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ABSTRACT

Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Op-

portunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source in deriving implicit information

for social data mining. However, the vast majority of existing studies overwhelmingly

focus on positive links between users while negative links are also prevailing in real-

world social networks such as distrust relations in Epinions and foe links in Slashdot.

Though recent studies show that negative links have some added value over positive

links, it is difficult to directly employ them because of its distinct characteristics from

positive interactions. Another challenge is that label information is rather limited

in social media as the labeling process requires human attention and may be very

expensive. Hence, alternative criteria are needed to guide the learning process for

many tasks such as feature selection and sentiment analysis.

To address above-mentioned issues, I study two novel problems for signed social

networks mining, (1) unsupervised feature selection in signed social networks; and

(2) unsupervised sentiment analysis with signed social networks. To tackle the first

problem, I propose a novel unsupervised feature selection framework SignedFS. In

particular, I model positive and negative links simultaneously for user preference

learning, and then embed the user preference learning into feature selection. To s-

tudy the second problem, I incorporate explicit sentiment signals in textual terms and

implicit sentiment signals from signed social networks into a coherent model Signed-

Senti. Empirical experiments on real-world datasets corroborate the effectiveness of

these two frameworks on the tasks of feature selection and sentiment analysis.
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Chapter 1

INTRODUCTION

With the rise of online social platforms such as Facebook 1 and Twitter 2 , social

network analysis has gained increasing attentions in recent years. The popularity of

social media services greatly diversifies the way people communicate and socialize,

enabling users to share and exchange opinions in different aspects. Huge volumes of

data are user generated at an unprecedented speed. For example, over 500 terabyte

data are generated on Facebook every day 3 and around 6000 tweets are tweeted on

Twitter every second 4 . These massive amounts of high-dimensional social media

data (e.g., posts, images, videos) present challenges to traditional data mining tasks

due to the curse of dimensionality [10]. The sheer volume of opinion-rich data also

present great opportunities by providing rich sources in understanding individual

and public opinions. For example, unveiling the opinions of customers is valuable

for business advertisers in devising better targeted marketing tactics [30]; politicians

could also adjust their campaign strategies according to the aggregated sentiments of

tweets about election [33].

Social media data is inherently linked by various types of social relations, making

it distinct from traditional independent and identically distributed, i.e., i.i.d. data.

Motivated by social science theories such as social influence and homophily effect [9,

23, 32, 35], rich sources of information may exist among user interactions. Since label

1https://www.facebook.com/

2https://twitter.com/

3http://www.cnet.com/news/facebook-processes-more-than-500-tb-of-data-daily

4http://www.internetlivestats.com/twitter-statistics

1



information (e.g., user group, sentiment polarity) is costly and labor-intensive to

obtain for social media data, these social science theories could be potentially helpful

to direct the learning process for a variety of social media mining tasks including

feature selection and sentiment analysis.

A majority of existing methods for social media data mining mainly leverage pos-

itive interactions among users to guide the learning process. However, in addition

to positive links, many real-world social networks may also contain negative links,

such as distrust relations in Epinions 5 and foes links in Slashdot 6 . Even for some

platforms without explicit negative links, it is still possible to infer the attitude of

a link (positive or negative) from user rating scores or reviews implicitly [42]. The

social networks with both positive and negative links are often referred to signed

social networks. The availability of negative interactions bring about a richer source

of information and recent work shows that negative links have additional values over

positive interactions, which could benefit a variety of learning tasks such as commu-

nity detection [22, 28], recommendation [41] and link prediction [7, 14, 18, 24, 37].

The Recent advance of signed social network analysis motivates me to investigate if

negative links can help us mining social media when label information is not available.

1.1 Research Challenges

Despite the potential opportunities from negative links, the development of a prin-

cipled learning model for unsupervised learning methods for signed social networks

mining is still in its infancy. The reason can mainly be attributed as follows:

• Due to the lack of label information, unsupervised methods are more appeal-

ing in practice for social data mining. Without label information, the most

5http://www.epinions.com

6http://slashdot.org
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challenging part is to exploit alternative criteria to guide learning tasks.

• Existing methods for social data mining mainly extract latent representations

from positive links and then employ these latent representations to guide learn-

ing tasks [5]. However, different from positive links, negative links carry out

different information. For example, trust information is often a good indicator

of positive emotions such as joy and altruism; while distrust relations may be

indicators of negative emotions like anger and pessimism. Hence, mining signed

social networks can not simply be extended from existing methods of mining

unsigned social networks in a straightforward way;

• Majority of existing methods of mining unsigned social networks are based

on some social theories [1, 9, 15, 23], assuming that individuals tend to be

similar when they are connected. Nonetheless, these theories may not be directly

applicable to signed social networks where individuals with negative links may

show contrastive properties. Hence, mining signed social networks is a non-

trivial problem.

1.2 Contributions

In this thesis, I study two novel problems in signed social networks, unsupervised

feature selection and unsupervised sentiment analysis, which have not been studied

previously. In particular, I focus on answering three questions: (1) how to employ

and adapt existing social science theories on unsigned networks for signed social

networks? (2) how to mathematically model both positive and negative links for

feature selection? (3) how to explicitly model positive and negative interactions

among users for unsupervised sentiment analysis? The main contributions of this

paper are summarized as follows:

3



• My preliminary data analysis on signed social networks pave the way for adapt-

ing existing social science theories on unsigned networks for the mining of signed

social networks;

• I propose an unsupervised feature selection framework SignedFS which aims to

identify relevant features by leveraging both positive and negative links in signed

social networks. In detail, I provide a principled way to mathematically model

positive and negative links into a coherent latent representation and embed the

latent representation into feature selection phase;

• I propose a novel framework SignedSenti to leverage implicit sentiment signals

in positive and negative user interactions for unsupervised sentiment analysis.

Methodologically, I propose to incorporate the signed social relations and the

sentimental signals from textual terms into a unified framework because of the

lack of sentiment labels;

• I evaluate the efficiency of the proposed SignedFS and SignedSenti framework

on real-world signed social datasets.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, I briefly reviews relat-

ed work. In Chapter 3, I introduce some real-world signed social networks datasets

and conduct preliminary data analysis on signed social networks. In Chapter 4, I for-

mally define the problem of unsupervised feature selection in signed social networks

and introduce the details about the proposed unsupervised feature selection frame-

work SignedFS. In Chapter 5, I study a novel problem of sentiment analysis with

signed social networks under an unsupervised scenario and propose a novel frame-

work SignedSenti. The thesis is concluded with future work in Chapter 6.

4



Chapter 2

RELATED WORK

In this section, I briefly review related work from three aspects: (1) feature selection

in social media; (2) sentiment analysis in social media; and (3) signed social network

analysis.

2.1 Feature Selection in Social Media

With existence of link information, feature selection in networked data are dis-

tinct from traditional feature selections which assumes that data is independent and

identically distributed. In [13], a supervised feature selection algorithm FSNet was

proposed for network data. FSNet captures the correlation between content infor-

mation and class labels by a linear classifier and it incorporates link information

via graph regularization. Distinct from traditional networked data, social media da-

ta present its unique characteristics with the existence of complex linkage structure

such as CoPost, CoFollowing, CoFollowed and Following. Motivated by these obser-

vations, Tang and Liu [44] made the first attempt to perform feature selection for

social media data. Since networked data are usually costly to label, an unsupervised

feature selection framework LUFS was proposed in [45]. In particular, LUFS extracts

social dimensions from link information to help select relevant features. However,

link information may contain a lot of noise and itself may be incomplete. In order to

alleviate the negative impacts from noisy and incomplete links, Li et al. [27] proposed

a robust unsupervised feature selection framework for networked data. However, all

above mentioned approaches only consider the positive interactions among networked

instance, to the best of our knowledge, I am the first attempt to study unsupervised
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feature selection on signed networks.

2.2 Sentiment Analysis in Social Media

Sentiment analysis in social media has been a surge of research recently. However,

it faces some challenges mainly because of the bewildering combination of hetero-

geneous data sources and structures. Also, since labels of social media data are

costly to obtain, unsupervised sentiment analysis is more desired. Recent years have

witnessed some efforts in exploring external information for unsupervised sentimen-

t analysis. As the most representative unsupervised sentiment analysis algorithms,

lexicon-based methods [33, 39, 51] determine sentiment polarity of texts by exploit-

ing sentiment signals revealed by words or phrases. In addition to rich source of text

information, abundant emotional signals are widely observed in social media. In [19],

the authors proposed a framework to incorporate two categories of emotional signals

for unsupervised sentiment analysis. [49] made one of the first attempt to leverage

social media images for unsupervised sentiment analysis. Different from above men-

tioned approaches, I present the first study on unsupervised sentiment analysis with

both positive and negative social interactions.

2.3 Signed Social Networks Analysis

Even though mining signed graph is still in its early stage, some problems in signed

networks have already been well studied, such as link prediction and community de-

tection. Existing link prediction methods on signed social network can be broadly

divided into two groups: supervised methods and unsupervised methods. Supervised

links prediction can be regarded as classification problem. Like normal classification

problem, the most important parts of it is to construct features. Some common used

features include local topology features [24] and feature derived from long cycles [7].

6



Unsupervised methods predict missing links without label information. These meth-

ods mainly predict signs of links according to the topological properties of signed

networks [14, 37]. Community detection is another fundamental problem for mining

signed social networks. In [28], Li extends modularity maximization to signed net-

works which takes both the tendency of users with positive links to form communities

and the tendency of users with negative links to destroy them into consideration. A

spectral algorithms was proposed in [22]. It is the first attempt to define a signed

laplacian matrix which can separate users with negative links and force users with

positive links to be closer.

7



Chapter 3

ANALYSIS ON NEGATIVE LINKS

In unsigned social networks, some social science theories such as social influences and

homophily [9, 23, 32, 35] are widely adopted in social network analysis to bridges

the gap between learning task and network structure, especially in cases when label

information is costly to obtain. In this chapter, I investigate whether negative links

reveal some useful information for signed social networks mining.

3.1 Negative Links and Node Similarity

The homophily effect [32] in social science theories suggests that users are similar

to each other when they are interconnected. However, it is not appropriate to directly

apply the homophily effect on signed social network analysis [43] as instances may

also be negatively connected. In this subsection, I revisit the homophily effect in

signed social networks.

I first introduce two real-world signed networks used in this study. I used two

real-world signed social networks datasets from Epinions 1 and Wiki-rfa 2 .

Epinions: Epinions is a consumer review website in which users share their

reviews about products. Users can either trust or distrust other users. They can

also write reviews for products from various categories. For users, I collect their

positive and negative links as well as their reviews comments. Features are formed

by the bag-of-words model based on the reviews comments. The major categories of

reviews by users are taken as the ground truth of class labels.

1http://jiliang.xyz/trust.html

2https://snap.stanford.edu/data/wiki-RfA.html
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Table 3.1: Statistics of Datasets for Validation of Homophily Effect in Signed Social
Networks

Datasets Epinions Wiki-rfa

# of Users 7,140 7,096

# of Features 15,069 10,608

# of Classes 24 2

# of Positive Links 13,569 104,555

Density of Positive Links 2.7e(-4) 2.1e(-3)

# of Negative Links 3,010 23,516

Density of Negative Links 5.9e(-5) 4.7e(-4)

Wiki-rfa: Wikpedia Requests for Adminship is a who-votes-for-whom network

where a signed link indicates a positive or a negative vote by one user on the promotion

of another. Each vote is typically accompanied by a short comment which is used to

construct features by the bag-of-words model. The person voted by the user could be

rejected or accepted, which is taken as ground truth.

Detailed statistics of these two datasets are presented in Table 3.1. I notice that

positive links are denser than negative links in both two datasets. With these prop-

erties, I now study the first-order proximity and the second-order proximity in signed

social networks.

In social sciences, some theories such as homophily effect [32] and balance theo-

ry [17] suggest the correlations between user similarity and positive/negative links.

These theories bridges the gap between user features and network structure, and is

widely adopted in social network analysis. Two kinds of network structures have

been investigated in social theories. One is represented by the observed links in the

networks, which reveals the first-order proximity between the users. For example, the

homophily effect explores the first-order proximity between users in social network-
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s. The other is represented by two users with shared neighborhoods. For instance,

balance theory suggests the second-order proximity between the users. In this subsec-

tion, I would like to explore the first-order and the second-order proximity in signed

social networks.

3.1.1 First-order Proximity

The homophily effect in social science theories suggests that users are similar to

each other when they are interconnected. However, it is not appropriate to directly

apply the homophily effect on signed social network analysis [43] as instances may

also be negatively connected. To explore the first-order proximity in signed social

networks, I revisit the homophily effect in signed social networks by attempting to

answering the following questions: are users with positive relations tend to be more

similar than users with negative relations?

To answer these questions, first, I define the user similarity score between two

users ui and uj as simij = ‖yi − yj‖2, where yi ∈ R1×c and yj ∈ R1×c are the ground

truth of user labels for user ui and uj, respectively. k denotes the number of user

labels.

With the definition of user similarity, I construct two vectors p1 and n1 with

the same length to denote the user similarity between positively connected users and

negatively connected users, respectively. To be specific, elements in p1 denotes the

similarity score between two users (ui, uj) with positive relation. Elements in n1

denotes the similarity score between two users (ui, uj) with negative relation. To

see the significance, I sample 500 pairs of users for each of vectors p1 and n1 and

conduct two samples t-tests on these three vectors. The null hypothesis is rejected

at significance level α = 0.01 with p-values shown in Table 3.2. Therefore, we verify

that users with positive relations tend to be more similar than users with negative

10



relations.

3.1.2 Second-order Proximity

Balance theory in signed social networks suggests that ”the friend of my friend

is my friend” and ”the enemy of my enemy is my friend”. Based on balance theo-

ry, I would like to investigate the second-order proximity in signed social networks.

Specifically, I aim to answer the following two questions: (1) Is friend of my friend

tend to be similar with me? (2) Is enemy of my enemy more likely to be similar with

me?

With user similarity and vector r defined in section 3.1.1, I construct another three

vectors p2, n2 and and r to denote the user similarity between two users with a shared

friend, two users with a shared enemy and randomly chosen users, respectively. For

example, each element in p2 denotes the similarity score between two users ui and

uk. Both ui and uk have a friend uj. The element in n2 denotes the similarity score

between two users ui and uk. Both ui and uk have an enemy uj. And the element

of r represents the similarity score between ui and another randomly selected user

ur. I also sample 500 pairs of users for each of vectors p2, n2 and r and conduct two

samples t-tests on these three vectors. The null hypothesis is rejected at significance

level α = 0.01 with p-values shown in Table 3.2. From the table, we observe that

both of the friend of my friend and the enemy of my enemy are more likely to be

similar to me.

Table 3.2: P -values for t-test Results

Hypothesis Epinions Wiki-rfa

H0 : p1 >= n1 H1 : p1 < n1 2.3974e(−7) 8.3255e(−4)

H0 : p2 >= r H1 : p2 < r 1.3614e(−6) 9.8577e(−7)

H0 : n2 >= r H1 : n2 < r 5.5854e(−5) 1.3126e(−12)

11



3.2 Negative Links and Sentiment Similarity

Above results show that users are likely to be more similar to their friends than

their foes. Hence, it motivates me to investigate if friends are more likely to ex-

hibit similar sentiments than foes on the same item which I conclude as the signed

link based partial order assumption. To introduce signed link based partial order

assumption, I first define the concepts of positive linked set, negative linked set.

Definition 1. Positive Linked Set:

For a specific text post ti on the item or posted by user ua, its positive linked set

P(ti) is defined as the whole set of text posts tj on the same item or that are posted by

user ub, where ub is positively connected from ua, i.e., P(ti) = {tj|∀(j, r, a, b) s.t. Oir =

1,Ojr = 1,Tai = 1,Tbj = 1,Aab = 1}.

Definition 2. Negative Linked Set:

For a specific text post ti on the item or posted by user ua, its negative linked

set N (ti) is defined as the whole set of text posts tk on the same item or that

are posted by user ub, where ub is negatively connected from ua, i.e., N (ti) =

{tk|∀(k, r, a, b) s.t. Oir = 1,Okr = 1,Tai = 1,Tbk = 1,Aab = −1}.

With the concepts of positive linked set, negative linked set, the signed link based

partial order assumption is defined as following:

Assumption 1. Signed Link Based Partial Order:

For text post tj in the positive linked set of ti and text post tk in the negative linked

set of ti, sentiment polarity of ti is usually more similar to the sentiment polarity of tj

than tk. I denote such property as signed link partial order which can be formulated

as follows:

sim(ti, tj) > sim(ti, tk), tj ∈ P(ti), tk ∈ N (ti) (3.1)
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Table 3.3: Statistics of Datasets for Validation of Signed Link Based Partial Order
Assumption

Statistics Epinions Slashdot

# of posts 1,559,803 133,335

# of items 200,952 72,241

# of users 326,978 7,897

# of positive links 717, 667 52, 639

# of negative links 123, 705 17, 535

Similarly, I first introduce two real-world signed social networks datasets from

Epinions 3 and Slashdot 4 used in validating the signed link based partial order

assumption. Detailed statistics of these two datasets are shown in Table 3.3.

Epinions: As shown in Section 2.2, Epinions is a product review website where

users share their reviews about products. I crawled a set of reviews, products and

users as well as their interactions. The unigram model is employed on product reviews

to construct the feature space, and term frequency is used as feature weight. For the

evaluation purpose, I take the rating scores of reviews as the ground truth of sentiment

labels. In particular, the ratings of 4, 5 and 6 are considered as positive labels while

the ratings of 1,2 and 3 are taken as negative labels.

Slashdot: Slashdot is a technology news website for users to share and comment

new articles on science and technology. Users can tag others as friends or foes.

Likewise, I crawled and collect comments, articles, users and their relations. The

feature space is also built with unigram model and the ratings of comments are

employed to establish ground truth in the same way as Epinions.

With these two datasets, I start to validate whether the signed link based partial

3http://jiliang.xyz/trust.html

4https://slashdot.org/
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order assumption holds for text posts in real-world signed networks.

First, I define the sentiment similarity between two text posts ti and tj as sim(ti, tj) =

‖yi − yj‖2, where yi ∈ R1×k and yj ∈ R1×k are the ground truth of sentiment labels

for text posts xi and xj, respectively. k denotes the number of sentiment labels.

With the definition of text post sentiment similarity, to verify if the signed link based

partial order assumption holds, I construct two vectors sp and sn of the same length.

Elements in sp denote the sentiment similarity of two text posts ti and tj, where tj

is from the positive linked set of ti. Elements in sn indicate the sentiment similarity

between two text posts ti and tk where tk is from the negative linked set of ti. To

validate the assumption, I first sample 500 pairs in each group to construct sp and

sn, and then conduct two sample t-test on these two vectors. The null hypothesis is

H0 : cp >= cn while the alternative hypothesis is H1 : cp < cn. In the formulations,

cp and cn represent the sample means in these two groups sp and sn, respectively. The

null hypothesis is rejected at the significant level α = 0.01 with p-values of 4.3e(−7)

and 7.2e(−4) in Epinions and Slashdot, respectively. It indicates that the signed link

based partial order assumption indeed holds in real-world signed social networks. In

other words, it suggests the existence of implicit sentiment signals among positive

and negative user interactions, which paves way for unsupervised sentiment analysis.

14



Chapter 4

UNSUPERVISED FEATURE SELECTION IN SIGNED SOCIAL NETWORKS

The rapid growth of social media services brings large amounts of high-dimensional

social media data at an unprecedented rate. Feature selection has shown to be pow-

erful to prepare high-dimensional data for effective machine learning tasks [6, 11, 31].

A majority of existing feature selection algorithms for social media data exclusively

focus on positive interactions among linked instances [26, 27, 44, 45]. However, in

many real-world social networks, instances may also be negatively interconnected.

Recent work shows that negative links have an added value over positive links, and

the leverage of negative links could improve various learning tasks such as community

detection [22, 28], recommendation [41] and link prediction [7, 14, 18, 24, 37]. To take

advantage of negative links, I study a novel problem of unsupervised feature selection

in signed social networks and propose a novel framework SignedFS. In particular,

I provide a principled way to model positive and negative links for user preference

learning. Then I embed the user preference learning into feature selection. Also, I

revisit the homophily effect and balance theory in signed social networks and incor-

porate signed graph regularization into the feature selection framework to capture

the first-order proximity and the second-order proximity in signed social networks.

Experiments on real-world signed social networks demonstrate the effectiveness of our

proposed framework. Further experiments are conducted to understand the impacts

of negative links for feature selection.
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4.1 Problem Statement

To formally define the problem unsupervised feature selection on signed social

networks, I first present the notations.

Let U = {u1, u2, ..., un} be the set of n users in a signed network G. G can be

decomposed into a positive component Gp and a negative component Gn in which

Ap ∈ Rn×n is the corresponding adjacency matrix for the positive component Gp

such that Ap
ij = 1 if ui has a positive link to uj, and Ap

ij = 0 otherwise. Similarly,

An ∈ Rn×n denotes the adjacency matrix of Gn where An
ij = 1 if ui has a negative

link to uj, and An
ij = 0 otherwise. Let F = (f1, f2, ..., fd) be a set of d features and

X ∈ Rn×d denotes the content information of all n instances. With these notations,

the problem of unsupervised feature selection in signed social networks can be formally

stated as follows:

Given: the feature set F , content matrix X and adjacency matrix A for a signed

network G with positive links Ap and negative links An, Select: A subset of most

relevant features S ∈ F by exploiting both content information X and signed network

information Ap and An.

4.2 The Proposed Framework - SignedFS

In this section, I illustrate the proposed unsupervised feature selection in signed

social networks in details. The workflow of the proposed framework SignedFS is

shown in Figure 4.1. As can be observed from the figure, it consists of three compo-

nents: first, I show how to learn user preference representation from both positive and

negative links (Section 4.2.1); second, I show how to embed the user preference repre-

sentation into feature selection when we are lack of label information (Section 4.2.2);

third, I show how to employ the first-order and the second-order proximity in signed
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Figure 4.1: Illustration of the Proposed SignedFS Framework.

social networks to make user preference representation to be consistent with signed

network structure via a signed graph regularization (Section 4.2.3).

4.2.1 Modeling Positive and Negative Links

In social media, a user establish relations with others due to a variety of hidden

factors. These factors are often referred as user preferences including hobbies, geo-

graphical location, religion, etc. It has been widely studied in previous research that

both positive and negative links are relevant to user preference [38, 43]. Consider-

ing the fact that negative links possess unique characteristics compared with positive

links, I attempt to model positive and negative links independently to learn the user

preference representation (phase 1 in Figure 4.1). Let U = [U1∗; U2∗; ...; Un∗] ∈ Rn×c

be the user preference representation where Ui∗ denotes user preference of ui. It

should be noticed that in real-world signed social networks, a user only has a small

portion of links with others, resulting in a sparse and low rank network structure.

Therefore, I employ low-rank matrix factorization method to learn user preference

representation. Specifically, to capture the properties of positive and negative links

independently, I collectively factorize Ap and An into a unified low rank representa-
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tion U via the following optimization problem:

min
U,Vp,Vn

β1‖Op � (Ap −UVpU′)‖2
F + β2‖On � (An −UVnU′)‖2

F , (4.1)

where β1 and β2 balances the contribution of positive links and negative links in

learning user preference representation. Op and On are defined as follows:

Op
ij =

1, if Ap
ij = 1

0, otherwise
, (4.2)

On
ij =

1, if An
ij = 1

0, otherwise
. (4.3)

In the above formulation, I approximate the positive link from ui to uj with

UiV
pU′j where Vp ∈ Rc×c captures the correlations among user preference repre-

sentation for positive links. � is Hadamard product (element-wise product) where

(X�Y)ij = Xij×Yij for any two matrices X and Y of the same size. The Hadamard

product operator is imposed since I only use existing positive links to learn user pref-

erence representation. Similarly, I approximate negative links with UVnU′. Since

negative links are also related to user preference representation, I factorize An into

the same low-rank space U. The correlation matrix Vn is used to capture the unique

properties of negative links.

4.2.2 Modeling Feature Information

After I model user preference representation, I now introduce how to employ

them to guide feature selection in the content space (phase 2 in Figure 4.1). In

social media platforms, labels are costly and labor intensive to obtain. Without label

information, it would be difficult to assess feature relevance. Fortunately, since user

preference representations encode latent factors of users, they are correlated with
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the features, at least with some relevant features. Therefore, I leverage the user

preference representations U to take the role of class labels to guide feature selection

via a multivariate linear regression model with a `2,1-norm sparse regularization term:

min
W
‖XW −U‖2

F + α‖W‖2,1, (4.4)

where W ∈ Rd×c is a feature weight matrix and each row of W, i.e., Wi∗ measures

the importance of the i-th feature. The `2,1-norm regularization term is imposed on

W to achieve a joint feature sparsity across k different dimensions of user preference

representation. α controls the sparsity of the model.

However, signed social networks may contain a lot of noisy links. For example,

illegitimate users such as spammers and bots will generate a large amount of fake

links to imitate normal users. In addition to that, network structure may also not be

complete, mainly because of the imperfect data collection and data crawling process,

or the network itself is partially observed. Therefore, I propose to embed the latent

representation learning into feature selection to make the feature selection results

more robust to noisy and incomplete positive and negative links, resulting in the

following optimization framework:

min
W,U,Vp,Vn

‖XW −U‖2
F + α‖W‖2,1 +

β1

2
‖Op � (Ap −UVpU′)‖2

F

+
β2

2
‖On � (An −UVnU′)‖2

F ,

(4.5)

where the parameter α controls the sparsity of the model.

4.2.3 Signed Graph Regularization

In Section 4.1, I revisit the homophily effect and balance theory by verifying

the existence of the first-order and second-order proximity in signed social networks.

In this subsection, I introduce how to model the first-order and the second-order
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proximity for unsupervised feature selection in signed social networks (phase 3 in

Figure 4.1).

I first construct a user proximity matrix by employing both the first-order and

the second-order proximity. Given the adjacency matrix of a signed network A where

Aij = 1, Aij = −1 and Aij = 0 denote positive, negative and missing links from ui

to uj. The first-order proximity matrix P1 is defined as P1 = A, where P1ij = 1

indicates that uj is a friend of ui and preferences of the two users are similar while

P1ij = −1 indicates that uj is a foe of ui and preferences of the two users are

dissimilar. The second-order proximity matrix is defined as P2 = O �A2, where O

is defined as follows:

Oij =

0, if P1ij 6= 0

1, otherwise
. (4.6)

where P2ij > 0 and P2ij < 0 denote similarity and dissimilarity between ui and uj.

In the above formulation, I capture the second-order proximity from ui to uk with

(A2)ik =
∑n

j=1 aijajk. To show that A2 can capture the second-order proximity, the

proof is as follows: (1) to verify that A2 can capture the proximity between friend

of my friend and me, I should prove that if both ui and uk have a friend uj, ui and

uj should be similar with each other in the second-order proximity matrix. In other

word, if sign(Aij) = 1 and sign(Ajk) = 1, I should prove that sign(Aik) = 1 which

might seem obvious in the above formulation; (2) to verify that A2 can capture the

proximity between enemy of my enemy and me, I should prove that if both ui and uk

have an enemy uj, ui and uj should be similar with each other in the second-order

proximity matrix. That is if sign(Aij) = −1 and sign(Ajk) = −1, I should prove

that sign(Aik) = 1, which is also true in the above formulation. Though the second-

order proximity (balance theory) may not be always hold in signed networks [42],

in an aggregate sense, the second-order proximity from network structure should be
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maximally preserved. Thus (A2)ik can capture the second-order proximity from ui

to uk. The Hadamard product operator is imposed to avoid the confliction between

the first-order proximity and the second-order proximity. User proximity matrix can

be constructed by P = P1 + θP2, where Pij > 0, Pij < 0 denote similarity and

dissimilarity between ui and uj, respectively. The parameter θ controls the weight of

the first-order and the second-order proximity matrixes in the model. In this paper,

I empirically set the weight θ = 0.1.

To integrate user proximity in feature selection, the basic idea is to make preference

of two user Ui∗ and Uj∗ as close as possible if ui and uj are similar( Pij > 0 ) while as

far as possible if ui and uj are dissimilar ( Pij < 0 ). Since the signed laplacian matrix

aims to separate pairs with negative links rather than to force pairs with positive links

closer [22], user proximity could be mathematically formulated by the signed graph

regularization:

1

2

n∑
i=1

n∑
j=1

|Pij| × ‖Ui∗ − sgn(Pij)Uj∗‖2

= tr(U′LU),

(4.7)

where sgn(Pij) denotes the sign of Pij. L = D−P is a signed Laplacian matrix [22]

constructed from P and the signed degree matrix D ∈ Rn×n is a diagonal matrix with

Dii =
∑n

j=1 |Pij|.

With the modeling of user proximity by signed graph regularization, the final

objective function of the proposed SignedFS framework is formulated as follows:

min
W,U,Vp,Vn

‖XW −U‖2
F + α‖W‖2,1 +

γ

2
tr(U′LU)

+
β1

2
‖Op � (Ap −UVpU′))‖2

F

+
β2

2
‖On � (An −UVnU′))‖2

F ,

(4.8)

where γ is a regularization parameter for the modeling of user proximity in signed

social networks.
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4.3 Optimization

In this section, I introduce the alternating optimization algorithm for solving the

optimization problem of the proposed SignedFS framework with time complexity

analysis.

In Eq.(4.8), the coupling between U,Vp,Vn and W makes it difficult to find the

global optimal solutions for all four variables simultaneously. Therefore, I propose to

employ an alternating optimization scheme to solve it which has been widely adopted

for a variety of real-world problems [3].

First, I fix U, Vp and Vn and update W. Specifically, when U, Vp and Vn are

fixed, the objective function is convex w.r.t. the feature weight matrix W. I take the

partial derivative of objective function w.r.t. W and set it to be zero:

2X′(XW −U) + 2αHW = 0, (4.9)

where H ∈ Rd×d is a diagonal matrix with its i-th diagonal element as:

Hii =
1

2‖Wi∗‖2

1. (4.10)

It can be noticed that X′X is a positive definite matrix and αH is a diagonal matrix

with positive entries which is positive definite as well. Therefore, their summation

should also be positive definite. Hence, W has a closed form solution, which is:

W = (X′X + αH)−1X′U. (4.11)

1In practice, ‖Wi∗‖2 could be close to zero. Thus, I regularize Hii = 1
2‖Wi∗‖2+ε

, where ε is a

very small constant.
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By substituting the above solution of W into Eq.(4.8), we have:

min
U,Vp,Vn

J (U,Vp,Vn)

=tr(U′U)− tr(U′XM−1X′U) +
β1

2
‖Op � (Ap −UVpU′)‖2

F

+
β2

2
‖On � (An −UVnU′)‖2

F +
γ

2
tr(U′LU)

=tr(U′(In −XM−1X′)U) +
β1

2
‖Op � (Ap −UVpU′))‖2

F

+
β2

2
‖On � (An −UVnU′))‖2

F +
γ

2
tr(U′LU),

(4.12)

where M = X′X + αH.

Similarly, we fix other variables to update U, Vp and Vn iteratively. Since their

closed form solutions are hard to obtain, we employ gradient descent to update them.

In particular, the partial derivative of the objective function w.r.t. U, Vp and Vn

can be calculated as follows:

∂J
∂U

= (In −XM−1X′)U + (In −XM−1X′)
′
U

+β1(−(Op �Op �Ap)UVp′ − (Op �Op �Ap)′UVp

+(Op �Op �UVpU′)UVp′

+(Op �Op �UVpU′)
′
UVp))

+β2(−(On �On �An)UVn′ − (On �On �An)′UVn

+(On �On �UVnU′)UVn′

+(On �On �UVnU′)
′
UVn)) + γLU, (4.13)

∂J
∂Vp

= β1(U′(Op �Op �UVpU′)U

−U′(Op �Op �Ap)U), (4.14)

∂J
∂Vn

= β2(U′(On �On �UVnU′)U

−U′(On �On �An)U). (4.15)
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Algorithm 1: SignedFS Algorithm

Input : {X,Ap,An, c, α, β1, β2, γ}

Output: ranking of features in a descending order

1 Initialize U, Vp and Vn randomly;

2 Initialize H as an identity matrix;

3 A = Ap −An, P1 = A, P2 = O�A2, P = P1 + θP2;

4 L = D−P;

5 while not converge do

6 Set M = X′X + αH;

7 Calculate ∂J
∂U

, ∂J
∂Vp and ∂J

∂Vn ;

8 Update U← U− λu ∂J
∂U

;

9 Update Vp ← Vp − λp ∂J
∂Vp ;

10 Update Vn ← Vn − λn ∂J
∂Vn ;

11 Update W←M−1X′U;

12 Update H through Eq.(4.10);

13 end

14 Rank features according to the values of ‖Wi∗‖2 in a descending order;

With these equations, the detailed algorithm of the proposed SignedFS framework

is illustrated in Algorithm 1. At first, we initialize U, Vp, Vn, H and calculate

user proximity matrix and signed Laplacian matrix. From line 5 to 13, we update

U, Vp, Vn and W alternatively until achieving convergence. In each iteration, we

first calculate M, the computation cost of M is O (nd2). After obtain M, we fix

W and update U, Vp and Vn with gradient descent method. λu, λp, λn is the

step size for the update U, Vp and Vn. These step sizes can be determined by

line search according to Armijo rule [2]. The computation cost of updating U, Vp
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and Vn are O (nd2) + O (n2d) + O (n2c) + O (nc2), O (nc2) + O (n2c) + O (n3) and

O (nc2)+O (n2c)+O (n3), respectively. Then we employ Eq.(4.11) to update W, the

computational cost of updating W is O (nd2) +O (dn2) +O (d3) +O (d2c) +O (ncd).

After we obtain the local optimal solution of W, we rank the features in a descending

order according to the values of ‖Wi∗‖2.

4.4 Experiments

In this section, I conduct experiments to evaluate the effectiveness of the proposed

SignedFS framework. Details of two real-world datasets used in experiments can be

found in Section 2.1. I begin by introducing the experimental settings. After that I

present the comparison results between SignedFS and the state-of-the-art unsuper-

vised feature selection methods. Finally, I discuss the impact of negative links and

the effects of parameters of SignedFS.

4.4.1 Experimental Setting

Following is a commonly accepted way to assess unsupervised feature selection, I

evaluate the proposed SignedFS in terms of clustering performance. To be specific,

after I obtain the selected features, I employ K-means clustering based on the selected

features. Since K-means may converge in local minimal, I repeat it 20 times and report

the average clustering results. Two clustering evaluation metrics, clustering accuracy

(ACC) and normalized mutual information(NMI) are used. The higher the ACC and

NMI values are, the better the selected features are.

SignedFS is compared with the following state-of-the art unsupervised feature

selection algorithms.

• Laplacian Score [16] selects features based on their ability to preserve data

manifold structure.
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• SPEC [52] evaluates features by spectral regression.

• NDFS [29] selects features by a joint nonnegative spectral analysis and `2,1-norm

regularization.

• LUFS [45] utilizes social dimension extracted from links to guide feature selec-

tion.

• NetFS [27] embeds latent representation extracted from links into feature selec-

tion.

Among these baseline methods, Laplacian Score, SPEC and NDFS are traditional

unsupervised feature selection methods which only use feature information X. LUFS

and NetFS are unsupervised feature selection algorithms for unsigned networks which

only use positive links.

To fairly compare unsupervised feature selection methods, I set the parameters

for all methods by a grid search strategy from the range of {0.001,0.01,...,100,1000}.

Afterwards, I compare the best clustering results of different feature selection meth-

ods.

4.4.2 Quality of Selected Features by SignedFS

In this subsection, I compare the quality of features selected by SignedFS and other

above mentioned baseline algorithms. The number of selected features are varied

among {400,800,...,1800,2000}. In SigendFS, I have four regularization parameters

α, β1, β2 and γ. I empirically set these parameters as {α = 1, β1 = 10, β2 = 1000, γ =

1000} in Epinions and {α = 1, β1 = 1, β2 = 100, γ = 1000} in Wiki-rfa. More

discussions about these parameters are given in Section 4.4.4. The comparison results

of various feature selection algorithms on Epinions and Wiki-rfa datasets are shown

in Table 4.1 and Table 4.2. I make the following observations from these two tables:
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Table 4.1: Clustering Performance of Different Feature Selection Algorithms in Epin-
ions

Accuracy

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 11.48 11.34 10.95 11.79 12.54 11.61 11.29 11.19 12.79

SPEC 21.1 16.93 17.73 17.96 17.91 18.73 18.75 18.57 17.38

NDFS 12.18 11.29 11.92 12.16 12.32 12.14 11.92 13.19 11.78

LUFS 16.23 17.02 18.47 17.44 17.54 19.10 19.29 17.63 18.54

NetFS 18.59 19.62 19.21 18.80 18.43 18.77 17.82 19.76 19.98

SignedFS 23.24 21.76 21.69 22.11 21.27 21.88 20.04 20.64 21.20

NMI

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 0.0274 0.0272 0.0268 0.0368 0.0268 0.0273 0.0275 0.0263 0.0267

SPEC 0.0166 0.0175 0.0174 0.0241 0.0250 0.0253 0.0264 0.0262 0.0260

NDFS 0.0149 0.0147 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146 0.0146

LUFS 0.0161 0.0160 0.0176 0.0182 0.0186 0.0189 0.0191 0.0172 0.0199

NetFS 0.0180 0.0190 0.0228 0.0175 0.0179 0.0111 0.0156 0.0147 0.0208

SignedFS 0.0382 0.0368 0.0384 0.0387 0.0372 0.0384 0.0400 0.0386 0.0379

• SignedFS consistently outperforms traditional feature selection algorithms Lap-

Score, SPEC and NDFS on both datasets with significant clustering perfor-

mance gain in most cases. I also perform pairwise Wilcoxon signed-rank test

between SignedFS and these three traditional unsupervised feature selection

methods, it shows SignedFS is significantly better (p-value=0.05). The superi-

ority of SignedFS can be attributed to the utilization additional link information

while traditional methods are mainly based on the data i.i.d. assumption.

• SignedFS also obtains better clustering performance than the other two feature

selection methods LUFS and NetFS on linked data. A major reason is that

LUFS and NetFS only exploit positive links while SignedFS leverages both
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Table 4.2: Clustering Performance of Different Feature Selection Algorithm in Wiki-
rfa

Accuracy

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 70.92 70.94 70.93 70.31 70.52 70.89 70.92 71.13 71.37

SPEC 71.76 72.11 72.02 71.76 71.76 71.90 71.76 71.83 71.56

NDFS 72.94 72.73 72.94 72.75 72.78 72.94 72.94 72.94 72.94

LUFS 75.55 75.55 73.79 74.11 74.14 73.24 73.21 73.28 73.89

NetFS 72.81 72.91 72.94 72.73 72.68 72.70 72.97 72.97 72.97

SignedFS 79.10 79.52 78.59 78.15 78.18 78.63 79.27 80.94 80.63

NMI

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026

SPEC 0.0070 0.0105 0.0083 0.0045 0.0029 0.0030 0.0026 0.0026 0.0026

NDFS 0.0026 0.0030 0.0028 0.0025 0.0026 0.0026 0.0027 0.0026 0.0026

LUFS 0.0014 0.0014 0.0007 0.0004 0.0005 0.0007 0.0007 0.0008 0.0011

NetFS 0.0044 0.0038 0.0036 0.0036 0.0038 0.0038 0.0037 0.0037 0.0037

SignedFS 0.0154 0.0157 0.0149 0.0147 0.0140 0.0156 0.0181 0.0337 0.0334

positive links and negative links into a coherent model to obtain better features.

It indicates the potential of using negative links for feature selection. I will

further discuss how negative links affect the performance of feature selection in

Section 4.4.3.

• We can see that when we gradually increase the number of selected features from

400 to 2000, the clustering performance in terms of ACC and NMI does not vary

a lot. In particular, when a small number of features are selected, SignedFS

already gives us very good performance. For example, when 400 features are

selected in the Epinions dataset, the clustering performance is already very

high. A small number of selected features is very appealing in practice as
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it significantly reduces the memory storage costs and computational costs for

further learning tasks.

4.4.3 Impact of Negative Links

In Table 4.1 and Table 4.2, I have already shown that compared with the meth-

ods which only leverage positive links, SignedFS shows effectiveness in improving

clustering performance. In this subsection, I further investigate how the negative

links help select relevant features. As can be shown in the objective function of

SignedFS in Eq.(4.8), I have two terms involving the negative links, the first term

‖On� (An−UVnU′))‖2
F models the negative links for user preference representation

learning while the second term tr(U′LU) leverages negative links to capture the first-

order and the second-order proximity in signed social networks. To study how these

two terms affect the performance of feature selection, I define the following variants

to eliminate the effects of negative links from SignedFS framework.

• SignedFS\I: I eliminate the term which uses the negative links in learning user

preference representation (‖On � (An −UVnU′))‖2
F ) by setting β2 = 0.

• SignedFS\II: I eliminate the term that leverages negative links in modeling user

proximity for signed social networks (tr(U′LU)) by setting γ = 0.

• SignedFS\I,II: I eliminate both terms mentioned above by setting β2 = 0 and

γ = 0.

I compare these three variants of SignedFS with the original SignedFS framework,

and the performance comparison results are shown in Figure 4.2. Due to space limit,

I only show the results on the Wiki-rfa dataset as we have the similar observations on

the Epinions. From the figure, we can see that SignedFS\I, SignedFS\II has signifi-

cantly lower clustering performance than the SignedFS framework. It demonstrates
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Figure 4.2: The Impact of Negative Links for SignedFS on Wiki-rfa

the effectiveness of leveraging negative links in modeling user preference represen-

tation and user proximity for unsupervised feature selection. When both terms are

eliminated, SignedFS\I,II obtains even lower clustering performance when the num-

ber of selected features is varied from 400 to 1000. It further validates the potential

of using negative links for feature selection.

4.4.4 Parameter Analysis

The proposed SignedFS has four important parameters. α controls the sparsity

of the model. β1 and β2 balances the contribution of positive and negative links in

learning user preference representation. γ controls the modeling of user proximity

for feature selection. I study the effect of each parameter by fixing the others to

investigate how it affects the performance of feature selection. Since I make the

similar observation on both datasets, I only report the experimental result of ACC

on Wiki-rfa dataset to save space.

First, I fix {β1 = 10, β2 = 10, γ = 100} and vary α as {0.01, 0.1, 1, 10, 100}. As

shown in Figure 4.3 (a), the clustering performance first increases and then reaches
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Figure 4.3: Parameter Analysis of SignedFS on Wikipedia

the peak values when α = 0.1. If I continuously increase the value of α, the clustering

performance decreases. Therefore, I could empirically set the values of α among the

range of 0.01 to 1. Second, to investigate how β1 affects the clustering performance,

I vary β1 as {0.01, 0.1, 1, 10, 100} by fixing {α = 1, β2 = 10, γ = 100}. The result

is presented in Figure 4.3 (b). Similarly, the clustering performance first increases,

reaches its maximal value when β1 = 10 and then degrades. Next, to study the impact

of β2, I set {α = 1, β1 = 10, γ = 100}, and vary β2 as {0.01, 0.1, 1, 10, 100}. The result

is presented in Figure 4.3 (c). The performance variation w.r.t. β2 has a similar trend

as the variation of β1, which suggests that negative links are equally important as

positive links in finding relevant features. Finally, I fix {α = 1, β1 = 10, β2 = 10} and
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vary γ as {0.01, 0.1, 1, 10, 100} to investigate the effect of γ. As depicted in Figure 4.3

(d), with the increase of γ, the clustering performance gradually increases and then

keeps stable. The clustering performance is relatively more sensitive to the number of

selected features than these regularization parameters, which is still an open problem

in unsupervised feature selection.
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Chapter 5

UNSUPERVISED SENTIMENT ANALYSIS IN SIGNED SOCIAL NETWORKS

Huge volumes of opinion-rich data is user-generated in social media at an unprecedent-

ed rate, easing the analysis of individual and public sentiments. Sentiment analysis

has shown to be useful in probing and understanding emotions, expressions and atti-

tudes in the text. However, the distinct characteristics of social media data present

challenges to traditional sentiment analysis [4, 20, 21, 39, 46]. First, social media

data is often noisy, incomplete and fast-evolved which necessitates the design of a

sophisticated learning model. Second, sentiment labels are hard to collect which fur-

ther exacerbates the problem by not being able to discriminate sentiment polarities.

Meanwhile, opportunities are also unequivocally presented. Social media contains

rich sources of sentiment signals in textual terms and user interactions [1, 15], which

could be helpful in sentiment analysis. While there are some attempts to leverage

implicit sentiment signals in positive user interactions [20, 36, 40, 46], little attention

is paid to signed social networks with both positive and negative links. The availabil-

ity of signed social networks motivates us to investigate if negative links also contain

useful sentiment signals [25].

In this chapter, with the preliminary analysis on negative links in Section 2.2, I

study the problem of sentiment analysis with signed social networks under an un-

supervised scenario. In essence, I aim to answer the following questions: (1) how

to employ sentiment signals revealed by negative links in Section 2.1 for sentiment

analysis in signed social networks? (2) how to explicitly model positive and negative

interactions among users for sentiment analysis in an unsupervised way? To answer

the questions, I propose an unsupervised sentiment analysis framework - SignedSenti.
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5.1 Problem Statement

To formally define the problem unsupervised feature selection on signed social

networks, I first present the notations.

Let T = {t1, t2, ...tm} be a set of m text posts and F = {f1, f2, ..., fd} be a

set of d textual terms. As shown in Figure 5.1, the matrix representation of T is

X ∈ Rm×d. Each text post may be a review or a comment for a product or an article,

respectively. Assume these m text posts are describing a set of l items O = {o1, ..., ol}

(e.g., {o1, ..., o4} in Figure 5.1). Their relations are encoded in a text-item relation

matrix O ∈ {0, 1}m×l where Oi,j = 1 if text post ti is about item oj, otherwise

Oi,j = 0. Also, we assume that these m text posts are generated by n distinct social

media users U = {u1, u2, ..., un}. Matrix T ∈ {0, 1}n×m shows the authorship between

users and text posts such that Ti,j = 1 if text post tj is posted by user ui, Ti,j = 0

otherwise. In addition to positive user interactions, social media users can also be

negatively connected, I use A ∈ Rn×n to denote the signed adjacency matrix where

Aij = 1, Aij = −1 and Aij = 0 represent positive, negative and missing links from

user ui to uj, respectively. The relations among posts T , items O and users U are

shown in the middle of Figure 5.1; while an illustration of matrices O, T and A are

demonstrated at the bottom of Figure 5.1.

With above notations and preliminary validation of signed link based partial or-

der assumption in Section 2.2, I now define the problem of unsupervised sentiment

analysis with signed social networks can be as follows:

Given: a set of social media posts T , a set of items O, a set of social media

users U , and available relations including the user-text relation T, user-user relation

A (either positive or negative) and text-item relation O;

Infer: the sentiment polarities of all posts in T .
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Figure 5.1: An Illustration of Unsupervised Sentiment Analysis With Signed Social
Networks.

5.2 The Proposed Framework-SignedSenti

In this section, I discuss how to model both positive and negative user interactions

in understanding and predicting sentiment polarities in an unsupervised scenario.

5.2.1 Basic Model for Unsupervised Sentiment Analysis

Unsupervised sentiment analysis is naturally a clustering problem. Specifically, I

would like to cluster text posts into k different sentiment groups. Let U ∈ Rm×k be

the text-sentiment cluster matrix such that Uij = 1 if text post ti belongs to class
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cj, and Uij = 0 otherwise. In essence, it can be modeled by solving the following

nonnegative matrix factorization problem:

min
U,V
‖X−UV′‖2F + γ(‖U‖2F + ‖V‖2F )

s.t U ≥ 0,V ≥ 0,U ∈ {0, 1}m×k ,U′1 = 1,

(5.1)

where V ∈ Rd×k is a term-sentiment matrix, and each row of V shows the distribution

of each term in these k sentiment groups. γ(‖U‖2
F + ‖V‖2

F ) is introduced to avoid

overfitting.

5.2.2 Sentiment Signals from Textual Terms

It has been widely studied in literature [48] that the overall sentiment of a text

post is strongly correlated with sentiment of terms in the post. In other words,

some terms may contain strong sentiment signals in identifying sentiment polarities.

For example, the words of “wonderful” and “appealing” in a text post may express

positive emotions while the words of “terrible” and “disappointed” could express

negative emotions. The rich sentiment signals in terms help to bridge the gap between

the difficulties in obtaining sentiment labels and the necessity of label supervision in

sentiment analysis. To leverage sentiment signals in rich textual information, I employ

a widely used sentiment lexicon SentiWordNet [12] to obtain sentiment polarities

of terms. SentiWordNet contains positive, negative and objective scores between 0

and 1 for all synsets in WordNet. In WordNet, there are a total of 117, 659 words

and phrases. Let P ∈ Rd×k be a term-sentiment indication matrix which encodes

sentiment signals of words. Since our task is polarity sentiment analysis, I set k = 2

and let Pi1 denote the positive score of term fi while Pi2 represents the negative

score of term fi. To take advantage of the textual sentiment signal, I force the above

term-sentiment matrix V in the base model to be consistent with the term-sentiment
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indication matrix P by minimizing:

min
V
‖V −P‖2F . (5.2)

It should be noted that the number of sentiment signals, i.e., k should be adapted

according to the needs whether to perform binary or multi-class sentiment polarity

analysis.

5.2.3 Exploiting Positive and Negative Interactions

The signed link based partial order assumption suggests that for each text post, its

sentiment is more similar to posts in its positive linked set than posts in its negative

linked set. In other words, it indicates that friends are more likely to reveal similar

sentiments than foes on the same item. As U ∈ Rm×k denotes the sentiment polarity

hard assignment matrix, I use ‖Ui∗ − Uj∗‖2
2 to represent the sentiment similarity

between two text posts ti and tj. To model the signed link based partial order

assumption, there are two cases that I need to discuss. For each text post ti, (1)

if another text post tj in its positive linked set is more closer to the text post tk

in its negative linked set, i.e., ‖Ui∗ − Uj∗‖2
2 − ‖Ui∗ − Uk∗‖2

2 < 0, I do not need to

penalize it; (2) if its negative linked set is more closer to its positive linked set, i.e.,

‖Ui∗ −Uj∗‖2
2 − ‖Ui∗ −Uk∗‖2

2 > 0, I should add a penalty to pull the sentiment of ti

be more closer to tj than to tk. Mathematically, it can be formulated by solving the

following objective function:

min
∑

(i,j,k)∈Ω

max(0, ‖Ui∗ −Uj∗‖22 − ‖Ui∗ −Uk∗‖22), (5.3)

where Ω denotes all triplets that satisfies the signed link based partial order assump-

tion, i.e., Ω = {(i, j, k)|i ∈ T , j ∈ P(ti), k ∈ N (ti)}. The above penalty term can be
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further reformulated as:∑
(i,j,k)∈Ω

max(0, ‖Ui∗ −Uj∗‖2
2 − ‖Ui∗ −Uk∗‖2

2)

=
∑

(i,j,k)∈Ω

wk
ijtr(M

k
ijUU′),

(5.4)

where M is is a sparse matrix with all entries equal to zero except that Mij = Mji =

Mkk = −1 and Mik = Mki = Mjj = 1. Mk
ij is the matrix M with elements associated

with triplet (i, j, k) and wk
ij is defined as follows:

wk
ij =

1 if tr(Mk
ijUU′) > 0

0 otherwise
. (5.5)

5.2.4 Objective Function of SignedSenti

With the model components of sentiment signals from terms and the signed link

based partial order assumption, the final objective function of unsupervised sentiment

analysis with signed social network can be formulated as follows:

min
U,V
‖X−UV′‖2F + α

∑
(i,j,k)∈Ω

wk
ijtr(M

k
ijUU′)

+ β ‖V −P‖2F + γ(‖U‖2F + ‖V‖2F )

s.t U ≥ 0,V ≥ 0,U ∈ {0, 1}m×k ,U′1 = 1.

(5.6)

Parameters α and β control the contribution of sentiment signals from terms and

signed social networks, respectively.

The problem in Eq. (5.6) is difficult to solve due to the discrete constraint on U.

To tackle this issue, I relax the objective function by reformulating it as an orthogonal

constraint. After the relaxation, Eq.(5.6) can be rewritten as:

min
U,V
‖X−UV′‖2F + α

∑
(i,j,k)∈Ω

wk
ijtr(M

k
ijUU′)

+ β ‖V −P‖2F + γ(‖U‖2F + ‖V‖2F )

s.t U ≥ 0,V ≥ 0,U′U = I.

(5.7)
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5.3 Optimization Algorithm for SignedSenti

The objective function of the proposed SignedSenti framework is not convex w.r.t.

both U and V simultaneously. Hence, I introduce an alternating algorithm to solving

its optimization problem.

Update U: First, I fix V to update U. Specifically, when V is fixed, the objective

function is convex w.r.t. the text-sentiment matrix U. Thus, U can be obtained by

solving the following optimization problem:

min
U
J (U) = ‖X−UV′‖2F + α

∑
(i,j,k)∈Ω

wk
ijtr(M

k
ijUU′) + γ ‖U‖2F

s.t U ≥ 0,U′U = I.

(5.8)

The Lagrangian of Eq. (5.8) is:

min
U
L(U) = ‖X−UV′‖2F + α

∑
(i,j,k)∈Ω

wk
ijtr(M

k
ijUU′)

+ γ ‖U‖2F + tr(Γu(U′U− I))− tr(ΛuU
′).

(5.9)

where Γu and Λu are the Lagrange multipliers for constraints U′U = I and U ≥ 0,

respectively. To compute U, I take the partial derivative of Eq. (5.9) w.r.t. U and

set it to be zero:

Λu = 2(UV′V −XV + γU + UΓu) + α
∑

(i,j,k)∈Ω

wk
ij(M

k
ijU + Mk′

ijU). (5.10)

With the KKT complementary condition for the nonnegativity constraint of U, i.e.,

(Λu)ijUij = 0, I have:

(UV′V −XV + γU +
α

2

∑
(i,j,k)∈Ω

wk
ij(M

k
ijU + Mk′

ijU)

+ UΓu)ijUij = 0, where

(5.11)

Γu = −α
2

∑
(i,j,k)∈Ω

wk
ij(U

′(Mk
ijU + Mk′

ijU))−V′V + U′XV − γI. (5.12)
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It leads to the following update rule for U:

Uij ← Uij

√
Bij

Eij
, where (5.13)

B = 2XV + α
∑

(i,j,k)∈Ω

wk
ij(M

k
ijU + Mk′

ijU)− + 2UΓ−u , (5.14)

E = 2(UV′V + γU) + α
∑

(i,j,k)∈Ω

wk
ij(M

k
ijU + Mk′

ijU)+ + 2UΓ+
u . (5.15)

Update V: Likewise, I fix U to update V. When U is fixed, the objective

function is convex w.r.t. the term-sentiment matrix V. Hence, V can be obtained by

solving:

min
V
J (V) = ‖X−UV′‖2F + β ‖V −P‖2F + γ ‖V‖2F

s.t V ≥ 0.

(5.16)

The Lagrangian of Eq. (5.16) is:

L(V) = ‖X−UV′‖2F + β ‖V −P‖2F + γ ‖V‖2F − tr(ΛvV
′), (5.17)

where Λv is the Lagrange multipliers for the constraints V ≥ 0. I take the partial

derivative of Eq. (5.17) w.r.t. V and set it to be zero:

Λv =2(VU′U−X′U + β(V −P) + γV). (5.18)

Similarly, with the KKT complementary condition for the nonnegativity constraint

of V, i.e., (Λv)ijVij = 0, we have:

2(VU′U−X′U + β(V −P) + γV)ijVij = 0, (5.19)

which leads to the following update rule for V:

Vij ← Vij

√
X′U + βP

VU′U + (β + γ)V
. (5.20)

With these update rules, the detailed algorithm of the proposed SignedSenti frame-

work is illustrated in Algorithm 2. At the very beginning, we initialize U, V randomly
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and calculate M from T, A and O. From line 3 to 7, we update U and V iteratively

until converge. To update U, we need to calculate wk
ij and Γu at first. According to

Eq.(5.5) and Eq.(5.12), the computation cost of obtaining wk
ij and Γu are O(m2k) and

O(k2d + kmd + m2k + k2m) respectively. With wk
ij and Γu, we employ Eq.(5.13) to

update U, the computational cost of updating U is O(kmd+m2k+ k2m). The total

cost of computing V according to Eq.(5.20)is O(kmd). After we obtain U, sentiment

polarities of text texts can be obtained by performing K-Means on U.

Algorithm 2: SignedSenti Algorithm

Input : {X,T,A,O,P, k, α, β, γ}

Output: sentiment polarity for each text post.

1 Initialize U, V randomly;

2 Compute M based on T, A and O;

3 while not converge do

4 Calculate wk
ij according to Eq.(5.5) ;

5 Compute Γu according to Eq.(5.12) ;

6 Update U according to Eq.(5.13);

7 Update V according to Eq.(5.20);

8 end

9 Employing U to predict sentiment polarity of text posts.

5.4 Experiments

In this section, I conduct experiments to evaluate the effectiveness of the proposed

SignedSenti framework. I begin by introducing the experimental settings. After that,

I present the comparison results between SignedSenti and the state-of-the-art unsu-

pervised sentiment analysis methods. Finally, I discuss the sensitivity of parameters.
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5.4.1 Experimental Setting

Following a common way to assess the performance of unsupervised sentiment

analysis, I take clustering accuracy as the evaluation metric. Higher clustering accu-

racy often indicates better performance. SignedSenti is compared with the following

baseline methods:

• SentiStrength [47]: SentiStrength is a lexicon-based unsupervised method

that extracts sentiment strength from informal English with pre-defined senti-

ment lexicon.

• MPQA [50]: It predicts sentiment polarity of text posts according to a manu-

ally labeled sentiment lexicon MPQA.

• SentiWordNet [12]: It determines sentiment scores of text posts via a widely

used sentiment lexicon SentiWordNet.

• K-Means: As one of the most representative clustering methods, it partitions

the text posts into k sentiment polarities on the original textual terms.

• NMF [34]: Nonnegative matrix factorization is a popular method in text min-

ing. It is also a variant of the proposed SignedSenti model by setting α = β = 0.

• SignedSenti-T: It is a variant of the proposed SignedSenti that only employs

the textual information for sentiment analysis. Specifically, I set α = 0.

• SignedSenti-L: It is a variant of the proposed SignedSenti that does not ex-

plicitly leverage sentiment signals from textual terms. In particular, I set β = 0.
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5.4.2 Sentiment Polarity Prediction Performance

In this subsection, I compare SignedSenti with other baseline algorithms shown in

Section 5.4.1. Noticed that in SigendSenti, we have three regularization parameters

α, β, γ. I empirically set these parameters as {α = 1, β = 0.5, γ = 0.7} in Epinions

and {α = 1, β = 1, γ = 0.1} in Slashdot. More discussions about the effectiveness of

these parameters will be presented later. The comparison results of various unsuper-

vised sentiment analysis algorithms on Epinions and Slashdot datasets are shown in

Table 5.1. I make the following observations:

• SignedSenti consistently outperforms other baseline methods on both datasets

with significant performance gain. I also perform pairwise Wilcoxon signed-rank

test [8] between SignedSenti and these baseline methods, it shows SignedSenti

is significantly better with a significance level of 0.05. The superiority of the

proposed SignedSenti can be attributed to the utilization of external sources,

including textual sentiment signals and positive (negative) user interactions.

• In general, traditional lexicon-based unsupervised methods such as SentiStrength,

MPQA and SentiWordNet do not perform well in the unsupervised case. These

observations show the necessity to build a sophisticated learning model to au-

tomatically predict the sentiment polarities of text posts.

• SignedSenti also obtains better performance than traditional document cluster-

ing methods K-Means and NMF. The reason is that social media texts are often

noisy and incomplete, hence without the guide of any sentiment signals or user

interactions, it is difficult to discriminate the sentiment polarities of different

text posts.

• The clustering accuracy of SignedSenti is higher than its variant SignedSenti-

43



Table 5.1: Sentiment Polarity Prediction Accuracy.

Method Epinions Slashdot

SentiStrength 0.521 0.628

MPQA 0.662 0.684

SentiWordNet 0.645 0.586

K-Means 0.644 0.677

NMF 0.637 0.648

SignedSenti-T 0.649 0.672

SignedSenti-L 0.714 0.700

SignedSenti 0.723 0.731
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Figure 5.2: Parameter Analysis of SignedSenti on Slashdot.

T. SignedSenti-T only leverages sentiment signals from terms and does not

explicitly consider user interactions. Its inferiority to SignedSenti indicates that

in addition to textual sentiment signals, positive and negative links also contain

implicit rich sentiment signals that can boost the sentiment polarity prediction.
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5.4.3 Parameter Analysis

The proposed SignedSenti has two important parameters α and β which controls

the contribution of implicit sentiment signals from positive (negative) user interac-

tions and textual terms respectively. I study the effect of each parameter by fixing the

other to investigate how it affects the clustering performance. I only report the exper-

imental result on Slashdot as we have similar observations on Epinions. In particular,

I first fix {β = 1, γ = 0.1} and vary α as {0, 0.01, 0.1, 0.3, 0.5, 0.7, 1, 10}. As shown in

Figure 5.2(a), when α increase from 0 to 0.01 the performance increases dramatical-

ly which further validates the effectiveness of leveraging implicit sentiment signals in

positive and negative interactions. If I continuously increase α, the performance is rel-

atively stable in fairly large ranges [0.01, 1], then it decreases when α > 1. Similarly, to

investigate how β affects the performance, I vary β as {0, 0.01, 0.1, 0.3, 0.5, 0.7, 1, 10}

by fixing {α = 1, γ = 0.1}. The result is presented in Figure 5.2(b). Likewise, the

performance increases significantly at the very beginning due to the increase of β from

0 to 0.01. After that, with the increase of β, the performance fluctuates in ranges of

71.5 and 73.5. To summary, the clustering performance is rather stable when I tune

these two parameters in a wide range, which is very appealing in practice.
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Chapter 6

CONCLUSION AND FUTURE WORK

As the most distinct characteristic of social media, various types of social relations

are essential for social data mining. A majority of existing methods for social data

mining only consider positive interactions among connected instances while negative

links are also prevailing in real-world social networks such as distrust relations in

Epinions and foe links in Slashdot. Even though negative links have some added value

over positive links, it is difficult to directly employ them for learning tasks because of

its distinct characteristics. In this thesis, I propose two novel unsupervised learning

tasks to derive actionable patterns and gain insights from signed social networks - (1)

unsupervised feature selection in signed social network; (2) unsupervised sentiment

analysis with signed social network;

For unsupervised feature selection in signed social network, I propose a principled

framework SignedFS. It first models both positive and negative links for a unified user

preference representation. Then it embeds the user preference learning into feature

selection. In addition, I model user proximity in signed social networks by signed

graph regularization. Also, I conduct the experiment on two real-world datasets,

Epinions and Wiki-rfa. The results show that SignedFS significantly improve the

clustering performance and further experiments show that negatives links play an

important role in the feature selection process.

For unsupervised sentiment analysis with signed social network, I proposed a

principled framework SignedSenti. Methodologically, I propose to incorporate the

signed social relations and sentimental signals from terms into a unified framework

when we are lack of sentiment labels. I also conduct experiments on two real-world
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signed social networks Epinions and Slashdot. The results show that the proposed

SignedSenti has significantly better performance than state-of-the-art methods.

Future work can be focused on two aspects. First, in addition to social media

data, relations between instances of other kinds of networks such as gene networks

and citation networks also exhibit some implicit negative interactions. I would like

to investigate how to employ negative links in such networks to solve some problem.

Second, as shown in [42], for some social media sites without explicit negative links

such as Facebook and Twitter, negative links can be predicted from explicit positive

links. Therefore, I would like to adapt the SignedFS and SignedSenti framework to

signed social networks with explicit positive links and predicted negative links.
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