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ABSTRACT 

Image processing has changed the way we store, view and share images. One important 

component of sharing images over the networks is image compression. Lossy image 

compression techniques compromise the quality of images to reduce their size. To ensure 

that the distortion of images due to image compression is not highly detectable by 

humans, the perceived quality of an image needs to be maintained over a certain 

threshold. Determining this threshold is best done using human subjects, but that is 

impractical in real-world scenarios. As a solution to this issue, image quality assessment 

(IQA) algorithms are used to automatically compute a fidelity score of an image.  

However, poor performance of IQA algorithms has been observed due to complex 

statistical computations involved. General Purpose Graphics Processing Unit (GPGPU) 

programming is one of the solutions proposed to optimize the performance of these 

algorithms.  

This thesis presents a Compute Unified Device Architecture (CUDA) based optimized 

implementation of full reference IQA algorithm, Visual Signal to Noise Ratio (VSNR) 

that uses M-level 2D Discrete Wavelet Transform (DWT) with 9/7 biorthogonal filters 

among other statistical computations. The presented implementation is tested upon four 

different image quality databases containing images with multiple distortions and sizes 

ranging from 512 x 512 to 1600 x 1280. The CUDA implementation of VSNR shows a 

speedup of over 32x for 1600 x 1280 images. It is observed that the speedup scales with 

the increase in size of images. The results showed that the implementation is fast enough 

to use VSNR on high definition videos with a frame rate of 60 fps. This work presents the 

optimizations made due to the use of GPU’s constant memory and reuse of allocated 
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memory on the GPU. Also, it shows the performance improvement using profiler driven 

GPGPU development in CUDA. The presented implementation can be deployed in 

production combined with existing applications. 
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Chapter 1. Introduction 

Image processing technologies have changed the way we view, store and share 

images. Transmission of large images over the network has increased dramatically since 

the recent advancement of connectivity among devices (Chandler, 2013). The real-time 

image and video transmitting mechanisms have been possible because of the betterment 

in image processing techniques. One important factor for seamless transfer of multiple 

images or video over the network is image compression. In the case of lossy 

compression, the quality of images is compromised. For example, in JPEG compression, 

blurring and blocking are some of the significant artifacts generated that lead to 

degradation (Wang, Bovik, Sheikh, & Simoncelli, 2004).  

To ensure that image degradation due to losses in image compression is not 

detectable by humans, we need a method to analyze the compressed image. Human 

assessment of an image could be a method to analyze the quality of images but it is 

inefficient and possibly varied across different people. Firstly, it requires large-scale 

studies with hundreds of human subjects per image. Secondly, the quality score can be 

varied across individuals (Yadav, 2016). Hence, it is not feasible to use humans for 

analyzing the huge number of images that are expected to be transferred in real time. 

Image quality assessment (IQA) algorithms are developed to automate the process of 

analyzing images.  

The goal of IQA algorithms is to develop a quantitative measure that can 

automatically predict the quality of the image (Wang, et al., 2004). IQA has gradually 

become a major subfield of image processing and is attracting a lot of researchers 

because of its utility. 
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Image Quality Assessment (IQA) Algorithms 

IQA and Video Quality Assessment (VQA) algorithms employ different 

approaches but they share two common algorithmic operations, a local frequency-based 

decomposition (filtering/filter banks or transforming) and block-based statistical 

comparisons between the frequency coefficients of the reference and distorted 

images/videos (statistical computation) (Phan, Sohoni, Chandler, & Larson, 2012). There 

are three types of IQA algorithms currently in research i.e. full reference, reduced 

reference and no reference algorithms.  

Full reference algorithm takes an original image and a distorted image as input 

and returns a fidelity metric for the level of distortion. These algorithms are mostly used 

in image compression and television where the ideal image is available (Li, Wu, Chen, & 

Li, 2009). One example of full reference IQA algorithm is Visual Signal-to-Noise Ratio 

(VSNR), which first detects the distortions in the presence of a reference image. Based on 

the level of distortion, it operates based on the low-level visual property of contrast and 

mid-level visual property of global precedence to find the quality score (Chandler & 

Hemami, 2007). 

Reduced reference algorithm assesses the quality using a distorted image and 

partial information about the original image. The partial information is the set of 

extracted features from the ideal image (Li, et al., 2009). Wang & Simoncelli (2005) 

developed a reduced reference IQA algorithm that uses the Kullback-Leiber distance 

between the marginal probability distributions of wavelength coefficients of the reference 

and distorted images as a measure of image distortion. 
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No reference algorithms assess the quality of images using a distorted image and 

without the availability of original image. These algorithms are used in photography, 

where the ideal image is not available (Li, et al., 2009). An example of no reference IQA 

algorithm is Blind, which uses natural scene statistics (NSS) model of discrete cosine 

transform (DCT) coefficient to predict the quality score (Saad, Bovik, & Charrier, 2012).  

One of the most prominent problems in IQA algorithms is their performance 

which refrains us to use these algorithms for real-time applications. IQA algorithms 

require intensive computation power to attain high accuracies. As we start using IQA 

algorithms for high definition images (4K resolutions) and video processing, the runtime 

performance of the algorithms run short. As suggested by Chandler (2013), to use these 

algorithms in mainstream applications, we need to optimize the performance of these 

algorithms while maintaining the accuracy. We can optimize performance by either 

making algorithm level modification or accelerate the processing by using alternative 

processing methods. 

One solution is to use modern CPUs but they are insufficient to process IQA 

algorithms in real time (Park, Singhal, Lee, Cho, & Kim, 2011). Other solution for 

accelerating performance could be the General Purpose Graphics Processing Unit 

(GPGPU). Graphics Processing Units (GPUs) have evolved into an extremely powerful 

resource, which is an attractive alternative to process images for assessing quality in real 

time.   

GPU Computing  

GPU computing has been the most emerging alternative for modern computation. 

Now, GPUs are used not just for graphical processing but also for arithmetic 
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computation. The rapid increase in the performance of GPUs and improvement in its 

programmability has made them an attractive option for high computation tasks (Owens, 

et al., 2007). For example, the number of flops of NVIDIA Ge80 series has got 520G 

flops in late 2006 whereas Intel 64-bit dual core CPU has only 32 G flops (Yang, Zhu, & 

Pu, 2008). This shows the difference between the computation powers of CPU and GPU. 

NVIDIA introduced a new programming model named Compute Unified Device 

Architecture (CUDA) that helps programmers write massively parallel code in C/C++. 

CUDA makes it simple to write code that can run on thousands of threads in parallel. 

CUDA uses the approach of General Purpose GPU (GPGPU) programming where the 

program is partially executed on CPU and partially on GPU. CPU is more generally used 

to transfer memory to GPU and initiate execution on GPU. High programmer 

acceptability makes CUDA an excellent programming model for massively parallel 

programming.  

In image processing, substantial pixel data is processed and with the increase in 

the number of pixels, as in the case of high definition and post high definition images, the 

size of images increases significantly. Thus, CPU computation power does not suffice in 

some cases and GPGPU programming can provide highly data-parallel processing (Yang, 

Zhu, & Pu, 2008). GPGPU programming, being the Single Instruction Multiple Data 

(SIMD), can work well with huge matrices, like images (Yang, Zhu, & Pu, 2008). The 

implementation of histogram equalization using CUDA was reported with more than 40x 

speed and speed up increased with the size of the image significantly (Yang, et al., 2008). 
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CUDA Programming 

CUDA is a programming model that consists of two sections, one is the device 

code that is executed on GPU and the other is the sequential C code that is executed on 

CPU. Device code is called using the kernel functions. Each instruction is executed by a 

thread, which is a smallest individually executable unit. Thread in CUDA has three 

dimensions, making it ideal to work with matrices. Threads combine to form a block and 

blocks combine to form a grid. Depending on a GPU, a single block can contain up to 

2048 threads. Each thread execution can be forced to wait for other threads to reach the 

instruction to synchronize. Figure 1 demonstrates the structure of grid, blocks, and 

threads. 

 
Figure 1 Grid of Thread Blocks (CUDA C Programming Guide, 2015, p. 23) 

CUDA provides a functionality to allocate and deallocate memory from the host 

i.e. CPU. Based on the GPU, CUDA can provide support for different types of memories. 
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First, global and constant memories, which are shared among all threads executed on the 

GPU. Next, shared memory, which is faster than the global memory and is shared among 

the threads in a block. Last, local memory, which is the fastest and smallest memory of 

all, and is local to a single thread. Figure 2 shows the overview of memory distribution on 

a GPU. 

 
Figure 2 Memory Hierarchy (CUDA C Programming Guide, 2015, p. 25) 

Overview 

In this thesis, an effort to optimize a wavelength based full reference IQA 

algorithm, VSNR using CUDA is presented. Chapter 2 will discuss the previous work on 

microarchitectural analysis and optimization of IQA algorithms. Chapter 3 will introduce 

VSNR algorithm and its performance review in detail. Chapter 4 will discuss the 

implementation of VSNR using CUDA. Chapter 5 will specify the details of the 
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experiment. Chapter 6 will analyze the results of the experiments. Chapter 6 will include 

the conclusion of the experiments. Finally, Chapter 7 will discuss the future works related 

to VSNR optimizations.  
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Chapter 2. Related Work 

In this chapter, we will discuss the other publications related to IQA algorithm 

and other efforts to optimize IQA algorithms. As mentioned in the previous section, IQA 

Algorithms require a lot of statistical computation to assess a quality of image accurately 

and therefore raises the issue of slow execution. As suggested by Chandler (2013), to use 

these algorithms in mainstream applications, we need to optimize execution time of these 

algorithms while maintaining the accuracy. We can optimize performance by either 

making algorithm level modification or accelerate the processing by either using GPUs or 

multi-core CPUs. 

One of the efforts to improve performance was presented by Chen & Bovik 

(2011) called Fast Structural Similarity index (SSIM) and Fast Multi-Scale-SSIM (MS-

SSIM), which were the algorithm level modifications to optimize SSIM and MS-SSIM 

respectively. Firstly, Fast SSIM modified the calculation of luminance term using 8 x 8 

square window and an integral image technique. Secondly, calculation of variance was 

replaced by gradient value. Lastly, integer approximation was used in place of the 

Gaussian weighting window. These modifications resulted in the speedup of 2.68x and 

approximately 10x for Fast SSIM and Fast MS-SSIM respectively.  

Another effort was made by Okarma & Mazurek (2011) to optimize SSIM and 

MS-SSIM using CUDA based implementation, which resulted in the speedup of 150x 

and 55x for the SSIM and MS-SSIM respectively.   

Gordon, Sohoni, & Chandler (2010) reported the degradation in performance of 

PSNR when implemented using CUDA. The degradation was reported due to the 
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overhead of repeated memory transfers between CPU and GPU which overruled 

statistical computation.  

Phan, et al. (2012) performed analysis of the IQA algorithm Most Apparent 

Distortion (MAD) (Larson & Chandler, 2010), to accelerate expensive stages of the 

algorithm, i.e. local frequency-based decomposition and statistical comparisons between 

the frequency coefficients of the reference and distorted images. The author proposed 

four methods of acceleration, generalized integral images, inline expansion, GPGPU and 

code optimizations.  

Phan, et al. (2014) further conducted a microarchitectural analysis of IQA 

algorithms. It included four full reference IQA algorithms, MAD (Larson & Chandler, 

2010), MS-SSIM (Wang, Simoncelli, & Bovik, 2003), VIF (Sheikh & Bovik, 2006) and 

VSNR (Chandler & Hemami, 2007), and two no reference IQA algorithms, Blinds (Saad, 

Bovik, & Charrier, 2012) and Brisque (Mittal, Moorthy, & Bovik, 2012). To perform 

microarchitectural analysis, the code of these algorithms was first ported to C++ for 

uniformity, and Intel’s Vtune Amplifier XE (Intel, 2017) was used for microarchitectural 

analysis and to identify the bottleneck segments. Phan, et al. (2014) reported bottlenecks 

in two central categories, memory bottlenecks, and core/computational bottlenecks. They 

proposed to analyze characteristics of execution on different architectures, such as image 

processing cores and GPUs. 

Holloway (2015) made an effort to optimize MAD (Larson & Chandler, 2010) 

using GPGPU, as proposed by Phan, et al. (2012). He reported speed up of 24.76x 

speedup over the CPU implementation for single GPU implementation and 43x for multi-

GPU (3 GPUs used in the experiment) implementation. The reported multi-GPU 
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implementation was approximately 1.74x faster than single GPU implementation, which 

is less than expected. The reduced speed up was revealed to be due to the overhead of 

transferring data across PCIe buses. 

 Kannan, Holloway, Sohoni, & Chandler (2017) conducted a microarchitectural 

analysis of CUDA implementation of MAD (Holloway, 2015) using the Nvidia Visual 

Profiler (Nvidia Visual Profiler, 2017). He reported the memory bandwidth, i.e. rate of 

reading and writing data to memory, as the major hotspot of the implementation.  

Yadav, Sohoni, & Chandler (2017) presented a GPU implementation of Blinds 

(Saad, et al., 2012) to improve performance. He reported a speed up of 30x over the CPU 

implementation for thirty iterations of a 512 x 512 image. In the implementation, the 

bottleneck was sorting operations on image vector, which took 44% of the total execution 

time. 

Previous research (Phan, et al., 2014; Chandler, 2013) has suggested the use of 

GPUs for performance optimization of IQA algorithms. While the degradation of 

performance was observed in the GPU based CUDA implementation of Peak Signal to 

Noise Ratio (PSNR) (Gordon, et al., 2010), tremendous speedups were observed from 

GPU based CUDA implementation of SSIM (Okarma & Mazurek, 2011), MS-SSIM 

(Okarma & Mazurek, 2011), MAD (Holloway, 2015) and Blinds (Yadav, 2016). The 

above examples show that CUDA has a potential to optimize an algorithm significantly 

considering the memory transfers do not overrule the computation. Hence, an effort to 

optimize VSNR using CUDA has the potential to show positive results. 
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Chapter 3. VSNR Algorithm 

VSNR is an IQA algorithm developed by Chandler & Hemami (2007). It provides 

a metric for quantifying visual fidelity of natural images based on near threshold and 

suprathreshold properties of human vision. 

 
Figure 3 Overview of VSNR (Phan, et al., 2014) 

The algorithm first operates on low-level Human Visual System (HVS) properties of 

contrast sensitivity and visual masking. If the distortions are below the threshold, the 

low-level HVS properties obtained from the previous step and mid-level properties of 

global precedence are used to measure the structural degradation (Chandler & Hemami, 

2007). VSNR uses following to measure the visual fidelity (Chandler & Hemami, 2007); 

1. contrast threshold for detection of distortions.  

2. measure of the perceived contrast of the distortion 

3. a measure of the degree to which the distortions disrupt global precedence and 

degrade the image structure. 

VSNR uses two images, original image (I) and distorted image (Î). From the I and Î, 

an error image is computed, given by E = Î − I, which denotes the distortions in Î. Both I 



 12

and E are preprocessed using M-level 2D separable Discrete Wavelet Transform (DWT) 

with 9/7 biorthogonal filters. M-level DWT results in 3M+1 sub-bands (Chandler & 

Hemami, 2007).  

Next both images are modeled, according to the viewing conditions, using the pixel-

value-to-luminance response characteristic, 

 ���	 = �
 + ��	 (1) 

where b represents the black-level offset, k the pixel-value-to-voltage scaling factor, and 

γ the gamma of the display monitor (Chandler & Hemami, 2007). In addition to this, a 

vector of octave-spaced frequencies f, in cycles/degree, is computed based on the viewing 

distance and the resolution of display using 

 �� = 2����tan� π180	 (2) 

where m denotes level from DWT, r denotes the resolution of the display in pixel per unit 

distance, and v is the viewing distance expressed in the corresponding units of distance 

(Chandler & Hemami, 2007). 

As specified earlier, VSNR works in two stages: first, it computes the contrast 

threshold and second, if the distortions have exceeded the threshold, i.e. suprathreshold, 

visual fidelity is estimated using perceived contrast and the extent to which the global 

precedence is disrupted by distortion (Chandler & Hemami, 2007). 

In stage 1, initially, to compute threshold of contrast detection, the threshold contrast 

SNRs centered at spatial frequency are computed using following model for each level of 

DWT 
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 ������ !" = #$��%& '(���	)%* (3) 

where �� denotes the spatial frequency for level m and #$ = 58.9, #. = −0.1258, #/ =
−0.1087 are the constants based on the average threshold (Chandler & Hemami, 2007). 

Now, values obtained from Equation 3 is used to compute contrast detection threshold 

using  

 �1�2|4	 = 5 ��4��	������ !"5 (4) 

where �64��7 is  

 �64��7
≈ �92�:;�<	6
 + �=>7�/�	 ?@.AB<��,;D	E + @.AB<��,D;	E + @.[B<��,DD	] (5) 

where @ is the standard deviation, LH, HL, and HH are the sub-bands from DWT, :;�<	 is 

the mean of pixel-value-to-luminance of the original image, and :< is the mean of the 

image (Chandler & Hemami, 2007). Secondly, ��2	 is computed, which is the RMS 

contrast defined by 

 ��2	 = 1:;�<	 H1� IA��2J + :<	 − :;�K)=>	E.L
JM/ N/.  (6) 

Finally, if ��2	 < �1�2/4 	, the distortions are below threshold and Î is visually 

indistinguishable from I. Otherwise stage 2 is executed to compute the fidelity score 

(Chandler & Hemami, 2007). 

In stage 2, at first, measure of the perceived contrast of distortions, denoted by 

RST (Chandler & Hemami, 2007) is computed by 
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 RST = ��2	 (7) 

Secondly, measure of the extent to which global precedence has been disrupted, 

denoted by RUS (Chandler & Hemami, 2007) is computed by 

 RUS = VH I A�∗62��7 − �62��7E.X
�M/ N/.V (8) 

where ��2��	 is defined by equation 5 for the error image and �∗�2��	 indicates 

comparison of contrast of the distortions within each band centered at ��and the 

corresponding global precedence preserving contrast and is computed by  

 �∗�2��	 = ��4��	������∗ �2	 (9) 

where ������∗ �2	 is, global precedence preserving contrast (Chandler & Hemami, 

2007), and is computed by 

 ������∗ �2	 =  
$�2	�Y&�K	 '(��	)Y*�K	 (10) 

where 
$�2	, 
/�2	, and 
.�2	 are computed by  

 
$�2	 = −#$��2	 + #$ (11) 

 
/�2	 = �1.0 − #/	��2	 + #/ (12) 

 
.�2	 = �−1.0 − #$	��2	 + #. (13) 

where ��2	 ∈ [0, 1] represents an index of visibility chosen such that total RMS contrast 

of the distortion is ��2	 (Chandler & Hemami, 2007). Next visual distortion (VD) is 

computed using  
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 [\ = ]RST + �1 − ]	 RUS√2   (14) 

where ] = 0.04 (Chandler & Hemami, 2007). Lastly, visual fidelity metric VSNR is 

computed using following: 

 [��� = 10 log/$ cd
��4	#RST + �1 − ]	 RUS√2 ef (15) 

where ��4	 denotes the RMS contrast of the original image (Chandler & Hemami, 2007). 

Next section specifies the algorithm steps that will help in understanding the complexity 

and discrete steps of VSNR. Figure 4 demonstrates the algorithm steps of VSNR in a 

flow chart. 
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Figure 4 Detailed Flowchart of VSNR 

Algorithm Steps 

Read images. The initial step for executing the algorithm is to read source (I) and 

distorted (Î) images of size g ×  i into the memory, where m represents the number of 
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rows and n represents the number of columns. Once images are read into memory, each 

pixel is converted from unsigned char to float that allows arithmetic computation on the 

pixel values. The process of reading and converting them takes 2 ×  g ×  i time. 

 Next function in the algorithm is to analyze source image from memory. 

1. Compute the mean of the source image.  

2. Convert the source image into a vector of pixel-to-luminance value. The 

conversion creates a new vector of size g ×  i. 

3. Compute the mean of the pixel-to-luminance value vector. 

4. Calculate the RMS, denoted by ��4	, of the source using vectors obtained from 

steps 2 and 3. 

5. Process source image with M-level 2D separable discrete wavelet transform 

(DWT) with 9/7 biorthogonal filters. DWT will result in 3M+1 vectors as 

specified in the image below. Each level of DWT divides both dimensions of 

image by a factor of 2 and results in 4 sub-bands where LL is used to decompose 

the image further. Figure 5 shows the sub-bands obtained from a three Level 2D 

DWT (though by default there are five levels in VSNR for DWT but for 

demonstration purposes three levels have been used). This process would take 

another memory of g ×  i to store the sub-bands. 
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Figure 5 3-Level 2D DWT Sub-Bands 

6. For each of the 3M+1 bands obtained from DWT, calculate the standard deviation 

and compute  ������ !" and ��4��	.  

7. From the vectors obtained from step 6, calculate �1�2|4	 by using L2-norm. 

Analyze Distorted Image. Next function in the algorithm is to analyze source image 

from memory. 

1. Compute the error vector (E) of size g ×  i  from the distorted image computed 

using following 

 2 = Î − 4 + :<  (16) 

2. Calculate the mean of the error vector.  
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3. Convert the error vector into a vector of pixel-to-luminance value. Instead of 

converting in place, conversion creates a new vector of size g ×  i. 

4. Compute the mean of the pixel to luminance value vector. 

5. Calculate the RMS, denoted by ��2	, of the source using vectors obtained from 

step 3 and 4. 

6. Check if ��2	 < �1�2/4	 then exit otherwise continue to step 7. 

7. Process error vector with M-level 2D separable discrete wavelet transform (DWT) 

with 9/7 biorthogonal filters. DWT will result in 3M+1 vectors as specified 

earlier. This process would take another memory of size g ×  i for storing the 

sub-bands. 

8. For each of the bands obtained from DWT calculate the standard deviation and 

compute ��2��	. 

9. Return ��2��	. 

Computation of Best CSNR. The goal of this function is to find the ��2	 ∈  [0, 1], 
such that the resulting �����*∗ �2	, �����&∗ �2	…, ������∗ �2	 gives rise to a total 

distortion contrast of ��2	. 

1. Initialize �jk = 0 and �!J = 1. 

2. Compute � = /. ��jk + �!J	 

3. Calculate �����*∗ �2	, �����&∗ �2	…, ������∗ �2	 using equation 10. 

4. Compute �l = m∑ o p6<q�7prLsq�∗ t.X�M/ u//.
 

5. If |�l − ��2	| is sufficiently small, then exit. 
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6. If v�l − ��2	v > 0 (i.e. � is too large), then let �!J = �, and go to step 2 

7. If v�l − ��2	v < 0 (i.e. � is too small), then let �jk = �, and go to step 2 

8. Iterate steps 2-7 until the function converges. 

Computation of VSNR. This is the final function that uses the values computed in 

the previous functions to measure the visual fidelity metric VSNR. 

1. Assign RST to ��2	, where ��2	 was obtained in step 5 of Analyze Distorted 

Image function. 

2. Compute the best CSNR (����Yxy ) from the previous function. 

3. Convert the best CSNR to contrast using ��4��	/����Yxy . 

4. Compute the actual CSNR (����%T ) using Analyze Distorted Image function. 

5. Convert the actual CSNR to contrast using ��4��	/����%T . 

6. Compute RUS by computing L2-norm of the contrast obtained in steps 3 and 5. 

7. Compute visual distortion (VD) using equation 14. 

8. Finally, compute VSNR using equation 15. 

Performance of VSNR 

The performance analysis of VSNR was conducted on a set of seven original 

images and six different distortions of each of them by Phan, et al. (2014). The platform 

used for analysis was second-generation Intel Core i5- 2430M processor clocked at 2.4 

GHz and a system memory (RAM) of 4 GB. For thirty trials of each image, the average 

execution time was reported as ~0.72 seconds. Further analysis showed that DWT took 

~61% of the total execution time and rest of the functions accounted for the remaining 

time. Among the remainder of the functions, statistical computation took ~28% of the 
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time. Therefore, the optimization of DWT and variance on GPU could potentially 

improve the performance of the algorithm. Figure 6 below shows the execution time 

distribution of each component. 

 

Figure 6 Execution Time Distribution on CPU (Phan, et al., 2014) 
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Chapter 4. CUDA Implementation of VSNR 

CUDA implementation is based on the GPGPU as described earlier. The goal of 

the CUDA implementation is to optimize the VSNR algorithm while minimizing the 

memory overhead of GPGPU. As reported by Gordon, et al. (2010), the memory transfer 

from CPU to GPU could become a burden and deteriorate the performance. 

Based on the performance analysis from the previous section, this implementation 

focuses on optimizing the functions that use large vectors with reduced branching and 

dependency using small vectors, like vectors of size 5, with branching and 

interdependency. 

Figure 7 below distinguish the parts of VSNR algorithm that are computed on 

GPU and CPU. 
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Figure 7 CPU-GPU Division of VSNR 

Following section includes the detailed implementation of each function using CUDA 
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Image Loading 

Considering the size of the image, loading images to GPU could be an overhead 

when optimizing algorithms. There are two ways to load the image on GPU.  

The first approach is to load the image on CPU as an unsigned character, which is 

1 byte per pixel, and then linearize and convert the image to float on CPU, which will 

result in consuming 4 bytes (size of float) per pixel. This process will take g ×  i time. 

Once converted to float, the image can be loaded to GPU. Figure 8 shows the approach 

mentioned above. 

 
Figure 8 Approach 1- Loading Image to GPU 

The second approach is to load the image on CPU as an unsigned character and 

then load the image to GPU. Once the image is loaded onto GPU, the image can be 

converted to float. Conversion to float process is executed in parallel as the conversion is 

independent of each pixel. As the image vector is loaded as an unsigned character instead 

of float on GPU, this approach reduces the memory overhead by the factor of 4 (size of 

float). Figure 9 shows the second approach of loading image onto GPU. 

 
Figure 9 Approach 2- Loading Image to GPU 
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Luminance Vector 

Once the images are loaded on the GPU, the images can be used for further 

computation without transferring them back and forth between CPU and GPU. First 

computation is the evaluation of pixel-to-luminance vector for original and error image. 

Additional space of 4 �size of float	  ×  g ×  i is allocated to store the luminance vector 

for each image. Computation of luminance is independent of each pixel, making it ideal 

for parallel implementation. By unrolling the iterations, the luminance vector can be 

computed using equation 1. Figure 10 shows the computation of luminance using 

arithmetic operations. 

 
Figure 10 Evaluation of Luminance Vector on GPU 

Another approach to computing the luminance vector is to use the lookup table. 

Since the pixel value of the image is in the range of 0 to 255, the values from equation 1 

will be same for a particular pixel value. Therefore, look up table could optimize the 

algorithm further. Figure 11 demonstrates the computation of luminance using the lookup 

table. 
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Figure 11 Evaluation of Luminance Vector Using Lookup Table 

Calculation of Mean 

In VSNR, mean needs to be calculated three times. The source image requires the 

calculation of means of image and luminance vector. And the mean of luminance vector 

is needed for the error image. Computation of mean takes g ×  i time on CPU. Though 

the sum of pixel values is dependent on values of other pixels, calculation of mean can 

still be optimized using the reduction technique. ArrayFire library (Yalamanchili, et al., 

2015) has been used to calculate the mean of images, which provides a function to 

calculate mean on GPUs using reduction. Figure 12 demonstrates the sum by reduction 

for a vector of 16. 
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Figure 12 Example of Reduction on GPU 

Calculation of RMS Contrast 

RMS is the standard deviation of a vector as specified in equation 6. Computation 

of RMS is required for both source and error image and uses mean of luminance from 

previous procedure to reuse the computation.  

In this CUDA implementation, a kernel is first called to compute the value 

����	 − :;	. and stores the values into the intermediate vector of size g ×  i. Once the 

intermediate vector is obtained, the mean function of ArrayFire  (Yalamanchili, et al., 

2015) is called to compute the mean. The square root of mean and division by mean of 

luminance gives the standard deviation.  



 28

This method allows reusing the mean of luminance without transferring 

significant memory between host and device. Figure 13 shows the calculation of RMS on 

GPU. 

 
Figure 13 Evaluation of RMS on GPU 

2D Discrete Wavelet Transform 

Based on the performance evaluation, 2D DWT is the component that takes ~61% 

(Phan, et al., 2014) of the total execution time. In DWT, computation on pixels is not 

completely independent but depends on the value of its neighbors. For each level, two 

passes are performed, one for the horizontal subsampling and the other for the vertical 

subsampling.  

In horizontal subsampling, the value of pixels at even indexed columns is 

computed by the neighboring pixels in the corresponding columns using the biorthogonal 

low and high filters. The pixels at odd indexed columns are left out in resultant vectors 

and hence reduces the number of columns by two. It results in two sub-bands for both 

low and high filters of size �g ×  i/2	.  

In vertical subsampling, vectors from horizontal subsampling are used to obtain 

the value of the pixels at even indexed rows which are computed by the neighboring pixel 

in the corresponding rows for using the low and high filters. The pixels at odd numbered 
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rows are left out in resultant vectors and thus reduces the number of rows by two. This 

result in the four sub-bands of size �g/2 ×  i/2	 i.e. LL, HL, LH, and HH.   

The number of neighbors to be selected is determined by the length of the filter. 

In each pass two filters are used, one is low, and the other is the high filter. For the next 

level, LL sub-band is used for further decomposition of the image. The algorithm 

employed in DWT implementation has the influence from Paleo (2015). Figure 14 

demonstrates one level of DWT on 8 ×  8 image and a filter of size four on GPU. 
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Figure 14 Example of 2D DWT on GPU 

Computation on Sub-Bands 

For the computation of ��4�	 and ��2�	, calculating the standard deviation of 

sub-bands is needed, which could take significant computation as the size of sub-bands 

could be large as demonstrated by the Figure 16. There are two approaches to obtain the 

standard deviation of sub-bands. The first approach is to use ArrayFire (Yalamanchili, et 

al., 2015) standard deviation function. The second approach is first to calculate mean of 
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the sub-band using ArrayFire (Yalamanchili, et al., 2015) and then modify the sub-band 

vector to obtain an intermediate vector. Finally, the square root of the mean of the 

intermediate vector is computed. Following equation denotes the second approach to 

computing standard deviation. 

 @�[	 = �1� I�[��	 − :�	. L
JM/  (17) 

where V denotes the sub-band vector. 

Due to lack of performance of ArrayFire’s (Yalamanchili, et al., 2015) standard 

deviation function, the second method has been used to perform computation on sub-

bands. Figure 15 shows the evaluation of standard deviation of sub-bands using the 

second method on GPU. 

 
Figure 15 Evaluation of Standard Deviation of Sub-Bands on GPU 

Figure 16 demonstrates the computation on sub-bands. 
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Figure 16 Computation on Sub-Bands on GPU 
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Chapter 5. Methodology 

All the tests use a system with the i7 processor and Nvidia Tesla K40 with Kepler 

GK110 microarchitecture with CUDA 8. Table 1 and Table 2 provides more details about 

the system and the GPU configuration.  

The development and testing have been conducted using Microsoft Visual Studio 

2015. Nvidia Visual Profiler (Nvidia Visual Profiler, 2017) has been used to find 

bottlenecks of the implementation that helped to optimize the algorithm and to evaluate 

performance. 

CPU Intel Xeon E5 1620 v2 @3.70 GHz  
Microarchitecture Ivy Bridge 
No of Cores 4 
No of Threads 8 
Host RAM 24 GB GDDR3 
Operating System Windows 7 (64-bit) 
IDE Visual Studio 2015 

Table 1 Experiment Environment Details 

Device Name Tesla K40c 
CUDA Driver Version 8.0 
CUDA Capability 3.5 
Number of multiprocessors 15 
Number of CUDA cores per 
multiprocessor 

192 

Total number of CUDA cores 2880 
GPU max clock rate 745 MHz (0.75 GHz) 
Memory clock rate 3004 Mhz 
Memory bus width 384-bit 
Global Memory Size 11423 MB 
Constant memory size 64 KB 
Shared Memory size per block 48 KB 
Number of registers per block 65536 
Warp size  32 
Maximum number of threads per block 1024 

Maximum number of threads per 
multiprocessor 

2048 

Table 2 GPU Specifications 
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The goal of the experiments is to find the correct speed up of CUDA implementation 

of VSNR. To achieve accurate results, tests use four databases containing images of 

different sizes and distortions. Each image from the database has first been converted to 

grayscale to make it compatible with VSNR.  

1. Seven original images of size 512 x 512 have been used from CSIQ database 

(Larson & Chandler, 2010). Each image is associated with three different 

distortions, Additive Gaussian White Noise (AWGN), Gaussian blurring, and 

JPEG compression, with two levels of distortions for each image. Level 1 is for 

low-distorted images (AWGN1, BLUR1, and JPEG1) and level 5 for highly 

distorted images (AWGN5, BLUR5, and JPEG5), which is aligned with the 

previous experiments reported by Phan, et al. (2014).  

2. Fourteen original images of size 512 x 768 have been used from IRCCyN/IVC 

database (Tourancheau, Autrusseau, Sazzad, & Horita, 2008). Each image has 

two different distortions, JPEG and JPEG2000, and two levels, 0.24 and 0.79, for 

each distortion. 

3. Six original images of size 1920 x 1080 have been used from JPEG-HDR 

database (Narwaria, Da Silva, Le Callet, & Pepion, 2013). Each original image 

has distortion of type JPEG with level 1 and level 5. Images have been resized to 

1920 x 1024 to ensure compatibility with the CPU version of VSNR. 

4. Six original images of size 1280 x 1600 are used from JPEG XR database (De 

Simone, Goldmann, Baroncini, & Ebrahimi, 2009). Each image is with distortions 

created by JPEG, JPEG2000 and JPEG XR, with levels 0.25 and 0.75. 

Table 3 summarizes the details of image quality databases used for the experiment. 
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Database Image Size Distortion Types 
Distortion 

Levels 

No. of 

Original 

Images 

Number of 

distorted 

images 

CSIQ 512 x 512 
Blur, AWGN, 
JPEG 

1 and 5 7 42 

IRCCyN/IVC 512 x 768 JPEG, JPEG2000 0.24 and 0.79 14 56 
JPEG-HDR 1920 x 1080 JPEG 0.22 and 0.70 6 12 

JPEG XR 1280 x 1600 
JPEG, JPEG2000, 
JPEG XR 

0.25 and 0.75 6 36 

Table 3 Image Quality Database Details 

Each combination of the original and the distorted image has been executed on 

CPU and GPU as a new process for thirty iterations. Running each iteration as a new 

process ensures that the reported time is close to the processing time of the algorithm in 

real-time applications. Average of execution time of images of same size has been taken 

to obtain the approximate execution times for different sizes of images. 

In addition to this, an image of size 1920 x 1024 from JPEG-HDR database 

(Narwaria, et al., 2013) has been utilized to evaluate the performance of individual 

functions on both C++ and CUDA implementations of VSNR.  
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Chapter 6. Results 

This section presents the result from the experiments introduced in the previous 

chapter. As expected, the execution of the CUDA implementation of VSNR on GPU 

showed performance optimization over its C++ implementation, executed on CPU while 

matching the final fidelity score of VSNR. 

Table 4 shows the execution times of CUDA implementation and C++ implementation of 

VSNR for different image sizes and the bar graph in Figure 17 plots the execution time of 

VSNR on CPU and GPU on the logarithmic scale. The last column of the table shows the 

speed up received by CUDA implementation as compared to C++ implementation. 

Database Image Size Time (ms) Platform 
Speed Up 
(CPU/GPU) 

CSIQ 512 x 512 
57 CPU 

8.14x 
7 GPU 

IRCCyN/IVC JPEG HDR 512 x 768 
86 CPU 10.75x 

 8 GPU 

JPEGXR IRCCyN/IVC 1024 x 1920 
484 CPU 32.27x 

 15 GPU 

JPEG-HDR 1600 x 1280 
493 CPU 

32.87x 
15 GPU 

Table 4 Execution Time and Speed Up of VSNR on CPU and GPU 
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Figure 17 Execution Time of VSNR on CPU and GPU 

 The graph in Figure 18 shows the speedup vs. image size. It indicates that speed 

up is monotonically increasing with the increase in the scale of the image.  

 
Figure 18 Speedup Curve 
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Table 5 shows the performance of functions that were executed on GPU, which 

were computed using Nvidia Visual Profiler (Nvidia Visual Profiler, 2017).  

Function 
GPU CPU 

Speed 
Up 

Absolute 
time (ms) 

Percentage 
of time 

Absolute 
time (ms) 

Percentage 
of time 

 

DWT 5.333 35.55 314.116 64.9 58.9 

RMS 0.98 6.53 35.816 7.4 36.55 
Computation on  

sub-bands 
3.55 23.67 31.46 6.5 7.43 

Mean of 
Original Image 

0.063 0.42 8.712 1.8 
138.2

9 
Table 5 Execution Time Breakdown of Primary Functions 

Significant time is spent on the allocation of memory and copying data across the 

device and between the device and the host. Table 6 shows the time consumed on 

memory allocation and copying.  

Method Type Execution Time (ms) 
Memory copy from host to device 0.51 
Memory copy from device to device 0.086 
Memory copy from device to host 0.14 
Memory allocation on device 1.6 
Total 2.336 

Table 6 Time Consumed in Memory Transfer and Allocation 

During the memory allocation on the device, the majority of the time was spent 

on the allocation of sub-bands, which are 3M+1, and took approximately 1ms time. 

Analysis of Image Loading 

As discussed in the Chapter 4, the original and the error image can be loaded 

using two methods. The first method converts the image on CPU and then copies it to 

GPU. The second method copies the image to GPU and then converts it into a float 

vector. The latter method is the most efficient and was adopted in the final version of the 
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implementation. Table 7 shows the comparison of execution times between the two 

approaches. 

Method Method Execution Time (ms) 
Total Execution Time 
(ms) 

Convert on CPU 174 189 

Convert on GPU 1.09 15 
Table 7 Execution Time Comparison of Two Approaches to Load Image to GPU 

The significant difference in the execution times of the two methods is due to the 

slow and sequential processing on CPU. The computation of error image itself takes 

143ms due to the complicated type casting and arithmetic operations. Another factor 

affecting the performance is the cudaMemcpy function which copies image vector to 

GPU of size four times larger as compared to that of the vector when converting image 

directly on GPU.  

Analysis of Computation on Sub-Bands 

Table 8 compares the results obtained from computing the sub-bands using the 

both approaches mentioned in the Chapter 4. The first method uses ArrayFire’s standard 

deviation function, and the second method first calculates the mean, then gets the 

intermediate vector and finally computes the standard deviation by taking the square root 

of mean. The prior approach was found slower due to the overhead of CUDA runtime, 

cudaMemCpy, and cudaFree functions where were controlled by adopting the second 

approach and reducing the redundancy of cudaFree calls. 
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Method 
Method Execution Time 
(ms) 

Total Execution Time (ms) 

ArrayFire’s Standard 
Deviation Function 

99.47 112 

Custom Standard 
Deviation Function 

3.55 15 

Table 8 Execution Time Comparison of Two Approaches to Compute Sub-Bands 

Analysis of Computation of Luminance 

The computation of RMS of images requires the calculation of luminance. Two 

methods were discussed in Chapter 4 for computing the luminance. One method is to use 

a lookup table, and another method is to compute the luminance vector using arithmetic 

computation. Table 9 shows the comparison between execution times of the two 

approaches. 

Method 
Method Execution Time 
(ms) 

Total Execution Time (ms) 

Arithmetic computation 0.632 16 
Look up table 0.363 15 

Table 9 Execution Time Comparison of Two Approaches to Calculate Luminance 

Figure 19 shows the breakdown of execution time on a GPU. 
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Figure 19 Breakdown of Execution Time 
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Chapter 7. Discussion of Results 

The results as presented in previous chapter, show that the performance of CUDA 

implementation improved when the size of the images increased. The speed up 

monotonically increases with the increase in image size and varies between 8x and 32x 

for image sizes 512 x 512 and 1600 x 1280 respectively. With the increase in the size of 

images, the performance of the algorithm is affected more in the case of C++ 

implementation as compared to the CUDA implementation. Due to parallelism, CUDA 

implementation is expected to show greater speed up with image sizes larger than 1600 x 

1280. 

Execution time can be affected by multiple memory allocation on device as 

shown in the results section. Computation of sub-bands of the error image reused the 

memory allocated for sub-bands of the original image instead of allocating new memory. 

This method reduced the time spent on memory allocation for sub-bands by half. Though 

allocating memory is inevitable, number of allocation can be minimized by reusing the 

allocated memory for different functions and hence improves the performance. 

As the results and previous research (Gordon, et al., 2010) suggest, copying 

memory from CPU to GPU could be an overhead. A method to reduce this overhead, i.e. 

copying image as character, was introduced which led to the reduction in execution time 

by more than half. It can be suggested that the least amount of memory should be 

transferred between CPU and GPU, and statistical computations on matrices should be 

maximized on GPUs in parallel. 

As reported by Phan, et al. (2014), 2D DWT was the hotspot of CPU 

computation. After implementing it on CUDA, 2D DWT remains the hotspot as 



 43

compared to other functions but the execution time is relatively minute. 2D DWT works 

well on GPU because of massive parallelism and contiguous memory usage among 

threads.  

The results show that the better approach to load image onto GPU is by loading 

the image to GPU as character and then converting the image to float. The parallel 

casting of image along with reduction of memory size that needs to be copied to GPU 

improves the performances. Thus, the execution time can be reduced by decreasing the 

memory transfer between the host and the device as in the case of loading image onto 

GPU.  

The computation of sub-bands was optimized by avoiding a standard deviation 

library function which had side effects that degraded the performance. Using library 

functions are convenient but it is important to carefully observe if these functions are 

appropriate for the execution of an algorithm and do not create any side effects or 

overhead. 

GPU has a constant memory which can be used to avoid computation. In the case 

of computation of luminance, the vector was using the constant value for all images. 

Thus, look up table outperformed runtime computation. The constant memory on GPU is 

relatively smaller. Therefore, it is necessary to use look up table for smaller constant 

vectors. Otherwise, constant vector would be fetched from the global memory, which in 

turn degrades performance. It is also important to make sure that the statistical operation 

takes more time than it would take GPU to fetch from the constant memory. 

Reduction used for calculating mean improved performance tremendously. The 

performance of obtaining the mean of original image improved by 138x as compared to 
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CPU performance. Computation of mean was not just used for the original image but also 

for the calculation of luminance and sub-bands. In both computations speed up has been 

observed. Though, in the computation of mean, pixel values are dependent on each other, 

reduction method optimize the performance effectively. 

Based on the results, it can be interpreted that an algorithm can be broken down 

into smaller parts to optimize performance. The blend of library functions and user 

defined functions with profiling conscious implementation can lead to an efficient 

implementation. 
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Chapter 8. Conclusion 

In this thesis, the implementation of VSNR in CUDA is presented. The CUDA 

implementation runs 32x faster as compared to the C++ implementation of VSNR for 

large images. The speedup was observed due to memory optimized execution of 

arithmetic operations on pixels in parallel. The CUDA implementation can process 

videos with the frame size of 1600 x 1280 and frame rate of 60 frames per second 

whereas it can process videos with the smaller frame size of 515 x 512 and frame rate of 

over 140 frames per second.  

The experiments were conducted as an extension to work by Phan, et al (2014) to 

find the change in the performance of the C++ implementation of VSNR with the 

increase in the size of images. As reported in Chapter 7, the hotspot of the C++ 

implementation remained same as the size of the image increased but the execution time 

increased significantly with size. 

Results in Chapter 6 revealed important observations regarding GPGPU 

programming for image processing algorithms. Firstly, loading of images on GPU as an 

unsigned character and casting image from unsigned char to float on GPU resulted in 

performance optimization due to the reduced size of memory transfer between CPU and 

GPU. Secondly, profiler conscious implementation helped in the detection of runtime 

overhead due to the standard library function. Lastly, storing lookup table in GPU 

constant memory to replace redundant arithmetic computation, resulted in optimization. 

The listed methods can help in reducing overheads and optimizing performance of other 

CUDA based implementation of image processing algorithms. 
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Chapter 9. Future Work 

The work presented in the thesis allows us to analyze quality of the high 

definition images and videos in real time. Though this implementation will work for the 

high definition of videos with frame rate of 60fps, more optimizations can be made 

specific for the video quality assessments (VQA). Firstly, since the scope of this work is 

focus on image quality assessment the results reported in this thesis are for a single image 

but more speed up can be expected reusing the allocated memory on the GPU, in the case 

of videos. Secondly, the subsequent frames in videos are not completely different and the 

algorithm might be modified to take benefit of this fact. Lastly, the continuous frames in 

the video could allow us to use multiple GPU for processing each frame in parallel. This 

could be another prospect for optimization.  

Apart from this, similar performance analysis of VSNR for IQA or VQA can be 

performed using cloud based techniques like MapReduce or customized image 

processing hardware.  

Another work effort can be made to optimize the time taken by the cudaMalloc 

statements in similar implementation. For a single image, the memory allocation can take 

significant time. An effort to reduce the memory allocation using CPU threads could be 

useful. 

Combining this CUDA implementation with compression algorithms would 

provide the more insights into performance based on a specific utility of this algorithm. 
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