during 

and after deformation was also monitored. The Al-225 film showed a small increase in d 

from 120 nm to 135 nm after deformation. In contrast, the Al-400 and Au film did not 

show any grain growth. In all the films dislocation activity was seen even at small strains 

where the stress-strain curve showed little deviation from linearity. Figure 40 shows an 

example of such dislocation activity in the Al-225 film during the third deformation cycle 

when the strain was ~0.41% (indicated by the green arrow in Figure 39A). The video 

corresponding to these images (videoS1) is available as supplementary material. Notably, 

significant dislocation activity was also seen during the initial stages of unloading 

(videoS2), when the macroscopic stress-strain response was elastic. The stress 

corresponding to videoS2 is about 408 MPa (indicated by the black arrow in Figure 39A), 

76 MPa lower than the peak stress during the cycle. These observations suggested that 

dislocations are activated by e-beam exposure, leading to localized plastic deformation. 
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Figure 40: Dislocation Motion During Straining: TEM bright-field images of the Al-225 film after the 
application of a set of displacement pulses during the 3rd cycle. The approximate stress and strain at this 
point was 225 MPa and 0.41%, respectively (green arrow in Figure 39A). The red arrows point to locations 
of dislocation activity. The video corresponding to these images (video S1) is available as supplementary 
material. 
 

To confirm this, during the stress relaxation experiments on the Al-225 film 

(Figure 39B) the e-beam was shifted to a different area of the sample at the end of 2nd 

loading cycle for approximately 2 minutes. Immediately upon e-beam exposure, 

substantial dislocation activity (videoS3) was observed in the new area, which was 

accompanied by further stress relaxation (orange cross at the end of 2nd cycle). Note that 

this additional stress relaxation occurred even though the sample had been exposed to the 

e-beam for 15 minutes in the previous observational area and significant stress relaxation 

(> 6%) had already occurred. We similarly shifted the beam to a new location at the end 
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of the 3rd cycle and again observed significant additional relaxation (orange cross at the 

end of 3rd cycle). 

 

Figure 41: Anomalous Necking of Films: (A-F) TEM images of the Al-225 sample at the locations where it 
was exposed to the e-beam, with scale bar shown in (E). The left edge of the sample is aligned so that 
changes in width after each cycle can be easily seen. The red circles in (A-C) are the area exposed to the e-
beam. In (D) and (F), the entire width of the sample was exposed, as indicated by the red rectangles. The 
center of the e-beam was at the same location from the 2nd cycle to 5th cycle. The imaging area was 
changed during the 6th cycle; (E) and (F) correspond to the new area before and after the 6th cycle. The 
necking of the sample is clearly visible in (D) and (F). (G) TEM image of the 400 nm sample after the 2nd 
cycle, with the arrows pointing to the necked region. 
 

Apart from microstructural changes, significant necking along the sample width 

was seen in the Al-225 film (Fig. 41). This localized necking exactly corresponded to the 

location of the e-beam on the sample (indicated by a red circle or rectangle), which 
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strongly suggests that the necking is a direct consequence of e-beam exposure. In the Al-

225 film, the width reduced from 30 µm to 27.54 µm, an 8.2% reduction, after 5 

deformation cycles. To understand the effect of beam conditions on necking, the changes 

in sample width (Δw) from the 2nd to 5th cycle was analyzed. Since the initial sample 

width (at the beam location) was different for each cycle, the percentage width reduction 

(Δw/w) is calculated for each cycle. Then Δw/w was normalized by the plastic strain (εp) 

imposed in that cycle. After this normalization, a clear dependence of necking on both the 

beam area as well as accelerating voltage was found (Table 4).  

 

 

Table 4: The percentage Width Reduction (WR) in each cycle normalized by the amount of plastic strain 

induced in each cycle. 

 

When the beam area was very small (2nd cycle) there was no notable decrease in 

the sample width. For a given accelerating voltage and beam current (4th and 5th cycle), 

the normalized width reduction (r = (Δw/w)/εp) is significantly larger when the beam area 

is larger. This suggests that the extent of necking is more dependent on the beam area 

than intensity. Similar to stress relaxation, necking was also more pronounced at 120 kV. 

Cycle Voltage      
(kV) 

Area         
(μm2) 

Intensity     
(A/cm2) 

Plastic 
strain 

(%) 

Initial 
width 
(μm) 

Final 
width  
(μm) 

%WR %WR/
Plastic 
strain 

1 0 0 0 0.355 30 30 0.00 0.00 
2 80 12.5 0.352 0.426 30 30 0.00 0.00 
3 120 201 0.051 0.399 30 29 3.33 8.35 
4 200 201 0.03 0.357 29 28.66 1.17 3.28 
5 200 804 0.007 0.606 28.66 27.54 3.91 6.45 
6 120 804 0.012 0.848 30 27.54 8.20 9.67 
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For example, in the 3rd cycle (120 kV beam) r = 8.35, which is higher by a factor of 2.5 

compared to the 4th cycle (200 kV beam, r = 3.28), even though the beam area was the 

same and beam intensity was only 1.7 times larger. Interestingly, when the e-beam was 

shifted to a new region for the 6th cycle (120 kV), a new neck appeared in that region and 

there was no further reduction in width of the previously necked region, which confirms 

that necking results from e-beam exposure. Furthermore, the specimen width decreased 

from 30 µm to 27.54 µm (8.2% reduction) in a single cycle.  

 

Similar sample necking was seen in the Al-400 film as well (Fig. 41g) but the 

reduction in width was even more pronounced. The sample width reduced from 30 µm to 

26.85 µm (10.5% reduction) after just one cycle of deformation at 120 kV, even though 

the imposed plastic strain was only 0.6% and the beam intensity was also quite low 

(Table 2). In the Au film no obvious necking was observed, presumably because the 

beam area was much smaller (Table 2). 

 

Radiolysis, caused by the inelastic scattering of incident beam electrons, and 

knock-on displacement, due to elastic scattering of beam electrons, are the two main 

radiation damage mechanisms in TEM. However, in conducting materials such as metals, 

radiolysis is mostly suppressed because of the high density of delocalized electrons (R. F. 

Egerton, Li, and Malac 2004), which leaves knock-on displacement as the primary 

damage mechanism. Since knock-on displacement typically increases with accelerating 

voltage, a maximum voltage of 200 kV is used in most in situ TEM deformation 

experiments on metals to mitigate radiation damage. Nevertheless, recent studies have 
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shown that even low to moderate e-beam exposure in a TEM can affect the mechanical 

behavior of nanoscale materials such as nanoparticles and nanowires (Zheng et al. 2010b; 

Dai et al. 2012).  

 

The experiments in this study demonstrate that the mechanical behavior of 

nanocrystalline and ultra-fine grained metals is also significantly affected by electron 

irradiation. In particular, the experiments reveal two unexpected trends as discussed 

below. First, beam-induced artifacts in nanostructured metals occur at beam energies far 

below the radiation damage (knock-on displacement) thresholds of these materials. 

Second, the beam-induced artifacts are more pronounced at lower accelerating voltages.  

 

Knock-on displacement occurs when the beam energy exceeds a threshold, and 

may either result in the formation of vacancy-interstitial pairs in the bulk or lead to 

sputtering at the surfaces. However, the threshold energy for knock-on displacement in 

the bulk is usually larger than at the surface. For Al, the bulk displacement threshold 

energy exceeds 100 kV (Mingler and Karnthaler 2006) but the surface sputtering 

threshold energy is only 65 kV (R. F. Egerton et al. 2010). Since substantial stress 

relaxation is observed at 80 kV for the Al-225 sample (Figure 39a), it is conceivable that 

surface sputtering could be partly responsible for the observed relaxation. However, the 

experiments on the Al-400 film (Figure 39c) strongly suggest otherwise. If surface 

sputtering were a primary damage mechanism, the e-beam effect would be much smaller 

on the Al-400 film because of its higher thickness. In contrast, stress relaxation as well as 
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necking in the Al-400 film (at 120 kV) is much more pronounced compared to the Al-225 

film.  

 

The experiments on the Au film provide even stronger evidence that knock-on 

displacement is not responsible for the observed stress relaxation. The estimated surface 

sputtering threshold energy for Au is around 400 kV (R. F. Egerton et al. 2010) and the 

threshold for knock-on displacement in the bulk exceeds 1000 kV. Therefore, very little 

or no e-beam effect would be expected at 120 kV. Still, considerable stress relaxation (> 

10%) is observed when the film is exposed to the 120 kV beam (Figure 39d and Table 2).  

 

The experiments also reveal that the e-beam effects are more pronounced at 120 

kV compared to 200 kV for all three films and the results are consistent across both 

cyclic loading as well as stress relaxation experiments (Figure 39, Table 2). For example, 

in the Al-400 film σ0.75% decreased by 9% in the 2nd cycle compared to the 1st cycle (no 

beam) due to irradiation by 120 keV electrons, whereas σ0.75% increased by ~40% when 

200 keV electrons were used to image the sample in the 3rd cycle. Thus, there was a 

qualitative change in the stress-strain response when the accelerating voltage was 

changed, even though the beam areas were identical and beam intensities were 

comparable. The stress-strain behavior of the Au film (Figure 39d, Table 2) provides 

even more convincing evidence that the e-beam effect is higher at lower voltages since in 

this case the beam conditions (area, intensity and current) were identical. While σ1% 

decreased by 11% between the 1st cycle (no beam) and 2nd cycle (120 kV beam), it was 

5% higher in the 3rd cycle (200 kV beam) compared to the 1st cycle. 
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The trends in stress relaxation strongly indicate that knock-on displacement 

cannot explain the observations. This suggests that other processes are responsible for the 

changes in stress-strain behavior and sample geometry. It is well known that conduction 

electrons interact with lattice defects such as grain boundaries and dislocations and this 

leads to an increase in electrical resistivity (Bross and Haberlen 1993) compared to a 

perfect crystal. Furthermore, it has been shown that an electric current pulse of high 

density (104 A/cm2) can assist dislocations in overcoming obstacles causing 

electroplasticity (Sprecher, Mannan, and Conrad 1986).  

In the present case, the incident beam electrons play a role analogous to the 

electric current pulse. The beam electrons scatter inelastically near lattice defects and 

generate local lattice vibrations (phonons) either by scattering-induced phonon generation 

or via the excitation and damping of plasmons (Zhong-lin Wang 2013; R. F. Egerton 

2013). The interaction of the phonons and dislocations leads to depinning of dislocations 

pinned at the grain boundaries. This phonon-assisted depinning increases dislocation 

mobility and consequently results in stress relaxation. For a given beam area, the number 

of inelastic scattering events increases with increasing beam intensity. Therefore, stress 

relaxation caused by phonon assisted depinning of dislocations increases with increasing 

beam intensity. Similarly, if the intensity is constant and the beam area increases, stress 

relaxation is again higher because dislocation activation is enhanced in a larger fraction 

of grains across the sample width. 

  

Notably, this mechanism is consistent with the observation that when the beam is 

shifted to a new location there is increased dislocation activity in both the Al-225 film 
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(videoS3) and the Au film (videoS4). In this context, it is also worth noting that the cross-

section of inelastic processes typically decreases with increasing beam energy (Williams 

and Carter 2009b). Therefore, the probability for phonon generation and dislocation 

activation would be higher at 120 kV compared to 200 kV, which can explain the higher 

e-beam effect at 120 kV. However, it is important to note that these phonons generated 

by inelastic scattering of beam electrons do not lead to a sustained increase in the overall 

sample temperature. Both Al and Au have high thermal conductivity (> 200 W/m/K) and 

even the largest beam currents used in our experiments are not expected to raise the 

sample temperature by more than 1 K (Williams and Carter 2009b). This remains the 

case even when we account for the lower thermal conductivity of nanocrystalline 

materials (Dong, Wen, and Melnik 2014). 

 

If the stress relaxation is indeed due to the inelastic scattering of the e-beam  near 

lattice defects and grain boundaries, by changing the grain boundary area in two films 

with identical thicknesses, it should be possible to detect a quantitative difference in the 

effect of the beam. Thus, to test this hypothesis, two Al films with identical thicknesses 

(400nm) but different mean grain sizes (400nm and 210nm) were synthesized (Figure 

42).  

 

This was achieved by depositing the films at different temperatures. The 

deposition of the film with dm=400nm was carried out on HF etched (111) Si wafers at a 

temperature of 4000C. On the other hand the film with dm=210nm was deposited on (100) 

Si wafers having a native oxide layer at room temperature. Due to the different deposition 
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parameters, significantly different grains sizes were achieved in the two films. These 

films were then subjected to stress relaxation tests with identical beam intensities and 

sample areas exposed. After 10 minutes of exposure to the e-beam, the stress relaxation 

in the film with the smaller grain size was found to be 13% compared to only 4% percent 

stress relaxation in the film with the larger grain size. As the grain boundary area is 

greater in the film with the smaller grain size, these observations confirm that the e-beam 

induced relaxation in our experiments is caused by the inelastic scattering of the e-beam 

at grain boundaries and defects. 

 

 

 

 

 

 

Figure 42: E-beam induced stress relaxation experiments on Al films with identical thickness 
but different grain sizes. (a) TEM bright field image of 400 nm thick Al film with a mean 
grain size (dm) of 210nm.  (b) TEM bright field image of 400 nm thick Al film with a mean 
grain size (dm) of 400nm. (c) Stress relaxation data for the two films. The blue data points 
correspond to the film with dm=210 nm and the red data points correspond the film with 
dm=400 nm. The stress relaxation points in each experiment are encircled.  For the same beam 
intensity and sample area exposed, the stress relaxation in the film with the lower grain size is 
13% compared to only 4% in the film with the higher grain size.  



83 

 

Figure 43: Schematic of the deformation of thin films in our experiments. When uniaxial stress is applied, 
the film has a tendency to decrease its thickness rather than width because of constraints from sample 
geometry. The free surfaces along the y-direction (width) are farther apart, which constrain the film from 
contracting laterally in the x-y plane. This leads to a plane stress-like condition in the x-y plane, with both 
σx and σy positive, and causes more reduction in thickness. 

 

In addition to stress relaxation, the e-beam also caused considerable necking of 

the films (Fig. 41). This necking along the width is highly unusual because in thin film 

samples with a relatively large width, the thickness tends to decrease more during 

uniaxial loading due to geometrical constraints (Fig. 43). Similar to stress relaxation, the 

necking was also more pronounced at a lower accelerating voltage. But somewhat 

surprisingly the extent of necking was more sensitive to the beam area than beam 

intensity (compare 4th and 5th cycles or 3rd and 6th cycles of the Al-225 film). One 

possible explanation is that when the beam area is large, dislocation activation is 

increased in a higher fraction of grains across the sample width and these grains 

collectively deform to form a neck. When the beam area is small, plastic relaxation is 

enhanced in only a small fraction of grains across the sample. So even if the extent of 

relaxation in these grains is higher (because of higher beam intensity), their deformation 
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is constrained by the surrounding grains that undergo no relaxation. Thus, there is less 

macroscopic necking of the sample. 

 

7.4 Conclusions 

Overall, these results unambiguously show that the beam energy required to 

induce stress relaxation in nanostructured metals is substantially lower than their 

radiation damage threshold and that the relaxation is more pronounced at lower beam 

energies. It is important to note that these beam-induced artifacts are observed in two 

metals (Al and Au) that have highly dissimilar atomic weights and substantial differences 

in material properties (stacking fault energy, for example). The observations are also 

consistent across a range of sample thicknesses and grain sizes. This strongly suggests 

that e-beam exposure is likely to alter the deformation behavior in a broad spectrum of 

nanostructured metals, including commonly studied metals such as nickel and copper.  

 

Furthermore, our results show that e-beam exposure causes anomalous changes in 

geometry when a larger cross-sectional area of the sample is exposed. Therefore, 

materials with sub micrometer dimensions (nanowires, nano pillars), which typically 

have their entire cross-section illuminated by the e-beam during in situ deformation 

experiments, are likely to be more susceptible to e-beam induced artifacts. Hence, caution 

needs to be exercised in interpreting the stress-strain response of such materials from in 

situ experiments.  

While the observations clearly demonstrate the e-beam effect on the deformation 

response of nanocrystalline and ultrafine-grained metals, they also suggest a strategy to 
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minimize beam-induced artifacts during in situ testing. The results indicate that beam-

assisted dislocation activation is far more important in these materials compared to 

radiolysis or knock-on damage. And since dislocation activation is reduced at higher 

beam energies, it may be prudent to employ higher accelerating voltages during in situ 

testing of nanostructured materials.  However, it should be noted that the e-beam 

intensities used in this study are quite low (< 1.5 A/cm2). When higher intensities (for 

high resolution imaging or spectroscopy applications) are employed, knock-on damage 

could become significant at higher accelerating voltages. Therefore, careful studies are 

required to establish appropriate imaging conditions to minimize beam-induced artifacts 

during in situ TEM deformation of nanocrystalline and ultrafine-grained metals. 

. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Summary of Research Findings 

This dissertation has focused on synthesizing thin films with precisely controlled 

microstructures and using in situ TEM techniques to study their mechanical behavior. 

The major conclusions of the research are enlisted below. 

 

• The microstructure of sputter deposited TiAl and TiNi thin films were tailored by 

using a seed layer mediated crystallization process. The technique used thin, 

crystalline Ti or Al seed layers to alter the crystallization behavior of amorphous 

intermetallic thin films. The seed layers aided crystallization and inhibited grain 

growth.  Altering the in-plane seed spacing using a low temperature annealing 

heat treatment changed the final in-plane grain size. The spacing of the seed 

layers along the thickness of the films also altered the grain height. As a result, 

this technique was able to achieve control of the in-plane grain size as well as 

grain height. Consequently, it enabled the synthesis of films with gradient 

microstructures. 

 

• The seed element used was found to have an effect on the phase constitution of 

the crystallized film. In NiTi, using a Cr seed instead of a Ti seed led to a 

stabilized austenite phase at room temperature and a nanocrystalline grain size. In 

situ TEM straining was subsequently used to study the stress induced phase 
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transformation in these films. Experiments revealed an extremely high 

transformation stress in these films. This was due to the small grain size of the 

films and plastic deformation in the austenite grains that accompanied the stress 

induced martensite transformation. 

 
• Since the films with tailored microstructures were crystallized from an amorphous 

phase, a technique was developed to measure the local atomic level elastic strain 

and detect atomic scale rearrangements in metallic glass thin films. The technique 

measures geometric changes in selected area diffraction patterns to measure 

atomic level elastic strain tensors during in situ TEM straining. Atomic scale 

strain measurements revealed the presence of anelastic deformation in TiAl 

metallic glass. The anelastic deformation was found to be a result of atomic level 

structural rearrangements in the films caused by the applied stress. 

 
• As in situ TEM straining was used to study the mechanical behavior of thin films, 

systematic experiments were carried out to determine the artifacts induced by the 

e-beam in the stress vs strain behavior of nc materials. Experiments revealed that 

the e-beam causes stress relaxation and anomalous necking in the samples during 

straining. These effects were more pronounced at lower accelerating voltages and 

were seen to occur in Al and Au films. It was revealed that the artifacts were 

caused by inelastic scattering events near grain boundaries and lattice defects in 

the films which resulted in enhanced dislocation activity. The findings suggest 

that at low e-beam intensities, artifacts are minimized at higher accelerating 

voltages. 
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8.2 Future Work  

  Although this dissertation has made contributions to the understanding of 

synthesis and mechanical behavior of thin films, there are many areas that still need to be 

explored. Firstly, the mechanical behavior of NiTi and TiAl films with gradient 

microstructures, which were synthesized using the seed mediated crystallization process, 

need to be investigated. It has been shown that a gradient structure can provide an 

optimal combination of strength and ductility in metallic materials. Thus, this aspect 

needs to be further studied. Moreover, the ability to stabilize different phases in NiTi thin 

films by using different seed elements also gives the capability to synthesize films with 

stabilized austenite and martensite phases at different regions along the thickness of the 

films. This could lead to a unique combination of properties from each of the phases, the 

martensite phase being more ductile while the smaller austenite grains having higher 

strength as well as the ability to undergo stress induced martensite transformation.  

 

Additionally, there is scope for more research on the aspects of the stress induced 

transformations of the NiTi films with the stabilized austenitic phase. In situ TEM 

straining gives us the unique capability to use high resolution imaging and various 

diffraction techniques to study the dynamics of the transformation. Automated crystal 

orientation mapping (ACOM) in the TEM could help us uncover the crystallographic 

relationships between the martensitic variants that evolve during straining and the parent 

austenite phase. Having a deeper understanding of the transformation process would help 

us synthesize thin films with an optimal distribution of austenitic grain sizes. 
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Since having seed layers enhances crystallization in intermetallic thin films, the 

technique could also be used to synthesize amorphous-nanocrystalline composite films. 

Nanocrystalline materials exhibit excellent tensile strength while metallic glasses have an 

extended elastic limit. Thus combining these two classes of materials could also lead to 

novel and unique properties in these materials. Having synthesized amorphous-

nanocrystalline composites, in situ TEM straining can be used to study the evolution of 

local atomic level elastic strains in the amorphous phase while also monitoring 

microstructural changes in the crystalline phase. Since amorphous metallic glasses fail by 

the propagation of shear bands, having intermittent crystalline layers or grains could help 

impede shear band growth.  

 

In addition, there are other aspects of the deformation of metallic glasses that can 

be explored in further detail as well. The presence of free volume zones has been shown 

to influence anelastic deformation in these materials.  It is also known that the fraction of 

free volume zones depends on the synthesis parameters of metallic glasses. By altering 

the argon pressure and gun power during sputter deposition, metallic glasses having 

different metastable energy landscapes can be synthesized. Tracking the atomic level 

strain evolution in films synthesized using different sputtering conditions could spread 

light on the influence of synthesis parameters on the mechanical behavior of metallic 

glasses. Finally, the mechanical and thermal history of metallic glasses has been known 

to cause structural rejuvenation in metallic glasses. Thus, using in situ straining combined 

with selected area diffraction we could investigate the difference in atomic scale behavior 

of metallic glasses that have been cycled thermally or mechanically. 
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APPENDIX A  

SUPPLEMENTARY VIDEOS SHOWING EFFECT OF E-BEAM 

Consult Attached Files 
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Supplementary video S1 was taken during the cyclic straining of the Al 225 film. 

This video was taken during loading in the 3rd cycle. Dislocation activity can be observed 

in this video. Supplementary video S2 was also taken during the cyclic straining of the Al 

225 film. This video was taken during un-loading in the 6rd cycle. Even during unloading 

dislocation activity can be observed. Supplementary video S3 was taken during the stress 

relaxation test of the Al 225 film. In this video increased dislocation activity can be 

observed when the electron beam is move to a region of the sample that was previously 

unexposed. 
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