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ABSTRACT  

   

Large-scale integration of wind generation introduces planning and operational dif-

ficulties due to the intermittent and highly variable nature of wind. In particular, the gen-

eration from non-hydro renewable resources is inherently variable and often times difficult 

to predict. Integrating significant amounts of renewable generation, thus, presents a chal-

lenge to the power systems operators, requiring additional flexibility, which may incur a 

decrease of conventional generation capacity.  

This research investigates the algorithms employing emerging computational ad-

vances in system operation policies that can improve the flexibility of the electricity indus-

try. The focus of this study is on flexible operation policies for renewable generation, par-

ticularly wind generation. Specifically, distributional forecasts of windfarm generation are 

used to dispatch a “discounted” amount of the wind generation, leaving a reserve margin 

that can be used for reserve if needed. This study presents systematic mathematic formu-

lations that allow the operator incorporate this flexibility into the operation optimization 

model to increase the benefits in the energy and reserve scheduling procedure. Incorporat-

ing this formulation into the dispatch optimization problem provides the operator with the 

ability of using forecasted probability distributions as well as the off-line generated policies 

to choose proper approaches for operating the system in real-time. Methods to generate 

such policies are discussed and a forecast-based approach for developing wind margin pol-

icies is presented. The impacts of incorporating such policies in the electricity market mod-

els are also investigated. 
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INTRODUCTION 

1.1. Motivation and Scope of the Dissertation 

Due to the recent technology and efficiency improvements as well as government fi-

nancial support, the proportion of intermittent renewable resources in the generation mix 

is increasing. By the end of 2015, the worldwide installed wind capacity has reached 432.8 

GW [1] and the installed capacity for solar has reached 227 GW [2].  

As the penetration level of renewable generation increases, the electric industry looks 

for efficient solutions to enable large-scale integration of renewable resources. To accom-

modate the increasing generation from such resources, important changes are needed in 

both the planning and the operation aspects of power systems. Emerging developments in 

computational capabilities within the realm of smart grid provide promising solutions for 

planning and operation of the system in the presence of intermittent resources such as wind 

and solar energy.  

This dissertation discusses the approaches the operators of power systems can use to 

deal with the uncertainty of generation from non-hydro renewable resources. The focus of 

this dissertation is on system operations, namely energy and reserve scheduling, in pres-

ence of wind generation. With the significant penetration of wind generation, the variability 

and uncertainty of wind energy requires the system to have additional flexibility.  

Flexibility requirements in a power system are a function of grid infrastructure, the 

existing generation mix, and operating procedures. Demand response and energy storage 

are considered to be two major sources for increasing system flexibility in both planning 
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and operation procedures in power systems [3]. Energy storage can also take part in ancil-

lary services markets both for regulation and operating reserves [59][4].When studying the 

operational aspects, flexibility is usually described within the context of operating reserves, 

entailing the system to be able to balance out the deviations of the realized renewable gen-

erator output from its forecasted production.  

Due to the uncertainty and variability of renewable generation, additional operating 

reserves may be needed to maintain the reliability of the system. Wind fluctuations increase 

requirements for rapid reserve, which may result in the scarcity of balancing services. 

While existing practices rely predominantly on conventional generators to provide the flex-

ibility to sustain reliable operations, with the push to integrate more renewables, there is a 

need for a paradigm shift. Such a paradigm shift will be based on having the renewable 

resources behave similarly to the conventional generators. With the increasing share of 

renewable generation, it is expected that, in the future, these renewable resources will take 

part in providing ancillary services, too. It is worth mentioning that there is also a regula-

tory push for such a paradigm shift based on having renewable generators function simi-

larly to conventional generators. As an example, FERC (Federal Energy Regulatory Com-

mission) has proposed an order to eliminate the exemption for wind generators from the 

requirement to provide reactive power [5]. 

It is envisaged that renewable resources may be required to contribute towards the sys-

tem balancing tasks. One approach is to provide operational flexibility by allowing for a 

discounted energy scheduling from wind generation. This will allow wind generators to 

provide a flexible reserve margin by withholding their own potential production in forward 

markets to hold some expected output. Excess wind can then be used as spinning reserve 
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to mitigate forecast errors and other system uncertainties. Dispatching the wind generator 

below the forecasted level offers a higher degree of flexibility when operating the system. 

This study focuses on the ability for wind generators to provide reserve (in the form of 

reserve margins) in order to address the challenge of integrating high levels of non-dis-

patchable resources into the grid.  

One primary objective of this study is to determine the optimal amount of dispatch that 

such renewable resources can provide. The aim has been to use stochastic models of wind 

to develop an affine policy function for scheduling energy and reserve from wind genera-

tors that strikes a balance between the operating costs and the risk associated with the mis-

management of wind generation that leads to an imbalance between demand and supply. 

Subsequently, the focus of the work has been on developing scheduling and reserve 

policies when multiple dimensions of uncertainty are involved in the operating conditions 

of the system. Uncertainty complicates the process of economic dispatch and reserve 

scheduling for the system and renders the deterministic optimization approach less effec-

tive. The existing optimization approaches for handling uncertainty, such as scenario-based 

stochastic programming and robust programming, are often computationally expensive and 

hence, are less practical for making real-time operation decisions. This study investigates 

the possibility of exploiting offline stochastic calculations for training deterministic oper-

ation policies. Such deterministic policies are then applied to real-time system models to 

find the optimum dispatch and reserve schedule. An offline policy generation technique is 

proposed based on stochastic reserve margin scheduling to hedge against the real-time un-

certainty of wind farm generation. Such offline analysis allows for modeling a broader 

range of uncertainty, making it applicable when there are multiple sources of uncertainty. 
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1.2. Organization of the Dissertation 

The rest of this dissertation is organized as follows:  

Chapter 2 provides a background review on the topics included in this dissertation. 

First, a brief review of wind power forecasting approaches is presented. The existing short-

term wind power forecasting techniques and their general methodologies are discussed. 

Subsequently, the detailed procedure of the Markov chain model-based wind generation 

forecast, which is the method used for generating wind scenarios in this thesis, is described.  

In chapter 3, a combined dispatch and reserve scheduling policy is proposed by deter-

mining a flexible wind reserve margin. In order to provide a flexible reserve margin, wind 

generators under-schedule in the hour-ahead energy market to hold some expected output 

for reserves. Additional wind energy is then available for mitigating forecast errors and 

other system uncertainties. A framework is presented to find the optimal policy to incorpo-

rate the flexible wind reserve margin into the hour-ahead market. A finite-state Markov 

chain wind power forecast model, based on spatio-temporal analysis, is utilized to find the 

appropriate level of wind reserve margin.  

In chapter 4, the possibility of exploiting offline stochastic calculations for training 

deterministic operation policies is investigated. An offline policy generation technique is 

proposed, based on stochastic reserve margin scheduling, to hedge against the real-time 

uncertainty of wind farm generation. The proposed policy generation structure is developed 

in a forecast-based framework by taking into account both the wind generation status and 

the loading conditions of the system. The proposed approach is tested and the costs are 

compared to those obtained by using ad-hoc rules to analyze the effectiveness of the pre-

sented model in handling uncertainty. 
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Chapter 5 investigates the market implications of deploying the deterministic reserve 

policy based on the offline stochastic analysis. The bids of the generators for energy and 

ancillary services are considered. In addition, a market settlement scheme is proposed that 

can be used for the proposed policy. In the proposed structure, the generators are compen-

sated for the energy and reserve that they provide. The reserve providers are compensated 

for both the reserve capacity and the reserve activation. The reserve activation payments 

are dependent upon the performance of the reserve resource for various uncertainty reali-

zation scenarios. The proposed approach is compared with a typical deterministic approach 

that does not use a reserve margin policy. 

In chapter 6, conclusions are presented and future research directions are discussed. 
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BACKGROUND AND LITERATURE REVIEW 

This chapter provides a background review for the main topics that are the focus of this 

dissertation. 

2.1. Windfarm Generation Forecasting  

With an expected high penetration level, wind generation integration is expected to 

impact the existing power systems operating procedures including, unit commitment, eco-

nomic dispatch and ancillary services procurement. Compared to conventional generation 

(e.g., thermal, hydro, nuclear), wind generation has two distinct characteristics: variability 

and uncertainty. This is because wind power is dependent on the volatility of the wind. As 

a result, wind generation is considered to be semi-dispatchable meaning that the power 

output of a wind farm cannot be simply dispatched at the request of power system opera-

tors. To be specific, semi-dispatchable resources refer to intermittent resources that have a 

limited degree of controllability, unlike conventional generators that have full controllabil-

ity. Due to the aforementioned characteristics, wind generation forecasting is critical to 

ensure that adequate resources for dispatch, ancillary services and ramping requirements 

are available all the time. 

It is worth mentioning that wind power forecasting methods can be classified accord-

ing to forecast time-scale [7]. Seasonal or long-term forecast is used for resource planning 

and contingency analysis. Day-ahead forecast is used for market trading and day-ahead 

unit commitment and scheduling. Short-term forecast is used for hour-ahead unit commit-

ment, real-time dispatch, regulation and load following [7].  
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Due to the semi-dispatchability and uncertainty of wind, accurate forecasting models 

are needed to enable efficient integration of wind energy. The existing forecasting tech-

niques for wind power can be categorized into a few broad categories [8]; physical meth-

ods, statistical methods, spatial correlation methods and artificial intelligence methods. 

Physical methods are based on numerical weather prediction (NWP) and use comprehen-

sive weather data and advanced meteorological techniques for wind speed forecasting [9]-

[10]. Generally, the detailed description of the weather is transformed to conditions at the 

location of the wind farm [11]. Such physical models need comprehensive calculations and 

are appropriate for long-term forecasting [12]. Statistical methods try to find the inherent 

relationship within the interdependent measured power data. These models include time-

series approaches such as autoregressive (AR) models [13], autoregressive moving average 

(ARMA) [14], and autoregressive integrated moving average (ARIMA) [15]. Statistical 

methods are appropriate for short-term forecasting and their error increases as the predic-

tion horizon is increased [12].  

The spatial correlation models consider the impact of spatial relationship between var-

ious wind sites. In spatial correlation models, the wind speed measurement data at the pre-

diction location, as well as the data for its neighboring points, are used to predict the wind 

speed.  

The artificial intelligence based approaches have also been applied in forecasting wind 

speed and power. These methods include artificial neural network (ANN) [16]-[17], adap-

tive neuro-fuzzy inference system (ANFIS) [18]-[19], support vector machine (SVM) [20]-



8 

 

[21], and evolutionary optimization algorithms [22]. There are also other hybrid ap-

proaches that take advantage of multiple forecasting methods by combining various indi-

vidual models and their information [23]-[24].  

A vast amount of work in the existing literature focuses on wind speed forecast, as-

suming that wind generation from the farm can be directly calculated as a function of wind 

speed at one specific location in the farm. In reality, however, the power outputs of wind 

turbines within the same wind farm can be quite different, even if the wind turbines are of 

the same class as well as being physically located close to each other. Therefore, forecast 

errors for existing approaches can be significant [25].  

In this study, a spatio-temporal approach for wind power generation forecast is used, 

which takes into account the diurnal non-stationarity and the seasonality of wind [26]. Due 

to the inherent variability and uncertainty of wind farm generation, distributional forecast 

methods can manage the uncertainty better than point forecast methods. In this dissertation, 

a Markov chain model-based wind generation forecast is used base on the analysis provided 

by authors of [26]. Their model is used in chapter 3 and chapter 4 of this dissertation to 

generate distributional forecasts for wind generation. The critical observations and the prin-

ciples of their forecast model are described in the following sections. 

2.2. Spatio-temporal Dynamics of Wind Farms 

A critical reported observation from the measurement data is the spatial dynamics [27]. 

The power outputs of wind turbines within a wind farm can be quite different, even if the 

wind turbines are of the same class and physically located close to each other [28]. Alt-

hough the variable power outputs of wind turbines are not identical, it is assumed that they 

follow the same probability distribution if the wind turbines are of the same class.  
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Another key observation is the temporal characteristic, i.e. the diurnal non-stationarity 

and the seasonality of wind farm generation. The diurnal non-stationarity can be tackeled 

by identifying a time epoch such that the wind generation exhibits stationary behavior 

within each epoch. The forecast model can then be developed for each of these epochs 

separately. According to [26], a three-hour epoch seems to be reasonable, i.e. the 

probability distributions of wind farm generation over three consecutive 1-hour intervals 

are consistent. 

2.3. Markov Chain-based Short-term Forecasting 

The procedure for developing the Markov chain short-term forecast is described in this 

section based on [26]-[28]. The objective is to address the statistical distribution and tem-

poral dynamics of aggregate wind farm generation using a Markov chain. 

In this approach, in order to capture the spatial correlation between the power outputs 

from the wind turbines, a minimum spanning tree is constructed based on graph theory. 

The spatial correlation between the individual wind turbines is determined by using a linear 

regression model. The probability distribution of the aggregate wind generation can then 

be characterized using the wind speed measured at the reference meteorological tower in 

the farm. The temporal correlation is analyzed by using a finite-state Markov chain model. 

The seasonality is tackled by designing the forecast model for each month individually.  

Assume the Markov chain is discrete time, of order 1, and has 𝑁𝑤 states. Let 𝑆̅ denote 

the state space of the Markov chain. Each state 𝑆𝑘 = [Г𝑘, Г𝑘+1) , k ∈ {1, . . . , 𝑁𝑤} is defined 

as an interval of generation level, with extreme values given by Г𝑘 = 0 and Г𝑁𝑤+1
= 𝑃𝑤

𝑚𝑎𝑥, 
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where 𝑃𝑤
𝑚𝑎𝑥 is the maximum generation of wind farm w. The finite-state Markov chain 

model is developed as follows: 

Define the quantity 𝜏𝑘 as the average duration that 𝑃𝑤, wind generation, stays in state 

𝑆𝑘, 

𝜏𝑘 =
𝐹𝑤(Г𝑘+1)−𝐹𝑤(Г𝑘)

𝐿𝑤(Г𝑘+1)+𝐿𝑤(Г𝑘)
 (2.1) 

where 𝐹𝑤(·) denotes the cumulative distribution function (CDF) of the farm aggregate wind 

generation and 𝐿𝑤(.) denotes the level crossing rate. Level crossing rate is defined as the 

number of times per unit time that the farm aggregate power 𝑃𝑤 crosses Г𝑘 in positive/neg-

ative direction only. The cumulative probability distribution 𝐹𝑤 of farm aggregate wind 

generation is characterized based on the historical data of wind farm generation.  

The level crossing rate is given by 

𝐿𝑤(𝛾) = ∫ 𝑃𝑟(𝑃𝑤(𝑡) > 𝛾|𝑃𝑤(𝑡 − 1) = 𝑝𝑤)
𝛾

−∞
𝑑𝐹𝑤(𝑝𝑤). (2.2) 

It is worth noting that 𝜏𝑘  plays a critical role in the Markov chain model and determines 

how well the stochastic random process 𝑃𝑤 is captured. A small value of 𝜏𝑘 suggests that 

𝑃𝑤 is more likely to switch out of the state 𝑆𝑘 within a time slot, i.e., nonadjacent transitions 

are more likely to occur, and hence the transitional behaviors of 𝑃𝑤 are not captured effi-

ciently by the discrete-time Markov chain. Large values of 𝜏𝑘  indicate that the quantization 

by the Markov chain is not fine grained, and the corresponding forecast would be less 

accurate. One objective of state space design is, thus, to make each  𝜏𝑘 fall into a reasonable 

range [29]. In order to do that, one way is to introduce a constant 𝜏 and find the 𝑁𝑤variables 

{Г2 ,…, Г𝑤 }by solving (2.1) numerically with 𝜏𝑘 = 𝜏 , ∀k ∈ {1,…, 𝑁𝑤−1}. 
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Once the state space 𝑆̅ is designed, the transition probabilities can be estimated as pro-

posed in [30]. The probability of a transition from 𝑆𝑖 to 𝑆𝑗 is given by 

𝑄𝑖,𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑘
𝑁𝑤
𝑘=1

, 𝑖, 𝑗 ∈  {1, … , 𝑁𝑤}  (2.3) 

where 𝑛𝑖𝑗 is the number of transitions from 𝑆𝑖 to 𝑆𝑗 occurred in historical data. The repre-

sentative generation level for each state 𝑆𝑘 can be determined using the minimum mean 

square error principle, given by 

𝑃𝑤,𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐸 {(𝑃𝑘 − 𝑃𝑤(𝑡))
2

|𝑃𝑤(𝑡)𝜖[Г𝑘, Г𝑘+1]} =
∫ 𝑝𝑤𝑑

Г𝑘+1

Г𝑘
𝐹𝑤(𝑃𝑤)

𝐹𝑤(Г𝑘+1) − 𝐹𝑤(Г𝑘)
. 

 (2.4) 

Therefore, given the present wind generation state of the wind farm output, the distribu-

tional forecast of the wind farm generation in next interval is given by 

𝑃𝑟(𝑃𝑤
𝑡+1 = 𝑃𝑤,𝑗|𝑆𝑤

𝑡 ) = 𝑄𝑆𝑤
𝑡 ,𝑗, ∀𝑗 ∈  {1, … , 𝑁𝑤}. (2.5) 

Using this framework, the probability distribution of the immediate future state of the 

wind farm output can be predicted based on the most recent state of the system. This prob-

ability distribution expresses the transition probability from the present state to the future 

state.  

The scheduling framework modeled in this study is short-term in nature, since it deals 

with hour-ahead decisions for acquiring energy and reserve. To determine the short-term 

schedule, the short-term wind power forecast model based on the finite-state Markov chain 

model is used. This model predicts the windfarm generation in the next time epoch (10-

minute) to be among a few defined states with certain probabilities, thereby improving the 
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tractability for stochastic programming. The analysis performed in the following chapters 

is based on this Markov chain-based forecast model. 
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ONLINE POLICY FOR WIND POWER RESERVE MARGIN FOR FLEXIBLE EN-

ERGY AND RESERVE SCHEDULING  

3.1. Introduction 

The share of wind energy generation in electricity supply is increasing due to recent 

technology and efficiency improvements as well as government financial support. Many 

states in the U.S. have adopted a renewable portfolio standard (RPS) and have started in-

tegrating renewable resources, such as wind, solar, biomass and other alternatives to fossil 

electric generation [31]. 

Due to the uncertainty and variability of renewable generation, additional operating 

reserves may be needed to maintain the reliability of the system. In order to operate the 

system in a secure and stable manner, sufficient reserve capacity must be in place to over-

come load and renewable forecast errors or unexpected failures of generators. When re-

newable resources drop below their anticipated production level, fast acting up reserves 

should be called upon. When the actual wind generation is above the forecasted value, 

however, a different complication arises in terms of ramping down conventional genera-

tors. In some power systems, the operators are required to incorporate all the available wind 

power. Even in deregulated systems, the actual dispatched wind exceeds the cleared 

amount due to the low real-time price of the wind and lack of over-provision penalty. A 

significant amount of down reserve is needed, as a result, to balance these intermittent 

resources. 

These operational aspects give rise to an interest in developing better approaches to 

determine the right amount and the location of reserve for systems with wind resources 
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[32]-[36]. In [37], a review of the different assumptions and methods used to calculate the 

amount of different types of reserves with high penetrations of wind power was presented. 

The authors of [38] used a stochastic optimal power flow to supplement traditional energy 

scheduling and reserve procurement while considering the uncertainty of equipment out-

ages, errors in demand forecasts, and intermittent generation. Another work, [39], balanced 

the costs and benefits of spinning reserve while solving unit commitment. In that study, 

wind power forecast errors were modeled by a Gaussian distribution. The benefit was ex-

pressed as a function of the reduction in the expected energy not served (EENS). Recent 

work [40] used probability functions for conventional generator outages as well as discre-

tized probability functions for wind power and load to create a distribution function of the 

system generation margin. Negative values represented cases where the generation is short. 

Essentially, they used a loss of load expectation (LOLE) threshold to calculate the required 

reserve to shift the generation margin curve to the right (positive direction). An overview 

of the current practices of operating reserves and methodologies used to estimate the in-

crease in reserve allocation due to wind power was presented in [41]. 

As the wind penetration level increases, wind power producers are expected to behave 

similarly to other market participants, e.g., renewable resources may be required to con-

tribute towards the system balancing tasks. Recent research works have investigated the 

possibility of having ancillary services from renewable resources. For instance, reference 

[42] discussed the capability of wind and solar plants to provide voltage regulation. The 

authors of [43], proposed to allow wind producers to participate in the regulation reserve 

market. They presented a strategy for the wind generator to bid into both energy and reserve 

markets. The authors of [44] used a similar market structure to show that a more secure 
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system operation with lower dispatch cost can be achieved in this new market setting. A 

real test on a wind farm in West Denmark was performed in [45] to analyze the participa-

tion of wind generators in the balancing markets. They found that the wind farm is able to 

play a proactive role in providing downward regulation and increase its profits. Electric 

Reliability Council of Texas (ERCOT) has revised its rules to require the wind generators 

to offer a minimum down balancing requirement based on their low and high sustainable 

limits [46].  

The above studies presented specific structures to determine the required reserve from 

conventional generators to cope with the uncertainty of wind generation. While this ap-

proach is feasible, it will impose a high cost on system operations since sufficient flexible 

capacity must be on-line to manage the uncertainty of the wind production. Alternatively, 

a promising method is to allow wind generators to provide a flexible reserve margin by 

under-scheduling in forward markets. The concept of flexible wind reserve margin is a way 

to hedge against the uncertainty at an earlier stage. In order to provide a flexible reserve 

margin as proposed by [47], wind generators under-schedule in the hour-ahead energy mar-

ket so as to hold some expected output as reserves. Excess wind can then be used as spin-

ning reserve to mitigate forecast errors and other system uncertainties.  

Dispatching the wind generator below the forecasted level allows for a higher degree 

of flexibility when operating the system. In addition, some renewable resources are semi-

dispatchable and generally have no limits for ramping. Therefore, the system can benefit 

from greater availability of such fast reserves [48]. Based on this feature, renewable gen-

erators can be utilized to produce reserve capacity. The concept of wind reserve margin 

enables the windfarm generators to behave similarly to other generators and partake in the 
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system balancing tasks. Fig. 3.1 illustrates the concept of wind reserve margin. By with-

holding the potential output in the hour-ahead, the wind farm can mitigate the uncertainty 

related to the various possible realizations. 

  

 
Fig. 3.1. Possible realizations with wind reserve margin. 

The importance of operational flexibility is well recognized in the literature. Recent 

works have studied flexibility from both technical and economic perspectives [49]-[50] 

and proposed systematic definition for flexibility [51]-[52]. The dispatch framework intro-

duced here is seeking to provide operational flexibility by allowing for a discounted energy 

scheduling from wind generation. 

It is critical to analyze both the features of the wind power production and the reserve 

procurement approaches, as well as the associated tradeoffs, in order to ensure an efficient 

energy schedule and flexible wind reserve margin. As the operator relies on more wind 

energy production, the system faces more uncertainty, thereby requiring additional reserve. 

System reliability may be jeopardized if the wind energy production is less than what the 

operator anticipated. Thus, costly ancillary services and fast acting reserves have to be 

called upon to maintain the secure operation of the system. Dispatching a low level of wind, 

on the other hand, will result in inefficient utilization of wind power. The operational costs 

are, thus, expected to be higher since more energy will be scheduled from conventional 
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units. To address these tradeoffs, one must account for the scheduling costs and the risk 

imposed to the system due to the intermittency of renewable resources. 

One primary objective of this study is to develop an affine policy for scheduling energy 

and reserve from wind generators that strikes a balance between the operating costs and 

the risk associated with the mismanagement of wind generation that leads to an imbalance 

between demand and supply. The main contributions of this study are summarized below: 

• A risk-aware flexible joint dispatch and reserve scheduling model has been proposed, 

from the viewpoint of the system operator. The model minimizes the cost associated to 

providing adequate energy and reserves for the system, while satisfying the network con-

straints and abiding by the reliability and security criteria.  

• A two-phase framework is developed to obtain appropriate policies for scheduling 

wind generation. In the first phase, a generation dispatch is performed to obtain the dispatch 

and reserve schedule for generation units. A scenario-based stochastic programming ap-

proach is leveraged to capture the effect of various possible wind scenarios. This initial 

phase minimizes the aggregate operating costs and risk costs relative to the modeled sce-

narios. In the second phase, the decision from the first phase is tested against a larger set 

of scenarios to ensure the adequacy of the scheduled energy and reserve.  

• The performance of the risk-aware scheduling algorithm is compared with its coun-

terpart without applying the flexible wind reserve margin policy. The results corroborate 

that the risk-aware scheduling can reduce the overall cost. Therefore, it is shown that the 

proposed structure effectively manages the forecast errors and achieves a more secure sys-

tem dispatch. 
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The rest of this chapter is organized as follows. In section 3.2, the wind generation 

forecast model and scenario generation methodology are described. This section then ex-

plains the scenario reduction procedure used to come up with a set of representative wind 

scenarios. A joint energy and reserve scheduling model is proposed in section 3.3, where 

the two-phase policy determination procedure is described. Section 3.4 presents an illus-

trative case study, which quantifies the potential benefits of the proposed approach in both 

generation cost and spinning reserve cost based on a set of real generation data of a wind 

farm. The chapter is concluded in section 3.5.  

3.2. Wind Generation Model   

3.2.1. Short-term Wind Forecast Model 

In this chapter, the Markov chain-based wind forecast model described in section 2.2.2 

is used. This model takes into account the diurnal non-stationarity and the seasonality of 

wind [26]. Using this framework, the probability distribution of the immediate future state 

of the wind farm output can be predicted based on the most recent state of the system. This 

probability distribution expresses the transition probability from the current state to the 

future one.  

The scheduling framework modeled in this study is for the short-term, since it deals 

with hour-ahead decisions for acquiring energy and reserve. To determine the short-term 

schedule, the finite-state Markov chain model is used. This model predicts the windfarm 

generation in the next time epoch (10 minutes) to be among a few defined states with cer-

tain probabilities, thereby improving the tractability for stochastic programming. 
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3.2.2. Wind Scenario Generation 

In the current study, the short-term 10-minute wind generation forecast based on the 

finite-state Markov chain model is used to develop a scenario tree for the wind generation 

in the next hour, i.e., for the next six time intervals of 10 minutes. A scenario tree is gen-

erally represented by a finite set of nodes. It starts from a root node (state) at the first period 

and branches into nodes (states) at each next period. Every scenario represents a sequence 

of wind farm states, in the next six time intervals. The transition probabilities are derived 

using the finite-state Markov chain model developed based on the wind farm data. Fig. 3.2 

shows the structure of the scenario tree for six time intervals. It is worth noting that the 

total number of scenarios remains in a reasonable range since the number of possible states 

in each 10-minute time interval is small.  
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Fig. 3.2. Scenario tree generated for the next hour. 

3.2.3. Scenario Selection 

The computational effort for solving a scenario-based stochastic program depends on 

the number of modeled scenarios. In this study, in order to reduce the computational bur-

den, a scenario reduction procedure is executed on the original set of scenarios. A cluster-

ing technique is used to come up with a few scenarios that properly represent the whole set 
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of scenarios. In this study, the technique introduced by [53] is used, which reduces the 

scenarios to their best approximation based on the Kantorovich distance of probability dis-

tributions. 

For two discrete probability distributions 𝑃 and 𝑄, with scenarios 𝜉𝑗 , 𝜉𝑗 and probabil-

ities 𝑝𝑖, 𝑞𝑗 respectively, the Kantorovich distance [53] is defined as, 

𝐷𝑘(𝑃, 𝑄) = 𝑖𝑛𝑓 {
∑ ∑ 𝜂𝑖𝑗𝐶𝑇(𝜉𝑗 , 𝜉𝑗):�̃�

𝑗=1
𝑆
𝑖=1 𝜂𝑖𝑗 ≥ 0,

∑ 𝜂𝑖𝑗 = 𝑞𝑗 , ∑ 𝜂𝑖𝑗 = 𝑝𝑖 
�̃�
𝑗=1

𝑆
𝑖=1 , ∀𝑖, 𝑗

} (3.1) 

where 𝐶𝑇(𝜉𝑗 , 𝜉𝑗) ≔ ∑ |𝜉𝑇
𝑗

−  𝜉𝑇
𝑗
|𝑡

𝜏=1 , 𝑡 = 1, … , 𝑇 measures the distance between scenarios 

over the time horizon. If 𝑄 is the reduced probability distribution of ξ, the support of 𝑄 

consists of scenarios 𝜉𝑗 for 𝑗 ∈ {1, … , 𝑠}\ 𝐽 where 𝐽 represents the index set of deleted sce-

narios. For a fixed 𝐽, the scenario set 𝑄 that has minimal distance to 𝑃 can be computed. 

The minimal distance is 

𝐷𝑘(𝑃, 𝑄) = ∑ 𝑝𝑖 𝑚𝑖𝑛
𝑗∉𝐽

𝐶𝑇(𝜉𝑗 , 𝜉𝑗)𝑖∈𝐽 . (3.2) 

The new probability of a remained scenario equals the sum of its previous probability 

and the probabilities of deleted scenarios that were closest to it with respect to 𝐶𝑇. The 

optimal choice of an index set for scenario reduction with fixed cardinality is an optimal 

reduction problem that can be solved using the iterative algorithm in [53]. The algorithm 

omits one scenario at a time until the desired number of scenarios is achieved.  

3.3. Joint Energy and Reserve Scheduling Based on Flexible Wind Reserve Margin  

In this section, a scenario-based stochastic dispatch and reserve scheduling problem 

based on the short-term wind farm generation forecast is formulated. In the proposed struc-
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ture, it is assumed that the market operator clears the energy and ancillary services simul-

taneously, rather than clearing them sequentially. This approach prevents the need for un-

economical out-of-merit operation, the start-up of extra generation units, and unnecessary 

load shedding [54]. The goal is to find the appropriate energy and reserve that can be sched-

uled from the wind farm to minimize the total cost. This total cost consists of the opera-

tional cost associated with procuring energy and reserve as well as the expected costs as-

sociated with inadequate appropriation of ancillary services. The focus is on the impact of 

wind generation uncertainty on system operation. The load uncertainty and forced outages 

of generators and transmission lines are not directly considered in this chapter. 

The proposed procedure has a two-phase structure and aims to find the expected level 

of wind farm generation, relative to the predicted value, that the operator can utilize. It is 

assumed that the operator intends to perform the scheduling procedure for the next hour. 

This look-ahead dispatch allows for better planning of the resources, considering the 10-

minute ramp up and ramp down capabilities of the conventional generators. 

In this study, the expected amount of the wind generation that the operator can utilize 

is expressed as a fraction of the predicted wind generation for that hour. This fraction is 

referred to as the flexible wind reserve margin policy factor throughout this dissertation. 

To find the best policy, the proposed two-phase procedure is performed for various 

factors. Initially, a certain fraction of the predicted wind generation is assumed to be uti-

lizable. In the first phase, a stochastic program is solved. In the second phase, a risk analysis 

model is run to test the robustness of the first phase decisions. Section 3.3.1 and section 

3.3.2 describe these two phases. The process is repeated for various policy factors in order 
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to find the optimal policy. The complete hour-ahead scheduling procedure can be viewed 

in Fig. 3.3.  

As described above, the first phase uses a two-stage scenario-based stochastic program 

to deal with wind uncertainty where the scenario tree is generated by a Markov forecast 

model; note that other scenario tree generation techniques can be used instead. One primary 

tradeoff when choosing the right stochastic optimization approach is the model complexity 

(to ensure a high level of efficiency) versus the computational complexity. Interval-based 

stochastic programming could also be used within the first phase of the proposed policy 

function approximation approach; interval-based stochastic programming generates a sce-

nario tree that is based on extreme events (in order to reduce the number of scenarios) 

whereas in this dissertation, a scenario reduction technique is used that takes into consid-

eration the probabilities of scenarios. While both approaches can be used with the proposed 

technique, a scenario-based method, which accounts for the probabilities of the scenarios, 

has been employed. Since the Markov forecast model uses discrete states to describe the 

future, a scenario tree can be constructed based on the state transitions, encouraging the 

choice of scenario-based stochastic program for dealing with the uncertainty of wind dur-

ing the first phase, which is solved offline. 
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Fig. 3.3. Procedure to determine flexible wind reserve margin policy. 

The scenario reduction technique introduced in section 3.2.3 minimizes the statistical 

distance between the original and the reduced probability distributions; hence, the scenario 

reduction technique finds the nearest reduced probability distribution in comparison to the 

original one. This reduction technique is, therefore, selected and employed in this disserta-

tion to come up with an appropriate estimate of the cost that is expected on average for 

scheduling energy and reserve in the first phase. In order to handle the inaccuracy caused 

by the reduced representation of uncertainty, the effect of the full scenario set (including 

extreme scenarios) will be revealed in the second phase where the results are tested against 

all possible scenarios to ensure the robustness of the analysis that has been performed on 

the reduced set of scenarios. 
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3.3.1. Hour-ahead Risk-aware Energy and Reserve Scheduling 

The proposed first phase model is a scenario-based stochastic program, which co-op-

timizes the energy and reserves for the base case. The second-stage ensures security based 

on the selected scenarios. The second-stage recourse function is, in fact, the cost of deploy-

ing available resources to maintain the system balance over various scenarios. The stochas-

tic energy and reserve scheduling problem can be shown by (3.3)-(3.28), 

Min ∑ (𝐶𝑔
𝑒𝑝𝑔𝑡 + 𝐶𝑔

𝑟𝑐𝑟𝑔𝑡) + ∑ (𝐶𝑤
𝑒 𝑝𝑤𝑡 + 𝐶𝑤

𝑟𝑐𝑟𝑤𝑡)𝑤,𝑡𝑔,𝑡 + ∑ 𝜋𝑠{𝑠,𝑡 ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑠𝑡

+ +𝑛

𝑙𝑠𝑛𝑠𝑡
− ) + ∑ (𝐶𝑝 + 𝐶𝑤

𝑟𝑒)𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝑤 +   ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑠𝑡)𝑔 +   ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑤
𝑟𝑐∆𝑤𝑠𝑡)𝑤 }

 (3.3) 

Subject to: 

Base case constraints: 

𝑃𝑔
𝑚𝑖𝑛�̅�𝑔𝑡 ≤ 𝑝𝑔𝑡, ∀𝑔, 𝑡 (3.4) 

𝑝𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥�̅�𝑔𝑡, ∀𝑔, 𝑡 (3.5) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10�̅�𝑔𝑡, ∀𝑔, 𝑡 (3.6) 

∑ 𝑟𝑞𝑡𝑔∈𝐺 ≥ 𝑝𝑔𝑡 + 𝑟𝑔𝑡 + ∑ 𝜉𝑤𝑡𝑤 , ∀𝑔, 𝑡 (3.7) 

𝜉𝑤𝑡 ≥ 𝑝𝑤𝑡 − (𝑃𝑤𝑡
𝑓

− 𝛽𝜎𝑤𝑡), ∀𝑤, 𝑡 (3.8) 

𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
10, ∀𝑔, 𝑡, �̅�𝑔𝑡 = 1, �̅�𝑔,𝑡−1 = 1 (3.9) 

𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
10, ∀𝑔, 𝑡, �̅�𝑔,𝑡−1 = 1, �̅�𝑔𝑡 = 1 (3.10) 

𝑝𝑤𝑡 + 𝑟𝑤𝑡 ≤ 𝛼𝑃𝑤𝑡
𝑓

, ∀𝑤, 𝑡 (3.11) 

𝑝𝑘𝑡 − 𝐵𝑘(𝜃𝑛𝑡 − 𝜃𝑚𝑡) = 0, ∀𝑘, 𝑡 (3.12) 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑝𝑘𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥 , ∀𝑘, 𝑡 (3.13) 

∑ 𝑝𝑔𝑡𝑔∈𝑔(𝑛) + ∑ 𝑝𝑘𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑝𝑘𝑡𝑘∈𝛿−(𝑛) + ∑ 𝑝𝑤𝑡𝑤∈𝑤(𝑛) = 𝑑𝑛𝑡, ∀𝑛, 𝑡 (3.14) 
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𝑝𝑤𝑡, 𝑟𝑤𝑡 ≥ 0, ∀𝑤, 𝑡 (3.15) 

Second-stage constraints: 

𝑝𝑘𝑠𝑡 − 𝐵𝑘(𝜃𝑛𝑠𝑡 − 𝜃𝑚𝑠𝑡) = 0, ∀𝑘, 𝑡 (3.16) 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑝𝑘𝑠𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥, ∀𝑘, 𝑡 (3.17) 

∑ (𝑝𝑔𝑡 + 𝑟𝑔𝑠𝑡)𝑔∈𝑔(𝑛) + ∑ 𝑝𝑘𝑠𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑝𝑘𝑠𝑡𝑘∈𝛿−(𝑛) + ∑ (𝑝𝑤𝑡 + 𝑟𝑤𝑠𝑡𝑤∈𝑤(𝑛) ) +

𝑙𝑠𝑛𝑠𝑡
+ − 𝑙𝑠𝑛𝑠𝑡

− = 𝑑𝑛𝑡, ∀𝑛, 𝑠, 𝑡 (3.18) 

𝑟𝑔𝑠𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔, 𝑠, 𝑡 (3.19) 

−𝑟𝑔𝑠𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔, 𝑠, 𝑡 (3.20) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔𝑡 + 𝑟𝑔𝑠𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥 , ∀𝑔, 𝑠, 𝑡 (3.21) 

𝑟𝑟𝑔𝑠𝑡 = 𝑟𝑔𝑡 − 𝑟𝑔𝑠𝑡, ∀𝑔, 𝑠, 𝑡 (3.22) 

−𝑟𝑤𝑠𝑡 ≤ 𝑟𝑤𝑡 + 𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

, ∀𝑔, 𝑠, 𝑡 (3.23) 

0 ≤ 𝑝𝑤𝑡 + 𝑟𝑤𝑠𝑡 , ∀𝑤, 𝑠, 𝑡 (3.24) 

𝑝𝑤𝑡 + 𝑟𝑤𝑠𝑡 + 𝑟𝑟𝑤𝑠𝑡 ≤ 𝑊𝑤𝑠𝑡  , ∀𝑤, 𝑠, 𝑡 (3.25) 

∆𝑤𝑠𝑡≥ 𝑟𝑤𝑠𝑡 + 𝑟𝑟𝑤𝑠𝑡 − 𝑟𝑤𝑡, ∀𝑤, 𝑠, 𝑡 (3.26) 

∑ 𝑟𝑟𝑔𝑠𝑡𝑔∈𝑔(𝑛) + ∑ 𝑟𝑟𝑤𝑠𝑡𝑤∈𝑤(𝑛) ≥ 𝑝𝑔𝑡 + 𝑟𝑔𝑡, ∀𝑔, 𝑤, 𝑠, 𝑡  (3.27) 

𝑟𝑟𝑤𝑠𝑡, ∆𝑤𝑠𝑡, 𝑙𝑠𝑛𝑠𝑡
+ , 𝑙𝑠𝑛𝑠𝑡

− , 𝑝𝑤𝑡𝑠
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

≥ 0, ∀𝑤, 𝑛, 𝑠, 𝑡. (3.28) 

 

In the objective function (3.3), the first two summation terms represent the cost for 

scheduling energy and reserve capacity from generation units, including both conventional 

and wind generators. Note that in the proposed structure the generators would bid for both 

energy and reserve. The bid for reserve inherently reflects a lost opportunity cost estimated 

by the market participant. For a market environment, the generator will at least receive a 
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lost opportunity cost payment based on its reserve bid and if there are additional lost op-

portunity costs for a generator, they are handled by uplift payments. 

For the case where there is an independent power producer (IPP) that holds a contract 

with a local utility (or some other entity), the bilateral contract dictates the terms of how 

lost opportunity costs are handled. Since lost opportunity costs are wealth transfers between 

two entities, the overall social welfare (market surplus) improvements that are presented in 

this dissertation will not change. 

The remaining terms in the objective function express the expected cost incurred over 

the set of considered scenarios. This part includes the load shedding cost, the penalty cost 

associated with the wind farm not being able to abide by its scheduled output, the cost of 

exercised reserve in each scenario, and the cost of the residual reserve from the wind. This 

last term will be further explained in the description of the constraints. Please note that 𝐶𝑐
𝑛 

would be set to a relatively high value to prevent load shedding/generation surplus as much 

as possible. For situations where additional wind production is not beneficial, it is assumed 

that there will be wind spillage, preventing the generation surplus to occur. 

Equation (3.4) provides the lower bound on generation dispatch. Equation (3.5) pro-

vides the upper limit on the energy and reserve scheduled from a conventional unit. Equa-

tion (3.6) enforces the reserve scheduled from each unit for each time interval to be within 

the 10-minute ramping capability of the unit. Equation (3.7) presents the reserve require-

ment of the system; it indicates that the total reserve scheduled from conventional genera-

tion units should account for the outage of any single generator (N-1 reliability criterion) 

as well as a security margin added to account for the uncertainty of the scheduled wind 

energy.  
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Equation (3.8) presents the security margin considered for acquiring reserve in the 

presence of wind generation. Here, it is assumed that the operator should obtain additional 

reserve if the amount of scheduled wind is higher than a certain threshold. The threshold 

is set to be equal to the mean of the wind generation probability distribution function (pre-

dicted value) minus a factor 𝛽 of the standard deviation. It is worth noting that this factor 

can also be used to set up a policy to determine reserve. A methodology similar to the one 

described for obtaining wind reserve margin can be applied for coming up with this reserve 

policy by addressing the trade-off between the scheduling and the risk costs. In the present 

study, however, this factor is assumed to be previously known and fixed, to avoid replicat-

ing the procedure.  

Equations (3.9)-(3.10) show the ramp up and ramp down constraints for generators. 

Equation (3.11) sets the limit on the total energy and reserve that is scheduled from the 

wind generator. This limit is expressed as a factor α of the predicted value. This factor is 

referred to as the flexible wind reserve margin policy factor. Parameter 𝑃𝑤𝑡
𝑓

 is the point 

forecast of the output of wind unit w for period t and is determined by calculating the ex-

pected value of wind generation for each time period based on the scenarios generated.  

Equation (3.12) describes the linearized line flow for each transmission asset. Equation 

(3.13) represents the transmission line operational limits. Equation (3.14) enforces the 

power balance at each node.  

The second-stage constraints are intended to check the security of the first-stage deci-

sions and must be satisfied for each of the modeled scenarios. Equation (3.18) enforces 

power balance in each node for each scenario. The second-stage generator outputs are 

based on the fixed first-stage generation dispatch plus the available reserve that is procured 
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from the first-stage. The load violation terms have been added to ensure the feasibility of 

the problem for all scenarios.  

Equations (3.19)-(3.20) enforce the actual implemented reserve to be less than the 

amount scheduled in the first-stage. Note that 𝑟𝑔𝑡 is the amount of reserve procured for 

both the upward and downward directions and, hence, has a positive value. Variable 𝑟𝑔𝑠𝑡 

is the actual exercised reserve and can be both positive and negative. Equation (3.22) shows 

the residual reserve from conventional units, which is the amount of acquired reserve in 

the first-stage that has not been exercised in the recourse stage. This residual reserve can 

count toward the N-1 reliability criterion.  

Equation (3.23) states that if the implemented downward reserve happens to be greater 

than the amount scheduled in the first-stage (due to wind intermittency), it should be pe-

nalized (a penalty term is added to the objective). Note that it is also possible to have a 

violation of the upward reserve; for situations where additional wind production is not ben-

eficial, it is assumed that there will be wind spillage. Equation (3.24) ensures that the im-

plemented downward-reserve will not exceed the scheduled energy from wind. Equation 

(3.25) indicates that if the realization of wind is more than the amount used as energy and 

reserve in the second-stage, it can be considered as residual reserve and count towards the 

N-1 reserve criterion. Equation (3.26) shows the amount of potential reserve provided by 

wind unit in scenario s that has not been compensated for in the first-stage. Equation (3.27) 

conveys that the residual reserve after dealing with wind power uncertainty should suffice 

for satisfying the N-1 contingency reserve requirement. 
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The solution of this first phase determines the dispatch and reserve decisions, i.e., 𝑝𝑔𝑡, 

 𝑟𝑔𝑡, 𝑝𝑤𝑡, 𝑟𝑤𝑡. The optimal values of these variables are then fed as inputs to the risk anal-

ysis phase. 

3.3.2. Risk Analysis Phase 

The risk analysis phase is a verification of the first-stage decisions. In this phase, a 

deterministic model is used to test the first phase decision against every possible scenario 

in the scenario tree. Given the first phase decisions for energy and reserve schedule, the 

second phase tries to minimize the realized costs associated with each possible scenario, 

including the cost of exercised reserve, the penalty cost associated with the wind farm not 

being able to abide by its scheduled output, the cost of the residual reserve from the wind, 

and the load shedding cost. The model is formulated as follows: 

Min ∑ (𝑡 ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑠𝑡)𝑔 + ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑤
𝑟𝑐∆𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑝 + 𝐶𝑤

𝑟𝑒)𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

+𝑤

 ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑠𝑡

+ + 𝑙𝑠𝑛𝑠𝑡
− )𝑛 ) (3.29) 

Subject to: constraints (3.16)-(3.28). 

In this phase, 𝑝𝑔𝑡,  𝑟𝑔𝑡, 𝑝𝑤𝑡, 𝑟𝑤𝑡 are fixed parameters determined in the previous phase. 

The risk analysis model is run for a larger number of scenarios to test the performance of 

the model from the first phase. The cost in this second phase is a measure of the risk im-

posed to the system operation by the decisions made in the first phase. If the decisions of 

the first phase are robust against the deterministic runs in the second phase, less cost would 

be incurred in this second phase. 
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3.3.3. Wind Scheduling Policy Determination 

As mentioned in the previous section, parameter α is introduced into the dispatch struc-

ture to allow for determining the appropriate policy for scheduling energy and reserve from 

wind. Beginning with a small value for α, the optimization problem described in section 

3.3.1 is solved. The obtained solution gives the optimum schedule as well as the operational 

cost for that specific value of α. The resulting energy and reserve schedule is then used as 

the input for the risk analysis problem described in section 3.3.2 to come up with the risk 

cost associated with that scheduling policy.  

This procedure is repeated for various α values and the optimum operational and risk 

cost associated to each policy is recorded. The policy that has the minimum sum of the 

scheduling cost and the risk cost is expected to be the least-cost policy for scheduling en-

ergy and reserve from wind. 

Note that the procedure to determine the flexible wind reserve margin policy factor 

involves running stochastic optimal power flows, which is computationally intensive. In 

this study, it is assumed that the policy determination procedure is performed offline and 

the resulting policy factors for various wind patterns are stored. In the hour-ahead opera-

tion, the operator would observe the realized wind generation and would then look for 

similar patterns in the offline procedure data to pick a strategy for scheduling wind based 

on the results of the offline study. 

In the following simulations, it is assumed that the offline procedure is performed us-

ing the Markov chain model derived for the wind power generation based on data from the 

previous year, assuming that the current year wind generation is going to follow the same 

pattern as that of the last year. 
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3.4. Numerical Results   

3.4.1. Test System and Simulation Setup 

The proposed structure has been applied to the IEEE Reliability Test System (RTS)-

96 [55]. It is assumed that each generator reserve bid is 15% of its energy bid. The test 

system is modified by integrating a 500 MW wind farm, at bus 4. The wind generation data 

of a wind farm for the year 2010 [26] is used after proper scaling to suit the chosen wind 

farm capacity. The average wind penetration (energy produced by wind generation / load 

capacity) is 7%.  

Before running the hour-ahead dispatch, a deterministic day-ahead unit commitment 

(UC) is performed using the day ahead persistent point forecast to determine the commit-

ment schedule for the 24-hour horizon. The restrictions, such as the minimum up and down 

time limits, are enforced in this stage. While it is assumed that wind is not allowed to pro-

vide reserve within the day-ahead UC model, the proposed model is amenable to such a 

day-ahead UC solution. The resulting on/off status of the generators is fed into the modeled 

hour-ahead energy and reserve scheduling program. 

The optimality gap for the unit commitment problem has been set to 0.01. The original 

problem has 7128 binary and 9360 continuous variables, with 42278 constraints. This is 

decreased to 7008 binary and 9184 continuous variables with 26086 constraints in the re-

duced MIP problem. The resulting on/off status of the generators is fed into the modeled 

hour-ahead energy and reserve scheduling program. 

 The hour-ahead model includes 10-minute intervals across a 1-hour horizon. For the 

present simulation, the finite-state Markov model of the spatio-temporal analysis for the 9 

AM-12 AM epoch is used since the output of the wind farm exhibits a high variability in 
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this epoch [26]. In this section, the hour-ahead scheduling has been performed for four 

typical days in different seasons. The wind scenarios are generated in a scenario tree format 

for the next six time intervals, i.e., a 6-stage scenario tree is constructed. As explained in 

section 3.2.2, in each stage a set of branches are added to the tree to represent the possible 

transitions to the next interval based on the 1-step Markov chain transition matrix. Due to 

the strong time-correlation that the wind data exhibit, the number of probable paths of this 

tree stays within a reasonable range (about 3000 scenarios for a 100-state Markov model, 

instead of 1006). For the first phase, i.e., the stochastic programming phase, the number of 

scenarios is further reduced using the clustering algorithm described in section 3.2.3 and a 

total of 50 scenarios are considered. The standard deviation factor for (3.8) is set to 1 (β=1). 

The problem is a linear program; existing commercial grade linear programming solvers 

can efficiently handle this security constrained economic dispatch (SCED) problem today 

for large-scale systems.  

In the second phase, the risk analysis model is run for all the possible scenarios. The 

optimal policy is determined based on the results obtained from these two phases. 

All simulations are performed using the Gurobi solver in AMPL environment on an 

Intel (R) Core (TM) i7-3770 CPU @3.4 GHz computer with 16 GB of memory. The solu-

tion time is of the order of a few seconds for each scheduling run in the first phase and less 

than 0.1 second for each risk analysis run in the second phase. Furthermore, the resulting 

real-time SCED model is still a deterministic program, which is the same as what is used 

today in actual real-time market structure. 
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3.4.2. Results and Discussion 

Starting from an initial wind policy, the first and second phase optimizations are solved 

for various values of α as described in section 3.3. These simulations started from a no 

wind policy (𝛼 = 0), but the initial policy can be set to a higher value, e.g., the minimum 

predicted level in the scenario tree to speed up the process. The simulation results for the 

9 AM-10 AM epoch of August 1st are plotted in Fig. 3.4. As Fig. 3.4 shows, the scheduling 

cost decreases monotonically as the expected utilizable generation from wind is increased. 

The reason is that more energy is scheduled from the cheap wind generators. The risk cost, 

however, increases with 𝛼 since, by scheduling more wind, there will be a higher proba-

bility of not being able to supply the load. In other words, there are more instances that the 

actual wind is less than what is counted on in the first-stage. The figure suggests that, for 

the simulated hour, the total cost of the two stages reaches its minimum around 𝛼=0.8, i.e., 

when the total scheduled energy and reserve is 0.8 times the mean predicted value. Figures 

3.5, 3.6 and 3.7 show the scheduling cost versus the risk cost for the same time interval on 

three other days in other seasons. The optimal policy factor 𝛼 is different for different 

months, ranging from 0.7 to 1.1, but the trends are similar in all of the figures. Note that in 

this procedure, the simulations are performed for a discrete set of values for α and thus, the 

lowest total cost found in this way is not the exact minimum cost for the continuous range 

of α. 
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Fig. 3.4. Scheduling cost and risk cost as a function of the flexible wind reserve margin 

policy factor (August). 

 
Fig. 3.5. Scheduling cost and risk cost as a function of the flexible wind reserve margin 

policy factor (October). 
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Fig. 3.6. Scheduling cost and risk cost as a function of the flexible wind reserve margin 

policy factor (February). 

 
Fig. 3.7. Scheduling cost and risk cost as a function of the flexible wind reserve margin 

policy factor (April). 

 

Fig. 3.8 presents the scheduled online generation and reserve from wind unit for the 

six future 10-minute intervals, with respect to the predicted value. Note that the energy 
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scheduled from the wind is below the forecasted mean but the total energy and reserve 

scheduled from the wind can go above the forecasted mean to provide an opportunity of 

using extra wind for balancing tasks. Also, note that as explained earlier, a scenario tree 

structure has been used for deriving the future possible scenarios. The number of possible 

outcomes increases as we move forward in the scenario tree. Hence, the standard deviation 

of the forecast error increases with the prediction horizon. As a result, the operator is less 

confident about the outcome of the wind farm and commits less energy and instead more 

reserve from wind generation in later time intervals as suggested by Fig. 3.8.  

 

Fig. 3.8. Scheduled online power generation and reserve from wind vs. the forecasted 

level. 

 

As described in section 3.3.3, the stochastic procedure to determine the wind policy is 

performed offline. To evaluate the actual performance of the selected policy, the obtained 

policy needs to be tested against real-time data. In this study, the data for a specific hour 

of one day have been used to come up with the optimum policy factor. For this particular 

example, it is assumed that the determined policy based on this offline analysis is then used 
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for the same hour in the following day. Fig. 3.9 shows the simulation results for the first 

week in October. The results are compared to a benchmark policy for the assumed set of 

scenarios; this benchmark policy would be obtained if the operator had the ability to run 

this offline approach in real-time. As Fig. 3.9 suggests, using the proposed forecast based 

policy can decrease the operational costs compared to the case where no flexible wind 

reserve margin policy factor is applied. The forecast based policy also performs well rela-

tive to the benchmark, without imposing the same real-time computational burden to the 

system. 

Fig. 3.10 illustrates the amount of energy and reserve under different wind penetration 

schemes. Compared with the case of 10% penetration level, more energy and reserve is 

scheduled from wind farms for higher penetration levels. In addition, the amount of energy 

scheduled from conventional units is less when wind penetration is increased. The results 

suggest that the proposed model is beneficial for dealing with the large integration of wind, 

which is assumed to introduce more uncertainty to the operation of the system. 

It is worth noting that the optimal choice for the flexible wind reserve margin policy 

factor depends on the wind generation forecast, as well as the operating conditions of the 

power system. Therefore, the policy factor is going to be different for different wind gen-

eration levels, load levels, and the system operation conditions. Various load parameters 

(e.g., hourly data, weekday and weekend data) as well as other system operational param-

eters (e.g., transmission congestion patterns) can be investigated to assort the policy factors 

based on wind generation levels and system operational conditions. These issues are further 

discussed in the next chapter. 
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The proposed flexible dispatch model seeks a balance between the operational costs 

and risk by allowing for flexible scheduling from wind power producers. Underestimating 

wind power allows the wind producer to ramp up when extra wind power production is 

available. Control mechanisms such as controlling the blade pitch would allow for adjust-

ing the rotation speed and the generated power. Another simple way is to allow the wind 

production from the previously locked turbines. To elaborate, out of the entire wind farm 

turbines, a subset are producing power whereas the rest are locked and not producing even 

though they could. They can be unlocked and allowed to produce.  

 

Fig. 3.9. Performance of the proposed policy determination vs. no policy and benchmark 

policy for a sample week in October. 
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(a)       (b) 

 
Fig. 3.10. (a) Scheduled energy vs. penetration level. (b) Scheduled reserve vs. penetra-

tion level. 

In the proposed model, if the wind is underestimated and there is the ability to generate 

more and the system needs it, other turbines can be turned on as required by the system to 

provide reserve. If the system does not need the extra wind generation, wind curtailment is 

allowed, which would be performed by shutting down the extra wind turbines. 

It is apparent that the optimal choice for the wind policy depends on the cost of cur-

tailing load. In this study, the demand is considered perfectly inelastic and a fixed value of 

lost load (VOLL) has been applied to penalize the load shedding. However, if the demand 

is considered to be elastic, i.e., if demand response is taken into account, the risk costs can 

be reduced. Considering demand response can allow for larger wind reserve margin policy 

factors by introducing another degree of freedom in the proposed flexible dispatch. 

3.5. Conclusions 

Integration of large-scale wind generation in the power system increases the uncertainty 

that the operator has to deal with due to the variability of the wind energy. Today, renew-

ables are not contributing sufficiently towards flexibility relative to the uncertainty that 

they are introducing. The small share of the renewable generators, allows the operators to 
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accommodate them in spite of their uncertainty, and extract flexibility from other resources 

to compensate for the corresponding uncertainty. However, such practices will no longer 

be feasible in future with higher penetration of renewable resources. Thus, it is expected 

that the renewables will be required to take part in providing flexibility and participate in 

the power system balancing tasks.  

The predicted wind generation using forecasting methods may not be the amount that 

is reliable for the operation of the system. Utilizing the concept of flexible wind reserve 

margin allows the operator to allocate a discounted amount of wind for energy, leaving a 

reliability margin to hedge against uncertainty. The extra production of the wind farm can 

then be used for balancing purposes. In this dissertation, a joint hour-ahead energy and 

reserve scheduling framework is proposed. A finite-state Markov chain 10-minute-ahead 

wind power forecast model, based on spatio-temporal analysis, has been utilized to calcu-

late the conditional probability distribution of the wind farm generation for each step. The 

presented framework is used to find the appropriate level for allocating wind based on the 

predicted output. Numerical studies, via the IEEE RTS-96 test system, demonstrate the 

significant benefits obtained by incorporating the flexible wind reserve margin using a 

Markov-chain-based forecast. The actual and forecasted wind generation data are used to 

analyze the effectiveness of the presented model. The results communicate that scheduling 

the flexible wind reserve margin will allow the operator to increase the reliability margin 

of the system while reducing the total cost. Discounting the scheduled generation from 

wind would improve the reliability through handling the uncertainty at an early stage. It 

also addresses the existing cost trade-off between scheduling generation from wind and the 

risk associated with wind farm uncertainty and improves the overall cost of supplying the 
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demand. The proposed structure can be effectively used to deal with the forecast errors and 

achieve a more secure system operation.  
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OFFLINE OPTIMIZATION OF RESERVE POLICY FACTORS FOR SCHEDULING 

WIND ENERGY AND RESERVE  

4.1. Introduction 

The rapid growth of wind power as a low-cost emission-free generation resource has 

unveiled great benefits for the power system. Wind generation has, however, created new 

challenges for power system operations due to its variability and uncertainty. Wind gener-

ation is also reported to be negatively correlated with load in specific regions [56]. 

Flexibility requirements in a power system depend on the grid infrastructure, the ex-

isting generation mixture, and operating procedures. System planners usually use historical 

data of renewable generation and conventional units forced outage rates (FOR) to deter-

mine the effective load carrying capability (ELCC) of renewable generators. This process 

translates into assigning proper capacity credit to renewable generators in resource ade-

quacy studies [57]. When studying the operational aspects, flexibility is usually described 

within the context of operating reserves, entailing the system to be able to balance out the 

deviations of the realized renewable generator output from its forecasted production. Au-

thors of [58], for instance, characterized flexibility in terms of power capacity (MW), ramp 

rate (MW/min), and ramp duration (min). Reference [37] explored the level of different 

types of operating reserve that is induced by wind integration, providing a list of methods 

used in different power systems and key results from both operating practice and integra-

tion analysis. Prior study proposed a new approach based on robust optimization to deter-

mine security criteria in presence of renewable generation [59]. In [38], an overview of the 

current practices for estimating the optimal amount of operating reserves for systems with 
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high wind penetration was presented. These methods primarily use the statistical infor-

mation to come up with rough deterministic rules for the quantity of reserve that needs to 

be acquired. On the other hand, a large number of studies focus on stochastic features of 

the wind generation. Such studies usually characterize the variability and try to handle it 

within a given reliability criteria. Previous studies [60]-[61] try to describe the variability 

by fitting the data to known probability density functions, using parametric distribution of 

such probability functions. A probability distribution would then enable dispatch of reserve 

to meet an acceptable risk level [62]. The non-parametric approach, on the other hand, 

makes no assumption about the empirical distribution. Non-parametric statistical represen-

tation estimates flexibility requirements more accurately as compared with standard prob-

ability distributions [68]. In this regard, stochastic programming has been increasingly uti-

lized in wind integration studies in order to deal with the uncertainty. Authors of [69], for 

instance, proposed a two-stage stochastic framework for committing reserves in systems 

with large share of wind generation. 

Wind generation uncertainty encourages system operators to apply stochastic ap-

proaches. Recent research works have proposed stochastic and robust scheduling models 

that consider the effect of uncertainty [63]-[67]. Such models are not scalable enough for 

large systems. Stochastic programming methods can be too time-consuming to obtain an 

efficient solution in real-time operations, which would make them impractical. For this 

reason, inefficient, but fast, deterministic approaches are preferred over efficient, but slow, 

stochastic ones. The challenge to implement stochastic programming is also due to the 

computational burden that virtual bidding is adding to market security constrained unit 
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commitment (SCUC) and security constrained economic dispatch (SCED) models by in-

creasing the amount of active transmission constraints. Market pricing is also another bar-

rier against the adoption of stochastic programming.  

In real-world operational practices, the operating reserve is usually determined based 

on an ad-hoc deterministic rule. In existing market models, deterministic reserve proxy 

constraints are applied in SCUC and SCED. The basic N-1 criterion, for example, states 

that the scheduled reserve quantity should exceed the single largest contingency. Other 

deterministic rules describe the required reserve as a function of both load level and wind 

generation level. The 3+5 rule suggests that the reserve should not be less than 3% of pre-

dicted load plus 5% of predicted wind generation [70]. As another example, the California 

Independent System Operator (CAISO) describes its operating reserve requirement as: 5% 

demand met by hydro + 7% demand met by other sources + 100% interruptible imports or 

single largest contingency [71]. 

It is worth noting that these rules are operational-state independent except for acquiring 

reserves based on some fixed percentage of wind, hydro, or load level. This motivates de-

veloping improved deterministic policies to better exploit the flexibility of power systems 

in presence of operating condition uncertainty. Offline stochastic simulations can be used 

to generate such deterministic policies. Offline approaches eliminate real-time computa-

tional issues of stochastic programming.  

This chapter aims to assess the benefit of such hybrid methods in dealing with uncer-

tain operating conditions. In the previous chapter a framework was presented that enhanced 

the flexibility of the system by allowing the wind generators to leave a flexible reserve 



45 

 

margin [72]. The proper level of wind reserve margin can be determined using an optimi-

zation framework that tries to strike a balance between the operating costs and the risk 

associated with the mismanagement of wind generation.  

The focus of the present chapter is on developing a structure that uses offline analysis 

to develop wind reserve margin policies, which can be employed in real-time operations. 

Such offline analysis allows for modeling a broader range of uncertainty, making it appli-

cable when there are multiple sources of uncertainty, e.g., multiple wind farms.  

With the advent of computing and data storage capabilities, utilities are going to be 

capable of handling extremely large data sets. These data sets, often called big data, are 

used to improve decision-making. The development of data mining techniques provides a 

promising solution to handle the mentioned challenge regarding running real-time stochas-

tic programs. 

Data mining approaches were applied in various domains of power system studies in-

cluding dynamic security assessment [73]-[76], load forecasting [77]-[78] and wind gen-

eration prediction [79]-[82]. Learning schemes were proposed to leverage the power of 

data mining tools. In such schemes a knowledge base is, first, prepared through compre-

hensive offline studies, in which a number of forecasted operating states are used to create 

a set of training cases. Then, the knowledge base is used to create classification models 

that characterize the decision rules to determine policies. The decision rules are, finally, 

used to map the real-time measurements to the classifications of the system conditions for 

making operation decisions.  

In this chapter, an optimization model serves as a hypothetical, ideal reference case to 

determine the dispatch and reserve policies. Given the large number of possible operating 
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conditions, in order to be able to use this approach, one needs to classify the operating 

conditions and find the optimal policy for each category. The wind flexible reserve margin 

is assumed to be a function of the generation and load conditions. The system operator can 

then use the near real-time measurements from the wind farm to choose a proper policy 

based on the classified operating conditions.  

In this study, a procedure has been proposed for using stochastic methods as well as 

the wind forecasting models to come up with proper policies for deploying wind generation 

in power system. The objective is to investigate the possibility of utilizing offline mecha-

nisms in order to come up with deterministic policies that can improve the reserve procur-

ing procedure.  

The main contributions of this chapter are summarized as follows: 

1) A scalable real-time procedure is proposed to replace the scenario-based stochastic 

methods that quickly become intractable. The merits of the proposed method are twofold. 

First, the uncertainty is addressed by leveraging the scenario-based stochastic method in 

offline analysis. Second, the real-time procedure stays easy to implement by deploying 

deterministic policies resulted from offline studies. 

2) A flexible reserve margin-based algorithm, based on the approach used in chapter 

3, has been applied to generate offline policies for discounting wind generation and sched-

uling energy and reserve in presence of wind.  

3) A testing method is derived to assess the performance of the policies obtained 

through the proposed training procedure for scheduling wind reserve margin.  

4) The performance of the proposed policy training algorithm is compared with its 

counterparts without applying the trained policies. The results show that the training based 
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on the risk-aware scheduling can reduce the overall cost. Therefore, it is shown that the 

proposed structure allows for capturing the benefits of a stochastic scheduling without hav-

ing to deal with a large set of scenarios in real-time. 

The rest of the chapter is organized as follows. Section 4.2 explains the offline proce-

dure for training policy factors, which replaces the direct modeling of scenarios from the 

stochastic formulation. Section 4.3 describes the outlines of the joint energy and reserve 

scheduling method based on flexible wind reserve margin. This method is performed to 

develop the policy for each member of the training base. Section 4.4 presents the algo-

rithms applied to test the proposed method used for drawing policy factors and compares 

it to other existing methods. Section 4.5 reports numerical results. Finally, section 4.6 con-

cludes and summarizes the potential for future work.  

4.2. Training the Policy Factors (Offline Analysis)  

As described in chapter 3, a flexible wind reserve margin policy is used, where the 

amount of the wind generation that the operator can utilize is expressed as a fraction of the 

forecasted wind generation. This fraction is referred to as the wind reserve margin policy 

factor throughout this dissertation. 

The algorithm proposed in the previous chapter for developing such policy factors, 

solves a scenario-based stochastic dispatch and reserve scheduling problem based on the 

short-term wind farm generation forecast. The short-term 10-minute wind generation fore-

cast based on the finite-state Markov chain model is used to develop a scenario tree for the 

wind generation in the next hour, i.e., for the next six time intervals of 10 minutes. 

The resulted policy should tell the operator the level of wind farm generation that can 

be scheduled. It is assumed that the operator intends to perform the scheduling procedure 
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for the next hour based on a short-term wind forecast. The look-ahead dispatch allows for 

better planning of the resources, considering the ramp up and ramp down capabilities of 

the conventional generators. One challenge in performing this look-ahead dispatch is that 

the number of scenarios increases with the increase in the length of interval. Furthermore, 

if the system includes multiple wind farms, the total number of scenarios will increase 

rapidly. This means that running a stochastic optimization program would take a significant 

time and cannot be performed in real-time.  

As mentioned in section 4.1, one way to overcome this challenge is to resort to offline 

simulations for training the dispatch model. The results can be classified based on the initial 

conditions. In real time, the operator can use the near real-time measurements to map the 

current conditions of the system to the classified set and select the proper policy based on 

the results of the offline procedures. Fig. 4.1 presents an overview of the offline and real-

time procedures. 

 

Fig. 4.1. The offline training and the real-time implementation procedures. 

Note that the Markov chain wind forecast models that are used for this study are de-

signed offline and their parameters, although different for different seasons and hours, are 
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for various initial conditions in an offline manner, based on the constant parameters of the 

forecast model.  

The forecast model outlines the spatial and temporal dynamics of the wind farm ag-

gregate power output using data-driven analysis. Due to the non-stationary distributions of 

wind farm generation, the models (Markov chains) used to derive distributional forecasts, 

can have quite different parameters for different months and different epochs. 

Therefore, forecast models are generated separately for each month and each epoch. 

Furthermore, when estimating the parameters of Markov chains, relevant historical data, 

i.e., the historical data from the same month and the same epoch, can be used. It is worth 

noting that the forecast Markov models can be updated, periodically, based on the new 

data. 

Another operating condition that affects the reserve margin policy is the load condi-

tion. To take into account the diversity of load profiles and weather conditions, the calcu-

lations must be repeated for as many days as required to represent the modeled 

month/epoch. In the present study, the analysis has been performed for two load types 

(weekday and weekend).   

Fig. 4.2 shows the training procedure for various time epochs and months; for each 

Markov model, 20 initial wind states have been trained and two different load levels have 

been considered. For each condition set, {month, epoch, load, wind state}, the policy factor 

is obtained using the two-phase method proposed in chapter 3. The outline of this two-

phase method is briefly reviewed in the following section.  
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Fig. 4.2. Offline prediction-based policy training procedure. 

In real-time, the actual wind power realization is compared to the trained initial wind 
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determined. The policy obtained for that nearest wind level and the nearest load level is 
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Min ∑ (𝐶𝑔
𝑒𝑝𝑔𝑡 + 𝐶𝑔

𝑟𝑐𝑟𝑔𝑡) + ∑ (𝐶𝑤
𝑒 𝑝𝑤𝑡 + 𝐶𝑤

𝑟𝑐𝑟𝑤𝑡)𝑤,𝑡𝑔,𝑡 + ∑ 𝜋𝑠{𝑠,𝑡 ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑠𝑡

+ +𝑛

𝑙𝑠𝑛𝑠𝑡
− ) + ∑ (𝐶𝑝 + 𝐶𝑤

𝑟𝑒)𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝑤 +   ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑠𝑡)𝑔 +   ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑤
𝑟𝑐∆𝑤𝑠𝑡)𝑤 }

 (4.1) 

Subject to: 

Base case constraints: 

𝑃𝑔
𝑚𝑖𝑛�̅�𝑔𝑡 ≤ 𝑝𝑔𝑡, ∀𝑔, 𝑡 (4.2) 

𝑝𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥�̅�𝑔𝑡, ∀𝑔, 𝑡 (4.3) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10�̅�𝑔𝑡, ∀𝑔, 𝑡 (4.4) 

∑ 𝑟𝑞𝑡𝑔∈𝐺 ≥ 𝑝𝑔𝑡 + 𝑟𝑔𝑡 + ∑ 𝜉𝑤𝑡𝑤 , ∀𝑔, 𝑡 (4.5) 

𝜉𝑤𝑡 ≥ 𝑝𝑤𝑡 − (𝑃𝑤𝑡
𝑓

− 𝛽𝜎𝑤𝑡), ∀𝑤, 𝑡 (4.6) 

𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
10, ∀𝑔, 𝑡, �̅�𝑔𝑡 = 1, �̅�𝑔,𝑡−1 = 1 (4.7) 

𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
10, ∀𝑔, 𝑡, �̅�𝑔,𝑡−1 = 1, �̅�𝑔𝑡 = 1 (4.8) 

𝑝𝑤𝑡 + 𝑟𝑤𝑡 ≤ 𝛼𝑃𝑤𝑡
𝑓

, ∀𝑤, 𝑡 (4.9) 

𝑝𝑘𝑡 − 𝐵𝑘(𝜃𝑛𝑡 − 𝜃𝑚𝑡) = 0, ∀𝑘, 𝑡 (4.10) 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑝𝑘𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥 , ∀𝑘, 𝑡 (4.11) 

∑ 𝑝𝑔𝑡𝑔∈𝑔(𝑛) + ∑ 𝑝𝑘𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑝𝑘𝑡𝑘∈𝛿−(𝑛) + ∑ 𝑝𝑤𝑡𝑤∈𝑤(𝑛) = 𝑑𝑛𝑡, ∀𝑛, 𝑡 (4.12) 

𝑝𝑤𝑡, 𝑟𝑤𝑡 ≥ 0, ∀𝑤, 𝑡 (4.13) 

Second-stage constraints: 

𝑝𝑘𝑠𝑡 − 𝐵𝑘(𝜃𝑛𝑠𝑡 − 𝜃𝑚𝑠𝑡) = 0, ∀𝑘, 𝑡 (4.14) 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑝𝑘𝑠𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥, ∀𝑘, 𝑡 (4.15) 

∑ (𝑝𝑔𝑡 + 𝑟𝑔𝑠𝑡)𝑔∈𝑔(𝑛) + ∑ 𝑝𝑘𝑠𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑝𝑘𝑠𝑡𝑘∈𝛿−(𝑛) + ∑ (𝑝𝑤𝑡 + 𝑟𝑤𝑠𝑡𝑤∈𝑤(𝑛) ) +

𝑙𝑠𝑛𝑠𝑡
+ − 𝑙𝑠𝑛𝑠𝑡

− = 𝑑𝑛𝑡, ∀𝑛, 𝑠, 𝑡 (4.16) 
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𝑟𝑔𝑠𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔, 𝑠, 𝑡 (4.17) 

−𝑟𝑔𝑠𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔, 𝑠, 𝑡 (4.18) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔𝑡 + 𝑟𝑔𝑠𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥 , ∀𝑔, 𝑠, 𝑡 (4.19) 

𝑅𝑅𝑔𝑠𝑡 = 𝑟𝑔𝑡 − 𝑟𝑔𝑠𝑡, ∀𝑔, 𝑠, 𝑡 (4.20) 

−𝑟𝑤𝑠𝑡 ≤ 𝑟𝑤𝑡 + 𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

, ∀𝑔, 𝑠, 𝑡 (4.21) 

0 ≤ 𝑝𝑤𝑡 + 𝑟𝑤𝑠𝑡 , ∀𝑤, 𝑠, 𝑡 (4.22) 

𝑝𝑤𝑡 + 𝑟𝑤𝑠𝑡 + 𝑟𝑟𝑤𝑠𝑡 ≤ 𝑊𝑤𝑠𝑡  , ∀𝑤, 𝑠, 𝑡 (4.23) 

∆𝑤𝑠𝑡≥ 𝑟𝑤𝑠𝑡 + 𝑟𝑟𝑤𝑠𝑡 − 𝑟𝑤𝑡, ∀𝑤, 𝑠, 𝑡 (4.24) 

∑ 𝑟𝑟𝑔𝑠𝑡𝑔∈𝑔(𝑛) + ∑ 𝑟𝑟𝑤𝑠𝑡𝑤∈𝑤(𝑛) ≥ 𝑝𝑔𝑡 + 𝑟𝑔𝑡, ∀𝑔, 𝑤, 𝑠, 𝑡  (4.25) 

𝑟𝑟𝑤𝑠𝑡, ∆𝑤𝑠𝑡, 𝑙𝑠𝑛𝑠𝑡
+ , 𝑙𝑠𝑛𝑠𝑡

− , 𝑝𝑤𝑡𝑠
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

≥ 0, ∀𝑤, 𝑛, 𝑠, 𝑡. (4.26) 

Note that the objective function allows bidding for reserve; some markets do not allow 

participants to submit bids for reserve in real-time markets. The chosen model allows for 

bidding of reserve to better reflect potential lost opportunity costs by generators but the 

model can be easily modified to remove such bidding if desired. Such minor changes do 

not affect the primary findings and conclusions. 

The solution of this first phase determines the dispatch and reserve decisions, 𝑝𝑔𝑡, 𝑟𝑔𝑡, 

𝑝𝑤𝑡, and 𝑟𝑤𝑡. The optimal values of these variables are then fed as inputs to the risk analysis 

problem in the second phase. In this phase, a deterministic model is used to test the first 

phase decisions against every possible scenario. This phase aims to model the uncertainty 

that has not been modeled in the first phase in the reduced set of scenarios. 

Please note that the result of the first phase is not the true optimal value (extensive 

scenario-based stochastic model). This requires us to ensure the stability of the scenario-
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based stochastic program, which is solved using the reduced set of scenarios. The stability 

of a stochastic program can be stated in form of in-sample and out-of-sample requirements 

[83]. Here, the results of the stochastic programming on the reduced set of scenarios is 

tested against all the scenarios to ensure out-of-sample stability. Given the first phase de-

cisions for energy and reserve schedule, the second phase tries to minimize the realized 

costs associated with each possible scenario: 

Min ∑ (𝑡 ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑠𝑡)𝑔 + ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑤
𝑟𝑐∆𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑝 + 𝐶𝑤

𝑟𝑒)𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

+𝑤

 ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑠𝑡

+ + 𝑙𝑠𝑛𝑠𝑡
− )𝑛 ) (4.27) 

Subject to: constraints (4.14)-(4.26). 

To find the best policy, the two-phase procedure is performed repetitively for various 

factors. Initially, a certain fraction of the predicted wind generation is assumed to be uti-

lizable. Beginning with this small value forα, a stochastic program is solved using the re-

duced set of scenarios in the first phase. The obtained solution gives the optimum schedule 

as well as the operational cost for that specific value ofα. In the second phase, a risk anal-

ysis model is run to come up with the average risk cost associated with that scheduling 

policy.  

The overall problem can be described in the following simplified form: 

Min
𝛼

 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡(𝛼) + ∑ 𝑟𝑖𝑠𝑘 𝑐𝑜𝑠𝑡𝑠(𝑝𝑔𝑡
∗ , 𝑟𝑔𝑡

∗ , 𝑝𝑤𝑡
∗ , 𝑟𝑤𝑡

∗ )𝑠   (4.28) 

Subject to: 

(𝑝𝑔𝑡
∗ , 𝑟𝑔𝑡

∗ , 𝑝𝑤𝑡
∗ , 𝑟𝑤𝑡

∗ ) ∈ 𝑎𝑟𝑔 𝑚𝑖𝑛
(𝑝𝑔𝑡,𝑟𝑔𝑡,𝑝𝑤𝑡,𝑟𝑤𝑡)

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡(𝛼)   (4.29) 

In order to obtain an approximate solution to this problem, the value of α is varied. 

The described procedure is repeated for various α values and the optimum operational and 
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risk cost associated to each policy is recorded. The policy that has the minimum sum of the 

scheduling cost and the risk cost is expected to be the least-cost policy for scheduling en-

ergy and reserve from wind. 

4.4. Real-time Implementation of Policies 

In this section, the real-time implementation and the method applied for testing the 

behavior of the policies derived for wind reserve margin is described. This section de-

scribes the real-time implementation of proposed policy, i.e. the prediction-based policy, 

as well as two other ad-hoc policies. The real-time structure of the proposed prediction-

based policy is explained in section 4.4.1. The next policy, which will be described in sec-

tion 4.4.2, makes use of the forecasted distribution to schedule a certain percentile of the 

forecasted generation. The third policy, which is described in section 4.4.3, is a fixed policy 

that utilizes a fixed fraction of the forecasted mean. Section 4.4.4 introduces the base case 

where no policy is used. Section 4.4.5 develops a structure for analyzing the performance 

of the described policies. Specifically, a risk analysis structure is proposed to test the real-

time implementations.  

 

4.4.1. Prediction-based Policy 

In order to evaluate the results of the proposed training method, one should examine 

the policy derived by the offline procedure against a large set of scenarios. The testing 

procedure should be first, compatible with the way the policy has been determined and 

second, be performed for the same set of uncertainty as assumed at the first-stage. Note 

that the online implementation tool does not perform the risk analysis phase, i.e., it deploys 



55 

 

the generated policy into the first phase problem to determine the energy and reserve sched-

ule (𝑝𝑔𝑡, 𝑟𝑔𝑡, 𝑝𝑤𝑡, 𝑟𝑤𝑡). The real-time procedure implemented in the current study is, thus, 

as follows: 

Assume that the policies have been obtained for a number of condition sets, {month, 

epoch, load profile, wind state}, using the stochastic optimization model. For different in-

itial wind states in any epoch, choose the policy �̅� based on the one developed for the 

nearest load and wind state. Put the policy in the optimization described below and solve 

the stochastic process for the reduced set of scenarios. Fig. 4.3 shows the flowchart for this 

procedure. 

Min ∑ (𝐶𝑔
𝑒𝑝𝑔𝑡 + 𝐶𝑔

𝑟𝑐𝑟𝑔𝑡) + ∑ (𝐶𝑤
𝑒 𝑝𝑤𝑡 + 𝐶𝑤

𝑟𝑐𝑟𝑤𝑡)𝑤,𝑡𝑔,𝑡 + ∑ 𝜋𝑠{𝑠,𝑡 ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑠𝑡

+ +𝑛

𝑙𝑠𝑛𝑠𝑡
− ) + ∑ (𝐶𝑝 + 𝐶𝑤

𝑟𝑒)𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝑤 +   ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑠𝑡)𝑔 +   ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑤
𝑟𝑐∆𝑤𝑠𝑡)𝑤 }

 (4.1) 

Subject to: constraints (4.2)-(4.8), constraints (4.10)-(4.26), 

𝑝𝑤𝑡 + 𝑟𝑤𝑡 ≤ �̅�𝑃𝑤𝑡
𝑓

, ∀𝑤, 𝑡. (4.30) 

 

In order to evaluate the performance of this policy, the results of this problem (𝑝𝑔𝑡, 

𝑟𝑔𝑡, 𝑝𝑤𝑡, 𝑟𝑤𝑡) can be sent to a risk analysis program. This risk analysis is described in 

section 4.4.4. 
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Fig. 4.3. Real-time implementation procedure of the proposed policy. 

4.4.2. Probability Distribution Percentile-based Policy 

In this approach a probabilistic metric (90% percentile of the cumulative distribution 

of predicted wind) has been used. Fig. 4.4 displays the procedure. This percentile is applied 

instead of the policy factor in the original two-stage stochastic process for a reduced set of 

scenarios to allow for comparison with the proposed approach: 

Min ∑ (𝐶𝑔
𝑒𝑝𝑔𝑡 + 𝐶𝑔

𝑟𝑐𝑟𝑔𝑡) + ∑ (𝐶𝑤
𝑒 𝑝𝑤𝑡 + 𝐶𝑤

𝑟𝑐𝑟𝑤𝑡)𝑤,𝑡𝑔,𝑡 + ∑ 𝜋𝑠{𝑠,𝑡 ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑠𝑡

+ +𝑛

𝑙𝑠𝑛𝑠𝑡
− ) + ∑ (𝐶𝑝 + 𝐶𝑤

𝑟𝑒)𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝑤 +   ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑠𝑡)𝑔 +   ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑤
𝑟𝑐∆𝑤𝑠𝑡)𝑤 }

 (4.1) 

Subject to: constraints (4.2)-(4.8), constraints (4.10)-(4.26), 

𝑝𝑤𝑡 + 𝑟𝑤𝑡 ≤ 𝑝𝑒𝑟𝑤𝑡
𝑓

, ∀𝑤, 𝑡. (4.31) 

4.4.3. Fixed Policy 

The fixed policy assumes a fixed value for policy factor , regardless of the value of 

input for wind generation. This fixed policy is put in the original two-stage problem for-

mulation as shown below: 

Min ∑ (𝐶𝑔
𝑒𝑝𝑔𝑡 + 𝐶𝑔

𝑟𝑐𝑟𝑔𝑡) + ∑ (𝐶𝑤
𝑒 𝑝𝑤𝑡 + 𝐶𝑤

𝑟𝑐𝑟𝑤𝑡)𝑤,𝑡𝑔,𝑡 + ∑ 𝜋𝑠{𝑠,𝑡 ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑠𝑡

+ +𝑛

𝑙𝑠𝑛𝑠𝑡
− ) + ∑ (𝐶𝑝 + 𝐶𝑤

𝑟𝑒)𝑝𝑤𝑠𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝑤 +   ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑠𝑡)𝑔 +   ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑠𝑡)𝑤 + ∑ (𝐶𝑤
𝑟𝑐∆𝑤𝑠𝑡)𝑤 }

 (4.1) 

Subject to: constraints (4.2)-(4.8), constraints (4.10)-(4.26), 

𝑝𝑤𝑡 + 𝑟𝑤𝑡 ≤ �̅�𝑃𝑤𝑡
𝑓

, ∀𝑤, 𝑡. (4.32) 

 

In this study, �̅� for the deterministic approach is assumed to be equal to 90%.  
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Fig. 4.4. Real-time implementation procedure of the Probability distribution-based pol-

icy. 

4.4.4. Base Case 

The base case is when no policy is employed, meaning that the operator doesn’t dis-

count the wind, or �̅� =1. 

4.4.5. Performance Analysis Structure 

A risk analysis program, similar to the one described in (4.27), can be used to evaluate 

the performance of the different policies. Fig. 4.5 shows the risk evaluation procedure used 

for testing the results of the described policies. The next section presents the numerical test 

results, performed on a test system, for the three policies described in sections 4.4.1, 4.4.2 

and 4.4.3. 

Real-time Operation 

Observe the real-time 

wind and loading 

condition

Construct wind 

scenario tree 

Perform scenario 

reduction

Solve flexible dispatch 

and reserve scheduling

Obtain scheduling 

solution

Find the 90 percentile 

of the distribution



58 

 

 

Fig. 4.5. Testing procedure based on risk evaluation. 

 

4.5. Numerical Results 

4.5.1.  The Single Wind Farm Case 

As mentioned before, the major limitation in a stochastic model is that modeling all 

the scenarios is not time efficient. If the number of scenarios is large, modeling all scenarios 

can make the problem intractable, especially, in a large system. Usually, a reduced set of 

scenarios is used instead. In this section the three different policies, which were proposed 

in section 4.4, are tested. Note that all the three approaches described have a similar struc-

ture. First, a stochastic problem is solved for a reduced set of scenarios. To evaluate the 

performance, the energy and reserve schedule is then sent to a risk analysis stage that runs 

for all possible scenarios. To create a comparison benchmark, two more test structures are 

developed. The studies have been performed in a deterministic structure and for a large set 

of scenarios, as well. The three proposed algorithms have been performed for the deter-

ministic case (1 scenario), the reduced set (5 scenarios) and a large set of scenarios (100 

scenarios). These nine algorithms are summarized in Table 4.1, where their name, their 

decision making technique and their scenario modeling approaches are shown. 
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The proposed structure has been applied to the IEEE RTS-96 test system [84]. The test 

system is modified by integrating a 1500 MW wind farm, at bus 40, which accounts for 

roughly 30% of the total system-wide generation capacity. The wind generation data of a 

wind farm for the year 2010 [26] is used after proper scaling to suit the chosen wind farm 

capacity. For the current simulation, the finite-state Markov model of the spatio-temporal 

analysis for the 9 AM-12 AM epoch is used.  

Table 4.1. Policy generation algorithms classification 

PB_D Prediction-based policy Deterministic 

PB_RS Prediction-based policy Reduced set of scenarios 

PB_LS Prediction-based policy Large set of scenarios 

DPB-D Distribution percentile-based policy Deterministic 

DPB-RS Distribution percentile-based policy Reduced set of scenarios 

DPB-LS Distribution percentile-based policy Large set of scenarios 

F-D Fixed policy Deterministic 

F-RS Fixed policy Reduced set of scenarios 

F-LS Fixed policy Large set of scenarios 

 

The load classification used in this study is based on data from IEEE RTS-96 system 

[84]. In the dataset, the daily load profiles are given for specific seasons and day types. In 

real-world case, having the real load data, the daily profiles could be clustered into classes 

to form different day types and seasons that may not actually correspond to a real season 

or day type.  

In the current study, the attention has been focused on one month to be able to model 

more initial states. All simulation results presented are for month April, henceforth. All 

scenario reductions are performed using the procedure introduced in [53], which reduces 

the scenarios to their best approximation based on the Kantorovich distance of probability 

distributions. The algorithm eliminates one scenario at a time until the desired number of 
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scenarios is achieved. For each initial wind level, the risk analysis phase has been run for 

all the possible scenarios created by the Markov chain forecast model. The results are ex-

pressed in terms of average scheduling and risk cost.  

In order to analyze the performance of the above methods, a set of base case studies 

with no policies have been run where the operator counts on the wind predicted mean (in 

other words, �̅� = 1) for three different problem structures. The first one, which is referred 

to as the benchmark case, is a deterministic version of the scheduling problem, the second 

one models a reduced set of scenarios, and the third one models a large set of scenarios. 

Note that all tested methods have the same foresight regarding wind forecast and none 

of them is shortsighted. This ensures that the difference in the presented results reflect the 

difference in the applied policy. 

Table 4.2 presents the average scheduling and total cost for each initial wind condition 

for the case with reduced set of scenarios. The results are for multiple initial levels, which 

accounts for various penetration levels up to 30% penetration level by nameplate. The 

number of scenarios that encountered load shedding in the testing stage is listed for each 

test level. The results are for a one-hour period. The cost improvement beyond the bench-

mark case is also presented.  

 

 

 

 

Table 4.2. Comparison between the fixed, distribution percentile-based and prediction-

based approaches (reduced set of scenarios) 
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Policy 

Wind 

level 

(%) 

Schedul-

ing 

cost ($/h) 

Total cost 

($/h) 

Number of 

scenarios 

with load 

shedding 

Improvement 

in total cost 

(%) 

EENS 

(MWh) 

LOLP 

F -RS 3 270325.9 273860.1 0 8.7 0 0 

F –RS 6 261300.6 263067.6 0 6.26 0 0 

F –RS 9 253163.1 258297.0 0 13.46 0 0 

F –RS 12 247146.7 253124.4 0 11.04 0 0 

F -RS 15 229262.3 235805.9 2 13.98 1.33E-08 6.29E-04 

F –RS 18 222984.5 226252.8 2 18.04 1.30E-08 5.69E-04 

F –RS 21 212396.8 220599.6 0 17.07 0 0 

F –RS 24 204860.3 214388.1 5 24.06 4.70E-08 2.49E-03 

F –RS 27 196204.7 220114.5 20 32.20 2.02E-05 1.54E-02 

DPB -RS 3 270664.7 273851.1 0 8.7 0 0 

DPB –RS 6 261438.8 265869.5 0 5.3 0 0 

DPB –RS 9 253146.6 258553.7 0 13.4 0 0 

DPB –RS 12 248045.4 255352.4 0 10.3 0 0 

DPB –RS 15 228880.6 237527.1 10 13.4 3.35E-08 2.72E-03 

DPB –RS 18 221784.0 227265.4 2 17.7 1.30E-08 5.69E-04 

DPB –RS 21 211848.1 223870.1 0 15.8 0 0 

DPB –RS 24 204950.6 216958.1 6 23.1 2.28E-07 1.63E-02 

DPB –RS 27 194758.9 232768.2 35 28.3 3.07E-05 2.58E-02 

PB-RS 3 270416.4 273866.0 0 8.70 0 0 

PB-RS 6 262086.1 262691.4 0 6.39 0 0 

PB-RS 9 254357.7 257999.9 0 13.56 0 0 

PB-RS 12 247146.7 253124.4 0 11.04 0 0 

PB-RS 15 229262.3 235805.9 2 13.98 1.33E-08 6.29E-04 

PB-RS 18 222984.5 226252.8 2 18.04 1.30E-08 5.69E-04 

PB-RS 21 212396.8 220599.6 0 17.07 0 0 

PB-RS 24 207533.9 211699.2 0 25.01 0 0 

PB-RS 27 200085.1 212229.5 14 34.63 1.11E-05 1.20E-02 

 

The results show that the prediction-based policy has a lower total cost in almost all 

the studied wind penetration levels. It also has a significantly less number of the scenarios 

where load shedding occurs.  

Table 4.3 shows the results when the same procedure is deployed, with the exception 

that the first phase stochastic optimization is performed for a large number of scenarios.  

 

Table 4.3. Comparison between the fixed, distribution percentile-based and prediction-

based approaches (large set of scenarios) 
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Policy 

Wind 

level 

(%) 

Scheduling 

cost ($/h) 

Average risk 

cost ($/h) 

Total cost 

($/h) 

Number of 

scenarios 

with load 

shedding 

Improvement 

in total cost 

(%) 

F -LS 3 268259.6 5794.6 274054.3 0 8.64 

F –LS 6 263562.4 45.3 263607.7 0 6.07 

F –LS 9 259114.8 52.1 259166.9 0 13.17 

F –LS 12 255547.2 36.3 255583.6 0 10.17 

F -LS 15 240800.2 89.6 240889.9 0 12.13 

F –LS 18 231853.5 36.5 231890.1 0 16.00 

F –LS 21 216857.9 2672.65 219530.6 0 17.48 

F –LS 24 217293.2 63.3 217356.5 0 23.01 

F –LS 27 203945.1 908.9 204854.1 0 36.90 

DPB -LS 3 268991.1 5671.7 274662.8 0 8.43 

DPB –LS 6 268469.2 5779.6 274248.8 0 2.27 

DPB –LS 9 263146.6 5407.1 268553.7 0 10.03 

DPB –LS 12 256810.8 8.7 256819.5 0 9.74 

DPB –LS 15 241307.2 32.5 241339.7 0 11.96 

DPB –LS 18 232724.2 14.1 232738.3 0 15.69 

DPB –LS 21 217301.1 2667.5 219968.6 0 17.31 

DPB –LS 24 218826 4.0 218830.0 0 22.48 

DPB –LS 27 205511.8 720.6 206232.4 0 36.48 

PB-LS 3 268130.7 5954.8 274085.5 0 8.63 

PB-LS 6 263527.1 57.4 263584.5 0 6.07 

PB-LS 9 259114.8 52.1 259166.9 0 13.17 

PB-LS 12 255547.2 36.4 255583.6 0 10.17 

PB-LS 15 240273.1 170.1 240443.2 0 12.29 

PB-LS 18 231813.6 41.4 231855 0 16.01 

PB-LS 21 216070.5 2905.9 218976.4 0 17.68 

PB-LS 24 217293.2 63.3 217356.5 0 23.01 

PB-LS 27 203099.9 980.2 204080.1 0 37.14 

 

The results show that the proposed stochastic approach performs better when more 

scenarios are modeled. As expected, the number of scenarios that lead to load shedding is 

decreased when a larger number of scenarios are modeled since modeling a larger number 

of scenarios in the first phase will leave less space for uncertainties to perturb the results. 

The simple fixed policy also performs well in comparison to the distribution percentile 

based policy. This serve as a reference that some very simple reserve rules can perform 

adequately if chosen based on the historical trends.  

Please note that this deterministic policy (here, 0.9) has not been chosen based on ex-

tensive analysis. In other words, having chosen another deterministic policy could lead to 
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better or worse results. This may be an indication that solving the problem for a simple 

uncertainty set for wind generation may ease the computation burden of stochastic analysis, 

especially, when drastic wind ramps are not modeled. The investigation of the performance 

of such uncertainty sets is left for future work. 

All simulations are performed using the Gurobi solver in AMPL environment on an 

Intel (R) Core (TM)2 Duo CPU @3.16 GHz computer with 4 GB of memory. The aver-

age solution time of the offline model including the scheduling phase and the risk analy-

sis phase for each specific alpha was about 124 seconds. The average solution times of 

the online hour-ahead model for the proposed algorithms are reported in Table 4.4. 

The SCED problem has 4404 variables and has 6378 constraints for the deterministic 

model. These numbers are increased to 15732 variables and 20562 constraints in a two-

stage stochastic program with a small set of scenarios. The two-stage stochastic program 

with a large set of scenarios had 285996 variables and 363464 constraints. 

Table 4.4. Average solution times for the tested policies 

Policy 
Average solution 

time (S) 
Policy 

Average solution 

time (S) 

F –RS 1.39 F –LS 82.30 

DPB –RS 1.46 DPB –LS 80.21 

PB-RS 1.36 PB-LS 75.31 

 

In order to show the performance of the proposed method in alleviating the need for 

modeling all scenarios, the cost savings of the PB-RS approach, with respect to the bench-

mark are presented in Table 4.5. The second column shows the maximum potential cost 
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savings by switching from a determinist structure (benchmark case) to a stochastic struc-

ture with a large set of scenarios. The last column shows what portion of the potential cost 

savings is captured by the proposed policy in a reduced scenario case.  

To elaborate, this ratio is given by 

Cost saving ratio=
𝑐𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒,𝐷−𝑐𝑃𝐵,𝑅𝑆

𝑐𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒,𝐷−𝑐𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒,𝐿𝑆
 (4.34) 

where, 𝑐𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒,𝐷 is the cost for the base case in a deterministic structure, 𝑐𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒−𝐿𝑆 is 

the cost for the base case when a large number of scenarios are modeled, and 𝑐𝑃𝐵,𝑅𝑆 is the 

cost for the prediction-based method when a reduced number of scenarios are modeled. 

The results corroborate that the prediction-based method is capable of capturing the same 

cost savings while modeling fewer scenarios.  

Table 4.5. Cost savings captured in the prediction-based method  

Wind 

level 

(%) 

Cost savings in 

PB-RS ($/h) 

Potential cost 

savings ($/h) 
Ratio 

3 26098.7 25910.6 1.01 

6 17941.5 17048.3 1.05 

9 40482.6 39313.8 1.03 

12 31409.8 28950.7 1.08 

15 38331.8 33641.6 1.14 

18 49807.0 44204.8 1.13 

21 45418.7 47046.9 0.97 

24 70601.6 64944.3 1.09 

27 112433.8 120455.2 0.93 

 

Fig. 4.6 shows the total cost for different wind levels, in comparison to the benchmark 

and the base case with a large set of scenarios, for two different cases. The first case is 

where the obtained policy, from the prediction-based method, is used in a deterministic 

structure. The second one is where the obtained policy is used in a stochastic structure with 
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a reduced number of scenarios. As can be seen, the policy obtained from the prediction-

based method performs closely to the base case modeling a large set of scenarios, both in 

a deterministic and a reduced stochastic structure. 

 

Fig. 4.6. Total cost for the proposed prediction-based method compared to the base case. 

PB: prediction-based policy, RS: reduced set of scenarios, LS: large set of scenarios. 

The general message of this graph is that the deterministic case that models only one 

scenario has a higher total cost. The cost for wind level around 27% is a bit higher than the 

neighbor penetration levels and this is true for almost all modeled methods. Note that the 

cost for different penetration levels need not follow a smooth trend since for each initial 

level of wind we are finding the closest among the trained initial values and depending on 

how far is the realized initial value from the trained initial value, the error would be differ-

ent. 
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4.5.2. Multiple Wind Farms 

An extension for the problem is the case where there are multiple wind farms in the 

system. Discounting the generation from multiple wind farms would be more challenging 

in such situations. One important aspect when considering multiple wind farms is the fact 

that a large set of scenarios should be modeled. The need for modeling larger number of 

scenarios in a multi-wind farm system can be alleviated by taking advantage of offline 

analysis.  

Nearby wind farms are exposed to similar weather variation patterns. Therefore, the 

power outputs of different wind farms in a system are both temporally and spatially corre-

lated. The correlation of the output of two wind farms is in fact a measure of the synchro-

nism in their output variations. The discounting for wind can be implemented in a way that 

takes the impact of correlation of multiple wind farms into consideration. This correlated 

structure of the data for wind farms can be exploited to develop policies that better model 

the realization of the incoming wind generation.  

In this section, the historical data from a set of wind farms has been used to capture 

the correlated structure of their generation output in coming up with reserve margin policy 

for multiple wind farms. The real wind measurements in three locations based on the Aus-

tralian windfarm dataset is used. A vector quantization technique [85] has been used for 

modeling the probability density functions using the distribution of typical vectors. The 

joint empirical distribution of the wind farms outputs has been derived based on historical 

data. The vector quantization is performed based on the K-means clustering algorithm to 

find the groupings in the dataset and identify the joint typical occurrences for multiple wind 
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farms. The results of the vector quantization are then used to model only the typical sce-

narios in the risk analysis phase of the policy generation procedure.  

In this section, the proposed policy has been performed for two more test systems, one 

with two wind farms and one with three wind farms. For the two wind farm case, the same 

test system is modified by integrating two 750 MW wind farms, at buses 22 and 40, ac-

counting for roughly 30% of the total system-wide generation capacity. For the three wind 

farm case, the system is modified by integrating three 500 MW wind farms, at buses 22 

and 40 and 68. The results are shown in Table 4.6 and Table 4.7, respectively. The results 

confirm that the proposed reserve policy outperforms traditional techniques by capturing 

the majority of the potential savings.  

Table 4.6. Comparison between the fixed and prediction-based approaches for two wind 

farms 

Policy 

Wind 

level 

(%) 

Average risk 

cost($/h) 

Total 

cost(k$/h) 

Captured percentage of 

potential cost savings 

(%) 

F –RS 6 511.2 275.2 51 

F –RS 12 361.1 269.8 43 

F –RS 15 639.6 267.4 57 

F –RS 18 436.8 264.2 69 

F –RS 21 0.8 259.7 58 

F –RS 24 0.1 259.1 50 

F –RS 27 0.0 254.2 57 

F –RS 30 0.0 249.8 0 

PB-RS 6 551.5 275.0 82 

PB-RS 12 401.1 269.6 67 

PB-RS 15 666.7 267.2 81 

PB-RS 18 585.5 264.1 74 

PB-RS 21 1.2 259.5 76 

PB-RS 24 0.0 258.4 85 

PB-RS 27 0.0 254.0 70 

PB-RS 30 0.0 249.8 0 
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Table 4.7. Comparison between the fixed and prediction-based approaches for three wind 

farms 

Policy 

Wind 

level 

(%) 

Average risk 

cost($/h) 

Total 

cost(k$/h) 

Captured percentage of 

potential cost savings 

(%) 

F –RS 6 72 257.3 40 

F –RS 12 234 248.4 20 

F –RS 15 142 240.37 80 

F –RS 18 144 225.3 0.1 

F –RS 21 182 215.7 10 

F –RS 24 175 205.7 10 

F –RS 27 214 194.4 10 

F –RS 30 142 256.5 70 

PB-RS 6 234 248.4 20 

PB-RS 12 775 237.2 90 

PB-RS 15 651 223.3 70 

PB-RS 18 412 213.6 60 

PB-RS 21 1170 201.4 50 

PB-RS 24 214 194.4 10 

PB-RS 27 72 257.3 40 

PB-RS 30 234 248.4 20 

 

4.6. Conclusions 

In this chapter, the benefits of the prediction-based policy training methods have been 

investigated. A flexible reserve margin based algorithm has been applied to train offline 

policies for discounting wind generation and scheduling energy and reserve in presence of 

wind. A scenario-based stochastic programming approach is leveraged to capture the effect 

of various possible wind scenarios based on short-term wind forecast. 

A testing method is derived to assess the performance of the policies obtained through 

the proposed training procedure for scheduling wind reserve margin. The performance of 

the proposed policy training algorithm is compared with its counterparts without applying 
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the trained policies. The results corroborate that the training based on the risk-aware sched-

uling can reduce the overall cost, while not imposing the burden of stochastic programming 

in real-time operation.  

Numerical studies, via the IEEE RTS-96 test system, demonstrate the benefits of the 

proposed structure.  
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MARKET IMPLICATIONS OF WIND RESERVE MARGIN 

5.1. Introduction 

This chapter examines the market implications of the wind reserve margin policies 

used to mitigate uncertainty from wind resources. In the previous chapter, a training struc-

ture was developed, which uses offline stochastic analysis to come up with deterministic 

rules for scheduling wind reserve margins. Reserve margins offer more flexibility for the 

system operation. Renewables can provide cheaper reserves, which have a lower quality of 

service, in comparison to reserves from conventional generators. It is worth noting that 

since renewables have uncertain outputs, reserves from such resources should be treated as 

stochastic reserves.  

As an enhancement to the existing deterministic procedures, stochastic models can be 

used offline to derive deterministic operation policies, as described in the previous chapter. 

Such an offline approach eliminates real-time computational burden and market pricing 

issues while accounting for uncertainty in the operating conditions of the system.  

This chapter investigates the market implications of deploying the deterministic re-

serve margin policies. Analyzing the impacts of implementing new policies on the outputs 

of the electricity markets is an established way of determining the benefits of such new 

market policies [86]-[89]. In this dissertation, the proposed approach is compared with a 

base case deterministic approach that does not use reserve margin policies. The marginal 

costs and ancillary services bids of generators are modeled. In addition, a market settlement 

scheme is proposed that can be used for the policy proposed. In the proposed structure, the 
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generators are compensated for the energy and reserve that they provide. The reserve pro-

viders are compensated for both the reserve capacity and the reserve activation. The reserve 

activation payments are dependent upon the performance of the reserve resource for vari-

ous realization scenarios. The following sections will discuss the formulation of these mod-

els and the results. 

5.2. Reserve Policy Factor Determination  

The off-line training methodology is used for determining the policy factor for sched-

uling energy and reserve from wind generation. The offline analysis determines the policy 

factor for a variety of operating conditions, which are described in terms of the initial wind 

levels and the initial load levels [90].  

In real-time, the actual wind power realization is compared to the trained initial wind 

levels and the nearest initial level is determined. Similarly, the nearest trained load level is 

determined. The policy obtained for that nearest wind level and the nearest load level is 

then implemented in the real-time model. 

5.3. Implementation of the SCED Using Reserve Policy Factors 

The model has been modified to enable calculating payments to different parties. In 

this model, the energy schedule remains fixed and reserve schedule is discounted by α. To 

ensure consistency with the existing market structures, the SCED implementation has been 

kept simple by solving a deterministic problem. 

The offline stochastic structure has been exploited to select a policy factor that can be 

passed into a deterministic scheduling framework. Energy schedule is fixed and the part of 

the production, which was spared for reserve, is discounted. 
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The SCED implementation is formulated as given below: 

Min ∑ (𝐶𝑔
𝑒𝑝𝑔𝑡 + 𝐶𝑔

𝑟𝑐𝑟𝑔𝑡) + ∑ (𝐶𝑤
𝑒 𝑝𝑤𝑡 + 𝛼𝐶𝑤

𝑟𝑐𝑟𝑤𝑡)𝑤,𝑡𝑔,𝑡  (5.1) 

Subject to: 

𝑃𝑔
𝑚𝑖𝑛�̅�𝑔𝑡 ≤ 𝑝𝑔𝑡, ∀𝑔, 𝑡 (5.2) 

𝑝𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥�̅�𝑔𝑡, ∀𝑔, 𝑡 (5.3) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10�̅�𝑔𝑡, ∀𝑔, 𝑡 (5.4) 

∑ 𝑟𝑞𝑡𝑞∈𝐺 + 𝛼 ∑ 𝑟𝑤𝑡𝑤∈𝑊 ≥ 𝑝𝑔𝑡 + 𝑟𝑔𝑡 + ∑ 𝜉𝑤𝑡𝑤 , ∀𝑔, 𝑡 [𝛾𝑔𝑡] (5.5) 

𝜉𝑤𝑡 ≥ 𝑝𝑤𝑡 − (𝑝𝑤𝑡
𝑓

− 𝛽𝜎𝑤𝑡), ∀𝑤, 𝑡 (5.6) 

𝑝𝑔𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑔
10, ∀𝑔, 𝑡, �̅�𝑔𝑡 = 1, �̅�𝑔,𝑡−1 = 1 (5.7) 

𝑝𝑔,𝑡−1 − 𝑝𝑔𝑡 ≤ 𝑅𝑔
10, ∀𝑔, 𝑡, �̅�𝑔,𝑡−1 = 1, �̅�𝑔𝑡 = 1 (5.8) 

𝑝𝑤𝑡 + 𝑟𝑤𝑡 ≤ 𝑝𝑤𝑡
𝑓

, ∀𝑤, 𝑡 (5.9) 

𝑝𝑘𝑡 − 𝐵𝑘(𝜃𝑛𝑡 − 𝜃𝑚𝑡) = 0, ∀𝑘, 𝑡 (5.10) 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑝𝑘𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥 , ∀𝑘, 𝑡 (5.11) 

∑ 𝑝𝑔𝑡𝑔∈𝑔(𝑛) + ∑ 𝑝𝑘𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑝𝑘𝑡𝑘∈𝛿−(𝑛) + ∑ 𝑝𝑤𝑡𝑤∈𝑤(𝑛) = 𝑑𝑛𝑡, ∀𝑛, 𝑡 [𝛿𝑛𝑡] 

 (5.12) 

𝑝𝑤𝑡, 𝑟𝑤𝑡 ≥ 0, ∀𝑤, 𝑡. (5.13) 

In the above formulation, 𝛼𝑟𝑤𝑡 is the scheduled reserve from wind. Equation (5.9) 

states that the scheduled energy plus an up-scaled version of the reserve should not exceed 
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the forecast. The descriptions of the other constraints are similar to what was described in 

chapter 3. 

5.4. Contingency Analysis 

To evaluate the efficiency of the proposed training-based policies in the market struc-

ture, a contingency analysis procedure has been performed. After the energy and reserve 

capacity are cleared in the SCED, the output schedule of the SCED structure is tested 

against a combination of different scenarios of wind and the single generator contingency 

events. The expected reserve activation payments for each resource are calculated based 

on the results of this contingency analysis stage.  

The following formulation describes the redispatch following a combined contingency 

event.  

Min∑ (𝑡 ∑ (𝐶𝑔
𝑟𝑒𝑟𝑔𝑐𝑡)𝑔 + ∑ (𝐶𝑤

𝑟𝑒𝑟𝑤𝑐𝑡)𝑤 + ∑ (𝐶𝑝 + 𝐶𝑤
𝑟𝑒)𝑝𝑤𝑐𝑡

𝑝𝑒𝑛𝑎𝑙𝑡𝑦
𝑤  

+ ∑ 𝐶𝑐
𝑛(𝑙𝑠𝑛𝑐𝑡

+ + 𝑙𝑠𝑛𝑐𝑡
− )𝑛 ) (5.14) 

Subject to: 

𝑝𝑘𝑐𝑡 − 𝐵𝑘(𝜃𝑛𝑐𝑡 − 𝜃𝑚𝑐𝑡) = 0, ∀𝑘, 𝑡 (5.15) 

−𝑃𝑘
𝑚𝑎𝑥 ≤  𝑝𝑘𝑐𝑡 ≤ 𝑃𝑘

𝑚𝑎𝑥 , ∀𝑘, 𝑡 (5.16) 

∑ (𝑝𝑔𝑡 + 𝑟𝑔𝑐𝑡)𝑔∈𝑔(𝑛) + ∑ 𝑝𝑘𝑐𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑝𝑘𝑐𝑡𝑘∈𝛿−(𝑛) + ∑ (𝑝𝑤𝑡 + 𝑟𝑤𝑐𝑡𝑤∈𝑤(𝑛) ) +

𝑙𝑠𝑛𝑐𝑡
+ − 𝑙𝑠𝑛𝑐𝑡

− = 𝑑𝑛𝑡, ∀𝑛, 𝑡 [𝜆𝑛,𝑡
𝑐 ] (5.17) 

𝑟𝑔𝑐𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔, 𝑐, 𝑡 (5.18) 

−𝑟𝑔𝑐𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔, 𝑐, 𝑡 (5.19) 
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𝑃𝑔
𝑚𝑖𝑛�̅�𝑔𝑡𝑁𝑐

𝑔
≤ 𝑝𝑔𝑡 + 𝑟𝑔𝑐𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥�̅�𝑔𝑡𝑁𝑐
𝑔

, ∀𝑔, 𝑐, 𝑡 (5.20) 

−𝑟𝑤𝑐𝑡 ≤ 𝛼𝑟𝑤𝑡 + 𝑝𝑤𝑐𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

, ∀𝑔, 𝑐, 𝑡 (5.21) 

0 ≤ 𝑝𝑤𝑡 + 𝑟𝑤𝑐𝑡 , ∀𝑤, 𝑐, 𝑡 (5.22) 

𝑃𝑤𝑡 + 𝑟𝑤𝑐𝑡 + 𝑟𝑟𝑤𝑐𝑡 ≤ 𝑊𝑤𝑐𝑡 , ∀𝑤, 𝑐, 𝑡 (5.23) 

𝑟𝑟𝑤𝑠𝑡, 𝑙𝑠𝑛𝑐𝑡
+ , 𝑙𝑠𝑛𝑐𝑡

− , 𝑃𝑤𝑐𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

≥ 0, ∀𝑤, 𝑐, 𝑡. (5.24) 

Parameter 𝑊𝑤𝑐𝑡 in Equation (5.23) represents the realized power output of the wind farm 

and parameter 𝑁𝑐
𝑔

 in Equation (5.20) is 0 if generator g is experiencing a contingency and 

1 otherwise. 

5.5. Market Settlement 

In most electricity markets energy and ancillary services are cleared together using an 

optimization model that includes both energy and reserve bids in the objective function 

[54]. The optimization procedure choses the lowest submitted bids to satisfy all physical 

and operational constraints. 

Prices are calculated based on dual variables from the market model and generators 

are compensated based on these dual variables. Specifically, locational marginal prices 

(LMPs) are used to settle energy compensations and reserve marginal prices (RMPs) are 

used to settle reserves compensations. The LMP for each node is the shadow price of the 

power balance equation (5.12) at that node. Load payments are calculated based on LMPs: 

𝐿𝑃 = ∑ 𝑑𝑛𝑡𝛿𝑛𝑡𝑛,𝑡  (5.25) 

The generators are entitled to payments for scheduled energy as well as the reserve 

capacity and reserve activation. Energy and reserve capacity payments are computed based 
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on LMPs and RMPs. In the presented formulation, the RMP is the nonzero shadow price 

(for the binding constraint) for (5.5). 

The reserve activation payments are only made if the generator responds in a contin-

gency event. The expected activation payment in such a payment scheme can be formulated 

as: 

𝑅𝐴𝑃𝑔,𝑡 = ∑ 𝜋𝑐{𝑐∈𝑆 𝑟𝑔𝑐𝑡𝜆𝑛(𝑔),𝑡
𝑐 } (5.26) 

where, 𝜋𝑐 is the probability of contingency scenario c and 𝜆𝑛(𝑔),𝑡
𝑐  is the dual variable for 

(5.17). Here, 𝜆𝑛(𝑔),𝑡
𝑐  is a shadow price that reflects the marginal value of reserve for con-

tingency c. The probability of each contingency is defined as the product of the probability 

of the related wind scenario and the probability of the respected generator contingency 

event. The probabilities of generator contingencies are calculated based on the FOR values 

of generators. The payments in (5.26) are the expected compensations for the reserve pro-

viders based on their corresponding activated services, which is exercised for individual 

contingencies. 

5.6. Quality of Service 

When a resource is scheduled to provide contingency reserve capacity, it is supposed 

to be able to dispatch that amount. If the pre-scheduled amount of reserve cannot be acti-

vated during a re-dispatch, then the resource provides a lower quality of service (QOS) 

than anticipated. Based on the scheduled capacity of reserve from renewables, (5.21) de-

scribes how the renewable resource is performing in exercising reserve. Here, variable  𝑟𝑤𝑐𝑡 

measures how much reserve is dispatched from the resource w, where 𝑝𝑤𝑐𝑡
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 represents 

the shortfall below the scheduled downward reserve. 
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The objective function (5.14) motivates a small shortfall. The large penalty included 

in the objective function prevents renewable resource from going below the scheduled 

downward reserve. 

In this section, the notion of quality of reserve (QOS) is defined to reflect the efficiency 

of the training algorithm in deriving reserve policies for renewables. QOS can also be 

viewed as an indicator for measuring the efficiency of a model. The quality of service for 

reserve (𝑄𝑂𝑆𝑟) can be characterized by the proportion of reserve capacity which is deliv-

erable for each contingency in real time. An efficient model is expected to have a quality 

of reserve closer to one, indicating that a large portion of reserve capacity procured based 

on reserve policy is deliverable in real time. 

Quality of service for energy (𝑄𝑂𝑆𝐸) provided by wind resource for each contingency 

scenario is measured by the behavior of the wind resource in the re-dispatch corresponding 

to that scenario. Note that, in this chapter, the redispatch is performed to minimize the total 

cost as described in (5.14). 

In the presented market model, a single variable has been used for both upward and 

downward reserve. Therefore, different possible situations have been categorized into mul-

tiple groups, as described below, to quantify the quality of service for each probable situa-

tion [91].  

If the implemented reserve (𝑟𝑤𝑐𝑡) is positive, this indicates that the wind generator has 

satisfied the promised energy, and therefore, 𝑄𝑂𝑆𝐸 = 1. As for reserve, if the available 

wind power is more than the total scheduled energy and reserve, 𝑄𝑂𝑆𝑟 = 1. Otherwise, 

𝑄𝑂𝑆𝑟 = max(1,
𝑟𝑤𝑐𝑡

𝛼𝑟𝑤𝑡
). (5.27) 
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If the implemented reserve (𝑟𝑤𝑐𝑡) is negative, two situations are possible: 

1) The actual realized wind power is greater than the total energy and reserve im-

plemented from wind: in this case, the quality of energy service and the quality of 

reserve service are both equal to 1.  

2) The realized wind is equal to the total energy and reserve implemented: in this 

case, the quality of service for energy product is calculated based on the proportion 

of the scheduled energy that has been provided. This proportion can be described 

as: 

𝑄𝑂𝑆𝐸 = 1 +
𝑟𝑤𝑐𝑡

𝑝𝑤𝑡
. (5.28) 

The quality of service for reserve product in this situation is calculated based on the 

proportion of the scheduled reserve that has been provided: 

𝑄𝑂𝑆𝑟 = max(0, 1 −
𝑝𝑤𝑐𝑡

𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝛼𝑟𝑤𝑡
). (5.29) 

The above notions are used to measure the efficiency of the proposed policy method. The 

following section provides the numerical results. 

5.7. Numerical Results and Analysis 

The analysis in this section evaluates the prediction based policy and its counterpart 

where no policy is applied. The prediction-based policies are selected based on the proce-

dure described in chapter 3.  

The policy (generated offline) is implemented in a deterministic real-time framework, 

i.e., a deterministic dispatch procedure described in section 5.3. The hour-ahead SCED is 

solved based on the policy derived for the closest trained operating solution.  
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5.7.1. Data and Simulation Setup 

The proposed structure has been applied to the IEEE RTS-96 test system [84]. The test 

system is modified by integrating a 1500 MW wind farm, at bus 40, which accounts for 

roughly 30% of the total system-wide generation capacity. The wind generation data of a 

wind farm for the year 2010 [26] is used after proper scaling to suit the chosen wind farm 

capacity. 

The hour-ahead model includes 10-minute intervals across a 1-hour horizon. For the 

current simulation, the Markov forecast for the 9 AM-12 AM epoch is used [26]. The load 

classification used in this study is based on data from RTS-96 test system [84]. All simu-

lation results presented are for month April, henceforth. The probabilities of generator con-

tingencies are calculated based on the FOR values provided in the IEEE RTS-96 data [84]. 

In reality, FOR of each generator unit type is calculated based on historical operation per-

formance [57]. 

5.7.2. Prediction-based Policy Method and Base Case Method Comparison  

The solution of this look ahead SCED is analyzed across probable instances including 

various possible wind outcomes and possible contingencies. Each solution is tested against 

the combination of 100 wind scenarios generated based on the initial wind level and all the 

N-1 generation contingencies. The model contains 99 generators and, therefore, 99 gener-

ation contingency instances. Adding the wind scenarios, a total of 9900 instances are mod-

eled for each solution. 

In order to analyze the performance of this method, a set of base-case studies with no 

policies have been run where the operator counts on the wind predicted mean (�̅� = 1). 
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Table 5.1 through Table 5.4 present the average market results over all the modeled in-

stances. Table 5.1 summarizes production cost, load payments and energy revenues, and 

Table 5.2 presents the quality of service for each tested wind level. The results show that 

the prediction-based policy achieves a higher average quality of service. Table 5.3 and 

Table 5.4 presents the revenues from reserve markets for conventional and renewable pro-

ducers. The capacity payments and the activation payments are reported in Table 5.3 and 

Table 5.4 respectively. The proposed policy results in a higher payment for reserves to 

renewable resources. Table 5.5 compares the utilization of wind in the two methods. Over-

all, the policy method schedules more reserve from wind and incurs less penalty for not 

being able to provide the scheduled power. The average wind curtailment shows a slight 

increase in the policy method. Fig. 5.1 and Fig. 5.2 represent the quality of energy and 

quality of service across contingency scenarios. These results demonstrate that prediction 

based policy can significantly improve the reliability of the service provided by wind gen-

erators. 
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Table 5.1. Market measures: average system results  

Win

d 

level 

(%) 

Production cost ($/h) Load payment ($/h) Energy revenue ($/h) 

Base case Prediction-

based 

Base case Prediction-

based 

Base 

case 

Predic-

tion-based 

3 264011.2 263781.7 533273.5 523411.2 493606.9 495792.4 

6 254993.7 254781.2 533273.5 513548.9 483308.9 487881.7 

9 245418.7 245212.3 521838.5 517317.1 470107.7 474790.4 

12 235545.7 235545.7 515750.4 515750.4 450450.5 450450.5 

15 222118.7 221919.3 621048.2 514863.4 417451.2 433600.8 

18 213208.5 213136.8 609915.7 514863.4 380112.5 430750.6 

21 206035.4 205900.1 525703.1 525888.1 296385.9 300700.4 

24 197182.3 196821.9 526082.2 528234.8 281678.7 274561.6 

27 190022.2 189828.1 526799.7 528234.8 266709.2 268368.4 
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Table 5.2. Quality of service: average system results  

Wind 

level 

(%) 

Reserve QOS Energy QOS 

Base case Prediction-based Base case Prediction-based 

3 0.7693 0.9879 0.800 0.8815 

6 0.5435 0.9497 0.810 0.9111 

9 0.1404 0.9557 0.738 0.9068 

12 0.0359 0.0359 0.619 0.6197 

15 0.3991 0.6604 0.854 0.8759 

18 0.3907 0.9443 0.809 0.9291 

21 0.3507 0.8685 0.878 0.9491 

24 0.3567 0.9449 0.752 0.9124 

27 0.3572 1 0.872 0.9915 
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Table 5.3. Reserve capacity payments: average system results  

Wind 

level 

(%) 

 

Reserve capacity revenue (conven-

tional generators) ($/h) 

Reserve capacity revenue (wind 

generator) ($/h) 

Base case Prediction-based Base case Prediction-

based 

3 16434.76  6960.85 1062.90  716.49  

6 16434.76  5692.86 984.262 971.3499  

9 16306.72  3600.86  1388.25 1602.689  

12 15974.01  15974.0  1582.65 1582.653  

15 13022.48  5557.59  1979.55 1174.964  

18 12364.79  2379.1  1637.68 2239.988  

21 7669.869  3978.60 0  1345.384  

24 6746.796  174.49  0  1030.558  

27 6356.556  0  0  215.5465  
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Table 5.4. Reserve activation payments: average system results  

Wind 

level 

(%) 

 

Reserve activation revenue (conven-

tional generators) ($/h) 

Reserve activation revenue 

(wind generator) ($/h) 

Base case Prediction-based Base case Prediction-based 

3 15585.05 14125.87 66.69 166.25 

6 5444.044  5232.83  7.362  266.50  

9 5087.439  3657.905  1.2246  202.54  

12 5859.289  5859.289  0  0  

15 3528.479  3252.916  1566.281  1431.56  

18 8352.536  5262.85  0.0696  214.99  

21 5458.106  5162.909  0.8255  350.77  

24 13210.2  4258.596  0.1707  399.33  

27 6024.633  0  0.1512  2818.54  
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Table 5.5. Wind utilization measures: average system results  

Wind 

level 

(%) 

Scheduled reserve 

from wind (MW) 

Curtailed wind 

power (MW) 

Wind penalty ($/h) 

Base 

case 

Prediction-

based 

Base 

case 

Prediction-

based 

Base 

case 

Prediction-

based 

3 25.22 36.81 3.322 4.300 133.4814 37.5581 

6 23.35 53.84 0.355 0.791 155.6067 42.2518 

9 33.18 97.65 0.084 0.544 255.4437 25.6938 

12 38.63 38.64 0 0 415.446 415.446 

15 50.94 68.99 0.024 0.109 84.7621 59.0765 

18 49.92 144.21 0.017 0.503 380.9586 25.5383 

21 0 92.57 0.102 1.051 512.1057 62.8103 

24 0 194.42 0.011 0.615 934.6266 40.1877 

27 0 179.62 0.047 4.577 767.2197 0.6998 
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Fig. 5.1. Quality of energy service from wind farm for different wind scenarios. 

 

Fig. 5.2. Quality of reserve service from wind farm for different wind scenarios. 
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5.8. Conclusions 

Integration of renewable generation increases the uncertainty and variability that the 

operator must handle. Utilizing the concept of wind flexible reserve margin allows the op-

erator to allocate a discounted amount of wind for energy, leaving a reserve margin to 

hedge against uncertainty. This study analyzes the utilization of such reserve margins in 

the ancillary service procurement.  

This chapter compares the impacts of two different scheduling models, a base case 

model and a prediction based model. The prediction-based model has a deterministic struc-

ture and uses a flexible reserve margin based algorithm, which has been applied to train 

offline policies for discounting wind generation and scheduling energy and reserve in the 

presence of wind. The base case uses a deterministic SCED, which does not discount wind 

generation. 

The market implications of transitioning to the prediction-based approach are demon-

strated. The results suggest that the prediction-based model obtains higher quality of ser-

vice from renewables. The results show that the average quality of energy service is 

roughly improved by 10% and the average quality of reserves is roughly improved by 30%. 

The prediction-based approach was also found to have lower load payments. 

Future work can extend the proposed method to account for other types of uncertainty 

and locational aspects of the reserves. The approach discussed in this chapter can improve 

the reliability of reserve products provided by renewables. 
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CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

This dissertation discussed the ways employing emerging computational advances in 

system operation policies can improve the flexibility of the electricity industry in presence 

of high penetration of wind generation. 

In chapter 2, a background review was presented on the topics included in this disser-

tation. First, a review of wind power forecasting approaches was presented. Subsequently, 

the detailed steps of the Markov chain model-based wind generation forecast, which is the 

method used for generating wind scenarios in chapter 3, chapter 4, and chapter 5, was de-

scribed. 

In chapter 3, a combined hour-ahead dispatch and reserve scheduling framework was 

proposed by determining a flexible wind reserve margin. Utilizing the concept of flexible 

wind reserve margin allows the operator to allocate a discounted amount of wind for en-

ergy, leaving a reliability margin to hedge against uncertainty. The extra production of the 

wind farm can then be used for balancing purposes. A finite-state Markov chain 10-minute-

ahead wind power forecast model, based on spatio-temporal analysis, was utilized to cal-

culate the conditional probability distribution of the wind farm generation. The presented 

framework was used to find the appropriate level for allocating wind based on the predicted 

output. Numerical studies, demonstrated the significant benefits obtained by incorporating 

the flexible wind reserve margin using a Markov-chain-based forecast. The results com-

municate that scheduling the flexible wind reserve margin will allow the operator to in-

crease the reliability margin of the system while reducing the total cost. Discounting the 
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scheduled generation from wind would improve the reliability by handling the uncertainty 

at an early stage. It also addresses the existing cost trade-off between scheduling generation 

from wind and the risk associated with wind farm uncertainty and improves the overall 

cost of supplying the demand.  

In chapter 4, the possibility of exploiting offline stochastic calculations for training 

deterministic operation policies is investigated. An offline policy generation technique is 

proposed based on stochastic reserve margin scheduling to hedge against the real-time un-

certainty of wind farm generation. A flexible reserve margin based algorithm has been 

applied to train offline policies for discounting wind generation and scheduling energy and 

reserves in presence of wind. A scenario-based stochastic programming approach is lever-

aged to capture the effect of various possible wind scenarios based on short-term wind 

forecast and the loading conditions of the system. A testing method is derived to assess the 

performance of the policies obtained through the proposed training procedure for schedul-

ing wind reserve margin. The proposed approach is tested and the costs are compared to 

those obtained by using ad-hoc rules to analyze the effectiveness of the presented model in 

handling uncertainty. The results show that the training based on the risk-aware scheduling 

can reduce the overall cost, while not imposing the burden of stochastic programming in 

real-time operation. 

In chapter 5, the impacts of utilizing reserve margin policies to schedule energy and 

reserve from renewables were studied. The market implications of implementing this 

model in ancillary service procurement were analyzed. Subsequently, the impact of two 

different scheduling models were compared; a base case model and a prediction based 

model. The prediction-based model uses a flexible reserve margin based algorithm, which 
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has been applied to train offline policies for discounting wind farm generation and sched-

uling energy and reserve in the presence of wind. The market implications of transitioning 

to the prediction-based approach are demonstrated. The results suggest that the prediction-

based model obtains higher quality of service from renewables while having lower produc-

tion cost and load payments. 

6.2. Future Work 

In this section, additional future research directions are proposed to supplement the 

current work. In this dissertation, the focus has been on the benefits of wind reserve margin 

from the viewpoint of the system operator who tries to minimize the operating cost. One 

direction for future work is to analyze the impact of deploying wind reserve margin policies 

in a comprehensive market structure. In such a model, the point of view is that of the wind 

power producer. Wind power producers that take part in the electricity energy and reserve 

markets can be considered via a market mechanism in which the wind producers can update 

their decision, taking into account the incurred risk and utilizing the updated forecast in-

formation. In other words, a risk-based study can be performed by the wind power producer 

to balance its expected profits from participation after providing reserve margins. This 

mechanism should take into account the probability of reserve shortfall and be designed in 

a way that power producers, including wind power producers, procure reserves in real time 

if they cannot provide the promised reserve.  

The results of the present study suggest that the quality of service from renewables is 

increased by implementing the reserve margin policies. The increase in quality of service 

can be described in terms of the failure rate for wind power producers. Another future 

research direction, therefore, would be to analyze the impact of such policies on assigning 
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capacity credits to wind farms. Other aspects like the environmental impacts of these pol-

icies, such as carbon emission, can also be studied through observing the change in gener-

ation and ramping of conventional generators. 

Future work can also extend the proposed method to account for other types of uncer-

tainty such as transmission contingencies and locational aspects of the reserves. Other data 

mining approaches such as multi-target regression trees can be used to come up with poli-

cies for system operation considering the impact of transmission congestion patterns. A 

further step can thus, be to ensure deliverability of the reserves scheduled using the pro-

posed policies. For example, the line flow patterns in a transmission network can be used 

as an additional input to the learning process that decides reserve margin policies.  

In this research, wind farms have been considered as individual entities contributing 

to the reserve procurement through reserve margins. A more advanced case would allow a 

collection of neighbor wind farms to produce a cumulated amount of reserve. A future 

research direction would be to determine the reserve providing capability of a wind farm 

cluster based on the power generation forecast for a large area in the system, the correla-

tions of the wind farms in the cluster, and the deliverability of the scheduled reserve based 

on network congestion patterns and transmission contingencies.  

The analysis performed in this thesis are based on stochastic scenario-based optimiza-

tion. Other approaches such as robust optimization can also be leveraged to perform sto-

chastic analysis to generate operational policies. Robust optimization, for example, can be 

used to mitigate the uncertainty for a given continuous uncertainty set. More accurate fore-

cast can then be utilized in a scenario-based structure in a near-real-time procedure when 
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most of the uncertainty has been revealed. The analysis of other mathematical frameworks 

and their performance remains as a future possible research direction. 
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