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ABSTRACT  

   

This investigation develops small-size reduced order models (ROMs) that provide an 

accurate prediction of the response of only part of a structure, referred to as component-

centric ROMs. Four strategies to construct such ROMs are presented, the first two of 

which are based on the Craig-Bampton Method and start with a set of modes for the 

component of interest (the β component). The response in the rest of the structure (the α 

component) induced by these modes is then determined and optimally represented by 

applying a Proper Orthogonal Decomposition strategy using Singular Value 

Decomposition. These first two methods are effectively basis reductions techniques of 

the CB basis. An approach based on the “Global - Local” Method generates the “global” 

modes by “averaging” the mass property over α and β comp., respectively (to extract a 

“coarse” model of α and β) and the “local” modes orthogonal to the “global” modes to 

add back necessary “information” for β. The last approach adopts as basis for the entire 

structure its linear modes which are dominant in the β component response. Then, the 

contributions of other modes in this part of the structure are approximated in terms of 

those of the dominant modes with close natural frequencies and similar mode shapes in 

the β component. In this manner, the non-dominant modal contributions are “lumped” 

onto the dominant ones, to reduce the number of modes for a prescribed accuracy. The 

four approaches are critically assessed on the structural finite element model of a 9-bay 

panel with the modal lumping-based method leading to the smallest sized ROMs. 

Therefore, it is extended to the nonlinear geometric situation and first recast as a 

rotation of the modal basis to achieve unobservable modes. In the linear case, these 

modes completely disappear from the formulation owing to orthogonality. In the 

nonlinear case, however, the generalized coordinates of these modes are still present in 
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the nonlinear terms of the observable modes. A closure-type algorithm is then proposed 

to eliminate the unobserved generalized coordinates. This approach, its accuracy and 

computational savings, was demonstrated on a simple beam model and the 9-bay panel 

model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Context and Motivation 

The pursuit for durable, reusable hypersonic vehicles has been ongoing for years since 

the first flight of the X-15. Since then, considerable progress has been made to address 

the challenges within disciplines including aerodynamics, structural dynamics, heat 

transfer, material science, guidance and control, and propulsion, yet much effort is still 

needed to field such an aircraft. In the first phase of a project headed by, the Air Force 

Research Lab (AFRL) Structural Sciences Center, with partners in industry, previous 

plans for the fielding of reusable hypersonic vehicles, including the National Aerospace 

Plane (NASP) and the X-33, were assessed and the knowledge gaps relating to structural 

design that inhibit the development of such a vehicle [1, 2] were outlined. The second 

phase of the program confirmed the knowledge gaps identified in Phase I, with a few 

more knowledge gaps identified [3]. 

Many of the knowledge gaps identified suggest the necessity to account for nonlinear 

geometric effects when the deformations of the structure become “large”. Such 

deformations typically happen to very flexible structures and/or those subjected to very 

large mechanical and/or thermal loading. Recent examples of the former situation 

include the large aspect ratio wings of several proposed aircraft such as HALE (“High 

Altitude Long Endurance”) aircraft and the “sensor-craft”, see [4, 5] and references 

therein for discussion. Hypersonic vehicles are good examples of the latter category with 

the large aerodynamic forces and heating induced by the high flight speed, [6, 7]. 

The need to account for nonlinear geometric effects is in sharp contrast with current 

industry methods which use a variety of analytical and empirical models based on linear 

analyses. As the vehicle performance envelopes expand, these models will break down, 
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leading to overly-conservative designs. Such designs will add extra weight and cost, 

which will become even larger if/once uncertainties are introduced to reflect the lack of 

exact knowledge on the state of the vehicle. To exemplify these issues, linear and 

nonlinear analyses were performed in [8] on a NASP ramp panel with thermal and 

acoustic loads expected in the flight regime. While the linear analysis overpredicted the 

displacement response of the panel, translating into an overprediction of the stress 

which would lead to fatigue failure; the nonlinear analysis produced smaller deflections 

due to geometric nonlinearity and did not predict fatigue failure, well demonstrating the 

cost of adopting a linear approach to the problem. 

In addition to the consideration of nonlinear geometric effects, the need for the accurate 

coupling of the disciplines (i.e., structural, thermal, and aerodynamic) present in 

hypersonic flight problems has been demonstrated. Early related work neglected the 

mutual coupling between the structural deflections and the aerodynamic heating 

assuming that the structural displacements were influenced by the temperature field but 

that the thermal problem was not influenced by the displacements [9, 10] and could be 

carried out on the undeformed structure. However, this assumption was shown to be 

significantly inadequate for at least one hypersonic panel [11, 12]. Therefore, 

considerable attention has been brought to bear on the multi-discipline issue [11, 13].  

Providing further complexity is needed consideration of acoustic fatigue, a high-cycle 

fatigue mechanism induced by high frequency fluctuations of the pressure. Acoustic 

fatigue has consistently afflicted jet aircrafts for about half a century and is a key design 

concern for current and future aircrafts the stiffened structure of which exhibits, lightly 

damped modes in the frequency band of the excitation leading to sharp resonances [14, 

15]. Accordingly, dynamic analyses long enough to estimate the fatigue life must also be 

carried out as part of the design process. 
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The above comments have demonstrated that the desired analyses for hypersonic 

vehicles design involve (i) large model size, (ii) long dynamic simulation time, and (iii) 

multi-physics (i.e., structural, aerodynamics and thermal) coupling requiring iterations 

of different disciplinary solvers. Furthermore, the random nature of the acoustic loading 

and uncertainties in the loads and in the model, would transform the problem into a 

random vibration one, which might require the consideration of multiple time histories 

in a Monte Carlo setting. Modern computational tools, such as finite element methods 

and computational fluid dynamics, can of course be used for such analyses, however, the 

associated computational cost will be extremely large. Accordingly, it has become a vital 

goal for hypersonic vehicles design that the required analyses be conducted in a very 

efficient way.  

It is for such situations that reduced order models (ROMs) are particularly useful. In 

linear analyses, the fully coupled systems of 2nd order differential equations obtained for 

example from finite element models are classically reduced to a smaller (typically much 

smaller) set of independent ones [16] via a transformation involving the “modes”. 

Physically, these modes are characteristic deformations of the structure observed when it 

vibrates freely at certain frequencies (the natural frequencies) while mathematically they 

are the eigenvectors of a generalized eigenvalue problem. Because of their uncoupling, 

the equations in the modal space are easily solved. They can then be recombined through 

the reverse transformation to yield the complete solution of the structural response 

problem. The large computational cost associated with geometrical nonlinearity calls for 

the extension of the ROM formulation of linear problems. Recent work has been carried 

out by approximating the system dynamics under a set of input(s)–output(s), i.e., 

nonmodal techniques [17, 18]. Their performance highly depends on the selection of the 

expansion points and the marching-moment order, which is not straightforward and 
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therefore, inaccurate estimations may occur [19]. Of interest here are so called projection 

based reduced order models where the response of interest involving a very large 

number of degrees of freedom is represented as an expansion on a much smaller set of 

basis functions. 

Within this framework, two very different perspectives exist to generate such ROMs; 

they will be referred to as intrusive and non-intrusive ROMs and differentiate from each 

other as follows. Intrusive ROM formulations are carried out within the finite element 

solver with full access to all output variables (e.g., displacements, velocities, stresses at 

different nodes and different time steps), but also internal variables (e.g., tangent 

stiffness matrix at each time step), as well as elemental level information on the exact 

modeling assumptions. They could be qualified of computational reduction methods as 

the ROM/projection on the basis is an integral part of the solution process. They are well 

exemplified by the works of [20, 21] and references therein.  

Non-intrusive ROM formulations on the other hand are constructed without any access 

to the core of the finite element solver, e.g., as occurs when using a commercial finite 

element code. That is, only output variables are available, there is no access to the 

internal variables, elemental information, and moreover, the exact modeling 

assumptions may not be fully known because of proprietary limitations. Then, the 

construction of a non-intrusive ROM could be described as a modeling and identification 

effort. It would typically involve: (i) the selection of a model which relates the input 

(forces) to the output (displacement) which involves unknown parameters, and (ii) a 

strategy to identify these parameters using only input-output information. 

As described above, these two complementary classes of reduced order methods are very 

different and likely focus as well on different segments of engineering. Intrusive ROMs 

are used/developed by researchers at the forefront of computational mechanics to 
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develop tomorrow’s tools while non-intrusive ROMs would be employed by engineers in 

companies focused on the design of today’s structures using a given, black box finite 

element code. 

 The focus of the present effort is on non-intrusive ROMs and more specifically on those 

based on a physically justified model which generalizes the modal methods of linear 

structural dynamics. The capabilities of these nonlinear ROMs, referred to as NLROMs, 

have progressed significantly during the past decade, with the developments focusing 

primarily on the fundamental issues of selection of the ROM basis, the identification of 

the ROM coefficients, and the validation of the methodology to structures of growing 

complexity. While these issues are not fully settled, they are advanced enough that 

successful ROMs of medium scale structures, e.g., a complex 9-bay panel in [22], the 

wing of the Predator in [23],have been constructed paving the way for more complex 

applications, potentially entire aircraft. Even though, NLROMs are much more expedient 

than full order finite element methods for long simulation times, see [24] for some 

comparisons, the computational effort to construct and run them does grow rapidly with 

the number of basis functions (“modes”) used in the representation, or equivalently, with 

the complexity of the structural model. The NLROMs share with the linear modal 

analysis method the dramatic reduction in the number of equations to be solved but not 

the decoupling property. This is primarily due to the nonlinear terms in the stiffness 

operator, which are quadratic and cubic in the modal coordinates. Owing to the full set of 

coupling terms, the NLROM is much more computationally intensive than its linear 

counterpart, with O(M4) operations per solution vs. O(M2) in the linear case - O(M) 

considering the decoupling – where M is the number of modes retained. One remedy 

proposed in [24] involves eliminating the nonlinear terms in the ROM that are expected 

to have small contributions to the nonlinear restoring forces. 
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Looking ahead to large scale problems, it is desirable to develop methods to “split” the 

structure in a manner that the number of modes is reduced to maintain the ROM 

computational efficiency. In fact, such a decomposition into substructures may be quite 

natural given the stiffened panel make up of aircraft structures. Moreover, the design of 

aircraft frames for example is not accomplished monolithically but rather by considering 

separate components (e.g., panels) and modeling their interactions. Component Mode 

Synthesis (CMS) strategies are very efficient substructuring techniques that use different 

types of modes to represent the dynamic behavior of the subsystems, yet they appear to 

be ill-suited for the present nonlinear geometric ROM setting because of the large 

number of boundary degrees of freedom that they typically induce, even after 

appropriate reduction. 

1.2 Objective 

Considering the above discussion, it is desirable to develop “compact” (i.e., with a small 

number of basis functions) ROMs, referred as “component-centric ROMs” here. Such 

ROMs are designed to provide an accurate prediction of the linear response of a part of 

structure (referred to as the “β” component) while allowing a lower accuracy in the rest 

of the structure (referred to as the “α” component). The advantage of component-centric 

ROMs over the standard ones is a significant reduction of the number of generalized 

coordinates needed for stiffened structures. Moreover, the component-centric ROMs 

corresponding to different parts of the structure are uncoupled and thus can be run in 

parallel to provide an accurate prediction of the response of the structure in a smaller 

wall time.  

1.3 Overview 

In Chapter 2, the key background on linear and nonlinear reduced order modeling is 

presented. The elements that collectively form the ROMs, i.e., the strategies to select the 
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basis functions and the determination of the parametric form of the governing equations, 

are reviewed. Finally, a short review of some Component Mode Synthesis methods is 

provided and published efforts toward extending substructuring techniques to nonlinear 

analysis are discussed. 

Chapter 3 introduces the structural models used for the assessment of the component-

centric ROMs. They are (i) a modified version of the NASA 9-bay panel [24] already 

studied from the standpoint of nonlinear ROM [25] and a simple clamped-clamped 

beam supported with linear springs. The beam model was created to mimic the features 

of the 9-bay panel and used to provide a first validation of the method in the nonlinear 

case. Their nonlinear ROMs are constructed to establish a baseline against which 

component-centric ROMs will be compared.  

Chapter 4 focuses on the development of component-centric ROMs for the linear case. 

Two strategies based on the Craig-Bampton Method are first presented. They both start 

with a set of modes for the β component. The response in the α component induced by 

these modes is then determined and optimally represented using a Singular Value 

Decomposition (SVD) strategy. Next, a third approach based on the “Global-Local” 

Method is also considered to generate first the “global” modes by “smoothing”/ 

“averaging” the mass property over α and β comp., respectively, to extract a “coarse” 

model of α and β. Then “local” modes orthogonal to the “global” ones are determined 

and added to the basis to enrich the modeling of the β component. The last approach 

described in the linear case is based on the linear modes of the structure, reducing first 

this set to those dominant in the β component and then “lumping” discarded modes onto 

some of the dominant ones with close frequencies and similar mode shapes in the β 

component for increased accuracy. The validation and assessment of these methods will 

be carried out on the modified version of the NASA 9-bay panel [25]. 
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With the modal lumping method leading to the most “compact” (i.e., smallest number of 

modes) ROM, its formulation is extended to the nonlinear geometric problem in Chapter 

5. The applicability and accuracy of this approach is then verified first on the clamped-

clamped beam and then on the modified 9-bay panel model. 

A summary of this work is presented in Chapter 6 together with a plan for potential 

future research. 
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CHAPTER 2 

BACKGROUND 

2.1 Introduction 

The current state of computational capabilities already allows the consideration of very 

complex structural models and in principle of their analysis by commercial finite 

element  software. Yet, the computational time that is required for these analyses is often 

very significant rendering them inadequate as design tools. This issue calls for the 

development of reduction techniques which approximate the finite element solutions 

with much shorter simulation time. Modal reduction techniques based on a small set of 

“modes” or basis functions that representing the physical displacement field have been 

well-documented in the literature. They are quite efficient to predict the linear response 

of complex structures, especially in the low-frequency band (characterized by a typically 

small modal density and relatively well-isolated resonances). Despite differences 

between the existing techniques, their overall objective is to transform the large scale 

finite element models, into much lower order systems. Such reductions can be achieved 

via a mapping of the physical displacement field into a small number of generalized 

coordinates with an appropriate transformation matrix, 𝑽 ∈ ℝ𝑁×𝑀,  where N and M, 

(𝑀 ≪ 𝑁) are the number of degrees of freedom of the original finite element model and 

the reduced-order models, respectively. The columns of V will be referred to as basis 

functions. In the linear modal reduction techniques, the transformation matrix typically 

includes as basis functions the “modes”, reviewed briefly in the ensuing section.  

2.2 Linear Reduced Order Models  

Consider a linear discrete system with N degrees of freedom (DOFs) of equations of 

motion: 
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 �̃��̈� + �̃��̇� + �̃�𝑢 = �̃� (1) 

where �̃�, �̃�, and �̃� are the mass, damping, and stiffness matrices of the system and are N 

× N matrices. The modes 𝜓𝑖 are then defined as the eigenvectors of the generalized 

eigenvalue problem: 

 �̃�𝜓𝑖  =  𝜔𝑖
2�̃�𝜓𝑖  (2) 

where 𝜔𝑖 is the corresponding natural frequency. Owing to the symmetry of the mass and 

stiffness matrices, the modes are known to satisfy the orthogonality properties: 

 

𝜓𝑖
𝑇�̃�𝜓𝑗 = 0 

𝜓𝑖
𝑇�̃�𝜓𝑗 = 0 

(3) 

for i  j, and to form a basis for the N-dimension space. Therefore, the physical 

displacement of the structure can also be represented as: 

 𝑢(𝑡) = ∑𝑞𝑖(𝑡)𝜓𝑖

𝑁

𝑖=1

 (4) 

where the variables 𝑞𝑖(𝑡) are called the generalized coordinates. It is convenient in the 

sequel to normalize the modes with respect to the mass matrix, that is 

 

𝜓𝑖
𝑇�̃�𝜓𝑖 = 1 

𝜓𝑖
𝑇�̃�𝜓𝑖 = 𝜔𝑖

2 
(5) 

Substituting Eq. (4) into Eq. (3), and then pre-multiplying the result by the transpose of 

the mode shapes, yields the set of uncoupled differential equations: 

 �̈�𝑖 + 2휁𝑖𝜔𝑖�̇�𝑖 + 𝜔𝑖
2𝑞𝑖 = �̃�𝑖 (6) 

assuming the damping to be “classical”. Then, 휁𝑖 is the damping ratio in the ith mode and 

𝐹𝑖 is the modal force. Typically, only the modes in the low frequency range contribute 

significantly to the response, thus, the solution for Eq. (1) can be approximated by 

truncating Eq. (4) to M modes, 𝑀 ≪ 𝑁. 
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2.3 Non-intrusive Nonlinear Geometric Reduced Order Models  

The linear formulation considered in the previous section is typically valid only for 

“small” deformations of the structure. When they get larger, nonlinear geometric effects 

due to large translations and rotations can be observed and their neglect can lead to large 

errors in the response predictions. Accordingly, it is desired to extend the modal 

modeling strategies to the formulation of Nonlinear Geometric Reduced Order Models 

(NLROMs) with basis functions that are time invariant and satisfy the geometric 

boundary conditions. Since the structure is continuously changing in the deformed 

configuration with possible changes in location of the boundary conditions, one would 

expect the basis functions to be similarly varying in that configuration. To avoid this 

pitfall, the ROM development is conducted in the undeformed configuration Ω0. The 

equation of motion is then given by:  

 
𝜕

𝜕𝑋𝑘
(𝐹𝑖𝑗𝑆𝑗𝑘) + 𝜌0𝑏𝑖

0 = 𝜌0�̈�𝑖 (7) 

where S is the second Piola-Kirchhoff stress tensor, 𝜌0 is the density and 𝑏𝑖
0 is the vector 

of body forces, all of which are assumed to depend on the position X ∈ Ω0. Further, F 

denotes the deformation gradient tensor: 

 𝐹𝑖𝑗 =
𝜕𝑥𝑖

𝜕𝑋𝑗
= 𝛿𝑖𝑗 +

𝜕𝑢𝑖

𝜕𝑋𝑗
 (8) 

where 𝛿𝑖𝑗 is the Kronecker delta and 𝑢 = 𝑥 − 𝑋 is the displacement vector, 𝑥 being the 

position vector in the deformed configuration. 

For linear elastic material, the constitutive relation: 

 𝑆𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝐸𝑘𝑙 (9) 

is adopted here where C is the fourth order elasticity tensor, in general dependent on the 

undeformed coordinates 𝑋, and E is the Green strain tensor. 
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 𝐸𝑖𝑗 =
1

2
(𝐹𝑘𝑖𝐹𝑘𝑗 − 𝛿𝑖𝑗) (10) 

Note in Eqs. (7-10) and in the sequel that summation is implied over repeated indices. In 

parallel to Eq. (4), a nonlinear ROM can be developed by expressing the displacement 

field as 

 𝑢𝑖(𝑋, 𝑡) = ∑ 𝑞𝑛(𝑡)𝜓𝑖
(𝑛)

(𝑋)

𝑀

𝑛=1

 (11) 

where 𝝍 are constant basis functions that satisfy the geometric boundary conditions in 

the undeformed configuration. Introducing Eq. (11) in Eqs. (7) - (10) and enforcing the 

condition that the error be orthogonal to the basis (i.e., a Galerkin approach is selected), 

a set of nonlinear ordinary differential equations for the generalized coordinates 𝑞𝑛(𝑡) 

can be obtained. They are the reduced order model equations and take the form: 

 𝑀𝑖𝑗�̈�𝑗 + 𝐷𝑖𝑗�̇�𝑗 + 𝐾𝑖𝑗
(1)

𝑞𝑗 + 𝐾𝑖𝑗𝑙
(2)

𝑞𝑗𝑞𝑙 + 𝐾𝑖𝑗𝑙𝑝
(3)

𝑞𝑗𝑞𝑙𝑞𝑝 = 𝐹𝑖 (12) 

where 𝑀𝑖𝑗 denotes the elements of the mass matrix, 𝐾𝑖𝑗
(1)

, 𝐾𝑖𝑗𝑙
(2)

, 𝐾𝑖𝑗𝑙𝑝
(3)

 are the linear, 

quadratic, and cubic stiffness coefficients and 𝐹𝑖 are the modal forces. Furthermore, a 

linear damping term 𝐷𝑖𝑗�̇�𝑗 has been added to collectively represent various dissipation 

mechanisms. The determination of the stiffness coefficients is described in the ensuing 

section. 

2.4 Identification of ROM Parameters  

To determine the stiffness coefficients, 𝐾𝑖𝑗𝑙
(2)

, 𝐾𝑖𝑗𝑙𝑝
(3)

 in Eq. (12), one direct thought would 

be to express the nonlinear stiffness coefficients “explicitly” from the finite element 

formulation. Such an approach would be possible in an intrusive format based on a total 

Lagrangian formulation as described above; it is presented here only for completeness. 

Given the availability of all the finite element tensors, a direct computation of reduced 

order model parameters would be easily performed. 
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To this end, assume that the nonlinear governing equations of motion for the full finite 

element model can be derived following the same format as Eq. (12), with the 

generalized coordinates 𝑞𝑛(𝑡) replaced with the finite element degree of freedom, 𝑢𝑗: 

 �̃�𝑖𝑗�̈�𝑗 + �̃�𝑖𝑗�̇�𝑗 + �̃�𝑖𝑗
(1)

𝑢𝑗 + �̃�𝑖𝑗𝑙
(2)

𝑢𝑗𝑢𝑙 + �̃�𝑖𝑗𝑙𝑝
(3)

𝑢𝑗𝑢𝑙𝑢𝑝 = �̃�𝑖 (13) 

Given Eq. (11), the nonlinear stiffness matrices in the modal coordinates could then be 

written as: 

 

𝐾𝑖𝑗𝑙
(2)

= �̃�𝑝𝑟𝑠
(2)

𝜓𝑝
(𝑖)

𝜓𝑟
(𝑗)

𝜓𝑠
(𝑙)

 

𝐾𝑖𝑗𝑙𝑝
(3)

= �̃�𝑟𝑠𝑢𝑣
(3)

𝜓𝑟
(𝑖)𝜓𝑠

(𝑗)
𝜓𝑢

(𝑙)𝜓𝑣
(𝑝)

 

(14) 

In a non intrusive ROM formulation, one must proceed differently with the absence of 

�̃�𝑖𝑗𝑙
(2)

 and �̃�𝑖𝑗𝑙𝑝
(3)

. More specifically, an identification of the reduced order model parameters 

must be performed. It relies on the imposition on the finite element model of specified 

displacement fields or prescribed static loads so that a system of equations can be 

developed and solved for the stiffness coefficients. In the displacement-based approach 

[26, 27], a specified displacement field in the form of Eq. (11) is imposed in the 

commercial finite element software and the nonlinear restoring forces from a nonlinear 

static analysis are outputted. These restoring forces can then be projected on the modal 

basis to obtain the nonlinear modal forces, 𝐹𝑁𝐿 ∈  ℝ𝑀×1, which satisfy: 

 𝐹𝑁𝐿,𝑖 = 𝐾𝑖𝑗
(1)

𝑞𝑗 + 𝐾𝑖𝑗𝑙
(2)

𝑞𝑗𝑞𝑙 + 𝐾𝑖𝑗𝑙𝑝
(3)

𝑞𝑗𝑞𝑙𝑞𝑝 (15) 

As the modal forces 𝐹𝑁𝐿 and the generalied coordinates 𝑞𝑗 are known, Eq. (15) 

constitutes a set of linear algebraic equations solved for the stiffness coefficients. A 

related version of this approach [22] utilizes the tangent stiffness matrix at the displaced 

configuration if this matrix can be extracted. 

Alternatively, the coefficients can be evaluated from a set of nonlinear static solutions 

under a set of prescribed static loads [28, 29]. These loads are scaled, linear combination 
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of a few selected basis fuctions in the form of Eq. (11). Applying these loads to the 

nonlinear finite element model results in a set of displacement fields which are then 

projected on the ROM basis to obtain the corresponding generalized coordinated 𝑞𝑗. 

Finally, relating projected forces and displacements through Eq. (15) provides the 

equations necessary to identify the nonlinear stiffness coefficients. Note finally in both 

approaches that the set of equations for the stiffness coefficients is linear in these 

variables. Full details can be found in [22, 26, 29]. 

2.5 ROM Basis Selection  

An important step in the construction of a ROM is the selection of the basis functions 

needed to represent the displacement field. If the structural response is not well 

represented within the basis, the corresponding prediction of the reduced order model 

will in general be poor. In linear problems, the displacement field is generally transverse 

dominated and thus, the basis consists of linear transverse modes (well separated or 

isolated) in the low frequency range. However, in nonlinear problems, a significant 

increase in the in-plane response is often observed resulting from the “membrane 

stretching” effect. This phenomenon is due to the nonlinear coupling of the transverse 

and in-plane motions, leading to a softening effect on the transverse motion. 

Since the in-plane response is directly related to the transverse motion, a natural thought 

is to treat them as “companions” of the transverse response to model them implicitly to 

retain the “softening” effects with only bending modes considered in the basis. 

Therefore, the concept of static condensation is applied with the following assumptions: 

1) the modal forces associated with in-plane modes are zero. 

2) the in-plane inertia and damping can be neglected.  

3) there is no nonlinearity in the in-plane displacements.  
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The first step of condensation is to separate the governing equation Eq. (12) into those 

corresponding to transverse/bending modes and in-plane modes for symmetric 

structures: 

 𝑀𝑖𝑗
(𝑡)

�̈�𝑗
(𝑡)

+ 𝐷𝑖𝑗
(𝑡)

�̇�𝑗
(𝑡)

+ 𝐾𝑖𝑗
(1𝑡)

𝑞𝑗
(𝑡)

+ 𝐾𝑖𝑗𝑙
(2𝑡)

𝑞𝑗
(𝑡)

𝑞𝑙
(𝑖)

+ 𝐾𝑖𝑗𝑙𝑝
(3𝑡)

𝑞𝑗
(𝑡)

𝑞𝑙
(𝑡)

𝑞𝑝
(𝑡)

= 𝐹𝑖
(𝑡)

 (16) 

 𝑀𝑖𝑗
(𝑖)

�̈�𝑗
(𝑖)

+ 𝐷𝑖𝑗
(𝑖)

�̇�𝑗
(𝑖)

+ 𝐾𝑖𝑗
(1𝑖)

𝑞𝑗
(𝑖)

+ 𝐾𝑖𝑗𝑙
(2𝑖)

𝑞𝑗
(𝑡)

𝑞𝑙
(𝑡)

= 𝐹𝑖
(𝑖)

 (17) 

where 𝑞𝑗
(𝑡)

 and 𝑞𝑗
(𝑖)

 denote the generalied coordinates for transverse modes (superscript 

(t)) and in-plane modes (superscript (i)), respectively. Typically, the natural frequencies 

of in-plane modes are much higher than excitation bands, thus, a static condensation can 

be used. That is, the terms in  �̈�𝑗
(𝑖)

 and �̇�𝑗
(𝑖)

 are eliminated from Eq. (17) and the in-plane 

coordinates 𝑞𝑗
(𝑖)

 are then simply expressed in terms of their transverse counterparts as: 

 𝑞𝑗
(𝑖)

= −[𝑲1𝑖]𝑗𝑠
−1𝐾𝑠𝑟𝑙

(2𝑖)
𝑞𝑟

(𝑡)
𝑞𝑙

(𝑡)
 (18) 

Introducing Eq. (18) into Eq. (16),  

 𝑀𝑖𝑗
(𝑡)

�̈�𝑗
(𝑡)

+ 𝐷𝑖𝑗
(𝑡)

�̇�𝑗
(𝑡)

+ 𝐾𝑖𝑗
(1𝑡)

𝑞𝑗
(𝑡)

+ �̂�𝑖𝑗𝑙𝑝
(3𝑡)

𝑞𝑗
(𝑡)

𝑞𝑙
(𝑡)

𝑞𝑝
(𝑡)

= 𝐹𝑖
(𝑡)

 (19) 

 �̂�𝑖𝑗𝑙𝑝
(3𝑡)

= 𝐾𝑖𝑗𝑙𝑝
(3𝑡)

− 𝐾𝑖𝑗𝑙
(2𝑡)

 [𝑲1𝑖]𝑗𝑠
−1𝐾𝑠𝑙𝑝

(2𝑖)
 (20) 

which are transverse only set of equations. For this type of bases, the “net stiffening” 

effect, �̂�, is directly estimated. Such condensed ROMs were introduced and have shown 

to be successful in a broad range of cases [30, 31]. 

 To recover the full finite element displacement fields: 

 𝑢𝑖(𝑋, 𝑡) = ∑ 𝑞𝑛
(𝑡)

(𝑡)𝜓𝑖
(𝑡𝑛)

(𝑋)

𝑀𝑡

𝑛=1

+ ∑ 𝑞𝑛
(𝑖)

(𝑡)𝜓𝑖
(𝑖𝑛)

(𝑋)

𝑀𝑖

𝑛=1

 (21) 

The transverse-dominant modes, 𝝍(𝑡), are typically retained from the linear problem, 

while the corresponding in-plane modes are identified from the residuals of a given set of 
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observed nonlinear static responses after projection on the transverse basis functions. 

This method is usually referred to the Implicit Condensation with Expansion (ICE) [28]. 

Other modal selection techniques have also been proposed that rely only partially on the 

linear modes. In this group of methods, the linear modes retained from the linear 

problems are enriched by other basis functions focused on capturing the membrane 

stretching effects. While higher order linear modes have been used, see [32], they are 

generally quite challenging to select. Another strategy has been formulated and well 

validated that is directly based on the nonlinear coupling of the transverse and in-plane 

motions. That is, the enrichment modes (referred to as “dual” modes) are contructed to 

be closely “associated” to the retained (transverse dominated) linear modes, somewhat 

similarly to the companion modes of [32], but to stand on their own as independent 

basis functions. Specifically, they are computed from the residuals of projection on the 

then current basis of a series of nonlinear static solutions to specific loadings. These 

loadings are determined so that the linear response of the structure to them would 

induce a response only in the retained linear modes. That is, the residuals would be zero 

for a linear structure and no dual could be constructed. So, the dual modes capture the 

effects of nonlinearity induced by the selected set of linear modes. 

Turning to the details, the applied load vectors on the finite element models should be in 

the form of: 

 𝑓 = ∑𝛼𝑖�̂�
(1)𝜓𝑖

𝑖

 (22) 

such that the corresponding linear static responses are: 

 �̂� = ∑𝛼𝑖𝜓
𝑖

𝑖

 (23) 

where 𝛼𝑖 are the scaling factor corresponding to mode i. Generally, it is sufficient to only 

consider the cases: 
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 𝑓 = 𝛼𝑖�̂�
(1)𝜓𝑖, 𝑖 = 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑚𝑜𝑑𝑒𝑠 (24) 

and 

 𝑓 =
𝛼𝑖

2
(�̂�(1)𝜓𝑖 + �̂�(1)𝜓𝑗) , 𝑖 = 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑚𝑜𝑑𝑒𝑠, 𝑗 ≠ 𝑖 (25) 

In the above equations, the dominant modes are loosely defined as the ones expected to 

provide large response components, much larger than the other modes, to the actual 

loading. The appropriate scaling factors 𝛼𝑖 should lead to the displacement fields, �̂�, 

ranging from near linear cases to some exihibiting a strong nonlinearity. The following 

step is the extraction of the “dual” modes from the obtained finite element displacement 

fields. A POD analysis using Singular Decomposition Value (SVD) is conducted on the 

set of residuals of projection of the finite element responses onto the existing basis. A 

more detailed description of the process can be found in [33, 34]. 

2.6 Component Mode Synthesis  

Component Mode Synthesis is an ensemble of techniques for dynamic substructuring, 

i.e., for the decomposition of structures in subcomponents, the modeling of these 

substructures, and their recombination to satisfy continuity conditions and provide a 

global representation of the response. There are quite a few different possibilities to 

assemble the substructures which vary from each other in particular by the consideration 

of the interfaces displacements and forces. One of the classic methods is the Craig-

Bampton (CB) Method [35, 36] which uses explicitly all of the degrees of freedom at the 

interface as generalized coordinates. Then, the representation of the response is achieved 

by the combination of fixed interface modes and constraint modes as the reduction basis. 

The fixed interface modes are defined for each substructure as their fully clamped linear 

modes. The constraint modes on the contrary are the static displacements induced by a 

unit displacement of each interface degree-of-freedom in turn, with all others set to zero, 

in the substructures it is connected to. Clearly, this method is inefficient when the 



  18 

number of interface DOFs is large. Castanier et al. [37] proposed that a secondary 

general eigen-problem be performed on the interface DOFs to reduce the number of 

constraint modes, resulting in a more efficient basis, referred to as the characteristic 

constraint modes  

Other methods use the interface forces as interface variables [38, 39], e.g., the Craig-

Chang Method. In this method, the response is modeled using free-interface and rigid 

body modes, i.e., corresponding to the free-free substructure, as well as attachment 

modes which are the static responses to single loads applied on the structure. 

Recent efforts have focused on extending substructuring methods to nonlinear analyses, 

e.g., [40, 41]. The studies of [42, 43] are particularly relevant to the current focus on 

non-intrusive NLROMs. Specifically, Perez [42] was the first to investigate the use of the 

Craig-Bampton methodology to develop a NLROM of a multi-bay panel. He found that a 

linear substructuring approach could reduce the linear model from 96,000 degrees of 

freedom to 232 generalized coordinates using fixed-interface and constraint modes 

reduced using proper orthogonal decomposition. However, the nonlinear modal 

substructuring was not actually pursued in his work as the reduction of the monolithic 

structure only required 89 DOFs. A similar substructuring approach was developed for 

coupling geometrically nonlinear structures, where each subcomponent was reduced to a 

low order set of nonlinear equations using a truncated set of fixed interface and 

characteristic constraint modes [43]. This approach reduced a 12,861 DOF finite element 

model down to 23 mode NLROM. No comparison was however made with a monolithic 

NLROM to assess the difference in number of generalized coordinates. 
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CHAPTER 3 

VALIDATION MODELS  

3.1 A Middle Complexity Multi-Bay Structure 

The 9-bay fuselage sidewall panel of [25, 44], was considered for the validation of the 

component-centric ROMs. It is a representative example of the class of structures for 

which a component-centric ROM would be desirable as it exhibits well delineated 

components, i.e., the 9 different bays. As described in [25], the overall dimensions of the 

panel are 58.1” by 25.06” and it is subdivided into nine geometrically identical bays 

riveted by a frame and longeron substructure. Each bay measures 18.75” by 7.5” between 

rivet lines and is identified by its number, 1 to 9, as shown in Fig. 1. The Nastran finite 

element model consists of 4-node plate elements (CQUAD4) and beam (CBEAM) 

elements and has a total of 96,156 degrees of freedom. The selected material properties 

are: Young’s modulus of 10.5×106psi, Poison’s ratio equal to 0.33, and a density of 

2.614×10-4lbf-s2/in4.  Finally, the edges of the skin are simply supported. Further 

information regarding this model can be found in [25, 44]. In these references, the bays 

have equal thickness of 0.05” and thus the overall model is nearly symmetrical with the 

asymmetry arising only from the frame and the longeron configuration. This property 

implies that the response of the panel to a uniform pressure is dominated by only a 

limited set of modes vs. the entire set. To promote richer dynamics, the 9 bays were 

taken here to have different thicknesses selected as (in order of panel, from 1 to 9) 

0.0554, 0.0683, 0.0274, 0.0586, 0.0532, 0.0369, 0.0457, 0.0534 and 0.0858 (unit: in). 

The thickness of the rest of the skin and the frame substructure was selected as in the 

original model, i.e., 0.05” and 0.04”. The structure was assumed to be subjected to a 

uniform pressure of unit magnitude on its skin only and, a Rayleigh damping model was 

adopted, i.e., 
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 𝑪 = 𝑟1𝑴 + 𝑟2𝑲 (26) 

where 𝑪 denotes the damping matrix and 𝑟1 = 7.55/s and 𝑟2= 5.6×10-6s. This model 

provides classical damping with damping ratios ranging from 0.65% to 1% of critical in 

the frequency band of interest, [0,350] Hz. 

 

Figure 1 Finite Element Model of the 9-bay Fuselage Sidewall Panel, (a) Isometric 
View, (b) Top View from [22] 

Figure 2 shows the magnitude of the transverse displacement frequency response 

function of the middle point of Bay 4. This curve was obtained using the first 85 linear 

modes of natural frequencies ranging from 68 to 500 Hz; it is nearly indistinguishable 

from the full finite element solution. The in-plane deflections were found much smaller 

than their transverse counterparts and thus the latter were selected as the primary 

quantities of interest. The curve of Fig. 2 will be referred to as the “baseline” against 

which the linear component-centric ROM predictions of the ensuing sections will be 

compared. 

Several observations can be drawn from Fig. 2 and the list of natural frequencies of Table 

1. First, while some natural frequencies are well separated from the others, there are 

several zones densely populated with frequencies. This occurrence is reflected by either 

tightly packed sharp peaks or broad peaks in Fig. 2. Second, there is a sharp drop of the 

response around 350Hz and thus the analysis will focus solely on the band [0,350] Hz. 
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 Table 1  

Natural Frequencies of the 9-bay Panel (Hz) 

68.15 94.89 101.63 107.58 117.64 121.14 125.00 127.48 129.01 130.43 
132.00 135.43 138.39 142.23 143.17 149.89 158.29 160.99 165.35 167.34 
193.86 195.42 205.09 212.97 218.23 219.67 232.86 233.58 241.09 251.78 
254.10 257.24 260.32 266.90 269.53 271.22 279.35 286.20 288.42 292.14 
292.93 296.87 308.84 310.55 314.94 318.59 325.76 330.00 340.73 352.19 

 

 
Figure 2 Magnitude of the frequency response at the middle point of Bay 4, transverse 

displacement 

3.2 Nonlinear ROM Construction for the Multi-Bay Structure 

The nonlinear ROM for the 9-bay panel started with the selection of the linear modes to 

be incorporated in the model. To gather data on this issue, a series of 10 uniform 

pressures were applied to the top (skin) of the panel, and the corresponding NX/Nastran 

nonlinear static responses (SOL 106) were obtained to provide a sample of “snapshots” 

for the reduced order model construction. The peak transverse deflections (direction 

normal to the skin panel) ranged from 0.1 to 5 skin panel thicknesses. These “snapshots” 

were used to assess the need to include particular linear modes in the model and as a 

result, all 50 linear modes in the band of interest [0,350] Hz were retained as they 

almost all affect the response of some bay(s), see Fig. 3. Next, dual modes were 

determined as described in section 2.5 using the 10 linear modes with the largest modal 
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components, i.e. modes 1, 2, 3, 4, 6, 7, 11, 16, 17 and 19. Since the modal component of 

mode 1 is much larger than the other ones for all static responses analyzed, it was 

considered as the only dominant mode in Eqs. (24) and (25).  

The POD-based dual mode construction procedure highlighted in Chapter 2 was 

performed for the data obtained for mode 1 alone and each of the 9 combinations of 

mode 1 and another of the 10 largest responding modes (see Fig. 3). In each of these 10 

situations, 22 different loading factors, 𝛼𝑖 , (see Eqs. (24) and (25)) were used, half 

positive and half negative, and leading to peak deflections ranging from 0.1 to 

approximately 5 skin panel thicknesses. The remainders of these 220 deflections, after 

projection on the 50 linear modes identified above, were analyzed by POD. The POD 

eigenvectors with largest eigenvalues and significant linear strain energy were selected as 

dual modes. Each of them led to a reduction of the representation error of the T1 (i.e., x 

component) and T2 (i.e., y component) components. Then, 24 duals modes were 

identified in this manner and added to the 50 linear modes leading to a 74-mode 

nonlinear ROM. 

 
Figure 3 Normalized mean modal projection on a sample of “snapshots” 

Two dynamic loading cases were tested, they both consisted of a uniform pressure on its 

top surface varying randomly in time as a white noise band-limited process in the 
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frequency range [0,350] Hz to simulate an acoustic loading. In the first case, the overall 

sound pressure level (OASPL) was 136dB while it was 144dB in the second case. The 

former leads to a peak transverse displacement of approximately 1 skin panel thicknesses 

which lies in the geometric nonlinear regime (as can be confirmed by comparison with a 

linear analysis), while the later results in a peak transverse displacement of 

approximately 2.6 skin panel thicknesses which is well in the geometric nonlinear 

regime. The damping assumption was the same as in the linear case. The validation 

results of the ROM comparing to Nastran SOL400 are plotted below (Fig. 4-57) and as 

shown, the ROM predictions match well with those from Nastran, for all bays and all 

loading levels. 

 
Figure 4 Power spectral densities of the transverse responses of Panel 1 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 
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Figure 5 Power spectral densities of the in-plane (T1) responses of Panel 1 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 

 

 
Figure 6 Power spectral densities of the in-plane (T2) responses of Panel 1 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 
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Figure 7 Power spectral densities of the transverse responses of Panel 2 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 

 

 
Figure 8 Power spectral densities of the in-plane (T1) responses of Panel 2 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 9 Power spectral densities of the in-plane (T2) responses of Panel 2 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 10 Power spectral densities of the transverse responses of Panel 3 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 
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Figure 11 Power spectral densities of the in-plane (T1) responses of Panel 3 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 12 Power spectral densities of the in-plane (T2) responses of Panel 3 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 13 Power spectral densities of the transverse responses of Panel 4 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 

 

 
Figure 14 Power spectral densities of the in-plane (T1) responses of Panel 4 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 15 Power spectral densities of the in-plane (T2) responses of Panel 4 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 16 Power spectral densities of the transverse responses of Panel 5 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 
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Figure 17 Power spectral densities of the in-plane (T1) responses of Panel 5 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 18 Power spectral densities of the in-plane (T2) responses of Panel 5 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 19 Power spectral densities of the transverse responses of Panel 6 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 

 

 
Figure 20 Power spectral densities of the in-plane (T1) responses of Panel 6 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 21 Power spectral densities of the in-plane (T2) responses of Panel 6 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 22 Power spectral densities of the transverse responses of Panel 7 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 
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Figure 23 Power spectral densities of the in-plane (T1) responses of Panel 7 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 24 Power spectral densities of the in-plane (T2) responses of Panel 7 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 25 Power spectral densities of the transverse responses of Panel 8 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 

 

 
Figure 26 Power spectral densities of the in-plane (T1) responses of Panel 8 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 27 Power spectral densities of the in-plane (T2) responses of Panel 8 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 28 Power spectral densities of the transverse responses of Panel 9 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
136dB 
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Figure 29 Power spectral densities of the in-plane (T1) responses of Panel 9 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
 

 
Figure 30 Power spectral densities of the in-plane (T2) responses of Panel 9 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

136dB 
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Figure 31 Power spectral densities of the transverse responses of Panel 1 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 

 

 
Figure 32 Power spectral densities of the in-plane (T1) responses of Panel 1 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 33 Power spectral densities of the in-plane (T2) responses of Panel 1 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 34 Power spectral densities of the transverse responses of Panel 2 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 
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Figure 35 Power spectral densities of the in-plane (T1) responses of Panel 2 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 36 Power spectral densities of the in-plane (T2) responses of Panel 2 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 37 Power spectral densities of the transverse responses of Panel 3 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 

 

 
Figure 38 Power spectral densities of the in-plane (T1) responses of Panel 3 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 39 Power spectral densities of the in-plane (T2) responses of Panel 3 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 40 Power spectral densities of the transverse responses of Panel 4 center 

obtained with Nastran SOL400(red), the 74-mode full ROM (black) for OASPL of 
144dB 
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Figure 41 Power spectral densities of the in-plane (T1) responses of Panel 4 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 42 Power spectral densities of the in-plane (T2) responses of Panel 4 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 43 Power spectral densities of the transverse responses of Panel 5 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 

 

 
Figure 44 Power spectral densities of the in-plane (T1) responses of Panel 5 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 45 Power spectral densities of the in-plane (T2) responses of Panel 5 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 46 Power spectral densities of the transverse responses of Panel 6 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 
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Figure 47 Power spectral densities of the in-plane (T1) responses of Panel 6 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 48 Power spectral densities of the in-plane (T2) responses of Panel 6 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 49 Power spectral densities of the transverse responses of Panel 7 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 

 

 
Figure 50 Power spectral densities of the in-plane (T1) responses of Panel 7 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 



  47 

 
Figure 51 Power spectral densities of the in-plane (T2) responses of Panel 7 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 52 Power spectral densities of the transverse responses of Panel 8 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 
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Figure 53 Power spectral densities of the in-plane (T1) responses of Panel 8 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
 

 
Figure 54 Power spectral densities of the in-plane (T2) responses of Panel 8 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 55 Power spectral densities of the transverse responses of Panel 9 center 

obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 
144dB 

 

 
Figure 56 Power spectral densities of the in-plane (T1) responses of Panel 9 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 
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Figure 57 Power spectral densities of the in-plane (T2) responses of Panel 9 center 
obtained with Nastran SOL400 (red), the 74-mode full ROM (black) for OASPL of 

144dB 

3.3 A Simple Clamped-Clamped Beam Supported by Springs 

A clamped-clamped beam supported by equal springs was also adopted as a simple 

validation case. The springs equally divide the beam into four bays (referred to as bay 1 

to 4 from left to right) as shown in Fig. 58. In addition to the clamped-clamped boundary 

at both end, the out of plane translation and rotation degrees of freedom were also 

blocked for all nodes. The beam is made of isotropic elastic material with the following 

properties: Young’s modulus (E) = 205MPa, Poisson’s ratio (v) = 0.3, density (𝜌) = 

1966.8 kg/m3. The beam thickness is 7.75e-4 m and it is 0.2286 m long and 0.0127 m 

wide. The springs are identical with stiffness k = 200 N/m. The finite element model was 

developed in Nastran with the beam discretized with 40 identical CBEAM elements and 

3 spring CELAS2 elements leading to 246 degrees of freedom. A Rayleigh damping 

model was adopted, i.e., D = aM + bK, with a = 4.52/s and b = 1.71e-05s which leads to 

damping ratios of 1.12%, 1.00%, 0.93%, and 0.92% for the first 4 modes. 
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Figure 58 A simple clamped-clamped beam model supported by linear springs 

 

 
Figure 59 Lowest 4 linear modes of the beam model 

The presence of the springs induces a partial localization of the linear modes to 1 or 2 of 

the bays, see Fig. 59, and the features of these modes are similar to those of the stiffened 

9-bay panel. The natural frequencies of the linear modes are listed in Table 2 in 

increasing order.  

Table 2  

Natural Frequencies of the Beam (Hz) 

39.659 48.454 59.480 59.829 101.507 116.772 147.569 162.198 
170.136 208.846 252.104 302.704 340.535 345.951 406.402 468.658 

3.4 Nonlinear ROM Construction for the Beam  

The beam was assumed subjected to either static or dynamic loading, the latter varying 

with time as a white noise in the band [0,100] Hz. The spatial variation of the loading 

was selected as a linear combination of modes 1 to 4 leading to modal forces of 7.56e3, 
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0.89e3, 0.22e3, 0.22e3 on the mass normalized modes 1-4. This load distribution 

promotes a mode 1 response for simplicity. 

Given the loading conditions and the natural frequencies, it would appear at first that the 

construction of the NLROM would be a straightforward task, based on 4 linear modes 

with mode 1 only dominant. However, the nonlinear response of the beam was found 

rather unexpectedly to exhibit two interesting features inherent of nonlinear problems 

which modified the basis selection. First, it was observed that mode 3 exhibits a much 

larger response for the nonlinear dynamic case than for its linear equivalent. Figure 60 

compares the averaged values (from dynamic responses) of the modal responses of the 

linear modes for a peak response of 1 thickness from which it is clearly seen that the 

average modal response for the linear mode 3 almost equals that of the linear mode 1. 

Therefore, mode 3 needs also to be considered as a dominant mode in the dual mode 

computations. The second unexpected observation is that there exists a transfer energy 

from the excitation band [0,100] Hz band to the [200,300] Hz one (see Fig. 61, red solid 

curve) where higher order linear modes are excited. Thus, modes 5 - 8, 10 - 12, 14-16 and 

21 were also added to the basis. Note that modes 9 and 13 are torsion dominant modes, 

thus, are not included in the basis. 

 
Figure 60 Averaged values of the modal coordinates for the linear modes 

As a result, dual modes resulting from modes 1 and 3 alone and their combinations with 

other linear modes were added to the nonlinear ROM basis. In this light, 14 duals modes 
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were generated leading then to a 29-mode NLROM. This large number of modes is 

unusual for a structure of seemingly low complexity but it is a result of the nonlinear 

energy transfer mechanism. The final step of the 29-mode ROM construction is the 

identification of its linear, quadratic, and cubic stiffness coefficients which was achieved 

from the Nastran finite element model using the tangent stiffness imposed displacement 

approach (see [22]). In the sequel, this 29-mode ROM will be referred to as the full 

NLROM.  

Its response will be used as the baseline for the assessment of the component-centric 

ROMs because some differences still exist at the high frequency ranges (i.e., [200,300] 

Hz for the transverse direction, [450,580] Hz for the in-plane direction) as shown in Fig. 

61. Somewhat larger response in the high frequency range were obtained using the 

condensed ROM [31] as shown in Fig. 62. In fact, the condensed full ROM would provide 

the same results after setting the damping for the dual modes to zero. Therefore, the 

larger response was basically due to the “zero” damping on the in-plane motion. 

 
(a) 
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(b) 

Figure 61 Power spectral density of the transverse (a) and in-plane (b) deflections at the 
node with max. disp. in the first bay 

 
Figure 62 Power spectral density of the transverse deflection at the node with max. 

disp. in the first bay 

3.5 Comparison of different FE Models and the ROM for the Beam 

Since the observed out of band responses exhibited by the beam model could not be 

duplicated by the NLROM under any condition, it was questioned whether this issue 

could result from a difference in nonlinear modeling between NLROM and Nastran. To 

assess this possibility, finite element results were also obtained for this beam modeled in 

Abaqus, as well as in two in-house finite element codes from the US Air Force Research 

Lab. by Dr. Perez. Shown in Fig. 63 are the power spectral densities (PSD) of 

displacement responses at the node of maximum transverse in the first bay obtained 
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using the available finite element codes and the NLROM. It is seen that, the prediction 

obtained with the ROM matches well the FE code named “Gordon” [45], while those 

from Nastran SOL400, Abaqus and the corotational FE code [46] exhibit good 

agreements. The difference between the “Gordon” code and the corotational code is the 

use of the linear constitutive relation between the stress and the strain tensors. The 

“Gordon” code expresses the stress and strain tensors in the undeformed configurations: 

 𝑆𝑖𝑗  = 𝐶𝑖𝑗𝑘𝑙𝐸𝑘𝑙 (27) 

as assumed in the NLROM formulation, Eq. (9). On the contrary, the corotational code 

assumes the formulation by assuming a similar relation between the corresponding 

deformed configuration tensors: 

 𝜎𝑖𝑗  = �̂�𝑖𝑗𝑘𝑙𝑒𝑘𝑙 (28) 

where σ and e are the Cauchy stress and Almansi strain tensors and �̂� is also a fourth 

order elasticity tensor but dependent on the deformed coordinates 𝑥. The undeformed 

stress and strain tensors are obtained from their deformed counterparts from the pull-

back operations. 

 
𝑺 = 𝐽𝑭−1𝝈𝑭−𝑻 

𝑬 = 𝑭𝑇𝒆𝑭 
(29) 

where F is the deformation gradient tensor and J denotes the Jacobian of the 

transformation, i.e., J=det(F). Combining Eqs (27) -(29), it is readily seen that it is not 

possible for both Eqs (27) and (28) to hold independently of the deformations, i.e. of F. 

Equivalently, the two linear elasticity definitions, Eqs. (27) and (28), are not compatible 

and different displacement fields will be obtained by assuming one or the other law. 

Since Eq. (27) is consistent with the derivation of the NLROM, the matching of the 

prediction from the NLROM with those from the “Gordon” code would be expected. The 

formulation for Abaqus is unknown so there is no conclusion drawn regarding its results. 
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The above discussion demonstrates that the differences between the Nastran results and 

their ROM counterpart could be attributed to the different assumptions made with 

regard to constitutive equation. Within the non-intrusive NLROM community focusing 

on panels and wings, this finding appears to be the first of its kind which is 

demonstrated. 

 
(a) 

 
(b) 

Figure 63 Power spectral density of the transverse (a) and in-plane (b) deflections at the 
node with max. disp. in the first bay with different FE models and the ROM 
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CHAPTER 4 

LINEAR COMPONENT-CENTRIC ROM  

This chapter focuses on the formulation and assessment of linear component-centric 

ROMs, i.e., those that provide a better approximation in the zone of interest (the β 

component) than the rest of it (the α component). Four different approaches will be 

presented. The validation, assessment, and comparison of these approaches will be 

carried out on the test structure, the modified NASA’s 9-bay panel, the properties and 

response of which were described in Chapter 3. 

4.1 Craig-Bampton Based Approaches   

Since the structure will be decomposed into two parts, α and β, a Component Mode 

Synthesis framework seems appropriate as a way to emphasize the latter part over the 

former one. More specifically, the Craig-Bampton (CB) method is adopted here and, for 

completeness and notational convenience, is briefly reviewed below. 

The equations of motion for the undamped substructure s (s representing either α or β) 

can be written as: 

 �̂�𝑠�̈�𝑠 + �̂�𝑠𝑢𝑠 = �̂�𝑠 (30) 

where �̂�𝒔, �̂�𝒔, 𝑢𝒔, and �̂�𝑠 are, respectively, the mass and stiffness matrices and the 

displacement and force vector of the substructure in the physical coordinates. The mass 

and stiffness matrices can be partitioned as: 

 �̂�𝑠 = [
�̂�𝑖𝑖 �̂�𝑖𝑏

�̂�𝑏𝑖 �̂�𝑏𝑏

] (31) 

and �̂�𝑠 = [
�̂�𝑖𝑖 �̂�𝑖𝑏

�̂�𝑏𝑖 �̂�𝑏𝑏

] (32) 

where the subscripts i and b correspond to the interior and boundary degrees of freedom 

of the substructure s. In the Craig-Bampton method, the internal (𝑢𝑖
𝑠) and boundary (𝑢𝑏

 ) 

displacement are represented as: 
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 𝑢𝑖
𝑠 = 𝚽𝑠𝑞𝑖

𝑠 + 𝚵𝑠𝑌 (33) 

 𝑢𝑏
 = 𝑌 (34) 

where  𝚽𝑠 = [𝜙1 𝜙2 ⋯ 𝜙𝑛] denotes a matrix of n selected fixed interface modes 𝜙𝑘, 

i.e., with the boundary displacements set to zero. They are derived from the eigenvalue 

problem: 

 �̂�𝑖𝑖
𝑠 𝜙𝑗

𝑠 = 𝜆𝑗
𝑠�̂�𝑖𝑖

𝑠 𝜙𝑗
𝑠 (35) 

with 𝜆𝑗
𝑠 representing the corresponding eigenvalue. Further, in Eq. (33), 𝚵𝑠 denotes the 

matrix of constraint modes which are determined as the static responses inside the 

substructure s corresponding to all boundary degrees of freedom set to zero except one 

of them in turn which is then set to a unit value. That is, 

 𝚵𝑠 = −(�̂�𝑖𝑖
𝑠 )

−1
�̂�𝑖𝑏

𝑠  (36) 

Finally, the vector 𝑞𝑖
𝑠 of Eq. (33) contains the generalized coordinates of the fixed 

interface modes. Note in the above discussion that the boundary degrees of freedom are 

common to both substructures. The reduction of variables, from (𝑢𝑖
𝑠, 𝑢𝑏

 ) to (𝑞𝑖
𝑠, 𝑌  ), is 

accompanied by the transformation matrix: 

 𝑻𝑠 = [
𝚽𝑠 𝚵𝑠

𝟎 𝑰
] (37) 

where 𝑰 denotes the identity matrix of appropriate dimensions. Then, the reduced CB 

mass and stiffness matrices can be obtained as: 
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 �̃�𝐶𝐵
𝑠 = (𝑻𝑠)𝑇�̂�𝑠𝑻𝑠 = [

�̃�𝑞𝑞 �̃�𝑞𝑌

�̃�𝑌𝑞 �̃�𝑌𝑌

] (38) 

 �̃�𝐶𝐵
𝑠 = (𝑻𝑠)𝑇�̂�𝑠𝑻𝑠 = [

�̃�𝑞𝑞 𝟎

𝟎 �̃�𝑌𝑌

] (39) 

Note further that both �̃�𝑞𝑞 and �̃�𝑞𝑞 are diagonal and the ratios of their components are 

the eigenvalues of the fixed-interface problem. Considering the two substructures, the 

overall equations of motion of the undamped structure are 

 

[
 
 
 
�̃�𝑞𝑞

𝛼 �̃�𝑞𝑌
𝛼 𝟎

�̃�𝑌𝑞
𝛼 �̃�𝑌𝑌

 �̃�𝑌𝑞
𝛽

𝟎 �̃�𝑞𝑌
𝛽

�̃�𝑞𝑞
𝛽

]
 
 
 

[

�̈�𝑖
𝛼

�̈�

�̈�𝑖
𝛽

] + [

�̃�𝑞𝑞
𝛼 𝟎 𝟎

𝟎 �̃�𝑌𝑌
 𝟎

𝟎 𝟎 �̃�𝑞𝑞
𝛽

] [

𝑞𝑖
𝛼

𝑌

𝑞𝑖
𝛽
] = [

�̃�𝒊
𝜶

�̃�𝒃
 

�̃�𝒊
𝜷

] (40) 

A more complete reduction can be performed by expressing the physical degrees of 

freedom at the interface in terms of a set of modes Ψ𝑟  referred to as the characteristic 

constraint modes [37, 47] i.e.,: 

 𝑌 = 𝚿𝑧 (41) 

where 𝚿 = [Ψ1 Ψ2 ⋯ Ψ𝑟], with each column computed from the general eigen-value 

problems: 

 �̃�𝑌𝑌
 Ψ𝑗 = 𝜆𝑗�̃�𝑌𝑌

 Ψ𝑗 (42) 

The following transformation matrix allows a second reduction of the degrees of 

freedom: 

 𝑻𝟐 = [
𝑰 𝟎
𝟎 𝚿

] (43) 

The mass and stiffness matrices can be further reduced as: 

 �̌�𝐶𝐵
𝑠 = (𝑻𝟐)

𝑇�̃�𝐶𝐵
𝑠 𝑻𝟐 = [

�̌�𝑞𝑞 �̌�𝑞𝑧

�̌�𝑧𝑞 �̌�𝑧𝑧

] (44) 

 �̌�𝐶𝐵
𝑠 = (𝑻𝟐)

𝑇�̃�𝐶𝐵
𝑠 𝑻𝟐 = [

�̌�𝑞𝑞 𝟎

𝟎 �̌�𝑧𝑧

] (45) 

Therefore, the overall equations of motion become: 
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[
 
 
 
�̌�𝑞𝑞

𝛼 �̌�𝑞𝑧
𝛼 𝟎

�̌�𝑧𝑞
𝛼 �̌�𝑧𝑧

 �̌�𝑧𝑞
𝛽

𝟎 �̌�𝑞𝑧
𝛽

�̌�𝑞𝑞
𝛽

]
 
 
 
[

�̈�𝑖
𝛼

�̈�

�̈�𝑖
𝛽
] + [

�̌�𝑞𝑞
𝛼 𝟎 𝟎

𝟎 �̃�𝑧𝑧
 𝟎

𝟎 𝟎 �̃�𝑞𝑞
𝛽

] [

𝑞𝑖
𝛼

𝑧

𝑞𝑖
𝛽
] = [

�̃�𝒊
𝜶

�̌�𝒃
 

�̃�𝒊
𝜷

] (46) 

The CB modeling approach was investigated with various numbers of fixed interface and 

characteristic constraint modes for the 9-bay panel. This effort eventually led to the 

selection of 6 β-fixed interface modes, 28 characteristic constraint modes and 200 α-

fixed interface modes, the predictions from which match well with the baseline (see Fig. 

64). This model later will be used for the construction of component-centric ROMs. A 

known aspect of the CB method, i.e., Eqs (33) and (34), even after proper reduction[37, 

47] , of Eq. (41), is the much larger size of the reduced model as compared to the linear 

modes, primarily due to the often large number of boundary degrees of freedom (see Fig. 

65). To avoid its pitfall of a large number of generalized coordinates, it is proposed here 

to develop ROM-based “top-down” approaches. Two different secondary reductions are 

discussed in the ensuing sections. 

 
Figure 64 Magnitude of the frequency responses at the middle point of Bay 4, 

transverse displacement 
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(a) 

 
(b) 

 
(c) 

Figure 65 Convergence study for the β-fixed interface modes (a), characteristic constraint 
modes (b) and α-fixed interface modes (c) 

4.1.1 ROMs Based on β-Fixed Interface and α-POD Modes 
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A potential improvement of this situation may result here from the condition that only 

the β component needs to be modeled accurately. Then, the mode reduction should 

extract only the modes in α that have significant effects on the response in the β 

component. Given reciprocity, these modes can be obtained as the responses in α due to 

imposed β motions. With that perspective, the modal basis was determined as follows: 

(i) the fixed interface modes of the β component were assumed to vary harmonically one 

at a time and for all frequencies in the range of interest, 

(ii) the damped response of the α component and the boundary were determined from 

Eq. (46) without additional forces on them, i.e., 

(iii) a Proper Orthogonal Decomposition (POD) analysis of the responses obtained in (ii) 

was carried out to extract the dominant components (see [48] for a recent review), and 

finally 

(iv) the component-centric ROM was built with the fixed interface modes of the β 

component (referred to as “β-fixed”) and the POD modes for α and the boundary 

(referred to as “α-POD”).  

 [
�̌�𝑞𝑞

𝛼 �̌�𝑞𝑧
𝛼

�̌�𝑧𝑞
𝛼 �̌�𝑧𝑧

 
] [

�̈�𝑖
𝛼

�̈�
] + [

𝑪𝑞𝑞
𝛼 𝑪𝑞𝑧

𝛼

𝑪𝑧𝑞
𝛼 𝑪𝑧𝑧

 ] [
�̇�𝑖

𝛼

�̇�
] + [

𝒌𝑞𝑞
𝛼 𝟎

𝟎 𝒌𝑧𝑧
 ] [

𝑞𝑖
𝛼

𝑧
] = [

𝟎

−𝑴𝑌𝑞
𝛽

�̈�𝑖
𝛽] (47) 

Note that the singular value decomposition (SVD) was used for all POD analyses to avoid 

the loss of precision when forming the covariance matrix. Therefore, the POD modes are 

computed by performing an SVD on the matrix of snapshot data. The assessment of the 

above procedure was carried out by first comparing the magnitude of the frequency 

response of the β components to its baseline. Figure 66 provides this comparison at the 

middle point of the β component with 6 β-fixed and 30 α-POD modes. The excellent 

matching with the baseline curve indicates that this method does provide a good 

prediction of the response in the β component with enough α-POD modes. 
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To obtain a more global representation of the matching over the two components, a 

representation error was defined as 

 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =  
𝑛𝑜𝑟𝑚𝐿2

 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑒𝑟𝑟𝑜𝑟

𝑛𝑜𝑟𝑚𝐿2
 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

×𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (48) 

which is computed in both components (α and β) and at each frequency. Shown in Fig. 

67 are the representation errors in α and β components with the 6 β-fixed and 30 α-POD 

modes component-centric ROM. They confirm the good match seen in Fig. 66 and 

demonstrate that the modeling of the β component is better than the one for the α 

component as could be expected. However, 36 modes are necessary while a similar 

prediction can already be achieved with as few as 21 linear modes (see section 4.4). 

Moreover, reducing the number of α-POD modes degrades rapidly the accuracy: the 

ROM built with 6 β-fixed and 20 α-POD modes fails to capture some of the peaks, see 

Fig. 68. The need for a large number of α-POD modes is again verified by the slow 

decrease of the representation errors in Fig. 69. It is concluded that this method provides 

a good matching of the response in the β component but does not appear to lead to a very 

compact ROM. 

 
Figure 66 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 4, 6 β-fixed and 30 α-POD modes and baseline model 
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Figure 67 Comparison of the representation errors in α and β components, 6 β-fixed 

and 30 α-POD modes 

 

 
Figure 68 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 4, 6 β-fixed and 20 α-POD modes and baseline model 
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Figure 69 Representation error of the magnitude of frequency response in β versus the 

number of α-POD modes 

4.1.2 ROMs Based on β-POD and α-POD Modes 

The large ROM size required in the previous section could be attributed in part to the use 

of the fixed interface modes of the β component which are not representative of the 

actual motions in that component. Thus, a large number of such modes may be 

necessary. Moreover, to each mode in the β component is associated a series of α-POD 

modes forcing the model size to be larger than necessary. To try to mitigate this 

situation, a different representation of the β component response was sought. 

Specifically, the deflections of the β component of the linear modes in the [0,350] Hz 

band were first extracted and then a POD analysis of the snapshot matrix composed of 

these responses was carried out. These computed POD modes are referred to as “β-POD” 

modes in the sequel and were used to generate an associated basis in the β component 

following a process similar to the previous section. 

A notable difference between β-POD and β-fixed interface modes is however that the 

degrees of freedom of the interface are included in the β-POD modes vs. separate degrees 

of freedom in the previous formulation. Then, the imposition of the motions in β to 

obtain the α-POD modes is actually achieved by prescribing the motion of the entire 
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boundary, i.e., the degrees of freedom 𝑧 and computing the corresponding response in α 

according to Eq. (47) or 

 𝑴𝑞𝑞
𝛼 �̈�𝛼 + 𝑪𝑞𝑞

𝛼 �̇�𝛼 + 𝑲𝑞𝑞
𝛼 𝑞𝛼 = −𝑴𝑞𝑌

𝛼 �̈� (49) 

Shown in Fig. 70 is the comparison of the magnitudes of the frequency responses at the 

middle point of the β component obtained with this 30 α-POD and 10 β-POD basis 

component-centric ROM and the baseline model. The excellent matching indicates the 

convergence of the prediction of the response in the β component with enough modes. 

The representation errors in α and β components shown in Fig. 71 confirm the finding 

and indicate that a better modeling of the β component than of the α one is achieved. 

These observations support the suitability of this approach as a component-centric 

ROM. However, the method suffers from the same large size issue as the previous one: 

40 modes are used for Figs 70 and 71. Reducing the number of either α-POD or β-POD 

modes degrades the accuracy of the predictions as seen in Figs 72 and 73. Similar 

conclusions can be made from the slow representation error drop in β in Fig. 74. 

 
Figure 70 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 4, 30 α-POD and 10 β-POD modes and baseline model 
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Figure 71 Comparison of the representation errors in α and β components, 30 α-POD 

and 10 β-POD modes 

 

 
Figure 72 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 4, 30 α-POD and 5 β-POD modes and baseline model 
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Figure 73 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 4, 20 α-POD and 10 β-POD modes and baseline model 

 

 
Figure 74 Representation error of the magnitude of frequency response in β versus the 

number of β-POD modes 

4.2 “Global-Local” Based Method 

The global-local method [49] proposed by Soize and Batou initially was used to deal with 

a complex structure with some global modes but numerous local modes in the low 

frequency range. Such feature exists in structures containing stiffened parts as well as 

flexible parts, for instance, complex aircraft panels and automotive vehicles. While the 

POD methods function as a spatial filter based on the left eigenvalue of measured 
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frequency responses using singular value decomposition (SVD) [50, 51], the algorithm 

introduced in [49] separately calculate the global modes and local modes of a structure 

which allows to construct a projection basis of the admissible space of displacements. 

The overall strategy of the “global-local” method is to divide the structure into 

subdomains. Global modes are then obtained by “smoothing”/averaging the mass matrix 

over each subdomain and local modes span the complement of the global modes. By 

varying the size of the subdomains, one can change how “global” or “local” the computed 

global and local modes. Within the present context, it would appear appropriate to divide 

the entire 9-bay panel into two subdomains, α and β, to approximate the α component 

and the β component with different accuracies. Before addressing this decomposition, 

the methodology is briefly reviewed. 

The entire domain, Ω, is divided into n subdomains Ω𝑗
𝑠: 

 Ω = ⋃ Ω𝑗
𝑠𝑛

𝑗=1 ,  and  Ω𝑗
𝑠 ∩ Ω𝑘

𝑠 = 0 (50) 

for j and k in {1 2 ⋯n}. The size of the subdomains relates to the highest “wavelength” of 

the global modes that are extracted from the linear modes of the entire structure. Then a 

projection operator, 𝑢 ⟼ ℎ𝑠
𝑔
(𝑢) is defined which smooths the displacement field, 

transforming into a step value function constant in each subdomain. This operator is 

defined as: 

 {ℎ𝑠
𝑔
(𝑢)}(𝑥) = ∑𝟏Ω𝑗

𝑠(𝑥)

𝑛

𝑗

1

𝑚𝑗
∫𝜌(𝑥′)𝑢(𝑥′)𝑑𝑥′ (51) 

in which 𝟏Ω𝑗
𝑠(𝑥) = 1 if 𝑥 is in the subdomain Ω𝑗

𝑠 and equals to zero, otherwise. Moreover,𝑚𝑗 

is the mass of the subdomain Ω𝑗
𝑠, which equals to ∫ 𝜌(𝑥)𝑑𝑥

Ω𝑗
𝑠 . In the discretized format of 

finite elements, Eq. (51) can be written as 𝑢𝑔 = 𝑯𝑔𝑢. The mass matrix associated with the 

global displacements 𝑢𝑔 is then: 
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 �̃�𝑔  =  (𝑯𝑔)𝑇�̃�𝑯𝑔 = �̃�𝑯𝑔 = (𝑯𝑔)𝑇�̃� (52) 

where the last two equalities of Eq. (52) result from Eq. (51). A complementary mass 

matrix �̃�𝑙 is then simply introduced as 

 �̃�𝑙  = �̃� − �̃�𝑔 (53) 

The global modes are computed from the generalized eigenvalue problem: 

 �̃��̃�𝑔  = �̃�𝑔�̃�𝑔�̃�𝑔 (54) 

For the local modes: 

 �̃��̃�𝑙  = �̃�𝑙�̃�𝑙�̃�𝑙 (55) 

This above method is referred to as the “direct method”. Alternatively, a “double 

projection method” can be used that has a lower computational cost and is less intrusive 

use to commercial finite element codes. The basic idea is to transform the finite element 

domain into a reduced order domain represented using the normal linear modes of the 

structure, 𝚽, so that the global modes and local modes from Eq. (54) and (55) will be 

expressed as: 

 𝜙𝑔 = 𝚽�̃�𝑔,     𝜙𝑙 = 𝚽�̃�𝑙   (56) 

These modes can be obtained from the general eigenvalue problem shown below: 

 𝑲𝜙𝑔 = 𝜆𝑔𝑴𝑔𝜙𝑔,    𝑲𝜙𝑙 = 𝜆𝑙𝑴𝑙𝜙𝑙  (57) 

where 𝑲, 𝑴𝑔,𝑴𝑙 are in the reduced system, 𝑲 = 𝚽𝑇�̃�𝚽, 𝑴𝑔 = 𝚽𝑇(𝑯𝑔)𝑇�̃�𝑯𝑔𝚽, 𝑴𝑙 =

𝚽𝑇�̃�𝚽 − 𝑴𝑔.  

Following either approach, the physical displacement field can then be expressed as 

using the basis a sum of contributions from the global and local modes: 

 𝑢 = 𝑢𝑔 + 𝑢𝑙 (58) 

In which  
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𝑢𝑔 = ∑ϕ𝑔
(𝑗)

𝑞𝑔
(𝑗)

𝑛

𝑗

 

𝑢𝑙 = ∑𝜙𝑙
(𝑗)

𝑞𝑙
(𝑗)

∞

𝑗

 

(59) 

where 𝑞𝑔
(𝑗)

 and 𝑞𝑙
(𝑗)

 are corresponding generalized coordinates. Note that the linear 

operator is conducted only on the transverse degrees of freedom, thus, the number of 

global modes obtained equals to the number of subdomains. The number of local modes 

included can be as large as possible based on the desired accuracy.  

This method was adopted with the global modes intended to capture the coupling or 

interactions between the α and β components and the local modes as “enrichment” to 

accurately model the β component. To this end, 2 global modes and some local modes 

were obtained following the instruction above and are shown in Fig. 75. It is seen that the 

“global” modes obtained are not all “global”; also, include β-local by construction. 

Moreover, the “local” modes are not all “local” but are α-local. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 75 Mode shapes of two global modes (a), (b) and two local modes (c), (d) 

To maximize the information for the β component carried by the local modes, they were 

split into α-local modes and β-local modes based on the ratio of kinetic energy in β over 

that in α. Shown in Fig. 76 is these ratios for the linear modes and the local modes both 

in decreasing order. A fast decay is observed for the local modes with the maximum ratio 

for the local modes of 1.81 while that for the linear modes is 0.84. Finally, Fig. 77 

compares the magnitude of the linear frequency responses at the center of bay 4 

(considered as the β component). Generally close agreement can be seen between 

predictions from the Baseline and the ROM with 42 global-local modes. Also, the 

predictions in β are better than those in α as tasked. 

 
Figure 76 Ratio of kinetic energy in β over that in α 
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Figure 77 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 4 

Even though the “Global-Local” approach generally agrees with the prediction of the 

linear mode basis, the modal reduction is not significant. The mode shapes of the linear 

modes are generally “global” (i.e., large deformation distributed in the entire structure) 

indicating a strong coupling of components and thus, it is very difficult to capture this 

coupling with a smaller set of modes. As the linear modes naturally account for the 

coupling, a fourth method is next investigated which starts from them and then 

rationally reduce the modal size without losing accuracy in β. 

4.3 Linear Modes Based, Modal Lumping Approach 

Analyzing the results obtained by the two Craig-Bampton methods suggests that the 

large ROM size issue originates from the large number of α-POD modes needed, i.e., 

from the difficulty in modeling the coupling between the α and β components. This 

modeling is however achieved naturally with the linear modes suggesting that they could 

be the foundation for a compact component-centric ROM. Seeking a reduction of the 

number of modes from the 50 existing in [0,350] Hz, it is first observed in Fig. 2 that 

there are only 16 separate peaks vs. the 50 expected. There are two reasons for the lower 

number of peaks. First, some of the linear modes have very small modal amplitudes 

resulting from the uniform pressure. Second, some peaks have merged with each other to 
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form single broader peaks. Based on these observations, the forth approach to construct 

a compact component-centric ROM starts from the linear modes in the band (all 50) and 

proceeds with two successive reductions of the modal basis: the linear mode selection 

and modal lumping both of which are described in the ensuing sections. 

4.3.1 Linear Modal Selection 

The first step of the modal basis reduction process is the careful selection of the linear 

modes based on their contribution to the response in the β component. This process is 

performed recursively as follows starting with the baseline model (including all modes) 

and its frequency response in the band: 

(a) compute the response in the β component when one of the linear modes from the 

current model is removed and evaluate the corresponding norm error with respect to the 

predictions of the current model in the β component, 

(b) repeat the computations of (a) for each mode of the current model in turn and 

determine which of the modes induced the smallest error, 

(c) remove the mode with the smallest error from the current model to obtain a new, 

smaller size current model, 

(d) repeat steps (a)-(c) until only one mode is left in the model. 

Note that the “importance” of the linear modes should be opposite to the elimination 

order (e.g., the linear mode left at the end should be the most important one). The above 

recursive method provides a rigorous way to find the modes that contribute most to the 

response in the β component, but it requires the computation of a series of full solution. 

However, a much more practical strategy to determine these dominant modes can be 

based on the response estimate iR  derived from mode i maximum response in the β 

component, i.e.,  
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 𝑅𝑖 = |
𝐹𝑖

2𝜔𝑖
2휁𝑖

|max (|𝑈𝛽
𝑖 |) (60) 

where 𝐹𝑖, 𝜔𝑖 , 휁𝑖  are the modal force, natural frequency and damping ratio associated 

with the linear mode i. This mode has values 𝑈𝛽
𝑖  in the β component and their maximum 

(in absolute value) is max (|𝑈𝛽
𝑖 |). Shown in Tables 3 and 4 are the 21 most important 

linear modes predicted, respectively, from the recursive algorithm described above and 

from Eq. (60), i.e., those with the largest values of iR . Comparing them, it is seen that 

the 14 most dominant modes are identical, i.e., correctly predicted by Eq. (60), with 

some switches of order occurring on the following ones due, most likely, to the lack in 

Eq. (60) of coupling effects between two modes of close natural frequencies. The 

frequency response functions of the middle point of Bay 4 predicted by the two 21 modes 

models of Tables 3 and 4 are compared to each other and to the baseline in Fig. 78. An 

excellent match between the three curves is observed demonstrating that: (i) the number 

of modes necessary to achieve a close match of the frequency response in the β 

component is much smaller than the total number of modes in the band for a given 

loading, and (ii) the two selections algorithms, the recursive one and the one based on 

Eq. (60), are effectively equivalent in identifying the modes that matter.  

Table 3  

Selected Mode Numbers (by Decreasing Order of Importance) and Corresponding 
Natural Frequencies (Hz) for Bay 4, Recursive Algorithm  

Mode 
Natural 

Frequency 
Mode 

Natural 
Frequency 

Mode 
Natural 

Frequency 
Mode 

Natural 
Frequency 

Mode 
Natural 

Frequency 

1 68.15 29 241.09 11 132.00 17 158.29 28 233.58 

49 340.73 15 143.17 2 94.89 16 149.89 21 193.86 

12 135.43 10 130.43 48 330.00 19 165.35 36 271.22 

9 129.01 45 314.94 25 218.23 8 127.48 35 269.53 

37 279.35         
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Table 4  

Selected Mode Numbers (by Decreasing Order of Importance) and Corresponding 
Natural Frequencies (Hz) for Bay 4, Predicted from Eq. (60) 

Mode 
Natural 

Frequency 
Mode 

Natural 
Frequency 

Mode 
Natural 

Frequency 
Mode 

Natural 
Frequency 

Mode 
Natural 

Frequency 
1 68.15 29 241.09 11 132.00 17 158.29 28 233.58 

49 340.73 15 143.17 2 94.89 16 149.89 21 193.86 
12 135.43 10 130.43 48 330.00 19 165.35 14 142.23 
36 271.22 4 107.58 9 129.01 45 314.94 25 218.23 
26 219.67         

 

 
Figure 78 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 4, baseline model and 21 selected modes from (a) the recursive algorithm 
(Table 3), (b) Eq. (60) (Table 4) 

4.3.2 Linear Modal Lumping  

The presence of stiffeners leads to two particular properties. First, it induces a partial 

localization of higher modes and to the appearance of groups of modes with close natural 

frequencies, as discussed in section 3.1, see Table 1 and Fig. 2. Second, the displacement 

field of a particular panel is often similar in many of these modes, especially those with 

close natural frequencies. For illustration, the 5 linear modes 8-12 with close frequencies 

(between 127 Hz and 136 Hz) are plotted in Figs 79 and 80. It is clearly seen that the 5 

mode shapes in each bay are most of the time similar. This phenomenon provides a 

potential to further reduce the number of modes for the ROM by “lumping” these linear 



  77 

modes together - that is, by approximating the contributions of these 5 close frequencies 

modes in the β component only by that of a single one of them or two if needed. 

Formally, modal lumping will refer here to as approximating in the β component the 

sum of two or more modal contributions by that of a single mode. For the approximation 

to be accurate, the two or more modes must have (i) close frequencies and (ii) similar 

modal deflections in the β component. Stated differently, modes that can be lumped 

would be those which would be difficult to differentiate/identify if a modal testing of the 

structure was carried out and only the response in the β component was captured. To 

clarify the lumping process, let the displacement field in the β component be represented 

as: 

 𝑢𝛽(𝑋, 𝑡) = 𝑞1(𝑡)𝑈𝛽
1 + 𝑞2(𝑡)𝑈𝛽

2 + ⋯+ 𝑞𝑖(𝑡)𝑈𝛽
𝑖 + 𝑞𝑗(𝑡)𝑈𝛽

𝑗
+ ⋯+ 𝑞𝑛(𝑡)𝑈𝛽

𝑛 (61) 

where 𝑼𝛽 = [𝑈𝛽
1 𝑈𝛽

2  ⋯ 𝑈𝛽
𝑖  𝑈𝛽

𝑗
 ⋯ 𝑈𝛽

𝑛] are the displacements in the β component of the 

mass normalized linear modes and 𝑞1, 𝑞2,⋯ , 𝑞𝑛 are the corresponding generalized 

coordinates. Next, assume that 𝑈𝛽
𝑖 and 𝑈𝛽

𝑗
 are the modes that can potentially be lumped, 

i.e., their mode shape in the β component are very similar so that 

 𝑈𝛽
𝑗

≈ 𝑎𝑈𝛽
𝑖  (62) 

where the scalar a may be estimated as 𝑎 = (𝑈𝛽
𝑗
)𝑇𝑈𝛽

𝑖 /‖𝑈𝛽
𝑖 ‖

2
. 

Introducing the approximation of Eq. (62) in Eq. (61), it is found that  

 𝑢𝛽(𝑋, 𝑡) = 𝑞1(𝑡)𝑈𝛽
1 + 𝑞2(𝑡)𝑈𝛽

2 + ⋯+ �̅�𝑖(𝑡)𝑈𝛽
𝑖 + ⋯+ 𝑞𝑛(𝑡)𝑈𝛽

𝑛 (63) 

 �̅�𝑖(𝑡) =  𝑞𝑖(𝑡) + 𝑎𝑞𝑗(𝑡) (64) 

Consider next the equations of motion for the generalized coordinates 𝑞𝑖(𝑡) and 𝑞𝑗(𝑡), 

i.e.,  

 �̈�𝑖 + 2휁𝑖𝜔𝑖�̇�𝑖 + 𝜔𝑖
2𝑞𝑖 = 𝐹𝑖 (65) 

and 
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 �̈�𝑗 + 2휁𝑗𝜔𝑗�̇�𝑗 + 𝜔𝑗
2𝑞𝑗 = 𝐹𝑗 (66) 

where 𝐹𝑖  and  𝐹𝑗 are the corresponding modal forces. Assuming that the mode j has both 

natural frequency and damping ratio close to those of mode i, Eq. (66) can be 

approximated as  

 �̈�𝑗 + 2휁𝑖𝜔𝑖�̇�𝑗 + 𝜔𝑖
2𝑞𝑗 = 𝐹𝑗 (67) 

which can be combined with Eq. (65) to yield 

 �̈̅�𝑖 + 2휁𝑖𝜔𝑖 �̇̅�𝑖 + 𝜔𝑖
2�̅�𝑖 = 𝐹𝑖 + 𝑎𝐹𝑗 (68) 

Thus, the sum of the contributions of the two modes i and j has been approximated by 

that of a single one (mode i) in both time, Eq. (68), and space, Eq. (62).  

As a first example of application of the lumping process, consider Bay 4 and note from 

Table 3 that modes 8-12 are all listed in the 21 most important modes. They exhibit close 

natural frequencies, between 127 and 136 Hz, and very similar modal deflection in the β 

component, see Fig. 80. They are thus prime candidates for modal lumping. Of these 5 

modes, mode 11 is the largest contributor to the response and thus was selected as the 

mode on which the other 4 were lumped. Shown in Fig. 81 are the frequency response 

function of the middle point of Bay 4 computed using (a) the 21 selected modes, (b) the 

17 modes remaining after the elimination of modes 8, 9, 10, and 12 from the 21 selected 

ones, and (c) the 17 modes model of (b) with modes 8, 9, 10, and 12 lumped onto mode 

11. The magnitude of the response obtained with the latter 17 modes model clearly 

matches much better the 21 selected modes predictions than the 17 modes model of (b). 

In fact, the matching of the lumped modes model frequency response function with its 

counterpart from the 21 selected modes is so close that it can be substituted for it leading 

to a reduction of the number of modes in the ROM from 21 to 17. 

To further demonstrate the applicability and benefits of the lumping method, shown in 

Fig. 82 are the frequency responses of the middle of Bay 1 (assumed as β component) 
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with the largest 20 selected linear modes and a 20-mode model including these modes as 

well as the lumping of 6 other modes (modes 9, 10, 12, 15, 22, and 42) of frequencies 

129.01, 130.43, 135.43, 143.17, 195.42 and 296.87Hz. The contributions of the first three 

modes were lumped on the one of mode 11 of frequency 132.00Hz while those of the last 

3 modes were lumped with those of modes 14, 21 and 40 of frequencies equal to 142.23, 

193.86 and 292.14Hz. As shown, the lumping method improves notably the prediction of 

the response. The conclusions derived from these results hold for the rest of the panels 

as shown in Figs.  83 to 89. 

 
Figure 79 Contour plots of the norm of displacements for linear modes 8-12 (in order 

(a)-(e)) in the band [127,136] Hz. Dark blue/red zones correspond to the 
lowest/highest values 
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Figure 80 Contour plots of the norm of displacements for the linear modes of Fig. 79 

but each mode is normalized in each bay 
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Figure 81 Comparison of the magnitudes of the frequency responses of the middle 

point of Bay 4 obtained with 17 selected linear modes and the 17 modes model 
resulting from a direct and optimized lumping of modes 8, 9, 10, and 12 on mode 11 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 82 Comparison of the magnitudes of the frequency responses of the middle point 
of Bay 1 obtained with 20 selected linear modes and the 20 modes model resulting from 
direct lumping and optimized lumping. Frequency band: (a) [127,136] Hz, (b) [140,145] 

Hz, (c) [191,196] Hz, (d) [280,300] Hz 
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Figure 83 Comparison of the magnitudes of the frequency responses of the middle 

point of Bay 2 obtained with 18 selected linear modes and the 18 modes model 
resulting from direct lumping 

 

 
Figure 84 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 3 obtained with 19 selected linear modes and the 19 modes model 
resulting from direct lumping 
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Figure 85 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 5 obtained with 17 selected linear modes and the 17 modes model 
resulting from direct lumping 

 

 
Figure 86 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 6 obtained with 17 selected linear modes and the 17 modes model 
resulting from direct lumping 
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Figure 87 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 7 obtained with 16 selected linear modes and the 16 modes model 
resulting from direct lumping 

 

 
Figure 88 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 8 obtained with 15 selected linear modes and the 15 modes model 
resulting from direct lumping 
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Figure 89 Comparison of the magnitudes of the frequency responses at the middle 

point of Bay 9 obtained with 18 selected linear modes and the 18 modes model 
resulting from direct lumping 

4.3.3 Linear Modal Lumping with Optimization  

In the lumping approach described above, referred to as “direct lumping” in the sequel, 

the resulting natural frequency and damping ratio are those of the dominant mode. 

Further improvements of the matching of the resulting frequency response function with 

its baseline can be sought by optimizing these two parameters as well as the modal force. 

Two optimization options have been investigated. 

(A) A frequency domain optimization in which the natural frequency, damping ratio, and 

modal force are sought to minimize the norm difference of the frequency responses of 

the model with the lumped modes and the baseline model over the frequency band of the 

lumped modes natural frequencies. The frequency response corresponding to each linear 

mode is obtained by solving Eq. (65) and the summation of these solutions forms the 

approximation of the actual structural response, i.e., for two modes 
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 𝐻(𝜔) =  
𝐹𝑝

(𝜔𝑝
2 − 𝜔2) + 2𝑖휁𝑝𝜔𝑝𝜔

+ 𝑎 
𝐹𝑞

(𝜔𝑞
2 − 𝜔2) + 2𝑖휁𝑞𝜔𝑞𝜔

 (69) 

where p and q represent the indices of the linear modes being lumped, 𝑎 = (𝑈𝛽
𝑞
)𝑇𝑈𝛽

𝑝
/

‖𝑈𝛽
𝑝
‖

2
, and i is the imaginary unit (𝑖2 = −1).  Then, the natural frequency �̌�, damping 

ratio 휁̌, and modal force �̌� of the optimum lumped mode will be selected to minimize  

 ∫ ||𝐻(𝜔)| − |
�̌�

(�̌�2 − 𝜔2) + 2𝑖휁̌�̌�𝜔
||

𝝎𝒒+𝜹

𝝎𝒑−𝜹

𝑑𝜔 (70) 

where 𝛿 > 0 specifies the range of frequencies to be considered outside of the domain of 

the natural frequencies of the two modes to be lumped. Initial guesses for �̌�, 휁̌ and �̌� 

were selected as 

 �̌�0 = (𝜔𝑝 + 𝜔𝑞)/2  ; 휁̌0 = (휁𝑝 + 휁𝑞)/2  ;  �̌�0 = 𝐹𝑝 + 𝑎𝐹𝑞  (71) 

 

with the initial guess on the modal force consistent with the direct lumping approach. 

The selection of �̌�0 as the average of the natural frequencies stems from the expectation 

that  �̌�  would lie between 𝜔𝑝 and 𝜔𝑞. 

The above procedure was applied first to Bay 4, to the lumping of the contributions of 

modes 8, 9, 10, and 12 onto the one of mode 11. The optimization was carried out 

numerically using the optimizer fminsearch in Matlab. The average of the natural 

frequencies of the 5 modes is 131Hz and the damping ratios of these modes range from 

0.0068 to 0.0069. Moreover, the parameter δ was chosen equal to 5Hz. The convergence 

result shows that the optimal natural frequency is 132 Hz and the damping ratio is 

0.0095. The frequency response function of the middle point of Bay 4 corresponding to 

this approximation is shown in Fig. 81. Comparing it to the direct lumping and the 21 

selected modes curves, it is seen that the optimization does indeed provide an improved 

matching of the baseline frequency response over the direct lumping method. 
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(B) An identification based approach in the time domain was considered next. In this 

strategy, the responses of the modes to be lumped are combined in the time domain to 

simulate “measured data” (e.g., impulse response) to which a single degree of freedom 

(“1-DOF”) model is fit using an autoregressive (AR) modeling, Fig. 90 illustrates the 

process. 

The simulated “measured data” 𝑥(𝑛) is assumed here to be the impulse response of a 

representative point of the β component constructed only from the set of linear modes to 

be lumped, i.e., assuming the two modes p and q as before: 

 𝑥(𝑛) =
𝐹𝑝 

𝜔𝑑𝑝
𝑒−𝜁𝑝𝜔𝑝𝑛Δ𝑡 sin(𝜔𝑑𝑝𝑛Δ𝑡) + 𝑎 

𝐹𝑞 

𝜔𝑑𝑞
𝑒−𝜁𝑞𝜔𝑞𝑛Δ𝑡 sin(𝜔𝑑𝑞𝑛Δ𝑡)  (72) 

where 𝑎 = (𝑈𝛽
𝑞
)𝑇𝑈𝛽

𝑝
/‖𝑈𝛽

𝑝
‖

2
 provides the scaling of mode q in comparison to mode p as 

in Eq. (69). Further,  𝜔𝑑𝑝 and  𝜔𝑑𝑞 are the damped circular frequencies of modes p and q 

defined as 

 𝜔𝑑𝑝 = 𝜔𝑝√1 − 휁𝑝
2  ; 𝜔𝑑𝑞 = 𝜔𝑞√1 − 휁𝑞

2 (73) 

 
Figure 90 Illustration of the optimization process using the AR modeling 

Figure 91 shows the simulation data constructed for Bay 4 with the linear modes 8 to 12. 

As expected, this curve is more complex than the response of a single degree of freedom 

system and thus the time window over which this data is modeled will affect the 

estimates of the natural frequency and especially of the damping ratio. For the simulated 

measured data to appear as originating from a single degree of freedom system, the 

observation time must be small enough that the difference in frequencies between the 

various modes is not perceived. Then, the modal contributions will effectively be lumped. 
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This window must however be long enough to get an accurate estimate of the frequency 

and damping ratio. These conflicting requirements led to the use of 1.5 period of the 

average frequency of the modes to be lumped. Finally, the window was started at the 

peak of the data so that the decay of the response be visible in the short analysis window. 

For the simulated measured data of Fig. 91, the analysis window was thus selected as 

shown in Fig. 92. 

Modeling the free response of Fig. 92 by that of a single degree of freedom system was 

carried out through an autoregressive (AR) fit of the data. That is, the data was modeled 

according to the recursion [48, 52, 53] 

 𝑥(𝑛) =  ∑𝑎𝑖𝑥(𝑛 − 𝑖)

𝑀

𝑖

+ 휀(𝑛) (74) 

where  𝑥(𝑛) is the current value of the time series, 𝑎𝑖 are predictor (weighting) 

coefficients, 𝑀 is the model order, indicating the number of the past values used to 

predict the current value, and 휀(𝑛) represents a one-step prediction error, i.e. the 

difference between the predicted value and the current value at this point. 

Since the free response of a single degree of freedom data is exactly representable in the 

form of Eq. (74) with M = 2, this value was adopted; leading to the model 

 𝑥(𝑛) + 𝑎1𝑥(𝑛 − 1) + 𝑎2𝑥(𝑛 − 2) = 휀(𝑛) (75) 

The coefficients 𝑎1 and 𝑎2 were obtained from the correlation approach [52] seeking the 

minimum of ∑ [휀(𝑛)]2𝑛 . The natural frequency �̌� and damping ratio 휁̌ (assumed less than 

1) could then be estimated by equating the free responses of the AR and SDOF models. 

The latter is of the form te , sampled at tnt  , where 
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𝜆 = −휁̆�̌� ± 𝑖�̌�√1 − 휁̆2 

(76) 

The free response of the AR model of Eq. (75) is of the form 𝜌𝑛 where 𝜌  is any of the two 

solutions of the quadratic equation 

 𝜌2 + 𝑎1𝜌 + 𝑎2𝜌 = 0 (77) 

Then, matching the two free response implies that te    from which it is found that 

[53, 54] 

 

�̌� = √(
ln(|𝜌|)

∆𝑡
)

2

+ (
arg(𝜌)

∆𝑡
)

2

 

휁̌ = −
ln(|𝜌|)

�̌�∆𝑡
 

(78) 

Finally, the equivalent modal force �̌� is determined by matching the signal energy of the 

simulated measured data of Eq. (72) and its single degree of freedom approximation 

�̆�(𝑛), i.e.,  

 �̆�(𝑛) =
�̆� 

�̆�𝑑
𝑒−�̆��̆�𝑛Δ𝑡 sin(�̆�𝑑𝑛Δ𝑡)  (79) 

where  �̆�𝑑 = �̆�√1 − 휁̆2 . That is, 

 �̌� = 𝑠𝑖𝑔𝑛(𝐹𝑏)
‖𝑥‖

‖𝑥‖
 (80) 

The above procedure was first applied to Bay 4 and the lumping of modes 8-12. The time 

step was chosen as Δ𝑡 = 𝜋/(30�̅�), where �̅� is the average of the natural frequencies of 

the modes to be lumped. Shown in Fig. 81 is the resulting approximation of the 

frequency response function of the middle point of Bay 4. It is seen that the AR 

identification approach of (B) yields very similar results as the frequency optimization of 

(A). 
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Another assessment of the three lumping methods was carried out on Bay 1 where the 

contributions of modes 9, 10, 12, 15, 22, and 42 were lumped onto those of modes 11, 14, 

21 and 40 as performed earlier with the direct lumping method. Fig. 82 is the 

corresponding comparison of the frequency responses. As in Fig. 81, it is seen from Fig. 

37 that the full optimization approach (A) provides an improved matching of the baseline 

frequency response over the direct lumping method. Moreover, the AR identification 

approach of (B) again yields very similar results to those obtained with the frequency 

optimization method (A) except in the neighborhood of 325Hz. A similar, although 

clearer, perspective on the benefits of the lumping optimization methods can finally be 

obtained from the mean representation error, see Table 5. Given its lower computational 

cost, the AR identification approach (B) appears to be the best tradeoff between accuracy 

of the resulting model and computational effort. 

Table 5  

Mean Representation Errors (in) of the Three Modal Lumping Approaches 

Bay # Direct Lumping Optimization AR 
1 0.04 0.015 0.02 
2 0.05 0.012 0.018 
3 0.06 0.016 0.02 
4 0.03 0.014 0.015 
5 0.02 0.011 0.012 
6 0.04 0.011 0.014 
7 0.03 0.012 0.02 
8 0.03 0.011 0.011 
9 0.04 0.013 0.015 
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Figure 91 Simulation data for the identification based lumping of the linear modes 8 to 

12; Bay 4 
 

 
Figure 92 Data used for the identification based lumping of the linear modes 8 to 12; 

Bay 4 

4.3.4 Robustness Assessment 

The construction of component-centric ROMs by the modal lumping approaches, see 

section 4.4, relied on a known loading and on the occurrence of close frequencies of a 
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particular set of modes (those being lumped). These conditions may change if the 

environment varies and/or the structure is modified, e.g., as would happen in the design 

process. Accordingly, it is desirable to assess the sensitivity of the response predictions 

accuracy to variations in both the loading and/or the structural properties of the β 

component. 

These assessments were carried out with the 17 mode ROM of Bay 4 obtained with the 

AR lumping approach, see Fig 81. First, the uniform loading was retained but the 

thickness of bay 4 was reduced (see Fig. 93(b)) or increased (see Fig. 93(c)) by 20%. The 

modal basis used for these computations, including the lumping details, was the same as 

for the original thickness but the ROM mass and stiffness matrices were computed for 

each thickness by projecting the corresponding finite element mass and stiffness 

matrices on the modes. Accordingly, they were full for the latter modified cases vs. 

diagonal for the original model. While the accuracy of the predictions is somewhat 

degraded, the ROM still captures well the β component dynamics suggesting that this 

component-centric ROM could be used in an optimization effort without having to 

reselect the modal basis.  

To assess the sensitivity to the loading, a triangular load varying from zero to full value 

along the x-axis (long side of the panel) was applied to the ROM of Bay 4 constructed 

with the uniform loading. Then, shown in Fig. 93(d) is the resulting prediction of the 

frequency response of the middle point of Bay 4 as compared to a full modal solution. 

With the exception of the peak around 101Hz, the matching is still excellent. The large 

increase of the response at that frequency results from the symmetry breaking of the 

triangular loading which excites particularly that mode (mode 3). This observation 

suggests that the loading used to develop the component-centric ROM should either 

closely approximate the one that the structure will be subjected to, if known, or 
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otherwise not exhibit a particular symmetry that may induce a zero modal force in some 

important modes. If mode 3 had been included in the original lumping process to form 

an 18 mode model based on a uniform loading, the prediction would have been excellent 

for the triangular load as is shown on Fig. 93(e). 

 
(a) 

 
(b) 

(c) 
 

(d) 

 
(e) 

Figure 93 Comparisons of frequency responses at the middle of Bay 4 obtained with the 
component-centric ROM and with the appropriate baseline model for (a) nominal 

thickness/ uniform pressure, (b) 80% of the nominal thickness/uniform pressure, (c) 
120% of the nominal thickness and uniform pressure, (d) nominal thickness and 

triangular pressure distribution, (e) same as (d) but ROM includes mode 3 

4.3.5 Computational Benefits  

As discussed in section 4.1, the Craig-Bampton based approaches only provide a 

marginal reduction of the number of modes necessary, say 30 to 35 for Bay 4, over the 
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consideration of all 45 active (i.e., with a non-negligible modal force) linear modes in the 

band. On the contrary, the modal lumping based approaches lead to much more compact 

reduced order models: less than 20 modes are sufficient to obtain excellent 

approximations of the frequency response functions of the middle points of Bay 4, see 

Fig. 81, and Bay 1, see Fig. 82. In fact, this observation is true for all bays as can be seen 

from Table 6. 

The reduction of the number of modes observed in Table 6, by 12%-43% depending on 

the bay analyzed, is potentially quite valuable for the linear structures considered here 

but is likely to have a dramatic impact when considering the nonlinear geometric ROMs 

developed within the last decade. Therefore, it is intended to expand the modal lumping 

method to nonlinear settings and the discussion will be presented in the next chapter. 

Table 6  

Computational Cost Estimates for Linear ROMs of the Various Bays 

Bay Modal Selection Lumping Method mode reduction (%) 

1 27 20 26% 

2 24 18 25% 

3 31 19 39% 

4 21 17 19% 

5 30 17 43% 

6 28 17 39% 

7 26 16 38% 

8 17 15 12% 

9 29 18 38% 

 

4.4 Validation on the Beam Model 

The beam model that shares similar features of the 9-bay panel was created as a simple 

test structure for nonlinear analysis. For completeness, the modal lumping method is 

also applied to it with mode 4 lumped onto mode 3 following the process in section 4.3. 

Shown in Fig. 94 is a comparison of the ROM transfer functions resulting from the 
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loading with spatial distribution specified in Chapter 3 and varying harmonically with 

time. The response of the ROM without mode 4 (the black curve) is significantly different 

from the reference demonstrating the need to retain it in some manner. Performing a 

modal lumping of this mode on mode 3 leads to a near perfect match with the reference 

results. These results demonstrate that the modal lumping method performs very well 

for the beam model in the linear case. The validation results considering panel 2 to 4 of 

the beam as the β component accordingly are presented in Fig. 95 to 97. 

 
Figure 94 Magnitudes of the frequency responses at the node with max. disp. in the 

first bay of the beam 
 

 
Figure 95 Magnitudes of the frequency responses at the node with max. disp. in the 

second bay of the beam 
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Figure 96 Magnitudes of the frequency responses at the node with max. disp. in the 

third bay of the beam 
 

 
Figure 97 Magnitudes of the frequency responses at the node with max. disp. in the 

fourth bay of the beam 

4.5 Validation on the Multi-Bay Structure with Identical Bays 

Next, it is intended to evaluate the modal lumping method on the original 9-bay panel 

with identical bays [25, 44]. Table 7 compares the modal reduction in percentage after 

applying the modal lumping method for the two models. The benefit of reducing the 

model size is not as significant as that of the different 9-bay panel for the original 9-bay 

panel. This can be expected since the original panel is symmetric leading to much 

simpler responses, see Fig. 98, thus the model size after the modal selection process is 

quite small already and there is not much opportunity to further reduce the model size. 
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Moreover, the mode shapes of the linear modes are more global, thus less modes can 

meet the requirements for the “lumping” process. 

 
Figure 98 Magnitudes of the frequency responses at the middle point of Bay 4 (the 

original 9-bay panel and the new 9-bay panel), transverse displacement 

Table 7  

Comparison of Modal Reduction for the Multi-Bay Structures 

Bay 
Panel with Identical Bays Panel with different Bays 

Modal 
Selection 

Lumping 
Method 

% mode   
reduction 

Modal 
Selection 

Lumping 
Method 

% mode   
reduction 

1 11 11 0% 27 20 26% 
2 10 9 10% 24 18 25% 
3 13 12 8% 31 19 39% 
4 9 8 11% 21 17 19% 
5 15 12 20% 30 17 43% 
6 9 8 11% 28 17 39% 
7 13 13 8% 26 16 38% 
8 10 9 10% 17 15 12% 
9 11 11 0% 29 18 38% 
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CHAPTER 5 

NONLINEAR COMPONENT-CENTRIC ROM 

5.1 Extension of Modal Lumping Method to Nonlinear  

Even though, NLROMs are much more expedient than full order finite element models 

for long simulation times, the computational effort to construct and run them does grow 

rapidly with the number of basis functions (“modes”) used in the representation, or 

equivalently, with the complexity of the structural model. One remedy proposed in [24] 

involves eliminating the nonlinear terms in the ROM that are expected to have a small 

contribution to the nonlinear restoring forces. Another strategy, potentially 

complementary of this approach, is considered here that is based on the concept of 

component-centric ROMs introduced in Chapter 4 for linear structural models. Such 

ROMs are designed to provide an accurate prediction of the linear response of a part of 

structure (referred to as the “β” component) while allowing a lower accuracy in the rest 

of the structure (referred to as the “α” component). The advantage of this method over 

the standard ROMs/modal models is a significant reduction (by 60% for the 9-bay 

example]) of the number of generalized coordinates needed for stiffened structures. 

Moreover, the component-centric ROMs corresponding to different parts of the structure 

are uncoupled and thus can be run in parallel to provide an accurate prediction of the 

response of the structure in a smaller wall time.  In this light, this chapter focuses on 

extending the linear component-centric ROMs to the nonlinear geometric situation. 

5.1.1  Another Aspect of Modal Lumping: Modal Rotation 

The lumping process can also be recognized as originating from a rotation of the two 

modes 𝑈𝑖 and 𝑈𝑗, defined in the entire structure (i.e., in both α and β components) as  
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 𝑈𝑖 = [
𝑈𝛼

𝑖

𝑈𝛽
𝑖 ]   and  𝑈𝑗 = [

𝑈𝛼
𝑗

𝑈𝛽
𝑗] ~ [

𝑈𝛼
𝑗

𝑎𝑈𝛽
𝑖
] (81) 

Since the natural frequencies of these two modes are assumed to be identical, the 

structure has repeated frequencies (assumed two here) and thus any linear combination 

of these two modes is also a mode. On this basis, introduce the two new modes: 

 

�̃�𝑖 = (𝑈𝑖 + 𝑎𝑈𝑗)/√1 + 𝑎2 

�̃�𝑗 = (𝑎𝑈𝑖 − 𝑈𝑗)/√1 + 𝑎2 

(82) 

which are readily shown to exhibit the same orthonormality properties as the original 

modes  𝑈𝑖 and 𝑈𝑗, i.e.,  

 

(�̃�𝑖)
𝑇
𝑴 �̃�𝑖 = 1 ;   (�̃�𝑗)

𝑇
𝑴 �̃�𝑗 = 1 ;   (�̃�𝑖)

𝑇
𝑴 �̃�𝑗 = 0  ; (�̃�𝑖)

𝑇
𝑴 𝑈𝑙 =

0  ; (�̃�𝑗)
𝑇
𝑴 𝑈𝑙 = 0 

(83) 

where M denotes the mass matrix of the entire structure and the index l of the mode 𝑈𝑙 

is such that l  i or j. Introducing Eq. (81) in Eq. (82), it is found that 

 

�̃�𝑖 = [
𝑈𝛼

𝑖 + 𝑎𝑈𝛼
𝑗

(1 + 𝑎)𝑈𝛽
𝑖
] /√1 + 𝑎2 

�̃�𝑗 = [
𝑎𝑈𝛼

𝑖 − 𝑈𝛼
𝑗

0
] /√1 + 𝑎2 

(84) 

Note that the elements in �̃�𝑗 corresponding to the β component are all zero. Thus, the 

displacement in that component is not a function of the generalized coordinate �̃�𝑗 

associated with the mode �̃�𝑗. Moreover, this generalized coordinate is uncoupled to �̃�𝑖 

and the remaining generalized coordinates 𝑞𝑙, l  i or j, because of the orthogonality 

properties of Eq. (84). Thus, the value/time history of �̃�𝑗 does not appear anywhere in 

the prediction of the response of the β component (it will however appear in the 

displacement of the α component which is not of concern here) and mode j has indeed 
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been lumped into mode i. Note finally that the governing equation for the generalized 

coordinate �̃�𝑖 can be shown to reduce to Eq. (68) with �̅�𝑖 = �̃�𝑖√1 + 𝑎2 so that the above 

two perspectives on lumping are consistent.  

Again, as discussed in section 4.4, to optimize the accuracy of the approximation, the 

lumping of two modes should be done on the mode of largest modal coordinate and/or 

the one with the most representative deflection in the β component of the modes to be 

lumped. Moreover, the lumping of multiple modes on one of them proceeds as described 

above with two modes under the same assumptions of close natural frequencies and 

similar modal deflection in the β component for all modes involved. 

5.1.2 A “Closure” Type Scheme  

The construction of a nonlinear component-centric ROM proceeds as in the linear case, 

see Chapter 3, with first the modal selection and then possible modal lumping. 

Regarding modal selection, note first that the response estimate 𝑅𝑖 of Eq. (60) will in 

general not be a reliable estimate of the contribution of mode i in the dynamic response. 

However, the relative magnitudes of these estimates may still provide a correct ordering 

of the importance of the various modes. 

The modal lumping also starts as in section 4.4.1 with a rotation of the modes to be 

lumped leading to elements in �̃�𝑗 corresponding to the β component that are all zero. 

Thus, the displacements in that component are not functions of the generalized 

coordinate  �̃�𝑗. Moreover, as in the linear case, this coordinate is not present in the linear 

stiffness terms 𝐾𝑖𝑗
(1)

𝑞𝑗 of the selected modes but it appears in their quadratic and cubic 

terms which couples the modes. Thus, the generalized coordinate �̃�𝑗 is transformed into 

an unobservable but active coordinate; it remains present in the ROM equations of 

motion even though it has no direct (through �̃�𝑗) effect. 
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To truly eliminate the lumped coordinate �̃�𝑗, it is proposed here to express it in terms of 

the other rotated coordinate(s) �̃�𝑖 because these two modes have close (assumed equal) 

natural frequencies and thus strong interactions between them is expected, stronger 

than with other modes. This approximation will be referred to as a “closure” scheme as it 

allows to proceed with the solution of the equations of motion without �̃�𝑗. In selecting 

the form of the approximation, it was imposed that the form of the equations of motion, 

remain, i.e., that it is linear in the inertia and cubic in the stiffness terms. This structure 

can be achieved only if the approximation is memoryless and linear, i.e., 

 �̃�𝑗(𝑡) = 𝑐0 + 𝑐1�̃�𝑖(𝑡) (85) 

The estimation of the coefficients 𝑐0 and 𝑐1 can be achieved from a limited set of 

nonlinear static or dynamic computations as discussed in the ensuing validations. 

5.2 Validation on the Beam Model  

The bay 1 (containing node 1-11) is first considered as the component of interest (the β 

component). Since mode 3 is slightly larger than mode 4 in this bay, see Fig. 59, mode 3 

was selected as the dominant mode and thus mode 4 was selected for either elimination 

or lumping. A rotation of modes 3 and 4 was first performed as in Eq. (82) with the 

factor a = 0.9641  1 as expected from Fig. 59. Figure 99 illustrates the rotation of the 

mode shapes for modes 3 and 4, comparing the original linear modes to the rotated ones. 

As shown in Fig. 99(b), mode 4 after rotation, has nearly zero deformation in β. The 

component-centric ROMs could then formally be expressed in terms of �̃�3 and �̃�4 with 

the transformation (see Eq. (82)) 

 
𝑞3  = (�̃�3  + 𝑎�̃�4)/√1 + 𝑎2 

𝑞4 = (𝑎�̃�3 − �̃�4)/√1 + 𝑎2 

(86) 
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(a) 

 
(b) 

Figure 99 Lowest 4 linear modes of the beam in bay 1 (a) before rotation, (b) after 
rotation 

Since the linear component-centric ROM provides a very close approximation of the full 

modal model (see section 4.5), the investigation proceeded next with the construction 

and assessment of its nonlinear counterpart. In addition to the step carried out above, it 

was also necessary to establish the “closure” approximation of the generalized coordinate 

�̃�4 in terms of �̃�3, see Eq. (85). To estimate the corresponding coefficients 𝑐0 and 𝑐1 a 

short time simulation with the full size nonlinear ROM was conducted and the scatter 
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plot of the modal responses corresponding to the linear modes 3 and 4 was obtained, see 

Fig. 100(a). From these result, the simple linear fit 

 �̃�4 ≈ 0.9�̃�3 (87) 

was obtained. Note 𝑐0 needs to be ignored when estimations were conducted using 

nonlinear static solutions. Similar results can be obtained from a set of nonlinear static 

solutions with the full-size ROM (see Fig. 100(b)) with the maximum transverse 

displacement varying from 0.5 to 3 thickness of the beam structure and much less 

computational cost. In fact, a similar process can be achieved without relying on the full 

ROM by constructing the same static responses from the finite element model and 

projecting them on the rotated modes 3 and 4. Combining Eqs (86) and (87) led to the 

final change of variables 

 
𝑞3  = �̃�3(1 + 0.9 𝑎)/√1 + 𝑎2 

𝑞4 = �̃�3(𝑎 − 0.9)/√1 + 𝑎2 

(88) 

which was performed on the nonlinear ROM leading to the desired nonlinear 

component-centric ROM.  

 
(a) 



  104 

 
(b) 

Figure 100 Estimated relation between modal responses of the rotated modes 3 and 4 
from (a) a very short time dynamic simulation (b) a set of nonlinear static solutions 

The evaluation of the nonlinear component-centric ROM accuracy was conducted by 

comparing the power spectral densities (PSD) of the transverse (T3) and in-plane (T1) 

responses of the node with the maximum displacement in bay 1 as shown in Fig. 101. 

Shown on these figures are the corresponding predictions of the nonlinear ROM with the 

original mode 4 (i) ignored and (ii) lumped onto the rotated mode 3. Clearly, the 

matching of the responses (both T1 and T3) is very good for the latter model while rather 

poor for the former one. These first results strongly support the applicability and 

accuracy of the proposed nonlinear component centric ROM construction. Similar 

results are obtained with panel 2, 3, and 4 as β component shown in Fig. 102 to 104. 

Note that the knowledge of the displacements provides a complete description of the bay 

1 behavior including stresses and strains which can be evaluated at any point from the 

generalized coordinates as described in section 2.3. To assess the appropriateness of 

component-centric models for the prediction of the stresses in the structure, the 

corresponding stress distribution in the beam obtained in both linear and nonlinear 

cases were estimated and compared to their full ROM/NLROM counterparts. In all, 

linear and nonlinear, cases, an excellent match was observed, see Fig. 105, 
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demonstrating that a component-centric model predicting well the displacement field in 

the β component also predicts well the stresses in that component. 

 
(a) 

 
(b) 

Figure 101 Power spectral densities of the (a) transverse and (b) in-plane deflections at 
the node with max. disp. in the first bay (β) 
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(a) 

 
(b) 

Figure 102 Power spectral densities of the (a) transverse and (b) in-plane deflections at 
the node with max. disp. in the second bay (β) 
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(a) 

 
(b) 

Figure 103 Power spectral densities of the (a) transverse and (b) in-plane deflections at 
the node with max. disp. in the third bay (β) 

 
(a) 
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(b) 

Figure 104 Power spectral densities of the (a) transverse and (b) in-plane deflections at 
the node with max. disp. in the fourth bay (β) 

 
(a) 

 
(b) 

Figure 105 Power spectral densities of the second Piola-Kirchhoff stress Sxx for the (a) 
linear and (b) nonlinear dynamic cases at the node with max. disp. in the first bay (β) 

5.3 Validation on the Multi-Bay Structure 
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Same as the linear case considering bay 4 as the β component, 5 modes (i.e., modes 9, 12, 

15, 22, and 40) of frequencies 129.01, 135.43, 143.17, 195.42 and 292.14Hz were lumped 

first. Figure 106 illustrates the rotation of the mode shapes for the two linear modes 10 

and 11, comparing the original linear modes to the rotated ones. As shown in the two-top 

right figure, the mode after rotation has nearly zero deformation in β. The contributions 

of the first two modes were lumped on the one of mode 11 of frequency 132.00Hz while 

those of the last 3 modes were lumped, respectively, with those of modes 14, 21 and 42 of 

frequencies equal to 142.23, 193.86 and 296.87Hz. 

To estimate the corresponding coefficients 𝑐0 and 𝑐1 in Eq. (85) for each mode pair 

mentioned above, a series of nonlinear static simulation with the full size nonlinear ROM 

was conducted (full Nastran solutions could also be used and do not require the full 

ROM) leading to 0.5 – 3 thickness of the panel. For each case, the relation between 

modal coordinates is estimated via a simple linear fit and the results can be seen in Table 

8. Using these approximate linear relations permits the reduction of the model to a 46-

mode one. 

Table 8  

Coefficients of the Linear Relation of Eq. (85), for Bay 1 

�̃�𝑖 �̃�𝑗 𝑐0 𝑐1 

11 9 7e-5 0.51 
11 12 7e-5 0.51 
14 15 -1e-6 -2.7 
21 22 4.8e-5 0.66 
40 42 9e-7 -4.6 
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Figure 106 Mode shapes before, 𝑈𝑖 and 𝑈𝑗 - left column, and after rotation, �̃�𝑖 and �̃�𝑗 - 

right column. (row 1, 2) Entire structure and (row 3, 4) β-component (bay 4) only 
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To validate the above process, the magnitude of the white noise excitation was selected 

to achieve a full nonlinear regime. In fact, the average peak transverse displacement was 

found to be approximately 1 skin panel thicknesses which is well in the geometric 

nonlinear regime. Then, shown in Fig. 107 are the PSD of the transverse response of 

Panel 1 center computed using (a) the 74-mode Mono-ROM, (b) the 46 modes model 

obtained by lumping modes 9, 12, 15, 22, and 40 onto modes 11, 14, 21 and 42, 

respectively, and (c) the 46 modes obtained by discarding modes 9, 12, 15, 22, and 40 

from the 26 selected ones. The response obtained with the lumped model (b) clearly 

matches much better the Nastran predictions than the latter model. Further, this 

increase in accuracy is obtained at no cost to the complexity of the model providing a 

first confirmation of the benefit of modal lumping in leading to accurate but compact 

ROMs. PSD results for the transverse and in-plane (T2) displacements at the center of all 

bays can be found in Fig. 108 to 142. 

 
Figure 107 Power spectral densities of the transverse responses of Panel 1 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

46-mode ROM with 7 linear modes lumped (black), the 46-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 108 Power spectral densities of the in-plane (T2) responses of Panel 1 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
46-mode ROM with 7 linear modes lumped (black), the 46-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 109 Power spectral densities of the transverse responses of Panel 2 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

44-mode ROM with 6 linear modes lumped (black), the 44-mode ROM with the same 
linear modes eliminated (blue) 

 



  113 

 
Figure 110 Power spectral densities of the in-plane (T2) responses of Panel 2 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
44-mode ROM with 6 linear modes lumped (black), the 44-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 111 Power spectral densities of the transverse responses of Panel 3 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

45-mode ROM with 12 linear modes lumped (black), the 45-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 112 Power spectral densities of the in-plane (T2) responses of Panel 3 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
45-mode ROM with 12 linear modes lumped (black), the 45-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 113 Power spectral densities of the transverse responses of Panel 4 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

45-mode ROM with 4 linear modes lumped (black), the 45-mode ROM with the same 
linear modes eliminated (blue) 

 



  115 

 
Figure 114 Power spectral densities of the in-plane (T2) responses of Panel 4 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
45-mode ROM with 4 linear modes lumped (black), the 45-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 115 Power spectral densities of the transverse responses of Panel 5 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

43-mode ROM with 13 linear modes lumped (black), the 43-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 116 Power spectral densities of the in-plane (T2) responses of Panel 5 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
43-mode ROM with 13 linear modes lumped (black), the 43-mode ROM with the same 

linear modes eliminated (blue) 
 

 

Figure 117 Power spectral densities of the transverse responses of Panel 6 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 43-

mode ROM with 17 linear modes lumped (black), the 43-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 118 Power spectral densities of the in-plane (T2) responses of Panel 6 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
43-mode ROM with 17 linear modes lumped (black), the 43-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 119 Power spectral densities of the transverse responses of Panel 7 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

42-mode ROM with 10 linear modes lumped (black), the 42-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 120 Power spectral densities of the in-plane (T2) responses of Panel 7 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
42-mode ROM with 10 linear modes lumped (black), the 42-mode ROM with the same 

linear modes eliminated (blue) 
 

 

Figure 121 Power spectral densities of the transverse responses of Panel 8 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

42-mode ROM with 2 linear modes lumped (black), the 42-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 122 Power spectral densities of the in-plane (T2) responses of Panel 8 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
42-mode ROM with 2 linear modes lumped (black), the 42-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 123 Power spectral densities of the transverse responses of Panel 9 center for 
OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 

45-mode ROM with 11 linear modes lumped (black), the 45-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 124 Power spectral densities of the in-plane (T2) responses of Panel 9 center for 

OASPL of 136dB obtained with the 74-mode full ROM (red), the component-centric 
45-mode ROM with 11 linear modes lumped (black), the 45-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 125 Power spectral densities of the transverse responses of Panel 1 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

46-mode ROM with 7 linear modes lumped (black), the 46-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 126 Power spectral densities of the in-plane (T2) responses of Panel 1 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
46-mode ROM with 7 linear modes lumped (black), the 46-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 127 Power spectral densities of the transverse responses of Panel 2 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

44-mode ROM with 6 linear modes lumped (black), the 44-mode ROM with the same 
linear modes eliminated (blue) 

 



  122 

 
Figure 128 Power spectral densities of the in-plane (T2) responses of Panel 2 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
44-mode ROM with 6 linear modes lumped (black), the 44-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 129 Power spectral densities of the transverse responses of Panel 3 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

45-mode ROM with 12 linear modes lumped (black), the 45-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 130 Power spectral densities of the in-plane (T2) responses of Panel 3 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
45-mode ROM with 12 linear modes lumped (black), the 45-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 131 Power spectral densities of the transverse responses of Panel 4 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

45-mode ROM with 4 linear modes lumped (black), the 45-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 132 Power spectral densities of the in-plane (T2) responses of Panel 4 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
45-mode ROM with 4 linear modes lumped (black), the 45-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 133 Power spectral densities of the transverse responses of Panel 5 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

43-mode ROM with 13 linear modes lumped (black), the 43-mode ROM with the same 
linear modes eliminated (blue) 

 



  125 

 
Figure 134 Power spectral densities of the in-plane (T2) responses of Panel 5 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
43-mode ROM with 13 linear modes lumped (black), the 43-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 135 Power spectral densities of the transverse responses of Panel 6 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

43-mode ROM with 17 linear modes lumped (black), the 43-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 136 Power spectral densities of the in-plane (T2) responses of Panel 6 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
43-mode ROM with 17 linear modes lumped (black), the 43-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 137 Power spectral densities of the transverse responses of Panel 7 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

42-mode ROM with 10 linear modes lumped (black), the 42-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 138 Power spectral densities of the in-plane (T2) responses of Panel 7 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
42-mode ROM with 10 linear modes lumped (black), the 42-mode ROM with the same 

linear modes eliminated (blue) 
 

 
Figure 139 Power spectral densities of the transverse responses of Panel 8 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

42-mode ROM with 2 linear modes lumped (black), the 42-mode ROM with the same 
linear modes eliminated (blue) 
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Figure 140 Power spectral densities of the in-plane (T2) responses of Panel 8 center 

for OASPL of 144dB obtained with the 74-mode full ROM (red), the component-
centric 42-mode ROM with 2 linear modes lumped (black), the 42-mode ROM with 

the same linear modes eliminated (blue) 
 

 
Figure 141 Power spectral densities of the transverse responses of Panel 9 center for 
OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 

45-mode ROM with 11 linear modes lumped (black), the 45-mode ROM with the same 
linear modes eliminated (blue) 

 



  129 

 
Figure 142 Power spectral densities of the in-plane (T2) responses of Panel 9 center for 

OASPL of 144dB obtained with the 74-mode full ROM (red), the component-centric 
45-mode ROM with 11 linear modes lumped (black), the 45-mode ROM with the same 

linear modes eliminated (blue) 

5.4 Computational Benefits 

Consistently with the findings of the linear component-centric ROM investigation, their 

nonlinear counterparts are also much more compact than the full ROM for all choices of 

the component β. The reduction of the number of modes observed for all the bays, see 

Table 8, is about 40%. This reduction is potentially quite valuable for linear structures 

but it has a much larger impact for the nonlinear geometric ROMs considered here. A 

fair computational cost associated with ROMs should not only consider the time saving 

when solving the reduced system, but also the time spent on the identifying its linear, 

quadratic, and cubic stiffness coefficients. Denoting by N the number of modes, the 

former cost is proportional to the number of coefficients, i.e., approximately N4/6 while 

the latter cost is as small as N2/6 when using the tangent stiffness approach. These costs 

are shown in the last three columns of Table 8. These numbers clearly demonstrate the 

advantages of reducing the number of modes present in the model, even at the cost of 

some preliminary computations, i.e., those involved in the mode selection and the modal 

lumping processes, especially when parallel computations can be carried out to identify 
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and run the component-centric nonlinear geometric ROMs. A further reduction of the 

computational cost could potentially be achieved by performing a “lumping” of the dual 

modes and this issue will be addressed in the future. 

Table 9  

Computational Cost Estimates for Nonlinear Geometric ROMs of the Various Bays 

ROM 
Optimal # of 
modes (N) 

Nonlinear ROM 
running cost 

(~N
4

/6) 

Nonlinear ROM 
identification cost 

(~N
2

/6) 
1 46 15% 39% 
2 44 13% 35% 
3 45 14% 37% 
4 45 14% 37% 
5 43 11% 34% 
6 43 11% 34% 
7 42 10% 32% 
8 42 10% 32% 
9 45 14% 37% 

Mono-ROM 74 4,997,762 (100%) 913 (100%) 
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CHAPTER 6 

SUMMARY 

This thesis focused on developing “compact” (i.e., with small number of modes) ROMs 

that provide an accurate prediction of the response for part of the structure considered 

without focusing on the rest of it, referred to as component-centric ROMs. Four 

strategies were presented and discussed in the linear case. The first two approaches are 

both based on the CB substructuring technique and start with a set of modes for the 

component of interest (referred to as the β component). The response in the rest of the 

structure (referred to as the α component) induced by these modes is then determined 

and optimally represented using a POD strategy. The main difference between the two 

approaches is the set of modes used for the β component. The first approach relies as 

usual on the fixed interface modes of the β component while the second one adopts POD 

modes computed from the deflections in the β component of the linear modes in the 

frequency band of interest. These first two methods are effectively basis reductions 

techniques of the CB basis. On the test structure considered, a sizable 9-bay panel model, 

these methods were found to lead to accurate representations of the responses of the 

various bays with ROM but with sizes only slightly, 20%-25%, smaller than the number 

of linear modes present in the frequency band of interest. An approach based on the 

“global + local” method was also adopted to generate the “global” modes by 

“smoothing”/ “averaging” the mass property over α and β comp., respectively, to extract 

a “coarse” model of α and β and compute the “local” modes orthogonal to the “global” 

modes to add back necessary “information” for β. Even though it generally agrees with 

the prediction of the linear mode basis and provides better results under certain 

conditions, the modal reduction is not significant.  
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This observation led to the consideration of a fourth approach which starts from the 

linear modes of the structure, reducing first this set to those dominant in the β 

component response (the “selected modes”) and then “lumping” the contributions of 

other modes to the ones of the dominant modes of close frequencies and similar mode 

shapes in the β component. This process leads to an increased accuracy for a given ROM 

number of modes and/or permits a decrease of this number for a given accuracy. Three 

variations of this modal lumping strategy were discussed and compared with the last 

one, the autoregressive modeling based method, providing the best compromise between 

computational cost and accuracy of predictions. The application of the modal lumping 

approaches to the various bays of the 9-bay panel led to ROM sizes equal at most to 40% 

of the number of linear modes of the structure in the frequency band, a potentially 

worthwhile saving. This reduction in ROM size is a benefit even if the response of the 

entire structure is required. Indeed, by modeling each critical component of the structure 

in turn, a single large ROM for the entire structure can be replaced by multiple smaller 

component-centric ROMs, which are perfectly suited to run in parallel. The 

computational benefits can thus be measured by the computational effort required for 

the most complex component. Besides, a good robustness of the ROM to changes in the β 

component properties (e.g., for design optimization) was demonstrated and a similar 

sensitivity analysis was carried out with respect to the loading under which the ROM is 

constructed – all of which support the usefulness of the proposed component-centric 

ROMs. 

It was noted that the reduced ROM sizes would be particularly important for the 

nonlinear geometric ROMs developed within the last decade. Therefore, this approach 

was extended to the nonlinear geometric setting. The lumping approach followed in the 

linear case was recast as a rotation of the modal basis to achieve unobservable modes. In 
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the linear case, these modes then completely disappear from the formulation owing to 

the orthogonality of all modes involved. In the nonlinear case, however, the generalized 

coordinates of these modes are still present in the nonlinear stiffness terms of the 

observable modes. To remedy this issue, a “closure”-type scheme was proposed which 

relates linearly the generalized coordinates of the modes involved in the lumping. This 

final assumption permits to completely eliminate the unobserved generalized 

coordinates from the problem concluding the reduction of the basis. This was first 

demonstrated on a simple beam model and then applied to various bays of the complex 

9-bay panel model considered in the linear case. This effort allowed a reduction by 40% 

of the number of basis functions to be considered in these nonlinear component-centric 

ROM as compared to a model approximating the entire structure without any 

observable drop in accuracy. 

Seeking to reduce further the number of modes, one of the related future work would be 

to adopt the static condensation method to eliminate the “in-plane” modes from the 

basis, for flat structures. Moreover, while this thesis has been mainly focused on 

structural ROM with “zero” temperature loadings, it would be interesting to develop 

“multi-fidelity” structural ROMs with some thermal loadings. Along that thought, one 

may envision the development of “multi-fidelity” thermal ROMs under similar ideas.
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