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ABSTRACT

This dissertation is a collection of three essays relating household financial

obligations to asset prices. Financial obligations include both debt payments and

other financial commitments.

In the first essay, I investigate how household financial obligations affect the equity

premium. I modify the standard Mehra-Prescott (1985) consumption-based asset

pricing model to resolve the equity risk premium puzzle. I focus on two channels:

the preference channel and the borrowing constraints channel. Under reasonable

parameterizations, my model generates equity risk premiums similar in magnitudes

to those observed in U.S. data. Furthermore, I show that relaxing the borrowing

constraint shrinks the equity risk premium.

In the Second essay, I test the predictability of excess market returns using the

household financial obligations ratio. I show that deviations in the household

financial obligations ratio from its long-run mean is a better forecaster of future

market returns than alternative prediction variables. The results remain significant

using either quarterly or annual data and are robust to out-of-sample tests.

In the third essay, I investigate whether the risk associated with household

financial obligations is an economy-wide risk with the potential to explain

fluctuations in the cross-section of stock returns. The multifactor model I propose,

is a modification of the capital asset pricing model that includes the financial

obligations ratio as a “conditioning down” variable. The key finding is that there is

an aggregate hedging demand for securities that pay off in periods characterized by

higher levels of financial obligations ratios. The consistent pricing of financial

obligations risk with a negative risk premium suggests that the financial obligations

ratio acts as a state variable.
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Chapter 1

INTRODUCTION

This dissertation is a collection of three essays relating household financial

obligations to asset prices. In the first essay, I investigate how household financial

obligations affect the equity premium. I modify the standard Mehra-Prescott (1985)

consumption-based asset pricing model to resolve the equity risk premium puzzle. I

focus on two specific channels: the preference channel and the borrowing constraints

channel. Under reasonable parameterizations, my model generates equity risk

premium similar in magnitudes to the observed ones in US data. Furthermore, I

show that relaxing the borrowing constraints, shrinks the equity risk premium.

In my model, preferences are defined over households’ consumption relative to

their financial obligations. This is the preference channel. The framework is

analogous to habit formation models where the utility function depends on

consumption relative to some persistence level. However, unlike habit formation

models, the persistent level in my model — household financial obligations — is

observable, which is a key advantage over habit models in general. Also, in an

infinite-horizon aggregate household economy, the financial obligations ratio is used

as a proxy for households borrowing constraints. Households can borrow against

their income up to a certain level, which is exogenously set by a lending institution

arrangement. This is the borrowing constraint channel. The mechanism by which

the household financial obligations ratio helps explain the equity risk premium is as

follows: in recessions, when income falls, household financial obligations ratios

increase and hence lenders become reluctant to lend to the households. The
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borrowing constraint binds and makes it more difficult for households to smooth

their consumption exactly when they need to do so. However, in these bad times,

households also behave in a much more risk-averse fashion because they want to

make sure they can repay their debt obligations and financial commitments. This

dual mechanism both amplifies the risk premium and makes it time varying.

In the second essay, I test the predictability of excess market returns using the

household financial obligations ratio. I show that deviations of the household financial

obligations ratio from its long-run mean is a better forecaster of future market returns

than several other predicting variables. The results remain significant using either

quarterly or annual data and is robust to out of sample tests.

For the last two decades there have been many efforts to identify and establish

the existence of time variation in expected asset returns. It is now widely accepted

that excess returns are predictable by ratios such as dividend-price, earnings-price,

dividend-yield, investment-capital, and other financial indicators. However, these

financial variables, though successful at predicting long-horizon returns, are less

successful at predicting short-horizon returns. Therefore, we are also interested in

examining the linkage between macroeconomic variables and financial markets,

mostly because expected returns appear to vary with business cycles so that stock

market returns should be forecastable by business cycle variables at cyclical

frequencies. One macroeconomic business cycle variable that is successful at

predicting short-horizon returns is the consumption-wealth ratio (cay) proposed by

Lettau and Ludvigson (2001) [43]. However, the statistical significance and

predictability power of the consumption-wealth ratio is hump-shaped and peaks at

around one year. Indeed, the predictability power shrinks over long horizons. In this

essay, I show that mean-deviations from the household obligations ratio create

2



another macroeconomic business cycle variable whose predictability power is

significant at short horizons and remains more significant over longer horizons than

does the consumption-wealth ratio.

In the third essay, I investigate whether the risk associated with household

financial obligations is an economy-wide risk and thus significant at explaining

fluctuations in the cross-section of stock returns. The multifactor model proposed is

a modification of the capital asset pricing model (CAPM) includes financial

obligations ratio as a “conditioning down” variable. The key finding is that there is

an aggregate hedging demand for securities that pay off in periods with high

financial obligations ratios. The consistent pricing of financial obligations risk with

a negative risk premium suggests that the financial obligations ratio acts as a state

variable.

The cross-sectional intuition is as follows: in bad times when incomes fall,

households’ financial obligations ratios increase. Portfolios that pay off in these

times are more valuable to investors because these portfolios hedge investors against

financial obligations risk. The increase in hedging demand for these portfolios raises

the price and hence implies lower expected returns. The negative financial

obligation risk premium delivers this lower expected return for asset whose payoffs

are positively correlated with the financial obligations ratio.

The macroeconomic variable explored in this research — financial obligations

ratio — provides a fresh opportunity to investigate the determinants of asset risk

in general. I show that there is systematic risk associated with high levels of the

households financial obligations ratio and that this risk is priced across different

portfolios. Furthermore, I show that mean deviations from financial obligations ratio

are a strong predictor of market returns over business cycle frequencies.

3



Chapter 2

HOUSEHOLDS’ FINANCIAL OBLIGATIONS RATIO

In this chapter, I define households’ financial obligations and financial obligation

ratio. Household financial obligations include total debt payments (mortgage debt

payments plus consumer debt payments) and total financial commitments (rent,

lease, insurance, and property tax payments). Financial obligations dramatically

affect households’ decisions. There is extensive documentation in the economic

psychology literature suggesting that financial obligations are associated with high

levels of anxiety and stress (Brown, Taylor, and Price (2005)[5], Richardson, Elliott,

and Roberts (2013)[54]). More important, this effect is independent of the poverty

with which it is often associated (Jenkins et al. (2008)[35], Meltzer et al.

(2011)[51]).

Financial obligations also affect households’ budget constraints. In particular, if

these obligations are high, relative to income, and it is not possible to roll over the

debt, then borrowers have to cut back on expenditures to avoid default. There is

evidence that high financial obligations reduce expenditures at the micro level.1 The

households’ financial obligations position is important in determining whether they

are constrained from optimal consumption smoothing. The fact that a household may

have been able to borrow in the past does not imply that it can borrow as much in the

future. However, household financial obligations in isolation are not indicative of the

household’s borrowing capability. Consider two households with the same financial

obligations but with different levels of income. Lenders are far more likely willing to

1The negative effect of a high debt service burden on consumption of households is shown by Olney
(1999)[52], Johnson and Li (2010)[37], Dynan, (2012)[17] and Juselius and Drehmann (2015)[39].

4



lend to the household with higher income. Hence, I need to define an appropriate

variable as a direct proxy of borrowing constraints. I do this using the financial

obligations ratio, which I present in next section.

2.1 What Is the Financial Obligations Ratio and Why Does It Matter?

Households’ financial obligations ratio is defined as households’ total financial

obligations divided by their total disposable income. The financial obligations ratio

consists of two parts:

1. Total debt service ratio, which is equal to total debt payments divided by

total disposable income. Debt payments include all mortgage debt payments

and consumer debt payments including auto loans, student loans, and consumer

credit cards.

2. Total financial commitment ratio, which is equal to total financial

commitments divided by total disposable income. Financial commitments

include all rent payments, lease payments, insurance, and property tax

payments of the homeowners.

2.2 Properties of the Financial Obligations Ratio

The Federal Reserve Board has estimated the aggregate household financial

obligations ratio for the U.S. economy since 1980.2 Figure 2.1 shows that the

household financial obligations ratio is a time-varying macroeconomic variable that

has an average value of 16.65%. As this figure suggests, the financial obligations

ratio tends to move counter cyclically over business cycles.

2More discussion is provided in Appendix A.
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Figure 2.1: Household Financial Obligations as a Percentage of Disposable Income

When the economy is good, consumers spend more and increase their financial

obligations. Then, when the economy is hit by a negative shock (recession),

consumers who have wracked up high financial obligations cannot smooth their

consumption exactly when they need to do so. Hence, we observe that the financial

obligations ratio is high in the early stage of almost every recession because

households are carrying heavy financial obligations from “good old days” and then

the ratio decreases as the economy recovers and households delever slowly. A higher

financial obligations ratio also implies less investment in risky assets. This is due to

the fact that when households are overextended, even a small income shortfall

prevents them from smoothing consumption and making new investments

(Drehmann and Juselius (2012)[38]). Figure 2.1 shows that after almost every

recession, the financial obligations ratio pulls back to lower levels because of the

households’ higher income during booms.3 Thus, the financial obligations ratio has

a counter-cyclical property. The shaded areas in Figure 2.1 indicate U.S. recession

periods. Properties of the financial obligations ratio that are pertinent to this

research are as follows:

3Another reason is that when household obligations ratios are high and unemployment is rising,
lenders may respond to the expected increase in defaults by limiting the availability of credit. This
leads to lower aggregate payments and a lower obligations ratio.

6



• All the components of the financial obligations ratio are observable. Hence,

when working with the data, there is no need to come up with questionable

proxies for the ratio.

• The financial obligations ratio is directly related to the interest rate. By

construction, the higher the interest rate, the higher the payments and the

higher the financial obligations. This explicit dependency establishes a direct

link between obligation ratios and the predictability of stock market returns.4

• The financial obligations ratio captures the burden of obligations on

households more accurately than does the established debt-to-GDP ratio.

More specifically, the financial obligations ratio accounts for changes in

interest rates and maturities that affect households’ repayment capacity.

• Drehmann and Juselius (2012)[38] find that the debt service ratio (which is

the main part of financial obligations ratio) produces a reliable early warning

signal ahead of systemic banking crises. In the context of absolute asset pricing,

this is important because I am looking for a conditioning down variable that is

correlated with business cycles, especially in bad times.

• The financial obligations ratio can be used as a direct indicator for borrowing

constraints. Johnson and Li (2010)[37] test the proposition that a higher debt

service ratio increases the likelihood of credit denial.5 Therefore, a household’s

obligation ratio is a critical input for lending institutions to decide whether to

provide the household with more leverage. Note that this ratio is a better proxy

4Juselius and Drehmann (2015)[39] argue that the average lending rate reflects not only
current interest rate conditions, but also past money market rates, past inflation and interest rate
expectations as well as past risk and term premia. This implies that the lending rate, and hence the
debt service ratio, is chiefly influenced by current and past monetary policy decisions.

5A household with a debt service ratio in the top two quantiles of the distribution is significantly
more likely than other households to have been turned down for credit in previous years (2005-2010).

7



for borrowing constraints than the traditional debt-to-income ratio because the

debt-to-income ratio does not consider debt maturities.

In the following chapters, I first investigate how households financial obligations

affect the equity risk premium. I then test the predictability of excess market returns

using the financial obligations ratio. Finally, I show that my multifactor model can

explain the cross-sectional variations in stock returns using the financial obligations

ratio as a “conditioning down” variable.
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Chapter 3

HOW DO HOUSEHOLDS’ FINANCIAL OBLIGATIONS AFFECT THE EQUITY

RISK PREMIUM?

In this chapter, I study how household financial obligations affect the equity risk

premium. The model I develop focuses on two channels: preference channel and

borrowing constraints channel. Preferences are defined as households consumption

relative to their financial obligations. These preferences allow for time variation in

risk aversion. The model also introduces dynamic borrowing constraints, using the

household financial obligations ratio as a proxy. In an infinite-horizon aggregate

household economy, households can borrow against their uninsurable stochastic

endowments. Borrowing limits are exogenously set by an institutional arrangement.

A novel feature of the model is that in states of high marginal utility, when income

falls, lenders become reluctant to lend, the borrowing constraint binds, making it

more difficult for households to smooth consumption. In addition, in these states,

households become more risk averse. This dual mechanism both amplifies the risk

premia and makes it time varying.
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3.1 Introduction

Mehra and Prescott (1985)[50] , modify a Lucas (1978)[46] -type exchange

economy to reconcile standard neoclassical macroeconomic theory with U.S. data on

the equity premium. In a consumption based asset pricing setup, they specify an

explicit two-state Markov process for consumption growth and calculate the price of

the consumption claim and the risk-free rate. They find that under reasonable

parameterization, the model is able, at most, to generate an equity premium of

about 0.35 % as opposed to the 6 % premium observed in the data. They term this

the “equity premium puzzle” and argue that the mean stock excess return

calculated in their calibrated economy is too low, unless the coefficient of relative

risk aversion is raised to implausibly high values.

There is no easy way to summarize the huge literature on the equity risk premium

puzzle. Nevertheless, there is consensus among researchers that only an absolute

asset pricing model can explain the equity risk premium rather than a portfolio-

based 1 model. After all, portfolio models are relative asset pricing models and

cannot answer questions such as why the average returns are what they are or why

the expected market return varies over time. To answer these questions, we need

to construct a macroeconomic-based asset pricing model. Note that the most basic

absolute pricing model — the standard consumption based model — performs poorly

in explaining the historical equity premium puzzle and cross-sectional variations in

expected returns. Hence, proposing a macroeconomic-based asset pricing model with

the ability to explain the equity risk premium and cross-sectional variations in excess

returns has long been the focus of macro finance researchers.

1The absolute pricing model refers to asset pricing models that use macroeconomic variables such
as consumption, labor income, GDP growth, and interest rate.
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In the last 30 years, many efforts have been made to solve the equity premium

puzzle. Multiple generalizations have been proposed to address the shortcomings of

the standard consumption-based model. To approach the puzzle, it is natural to

start with the dependency of the marginal utility of consumption variables other

than today’s consumption. Employing a non separable utility function allows for

this dependency, and indeed this is what has been done in the literature

(Eichenbaum, Hansen, and Singleton (1988) [20], Eichenbaum and Hansen (1990)

[19], Ait-Sahalia, Parker, and Yogo (2004) [57], Pakos (2004) [47], Piazzesi,

Schneider, and Tuzel (2007) [53]). Another generalization is to consider non

separability over time (Constantinides (1990) [24], Campbell and Cochrane (1999)

[6]) and/or non separability across states of nature (Epstein and Zin (1991) [21]).

Relaxing expected utility assumptions (Kreps and Porteus (1978) [41]),

incorporating modified probability distributions to admit rare events (Rietz (1988),

[55] and Barro (2006) [4]), and considering incomplete markets (Constantinides,

Donaldson and Mehra (2002) [15] , Constantinides and Duffie (1996) [14]) are just

some risk-based explanations that have been offered to solve the equity premium

puzzle.2

In my version of the consumption-based asset pricing model, household financial

obligations affect the equity risk premium via two channels. The first is the

preference channel where individuals’ preferences are defined as consumption

relative to financial obligations. The framework is analogous to habit formation

models where the utility function depends on consumption relative to some habit

level (Abel (1990)[1], Constantinides (1990)[24] and Campbell and Cochrane

2 For more recent literature, look at one of John Cochrane’s latest essays based on a talk at
the University of Melbourne 2016 Finance Down Under conference [13]. He surveys many current
frameworks including habits, long run risks, idiosyncratic risks, heterogenous preferences, rare
disasters, probability mistakes, and debt or institutional finance.
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(1999)[6]). However, in my model the persistence level is observable, which is an

advantage over other standard habit formation models. With this setup, the

marginal utility derived from the model is directly related to two components:

household consumption and household financial obligations.

The preference channel is important because one possible explanation for

consumption variation is the potential impact of a household’s debt level on its

preferences. If households are averse to holding large amounts of debt relative to

income, a decline in income will prompt larger declines in consumption among

highly indebted households to restore the desired debt-to-income ratio for a wide

range of loss functions (Baker (2015)[3]). Conversely, there is evidence that

individuals who are more likely to face income uncertainty or to become liquidity

constrained exhibit a higher degree of risk aversion in the presence of uninsurable

risk (Guiso and Paiella (2008)[25]). By defining households’ preferences as

consumption relative to financial obligations, the preference channel captures the

time-varying risk aversion behavior of individuals by featuring fluctuations in

consumption net of financial obligations over business cycles.

The second channel I investigate is the borrowing constraint channel from which

most asset pricing models abstract. 3 In an infinite-horizon aggregate household

economy, the financial obligations ratio — defined as total debt payments, housing

payments, and auto lease payments divided by total disposable income — act as the

borrowing constraint in my model. I show that the equity risk premium implied

by the model is sensitive to the financial obligations ratio as a proxy for borrowing

constraints.

3One example that considers the impact of borrowing constraints on the equity risk premium is
Constantinides, Donaldson and Mehra (2002)[15]. They use an overlapping generation model.
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But why should the model work? Which elements of the model enables it to

explain/generate the observed equity risk premium in U.S. data? The intuition is

straight-forward. As consumption rises in good times, households take on more debt

and debt payments gradually increase. In bad times, consumption falls and

households de-lever slowly. Thus, debt payments move slowly following

consumption. Now consider a household that has taken on a specific debt level it

must repay. In recessions, as income declines toward this specific level of debt

payments, the household reduces its consumption because of risk and risk aversion.

Indeed, to ensure that it can make its debt payments, the household exhibits more

risk aversion and takes on less risk. This decreases the demand for risky assets and

increases the demand for precautionary savings in recessions. During booms,

however, consumption moves away from slow-moving financial obligations and hence

the household becomes less risk averse and takes on more risk. Thus, the lower ratio

of consumption to financial obligations in bad times and the higher ratio in good

times directly affect the household’s marginal utility and make the pricing kernel

more volatile. This is the household time-varying risk aversion that leads to a shift

in the composition of its portfolio from risky to risk-free assets, and this is what

generates the equity premium.

Also note that in bad times, because of lower income, households face a higher

financial obligations ratio. This means that lenders are less willing to lend to them in

these states of the economy. Thus, households’ borrowing constraints become binding

exactly when they want to smooth consumption. Now because they cannot borrow to

consume, they must either invest less or liquidate more of their assets. In either case,

they start by divesting risky assets rather than risk-free assets (recall that the model

features a time-varying risk aversion and people are more risk averse in a recession).
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The decrease in demand for risky assets is much faster than the decrease in demand

for risk-free assets. This generates a higher risk premium during recessions. This

intuition is consistent with my findings when I relax the borrowing constraint. As I

let the households borrow more in bad times, the equity risk premium shrinks. Time-

varying borrowing constraints are basically factors that make households shift from

risky assets to risk-free assets.

In summary, a novel feature of the model is that in states of high marginal utility

(i.e., in recessions, when income falls), lenders are reluctant to lend, the borrowing

constraint binds, and it becomes more difficult for households to smooth consumption

exactly when they need to do so. In addition, in these states, households become more

risk averse. This dual mechanism both amplifies the risk premia and makes it time

varying.

The economic variable explored in this essay — the financial obligations ratio —

provides a fresh opportunity to investigate the determinants of asset risk. As a start,

in separate research, I (Jahangiry (2016a)[32]) document that the risk associated with

aggregate household financial obligations is an economy wide risk and is significant

for explaining the variations in the cross-section of stock returns. Conditioning down

on the financial obligations ratio, the FCAPM proposed in Jahangiry (2016a)[32],

survives a wide range of classical econometric and diagnostic tests for explaining the

variations in average returns across 25 portfolios formed based on size and book-to-

market ratio. In another study, I (Jahangiry (2016c)[34]) take one step further and

test the predictability of stock returns/excess returns using households obligations

ratio. Using U.S. stock market data, I show that the household’s debt service ratio

can predict market returns at short horizons and over business cycle frequencies.

Jahangiry (2016c) argues that mean deviations from the debt service ratio are a
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better forecaster of future returns both in sample and out of sample than several

other popular forecasting variables.

The rest of this chapter proceeds as follows. In Section 3.2, I set up the model and

derive the fundamental equations of asset pricing. In Section 3.3 I discuss the data

and estimations. I provide the results of the model in Section 3.4 and the conclusion

in Section 3.5.
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3.2 The Model

3.2.1 Environment

I consider an infinite horizon endowment economy in which the agents are endowed

with an uninsurable stochastic income at each period. The agents in this economy

are:

1. Large number of homogeneous households and

2. A lending institution.

I use a modified version of the Greenwook-Hercowitz-Huffman utility structure that

enables me to represent aggregate households with a representative agent. Therefore,

I have a representative agent environment with an external supply of debt provided

by lending institutions. This can be thought of as a small open economy. Assume

that the lending institution is aware of the income distribution of the representative

agent. There are three assets and two markets in this economy. The assets are

one perishable consumption good and two durable assets: an inside security and an

outside security (debt instrument). The inside security provides dividends according

to an exogenous stochastic process and the outside security is exogenously supplied

by the lending institution. The environment is summarized in Table 3.1. The two

markets in the model are:

1. The capital market, which is a market for allocating idiosyncratic risk among

households. In this capital market everything is in zero net supply. Households

can trade contingent claims (inside securities) among themselves but because all

households are identical, the prices are shadow prices for a no-trade equilibrium.

2. The debt market, in which there is an outside supply of debt (outside

security) provided by a lending institution. I do not model the supply side of

16



the debt market. The lending rate is an exogenously specified rate.

Households can borrow from this lending institution to a certain amount

defined by their financial obligations ratio.

Table 3.1: The Model Environment

Capital Market Debt Market

Households Households + a lending institution

One inside security One outside security

Zero net supply Positive net supply

No trade equilibrium Exogenous prices

3.2.2 Constraints

In each period, households are endowed with stochastic exogenous income that

they can either consume or invest in an inside security. They are allowed to borrow

against their stochastic income and use it only for consumption purposes. The

model has a non stationary environment because of the non stationarity of the

stochastic aggregate income and the exogenous dividends of the inside security.

However, the exogenous stochastic borrowing rates are stationary. Consumption,

financial obligation, dividends, aggregate disposable income, prices of the equity,

and the risk-free bond are all denominated in units of the consumption good.

In the model, for each period t, Ct is aggregate consumption, Yt is aggregate

disposable income, and Xt represents the dividends generated by the inside security.

By making the wage income process exogenous, I abstract from the labor-leisure

trade-off. This means that labor is supplied inelastically and the labor-leisure choice

is not modeled. Dt is the debt service level borrowed by the representative agent

at the gross rate Rd
t . I assume that the lending institutional arrangement can issue
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and redeem debt instruments. This lending institution exogenously set a lending

cap θt on each household. Hence, θt provides a state-dependent upper bound for

the household’s borrowing capacity. Zt is a non-negative amount of investment in an

inside security with an ex-dividend price of pt at time t. The agent faces the following

constraints:

1. Budget constraint

Ct + ptZt +Dt−1R
d
t−1 ≤ Yt + (pt +Xt)Zt−1 +Dt (3.1)

2. Financial obligations constraint

DtR
d
t ≤ θtYt, Dt ≥ 0. (3.2)

Inequality (3.1) is the budget constraint the agent faces in each period. The agent

comes into the period with stochastic wage income Yt. There is also income from

securities purchased in the last period. The agent can liquidate Zt amount of inside

security at price pt with dividend Xt. Further-more, the agent can borrow against

his stochastic income at amount Dt. These are the resources of funds. Now, the left-

hand side of (3.1) shows how the agent spends the available funds. First he consumes

Ct, then he can purchase an inside security to take to the next period, and finally

he must pay interest on the debt he borrowed. Rd
t−1 is the gross return on the debt

instrument, and it means that the agent has to pay back whatever he has borrowed

in last period plus the interest. At t = 0, the representative agent begins debt free

D−1 = 0, and he is endowed with nothing but stochastic income Y0 i.e., Z0 = 0.

Inequality (3.2) is the borrowing constraint. It indicates how much the agent can

borrow against his labor income. This financial obligations ratio constraint (3.2) is a

type of constraint that we observe in the economy. Interest payments on debt over
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income is a number that lenders would like see below some certain levels such as 1/3 or

1/4, and this number varies over time. Inequality (3.2) is a constraint I impose in this

model and it is one of the innovations of the model, the borrowing constraint channel

4 . Note that income Yt, dividends Xt, and obligation ratio cap θt are all exogenous

stochastic variables. For calculation purposes, I work with detrended income yt
5 and

dividend growth xt which are determined by the following Markov processes:

yt+1 = (1− ρy)ȳ + ρyyt + εyt+1, (3.3)

xt+1 = (1− ρx)x̄+ ρxxt + εxt+1. (3.4)

In equations (3.3) and (3.4), ȳ and x̄ are the averages of detrended aggregate income

and dividend growth, respectively. ρy and ρx are the auto-correlations, and epsilons

are the relevant shocks associated with y and x. Finally, the exogenous process for

financial obligations ratio cap θt is defined as in (3.5):

Et(θt+1|yt) = f(yt). (3.5)

Equation (3.5) implies that the process of θ is totally pinned down by the process of

y. This assumption is intuitive as the lending institution sets θ exogenously and it is

aware of the household’s income distribution. Timing of the constraints is as follows.

At time t, the agent knows at what rate he can borrow, so Rd
t is measurable with

respect to time t. According to the financial obligations constraint in (3.2), Dt is also

measurable at time t. Thus, the only random variables here are Y and θ. Note that

4The innovation is introducing a state dependent time-varying borrowing constraint. I make the
borrowing capacity to be state dependent. In bad times, the financial obligations ratio is higher
(because of negative income shock) and the agent’s borrowing capability shrinks thereafter. This
forces the agent to further reduce his consumption in bad times.

5In our sample, since the income follows a deterministic trend, we detrend the income by time-
detrending.
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there is no default in this model. Under my parameterization, the agent can always

reduce his consumption such that he has positive net worth. In other words, he never

has a realization of Y so low that he cannot pay off his debt by reducing consumption.

In addition, the lender chooses θ conditional on some expectation of future income

of the agent. Therefore, if the lender’s conditional expectations of future income are

low, it will lower θ to make sure the agent can pay off his debts. Hence, the lender

is building expectations of θt+1 based on yt. It means that when expected income is

low, the lender reacts by decreasing θt+1 conditional on yt such that the conditional

expectation of θ is lower than it’s expected value, that is, Et(θt+1|Yt) ≤ θ̄.

In short, in this model, the lender is the one monopolist and everybody else is a

price taker. This monopolist has some expectations of agents’ income and is going to

reduce the amount that agents can borrow, precisely when they would like to borrow

next period. This is the building block of my model and it shows how the model

generates a more volatile marginal utilities. In bad times, effective consumption

(consumption net of financial obligations) is smaller and in good times it is bigger

than the standard consumption in a Mehra-Prescott (1995) world. Therefore, with

this set-up, everything is conditional on Yt. The variations in the marginal rate of

substitution determine the returns on the inside security, and hence, these are the

extra variations in dividends that will generate higher equity premiums.

3.2.3 Preferences

The utility function presented here shows how the financial obligations ratio

affects the equity risk premium via the preference channel. In my model, the agent’s

preferences are defined as consumption relative to financial obligation G. This is a

behavioral set-up that is analogous to habit formation models. In the sense that,
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where as in habit formation models, the distance from the consumption habit gives

the agent utility, in my model the distance from the financial obligation does the

same job. More specifically, I use the simple power utility function defined as the

representative agent’s effective consumption C∗, where C∗ is consumption net of

financial obligations incorporating the distance from the financial obligations.

Effective consumption is defined as C∗t = Ct − Gt where Gt = Dt−1R
d
t−1 is the

financial obligations the agent carries over to period t from the last period. Hence,

the utility function of the agent is:

U(C∗t ) =
C∗t

(1−γ)

1− γ
=

1

1− γ
(Ct −Gt)

(1−γ) (3.6)

Equation (3.6) suggests that a household with lower financial obligations has a

higher effective consumption and hence receives a higher utility. This behavioral

setup is chosen based on insights from economic psychology literature on the

psychological impact of being in debt. Financial obligations are associated with high

levels of anxiety and stress (Brown, Taylor, and Price (2005)[5], Richardson, Elliott,

and Roberts (2013)[54]). And more important, this impact is independent of the

poverty with which it is often associated (Jenkins et al. (2008)[35], Meltzer et al.

(2011)[51]). This is the behavioral rational to include financial obligations in the

utility function.

There is also a structural reason. Specifically, I use difference form

(C − G)(Constantinides (1990)[24], Campbell, and Cochrane (1999)[6], rather than

the ratio form (C
G

)(Abel (1990)[1], because the difference form generates a

time-varying relative risk aversion. 6 Time-varying risk aversion plays an important

6 However, there is no consensus on the pro cyclicality or counter cyclicality of relative risk
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role in determining the equity premium, especially during recessions, because

“recessions are phenomena of risk premiums, risk aversion, risk bearing capacity and

desires to shift the composition of a portfolio from risky to risk-free assets, a flight

to quality, not a phenomenon of intertemporal substitution, a desire to consume

more tomorrow vs. today.” 7 Also note that in this model, Ct − Gt is always

positive. People slowly develop financial obligations, so consumption is always

greater than debt obligations (no default assumption); indeed, financial obligations

form the trend in consumption.

With this specification in (3.6), the coefficient of relative risk aversion is:

RRA = −Cu
′′(C)

u′(C)
= γ

(
1

C−G
G

)
=
γ

S
,

where S = C−G
C

is the consumption surplus. This is analogous to the Campbell and

Cochrane (1999) habit model, with financial obligations replacing the consumption

habit. It is important to note that the persistence level in my model is observable,

which is an advantage to over Campbell and Cochrane’s external habit model in

which the habit level is not observable. However, the idea is the same: in bad times,

as consumption or the surplus consumption ratio S decreases, the agent’s relative

risk aversion rises; that is, the same proportional risk to consumption is a more fear-

inducing event when consumption starts closer to financial obligations G.

The link between consumption surplus S and the financial obligations ratio is

straight-forward. Financial obligations G is like a slow-moving habit in this model.

In recessions, when a negative shock to the aggregate income is realized, it increases

the current financial obligations ratio of the representative agent. According to the

aversion. Risk aversion is counter cyclical in habit formation models (in recessions, the consumption
surplus ratio is lower so risk aversion is higher) and pro cyclical in happiness maintenance models
(in good times, individuals become more risk averse as they wish the good days will never end).

7John Cochrane, Macro-Finance, Feb 2016 [13]
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budget constraint(3.1) and the borrowing constraint (3.2), the agent has no option

but to decrease his consumption Ct
8 . This moves consumption closer to slow-moving

obligation G and hence reduces consumption surplus S. Therefore, in recessions

(negative income shocks), the financial obligations ratio is high, consumption surplus

is low, and relative risk aversion is high. This enables the model to deliver a time-

varying, recession-driven equity risk premium.

3.2.4 Stochastic Sequential Problem

The representative agent maximizes the following sequential problem :

Max E0

{
t=∞∑
t=0

βtU(C∗t )

}
,

where U(C∗t ) =
C∗
t
1−γ

1−γ and C∗t = Ct − Gt subject to the budget constraint (3.1),

borrowing constraint (3.2), exogenous stochastic processes (3.3)-(3.5), and the the

non-negativity constraints:

Gt = Dt−1R
d
t−1

Ct + ptZt +Dt−1R
d
t−1 ≤ Yt + (pt +Xt)Zt−1 +Dt

DtR
d
t ≤ θtYt

yt+1 = (1− ρy)ȳ + ρyyt + εyt+1

xt+1 = (1− ρx)x̄+ ρxxt + εxt+1

Et(θt+1|yt) = f(yt)

Ct ≥ 0, Dt ≥ 0, Zt ≥ 0

Given X0, Y0, R
d
0 , Z0 = D−1 = 0

8This is true because: (1) there is a no-trade equilibrium — the representative agent does not
have the option of liquidating assets; (2) it is implicitly assumed that the agent cannot default on
his debt payments so he must pay back Dt−1R

d
t in full; and (3) in bad times the financial obligations

ratio is already capped so the agent cannot leverage any more.
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For simplification, I assume the exogenous lending rate is constant and equal to

Rd
t = R̄d. The transversality condition holds for financial obligations, which implies

that the shadow value of debt service must be equal to zero in the limit. I also assume

Inada conditions on effective consumption. The economy is completely specified by

the preference parameters β, γ, and realization of the stochastic processes followed

by Λt = (yt, xt, θt). Equilibrium is defined as the sequences of consumption {C̃t},

investment {Z̃t}, borrowing decisions {D̃t} of the representative agent, and prices pt

such that:

1. Taking the prices and exogenous vector Λ as given, the sequences of

consumption, investment, and borrowing decisions optimizes households’

lifetime expected utility.

2. Consumption, capital, and debt markets clear in all periods.9

3.2.5 Pricing Kernel

Given the utility function in (3.6), the intertemporal marginal rate of substitution

(the pricing kernel) is: 10

Mt+1 = β
Uc(C

∗
t+1)

Uc(C∗t )
= β

(
Ct+1

Ct

)−γ (
St+1

St

)−γ
, (3.7)

where St = Ct−Gt
Ct

. The pricing kernel is related to consumption growth and

consumption surplus, which depends on financial obligations and is an implicit state

9Note that there is no need to clear the debt market; as mentioned earlier, debt service rates are
exogenously determined.

10The log-linearized version of the pricing kernel and interpretation of the interest rate is provided
in Appendix B.
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variable. I can now calculate moments of the marginal rate of substitution (3.7) and

find asset prices. Taking the first-order conditions (FOCs) with respect to Ct, Dt,

and Zt and combining the results gives the “fundamental equations of asset pricing.”

From FOC ([Ct], [Zt]) the price of the inside security is:

pt = Et

(
β

(
Ct+1

Ct

)−γ (
St+1

St

)−γ
(pt+1 +Xt+1)

)
(3.8)

With equation (3.8) the price of any inside security can be derived given its dividend.

To calculate the equity risk premium the price of risk-free bond qt is needed. Using

(3.8) and the fact that no-coupon Treasury bonds are traded in discounted values,

the price of risk-free bond is equal to:

qt = Et

(
β

(
Ct+1

Ct

)−γ (
St+1

St

)−γ
1

)
(3.9)

Market-clearing conditions imply that Zt = 0 ∀t ≥ 0; this is because every

household is the same and the equilibrium outcome must be the no-trade outcome.

I am interested in finding the prices that support this no-trade outcome. From

market clearings and budget constraints, the equilibrium consumption sequence is:

Ct = Yt +Dt −Dt−1R
d
t . (3.10)

Only one step remains to finding an explicit-form solution for the equity price and

the risk-free bond price. Fortunately, it is easy to show that the debt service ratio

constraint in (3.2) is binding.11 This implies that the representative agent will cap

11Note that at each period t, the utility function Ut is strictly increasing in consumption Ct, so the

25



the amount of borrowing and paves the way for calculating the equity premium and

the risk-free rate implied by the model. Using the equilibrium consumption path in

(3.10) along with equations (3.8) and (3.9), gives the fundamental equations of asset

pricing at the equilibrium.

Note that it is convenient to define wt = pt
Xt

as the price-dividend ratio because it

allows the equilibrium equity returns to be written down in terms of dividend growth,

which is stationary, and not the dividend itself, which is not stationary. Therefore,

by dividing both sides of (3.8) by Xt, (3.8) can be written as:12

wt = βEt

{(
Ct+1

Ct

)−γ (
St+1

St

)−γ
(1 + wt+1)(

Xt+1

Xt

)

}
, (3.11)

where Xt+1

Xt
is dividend growth. Equations (3.9) and (3.11) can be used to solve for

the risk-free rate Rf
t , equity returns Re

t , and consequently the equity premium EPt.

Rf
t =

1

qt
=

1

βEt

((
Ct+1

Ct

)−γ (
St+1

St

)−γ) (3.12)

Re
t+1 = Et

(
pt+1 +Xt+1

Xt

)
= Et

(
wt+1Xt+1 +Xt+1

wtXt

)
= Et

{(
Xt+1

Xt

)(
1 + wt+1

wt

)}
,

(3.13)

where wt is defined as in (3.11).

Finally, the equity premium is simply defined as (3.13) minus (3.12):

budget constraint and the borrowing constraint bind to guarantee that the agent is maximizing his
preferences. However, one may argue that as financial obligations increase, effective consumption
decreases. This is not true here, as current obligation Gt is a function of last-period debt service
Dt−1 and not the current borrowing Dt.

12The right-hand side of (3.8) is a conditional expectation; by applying the Law of iterated
expectations Xt can be taken into the conditional expectation.
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EPt = Et(R
e
t+1)−Rf

t (3.14)

In the end, if the exogenous variables follow Markov processes, then solving functional

equations in (3.12) and (3.13) is simply solving a finite system of linear equations.

Thus defining the exogenous stochastic processes for aggregate real income and the

dividend growth rate, the model can be tested by comparing the observed equity

premium and risk-free rates in U.S. data to the rates implied by the model. Note that

the model deals with a non stationary environment because of the non stationarity

of aggregate dividends and aggregate income. This enables the model to generate

a non stationary equilibrium consumption path, non stationary equity prices, and a

stationary equity premium, which is consistent with the data.13

3.3 Data and Estimations

The motivation of this chapter is to compare the equity risk premium observed

in U.S. data with the equity risk premium generated by the model presented in this

chapter. I use annual data from 1980 to 2015 to report the equity premium observed

in the data. Table 3.2 summarizes the data source.

Next, the equity premium implied by the model is estimated in a calibrated

endowment economy. Generally, the solutions to asset pricing equations (3.8) and

(3.9) are not available in an analytically simple closed form. However, there are

instances where calculation of the exact solution, or a good approximation, is

possible. In my model the binding borrowing constraint does the job and makes it

13Note that the risk-free bond prices generated by (3.9) are stationary because qt depends only
on consumption growth and financial obligations growth, which are both stationary.

27



Table 3.2: Data Source

Variables Data source (1980-2015)

S&P composite prices and dividends Robert J. Shiller data

One month T-Bill returns Center for Research in Security Prices

Consumer Price Index U.S. Bureau of Labor Statistics

Aggregate income per capita National Income and Product Accounts

Household financial obligations ratio Federal Reserve Bank of St. Louis

possible to solve for closed-form solutions. Indeed, solutions to functional equations

(3.12) and (3.13) depend on values of three exogenous stochastic processes for yt, xt,

and θt. Note that Rd
t has already been assumed to be constant and equal to R̄d.

More specifically, using the weighted average annual rate of commercial bank

interest rate on credit cards and one-year adjustable rate mortgages, the average

gross borrowing rate is equal to 1.085.

A typical problem is how to characterize the price of an asset, where the laws

of motion for exogenous stochastic state variables are AR(1) processes. Therefore,

the next step is to check whether the stochastic processes for y and x, are stationary

over time and then estimate them with an AR(1) process. Table 3.3 summarizes

the results of stationarity tests for detrended aggregate income and dividend growth

using two methods: augmented Dickey-Fuller unit root test (ADF)(1979)[16], and the

Kwiatkowski-Phillips-Schmidt-Shin (KPSS)[42] stationarity test.

As Table 3.3 suggests, the ADF test statistics for detrended income y and

aggregate dividend growth x are equal to -5.343 and -5.042, respectively, meaning

that the null hypothesis can be rejected (null: yt and xt exhibit unit root
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Table 3.3: Stationarity Test

ADF Test Statistic KPSS Test Statistic

yt xt yt xt

-5.343 -5.042 0.243 0.273

1 % level -3.643 0.739

5 % level -2.954 0.463

10 % level -2.615 0.347

properties). Also, using the KPSS test, the null hypothesis that the variables are

stationary over time cannot be rejected as the test statistics are smaller than the

critical values. Thus, it is reasonable to estimate the stochastic processes for income

and dividend growth with an autoregressive process AR(1).

For deriving a numerical closed-form solution and generating the equity risk

premium implied by the model, the last step is to discretize AR(1) processes for

income and divided growth. I use the Rouwenhorst (1995)[56] technique to

discretize the AR processes. In this study, the Rouwenhorst method is prefered to

the Tauchen (1986)[58] approach for the following reasons. First, the residuals of

both AR(1) processes pass the autoregressive conditional heteroskedasticity

(ARCH) test; that is, the heteroskedasticity of residuals can be rejected. Second, I

discretize the economy with a two-state Markov process for each y and x. When the

number of states is small (equal to two here), the Rouwenhorst technique

outperforms the Tauchen approach. Recall that the AR(1) stochastic processes for

income and dividend growth are as follows:

yt+1 = (1− ρy)ȳ + ρyyt + εyt+1

xt+1 = (1− ρx)x̄+ ρxxt + εxt+1

. In my model, the stochastic process for the financial obligations cap is fully
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determined by the process for aggregate income. Table 3.4 summarizes the

estimated parameters of AR(1) processes.

Table 3.4: AR(1) Estimations

Parameter/Variable Description

y Normalized labor income per capita (detrended) ȳ = 1 , ρy = 0.64 , εy = 0.08

x Dividend growth x̄ = 1.032 , ρx = 0.61 , εx = 0.05

θ Financial obligations ratio cap θ̄ = 0.165, σθ = 0.009

The economy is completely specified by the realization of the joint stochastic

process followed by aggregate real income and dividend growth. I model the joint

process of aggregate income and dividend growth as a time-stationary Markov chain

with a nondegenerate, unique, stationary probability distribution. Starting with real

aggregate income, I assume that yt follows a two-state Markov chain (y,Q, πY ) where y

is the state vector, Q is a 2X2 transition matrix, and πY is the probability distribution.

The two states are high (H) and low (L), which stand for high and low aggregate

income during booms and recessions, respectively. Therefore, I define the states

vector y as:

y = (yH , yL) = (µY + δY , µY − δY ),

where µY is long-run aggregate income and δY is its standard deviation. The

probability distribution πY is defined as :

πRij = Pr(yt+1 = yj|yt = yi)

Then the transition matrix Q is symmetric with:

Q =

q11 q12

q21 q22

 =

 πY11 1− πY11

1− πY22 πY22

 =

 φY 1− φY

1− φY φY

 ,
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where φY is the long-run auto correlation coefficient of y.

Next, I assume that dividend growth xt also follows a Two-states Markov process

(x, P k, πX) where x is the state vector and P k is a 2X2 transition matrix where k:

H,L, meaning that the transition matrix for x depends on whether y is in a high or

low state. Also πX is the probability distribution. Again the two states are high (H)

and low (L), standing for high and low dividend growth. I define the states vector x

as:

x = (xH , xL) = (µX + δX , µX − δX),

where µX is long-run aggregate dividend growth and δX is its standard deviation.

The probability distribution πX is defined as:

πXij = Pr(xt+1 = xj|xt = xi).

Then the transition matrix P k is symmetric with:

P k =

 πX11 1− πX11

1− πX22 πX22

 =

 φXk 1− φXk

1− φXk φXk

 ,
where φXk is the long-run auto-correlation coefficient of x conditional on whether

y is in its high (k : yH) or low (k : yL) states. Therefore, the exogenous joint

stochastic processes for y and x follow a four-state coupled Markov chain with an

1-by-4 probability distribution π and a 4X2 state matrix yx:

yx =



yxHH

yxHH

yxHH

yxHH


=



yH xH

yH xL

yL xH

yL xL


,
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and a 4X4 transition matrix SY X :

SY X =

HH HL LH LL


HH s11 s12 s13 s14

HL s21 s22 s23 s24

LH s31 s32 s33 s34

LL s41 s42 s43 s44

,

where sij can be calculated directly from transition matrices Q and P . For example,

s12 = SY XHL,HH and is derived by:

s12 = SyxHL,HH = Pr(yxt+1 = yxHL|yxt = yxHH) = Pr

 yt+1 = yH yt = yH

xt+1 = xL xt = xH

s12 = Pr(xt+1 = xL, |xt = xH , yt = yH) ∗Pr(yt+1 = yH , |yt = yH) = PH
12 ∗ q11,

where PH
12 is the 1, 2 element of the matrix PH . Similar reasoning leads to the

following transition matrix for SY X :

SY X =





PH
11q11 PH

12q11 PL
11q12 PL

12q12

PH
21q11 PH

22q11 PL
21q12 PL

22q12

PH
11q21 PH

12q21 PL
11q22 PL

12q22

PH
21q21 PH

22q21 PL
21q22 PL

22q22

=

 PHq11 PLq12

PHq21 PLq22

.
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It is easy to confirm that SY X is a bona fide transition matrix. In summary, to solve

the model the parameters in Table 3.5 need to be estimated.

Table 3.5: Parameters/Variables to Be Estimated

Item Description

β Constant discount factor, time preference

γ Coefficient of relative risk aversion

θ Exogenous predetermined upper bound for the FOR

µY Long-run average annual aggregate income (detrended) y

δY Standard deviation of y (annual)

φY First-order autocorrelation coefficients of y (annual)

µX Long-run average aggregate dividend growth x

δX Standard deviation of x (annual)

φXk First-order autocorrelation coefficients of x for k: H,L. (annual)

The acceptable value for β based on different macroeconomic models ranges

from 0.95 to 0.99. I set β = 0.98 and let the coefficient of relative risk aversion γ

vary from 1 to 3. In the “Results” section of this chapter I show that, unlike in the

standard consumption based model, my model can get close to the equity risk

premium observed in U.S. data even for small values of risk aversion. The rest of

the parameters and variables are estimated as illustrated in Table 3.6.

3.4 Results

In this section, I show that the model can get close to the equity risk premium

observed in U.S. data while keeping the risk-free rate low. Table 3.7 summarizes the

results for different specifications of the model. As Table 3.7 suggests, the model
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Table 3.6: Estimated Values for Markov Processes

Parameter Estimation

µY 1.00

δY 0.06

φY = 1+ρy
2

= 1+0.64
2

= 0.82

µX 1.04

δX 0.07

φXk = 1+ρx
2

= 1+0.61
2

= 0.805

presented in this chapter outperforms the standard consumption model in explaining

the equity risk premium observed in the data. The equity premium puzzle states that

the mean excess return calculated in the standard consumption-based model is too

low unless the coefficient of relative risk aversion is implausibly high. For the standard

model this number is 20, which makes no economic sense. However, in this study,

the model generates an equity premium of 4.62% and the utility curvature is only 3.

This is consistent with the intuition of my model. In bad times, as consumption gets

closer to a household’s financial obligation, people become more risk averse (as they

have to pay back their obligations) and take on less risk. This leads to less investment

in the risky asset and eventually a higher equity risk premium.

Another advantage is that unlike the standard model, my model keeps the risk-free

rate relatively stable and low. For relative risk aversion between 1 and 3, the risk-free

rate induced by the model varies between 0.56% and 1.87%. This is true because

in my setup, as the coefficient of relative risk aversion increases, the precautionary

savings dominate the intertemporal substitution effect faster than in the standard

model and generate lower interest rates.
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Table 3.7: Results: Annual Returns

Risk Aversion Risk-Free Rate Equity Returns Equity Premium

Data 1 0.80 % 5.60 % 4.80 %

Mehra-Prescott model (1985)
1 4.82 % 4.95 % 0.13 %

3 7.97 % 8.46 % 0.49 %

Our model
1 1.87 % 2.38 % 0.51 %

3 0.56 % 5.17 % 4.62 %

3.4.1 Returns and the Utility Curvature

Figure 3.1 shows how the equity premium, risk-free rate, and equity returns vary

with the utility curvature γ. As γ increases, agents become more risk averse to any

bet. In this model, precautionary savings play an important role because households

are afraid of bad times during which the financial obligations ratio is high. Because

households are restricted by the borrowing constraint and cannot leverage further

because of the already-capped financial obligations ratio, they demand more of

precautionary savings (Treasury bond investments) to smooth their consumption for

bad states of the economy. This higher demand for risk-free bonds increases the

bond price qt and thus decreases the risk-free rate. The dotted line in Figure 3.1

shows the risk-free rates for different values of risk aversion between 1 and 3.

Having invested more in Treasury bonds, the demand for equity investment

decreases and the expected equity returns increase for higher values of γ. The

dashed line shows the equity returns for different values of risk aversion. Hence, by

generating higher equity returns and lower risk-free rates, the model gets close to

the equity risk premium observed in the data. The solid line shows the equity risk

premium generated by the model versus the different values for utility curvature.
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Figure 3.1: Expected Returns and the Coefficient of Risk Aversion

3.4.2 Expected Returns and the Borrowing Constraints

Figure 3.2 shows how the equity premium, the risk-free rate, and equity returns

vary with the household’s obligation ratio θ. Recall that the financial obligations

ratio is a direct indicator of the borrowing constraint in my model, so relaxing the

borrowing constraint is equivalent to increasing the household financial obligations

ratio cap θ. Figure 3.2 indicates that as the borrowing constraint is relaxed, the equity

risk premium shrinks, which is numerically consistent with results in Constantinides,

Donaldson, and Mehra (2002)[15].

The intuition is straight-forward. According to the financial obligations ratio

constraint (the borrowing constraint) in equation (3.2), households choose a debt

service level that caps their financial obligations ratio at anytime. Hence, as this θ

increases, agents can smooth their consumption much more easily via larger

borrowings. This leads to a decrease in the demand for precautionary savings
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Figure 3.2: Expected Returns and the Household Obligations Ratio

(Treasury bond investments), driving down bond prices qt and increasing the

risk-free rate. This is shown by the dotted line in Figure 3.2. Conversely, as θ

increases, households have more funding resources for their consumption purposes

and they can make more investments. The level of equity investment increases (as

more borrowing is consumed and the investment portfolio is more heavily weighted

toward equity investment rather than bond investment), leading to lower equity

returns. The dashed line shows equity returns for different values of θ. These two

effects decrease the equity premium as the level of θ increases, shown by the solid

line in Figure 3.2.
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3.5 Conclusion

This chapter addresses how, in an infinitely lived representative agent endowment

economy, household financial obligations affect the equity risk premium. The effect

is studied under two channels: the preference channel and the borrowing constraint

channel. The financial obligations ratio is a counter cyclical indicating variable that

affects agents’ marginal utility of consumption and reinforces its counter cyclicality

over business cycles. This is the driving force behind the model. I specify an explicit

Markov process for consumption growth in a non stationary environment, derive

the expected returns on equity and the risk-free bond and calculate the equity risk

premium in equilibrium. I show that in a reasonably calibrated economy, my model

can generate the equity premium observed in U.S. data.
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Chapter 4

FINANCIAL OBLIGATIONS RATIO AND THE PREDICTABILITY OF

MARKET RETURNS

In this chapter, I test the predictability of excess market returns using the

household financial obligations ratio. Using U.S. stock market data from 1980 to

2015, I show that deviations of the household financial obligations ratio from its

long-run mean are a better forecaster of future market returns than the

dividend-price ratio, dividend-yield, earnings-price ratio, investment-capital ratio,

and other popular forecasting variables. The results remain significant using either

quarterly or annual data and are robust to out-of-sample tests.
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4.1 Introduction

The household financial obligations ratio is defined as total debt payments,

housing payments, and auto lease payments divided by total disposable income. It

is a macroeconomic counter cyclical variable that helps explain the equity risk

premium observed in U.S. data (Jahangiry, (2016b)[33]). Jahangiry (2016b) shows

that households’ financial obligations affect the equity risk premium via two

channels: the preference channel and the borrowing constraint channel. In his

set-up, individuals preferences are defined as consumption relative to financial

obligations. The framework is analogous to habit formation models where the

utility function depends on consumption relative to some habit level (Abel (1990)[1]

, Constantinides (1990), [24] and Campbell and Cochrane (1999)[6]). Conversely, in

an infinite-horizon aggregate household economy, the financial obligations ratio

represents the borrowing constraint because the agents’ borrowing capability is

limited by their financial obligations ratio in the model.

The mechanism by which the financial obligations ratio helps explain the equity

risk premium is straight-forward. In bad times when consumption is low, mostly

because of lower income and more borrowing incentives, the financial obligations ratio

is high. This dynamic borrowing constraint becomes binding in states of the economy

in which agents want to smooth consumption. Turning to the preference channel, in

good times when consumption is high, households slowly take on more debt. But

in bad times when consumption falls, households de-lever slowly. Thus, debt moves

slowly, following consumption, much like a slow-moving habit. Now imagine that

an agent has taken on specific level of debt he must repay. In recessions, as income

declines toward this specific level of debt, to make sure he can repay the debt, the

agent becomes more risk averse and takes on less risk. This decreases the demand
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for risky assets and increases the demand for precautionary savings in recessions.

During booms, however, consumption moves further away from slow-moving financial

obligations and hence the agent becomes less risk averse and takes on more risk. Thus,

lower ratio of consumption to financial obligation in recessions and the higher ratio

in good times directly affect the marginal utility and make the pricing kernel more

volatile. These two channels are the key elements of Jahangiry’s (2016b) model that

explain the equity risk premium.

It has also been documented that the risk associated with aggregate households

financial obligations is an economy wide risk and is significant in explaining

variations in the cross-section of stock returns (Jahangiry, (2016a)[32]).

Conditioning down on the financial obligations ratio, the FCAPM proposed by

Jahangiry (2016a), survives a wide range of classical econometric and diagnostic

tests when explaining the variations in average returns across 25 portfolios formed

based on size and the book-to-market ratio. The consistent pricing of financial

obligations risk with a negative risk premium suggests that the financial obligations

ratio acts as a state variable. The cross-sectional intuition is as follows: in bad

times, the financial obligations ratio is high and the marginal utility of consumption

is also high. Portfolios that pay off in these times are more valuable assets to

investors. The increase in hedging demands for these portfolios raises the prices and

hence implies a lower expected return. The negative risk premium delivers this

lower expected return.

In this study, I investigate the predictability of market returns/excess returns

using households’ obligations ratios, namely, debt service ratio and the financial

obligations ratio. For the last three decades there have been many efforts to identify

and establish the existence of time variation in expected asset returns; it is now
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widely accepted that excess returns are predictable by variables such as the

dividend-price ratio, earnings-price ratio, dividend-yield ratio, investment-capital

ratio, and other financial indicators. These financial variables have been successful

at predicting long-horizon returns but less successful at predicting short-horizon

returns. The dividend-price ratio, earnings-price ratio and all other predictive

variables are financial variables.

We are also interested in the relation between macroeconomic variables and

financial markets, mostly because expected returns appear to vary with business

cycles so that stock market returns should be forecastable by business cycle

variables at cyclical frequencies. One macroeconomic business cycle variable that is

successful at predicting returns at shorter horizon is the consumption-wealth ratio

(cay) proposed by Lettau and Ludvigson (2001)[43]. Lettau and Ludvigson study

the role of fluctuations in the aggregate consumption-wealth ratio for predicting

stock returns. Using U.S. quarterly stock market data, they find that these

fluctuations in the consumption-wealth ratio are strong predictors of both real stock

returns and excess returns over a Treasury bill rate. However, the statistical

significance and predictive power of the consumption-wealth ratio is hump-shaped

and peaks at around one year. Indeed, the predictive power shrinks over long

horizons. In this study I show that mean deviations from the household financial

obligations ratio is another macroeconomic business cycle variable whose predictive

power is significant at short horizons and remains more significant over longer

horizons than does the consumption-wealth ratio.

But why should mean deviations from the household financial obligations ratio

have any predictive power? The economic intuition is as follows: in the early stages

of recessions, when returns are expected to be lower in the near future, households face
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the possibility that their obligation ratios will go above their long-run average. This

is because households’ obligations behave like a slow-moving habit (with a no-default

assumption, of course): in good times households taken on more financial obligations

for which they are responsible in bad times as well. This, along with negative income

shocks in recessions, eventually leaves households with a higher financial obligations

ratios. The opposite is true for good times. During booms, households receive positive

income shocks, which allows them to experience lower financial obligations ratios. 1

Hence, lower expected future returns followed by higher financial obligations ratios

and vice versa. This suggests that deviations in the financial obligations ratio from its

long-run mean should be negatively correlated with future returns, which is consistent

with what I find.

The rest of this chapter proceeds as follows. In Section 4.2, I present the data

and summary statistics. In Section 4.3 I test the predictability of market returns

with mean deviations from households financial obligations ratios. Sections 4.4 and

4.5 document the findings on long-horizon forecasts and on out-of-sample tests.

Section 4.6 concludes.

4.2 Data and Summary Statistics

A key advantage with respect to the data is that all the variables are directly

observable and there is no need to work with proxies. The data include stock market

returns and dividends per share from the Standard & Poor’s Composite Index. We

also consider returns on the value-weighted Center for Research in Security Prices

(CRSP) Index as it provides a better and broader proxy for total asset wealth than

1Note that households’ obligations may increase during booms but higher income shocks will
offset these effects and the overall financial obligations ratio will be lower.
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does the S&P Composite Index. The data sources are summarized in Table 4.1.

Let rSP and rvw denote the market returns using the S&P Composite Index and

the value-weighted CRSP Index, respectively. Market excess return is denoted by

(rSP − rf ) where rf is the risk-free rate or the return on the one-month Treasury bill.

Table 4.1: Data Source

Variables Data Source

rSP , rvw, rf Center for Research in Security Prices

d/p, d/y, e/p Standard & Poor’s

cay Sdyney Ludvigson’s website

eqis, i/k Amit Goyal’s website

DSR, FOR, MKV/GDP Federal Reserve Bank of St. Louis

Some of the most successful in-sample predictors that I compare with mean

deviations from the debt service ratio (DSR) and the financial obligations ratio

(FOR) are as follows. The dividend-price ratio (d/p) is the ratio of divided per

share over price. The dividend-yield (d/y) is the ratio of dividends over lagged

prices. 2 The earnings-price ratio (e/p) is the ratio of earnings over prices. I also

consider a successful corporate issuing activity variable, namely, percent equity

issuing (eqis), which is the ratio of equity issuing activity as a fraction of total

issuing activity. This variable is proposed in Baker and Wurgler (2000)[2].

MKV/GDP is the ratio of market value to GDP. i/k is the investment-to-capital

ratio, which is the ratio of aggregate (private nonresidential fixed) investment to

aggregate capital for the whole economy. This variable is proposed in Cochrane

2d/p and d/y studied in many articles (Ball (1978), Campbell (1987), Campbell and Shiller
(1988a, 1988b), Campbell and Viceira (2002), Campbell and Yogo (2006), the survey in Cochrane
(1997), Fama and French (1988), Hodrick (1992), Lewellen (2004), Menzly, Santos, and Veronesi
(2004), Rozeff (1984), Shiller (1984)).
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(1991)[9]. Finally, (cay) which is the Consumption-wealth ratio proposed in Lettau

and Ludvigson (2001)[43].

The properties of the above variables are well known, so I focus on the debt

service ratio (DSR) and the financial obligations ratio (FOR). Table 4.2 presents

summary statistics for these variables using annual data between 1980 and 2015.

Table 4.3 reports the same summary statistics using quarterly data between 1980Q1

and 2015Q4.

Table 4.2: Summary Statistics (Annual Data: 1980-2015)

rspt rspt − r
f
t DSRt FORt

Panel A : Correlation Matrix

rspt 1.00 0.977 -0.274 -0.221

rspt − r
f
t 1.00 -0.246 -0.187

DSRt 1.00 0.967

FORt 1.00

Panel B: Univariate Summary Statistics

Mean 0.126 0.083 0.113 0.164

Standard error 0.166 0.161 0.009 0.009

Autocorrelation -0.012 -0.044 0.861 0.813

Table 4.3: Summary Statistics (Quarterly Data: 1980Q1-2015Q4)

rspt rspt − r
f
t DSRt FORt

Panel A : Correlation Matrix

rspt 1.00 0.993 -0.182 -0.151

rspt − r
f
t 1.00 -0.169 -0.135

DSRt 1.00 0.966

FORt 1.00

Panel B: Univariate Summary Statistics

Mean 0.052 0.039 0.113 0.164

Standard error 0.082 0.081 0.009 0.008

Autocorrelation 0.100 0.077 0.978 0.966

In both Tables 4.2 and 4.3, DSRt and FORt are negatively correlated with excess
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stock market returns. The means of DSRt and FORt are equal to 11.38% and 16.48%,

respectively, with standard deviations close to 1%. The debt service ratio and the

financial obligations ratio are persistent and the autocorrelation is high.

Figure 4.1 plots the standardized mean deviation of FORt and the standardized

excess return on the S&P Composite Index between 1980 and 2015. As discussed in

the previous section, large positive mean deviations preceded large negative excess

returns and vice versa. This trend is perceptible during U.S. recession periods,

namely: January 1, 1990 to March 1, 1991, March 1, 2001 to November 1, 2001, and

December 1, 2007 to June 1, 2009. 3

Figure 4.1: Excess Returns and Mean Deviations

A detailed discussion on derivation of DSR and FOR is provided in Chapter 2

and Appendix A. It is important to check that mean deviations from the financial

obligations ratio are stationary over time because expected returns appear to be

stationary over time, and the variables predicting these returns should be stationary

as well. Table 4.4 shows the ADF unit root test [16] and the KPSS test to confirm

this stationarity of the predicting variable.

3The standardized mean deviations of DSRt are substantially the same as those FORt.
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Table 4.4: Stationarity Tests for the Financial Obligations Ratio

ADF Test Statistic Prob.* KPSS Test Statistic

-3.522 0.014 0.1492

1 % level -3.671 0.739

5 % level -2.963 0.463

10 % level -2.621 0.347

As the ADF test statistic suggests, we can reject the null hypothesis (at p-values

greater than 1.5% at least), meaning that we can reject it if the financial obligations

ratio has a unit root property. The KPSS test statistic also confirm the stationarity

of this ratio as we could not reject the hypothesis that the financial obligations ratio

is stationary over time. 4

4.3 Forecasting Regressions

In this section, I investigate the predictive power of mean deviations from

households’ obligation ratios for asset returns/ excess returns. The dependent

variables are market returns (S&P500) and market excess returns. I also consider

returns on the value-weighted CRSP Index as it provides a better and broader

proxy for total asset wealth than does the S&P Composite Index. The independent

variable is the financial obligations ratio. For comparison purposes, I assess the

forecasting power of the most successful predicting variables using my sample data.

These variables are listed in Table 4.1, namely, dividend-price ratio (d/p),

dividend-yield ratio (d/y), earnings-price ratio (e/p), percent equity issuing (eqis),

investment-to-capital ratio (i/k), market-to-GDP ratio (MKT/GDP ), and

consumption-wealth ratio (cay). Table 4.5 summarizes the regression results and

4The results hold for the debt service ratio as well. Both the ADF and the KPSS tests for DSR
confirms the stationarity of the debt service ratio.
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reports one-period-ahead forecasts of the stock market returns. I correct for

generalized serial correlation of the residuals using the Newey-West (1987)

correction to the t-statistics.

Panels A, B, and C in Table 4.5 summarize the results of ordinary least squares

(OLS) Single regressions using S&P Composite Index returns, market excess

returns, and value-weighted market returns, respectively. As the table suggests, the

financial obligations ratio alone is significantly able to predict one-period-ahead

market returns. Note that the coefficients of DSR and FOR are both negative and

significant at 1% level in all three panels. These negative coefficients are consistent

with the economic intuition that laid out in “Introduction” section. As the economy

is hit by a negative income shock, the increasing financial obligations ratio is

followed by lower expected returns. The R2s are not worse than those generated by

the most successful competitive predicting variables in the literature. Indeed, both

obligation ratios have the highest R2s among all variables after the cay variable. In

next section I show that obligation ratios are even better than cay when doing

long-run regressions.

In Table 4.5, both the constants and coefficients of DSR, FOR, and cay are

significant at 1% level in panels A-C. The coefficient of the dividend-price ratio (d/p),

earnings-price ratio (e/p), and MKV/GDP are significant at the 10% level in Panels

A and C. The rest of the coefficients are not significant using either market returns

or market excess returns.
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Table 4.5: Forecasting One-Period-Ahead Returns (Single Regressions)

This table reports estimates from OLS single regressions of stock returns on variables

named in the column headings. The t-stats are Newey-West (1997) corrected.

Significant coefficients at 1% level are highlighted in bold-face. Regressions use data

from 1980 to 2015.

DSR FOR d/p d/y e/p eqis i/k MKV/GDP cay

Panel A: Market Returns (SP500)

Constant 0.124 0.123 0.013 0.042 0.027 0.087 0.350 0.185 0.100

t-stat 6.719 5.862 0.158 0.577 0.391 1.593 0.916 6.535 3.522

Coefficient -5.380 -4.743 4.101 2.757 1.633 0.230 -6.396 -0.052 4.451

t-stat -3.362 -2.038 1.798 1.577 1.857 1.057 -0.555 -1.869 2.936

R2 0.078 0.052 0.081 0.046 0.055 0.015 0.020 0.090 0.194

Adj.R2. 0.050 0.023 0.053 0.017 0.027 -0.015 -0.010 0.062 0.170

Panel B: Market Excess Returns

Constant 0.083 0.082 0.021 0.053 0.036 0.074 0.418 0.111 0.064

t-stat 8.025 5.085 0.260 0.730 0.518 1.420 1.192 4.025 2.185

Coefficient -4.425 -3.745 2.281 0.970 0.786 0.049 -9.452 -0.025 3.668

t-stat -2.976 -1.741 1.039 0.551 0.890 0.224 -0.897 -0.880 2.306

R2 0.054 0.033 0.026 0.006 0.013 0.001 0.044 0.021 0.136

Adj.R2. 0.026 0.004 -0.004 -0.024 -0.017 -0.030 0.015 -0.009 0.110

Panel C: Market Returns (CRSP vw)

Constant 0.127 0.126 0.014 0.044 0.027 0.087 0.341 0.189 0.103

t-stat 6.791 5.963 0.171 0.635 0.393 1.595 0.881 6.548 3.606

Coefficient -5.456 -4.845 4.190 2.782 1.679 0.245 -6.063 -0.053 4.482

t-stat -3.454 -2.103 1.925 1.685 1.905 1.115 -0.519 -1.889 2.965

R2 0.078 0.053 0.083 0.046 0.057 0.016 0.017 0.090 0.193

Adj.R2. 0.050 0.025 0.055 0.017 0.029 -0.014 -0.013 0.063 0.169
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To check the robustness of the results, as additional controls, Table 4.6 reports

the regressions of market returns and market excess returns on the variables shown

in the column headings of the table. Panel A reports estimates from OLS multiple

regressions of stock market returns on different combinations of the variables in the

table. The highest adjusted R2 is equal to 26.7% and is in row (4) where the

right-hand-side variables include the debt service ratio, dividend-price ratio and

consumption-wealth ratio. However, in row (4) the constant is not significant. The

only forecasting multiple regression in which all the coefficients are significant and

the constant is also significant at 1% level is where DSR and cay are the predictors

(row(1) in Panel A). Using these two variables alone generates an adjusted R2 of

23.51%, which is significantly higher that the R2 estimated by using either DSR or

cay individually.
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Table 4.6: Forecasting One-Period-Ahead Returns (Multiple Regressions)

This table reports estimates from OLS multiple regressions of stock returns on variables

named in the headings column. The t-stats are Newey-West (1997) corrected. Regressions

use data from 1980 to 2015. ***, **, and * indicate significance at the 1%, 5%, and 10%

levels, respectively.

Constant DSR d/p e/p eqis i/k MKV/GDP cay R2 Adj.R2.

Panel A: Additional Controls; Market Returns

(1) 0.101*** -5.652** 4.543*** 0.2801 0.2351

(2) 0.081 -5.249* 0.790 4.373*** 0.2824 0.213

(3) -0.044 -6.828*** 2.815 0.053 5.784*** 0.313 0.222

(4) 0.110 -7.078*** 10.816*** 4.772** 0.353 0.267

(5) 0.070 -4.893** -0.269 0.657 4.519*** 0.285 0.189

(6) 0.436* -5.055* -1.355 1.256 -0.115 -10.013 5.061** 0.333 0.191

(7) 0.218 -6.621** 1.136 1.359 -0.232 -7.259 0.049 6.175*** 0.355 0.188

Panel B: Additional Controls; Excess Returns

(1) 0.064** -4.649* 3.744** 0.195 0.145

(2) 0.084 -5.045* -0.776 3.911*** 0.198 0.120

(3) -0.106 -7.451** 2.308 0.082* 6.062** 0.273 0.176

(4) 0.119 -7.259*** 11.361*** 4.395** 0.305 0.212

(5) 0.084 -5.027* -0.828 0.032 3.918*** 0.198 0.091

(6) 0.566** -5.201* -2.364 0.836 -0.136 -13.206* 4.64** 0.283 0.129

(7) 0.241 -7.535*** 1.348 0.989 -0.310 -9.103 0.074 6.307*** 0.333 0.161

In Panel B of Table 4.6, market excess returns are regressed on variations of the

predictors. As in Panel A, row (4) produces the highest adjusted R2 but again the

constant is not significant. Using DSR and cay alone eventuates in adjusted R2 =

14.5% and significant coefficients and constant (row (1)). In both panels, when all

predicting variables are included in row (7), the debt service ratio and consumption-

wealth ratio are the only forecasting variables that remain significant in one-period-

ahead multiple regressions. This reveals that DSR and cay contain information about

future asset returns that is not included in other forecasting variables.
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It is well known that some of the variables in Table 4.6 typically perform better at

forecast horizons in excess of two years. Thus I also examine the long-run analysis and

report the results in the “Long-Horizon Forecast” section in this chapter. Figure 4.2

plots the normalized —standard deviations of unity— market excess returns (ERP)

versus the nine variables listed in Table 4.5. The forecast horizon H is equal to 1 in

all graphs, indicating that the regressions are one-year-ahead forecasting regressions.
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4.4 Long-Horizon Forecasts

In earlier sections, I show that the household’s financial obligations ratio is

directly related to the interest rate. By construction, the higher the interest rate,

the higher the household’s financial obligations. This direct dependency suggests

that the financial obligations ratio should track longer-term fluctuations in asset

markets returns rather than provide accurate short-term forecasts. Further-more,

the summary statistics in Table 4.2 indicate that financial obligations ratios are

highly persistent, supporting the idea that these ratios should provide a more

accurate signal of long-term trends in asset returns than of short-term movements. 5

Table 4.7 reports the results of single regressions of H -period market returns and

market excess returns on different lagged forecasting variables over horizons

spanning one to seven years. The table presents estimated coefficients on the

included explanatory variables, R2s and the adjusted R2s, and the Newey-West

(1997) corrected t-statistics. The significant coefficients at 5% level are in bold-face.

In Panel A, and Panel C, the H -period market returns are predicted by lagged

values of forecasting variables listed in the column labeled “Regressors.” The

predictive power of financial obligations ratio (either DSR or FOR) is hump-shaped

and peaks at around period 6 with an adjusted R2 of 27.9%. The coefficients remain

almost constant and significant until period 6. This suggests that financial

obligations ratio is a relatively stronger predictor in long horizons than are other

hump-shaped variables such as the consumption-wealth ratio (cay), which peaks at

5This is like the dividend-price ratio and consumption-wealth ratio, which are both more accurate
in predicting long-term stock market returns.
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around period 2. As expected, the dividend-price ratio, dividend-yield ratio, and

earnings-price ratio perform significantly better in longer horizons; however, their

predictive power in one-year-ahead forecasts is weak (not a significant coefficients

with small adjusted R2). Panel B, and Panel D, reports the H -period forecasts

using market excess returns. As these panels suggest, the obligations ratios are not

as strong predictors as in panels A and C at very long horizons. The predictive

power of obligations ratio peaks at period 3 with an adjusted R2 equal to 12.30%.

The coefficients are significant at the 5% level until period 4. For the

consumption-wealth ratio, the results are the same as in panels A and C. The

predictive power peaks at period 2 and the coefficients are significant only up to this

period with an adjusted R2 of 21.20%. For the rest of the predicting variables, none

of the coefficients are significant at 5% level over any period between 1 and 7 years.

In my sample, the only variable that provides significant predictive power for excess

returns in longer horizons is the investment-capital ratio.

To test the robustness of the results, I consider additional controls by including

other predicting variables in the long-horizon regressions. I regress market returns

and market excess returns on variables including the household financial obligations

ratio (DSR), dividend-price ratio (d/p), earnings-price ratio (e/p), percent equity

issuing (eqis), investment-capital ratio (i/k), market value to GDP (MKV/GDP ),

and consumption-wealth ratio (cay). Table 4.8 reports the long-run

multiple-regression estimates. The table reports estimates from OLS multiple

regressions of stock returns on variables listed in the column labeled “Regressors.”

As Table 4.8 suggests, in all panels A-D, when including all the forecasting variables

together, the household obligations ratio (DSR) is the only predicting variables that

remains significant in all horizons spanning 1 to 7 periods. Whereas some variables

55



are significant at shorter horizons, such as cay, others are significant at longer

horizons, such as d/p, e/p, eqis, and i/k. As in short-horizon regressions, this

significance of the debt service ratio in all horizons reveals that DSR contains

information about future asset returns that is not included in other forecasting

variables.
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Table 4.7: Long-Horizon Forecasts (Single Regressions)

Annual Data: 1980-2015

Forecast Horizon H

Row Regressors 1 2 3 4 5 6 7

Panel A: Stock Market Returns

Coefficient -5.380 -5.712 -5.932 -5.557 -5.271 -4.567 -3.939

1 DSR t-statistics -3.362 -5.501 -3.466 -3.476 -2.767 -1.831 -0.994

Adj.R2 0.050 0.135 0.223 0.235 0.261 0.279 0.240

Coefficient -4.743 -4.905 -5.067 -4.576 -4.525 -3.973 -3.477

2 FOR t-statistics -2.038 -3.020 -2.945 -2.578 -2.369 -1.739 -1.471

Adj.R2 0.023 0.076 0.132 0.126 0.156 0.172 0.150

Coefficient 4.101 4.112 3.910 4.045 4.300 4.031 3.979

3 d/p t-statistics 1.798 2.367 1.714 2.180 3.237 3.550 5.659

Adj.R2 0.053 0.134 0.194 0.282 0.417 0.517 0.611

Coefficient 2.757 3.071 3.268 3.278 3.217 3.257 3.218

4 d/y t-statistics 1.577 1.936 1.979 2.398 3.664 4.265 5.507

Adj.R2 0.017 0.085 0.169 0.232 0.287 0.426 0.509

Coefficient 1.633 1.521 1.544 1.417 1.285 1.105 1.211

5 e/p t-statistics 1.857 2.399 2.307 2.415 2.519 1.771 1.249

Adj.R2 0.027 0.067 0.123 0.138 0.145 0.153 0.236

Coefficient 0.230 0.327 0.341 0.341 0.330 0.310 0.264

6 eqis t-statistics 1.057 1.745 1.745 1.911 2.092 1.720 1.969

Adj.R2 -0.015 0.029 0.069 0.099 0.123 0.161 0.136

Coefficient -6.396 -7.603 -9.457 -10.435 -10.039 -9.974 -11.619

7 i/k t-statistics -0.555 -0.671 -1.033 -1.873 -2.583 -3.009 -4.167

Adj.R2 -0.010 0.025 0.099 0.172 0.199 0.260 0.360

Coefficient -0.052 -0.047 -0.042 -0.039 -0.039 -0.039 -0.046

8 MKV/GDP t-statistics -1.869 -1.777 -1.424 -1.370 -1.432 -1.203 -1.515

Adj.R2 0.062 0.117 0.144 0.160 0.196 0.271 0.401

Coefficient 4.451 4.389 3.647 3.190 2.288 1.662 1.282

9 cay t-statistics 2.963 2.761 2.284 2.404 2.098 2.989 1.398

Adj.R2 0.170 0.298 0.291 0.275 0.166 0.107 0.064
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Annual Data: 1980-2015

Forecast Horizon H

Row Regressors 1 2 3 4 5 6 7

Panel B: Market Excess Returns

Coefficient -4.425 -4.435 -4.336 -3.546 -2.983 -2.200 -1.645

1 DSR t-statistics -2.976 -4.496 -2.149 -1.806 -1.279 -0.752 -0.277

Adj.R2 0.026 0.079 0.123 0.097 0.087 0.066 0.034

Coefficient -3.745 -3.631 -3.530 -2.607 -2.272 -1.639 -1.236

2 FOR t-statistics -1.741 -2.581 -1.839 -1.543 -1.085 -0.631 -0.535

Adj.R2 0.004 0.033 0.059 0.028 0.027 0.014 -0.002

Coefficient 2.281 2.376 2.228 2.403 2.713 2.503 2.497

3 d/p t-statistics 1.039 1.357 0.898 1.124 1.876 1.836 3.131

Adj.R2 -0.004 0.029 0.051 0.100 0.196 0.262 0.338

Coefficient 0.970 1.392 1.627 1.693 1.695 1.798 1.798

4 d/y t-statistics 0.551 0.860 0.853 1.040 1.599 1.686 1.805

Adj.R2 -0.024 -0.005 0.025 0.051 0.080 0.161 0.214

Coefficient 0.786 0.750 0.826 0.726 0.594 0.419 0.551

5 e/p t-statistics 0.890 1.167 1.158 1.136 1.044 0.575 0.441

Adj.R2 -0.017 -0.005 0.018 0.021 0.015 0.002 0.046

Coefficient 0.049 0.154 0.175 0.185 0.180 0.162 0.105

6 eqis t-statistics 0.224 0.814 0.944 1.068 1.396 1.243 1.058

Adj.R2 -0.030 -0.016 -0.002 0.013 0.025 0.039 0.003

Coefficient -9.452 -10.034 -11.301 -11.803 -10.968 -10.302 -10.947

7 i/k t-statistics -0.897 -1.123 -1.706 -3.352 -5.528 -6.033 -4.905

Adj.R2 0.015 0.077 0.182 0.282 0.323 0.405 0.481

Coefficient -0.025 -0.020 -0.016 -0.014 -0.015 -0.017 -0.023

8 MKV/GDP t-statistics -0.880 -0.714 -0.500 -0.463 -0.547 -0.453 -0.559

Adj.R2 -0.009 -0.001 -0.003 -0.002 0.011 0.041 0.127

Coefficient 3.668 3.599 2.843 2.378 1.506 0.989 0.734

9 cay t-statistics 2.306 2.096 1.521 1.611 1.220 1.618 0.922

Adj.R2 0.110 0.212 0.191 0.172 0.077 0.035 0.012
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Quarterly Data: 1980Q1-2015Q4

Forecast Horizon H

Row Regressors 1 2 4 8 12 24 36 48

Panel C: Stock Market Returns

Coefficient -1.805 -1.753 -1.876 -1.987 -2.027 -1.690 -1.188 -0.842

1 DSR t-stat -1.978 -1.764 -1.127 -1.701 -2.533 -3.061 -1.473 -0.819

Adj.R2 0.029 0.054 0.123 0.251 0.331 0.389 0.210 0.103

Coefficient -1.678 -1.613 -1.766 -1.866 -1.898 -1.629 -1.121 -0.781

2 FOR t-stat -1.696 -1.619 -1.006 -1.877 -2.704 -2.681 -1.068 -0.607

Adj.R2 0.020 0.038 0.094 0.193 0.257 0.319 0.171 0.100

Coefficient 2.050 2.040 1.871 1.692 1.700 1.557 1.324 1.136

3 d/p t-stat 3.136 3.057 2.094 1.791 2.169 5.322 5.815 4.875

Adj.R2 0.080 0.150 0.247 0.384 0.522 0.824 0.867 0.817

Coefficient 2.077 1.982 1.754 1.588 1.633 1.476 1.280 1.093

4 d/y t-stat 3.456 3.362 2.240 2.067 3.212 8.781 8.171 6.494

Adj.R2 0.087 0.149 0.228 0.356 0.510 0.784 0.855 0.798

Coefficient 0.866 0.814 0.733 0.613 0.629 0.512 0.544 0.458

5 e/p t-stat 2.272 2.044 1.626 2.393 2.455 1.936 2.986 3.021

Adj.R2 0.067 0.112 0.179 0.240 0.346 0.446 0.670 0.664

Coefficient -1.515 -1.655 -1.828 -2.317 -2.726 -2.809 -2.860 -2.090

6 i/k t-stat -0.805 -0.751 -0.709 -0.482 -0.866 -0.935 -1.995 -0.857

Adj.R2 -0.003 0.003 0.015 0.061 0.119 0.202 0.262 0.192

Coefficient 0.747 0.810 0.917 1.030 0.895 0.380 0.226 0.109

7 cay t-stat 2.568 2.867 2.367 1.880 1.534 1.128 0.548 0.234

Adj.R2 0.020 0.050 0.120 0.257 0.244 0.070 0.025 -0.003
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Quarterly Data: 1980Q1-2015Q4

Forecast Horizon H

Row Regressors 1 2 4 8 12 24 36 48

Panel D: Market Excess Returns

Coefficient -1.637 -1.559 -1.634 -1.657 -1.616 -1.100 -0.657 -0.434

1 DSR t-stat -1.845 -1.726 -1.048 -1.650 -2.811 -1.693 -1.079 -0.644

Adj.R2 0.023 0.043 0.099 0.200 0.259 0.243 0.099 0.040

Coefficient -1.481 -1.386 -1.491 -1.514 -1.481 -1.040 -0.626 -0.431

2 FOR t-stat -1.606 -1.435 -0.854 -1.604 -2.712 -1.652 -1.000 -0.533

Adj.R2 0.014 0.027 0.070 0.145 0.192 0.191 0.082 0.045

Coefficient 1.522 1.513 1.355 1.211 1.251 1.169 0.964 0.820

3 d/p t-stat 2.193 2.062 1.354 1.184 1.316 4.233 3.170 1.931

Adj.R2 0.042 0.082 0.135 0.224 0.349 0.692 0.746 0.712

Coefficient 1.558 1.461 1.243 1.111 1.187 1.090 0.928 0.783

4 d/y t-stat 2.374 2.204 1.373 1.288 2.037 5.564 4.624 3.748

Adj.R2 0.047 0.081 0.119 0.198 0.332 0.637 0.729 0.685

Coefficient 0.628 0.575 0.498 0.398 0.434 0.340 0.395 0.321

5 e/p t-stat 1.595 1.273 1.019 1.443 1.554 1.382 2.446 1.875

Adj.R2 0.033 0.055 0.085 0.113 0.202 0.291 0.574 0.545

Coefficient -2.508 -2.623 -2.719 -3.028 -3.257 -2.853 -2.612 -1.773

6 i/k t-stat -1.349 -1.231 -1.142 -0.754 -1.222 -3.009 -2.177 -1.060

Adj.R2 0.005 0.018 0.047 0.128 0.217 0.315 0.358 0.234

Coefficient 0.584 0.651 0.762 0.888 0.758 0.249 0.165 0.119

7 cay t-stat 1.986 2.177 1.914 1.669 1.359 0.996 0.505 0.348

Adj.R2 0.010 0.031 0.087 0.219 0.217 0.042 0.021 0.005
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Figure 4.3 plots the five-year market excess returns versus the lagged debt service

ratio mean deviations. Note that in this figure, the DSR mean deviations have

been flipped because the DSR coefficient is negative (as expected) in long-horizon

regressions. This figure shows how successful the household’s debt service ratio is in

predicting market excess returns over five-year horizon.

Figure 4.3: Debt Service Ratio: 1980-2015 Following Five-Year Returns

Finally, to see how the financial obligations ratio performs relative to other

variables in predicting long-horizon average returns, Figure 4.4 plots the normalized

market returns (SP500) versus the nine variables listed in Table 4.7. The forecast

horizon H is equal to 5 in all graphs, indicating that the regressions are the

five-year-ahead forecasting regressions.
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Table 4.8: Forecasting H -period-Ahead Returns (Multiple Regressions)

This table reports estimates from OLS multiple regressions of stock returns on variables

listed in the “Regressors” column. The t-stats are Newey-West (1997) corrected.

Regressions use data from 1980 to 2015. ***, **, and * indicate significance at the 1%, 5%,

and 10% levels, respectively.

Forecast Horizon H

Regressors 1 2 3 4 5 6 7

Panel A: Additional Controls; Market Returns

Constant 0.219 0.281 0.392** 0.367*** 0.267*** 0.302*** 0.275***

DSR -6.622** -4.834*** -3.953*** -4.433** -7.889*** -6.602*** -3.839***

d/p 1.136 0.025 -1.258 1.311 6.008*** 5.819*** 5.549***

e/p 1.360 1.261 1.473 0.666 -0.554 -0.975*** -0.897**

eqis -0.232 0.043 0.135 0.010 -0.342** -0.301** -0.290***

i/k -7.260 -8.790 -11.052** -10.361*** -7.733*** -7.228*** -5.727***

MKV/GDP 0.050 0.040 0.026* 0.031*** 0.053*** 0.032** 0.006

cay 6.176*** 5.700*** 4.571*** 3.461** 1.807** 0.552 -0.117

Adjusted R2 0.188 0.468 0.630 0.697 0.778 0.839 0.835

Panel B: Additional Controls; Market Excess Returns

Constant 0.242 0.280 0.379** 0.361*** 0.268*** 0.302*** 0.278***

DSR -7.536*** -5.642*** -4.588*** -4.884*** -7.987*** -6.258*** -3.446***

d/p 1.348 0.235 -1.180 1.098 5.524*** 5.215*** 4.807***

e/p 0.990 1.005 1.309 0.575 -0.579* -0.992*** -0.841**

eqis -0.311 -0.042 0.055 -0.053 -0.386*** -0.327*** -0.314***

i/k -9.104 -10.099 -12.017*** -11.320*** -8.729*** -8.061*** -6.680***

MKV/GDP 0.074 0.065** 0.050*** 0.051*** 0.070*** 0.045*** 0.019

cay 6.307*** 5.790*** 4.579*** 3.355*** 1.657** 0.425*** -0.144

Adjusted R2 0.161 0.444 0.596 0.648 0.726 0.750 0.688
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4.5 Out-of-Sample Tests

In this section, I study the out-of-sample performance of the household financial

obligations ratio by comparing the mean-squared error from one-period-ahead out-of-

sample forecasts obtained from a forecasting regression that includes the household

financial obligations ratio as the only forecasting variable, to forecasting regressions

that do not include it.

I need to choose the periods over which a regression model is estimated and

subsequently evaluated. Although any choice is necessarily ad hoc, the criteria are

clear. It is important to have enough initial data to get a reliable regression estimate

at the start of evaluation period, and it is important to have an evaluation period that

is long enough to be representative. Because annual data are limited, I investigate

quarterly periods as well. More specifically, we use one-third of the data to estimate

the regression models and the rest of the data to report out-of-sample results. I

consider a benchmark model and compare it with the out-of-sample performance

of financial obligations ratios, and then do some non-nested analysis comparing the

performance of the debt service ratio with other predicting variables mentioned earlier

in this chapter. The benchmark model is the historical mean benchmark.

In the historical mean benchmark, a constant is the sole explanatory variable for

excess returns. It has been documented (Welch and Goyal (2008)[59]) that most

of the predicting variables in the literature have no ability to predict out-of-sample

returns relative to a historical mean model despite their ability to do so in sample.

Therefore, in this chapter, I also produce Welch-Goyal type figures to see the out-

of-sample performance of the financial obligations ratio relative to historical mean

models.
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4.5.1 Out-Of-Sample Empirical Procedure

I closely follow Welch and Goyal’s (2008)[59] empirical procedure. The out-of-

sample forecast uses only the data available up to the time at which the forecast is

made. Let eB denote the vector of expanding out-of-sample errors from the benchmark

model and eA denote the vector of expanding out-of-sample errors from the OLS

conditional model. The out-of-sample statistics are:

R2 = 1− MSEA
MSEB

∆RMSE =
√
MSEB −

√
MSEA

MSE-F = (T − h+ 1)
(
MSEB−MSEA

MSEA

)
.

R2 is the out-of-sample R-squared (OOS-R2). MSEA = E[e2
A] is the mean-squared

forecasting error from the relevant conditional model. MSEB = E[e2
B] is the mean-

squared error from the benchmark model. RMSE is the root mean-squared error

and ∆RMSE is the difference between the benchmark forecast and the conditional

forecast for the same sample/forecast period. Positive numbers for ∆RMSE indicate

superior out-of-sample conditional forecast. MSE-F is a test statistics designed to

determine whether the one-step-ahead forecasting performance from the benchmark

model is statistically different from the conditional model. It is an out-of-sample F-

type test developed by McCracken (2007)[48]. h is the degree of overlap. The MSE-F

test is a test of equal mean-squared forecasting error. The null hypothesis is that the

conditional model (model 1) and the benchmark models (model 2) have equal mean-

squared error. The alternative hypothesis is that the benchmark model (model 2)

has higher mean-squared error than conditional model (model 1). When the financial

obligations ratio models are compared with other conditional models, the debt service

ratio model is model 1 and each of the other predicting variable models is model 2
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separately.

I compare the out-of-sample performance of financial obligations ratio with other

conditional models by providing figures such as those in Welch and Goyal

(2008)[59]. These figures graph the in-sample and out-of-sample performance of

conditional models.

For the in-sample regressions, the performance is the cumulative squared

demeaned returns minus the cumulative squared regression residual. For the

out-of-sample regressions, this is the cumulative squared prediction errors of the

prevailing mean minus the cumulative squared prediction error of the predictive

variable from the linear historical regression. In the figures, whenever a line

increases, the conditional model predicted better; whenever it decreases, the historical

mean model predicted better. The units in the graphs are not intuitive, but the time

series pattern allows diagnosis of years with good or bad performance. Indeed, the

final ∆SSE statistic in the OOS plot is sign-identical with the ∆RMSE statistic in

our tables. In these figures, we can easily adjust perspective to see how variations in

starting or ending date would impact the conclusion by shifting the graph up or down

(redrawing the y = 0 horizontal zero line). The plots have also vertically shifted the

IS errors, so that the IS line begins at zero on the date of our first OOS prediction. 6

Table 4.9 summarizes the out-of-sample results. Panels A and B use annual data,

the initial estimation period begins in 1980 and ends in 2000. The out-of-sample

estimation period is equal to 20, which is equal to the number Welch and Goyal

(2008) used in their tables. The model is recursively re-estimated until the 2015.

Out-of-sample tests are performed for three overlapping horizons. I consider two-year

6Welch and Goyal 2008[59]
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and three-year overlapping horizons to capture business cycle fluctuations. Panels

C and D report quarterly data. The out-of-sample estimation period here is equal

to 48, which is one-third of the number of periods in the full sample. In Panels C

and D, I report out-of-sample results for one-quarter, four-quarter, and eight-quarter

overlapping horizons.

As Table 4.9 reports, the mean-squared forecasting error of the household

financial obligations ratio model (either DSR or FOR) is always lower than that of

the historical mean benchmark model except for the column where out-of-sample

market excess returns are predicted using one-year returns (H = 1).7 In Panels C

and D, where quarterly data are used, OOS-R2 is always positive and the MSE-F

statistic strongly rejects the null hypothesis. This suggests that information about

the aggregate household financial obligations ratio consistently improves forecasts

over models that use only a constant as a predictive variable. In all panels, as the

number of overlapping horizons is expanded, both in-sample and out-of-sample R2s

increase and MSE-F statistics become stronger. This is consistent with what is

found in the long-horizon analysis in the previous section.

Table 4.10 compares statistics on the out-of-sample performance of the debt service

ratio versus other conditional models using different predicting variables, namely, d/p,

d/y, e/p, i/k, eqis, MKV/GDP , and cay. 8 The comparison is done using stock

market return (Panel A for annual frequencies and Panel C for quarterly frequencies)

and market excess return (Panel B for annual frequencies and Panel D for quarterly

frequencies) forecasts. A ratio of mean-squared errors MSE1/MSE2 less than one

7The MSE-F tests are not significant when using annual data and H = 1. This is expected as
the number of out-of-sample periods and the valuation periods do not seem to be sufficiently large.

8I do not have quarterly data for eqis and MKV/GDP so I exclude these variables when reporting
results using quarterly data (Panels C and D of Table 4.10).
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Table 4.9: Out-of-Sample Tests

This table presents statistics on forecast errors in-sample (IS) and out-of-sample (OOS) for

stock market return (Panels A for annual frequencies and Panel C for quarterly frequencies)

and market excess return (Panel B for annual frequencies and Panel D for quarterly

frequencies) forecasts. H is the number of overlapping horizons in each panel. OOS-R2,

∆RMSE, and MSE-F are explained in the text.

Annual Data: 1980-2015, OOS Estimation Period=20

H =1 H =2 H =3

DSR FOR DSR FOR DSR FOR

Panel A: Stock Market Returns

IS R2 0.050 0.023 0.135 0.076 0.223 0.132

OOS R2 0.019 0.015 0.143 0.095 0.293 0.196

∆RMSE 0.002 0.001 0.011 0.007 0.019 0.013

MSE-F 0.310 0.239 2.329 1.468 4.969 2.932

Panel B: Market Excess Returns

IS R2 0.026 0.004 0.079 0.033 0.123 0.059

OOS R2 -0.040 -0.043 0.061 0.026 0.158 0.093

∆RMSE -0.004 -0.004 0.004 0.002 0.009 0.005

MSE-F -0.617 -0.662 0.917 0.377 2.246 1.237

Quarterly Data: 1980Q1-2015Q4, OOS Estimation Period=48

H =1 H =4 H =8

DSR FOR DSR FOR DSR FOR

Panel C: Stock Market Returns

IS R2 0.029 0.020 0.123 0.094 0.251 0.193

OOS R2 0.029 0.022 0.156 0.122 0.249 0.189

∆RMSE 0.001 0.001 0.004 0.003 0.005 0.004

MSE-F 2.886 2.191 16.620 12.492 27.165 19.067

Panel D: Market Excess Returns

IS R2 0.023 0.014 0.099 0.070 0.200 0.145

OOS R2 0.023 0.017 0.131 0.096 0.212 0.154

∆RMSE 0.001 0.001 0.003 0.002 0.004 0.003

MSE-F 2.295 1.637 13.540 9.603 21.998 14.905
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indicates that the mean-squared forecasting error of the DSR is lower than that

of the conditional model. Annual data and quarterly data both suggest that when

MSE-F is significant, the DSR forecasting model contains information that produces

(almost always) superior forecasts to those produced by any of the other models. For

longer overlapping horizons, this is always the case, suggesting that forecasts using the

financial obligations ratio are consistently superior to forecasts using other popular

forecasting variables.

Figure 4.5 graphs the in-sample and out-of-sample performance of the debt

service ratio augmented model using annual data (the three graphs on the left) and

quarterly data (the three graphs on the right) for different overlapping horizons. For

the in-sample regressions, the performance is the cumulative squared de-meaned

returns minus the cumulative squared regression residual. For the out-of-sample

regressions, the performance is the cumulative squared prediction errors of the

prevailing mean minus the cumulative squared prediction error of the predictive

variable from the linear historical regression. In this figure, whenever a line

increases, the DSR-augmented model predicts better; whenever it decreases, the

historical mean model predicts better. The final ∆SSE statistic in the

out-of-sample plot is sign-identical to the ∆RMSE statistic in our tables. The

figure adjusts the perspective to see how variations in the starting or ending date

affects the conclusion by shifting the graph up or down (redrawing the y = 0

horizontal zero line). The plots also vertically shift the in-sample errors so that the

in-sample line begins at zero on the date of the first out-of-sample prediction (1980

for annual data and 1980’0 for quarterly data). As Figure 4.5 suggests, the

performance of the DSR-augmented model is consistent with Table 4.9. As the

number of overlapping horizons is increased, the out-of-sample performance become

closer to in-sample performance.
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Table 4.10: Out-of-Sample Comparisons

This table compares statistics on OOS performance of debt service ratio versus a conditional

model. The comparison is done using stock market return (Panel A for annual frequencies

and Panel C for quarterly frequencies) and market excess return (Panel B for annual

frequencies and Panel D for quarterly frequencies) forecasts.

Annual Data: 1980-2015, OOS Estimation Period=20

H =1 H =2 H =3

MSE1/MSE2 MSE-F MSE1/MSE2 MSE-F MSE1/MSE2 MSE-F

Panel A: Stock Market Returns

DSR vs. d/p 1.052 -0.794 0.980 0.286 0.920 1.046

DSR vs. d/y 0.928 1.244 0.873 2.042 0.867 1.849

DSR vs. e/p 1.039 -0.599 0.926 1.118 0.838 2.321

DSR vs. eqis 0.983 0.276 0.904 1.491 0.805 2.901

DSR vs. i/k 0.927 1.267 0.804 3.422 0.774 3.495

DSR vs. MKV/GDP 0.800 4.001 0.769 4.197 0.674 5.803

DSR vs. cay 1.198 -2.649 1.195 -2.287 1.044 -0.509

Panel B: Market Excess Returns

DSR vs. d/p 0.980 0.329 0.896 1.627 0.850 2.117

DSR vs. d/y 0.865 2.504 0.804 3.404 0.791 3.169

DSR vs. e/p 1.002 -0.035 0.907 1.430 0.848 2.154

DSR vs. eqis 0.974 0.419 0.908 1.411 0.847 2.164

DSR vs. i/k 1.003 -0.046 0.947 0.786 1.079 -0.882

DSR vs. MKV/GDP 0.721 6.183 0.691 6.250 0.636 6.872

DSR vs. cay 1.104 -1.511 1.068 -0.894 0.953 0.587

Quarterly Data: 1980Q1-2015Q4, OOS Estimation Period=48

H =1 H =4 H =8

MSE1/MSE2 MSE-F MSE1/MSE2 MSE-F MSE1/MSE2 MSE-F

Panel C: Stock Market Returns

DSR vs. d/p 1.044 -4.085 1.113 -9.148 1.198 -13.549

DSR vs. d/y 1.049 -4.475 1.119 -9.575 1.183 -12.700

DSR vs. e/p 1.046 -4.192 1.033 -2.896 0.975 2.083

DSR vs. i/k 0.950 5.056 0.837 17.568 0.759 26.037

DSR vs. cay 0.998 0.188 1.013 -1.166 1.052 -4.086

Panel D: Market Excess Returns

DSR vs. d/p 1.003 -0.291 0.991 0.815 1.008 -0.626

DSR vs. d/y 1.004 -0.388 0.994 0.546 0.992 0.686

DSR vs. e/p 1.008 -0.767 0.951 4.679 0.886 10.579

DSR vs. i/k 0.968 3.213 0.909 9.028 0.878 11.432

DSR vs. cay 0.987 1.296 0.984 1.505 1.036 -2.872
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Figure 4.6 graphs the in-sample and out-of-sample performance of each conditional

model separately. The conditional model relies on predictive variables noted in each

graph. The benchmark is the historical mean model. The interpretation of the

increase and decrease in the lines is the same as in Figure 4.5. In Figure 4.6, I show

only the graphs where stock market annual returns (SP500) are used, the out-of-

sample estimation period equals 20, and the overlapping horizon equal one (H =1).

The H performance of each model is closer to it’s in-sample performance if the solid

line and the dashed line are closer to each other. The figure suggests that financial

obligations ratio, cay, e/p, and eqis augmented models perform relatively better than

the other conditional models.
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Figure 4.5: Out-of-Sample Performance of the DSR-Augmented Model

These graphs plot the in-sample and out-of-sample performance of the DSR-augmented

model. Each line is cumulative squared prediction errors of the historical mean model

minus the cumulative squared prediction error of the DSR-augmented model. The in-

sample prediction-relative performance is the solid line and the out-of-sample prediction-

relative performance is the dashed line. An increase in a line indicates better performance

of the named model; a decrease in a line indicates better performance of the historical mean

model.
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4.6 Conclusion

Using annual and quarterly data from 1980 to 2015, I show that the household

financial obligations ratio can predict market returns at short horizons and over

business cycle frequencies. The debt service ratio is a macroeconomic business cycle

variable that is a better forecaster of future returns both in-sample and

out-of-sample than the dividend-price ratio, dividend-yield, earnings-price ratio,

investment-capital ratio, and other popular forecasting variables. I conduct multiple

regression analyses using some of the most successful predicting variables in the

literature for forecasting one-period-ahead returns and find that the debt service

ratio and the consumption-wealth ratio are the only forecasting variables that

remain significant in these regressions. This indicates that the debt service ratio

contains information about future asset returns that is not included in other

forecasting variables. I also conduct out-of-sample tests and find that information

about the aggregate household financial obligations ratio consistently improves

forecasts over models that use only a constant as a predictive variable and over

other conditional models that use popular forecasting variables.

74



Chapter 5

FINANCIAL OBLIGATIONS RATIO AND THE CROSS-SECTION OF STOCK

RETURNS

This chapter examines whether the risk associated with the aggregate

households’ financial obligations is an economy-wide risk and thus significant for

explaining the variation in the cross-section of stock returns. The multifactor model

proposed is a modification of the CAPM that includes the financial obligations ratio

as a conditioning down variable. The household financial obligations ratio is defined

as the ratio of all debt payments and financial commitments over total disposable

income. The FCAPM examined in this chapter survives a wide range of classical

econometric tests using data from 1980 to 2015. The model performs well in

explaining the variation in average returns across 25 portfolios formed based on size

and the book-to-market ratio. The Hansen-Jagannathan (1994) distance associated

with the FCAPM is calculated and compared to some other conditional and

unconditional models. The consistent pricing of financial obligation risk with a

negative risk premium suggests that the financial obligations ratio acts as a state

variable.
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5.1 Introduction

In an infinitely lived aggregate household endowment economy, Jahangiry

(2016b)[33] explores the effect of a household’s financial obligations ratio on the

equity risk premium. In the partial equilibrium model he proposes, households’

preferences are defined as their consumption relative to financial obligations which

also appear as a borrowing constraint in the model. The household financial

obligations ratio is defined as the ratio of all debt payments and financial

commitments over households’ total disposable income. The financial obligations

ratio is a counter-business-cycle macroeconomic variable that tends to increase in

recessions and decrease in booms (Dynan (2012, 2013), Johnson and Li (2007,

2010)). These obligations affect an individual’s marginal utility of consumption and

reinforce its counter cyclicality over business cycles. In equilibrium, households’

decisions regarding their financial obligation and consumption levels are the driving

forces in Jahangiry’s model in explaining the observed equity risk premium in the

data.

In this chapter, I examine whether the risk associated with the aggregate

households’ financial obligations is an economy-wide risk and thus significant for

explaining the variation in the cross-section of stock returns. As has been well

documented, the standard consumption-based asset pricing model performs poorly

in explaining the cross-section variations of expected returns.1 The FCAPM is an

extension of the CAPM that uses the financial obligations ratio as a conditioning

down variable. The FCAPM can be derived in different ways. One could follow the

1However, Jagannathan and Wang (2005)[31] show that, working with Christmas to Christmas
consumption data, there is still hope that standard consumption data can explain the cross-sectional
variations in excess returns.
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conditional CAPM approach of Jagannathan and Wang (1996)[30] to derive the

multifactor model proposed in this chapter. The conditioning variable would be

financial obligations. Another approach is to approximate the stochastic discount

factor (SDF) using a linear model. Either way, one gets the same model.

But what is the intuition behind thinking of financial obligations as a conditioning

down factor? Or in other words, why am I willing to show that this extra risk

associated with financial obligations is priced across different portfolios of assets? In

the context of asset pricing, the counter cyclicality of financial obligations ratio is

important because I am looking for a conditioning down variable that is correlated

with business cycles, especially with bad times. The intuition is straight-forward:

financial obligations are contractual obligations and must be made regardless of the

realized state of the economy. Only residual income can be used to make consumption-

investment decisions. This would make, ceteris paribus, a marginal investor with a

higher financial obligations ratio more risk averse compared to a marginal investor

with a lower financial obligations ratio. Therefore, the former marginal investor would

be willing to pay more for holding assets that pay off when the financial obligations

ratio is high; that is, he would demand lower expected returns for the equities that

have a positive correlation with financial obligations. Thus, if financial obligations

risk turns out to be an economy-wide aggregate risk to which everybody must pay

attention, then the price of this risk can be expected to be significant in explaining

the expected returns across different assets.

Empirical testing is done by using annual/quarterly data for 1980-2015. I show

that differences in exposure to financial obligations risk, along with exposure to

market risk, could explain the cross-sectional differences in average excess returns

across the 25 benchmark equity portfolios formed based on size and the
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book-to-market ratio. The explanatory power of the financial obligations ratio as a

conditioning down variable is tested using a wide range of econometric tests and

various techniques, including cross-sectional regression (OLS and generalized least

squares (GLS)), the Fama-MacBeth (1973) approach, and generalized methods of

moments (GMM). However, one caveat of testing factor models is that as the

sample size increases, almost every multifactor model is rejected, as the model test

statistic blows up with lower standard errors for the cross-sectional residuals. To

avoid this issue, I use different diagnostic tests along with the classical econometric

test to test the FCAPM. These tests include the “actual versus fitted expected

returns plot,” “firm-specific characteristics test,” and “testing for priced factors.”

The rest of this chapter proceeds as follows. In Section 5.2, I set up the model

and discuss the derivation of the FCAPM. In Section 5.3, I review the data. I explain

estimation procedures in Section 5.4 and present the results in Section 5.5. Section

5.6 concludes.

5.2 The Multifactor Model

The FCAPM presented in this chapter can be derived in different ways. One is to

follow the conditional CAPM approach used by Jagannathan and Wang (1996)[30].

The conditioning down variable used in this chapter would be the financial obligations

ratio. Another way is to start with a no arbitrage assumption and impose a minimal

theoretical structure. In the absence of arbitrage there exists an SDF that prices

all the traded assets in the economy (Harrison and Kreps (1979))[29]. Then I could

approximate the SDF by using a linear model. Using either approach, I get the

same multifactor model. Because the focus in this study is on testing the empirical
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significance of the financial obligations ratio in the cross-section of expected returns,

I do not take a stand on which approach to use.

5.2.1 Financial Obligations Ratio as a Conditioning Down Variable

In a conditional model, its parameters vary over time. A classic example is the

conditional CAPM where expected returns depend on conditional betas times the

conditional factor risk premium:

Et(R
ei
t+1) = βitλMt, (5.1)

where λMt is the market risk premium. Translating equation (5.1) into discount

factor language, there maybe a discount factor m that is a linear function of the

market return and the parameters of the model that vary over time:

mt+1 = at + btR
M
t+1 ⇐⇒ Et(mt+1R

ei
t+1) = 0. (5.2)

The problem of working with a model that has time-varying parameters is that

when testing the model, equation (5.2) cannot be conditioned down using a

managed portfolio, that is,

0 = Et(mt+1R
ei
t+1) = Et

[
(at + btR

M
t+1)Rei

t+1

]
6⇒ 0 = E

[
(a+ bRM

t+1)Rei
t+1

]
.

In words, a conditional model does not imply an unconditional model.2 Conversely,

however, an unconditional model implies a conditional model. To test an

2Jagannathan and Wang (1996)[30] illustrate this concept through the following example:
Consider a hypothetical economy in which the CAPM holds period by period. Suppose that
the econometrician considers only two stocks and that there are only two possible types of dates
in the world. The betas of the first stock in the two date-types are, respectively, 0.5 and 1.25
(corresponding to an average beta of 0.875). The corresponding betas of the second stock are 1.5
and 0.75 (corresponding to an average beta of 1.125). Suppose that the expected risk premium on
the market is 10 percent on the first date and 20 percent on the second date. Then, if the CAPM
holds in each period, the expected risk premium on the first stock will be 5 percent on the first
date and 25 percent on the second date. The expected risk premium on the second stock will be 15
percent on both dates. Hence, an econometrician who ignores the fact that betas and risk premiums
vary over time will mistakenly conclude that the CAPM does not hold, since the two stocks earn an
average risk premium of 15 percent, but their average betas differ.
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unconditional model, the best I can do is to express the time-varying parameters of

the model (at, bt) in terms of a conditioning variable zt, an instrument that is

driving the conditioning information. I model the conditioning information as

below:

mt+1 = a(zt) + b(zt)R
M
t+1, (5.3)

where a(zt) and b(zt) are assumed to be linear in Zt:

a(zt) = a0 + a1Zt b(zt) = b0 + b1Zt,

The SDF can be rewritten as,

mt+1 = a0 + a1Zt + b0R
M
t+1 + b1ZtR

M
t+1. (5.4)

With this new pricing kernel, to test the model I can take the unconditional

expectation from equation (5.2) because a0, a1, b0, b1 are constant. Thus, a

conditional model plus one information variable zt is equivalent to an unconditional

multifactor model. More generally, any conditional model can be written as a larger

unconditional factor model.3

In this chapter, market return is used as a proxy for the universe of risky assets.

Note that unlike Jagannathan and Wang (1996)[30], I exclude human capital from

the universe of risky assets because the return on human capital is indirectly part

3Jagannathan and Wang (1996)[30] work with the conditional CAPM. They show that the
conditional CAPM implies an unconditional three-factor model. They call it the premium-labor
(P-L) model as it includes human capital as a proxy for the universe of risky assets. The P-L model
is given by:

Et(Rt+1) = α+ βpremR
prem
t + βvwR

vw
t+1 + βLR

L
t+1,

where Rprem is the spread between Baa and Aaa bonds and is used as a proxy to capture time
variation in the expected market risk premium. Rvw is the return on the market and RL is the
return on human capital.
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of the model and is captured by the financial obligations ratio.4 In my model the

conditioning down variable is the financial obligations ratio Ft. Replacing Z with F

in equations (5.3) and (5.4) and using a first-order approximation gives the SDF in

(5.5). This is an approximation as I ignore the interactions between the conditioning

variable and market returns as the only factor:

mt+1 ≈ δ0 + δ1R
M
t+1 + δ2Ft. (5.5)

The multi-beta representation of equation (5.5) is given in (5.6):

Et(Ri,t+1) = αi + βiMλM + βiFλF . (5.6)

Here λM and λF are the prices of market risk and financial obligations risk,

respectively. Although βiM is the standard market beta, I define βiF , the financial

obligations beta as below:

βiF =
Cov(Ri,t+1, Ft+1)

V ar(Ft+1)
.

The intuition behind using the financial obligations ratio as a conditioning down

variable has implications for λF , which I explain in detail in the next section.

5.2.2 Intuition, Portfolio Perspective

Let us look at the portfolio logic of how the FCAPM works. Consider two assets,

A and B. They have the same means, same standard deviations, and same betas for

4Lettau and Ludvigson (2001)[43] also work with the conditional CAPM to explain the cross-
section of average returns. They do not include labor income in the proxy for market. They use the
log of the consumption-wealth ratio as a conditioning variable and find:

...We demonstrate that such conditional models perform about as well as the Fama-French three-
factor model on portfolios sorted by size and book-to-market characteristics. The conditional
consumptio CAPM can account for the difference in returns between low-book-to market and high-
book-to-market portfolios and exhibits little evidence of residual size or book-to-market effects.
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the market portfolio. Therefore, they must yield the same expected returns. For an

investor, assets A and B look identical and he could split his portfolio between the two.

Assume that in a recession, the investor is likely to face a higher financial obligations

ratio, either because of greater likelihood of losing his job or more borrowing incentives

to smooth consumption, or both. Also assume that in a recession, stock A goes up

and stock B goes down. In time-series regression language,

Rei
t = ai + βiMR

eM
t + εit. (5.7)

This implies that in a recession, asset A has a positive residual (εAt > 0) and asset B

has a negative residual (εBt < 0); that is, their risks occur at different times. Knowing

these conditions, the investor is expected to buy stock A because stocks A and B are

no longer identical. A stock that goes up when the financial obligations ratio is high

(in bad times), is a good stock to own. Conversely for stock B, the investor wants to

get rid of it as soon as possible because he does not want to lose money at the same

time he loses his job and faces a higher financial obligations ratio. Now go further

and imagine a situation where everybody does this. What is going to happen if many

investors try to buy stock A and sell stock B? It will increase the price of stock A and

drive down its expected returns. Similarly, because everybody wants to sell stock B,

the price of stock B goes down and its expected return goes up.

Therefore, in equilibrium, it is no longer true that the expected returns depend

only on the market betas (E(Rei) = βiλM). This tendency to provide insurance

against a high financial obligations ratio emerges. Expected returns depend on the

market portfolio but also on their tendency to go up and down when financial

obligations are high. Therefore, what was a in equation (5.7) now shows up as betas

with respect to another factor. In terms of time-series regressions:

Rei
t = βiMR

eM
t + βiFFt + εit, (5.8)
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and the expected returns now looks like:

E(Rei) = βiMλM + βiFλF + αi. (5.9)

Intuitively, this financial obligations ratio F is a state variable. The news of future

high ratios is bad. If investors can identify stocks that reliably go up upon news that

there will be a high F in the future, they would want to buy those stocks. One final

note is that because I am working with an aggregate financial obligations ratio in

this model, there is an aggregate hedging demand for F, and therefore it qualifies

as a factor to move prices around. In other words, the risk associated with financial

obligations is an economy-wide risk. The question I address in this chapter is whether

this extra risk is priced in historical data for cross-sectional returns. I use the returns

of 25 portfolios formed based on size and the book-to-market ratio to test whether

these returns are priced by the model in (5.9).

5.3 Data

The data used in this chapter are summarized in Table 5.1. One key advantage

of the FCAPM model with respect to data is that all the variables and factors are

directly observable.

Portfolios returns are the left-hand-side variables in the model. The portfolios

include all stocks listed on the NYSE, NASDAQ, and AMEX. Portfolios are formed

using a two-way sort. Size sorting is based on market capitalization. At the end of

June each year, stocks are ranked according to their market capitalization quintiles.

These quintiles form a set of five portfolios. Book-to-Market sorting is done according

to the ratio of book to market equity. The ratio is book equity for the last fiscal year

divided by market equity. The book-to-market ratio breakpoints are the 20th, 40th,

60th, and 80th percentiles. These breakpoints are used to form another set of five
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Table 5.1: Data Source

Variables Data Source

25 portfolios formed on size and book-to-market Kenneth French’s website

Fama-French (1993) three factors (Mkt, smb, hml) Kenneth French’s website

S&P composite prices and dividends Robert J. Shiller data

One-month T-bill returns Center for Research in Security Prices

Household financial obligations ratio Federal Reserve Bank of St. Louis

portfolios. The intersection of these two sets produces 25 portfolios used as the

dependent variables in this study.

The financial obligations ratio and market portfolio returns are used as the right-

hand-side variables in the model to explain the cross-section of expected returns across

these 25 portfolios. Market returns are value-weighted returns on CRSP stock market

indexes (NYSE-AMEX-NASDAQ-ARCA). A detailed discussion of the derivation of

financial obligations ratio is provided in Chapter 2 and Appendix A.

It is important to check that my conditioning down variable is stationary because

returns are stationary over time and the variables used to explain these returns should

be stationary as well. Table 5.2 shows the ADF unit root test along with the KPSS

test to confirm the stationarity of the conditioning variable. As the ADF test statistic

suggests, the null hypothesis can be rejected at p-values greater than 1.5%, implying

that it can be rejected that financial obligations ratio has a unit root property. The

KPSS test statistic also confirm the stationarity of this ratio, as the hypothesis that

financial obligations ratio is stationary over time cannot be rejected.5

5 The ADF null is “H0 = Ft has a unit root” and the KPSS null is “H0 = Ft is stationary.”
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Table 5.2: Stationarity Tests for the Financial Obligations Ratio

ADF Test Statistics Prob.* KPSS Test Statistics

-3.522 0.014 0.1492

1% level -3.671 0.739

5% level -2.963 0.463

10% level -2.621 0.347

5.4 Estimation Procedure

The model that I estimate in this chapter is:

E(Rei) = γ + βiMλM + βiFλF + αi, (5.10)

where γ is the intercept and αi are the model errors. λM is the market risk premium

and λF is the financial obligation risk premium. βiM and βiF are market beta and

financial obligation beta and are defined as:

βiM =
Cov(Ri,t+1, R

M
t+1)

V ar(RM
t+1)

, βiF =
Cov(Ri,t+1, Ft+1)

V ar(Ft+1)
.

Finally, E(Rei) are the average returns of 25 size and book-to-market portfolios to

be explained by the FCAPM in (5.10). In this section, I discuss in detail how to

estimate α, β, and λ; how to calculate the standard deviations of these estimates;

and how to test the central prediction of the model that alphas should be zero. 6

To do so, I use classic linear regression tests, including the cross-sectional approach

and the Fama-MacBeth (1973) approach. The model is tested by applying the

GMM/SDF approach. Traditionally, time-series regression tests are used, but in my

model, because the financial obligations ratio is not a return factor, I cannot test

the model using time-series regression implications. In other words, the price of risk

6Equivalently, if the quadratic form of the sum of squares of alphas (α̂′V −1α̂) is big enough.
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for the financial obligations factor is not equal to the mean of the factor, that is,

λ̂F 6= ET (F ). I begin with the cross-sectional approach and then conduct the

Fama-MacBeth regressions. Afterward, I estimate the model using GMM approach.

5.4.1 Cross-Sectional Approach

The main economic idea is to explain why average returns vary across portfolios.

The FCAPM model in (5.10) implies that expected returns of an asset should be high

if that asset has high betas; that is, average returns should be proportional to betas.

The cross-Sectional approach is a two-step procedure. In the first step, I estimate

betas (βM , βF ) by conducting a time-series regression. The time-series regression

formula is:

Rei
t = ai + βiMR

M
t + βiFFt + εit t = 1, 2...T ∀i. (5.11)

Here, ai are constants, RM
t and Ft are the right-hand-side variables, and the betas

are the regression coefficients. In the second step, I estimate the factor risk premia

(λM , λF ) by conducting a cross-sectional regression across portfolios of average excess

returns on the estimated betas. Note that in cross-sectional regressions, betas are

the right-hand-side variables, lambdas are the regression coefficients, and alphas are

the cross-sectional regression residuals, the pricing errors. I run the cross-sectional

regression in (5.10) without a constant (i.e, γ = 0 ) because theory posits that the

constant (zero-beta excess return) should be zero.7 Next, I need to complete three

tasks: estimating coefficients, deriving their standard errors, and building a test for

the model. Depending on the assumptions imposed, I use the techniques discussed

below.

7I could also estimate a constant and see whether it is small. This is the trade-off between
efficiency and robustness.
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OLS Cross-Sectional Regression

The OLS cross-sectional regression formula is:

E(Rei) = βiMλM + βiFλF + αi. (5.12)

The assumptions I impose are as follows: (1) betas are fixed and do not change over

time, (2) regression errors and factors are independent and identically distributed

(i.i.d.) over time, (3) residuals are homoskedastic, and (4) factors in cross-sectional

regressions are orthogonal to errors from time-series regressions. Using standard OLS

formulas along with these assumptions, the following is how the estimates, standard

errors, and test of the model are derived.

Estimates: Beta hats, β̂, are estimated from standard time-series OLS

regressions. λ̂ are the slope coefficients in cross-sectional regression, and α̂ are the

errors of cross-sectional regressions:

λ̂ = (β′β)−1β′ET (Re) (5.13)

α̂ = ET (Re)− λ̂β. (5.14)

Standard errors: Standard errors of betas, σ(β̂), are derived from standard

time-series OLS regressions. Accounting for correlated errors, the standard errors of

factor risk premia λ are calculated as follows:

σ2(λ̂) =
1

T

[
(β′β)−1β′Σβ(β′β)−1 + Σf

]
. (5.15)

In equation (5.15) Σ is the time-series residual covariance matrix Σ = cov(εtε
′
t) and

Σf is the covariance matrix of factors. Finally, the covariance matrix of alphas (cross-

sectional regression errors) is derived by

cov(α̂) =
1

T

[
I − β(β′β)−1β′

]
Σ
[
I − β(β′β)−1β′

]′
. (5.16)
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Test: I test whether all the pricing errors (α) are jointly zero, using the following

test statistic:

α̂′cov(α̂)−1α̂ ∼ χ2
N−K . (5.17)

To conduct the test I first compute the number on the left-hand side of (5.17) and

then compare it to the distribution on the right-hand side, which indicates how likely

it is to see a number this large if the true alphas are all zero. In other words, if the

number on the left-hand is big, there is only a small chance of seeing a number this

big if the true alpha is zero. Simply put, by finding big chi-squares, I can reject the

model, meaning that the alphas are not jointly equal to zero.

GLS Cross-Sectional Regression

In the regression model in (5.12) the αi are correlated with each other. For example,

if GM has a low alpha, Ford is also likely to have a low alpha. I run a GLS cross-

sectional regression to address this issue.

Estimates: The estimate of β̂ is unchanged. However, λ̂ and α̂ are estimated

from standard cross-sectional GLS formulas:

λ̂ = (β′Σ−1β)−1β′Σ−1ET (Re) (5.18)

α̂ = ET (Re)− λ̂β. (5.19)

Standard errors: Again, the standard errors of betas, σ(β̂), is unchanged. The

more efficient σ2(λ̂) and cov(α̂) are derived as below:

σ2(λ̂) =
1

T

[
(β′Σ−1β)−1 + Σf

]
. (5.20)

cov(α̂) =
1

T

[
Σ− β(β′Σ−1β)−1β′

]
(5.21)
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Note that the GLS regression should improve efficiency whereas the OLS regressions

are more robust. Hence, I apply both methods and discuss the outcomes in the

“Result” section.

Test: The test statistics looks like the statistic in (5.17) but with a smaller

covariance matrix, reflecting the greater power of the GLS test:

α̂′glscov(α̂gls)
−1α̂gls ∼ χ2

N−K . (5.22)

I also develop an equivalent test that does not require a generalized inverse:

T α̂′glsΣ
−1α̂gls ∼ χ2

N−K . (5.23)

Shanken correction

So far, I have assumed that betas are constant over time. This turns out to be a matter

of concern, even asymptotically. Therefore, I need to use the correct asymptotic

standard errors and covariance matrices of the pricing errors. In all of the following

formulas there is a multiplicative correction (1 + λ′Σ−1
f λ). This correction is due to

Shanken (1992).8

σ2( ˆλOLS) =
1

T

[
(β′β)−1β′Σβ(β′β)−1(1 + λ′Σ−1

f λ) + Σf

]
(5.24)

σ2( ˆλGLS) =
1

T

[
(β′Σ−1β)−1(1 + λ′Σ−1

f λ) + Σf

]
(5.25)

cov( ˆαOLS) =
1

T
(I − β(β′β)−1β′)Σ(I − β(β′β)−1β′)(1 + λ′Σ−1

f λ) (5.26)

cov( ˆαGLS) =
1

T

[
Σ− β(β′Σ−1β)−1β′

]
(1 + λ′Σ−1

f λ). (5.27)

The estimates of β̂ are unchanged. For estimates α̂ and λ̂, I can use either the OLS

or GLS approach. I compare the outcomes from different approaches (i.e, OLS cross-

8I need to make a simplifying assumption that the errors εt are i.i.d. over time and independent
of the factors.
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sectional regressions using Shanken correction vs. GLS cross-sectional regressions

using the Shanken correction) in the “Results” section.

With regard to testing the model, for the OLS cross-section I can use equation

(5.17) by employing the corrected covariance of errors in (5.27). For the GLS cross-

section, I can use the corrected version of equation (5.23), that is,

T (1 + λ′Σ−1
f λ)α̂′glsΣ

−1α̂gls ∼ χ2
N−K . (5.28)

As I show in the “Results” section, this correction (1+λ′Σ−1
f λ) is too big to ignore,

especially in annual data. Therefore, I need a general method that takes into account

all of these issues, namely, correlated cross-sectional errors, generated regressors, and

time-varying betas. In next section I will use GMM to tackle these issues.

Generalized Method of Moments

I need to take into account the fact that betas are “generated regressors.” So far, I

have been able to relax two assumptions: correlated αis are corrected by using the

GLS method and time-varying βs are taken care of by the Shanken correction. Now,

I take the last step and consider the fact that the betas themselves are estimated. By

using GMM, there is no need to assume that factors are independent of error terms

and that the factors are uncorrelated over time. Below are the moments that I use in

the GMM approach:

gT (b) =


E(Re

t − a− βft)

E(Re
t − a− βft)ft

E(Re − βλ)

 =


0

0

0

 . (5.29)

where the top two moment conditions come from time-series regressions and the third

condition is the cross-sectional regression of average returns on betas. In equation
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(5.29), a is a time-series intercept, ft = (ReM
t , Ft) is the vector of factors, and beta

is the vector of market beta and financial obligations beta, that is, β = (βM , βF ). In

GMM, I treat the moments that generate the regressors β (top two moments) at the

same time as the moments that generate the cross-sectional regression coefficient λ

(third-moment conditions). The covariance matrix between the two sets of moments

captures the effects of generating the regressors on the standard error of the cross-

sectional regression coefficients. Now, all I have to do is map the problem into the

GMM notation.9

5.4.2 Fama-MacBeth Approach

In this section, I use the Fama-MacBeth (1973) procedure to run the

cross-sectional regression and calculate test statistics and standard errors that

correct for cross-sectional correlation. The Fama-MacBeth method is a two-step

procedure. The first step is to find beta estimates by running a time-series

regression. Fama and MacBeth use a rolling five-years regression, but I use

full-sample betas. The time-series regressions are the same as in (5.11):

Rei
t = ai + βiMR

M
t + βiFFt + εit t = 1, 2...T ∀i. (5.30)

9 The parameter vector is: b′ = [a′β′α]. The aT matrix chooses which moment conditions are set
to zero in estimation:

aT =

[
I2N 0
0 γ′

]
.

γ is the weighting matrix for the cross-sectional regression. The d matrix is the sensitivity of the
moment conditions to the parameters,

d =
∂gT
∂b′

=

[ −IN −INE(f) 0
−INE(f) −INE(f2) 0

0 −λIN −β

]
.

Finally, the S matrix is the long-run covariance matrix of the moments. For more details see
Cochrane (2009, chap. 12).
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The second step is to run a cross-sectional regression at each time period instead of

estimating a single cross-sectional regression with the sample averages:

Rei
t = βiMλMt + βiFλFt + αit i = 1, 2, ...N ∀t. (5.31)

Again, as theory suggests, I do not add a constant to the cross-sectional equations.

Next, I estimate αi and λ, calculate their standard deviations, and build a test of

the model. Fama and MacBeth suggest estimating λ and αi as the average of the

cross-sectional regression estimates:

λ̂ =
1

T

T∑
t=1

λ̂t, α̂i =
1

T

T∑
t=1

α̂it. (5.32)

I use the standard deviations of the cross-sectional regression estimates to generate

the sampling errors for these estimates (assuming the standard errors are uncorrelated

over time):

σ2(λ̂) =
1

T 2

T∑
t=1

(λ̂t − λ̂)2, cov(α̂) =
1

T 2

T∑
t=1

(α̂t − α̂)(α̂t − α̂)′. (5.33)

As for the test statistic, I test whether all the pricing errors are jointly zero using the

following test,

α̂′cov(α̂)−1α̂ ∼ χ2
N−K . (5.34)

One advantage of the Fama-MacBeth procedure is that it allows for changing betas,

which is hard to incorporate in a single, unconditional, cross-sectional regressions

or a time-series regression test. As stated earlier, Fama-MacBeth is another way of

calculating the standard errors, corrected for cross-sectional correlations. However,

Fama-MacBeth standard errors do not correct for serial correlation in the errors.

Also note that Fama-MacBeth standard errors do not correct for the fact that β̂s are

generated regressors.
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5.4.3 GMM in Discount Factor Form

In asset pricing, most data such as stock returns and portfolio returns are

characterized by heavy-tailed and skewed distributions. Because GMM does not

impose any restriction on the distribution of the data, it is a good alternative to the

least squares estimation method. For the GMM estimation, I use the approximated

SDF presented in equation (5.5). Here is the equation again:

mt+1 ≈ δ0 + δ1R
M
t+1 + δ2Ft (5.35)

The moment condition associated with the SDF approximation is:

Et[(δ0 + δ1R
M
t+1 + δ2Ft)R

i
t+1] = 1. (5.36)

Rt = (R1
t , R

2
t , ..., R

N
t ) denote the vector of returns on N-portfolios at time t. Also, let

δ = (δ0, δ1, δ2) be the vector of unknown parameters and Zt = (RM
t , Ft) be the vector

of factors. Equation (5.36) implies that the pricing error must be a null vector if the

SDF is correctly specified. Denoting the pricing error with gt(δ) results in:

gt(δ) = Rtmt(δ)− 1N . (5.37)

I can compare the different model specifications by looking at a quadratic form of

the estimated pricing errors implied by the model. Equation (5.38) is one common

quadratic form used as a single number to compare different models in the field:

Q = Et[gt(δ)]
′WEt[gt(δ)], (5.38)

where W is a positive definite matrix called the weighting matrix. The choice of W

plays an important role in the validity of the results. For example, Hansen

(1982)[26] suggests using an optimal weighting matrix (i.e, if errors are i.i.d., then

W = var[g(δ)]−1, which can be simply derived from first-stage GMM under the
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identity-weighting matrix or a simple OLS). The disadvantage of this W is that it is

highly model dependent and a smaller Q could be obtained by simply adding more

noise. To avoid this dependency, Hansen and Jagannathan (1994)[27] suggest the

weighing matrix, WHJ = Et(RtR
′
t)
−1. The decision criterion is called the

Hansen-Jagannathan (H-J) distance and is estimated as below,

DistT (δ) =
[
min
δ

gT (δ)′ W−1
T gT (δ)

] 1
2
. (5.39)

where

WT = W(HJ)T =
1

T

T∑
t=1

RtR
′
t

gT (δ) =
1

T

T∑
t=1

[mt(δ)Rt − 1N ].

Hansen and Jagganathan (1997)[28] later show that the H-J distance is equal to the

pricing error for the portfolio most mispriced by the model. Clearly, WHJ does not

depend on model specifications and DistT does not reward SDF volatility; hence, it is

suitable for model comparison. DistT is a measure of model misspecification, meaning

that it gives the distance between mt(δ) and the nearest point in space of all SDFs

that price assets correctly, and it gives the maximum pricing error of any portfolio

formed from the N assets. The H-J distance provides a method for comparing models

by assessing which is least misspecified.

To compare the FCAPM model with different specifications, the null hypothesis

is that financial obligations is relevant for pricing the assets. Under the correct

hypothesis, the H-J distance computed with the proposed model must be smaller

than the H-J distance of the multifactor model that excludes financial obligations.
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5.4.4 Alternative Tests

Actual versus Fitted Expected Returns

As the number of observations increases, almost all of the multifactor models proposed

so far are rejected. Therefore, I need to do some parallel diagnostic tests. The most

common test is to plot the actual returns observed in the data versus the returns

predicted by the model. The more the scattered plot is close to the 450 line, the better

the model fits the data. In the “Results” section, Figure 5.1 compares realized returns

versus the predicted returns of Fama-French’s (1993) 25 portfolios using annual data

between 1980 and 2015. Each point represents one portfolio.

Firm-Specific Characteristics

The question is how to test whether chosen multifactor model is a good approximation

for real data. To examine this, I could add a vector of firm-specific characteristics such

as size, market capitalization, price-to-earnings ratio, book-to-market ratio, and so

on. If the proposed multifactor model is the correct one, firm specific characteristics

should play no role in explaining the returns as they represent risks that can be

diversified away.

Testing for Priced Factors

Can the factor of interest be dropped? I am looking for a statistical procedure to

test which factors survive in the presence of others. There are two right ways to

answer this question. One is by designing a test in a GMM/SDF framework, and the

other is by forming an “orthogonalized factor.” In the GMM/SDF framework, such

a test is very easy. Consider the following general SDF: m = θ1f1 + θ2f2. To test the

given factor f1, is the factor f2 needed to price assets, or equivalently, does θ2 = 0?
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One easy approach to answer this question is the Wald test. Because I do have an

asymptotic covariance matrix for θ = (θ1, θ2),10 I can form a t-test11 or a χ2 test

with the null θ2 = 0. The Wald test statistic is:

θ̂2

′
var(θ̂2)−1 θ̂2 ∼ χ2

#θ2
,

where #θ2 is the number of elements in the vector θ2, which in my case is equal to

one. The second solution to my earlier question (of whether the extra factor can

be dropped?) is to form an orthogonolized factor. Consider this two-factor model:

12 E(Rei) = β1λf1 + β2λf2 + αi. Is the second factor f2 needed? Or equivalently,

can E(Rei) = β1λf1 + αi be written? Apparently α will rise, but will it rise “too

much”? To answer these questions I need to run a regression of f2,t on f1,t and take

the residuals,

f2,t = αf2 + b1f1,t + εt.

Then I can drop f2 from the two-factor model if and only if αf2 is zero. The intuition

is straight-forward: if f1 is sufficient to price f2 , it is sufficient to price anything

that f2 prices. Hence, αf2 = 0 means that all the αi are the same with or without

including the second factor. This procedure is equivalent to forming the following

orthogonolized factor:

f ∗2,t = αf2 + εt = f2,t − b1f1,t.

f ∗2 is a cleaned up version of f2 without any correlation with the first factor. Now if

E(f ∗2,t) = 0, then it is okay to drop the second factor.

10Note that θ is the same as δ estimated in equation (5.36).

11This is true if θ2 is scalar as it is in this chapter.

12I use two-factor model to make it comparable to the FCAPM two-factor model presented in this
chapter. The idea can be extended to any N-factor model.
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5.5 Results

The FCAPM model presented in this chapter is estimated and tested with different

techniques and diagnostic tests discussed throughout this section. Before looking at

the results, look at some characteristics of the data for the sample period between

1980 and 2015. Table 5.3 summarizes the average excess returns of the 25 portfolios

constructed based on size and the book-to-market ratio. The annual excess average

returns range from 6.24% to 19.86%. Table 5.4 summarizes the market betas for these

portfolios, which range from 0.68 to 1.52. As these tables suggest, the average annual

excess returns and betas show large variations across 25 portfolios; hence, there is a

wide dispersion to explain. On average, small size portfolios and high book-to-market

portfolios have higher returns.

Table 5.3: Average Portfolio
Returns

Low Book-to-Market High

Small 6.24 15.45 16.43 18.03 19.86

10.45 14.61 17.31 17.35 16.75

Size 12.18 15.59 15.60 16.55 1.47

14.88 14.23 14.92 15.93 16.42

Big 13.55 13.99 12.85 13.04 14.88

Table 5.4: Market Betas of 25
Portfolios

Low Book-to-Market High

Small 1.52 1.16 0.95 .76 1.05

1.30 0.93 0.81 0.71 0.83

Size 1.21 0.89 0.68 0.83 0.73

1.14 0.83 0.94 0.82 0.94

Big 1.05 0.84 0.91 0.81 0.80
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5.5.1 Cross-Sectional Regressions

The goal is to estimate the parameters of the model in equation (5.12) and

investigate whether the price of market risk (λM) and the financial obligation risk

(λF ) are statistically significant. I report the results using a wide range of

estimation techniques including the OLS/GLS cross-sectional regression,

Fama-MacBeth regression, and GMM. I also correct the OLS/GLS estimates using

the Shanken (1992) correction and report the results. Table 5.5 and Table 5.6

summarize the estimation results under different techniques, using annual data and

quarterly data, respectively.
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Table 5.5: FCAPM Estimation Results (Annual Data)

This table reports results of testing the financial obligations-capital asset pricing model (FCAPM)

using ordinary least squares (OLS) (Shanken (1992)), generalized least squares (GLS (Shanken)),

the Fama-MacBeth (1973) regression, and generalized method of moments (GMM). Numbers in

parentheses are standard errors and numbers in brackets are t-statistics. *** indicates significance

at the 1% level.

OLS (Shanken) GLS (Shanken) FMB GMM

(1) (2) (3) (4)

0.128*** 0.160*** 0.128*** 0.138***

λM (0.031) (0.029) (0.031) (0.015)

[4.11] [5.49] [4.17] [9.48]

-0.021*** -0.005*** -0.021*** -0.017***

λF (0.005) (0.001) (0.005) (0.005)

[-4.21] [-3.09] [-4.27] [-3.49]

J -test 6.12

P -value 0.014

As Tables 5.5 and 5.6 suggest, different estimation techniques indicate that

financial obligations risk is a relevant component of aggregate risk (at least when

using annual data) and its price is statistically significant at the 1% level. The

J -test is the test of the model using the GMM approach. It indicates that the null

hypothesis that all the alphas are jointly equal to zero cannot be rejected at 1%

level using annual data and at the 5% level using quarterly data. Note that the

price of financial obligations risk is negative, which is intuitive. It implies that if a

portfolio has a positive correlation with financial obligations, it should worth more

and hence have a lower expected return.
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Table 5.6: FCAPM Estimation Results (Quarterly data)

This table reports results of testing the financial obligations-capital asset pricing model (FCAPM)

using ordinary least squares (OLS) (Shanken (1992)), generalized least squares (GLS (Shanken)),

the Fama-MacBeth (1973) regression, and generalized method of moments (GMM). Numbers in

parentheses are standard errors and numbers in brackets are t-statistics. *** indicates significance

at the 1% level.

OLS (Shanken) GLS (Shanken) FMB GMM

(1) (2) (3) (4)

0.032*** 0.031*** 0.032*** 0.035***

λM (0.008) (0.007) (0.008) (0.002)

[3.77] [4.34] [4.32] [19.86]

-0.013* -0.002 -0.013*** -0.007

λF (0.008) (0.002) (0.004) (0.006)

[-1.72] [-0.7] [-3.37] [-0.99]

J -test 4.45

P -value 0.034

5.5.2 Generalized Method of Moments and Stochastic Discount Factor

I estimate the SDF in equation (5.35) and compare the FCAPM pricing

implications with the following models: consumption capital asset pricing model

(CCAPM), CAPM, FCAPM, Fama-French (1993) three-factor model (FF3), and

Fama-French three-factor model plus financial obligations ratio (FFF). The H-J

distance provides a method for comparing models by assessing which is least

misspecified. As can be seen in Table 5.7, FCAPM does a good job using both
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annual data and quarterly data. The H-J distance associated with FCAPM is

smaller than the distance associated with CCAPM, CAPM, and FF3. Comparing

FF3 and FFF shows that H-J distance computed with FFF is smaller than the H-J

distance of the multifactor model that excludes financial obligations. This suggests

that financial obligations risk is important for pricing assets and is a relevant factor.

Table 5.7: Hansen-Jagannathan Distance

Model Quarterly Annual

CCAPM 0.0851 0.1889

CAPM 0.0746 0.1756

FCAPM 0.0665 0.1686

FF3 0.0616 0.1736

FFF 0.0563 0.1674

Using equation (5.35), mt+1 ≈ δ0 + δ1R
M
t+1 + δ2Ft, I normalize δ0 to be equal to 1.

This normalization has no effect on the pricing implications. Next, I estimate δ1 and

δ2, using iterative GMM. Table 5.8 summarizes the coefficients of market returns and

financial obligations. As this table suggests, the estimates are statistically significant

and the null hypothesis that the moment conditions are correctly specified cannot be

rejected. There are 25 moment conditions and 2 unknown parameters so the degree

of freedom of the chi-square test statistic is equal to 23.
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Table 5.8: GMM and SDF

This table presents results using generalized method of moments (GMM) and stochastic

discount factor (SDF). Numbers in parentheses are standard errors and numbers in brackets

are t-statistics. *** indicates significance at the 1% level.

mt+1 = δ0 + δ1R
M
t+1 + δ2Ft

48.90***

δ1 (4.53)

[10.80]

-13.95***

δ2 (4.57)

[-3.04]

J -test 25.328

p-value 0.334

5.5.3 Actual versus Fitted Expected Returns

Figure 5.1 compares realized returns versus predicted returns of Fama-French’s

(1993) 25 portfolios using annual data between 1980 and 2015. Each point represents

one portfolio sorted by size and book-to-market ratio. The inability of the CCAPM

to explain variation in the cross-section of average returns is clear. The adjusted R2

associated with the CCAPM is only 21.75%. The FCAPM model does much better

than the CCAPM. The plot of actual returns versus fitted returns is given in Figure

5.2. The fit is better, with an adjusted R2 of 64.22%.
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Figure 5.1: CCAPM: Actual versus Fitted Returns

Figure 5.2: FCAPM: Actual vs. Fitted Returns
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Firm-Specific Characteristics

One diagnostic test used to see whether the model captures all economy-wide risk

is to extend the model and examine whether adding firm-specific characteristics to

the model can improve its performance. Therefore, I add the average firm size within

each of the 25 portfolios to the FCAPM and estimate the Size-FCAPM model defined

as:

E(Rei) = βiMλM + βiFλF + sizei λsize + αi, (5.40)

where the sizei is the average firm size for each portfolio and λsize is the price

associated with this firm-specific size risk. As can be seen in Table 5.9, firm-specific

size plays no role in explaining the portfolio returns: the coefficient is almost zero

and the t-statistic is not significant. This is not surprising as the risk associated with

firm-specific size could be diversified away.

Table 5.9: Size-FCAPM Model Estimation

This table presents results for the Size-FCAPM (financial obligations-capital asset pricing

model). *** indicates significance at the 1

λM λF λsize

0.125*** -0.021*** 4.23E-07

(0.011) (0.004) (1.05E-06)

[11.68] [-5.17] [0.40]
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Testing for Priced Factors

To test whether given market returns RM
t and financial obligations ratios Ft at each

time t, financial obligations ratio is needed to price assets? Or can Ft be dropped?

Using the GMM/SDF approach, this is equivalent to whether δ2 = 0:

mt+1 = δ1R
M
t+1 + δ2Ft.

I use the Wald test to answer this question. Using the standard errors of δ̂2 by

applying the GMM approach, the Wald test statistic and the p-value of the null

hypothesis H0 : δ̂2 = 0 are:

Waldδ̂2 = 9.31, Pvalue = 0.002.

Therefore, as the Wald test statistic suggests, the null hypothesis can be rejected,

meaning that the financial obligations ratio is priced as a factor and the risk associated

with Ft plays an important role in pricing the assets. Another way to check whether

the financial obligations ratio can be dropped is the test I proposed in Section 5.4.3.

Basically, I run a regression of Ft on RM
t and take the residuals:

Ft = αF + bMR
M
t + εt. (5.41)

Table 5.10 summarizes the estimations of (5.41). As can be seen, the intercept αF

is large and statistically significant. Therefore, Ft cannot be dropped. In other

words, market returns alone are not sufficient to price everything that the financial

obligations ratio prices.
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Table 5.10: Can we drop the Financial Obligations Ratio?

This table presents results of estimating equation (5.41). *** indicates significance at the

1% level.

αF bM

0.167*** -0.011

(0.002) (0.007)

[99.71] [-1.34]

5.6 Conclusion

Conditioning down on the financial obligations ratio, the FCAPM proposed in

this chapter survives a wide range of classical econometric and diagnostic tests used

to explain the variations in average returns across 25 portfolios formed based on size

and the book-to-market ratio. I show that the risk associated with aggregate

households’ financial obligations is an economy-wide risk and is priced across

different portfolios of assets. The consistent pricing of financial obligation risk with

a negative risk premium suggests that the household’s financial obligations acts as a

state variable. The intuition is straight-forward. The negative risk premium for the

financial obligations ratio implies that a portfolio that pays off in bad times — that

is, when the financial obligations ratio is high — is more valuable to investors and

there is a hedging demand for it. Hence, this portfolio should have lower expected

returns.
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APPENDIX A

FINANCIAL OBLIGATIONS RATIO: DATA
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From Federal Reserves Board 1

The household Debt Service Ratio (DSR) is the ratio of total required household

debt payments to total disposable income. The DSR is divided into two parts:

Mortgage DSR and Consumer DSR. The Mortgage DSR is total quarterly required

mortgage payments divided by total quarterly disposable personal income. The

Consumer DSR is total quarterly scheduled consumer debt payments divided by

total quarterly disposable personal income. The Mortgage DSR and the Consumer

DSR sum to the DSR. Quarterly values for the Debt Service Ratio are available

from 1980 forward.

The limitations of current sources of data make the calculation of the ratio

especially difficult. The ideal data set for such a calculation would have the required

payments on every loan held by every household in the United States. Such a data

set is not available, and thus the calculated series is only an approximation of the

debt service ratio faced by households. Nonetheless, this approximation is useful to

the extent that, by using the same method and data series over time, it generates a

time series that captures the important changes in the household debt service

burden. The series are revised as better data or improved methods of estimation

become available. To create the measure, payments are calculated separately for

revolving debt and for each type of closed-end debt, and the sum of these payments

is divided by disposable personal income as reported in the National Income and

Product Accounts. For revolving debt, the assumed required minimum payment is

2-1/2 percent of the balance per month. This estimate is based on the January 1999

Senior Loan Officer Opinion Survey, in which most banks indicated that required

monthly minimum payments on credit cards ranged between 2 percent and 3

1Data description is provided by the Federal Reserve Board. https://www.federalreserve.
gov/releases/housedebt/about.htm
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percent, a ratio that apparently had not changed substantially over the previous

decade.

Payments on closed-end loans, which are calculated for each major category of

closed-end loan, are derived from the loan amount outstanding, the average interest

rate, and the average remaining maturity on the stock of outstanding debt.

Estimates of the amount of mortgage debt are taken from the Federal Reserve

Board’s Z.1 Financial Accounts of the United States statistical release, and

estimates of outstanding consumer debt are taken from the Federal Reserve’s G.19

Consumer Credit statistical release. For consumer debt, a more detailed breakdown

by type of closed-end loan is obtained using internal Federal Reserve estimates and

data from the Federal Reserve’s Survey of Consumer Finances (SCF). Interest rates

on closed-end consumer loans are obtained from the Federal Reserve Board’s G.19

Consumer Credit and G.20 Finance Companies statistical releases, the SCF, and

additional proprietary data sources. An estimate of the interest rate on the stock of

outstanding debt is obtained by weighting the recent history of interest rates using

information on the age of outstanding loans in the SCF. The interest rate on the

stock of outstanding mortgage debt is an estimate provided by the Bureau of

Economic Analysis. Maturity series for consumer debt are taken from the SCF.

Maturity series for mortgage debt are calculated using data from Lender Processing

Services and Mortgage Bankers Association.

The financial obligations ratio is a broader measure than the DSR. It includes rent

payments on tenant-occupied property, auto lease payments, homeowners’ insurance,

and property tax payments. These statistics are obtained from the National Income

and Product Accounts.
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APPENDIX B

LINEARIZING THE PRICING KERNEL
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In this appendix, I explore how the model proposed in Chapter 3 is able to generate

a more volatile kernel while keeping the risk-free interest rate low. The linearized

version of the stochastic discount factor is:

Mt+1 = β

(
Ct+1

Ct

)−γ (
St+1

St

)−γ
= β exp

{
(−γ)

(
ln
Ct+1

Ct

)}
exp

{
(−γ)

(
ln
St+1

St

)}
,

where Ct is aggregate consumption and St is the surplus consumption ratio defined

as St = Ct−Gt
Ct

. Gt is aggregate financial obligations in period t. Taking the logarithm

from both sides and letting ct = ln(Ct) and st = ln(St) result in the following:

lnMt+1 = ln β + (−γ)(ct+1 − ct) + (−γ)(st+1 − st). (B.1)

Now, some simplifying assumptions need to be made. For aggregate U.S. data on per

capita consumption of nondurables and services, a good approximation to the data

is the following model that makes the growth in the log of per capita consumption a

random walk with drift:

ct = µc + ct−1 + σcεt, where εt i.i.d. ∼ N(0, 1). (B.2)

Assuming that the growth in the surplus consumption ratio also follows a random

walk,

st = µd + st−1 + σdεt, where εt i.i.d. ∼ N(0, 1). (B.3)

Note that µd and σd are the drift term and standard deviation term of the random

walk process for the surplus consumption ratio. Now using (B.2) and (B.3) in (B.1)

result in the following:

lnMt+1 = ln β + (−γ)(µc + σcεt) + (−γ)(µd + σdεt). (B.4)
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Because εt is i.i.d. ∼ N(0, 1), then lnMt+1 is also normally distributed with mean µ

and variance σ2:

µ = ln β + (−γ)µc + (−γ)µd (B.5)

σ2 = (−γ)2σ2
c + (−γ)2σ2

d (B.6)

From a property of normal distribution,1 E(Mt+1) and σ(Mt+1) can be derived as

follows:

E(M) = exp(µ+
σ2

2
) (B.7)

σ(M) = E(M)
√

exp(σ2)− 1. (B.8)

Having E(M) and σ(M) in hand, I can now derive an equation for gross risk-free rate

RF and explain the intuition behind:

Rf = E(M)−1 ⇒ ln(Rf ) = ln(1 + rf ) = − lnE(M) = − ln(exp(µ+
σ2

2
)) = −µ− σ2/2

Using equations (B.7) and (B.8), the approximate risk-free rate is:

rf ≈ − ln β + γµc + γµd − γ2 σ
2
c

2
− γ2 σ

2
d

2
(B.9)

Equation (B.9) has some important implications. There are five terms in this equation

that according to the set-up of my model can be interpreted as follows:

1Property: If logX ∼ N(µx, σ
2
x), then E(X) = exp(µx +

σ2
x

2 ) and std(X) = E(m)
√

exp(σ2)− 1.
Here std denotes a standard deviation.
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1. − ln β: As β, the time discount factor decreases, agents become less patient and

require higher interest rates to substitute consumption over time. For example,

if β is calibrated to 0.99, this means that approximately 1% of the risk-free rate

is due to time preferences.

2. γ µc: For γ > 0, this implies that as consumption growth increases,

individuals should be compensated with higher interest rates to sacrifice

today’s consumption for tomorrow’s consumption.

3. γ µd: For γ > 0, this implies that in recessions, when consumption gets close

to financial obligations, the surplus consumption ratio decreases and investors

require higher interest rates.

4. −γ2 σ2
c

2
: Analogous to standard consumption-based models, this part of

equation (B.9) can be interpreted as precautionary savings. The coefficient of

consumption growth volatility is negative, implying that as consumption

growth becomes more volatile, precautionary savings push the interest rate

down.

5. −γ2 σ2
d

2
: This term adds up to the precautionary savings part of equation (B.9)

due to economic uncertainties. As the volatility of the surplus consumption

ratio increases, demand for safer assets increases which leads to lower interest

rates. This is what enables my model — unlike the standard consumption-based

model — to generate lower risk-free rates for higher coefficients of risk aversion.
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