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ABSTRACT

Mobile devices are penetrating everyday life. According to a recent Cisco report

[10], the number of mobile connected devices such as smartphones, tablets, laptops,

eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021,

exceeding the world’s projected population at that time (7.8 billion). The rapid

development of mobile devices has brought a number of emerging security and privacy

issues in mobile computing. This dissertation aims to address a number of challenging

security and privacy issues in mobile computing.

This dissertation makes fivefold contributions. The first and second parts study

the security and privacy issues in Device-to-Device communications. Specifically, the

first part develops a novel scheme to enable a new way of trust relationship called spa-

tiotemporal matching in a privacy-preserving and efficient fashion. To enhance the se-

cure communication among mobile users, the second part proposes a game-theoretical

framework to stimulate the cooperative shared secret key generation among mobile

users. The third and fourth parts investigate the security and privacy issues in mobile

crowdsourcing. In particular, the third part presents a secure and privacy-preserving

mobile crowdsourcing system which strikes a good balance among object security, user

privacy, and system efficiency. The fourth part demonstrates a differentially private

distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth

part proposes VISIBLE, a novel video-assisted keystroke inference framework that

allows an attacker to infer a tablet user’s typed inputs on the touchscreen by record-

ing and analyzing the video of the tablet backside during the user’s input process.

Besides, some potential countermeasures to this attack are also discussed. This dis-

sertation sheds the light on the state-of-the-art security and privacy issues in mobile

computing.
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Chapter 1

INTRODUCTION

Mobile devices are penetrating everyday life. According to a recent Cisco report

[10], the number of mobile-connected devices such as smartphones, tablets, laptops,

eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021,

exceeding the world’s projected population at that time (7.8 billion). People have

been using mobile devices for social activities, entertainment, crowdsourcing, personal

health, and many other private/public contexts.

The rapid development of mobile devices has brought a number of emerging se-

curity and privacy issues in mobile computing. This dissertation aims to address a

number of challenging security and privacy issues in mobile computing and propose

corresponding defenses. The rest of this dissertation is as follows.

Chapter 2 studies the problem of establishing trust in Device-to-Device (D2D)

communication. D2D communications are emerging due to the explosive growth of

mobile devices such as smartphones and tablets. Given the possible presence of at-

tackers, a fundamental challenge in secure D2D communications is to develop sound

mobile authentication techniques whereby mobile users can select the most trust-

worthy D2D communication partners from possibly many candidates. This chapter

tackles this open challenge and proposes spatiotemporal matching as a promising en-

abler for secure D2D communications. Spatiotemporal matching is built upon the

location-aware capability of D2D devices. In particular, a mobile user could very

easily maintain his spatiotemporal profile recording his continuous whereabouts in

time, and the level of his spatiotemporal profile matching that of the other user can

be translated into the level of trust they two can have in each other. Since spa-
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tiotemporal profiles contain very sensitive personal information, privacy-preserving

spatiotemporal matching is needed to ensure that as little information as possible

about the spatiotemporal profile of either matching participant is disclosed beyond

the matching result. Towards this end, this chapter proposes two novel privacy-

preserving spatiotemporal matching protocols, which are thoroughly analyzed and

evaluated through detailed simulation studies driven by experimental data.

Chapter 3 investigates the problem of secret key establishment between two adja-

cent mobile devices, which is crucial for securing emerging D2D communications. As

a promising method, cooperative key generation allows two mobile devices to select

some common neighbors as relays and directly extract a secret key from the wireless

channels among them. A challenging issue that has been overlooked is that mobile de-

vices are often self-interested and reluctant to act as relays without adequate reward

in return. In this chapter, we propose SYNERGY, a game-theoretical approach for

stimulating cooperative key generation. The underlying idea of SYNERGY is to par-

tition a group of mobile devices into disjoint coalitions such that the mobile devices

in each coalition fully collaborate on cooperative key generation. We formulate the

group partitioning as a coalitional game and design centralized and also distributed

protocols for obtaining the core solution to the game. The performance of SYNERGY

is evaluated by extensive simulations.

Chapter 4 considers the problem of secure and privacy-preserving object finding

via mobile crowdsourcing. The plummeting cost of Bluetooth tags and the ubiquity of

mobile devices are revolutionizing the traditional lost-and-found service. This chapter

presents SecureFind, a secure and privacy-preserving object-finding system via mobile

crowdsourcing. In SecureFind, a unique Bluetooth tag is attached to every valuable

object, and the owner of a lost object submits an object-finding request to many

mobile users via the SecureFind service provider. Each mobile user involved searches
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his vicinity for the lost object on behalf of the object owner who can infer the location

of his lost object based on the responses from mobile users. SecureFind is designed

to ensure strong object security such that only the object owner can discover the

location of his lost object as well as offering location privacy to mobile users involved.

The high efficacy and efficiency of SecureFind are confirmed by extensive simulations.

Chapter 5 presents a novel privacy-preserving and communication-efficient stream

monitoring scheme of thresholded percentile statistics. Distributed stream monitoring

has numerous potential applications in future smart cities. Communication efficiency

and data privacy are two main challenges for distributed stream monitoring services.

In this chapter, we propose PriStream, the first communication-efficient and privacy-

preserving distributed stream monitoring system for thresholded PERCENTILE ag-

gregates. PriStream allows the monitoring service provider to evaluate an arbitrary

function over a desired percentile of distributed data reports and monitor when the

output exceeds a predetermined system threshold. Detailed theoretical analysis and

evaluations show that PriStream has high accuracy and communication efficiency,

and differential privacy guarantees under a strong adversary model.

Chapter 6 proposes VISIBLE, a novel video-assisted keystroke inference frame-

work to infer a tablet user’s typed inputs from surreptitious video recordings of tablet

backside motion. VISIBLE is built upon the observation that the keystrokes on dif-

ferent positions of the tablet’s soft keyboard cause its backside to exhibit different

motion patterns. VISIBLE uses complex steerable pyramid decomposition to detect

and quantify the subtle motion patterns of the tablet backside induced by a user’s

keystrokes, differentiates different motion patterns using a multi-class Support Vector

Machine, and refines the inference results using a dictionary and linguistic relation-

ship. Extensive experiments demonstrate the high efficacy of VISIBLE for inferring

single keys, words, and sentences. In contrast to previous keystroke inference attacks,
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VISIBLE does not require the attacker to visually see the tablet user’s input process

or install any malware on the tablet.

Chapter 7 summarizes our work and presents several possible future work.
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Chapter 2

PRIVACY-PRESERVING SPATIOTEMPORAL MATCHING FOR SECURE

DEVICE-TO-DEVICE COMMUNICATIONS

2.1 Introduction

Device-to-Device (D2D) communications are emerging due to the explosive growth

of smartphones and tablets. In a typical D2D communication session, two physically

proximate mobile devices can directly communicate without involving the base sta-

tion. D2D communications are widely expected to enhance spectrum efficiency and

system throughput, enable efficient cellular traffic offloading, improve energy effi-

ciency and network coverage, and stimulate excitingly new services [96, 116].

Sound mobile authentication techniques are needed for secure and effective D2D

communications. In particular, a mobile user interested in initiating a D2D commu-

nication session in crowded places may have many candidate D2D partners to choose

from, consisting of normal users and possibly attackers. It is thus crucial for the ini-

tiating user to select the most trustworthy candidate(s) to ensure effective and secure

D2D communications. For example, if an attacker is chosen by mistake, the attacker

can obtain sensitive information from the initiating user and also refuse to collaborate

in the way he initially agreed to. Such pitfalls can be largely avoided if the initiating

user only considers the candidate D2D partners who can be reliably authenticated.

Traditional mobile authentication techniques are insufficient for D2D communi-

cations. Specifically, one may think about letting the initiating user seek help from

the trusted base station to select trustworthy D2D partners. This approach would

place too much burden on base stations and largely offset the benefits of conducting
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D2D communications. Another plausible approach is to equip every D2D user with

a public-key certificate and let the initiating user choose the neighbors with valid

public-key certificates. This approach, however, does not permit the initiating user

to further distinguish potentially many candidates having a valid certificate.

We propose spatiotemporal matching as a promising enabler for secure D2D com-

munications. This technique is motivated by the fact that almost all target D2D

devices are location-aware through cellular, WiFi, or GPS technology. A mobile user

thus can conveniently maintain his spatiotemporal profile recording his continuous

whereabouts in time, and the level of his spatiotemporal profile matching that of

another mobile user can be translated into the level of trust they two can have in

each other. For example, if Alice and Bob discover via spatiotemporal matching that

they often go to the same coffee shop or take the same train in the same period, it

is natural for Alice to trust Bob over another person whom she only met once be-

fore. Spatiotemporal matching is naturally well suited for D2D communications. In

particular, if two mobile users have very similar spatiotemporal profiles, it is much

more likely that they will stay in each other’s communication range for longer time,

leading to a longer-live D2D communication session.

There are two critical requirements for releasing the full potential of spatiotem-

poral matching. In particular, spatiotemporal profiles contain very sensitive personal

information, and incautiously disclosing them to the public may cause severe conse-

quences. For example, if an employer surreptitiously discovers an employee’s frequent

patronage of night clubs, the employee may get unfair treatment at the workplace; if

a thief knows the routine of a target victim, he could break in when the victim will

be away for a long time. It is thus crucial to have privacy-preserving spatiotemporal

matching, which ensures that as little information as possible about the spatiotempo-

ral profile of either participant is disclosed beyond the matching result. In addition,
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spatiotemporal matching is directly performed on mobile devices and thus needs to

be very efficient in both communication and computation.

We make three main contributions in this chapter. First, we coin privacy-preserving

spatiotemporal matching as a fundamental primitive for secure D2D communications.

Second, we present two solutions towards efficient privacy-preserving spatiotemporal

matching. The first solution is a passive approach, in which every mobile user peri-

odically records his locations, and a user’s spatiotemporal profile is defined as a set of

(time, location) pairs. The second solution is an active approach, where every mobile

user continuously broadcasts cryptographic tokens and also records every token he

overhears. The tokens a user broadcasts and receives form his spatiotemporal profile.

Third, we propose two protocols for the privacy-preserving comparison of two arbi-

trary active/passive spatiotemporal profiles. The first protocol is based on a novel

use of the Bloom filter [31] to enable either user to estimate with tunable accuracy

the number of common elements in their spatiotemporal profiles without disclosing

too much private information to each other. The second protocol generalizes the first

protocol and enables weighted spatiotemporal matching by allowing each user to as-

sign different weights to different elements in his/her profile to obtain the weighted

matching result. In addition, we thoroughly analyze both protocols and also evaluate

them via detailed simulations driven by experimental data.

The rest of this chapter is organized as follows. Section 2.2 presents the problem

formulation. Section 2.3 introduces two approaches for creating spatiotemporal pro-

files. Section 2.4 presents two protocols for privacy-preserving spatiotemporal match-

ing. Section 2.5 theoretically analyzes the proposed protocols. Section 2.6 evaluates

the proposed protocols by detailed numerical and experimental results. Section 2.7

surveys the related work. Section 2.8 summarizes this chapter.
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2.2 Problem Formulation

2.2.1 Problem Statement

We consider a large geographic region such as the NYC metropolitan area with

system users as either permanent residents or temporary visitors. Each user carries

at least one mobile device which has a WiFi/Bluetooth interface and can acquire

his realtime position via on-device positioning software. Such assumptions on device

capabilities are fairly justifiable on most current and future mobile devices for D2D

communications. Besides, unlike traditional communications between mobile users

and the service provider [166], mobile users want to performance secure D2D com-

munications via the WiFi/Bluetooth interfaces on their mobile devices. In addition,

time is divided into equal-length epochs, each represented by a globally unique epoch

index of lepoch bits. We also postulate that each mobile device, which may traverse

different time zones, can always convert its local time into the corresponding epoch

index.

Each user u’s spatiotemporal profile is defined as a set of 2-tuples (i, locu,i), where i

and locu,i denote the epoch index and the corresponding location index, respectively.

In our protocol, locu,i comprises some physical locations closely approximating the

user’s whereabouts in epoch i. The detailed construction of spatiotemporal profiles

is postponed to Section 2.4.

We use Alice and Bob as two exemplary mobile users throughout the chapter. Let

PA = {(i, locA,i)}∞i>0 and PB = {(i, locB,i)}∞i>0 denote the spatiotemporal profiles of

Alice and Bob, respectively. We also let PA,α→β and PB,α→β denote their respective

spatiotemporal profiles from epochs α to β. Assume that Alice is the initiator of

a D2D communication session and that Bob is one of the candidate D2D partners

in Alice’s proximity. Alice wants to select a trustworthy D2D partner and needs to
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conduct spatiotemporal matching with every candidate partner. Consider Bob as an

example. Alice and Bob need to compare their spatiotemporal profiles from epochs

α to β, where α and β are chosen by Alice herself. A complete matching process

involves each of them initiating an independent protocol instance. The number of

encounters with Bob in Alice’s eye in any epoch i ∈ [α, β] equals the number of

common locations in their location indexes in epoch i, and the number of encounters

with Bob from epochs α to β in her eye equals the sum of total encounters in every

epoch from α to β. In the similar fashion, we can define the total number of encounters

with Alice from Bob’s viewpoint from epochs α to β. We proceed to introduce the

following definition.

Definition 2.2.1. (Spatiotemporal Match) After protocol execution, a spatiotem-

poral match between Alice and Bob from epochs α to β is said to occur if the total

number of encounters with Bob exceeds τA from Alice’s viewpoint, and the total num-

ber of encounters with Alice exceeds τB from Bob’s viewpoint, where τA and τB are

personal thresholds independently chosen by Alice and Bob, respectively.

We assume that Alice and Bob both desire strong spatiotemporal privacy and

collaborate only when a spatiotemporal match occurs between them. Our focus is to

devise an efficient protocol ensuring that as little information as possible about the

spatiotemporal profile of either Alice or Bob is disclosed beyond the matching result.

One may think about letting them directly exchange and compare their spatiotempo-

ral profiles under pseudonyms instead of real names so that a known spatiotemporal

profile cannot be directly linked to a real identity. Unfortunately, the knowledge of

a pseudo-identity’s spatiotemporal profile may be disastrous enough, e.g., leading to

physical chasing to unveil the corresponding real identity. We thus need a sound

solution regardless of pseudonyms.
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2.2.2 Adversary Model

We assume a honest-but-curious adversary model commonly adopted to study

privacy-preserving profile matching [21, 84, 167] or proximity test [93, 114, 137]. With

Alice and Bob as an example, they both honestly follow the spatiotemporal matching

protocol while having great curiosity about the other’s spatiotemporal profile.

We do not consider continuous fake-profile attacks and Denial-of-Service (DoS)

attacks in this chapter. In the former, either matching participant keeps using fake

spatiotemporal profiles possibly under different pseudonyms in order to accumulate

more information about the other party’s spatiotemporal profile as time goes by, while

in the latter, an attacker aims at depleting the resources of the other party in the

same way. The only feasible countermeasure against both attacks in our opinion is for

every party to rate-limit the total number of matching requests he/she will accept.

Further investigation on these attacks is beyond the scope of this chapter.

There might also be external eavesdroppers or physical chasers. The former over-

hear the messages incurred by a spatiotemporal matching instance and can be easily

thwarted by letting the matching participants encrypt the protocol messages. The

latter tail a victim user and thus can always have a spatiotemporal profile resembling

that of the victim user. There is no sound technical solution to such chasing attacks.

2.3 Spatiotemporal Profile Construction

In this section, we introduce two approaches for constructing spatiotemporal pro-

file, including a passive approach and an active approach. In the passive approach,

each user records his own spatiotemporal information periodically whereby to con-

struct his spatiotemporal profile. In the active approach, each mobile user continu-

ously broadcasts epoch-specific cryptographic token at an adaptive frequency and also
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records every token he overhears via WiFi/Bluetooth interface. The spatiotemporal

profile of each mobile user is then constructed from the sent and received tokens.

2.3.1 A Passive Approach

The passive approach explores the prevalent capability of mobile devices obtaining

their physical locations via hybrid GPS, WiFi, and cellular positioning techniques.

Assume that each epoch is evenly divided into λ intervals, where λ ≥ 1 is a global

parameter. In general, each user passively records his location in the middle of each

interval to tolerate synchronization errors among mobile devices. Recall that any user

u’s spatiotemporal profile is defined in Section 2.2.1 as a set of 2-tuples like (i, locu,i).

We have locu,i = {pu,i[j]}λj=1, where pu,i[j] denotes user u’s jth location in epoch i.

Consider the exemplary users Alice and Bob with profiles PA = {i, {pA,i[j]}λj=1}∞i=1

and PB = {i, {pB,i[j]}λj=1}∞i=1, respectively. Now they attempt to compare their pro-

files from epochs α to β, i.e., {i, {pA,i[j]}λj=1}
β
i=α and {i, {pB,i[j]}λj=1}

β
i=α, equivalent

to the comparison of λ(β − α + 1) location pairs.

We further assume that each physical region of interest (like a metropolitan area)

can be approximated by a square called a level-1 cell. Then we divide the level-1 cell

into four equally-sized squares called level-2 cells, each of which is further divided

into four equally-sized squares named as level-3 cells. This process continues until

reaching level-θ cells, each having a side length no larger than a desired threshold,

and how to determine the cell-division threshold will be discussed later. Note that

there are totally 4j−1 level-j cells for ∀j ∈ [1, θ]. Then we assign a unique cell index

to the cell(s) on every level. In particular, the index of the level-1 cell is 0, and the

indexes of the upper-left, lower-left, upper-right, and lower-right level-2 cells are 00,

01, 02, and 03, respectively. The same indexing rule can be applied to the cells on

all levels. The region-division rules are public information and can be downloaded as
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needed. In practice, each user just needs to have the rules related to the regions he

commonly stays in or travel to, so the related storage overhead is negligible.

To facilitate customized spatiotemporal matching, we propose an adaptive quan-

tization technique which works by letting each user convert his locations into cell

indexes. In particular, assume that Alice and Bob negotiate a common region of in-

terest on which to conduct spatiotemporal matching. Since each region corresponds

to a large geographic area, disclosing the regions of interest to each other may not

be a serious concern in practice; otherwise, Alice and Bob can apply Private Set

Intersection (PSI) [46] to negotiate the common region, which will be very efficient

given the limited possible regions. In addition, they agree on a cell level ξ ∈ [1, θ]

on which the quantization takes place, and the impact of ξ will be discussed shortly.

Then Alice converts {i, {pA,i[j]}λj=1}
β
i=α into PA,α→β = {{〈i, j, p̄A,i[j]〉}λj=1}

β
i=α, where

p̄A,i denotes the index of the level-ξ cell that contains pA,i. If a certain location is not

in the negotiated region, the corresponding cell index is set to some randomly chosen

unlikely cell index indicating this abnormality. Similarly, Bob can convert his profile

{i, {pB,i[j]}λj=1}
β
i=α into PB,α→β = {{〈i, j, p̄B,i[j]〉}λj=1}

β
i=α. With adaptive quantiza-

tion in place, the number of encounters between Alice and Bob equals the number

of level-ξ cells they both came across in the same epoch interval, or equivalently the

intersection cardinality |PA,α→β
⋂
PB,α→β|.

2.3.2 An Active Approach

In the active approach, each mobile user continuously broadcasts an epoch-specific

cryptographic token at an adaptive frequency and also records every token he over-

hears via WiFi-direct, Bluetooth, Frequency Hopping, or other available Device-to-

Device (D2D) technologies widely used in many applications [135, 137, 156, 165].

For example, the tokens can be exchanged via WiFi/Bluetooth interfaces without
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requiring the involved parties to explicitly establish any WiFi/Bluetooth connection

[156].

Assume that every user u has a unique identifier IDu and also a secret key ku.

Let H(·) denote any good cryptographic hash function. The token he broadcasts

in epoch i is computed as tu,i = H(ku, i, IDu) truncated to a given length. User

u needs to broadcast tokenu,i at a personally-chosen frequency to make sure that

it can be overheard by sufficient users he encounters, and how to determine this

token frequency will be discussed shortly. In addition, user u should use a different

pseudonym in every epoch for broadcasting tokens; otherwise, a powerful adversary

would be able to associate the tokens he sends in different epochs with him, thus

breaching his location privacy.

User u also receives tokens from other users through his WiFi and/or Bluetooth

interfaces and only records any token once that he may receive multiple times. Let

Ru,i = {ru,i,j}
nu,i
j=1 denote the set of nu,i tokens user u receives from others he encounters

in epoch i. Any token in Ru,i can serve as the proof that user u was in the WiFi

or Bluetooth transmission range of the token sender. User u’s whereabouts in epoch

i can thus be implicitly determined by his physical proximity to other mobile users

from which he has received tokens.

We define two types of spatiotemporal profiles for the active approach, including

initiator profile and receiver profile. Recall that user u’s spatiotemporal profile is

defined in Section 2.2.1 as a set of 2-tuples (i, locu,i). The initiator and receiver

profiles of user u are defined as Iu = {(i, tu,i)}∞i=1 and Ru = {{(i, ru,i,j)}
nu,i
j=1}∞i=1.

Continue the example of Alice and Bob. An encounter with Bob (or Alice) occurs

in epoch i from Alice’s (or Bob’s) viewpoint if tA,i ∈ RB,i (or tB,i ∈ RA,i). Suppose

they attempt to compare their profiles from epochs α to β to determine the number

of their encounters. Let mA,α→β and mB,α→β denote the number of encounters with
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Bob in Alice’s view and with Alice in Bob’s view, respectively. We have mA,α→β =

|IA,α→β
⋂
RB,α→β| and mB,α→β = |IB,α→β

⋂
RA,α→β|, where Iu,α→β = {(i, tu,i)}βi=α

and Ru,α→β = {{(i, ru,i,j)}
nu,i
j=1}

β
i=α for u = A or B.

2.3.3 Discussion

We now discuss some factors that may affect the spatiotemporal profile construc-

tion and thus the spatiotemporal matching result. In particular, the passive approach

may be affected by the following three factors.

• Recording frequency : Each user records his location in the middle of each inter-

val in each epoch of fixed length. The fewer intervals in each epoch, the lower the

recording frequency, and the more likely for false negatives to occur, in which

case a protocol initiator considers the responder a mismatch who actually en-

countered him multiple times and just did not record the encounter locations

due to the low recording frequency. In contrast, the higher the recording fre-

quency, the less likely for false negatives to occur, and the longer every location

index in every epoch which will lead to larger computation and communication

overhead.

• Quantization granularity : The granularity of spatiotemporal matching can be

controlled by choosing a proper quantization level ξ ∈ [1, θ]. A larger ξ can

lead to finer-grained matching at the sacrifice of spatiotemporal privacy and

matching efficiency, while a smaller ξ can lead to better spatiotemporal privacy

at the cost of coarser-grained matching and longer spatiotemporal matching

time.

• Imperfect quantization: Our quantization process may cause some ambiguity.

For example, if the recorded locations of Alice and Bob in the same interval are
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near the upper-left and lower-right corners of the same level-ξ cell, they will be

quantized to the same level-ξ index and thus translated into one encounter. In

contrast, if the two locations are in adjacent level-ξ cells and close to each other

along the cell boundary, they, however, will be quantized to different level-ξ

indexes and translated into a non-encounter.

Similarly, the active approach may be affected by the following two factors.

• Token broadcasting frequency : The more frequently a user broadcasts an epoch-

specific token, the more users he encounters can receive the token, and the less

likely for false negatives to occur, in which case a protocol initiator deems the

responder a mismatch who actually encountered him many times and just did

not receive sufficient tokens from him in the matching epochs due to channel

errors, missing the time points for token transmissions, etc. In contrast, the

less frequently a token is broadcasted in one epoch, the less energy the user

consumes at the cost of higher false-negative rates. The user can adopt an

adaptive method by letting a user dynamically adjust his broadcasting frequency

proportional to his moving speed which can be readily inferred based on the

accelerometer increasingly available on mobile devices. The intuition is that

the users encountered by a high-speed (or low-speed) user may quickly (slowly)

move out of his WiFi/Bluetooth transmission range, so he can increase (or

decrease) the token frequency accordingly.

• Uniqueness of each user’s broadcasted tokens : The correctness of our proto-

cols depends on {tA,i}βi=α (or {tB,i}βi=α) being all unique in our previous exam-

ple. Recall that the token any user u (i.e., tu,i) broadcasts in epoch i equals

H(ku, i, IDu) truncated to a given length. Due to the randomness of the hash

output, it is likely that the tokens user u sent in adjacent epochs might be the
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same. A simple remedy is to let user u keep a FIFO queue of size equal to the

longest matching epoch-interval he may be interested in. The queue records

all the recently used tokens. Consider epoch i as an example. If the truncated

H(ku, i, IDu) is in the queue, user u tries H(ku, i, IDu, 1), H(ku, i, IDu, 2), . . . ,

until finding a token not in the queue, which will be used as tu,i and inserted

into the queue.

2.4 Privacy-Preserving Spatiotemporal Matching

In this section, we present two novel privacy-preserving spatiotemporal matching

protocols.

From the discussion of Section 2.3, we can see that the problem of privacy-

preserving spatiotemporal matching boils down to the problem of enabling two users

(e.g., Alice and Bob) to learn the cardinality of the intersection of their spatiotem-

poral profiles represented by two sets ΨA and ΨB, respectively, while disclosing as

little additional information as possible beyond the matching result. In particu-

lar, if the passive approach is adopted to construct the spatiotemporal profile, we

have ΨA = PA,α→β and ΨB = PB,α→β. Similarly, under the active approach, we

have ΨA = IA,α→β and ΨB = RB,α→β if Alice’s point of view is considered, and

ΨB = IB,α→β and ΨA = RA,α→β if Bob’s point of view is considered.

2.4.1 A Bloom-filter-based Privacy-Preserving Spatiotemporal Matching Protocol

Our first spatiotemporal matching protocol is motivated by the observation that an

accurate estimation of the number of encounters may suffice in practice and involves

a novel use of the Bloom filter [31].

A Bloom filter [31] is a space-efficient probabilistic data structure [33, 137, 169]

for set-membership testing. Assume that a w-bit Bloom filter is used for a data set
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{si}di=1, which has every bit initialized to 0. Let {ha(·)}ka=1 denote k different hash

functions, each with output in [1, w]. Every element si is added into the Bloom filter

by setting all bits at positions {ha(si)}ka=1 to 1. To check the membership of an

arbitrary element e in the given data set, we can simply verify whether all the bits at

positions {ha(e)}ka=1 have been set. If not, e is certainly not in the data set; otherwise,

it is in the data set with some probability jointly determined by d, w, and k.

Our protocol involves Alice and Bob each using a different set of hash functions

to construct a Bloom filter based on his/her spatiotemporal profile. In particular, let

H denote a large and public pool of hash functions with each indexed by a unique

identifier. Assume that Alice and Bob are to find out |ΨA ∩ ΨB|. Without loss of

generality, let ΨA = {a1, . . . , anA} and ΨB = {b1, . . . , bnB}, where nA = nB if the

passive approach is adopted and nA 6= nB otherwise. The following operations are

done in sequence for Alice to obtain an estimated m̂A about mA = |ΨA ∩ΨB|, where

mA represents the number of encounters with Bob in Alice’s view.

1. Alice sends a spatiotemporal matching request with nA to Bob.

2. If nA > nB, Bob adds nA−nB dummy elements that are definitely not in ΨA to

obtain his new spatiotemporal profile Ψ′B. Bob then randomly chooses k hash

functions from H with indexes denoted by HB and then inserts each element in

his profile Ψ′B into a w-bit Bloom filter (denoted by BFB) with different l < k

functions randomly selected from HB and k − l random hash functions outside

H. Finally, Bob returns nB, HB, and BFB to Alice.

3. If nB > nA, Alice adds nB − nA dummy elements that are definitely not in ΨB

to obtain his new spatiotemporal profile Ψ′A.

4. Alice constructs a w-bit Bloom filter (denoted by BFA) based on the hash

functions specified in HB and her profile Ψ′A. Then she counts the number of
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common bit-0 positions in BFA and BFB (denoted by n0) whereby to compute

m̂A =
2kn− w(lnw − lnn0)

l
, (2.1)

where n = max(nA, nB). The correctness and accuracy of this estimation will

be analyzed in Section 2.5.2.

Likewise, Bob can initiate a spatiotemporal matching process to estimate the number

of encounters with Alice m̂B from his point of view. Finally, they can jointly determine

whether there is a successful spatiotemporal matching after independently comparing

m̂A (or m̂B) with the personal threshold τA (or τB).

We have some important remarks to make. First, since Alice and Bob use some

common hash functions in HB to construct their respective Bloom filter, the same el-

ements in their spatiotemporal profiles (if any) are likely to set the same bit positions.

So we can estimate the number of common elements via the number of common bit-0

and/or bit-1 positions. Second, the reason for Bob using k − l random hash func-

tions unknown to Alice for each element is to prevent Alice from estimating Bob’s

spatiotemporal presence by simple Bloom set-membership tests. In particular, if Bob

uses the same k hash functions in HB to generate BFB, Alice can easily test whether

some possible element is in BFB, which is equivalent to breaching Bob’s spatiotem-

poral privacy. This set-membership test is less critical to the active approach because

the adversary does not know the user’s secret keys and can only randomly guess the

broadcasted tokens. However, it is critical to the passive approach in which all the

possible pairs of epoch and cell indexes are known to the adversary as well. The

choice of k and l will be detailed in Section 2.5.2. Finally, the construction of many

different hash functions for implementing the Bloom filter is also very important. One

common method is to seed a cryptographic hash function such as SHA-2 with the
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indexes of hash functions we want. There are also some more efficient realizations of

many hash functions specifically for the Bloom filter [48, 74].

2.4.2 A Weighted Privacy-Preserving Spatiotemporal Matching Protocol

We now generalize the above protocol to support weighted privacy-preserving

spatiotemporal matching, which is defined as follows.

Definition 2.4.1. (Weighted Spatiotemporal Match) Assume that Alice and

Bob each assign different weights for encounter at different locations and times. A

weighted spatiotemporal match between Alice and Bob is said to occur if the weighted

sum of encounters with Bob exceeds τA from Alice’s viewpoint, and the weighted sum of

encounters with Alice exceeds τB from Bob’s viewpoint, where τA and τB are personal

thresholds independently chosen by Alice and Bob, respectively.

More specifically, consider Alice and Bob with spatiotemporal profiles ΨA =

{a1, . . . , anA} and ΨB = {b1, . . . , bnB}, respectively. Assume that Alice assigns a

weight wA,i for possible encounter corresponding to element ai in ΨA for each i ∈

[1, nA], and that Bob assigns a weight wB,j for possible encounter corresponding to

element bj in ΨB for each j ∈ [1, nB]. The weighted count of encounters with Bob

from Alice’s viewpoint is computed as

mA =

nA∑
i=1

ci (2.2)

where

ci =


wA,i if ai ∈ ΨB,

0 otherwise,

and the weighted count of encounters with Alice from Bob’s viewpoint can be com-

puted accordingly.
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We observe that weighted spatiotemporal matching can be converted into spa-

tiotemporal matching between two spatiotemporal profiles constructed from weight

sets. Specifically, assume that that wA,i ∈ {1, . . . ,w} for all i ∈ [1, nA], where w is a

publicly known parameter. Alice can construct a new spatiotemporal profile Ψ′A from

her original profiles ΨA and weight set WA = {wa,i}nAi=1 as follow. For each element

ai ∈ ΨA with weight assignment wA,i, Alice converts ai into wA,i different elements

ai||1, ai||2, . . ., ai||wA,i. As a result, Alice obtains her new spatiotemporal profile

Ψ′A = {{ai||j}
wA,i
j=1 }

nA
i=1. On the other hand, Bob can construct a new spatiotemporal

profile ΨB in a different way. For each element bi ∈ ΨB with weight wB,i ∈ WB, Bob

converts bi into w different elements bi||1, bi||2, . . ., bi||w to obtain a new spatiotem-

poral profile Ψ′B = {{bi||j}wj=1}
nB
i=1. It follows that

mA = |Ψ′A ∩Ψ′B| .

Assume Alice and Bob have their respective spatiotemporal profiles ΨA and ΨB

via either the passive or active approaches. The following operations are done in

sequence to allow Alice to obtain an estimated m̂A about mA = |Ψ′A ∩Ψ′B|.

1. Alice creates a new spatiotemporal profile Ψ′A = {{ai||j}
wA,i
j=1 }

nA
i=1.

2. Alice sends a weighted spatiotemporal matching request with wA =
∑nA

i=1 wA,i

to Bob.

3. Bob creates a new spatiotemporal profile Ψ′B = {{bi||j}wj=1}
nB
i=1, and calculates

wB = nBw.

4. If wA > wB, Bob adds wA − wB dummy elements that are definitely not in Ψ′A

to Ψ′B to obtain his new spatiotemporal profile Ψ′′B. Bob then randomly chooses

k hash functions from H with indexes denoted by HB and then inserts each
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element in his profile Ψ′′B into a w-bit Bloom filter BFB with different l < k

functions randomly selected from HB and k − l random hash functions outside

H. Finally, Bob returns wB, HB, and BFB to Alice.

5. If wB > wA, Alice adds wB−wA dummy elements that are definitely not in Ψ′B

to Ψ′A to obtain her new spatiotemporal profile Ψ′′A.

6. Alice constructs a w-bit Bloom filter BFA using the hash functions specified in

HB and her profile Ψ′′A. Then she counts the number of common bit-0 positions

in BFA and BFB (denoted by n0) whereby to compute

m̂A =
2kn− w(lnw − lnn0)

l
, (2.3)

where n = max(wA, wB).

2.5 Performance Analysis

In this section, we analyze the performance of the proposed protocols.

2.5.1 Performance Metrics

We use the following metrics to evaluate our protocols.

Accuracy

The following standard (ε, δ) guarantee is used to measure the accuracy of the protocol

output,

Pr[(1− ε)m ≤ m̂ ≤ (1 + ε)m] > 1− δ, (2.4)

where m is the actual number of common elements (or encounters) in , and m̂ is the

estimation of m output by a spatiotemporal matching protocol.

21



Privacy

We quantify spatiotemporal privacy by the Shannon entropy, a commonly used mea-

sure of uncertainty.

We take Bob as an example to analyze the his spatiotemporal privacy under the

passive approach. Recall that Bob’s quantized spatiotemporal profile from epochs α

to β is ΨB = PB,α→β = {{i, j, p̄B,i[j]}λj=1}
β
i=α, where p̄B,i denotes a level-ξ cell index.

The only information Alice knows about PB,α→β before protocol execution includes

the parameters α, β, and λ. Since there are total N = 4ξ−1 level-ξ cell indexes,

each of them is equally likely to be p̄B,i[j] from Alice’s viewpoint. There are thus

total Nλ(β−α+1) candidate quantized profiles for PB,α→β with equal probability from

Alice’s viewpoint. So the maximum spatiotemporal privacy of Bob with regard to

Alice (i.e., the maximum uncertainty of his spatiotemporal profile to Alice) in bits

can be computed as

E∗ = log2N
λ(β−α+1) = 2λ(β − α + 1)(ξ − 1). (2.5)

To make the analysis of the spatiotemporal privacy of Bob under the active ap-

proach tractable and comparable with the passive approach, we make the following

assumptions. We assume that during each epoch, Alice and Bob each wander in one

level-ξ cell as in the passive approach and that Alice keeps broadcasting a unique to-

ken at sufficiently high frequency such that Bob always receives Alice’s token if they

are in the same cell. In addition, we ignore the case in which Bob receives Alice’s

token while they are in two different cells, e.g., they are close two the boundary of

two adjacent cells. Similar to the analysis of the passive approach, since there are

total N = 4ξ−1 level-ξ cells, each of them is equally likely to be the cell Bob resides

from Alice’s viewpoint. There are total NnB candidate quantized profiles with equal

probability from Alice’s viewpoint. So the maximum spatiotemporal privacy of Bob
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with regard to Alice in bits (i.e., the maximum uncertainty of his spatiotemporal

profile to Alice) can be computed as

E∗ = log2N
nB = 2nB(ξ − 1). (2.6)

After the execution of either protocol, Alice can know more information about the

probability of each candidate profile being Bob’s profile whereby to reduce the entropy

or uncertainty, which we will analyze shortly. The maximum spatiotemporal privacy

of Alice with regard to Bob can be analyzed in a similar fashion and thus omitted

here.

Overhead

We will measure the communication and computation overhead of the spatiotemporal

matching protocol using the number of hash computations and the number of bits

transferred between two users during protocol execution, respectively.

2.5.2 Analysis of the Spatiotemporal Matching Protocol

Accuracy Analysis

We have the following theorem regarding the accuracy of the privacy-preserving spa-

tiotemporal matching protocol.

Theorem 2.5.1. Given the number of common bit-0 positions n0 in the w-bit Bloom

filters BFA and BFB constructed in the spatiotemporal matching protocol, Alice can

estimate |ΨA

⋂
ΨB| as

m̂ =
2nk − w(lnw − lnn0)

l
, (2.7)

where n = max(nA, nB). Assuming that εm ≥ 1, m̂ is an (ε, δ) estimation of m if

δ ≥
w(e

2nk
w − (1 + 2nk

w
))

l2ε2m2
. (2.8)
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The proof of Theorem 2.5.1 is given as follows.

Proof. For each bit position of either Bloom filter, the probability that it is set to

bit-1 by a common element with l common hash functions is given by

p = 1− (1− 1

w
)ml ≈ 1− e−

ml
w . (2.9)

The probability that it is set to bit-1 in all the other cases is given by

q = 1− (1− 1

w
)nk−ml ≈ 1− e−

nk−ml
w . (2.10)

Therefore, the probability that a position is bit-0 in both BFA and BFB (i.e., common

bit-0 position) is given by

P0 = (1− p)(1− q)2 = e−
ml
w e−

2(nk−ml)
w . (2.11)

Since Alice can count the number of common bit-0 positions n0 in BFA and BFB, the

following equation can be established

P0 = e−
ml
w e−

2(nk−ml)
w =

n0

w
. (2.12)

Solving this equation, we have

m̂ =
2nk − w(lnw − lnn0)

l
. (2.13)

Next, we derive the variance. We cast the problem into RFID tag estimation and refer

to the results in [77]. The RFID system with t tags divides a time period into f slots

and let each RFID tag randomly select one of f slots to respond. One slot may be

responded by zero, one, or multiple tags. The expected number of zero-response slots

is nearly fe−t/f . Knowing the number of zero-response slots, the system administrator

can estimate the number of present RFID tags. Our estimation method based on the

Bloom filter is similar to RFID tag estimation if we consider common bit-1 positions
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and common bit-0 positions as multiple-response and zero-response slots in the RFID

system, respectively. The expected number of common bit-0 positions of BFA and

BFB is nearly we−(2nk−ml)/w. Knowing the number of common bit-0 positions, we can

estimate the intersection size m.

Let ρ = 2nk−ml
w

. According to Theorem 1 in [77], we have n0 ∼ N (µ, σ2), where

µ = w(1− 1

w
)2nk−ml = we−ρ , (2.14)

σ2 = we−ρ(1− (1 + ρ)e−ρ) . (2.15)

We can view µ as a function of the true number of common elements, denoted by

µ(m). Since µ(m) is monotonic continuous functions of m, it has a unique inverse,

denoted by g(), i.e., g(µ(m)) = m. Let 2nk−ml→∞ and w →∞, while maintaining

2nk−ml
w

= ρ. Since g(µ(m)) = m, differentiating this equation with respect to m, we

get g′(µ(m))µ′(m) = 1. it follows that g′(µ(m)) = 1
µ′(m)

. According to Theorem 6 in

[77], the variance of common bit-0 estimation of m is given by

δ0 = σ2(m)[g′(µ(m))]2 =
σ2(m)

[µ′(m)]2
. (2.16)

Since µ = we−
2nk−ml

w and σ2 = we−ρ(1−(1+ρ)e−ρ). Differentiating µ(m) with respect

to m, we can obtain dµ(m)
dm

= le−ρ. Therefore we have

δ0 =
we−ρ(1− (1 + ρ)e−ρ)

l2e−2ρ
=
w(eρ − (1 + ρ))

l2
. (2.17)

In addition, since dδ0
dρ

= w
l2

(eρ − 1) > 0, we know that δ0 is monotonic increasing with

ρ. Since 0 ≤ m ≤ n, we have n(2k−l)
w
≤ ρ ≤ 2nk

w
. Therefore when ρ = 2nk

w
, we have

δ0max =
w(e

2nk
w − (1 + 2nk

w
))

l2
. (2.18)

We thus have m̂ ∼ N (m, δ0). According to the Chebyshev’s inequality, we have

Pr(|m̂−m| ≤ εm) ≥ 1− δ0

ε2m2
≥ 1− δ . (2.19)
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Therefore, m̂ is an (ε, δ) estimation of m if

δ ≥ δ0max

ε2m2
=
w(e

2nk
w − (1 + 2nk

w
))

l2ε2m2
. (2.20)

Privacy Analysis

For the passive approach, the privacy analysis of the spatiotemporal matching proto-

col is given by the following theorem.

Theorem 2.5.2. Assuming that Bob constructs a w-bit Bloom filter BFB from his

level-ξ quantized profile ΨB = {{i, j, p̄B,i[j]}λj=1}
β
i=α using l functions from HB and

k − l functions unknown to Alice. After transmitting BFB and HB to Alice, his

remaining privacy of ΨB against Alice is given by

E = λ(α + β − 1)E[i, j] , (2.21)

where

E[i, j] =
N∑
x=1

(
N

x

)
P x(1− P )N−x log2 x,

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−
λ(α+β−1)k

w .

(2.22)

The proof of Theorem 2.5.2 is given as follows.

Proof. In the passive approach, since Alice and Bob’s spatiotemporal profiles have

the same size, we have Ψ′A = ΨA and Ψ′B = ΨB. Bob’s privacy disclosure is caused

by transmitting BFB and the indexes HB of k hash functions to Alice. In particular,

Alice can exploit BFB and the knowledge that Bob inserts every element in PB,α→β

using l random hash functions from HB and k− l unknown hash functions to deduce
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some information about PB,α→β. Consider an arbitrary element 〈i, j, p̄B,i[j]〉 as an

example. For each of the N possible cell indexes, say cID, Alice can test whether

it is a viable candidate for the unknown p̄B,i[j] by using all the k hash functions in

HB to compute the k corresponding positions for the resulting element 〈i, j, cID〉.

If there are at least l out of k corresponding positions set to bit-1 in BFB, we have

cID = p̄B,i[j] with probability P ; otherwise, we must have cID 6= p̄B,i[j].

We now estimate P . After inserting all the λ(α+ β − 1) elements in PB,α→β into

BFB, the expected number of bit-1 positions is w(1− (1− 1
w

)λ(α+β−1)k). For a random

hash function applied to cID, the probability of the corresponding bit position having

been set to bit-1 is

p = 1− (1− 1

w
)λ(α+β−1)k ≈ 1− e−

λ(α+β−1)k
w . (2.23)

The probability that at least l corresponding bit positions corresponding to cID have

been set to bit-1 is then given by

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i . (2.24)

Let Xi,j denote the number of valid candidate cell indexes for p̄B,i[j]. The remaining

entropy for interval i in epoch j is then log2Xi,j. Since Xi,j is randomly distributed

in [1, N ] (N = 4ξ−1), we have the mean remaining entropy for interval i in epoch j as

E[i, j] =
N∑
x=1

Pr(Xi,j = x) log2 x

=
N∑
x=1

(
N

x

)
P x(1− P )N−x log2 x .

(2.25)

Assuming that the λ(β − α+ 1) intervals are independent from each other, the total

remaining entropy is given by

E =

β∑
i=α

λ∑
j=1

E[i, j] = λ(α + β − 1)E[i, j] . (2.26)
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The following theorem is about the privacy of the spatiotemporal matching pro-

tocol under the active approach.

Theorem 2.5.3. Assuming that Bob constructs a w-bit Bloom filter BFB from Ψ′B

using l functions from HB and k − l functions unknown to Alice. After transmitting

BFB and HB to Alice, his remaining privacy of ΨB against Alice is

E =

nA∑
x=0

(
nA
x

)
P x(1− P )nA−x log2N

nB−x , (2.27)

where ΨA and ΨB are the spatiotemporal profiles of Alice and Bob, respectively,

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−
nk
w .

(2.28)

The proof of Theorem 2.5.3 is given as follows.

Proof. Assume that Alice and Bob conduct spatiotemporal profile matching with

profiles ΨA = IA,α→β and ΨB = RB,α→β, respectively. For every element in Al-

ice’s spatiotemporal profile, Alice can test whether it is a viable candidate in Bob’s

spatiotemporal profile by using all the k hash functions in HB to compute the k

corresponding positions for the resulting element. If there are at least l out of k cor-

responding positions set to bit-1 in BFB, we have the conclusion that Bob and Alice

were at the the same location at the same time with probability P .

Let n = max(nA, nB), where nA = |ΨA| and nB = |ΨB|. Similar to Theorem 2.5.2,

the probability that at least l corresponding bit positions have been set to bit-1 is

then given by

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i , (2.29)

where

p = 1− (1− 1

w
)nk ≈ 1− e−

nk
w . (2.30)
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LetX denote the number of tokens which might be in Bob’s spatiotemporal profile.

The remaining entropy for Bob’s spatiotemporal profile is given by

E =

nA∑
x=0

Pr(X = x) log2N
nB−x

=

nA∑
x=0

(
nA
x

)
P x(1− P )nA−x log2N

nB−x .

(2.31)

Overhead Analysis

The spatiotemporal matching protocol involves Alice and Bob each performing kn

hash operations, where n = max(nA, nB), which is very efficient. The communication

overhead mainly comes from the transmission of one Bloom filter and is of w bits.

2.5.3 Analysis of Weighted Spatiotemporal Matching Protocol

Accuracy Analysis

The accuracy of the weighted spatiotemporal matching protocol is guaranteed by the

following theorem.

Theorem 2.5.4. Given the number of common bit-0 positions n0 in the w-bit Bloom

filters BFA and BFB constructed from Ψ′′A and Ψ′′B, respectively, in the weighted spa-

tiotemporal matching protocol, Alice can estimate the result of the weighted spatiotem-

poral matching as

m̂ =
2kn− w(lnw − lnn0)

l
, (2.32)

where n = max(wA, wB). Assuming that εm ≥ 1, m̂ is an (ε, δ) estimation of m if

δ ≥
w(e

2kn
w − (1 + 2kn

w
))

l2ε2m2
. (2.33)

The proof of Theorem 2.5.4 is similar to that of Theorem 2.5.1 and is thus omitted

here.
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Privacy Analysis

The privacy guarantee of weighted spatiotemporal matching protocol under the pas-

sive approach is given as follows.

Theorem 2.5.5. Let BFB denote a w-bit Bloom filter Bob constructs on his converted

spatiotemporal profile Ψ′′B from epoch α to β using l functions from HB and k − l

functions unknown to Alice. After transmitting BFB and HB to Alice, his remaining

privacy of Ψ′′B against Alice is

E = λ(α + β − 1)E[i, j] , (2.34)

where

E[i, j] =
N∑
x=1

(
N

x

)
P xw(1− Pw)N−x log2 x,

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−
nk
w ,

n = max(wA, wB) .

(2.35)

The proof of Theorem 2.5.5 is given as follows.

Proof. Recall that Bob converts each of the elements in his profile to w new elements.

For each of the N possible cell indexes, say cID, Alice wants to test whether its

converted w elements cID||1, cID||2, . . . , cID||w are in Bob’s new profile Ψ′′B. Let

n = max(wA, wB). For each element cID||i, 1 ≤ i ≤ w, if there are at least l out of k

corresponding positions set to bit-1 in BFB, cID||i is considered in Bob’s new profile

Ψ′′B with probability P , where

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i , (2.36)

30



p = 1− (1− 1

w
)nk ≈ 1− e−

nk
w . (2.37)

For any cID, it is considered in Bob’s unconverted profile ΨB only if each of the

w elements has at least l corresponding bit-1 positions, and the probability is Pw.

Let Xi,j denote the number of candidate cell indexes. The remaining entropy for

interval i in epoch j is then log2Xi,j. Since Xi,j is randomly distributed in [1, N ]

(N = 4ξ−1), we have the mean remaining entropy for interval i in epoch j as

E[i, j] =
N∑
x=1

Pr(Xi,j = x) log2 x

=
N∑
x=1

(
N

x

)
P xw(1− Pw)N−x log2 x .

(2.38)

Assuming that the λ(β − α+ 1) intervals are independent from each other, the total

remaining entropy is given by

E =

β∑
i=α

λ∑
j=1

E[i, j] = λ(α + β − 1)E[i, j] . (2.39)

The privacy guarantee of weighted spatiotemporal matching protocol under the

active approach is given by the following theorem.

Theorem 2.5.6. Let BFB denote a w-bit Bloom filter Bob constructs on his converted

spatiotemporal profile Ψ′′B using l functions from HB and k − l functions unknown to

Alice. Assume we adopt level-ξ quantized After transmitting BFB and HB to Alice,

his remaining privacy of Ψ′′B against Alice is

E =

nA∑
x=0

(
nA
x

)
P xw(1− Pw)nA−x log2N

nB−x , (2.40)
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where nA and nB are the sizes of spatiotemporal profiles of Alice and Bob before

conversion, respectively,

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−
nk
w ,

n = max(wA, wB) .

(2.41)

The proof of Theorem 2.5.6 is given as follows.

Proof. Consider an arbitrary element in Alice’s profile ΨA as an example. Alice can

convert it to w elements as what Bob does. For each of the elements in Alice’s profile

ΨA, Alice wants to know whether it is a viable candidate in Bob’s profile ΨB by

testing whether each of its w converted elements results in at least l corresponding

bit-1 positions. Let n = max(wA, wB). Similar to Theorem 2.5.5, the probability that

each of the w elements has at least l corresponding bit-1 positions is Pw, where P is

the probability that at least l corresponding bit positions have been set to bit-1 and

is then given by

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i , (2.42)

p = 1− (1− 1

w
)nk ≈ 1− e−

nk
w . (2.43)

Let X denote the number of candidate elements in Bob’s profile ΨB. The mean

remaining entropy of Bob’s profile is

E =

nA∑
x=0

Pr(X = x) log2N
nB−x

=

nA∑
x=0

(
nA
x

)
P xw(1− Pw)nA−x log2N

nB−x .

(2.44)
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Overhead Analysis

Similar to the spatiotemporal matching protocol, the weighted spatiotemporal match-

ing protocol involves Alice and Bob each performing kn hash operations, where

n = max(wA, wB). The communication overhead mainly comes from the transmission

of one Bloom filter and is of w bits.

2.6 Performance Evaluation

In this section, we evaluate the two proposed protocols using simulations.

2.6.1 Simulation Settings

In the preliminary version of this chapter [139], we have shown that our protocol

incurs significantly lower computation and communication overhead than traditional

PSI-CA protocols [46, 56] based on computationally expensive public-key operations.

Our simulation studies here will focus on the impact of various parameters on the

accuracy and privacy of the spatiotemporal matching protocols.

We assume that the quantization is done on the level ξ = 6, i.e., N = 4ξ−1 =

1024. In addition, our experiments are on a Dell desktop with 2.67 GHz CPU, 9

GB RAM, and Windows 7 64-bit Professional, the evaluation program is written

in Java, and every data point represents the average of 1000 runs. As discussed, a

complete spatiotemporal matching involves Alice and Bob each initiating one protocol

execution, but we only show the results for one protocol execution for simplicity. In

addition, we set δ to 0.02, and ε is the relative error.

2.6.2 Simulation Results

Fig. 2.1a compares the estimated number of encounters m̂ with the actual number

of encounters m, when k = 20, l = 16, n = 1000, and w = 40000. We can see that
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Figure 2.1: The Estimation Accuracy of the Advanced Protocol.

the estimator in Eq. (2.1) is always biased. The reason is that traditional analysis

about the w-bit Bloom filter assumes that every bit position is set to bit-1 for any

of n elements with equal probability 1/w. In practice, however, the probability that

one position is set to bit-1 is not independent of other positions: when one position

is set to bit-1, it slightly reduces the probability that other positions are set to bit-1

[32, 33, 43]. Therefore, the actual number of bit-1 positions n1 in the Bloom filter is

a little smaller than that obtained via theoretical analysis, and the actual number of

bit-0 positions n0 in the Bloom filter is a little larger than that obtained via theoretical

analysis. Since m̂ = 2kn−w(lnw−lnn0)
l

, we can expect m̂ to be larger than the true value

m.

We resolve the biased estimation by letting m̂ = 2kn̂−w(lnw−lnn0)
l

, where n̂ =

ln(nA0/w)
k ln(1−1/w)

, nA0 is the number of bit-0 positions in BFA. Fig. 2.1b shows that this

new estimator is almost unbiased and matches well with m. The reason is that using

estimated number of elements n̂ instead of the real number of elements n = λ(β−α+1)

takes into account the above difference between observed and theoretical numbers of
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bit-0 and bit-1 positions. So we will use this modified estimator hereafter whose

effectiveness will be further evidenced.
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Figure 2.2: The Impact of l, the Number of Common Hash Functions.

Fig. 2.2 shows the impact of l (the number of common hash functions Bob chooses

to insert each of his elements) on the performance of advanced protocol, when n =

1000, m = 500, and k = 20. We can see from Fig. 2.2a that the more common hash

functions (i.e., larger l), the smaller the variance of the relative error |m̂A − m|/m

(i.e., the more accurate the estimation). The reason is that the more common hash

functions, the more common bit-0 positions in BFA and BFB, leading to fewer possible

Bloom filters for Alice and Bob, and the smaller estimation error variance, because

the estimation error mainly comes from the uncertainty of BFA and BFB.

In addition, the more common hash functions Alice and Bob share, the lower

the probability that a random location index having corresponding bits set to bit-1

by at least l out of k hash functions, and thus the lower remaining entropy left for

Bob’s location profile after Alice testing all possible location indexes. It is thus of no

surprise to see that Bob’s remaining privacy against Alice decreases with both l and

w.
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Figure 2.3: The Impact of n, the Cardinality of Profiles.

Fig. 2.3 shows the impact of n (the number of location indexes of each user) on the

performance of advanced protocol, when k = 20, w = 40000, and m = n/2. We can

see that as n increases, the relative error becomes larger. The reason is that when the

Bloom-filter length w is fixed, the more elements inserted, the fewer common bit-0

positions in BFA and BFB, the more possible Bloom filters for Alice and Bob, which

leads to higher estimation variance. In contrast, Bob’s remaining privacy increases

as n increases because the fewer bits-0 positions in BFA, the higher the probability

of a random location index having corresponding bits set to bit-1 by at least l out of

k known hash functions, and the higher remaining entropy for Bob’s location profile

from Alice’s point of view after testing all possible location indexes.

Fig. 2.4 shows the impact of w (the Bloom-filter length) on the performance of

advanced protocol, when k = 20, n = 1000, and m = 500. We can see that the

relative error decreases as w increases. This is because when the number of elements

n is fixed, increase in w leads to more common bit-0 positions. The more common

bit-0 positions, the fewer possible Bloom filters for Alice and Bob, and thus the

smaller estimation error variance. In addition, Bob’s remaining privacy against Alice
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decreases as w increases. The reason is that the longer the Bloom filter, the lower the

probability that a random location index having corresponding bits set to bit-1 by at

least l out of k known hash functions, and thus the lower remaining entropy left for

Bob’s location profile after Alice testing all possible location indexes.

Fig. 2.5 shows the impact of k (the total number of hash functions for Bloom filter

construction) on the performance of advanced protocol, when n = 1000, m = 500, and
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Figure 2.4: The Impact of w, the Length of the Bloom Filter.
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Figure 2.5: The Impact of k, the Total Number of Hash Functions.
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the ratios l/k and nk/w are both fixed. It is obvious that the relative error decreases as

k increases. The reason is that when k increases, l and w also increase proportionally

with fixed l/k and nk/w. Recall that the variance of the m̂ is inversely proportional

to w/l2 for fixed ρ (cf. Eq. (2.17)). As l increases, the variance of estimation error

decreases. In addition, Bob’s remaining privacy against Alice decreases as k increases.

The reason is that the probability that at least l bit positions have been set decreases

as k increases, which leads to lower remaining entropy.

From the above figures, a general conclusion we can draw is that there is an

inherent tradeoff between matching accuracy and spatiotemporal privacy: the more

accuracy Alice wants, the lower spatiotemporal privacy Bob can enjoy, and vice versa.

2.7 Related Work

In this section, we discuss work in several areas which is most germane to our

work.

There is some work on encounter-based matching [104, 105]. Manweiler et al.

[104] discussed the privacy concerns for some missed-connection sites, which allows

anonymous users to rediscover strangers that they ever encountered. In their follow-

on work [105], they proposed to let mobile users exchange spatiotemporal credentials

when encountering each other and later attempt to discover each other via a third-

party server which acts as a rendezvous point for the users. In contrast, our protocols

focus on a more general problem and are completely distributed without requiring

mobile users to interact with a third-party server in most scenarios.

Existing proposals for private matching can be generally classified into two cat-

egories. The first category such as [21, 84, 98, 98, 112, 117, 146, 161] assumes that

each participant’s personal profile consists of multiple attributes chosen from a public

set of attributes [161], which can be various interests [84], disease symptoms [98], or
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friends [21] in different contexts. Private matching is then converted into Private Set

Intersection (PSI) [75, 158], Private Set Intersection Cardinality (PSI-CA) [46, 56],

or their variations, whereby two mutually mistrusting parties, each holding a private

data set, jointly compute some function over the two sets without leaking any addi-

tional information to either party. The second category such as [49, 91, 92, 167, 173]

assumes that user profile can be modeled as a multi-dimensional vector, where each

element is an integer indicating the priority level, knowledge level [91], or interest

level [92] of users on the corresponding attribute. Private matching is then converted

into the secure computation of various functions over two vectors. Our work belongs

to the first category but does not rely on computationally expensive PSI-CA.

Private proximity testing aims at testing the physical proximity of two users at

some discrete time points in a privacy-preserving fashion. In [114], private proximity

test is reduced to private equality test based on some location tags often sent by

third parties, and the sketches of GSM location tags [93] are for efficient private

proximity test. In contrast, our protocols evaluate the proximity of two users for

any desired continuous time period. Moreover, our most efficient protocol does not

involve expensive cryptographic operations unlike [93, 114].

2.8 Summary

In this chapter, we motivate and formulate privacy-preserving spatiotemporal

matching as a fundamental primitive for supporting secure D2D communications.

We present a novel privacy-preserving spatiotemporal matching protocol and a novel

weighted privacy-preserving spatiotemporal matching protocol based on a novel use

of the Bloom filter. Detailed performance analysis and evaluation confirm the high

efficacy and efficiency of our solutions.

39



Chapter 3

SYNERGY: A GAME-THEORETICAL APPROACH FOR COOPERATIVE KEY

GENERATION IN WIRELESS NETWORKS

3.1 Introduction

Device-to-Device (D2D) communication is quickly emerging due to the ever-growing

popularity of powerful mobile devices and also the rapid advance in D2D technologies

[82]. In a typical D2D session, adjacent mobile devices can directly communicate

without involving a base station. The competing technologies for establishing D2D

connections include Bluetooth and WiFi-direct over the unlicensed band as well as

LTE-A over the licensed band. D2D communication is promising to enhance spectrum

efficiency and system throughput, enable efficient traffic offloading, improve energy

efficiency and network coverage, and stimulate excitingly new services.

A key challenge for advancing D2D communication is to secure a D2D connection

given the ease of malicious eavesdropping on wireless transmissions. One may think

about encrypting and authenticating the content sent over a D2D connection based

on a secret key shared between two mobile nodes. A conventional way for establishing

secret keys depends on each node owning a public-key certificate, but it is unlikely

to have a public-key certificate on every mobile node in the near future. Another

traditional method is through a trusted third party which may not exist in most

scenarios; even if there were one, heavily involving it may largely offset the benefits

from autonomous D2D communication.

It is more promising to generate a secret key directly from the wireless channel

between two mobile nodes. Specifically, according to the channel reciprocity theory,
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the channel responses between two wireless devices share some common randomness

which is unavailable and also unpredictable to any eavesdropper more than one-half

wavelength away from both devices. There have been some efforts (e.g., [23, 68, 107,

160]) whereby two mobile nodes can extract a secret key from such common channel

randomness. The resulting key is information-theoretically secure, and it can be

generated on demand and updated dynamically in line with time-varying and location-

dependent wireless channels [79]. In addition, there is no requirement for a trusted

third party or prior trust relationship between two mobile nodes. This PHY (short for

physical layer) approach is thus very suitable for secure D2D communication. The

rate at which secret bits are generated from the wireless channel heavily depends

on how fast the channel changes. In slowly changing wireless environments, the

key generation rate can be very low. This practical limitation is widely reported

[61, 68, 79] and may jeopardize the potential of PHY-based secret key generation in

D2D scenarios with high security demand.

Cooperative key generation [78, 79] is to improve the key generation rate of the

PHY approach by incorporating additional randomness. The main idea is to explore

some relay nodes in the vicinity of two target nodes and use the random channels

associated with these relay nodes as additional random sources for secret key gen-

eration between the two target nodes. The efficacy of cooperative key generation

is well analyzed and confirmed in various scenarios [78, 79]. The feasibility of this

technique is, however, still questionable, as mobile nodes are self-interested in nature

and typically reluctant to participate if they cannot get adequate benefit from the

cooperation.

We propose SYNERGY, a game-theoretical approach for stimulating cooperative

key generation in wireless networks. SYNERGY targets a multi-hop D2D communi-

cation scenario in which every node wishes to establish a secret key with at least one
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neighbor via the PHY approach. The underlying idea of SYNERGY is to partition

all the nodes involved into multiple disjoint coalitions. Every node in a coalition is

strongly motivated to help other nodes in the same coalition establish secret keys to

get help in return.

Our contributions can be summarized as follows. First, we are the first to study

incentive-aware cooperation key generation in wireless networks to the best of our

knowledge. Second, we formulate it as a coalitional game and devise an algorithm to

find the core solution. Third, we propose centralized and distributed implementations

for the core discovery algorithm. Finally, we show that SYNERGY is highly efficient

and effective through extensive simulations.

In what follows, Section 3.2 outlines the background for cooperative key gen-

eration in wireless networks. Section 3.3 gives the system and adversary models.

Section 3.4 presents a coalitional game formulation for incentive-aware cooperative

key generation and the algorithm for obtaining the core solution. Section 3.5 intro-

duces centralized and distributed implementations of SYNERGY and analyzes their

performance. Section 3.6 evaluates SYNERGY using simulations. Section 3.7 briefs

the related work. Section 3.8 summarizes this chapter.

3.2 Background

This section outlines the basics of PHY-based noncooperative and cooperative

secret key generation. Such background information is necessary for understanding

our work.

3.2.1 PHY-based Noncooperative Key Generation

Assume that two nodes Alice (A) and Bob (B) want to establish a shared secret

key via the wireless channel between them in the presence of an eavesdropper Eve (E).

42



Both Alice and Bob can transmit, while Eve only passively eavesdrops on wireless

transmissions to avoid being detected.

Key generation starts by Alice sending a signal XA. Then Bob and Eve will

receive YB = hABXA + nB and YE = hAEXA + nE, respectively. Next, Bob transmits

a signal XB, and Alice and Eve will receive YA = hBAXB+nA and YE = hBEXB+nE,

respectively. Here hAB, hAE, hBA, and hBE denote the channel gains from Alice to

Bob, from Alice to Eve, from Bob to Alice, and from Bob to Eve, respectively; nA,

nB, and nE are all commonly assumed to be zero-mean additive Gaussian noise with

variance σ2.

The wireless channel between Alice and Bob is assumed to be reciprocal, which

means that hAB ∼= hBA. In addition, assuming that Eve is more than one-half wave-

length away from Alice and Bob, hAB and hAE are thus uncorrelated, so are hBA and

hBE. Also assume that the channel response is a Gaussian random variable with zero

mean and variance σ2
1. According to [18], the optimal key generation rate is

RA,B =
1

T
I(h̃AB; h̃BA) =

1

2T
log2

(
1 +

σ4
1P

2T 2

4(σ4 + σ2σ2
1PT )

)
, (3.1)

where h̃AB denotes Bob’s estimate of hAB, h̃BA denotes Alice’s estimation of hBA,

I(h̃AB; h̃BA) denotes the mutual information [45] of h̃AB and h̃BA, T is the number of

symbols during which the channel gains are fixed (i.e., coherence time), and P is the

transmission power of each node.

3.2.2 PHY-based Cooperative Key Generation

Cooperative key generation [78, 79] via relay nodes is proposed to improve the

key generation rate of the above noncooperative approach. The underlying idea is

to explore the additional randomness brought by other nodes in the vicinity of Alice

and Bob. Consider the example in Fig. 3.1, where Charlie (C) and Dave (D) are two
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Figure 3.1: PHY-based Cooperative Key Generation. Dashed and Solid Lines Both

Denote Neighboring Relationships, and a Solid Line Additionally Means That the

Two Line Ends (i.e., Two Peer Nodes) Want to Establish a Secret Key.

common neighbors of Alice and Bob and thus can both serve as a relay. Coopera-

tive key generation involving one relay, say Charlie, consists of two steps: channel

estimation and key generation.

Channel Estimation

1. Alice sends a known sequence SA, from which Bob and Charlie estimate the

channel gains hAB and hAC as h̃AB and h̃AC , respectively.

2. Bob sends a known sequence SB, from which Alice and Charlie estimate the

channel gains hBA and hBC as h̃BA and h̃BC , respectively.

3. Charlie sends a known sequence SC , from which Alice and Bob estimate the

channel gains hCA and hCB as h̃CA and h̃CB, respectively.

Key Agreement

1. Alice and Bob establish a secret key KAB based on h̃AB and h̃BA. In addition,

Alice and Charlie establish on a secret key KAC based on h̃AC and h̃CA. Finally,

Bob and Charlie establish a secret key KBC based on h̃BC and h̃CB.
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2. Charlie broadcasts KAC⊕KBC , from which Alice and Bob each know both KBC

and KAC . If KAC is shorter than KBC , Alice and Bob set the final secret key

as KAB ‖ KAC and KAB ‖ KBC otherwise.

According to the result of [79], the optimal key generation rate of this cooperative

approach is

R
(C)
A,B =

1

T

{
min{I(h̃CA; h̃AC), I(h̃CB; h̃BC)}+ I(h̃AB; h̃BA)

}
. (3.2)

Similarly, if both Charlie and Dave act as relays, the optimal key generation rate

is given by [79]

R
(C,D)
A,B =

1

T

{
I(h̃AB; h̃BA) + min{I(h̃CA; h̃AC), I(h̃CB; h̃BC)}

+ min{I(h̃DA; h̃AD), I(h̃DB; h̃BD)}
}
.

(3.3)

We have two important remarks to make. First, the optimal key generation rates

given above are only in information-theoretical sense. In practice, any two nodes

involved have to generate a secret key from their channel estimates by following a

few steps in sequel, including quantization, information reconciliation, and privacy

amplification, as in [23, 68, 107, 160]. So the real key generation rates are usually

smaller. Second, it can be seen from our illustration above that the relay node(s)

know partial information about the eventual secret key. If this is a concern, a more

advanced and also complicated technique in [79] can be applied instead. Our proposed

SYNERGY can work with both techniques, but we focus on the basic technique above

to facilitate the presentation.

3.3 System and Adversary Models

We consider a multi-hop D2D scenario, in which every mobile node has at least

one mobile device ready for D2D communication via Bluetooth, WiFi-direct, LTE-A,
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or other available D2D technologies. To enable analytical tractability, we assume that

every node has the same transmission power and range. Mobile nodes are assumed to

be selfish and rational. By selfish, we mean that every node will not act as a relay to

help other nodes establish a secret key without a sound incentive. Our goal is to divide

the nodes into disjoint coalitions, in which every node assists others establishing a

secret key and also gets help from others in return. By rational, we mean that every

node in a coalition faithfully follows the protocol operations and collaborates with

others on key generation.

We consider the following adversary model commonly adopted for PHY-based

key generation [23, 68, 78, 79, 107, 160]. Specifically, the adversary only passively

eavesdrops on the wireless channel without actively jamming the channel. It is more

than one-half wave length away from any two neighboring nodes trying to establish a

secret key. Therefore, the adversary can only obtain the noisy versions of the wireless

transmissions between two target nodes, so it cannot directly construct the secret

key between them. For example, for wireless transmissions in the 2.4 GHz band, we

only require the adversary to be more than 6.25 cm away from target nodes. This

assumption is thus easily justifiable in practice. As in [78, 79], we assume that the

nodes serving as relays for secret key generation do not cooperate with the adversary

or other relays to obtain useful information about secret keys. There may be multiple

eavesdroppers, which are assumed to be independent from each other. How to deal

with collaborative eavesdroppers is still an open challenge.

3.4 SYNERGY: Cooperative Key Generation based on Social Reciprocity

As said, the key challenge for adopting cooperative key generation [78, 79] for D2D

communication is the natural self-interest of mobile nodes: nobody wants to spend

scarce system resources as a relay without getting adequate reward. We propose
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SYNERGY, the first known solution to this open challenge based on the powerful

theory of social reciprocity. The essential idea of SYNERGY is that a mobile node

can be strongly motivated to act as a relay for other nodes if it could also get help

in return to generate a secret key for itself. More specifically, SYNERGY partitions

a set of mobile nodes into disjoint coalitions, each comprising some nodes acting as

relays for others in cooperative key generation in order to improve their respective

key generation rate. The main design challenge for SYNERGY lies in the partitioning

rule for a given set of mobile nodes. In this section, we formulate this challenging

issue as a coalitional game and describe an algorithm to find the core solution to the

game.

3.4.1 Notation and Terms

We consider N mobile nodes denoted by N = {1, . . . , N} and define the following

terms to ease the illustration.

• Peer: Two nodes are said to be peers of each other iff they are physical neigh-

bors and want to establish a secret key. The two nodes are called a peer pair.

• Relay: A relay of a peer pair refers to a node which is their common neighbor

and helps them establish a secret key through cooperative key generation.

• Contributor: If either or both of two peers serves as a relay for another peer

pair, we say that the first peer pair is a contributor to the second pair.

We assume that each node has one and only one peer in any SYNERGY session, which

means that N is even. Due to the limited transmission range of mobile nodes, we

can view N as the vertex set of an undirected graph, where every edge corresponds

to two neighboring nodes. Assume that every peer pair has at least one common

neighbor as a candidate relay. Otherwise, the peer pair can only establish a secret key
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using noncooperative key generation and does not need to participate in SYNERGY

operations. Let Ci,j 6= φ denote the common neighbors of peers i and j. We further

assume that i and j can use no more than two relays (if any) from Ci,j 6= φ, and the

two-relay case can only occur when the two relays themselves compose a peer pair.

The extension of SYNERGY to more general cases is very challenging and left as

future work. For simplicity, we also assume that every node acts as a relay at most

once in a SYNERGY session.

1 2

3

4

5
6

7

8

9 10

11
12

Figure 3.2: An Exemplary Multi-hop D2D Scenario, Where Dashed and Solid Lines

Both Denote Neighboring Relationships, and a Solid Line Additionally Means That

the Two Line Ends (i.e., Two Peer Nodes) Want to Establish a Secret Key.

As an example, we have N = {1, . . . , 12}, C1,2 = {4}, C4,5 = {2, 9}, C9,11 =

{8, 10, 12}in Fig. 3.2. Peers 9 and 11 can potentially use nodes 10 and 12 as two

relays because nodes 10 and 12 also form a peer pair. In contrast, peers 4 and 5 can

have at most one relay, either node 2 or 9.
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3.4.2 Coalitional Game Formulation

In game theory, a coalitional game refers to a game where a competition is between

coalitions of players instead of between individual players [110]. It is thus a very

natural tool for incentive-aware cooperative key generation.

Our coalitional game formulation relies on a special trick. We introduce a virtual

node (denoted by `i,j) for every peer pair i and j, as shown in Fig. 3.2. Note that we

have `i,j = `j,i. Now consider any other virtual node `s,d (i 6= j 6= s 6= d). If either or

both of s and d act as a relay for peers i and j, we say that `s,d contributes to `i,j.

Since every peer pair can be assumed to have a common interest in improving their

key generation rate, we can use the N/2 virtual nodes as the game players rather

than the N real nodes.

What is the most preferred contributor of every virtual node `i,j, or equivalently

the most preferred relay of peers i and j? Recall that the optimal key generation

rates with one relay and two relays are given in Eq. (3.2) and Eq. (3.3), respectively.

To answer the preceding question, let Li,j denote the set of potential contributors to

`i,j. For example, we have L4,5 = {`1,2, `9,11} in Fig. 3.2. Consider any virtual node

in Li,j, say `s,d. It contributes one potential relay to Li,j if only one of s and d is a

common neighbor of i and j and two potential relays if both s and d are a common

neighbor of i and j. Accordingly, we define the key-rate function of `i,j with regard

to any potential contributor `s,d ∈ Li,j as

R̂s,d
i,j =


R

(s)
i,j ∀s ∈ Ci,j, d /∈ Ci,j

R
(d)
i,j ∀s /∈ Ci,j, d ∈ Ci,j

R
(s,d)
i,j ∀s, d ∈ Ci,j .

(3.4)

The most preferred virtual node or contributor of `i,j can then be defined as r∗i,j =

argmax
`s,d∈Li,j

R̂s,d
i,j .
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Based on the concepts above, we now formulate incentive-aware cooperative key

generation as a coalitional game Ω = 〈L,XL,Θ, (�i,j)`i,j∈L〉 as follows.

• Players: L denotes the set of game players consisting of all the N/2 virtual

nodes.

• Strategies: XL denotes the set of feasible cooperation strategies (i.e., contrib-

utor selections) for all the players. We denote the contributor chosen by any

player `i,j ∈ L by ri,j ∈ L. It follows that XL = {ri,j|ri,j ∈ L,∀`i,j ∈ L}.

• Characteristic function: Every virtual node in every coalition S ⊆ L se-

lects one and only one other virtual node in S as a contributor. In addi-

tion, every virtual node outside S cannot get an contributor from L. There-

fore, the characteristic function for every coalition S ⊆ L can be denoted as

Θ(S) =
{
{ri,j}`i,j∈S = {`i,j}`i,j∈S , {ri,j = `i,j}`i,j∈L\S

}
.

• Preference order: If a virtual node `i,j ∈ L chooses to compare the perfor-

mance of any two virtual nodes in Li,j, say `s1,d1 and `s2,d2 , its preference order

is defined as `s1,d1 �i,j `s2,d2 if `s1,d1 is determined to have better performance.

Here the performance refers to the key generation rate defined in Eq. (3.2) for

one relay or in Eq. (3.3) for two relays.

Similar to Nash equilibrium in a non-cooperative game, the core plays an essential

role in a coalitional game. Generally speaking, the core refers to a set of cooperation

strategies such that no coalition can deviate and improve for all its members by

cooperation within the coalition [110]. The core of our game Ω is a set of contributor

selection strategies ri,j ∈ Θ(L) where there are no coalition S and r̃i,j ∈ Θ(S) such

that r̃i,j �i,j ri,j for all `i,j ∈ S. It means that no improvement on the key generation

rate can be made by cooperation within the coalition S. We can prove the existence
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of a core solution to game Ω. Due to space limitations, we omit the proof here and

refer interested readers to [136] for details.

3.4.3 Core Discovery Algorithm

This section introduces our core discovery algorithm. For this purpose, we first

introduce two concepts as follows.

Definition 3.4.1. (Coalitional Subgame) Given a coalitional game Ω = 〈L,XL,Θ,

(�i,j)`i,j∈L〉, we call a coalitional game Ψ = 〈M,XM,Θ, (�i,j)`i,j∈M〉 a coalitional sub-

game of Ω iff M⊆ L and M 6= ∅.

Definition 3.4.2. (Contributor Cycle) Given a coalitional subgame Ψ = 〈M,XM,

Θ, (�i,j)`i,j∈M〉, a sequence of virtual nodes, (`i1,j1 , . . . , `iH ,jH ), is called a contributor

cycle of length H if and only if rix,jx = `ix+1,jx+1 for ∀x ∈ [1, H−1] and riH ,jH = `r1,j1.

A contributor cycle of length one clearly contains a single virtual node, which

means that the two mobile nodes forming this virtual node cannot find a relay and

thus should directly generate a secret key using noncooperative key generation in

Section 3.2.1. In contrast, a contributor cycle of length H ≥ 2 means that every

virtual node in the contributor cycle has its most preferred contributor as the next

virtual node of the same cycle in the circular fashion. Every contributor cycle thus

corresponds to a coalition, in which the mobile nodes involved are reciprocal for key

generation.

Our core discovery algorithm is to iteratively identify all the contributor cycles

which form a core solution. We achieve this by first constructing a directed graph

G = (L, E), where a directed edge from any vertex `i,j to another vertex `s,d exists

if and only if `s,d is the most preferred contributor of `i,j, i.e., r∗i,j = `s,d. Recall

that every virtual node can choose at most one contributor, which corresponds to
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at most two relays. The outdegree of every vertex G is thus one if it has at least

one candidate contributor and zero otherwise. The problem of discovering all the

contributor cycles or the core solution can then be translated into simple-cycle search

in G. In particular, a path in a graph refers to a sequence of edges which connect

a sequence of vertices, a cycle is a path with the same start and end vertices, and a

cycle with no repeated vertices or edges except the start and end vertices is called a

simple cycle. Since every vertex in G corresponds to a virtual node, a simple cycle is

equivalently a contributor cycle. So we can denote a simple path of H vertices by a

contributor cycle of H virtual nodes as (`i1,j1 , . . . , `iH ,jH ). If there is a simple path of

H = |L| = N/2 vertices, all the N/2 virtual nodes or N mobile nodes are in a single

coalition. In contrast, any simple path of one vertex (i.e., a self contributor cycle)

means that the two mobile nodes related to the vertex do not use any relay for secret

key generation. The following proposition underlies our simple-cycle (contributor-

cycle) search algorithm.

Proposition 3.4.1. A simple path beginning from any vertex in the directed graph

G results in one and only one simple cycle.

Proof. It is easy to prove that a simple path beginning from any vertex in G must lead

to a simple cycle, as otherwise there must be infinite vertices in G. Now we prove the

uniqueness of the resulting simple cycle. If multiple simple cycles exist, there must

be at least one vertex whose outdegree is larger than one. This contradicts with the

property of G that the outdegree of every vertex is no more than one.

Another way to interpret Proposition 3.4.1 is that every vertex (virtual node) in

G is on one and only one contributor cycle, possibly a self cycle involving itself only.

Then we can discover all the contributor cycles and thus implement the core solution

to game Ω as follows. Initially, all the vertices in G are marked unvisited. We can
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start a walk from any unvisited vertex, say `i,j, until when the walk either hits an

visited vertex or returns to `i,j. In the former case, `i,j is marked visited and forms a

self contributor cycle. If the later case occurs, a new contributor cycle is found, and

all the vertices on the cycle are marked visited. This process continues until either

when all the vertices in G are marked visited or when none of the remaining unvisited

vertices can be the start of a walk towards unvisited vertices. In the later case, we

mark all the remaining vertices visited and terminate the algorithm.

3.5 Implementations

In this section, we present C-SYNERGY and D-SYNERGY, two protocols to

implement SYNERGY in centralized and distributed fashions, respectively. We also

analyze the security, computational overhead, and communication overhead of C-

SYNERGY and D-SYNERGY.

3.5.1 C-SYNERGY: A Centralized Implementation

In C-SYNERGY, every peer pair reports its own preference order to a single server

which computes all the contributor cycles and returns each to the corresponding

nodes. The server can be a base station if available or a mobile node elected from

the mobile nodes themselves. It is worth emphasizing that the server merely does the

computation and does not participate in cooperative key generation in the server’s

role. So it is blind to the final secret key of any peer pair.

Detailed Operations

Recall that N = {1, . . . , N} denote the N nodes involved. C-SYNERGY works as

follows.
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1. Every node i ∈ N locally broadcasts a hello message including its ID and also

records the IDs in received hello messages. Let Ci denote the neighbor IDs of

node i.

2. Every two neighboring nodes estimate the channel response between them by

exchanging probe messages. The estimated variance is needed for deriving the

optimal key rates according to Eq. (3.2) or Eq. (3.3).

3. Every two peers, say i, j ∈ N , exchange Ci and Cj to identify their common

neighbors as Ci,j = Ci ∩ Cj.

4. Every node i ∈ N locally broadcasts its peer ID and also records the peer ID of

every neighbor. The peer IDs allow i and its peer j to learn their local topology

and the associated peer pairs, based on which to construct the list of candidate

contributors, i.e., Li,j.

5. Every two peers, say i, j ∈ N , compute the optimal key rate for each candidate

contributor in Li,j based on Eq. (3.4). Then they determine the most preferred

contributor which is reported by either of them to the server.

6. The server applies the core discovery algorithm in Section 3.4.3 on the received

information to compute all the contributor cycles and finally returns every con-

tributor cycle to each node in that cycle.

7. The nodes in every contributor cycle work together to derive their respective

secret key as in Section 3.2.2.

An Example

We shed more light on C-SYNERGY using the example in Fig. 3.2, where every two

peers i, j are represented with a solid line and annotated by the corresponding virtual
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node `i,j. Every two peers jointly determine the preference order for their candidate

contributors. We assume that the preference orders are as given in Table 3.1. For

instance, `1,2 has only node 4 as a candidate relay, so its most preferred relay (or

contributor) is simply node 4 (or virtual node `4,5). In addition, `9,11 has a preference

order 8 � (12, 10), which means that it prefers node 8 as a relay and equivalently

virtual node `3,8 as a contributor.

Table 3.1: A Preference-order Table, Where (i, j) Means Both i and j Serve as a

Relay for the Corresponding Virtual Node.

Virtual Node Preferred Real Node Preferred Virtual Node

`1,2 4 `4,5

`3,8 4 `4,5

`4,5 2�9 `1,2 � `9,11

`9,11 8�(12,10) `3,8 � `10,12

`10,12 (9,11) `9,11

`6,7 10 `10,12

Based on the received preference orders, the server applies the core discovery

algorithm in Section 3.4.3 to derive the contributor cycles. Specifically, the server first

constructs a directed graph with six vertices {`1,2, `3,8, `4,5, `9,11, `10,12, `6,7}. Since `4,5

is reported as the most preferred contributor of `1,2, the server adds an edge from `1,2

to `4,5 in G. Other edges of G are added similarly. The resulting graph G is shown

in Fig. 3.3(a). In iteration 1, the server identifies one contributor cycle (`1,2, `4,5) and

removes it from G. The modified graph is shown in Fig. 3.3(b). In iteration 2, the

server identifies a self cycle consisting of `3,5 only and also removes it. Subsequently,

a cycle (`9,11, `10,12) is identified in iteration 3, and a self cycle containing `6,7 only is

55



identified in iteration 4. Therefore, there are four contributor cycles or coalitions in

total, including (`1,2, `4,5), (`3,5), (`9,11, `10,12), and (`6,7). Finally, the server returns

every contributor cycle to every node involved in that cycle. The mobile nodes can

then determine which nodes they can use as a relay and whom they should act as a

relay for. For example, nodes 9 and 11 use both nodes 10 and 12 as a relay, and nodes

10 and 12 use both nodes 9 and 11 as a relay. They can all assure that collaborating

with each other is the best strategy to improve their respective key generation rate.

(a) (b)

(c) (d)

Figure 3.3: Illustration of Contributor Cycle Discovery.

3.5.2 D-SYNERGY: A Distributed Implementation

D-SYNERGY enables the mobile nodes to discover the core solution (or contrib-

utor cycles) in a purely distributed fashion. To emulate centralized core discovery in

C-SYNERGY, D-SYNERGY also works in iterations. Every iteration is initiated by

a mobile node not in any identified contributor cycle, and a new contributor cycle

is identified in every iteration. D-SYNERGY terminates when every node in N is

included in a contributor cycle.
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Detailed Operations

We introduce two binary flags fi and vi for each node i ∈ N . Referred to as an

inclusion flag, fi is initially zero and permanently set to one after a contributor cycle

including i is discovered. In contrast, vi is called a visit flag and equals zero if node

i has not been included in any contributor cycle at the beginning of an iteration.

It is set to and remains one when node i receives a core-discovery message in an

iteration. In addition, vi remains one after node i is included in any contributor

cycle. D-SYNERGY works as follows.

1. All the mobile nodes in N act according to the first five steps of C-SYNERGY.

2. An iteration starts when any node i ∈ N with fi = 0 broadcasts a BUSY

message. The BUSY message reaches other nodes in N in a hop-by-hop fash-

ion. Every node resets its visit flag to zero after seeing the BUSY message

unless its inclusion flag is one. Multiple nodes may try to initiate an iteration

simultaneously, in which case the one with a smaller ID always wins.

3. Node i then sends a REQi message to its peer, say node j, and also the most

preferred relay. Then i and j sets vi = 1 and vj = 1, respectively.

4. Any node s 6= i may receive REQi from its peer or a node considering it the most

preferred relay. In the former case, node s does nothing other than recording

REQi and setting vs = 1, as its peer has taken care of REQi. This operation

is designed because s and its peer form a single virtual node in the directed

graph G used in C-SYNERGY. So we let node s and its peer have synchronized

internal states to emulate a single virtual node in G. In the latter case, node s

does the following operations in sequel.
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• If fs = 1, node s sends a REJ message to the node who sent it REQi.

The receiver of a REJ message then sends REQi to its next most preferred

relay. If all its candidate relays respond with a REJ message, it returns a

REJ message to its own neighbor which sent it REQi. If i gets REJ from

all its candidate relays, it sets fi = 1, notifies its peer j to set fj = 1, and

broadcasts an EXIT message to terminate this iteration. In this case, i and

j have to establish a secret key without using any relay, which corresponds

to the case that the virtual node `i,j in G belongs to a self contributor

cycle containing `i,j only.

• If fs = 0 and vs = 1, node s checks whether it has seen REQi before. If so,

a new contributor cycle is discovered. Node s then notifies every node in

this contributor cycle which can be obtained from REQi. Subsequently, all

the nodes in the contributor cycle set their inclusion flag to one. Finally,

node s broadcasts an EXIT message to terminate this iteration.

• If fs = 0 and vs = 0, node s appends s and its peer ID d to REQi,

sets vs = 1, and then sends the modified REQi to node d and also most

preferred relay.

D-SYNERGY terminates when all the nodes in N have their inclusion flags set

to one.

An Example

We still use the example in Fig. 3.2 and the preference orders in Table 3.1 to clarify

D-SYNERGY.

Assume that node 9 starts the first iteration, in which the inclusion flags {fi}12
i=1

and visit flags {vi}12
i=1 are all zero initially. Node 9 sends REQ9 to its peer (node 11)
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and its most preferred relay (node 8). Then nodes 9 and 11 set f9 = 1 and f11 = 1,

respectively. After receiving REQ9, node 8 finds that f8 = 0 and v8 = 0. So node 8

sends 〈REQ9 ‖ (3, 8)〉 to its peer (node 3) and most preferred relay (node 4). Next,

nodes 8 and 3 set v8 = 1 and v3 = 1, respectively.

After receiving REQ9 ‖ (3, 8), node 4 finds that f4 = 0 and v4 = 0. So node 4

sends 〈REQ9 ‖ (3, 8) ‖ (4, 5)〉 to its peer (node 5) and most preferred relay (node 2).

Next, nodes 4 and 5 set v4 = 1 and v5 = 1, respectively. Similarly, node 2 sends

〈REQ9 ‖ (3, 8) ‖ (4, 5) ‖ (1, 2)〉 to its peer (node 1) and most preferred relay (node 4).

Also, nodes 2 and 1 set v2 = 1 and v1 = 1, respectively.

After receiving 〈REQ9 ‖ (3, 8) ‖ (4, 5) ‖ (1, 2)〉, node 4 finds that f4 = 0 and

v4 = 1. In addition, it has seen REQ9 before, so there is a contributor cycle including

peer pairs (4, 5) and (1, 2), which can also be represented by virtual nodes (`1,2, `4,5).

Then node 4 broadcasts the contributor cycle and an EXIT message to all the other

nodes. Subsequently, the nodes 1, 2, 4, and 5 all have their inclusion flag set to one.

Finally, all the remaining nodes, i.e., {3, 8, 9, 11, 6, 7, 10, 12}, set their visit flag to

zero and enter the next iteration. This process continues until finding three other

contributor cycles as (`3,5), (`9,11, `10,12), and (`6,7).

3.5.3 Performance Analysis

In this section, we analyze the security, computational overhead, and communi-

cation overhead of SYNERGY (C-SYNERGY and D-SYNERGY).

Security Analysis: The security of the generated secret key is first guaranteed

by the key generation process introduced in Section 3.2.2. The generated secret

key is provably secure from any eavesdropper who experiences an independent wire-

less channel from the legitimate nodes [79]. In addition, neither C-SYNERGY nor

D-SYNERGY discloses any secret-key information to eavesdroppers. Although eaves-
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droppers might overhear the candidate relay nodes and the preference order of each

peer pair who want to establish a secret key, they cannot be in the proximity of any

legitimate node and thus still cannot extract any useful information from the wire-

less channel. Furthermore, although a relay node knows partial information about a

secret key, it is blind to the rest information tied to the wireless channel between the

peer nodes it assists. As note that SYNERGY can be easily adapted to work with

the most advanced cooperative key generation technique in [79] such that the relay

nodes know nothing about the final secret key. We finally want to point out that

C-SYNERGY and D-SYNERGY are both vulnerable to active attacks on modifying

the information exchange to and from every mobile node. Such active attacks can be

mitigated, e.g., by authenticating the exchanged information using a temporal group

key chosen by any involved node. Same as all previous work on PHY-based secret

key generation, we focus on passive eavesdropping attacks in this chapter. A detailed

treatment of active attacks is beyond the scope of this chapter.

Computational Overhead: SYNERGY’s computational overhead is mainly in-

curred in the process of discovering the contributor cycles or the core solution. In par-

ticular, according to the description of the core discovery algorithm in Section 3.4.3,

we can easily see that the computation complexity of SYNERGY is O(|Lj|) at jth

iteration, where |Lj| denotes the number of virtual nodes involved in the jth iteration.

Therefore, the overall computation complexity for all J iterations is O(
∑J

j=1 |Lj|).

Although |Lj| and J depend on many factors and cannot be precisely determined, we

can estimate the lower and upper bounds for the computational complexity. Specifi-

cally, the lower bound isO(N) which is achieved when all theN/2 virtual nodes form a

single contributor cycle in the first iteration. In contrast, the upper bound is attained

if every virtual node is fond to form a self contributor cycle, leading to N/2 iterations

in total. This corresponds to an upper bound O(
∑J

j=1 |Lj|) = O(
∑N/2

i=1 i) = O(N2).
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The computations are performed at a single server in C-SYNERGY and distributed

over mobile nodes in D-SYNERGY.

Communication Overhead: The communication overhead of two SYNERGY im-

plementations is different. Specifically, the communication overhead of C-SYNERGY

is mainly incurred in channel estimation, neighbor discovery, and communication be-

tween mobile nodes and the server. It can be estimated by O(Ñ2), where Ñ is the

average number of neighbors every node has. In addition to the above overhead, D-

SYNERGY incurs some message overhead in the distributed core-discovery phase. Its

communication overhead can be lower-bounded by O(N), which occurs when all the

virtual nodes form a contributor cycle in one iteration, and upper-bounded by O(N2),

which is incurred when each iteration produces a self cycle containing a unique virtual

node. Therefore, the overall communication overhead of D-SYNERGY is larger than

that of C-SYNERGY. So we can prefer C-SYNERGY to D-SYNERGY unless a base

station does not exist, and no mobile node can be elected as a server.

3.6 Performance Evaluation

In this section, we evaluate the performance of C-SYNERGY and D-SYNERGY

via Matlab simulations. The simulation strategy and settings are as follows. We

consider a square region with a side length of D meters. We randomly deploy N

nodes in the square region and assume that the transmission range of each node is a

circle of radius A meters. We set coherent time T = 20 symbols, and the Gaussian

noise variance σ2 = 1. Then the channel variances between every two neighboring

nodes are set to be a random variable with uniform distribution. In addition, we

randomly select two nodes within each other’s transmission range as a peer pair to

establish a secret key. Each point in the following figures represents the average value
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of 1000 runs. Since the results for C-SYNERGY and D-SYNERGY are the same in

Figs. 3.4∼3.7, we do not differentiate them there.
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Figure 3.6: Average Key

Rate for D = 300 m.

Fig. 3.4 illustrates the impact of SNR on the optimal key rates with no relay,

with one relay, and with two relays. The first case corresponds to non-cooperative

key generation, and the later two cases correspond to SYNERGY (cooperative key

generation). In this set of simulations, we fix the region side length D = 200 m and

set the transmission range of each node large enough to cover the whole square region.

Besides, we fix the number of users to N = 20 and increase SNR from 1 to 20 dB.

From Fig. 3.4, we can clearly see that as SNR increases, the optimal key rates of the

three cases all increase. This is anticipated because the key generation rate increases

with the transmission power according to Eqs. (3.1)∼(3.3). Moreover, the optimal

key rate of SYNERGY always outperforms non-cooperative key generation, and it is

always better to use two relays (if any) than using one relay. This is also as expected

because the more relays, the more common channel randomness available for secret

key generation.

Fig. 3.5 demonstrates the impact of the average number of nodes on the optimal

key rate. In this set of simulations, we fix SNR = 20 dB, the transmission range of

each node to 200 m, and the region side length to D = 200 m. We also vary the
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number of nodes from N = 10 to 100. We can observe that the optimal key rate of

SYNERGY is much higher than that of non-cooperative key generation. In addition,

the optimal key rate of non-cooperative key generation is almost stable along with the

increase of users, as it only depends on the channel condition between two peer nodes

who want to generate a secret key and does not rely on any other node. In contrast,

the more nodes in a fixed region, the more candidate relay nodes available for two

peer nodes. So we can observe that the optimal key rate of SYNERGY increases with

the number of users.

Fig. 3.6 shows the impact of the average number of neighbors on the optimal key

rate when the region side length is D = 300 m. Other simulation settings are the same

for generating Fig. 3.5, so the entire region is larger than every node’s transmission

range. We have almost the same observations as in Fig. 3.6 due to the same reason.

In addition, the optimal key rate of SYNERGY in Fig. 3.6 is always lower than that

in Fig. 3.5 for the same N , as the larger the region, the less likely that two peer nodes

can find a common neighbor as a relay node. Another observation is that the gap

between the optimal key rates of the one-relay and two-relay cases becomes smaller in

contrast to Fig. 3.5. The reason is that a larger region makes it more difficult for two

peer nodes to find two common neighbors as two relay nodes who themselves need

to be two peer nodes as well according to our requirement in SYNERGY. Moreover,

when there are fewer than 20 users, the optimal key rate of SYNERGY is only slightly

better than non-cooperative key generation, as most peer pairs cannot find a relay

in their common transmission range. Finally, it is still better to use two relays than

using one relay in SYNERGY.

Fig. 3.7 shows the impact of the number of nodes on the average number of

operations for discovering all contributor cycles. In this set of simulations, we fix

SNR = 20 dB and each node’s transmission range to 200 m. As we can see, the
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average number of operations needed increases almost linearly with number of nodes.

Since the overall computational overhead of SYNERGY is dominated by contributor-

cycle discovery, this result confirms the high computational efficiency of SYNERGY.

As said, the computational overhead of SYNERGY is incurred at a single server in

C-SYNERGY but distributed over the N mobile nodes in D-SYNERGY. In addition,

we compare the average number of operations needed when the region side length

D = 200 m, 300 m, and 400 m. For a fixed number of nodes, the larger the region, the

fewer common neighbors and thus candidate relay nodes every two peer nodes have,

the fewer edges in the graph G composed of virtual nodes, and the fewer operations

needed for contributor-cycle discovery. This conjecture is confirmed in Fig. 3.7.

Fig. 3.8 demonstrates the impact of the number of nodes on the communication

overhead of C-SYNERGY. In this set of simulation, we fix SNR = 20 dB and each

node’s transmission range to 200 m. The communication overhead lies in the mes-

sages for neighbor discovery, channel estimation, and communicating with the server.

The total number of messages and thus the communication overhead obviously would

increase with the number of nodes, as shown in Fig. 3.8. For a given number of

nodes, the larger the region, the fewer neighbors each node has, and the fewer mes-

sages needed for neighbor discovery and channel estimation. So we can see that
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the communication overhead of C-SYNERGY decreases as the region side length D

increases.

Fig. 3.9 illustrates the impact of the number of nodes on the communication over-

head of D-SYNERGY under the same simulation settings for Fig. 3.8. The simulation

results show the similar trend in Fig. 3.8 due to the similar reason. One point we

want to point out is that a larger region for a given number of nodes can decrease

the likelihood that two peer nodes find a relay node in their common communication

range, leading to possibly fewer edges between virtual nodes in the directed graph

G. As such, the number of messages incurred in channel estimation and distributed

relay-cycle discovery is likely to be reduced. This factor also contributes to the re-

duced communication overhead in Fig. 3.9 as the region side length D increases.

Furthermore, D-SYNERGY has higher communication overhead than C-SYNERGY

due to distributed contributor-cycle discovery, but it does not need a base station or

an elected node as a server doing centralized computation.

As a summary of the above simulation results, the more neighbors each node has,

the higher the optimal key generation rate, and the higher the computational and

communication overhead of SYNERGY. There is thus an inherent tradeoff between

the key generation rate and the associated computational/communication overhead.

3.7 Related Work

In this section, we briefly discuss some work most germane to SYNERGY, which

is divided into two categories.

Secret Key Generation from Wireless Channels. There has been tremendous

effort on exploring the channel reciprocity to establish a secret key between two mobile

nodes. For example, the work in [68] focuses on using spatial and temporal variations

of the wireless channel, while [160] focuses on exploring multi-antenna diversity for
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secret bit extraction. The work in [95] aims at group key establishment in star

and chain networks, and the work in [99] targets secret key establishment in body

area networks. The channel information used in [68, 95, 99, 160] is RSS (Received

Signal Strength). In contrast, the work in [107] tries to extract a secret key from the

channel response between two wireless devices. There is also research on using the

phase change of received signals for secret key generation in UWB systems [150] and

OFDM systems [125], respectively. This line of work [68, 95, 99, 107, 125, 150, 160]

can be regarded as different realizations of the information-theoretical approach in

[18] and lead to different approximations to the optimal key rate in Eq. (3.1). In

addition, this line of work [68, 95, 99, 107, 125, 150, 160] belongs to non-cooperative

key generation, as only the direct wireless channel between two wireless devices is

explored. As such, the key generation rate in [68, 95, 99, 107, 125, 150, 160] can be

very low in slowly changing wireless environments. In contrast, SYNERGY has a

different focus on stimulating mobile nodes in helping others establish a secret key to

get help in return. Once SYNERGY identifies the contributor cycles, the techniques

in [68, 95, 99, 107, 125, 150, 160] can all be adopted to establish a secret key between

two mobile nodes as well as between each node and each of their relays. The resulting

keys can finally be combined to produce the actual secret key between the two nodes,

as illustrated in Section 3.2.2.

Cooperative key generation [78, 79, 172] is a relatively new research topic. The

work in [78, 79] investigates relay-assisted strategies to improve the key generation

rate by incorporating additional randomness brought by the relay nodes who are the

common neighbors of two mobile nodes under consideration. In addition, the work

in [172] studies secret key generation in a two-way relay channel, where there is no

direct wireless channel between two mobile nodes who want to establish a secret key.

A critical issue that has been overlooked in [78, 79, 172] is that mobile nodes are
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selfish in nature and will not act as relays for others without adequate reward in

return. SYNERGY fills this great void.

Cooperative Communication via Social Reciprocity. SYNERGY is motivated

by the recent work on cooperative communication [39]. Specifically, the work in [39]

targets a multi-hop D2D communication scenario, in which each node can choose to

serve as a relay for other nodes. A novel coalitional game-theoretical framework is

developed to design cooperation strategies based on social trust and social reciprocity.

The authors prove the existence of a core solution and propose a mechanism to im-

plement the core solution by identifying reciprocal cycles, each of which contains the

nodes motivated to act as relays for others in the same cycle. In contrast to [39],

SYNERGY focuses on cooperative key generation, a very different problem. In addi-

tion, the game formulation in [39] cannot be directly applied, as each game player in

our scenario corresponds to two nodes instead of one as in [39]. Moreover, each node

in [39] can use at most one relay node in its vicinity, while each node in SYNERGY

can use two relays to achieve a higher key generation rate than using one relay.

3.8 Summary

In this chapter, we study secret key establishment, a fundamental challenge for

securing D2D communication. We propose SYNERGY, a game-theoretical approach

for stimulating PHY-based cooperative key generation in wireless networks as the

first work of its kind. In SYNERGY, incentive-aware cooperative key generation is

formulated as a coalitional game. We design centralized and distributed protocols

for finding a core solution to the coalitional game. With SYNERGY in place, selfish

mobile nodes are strongly motivated to collaborate with others in the same coalition to

improve their respective key generation rate. The efficacy and efficiency of SYNERGY

have been confirmed by extensive simulations.
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Chapter 4

SECUREFIND: SECURE AND PRIVACY-PRESERVING OBJECT FINDING

VIA MOBILE CROWDSOURCING

4.1 Introduction

The loss and recovery of physical objects is a significant issue around the world.

Here an object can refer to anything valuable such as personal assets, children, elderly

with dementia, and pets. For example, about 800,000 US children are reported lost

each year [1], 113 cell phones are lost/stolen every minute in the US [2], and 19,000

items are lost every year by New York subway and bus riders [2]. The predominant

method for recovering lost objects is through a lost-and-found place, where lost objects

are turned in and returned to their owners with proper identification. Many (if not

most) lost objects, however, may not be found or turned in, and the object owner

may not know which of the possibly many lost-and-found places he should resort

to. The recovery rate for lost objects is thus very low. For instance, University of

California Police reported only 19.3% of lost items recovered [2]. In addition, the

recovery latency of this traditional method may be too long to be useful. As an

example, by the time a lost object is found and turned in to an airport office, the

object owner may have departed to a different city or country.

The plummeting cost and ultra-low energy consumption of Bluetooth tags make

them very promising to revolutionize the lost-and-found service. In contrast to RFID

tags, Bluetooth tags can directly communicate with any mobile device with a Blue-

tooth tag or interface within a long communication range up to 160 ft. Besides,

Bluetooth tags can be used continuously for one year without changing the battery
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[3, 4] by adopting the Bluetooth Low Energy (Bluetooth LE) technique, and they

only cost several dollars which are often negligible in comparison with the value of

lost objects. In the lost-and-found context, a cheap and miniature Bluetooth tag can

be attached to every valuable object and contain its owner’s identification informa-

tion. Once finding his object missing, the owner can use his mobile device to search

for the corresponding tag. If the tag gets queried, it can report its location or sound

an alert to be located. There are growing commercial Bluetooth-based products for

locating personal assets, such as Tile [3], BlueBee [5], and StickNFind [4]. These at-

tractive products, however, often require that a lost object be sufficiently close to the

searching device. For example, BlueBee tags [5] and StickNFind tags [4] support up

to 160 ft and 100 ft, respectively. This inherent range limitation makes it infeasible

to recover the lost objects far away from their owners.

A promising solution to overcoming the above range limitation is via mobile

crowdsourcing, which refers to the practice of obtaining needed services or data by

soliciting contributions from many mobile users. The emergence of mobile crowd-

sourcing is driven by the skyrocketing growth of mobile devices. For example, the

number of mobile connected devices such as smartphones, tablets, laptops, eRead-

ers, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding

the world’s projected population at that time (7.8 billion) [10]. Ubiquitous mobile

devices can jointly sense and interact with the physical world at an unprecedented

scale, thus enabling many otherwise infeasible applications [131, 166]. One can imag-

ine a service provider offering the object-finding service. An object owner submits an

object-finding request as a tag query to the service provider, which in turn forwards

the query to selected mobile users referred to as mobile detectors hereafter. Every

detector then locally broadcasts the query. The tag on the lost object responds to

any such query, and the corresponding detector finally sends the tag response and his
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own location via the service provider to the object owner. Every mobile detector can

be rewarded at a fixed rate or in commensurate with the object value. Although the

object owner may have to pay for the service, he can recover his valuable object with

overwhelming probability.

Crowdsourcing the lost-and-found service faces some great challenges. First, the

object in search may be of high value so that the mobile detector discovering it may

want to keep it instead of reporting its whereabout to the service provider. Thus we

need to alleviate the security concerns of the owners about their lost objects. Second,

mobile users may be unwilling to disclose their locations which may indicate too much

personal information. Therefore, we must protect the location privacy of mobile users

to stimulate their participation in the lost-and-found system. Last, both Bluetooth

tags and mobile devices are resource-constrained, so the object-finding process should

be very efficient in computation and communication, especially for energy-constrained

mobile detectors [64]. Although some companies such as Tile [3] and BlueBee [5] are

offering the crowdsourced lost-and-found service, they ensure neither object security

nor location privacy of involved mobile detectors.

This chapter presents SecureFind, a crowdsourced object-finding system that of-

fers strong object security to the object owner and also location privacy to mobile

detectors. The essential idea in SecureFind is to let some mobile detectors generate

dummy tag responses which are indistinguishable from the real tag response in the

eye of the service provider and other mobile detectors. Only the object owner can

identify the real tag response, so strong object security can be ensured. In addition,

the location of each mobile detector discovering the lost object is kept from the service

provider and only disclosed to the object owner under a dynamic pseudonym. So the

location privacy of mobile detectors can be well guaranteed.

70



Our contributions are mainly threefold. First, we are the first to formulate secure

and privacy-preserving object finding via mobile crowdsourcing to the best of our

knowledge. Second, we propose two solutions to this problem. The basic scheme

provides strong object security at the cost of low efficiency. In contrast, the advanced

scheme seeks to achieve a middle ground among object security, location privacy, and

energy efficiency. Finally, we thoroughly evaluate the performance of our schemes by

theoretical analysis and extensive simulations.

The rest of this chapter is organized as follows. Section 4.2 surveys the most

related work. Section 4.3 outlines the system model, the adversary model, our design

objectives, and a Framed Slotted ALOHA protocol underlying our design. Section 4.4

illustrates a basic scheme. Section 4.5 presents an advanced scheme. Section 4.6

evaluates the two schemes using simulations. Section 4.7 summarizes this chapter.

4.2 Related Work

Several schemes have been proposed for tracking and locating lost objects. Au-

toWitness [62] is a personal asset tracking system that uses an embedded tag with

inertial sensor to estimate asset’s position change and proactively transmit trajectory

data to an external server via cellular link to facilitate asset retrieval. In contrast,

SecureFind depends on low-cost Bluetooth tags without any inertial sensor or cel-

lular communication capabilities, thus more suitable for wide adoption. Moreover,

Sherlock [115] is a system designed to localize objects with embedded RFID tags in

some closed space, which cannot be applied to find lost object in outdoor and is thus

orthogonal to SecureFind.

Recent years have witnessed significant research on missing-tag detection [67, 80,

100, 101, 102, 111, 143, 144, 171] and identification [88, 163, 170] in RFID systems.

This line of work aims to quickly detect whether or which tags are missing in a large
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RFID system, while SecureFind targets a totally different problem. In particular, a

lost tag in SecureFind is a tag lost by its owner but still in the SecureFind service

provider’s service region, and SecureFind aims to determine which mobile detector

has the lost tag in his coverage in order to locate and retrieve the lost object without

revealing such information to either the mobile detector or service provider. In con-

trast, a missing tag in [67, 80, 88, 100, 101, 102, 111, 143, 144, 163, 170, 171] means

a tag taken away from the monitored area, and the goal there is to determine if any

tag is missing. Therefore, existing missing-tag detection schemes are inapplicable to

our problem.

Also related is the line of work on privacy-preserving tag identification and au-

thentication in RFID systems, e.g., [19, 89, 97, 145, 155, 157]. These schemes allow

efficient identification and authentication of an RFID tag without disclosing any in-

formation that can be used to uniquely identify the tag. All the RFID tags belong

to the same administrator, and there is no attempt to hide the locations of the RFID

tags from the administrator. In contrast, each Bluetooth tag in SecureFind belongs to

the corresponding object owner, and its location should be protected from the service

provider as well. Therefore, SecureFind differs significantly from these schemes in its

aim and scope.

Protecting location privacy in crowdsourcing system is also loosely related to our

work. In [147], the authors proposed a novel privacy-preserving framework for spatial

crowdsourcing, which allows the service provider to assign spatiotemporal tasks to

crowdsourcing workers without sacrificing their location privacy. In addition, Pour-

najaf et al. [122] studied the privacy-preserving spatial task assignment in which

crowdsourcing workers obfuscate their locations using spatial cloaking technique. Al-

though both [147] and [122] considered location privacy of crowdsourcing workers,
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their problems are completely different from ours, and their solutions are not directly

applicable.

4.3 Preliminaries

4.3.1 System Model

We assume a SecureFind service provider offering the object-finding service via

mobile crowdsourcing. The service provider fulfils every object-finding request through

a number of mobile users referred to as mobile detectors hereafter. Every detector

has a mobile device such as a smartphone or tablet to communicate with the service

provider and also nearby Bluetooth tags. Almost all mobile devices are having the

Bluetooth functionality, and it has been shown in [156] that Bluetooth devices can

communicate with each other without explicitly establishing a connection. In addi-

tion, nearby mobile detectors can communicate via WiFi-direct, Frequency Hopping,

or other available Device-to-Device (D2D) technologies which are widely used in many

other applications [135, 139, 142, 156, 165].

An object owner refers to a person who lost a valuable object. We assume that

the lost object is attached with a Bluetooth tag hard to remove without breaking

the object and use “lost tag” and “lost object” interchangeably henceforth. A Blue-

tooth tag is a small piece of device with an on-board battery, which can perform

simple computation and communicate with nearby mobile devices via Bluetooth.

Several off-the-shelf Bluetooth tags are currently commercially available for personal

asset tracking, such as Tile [3], StickNFind [4], and BlueBee [5] tags. The cost of a

Bluetooth tag is currently around a few dollars [3] and is plummeting due to rapid

technological advance and growing market demand. It is thus reasonable to assume

that every high-value object will be attached with a Bluetooth tag to enable object
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finding in the near future. Moreover, we assume that every tag i has a unique ID IDi

known only to its owner.

The object-finding service in SecureFind works as follows. Assume that the object

owner knows that his lost object is likely in a possibly large target area, e.g., lower

Manhattan. He submits to the service provider an object-finding request containing

some information about the lost tag and also the target area. The service provider

then forwards the object-finding request to all mobile detectors in the target area,

each of which in turn locally broadcasts the request. The lost tag responds to any

object-finding request intended for it. Every detector hearing a tag response forwards

it and his own location via the server to the object owner. Based on the tag responses,

the object owner can derive an approximate location (area) of his lost object, e.g., by

multilateral triangulation. Finally, the object owner can go to the derived location

and send a tag query in person, in which case the lost tag can respond with its GPS

location like a StickNFind tag [4] or sound an alert like a Tile [3] or BlueBee [5] tag.

During this process, the object owner may initiate multiple requests to keep track of

the dynamic locations of his lost tag (object) which may be carried and in motion. All

the system operations are automatically executed without user involvement through

an SecureFind app installed on each mobile device.

Sound incentives must be provided to all the involved parties to materialize Se-

cureFind. The service provider can either charge the object owner at a rate com-

mensurate with the object value, and it may also provide free services and profit by

web advertisement when its service goes very popular. Every mobile detector can be

rewarded either at a fixed rate or in accordance with the object value. Such rewarding

mechanisms as perks or badges have been proved to be very successful in soliciting

mobile users for crowdsourcing applications like Foursquare. The object owner may

need to pay for the service, but he will be able to quickly recover his lost object of
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high value. Here we assume the existence of such incentive mechanisms and refer

readers to existing rich literature such as [154, 168] for incentive design for mobile

crowdsourcing.

4.3.2 Adversary Model

We assume that the service provider is honest-but-curious (HBC) [60], which

is a widely adopted assumption for rational service providers. In particular, the

service provider is trusted to faithfully follow the protocol execution, but it may have

interest in the location of the lost object and also the locations of mobile detectors.

In addition, the service provider does not collude with any object owner or mobile

detector.

Mobile detectors are curious and also location-sensitive. By curious, we mean

that mobile detectors try to locate the lost object and take it away prior to the

object owner’s arrival. To do so, mobile detectors may attempt to infer whether

the lost object is in their vicinity from the information they receive during protocol

execution. By location-sensitive, we mean that mobile detectors do not want any

party (including the server) to know their accurate locations or equivalently linking

their accurate locations to their real IDs.

How to deal with other possible attacks on SecureFind is beyond the scope of this

chapter. For example, an attacker may jam all radio transmissions, replay intercepted

messages, and/or inject bogus messages. Such denial-of-service attacks can target any

wireless/mobile system like SecureFind and can be mitigated by existing anti-jamming

communication techniques and message authentication.

4.3.3 Design Objectives

We have the following major design objectives.

75



• Correctness : The object owner should be able to obtain an approximate location

of the lost object as long as it is within the transmission range of at least one

mobile detector.

• Object security : The location of the lost object should be known to the object

owner only. Strong object security means that the reported data from detectors

that have the lost object in their coverage and those not are indistinguishable,

such that no mobile detector can infer whether the lost object is within its

coverage.

• Location privacy : The mapping between the real ID and location of every mobile

detector should be kept from any other party.

• Efficiency : The object-finding process should incur low communication and

computation overhead.

Note that we do not intend to guarantee the recovery of the lost object, as it

depends on whether the lost object is covered by at least one mobile detectors and

further the density of mobile detectors in the target area. When the lost object

is outside of mobile detectors’ coverage, neither SecureFind nor any of the existing

systems [3, 4, 5] would be able to recover the lost object.

4.3.4 Framed Slotted ALOHA Protocol

Our schemes depend on Framed Slotted ALOHA, which is a popular anti-collision

MAC protocol adopted by many RFID systems [88, 126, 143, 144, 162]. Since Blue-

tooth tag is much more powerful than RFID tag, it is reasonable to assume that

Bluetooth tag can support Framed Slotted ALOHA with minimal modification. In

SecureFind, Framed Slotted ALOHA is executed between one mobile detector and
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a number of nearby Bluetooth tags and works as follows. First, the mobile detector

broadcasts a request with two parameters 〈r, f〉, where r is a random number, and

f is the number of time slots in one frame where the f slots are numbered from 0

to f − 1. Upon receiving the request 〈r, f〉, each tag i responds in slot h(IDi||r)

mod f , where IDi denotes the unique ID of tag i, and h(·) denotes a publicly known

hash function. Each of the f time slots can then be an empty slot without any tag

response, a singleton slot with a single tag response, or a collision slot with more

than one tag responses.

4.4 A Basic Scheme

In this section, we present a basic scheme for secure and privacy-preserving object

finding. The essential idea is to let some mobile detectors in the target area act as

dummy tags to send dummy tag responses for concealing the real tag response. Since

the mobile detectors near the lost object cannot differentiate between real and dummy

tag responses, the security of the lost object can be well protected. The major design

challenge here is how to let the object owner discover the mobile detectors close to

his lost object without drawing the attention of these mobile detectors or the service

provider.

We propose an iterative multi-round protocol as a solution. In each round, each

mobile detector executes the Framed Slotted ALOHA protocol in Section 4.3.4 and

forwards the execution result to the object owner via the service provider. The object

owner then excludes some mobile detectors who are unlikely near his lost object

according to their execution results. The protocol completes when no more mobile

detectors can be excluded. Finally, the object owner retrieves the locations of the

remaining mobile detectors from the server provider using some specific cryptographic

technique and then infers the location of his lost object. Our scheme ensures that
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neither the service provider nor the remaining mobile detectors can learn the location

of the lost object.

4.4.1 Scheme Description

The service provider divides its service region into multiple physical zones, and

every mobile detector reports the index of the zone in which it resides when it decides

to participate in object finding and whenever it moves into a new zone. The choice of

zone size represents the tradeoff between the overhead and location privacy of mobile

detectors. On the one hand, a large zone size can alleviate the mobile detectors’

concerns about their location privacy to stimulate their participation, but some mobile

detectors outside of the target area will participate in object finding and thus incur

higher communication and computation overhead. On the other hand, a small zone

size enables more accurate selection of mobile detectors but allows the service provider

to infer mobile detectors’ locations and thus jeopardize their location privacy. To

strike a good balance, we suggest to divide the service area based on cellular tower’s

coverage, which does not reveal any additional information beyond what cellular

service providers already know about mobile detectors’ locations.

To initiate lost-object finding, the object owner submits an object-finding request

〈H(ÎD||r), r,PK〉 and the target area to the service provider, where ÎD denotes the

ID of the lost tag, r is a random seed, H(·) denotes a publicly known cryptographic

hash function, and PK is the object owner’s public key. We can also replace PK with

a public-key certificate to prevent the service provider from changing PK to its own

choice.

Upon receiving the request, the service provider finds the set of candidate zones

that enclose the target area and forwards the request to all the mobile detectors in the

candidate zones. Each mobile detector can determine whether to participate in the
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object-finding task according to the sensitivity of his spatiotemporal presence. For

example, if a mobile user is present near hospital during working hours, he can choose

not to participate in the object-finding task even if the location alone is not sensitive.

Each participating mobile detector then locally broadcasts a tag query 〈H(ÎD||r), r〉.

Here we assume a suitable MAC protocol to resolve potential collisions among mobile

detectors; e.g., each mobile detector can wait for some random time before sending

the tag query. Every tag seeing such a tag query can check whether it is the intended

tag by comparing the hash over its ID and r with the received one, and only the lost

tag gets prepared to respond. In addition, each mobile detector returns his location

encrypted with PK to the service provider so that the service provider cannot figure

out his accurate location. The service provider temporarily buffers these encrypted

locations.

The object owner then initiates a polling phase consisting of multiple rounds.

Consider round x ≥ 1 as an example. The object owner sends a polling request 〈rx, f〉

via the service provider to each mobile detector, where f denotes the frame length as a

fixed system parameter, and rx is a fresh random seed. Every detector i then locally

broadcasts 〈rx, f〉. Every other detector hearing the polling request from detector

i chooses himself as a dummy tag with probability q, which is a tunable system

parameter given by the service provider. Each dummy tag j also generates a random

pseudonym IDj. Let Tx,i denote a set of tags comprising all the dummy tags near

detector i and also the lost tag if it hears the polling request from detector i as well.

Let h1(·), . . . , hk(·) be k publicly known hash functions, where k is a system parameter.

Every tag j ∈ Tx,i computes k slots to reply, where the αth slot is computed as

sαj,x = hα(IDj||rx) mod f for all α ∈ [1, k]. During the execution of Framed Slotted

ALOHA, every tag j sends a one-bit short response in each of its k computed slots.

In the end of round x, detector i obtains a bit vector Vi,x = 〈vi,x[0], . . . , vi,x[f − 1]〉,
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where vi,x[y] = 0 if slot y is an empty slot and vi,x[y] = 1 otherwise. Note that here

we do not differentiate between singleton and collision slots, which would require each

tag to reply a long multi-bit response and thus incur higher communication overhead.

Then detector i sends its bit vector Vi,x to the object owner via the server.

Assuming that there are totally C mobile detectors in the target area, the object

owner receives C bit vectors {Vi,x}Ci=1 in round x. He then checks if any mobile

detector can be excluded, which is certainly not in the transmission range of his lost

tag. To do so, the object owner maintains a candidate detector set. Let Cx be the

candidate detector set at the beginning of round x, where C1 = {1, . . . , C}. For each

detector i ∈ Cx, the object owners checks if at least one of the bit positions (or slots)

{hα(ÎD||rx) mod f}kα=1 in Vi,x is zero (or empty), where ÎD is the ID of his lost

tag. If so, the lost tag is certainly not around detector i, and no dummy tag replied

in that slot either. So detector i can be safely removed from Cx. The object owner

terminates the polling phase if the number of candidate detectors drops to one or

remains unchanged after τ ≥ 2 polling rounds, where τ is a system parameter. The

latter case occurs when the lost tag lies in the coverage of multiple detectors. Also

note that the candidate detector set remains confidential to the object owner, and

all the C mobile detectors need to broadcast the polling request and process the

responses in each round of the polling phase even if some of them may have been

confidentially excluded by the object owner.

Once the polling phase is over, the object owner retrieves the encrypted loca-

tions of the remaining candidate detectors from the service provider. Finally, he can

derive an approximate range for his lost object based on the decrypted detector lo-

cations. We can see that the service provider will know which mobile detectors are

not excluded. Since the service provider knows the physical zone each mobile de-

tector resides (instead of his real location), it can deduce that the lost object is in
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one of the physical zones of the remaining detectors. There are two ways to alleviate

this security concern. First, the object owner can request the encrypted locations of

c ≥ 1 detectors that include both the remaining detectors and some excluded detec-

tors to confuse the service provider. Second, the object owner can execute an efficient

Private-Information-Retrieval protocol [22] to retrieve the encrypted locations of the

remaining candidate detectors without revealing whose locations are retrieved.

4.4.2 Performance Analysis

Now we analyze the performance of the basic scheme.

Correctness. The basic scheme can guarantee that the object owner obtains an

approximate location for his lost object as long as it is within the transmission range

of at least one mobile detector. Assume that there are totally N mobile users in a

region of area S. Also suppose that the number of mobile detectors in any subregion of

area s, denoted by X(s), follows a homogeneous spatial Poisson process with intensity

N/S: Pr(X(s) = k) = (Ns/S)ke−Ns/S

k!
. Let R denote the transmission range of the lost

tag and also mobile detectors. It is easy to see that the basic scheme is correct with

probability 1− Pr(X(πR2) = 0) = 1− e−πNR2/S.

In addition, the basic scheme may incur false positives, which occur when the

lost object is not close to any mobile detector (i.e., the given target area is wrong),

but some dummy tags happen to respond just like the lost tag in each round of the

polling phase. The object owner thus will be misled to wrong locations. We can

estimate the false-positive probability as follows. Consider any of the C detectors in

the target area, say detector i, which has on average c = bπNR2/Sc other mobile

detectors in his transmission range and does not have the lost tag ÎD there. Since

each mobile detector acts as a dummy tag with probability q, there are totally cq

dummy tags in detector i’s coverage. Recall that the lost tag needs to respond in
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slots {sαj,x = hα(IDj||rx) mod f}kα=1 in round x if hearing a polling request. Assume

that the output of every hash function is uniformly distributed in [0, f −1]. Then the

average number of distinct slots the lost tag needs to respond is given by

µ =
k∑
l=1

l ×
(
f
l

)
fk

. (4.1)

As said, each dummy tag also responds in up to k slots uniformly distributed in [1, f ].

The probability that no dummy tag responds in a particular slot of the lost tag is

given by (1− 1/f)kqc. For detector i to stay in the object owner’s candidate detector

set in round x, at least one dummy tag needs to respond in each of the µ distinct slots,

which occurs with probability pone =
(
1 − (1 − 1/f)kqc

)µ
. Assume that the polling

phase terminates in t rounds. For the false positive to occur, at least one detector

needs to survive all the t rounds, which occurs with probability 1− (1− ptone)
C .

Object Security. The basic scheme offers strong object security. In particular, the

information the service provider can obtain during object finding includes the initial

object-finding request 〈H(ÎD||r), r,PK〉, the polling results in each round, and from

which candidate detectors the object owner requested the location. Since the service

provider knows neither ID of the lost tag nor the random pseudonym of each dummy

tag, he cannot directly infer which detectors have the lost tag in their coverage from

the polling results besides knowing that one of the detectors for which the object

owner requested the locations does.

Can the service provider do better? To make quantitative analysis possible, we

assume that the average number of tags in each detector’s communication range are

the same, e.g., cq. Under this assumption, the detector with the lost tag in its

coverage may observe slightly more non-empty slots than those without during the

polling phase. In particular, each detector covering the lost tag, called a real detector

hereafter, observes a non-empty slot in each slot with probability p1 = 1 − (1 −
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1/f)(cq+1)k, whereas each detector not covering the lost tag, called a fake detector

hereafter, does so with probability p′1 = 1 − (1 − 1/f)cqk. Although this is only a

rough estimate because the number of dummy tags around each mobile detector are

most likely different, the service provider may still try to gain some information from

the polling results by ranking all the detectors according to the numbers of bit ones

in their reported vectors. More specifically, the higher the rank of a detector (i.e.,

the more bit ones in reported vectors), the more likely the detector is a real one, and

vice versa.

Now we analyze the probability distribution of the real detector’s rank. Consider

a real detector i and a fake detector j in round x as an example. Denote by bi and bj

the numbers of bit-one positions in their reported vectors Vi,x and Vj,x, respectively.

Let u = min(f, (cq + 1)k) and u′ = min(f, cqk). The probability that detector i has

more bit-one positions than detector j is given by

pm = Pr(bi ≥ bj)

=
u′∑
z=0

Pr(bi ≥ z) · Pr(bj = z)

=
u′∑
z=1

u∑
z′=z

Pr(bi = z′) · Pr(bj = z)

=
u′∑
z=1

u∑
z′=z

(
u

z′

)
pz
′

1 (1− p1)u−z
′
(
u′

z

)
p′
z
1(1− p′1)u

′−z .

(4.2)

For simplicity, assume that there is only one real detector. The p.d.f. of real

detector’s rank is then given by

Pr(rank = r) =

(
C − 1

r − 1

)
pr−1
m (1− pm)C−r . (4.3)

We can see from Eqs. (4.2) and (4.3) that if the number of dummy tags (i.e., cq) is

large, p1 is very close to p′1. This means that the real detector will be ranked in the
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middle of all the detectors with high probability, and the object security can thus be

guaranteed.

In addition, neither true or fake mobile detectors can distinguish the responses

from the lost tag and from dummy tags and thus cannot determine whether the lost

tag is in its vicinity.

Location Privacy. The basic scheme offers location privacy to mobile detectors.

Specifically, each mobile detector can report a physical zone encompassing his loca-

tion instead of his real location to the service provider to participate in SecureFind.

Therefore, the service provider cannot get the accurate location of any detector. Even

if the location of every responding detector is disclosed to the object owner, we can

hide the real ID of the detector from the object owner by letting the service provider

replace the real ID with a dynamic pseudonym. Since the object owner does not

collude with the service provider as per our adversary model, the location privacy of

every mobile detector is well preserved.

Efficiency. To analyze the communication overhead of the basic scheme, we first

derive the expected number t of polling rounds. For any mobile detector not cover-

ing the lost tag, the object owner excludes it from the candidate detector set with

probability

pe = 1− pone = 1−
(
1− (1− 1/f)kqc

)µ
,

where µ is given in Eq. (4.1). So the object owner can exclude pe fraction of the

remaining candidate detectors after each polling round. Assume that the number of

candidate detectors drops to one after t rounds. Then we have Cpte = 1 and thus

t = blogpe
1

C
c . (4.4)

Each mobile detector sends its encrypted location to the service provider at the begin-

ning, and he also broadcasts a polling request and sends a f -bit vector to the service
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provider in each polling round. In addition, since each tag needs to reply k one-bit

responses in each round, the total communication overhead incurred by tag responses

is about cktC bits. Moreover, the object owner sends one object-finding request and

t polling messages. Finally, the object owner retrieves λ encrypted detector locations

from the service provider.

As for the computation overhead, each tag (dummy or lost) needs k efficient

hash operations in each polling round, leading to cktC hash operations in total.

Moreover, each mobile detector performs one public-key encryption, and the object

owner needs to carry out one public-key decryption for each non-excluded mobile

detector. The most expensive public-key encryptions and decryptions can be done

very efficiently on current mobile devices. For example, for the standard Elliptic

Curve Integrated Encryption Scheme (ECIES), one point multiplication and two point

multiplications are needed for one decryption and one encryption, respectively, and a

point multiplication takes less than 7.3 ms on an Android Galaxy Nexus smartphone

[54].

4.5 An Advanced Scheme: Selected Polling

The basic scheme provides strong object security. However, in each polling round,

each mobile detector needs to send an f -bit vector to the service provider which

incurs large communication overhead and low efficiency. In this section, we present

an advanced scheme to strike a middle ground between object security and system

efficiency.

4.5.1 Basic Idea

The advanced scheme stems from an observation about the basic scheme. Specif-

ically, the response from every detector in each polling round is an f -bit vector. The
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object owner excludes some candidate detectors in each round x by checking the bit

values at k positions {sαj,x = hα(IDj||rx) mod f}kα=1, which we refer to as real posi-

tions. There are at most k real positions because some modular hash values may be

the same. Accordingly, we refer to the rest no less than f − k bit positions as dummy

positions. The dummy positions can effectively hide the real positions so that the de-

tector with the lost object in its coverage cannot tell. The efficiency can be improved

if fewer dummy positions are used in each polling round, and the accompanying cost

is that real positions will have a higher chance of exposure.

The advanced scheme implements the above thinking by letting the object owner

selectively poll fewer than f bit positions in each round, among which the fraction of

real positions is adjusted based on the results in previous polling rounds. Intuitively,

the more real positions polled in each round, the fewer polling rounds needed to locate

the lost tag, the lower the communication and computation overhead, the higher

chance of exposing the lost tag, and vice versa. The challenge is how to characterize

the exposure of the lost tag and then properly adjust the fraction of real positions.

What is the impact of polling fewer dummy positions on object security? Consider

an arbitrary mobile detector, say i. If detector i has the lost tag in his coverage, he is

more likely to observe more non-empty slots than other detectors not covering the lost

tag. More specifically, assume that the object owner queries ω out of f bit positions,

which consists of γ ≥ 1 real positions and ω − γ dummy positions. Recall that each

detector on average has c = bπR2N/Sc other detectors in his coverage, each acting

as a dummy tag with probability q. If detector i covers the lost tag, the probability

that a randomly queried bit position having a one (or equivalently the corresponding
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slot is busy) can be estimated as

p1 = (1− (1− 1/f)cqk)
ω − γ
ω

+
γ

ω

= 1− (1− 1/f)cqk + (1− 1/f)cqk
γ

ω
.

(4.5)

If the lost tag is outside detector i’s coverage, the above probability is p′1 = 1− (1−

1/f)cqk. It is easy to see that p′1 < p1 for γ ≥ 1. As we normally have γ/ω > k/f ,

the gap between p1 and p′1 becomes more noticeable in the advanced scheme, leading

to lower object security. In addition, the larger γ, the more quickly the object owner

ruling out the candidate detectors not covering the lost object, the fewer polling

rounds needed, the larger the probability gap, the lower object security, and verse

versa.

To strike a balance between object security and system efficiency, we let the object

owner maximize the number of real positions in each polling round as long as the

polling result (i.e., the ω-bit vector) observed by the detector covering the lost object

is statistically indistinguishable from the one observed by a detector not covering the

lost tag. More specifically, let the null hypothesis be that the ω-bit vector obtained

by a detector is generated from the binomial distribution B(ω, p′1), i.e., the theoretical

distribution. We can then test the hypothesis using Pearson’s chi-squared test [42]

with the test statistics given by

χ2 =
(pob − p′1)2

p′1
+

((1− pob)− (1− p′1))2

(1− p′1)
, (4.6)

where pob is the observed frequency of bit ones, and p′1 = 1 − (1 − 1/f)cqk is the

theoretical frequency. Finally, we can compute a p-value from χ2 using the chi-

squared distribution for one degree of freedom, which gives us the probability of

observing such difference if the ω-bit vector is generated from B(ω, p′1).
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4.5.2 Scheme Description

The pre-polling phase of the advanced scheme is exactly the same as that of the

basic scheme, so we do not repeat it here for lack of space.

As in the basic scheme, the polling phase in the advanced scheme also consists of

multiple rounds. Consider round x ≥ 1 as an example. The object owner sends a

polling request 〈rx, f, dx,0, . . . , dx,ω−1〉 via the service provider to each mobile detector,

where f denotes the frame length as a fixed system parameter, rx is a fresh random

seed, and 0 ≤ dx,0 < dx,1 < · · · < dx,ω−1 ≤ f − 1 are the ω bit positions that

the object owner intends to poll in round x. These ω bit positions include γx real

and ω − γx dummy positions, and how to choose them will be discussed shortly.

Every detector i then locally broadcasts 〈rx, f, dx,0, . . . , dx,ω−1〉. Every other detector

hearing the polling request from detector i chooses himself as a dummy tag with

probability q which is a system parameter. Let Tx,i denote the set of tags comprising

all the dummy tags near detector i and also the lost tag if it is covered by detector

i. The Framed Slotted ALOHA protocol is still used to collect tag responses. Every

tag j ∈ Tx,i computes k candidate slots to reply, where the αth slot is computed

as sαj,x = hα(IDj||rx) mod f . Then for each dx,y, y ∈ [0, ω − 1], tag j checks if

dx,y = sαj,x for some α. If so, tag j knows that it should reply a one-bit response in

slot y and keeps silent otherwise. In the end of round x, detector i obtains a ω-bit

vector Wi,x = 〈wi,x[0], . . . ,wi,x[ω− 1]〉, where wi,x[y] = 0 if slot y is an empty slot and

wi,x[y] = 1 otherwise. Then detector i sends Wi,x to the object owner via the service

provider.

Given totally C mobile detectors in the target area, the object owner receives

{Wi,x}Ci=1 in round x. As in the basic scheme, he maintains a set of candidate detectors

which initially contain all the C detectors. After receiving {Wi,x}Ci=1, the object owner
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eliminates all the detectors from the candidate set Cx with each having at least one

zero at the γx real positions in his polling result. The polling phase stops when the

number of candidate detectors drops to one or remains unchanged after τ ≥ 2 rounds,

where τ is a system parameter.

After the polling phase, the object owner retrieves the encrypted locations of λ ≥ 1

detectors that include both the remaining detectors and some excluded detectors from

the service provider. Finally, he can derive an approximate range for his lost object

based on the decrypted detector locations as in the basic scheme.

4.5.3 Choosing Polling Positions

Now we discuss how to choose the ωx polling positions {dx,j}ω−1
j=0 in each round x.

The first step is to determine γx, the number of real positions in round x. We

propose to derive γx based on the C polling results received in all previous rounds such

that the expected polling results in round x are statistically indistinguishable from the

results generated from the theoretical binomial distribution B(ω, p′1). In particular,

recall that Cx denote the set of remaining candidate detectors at the beginning of

round x. Let bi,x−1 be the number of bit ones in Wi,x−1 for all i ∈ Cx, where we

set bi,0 = d(1 − (1 − 1/f)cqk)ωe. As discussed, the probability of any bit position in

Wi,x being one for any detector i ∈ Cx not covering the lost object can be derived

as pi,1 = 1 − (1 − 1/f)cqk. Then the object owner tries to find γx,i for each detector

i ∈ Cx, the largest number of real positions can be polled in round x, if detector i

covers the lost tag. To do so, the object owner initially set γx,i = 0. According to

Eq. (4.5), the probability of any bit position in Wi,x being one if detector i covers the

lost tag is

p̂i,1 = (1− (1− 1/f)cqk) · ω − γx,i
ω

+
γx,i
ω

.
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He then computes the expected fraction of bit ones in Wi,x−1||Wi,x as pob =
p̂i,1ω+bi,x−1

2ω
,

the corresponding test statistics χ2, and finally the p-value (denoted by pval,i). If

pval,i > pthre, where pthre is the threshold chosen by the object owner, he increases

γx,i by one and repeats the above process until finding the largest possible γx,i ≤ k.

Finally, he chooses γx as the minimum among {γi|i ∈ Cx}. After determining γx, the

object owner then constructs qx,0, . . . , qx,ω−1 by randomly choosing γx real positions

from {sαj,x}kα=1 and ω − γ dummy positions. The above process is summarized in

Algorithm 1.

4.5.4 Performance Analysis

The advanced scheme is correct with the same overwhelming probability and offers

the same level of location privacy to mobile detectors as the basic scheme.

Object Security. Similar to that in the basic scheme, the service provider may rank

the detectors based on the number of bit ones in their reported vectors. Since we

normally have γ/ω > k/f , the gap between p1 and p′1 is more noticeable in the

advanced scheme than that in the basic scheme. We thus expect that the advanced

scheme offers lower object security than the basic scheme does. Since the number

of real positions queried in each polling round is jointly determined by the previous

polling results and pthre, we have not been able to derive the rank distribution of the

real detector. Instead, we evaluate the object security of the advanced scheme in

Section 4.6.

Efficiency. The communication overhead of the advanced scheme depends on the

number of polling rounds. Each mobile detector sends its encrypted location to the

service provider at the beginning, and he also broadcasts a polling request and sends a

ω-bit vector to the service provider in each polling round. In addition, each tag needs

to reply kω/f one-bit responses on average in each round, so the total communication
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Algorithm 1: Computing γx for Round x

input : Bit vectors {bi,x−1|i ∈ Cx}, frame length f , p-value threshold pthre

output: γx: the number of real positions in round x

1 γx ←− min(k, ω);

2 foreach i ∈ Cx do

3 γx,i ←− 0, pval,i ←− 1;

4 pi,1 ←− 1− (1− 1/f)cqk;

5 while pval,i > pthre do

6 p̂i,1 ←− (1− (1− 1/f)cqk) · ω−γi
ω

+ γi
ω

;

7 pob ←− p̂i,1ω+bi,x−1

2ω
;

8 χ2 =
(pob−pi,1)2

pi,1
+

((1−pob)−(1−pi,1))2

(1−pi,1)
;

9 Update pval,i according to χ2 based on chi-square distribution;

10 if pval,i > pthre then

11 γx,i ←− γx,i + 1;

12 else

13 γx,i ←− γx,i − 1;

14 if γx,i < γx then

15 γx ←− γx,i;

16 return γx;
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overhead incurred by tag response is about ckωtC/f bits. Moreover, the object owner

sends one object-finding request and t polling messages. Finally, the object owner

retrieves λ encrypted detector locations from the service provider.

As for the computation overhead, each tag (dummy or lost) needs k efficient hash

operations in each polling round, leading to cktC hash operations in total. Because

the number of polled real positions in the advanced scheme is smaller than that

in the basic scheme, the number of polling rounds is also larger in the advanced

scheme, resulting in more hash operations and thus larger tag computation overhead.

Moreover, each mobile detector performs one public-key encryption, and the object

owner needs to carry out one public-key decryption for each non-excluded mobile

detector. As said, such public-key encryptions and decryptions can be efficiently

done on modern mobile devices.

Again, since the number of polling rounds is jointly determined by the previous

polling results and pthre, we have not been able to derive a closed-form result for the

communication and computation overhead of the advanced scheme, which is evaluated

via simulations in Section 4.6.

4.6 Performance Evaluation

In this section, we evaluate the proposed schemes via extensive simulations.

4.6.1 Simulation Setting

We consider a square region with a side length of 4, 000m, in which 10,000 mobile

detectors are distributed uniformly, or 625 mobile detectors per square kilometer.

Such density is approximately one sixth of the population density of the downtown

area of Austin, TX [6] or one tenth of that of Portland, OR [7]. We assume that each

mobile detector acts as a dummy tag with probability q = 0.9, which is a tunable
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system parameter. We set the transmission ranges of both mobile detectors and the

lost tag 100m, which is the lower bound of the transmission range of Bluetooth Low

Energy technique [8]. In addition, we assume that the number of hash functions is

10, and the frame length in Frame Slotted ALOHA is 300. The two parameters can

be adjusted to ensure that the ratio between the number of bit-one positions and the

frame length is not too close to zero or one. The number of polled positions ω is

set to be 15. Larger ω incurs higher communication overhead but less rounds to find

the object. Other simulation parameters are summarized in Table 4.1 unless stated

otherwise.

Table 4.1: Default Simulation Settings.

Para. Value Meaning

C 10000 The number of mobile detectors

q 0.9 The probability of acting as dummy tag

f 300 The frame length in Frame Slotted ALOHA

k 10 The number of hash functions

ω 15 The number of polled positions

Since both the basic and the advanced schemes can offer mobile detectors’ loca-

tion privacy and also ensure that the lost object is recoverable almost for sure in all

our simulations, our subsequent evaluation focuses on object security, communica-

tion overhead, and computation overhead. We assume that the following strategy is

adopted by the service provider. On receiving the polling results from all the detec-

tors, the service provider runs the Pearson’s chi-squared test as the owner does in the

advanced scheme and computes a p-value for each detector. The service provider then

ranks all the detectors based on their p-values. The lower the p-value of a detector,
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the more likely that the lost tag is in his coverage. We then use the relative rank of

the detector covering the lost tag to measure the security of the lost object. If the lost

tag is covered by multiple detectors, we use the highest rank available. Note that this

strategy is a generalization of ranking collectors according to the numbers of bit-one

positions discussed in Section 4.4.2, as it additionally considers the possible different

numbers of dummy tags around each collector.

4.6.2 Simulation Results

Impact of pthre. Figs. 4.1a to 4.1d show the object security in terms of the

real detector’s normalized rank, tag-communication overhead, tag-computation over-

head in the number of hash computations performed, and detector-communication

overhead of the basic and advanced schemes, respectively. Since the basic scheme

is not affected by pthre (the p-value threshold), its performance is plotted for refer-

ence only. We can see from Fig. 4.1a that as pthre increases from 0 to 0.3, the real

detector’s normalized rank under the advanced scheme increases from around 0.1 to

0.4. This is anticipated, as the higher pthre, the fewer real positions polled in each

polling round, the smaller the gap between p1 and p′1, the lower the rank of the real

detector, the higher object security, and vice versa. In addition, we can see from

Figs. 4.1b to 4.1d that the tag-communication overhead, tag-computation overhead,

and detector-communication overhead of the advanced scheme all increase as pthre

increases. The reason is that higher pthre leads to fewer real positions polled in each

round and thus more polling rounds needed to locate the lost object. Moreover, the

advanced scheme incurs higher tag-computation overhead than the basic scheme, as

the advanced scheme requires more polling rounds than the basic scheme and thus

each every tag to perform more hash computations. Finally, Figs. 4.1b and 4.1d show

that the advanced scheme incurs lower tag- and detector-communication overhead
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Figure 4.1: Impact of pthre, Where BS and AS Stand for the Basic and Advanced

Schemes, Respectively.

than the basic scheme. This is of no surprise because much fewer bits are transmitted

from each detector to the service provider in each round under the advanced scheme.

Impact of k. Figs. 4.2a to 4.2d compare the basic and advanced schemes when

k (the number of hash functions) varies from 2 to 20. We can see from Fig. 4.2a that

the real collector’s normalized rank fluctuates as k increases under both schemes. The

reason is that the increase in k leads to higher p1 for the real detector as well as higher

p′1 for fake collectors, which nevertheless has little impact on the gap between p1 and
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Figure 4.2: Impact of k.

p′1. In addition, Fig. 4.2b shows that the tag-communication overhead of both schemes

increases with k. The reason is that the larger k is, the more slots every tag needs to

respond in each polling round, which leads to higher tag-communication overhead. In

addition, the advanced scheme incurs much lower communication overhead than the

basic scheme, which is expected. Moreover, we can see from Fig. 4.2c that the tag-

computation overhead of both schemes increases as k increases and that the advanced

scheme incurs higher computation overhead. The reason is that the larger k is, the

more hash computations each tag needs to perform in each polling round. In addition,
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since we generally have γ < k in the advanced scheme, it requires more rounds to

locate the lost tag, while every tag needs to perform k hash computations in each

round.
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Figure 4.3: Impact of f .

Impacts of f . Figs. 4.3a to 4.3d show the object security in terms of the real de-

tector’s normalized rank, tag-communication overhead, tag-computation overhead in

the number of hash computations performed, and detector-communication overhead

of the basic and advanced schemes, respectively. Similar to k, f has very limited

impact on the normalized rank of the real detector. In addition, we can see from
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Fig. 4.3b and Fig. 4.3c that the tag-communication and tag-computation overhead

of both schemes decrease as f increases. The reason is that the larger f , the fewer

polling rounds needed to locate the lost tag, the lower tag-communication and tag-

computation overhead for both schemes, and vice versa. In addition, the advanced

scheme incurs lower tag-communication overhead but higher tag-computation over-

head. Moreover, we can see from Fig. 4.3d that the detector-communication overhead

of the advanced scheme decreases as f increases. The reason is that in each polling

rounds, each detector needs to transmit a ω-bit vector which is not affected by f .

Fewer polling rounds thus lead to lower detector-communication overhead. In con-

trast, the detector-communication overhead of the basic scheme remains stable as

f increases. The reason is that the detector-communication overhead of the basic

scheme is the product of the number of polling rounds and the frame length. Since

the increase in f leads to the decrease in the number of polling rounds, the detector-

communication overhead of the basic scheme is relatively stable.

Impacts of ω. Figs. 4.4a to 4.4d show the impact of ω on the advanced scheme,

where the performance of the basic scheme is plotted for reference only. We can see

from Fig. 4.4a that ω has very limited impact on the object security. In addition,

we can see from Figs. 4.4b to 4.4d that the tag-communication and detector com-

munication overhead both increase and the tag-computation overhead decreases as ω

increases.

Impact of mobile detector density. As we mentioned in Section 4.3.3, Secure-

Find can find the lost object only if it is within the transmission range of at least one

mobile detector, which is affected by the density of mobile detectors. Fig. 4.5a shows

the impact of C on the probability that the lost object is within the transmission

range of at least one mobile detector, i.e., the probability that the lost object can

be recovered. As we can see, the probability of the lost object being found increases
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as the number of mobile detectors increases, which is expected. In particular, as the

number of mobile detectors increases from 2000 to 12000, i.e., the mobile detector

density increases from 125 to 750 per square kilometer, the probability of the lost

object being found increases from 35% to 90%. We would like to stress that the

density of mobile detectors affects only the probability of the lost object being found

but not the correctness of SecureFind.

We also evaluated the impact of non-uniform distribution of mobile detectors. In

particular, we divided the whole region into 100 equal-size square cells. The mobile
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Figure 4.4: Impact of ω.
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detector density in each cell is either 20 per cell or 100 per cell, which correspond to

low and high density, respectively. Fig. 4.5c shows the probability of the lost object

being recovered with the ratio of high density cells from 0 to 1. We can see that the

probability of the lost object being recovered increases from 35% to 90% as the ratio

of high density cells increases, which is expected.

Fig. 4.5b shows the impact of C on the object security in terms of the real de-

tector’s normalized rank in the basic and advanced schemes, respectively, given that

the lost object is within the transmission range of at least one mobile detector. We

can see that the rank is relatively insensitive to the change in C or mobile detector

density, and both the basic and advanced schemes can offer high object security.

Energy consumption. We measured the latency and the energy consumption of

hash operation and Bluetooth transmission (i.e., the two major operations in Secure-

Find) on two Nexus 7 tablets with Android 4.3. Our experiments show that 7, 500, 000

hash operations take 75s and consume 61.25 J of energy on Nexus 7 tablet. This indi-

cates that one hash operation takes 0.01 ms and consumes 8.17× 10−6 J on average.

We measured that the transmission rate of Bluetooth Low Energy is approximately

109 ∼ 113 KB/s, which consumes energy at a rate of 202 ∼ 223 mW. This means

that transmitting one bit consumes approximately 2.24 ∼ 2.49× 10−7 J of energy.

Based on our measurement results, we further estimate the energy consumption

of mobile detector and dummy tag during one object-finding operation. We assume

the parameter settings in Table 4.1 where f = 300, k = 10, ω = 15, and p = 0.3.

Consider the simulation results shown in Fig. 4.1 as an example. It takes 2.56 rounds

on average to find the lost object by adopting the basic scheme. In the basic scheme,

each mobile detector needs to transmit 2.56× 300 = 768 bits to the service provider,

incurring 7.68× 10−3 J of energy 1 . In addition, each dummy tag needs to perform

1According to [66], the energy consumption of LTE upload link is 1×10−5J/bit.
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on average 2.56 × 10 = 25.6 hash operations and transmit 2.56 × 10 = 25.6 bits,

which incur 2.1 × 10−4 J and 5.7 ∼ 6.4 × 10−6 J of energy, respectively. For the

advanced scheme, it takes 10 rounds on average to find the lost object, during which

each mobile detector needs to transmit 10 × 15 = 150 bits to the service provider

and incur 1.5× 10−3 J of energy consumption. Moreover, each dummy tag needs to

perform on average 10 × 10 = 100 hash operations and transmit 10 × 0.5 = 5 bits,

which incur 8.17×10−4 J and 1.12 ∼ 1.25×10−6 J of energy consumption, respectively.

In general, a typical smartphone’s battery stores approximately 15, 000 ∼ 20, 000 J

of energy [9]. Therefore, the operations of SecureFind have negligible impact on a

mobile device’s battery life.

4.6.3 Discussion

Our above evaluations have shown that both the basic and the advanced schemes

can enable object finding while ensuring the security of the lost object and also the

location privacy of the mobile users participating in object finding. Now we discuss

some additional factors that may impact SecureFind’s performance.

Impact of insufficient dummy tags. SecureFind relies on mobile detectors serv-

ing as dummy tags to offer object security. If there are insufficient detectors around

the lost object to serve as dummy tags, the mobile detector that receives response

from the lost object may be able to infer that the lost object is nearby and the object

security cannot be guaranteed. However, this is only possible if the malicious mobile

detector can distinguish whether the response he receives is indeed from the lost ob-

ject or dummy tag. Even if there is no dummy tag near the lost object, as long as

there are normal people around, a malicious mobile detector would be unable to to

tell whether the response is from the lost object, as it is extremely difficult to tell

whether any particular person nearby is serving as mobile detector and dummy tag.
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In the most extreme case when there is no people around, the malicious detector

can determine that the lost object is nearby. We note that in such cases neither

SecureFind nor any existing Bluetooth-tag-based scheme such as Tile [3], BlueBee

[5], and StickNFind [4] is capable of recovering the lost object, as there lacks honest

mobile detector (including the object owner himself) that has the lost object in the

transmission range. Since the owner has already lost the object, it makes no difference

between the object being recovered by some malicious mobile detector or unknown

person. Therefore, SecureFind can help the object owner recover the lost object if the

mobile detector density is not extremely low and does not cause any extra damage

to the object owner otherwise.

Impact of detector mobility. During the object finding process, some mobile de-

tectors and dummy tags may move into or out of the transmission range of the lost

object due to mobile detector’s mobility, which may affect the object-finding result

in different ways. First, some dummy tags may move into or out of the transmission

ranges of the mobile detectors that collect polling result. For any mobile detector that

collects polling result, the increase (or decrease) in the number of surround dummy

tags will result in the increase (or decrease) in the number of bit-one positions in bit

vector at each round, which makes it less (or more) likely for the object owner to filter

out fake detectors at the end of object-finding process and thus more (or fewer) false

positives. Second, an initially real detector may move out of the transmission range

of the lost object before the end of the object-finding process, making the object

owner unable to find the lost object via this particular detector. Third, an initially

fake detector may move into the transmission range of the lost object before the end

of the object-finding process. If the detector is not ruled out by the polling results

before the movement, this fake detector become a real detector and would help the

owner find the lost object.
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We expect that the above events happen rarely in practice in due to the low latency

of the polling phase in both the basic and the advanced schemes. In particular, each

slot takes 321 µs in Slotted ALOHA according to [101]. Under the parameter settings

in Table 4.1, each polling round needs 96.3 ms and 4.8 ms for the basic and advanced

schemes, respectively. Take the simulation results shown in Fig. 4.1 as an example, it

takes about 250 ms and 48 ms to finish all polling rounds for the basic and advanced

schemes, respectively. Since our simulation results show that a single object-finding

process takes less than one second in most cases, we expect detector mobility has very

limited impact on SecureFind’s performance.

4.7 Summary

This chapter presents the design, analysis, and evaluation of SecureFind, the first

secure and privacy-preserving crowdsourced object-finding system. In particular, we

first introduce a basic scheme which provides strong object security at the cost of

system efficiency, and then present an advanced scheme to strike a good balance

between object security and system efficiency. Detailed simulations confirm that

SecureFind can enable very fast and efficient object finding while ensuring the security

of the lost object and also the location privacy of the mobile users participating in

object finding.

There are still many open challenges to tackle. For example, in the current design,

all the mobile detectors in the target area specified by the object owner need to par-

ticipate in object finding. Since some of them may have overlapping coverage, there

may be significant room for reducing the communication and computation overhead.

One possible solution is to let the service provider select the minimum number of

mobile detectors that can jointly cover the target area. This solution, however, re-

quires the service provider to know more accurate locations of mobile detectors. Such
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tradeoff between system efficiency and location privacy deserves careful investigation.

In addition, our current design assumes that mobile detectors are honest-but-curious.

There may be dishonest mobile detectors who report fake search results to earn re-

ward without actually performing the object search. How to catch and then punish

such dishonest mobile detectors is nontrivial and may conflict with the location-

privacy requirement of mobile detectors. We hope that the study in this chapter can

stimulate further interest in crowdsourced object finding and other exciting mobile

crowdsourcing applications.
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Chapter 5

PRISTREAM: PRIVACY-PRESERVING DISTRIBUTED STREAM

MONITORING OF THRESHOLDED PERCENTILE STATISTICS

5.1 Introduction

Distributed stream monitoring, which monitors functions over distributed and

continuous data streams in real time, has great potential in future smart cities driven

by the emerging Internet-of-Things paradigm. For example, with the help of a dis-

tributed mobile health monitoring system, a public health authority can monitor the

health data collected by each user’s mobile and wearable devices to enable various ser-

vices such as public health condition monitoring, early detection of disease outbreaks,

and epidemiology research studies. In addition, a waste management company can

achieve cost-efficient trash collection scheduling by monitoring the sensors installed

in trash containers. As another example, a utility company (e.g., electricity, natural

gas, or water) can improve the efficiency and reliability of its utility infrastructure by

gathering fine-grained information from the sensors at consumers’ places.

Communication efficiency is a key challenge for a practical distributed stream

monitoring system. In particular, the system may contain thousands of distributed

sensors, e.g., in future smart-city applications. In addition, the reporting frequency

should be high enough, e.g., every five minutes, to enable approximately real-time

monitoring and decision making. Since most monitoring sensors are expected to

have tight resource constraints, significant effort should be made to minimize their

communication overhead for data reporting.
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Data privacy is another major challenge for distributed stream monitoring sys-

tems. In particular, many monitoring systems rely on sensors affiliated with human

users, and the raw sensor data may be sensitive in nature. For example, the data

from a biomedical sensor will disclose the user’s health conditions, and the data from

a utility sensor can enable the profiling of the corresponding consumer’s life pattern

and routine. Without strong guarantee of their data privacy, users will be reluctant

to join distributed monitoring systems.

There are some attempts to achieve the goal of communication-efficient and/or

privacy-preserving distributed stream monitoring with aggregation thresholds. In

such systems, time is divided into fixed time intervals, and each node records new

data generated in each interval whereby to compute a statistic value. The goal of

the monitoring service provider is to aggregate all the users’ statistic values in each

interval and compares the aggregation result with some predefined threshold. Such

thresholded monitoring systems have important applications such as anomaly detec-

tion. Previous work sought to trade aggregation accuracy for communication effi-

ciency by letting each node independently decide whether its data submission can

contribute to the service provider’s decision making; if not, the node will not submit

his data. The MEAN aggregate function is addressed in [72, 118, 128], SUM and

COUNT are considered in [72, 118], and MIN and MAX are addressed in [118]. In

addition, the work in [57] incorporates differential privacy guarantees into the scheme

in [128].

In this chapter, we study distributed stream monitoring of thresholded PER-

CENTILE aggregates with high communication efficiency and also strong privacy

guarantees. In particular, the monitoring service provider wants to monitor when

f(χr) > τ happens, where χr denotes the rth percentile among the statistic values

from all the distributed nodes, f(·) denotes an arbitrary single-parameter function
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chosen by the service provider (say, a squaring or square root function), and τ denotes

a predefined threshold. The rth percentile of a data set refers to the value greater

than or equal to r% of the data values. The PERCENTILE aggregate is much more

robust than other statistic metrics such as MEAN, SUM, and MIN/MAX which can

be easily manipulated by the data from a single or small set of dysfunctional or

compromised nodes.

Our system is designed with three objectives. First, it should be correct in the

sense that the monitoring service provider can decide when f(χr) > τ happens with

extremely low false positives and negatives. Second, it should be communication-

efficient such that each node submits its data only when necessary. Last, it should

be privacy-preserving in keeping individual users’ data confidential.

This chapter makes the following contributions.

• We are the first to motivate and formulate the problem of communication-

efficient and privacy-preserving distributed stream monitoring for thresholded

PERCENTILE aggregates to the best of our knowledge.

• We propose a novel technique for distributed stream monitoring of thresholded

PERCENTILE aggregates with high communication efficiency and differential

privacy guarantees. In our technique, the monitoring service provider con-

structs one or several safe (data) ranges based on the desired function f(·) and

threshold τ . Each node can independently decide whether his statistic value

in a new interval should be submitted based on the safe ranges and his statis-

tic value in last interval. Powered by the differential privacy theory [50], our

technique also ensures that each node’s submitted data are not substantially

different if one element of the node’s data stream changes. Differential privacy

guarantees can effectively prevent the monitoring service provider or any other
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internal/external adversary with arbitrary background knowledge from identi-

fying the actual content of any particular data stream to breach the privacy of

the corresponding node (user).

• We thoroughly evaluate the accuracy, communication efficiency, and privacy

guarantees of our system through theoretical analysis and detailed simulation

studies. Our results show that PriStream significantly reduces communication

overhead and maintains differential privacy simultaneously.

The rest of this chapter is organized as follows. Section 5.2 briefs the related

work. Section 5.3 introduces the system and adversary models. Section 5.4 outlines

the background on differential privacy. Section 5.5 details our system design and an-

alyzes its performance. Section 5.6 evaluates our system through detailed MATLAB

simulations based on both real-world and synthetic datasets. Section 5.7 summarizes

this chapter.

5.2 Related Work

A large chunk of work [17, 20, 44, 57, 58, 72, 118, 128] studies communication-

efficient monitoring of distributed streams. A wide range of aggregate functions

sought by the monitoring service provider have been covered, including SUM and

COUNT [72, 118], inner products [44], and entropy [20], as well as MEAN and

MIN/MAX in [118]. The work [17] aims to achieve efficient detection of distributed

constraint violations. In addition, a novel geometric approach is proposed in [128]

for monitoring threshold functions over distributed data streams. In this approach,

a global monitoring task is decomposed into a set of geometric constraints applied

locally in each node for deciding whether to submit the data. This geometric ap-

proach has been adopted by others for achieving various distributed stream monitor-

109



ing goals [58, 73, 81]. Although elegant, these schemes cannot be applied to enable

communication-efficient distributed stream monitoring of thresholded PERCENTILE

aggregates.

Significant efforts have been made on privacy-preserving aggregation for distributed

time-series data and/or providing differential privacy for individual data streams

[15, 28, 36, 38, 53, 69, 70, 87, 124, 129, 151]. The PASTE algorithm in [124] tar-

gets historical time-series data and requires the pre-processing of all possible query

results, so it cannot be applied for distributed real-time monitoring tasks. In ad-

dition, the algorithm in [129] enables an untrusted aggregator to compute the sum

of distributed time-series data with differential privacy guarantees to all the data

sources. This algorithm cannot be directly applied to distributed stream monitoring

of thresholded PERCENTILE aggregates. Moreover, the framework in [57] enables

monitoring arbitrary threshold functions over the MEAN aggregate of the statistics

from distributed data-stream sources in a differentially privacy-preserving fashion. In

addition, references [15, 28, 36, 69, 70, 151] further offer fault tolerance against sensor

failure. All these work focuses on additive aggregation and thus cannot be applied to

our problem. In contrast, our PriStream system is the first work targeting differen-

tially privacy-preserving distributed stream monitoring of thresholded PERCENTILE

aggregates.

Privacy-preserving data aggregation is also studied in mobile sensing and wire-

less sensor networks [65, 71, 85, 86, 130, 164]. The work [65, 130, 164] addresses

privacy-preserving data aggregation by data slicing and mixing, but these schemes

involve cooperation among peer nodes and does not apply to our scenario where sen-

sor nodes work independently. Li et al. studied privacy-preserving MIN [86] and

SUM [94] aggregations in mobile sensing systems, and these schemes cannot be ap-
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plied to thresholded PERCENTILE aggregations. In addition, no differential privacy

is guaranteed in [65, 71, 86, 130].

5.3 System and Adversary Models

5.3.1 System Model

We use a widely adopted model [57, 72, 118, 128, 137, 166] which consists of a

service provider and k nodes denoted by n1, n2, · · · , nk. Affiliated with a human user

or organization, each node ni continuously performs the predetermined sensing task

and can directly communicate with the service provider to submit data or receive in-

structions. In addition, unlike [135, 139], PriStream does not require communications

or collaborations among the nodes.

We make the following assumptions for distributed stream monitoring of thresh-

olded PERCENTILE aggregates. Time is divided into equal-length intervals, denoted

by tl for l ∈ [1,∞), and each node may generate new data items in each interval.

Let Si = {di,1, di,2, · · · } denote the data set of node ni from the beginning, where

di,l for l ∈ [1,∞) refers to the lth data item in the data domain D. In addition, we

use Si(tl) ⊆ Si to denote the data items node ni generated in interval tl. In inter-

val tl, each node ni can compute a statistic value decided by the service provider as

vi(tl) = g(Si(tl)) ∈ R, where g(·) is a publicly known function that generates statistic

value based on the input data set. For example, g(·) can be the mean, average, count,

or any other function.

The service provider aims to monitor whether the global condition f(χr(tl)) > τ

holds in each interval j. Here f(·) : R → R refers to an arbitrary single-parameter

function chosen by the service provider; τ ∈ R is the predetermined monitoring

threshold; and χr(tl) denotes the rth percentile of the statistic values from k sensor
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nodes. There is no universal definition for the rth percentile, and we adopt the nearest

rank method for its simplicity. In particular, we first sort the k data values in the

ascending order. χr,j is the smallest value in the list such that r percent of the data

values is no larger than that value. More specifically, χr(tl) is the value at position

drk/100e of the ordered list. Whenever the global condition is satisfied, the service

provider takes corresponding actions such as broadcasting public safety alarms.

5.3.2 Adversary Model

The adversary can be internal to PriStream. An internal attacker can be the

PriStream service provider, which is assumed to be honest-but-curious in the sense

that it faithfully performs the system operations but is interested in the raw data of

distributed nodes. This assumption is commonly adopted for system operators in the

literature. An internal attacker can also be any distributed PriStream node which is

curious about other nodes’ raw data. In addition, the PriStream node can be honest

by submitting real sensing data or malicious by reporting fake data. We assume that

malicious PriStream nodes are the minority so that PriStream is always functional.

We also consider external attackers interested in the raw data of PriStream nodes

to breach their privacy. An external attacker may compromise some PriStream nodes

to be come internal attackers, but we assume that compromised nodes if any are the

minority.

There can be collusion among internal attackers alone, external attackers alone, or

internal and external attackers. We make a reasonable assumption that the number

of attackers involved in a collusion is much smaller than the number of PriStream

nodes which can be in thousands or more.
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5.4 Preliminaries on Differential Privacy

Differential privacy [50] is a recently proposed privacy model which guarantees

strong privacy. It originally comes from the database discipline and has been applied

in many other related areas [57]. In what follows, we first introduce the definition

of ε-differential privacy and its properties. Then we outline two schemes to achieve

ε-differential privacy.

Definition 5.4.1. (Adjacent Streams [52]). Two streams Si and S ′i of ni are

defined as adjacent streams iff there exist d, d′ ∈ D such that replacing d in Si with d′

will result in S ′i.

Definition 5.4.2. ( ε-Differential Privacy [50]). A randomized algorithm Alg

provides ε-differential privacy iff for any adjacent streams Si and S ′i and any set O

of possible outputs,

Pr[Alg(Si) ∈ O] ≤ Pr[Alg(S ′i) ∈ O]× eε, (5.1)

where the probability is taken over the randomness of Alg.

The above definition means that a differentially private algorithm Alg will generate

the same output over two streams with only one different element with almost the

same probability. In general, ε is positive, and the smaller ε is, the stronger the

differential privacy.

Definition 5.4.3. ( `ρ-Sensitivity [51]). The `ρ-sensitivity of a function g : Si →

R is defined as

∆ρ(g) = max
Si≈S′i

||g(Si)− g(S ′i)||ρ, (5.2)

where Si and S ′i are two adjacent streams of node ni which only differ in one element.
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Composition properties. Differential privacy maintains a sequential compo-

sition property. In particular, a sequence of computations that each provides differ-

ential privacy independently also guarantee differential privacy, and the privacy cost

of each computation is accumulated. For example, a sequential differentially private

computation conducted by algorithms Alg1,Alg2, . . . ,Algn, each with a privacy cost

ε1, ε2, . . . , εn, respectively, can be processed as long as its privacy cost ε is greater or

equal to
∑n

i=1 εi.

Laplace [51] and exponential [108] mechanisms are commonly employed to achieve

ε-differential privacy.

Definition 5.4.4. (Laplace Mechanism [51]). This mechanism is designed

for real-valued outputs, and it directly adds noise drawn from a Laplace distribu-

tion to each original output value to achieve ε-differential privacy. More specifi-

cally, given a function g : S → R, the Laplace mechanism is defined as g′(S) =

g(S) + Laplace(∆1(g)/ε), where Laplace(λ) for any λ denotes a Laplace distribution

with probability density function Pr(x|λ) = 1
2λ
e
−|x|
λ .

Definition 5.4.5. (Exponential Mechanism [108]) This mechanism applies

when target outputs are not real values or cannot be added with noises. An example

is to sample one of several options while considering the desirability of each option.

In particular, given a utility function h : (D×O)→ R which assigns a score to each

output r ∈ R, the exponential mechanism M which chooses an output r ∈ R based on

a stream Si of node ni is defined as

M(Si, h) =

{
r with probability ∝ exp

(εh(Si, r)

2∆1(h)

)}
. (5.3)

5.5 PriStream Design

In this section, we elaborate on the design of PriStream.
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5.5.1 Overview

The most intuitive method for monitoring whether global condition f(χr(tl)) > τ

holds in every interval is to let each node ni report its statistic value vi(tl) = g(Si(tl))

to the service provider, which can in turn decide χr(tl) and test whether the global

condition holds.

The above method has two obvious limitations. First, letting every node report its

statistic value in every interval incurs significant communication overhead, especially

if the reporting frequency need be sufficiently high (say, every five minutes) for real-

time decision making. Since most sensor nodes in future smart cities are expected to

have limited energy, their batteries will be quickly drained out and very difficult to

replenish. Second, the service provider can learn the original data of all the nodes

and thus violate the privacy of the corresponding users.

To address the first limitation, we propose a novel ranging technique to enable

communication-efficient distributed monitoring. Specifically, we observe that testing

whether the global condition f(χr(tl)) > τ holds does not require the service provider

to know the actual value of χr(tl). Instead, it suffices to know whether χr(tl) falls

into the range where f(χr(tl)) > τ holds. Recall that R is the domain of the statistic

value at each node. It follows that χr(tl) ∈ R for every interval as well. Given

function f(·) chosen by the service provider, we can divide R into a safe area R+(tl)

and a unsafe area R−(tl), such that R = R+(tl)
⋃
R−(tl), R+(tl)

⋂
R−(tl) = ∅, and

f(χr(tl)) > τ if and only if χr(tl) ∈ R−(tl). The global monitoring task can then be

converted into testing whether χr(tl) ∈ R−(tl), which can be accomplished without

knowing the actual value of χr(tl) in every interval.

More specifically, for a given function f(·), the safe range R+(tl) and the unsafe

range R−(tl) may each comprise multiple disjoint ranges. Without loss of generality,
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assume that R+(tl) and R−(tl) together comprise θ disjoint ranges R1(tl), . . . , Rθ(tl),

where
⋃θ
i=1Ri(tl) = R, Ri(tl)

⋂
Rj(tl) = ∅ for all i 6= j, and each Rj(tl) is either an

open or closed range with left and right boundaries lj(tl) and rj(tl), respectively. Let

kj(tl) be the number of nodes with statistic values in Rj in interval tl for all j ∈ [1, θ].

It follows that k =
∑θ

j=1 kj(tl) for every interval tl = 1, 2, . . . . In every interval tl,

each node ni reports to the service provider the index of range that its statistic value

vi(tl) falls into, which allows the service provider to compute k1(tl), . . . , kθ(tl), and

further determine which range χr(tl) falls into and whether f(χr(tl)) > τ holds.

To tackle the second limitation, PriStream adopts the Laplace and the exponential

mechanisms to provide differential privacy to participating nodes. Consider node ni

with statistic value vi(tl) ∈ Rx(tl) in interval tl as an example. To ensure differential

privacy, node ni reports a perturbed interval index x′ generated via a combination of

the Laplace and the exponential mechanisms.

5.5.2 Detailed PriStream Operations

We now illustrate the detailed PriStream operations, which comprise initialization

and communication-efficient phases.

Initialization Phase

The service provider starts the initialization phase at the end of interval tl, where tl

refers to either the first interval t1 or any subsequent interval (i.e., l ≥ 2) for which

the global monitoring condition has been changed in the preceding interval tl−1. The

purpose is to assign the range parameters to all nodes and collect each node’s range

index.

Operation Details
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At the end of interval tl, the service provider issues a system-wide query, which

specifies the desired statistic metric generation function g(·), the precomputed disjoint

ranges {Rj(tl)}θj=1 with corresponding left and right boundaries {〈lj(tl), rj(tl)〉}θj=1,

the differential-privacy parameter ε.

Upon receiving the query, each node ni for ∀i ∈ [1, k] with its data vector Si(tl)

does the following in sequel.

1. Compute the desired statistic value vi(tl) = g(Si(tl)).

2. Find the real range index x ∈ [1, θ] such that vi(tl) ∈ Rx(tl).

3. Compute a perturbed range index Ii(tl) from x according to Alg. 2.

4. Send Ii(tl) to the service provider.

After receiving all the perturbed range indexes, the service provider processes

them as follows.

1. Count the number of perturbed range indexes being j as kj(tl) for every j ∈

[1, θ].

2. Calculate the percentile value Pj(tl) at the range Rj(tl)’s left boundary lj(tl) as∑θ
i=j ki(tl)/k for every j ∈ [1, θ].

3. Determine the range Rx(tl) in which χr(tl) falls into by finding x such that

Px > r/100 > Px+1.

4. Check whether Rx(tl) is a safe range. If not, take the predetermined action

such as issuing a public safety alarm. Otherwise, keep silent. For both cases,

proceed to communication-efficient phases.
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Algorithm 2: Generating Perturbed Range Index

input : {(li(tl), ri(tl))}θi=1, ε, vi(tl),∆1(g)

output: Ii(tl)

1 Generate noise αi ∼ Laplace
(

∆1(g)
ε

)
;

2 for j = 1, . . . , θ do

3 Calculate cj(tl) =
lj(tl)+rj(tl)

2
;

4 Generate a perturbed range [lj(tl)− αi, rj(tl) + αi];

5 if vi(tl) < cj(tl) then

6 µj(tl) = ε · |cj(tl)−lj(tl)+αi|−|cj(tl)−vi(tl)|
2∆1(g)

;

7 else

8 µj(tl) = ε · |rj(tl)−cj(tl)+αi|−|cj(tl)−vi(tl)|
2∆1(g)

;

9 for j = 1, . . . , θ do

10 Calculate the probability that vi(tl) locates in range j as

P̂j(tl) =
exp(µj(tl))∑θ
j=1 exp(µj(tl))

;

11 Generate ui(tl) ∼ U [0, 1] ;

12 P̂0 ← 0 ;

13 for j = 1, . . . , θ do

14 if
∑j−1

j′=0 P̂j′(tl) ≤ ui(tl) <
∑j

j′=0 P̂j′(tl) then

15 return Ii(tl) = j;
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Communication-Efficient Phase

In every interval tl′ (l′ > l), each node ni computes a perturbed range index Ii(t
′
l)

according to Alg. 2 and reports Ii(t
′
l) to the service provider only if Ii(t

′
l) 6= Ii(tl′−1).

The detailed operations at each node ni in communication-efficient phase are as

follows.

1. Find the range Rx(tl′) where vi(tl′) falls into.

2. Generate a perturbed range index Ii(tl′) from the original range index x accord-

ing to Alg. 2.

3. If Ii(tl′) 6= Ii(tl′−1), send Ii(tl′) to the service provider and keep silent otherwise.

Upon receiving all the perturbed range indexes, the service provider processes

them as follows.

1. For every node ni that did not send Ii(tl′), set Ii(tl′) = Ii(tl′−1).

2. Count the number of nodes with Ii(tl′) = j for every j ∈ [1, θ].

3. Calculate the percentile value Pj(tl′) at the range Rj(tl′)’s left boundary lj(tl′)

as
∑θ

i=j kj(tl′)/k for every j ∈ [1, θ].

4. Determine the range Rx(tl′) in which χr(tl′) falls into by finding x such that

Px(tl′) > r/100 > Px+1(tl′).

5. Check whether Rx(tl′) is a safe range. If not, take the predetermined action

such as issuing a public safety alarm and keep silent otherwise.

6. Continue with the communication-efficient phase or start another initialization

phase by broadcasting a new system-wide query in the next interval.
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5.5.3 Performance Analysis

Correctness

The correctness of PriStream is affected by both the correctness of our proposed

communication-efficient scheme and the accuracy guarantee after adopting mecha-

nisms for differential privacy provision.

We first consider the correctness of our proposed scheme while ignoring the pro-

vision of differential privacy.

Theorem 5.5.1. Let kj(tl) be the number of nodes with statistic value in range Rj(tl)

for all j ∈ [1, θ] and χr(tl) be the rth percentile of a set of statistic values {vi(tl)}ki=1.

The global condition f(χr(tl)) > τ holds at time interval tl for some predefined thresh-

old τ if there exists an unsafe range Rj(tl) such that Pj(tl) > r/100 > Pj+1(tl), where

Px(tl) =
∑θ

i=x ki(tl)/k for all x ∈ [1, θ].

Proof. Recall that Pj(tl) =
∑θ

i=j ki(tl)/k for all j ∈ [1, θ], where kj(tl) is the number

of nodes with statistic values in Rj(tl). Since Pj(tl) > r/100 > Pj+1(tl), we have

that
∑θ

i=j ki(tl)/k > r/100 >
∑θ

i=j+1 ki(tl)/k. It follows that χr(tl) is between the∑θ
i=j+1 ki(tl)th and the

∑θ
i=j ki(tl)th largest numbers among {vi(tl)}ki=1. We there-

fore have χr(tl) ∈ Rj(tl). Since Rj(tl) is an unsafe region, by definition, we have

f(χr(tl)) > τ .

Next, we consider the accuracy of PriStream after each node perturbs its range

index using Alg. 2. Specifically, the accuracy of PriStream depends on how accurate

the service provider can learn the number of values in each range in each interval,

which in turn depends on how accurate Alg. 2 perturbs a range index. The following

theorem guarantees that the perturbed range index output by Alg. 2 would not be

very different from the range index before perturbation.
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Theorem 5.5.2. If node ni’s statistic value vi(tl) is outside of range Rj(tl) and the

distance between vi(tl) and the closer boundary of Rj(tl) is at least 2∆1(g)
ε

log 1−δ
δ1.5(θ−1)

,

then Alg. 2 will output a perturbed range index Ii(tl) = j with probability at most 2δ.

Proof. In time interval tl, the error introduced in either initialization or communication-

efficient phase comes from the perturbation of the range with Laplace noise αi and the

exponential mechanism. For the range perturbation operation, since αi is sampled

from a Laplace distribution Laplace
(

∆1(g)
ε

)
with the cumulative distribution function

F (x) =


1

2
exp

(
xε

∆1(g)

)
, if x < 0,

1− 1

2
exp

(
−xε

∆1(g)

)
, if x ≥ 0.

(5.4)

Assume that |αi| is at most ψ with probability 1− δ, where ψ > 0. We have

1− 2 · 1

2
exp

(
− ψε

∆1(g)

)
= 1− δ.

Solving the above equation, we have ψ = ∆1(g)
ε

log 1
δ
. Therefore, we know that

Pr

[
|αi| ≤

∆1(g)

ε
log

1

δ

]
≥ 1− δ. (5.5)

In addition, assume that with probability 1− δ, the statistic value vi(tl) at a node

ni exceeds a range boundary by ϕ. We further have

1−
exp(− εϕ

2∆1(g)
)

(θ − 1) exp(0) + exp(− εϕ
2∆1(g)

)
= 1− δ.

Solving the above equation, we obtain

ϕ =
2∆1(g)

ε
log

1− δ
δ(θ − 1)

,

and

Pr

[
ϕ ≥ 2∆1(g)

ε
log

1− δ
δ(θ − 1)

]
≥ 1− δ. (5.6)
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Considering the above two factors simultaneously, if the distance between vi(tl)

and Rj(tl) is larger than 2∆1(g)
ε

log 1−δ
δ1.5(θ−1)

, Alg. 2 will output a perturbed range index

Ii(tl) = j with probability at most 2δ, which can also be written as

Pr

[
ϕ ≤ 2∆1(g)

ε
log

1− δ
δ1.5(θ − 1)

]
≤ 2δ. (5.7)

Theorem 5.5.3. If node ni’s statistic value vi(tl) is inside the range Rj and the

distance between vi(tl) and the closer boundary of Rj is more than 2∆1(g)
ε

log 1−δ
δ1.5(θ−1)

,

then Alg. 2 will output a perturbed range index Ii(tl) = j with probability at least

(1− 2δ).

The proof of Theorem 5.5.3 is similar to that of Theorem 5.5.2.

Communication Overhead

The following theorem gives the communication overhead incurred by PriStream.

Theorem 5.5.4. Given a PriStream execution process with a initialization and b

communication-efficient phases, PriStream incurs the communication overhead of

a(|M| + $k) + $
∑b

l=1 λl, where |M| is the communication overhead incurred by

broadcasting system information, $ = blog2(θ − 1)c + 1 is the size of a range index,

k is the number of nodes, λl is the number of nodes that submit range index to the

service provider in lth communication-efficient phase, and l ∈ [1, b].

Proof. We analyze the communication overhead incurred in initialization and commu-

nication-efficient phases separately.

In the initialization phase, the service provider need send a message M con-

taining the desired statistic metric generation function g(·), the precomputed range

parameters {Rj(tl)}θj=1, the differential-privacy parameter ε for differential-privacy
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mechanism. We denote the communication overhead incurred by transmitting M

by |M|. In addition, each node sends a $-bit range index to the service provider,

totaling to $k bits.

In every communication-efficient phase, the node whose perturbed range index is

different from that in last interval sends a $-bit range index to the service provider,

which incurs total communication overhead of λl$ bits, where λl ∈ [1, k] is the number

of nodes that submit range index to the service provider in lth communication-efficient

phase, where l ∈ [1, b].

In summary, the overall communication overhead incurred by a PriStream exe-

cution process with a initialization and b communication-efficient phases is given by

a(|M|+$k) +$
∑b

l=1 λl.

Privacy Analysis

The privacy of our proposed scheme is guaranteed by the following theorem.

Theorem 5.5.5. PriStream consisting of a initialization and b communication-efficient

phases maintains 2(a+ b)ε-differential privacy.

Proof. We follow the proof technique in [52] to prove that PriStream guarantees

ε-differential privacy for each participating node in each phase. We consider all the

noise components added in our scheme to obtain privacy guarantees for a multi-round

process. For each node ni, given two adjacent data streams Si(tl) and S ′i(tl) that differ

in only one element, we consider the scheme execution process as a sequential process

consisting of a initialization and b communication-efficient phases.

In what follows, we analyze each phase of the PriStream execution in detail to

show how different operations on Si(tl) and S ′i(tl) will lead to the same output. For
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convenience, we use E and E ′ to denote the PriStream execution process over two

adjacent data streams Si(tl) and S ′i(tl), respectively.

Initialization phase. Assume that each node ni generates its statistic value as

vi(tl) = g(Si(tl)) and v′i(tl) = g(S ′i(tl)) in two executions E and E ′, respectively. For

execution E, each node ni generates Laplace noise αi from a Laplace distribution.

For execution E ′, the Laplace noise generated by node ni is αi. In the initialization

phase, the execution E outputs range index j with probability P̂j(tl), which is given

by

P̂j(tl) =
exp(µj(tl))∑θ
j=1 exp(µj(tl))

, (5.8)

where

µj(tl) = ε · h

2∆1(g)
, (5.9)

h =



|cj(tl)− lj(tl) + αi| − |cj(tl)− vi(tl)|,

∀ vi(tl) < cj(tl), 1 ≤ j ≤ θ,

|rj(tl)− cj(tl) + αi| − |cj(tl)− vi(tl)|,

∀ vi(tl) ≥ cj(tl), 1 ≤ j ≤ θ,

(5.10)

cj(tl) =
lj(tl)+rj(tl)

2
, lj(tl) and rj(tl) are the left and right boundaries of the jth range

in which vi(tl) actually locates in time interval tl, respectively. The `1-sensitivity of

utility function h is ∆1(g).
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Assume vi(tl) ∈ Rj(tl) in time interval tl, we have

Pr[M(Si(tl), h) = j]

Pr[M(S ′i(tl), h) = j]
=

(
exp(µj(tl))∑θ
x=1 exp(µx(tl))

)
(

exp(µ′j(tl))∑θ
x=1 exp(µ′x(tl))

))
=

(
exp(µj(tl))

exp(µ′j(tl))

)
·

(∑θ
x=1 exp(µ′x(tl))∑θ
x=1 exp(µx(tl))

)

= exp
(
µj(tl)− µ′j(tl)

)
·

(∑θ
x=1 exp(µ′x(tl))∑θ
x=1 exp(µx(tl))

)
(5.11)

For vi(tl) < cj(tl), we have

µj(tl)− µ′j(tl) =ε · |cj(tl)− lj(tl) + αi| − |cj(tl)− vi(tl)|
2∆1(g)

− ε · |cj(tl)− lj(tl) + α′i| − |cj(tl)− v′i(tl)|
2∆1(g)

≤ ε
2
· 2∆1(g)

∆1(g)

=ε,

(5.12)

µ′j(tl) = ε · |cj(tl)− lj(tl) + α′i| − |cj(tl)− v′i(tl)|
2∆1(g)

≤ ε · |cj(tl)− lj(tl) + αi|+ ∆1(g)

2∆1(g)

− ε · |cj(tl)− vi(tl)| −∆1(g)

2∆1(g)

= ε · |cj(tl)− lj(tl) + αi| − |cj(tl)− vi(tl)|+ 2∆1(g)

2∆1(g)

= µj(tl) + ε.

(5.13)

For vi(tl) ≥ cj(tl), we have

µj(tl)− µ′j(tl) =ε · |rj(tl)− cj(tl) + αi| − |cj(tl)− vi(tl)|
2∆1(g)

− ε · |rj(tl)− cj(tl) + α′i| − |cj(tl)− v′i(tl)|
2∆1(g)

≤ε · 2∆1(g)

2∆1(g)

=ε,

(5.14)
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µ′j(tl) = ε · |rj(tl)− cj(tl) + α′i| − |cj(tl)− v′i(tl)|
2∆1(g)

≤ ε

(
· |rj(tl)− cj(tl) + αi|+ ∆1(g)

2∆1(g)

+ ·−|cj(tl)− vi(tl)|+ ∆1(g)

2∆1(g)

)
= ε · |rj(tl)− cj(tl) + αi| − |cj(tl)− vi(tl)|+ 2∆1(g)

2∆1(g)

= µj(tl) + ε.

(5.15)

Therefore, we have

Pr[M(Si(tl), h) = j]

Pr[M(S ′i(tl), h) = j]
≤ exp(ε)

(∑θ
x=1 exp

(
µx(tl) + ε

)∑θ
x=1 exp(µx(tl))

)
= exp(ε)

(∑θ
x=1 exp(µx(tl)) · exp(ε

)∑θ
x=1 exp(µx(tl))

)
= exp(2ε),

(5.16)

which indicates that the initialization phase guarantees 2ε-differential privacy.

Communication-efficient phase. The operations of each communication-efficient

phase is similar to those of the initialization phase except for the case in which some

nodes do not need to send the index of the range in which it resides to the service

provider if the statistic value remains in the same range as that in the previous phase.

Therefore, we can similarly obtain the same result that each communication-efficient

phase guarantees 2ε-differential privacy.

The whole PriStream execution process. As mentioned, the whole execution

process is a sequential process consisting of a initialization and b communication-

efficient phases. Since the noise added in each phase is drawn independently, the

probability difference of obtaining the same output for the whole execution process

can be considered the multiplication of the probability difference in each phase. There-

fore, for the whole execution process, the probability of obtaining the output based
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on execution E ′ differs from that of execution E by a factor of at most exp(2(a+ b)ε),

which guarantees 2(a+ b)ε-differential privacy.

5.6 Performance Evaluation

In this section, we evaluate the performance of PriStream via MATLAB simula-

tions based on both real-world and synthetic datasets.

5.6.1 Simulation Setup

We adopt the following metrics to evaluate the performance of PriStream.

• Communication overhead : We quantify the communication overhead by the

number of bits transmitted between the service provider and nodes during

stream monitoring.

• Accuracy : The accuracy is used to evaluate the utility after introducing Alg. 2.

We treat the range index of each round in communication-efficient scheme as

the ground truth and compare it with the range index of the corresponding

round in PriStream. The accuracy is defined as the ratio of the number of the

same indexes over the total rounds.

• Privacy loss : The privacy loss is defined as

ε̂ = max ln
Pr[M(Si(tl), h) = j]

Pr[M(S ′i(tl), h) = j]
, (5.17)

where Si and S ′i are two adjacent streams which differ in only one element. Ob-

viously, the smaller ε̂, the less impact of the change of one element on the range

index generation algorithm, the higher level of differential privacy is offered,

and vice versa.
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We use two datasets to evaluate the performance of PriStream. The first dataset

is MHEALTH [27], a mobile health dataset that comprises body motion and vital

sign measures for several volunteers of diverse profiles while performing 12 physical

activities such as walking, running and climbing stairs. The dataset contains totally

1,215,745 recordings, each of which is composed of 24 types of signals from the sensors

such as accelerometer, gyroscope, and magnetometer. In this chapter, we used all the

1,215,745 recordings for one type of signal because they are at the same scale and are

the focus of this chapter; we leave the monitoring and evaluation of multi-dimension

streams with different scales as future work. We then randomly partition them into

1000 subsets, representing 1000 distributed nodes, each of which has about 1216 data

items, corresponding to 1216 intervals. The service provider starts the initialization

phase at interval 608 and then conducts subsequent 608 rounds of queries, and each

node will generate vi(tl) based on its previous 608 data items. The second dataset is

a synthetic dataset generated by MATLAB used to simulate the case with different

data distribution. In particular, the data in MHEALTH dataset follow Gaussian

distribution. We extract the data range from MHEALTH dataset and then generate

a synthetic dataset which is uniformly distributed in the same data range from. All

other metrics such as the number of nodes, the number of intervals, and the number

of query rounds in synthetic dataset are the same as that in MHEALTH dataset.

The default simulation settings are summarized in Tab. 5.1.

5.6.2 Simulation Results

We report the simulation results of a communication-efficient scheme (e.g., Pri-

Stream without Alg. 2), PriStream and a baseline scheme that lets each node directly

submit its statistic value to the service provider.
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Table 5.1: Default Simulation Settings.

Para. Value Meaning

k 1000 The number of nodes

ε 0.15 The differential privacy parameter

θ 100 The number of ranges

r 80 The percentile value
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Figure 5.1: Impact of the Number of Rounds on Communication Overhead.

Fig. 5.1 compares the communication overhead of the baseline, the communication-

efficient, and PriStream schemes with b (i.e., the number of rounds) varying from 1 to

600. We can see that the communication-efficient and PriStream schemes incur much

lower communication overhead than the baseline scheme does. The reason is than the

number of nodes that submit data to the service provider in communication-efficient

and PriStream schemes is much smaller than in the baseline scheme. Besides, by

reporting range index instead of statistic value, communication overhead is further
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reduced. In addition, we can see that PriStream scheme incurs higher communica-

tion overhead than that of the communication-efficient scheme. The reason is that

the range index of each node’s statistic value is perturbed to other range indexes for

the protection of data privacy, resulting in more range index being submitted to the

service provider.
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Figure 5.2: Impact of ε on Accuracy.

Fig. 5.2 shows the relationship between the accuracy and the differential privacy

parameter ε. Obviously, the baseline scheme, which does not consider the data pri-

vacy, achieves 100% accuracy without being affected by the change of ε. However,

the accuracy of PriStream increases as the differential privacy parameter ε increases.

The reason is that as ε increases, the perturbed range index generated by Alg. 2 is

more likely to be the same as its perturbed range index in previous interval, leading

to less range index updates.

Fig. 5.3 shows the impact of differential privacy parameter ε on the communication

overhead of PriStream. We can see that the communication overhead decreases as

ε increases, demonstrating a trade-off between ε and communication overhead. The
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Figure 5.3: Impact of ε on Communication Overhead.

reason is that the higher ε, the higher the probability that a node’s statistic value

remains in the same range after perturbation, and the fewer nodes that need to report

range index updates.
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Figure 5.4: Privacy Loss of PriStream.
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Fig. 5.4 illustrates the privacy loss after using PriStream. We can see that the

privacy loss is always below 0.15. According to Tab. 5.1, the simulation setting of

differential privacy parameter is ε = 0.15, which indicates that our designed scheme

can always guarantee the desired 2ε-differential privacy.
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Figure 5.5: Impact of θ on Accuracy.

Fig. 5.5 shows the impact of the number of ranges on accuracy. We can easily find

that the accuracy decreases as the number of ranges increases for both datasets. The

reason is that the larger the number of ranges, the smaller the range size, the higher

the probability that the statistic value is perturbed to other ranges.

Fig. 5.6 shows the impact of θ on communication overhead. We can see that the

communication overhead increases as θ increases. The reason is that the larger the

θ is, the smaller the range size, the higher the probability that the statistic value is

perturbed to a different range, and the higher communication overhead.
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Figure 5.6: Impact of θ on Communication Overhead.

5.7 Summary

This chapter proposes PriStream [141], a novel privacy-preserving and communica-

tion-efficient distributed stream monitoring system. Different from previous work on

monitoring the function of mean statistic value, our proposed scheme monitors the

statistic value at the given percentile rank in a privacy-preserving and communication-

efficient fashion. The efficacy and efficiency of our PriStream are confirmed by detailed

MATLAB simulations.
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Chapter 6

VIDEO-ASSISTED KEYSTROKE INFERENCE FROM TABLET BACKSIDE

MOTION

6.1 Introduction

The past few years have witnessed the proliferation of tablets in everyday life. Ac-

cording to a Gartner report [13], global tablet shipments will reach 321 million and

surpass PC shipments in 2015. Being lighter than laptops and having larger touch-

screens than smartphones, tablets perfectly fill the gap between laptops and smart-

phones and have become an indispensable category of mobile computing devices.

People are increasingly using tablets in every aspect of life, including voice/video

communications, Internet browsing, web transactions, online banking, reading, mul-

timedia playing, etc.

The deep penetration of tablets in people’s daily life has made them attractive

targets for various keystroke inference attacks that aim to infer a user’s typed in-

puts (such as usernames, passwords, SSNs, and emails) on the tablet touchscreen.

Although existing authentication schemes [40, 41, 83, 90, 127, 138] can prevent unau-

thorized access to mobile devices, prior work has shown that an attacker can suc-

cessfully infer the PIN or even the words entered on the soft (tablet) keyboard by

surreptitiously video-recording a target user’s input process and then analyzing the

reflection of the touchscreen, spatial hand dynamics, or the relative finger positions

on the touchscreen [24, 25, 26, 103, 123, 132, 152, 159]. These studies commonly

assume that the attacker can capture a user’s interaction with the touchscreen with

little or no visual obstruction, which greatly limits the applicability of these attacks.
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In this chapter, we propose VISIBLE [140], a novel video-assisted keystroke in-

ference framework that allows an attacker to infer a tablet user’s typed inputs on

the touchscreen by recording and analyzing the video of the tablet backside dur-

ing the user’s input process. VISIBLE is motivated by our observation that the

keystrokes on different positions of the tablet’s soft keyboard cause its backside to

exhibit different motion patterns. In contrast to previous keystroke inference tech-

niques [24, 25, 26, 103, 123, 132, 152, 159], VISIBLE does not require the attacker

to visually see the victim’s input process and thus enables much more surreptitious

keystroke inference from a distance.

The design of VISIBLE faces two major challenges. First, the backside motion

caused by user keystrokes is very subtle and requires effective methods to detect and

quantify. Second, since the soft keyboard on the tablet is much smaller than a nor-

mal keyboard, the motion patterns caused by tapping adjacent keys are close, making

accurate differentiation particularly challenging. To tackle these two challenges, VISI-

BLE uses complex steerable pyramid decomposition to detect and quantify the subtle

keystroke-induced motion patterns of the tablet backside, differentiates different mo-

tion patterns using a multi-class Support Vector Machine, and refines the inference

results using a dictionary and linguistic models.

We thoroughly evaluate the performance of VISIBLE via comprehensive exper-

iments on an Apple iPad 2 tablet and a Google Nexus 7 tablet. Our experiment

results show that VISIBLE can infer a single key entered on the alphabetical soft

keyboard with an average accuracy of 36.2% and that the correct key is within the

inferred key’s one-hop and two-hop neighbors with probabilities 83.6% and 97.9%,

respectively. Similarly, VISIBLE achieves an accuracy of 38% for single-key inference

on the PIN soft keyboard, and the correct key is within the inferred key’s one-hop

neighbors with probability 68%. For word inference, VISIBLE can produce a list of
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candidate words, and the correct word is in the top-5, top-10, top-25, and top-50

candidate words with probabilities 48.0%, 63.0%, 77.8%, and 92.6%, respectively.

We also show that the attacker can successfully infer typed sentences based on the

linguistic relationship between adjacent words. These experiment results confirm the

high efficacy of VISIBLE.

The rest of this chapter is organized as follows. Section 6.2 presents the related

work. Section 6.3 introduces some background knowledge for video processing. Sec-

tion 6.4 describes the adversary model. Section 6.5 details the design of VISIBLE.

Section 6.6 evaluates VISIBLE through extensive experiments. Section 6.7 summa-

rizes this chapter and discusses possible countermeasures and future work.

6.2 Related Work

In this section, we briefly introduce the prior work most related to VISIBLE. Prior

keystroke inference attacks can be broadly classified into two categories: video-based

attacks and sensor-based attacks.

Video-based Attacks In this category, the adversary uses video-based side chan-

nels in combination with computer vision techniques to infer a user’s typed inputs.

Early work along this line focuses on physical keyboards. Backes et al. [24, 25] ex-

ploited the reflections of screens on glasses, tea pots, spoons, plastic bottles, eyes of

the user, walls, and even the user’s clothes to recover the content displayed on the

computer monitor. Balzarotti et al. [26] introduced an attack that automatically

recovers the typed text solely from a video of the user typings by analyzing the light

diffusion surrounding the key change. This attack requires a camera to directly record

the finger typings on the physical keyboard.
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There have also been some video-based attacks on the soft keyboards of touch-

screen mobile devices. In [103], Maggi et al. presented an attack that automatically

recognizes typed inputs from the key magnifications of touchscreen mobile devices.

Raguram et al. [123] showed how to automatically reconstruct the text input on a

soft keyboard from the reflection of the device’s screen on the victim’s sunglasses. Xu

et al. [152] introduced an attack to accurately reconstruct the text input on a mobile

device by tracking the positions of the victim’s fingers as they move across the soft

keyboard. In [159], Yue et al. showed how to infer the user input even if neither

text nor popup can be seen from the video of user typings. This attack exploits the

homographic relationship between touching images and a reference image showing a

soft keyboard. All these attacks require the attacker to acquire a video capturing the

victim’s typings on the touchscreen or the touchscreen reflection.

Our work is most related to [132], in which Shukla et al. introduced a video-based

attack on the PIN-entry process of a smartphone that decodes the typed PIN by

exploiting the spatiotemporal dynamics of the hands during typing. Both VISIBLE

and the attack proposed in[132] only require the attacker to video-record the backside

of a smartphone, which was considered safe previously. VISIBLE, however, has much

wider applicability than [132]. In particular, the attack introduced in [132] requires

the attacker to record the victim’s hand movements during the PIN-entry process,

which is not always possible. For example, the victim’s hand movements are very

likely to be obscured by the tablet itself. In contrast, VISIBLE works even if the

victim’s hand movements are not visible from the video of the device backside.

Sensor-based Attacks Tremendous efforts have been made on inferring user in-

puts on mobile devices from the data generated by various on-board sensors. It

has been shown in [35] and [119] that the user’s password can be inferred from the
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smartphone’s accelerometer data. Moreover, some recent work [109, 153] demon-

strated a similar attack that exploits the data from both accelerometer and gyroscope.

Other on-board sensors that have been exploited include microphones and front cam-

eras [113, 133]. All these work require the attacker to obtain sensor data via either

malicious applications (e.g., malicious Apps or web scripts) or unprotected network

transmissions, which limit their applicability. In contrast, VISIBLE only requires the

attacker to record the video of the tablet backside during the victim’s typing process,

which is both easier to launch and more difficult to detect.

Also related is the work on using on-board sensors to infer the keystrokes of

nearby physical keyboards. In [175], Zhuang et al. showed how to recover typed

keys from sound recordings of a user’s typings on a physical keyboard. Berger et al.

[29] presented another attack that infers the user input from the acoustic emanations

of the physical keyboard with the assistance of a dictionary. A similar attack was

presented in [174], which also uses acoustic emanations of the physical keyboard but

does not need a language model or dictionary. In [106], the authors demonstrated an

attack that infers the typed keys of a physical keyboard from the vibration caused

by each keystroke detected by a nearby smartphone’s accelerometer. Such attacks,

although effective, can only be used when the attacker is near the victim due to the

short transmission range of acoustic and vibration signals. In contrast, VISIBLE can

be launched from a much larger distance.

6.3 Video Processing Basics

In this section, we introduce two computer vision techniques, phase-based optical

flow estimation and complex steerable pyramid decomposition, underlying VISIBLE.
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6.3.1 Phase-based Optical Flow Estimation

An optical flow refers to apparent motion patterns of image objects between two

consecutive frames caused by the object or camera movement. Optical flow estima-

tion is the process of characterizing and quantifying the object motions in a video

stream, often for motion-based object detection and tracking systems. Phase-based

optical flow is a popular optical flow estimation technique which estimates the mo-

tion field using phase information. For example, constant phase contours are tracked

by computing the phase gradient of spatiotemporally bandpassed images, which pro-

vides a good approximation to the motion in [55]. As another example, Gautama

et al. [59] proposed to estimate motion by computing the temporal gradient of the

phases of a partially bandpassed video. In comparison with other flow estimation

techniques, phased-based estimation methods are more robust to smooth shading,

lighting variations, and small deviations from image translations.

6.3.2 Complex Steerable Pyramid Decomposition

Steerable pyramid decomposition [134] is a standard technique that decomposes

an image according to spatial scale, orientation, and position to capture the variance

of a texture in both intensity and orientation, which has been widely used in image

processing and motion detection. Since an image may contain multiple objects of

different sizes, and these objects may contain features of different sizes and be at

different distances from the viewer, any analysis procedure that is only applied at a

single scale may lose information at other scales. To simultaneously detect multiple

objects’ motion patterns, analysis need be carried out at different scales simultane-

ously [16]. In addition, the same object may also exhibit totally different features
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in different orientations. To comprehensively analyze the features of an object and

detect its motion pattern, it is necessary to decompose it in different orientations.

Complex steerable pyramid decomposition [121] extends the original steerable

pyramid decomposition by representing an image in a complex form comprising real

and imaginary parts. In comparison with steerable pyramid decomposition, complex

steerable pyramid decomposition additionally measures local phase and energy in

some texture descriptors. Such measures have proved important throughout computer

vision. Using complex steerable pyramid decomposition, we can obtain the phase and

amplitude of each pixel of an image at each spatial scale and orientation over time.

6.4 Adversary Model

(a) An iPad and a

Holder.

(b) Attack Sce-

nario.

(c) The Same Attack Scenario From a Different Angle.

Figure 6.1: Examples of a Tablet Holder and an Attack Scenario.

We consider a victim user with a tablet such as iPad 2 or Nexus 7. We assume

that the victim places the tablet on a tablet holder (e.g., the one shown in Fig. 6.1a)

on a desk and types on a soft keyboard. Such scenarios are very common in daily life,

e.g., in conferences or seminars where researchers take notes or write emails. We focus

on two types of soft keyboards in this chapter, the alphabetical and PIN keyboards,
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as shown in Fig. 6.2. The extension of VISIBLE to the alphanumeric soft keyboard

is left as future work.

(a) Alphabetical Keyboard. (b) PIN Keyboard.

Figure 6.2: Alphabetical and PIN Soft Keyboard Illustrations.

We assume that an attacker intends to infer any typed input on the victim’s tablet,

which can be single keys, words, or sentences. This enables VISIBLE to infer any

sensitive typed input on the tablet, such as usernames, passwords, and emails. The

victim is alert to shoulder-surfing attacks in the sense that the attacker cannot get

too close to the victim during his typing process. In addition, the attacker is unable

to see the tablet touchscreen or the victim’s hand movement during his typing process

from any direction. Moreover, we assume that the attacker cannot obtain the sensor

data by running malware such as Trojans or malicious web scripts on the victim’s

tablet. These assumptions make previous video-based attacks [24, 25, 26, 103, 123,

132, 152, 159] and sensor-based attacks [29, 35, 106, 109, 113, 119, 133, 153, 174, 175]

inapplicable.

We assume that the attacker has the following capabilities. First, the attacker

can use camcorders with advanced lens to record the backside of the victim’s tablet

during his input process, possibly from a long distance. Second, the attacker can
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record the attack scenario and reconstruct it afterwards. Specifically, the attacker

can measure the angle between the victim’s tablet and the desk, the angle between

the tablet and the camcorder, and the distance between the tablet and the camcorder

by analyzing multiple images taken from different angles and positions using distance

and angle estimation algorithms [148]. Finally, the attacker has the same holder and

the tablet with the same soft keyboard layouts as the victim’s.

6.5 VISIBLE Framework

In this section, we give an overview of VISIBLE and then detail each step of the

attack.

6.5.1 VISIBLE Overview

VISIBLE infers the victim’s typed inputs from the video of tablet backside motion.

The high-level design of VISIBLE is shown in Fig. 6.3, which consists of eight steps

as follows.

1. Video Recording and Preprocessing : In this step, we record a video capturing

the motion of the tablet backside during the victim’s typing process. We assume

neither the touchscreen nor the victim’s hand movement can be seen from the

video. We crop the video clip to keep the text-input part only.

2. Areas of Interests (AOIs) Detection and Selection: In this step, we detect all

the areas with texture information on the tablet backside and select a few

areas as AOIs for further processing. Exemplary AOIs are the buttons, camera,

loudspeaker, logo, and texts on the tablet backside.

3. AOI Decomposition: In this step, we decompose each selected AOI in each

frame using complex steerable pyramid decomposition.
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Figure 6.3: The VISIBLE Framework.
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4. Motion Detection via Phase Variances : In this step, we analyze the phase vari-

ances of each AOI over time and quantify the corresponding motion amplitude.

5. Feature Extraction. In this step, we extract features in both temporal and

spatial domains to represent the motion patterns of each AOI.

6. Classifier Training. In this step, we let multiple attackers mimic the victim’s

typing process, record videos of their tablet backsides, and process their videos

to train a classifier.

7. Keystroke Inference. In this step, we use a classifier trained in Step 6) to test

the collected data from the victim’s typing process.

8. Text Inference. In this step, we infer the possible words by considering mean-

ingful alphabetical combinations using a dictionary and exploit the relationship

between adjacent words to further infer sentences.

In what follows, we present each step in detail.

6.5.2 Video Recording and Preprocessing

One or more camcorders can be used to video-record the tablet backside during the

victim’s typing process. For more accurate inference results, the video should capture

the entire backside of the tablet, and the image resolution should be sufficiently high.

In our experiments, we use two camcorders that focus on the left-half and right-half of

the tablet backside, respectively. By doing so, each camcorder only needs to focus on

a relatively small area with sufficiently high resolution to capture the detailed texture

information on the tablet backside.

In our study, we find that the following four factors affect subsequent motion

detection.
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• Image resolution and frame rate. The image resolution determines the amount

of detailed textural information that can be obtained from the image and should

be as high as possible. The frame rate is the number of frames taken within

one second, and a higher frame rate could help capture more detailed motion

information. We recommend 1080p60 1 HD or higher resolutions and frame

rates.

• Zoom setting. The zoom setting of the camcorder is jointly determined by the

distance between the camcorder and the tablet and the lens properties. We

recommend zooming in as much as possible while capturing the entire tablet

backside.

• Light condition. The bright light condition can result in better motion detection,

as the imaging component of camcorders generates larger random noise in low-

light condition that pollutes the motion signal.

• Recording angle. The angle between the camcorder and tablet need be adjusted

to capture the entire tablet backside, which can be easily satisfied in practice.

We also video-record the attack scenario layout to measure the distances and

angles between the camcorders and the target tablet as well as the angle between the

tablet and the desk. This is important for reconstructing the attack scenario later. In

practice, the attacker can take multiple images of the attack scenario from different

angles and estimate the distances and angles of interest using standard distance and

angle estimation algorithms such as [148].

After obtaining the video of the tablet backside, we manually crop the unwanted

part such that the remaining video contains only the typing process of interest that

11080p60 denotes that the camcorder can take 1920x1080 videos at a rate of 60 frames per second.
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is easily identifiable in practice. In practice, for the PIN keyboard, since the user

usually needs to press power or home button first, the keys entered subsequently are

very likely to be PINs. Similarly, for the alphabetical keyboard, the typing process

can be identified by continuous typings (e.g., small arm movements). Finally, we

decompose the cropped video into a series of frames. Note that video croppings can

be automated after more sophisticated and extensive programming effort.

6.5.3 AOIs Detection and Selection

After obtaining a series of frames, we proceed to identify all the Areas of Interests

(AOIs) on the tablet backside, where each AOI refers to an area containing unique

texture information. In computer vision, the texture information of an image refers to

the relationship of nearby pixels. Given a frame, we use the textured area detection

algorithm [30] to identify the areas with texture information and select them as AOIs

for subsequent motion detection.

Fig. 6.4a shows an image of the iPad 2 backside, where the areas enclosed by

rectangles are identified AOIs, which include the power button, the voice up and

down buttons, the silence button, the backside camera, the ear plug, the loudspeaker,

the logo, the manufacture information, and other decorative patterns. These AOIs

can be used to detect the tablet backside motion. In practice, almost every tablet’s

backside contains adequate areas with rich texture information. Even if the tablet is

protected by a backside cover like iPad Smart Case, the backside of the cover itself

still contains areas with rich texture information making it easy to find enough AOIs

for subsequent motion detection.

We then select a subset of the AOIs that are near the edges of the tablet backside

and separated from each other, as these AOIs tend to have larger and more distinctive

motions than others, making them more capable of differentiating the motion patterns
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(a) Possible AOIs.

(b) Selected AOIs.

Figure 6.4: Possible and Selected AOIs on an iPad 2’s Backside.

Figure 6.5: An Example of a Selected AOI, AOI-2.
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Figure 6.6: Real and Imaginary Parts of a 3-scale, 4-orientation Complex Steerable

Pyramid Representation of AOI-2.
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entation.

Figure 6.7: Phase and Amplitude of a 3-scale, 4-orientation Complex Steerable Pyra-

mid Representation of AOI-2.
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caused by different keystrokes. Fig. 6.4b shows the backside image of an iPad 2 placed

on a holder, where the areas specified by rectangles are the selected AOIs.

6.5.4 Decompositions of Selected AOIs

Now we have a series of frames extracted from the cropped video, each containing

the same set of selected AOIs. For each frame, we use complex steerable pyramid

decomposition [121] to decompose each selected AOI into complex sub-bands. As

an example, Fig. 6.5 shows an AOI that is part of the Apple logo, and Fig. 6.6 and

Fig. 6.7 show the image decomposed via complex steerable pyramid decomposition.

More specifically, Figs. 6.6a to 6.7b show the real part, imaginary part, phase, and

amplitude of the decomposed image at three scales and four orientations, respectively.

We can see from Fig. 6.7a that the image has more features at orientation 3 and 4 and

less features at orientation 2. Since the phase variations are proportional to subtle

motions, Fig. 6.7a indicates that more subtle motions can be detected at orientation 3

and 4. Finally, we obtain a decomposed complex steerable pyramid for each selected

AOI in each frame.

6.5.5 Motion Detection via Phase Variances

To estimate the motion for each selected AOI over time, we first compute the

pixel-level motion. As in [47, 149], for each selected AOI, we first decompose its frame

series using complex steerable pyramid and then compute the pixel-level motion from

the amplitude and phase of its pixels. Specifically, complex steerable pyramid de-

composition adopts a filter bank to decompose each frame into complex sub-bands

corresponding to each scale and orientation. The complex steerable pyramid decom-

position of a frame at time t at scale r and orientation θ can be written as

A(t, x, y, r, θ)eiφ(t,x,y,r,θ), (6.1)
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where x and y are the pixel coordinates in x-axis and y-axis at scale r, respectively,

and A(t, x, y, r, θ) and φ(t, x, y, r, θ) are the amplitude and phase at coordinate (x, y)

of the decomposition at scale r and orientation θ, respectively.

We then calculate the phase variance at scale r and orientation θ as

∆φ(t, x, y, r, θ) = (φ(t, x, y, r, θ)− φ(t0, x, y, r, θ)) mod 2π, (6.2)

where t0 is the time for any initial frame. According to [59], the phase variations

∆φ(t, x, y, r, θ) are approximately proportional to displacements to image structures

along the corresponding scale and orientation.

Finally, we estimate each selected AOI’s motion using its pixel-level motion. Since

the pixel-level phase variance ∆φ(t, x, y, r, θ) is an approximation of the pixel-level

motion, an intuitive way to estimate the motion of the AOI is to sum the phase

variation ∆φ(t, x, y, r, θ) of all its pixels. However, the pixel-level phase variance

approximates the pixel-level motion only if the area has rich texture information. For

areas with little texture information, the pixel-level phase variance is random due to

background noise. To simultaneously strengthen the pixel-level phase variation for

areas with rich texture information and weaken the pixel-level phase variation for

areas with little texture information, we compute a weighted sum of phase variances

at scale r and orientation θ as

Φ(t, r, θ) =
∑
x,y

A(t, x, y, r, θ)2∆φ, (6.3)

where A(t, x, y, r, θ) is the measure of texture strength.

Since a frame is decomposed into multiple scales and different orientations, we

sum the motions for all the scales and orientations to obtain the estimated motion

for the specific AOI as

Ψ(t) =
∑
r,θ

Φ(t, r, θ) =
∑
r,θ,x,y

A(t, x, y, r, θ)2∆φ. (6.4)
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Fig. 6.8 depicts the motion signals of the apple stem in Fig. 6.5 during a word-

entry process. We can see the typed word with thirteen letters each corresponding to

a peak in amplitude, i.e., a sudden significant change in |Ψ(t)|.
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Figure 6.8: Motions of the Apple Stem in Fig. 6.5 for Typing “Impersonating”.

6.5.6 Feature Extraction

Now we extract temporal and spatial features from selected AOIs’ motion signals

to represent the motion patterns. The former are obtained from the motion signals’

time domain, and spatial features depict the motion relationship among different

AOIs that is capable of reflecting the posture of the tablet.

To extract temporal features, we represent the motion sequence of each AOI as a

vector that specifies the time-varying motion amplitude and then derive the following

features for each AOI.

• Skewness . This refers to the third central moment which measures the asym-

metry of the vector.

• Kurtosis . This is the fourth central moment which measures the peakedness or

flatness of the vector.
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• Maximum motion amplitude. The maximum motion amplitudes are different

for different AOIs.

• Relative and absolute differences between maximum motion amplitudes . Assume

that there are n selected AOIs. We define a ratio vector which comprises the

ratio of the maximum motion amplitude of the i-th AOI to that of the (i+ 1)-

th AOI for all i ∈ [1, n − 1]. We also define a difference vector comprising the

maximum motion amplitude of the i-th AOI subtracted by that of the (i+1)-th

AOI for all i ∈ [1, n− 1].

To extract spatial features, we denote the motions of all AOIs by matrix Am×n,

where m is the time index, n is the number of AOIs, and Ai,j is the j-th AOI’s motion

amplitude at time i. We derive the following spatial features.

• 1-norm. The 1-norm of Am×n is calculated as

||Am×n||1 = max
1≤j≤n

m∑
i=1

|aij| ,

which is its maximum absolute column sum.

• 2-norm. As in [109] we calculate three 2-norm features from Am×n. Let Ri

denote the ith row of Am×n for all i ∈ [1,m]. The 2-norm of each Ri is given by

||Ri||2 =

√√√√ n∑
j=1

|aij|2.

We then extract the mean, maximum, and minimum from

[||R1||2, ||R2||2, . . . , ||Rm||2]T .

• Infinity-norm. The infinity-norm of Am×n is

||Am×n||∞ = max
1≤i≤m

n∑
j=1

|aij| ,

which is its maximum absolute row sum.
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• Frobenium-norm. The frobenium-norm is calculated as

||Am×n||F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 ,

which is the square root of the squared sum of the matrix elements.

• Pearson correlation. The Pearson correlation measures the correlation of the

motion vectors of different AOIs during the same typing process. For two motion

vectors Vi and Vj of two AOIs i and j, respectively, the Pearson correlation is

defined as

Pij =
cov(Vi, Vj)

σiσj
,

where cov(Vi, Vj) is the covariance between Vi and Vj, and σi and σj are the

standard deviation of Vi and Vj, respectively.

6.5.7 Classifier Training

To train a classifier, we first reconstruct the attack scenario from the images taken

in the video recording phase using standard distance and angle estimation algorithms

such as [148].

We then let multiple attackers type on every key position of the soft keyboard for

multiple times, during which we record the videos of the tablet backside as well as

the typed keys. We finally obtain the training data set consisting of NKM samples,

where N is the number of attackers that mimic the victim, K is the number of keys on

the soft keyboard, and M is the number of times each key is typed by each attacker.

We use a multi-class Support Vector Machine (SVM) [37] with C-SVC type and

linear kernel to distinguish different typed keys. Specifically, we use the implementa-

tion in WEKA [63] with default parameters. Since we have already obtained NKM

labeled typing samples, we feed them into WEKA to obtain a trained multi-class

SVM classifier.
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6.5.8 Keystroke Inference

In this step, we use the motion data extracted from the video recording of the

victim’s tablet backside and the trained classifier to obtain a candidate key set for each

key the victim typed. Specifically, for a backside video capturing the victim’s typing

process, it is processed through Steps 1 to 5 to output 36 features in total, including

four skewness features, four kurtosis features, four maximum motion features, six

relative difference features, six absolute difference features, six Pearson correlation

features, one one-norm feature, three two-norm features, one infinity-norm feature,

and one Frobenium-norm feature. We then use the trained multi-class SVM classifier

to predict one key. Since the distance between two adjacent keys in both alphabetical

and PIN keyboards is very small, it is possible for the key entered by the victim to

be misclassified as neighboring keys. We therefore let the SVM classifier output a

candidate key set consisting of all the keys that are no more than h hops from the

predicated key, where h is a parameter determined by the attacker.

(a) One-hop and Two-hop Neighbors of Letters “a” and “j”.

1
4

2
5

7
0

98

(b) One-hop Neighbors of Keys 1 and

8.

Figure 6.9: Examples of One and Two-hop Neighbors on Alphabetical and PIN Key-

boards.
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6.5.9 Text Inference

In this step, we further infer the entered text by using a dictionary and a linguistic

relationship between adjacent words. Specifically, for a word consisting of W letters,

we can obtain W candidate letter sets in the previous step. We use the “corn-cob”

dictionary [11] that contains over 58,000 lower-case English words and is also used by

previous work [29]. First, we list all the combinations of the possible words and filter

out the combinations that are not in the dictionary. We then manually select one

word from each of the candidate lists to form a meaningful sentence by considering the

linguistic relationship between adjacent words. As an alternative, given the candidate

word list for each word, we may use a well-studied n-gram model such as [34] generated

from linguistic statistics to generate candidate sentences.

6.6 Performance Evaluation

In this section, we evaluate the performance of VISIBLE through extensive ex-

periments on a 9.7-inch Apple iPad 2 tablet with iOS 8 and a 7-inch Google Nexus

7 tablet with Android 4.4. The experiments involved eight participants in total, and

the data collection process has been approved by Institutional Review Board (IRB) at

our institution. We intend to answer the following five questions in our evaluations.

1. What is the (single-)key inference accuracy on alphabetical and PIN keyboards,

respectively?

2. What is the word inference accuracy on the alphabetical keyboard?

3. Is it possible to infer a victim’s typing sentences?

4. How do the inference results differ on different tablets (e.g., an iPad 2 and a

Nexus 7)?
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5. What are the impacts of environmental factors (e.g., the light conditions, the

angle between the tablet and the camcorders, and the imperfect reconstruction

of attack scenario) on keystroke inference accuracy?

6.6.1 Experiment Design

In our experiment, we used two commercial off-the-shelf (COTS) camcorders to

video-record the tablet backside during the victim’s typing process. One camcorder

is a Panasonic HC-V700 with 21× zoom lens, which can record 1080p60 HD videos

and feature an intelligent zoom function that supports up to 46× zoom. The second

camcorder is a Sony FDR-AX100 with 10× zoom lens, which can record 4Kp30 2 or

1080p60 HD videos and support up to 160× zoom.

We placed an Apple iPad 2 tablet with iOS 8 on a holder as shown in Fig. 6.4b and

two camcorders 1.8 meters away from the tablet. The distance between the attacker’s

camcorders and the victim’s tablet can be increased as long as the attacker is equipped

with more advanced lens (e.g., telephoto lens) to video-record the tablet backside at a

distance. The angle between each camcorder and the tablet was 90 degree by default,

and we evaluated the impact of different angles as well. The two camcorders focused

on the left-half and right-half of the tablet backside, respectively. We simultaneously

used two camcorders because one camcorder cannot simultaneously include all the

AOIs and have sufficiently high resolution for each AOI.

Let Ωh(i) be key i’s h-hop neighborhood, including key i itself. As two examples,

Fig. 6.9a shows the one-hop and two-hop neighbors of letters “a” and “j”, where the

orange and yellow keys (marked by triangle and square) are the one-hop and two-hop

neighbors, respectively. Fig. 6.9b shows the one-hop neighbors of keys 1 and 8, where

24Kp30 denotes that the camcorder can take 3840×2160 video at a rate of 30 frames per second.
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the green and orange keys (marked by triangle and rectangle) are the neighbors of

key 1 and key 8, respectively.

We use the following two metrics to evaluate the inference accuracy of VISIBLE.

• Pinpoint accuracy Pi. The probability that a key i typed by the victim is

correctly inferred as i.

• h-hop accuracy P h
i . The probability that a key i typed by the victim is inferred

as some key in Ωh(i).

By letting Ω0(i) = {i}, we can see that the pinpoint accuracy is a special case of

h-hop accuracy, as Pi = P 0
i . We consider both pinpoint and h-hop accuracies for

two reasons. First, the capability of narrowing down a typed key to a small area

still poses a serious threat to user privacy, as the attacker can still learn sensitive

information. Second, considering the neighborhood of a key instead of only the key

itself is particularly important for word and sentence inference, as we will see shortly.

In this chapter, we consider h = 0, 1, 2, and 3 for alphabetical keyboard and h = 0

and 1 for PIN keyboard.

6.6.2 Alphabetical Keyboard Experiment

We first report the performance of VISIBLE on the alphabetical keyboard of an

iPad 2 tablet with iOS 8, on which keystroke inference is challenging for two reasons.

First, the distance between two adjacent keys is very small, while we need to distin-

guish at least 26 different keys. Second, the alphabetical keyboard is usually located

at the bottom of the touchscreen which makes the motions caused by keystrokes less

noticeable.

In this experiment, we involved four participants and let each participant type

each English letter 20 times and collected 20× 26× 4 = 2080 keystrokes in total. We
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Table 6.1: Key Inference Results for Alphabetical Keyboard, Where VIS and RG

Denote VISIBLE and Random Guess, Respectively.

Key
Pi

|Ω1(i)|
P 1
i |Ω2(i)|

P 2
i |Ω3(i)|

P 3
i

VIS RG VIS RG VIS RG VIS RG

a 33.8% 3.84% 5 78.8% 19.2% 8 95.0% 30.7% 11 100% 42.2%

b 36.3% 3.84% 5 78.8% 19.2% 14 98.8% 53.8% 18 100% 69.1%

c 52.5% 3.84% 5 71.3% 19.2% 14 93.8% 53.8% 18 98.8% 69.1%

d 21.3% 3.84% 8 91.3% 30.7% 14 98.8% 53.8% 17 100% 65.3%

e 22.5% 3.84% 6 70.0% 23.0% 14 98.8% 53.8% 17 98.8% 65.3%

f 27.5% 3.84% 8 91.3% 30.7% 14 98.8% 53.8% 20 100% 76.8%

g 25.0% 3.84% 8 88.8% 30.7% 14 98.8% 53.8% 20 100% 76.8%

h 16.3% 3.84% 8 95.0% 30.7% 14 100% 53.8% 19 100% 73.0%

i 21.3% 3.84% 6 85.0% 23.0% 11 100% 42.2% 14 100% 53.8%

j 20.0% 3.84% 8 83.8% 30.7% 13 98.8% 49.9% 17 100% 65.3%

k 22.5% 3.84% 7 88.8% 26.9% 11 98.8% 42.2% 14 100% 53.8%

l 42.5% 3.84% 5 85.0% 19.2% 9 100% 34.6% 12 100% 46.1%

m 50.0% 3.84% 4 80.0% 15.4% 11 98.8% 42.2% 15 100% 57.6%

n 31.3% 3.84% 5 77.5% 19.2% 13 97.5% 49.9% 17 100% 65.3%

o 41.3% 3.84% 5 88.8% 19.2% 8 98.8% 30.7% 11 100% 42.2%

p 47.5% 3.84% 3 81.3% 11.5% 7 98.8% 26.9% 8 100% 30.7%

q 30.0% 3.84% 4 70.0% 15.4% 8 90.0% 30.7% 11 98.8% 42.2%

r 40.0% 3.84% 6 80.0% 23.0% 14 95.0% 53.8% 20 97.5% 76.8%

s 28.8% 3.84% 8 76.3% 30.7% 11 95.0% 42.2% 14 100% 53.8%

t 30.0% 3.84% 6 86.3% 23.0% 14 97.5% 53.8% 20 100% 76.8%

u 51.3% 3.84% 6 97.5% 23.0% 13 100% 49.9% 17 100% 65.3%

v 45.0% 3.84% 6 83.8% 23.0% 12 98.8% 46.1% 19 100% 73.0%

w 31.3% 3.84% 6 72.5% 23.0% 11 95.0% 42.2% 14 100% 53.8%

x 41.3% 3.84% 6 92.5% 23.0% 11 100% 42.2% 15 100% 57.6%

y 27.5% 3.84% 6 81.3% 23.0% 12 98.8% 46.1% 19 100% 73.0%

z 77.5% 3.84% 4 98.8% 15.4% 9 100% 34.6% 12 100% 46.1%

Avg. 36.2% 3.84% 5.9 83.6% 22.7% 11.7 97.9% 44.9% 15.7 99.8% 60.3%
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selected a portion of data from the collected dataset as a training set and used the

rest of the collected data as a test set. We trained a multi-class SVM classifier using

the training set and then tested it using the test set. We used 10-fold cross-validation

to test the performance of the key inference of VISIBLE.

Table 6.1 compares the pinpoint and h-hop accuracies of VISIBLE and random

guess for each English letter on the alphabetical keyboard. We can see that the

pinpoint accuracy of VISIBLE for each key ranges from 16.3% for letter “h” to 77.5%

for letter “z”. The average pinpoint accuracy of VISIBLE across all 26 letters is

36.2%, which is almost an order of magnitude higher than 3.84% of random guess.

Since different keys’ h-hop neighborhoods have different sizes for the same h, we

calculate each P h
i for random guess based on the actual number of keys within key

i’s h-hop neighborhood (i.e., |Ωh(i)|) to ensure fair comparisons. We can see that

for both VISIBLE and random guess, the P h
i for each key i increases as h increases,

which is expected, as the larger the neighborhood being considered, the higher the

probability that a key inferred as some key in the neighborhood, and vice versa.

Moreover, the P h(i) of VISIBLE is always significantly higher than the corresponding

P h(i) of random guess. We also calculate the average P 1
i , P

2
i , and P 3

i of VISIBLE

across all 26 keys as 83.6%, 97.9%, and 99.8%, respectively, which are much higher

than corresponding 22.7%, 44.9%, and 60.3% of random guess. Meanwhile, note that

the average P h
i may only be used with caution to compare the performance of two

different techniques, due to the difference in the size of keys’ neighborhood.

We also notice that pinpoint and h-hop accuracies of the letters at corner positions

(i.e., “q”, “z”, “p”, and “m”) are higher than those of the letters at the center (e.g.,

“g” and “h”). This is because typing the letters at corner positions causes more

distinguishable motion patterns than those at the center. Moreover, we can see that

the pinpoint and h-hop accuracies of letter “z” are much higher than those of other
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three letters at the corner positions. The reason behind such disparity is that our

selected AOIs are not evenly distributed. As shown in Fig. 6.4b, the distances between

letter “z” and selected AOIs are greater than those of other letters, and typing “z”

thus causes more distinguishable motion patterns.
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Figure 6.10: Impact of the Training Set Size.
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Figure 6.11: Impact of the Number of Participants.

Fig. 6.10 shows the impact of the training set size on the inference accuracy.

As expected, increasing the training set size can slightly improve the key inference

accuracy. Fig. 6.11 shows the impact of the number of participants in the training set.

We can see that as the number of participants increases, the key inference accuracy
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slightly increases in all the cases. In addition, a small number of participants is

sufficient for achieving acceptable key inference accuracy, which means that VISIBLE

requires very few attackers to launch.

6.6.3 Word Inference Experiment

We now report the experimental results of the word inference attack on the iPad

2 tablet. In this experiment, we involved two participants and let each participant

enter each word in Table 6.2 (which is also used in [29]) once to evaluate the word

inference accuracy. In total, we collected 2×27 words with 7∼13 letters, where all the

letters in the words are in lower-case. As in [29], we used the “corn-cob” dictionary

[11] consisting of more than 58, 000 English words. For each letter in each word,

we first used the trained multi-class SVM classifier to predict one key and obtained

a candidate key set consisting of all the keys that are less than two hops from the

predicated key. Then for each word, we obtained a candidate word list by filtering

out the combinations that are not in the “corn-cob” dictionary [11].

Table 6.2: List of Words Used to Test the Attack.

Word Length Word Length Word Length Word Length

paediatrician 13 pomegranate 11 unphysical 10 platinum 8

interceptions 13 feasibility 11 institute 9 homeland 8

abbreviations 13 polytechnic 11 extremely 9 security 8

impersonating 13 obfuscating 11 sacrament 9 between 7

soulsearching 13 difference 10 dangerous 9 spanish 7

hydromagnetic 13 wristwatch 10 identity 8 nuclear 7

inquisition 11 processing 10 emirates 8
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Figure 6.12: Word Inference Accuracy.

Fig. 6.12 compares the overall word inference accuracy of VISIBLE and the tech-

nique proposed in [29] for the tested words in Table 6.2. To enable direct comparison,

we view the size of the candidate word list output by VISIBLE as the lowest possible

rank of the correct word in the candidate word list if the correct word is in candidate

word list. In other words, if a candidate word list of c words contains the correct

word typed by the victim, then we say the correct word is among the top-k candidate

words for any k ≥ c. As shown in Fig. 6.12, the correct word is among the top-5

candidate words output by VISIBLE 48% of the time, which means that nearly half

of the words in Table 6.2 have a candidate word list with no more than 5 words. Be-

sides, we can see that the correct word is among top-10, top-25, and top-50 candidate

words with probabilities 63%, 78%, and 93%, respectively. In contrast, the technique

in [29] infers the correct word in top-10, top-25, and top-50 candidate words with

probabilities 43%, 61%, and 73%, respectively. VISIBLE thus achieves much higher

accuracy for word inference than [29].

Fig. 6.13 shows that word inference accuracy increases as the word length in-

creases. Two reasons account for this trend. First, a longer word has more constraints

in letter combinations and thus fewer candidate words in the dictionary. Second, ac-
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Figure 6.13: Word Inference Accuracy vs. Word Length.

cording to statistics of English words, the number of words of length seven is the

largest among all words, so words with seven letters have the most candidate words

in the dictionary, which leads to a lower inference accuracy.

6.6.4 Sentence Inference Experiment

Next, we report VISIBLE’s performance for inferring complete sentences on the

iPad 2 tablet. For this experiment, we used Enron Email Dataset [12, 14, 76], which

comprises over 600,000 emails generated by 158 employees of the Enron Corporation

and is also used in previous work [120] to test the sentence inference accuracy. We

asked one participant to select two sentences from the dataset and enter the selected

sentences using the alphabetical keyboard of the iPad 2 tablet. The attacker video-

recorded the sentence-entry process using two camcorders and used a multi-class SVM

classifier trained by the keystroke data. The attacker then performed word inference

to obtain a candidate word list for each word and finally chose one word from each

candidate word list to form a meaningful sentence based on the linguistic relationship

between adjacent words.
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   Typed Text: our    friends    at    the    university    of    texas    are    planning    a    conference    on   
                         energy    economics    and    finance    in    february    of    next    year
Inferred Text: ***   friends    at    the    university    of    texas    are    ********  a    conference    on
# of Cand.                    127       7     84             2            2        53       59                        1             9             12
                         energy    economics    and    finance    in    february    of    next    year
                             84               10             29          64       12        39          14      66       86 
   Typed Text: we    discuss    the    major    factors    underlying    the    exceptionally    high    
                         volatility    of    electricity    prices
Inferred Text: ***  ******    ***   major    factors    underlying    the    exceptionally    high
# of Cand.                                             29             53               10            69               1                 83

  volatility    of    electricity    prices
          1         13           2               28

Figure 6.14: Sentence Inference Results.

Fig. 6.14 illustrates the input sentences and the results inferred by VISIBLE. The

number under each word is the number of candidate words output by VISIBLE. The

red italic words are the ones correctly chosen by the attacker. The black non-italic

words are the ones in the candidate word list but hard to choose. Symbol “*” indicates

that the corresponding word is not correctly inferred during word inference. More

detailed investigations find that the incorrectly inferred words are due to one or two

misclassified letters. We expect that the sentence inference accuracy of VISIBLE can

be dramatically improved by incorporating more advanced linguistic models.

6.6.5 PIN Keyboard Experiment

We now evaluate the key inference performance on the PIN keyboard of the iPad

2 tablet. In this experiment, we involved three participants. Intuitively, the key

inference on the PIN keyboard is more difficult than that on the alphabetical keyboard

for mainly two reasons. First, all the keys are located in a relatively small area in

the central part of the touchscreen. Second, the typed keys are very likely to be
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random, and there are no relationships (e.g., linguistic relationship) between adjacent

keystrokes.

Table 6.3: Key Inference Results for PIN Keyboard.

Key
Pi

Ω1(i) |Ω1(i)|
P 1
i

VIS RG VIS RG

1 21% 9% 1, 2, 4 3 58% 27%

2 25% 9% 1, 2, 3, 5 4 75% 36%

3 45% 9% 2, 3, 6 3 63% 27%

4 55% 9% 1, 4, 5, 7 4 81% 36%

5 40% 9% 2, 4, 5, 6, 8 5 66% 45%

6 35% 9% 3, 5, 6, 9 4 64% 36%

7 44% 9% 4, 7, 8 3 73% 27%

8 23% 9% 5, 7, 8, 9, 0 5 53% 45%

9 27% 9% 6, 8, 9, c 4 61% 36%

0 47% 9% 0, 8, c 3 72% 27%

c 61% 9% 0, 9, c 3 80% 27%

Avg. 38% 9% - 4 68% 36%

Table 6.3 compares the pinpoint and 1-hop accuracies of VISIBLE and random

guess for each key on the PIN keyboard. We can see that the pinpoint accuracy of each

key ranges from 21% for number “9” to 61% for “c” cancel key. The average pinpoint

accuracy of VISIBLE across all 26 letters is 38%, which is more than four times of

that of random guess, i.e., 100
11

= 9%. When considering one-hop neighborhood, the

P 1
i of VISIBLE for each key is still much higher than that of random guess. We can
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see that the average P 1
i of VISIBLE across all 11 keys is 68%, which is much higher

than 36% of random guess. Again, the average P 1
i should be only used with caution

to compare the inference accuracies of two techniques.

Moreover, comparing Tables 6.1 and 6.3, we can see that although the PIN key-

board has fewer keys than the alphabetical keyboard, the key inference accuracy of

the PIN keyboard is not dramatically higher than that of the alphabetical keyboard.

The reason is that the keys of the PIN keyboard reside in a relatively small area in

the central part of the touchscreen, and the motion patterns caused by different keys

are not so distinguishable. In contrast, even though the alphabetical keyboard has

more keys, they are located in a relatively large area from the left side to the right

side of the touchscreen. The motion patterns of different keys, especially distant ones,

cause more distinguishable motion patterns.

6.6.6 Impact of Environmental Factors

We also evaluate the impact of a number of environmental factors on the perfor-

mance of VISIBLE.

a). Different Light Conditions. Our attack relies on analyzing the video recordings

of the tablet backside during the victim’s typing process, while the video quality is

affected by light conditions. In general, the low-light condition will lead to increased

video noise, streaking, blurred motion, and poor focus. We did key inference exper-

iments under light conditions of 400 lux (normal) and 180 lux (low light). Fig. 6.15

shows the key inference results for each key. We can see that the key inference accu-

racy decreases slightly as the light condition changes from 400 lux to 180 lux, which

is expected. However, the key inference result under 180 lux is still quite acceptable,

which highlights the wide applicability of VISIBLE in low-light conditions.
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(c) Three-hop Accuracy.

Figure 6.15: Alphabetical Keyboard Inference Accuracy Under Different Light Con-

ditions and Imperfect Reconstruction of the Attack Scenario.
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(b) Two-hop Accuracy.
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(c) Three-hop Accuracy.

Figure 6.16: Alphabetical Keyboard Inference Accuracy for Different Angles Between

the Tablet and Camcorders.
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b). Different angles between camcorders and the tablet. The performance of VISI-

BLE is also affected by the angles between the camcorders and the tablet. In previous

experiments, the angle between the camcorders and tablet was 90 degree. We changed

the angle to 60 and 30 degrees while keeping the distance between the camcorders

and tablet unchanged. The experimental result is shown in Fig. 6.16 for each key’s

inference accuracy by considering one-hop, two-hop, and three-hop neighbors. We

can see that in each of three subfigures, 90 and 60 degree angles lead to similar key

inference accuracy which is nevertheless better than that of the 30 degree angle. The

reason is as follows. Each camcorder has a specific Depth of Field (DOF) that is the

distance between the nearest and farthest objects in a scene that appear acceptably

sharp in an image. If the angle between the camcorders and the tablet is 90 or 60

degree, all the AOIs are in the DOF of the camcorders so their motions can be clearly

recorded. However, if the angle between the camcorders and the tablet is too small,

the camcorders cannot contain all the AOIs in their DOF, which leads to blurred AOI

images and thus inaccurate estimation of tablet backside motions. If the angle has

to be small due to practical constraints, the attacker can use multiple camcorders to

record the motions of different AOIs to obtain sharp image of each AOI.

c). Imperfect reconstruction of the attack scenario. As mentioned in Section 6.5.2,

to launch a successful key inference attack, the attacker needs to reconstruct the

attack scenario based on recorded images. However, the reconstructed layout cannot

be exactly the same as the true layout. We therefore evaluate the impact of imperfect

reconstruction of the attack scenario. For this experiment, we changed the location

of the camcorders randomly by five centimeters and the position of the tablet by

three centimeters and then redid the key inference experiment. Fig. 6.15 shows the

key inference accuracy when the attack scenario is not perfectly reconstructed. We

can see that the key inference accuracy for each key is only slightly lower than that
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under perfect reconstruction, which shows the robustness of VISIBLE against small

environment change. Note that attack scenario reconstruction is under the full control

of the attacker and does not involve the victim. Its accuracy depends only on the

quality of the recorded images, and we expect the reconstructed attacker scenario to

be accurate in practice. On the other hand, if the environment changes significantly

during video recording, e.g., the victim changes position or moves the tablet for more

than 10 centimeters, the attacker may need to launch a new round of attack to obtain

accurate inference result.

6.6.7 Experiments on a Google Nexus 7 Tablet

To demonstrate the universality of VISIBLE, we also did experiments on a Google

Nexus 7 tablet with a 7-inch touchscreen which is smaller than that of an iPad 2.

Backside motion estimation on Nexus 7 is easier than that on an iPad 2 tablet for two

reasons. First, the size of Nexus 7 is smaller than that of iPad 2, so we were able to

video-record the clear tablet backside motion with only one camcorder. Second, the

Nexus 7’s backside has more texture information (e.g., logo and dots) which enables

motion estimation at more parts of the tablet backside.

Fig. 6.17 compares the performance of VISIBLE on a Google Nexus 7 tablet with

Android 4.4 with that on an iPad 2 tablet with iOS 8. It is easy to see that the key

inference accuracy of VISIBLE is similar on both tablets. This means that VISIBLE

is applicable to smaller-size tablets as long as there are sufficient areas with texture

information on the tablet backside, which holds for almost all tablets. Besides, we

can find that the performance on Nexus 7 is slightly better than that on iPad 2. The

reason is that the Nexus 7’s backside has more texture information for the attacker to

extract motion information, while the iPad 2’s backside has less texture information

(as shown in Fig. 6.4a). As mentioned in Section 6.5.3, AOIs near the edges of the
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Figure 6.17: Alphabetical Keyboard Inference Accuracy on a Google Nexus 7 Tablet

and an iPad 2 Tablet.
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tablet backside and separated from each other tend to have larger and more distinctive

motions than others, making them more capable of differentiating the motion patterns

caused by different keystrokes. Therefore, VISIBLE performs better on the tablets

with rich texture information on their backsides.

6.7 Summary, Countermeasures, and Future Work

In this chapter, we propose VISIBLE, a video-assisted key inference attack frame-

work to infer the victim’s typing content based on the video recordings of the tablet

backside. We adopt complex steerable pyramid decomposition to obtain the subtle

motions on the tablet backside and use machine learning techniques to infer the typed

keys, words, and sentences. We thoroughly evaluate the performance of VISIBLE via

extensive experiments. Our results show that VISIBLE can achieve high key infer-

ence accuracy for both PIN and alphabetical soft keyboards and correctly infer the

victim’s typed words or sentences with very high probability.

There are several possible countermeasures against VISIBLE. The most straight-

forward defense is to design a large featureless cover to cover the stand or the tablet

to prevent the attacker from finding useful AOIs in the recorded video. The second

possible defense is to randomize the layouts of the PIN and alphabetical soft key-

boards, such that the attacker cannot recover the typed keys even if he can infer the

keystroke positions on the touchscreen. This defense may be effective, but it sacri-

fices the user experience, as the user needs to find every key on a random keyboard

layout during every key-typing process. Another possible defense is to have on-board

vibrators generate vibrations during the typing process to mask the motions caused

by the user’s typing process. However, unlike smartphones, most current commercial

off-the-shelf tablets are not equipped with on-board vibrators. The ultimate solution

is to cover the whole tablet (both the front and back sides). Though most effective,
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this solution is inconvenient and might be socially awkward. The investigation of

these defenses is left as future work.

To the best of our knowledge, VISIBLE is the first attempt to utilize the backside

motion of tablets for keystroke analysis. There are still many issues worth investi-

gation in addition to the countermeasures above. As we mentioned in Section 6.5.2,

higher resolutions can help us video-record more texture information details on the

tablet backside, and higher frame rates could video-record more motion details over-

time. We plan to test VISIBLE with more advanced camcorders with higher resolu-

tions and frame rates. We also seek to investigate the impact of optical and digital

zoom and the distance between camcorder and the victim’s tablet. In this chapter,

we only consider the lower-case letters in the English alphabet. In practice, more

contents such as upper-case letters, punctuation, characters, and key combinations

might be typed by the victim. Further studies on this issue are challenging but mean-

ingful. Our current study assumes that the victim places the tablet with a holder on

a desk, while another common scenario is to hold the tablet by hand. In this case,

the motion of the tablet backside is the combination of the motions of the holding

hand and the non-holding hand’s keystrokes. Keystroke inference in this scenario

is much more challenging because we need to cancel the time-varying motion of the

holding hand. In VISIBLE, the attacker needs to reconstruct the attack scenario to

obtain a training data set to infer the victim’s typed inputs. Although feasible, it is

not so convenient. A more attractive way is to build a unified and normalized model,

which could automatically transfer motions video-recorded in different distances and

angles to a unified and normalized distance and angle. This will greatly improve the

convenience of launching our proposed attack and deserves further investigations.
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Chapter 7

CONCLUSION AND FUTURE WORK

The rapid development of mobile devices and the popularity of various mobile ap-

plication scenarios make mobile computing a more and more attractive and promising

area. In this dissertation, we find a number of challenging security and privacy issues

in mobile computing and propose some promising solutions and countermeasures.

For D2D communications in mobile computing, we first focus on a privacy issue and

demonstrate the a privacy-preserving and efficient way of establishing trust relation-

ship between two mobile devices. Besides, we also consider the security problem of

establishing shared secret key between mobile devices. A game-theoretical approach

is proposed for stimulating PHY-based cooperative key generation in wireless net-

works. The incentive-aware cooperative key generation is formulated as a coalitional

game and implemented by centralized and distributed protocols for finding a core

solution to the coalitional game. With SYNERGY in place, selfish mobile nodes

are strongly motivated to collaborate with others in the same coalition to improve

their respective key generation rate. The efficacy and efficiency of SYNERGY have

been confirmed by extensive simulations. As to mobile crowdsourcing, we first focus

on designing the first secure and privacy-preserving object-finding system via mobile

crowdsourcing which guarantees object security, mobile crowdsourcing users’ privacy,

and system efficiency. Detailed simulations confirm that SecureFind can enable very

fast and efficient object finding while ensuring the security of the lost object and

also the location privacy of the mobile users participating in object finding. We

then study the privacy issue in distributed stream monitoring system and present a

novel privacy-preserving and communication-efficient distributed stream monitoring
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system. Different from previous work on monitoring the function of mean statistic

value, our proposed scheme monitors the statistic value at the given percentile rank

in a privacy-preserving and communication-efficient fashion. The efficacy and effi-

ciency of our PriStream are confirmed by detailed simulations. Considering the key

inference problem in mobile device usage, we demonstrate VISIBLE, a video-assisted

key inference attack framework, to infer the victim’s typing content based on the

video recordings of the tablet backside. VISIBLE adopts complex steerable pyramid

decomposition to obtain the subtle motions on the tablet backside and uses machine

learning techniques to infer the typed keys, words, and sentences. The performance

of VISIBLE is thoroughly evaluated via extensive experiments. Experimental results

show that VISIBLE can achieve high key inference accuracy for both PIN and alpha-

betical soft keyboards and correctly infer the victim’s typed words or sentences with

very high probability.

This dissertation is far from perfectness. For the future work, this dissertation

can be extended in following directions.

First, Chapter 2 studies the problems of unweighted and weighted spatiotemporal

matching between two mobile users. A very promising direction is to extend the

spatiotemporal matching problem from two mobile users to multiple mobile users

while maintaining privacy and efficiency.

Second, Chapter 3 proposes a game-theoretical framework for cooperative shared

secret key generation by involving a third mobile user. In order to better improve the

key generation rate, we can study the problem of involving multiple users simultane-

ously as one of future work.

Third, Chapter 4 shows a privacy-preserving object-finding system via mobile

crowdsourcing. There are still many open challenges to tackle. For example, in the

current design, all the mobile detectors in the target area specified by the object
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owner need to participate in object finding. Since some of them may have overlap-

ping coverage, there may be significant room for reducing the communication and

computation overhead. One possible solution is to let the service provider select the

minimum number of mobile detectors that can jointly cover the target area. This solu-

tion, however, requires the service provider to know more accurate locations of mobile

detectors. Such tradeoff between system efficiency and location privacy deserves care-

ful investigation. In addition, our current design assumes that mobile detectors are

honest-but-curious. There may be dishonest mobile detectors who report fake search

results to earn reward without actually performing the object search. How to catch

and then punish such dishonest mobile detectors is nontrivial and may conflict with

the location-privacy requirement of mobile detectors. How to solve these problems

can be further studied.

Fourth, Chapter 5 solves the problem of designing and implementing a privacy-

preserving and communication-efficient distributed stream monitoring system. How-

ever, the scheme only works for one dimensional data. In practice, the data of dis-

tributed stream monitoring system might be in multiple dimensions. How to guar-

antee privacy and maintain efficiency for data in all dimensions is one of our future

work.

Fifth, to the best of our knowledge, VISIBLE proposed in Chapter 6 is the first

attempt to utilize the backside motion of tablets for keystroke analysis. There are

still many issues worth investigation in addition to the countermeasures above. As we

mentioned in Section 6.5.2, higher resolutions can help us video-record more texture

information details on the tablet backside, and higher frame rates could video-record

more motion details overtime. We plan to test VISIBLE with more advanced cam-

corders with higher resolutions and frame rates. We also seek to investigate the

impact of optical and digital zoom and the distance between camcorder and the vic-
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tim’s tablet. In this chapter, we only consider the lower-case letters in the English

alphabet. In practice, more contents such as upper-case letters, punctuation, char-

acters, and key combinations might be typed by the victim. Further studies on this

issue are challenging but meaningful. Our current study assumes that the victim

places the tablet with a holder on a desk, while another common scenario is to hold

the tablet by hand. In this case, the motion of the tablet backside is the combination

of the motions of the holding hand and the non-holding hand’s keystrokes. Keystroke

inference in this scenario is much more challenging because we need to cancel the

time-varying motion of the holding hand. In VISIBLE, the attacker needs to recon-

struct the attack scenario to obtain a training data set to infer the victim’s typed

inputs. Although feasible, it is not so convenient. A more attractive way is to build

a unified and normalized model, which could automatically transfer motions video-

recorded in different distances and angles to a unified and normalized distance and

angle. This will greatly improve the convenience of launching our proposed attack

and deserves further investigations.

178



BIBLIOGRAPHY

[1] “Lost children fast facts”, http://www.cnn.com/2013/10/22/us/
lost-children-fast-facts/.

[2] “US phone theft”, http://www.micro-trax.com/statistics/.

[3] “Tile”, http://www.thetileapp.com/.

[4] “StickNFind”, https://www.sticknfind.com/.

[5] “BlueBee”, http://www.indiegogo.com/projects/
bluebee-a-lost-and-found-in- your-pocket.

[6] “Population density of Austin”, http://zipatlas.com/us/tx/austin/
zip-code-comparison/population-density.htm.

[7] “Population density of Portland”, http://zipatlas.com/us/or/portland/
zip-code-comparison/population-density.htm.

[8] “Bluetooth low energy”, https://en.wikipedia.org/wiki/Bluetooth_low_
energy.

[9] “Battery energy consumption”, http://www.bbc.com/future/story/
20130227-what-is-killing- smartphones.

[10] “Cisco visual networking index: Global mobile data traffic forecast update,
20162021 white paper”, http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html.

[11] “corn-cob dictionary”, Http://www.mieliestronk.com/wordlist.html.

[12] “Enron email dataset”, Https://www.cs.cmu.edu/~./enron/.

[13] “Gartner: Device shipments break 2.4b units in 2014, tablets to
overtake pc sales in 2015”, Http://techcrunch.com/2014/07/06/
gartner-device-shipments-break-2-4b-units-in-2014-tablets-to-
overtake-pc-sales-in-2015/.

[14] “Parakweet lab’s email intent data set”, Https://github.com/
ParakweetLabs/EmailIntentDataSet.

[15] G. Acs and C. Castelluccia, “I have a dream! (differentially private smart
metering)”, in “Information Hiding”, pp. 118–132 (2011).

[16] E. Adelson, C. Anderson, J. Bergen, P. Burt and J. Ogden, “Pyramid methods
in image processing”, in RCA Engineer 29, 6, 33–41 (1984).

[17] S. Agrawal, S. Deb, K. Naidu and R. Rastogi, “Efficient detection of distributed
constraint violations”, in “ICDE’07”, pp. 1320–1324 (Delhi, India, 2007).

179



[18] R. Ahlswede and I. Csiszar, “Common randomness in information theory and
cryptography. i. secret sharing”, IEEE Transactions on Information Theory 39,
4, 1121–1132 (1993).

[19] B. Alomair, A. Clark, J. Cuellar and R. Poovendran, “Scalable RFID systems:
a privacy-preserving protocol with constant-time identification”, in “DSN’10”,
pp. 1–10 (2010).

[20] C. Arackaparambil, J. Brody and A. Chakrabarti, “Functional monitoring with-
out monotonicity”, in “ICALP’09”, (Rhodes, Greece, 2009).

[21] M. Arb, M. Bader, M. Kuhn and R. Wattenhofer, “VENETA: Serverless friend-
of-friend detection in mobile social networking”, in “WIMOB’08”, pp. 184–189
(Avignon, France, 2008).

[22] G. Asharov, Y. Lindell, T. Schneider and M. Zohner, “More efficient oblivi-
ous transfer and extensions for faster secure computation”, in “ACM CCS’13”,
(2013).

[23] B. Azimi-Sadjadi, A. Kiayias, A. Mercado and B. Yener, “Robust key generation
from signal envelopes in wireless networks”, in “CCS’07”, (Alexandria, Virginia,
USA, 2007).

[24] M. Backes, T. Chen, M. Duermuth, H. Lensch and M. Welk, “Tempest in
a teapot: Compromising reflections revisited”, in “S&P’09”, (Oakland, CA,
USA, 2009).
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