
WCET-Aware Scratchpad Memory Management for Hard Real-Time Systems

by

Yooseong Kim

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved January 2017 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
David Broman

Georgios Fainekos
Carole-Jean Wu

ARIZONA STATE UNIVERSITY

May 2017

ABSTRACT

Cyber-physical systems and hard real-time systems have strict timing constraints that

specify deadlines until which tasks must finish their execution. Missing a deadline can

cause unexpected outcome or endanger human lives in safety-critical applications, such as

automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and

optimize a safe upper bound of each task’s execution time or the worst-case execution time

(WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional

microarchitectural components, such as caches and branch predictors, are only optimized

for average-case performance and often make WCET analysis complicated and pessimistic.

Caches especially have a large impact on the worst-case performance due to expensive off-

chip memory accesses involved in cache miss handling. In this regard, software-controlled

scratchpad memories (SPMs) have become a promising alternative to caches. An SPM is a

raw SRAM, controlled only by executing data movement instructions explicitly at runtime,

and such explicit control facilitates static analyses to obtain safe and tight upper bounds of

WCETs. SPM management techniques, used in compilers targeting an SPM-based proces-

sor, determine how to use a given SPM space by deciding where to insert data movement

instructions and what operations to perform at those program locations. This dissertation

presents several management techniques for program code and stack data, which aim to op-

timize the WCETs of a given program. The proposed code management techniques include

optimal allocation algorithms and a polynomial-time heuristic for allocating functions to

the SPM space, with or without the use of abstraction of SPM regions, and a heuristic for

splitting functions into smaller partitions. The proposed stack data management technique,

on the other hand, finds an optimal set of program locations to evict and restore stack frames

to avoid stack overflows, when the call stack resides in a size-limited SPM. In the evalua-

tion, the WCETs of various benchmarks including real-world automotive applications are

statically calculated for SPMs and caches in several different memory configurations.

i

ACKNOWLEDGMENTS

My Ph.D. studies were truly a life changing experience. I first started with excitement

and enthusiasm, but prolonged challenges with research and multifaceted life problems

soon filled me with frustration and shame. Now I am finishing my 8 years of studies with

great humility and gratitude. I would not have been able to finish, or even keep my sanity,

without the help and support of many people. I wish I could present them this thesis as a

masterpiece in a way to show my sincere gratitude, but I can only realize my limitations. I

am afraid to thank everyone with mere words instead.

Prof. Aviral Shrivastava was the initiator and enabler of all these. He not only gave me

opportunities to start the studies, but also sustained me and helped me go through myriads

of problems and difficulties. I truly enjoyed working with him and learned from him a

different kind of warm leadership that has patience and consistency in being constructive

toward making progress. He always rescued me from self-hatred and lack of confidence

and finally turned me into a proud student of him. He is my best advisor, mentor, teacher,

researcher, and even a good friend and counsellor to me.

Meeting Prof. David Broman was a turning point in my life. He opened my eyes to

research with the depth and gravitas that I had not even realized. I will cherish the re-

warding discussions and the memories during the time at UC Berkeley. I learned from him

invaluable lessons about the researcher’s responsibility and ethics, and also perfectionism.

It is with my regret that I could and might have done better to make this relationship more

fruitful. I would like to sincerely thank Prof. David Broman for all his support and help.

Without the valuable inspiration and advice from Prof. Georgios Fainekos and Prof.

Carole-Jean Wu, I would not have been able to finish this thesis. Having them in my

committee broadened my view of the problem, and I could significantly improve this thesis

ii

with their valuable comments and suggestions, from the early stage of this work at thesis

proposal to the final stage of thesis defense.

During the most time of my Ph.D. studies, I lived in California, away from campus,

working remotely. Because of the difficulties and lonesomeness I experienced during this

time, I truly understand the value of our comradeship and friendship. Each and every

conversation and discussion, short or long, with fellow graduate students helped me get

through difficulties at the moment and gave me a new lesson. I would especially like to

thank all past and current members of Compiler-Microarchitecture Lab and Korean Student

Fellowship in CS department.

I would like to show my deepest gratitude to my wife Soyoun. Without her love, sup-

port, encouragement, and endurance, I would never have been able to hold out until this

very moment. Also, without my dear daughter Olivia, I could not have realized the truth of

life and the value of family. I am grateful to have this wonderful family in my life and to be

able to start a new chapter of our life together as family. Last but not least, I would like to

thank God for sustaining me so far and for His countless blessings. I trust in the Lord, my

good shepherd, and would like to declare that the sovereign God is in control of all things

in my life and the world.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Scratchpad Memory (SPM) and Its Management . 3

1.2 Overview of This Thesis . 6

1.3 Contributions . 7

1.4 Related Publications . 8

2 WCET-AWARE FUNCTION-LEVEL DYNAMIC CODE MANAGEMENT . 9

2.1 Introduction . 9

2.2 Background: Function-level Dynamic Code Management 11

2.3 Motivating Examples . 12

2.3.1 Why Do We Need a New Technique for Optimizing WCET? . . . 13

2.3.2 Why Do We Need Region-Free Mapping? . 14

2.4 WCET Analysis . 15

2.4.1 Inlined Control Flow Graph . 16

2.4.2 Finding Initial Loading Points . 18

2.4.3 Finding the Interference among Functions . 18

2.4.4 ILP Formulation for WCET Analysis . 22

2.5 WCET Optimization . 25

2.5.1 ILP Formulation for Optimal Function-to-region Mapping. 25

2.5.2 WMP: A Heuristic Alternative to the ILP Formulation 27

2.5.3 Optimizing WCET using Region-free Mappings 33

2.6 Experimental Results . 35

iv

CHAPTER Page

2.6.1 ILP vs. WMP Heuristic . 38

2.6.2 Comparison with Previous Techniques . 40

2.6.3 Function-to-region Mappings vs. Region-free Mappings 42

2.6.4 WCET Reduction over Caches . 44

2.7 Related Work . 47

2.8 Summary . 51

3 A COMPARISON OF DYNAMIC CODE MANAGEMENT TECHNIQUES

WITH DIFFERENT MANAGEMENT GRANULARITIES 52

3.1 Introduction . 52

3.2 Related Work . 55

3.3 Dynamic Code Management Techniques . 58

3.3.1 BL: Basic-block-level Approach . 58

3.3.2 FL: Function-level Approach . 62

3.3.3 RL: Splitting Functions into Partitions . 63

3.4 Qualitative Comparison . 67

3.4.1 WCET Analysis . 67

3.4.2 SPM Size Limitations . 68

3.4.3 Management Efficiency . 69

3.5 WCET-Based Quantitative Comparison . 71

3.5.1 Experimental Setup . 72

3.5.2 Baseline Results . 75

3.5.3 Changing Memory Sizes . 77

3.5.4 Changing Memory Access Times . 78

3.5.5 Changing Memory Organizations with Caches 79

v

CHAPTER Page

3.6 Summary and Conclusion . 81

4 WCET-AWARE DYNAMIC STACK FRAME MANAGEMENT 84

4.1 Introduction . 84

4.2 Related Work . 85

4.3 Background: Dynamic Stack Frame Management . 88

4.3.1 Limitations . 90

4.4 WCET-Aware Dynamic Stack Frame Management 90

4.4.1 ILP Formulation . 91

4.4.2 Example . 94

4.5 Evaluation . 95

4.5.1 Comparison with Previous Techniques . 96

4.5.2 Comparison with Caches . 98

4.6 Summary . 99

5 CONCLUSION AND FUTURE WORK . 100

REFERENCES . 102

APPENDIX

A CACHE ANALYSIS . 111

vi

LIST OF TABLES

Table Page

2.1 Interference Sets for the Example in Figure 2.4 . 20

2.2 Categorization of Function Loading Cost . 24

2.3 Benchmarks Used in the Evaluation . 36

3.1 Categorization of Code Management Techniques Based on Management

Granularity . 53

3.2 Benchmarks Used in the Evaluation . 71

vii

LIST OF FIGURES

Figure Page

1.1 The Basics of Worst-case Execution Time Analysis . 2

1.2 Hardware Organization of Scratchpad Memory . 3

2.1 Motivation for WCET-optimizing Code Management Technique 12

2.2 Motivation for Region-Free Mapping . 15

2.3 Overview of WCET Analysis for Code Management . 16

2.4 Inlined CFG. 17

2.5 Comparison Between the ILP and WMP Heuristic . 38

2.6 Comparison with Previous Function-Level Techniques 41

2.7 WCET Reduction by Region-free Mapping . 42

2.8 Comparison with Caches . 46

3.1 A Problem with Loop Handling in Basic-block-level Techniques 61

3.2 An Illustrative Implementation of Function-Level Code Management 62

3.3 An Illustration of Our Function-Splitting Scheme . 65

3.4 Code Modification for a Fall-Through Branch . 66

3.5 Code Modification for a Literal Access . 67

3.6 An Example of Function Splitting . 70

3.7 Baseline Results . 74

3.8 Results for Larger SPM Sizes . 77

3.9 Results for Different Memory Access Times . 78

3.10 Results for Different Memory Organizations . 80

4.1 Code Modification for Stack Frame Management . 88

4.2 An Illustration of Stack Frame Management . 89

4.3 A simple inlined CFG used as an example . 94

4.4 Comparison with Liu and Zhang (2015) . 97

viii

Figure Page

4.5 Comparison with Lu et al. (2013) . 97

4.6 Comparison with Caches . 98

ix

Chapter 1

INTRODUCTION

Hard real-time systems (Buttazzo, 2011) or cyber-physical systems (Lee, 2008) are subject

to strict timing constraints that require tasks to finish execution before their specified dead-

lines. Any failure to meet a timing constraint can lead to unexpected outcomes, thus timing

is a key factor in functional correctness, not only a performance measure in these sys-

tems. Particularly, in safety-critical applications, such as automobiles or aircrafts, a missed

deadline may cause devastating and even life-threatening consequences. It is, therefore, of

utmost importance to guarantee that all timing constraints are satisfied.

To check the presence of missed deadlines, testing has been widely used as a traditional

approach in industry in the context of system validation. It is, however, very difficult to

cover all possible test cases and to identify representative worst-cases. The sheer number of

test cases in modern real-time systems makes exhaustive testing infeasible. Moreover, it is

often difficult to identify the execution scenarios that lead to the worst-case execution times

(WCETs) of tasks. These worst-case scenarios are often counterintuitive due to timing

anomalies (Reineke et al., 2006; Lundqvist and Stenström, 1999), commonly present in

highly-optimized modern real-time systems. It is not possible to guarantee that the actual

WCETs have been observed in testing, and therefore testing is not a safe way of validating

timing correctness of hard real-time systems.

The absence of missed deadlines can only be guaranteed by a static analysis (Wilhelm

et al., 2008). A static WCET analysis estimates or calculates a safe upper bound of the

WCETs of each task without actually executing them. As these estimates are safe upper

bounds, a system that is validated using a static analysis is guaranteed to have timing cor-

rectness at any circumstances.

1

WCET

Execution	Times

Fr
eq
ue
nc
y	
of
	o
cc
ur
re
nc
e

WCET	calculated
by	static	analysis

WCET	observed	
by	testing

Analysis	
pessimism

Figure 1.1: Worst-case execution time (WCET) observed by testing may not be the actual
WCET, and only by static analyses, we can obtain a safe upper bound of the WCET. The
pessimism in the analysis can, however, limit the practical usability of the results.

Although the safety of the results is not of critical importance here, the practical usabil-

ity of an analysis can be limited because of the tightness of its results. Figure 1.1 illustrates

the tightness of the results or pessimism in the analysis, as the gap between the actual

WCET and the calculated WCET. For example, assuming a cache miss for every memory

access is certainly a safe way to estimate the worst-case memory access times, but it can be

so pessimistic that tasks may not be scheduled without significantly upgrading system hard-

ware or changing the design. The tightness of the analysis results are largely affected by

the timing predictability (Schoeberl, 2012) of the target processor architecture 1 . Unfortu-

nately, traditional approaches for improving the average-case performance, e.g. caches and

speculative execution, often complicate static analyses and make results pessimistic (Axer

et al., 2014).

In particular, caches are difficult to analyze statically, and an imprecise cache analysis is

an important source of pessimism (Reineke, 2009; Cazorla et al., 2013). The contents of a

cache during the execution of a task depend on previous execution history, so all execution

1 The uncertainties in software, such as unknown loop bounds, recursion depths or pointer values, have a
critical impact on the timing predictability, too. They can, however, be controlled and reduced by code an-
notations and strict coding guidelines. For instance, safety standards for avionics (Radio Technical Commis-
sion for Aeronautics Special Committee (152), 1992) or coding guidelines for safety-critical systems (Mont-
gomery, 2013) forbid or strictly limit the usage of recursion or dynamic memory allocation.

2

Tag	Array	

Tag	Decoder	
and	

Comparison	
Logic

Data	Array	

Data	
Decoder

Data	Array	

Data	
Decoder

(a) Cache (b) Scratchpad Memory (SPM)
Figure 1.2: Scratchpad memories are a directly-addressable raw memory whose data
movement is controlled only by software, not by hardware logic as in caches.

paths of the task and all higher-priority tasks including interrupt service routines must be

analyzed, which is quite computationally intensive. Notice that for shared caches, all tasks

running on all cores must be considered as well. In the presence of sporadic preemptions or

under dynamic scheduling policies, accurately predicting the dynamic behavior of caches

is nearly impossible because it is not clear when preemptions occur by which tasks. Thus,

caches are not as effective in improving worst-case performance as they are in average-case

performance. As the complexity and the size of hard real-time applications keep increasing,

the difficulties in cache analysis can become a stumble stone in designing correctness-

guaranteed hard real-time systems.

1.1 Scratchpad Memory (SPM) and Its Management

Scratchpad memories (SPMs) are a promising alternative to caches in hard real-time

systems, for their time-predictable characteristics. SPM is a raw memory that is directly

addressable by software. Its simpler hardware, as shown in Figure 1.2, provides less over-

head than caches in terms of die area and and per-access power consumption (Banakar

et al., 2002a; Redd et al., 2014), which is much appreciated in embedded systems. Data

movement in an SPM is explicitly controlled only by executing direct memory access

(DMA) instructions whereas that in a cache is implicitly controlled by the addresses of

3

memory accesses and its replacement policy. Since the updates in the contents are made

explicitly, SPMs are more time-predictable and thus facilitate static analyses (Suhendra

et al., 2005; Liu et al., 2012). Also, explicit management enables various optimizations

in a form of memory space allocation and access scheduling to reduce the WCETs. One

key strategy, for example, to optimize the WCET of a task is to avoid memory space shar-

ing among software objects frequently accessed on the worst-case execution path of the

task. Moreover, partitioning SPM space to tasks and interrupt service routines can greatly

simplify schedulability analysis that calculates the worst-case response times (WCRTs)

based on the WCETs and scheduling policy in use. If the memory accesses from each

task are completely localized to its partition, preemptions or interrupts do not cause any

side effects on the SPM states. This means that cache-related preemption delay (CRPD)

analysis (Altmeyer et al., 2011; Chattopadhyay and Roychoudhury, 2014; Altmeyer and

Burguière, 2011), which tend to be pessimistic, can be completely removed in the design

process. Of course, cache locking (Plazar et al., 2012; Ding et al., 2014) and partition-

ing (Liu et al., 2010; Suhendra and Mitra, 2008) can be used to lower WCETs by reducing

conflict misses, but the granularity of these techniques is limited by blocks, lines or ways,

which may cause a waste of cache space (Whitham and Audsley, 2009). Link-time opti-

mizations such as code positioning techniques can be used to avoid conflict misses among

instructions of different functions and reduce WCETs (Falk and Kotthaus, 2011; Um and

Kim, 2003; Li et al., 2015), but the amount of reduction is not significant because these

techniques are again, limited by the degree of control provided by caches; for example,

line sizes and associativity cannot be changed.

Using an SPM requires a modification in a program; explicit data movement instruc-

tions need to be inserted into the program. This modification is usually done by a compiler.

Before a compiler performs such a code transform, it needs to make number of decisions.

It first needs to decide where in the code to insert a data movement operation. And for each

4

data movement operation, it needs to decide what to transfer from where and to where.

The vast literature on SPM management techniques answers these questions in one way or

another with different goals. As techniques to be used in a compiler, they typically employ

static analysis and try to optimize reducing power consumptions (Steinke et al., 2002a;

Verma et al., 2004; Steinke et al., 2002b), improving average-case performance (Kandemir

and Choudhary, 2002; Jung et al., 2010; Bai et al., 2013; Egger et al., 2006; Pabalkar et al.,

2008; Baker et al., 2010; Lu et al., 2013; Nguyen et al., 2009; Udayakumaran et al., 2006;

Avissar et al., 2002), or worst-case performance (Falk and Kleinsorge, 2009; Puaut and

Pais, 2007; Wu et al., 2010; Prakash and Patel, 2012; Suhendra et al., 2005; Wan et al.,

2012; Deverge and Puaut, 2007). In this thesis, we present present management techniques

to reduce the WCET of a given program and particularly focus on the management of

program code and stack data.

SPM management techniques can be either static or dynamic. Any usage of SPM cre-

ates a mapping between the main memory contents and the SPM contents. This applies

to any on-chip memories; for example, the contents in a cache are a temporary copy or an

alias of selected data in the main memory. This mapping between SPM addresses and main

memory addresses can be one to one or one to many. In static management, it is one to one

such that only selected data can make use of the SPM. The total size of data that can ben-

efit of the SPM cannot be greater than the size of the SPM. For instance, when managing

read-only data such as code, the selected instructions are loaded into the SPM at loading

time, and the contents of the SPM does not change during runtime. The instructions that

are not loaded into the SPM must be fetched directly from the main memory. In dynamic

management, on the other hand, the mapping is one to many such that an SPM address

can be mapped to many different main memory addresses. When the code of a program is

managed in a dynamic way, the contents of the SPM are updated as the program executes

by executing DMA loading operations at runtime. Many small applications can benefit

5

from static management as there is no runtime overhead, but for large applications, the

overhead of accessing the slow main memory can outweigh. Dynamic management is in-

herently more advanced as it can exploit the locality of large applications. All management

techniques proposed in this thesis perform dynamic management.

1.2 Overview of This Thesis

This thesis presents dynamic SPM management techniques that optimize the WCET

of a given program, particularly focusing on managing program code and stack data. For

managing program code, our work is based on function-level overlaying mechanism (Pa-

balkar et al., 2008; Baker et al., 2010) where a whole function is loaded to the SPM before

it is called. Functions are loaded and evicted according a mapping of functions to SPM

addresses, which are decided at compile-time. As loading a function using a direct mem-

ory access (DMA) transfer is a long-latency operation, it is critical to intelligently allocate

SPM space to functions. In Chapter 2, we describe an optimal SPM space allocation tech-

nique to minimize the WCET. We further describe a heuristic to split functions into smaller

partitions and discuss the impact of management granularities on the WCETs in Chapter 3.

Our work for managing stack data is based on the dynamic management mechanism by Lu

et al. (2013). In this mechanism, while the program stack is kept in the SPM, stack frames

are evicted to and restored from the main memory at a call site to prevent the stack from

growing larger than the SPM size. Since the size (depth) of the stack and the frequency

of management operations for transferring stack frames would be different at different call

sites, it is important to decide when to perform such operations. This problem can be seen

as scheduling of stack management operations, and we describe an optimal technique for

finding call sites to perform the management operations in Chapter 4.

6

1.3 Contributions

The ultimate goal of this work is to enable correct-by-construction timing of hard real-

time systems, which can guarantee the correct timing behavior at design-time or compile-

time, without exhaustive testing. As stated earlier in this chapter, the pessimistic static

analysis for existing cache-based architectures was a stumble stone in this regard. The sig-

nificant reduction in the WCET estimates by the proposed techniques, compared to caches,

can be seen that this is a step forward toward the goal of correct-by-construction timing of

hard real-time systems. Other main contributions of this thesis are as follows.

• Finding optimal solutions in dynamic management: All techniques presented in

this thesis perform dynamic management and can find optimal solution to minimize

the WCET of a given program. All previously published techniques, regardless for

allocating program code or for scheduling stack management operations, can only

find optimal solutions for static management (Falk and Kleinsorge, 2009; Suhendra

et al., 2005) or are optimized for the average-case performance (Avissar et al., 2002).

Though claimed to be optimal for the worst-case, some work solves a very limited

subset of a problem like selecting instructions in non-nested loops (Wu et al., 2010)

or cannot really find an optimal solution as it takes one nominal input assumed to be

the worst-case scenario (Whitham and Audsley, 2012; Liu and Zhang, 2015).

• Extensive evaluations: The effectiveness of the proposed managed techniques are

thoroughly verified by extensive evaluations. We use not only several benchmarks

from the Mälardalen WCET suite (Gustafsson et al., 2010a) and MiBench suite (Guthaus

et al., 2001), but also three proprietary real-world applications from industry, for au-

tomotive powertrain control. In chapter 3, we compare against static analysis results

for various previous techniques and caches, with several different architectural con-

figurations.

7

1.4 Related Publications

The main body of this thesis is composed of three chapters, each of which is a paper

under review for publication.

Chapter 2 is an extended version of a published paper 2 . It is under review as of January

2017 at journal, ACM Transactions on Embedded Computing Systems (TECS), with a title

of “WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory".

I invented all technical parts of this work, including input representation, analysis tech-

niques, integer linear programming formulation, and the heuristic algorithm. All evalua-

tions are also designed and performed by myself. The contributions of co-authors include,

but not limited to, the formalism in writing of input representation and algorithm descrip-

tions (David Broman) and the implementation of software infrastructure for constructing

control-flow graphs and an early version of cache analysis technique (Jian Cai).

Chapter 3 is under review as of January 2017 at ACM Transactions on Architecture

and Code Optimization (TACO), with a tile of “A Comparison of WCET-Centric Dynamic

Code Management Techniques for Scratchpads". I am the sole contributor of this work.

Chapter 4 is under review as of January 2017 for publication in the proceedings of the

54th IEEE/ACM Design Automation Conference (DAC). I am the sole technical contributor

in this work as well. I developed and implemented all algorithms. I also designed and

performed all evaluations. A co-author, Jian Cai, helped with implementing a previous

work for comparison, with extensive discussions.

2 ©2014 IEEE Yooseong Kim, David Broman, Jian Cai, and Aviral Shrivastava, “WCET-aware dynamic
code management on scratchpads for Software-Managed Multicores", In Proceedings of Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), Apr., 2014. The publisher (IEEE) does not require
individuals working on a thesis to obtain a formal reuse license.

8

Chapter 2

WCET-AWARE FUNCTION-LEVEL DYNAMIC CODE MANAGEMENT 1

SPM has time-predictable characteristics since its data movement between the SPM

and the main memory is entirely managed by software. One way of such management is

dynamic management. In dynamic management of instruction SPMs, code blocks are dy-

namically copied from the main memory to the SPM at runtime by executing direct memory

access (DMA) instructions. Code management techniques try to minimize the overhead of

DMA operations by finding an allocation scheme that leads to efficient utilization. In this

chapter, we present three function-level code management techniques. These techniques

perform allocation at the granularity of functions, with the objective of minimizing the

impact of DMA overhead to the worst-case execution time (WCET) of a given program.

2.1 Introduction

In this chapter, we describe techniques that allocate code blocks to SPM, called code

management techniques, and the objective of the techniques is to reduce the WCET of

a given program. Compared to previous code management techniques that try to reduce

WCET (Falk and Kleinsorge, 2009; Prakash and Patel, 2012; Puaut and Pais, 2007; Wu

et al., 2010), our techniques have two distinct characteristics.

The first difference is at the granularity of management. Code management techniques

perform management at various levels of granularity, such as basic blocks (Steinke et al.,

2002a; Janapsatya et al., 2006; Puaut and Pais, 2007; Wu et al., 2010), groups of basic

blocks on a straight-line path (Verma et al., 2004), or fixed-size pages (Egger et al., 2006).

1 This chapter extends a published paper, ©2014 IEEE, Yooseong Kim, David Broman, Jian Cai, and
Aviral Shrivastava, “WCET-aware dynamic code management on scratchpads for Software-Managed Multi-
cores", In Proceedings of Real-Time and Embedded Technology and Applications Symposium (RTAS), Apr.,
2014. The publisher (IEEE) does not require individuals working on a thesis to obtain a formal reuse license.

9

In this chapter, we focus on function-level code management techniques (Baker et al.,

2010; Pabalkar et al., 2008; Jung et al., 2010; Bai et al., 2013), which load code blocks at

the granularity of functions.

The second difference also comes from the function-level management. In function-

level management, a function is loaded as a whole, and instructions are always fetched

from the SPM, not the main memory 2 . Other management schemes, on the other hand,

allocate only part of the instructions to the SPM and leave the rest in the main memory.

The accesses for the instructions left in the main memory are assumed to be uncached and

slow or to be cached, which can be less time-predictable.

All previous function-level code management techniques aim to optimize average-case

execution time (ACET), by reducing overall DMA operation overhead, but none of them

considers WCET. We present the first and only function-level code management techniques

that optimize the WCET of a given program. Also, all previous techniques use function-to-

region mappings (Pabalkar et al., 2008) to allocate SPM space to functions. The proposed

techniques can not only find an optimal function-to-region mapping for WCET but can also

find an optimal region-free mapping that maps functions directly to SPM addresses, not

regions, which can lead to a lower WCET than the optimal function-to-region mapping.

We evaluate our approach using several benchmarks from Mälardalen suite (Gustafsson

et al., 2010a), MiBench suite (Guthaus et al., 2001), and proprietary automotive control

applications from industry. The evaluation results show that our techniques can effectively

reduce the WCETs of programs.

2 This makes function-level code management techniques only viable options in software-managed mul-
ticore architectures (Bai et al., 2013), like IBM Cell processor (Kahle et al., 2005), in which cores cannot
directly access the main memory.

10

2.2 Background: Function-level Dynamic Code Management

When the SPM is large enough to store all instructions, running a program is very

simple; the whole program can be loaded at loading time before execution. Dynamic code

management, however, becomes necessary once the code size becomes larger than the SPM

size. In dynamic management, compiler inserts DMA instructions for loading operations

so that the contents stored in the SPM can be updated with different instructions at runtime.

Management techniques coordinate DMA operations in order to avoid the overhead of such

DMA operations.

Function-level code management (Pabalkar et al., 2008) loads instructions at the gran-

ularity of functions around each call site. Since it is assumed that the core fetches instruc-

tions only from the SPM, a whole function must be loaded in the SPM before executing

the function. This imposes a limitation that the largest function in a program must fit in the

SPM in order to be executable using function-level code management techniques. Where

to load each function is decided at compile time, and in all previous approaches, such de-

cisions are represented by function-to-region mappings. A function-to-region mapping is a

surjective map from all functions in the program to all regions in the SPM.

Code management using function-to-region mappings is analogous to a direct-mapped

cache. A region corresponds to a cache line. As memory addresses are mapped to cache

lines, functions are mapped to regions. A function is always loaded to the starting address

of its region, so loading a function always replaces any previously loaded function in the

region. At a call (return), the compiler-inserted code looks up the state of the region to

check if the callee (caller) function is loaded in the region. If not, the function is loaded

by a DMA operation, and the core waits until it finishes before proceeding to execute the

function. This process is analogous to tag comparison and cache miss handling in caches.

11

f0 {
if (…) then
f1 ();

else
f2 ();

}
f1 { … }
f2 { … }

Path 1

Path 2

Size

f0 f1 f2
3 1 2

Path 1 Path 2
(10, 0.3) (6, 0.7)

Path execution time
excluding DMA
cost

Path probability

(a) An example program

10+1+3=14

f0 , f1

f2

load f2
Path 2

load f1
Path 1

load f0

Region 1

Region 2
6+2=8

f0 , f2

f1

load f1
Path 1

load f2
Path 2

load f0

Region 1

Region 2
10+1=11 6+2+3=11

(b) Mapping A (c) Mapping B

Mapping size ACET WCET

A max(3,1) + 2 = 5 14 ∗ 0.3 + 8 ∗ 0.7 = 9.8 max(14,8) = 14

B max(3,2) + 1 = 4 11 ∗ 0.3 + 11 ∗ 0.7 = 11 max(11,11) = 11

(d) ACET and WCET comparison
Figure 2.1: Mapping A optimizes the more frequently executed path (Path 2), achieving a
better ACET than mapping B. In terms of WCET, however, mapping B is a better solution.

2.3 Motivating Examples

In this section, we use a simple motivating example to demonstrate the difference be-

tween the mapping optimized for ACET and the mapping optimized for WCET. Then, we

show another motivating example to explain the benefit of mapping functions directly to

addresses, instead of regions.

12

2.3.1 Why Do We Need a New Technique for Optimizing WCET?

Figure 2.1(a) shows an example program with three functions: f0, f1, and f2. The

main function f0 has two paths, calling functions f1 on Path 1 and f2 on Path 2. The

probability of the program to take each path is determined by the branch probability of the

if-statement in f0. The execution time of each path excluding the waiting time for DMA

operations and path probabilities are also shown in the figure. The cost for loading each

function is assumed to be the same as the size of the function.

Let us assume the size of the SPM is 5. Since the sum of all function sizes is larger than

the SPM size, not all functions can have a private region. Here, we consider two feasible

mapping solutions: mapping f0 and f1 to the same region (Mapping A) and mapping f0

and f2 to the same region (Mapping B). Figure 2.1(b) and 2.1(c) compare the sequence of

DMA operations on each path for each mapping choice. For instance, with mapping A, f0

must be loaded again when f1 returns because f0 was evicted by f1.

Figure 2.1(d) shows the ACET and the WCET for each mapping. Considering path

probabilities, mapping A achieves a better ACET than mapping B. The overall amount of

DMA transfers is less with mapping A because it can avoid evicting the largest function,

f0, on the more frequently executed path, Path 2. The WCET of the program is, however,

better with mapping B 3 .

All previous approaches use interference cost to model the cost of mapping two func-

tions into the same region. For example, Bai et al. (2013) calculates the calories cost of

mapping two functions A and B into one region as pA × pB × min(nA,nB) × (sA + sB),

where p f , n f , and s f denote the execution probability, the iteration count, and the size of

function f . Thus, the interference cost of mapping f0 and f1 into one region is 1 × 0.3 ×

min(1,1) × (3 + 1) = 1.2. Similarly, the cost of mapping f0 and f2 into the same region

3 In fact, the best mapping for both the ACET and the WCET would be mapping f1 and f2 into the same
region and leaving f0 in a private region, but we only consider mapping A and B for illustrative purposes.

13

is 1 × 0.7 × min(1,1) × (3 + 2) = 3.5. Trying to minimize the interference cost, the tech-

nique from Bai et al. would always try to map f0 and f2 to different regions, and any other

previous approaches would work similarly.

This example shows that optimizing for the ACET may not always result in a good

WCET. Previous mapping techniques only try to optimize the ACET and are therefore not

suitable for systems with strict timing constraints.

2.3.2 Why Do We Need Region-Free Mapping?

Figure 2.2(a) shows an example program with four functions, f0, f1, f2, and f4. f0

first calls f1, and then f1 calls f2 in a loop. After f1 returns, f0 calls f3. The execution

sequence of the functions is f0 f1(f2 f1)n f0 f3 f0, where n is the number of iterations of the

loop in which f2 is called. We assume f0 is preloaded before execution.

Let us assume the SPM size is 4. When a function-to-region mapping is used, it is not

possible to assign separate regions to f1 and f2. This is because the size of the largest

function, f3, is 3, so at least one region has to be as large as 3. The remaining SPM space

is only 1, and the only function that can fit in a region whose size is 1 is f0. Thus, the

optimal function-to-region mapping, shown in Figure 2.2(b), is to map f0 in one region of

size 1, and all the rest to the other region of size 3. With this mapping, f0 is kept loaded

in a separate region, so it is not reloaded again when other functions return. This mapping,

however, causes f1 and f2 to replace each other repetitively in the loop, causing DMA

operations in every iteration. This is a significant overhead and can greatly increase the

WCET of the program.

If we can map each function directly to an address range, not a region, this problem can

be solved. As shown in Figure 2.2(c), f1 and f2 can be mapped to disjoint address ranges,

from 0 to 1 and from 2 to 3, respectively. This can greatly improve the WCET because B

and C can stay loaded after their initial loadings. This mapping causes f1 to be reloaded

14

f0 {
 f1 ();
 f3 ();
 …
}

f1 {
 while (…)
 f2 ();
}
f2 { … }
f3 { … }

Size

f0 f1 f2 f3

1 2 2 3

(a) An example program

DMA trace:
load f1
load f2
load f1
load f3

f0
Region 1

Region 2
f1
f2
f3

0

1

2

3

Addr. f0

f3

f1

f2

0

1

2

3

Addr.

DMA trace:
load f1
load f2
load f0
load f3

(b) Optimal function-to-region mapping (c) Optimal region-free mapping
Figure 2.2: Even with the optimal function-to-region mapping, f1 and f2 replace each
other repetitively in the loop. Region-free mapping load them to disjoint address ranges,
keeping them loaded after initial loadings.

when f1 returns back to f0 because their allocated SPM spaces overlap, but it happens only

once. When f3 returns, f0 does not need to be reloaded.

2.4 WCET Analysis

In order to find a mapping that can optimize the WCET of a program, we first need to be

able to estimate the WCET of the program for a mapping—which can be either a function-

to-region mapping or a region-free mapping. Figure 2.3 shows an overview of our WCET

analysis framework. Given a graph representation of the program, we need to perform two

analyses to obtain necessary information about the program. Using this information, along

15

Inlined
CFG

Loop
Bounds

Preliminary
Analyses

Analysis
Results

ILP
Generation ILP ILP

Solver
WCET

Estimate

Section 2.3.1 Section 2.3.2, 2.3.3 Section 2.3.4

Code
Mapping

Figure 2.3: The flow of our WCET analysis for function-level dynamic code management

with a mapping, and loop bounds, we formulate an integer linear programming (ILP) to

compute a safe upper bound of the WCET.

2.4.1 Inlined Control Flow Graph

We use a variant of control flow graph (CFGs), called inlined CFGs, to represent a

given program. An inlined CFG is a CFG of a whole program, not just one function, whose

edges represent not only control flows within a function but also function calls and returns.

An example program is depicted in Figure 2.4. In this example, like the example from

Figure 2.1(a), the main function, f0 has one branch and calls f1 and f2. We assume that

both f1 and f2 consist of a single basic block. When f0 calls f1 at v1, the CFG of f1 is

inlined as v3, and similarly the CFG of f2 is inlined as v4. The notable benefit with this rep-

resentation is that context information or call stack trace is explicit at any node in a graph,

which avoids pessimism regarding uncertainties with call history in static analysis. One

limitation is that recursive functions cannot be represented, which can be acceptable in the

context of real-time embedded applications. Note that this is only a program representation

for analysis. Any program can be represented in an lined CFG without actual inlining or

any other modification.

Let G = (V,E,vs,vt ,F, fn) be an inlined CFG. V is the set of vertices, each of which

is a basic block. The set of edges is defined as E = {(v,w) | there is a direct path from v

to w due to control flow, a function call or a return, where v,w ∈ V.}. Unlike basic blocks

16

… v0, f0

call f1
v1, f0 call f2

v2, f0

… v3, f1 …
v4, f2

… v6, f0 … v5, f0

… v7, f0

v ∈ V, fn(v) l (v0) 0

l (v1) 0

l (v2) 0

l (v3) 1

l (v4) 1

l (v5) 1

l (v6) 1

l (v7) 0

f0 {
 if (…) then
 f1 ();
 else
 f2 ();
}
f1 { … }
f2 { … }

Figure 2.4: Inlined CFG represents the global call sequence and the control flow by inlin-
ing the CFG of the callee function at each function call.

in conventional CFGs, function call instructions are always at the end of a basic block and

cannot be in the middle of a basic block. Vertices vs and vt represent the starting basic

block and the terminal basic block. F is the set of functions in the program, and fn : V→F

is a mapping stating that fn (v) is the function that v belongs to.

A mapping l : V→{0,1} identifies loading points of functions. For a vertex v, l (v) is 1

only when there is an immediate predecessor u such that fn (u) , fn (v), which means there

is an incoming edge from another function. Figure 2.4 illustrates fn (v) and l (v).

We also define the concept of paths and related notations as follows. A path is a finite

sequence of vertices p = p1,p2, · · · ,pk such that ∀1 ≤ i ≤ k, pi ∈ V and ∀1 ≤ i <

k, ∃(vi,vi+1) ∈ E. The i-th vertex on p is denoted by pi, and the length of a path p

is denoted by len(p). A vertex can appear multiple times on a path for the presence of

loops. Given a vertex v, P(v) denotes the set of all paths that start from vs and end with

an immediate predecessor of v. Thus, v itself is not included in P(v). For a path p and a

function f , last(p, f) ∈ V ∪ {⊥} denotes the last occurrence of f on p. Thus, if we let

last(p, f) = pi, then fn (pi) = f and fn (p j) , f , i < j ≤ len(p). When f does not appear

on p, last(p, f) = ⊥.

17

2.4.2 Finding Initial Loading Points

A function needs to be loaded at least once when it is called for the first time, which is

analogous to cold misses in caches. For vertex v that is a loading point of fn (v), if there

is any execution path from vs to v on which fn (v) has never been executed, we call v an

initial loading point of fn (v). We have to assume that a DMA operation must take place at

least once for initial loading in such a case.

We define a binary mapping il : V→{0,1} to identify initial loading points of functions.

For a vertex v ∈ V , il (v) is 1 only when v is an initial loading point of fn (v), which is

determined using traditional dominance analysis (Khedker et al., 2009) as follows.

il (v) =

0 ∃d ∈ SDOM (v), fn (d) = fn (v)

1 otherwise.
(2.1)

where SDOM (v) denotes the set of strict dominators of v. If there is any strict dominator

d whose fn (d) value is the same as fn (v), function fn (v) can be safely assumed to have

been loaded before executing v. Otherwise, v is an initial loading point. In the example

program in Figure 2.4, v3 is a potential loading point of f1, and its strict dominators are v0

and v1. Since both v0 and v1 belong to f0, not f1, v3 is an initial loading point of f1, thus

il (v3) = 1. Similarly, v4 is also an initial loading point of f2.

2.4.3 Finding the Interference among Functions

At a loading point v that is not an initial loading point, fn (v) is guaranteed to have

been loaded before control reaches v. To determine if fn (v) is still loaded at v, we make

a conservative assumption as follows. If there exists a function g , fn (v) that satisfy the

following two conditions, we assume that fn (v) has been evicted from the SPM:

1. g and fn (v) share SPM space (Their allocated SPM spaces overlap.).

18

2. There exists a path p ∈ P(v), on which g is executed between last(p, fn (v)) and v.

Satisfying two conditions means, in other words, that fn (v) could have been evicted by

g on a path from last(p, fn (v)) to v. The first condition cannot be checked because the

SPM addresses of functions are not decided before code mapping stage (Section 2.5). The

second condition, however, can be checked by analyzing the given CFG.

If the second condition satisfies, fn (v) and g have interference at loading point v. Our

interference analysis 4 finds the set of all functions that potentially interfere with f at all

loading points v, namely interference set, defined as below.

Definition 1 (Interference Set) Let G = (V,E,vs,vt ,F, fn) be an inlined CFG. For a vertex

v ∈ V and a function f ∈ F, the interference set IS [v, f] ⊆ F \ { f } is the set of all functions

that appear between the path between last(p, f) and v, excluding last(p, f) and v, for all

paths p ∈ P(v).

When last(p, f) is ⊥ for all path p ∈ P(v), IS [v, f] = ∅. The following equation

restates the above definition.

∀v ∈ V, f ∈ F, IS [v, f] =⋃
∀p∈P(v)

{fn (p j) | i < j ≤ len(p), pi = last(p, f)}
(2.2)

Table 2.1 shows interference sets for the example in Figure 2.4. To help follow how

interference sets are calculated at each vertex v, the table also shows the set of last(p, f)

for all paths p ∈ P(v) on the right three columns.

In other words, interference set IS [v, f] is the set of functions that could evict f from

the SPM before f is executed at v. The eviction can actually occur if any function in

4 The term “interference analysis" has been used in the context of compiler optimization, such as in
register allocation or in optimizing parallel programs. Our interference analysis is different from any of
those, but similar in the sense that the results are used to predict any side-effect of compiler decision. For
example, allocating a register to a variable may cause additional spills of other interfering variables, and
mapping a function to an SPM address may cause additional DMA overhead for reloading other functions
interfering with the function.

19

Table 2.1: Interference sets for the example program in Figure 2.4

IS [v, f0] IS [v, f1] IS [v, f2]

⋃
∀p∈P(v){last(p, f)}

f = f0 f = f1 f = f2

v0,v1,v2,

v3,v4
∅ ∅ ∅

∅ or has only immediate

predecessor of v.

v5 { f1} ∅ ∅ {v1} {v3} ∅

v6 { f2} ∅ ∅ {v2} ∅ {v4}

v7 ∅ { f0} { f0} {v5,v6} {v3} {v4}

IS [v, f] is assigned an SPM space that overlaps with the SPM space assigned for f . Since

a loading point v loads fn (v), only IS [v, fn (v)] is meaningful in estimating DMA costs.

Nevertheless, the interference sets are calculated for all functions at each vertex to pass

down the information to successor vertices.

We can safely assume that fn (v) is still loaded in the SPM only if: i) v is not an initial

loading point of fn (v) (fn (v) < A[v]), and ii) none of the functions in IS [v, fn (v)] shares

SPM space with fn (v). Otherwise, we have to assume a DMA transfer will take place at v

to load fn (v).

Interference sets can be calculated by a form of forward data-flow analysis, using the

following data-flow equations. Algorithm 1 shows the procedure of using the equations.

Let IN[v, f] and OUT[v, f] be the interference sets IS [v, f] before and after executing v,

20

Algorithm 1: Interference analysis
Input: Inlined CFG (G)

Output: The interferense sets (IS)

1 foreach (v, f) ∈ V × F do IN[v, f]← ∅

2 repeat

3 foreach (v, f) ∈ V × F do
Evaluate Equations (2.3) and (2.4)

until IN[v, f] and OUT[v, f] stay unchanged for all v ∈ V and f ∈ F

4 foreach (v, f) ∈ V × F do
IS [v, f] = IN[v, f] − { f }

respectively.

IN[v, f] =
⋃

(u,v)∈E

OUT[u, f] (2.3)

OUT[v, f] =

∅ if f , fn (v) ∧ IN[v, f] = ∅

{fn (v)} if f = fn (v)

IN[v, f] ∪ {fn (v)} otherwise.

(2.4)

Input value, IN[v, f], is the union of output values from all predecessors, and there are

three different cases regarding how output value, OUT[v, f], is updated. First, when f is not

fn (v), OUT[v, f] remains empty unless IN[v, f] has any function in it. IN[v, f] can become

a non-empty set only when f has been executed previously, which is done by the second

condition. The second condition says that when f is fn (v), any collected execution history

in IN[v, f] is reset and the output value contains only fn (v). Once this happens, starting

from the successors u of v, IN[u, f] will not be an empty set, and the function execution

history can be recorded by taking a union of the input value and fn (u), as seen in the third

condition. Notice that Algorithm 1 sets IS [v, f] to be IN[v, f] − { f } at line 4, after all the

21

data-flow values converge, to make the final results comply to the definition that IS [v, f]

does not contain f .

2.4.4 ILP Formulation for WCET Analysis

We describe an integer linear programming (ILP) formulation to find a safe upper bound

of the WCET of a given program, when a particular function-to-region mapping for the

program is given as input. Variables in the following ILP are written in capital letters, and

constants are in small letters. The formulation requires that the input inlined CFG G to be

acyclic, so we require G to be reducible and remove all back edges first.

The high-level structure of our formulation is similar to the one from the previous

work (Suhendra et al., 2005; Falk and Kleinsorge, 2009) in two aspects: i) a WCET es-

timate is obtained by accumulating the cost of each basic block backward from the end to

the start of the program (Equation (4.2)), and ii) the objective is to minimize the WCET

(Equation (4.1)). There are, however, significant differences in the rest of the formulation

as we model the function loading cost at each vertex (Equation (2.13)).

Let Wv be a WCET estimate from v to the end of the program. Thus, Wvs is a WCET

estimate for the whole program. The objective is to get a safe-yet-tight estimate of the

WCET of the program as follows.

minimize Wvs (2.5)

Each vertex v can contribute to the WCET with the sum of its computation cost Cv and

its loading cost Lv. Cv is the time to execute all instructions in v, which excludes the time

to execute DMA instructions, which is Lv. For each successor w of v, Wv is greater than or

equal to the sum of the cost of v and the cost of w. This makes Wv be a safe upper bound of

the WCET from v to the end of the program. The terminal basic block does not have any

22

successor, so Wvt is the cost of itself.

∀(v,w) ∈ E, Wv ≥ Ww + Cv + Lv

Wvt = Cvt + Lvt

(2.6)

The computation cost Cv is a product of the number of times v is executed in the worst-

case (nv) and the worst-case estimation of the time it takes to execute the instructions in v

for once (cv).

Cv = nv · cv (2.7)

For loading cost Lv to exist, v must be a loading point, i.e., l (v) = 1. To employ the

value of l (v) in the formulation, l (v) is imported as a constant lv as below. Similarly, the

information regarding initial loading point, il (v), is imported as a constant ilv.

lv = l (v) (2.8)

ilv = il (v) (2.9)

The mapping information is taken into account as follows. For a pair of functions, f

and g, a binary constant o f ,g is only one when their allocated SPM address ranges over-

lap. When the mapping is function-to-region mapping, this means that both functions are

mapped to the same region. With a region-free mapping, this is calculated using the mapped

address and the size of each function.

o f ,g =

1 if the allocated SPM spaces for f and g overlap

o otherwise.
(2.10)

Let d f denotes the time it takes to load function f by a DMA operation plus the over-

head of executing DMA instructions. The loading cost Lv is modeled as follows. Table 2.2

shows different scenarios in which loading cost Lv can exist. If there exists any interfering

23

Table 2.2: Categorization of function loading cost at vertex v

Initial loading point

(ilv = 1)

Non-initial loading

point (ilv = 0)

fn (v) shares SPM space with an

interfering function f

(∃ f ∈ IS [v, fn (v)], ofn (v), f = 1)

Always-Miss (load nv times)

No space sharing

(∀ f ∈ IS [v, fn (v)], ofn (v), f = 0)

First-Miss

(load only once)
No loading

function whose allocated SPM space overlaps with that of fn (v), fn (v) needs to be reloaded

every time v is executed. AMv (Always-Miss) models the loading cost in this case.

∀ f ∈ IS [v, fn (v)], AM v ≥ nv · dfn (v) · ofn (v), f (2.11)

Consider an initial loading point v that is executed more than once in a loop. If there

is no interfering function or none of the interfering function shares SPM space with fn (v),

fn (v) needs to be loaded only once. FMv (First-Miss) models the loading cost in this

case. The value of FMv is dfn (v) as fn (v) is loaded only once. If, however, any interfering

function shares SPM space with fn (v), it becomes Always-Miss, and the value of FMv

should be the same as AMv. The difference in AMv and dfn (v) is compensated by adding

(nv − 1) · dfn (v) to dfn (v) as follows.

∀ f ∈ IS [v, fn (v)], FM v ≥ dfn (v) + (nv − 1) · dfn (v) · ofn (v), f (2.12)

Finally, since the loading cost is present only when lv is 1, and its value is either FMv

or AMv, it is modeled by the following constraint.

Lv = lv · (ilv · FM v + (1 − ilv) · AM v) (2.13)

24

After solving the above ILP, the objective value Wvs is a safe WCET estimate of the

given program running on an SPM-based architecture with dynamic code management

using the given code mapping.

2.5 WCET Optimization

In this section, we present three techniques of finding a code mapping for optimizing

the WCET. The first one is optimal and based on ILP, and the second one is a polynomial-

time heuristic, but sub-optimal. These two techniques find a function-to-region mapping,

whereas the third technique finds an optimal region-free mapping using ILP.

2.5.1 ILP Formulation for Optimal Function-to-region Mapping

We extend the ILP formulation in Section 2.4.4 to explore all mapping solutions instead

of taking a fixed mapping solution as input. A function-to-region mapping solution is

represented by the following binary variables.

∀ f ∈ F,r ∈ R, M f ,r =

1 if f is mapped to r

0 Otherwise
(2.14)

The number of regions used in a mapping solution can vary for different solutions.

For example, all functions can be mapped to one region (there is only one region.), or

each function can be mapped to a unique region (the number of regions is the same as the

number of functions.). To handle various number of regions, we let the set of all regions,

R, be a set of integers ranging from 1 to |F |, each of which represents a unique region. If

a mapping solution uses only n < |F | regions, there will be (|F | − n) regions that do not

have any functions mapped to them.

25

The following constraints ensure the feasibility of mapping solutions that the solver

will explore. Firstly, every function is mapped to exactly one region.

∀ f ∈ F,
∑
r∈R

M f ,r = 1 (2.15)

Secondly, the sum of the region sizes is not greater than the SPM size.

∀ f ∈ F,r ∈ R, Sr ≥ M f ,r · s f

SPMSIZE ≥
∑
r∈R

Sr
(2.16)

where SPMSIZE is the size of the SPM, and s f is the size of function f . Sr is a variable

that represents the size of the largest function mapped to r .

For a pair of functions f and g, and a region r , we use a binary variable M f ,g,r that is

1 only when f and g are both mapped to r . This is represented by the following logical

condition between variables. If both f and g are mapped to r , only the constraints in Set 1

should satisfy but not the constraints in Set 2, and vice versa.

Set 1: M f ,r + Mg,r > 1 Set 2: M f ,r + Mg,r ≤ 1

M f ,g,r = 1 M f ,g,r = 0

The above logical constraints can be integer-programmed using the standard way of

formulating logical constraints (Bradley et al., 1977) as follows.

∀ f ,g ∈ F,r ∈ R, M f ,r + Mg,r + B · (1 − M f ,g,r) > 1

M f ,r + Mg,r ≤ 1 + B · M f ,g,r

(2.17)

where B is a constant chosen to be large enough so that regardless of the value of M f ,g,r ,

both constraints should satisfy at the same time. In this case, B should be at least 2 to make

M f ,r + Mg,r + B · (1 − M f ,g,r) > 1 satisfiable when M f ,g,r is 0.

26

Then, the constraints for FM v and AM v from the constraints in Equation (2.11) and

Equation (2.12) need to be rewritten using Mfn (v), f ,r as follows.

∀ f ∈ IS [v, fn (v)],r ∈ R, AM v ≥ nv · dfn (v) · Mfn (v), f ,r (2.18)

FM v ≥ dfn (v) + (nv − 1) · dfn (v) · Mfn (v), f ,r (2.19)

The solution of this ILP formulation is an optimal function-to-region mapping repre-

sented by the set of variables M f ,r for all function f ∈ F and region r ∈ R. The final

objective value Wvs is the WCET estimate for the found mapping solution.

2.5.2 WMP: A Heuristic Alternative to the ILP Formulation

The ILP-based technique from the previous section can find an optimal solution, but it

can take a long time for an ILP solver to find one. As each function needs to be mapped

to each region, and the number of regions can be as many as the number of functions,

the solution space of the ILP grows exponentially with the number of functions. In our

experiments with benchmarks in Section 2.6, it takes less than a second for a solver to find

an optimal solution for ‘cnt’ which has 6 functions, but for ‘1REG’ which has 28 functions,

the solver cannot find an optimal solution in 3 hours.

To solve this problem, we present WCET-aware Merging and Partitioning (WMP), a

polynomial-time heuristic technique which builds upon the ways of searching the solution

space of our previous techniques, function mapping by updating and merging (FMUM)

and function mapping by updating and partitioning (FMUP) (Jung et al., 2010). As the

name suggests, FMUM starts with assigning a separate region to every function and tries to

merge regions so that the mapping can fit in the SPM and the cost of the mapping decreases,

whereas FMUP starts with having only one region and iteratively partitions a region into

two regions. While the cost function in these techniques estimates the overall amount of

DMA transfers, we introduce a new cost function that estimates the WCET of the program.

27

Algorithm 2: WMP: a heuristic to find a function-to-region mapping for WCET
Input: Inlined CFG (G), SPM size (S) (S ≥ max f ∈F s f)

Output: A feasible function-to-region mapping (M) (Size(M) ≤ S)

function WMP(G,S)

1 remove all back edges in G

2 T ← Topologically sorted vertices of G

3 Mm ← Merge(G,T,S)

4 Mp ← Partition(G,T,S)

5 if Cost(Mm ,T) < Cost(Mp ,T) then

6 M ← Mm

else

7 M ← Mp

8 return M

Before discussing the details of the WMP algorithm, we would like to point out that the

ILP-based technique can also be used as a heuristic with a time limit set to the solver, as we

do later in this chapter (Section 2.6). This makes the solver to output the best solution found

by the time limit, which may not be optimal. In our experiments with 3-hour time limit, this

ILP-based technique could always find solutions that are better (meaning that the resulting

WCET is smaller) or at least as good as the solutions found by WMP. This, however, brings

up another problem of choosing a time limit that is long enough to find good solutions. For

example, in our experiments with benchmark ‘1REG’, the ILP solver needed at least 50

seconds to find a solution as good as the solution found by WMP and at least 20 minutes to

find a solution better than WMP’s solution. On the other hand, WMP could find a solution

within a second for all benchmarks, and the increase in WCETs compared to the ILP with

3-hour time limit is not greater than 6.5%. In this sense, WMP is still a reasonable and

scalable alternative to the ILP.

28

Algorithm 3: Cost function that estimates the WCET for a given mapping M
Input: Function-to-region mapping (M), Topological-sorted vertex list (T)

Output: The WCET estimate (c[vt])

function Cost(M,T)

1 initialize c[v] to 0 for all v ∈ V

2 for v in T from head to tail do

3 c ← nv · cv

4 if l (v) = 1 then

5 if ∃ f ∈ IS [v, fn (v)] such that M[fn (v)] = M[f] then

6 c ← c + nv · dfn (v)

else

7 if il (v) = 1 then

8 c ← c + dfn (v)

9 c[v]← c + max
(u,v)∈E

c[u]

10 return c[vt]

Algorithm 2 shows the pseudocode. Given an inlined CFG, the interference sets and

the size of SPM, it returns a function-to-region mapping M . A mapping solution, M , is

represented by an integer array whose size is the same as the number of functions. The ID

of a function is represented by an array index, and its mapped region is the value of the

array element. For example, if function 1 is mapped to region 2, M[1] = 2. It finds two

mapping solutions by merging and partitioning (line 3-4), whose algorithms are shown in

Algorithm 4. The one with a lesser cost is selected (line 5-7).

The cost of a mapping is the WCET estimate of it. We take the longest path in the input

inlined CFG as an estimation of the WCET, and to find the longest path, we first remove

all back edges from the graph and topologically sort the vertices at line 2-3 in Algorithm 2.

29

The cost function, Cost, shown in Algorithm 3 visits each vertex in topological order

and calculates the computation cost (line 3) and the loading cost (line 4-8) for the given

mapping. At each vertex v, the final cost of the vertex c[v] is the sum of its own cost

and the maximum cost among the costs of all predecessors (line 9). Thus, the cost of the

terminal vertex c[vt] becomes the longest path length.

Algorithm 4 shows two heuristics, Merge and Partition. Merge starts with mapping

each function to a separate region (line 1). In every iteration of the while loop at line 2-14,

we take every pair of two regions (line 4-5) to merge and create a temporary mapping M′

where two regions are merged (line 6-7). We check the cost of M′ and keep a record of

the best pair of regions to be merged and its cost (line 8-11). After trying all combinations,

we change the original mapping M by merging the best pair of regions (line 12). The loop

repeats until the mapping can fit in the SPM, i.e. the sum of the sizes of regions is smaller

than SPMSIZE (line 2). Partition starts with mapping all functions to one region (line

14). Variable nr represents the current number of regions. Again, we create a duplicate of

M and move each function f to a different region r , creating another region nr + 1 (line

18-20). We keep a record of the best combination of f and r , and its cost (line 21-24).

After trying all functions, we move function b f to region br (line 25). The loop repeats

until the number of regions is not greater than |F | (line 15) or until the number of regions

stops increasing (line 26).

Function Size is defined in Algorithm 5. It calculates the memory size requirement of

a given mapping M by summing up the size of the largest function in each region.

The while loop in Merge takes at most |F | − 1 times because the number of regions

decreases by one at every iteration. The for-loop nest at line 5-7 takes |F |2 times at most.

Merging two regions requires checking every array elements at least once to find all func-

tions mapped to one region and move it to another region, which takes O(|F |) time com-

plexity. The time complexity of Cost is O(|V | · |F − 1|) since it visits every vertex only

30

Algorithm 4: Search feasible mapping solutions by merging and partitioning
Input: Inlined CFG (G), Topologically sorted vertex list (T), SPM size (S) (S ≥ max f ∈F s f)

Output: A feasible function-to-region mapping (M) (Size(M) ≤ S)

function Merge(G,T,S)

1 initialize M[f] to f for 1 ≤ f ≤ |F |

2 while Size(M) > S do

3 bc ← ∞

4 for r1 = 1 to |F | − 1 do

5 for r2 = r1 + 1 to |F | do

6 M ′ ← a duplicate of M

7 merge r1 and r2 in M ′

8 nc ← Cost(M ′,T)

9 if nc < bc then

10 br1 ← r1,br2 ← r2

11 bc ← nc

12 merge br1 and br2 in M

13 return M

function Partition(G,T,S)

14 M[f]← 1 for 1 ≤ f ≤ |F |, nr ← 1

15 while nr ≤ |F | do

16 bc ← Cost(M,T)

17 for f = 1 to |F | do

18 M ′ ← a duplicate of M

19 for r = 1 to min(nr + 1, |F |) do

20 M ′[f]← r

21 nc ← Cost(M ′,T)

22 if nc < bc ∧ Size(M ′) ≤ S

then

23 b f ← f , br ← r

24 bc ← nc

25 if bc < Cost(M,T) then
M[b f]← br

26 if br = nr + 1 then
nr ← nr + 1

else break

27 return M

once, and the number of functions in the interference set IS [v, fn (v)] can be at most |F | − 1

because fn (v) is excluded in the set. Thus, the time complexity of function Merge is

O(|F |4 · |V |). Similarly, Partition has the same time complexity because the while loop

and for loops at line 16, 18 and 20 iterate at most |F | times.

31

Algorithm 5: Find the SPM size requirement of a given function-to-region mapping

Input: Inlined CFG(G), function-to-region

Mapping (M), Function sizes

(s f ,∀ f ∈ F)

Output: The SPM size that the given mapping

M requires.

function Size(M)

1 initialize S[r] to 0 for 1 ≤ r ≤ |F |

2 for each f ∈ F do

3 if S[M[f]] < s f then
S[M[f]]← s f

4 return
∑
r ∈R

S[r]

WMP algorithm always terminates. In Merge, the SPM size S is greater than or equal

to the size of the largest function by assertion at the beginning, and the size of mapping,

Size(M), is reduced after every iteration of while loop (line 2) by merging two regions

(line 12). All for loops in Merge (line 4-5) have finite loop bound |F |, too. Function Cost

finishes in a finite number of iterations because the vertex list has finite length |V | (line 10)

and the interference sets can have at most |F | −1 vertices (line 13). Thus, Merge terminates

in a finite number of steps. Similarly, Partition also finishes in a finite number of steps

because at the end of every iteration, either the number of regions nr increases or the loop

terminates (line 26).

WMP algorithm is sound and complete in that it always finds a solution which is a

feasible mapping can fit in the SPM. Merge always returns a feasible mapping because in

every iteration, two regions are merged in line 12 and the loop termination condition in line

2 ensures the feasibility of the mapping. The initial solution of Partition is mapping

all functions into one region, which is certainly feasible because of the precondition: S ≥

max f ∈F s f . During the execution of the algorithm, the mapping changes only in a way that

the resulting mapping fits in the SPM (line 22).

WMP algorithm is, however, not optimal because it does not explore the entire solution

space. As a heuristic, WMP trades optimality for speed. For example, Merge only con-

32

siders merging two regions at time in a greedy fashion. Once two regions are merged, the

functions in the regions have to be mapped to the same region until the end of the algorithm.

2.5.3 Optimizing WCET using Region-free Mappings

Similarly to the Section 2.5.1, we extend the ILP for WCET analysis from Section 2.4.4

to explore all feasible region-free mapping solutions and find an optimal one.

Variable A f represents region-free mapping of f , the address at which function f will

be loaded, and it should be in the following range.

0 ≤ A f ≤ SPMSIZE − s f (2.20)

where s f denotes the size of function f . Then, the following constraints compare the

mapped addresses of two functions and represent their relations. For a pair of functions f

and g, binary variable G f ,g is 1 if A f is greater than Ag, and 0 otherwise.

∀ f ,g ∈ F such that f , g, −M (1 − G f ,g) ≤ A f − Ag ≤ M · G f ,g

G f ,g + Gg, f = 1

(2.21)

whereM is a sufficiently large integer, used to linearize the if conditions. In our formula-

tion, SPMSIZE can be safely used asM. For example, if G f ,g is 1, the above constraints

become 0 ≤ A f − Ag ≤ M and Gg, f = 0, so A f have to be greater than or equal to Ag. If

G f ,g is 0, the above constraints become −M ≤ A f − Ag ≤ 0 and Gg, f = 1, so A f have to

be less than or equal to Ag.

The address range that is allocated to function f is [A f + 0, A f + 1, . . . , A f + s f − 1],

where s f is the size of f . For a pair of functions f and g, to make sure that their addresses

do not overlap, either one of the two constraints should be satisfied: A f + s f −1 < Ag when

A f < Ag (G f ,g = 1), or Ag + sg − 1 < A f when Ag > A f (Gg, f = 1). Built on this idea,

the following constraints make binary variable O f ,g to be 1 if the address ranges of f and

33

g overlap, and 0 otherwise.

∀ f ,g ∈ F such that f , g, A f + s f < Ag+1 +M · G f ,g +M · O f ,g

M · (1 −O f ,g) + A f + s f ≥ Ag+1 +M · O f ,g

Ag + sg < A f +1 +M · Gg, f +M · O f ,g

M · (1 −O f ,g) + Ag + sg ≥ A f +1 +M · O f ,g

O f ,g = Og, f

(2.22)

For example, if A f > Ag (G f ,g = 1), the first four lines in the above become as follows.

A f + s f < Ag+1 +M +M · O f ,g

M · (1 −O f ,g) + A f + s f ≥ Ag+1 +M · O f ,g

Ag + sg < A f +1 +M · O f ,g

M · (1 −O f ,g) + Ag + sg ≥ A f +1 +M · O f ,g

The first line becomes meaningless because of the third term, M, on the right hand side,

and the second line also becomes meaningless regardless of the value of O f ,g because A f

is greater than Ag. When the address ranges of f and g do overlap (Ag + sg ≥ A f + 1), the

third line ensures that O f ,g becomes 1, and the fourth line becomes meaningless—it satisfies

regardless of the value of O f ,g. When the address ranges do not overlap (Ag + sg < A f +1),

the third line becomes meaningless, but the fourth line ensures that O f ,g becomes 0.

We rewrite the Equation (2.11) and Equation (2.12) with O f ,g variables as below.

∀ f ∈ IS [v, fn (v)], AM v ≥ nv · dfn (v) · Ofn (v), f (2.23)

FM v ≥ dfn (v) + (nv − 1) · dfn (v) · Ofn (v), f (2.24)

The final objective value Wvs after solving this ILP is a WCET estimate, and the A f

variables represent the optimal mapping of functions to SPM addresses.

34

2.6 Experimental Results

To evaluate our code management techniques, we use various benchmarks from the

Mälardalen WCET benchmark suite (Gustafsson et al., 2010a) and MiBench suite (Guthaus

et al., 2001), together with three real-world proprietary automotive powertrain control ap-

plications from industry. Among 31 benchmarks in Mälardalen suite and 29 benchmarks

in MiBench suite, we exclude the ones with recursion or that have less than 6 functions.

From Mälardalen suite, we use all 8 benchmarks that have at least six functions and do not

have recursion. MiBench suite is in general much larger in size and more complicated, and

we were not able to generate the inlined CFGs for 6 benchmarks due to the presence of

recursion or function pointers, and 19 due to the complexity of compiled binaries 5 . We

use all of the remaining 4 benchmarks from MiBench suite 6 .

Table 2.3 shows the benchmarks used in the evaluation. The sizes shown in the table

are the sizes after management code is inserted into the code. Only functions in the user

code are considered, and library function calls are considered to take the same cycles as

normal arithmetic instructions. Benchmarks are compiled for ARM v4 ISA, and inlined

CFGs are generated from their disassemblies.

We assume the cost of loading x bytes into SPM by DMA to be (L − B/W) + (dx/We)

cycles, where L is cache miss latency, B is cache block size of the system in comparison,

and W is the word size, as it is modeled by Whitham et al. (Whitham and Audsley, 2009).

The first term is the setup time that takes in every transfer regardless of the transfer size,

and the second is the transfer time that corresponds to the transfer size. As in Whitham’s

work, we use 50, 16, 4 for L,B, and W , respectively. We observed that over a large set

5 This was only caused by a technical limitation in our implementation regarding makefile build system
and not a fundamental limitation.

6 ‘dijkstra’ actually has one recursive function call for printing. We commented it out without changing
the core algorithm.

35

Table 2.3: Benchmarks used in our evaluation

Total code

size

Largest function

size (B)

Number of

functions
Source

cnt 948 332 6 Mälardalen

matmult 1064 304 7 Mälardalen

dijkstra 1644 744 6 MiBench

compress 2892 872 9 Mälardalen

sha 2420 1040 7 MiBench

fft1 3404 1984 6 Mälardalen

lms 3804 980 8 Mälardalen

edn 4624 1924 9 Mälardalen

adpcm 8468 2272 17 Mälardalen

rijndael 9448 3128 7 MiBench

statemate 10580 3520 8 Mälardalen

1REG 27736 7748 28 Proprietary

DAP1 36400 27860 17 Proprietary

susan 51672 10504 19 MiBench

DAP3 56748 43004 28 Proprietary

of different parameters, there was no significant difference in results in terms of relative

performance comparison.

To simplify computing WCET estimates, we assume that every instruction takes one

cycle as it is on processors designed for timing predictability, such as PRET (Liu et al.,

2012; Zimmer et al., 2014). Thus, the worst-case execution time of a basic block in number

of cycles is assumed to be the same as the number of instructions in it, unless it has DMA

36

instructions. All data accesses are from a separate data SPM, without any contention with

the accesses to the main memory or the instruction SPM. These assumptions are only for

simplifying the evaluation and not limitations of our approach. We can extend our work

by combining any microarchitecture analysis work to consider other timing effects such as

pipeline hazards, but it is outside the scope of this work.

Loop bounds are found by profiling, except for the powertrain control applications

which have infinite loops in the main scheduler. For such benchmarks, loop bounds are

set to be a power of 10 according to the level of nesting. We use the Gurobi optimizer 6.5

7 to solve the ILPs. All experiments are run on 2.2 Ghz Core i7 processor with 16GB of

RAM. We set a time limit of 3 hours for the ILP solver so that if it cannot find an optimal

solution within 3 hours, we use the best solution found up to that point.

The correctness of our WCET estimation is verified by running selected benchmarks on

gem5 simulator (Binkert et al., 2011). We modified the simulator so that it maintains a state

machine of an SPM that is updated by DMA operations. Every instruction takes one cycle,

and at function calls and returns, additional cycles are taken according to the state of the

SPM, for executing management code and DMA operations. The number of cycles each

benchmark took on the simulator was always less than or equal to the WCET estimates we

obtained by analysis. The whole evaluation setup—the tools for generating inlined CFGs,

performing cache analysis, finding mappings, and the simulator—is publicly available for

download 8 .

We use two SPM sizes, A and B, for each benchmark. A and B are l + (t − l) ∗ 0.1

and l + (t − 1) ∗ 0.3 respectively, where l is the size of the largest function—at least the

largest function should fit in the SPM—, and t is the total code size. We picked these two

values, 0.1 and 0.3, to stress test the mapping techniques’ capabilities. With too large SPM

7 Gurobi Optimization, Inc. http://www.gurobi.com

8 https://github.com/yooseongkim/SPMCodeManagement

37

6.5%	

0.6%	

6.0%	

0.1%	

5.5%	

0.7%	 0.1%	 0.3%	

5.1%	

2.0%	

0.0%	
2.0%	
4.0%	
6.0%	
8.0%	

cn
t	

ma
tm
ult
	

dij
kst
ra	

co
mp
res
s	

sh
a	

>
1	

lm
s	

ed
n	

ad
pc
m	

rijn
da
el	

sta
tem

ate
	

1R
EG
	

DA
P1
	

su
san
	

DA
P3
	

WCET	 Increase	 by	 WMP	 over	 ILP	

SPM	 Size	 A	

SPM	 Size	 B	

Figure 2.5: The increase in the WCETs by using WMP over ILP is limited within 6.5%.

sizes (values closer to 1), any mapping techniques are likely to allocate separate regions

to functions which will generally be beneficial for both ACET and WCET. Likewise, too

small SPM sizes (values closer to 0) can be too restrictive to compare mapping techniques

effectively.

2.6.1 ILP vs. WMP Heuristic

WMP is a greedy heuristic that may not always be able to find an optimal solution.

Figure 2.5 shows the increase in the WCET estimates when the mappings found by WMP

are used, compared to the case in which optimal mappings found by the ILP are used. On

x-axis, there are two cases for each benchmark, showing two different SPM sizes. In most

cases, WMP heuristic can find the same optimal solutions as the ILP-based technique does.

Even for the cases where it cannot, the WCET estimates are increased at maximum 6.5%.

Table 2.6.1 shows the algorithm execution times of both ILP-based mapping technique

and the heuristic and the resulting WCET estimates of benchmarks. The algorithm execu-

tion times include the times for running all analyses. The ILP-based technique can find an

optimal solution within seconds for most cases, but for larger benchmarks like ‘1REG’ and

‘DAP3’, it cannot finish within the time limit. In contrast, WMP can finish under a second

for all benchmarks.

A point worth noting here is that as Figure 2.5 shows, the WCETs resulting from using

the ILP-based technique with the 3-hour time limit are always lower than or at least the

38

SPM Execution time (sec.) SPM Execution time (sec.)

Size rbILP rfILP WMP Size rbILP rfILP WMP

cnt
432 0.01 0.001 < 10−3

adpcm
2896 19.41 11.23 < 10−3

528 0.07 0.001 < 10−3 4144 8890.3 235.5 0.05

matmult
384 0.01 0.01 < 10−3

rijndael
3760 0.02 0.001 < 10−3

544 0.1 0.001 < 10−3 5024 0.46 0.14 < 10−3

dijkstra
848 0.05 0.01 < 10−3

statemate
4240 0.06 0.02 0.002

1024 0.16 0.01 < 10−3 5648 0.34 0.18 0.003

compress
1088 0.3 0.09 0.001

1REG
9760 > 3 hrs 10223.9 0.29

1488 0.5 0.18 0.001 13760 > 3 hrs > 3 hrs 0.35

sha
1184 0.04 0.01 0.001

DAP1
28720 12.37 5.27 0.11

1456 0.55 0.17 0.001 30432 8.4 3.81 0.10

fft1
2128 0.18 0.05 < 10−3

susan
14624 1.08 0.68 0.05

2416 0.2 0.09 0.002 22864 0.34 0.27 0.05

lms
1264 0.14 0.08 0.003

DAP3
44384 > 3 hrs 9938.1 0.83

1840 0.35 0.09 0.003 47136 54.3 39.22 0.98

edn
2208 0.02 0.001 0.001

2736 0.04 0.001 0.001

same as the WCETs resulting from using the heuristic. In our experiments, the qualities of

all solutions found by the time limit are within 3% of optimality. We observed that even

for the cases in which the ILP cannot finish within the time limit, the best objective value

found by the solver does not significantly improve any more after 100 seconds. This means

that solving the ILP with a reasonable time limit (e.g. 100 seconds) or an optimality range

can be a good heuristic itself.

39

2.6.2 Comparison with Previous Techniques

We evaluate our mapping techniques in comparison with three previous function-level

techniques. The two function-level techniques, namely FMUM and FMUP, are proposed by

Jung et al. (2010). These two take iterative approaches like WMP, but are designed to opti-

mize ACET as their cost function estimates the overall amount of DMA transfers. Another

technique called simultaneous determination of regions and mapping (SDRM) (Pabalkar

et al., 2008) calculates the cost for each function, which is the product of the function size

and the number of execution, and iteratively assigns a separate region starting from the

function with the highest cost. We first obtained mapping solutions for each benchmark us-

ing previous techniques, and then the resulting WCET estimates for the obtained mappings

were calculated using the ILP from Section 2.4.

Figure 2.6 compares the WCET estimates for WMP, FMUM, FMUP, and SDRM. These

WCET estimates are normalized to the WCET estimates obtained with optimal mappings

found by our ILP-based technique. There are four bars for each benchmark, each of which

represents WMP heuristic and three previous techniques, respectively. The less the value

is, the closer to the optimal solution it is, and the value of 1.00 means it is exactly the same

optimal solution as the solution from the ILP. The maximum value of the x-axis is set to 3,

and the values of the bars that go beyond 3 are explicitly marked.

The normalized WCET estimates are always greater than or equal to 1, so no technique

outperforms our ILP. Even for the time-limited ILPs used for ‘1REG’ and ‘DAP3’, the ILP

outperforms all other techniques. WMP does not underperform any previous techniques,

except ‘compress’ with SPM size A, in which FMUP happens to find an optimal solution.

Since all previous techniques do not have any notion of the WCET, their performance in

terms of WCET is rather unpredictable. In fact, we observed counterintuitive results in

which the WCET estimate with a larger SPM size B is greater than the WCET estimate

40

1.00	
1.01	
1.00	
1.00	

1.00	
1.00	
1.00	
1.00	

1.00	
1.05	
1.01	
1.05	

1.07	
1.45	
1.00	
1.45	

1.00	
1.01	
1.00	
1.01	

1.00	
1.27	
1.27	
1.27	

1.00	
2.49	
1.15	
1.16	

1.00	
1.01	
1.00	
1.00	

1.01	
4.98	 2.22	

2.23	

1.00	
1.02	
1.00	
1.02	

1.00	
1.16	
1.01	
1.00	

1.06	
4.19	 1.06	

1.09	

1.00	
6.16	 1.05	

1.05	

1.00	
1.10	
1.00	
1.00	

1.06	
24.96	 1.16	
24.78	

0.00	 0.50	 1.00	 1.50	 2.00	 2.50	 3.00	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

cn
t	

0.
44
KB

	
m
at
m
ul
t	

0.
36
KB

	
di
jk
st
ra
	

0.
9K

B	
co
m
pr
es
s	

1.
11
KB

	
sh
a	

1.
41
KB

	
H
1	

2.
1K

B	
lm

s	
1.
29
KB

	
ed

n	
2.
16
KB

	
ad
pc
m
	

2.
83
KB

	
rij
nd

ae
l	

3.
68
KB

	
st
at
em

at
e	

4.
15
KB

	
1R

EG
	

9.
54
KB

	
DA

P1
	

28
.0
5K

B	
su
sa
n	

14
.2
9K

B	
DA

P3
	

43
.3
5K

B	

Comparison	 with	 Previous	 Techniques	

1.00	
1.01	
1.01	
2.90	

1.00	
1.75	
1.18	
1.75	

1.00	
2.22	
1.23	
1.23	

1.01	
1.27	
1.02	
1.70	

1.00	
1.00	
1.00	
1.03	

1.00	
1.30	
1.30	
1.30	

1.00	
1.26	
2.45	
1.25	

1.00	
1.00	
1.01	
1.00	

1.00	
2.26	
1.01	
2.26	

1.00	
1.00	
1.03	
1.01	

1.00	
1.04	
1.00	
1.14	

1.00	
1.21	
1.13	
1.23	

1.05	
1.24	
1.22	
1.19	

1.00	
1.00	
1.00	
1.00	

1.02	
29.85	 1.27	
29.62	

0.00	 0.50	 1.00	 1.50	 2.00	 2.50	 3.00	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

WMP	
FMUM	
FMUP	
SDRM	

cn
t	

0.
54
KB

	
m
at
m
ul
t	

0.
52
KB

	
di
jk
st
ra
	

1.
08
KB

	
co
m
pr
es
s	

1.
55
KB

	
sh
a	

1.
8K

B	
H
1	

2.
41
KB

	
lm

s	
1.
86
KB

	
ed

n	
2.
68
KB

	
ad
pc
m
	

4.
05
KB

	
rij
nd

ae
l	

4.
91
KB

	
st
at
em

at
e	

5.
52
KB

	
1R

EG
	

13
.4
4K

B	
DA

P1
	

29
.7
2K

B	
su
sa
n	

22
.3
3K

B	
DA

P3
	

46
.0
4K

B	

Comparison	 with	 Previous	 Techniques	

(a) SPM size A (b) SPM size B
Figure 2.6: Previous function-level techniques are not optimized for the WCET and cannot
always find a good solution for the WCET. The normalized WCET estimates using their
solutions range from 1 to over 29.

with a smaller SPM size A. For example, in case of FMUP, the WCET estimate for ‘lms’

with SPM size A is almost twice as high as the WCET estimate with SPM size B, which

41

cnt	 matm
ult	

dijkstr
a	

comp
ress	 sha	 31	 lms	 edn	 adpc

m	
rijnda
el	

state
mate	 1REG	 DAP1	 susan	 DAP3	

SPM	 Size	 A	 65.7%	 32.4%	 0.0%	 11.1%	 1.7%	 1.7%	 6.4%	 0.5%	 0.3%	 19.7%	 12.6%	 2.8%	 9.2%	 0.0%	 3.5%	
SPM	 Size	 B	 1.2%	 0.0%	 0.0%	 4.0%	 1.0%	 0.4%	 0.9%	 0.0%	 0.0%	 1.1%	 2.7%	 0.1%	 5.2%	 0.0%	 0.1%	

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	
60.0%	
70.0%	 WCET	 Reduc+on	 by	 Op+mal	 Region-‐free	 Mappings	

SPM	 Size	 A	

SPM	 Size	 B	

(a) WCET reduction over function-to-region mappings

cnt	 matm
ult	

dijkstr
a	

comp
ress	 sha	 31	 lms	 edn	 adpc

m	
rijnda
el	

state
mate	 1REG	 DAP1	 susan	 DAP3	

SPM	Size	A	67.9%	32.8%	 0.5%	 21.6%	 3.0%	 3.0%	 7.4%	 0.4%	 2.2%	 20.9%	13.6%	 9.0%	 20.4%	 0.0%	 16.5%	
SPM	Size	B	 1.9%	 0.1%	 21.9%	20.5%	10.2%	 0.4%	 15.4%	 0.0%	 0.5%	 1.1%	 16.6%	14.3%	 8.2%	 0.0%	 0.4%	

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	
60.0%	
70.0%	
80.0%	 MaxReduc)onRF:	Upper	Bounds	of	WCET	Reduc)on	

SPM	Size	A	

SPM	Size	B	

(b) Upper bounds of WCET reduction

Figure 2.7: Region-free mapping can help reduce the WCET when interfering functions
have to share a region even with an optimal function-to-region mapping.

is not directly shown in the figures due to the normalization. On the other hand, WMP is

relatively consistent in reducing the WCET, in that the normalized WCET estimates are

kept under 1.07, thanks to its WCET-awareness.

2.6.3 Function-to-region Mappings vs. Region-free Mappings

Figure 2.7(a) shows the reduction in WCET estimates by using region-free mappings

compared to the function-to-region mappings found by the ILP. Overall, the WCET reduc-

tion ranges from 0% to 65.6%. This reduction comes from the fact that interfering functions

can be mapped to disjoint address ranges with region-free mappings, as depicted in an ex-

42

ample in Figure 2.2. If the SPM size is large enough to accommodate separate regions for

all interfering functions, an optimal function-to-region mapping can already find a good

enough solution, and RF cannot reduce the WCET significantly. This is why the WCET

reduction is higher in SPM size A than B.

In many cases, the reduction is less than 1%. The reason is as follows. For region-free

mapping to be able to successfully avoid the reloading at a loading point v, the sum of the

size of fn (v) and the size of the largest function in the interference set IS [v, fn (v)] should

not be greater than the size of the SPM. If not, the largest function has to share SPM space

with fn (v), so region-free mapping cannot do anything. If at least these two functions can

be assigned disjoint address ranges, all the inference can be removed by letting all functions

in IS [v, fn (v)] share SPM space with each other, but not with fn (v). Although this may

increase interference for those functions in IS [v, fn (v)] at other locations, the additional

loading costs are calculated in the ILP, so the solver will find an optimal allocation for

reducing WCET.

Based on the above insight, we calculate the upper bound of WCET reduction achiev-

able by region-free mapping as follows. We first find the WCEP when the optimal function-

to-region mapping is used. Then, we take find all loading points v on the WCEP that satisfy

these two conditions: i) v is classified as Always-Miss, and ii) the sum of the size of fn (v)

and the size of the largest function in IS [v, fn (v)] is smaller than the SPM size. These are

the only loading points where region-free mapping can remove interference and reduce the

WCET. We introduce a new value, MaxReductionRF, that is the sum of the loading costs

at these vertices, which is a rough upper bound of WCET reduction possible by region-free

mapping. Figure 2.7(b) shows MaxReductionRF normalized to the WCET in percentage.

We can see that the WCET reductions in Figure 2.7(a) have a strong resemblance to the

upper bounds in Figure 2.7(b) in many cases such as ‘cnt’ or ‘matmult’. For ‘edn’ and

‘susan’, there is no room to reduce the WCET with region-free mappings.

43

Even though region-free mapping has larger solution space compared to function-to-

region mapping, the ILP for region-free mapping has much less number of constraints than

that for function-to-region mapping, which is shown in Table 2.6.1. We observed that

linearizing the concept of binary variables in function-to-region mapping using Equation

(2.15) and (2.17) causes the number of constraints to increase exponentially as the number

of functions (and regions) increases. This difference translates to great reduction in the ILP

solving times with large benchmarks.

2.6.4 WCET Reduction over Caches

We evaluate our techniques in comparison with 4-way set associative caches with LRU

replacement policy of the same size as the SPMs. We set the associativity to 4 like in many

processors in embedded application, such as Renesas V850 or various ARM Cortex series,

but we did not observe significant difference in results with different associativity numbers.

Although LRU replacement policy is not commercially popular, it is considered to be the

the most predictable replacement policy (Guan et al., 2012).

The cache or SPM sizes for each benchmark are chosen as 2dlog2(l)e and 2dlog2(l)e+1,

where l is the size of the largest function. The first is the smallest power of 2, greater

than the largest function size, and the second is the next power of 2. A cache miss latency

takes L (50) cycles (see the beginning of Section 2.6). Although the cache sizes for small

benchmarks are much smaller than the instruction cache sizes in modern processors, this

makes our experimental setup closer to the real-world situation where code sizes are usually

much larger than the instruction cache size.

We implemented the cache analysis algorithm by Cullmann (Cullmann, 2013), which

is currently the state-of-the-art and fixes an error of the traditional cache analysis used in

industry-leading aiT tool (Ferdinand, 2004). We run the must and may analyses (Ferdinand

and Wilhelm, 1999), and new persistence analysis, based on abstract interpretation, on our

44

generated inlined CFGs. We do not perform virtual loop unrolling (Ferdinand and Wil-

helm, 1999), so the first iterations of loops are treated the same as the rest of the iterations.

Although as Huber et al (2014) discuss, considering local execution scopes, e.g. a func-

tion or a loop, may help identifying more number of first-misses, we consider only global

execution scope (the whole program) as the persistence analysis algorithm itself does not

discuss how to set persistence scopes. We use the same inlined CFGs for both caches and

SPMs for fair comparison.

Figure 2.8 compares the WCET estimates. rbILP represents the region-based ILP from

Section 2.5.1, and rfILP is the region-free ILP from Section 2.5.3. The cache/SPM size is

shown after the name of each benchmark, and data values represent the WCET estimates

normalized to the WCET estimates for caches (Thus it is always 1 for caches.). A WCET

estimate for caches consists of C (instruction execution time) and L (cache miss penalties),

and for SPMs, it consists of C, L (DMA transfer time), and M (management code execution

overhead).

The WCET reduction is significant for most of benchmarks in which cache miss han-

dling overhead (L) is very large. One main reason is the lack of link-time optimizations

for caches. Instruction addresses are determined in linking stage. Unless a WCET-aware

code positioning technique (Falk and Kotthaus, 2011; Um and Kim, 2003; Li et al., 2015)

is used, the linker is generally not aware of the impact on the WCET of its decisions or the

cache configuration in the target system. For this reasons, function calls may cause many

conflict misses in caches, whereas such side effects are actively avoided by code mapping

in SPMs. When nested function calls exist in loops, the effect of cache conflict misses can

be pronounced. Also, DMA operations for large functions take advantage of burst trans-

fers (Huber et al., 2014). In SPMs, a whole function is loaded at once with only one setup

cost, whereas in caches, a cache miss penalty that includes the setup cost is incurred at

every cache block boundary. In our experiments with larger cache block sizes such as 32

45

1.00	
0.86	
0.86	
0.85	

1.00	
1.00	
1.00	
1.00	

1.00	
0.37	
0.37	
0.37	

1.00	
0.33	
0.33	
0.28	

1.00	
0.13	
0.13	
0.13	

1.00	
0.55	
0.55	
0.32	

1.00	
0.43	
0.43	
0.25	

1.00	
0.79	
0.79	
0.79	

1.00	
0.91	
0.92	
0.91	

1.00	
0.19	
0.19	
0.19	

1.00	
0.35	
0.35	
0.31	

1.00	
0.40	
0.40	
0.40	

1.00	
0.19	
0.19	
0.19	

1.00	
0.71	
0.71	
0.71	

1.00	
0.97	
0.97	
0.97	

0.00	 0.50	 1.00	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

cn
t	

0.
5K

B	
m
at
m
ul
t	

0.
5K

B	
di
jk
st
ra
	

1K
B	

co
m
pr
es
s	

1K
B	

sh
a	

2K
B	

K
1	

2K
B	

lm
s	

1K
B	

ed
n	

2K
B	

ad
pc
m
	

4K
B	

rij
nd

ae
l	

4K
B	

st
at
em

at
e	

4K
B	

1R
EG

	
8K

B	
DA

P1
	

32
KB

	
su
sa
n	

16
KB

	
DA

P3
*	

64
KB

	

Comparison	 with	 Caches	

C	

L	

M	

1.00	
0.86	
0.86	
0.85	

1.00	
1.00	
1.00	
1.00	

1.00	
1.00	
1.00	
1.00	

1.00	
0.35	
0.43	
0.35	

1.00	
0.57	
0.57	
0.57	

1.00	
0.97	
0.97	
0.97	

1.00	
0.45	
0.45	
0.45	

1.00	
0.92	
0.92	
0.92	

1.00	
0.97	
0.97	
0.97	

1.00	
0.58	
0.58	
0.58	

1.00	
0.23	
0.23	
0.23	

1.00	
0.20	
0.21	
0.20	

1.00	
0.98	
0.98	
0.98	

1.00	
0.98	
0.98	
0.98	

1.00	
0.97	
0.97	
0.97	

0.00	 0.50	 1.00	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

CACHE	
rbILP	
WMP	
rfILP	

cn
t*
	

1K
B	

m
at
m
ul
t*
	

1K
B	

di
jk
st
ra
*	

2K
B	

co
m
pr
es
s	

2K
B	

sh
a*
	

4K
B	

L
1*
	

4K
B	

lm
s	

2K
B	

ed
n	

4K
B	

ad
pc
m
*	

8K
B	

rij
nd

ae
l	

8K
B	

st
at
em

at
e	

8K
B	

1R
EG

	
16

KB
	

DA
P1

*	
64

KB
	

su
sa
n	

32
KB

	
DA

P3
*	

12
8K

B	

Comparison	 with	 Caches	

C	

L	

M	

Figure 2.8: Our approaches can significantly reduce the WCETs when the cache suffers
from a large overhead for cache miss handling.

bytes and 64 bytes, we did not observe significant differences in the overall trends of the

results.

46

Note that the cache size is larger than the total code size for many cases, e.g., 65KB is

larger than the total code size of ‘DAP3’ 9 . Such cases are marked with * after the name of

the benchmark. In these cases, caches show very little cache miss penalties, so the WCET

reduction by our techniques is not significant. Nevertheless, WCET estimates with our

techniques are always less than or equal to the WCET estimates with caches.

2.7 Related Work

Scratchpad memory (SPM) first gained its popularity in embedded processors mostly

due to its advantages over caches in terms of energy consumption and die area (Banakar

et al., 2002a). To utilize such benefits of SPM, many researchers initially proposed static

management techniques, in which selected data or code is loaded into the SPM once before

execution and remains in the SPM during the entire execution. Avissar et al. (2002) present

an algorithm that considers global and stack data. Steinke et al. (2002b) consider global

data along with instructions in functions or basic blocks. Both techniques are designed to

reduce the overall energy consumption.

Static management techniques have limited capabilities to exploit the locality of large

programs. Dynamic techniques, on the other hand, can utilize the locality in different

parts of a program, updating the SPM contents during runtime. Kandemir and Choud-

hary (2002) propose a dynamic data management scheme based on loop transformation

and data placement to maximize the data reuse. Many techniques have focused on reduc-

ing energy consumption by dynamically copying instructions and/or global variables into

the SPM (Steinke et al., 2002a; Verma et al., 2004).

Our approaches are also a type of dynamic management techniques that focus on pro-

gram code. Several dynamic code management techniques have been proposed (Egger

9 For caches, we use the original binaries without inserting management code. In ‘matmult’, 1KB is
not larger than the total code size after inserting management code, but is larger than the original binary.
Similarly, in ‘adpcm’, 8KB is larger than the total code size only for caches.

47

et al., 2006; Janapsatya et al., 2006), all of which aim to reduce the average-case execution

time (ACET) or energy consumption. Unlike these techniques, our objective is to reduce

the worst-case execution time (WCET) which is a more important metric in hard real-time

systems.

Focusing on the time-predictable characteristics of SPMs, researchers proposed various

management techniques that aim to reduce the WCET of a given program. Several tech-

niques statically select variables (Suhendra et al., 2005) or instructions (Falk and Klein-

sorge, 2009; Prakash and Patel, 2012). There are also dynamic techniques that select vari-

ables (Deverge and Puaut, 2007; Wan et al., 2012) or basic blocks (Puaut and Pais, 2007;

Wu et al., 2010) to be loaded into the SPMs during runtime. As a dynamic code manage-

ment technique, our work is more closely related to the latter than the former. The main

difference is at the granularity of the management; those techniques work in basic-block-

level, whereas ours work in function-level.

Function-level dynamic code management techniques (Baker et al., 2010; Pabalkar

et al., 2008; Jung et al., 2010; Bai et al., 2013) were originally proposed for software-

managed memory architecture such as Cell processor (Kahle et al., 2005). Here, cores can

only access their local SPMs, so every executed instruction must be copied from the main

memory to the SPM. Basic-block-level approaches are not applicable in this architecture;

they load only selected basic blocks to the SPM and leave the rest of the basic blocks in the

main memory. Function-level approaches let every instruction fetched from the SPM by

loading a function before it is executed. This larger granularity can benefit from the charac-

teristics of the burst mode DMA operations, as each DMA operation has a setup overhead.

On the other hand, the function-level management can have drawbacks such as worse mem-

ory utilization due to fragmentation or fetching unnecessary code altogether, compared to

the basic-block-level management. We leave the detailed performance comparison between

48

different granularities as future work and focus on developing WCET-aware function-level

code management techniques.

Compared to the previous function-level code management techniques, our approaches

have mainly two differences. First, all previous approaches aim to reduce the ACET, not

WCET. They calculate the overall overhead of mapping multiple functions into one region

considering function sizes and calling patterns, so mappings that incur high overhead sce-

narios such as reloading functions in a loop are avoided. They, however, fail to consider

the worst-case execution scenario of each function nor the control flow within a function

that does not have any function call. Our techniques find optimal mappings for reducing

the WCET using inlined CFGs which comprehensively contain all information necessary to

calculate the WCET. Second, all previous approaches use function-to-region mappings (Pa-

balkar et al., 2008) in problem formulation, so the solution quality is limited by the abstrac-

tion of SPM addresses with regions. We present a technique to map functions directly to

addresses, which can further reduce the WCET as we discuss in Section 2.3.2.

In function-level code management, the largest function must fit in the SPM, which can

limit its applicability. Kim et al. (2016b) present a function-splitting technique to overcome

this limitation. Splitting a function can not only enable using smaller SPM sizes but also

improve performance by reducing memory footprints of functions.

Recently proposed time-predictable computer architectures such as PRET (Liu et al.,

2012), FlexPRET (Zimmer et al., 2014) or MERASA (Ungerer et al., 2010) uses SPM-

based memory hierarchies, for which our approach can be used to develop compilers.

Schoeberl et al. proposes time-predictable Java optimized processor (JOP) with a

method cache (Pitter and Schoeberl, 2010). Method cache is a software-controlled in-

struction cache in which the entire function (method in Java) is loaded and evicted. This is

very similar to our dynamic code management using function-to-region mappings, but their

49

recent work (Whitham and Schoeberl, 2014) shows that SPMs outperform method caches

in terms of the tightness of WCET bounds by static timing analysis.

Gracioli et al. (2015) present an extensive survey of worst-case related cache optimiza-

tion techniques and cache analysis techniques. Cache locking (Plazar et al., 2012; Ding

et al., 2014) and partitioning (Liu et al., 2010; Suhendra and Mitra, 2008) can be used to

lower WCETs by reducing conflict misses, but the granularity of these techniques is limited

by blocks, lines or ways, which may cause a waste of cache space (Whitham and Audsley,

2009). Just like our code mapping techniques, code positioning techniques can be used

to avoid conflict misses among functions to reduce WCETs (Falk and Kotthaus, 2011; Um

and Kim, 2003; Li et al., 2015), but the amount of reduction is not significant because these

techniques are again, limited by the degree of control provided by caches; for example, line

sizes and associativity cannot be changed.

Our interference analysis works similarly to the traditional may analysis based on ab-

stract interpretation (Ferdinand and Wilhelm, 1999) with the use of union operation in join

function. The semantics of the results are, however, the same as the must analysis in the

sense that the interference sets are used to conservatively determine whether a function is

guaranteed to be loaded (always-hit) when the interferences on all paths are considered.

Although we can find first-misses using initial loading points (see Table 2.2), this is more

pessimistic than the persistence analysis (Cullmann, 2013) in terms of identifying first-

misses. For example, consider this code: main(){ f1(); f2(); while(...) f1(); }. In this

example, main calls f1 and f2 in a row and then calls f1 in a while loop. Assume that

f1 and f2 do not call any other function. The call to f1 in the while loop is not an initial

loading point, but it can still be a first-miss when f1 does not share SPM space with neither

main or f2. Persistence analysis, on the other hand, can categorize the call to f1 in the loop

as first-miss. Developing a more advanced analysis for tighter WCET bounds is part of our

future work.

50

Lastly, dynamic management techniques rely on bounded latencies of DMA operations.

Analysis techniques (Kim et al., 2016a) or predictable DRAM controllers (Reineke et al.,

2011; Paolieri et al., 2013; Kim et al., 2015) can help with bounding DMA latencies. These

are orthogonal to our work and can be used to make the DMA timing more predictable.

2.8 Summary

SPM is a promising on-chip memory choice for real-time systems but needs explicit

management. In this chapter, we present three code management techniques that allo-

cate SPM space for functions, with a goal of minimizing the WCET by avoiding DMA

operations overhead on the worst-case execution path. Two techniques are based on tra-

ditional function-to-region mappings, and the third techniques maps functions directly to

SPM addresses. Two limitations with our approaches are not being able to handle recur-

sive function calls, and requiring the largest function to fit in the given SPM. Experimental

results with several benchmarks including automotive control applications from industry

show that our techniques are highly effective in reducing the WCET. The heuristic algo-

rithm can find a mapping solution within a second for all benchmarks without increasing

the WCET more than 6.5% compared to the solution found by the ILP. Results show that

region-free mapping can further reduce the WCETs than the optimal function-to-region

mappings, but the room for optimization is limited in many cases. Overall, the reduction

in the WCET estimates ranges from 0% to 97% compared to previous approaches. Com-

pared to static analysis of caches, the reduction ranges from 0% to 87% when 4-way set

associative caches of the same size are used and no link-time optimization for reducing the

WCET (Falk and Kotthaus, 2011; Um and Kim, 2003; Li et al., 2015) was applied.

51

Chapter 3

A COMPARISON OF DYNAMIC CODE MANAGEMENT TECHNIQUES WITH

DIFFERENT MANAGEMENT GRANULARITIES

The previous chapter focused on function-level code management, but in the literature,

there are other code management techniques work at different granularities, such as ba-

sic blocks or regions 1 . These techniques have several fundamental differences regarding

WCET-reducing capability or timing predictability. In this chapter, we compare different

management techniques with thorough evaluations and discuss their limitations and differ-

ences in detail.

3.1 Introduction

Although SPMs have time-predictable characteristics, the predictability and perfor-

mance of an SPM-based system solely depend on the management technique used in the

system. We discuss such impact of different management techniques in this chapter.

There are two different kinds of SPM management techniques: static management and

dynamic management. In static management, code/data blocks are allocated in the SPM at

loading time before execution, and the allocation does not change throughout the execution.

While the allocated code or data are accessed from the SPM, the rest has to be accessed

from the slower main memory, which can be a handicap for applications that are larger

than the SPM. In dynamic management, on the other hand, such allocation changes during

execution to cater for large applications and benefit from the faster on-chip memory.

Traditionally, static management techniques have been widely used for small applica-

tions running on simple micro controllers with fast on-chip main memory. Their efficiency,

1 A region or trace is a straight line of code or a set of basic blocks in a continuous address region (Verma
et al., 2004; Whitham and Audsley, 2012)

52

however, quickly decreases with large applications running on processors with large-but-

slow off-chip main memory. As the sizes of real-time applications are rapidly increasing

with the integration of features and various regulations regarding safety, security or envi-

ronmental impact, the demand for efficient dynamic management techniques is on the rise.

Increasing on-chip memory sizes is practically limited by die area and size/latency trade

off—SRAM access latency typically increases with the increase of the size (Amrutur and

Horowitz, 2000).

There have been several proposals on dynamic instruction SPM management tech-

niques that aim to reduce the WCET of a given task (Puaut and Pais, 2007; Wu et al.,

2010; Whitham and Audsley, 2012; Kim et al., 2014). These techniques can be catego-

rized according to their allocation granularities as shown in Table 3.1. In basic-block-level

techniques (Puaut and Pais, 2007; Wu et al., 2010), code blocks are allocated and loaded

at the granularity of basic blocks. These techniques select a set of reloading points and

then groups of basic blocks to be loaded into the SPM at each of the reloading points. The

rest of the basic blocks are left in the main memory. On the other hand, our own work

in function-level technique (Kim et al., 2014) (described in Chapter 2) or Whitham and

Audsley’s region-level technique Whitham and Audsley (2012) load a whole function or a

code region at once before its execution, completely avoiding instruction fetches from the

slow main memory. A larger granularity can reduce the overall loading time with faster

Table 3.1: Categorization of code management techniques based on management granu-
larity

Granularity Techniques

Basic block Puaut and Pais (2007); Wu et al. (2010)

Function Kim et al. (2014) (from Chapter 2)

Region Whitham and Audsley (2012)

53

burst mode transfers, compared to smaller granularities, but may degrade memory space

utilization with fragmentation. In addition, our function-level technique has a cache-like

sophistication that loads a function only when the function is not in the SPM. This can

improve performance, but requires a separate analysis to obtain tight bounds on load oper-

ation timings in the worst-case, similarly to cache analyses (Ferdinand and Wilhelm, 1999;

Cullmann, 2013). It also increases the overhead by having more instructions to execute for

management, which can be more noticeable on slow embedded processors.

We compare these techniques with thorough evaluations and discuss their limitations

and differences in detail. As the differences lead to various crucial aspects such as WCET-

reducing capabilities, our detailed comparison can guide future researches on more ad-

vanced dynamic management techniques. All previous similar studies only considered

static management techniques (Wehmeyer and Marwedel, 2005; Metzlaff and Ungerer,

2012, 2014) or special types of SPMs that are assisted with hardware-logic to reduce the

complexity in management code (Metzlaff and Ungerer, 2012, 2014; Whitham and Schoe-

berl, 2014).

Here we take a basic-block-level technique by Puaut and Pais (Puaut and Pais, 2007)

and our function-level technique (Kim et al., 2014) for comparison. To have another al-

location granularity between basic blocks and functions, we also present a technique to

split functions into smaller partitions in Section 3.3.3. Using various benchmarks from

Mälardalen suite (Gustafsson et al., 2010a), MiBench suite (Guthaus et al., 2001), and

proprietary automotive control applications from industry, we compare the WCET esti-

mates for different management techniques. Multiple different architectural configurations

regarding main memory memory latencies and cache sizes are used for fair comparison.

54

3.2 Related Work

Traditional management techniques: Most early approaches for managing SPMs

focus on reducing the overall energy consumption or average-case execution time either

through static management (Avissar et al., 2002; Steinke et al., 2002b) or through dynamic

management (Kandemir and Choudhary, 2002; Verma et al., 2004; Egger et al., 2006).

WCET-centric management techniques: Focusing on the time-predictable character-

istics of SPMs, researchers proposed various management techniques that aim to reduce the

WCET of a given program. Several techniques statically load variables (Suhendra et al.,

2005) or instructions (Falk and Kleinsorge, 2009; Prakash and Patel, 2012) to SPMs. Sev-

eral dynamic techniques have been proposed for data (Deverge and Puaut, 2007; Wan et al.,

2012) and code at the granularity of basic blocks (Puaut and Pais, 2007; Wu et al., 2010),

code regions (Whitham and Audsley, 2012), or functions (Kim et al., 2014).

WCET-centric dynamic management techniques for instruction SPMs: We focus

on dynamic management of code on SPM, in this paper. We compare the differences and

evaluate their performance of reducing the WCET of a given program with experiments.

In basic-block-level techniques, basic blocks in loops are selected to be allocated to SPM

at pre-selected loop pre-headers. An optimal allocation scheme for non-nested loops is

presented in Wu et al. (2010), but the difference between this approach and the previous

heuristic (Puaut and Pais, 2007) is not significant in terms of the resulting WCET bounds.

The optimality holds only when every instruction takes one cycle to execute and there is

no nested loop. In Whitham and Audsley (2012), a task is partitioned into disjoint regions,

each of which is a set of vertices. Each region is smaller than the SPM size and loaded

as a whole before execution. They find an optimal partitioning scheme for a given worst-

case execution path (WCEP), considering the execution frequency of each entry edge to a

region and the lump sum of the sizes of basic blocks in the region. This, however, does

55

not always lead to an optimal WCET; the WCEP can change after a partitioning deci-

sion and non-consecutive basic blocks need separate DMA operations. In our approach

from Chapter 2 (Kim et al., 2014), an optimal allocation of functions to SPM addresses is

found.This approach can find an optimal allocation that actually minimizes the WCET of a

given task, but the evaluation is only done against previous function-level approaches (Pa-

balkar et al., 2008; Jung et al., 2010) which makes it hard to gauge its effectiveness in line

with other WCET-centric management techniques or caches. In this chapter, we compare a

basic-block-level approach (Puaut and Pais, 2007) and our function-level approach through

extensive evaluations.

Function-splitting techniques: To have a region-level approach, we propose a tech-

nique to split functions into smaller partitions, which can be used with our function-level

approach Kim et al. (2014). Function-splitting can help further reduce the WCET with

smaller footprints of functions and better memory space utilization than the function-level

technique. Each partition is a single-entry single-exit (SESE) code block (Johnson et al.,

1994), such as a loop body or a group of basic blocks. This makes us to have another

allocation granularity, between basic blocks and functions. This approach is similar to the

techniques used in traditional compiler optimizations called partial inlining or function out-

lining (Zhao and Amaral, 2005) where a large function is divided into multiple code blocks

and then rarely-executed code blocks are outlined as new functions in order to reduce the

overhead in function inlining. Compared to call tree partitioning approaches like Whitham

and Audsley (2012) that seeks optimality, our approach is an intuitive heuristic in that it

splits a function at a fixed set of program points that are likely to be beneficial to bring

down the WCET. After splitting a function, it gets a feedback information from WCET

analysis and rolls back the splitting decision if the WCET is increased.

Kim et al. (2016b) recently presented a function-splitting technique for function-level

code management, which is implemented in LLVM compiler framework as a transforma-

56

tion pass. This heuristic works with two policies that aim to either improve average-case

performance or reduce the partition sizes. Compared to this, our function-splitting tech-

nique aims to reduce the WCET.

Comparison studies: There are several studies on comparing worst-case performance

of on-chip memories, which are the closest related work to this paper. Wehmeyer and Mar-

wedel (2005) present WCET-based comparison results of static SPMs and direct-mapped

unified caches. They use an algorithm that statically load functions and global variables (Steinke

et al., 2002b) for energy reduction and calculates the WCET estimates using aiT tool 2 . As

an early work, their worst-case cache analysis is rather primitive; they used only must anal-

ysis, without may or persistence analysis (Ferdinand and Wilhelm, 1999). This means only

the accesses that lead to always-hits (guaranteed cache hits) are identified, and every other

access is assumed to be a miss. In their experiments with 3 benchmarks, the WCET esti-

mates for SPMs are much less than those for caches. The differences between simulated

results and the WCET estimates are constant for SPMs regardless of the SPM size whereas

they grow large for caches as cache size increases.

Metzlaff and Ungerer (2012; 2014) compare instruction SPM, instruction cache, and

a hardware-assisted dynamic instruction scratchpad (D-ISP). D-ISP includes a hardware

logic for allocating and evicting functions in the SPM. D-ISP, therefore, does not need a

management technique. They use a static management technique (Falk and Kleinsorge,

2009) for selecting basic blocks or functions to load into SPMs. Assuming fully-associated

caches with LRU replacement policy, they use the worst-case cache analysis algorithm

based on abstract representation (Ferdinand and Wilhelm, 1999). The worst-case analysis

of D-ISP is based on data flow analysis using concrete representation that records all pos-

sible states of D-ISP. This approach leads to the most precise analysis results, but is not

scalable for large applications due to state explosion. In their experiments with 5 bench-

2 AbsInt GmbH, http://www.absint.com/ait/

57

marks, D-ISP shows overall the lowest WCET bounds, and caches performs the worst. In

static management, allocating at the granularity of basic blocks is only slightly better than

function-granularity allocation due to better space utilization. The main reason behind D-

ISP’s lower WCET bounds is that they assumed unified main memory that has both code

and data, which introduces the interference, thus an extra delay, in main memory accesses.

As a function-level approach, D-ISP loads all instructions in a function before its execution,

and this eliminates the interference in main memory accesses.

Whitham and Schoeberl (2014) compare dynamic instruction SPM and Method cache (Pit-

ter and Schoeberl, 2010), which is just a different name of D-ISP. For SPMs, a region-level

dynamic management technique (Whitham and Audsley, 2012) is used. In experiments

with synthetic programs, SPMs tend to have lower WCET bounds than Method caches due

to the pessimism of worst-case analysis of FIFO replacement policy in Method caches.

Bounding DRAM access latencies: Dynamic management techniques rely on bounded

latencies of DMA operations. Analysis techniques (Kim et al., 2016a) or predictable

DRAM controllers (Kim et al., 2015) can help with bounding DMA latencies.

3.3 Dynamic Code Management Techniques

In this section, we briefly explain the code management techniques used in our evalu-

ation, one in basic block granularity (Section 3.3.1), and the other in function granularity

(Section 3.3.2). Then, we present our function-splitting technique in Section 3.3.3 which

is combined with function-level technique to make a region-level technique.

3.3.1 BL: Basic-block-level Approach

We use a technique presented by Puaut and Pais (2007), which is arguably the most ex-

tensively studied basic-block-level dynamic code management technique in the literature.

58

The algorithm works in two-steps, similarly to all other basic-block-level or region-

level techniques Whitham and Audsley (2012); Wu et al. (2010). In the first step, the

algorithm selects a set of basic blocks as reloading points where direct memory access

(DMA) instructions to load code blocks can be inserted. For each loop, it estimates the

reduction in the WCET after allocating the most frequently accessed basic blocks along

the worst-case execution path (WCEP) in the particular loop to the SPM. The number of

the allocated basic blocks are assumed to be as many as the SPM size can allow. The rest

of the basic blocks are accessed directly from the main memory. The DMA instructions

are assumed to be inserted at every loop pre-header of the loop, as it is guaranteed to be

executed before all basic blocks in the loop. Based on the cost of DMA operation to load

the allocated basic blocks, it may not be profittable to use the SPM for some loops, meaning

that the WCET would rather increase because of the loading overhead. Only pre-headers

for profittable loops are selected to be reloading points.

Whether or not a loading operation actually takes place at a particular reloading point

is determined in the next step where the algorithm decides which blocks to load at each

reloading point. Algorithm 6 shows the procedure, which we borrowed from Puaut and Pais

(2007) with minor updates for readability. The algorithm first finds the WCET and WCEP

(line 2) and finds the N-most frequently executed basic blocks on the WCEP (line 3). The

found basic blocks are then removed from the list of candidate basic blocks, ToBePlaced.

For each of the N basic blocks, the algorithm finds corresponding reloading points that

dominate it (line 4-5) and inserts loading instructions for the basic block into each of the

reloading points, rp (line 6-7). If this makes the sum of the sizes of basic blocks being

loaded at the reloading point greater than the SPM size, the reloading point (rp) is removed

from ReloadPoints and the basic block (bb) is removed from ToBePlaced. After pro-

cessing N basic blocks, the WCET is reevaluated (line 8) and the above process repeats for

59

Algorithm 6: Algorithm for selecting SPM contents in the basic-block-level approach

by Puaut and Pais (2007)3
Input: List of basic blocks (ToBePlaced), Reloading points selected in the first step

(ReloadPoints), The number of basic blocks to select each iteration (N)

Output: Modified program with DMA instructions inserted

1 (WCET , WCEP) = evaluateWCET()

2 ListBB = SelectMostBeneficialBB(ToBePlaced, N)

3 while |ListBB| , 0 do

4 for each bb in ListBB do

5 ListRP = getReloadPoints(bb, ReloadPoints)

6 for each rp in ListRP do

7 Insert DMA instructions for bb at rp

8 (WCET , WCEP) = evaluateWCET()

9 if WCET >WCETprevious_iterat ion then return

10 ListBB = SelectMostBeneficialBB(ToBePlaced, N)

the next N-most frequently executed basic blocks (line 10). The algorithm stops when the

WCET is increased or all loop basic blocks are selected (|ListBB | = 0).

In our implementation and evaluation in the remaining sections, we make the following

changes to further improve the performance and the accuracy of the technique.

First, for nested loops, we consider the pre-headers of the outermost loop as reloading

points for all loops in the loop nest. This is because loading of basic blocks for an inner

loop can corrupt the contents of the SPM for the outer loop, as shown in Figure 3.1. Unless

DMA instructions are duplicated at all exit blocks of inner loops, the task cannot execute

3 ©2007 IEEE. Isabelle Puaut and Christophe Pais, “Scratchpad Memories vs Locked Caches in Hard
Real-time Systems: A Quantitative Comparison", In Proceedings of the Conference on Design, Automation
and Test in Europe, Apr., 2007.

60

Load	A,C

…
Load	B

…

…

A

B

C

A C
SPM

B C

A	is	
evicted	
by	

loading	B		

Figure 3.1: In a basic-block-level technique, reloading for an inner loop can evict the basic
blocks loaded for an outer loop.

correctly due to the corrupted memory. Although the original paper does not mention how

nested loops are handled, we consider this is the most reasonable solution. This is efficient

for small loops that can fit in the SPM because all loadings take place only once before

entering the loop nest.

Second, regarding the cost of reloading, we use a more realistic cost model. While

the original technique only considers the transfer time, we consider the execution time of

DMA instructions themselves, such as setting up arguments for source address, destination

address, and transfer size, and also initiating a DMA operation. Also, we assume a separate

DMA operation takes place for each of the consecutive address ranges to be loaded. For

example, in Figure 3.1, Load A,C must be done in two separate DMA operations as basic

block A and C lie in disjoint memory regions, whereas Load A,B can be performed by one

DMA operation. All basic-block-level techniques including the work of Wu et al. (2010)

only consider the transfer time for the lump sum of the basic block sizes.

Third, we consider the overhead of branches or fall-through paths between the SPM

and the main memory. A single branch instruction can only have a limited displacement

range, and the distance between an SPM address and a main memory address can be out of

the range. We add the additional cost of a long jump with direct addressing between every

61

void A() {
B();

}

void A() {
call(A, B);

}

call(caller, callee) {
if (callee is not loaded)

load callee;
call callee;
if (caller is not loaded)

load caller;
}

(a) Code transformation (b) Management function
Figure 3.2: An illustrative implementation of function-level code management

branch or fall-through path between SPM and main memory, as in the work of Falk and

Kleinsorge (2009).

Fourth, the original algorithm finishes when the WCET increases as shown at line 9 in

Algorithm 6. This leads to the final WCET greater than the WCET found in the previous

iteration. To prevent this, we roll back the code modification done for the N basic blocks

selected to be loaded in that iteration. Thus, we ensure that the final WCET is the best

WCET found by the algorithm.

We refer to this modified approach as BL in this chapter.

3.3.2 FL: Function-level Approach

Function-level code management, which we used in Chapter 2, loads instructions at

the granularity of functions around each call site, which enables fetching all instructions

from the SPM. This method of code management originates from the code management

techniques (Pabalkar et al., 2008; Baker et al., 2010; Jung et al., 2010; Bai et al., 2013) for

IBM Cell BE procesor (Kahle et al., 2005) where each of the accelerator cores can only

fetch instructions from its local SPM. Here the question is not “what to load", but “where

to load", i.e. the allocation of functions. In Chapter 2, we presented function allocation

techniques to minimize the WCET of a given program.

62

Unlike basic-block-level approaches, this approach involves conditional DMA opera-

tions; a function is loaded by a DMA operation only when it is not loaded into the region.

Figure 3.2(a) illustrates a possible software implementation of this using an overlay man-

ager function, shown as call. It shows that a simple function call to B is transformed to

a call to the management function call with the caller and callee function information.

Function call, shown in Figure 3.2(b), checks the SPM state, loads the callee function if

necessary, and then calls the callee. Loading a function changes the state of the SPM such

that the loaded function is marked as loaded while all functions sharing the SPM space

with the function is marked as invalidated. The management function also makes sure the

caller function is loaded again before returning to the caller function. This function perma-

nently resides in the SPM and ensures that the program executes correctly even if loading

the callee overwrites the caller.

The basic-block-level approach (BL) from the previous section is a heuristic regard-

ing the selection of basic blocks. To have a fair comparison in terms of WCET-reducing

capability, we use the WMP heuristic from Chapter 2, instead of the ILP-based optimal

allocation techniques, and refer to it as FL.

3.3.3 RL: Splitting Functions into Partitions

In function-granularity approaches, a whole function is loaded at once to a contigu-

ous space in the SPM. This large granularity, compared to basic blocks or cache lines,

is intended to keep the overhead of executing additional instructions low by loading as

many instructions with locality as possible. This, however, can be an overhead since large

functions may not be able to be loaded into a fragmented memory space. Moreover, this

imposes a limitation that the largest function in a task must fit in the SPM.

In this section, we present a technique to split functions into partitions. Considering a

partition as a function, we can use the aforementioned function-level approach to allocate

63

Algorithm 7: Function-splitting algorithm
Input: Inlined CFG (G), SPM size (SPMSIZE)

Output: A modified inlined CFG with functions split

1 for each function f that is larger than SPMSIZE do

2 G = split(G, f)

3 (WCET, Allocation) = CM(G,SPMSIZE)

4 for each function f in descending order of sizes do

5 G′ = split(G, f)

6 (WCET ′, Allocation′) = CM(G′,SPMSIZE)

7 if WCET ′ < WCET then

8 G = G′

9 (WCET, Allocation) = (WCET ′, Allocation′)

SPM space to partitions. This makes it a region-level management approach like the work

of Whitham and Audsley (2012), and thus we refer to this as RL in this chapter.

Recently, Kim et al. (2016b) presented a function-splitting technique for function-level

code management. Focused on the average-case performance, this technique cannot always

reduce the WCETs. Another difference is that the technique by Kim et al. actually creates a

function for each partition and inserts new function calls at branches between different par-

titions. Compared to this, our function-splitting technique only creates logical partitions,

and there is no function call at branches between partitions. A partition is just a logical

unit of loading that can be loaded separately from the parent function, and at the branches

between two partitions, certain code modifications, described later in this section, need to

be inserted.

Algorithm 7 shows the pseudocode of our function splitting algorithm. It takes as input,

an inlined CFG of a task G and SPMSIZE. We first split all functions larger than the SPM

64

A

B

C

D

E

F

Partition 1 A F

B EPartition 2

C DPartition 3

A

B

C

D

Splitting points that do not
make SESE partitions

Splitting point that makes
SESE partitions

(a) Splitting a nested loop (b) Splitting a non-loop code
Figure 3.3: Examples of our function-splitting scheme. Each loop body forms a separate
partition, and each partition forms an SESE region.

(line 1-2) using function split which modifies G. Then, we obtain an initial WCET using a

function-level code management technique 4 from Chapter 2, represented as function CM

(line 3). It outputs a tuple of the WCET bound WCET and an allocation of functions to

SPM space Allocation. We split each function (line 5) and keep the change in G only

when it can reduce the WCET (line 6-9).

The procedure for splitting a function (noted as split) is sketched as follows. In an in-

lined CFG G (see Section 2.4.1), each basic block v is annotated with its function identifier,

fn (v). A partition is considered as a function in F, and each time a new partition is created,

the set F is expanded with the new partition. Every basic block v in a partition p split from

a function f are assigned the function identifier fn (v) with the value p, instead of f .

A function is split at basic block boundaries. Each loop body form a separate partition,

and for nested loops, the body of each loop in each level forms a partition. This prevents

calling management functions in a loop repeatedly. The remaining part of a function after

taking loops away forms a partition (e.g. {A,F} in Figure 3.3(a)), called non-loop partition.

If a non-loop partition is larger than x% of the original size of the function, we try to split

the partition into two such that both of the resulting partitions are single-entry single-exit

4 As mentioned in the previous section, WMP heuristic is used in this work.

65

(SESE) regions (Johnson et al., 1994), as shown in Figure 3.3(b). In our evaluation, we

empirically set x as 75. We try every splitting point (a basic block boundary) that can form

two SESE regions, and select the one that makes the sizes of resulting partitions as equal

as possible. If any of the resulting partition is still larger than x% of the original size of

the function, we roll back the splitting decision and keep the original non-loop partition as

is. This is a heuristic way of keeping the overhead of function splitting low. The overhead

comes from executing additional code for management at every branch that jumps into a

different partition (e.g. function call). Forming SESE partitions keeps the overhead low by

limiting the number of inter-partition branches.

Splitting a function involves the following code modifications, since partitions may no

longer be in a contiguous memory address range after loaded to the SPM: 1) every fall-

through control flow at the end of a partition is explicitly redirected to the next partition

with a unconditional branch as shown in Figure 3.4; 2) every PC-relative branch instruction

whose target address is outside the partition is modified to use direct addressing; 3) if any

PC-relative load/store instruction accesses a constant in a literal pool outside the partition,

the constant is duplicated at the end of the partition so that it becomes accessible using PC-

relative addressing as shown in Figure 3.5. In an inlined CFG, these code modifications are

seen as addition of new basic blocks and edges, or the increase in the size of corresponding

basic blocks.

…
BNE		…

…

…
BNE		…

B				…

…

Partition	1

Partition	2

Splitting	
point

Figure 3.4: Fall-through paths across partition boundaries are redirected by explicit un-
conditional branches.

66

…
LDR		R1,	[PC,	…]
…
.word	0x00ABCDEF

…
LDR		R1,	[PC,	…]
LDR	R1,	[R1]
…
.word				…
...

.word	0x00ABCDEF

Splitting	
point

Literal	pool
partition

Code
partition	

Figure 3.5: A literal accessed by a PC-relative load/store instruction in a partition split
from a function, the literal is duplicated and moved to the partition so that it is always
accessible from the instruction in the partition.

3.4 Qualitative Comparison

In this section, we discuss the differences of three management techniques from the

previous section and their implications in several different aspects. The basic-block-level

approach, function-level approach, and region-level approach are denoted as BL, FL, and

RL, respectively.

3.4.1 WCET Analysis

A WCET analysis involves microarchitectural timing analysis, and here we focus on

instruction memory access timings. Instruction memory accesses are present either in the

form of instruction fetches or DMA load operations. It is trivial to analyze instruction fetch

times because there is no variability in instruction fetch times for all techniques. In FL and

RL, all instructions are fetched from the SPM whereas in BL, only selected instructions are

in the SPM, but the selection is fixed at compile-time.

BL makes it simple to analyze the timing of DMA operations, too. In BL, DMA opera-

tions take place every time the control reaches a reloading point, without checking the state

of the SPM. On the other hand, the cache-like management scheme in FL or RL performs

load operations only when the code to execute is not in the SPM. Since the state of the SPM

depends on execution history, it requires us to use a data flow analysis, as we described in

67

Section 2.4.2 and 2.4.3, similar to cache analysis Ferdinand and Wilhelm (1999), to pre-

dict if a DMA operation takes place or not at an entry to functions or partitions in the

worst-case. Note that RL is not a representative in all region-level techniques. Another

region-level technique Whitham and Audsley (2012) uses deterministic load operations.

The analysis for FL and RL can be still simpler than that for caches. Their replacement

policy is analogous to direct-mapped caches, which is much simpler to analyze than set-

associative caches, especially with non-LRU replacement policy (Guan et al., 2012). All

load operations are explicit in the source code, and the explicit management of SPMs makes

it natural to partition the SPM and assign a completely private partition to each task. This

eliminates cache-related preemption delays (CRPD) (Altmeyer et al., 2011) regardless of

what scheduling policy is used. A detailed comparison under multi-tasking environments

is out of the scope of this work, and we leave it as future work.

3.4.2 SPM Size Limitations

BL does not have a limitation on the size of SPM for executing any task because it

allows instructions to be fetched directly from the main memory. Strictly speaking, a basic

block must fit in the SPM, but it is reasonable to assume that a basic block is smaller than

typical SPM sizes. It is also trivial to split a basic block into smaller basic blocks by adding

an explicit fall-through branch in between. It is obvious that with most basic blocks left in

the main memory, the performance is limited by the overhead of accessing the slow main

memory.

The size limitation in FL and RL is more strict, as they load a whole function or partition

to the SPM. To execute a task on an SPM using FL, the SPM size must be at least as large

as the largest function in the task. Function-splitting eases this limitation in RL, but the

splitting technique is not capable of controlling the size of each partition. For example, if

a task has a loop whose body is larger than the SPM size, we cannot execute the task on

68

the SPM using RL. It is possible to split the partitions further into smaller partitions, but

it may cause performance degradation due to higher management cost from inter-partition

branches as we discussed in Section 3.3.3.

This difference may not stand out in a single-tasking environment, but may become

important in a multi-tasking environment where tasks can be allocated private partitions.

While any inter-task partitioning scheme is possible for BL, FL or RL requires the partition

for each task to be at least as large as the largest function/partition, which can limit the

number of tasks executable on a core.

3.4.3 Management Efficiency

Different characteristics of the techniques can affect their WCET-reducing capabilities.

We leave more detailed quantitative comparison to the next section.

As discussed in Section 3.3.1, BL has a limited ability to exploit locality of large nested

loops and can leave a large part of a loop in the main memory. This is because only loop

pre-headers are considered as reloading points for each loop, which are executed before the

execution of the loop only once. As reloading for inner loops can corrupt the SPM contents

for the outer loop, all loading needs to be performed once prior to executing the outermost

loop. This simple management scheme is actually beneficial for small tasks where the

entire body of most nested loops can fit in the SPM because of little management overhead;

due to performing the load operation only once before entering the loop and not checking

the SPM state. Compared to this, FL and RL take a more sophisticated cache-like approach

that makes sure every code block is loaded after checking the SPM state. This can avoid

unnecessary DMA operations but lead to a higher management overhead due to checking

the SPM state. Here the focus of management techniques is to find a good mapping that

avoids the interference among functions/partitions on the worst-case execution path, so the

overhead of DMA operations is minimized.

69

A

B

E

C

D

A B E

C D

A B E

A

B E

B E C D

f1

f2

Before function splitting After function splitting

SPM SPM

Figure 3.6: Function splitting can eliminate reloading operations in a loop by reducing the
memory footprints of code during the execution of the loop.

Note that if a loop nest in a task is too large to fit in the SPM and BL has to leave much

part of loop body in the main memory, then the task is not even executable with FL; the

function that has the loop must be larger than the SPM. It can be possible, however, to use

RL to execute the task since it makes the loop body of each loop as partition. Although it

may lead to reloading the partitions for inner loops at every iteration of an outer loop, it

can still be more efficient than fetching a lot of instructions from the main memory every

iteration, thanks to burst mode DMA accesses.

One problem with FL and RL is the possibility of loading instructions that will not

be executed. BL can also load basic blocks that will not be executed, but the problem is

more noticeable in FL and RL for their large granularities of allocation. Infeasible path

detection (Suhendra et al., 2006) can help trimming down part of code that is unnecessary

for loading.

Compared to FL, splitting functions in RL can reduce the WCET by reducing the mem-

ory footprints of functions. Consider an example illustrated in Figure 3.6. Function f1

(composed of blue basic blocks) has a loop in which f2 (composed of green basic blocks)

is called. Assume that every basic block is of the same size, and the SPM size is of 4

blocks. In function-level, f1 and f2 needs to be reloaded at every iteration due to the size

70

Table 3.2: Benchmarks used in our evaluation

Original code size # of BBs # of functions Source

fft1 3320B 376 6 WCET

lms 3584B 256 8 WCET

edn 4288B 56 9 WCET

adpcm 7364B 295 17 WCET

rijndael 9152B 240 7 MiBench

statemate 10280B 365 8 WCET

1REG 26572B 754 28 Proprietary

DAP1 35300B 1951 17 Proprietary

susan 49848B 962 19 MiBench

DAP3 54852B 2728 28 Proprietary

limitation. If f1 is split into {A} and {B,E}, all code that is executed in the loop can remain

loaded in the SPM.

Note that the function-splitting scheme in RL is intended to demonstrate the impact

of smaller allocation granularity and is not necessarily an optimal way of partitioning.

Approaches such as (Whitham and Audsley, 2012) focus on finding an optimal partitioning

scheme but use simple load operations as in BL.

3.5 WCET-Based Quantitative Comparison

In this section, we quantitatively compare the WCET-reducing capabilities of man-

agement techniques by calculating WCET bounds of various benchmarks under several

different architectural configurations.

71

3.5.1 Experimental Setup

We use various benchmarks from the Mälardalen WCET suite (Gustafsson et al., 2010a)

and MiBench suite (Guthaus et al., 2001), and three real-world proprietary automotive

powertrain control applications from industry, which are the same benchmarks used in

Chapter 2. Table 3.2 show the list of benchmarks and their relevant information. From

the benchmarks we used in Chapter 2 (shown in Table 2.3), we use the ones whose code

size is at least 3 kB. This makes us exclude 5 smallest benchmarks, which are too small

to be used in evaluation of dynamic code management techniques or to test the effect of

function-splitting. We consider only user code; a library call is assumed to take the same

cycles as a single arithmetic instruction without dependencies.

To calculate the WCET bounds for BL, we use implicit path-based enumeration tech-

nique (IPET) (Li and Malik, 1995) with loop bounds found with profiling. For FL and

RL, we use our ILP-based WCET analysis from Section 2.4 to calculate the WCET esti-

mates for the code mapping solutions (functions/partitions to SPM regions) found by WMP

heuristic from Section 2.5.2. We assume that every instruction, except DMA instructions,

takes 1 cycle to execute and all data are accessed from a separate data SPM, without any

contention with the accesses to the main memory or the instruction SPM. These assump-

tions are only for simplifying the evaluation and intended to focus on the capabilities of

code management techniques. Our implementation of BL and RL (along with FL) is up-

loaded the source code in a public domain 5 .

All SPM accesses take 1 cycle. The latency of accessing x bytes from the main memory

(AT (x)), either by DMA operations or instruction fetches, is modeled as follows.

AT (x) = S + dx/Be (3.1)

5 https://github.com/yooseongkim/SPMCodeManagement

72

where S denotes setup time that is constant regardless of the access size, and B denotes

bandwidth. We set S as 20 cycles and B as 4 (32 bits/cycles) in our baseline experiments.

Since we are using ARMv4 ISA, every instruction is 4-byte wide, thus fetching an instruc-

tion from main memory takes 21 cycles. We change these parameters later in this section

to model different execution environments.

To model the overhead of DMA operations, we consider a realistic scenario in an ARM

core with an SPM or a tightly coupled memory (TCM). DMA operations in ARM are

controlled by updating/reading register c11 of coprocessor CP15, which can be performed

by MCR/MRC instructions 6 . We omit a detailed description of how to perform DMA

instructions for brevity and give a rough estimation of the number of instructions needed

for a DMA operation. A DMA operation requires at least 5 steps: setting up source address

(SA), destination address (DA), transfer size (T S), initiation (I N), and polling to detect

the completion (CD). It requires 2 instructions for each of SA, DA, and T S, one for

loading a 32-bit word and then one MCR to update the register. I N can be done by 1 MCR

instruction, and CD can be performed by a loop composed of 3 instructions, 1 MRC for

reading channel status, 1 compare, and then 1 branch to repeat. Since each instruction takes

1 cycle, the loop bound of the polling loop is (dAT (x)/T (CD)e + 1) where T (CD) is the

duration to finish operation CD.

We add the above DMA overhead for each set of consecutive basic blocks to be loaded

at every reload point in BL. We implemented the management code for FL/RL as illustrated

in Section 3.3.2 in ARM assembly, and calculated the number of additional instructions that

are execute for management. We take into account this overhead in the WCET analysis and

subtract the SPM size accordingly to keep the call function.

For BL, the algorithm takes N as an input parameter, which denotes the number of

most-frequently executed basic blocks on the WCEP to select per iteration. This parameter

6 ARM Technical Reference Manual, http://infocenter.arm.com

73

0

0.2

0.4

0.6

0.8

1

BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL

fft1
1.4KB

lms
1.5KB

edn
1.8KB

adpcm
3KB

rijndael
3.7KB

statemate
4.2KB

1REG
10.5KB

DAP1
13.9KB

susan
19.5KB

DAP3
21.5KB

No
rm

al
ize

d	
W
CE
T	
Bo

un
ds

Computation Instruction	fetch DMA SPM	state	check

Figure 3.7: Baseline results when AT (x) = 20 + dx/4e and the SPM size for each bench-
mark is 40% of code size. Overall, RL outperforms other techniques with a better utiliza-
tion of SPM space. BL performs poorly when it cannot allocate the whole loop body to the
limited-size SPM.

determines the frequency of WCET analysis as the algorithm does not evaluate the WCET

while it is allocating N basic blocks in the inner loop. We observed that using a too small

value for N often causes premature termination of the algorithm and results in very high

WCETs. Using too large values also leads to very high WCETs because it makes the algo-

rithm almost blindly make decisions for many number of basic blocks at once, removing

the WCET-awareness from the algorithm. In experiments with various values for N pa-

rameter, we observed overall the lowest WCET bounds when N was set 10% of the total

number of basic blocks in a given task. Puaut and Pais (2007) also used the same in their

original publication.

For each benchmark, the size of SPM is set to 40% of the original code size of the

benchmark. All memory sizes are a multiple of 128. For comparison with FL, the SPM

size must be at least as large as the size of the largest function in a benchmark. Given

this constraint and a limited set of benchmarks, memory sizes are chosen to stress-test all

techniques for effective evaluation. Using a fixed SPM size of, say 2KB, is not useful

for evaluation purposes, since all techniques will perform perfectly for small benchmarks

whose code size is smaller than 2KB and very poorly for large benchmarks whose code

size is much larger than that.

74

3.5.2 Baseline Results

Figure 3.7 compares the WCET bounds for BL, FL, and RL with the default memory

access time model in Equation 3.1. WCET bounds are divided by the maximum value

among three WCET bounds of each benchmark. A WCET bound for BL is composed of

computation time (execution time excluding memory access times and management code

execution time) and instruction fetch time from the main memory, and DMA operation

time to load instructions from the main memory to the SPM. Similarly for FL and RL,

a WCET bound is composed of computation time, DMA operation time, and SPM state

checking time. All instruction fetches are from SPM and do not incur any wait cycle in FL

and RL. SPM state checking time is the total overhead that is in addition to simple DMA

operations, which includes not only checking the region state but also maintaining region

state and passing caller information, etc.. The SPM size for each benchmark is below its

name.

Overall, RL shows the lowest WCET bounds except for a few of cases where BL out-

performs the other two. FL never outperforms RL, and in most cases the RL and FL show

comparable performance. We could not use FL for fft1, edn, DAP1, and DAP3 due to its

size limitation; the largest function does not fit in the SPM in these benchmarks. Function-

splitting in RL enables the execution of these benchmarks.

BL’s poor performance in the results mainly comes from its limitations in selecting

reload points. BL loads basic blocks in loops before executing the loops at their pre-

headers. When the SPM size is not large enough to hold the entire body of a loop, the

basic blocks left in the main memory can cause significant delays (represented as large red

bars) with instruction fetches from the main memory. In fft1, lms, statemate, 1REG,

DAP1, and DAP3, there are large loops on WCEP. BL allocated as many basic blocks to the

SPM as possible in all cases, but large portions of loops have to be left in the main mem-

75

ory. Compared to this, FL benefits from burst transfers; even when entire functions have

to be reloaded repeatedly in a loop, it can be still cheaper than executing many instructions

directly from the main memory. This case is shown in statemate where FL has a large

green bar but still its WCET bound is much less than that of BL 7 . Also, function-splitting

in RL greatly helps in case of nested loops, which makes the body of each loop loaded sep-

arately. This reduces the memory footprints of functions with loops and can further reduce

the WCET, which is demonstrated in all other benchmarks where RL outperforms BL.

The characteristics of edn and adpcm lead to the worst-case scenarios for both FL and

RL, whereas they are the best-case scenario for BL. In edn, all functions/partitions are

mapped to the same region because of the limited SPM size. Due to the direct-mapped

cache-like management scheme, entire functions/partitions have to be reloaded every time.

On the other hand, it has loops that are small enough to fit entirely in the SPM and have

very high loop bounds. Even being executed from the SPM, the loops take the most of

the execution time, and the main memory accesses for non-loop code are insignificant.

In adpcm, FL and BL manage to find a mapping that can avoid the most of reloadings in

loops, but SPM state checking code has to be repeatedly executed in a loop with a very high

iteration count. While BL can allocate most loop basic blocks to the SPM, the overhead of

SPM state checking dominates the WCET in FL and BL.

susan has the characteristics of an ideal scenario for all techniques. Only small part

of code is executed with nested loops with high iteration counts, so the given SPM size

is large enough to hold all of the code executed on the WCEP. Also, even though BL is a

greedy heuristic that stops allocating basic blocks whenever the WCET increases, it was

able to allocate as many loop basic blocks as SPM size permits in all benchmarks.

7 In statemate, the greedy heuristic in BL prematurely stops allocating basic blocks after the WCET
increases due to the overhead from long jumps. FL and RL largely outperformed BL even when we force-
allocated as many basic blocks as possible to the SPM.

76

0

0.2

0.4

0.6

0.8

1

BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL BL FL RL

fft1
2.7KB

lms
2.9KB

edn
3.4KB

adpcm
5.9KB

rijndael
7.3KB

statemate
8.2KB

1REG
20.9KB

DAP1
27.7KB

susan
39KB

DAP3
42.9KB

No
rm

al
ize

d	
W
CE
T	
Bo

un
ds

Computation Instruction	fetch DMA SPM	state	check

Figure 3.8: The SPM size for each benchmark is increased to the 80% of code size. While
BL outperforms FL and RL in several benchmarks, RL is still the best performing technique
overall, as it does not show disastrous results like BL in rijndael, statemate, and 1REG.

Note that in several benchmarks such as statemate and DAP3, the WCEPs are different

for different management techniques, so the computation components in WCET bounds

take different proportions.

3.5.3 Changing Memory Sizes

Figure 3.8 shows the results when we change SPM sizes to be 80% of the original

code size of the benchmark. With these larger SPM sizes, the largest functions of all

benchmark can fit in the SPM, and the figure shows the results for all three techniques for

all benchmarks.

Since more number of instructions can fit in the larger SPMs, the overheads of instruc-

tion fetch (red bars) for BL have been eliminated almost completely for most benchmarks.

In statemate, the greedy algorithm prematurely stops and causes such a high WCET as

same as in the baseline results (footnote 7). Even with a large SPM size, rijndael and

1REG have large loops whose sizes are larger than the SPM, and some basic blocks in the

loops had to be left in the main memory.

In fft1, lms, DAP1, and DAP3, function-splitting can effectively help reduce the WCET

for FL, and there are significant differences in the WCETs for FL and RL.

77

0

1

2

3

4

5

6

7

8

AT(x)	 =	7+⌈x/8⌉ AT(x)	 =	20+⌈x/4⌉ AT(x)	 =	60+⌈x/2⌉ M
ax
.	W

CE
T	
Bo

un
d	
/	M

in
.		W

CE
T	
Bo

un
d

fft1 lms edn adpcm rijndael

statemate 1REG DAP1 susan DAP3

Figure 3.9: The differences in WCET bounds tend to increase as the main memory access
latencies increase.

3.5.4 Changing Memory Access Times

Here we change the parameters in Equation (3.1) to model different execution environ-

ments in terms of memory access times. We use two additional sets of values for S and B.

The first case favors directly accessing main memory with little setup time (S = 7) and a

large bandwidth (B = 8, 64 bits/cycle). This setup models simple micro-controllers with

slow core clock speeds and on-chip main memory interconnected through an internal bus

interface. The second setup has a larger setup time (S = 60) and a narrower bandwidth

(B = 2, 16 bits/cycle), modeling micro-processors with faster clock speeds and external

off-chip main memory. Considering typical desktop environments where a main memory

access typically takes hundreds of cycles, the accesses can become even more expensive in

future systems. The baseline (S = 20,B = 4) lies in the middle.

For all benchmarks, we observed that the overall trend regarding which technique

performs better than which technique did not change even with different memory access

78

time parameters. For example, let us consider DAP1 in the baseline results shown in Fig-

ure 3.7. The WCET bound for BL is greater than the one for RL. Such trends do not

change with different parameters for all benchmarks, but the differences between WCET

estimates change. We show the changes of the maximum differences of WCET estimates

in Figure 3.9. The values are the maximum WCET bound divided by the minimum WCET

bound for each benchmark. For example, the top right blue square means that with param-

eters (S = 60,B = 2), the WCET bound of DAP1 for BL is 8 times greater than that for

RL.

The differences in the WCET estimates increase as the main memory accesses become

more expensive. The exception is with the benchmarks where both BL and RL have very

little memory access overheads, such as adpcm and susan. In these benchmarks, SPM

checking is the dominant source of overheads, which is independent of main memory ac-

cess times. With longer main memory access times, the WCET estimates for BL increase

more rapidly than they do for FL or RL.

3.5.5 Changing Memory Organizations with Caches

The results in Figure 3.7 show that instruction fetches from the main memory are a

source of the major performance overhead in BL. This motivates us to use an instruction

cache in addition to the SPM so that main memory accesses can be cached.

Since it is already shown that FL can never outperform RL in previous sections, we

focus on comparison of BL with cache and RL. Here we model a configurable hybrid ar-

chitecture in NVIDIA GPUs 8 where the ratio of SPM size and cache size can be configured

to 3:1, 1:3, or 1:1, keeping the total size of on-chip SRAM the same. Note that if we con-

sider the fact that SPMs typically occupy much smaller die area than caches of the same

8 CUDA compute capabilities 3.x, http://docs.nvidia.com/cuda

79

0

1

2

3

4

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C3
S1

C1
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

SP
M

C1
S3

C1
S1

C3
S1

Ca
ch
e

fft1 lms edn adpcm rijndael statemate 1REG DAP1 susan DAP3

W
CE
T	
Bo

un
d	
fo
r	B

L	/
	W

CE
T	
Bo

un
d	
fo
r	R

L Computation Instruction	fetch DMA

Figure 3.10: Converting part of the SPM to a cache can greatly reduce the WCET bounds,
but cache-to-spm size ratios other than 1:3 are often not helpful.

size (Banakar et al., 2002a; Redd et al., 2014), this is not completely fair and has an effect

of allowing larger on-chip SRAMs for BL.

We use 4-way set associative caches with cache line sizes of 8 words. We assume LRU

replacement policy as it is in general the most predictable replacement policy (Guan et al.,

2012). To calculate the WCET bounds for caches, we implemented a state-of-the-art cache

analysis algorithm by Cullmann (Cullmann, 2013), which uses must, may, and persistence

analyses based on abstract interpretation. We use the baseline setup from Section 3.5.1

regarding the memory sizes and memory access times.

Figure 3.10 compares the WCET bounds for BL when there is only SPM or a mix of

SPM and cache in different ratios, e.g. C1S3 means cache-to-SPM size ratio is 1:3. We

also include cache-only configuration, denoted as CACHE, where the WCETs are only

for cache, not using SPM at all. The values are divided by the WCET bound for RL of

each benchmark for normalization. For example, the bar for SPM in 1REG is over 4, and it

means that the WCET bound for BL is 4 times higher than that for RL. In statemate and

1REG, the results show that adding caches greatly helps with the long-latency instruction

fetches from the main memory. These benchmarks have particularly large loops, whose

sizes are much larger than the SPM size, and BL leaves many basic blocks in the main

memory. Overall, C1S3 is the best configuration for BL, in which the WCET estimates are

80

the lowest among three different setups. Those WCET estimates are, however, still greater

than the ones for RL in most benchmarks. Cache sizes larger than 1/3 of the total on-chip

memory size show significantly higher WCET estimates in many benchmarks due to the

pessimism in cache analysis.

Note that loading basic blocks can introduce additional cache misses. The additional

load instructions or long jump instructions increase the code size, and the basic blocks

allocated to the SPM bypass the cache, not loading memory blocks for the next basic blocks

to the cache.

When most of the instruction cache accesses in a basic block are hits, loading its prede-

cessor basic block into the SPM can thus increase the WCET, due to the additional cache

misses. This effect causes the greedy heuristic of BL to stop prematurely in edn, and the

WCET bound for C1S3 is slightly greater than the one for SPM.

3.6 Summary and Conclusion

As real-time applications become increasingly larger and more complex, it becomes

important to have a system not only the time-predictable but also of high computing power.

Using scratchpad memories (SPMs) is a promising way of achieving such characteristics,

but it requires an efficient dynamic management technique to make the performance and

predictability scalable. In this chapter, we compared and characterized dynamic manage-

ment techniques for instruction SPMs with different allocation granularity and different

management schemes. We discussed the impact of these differences on various aspects in

detail, both qualitatively and quantitatively with a thorough evaluation. Our conclusion is

the following list of considerations for future directions on improving existing code man-

agement techniques.

Firstly, regions (groups of consecutive basic blocks) appear to be the best granularity of

allocation. Due to burst mode accesses, loading a large number of consecutive instructions

81

at once is beneficial, often for even non-loop code. A partitioning scheme that can minimize

the WCET by reducing both memory footprints and loading frequencies is much needed.

Secondly, simplicity is important in a management scheme, but it should not be too

simple. The cache-like management in function-level techniques introduces variability in

load operations and requires a separate analysis to estimate the WCET, as we described

in Chapter 2. While this can also increase the management overhead, we observed in the

results that SPM state checking is rarely a dominant source of overheads 9 . On top of

this, we also observed that this cache-like management scheme combined with function-

splitting (RL) greatly outperformed the deterministic load-only management scheme (BL)

in many cases. While all other techniques mainly try to solve “what to load’" problem, the

function-level management focuses on “where to load" problem by finding a function-to-

region mapping or region-free mapping. The results show that the latter problem is also

important and cannot be ignored.

Thirdly, it is important to have an accurate timing model of load operations and other

main memory accesses. Many previous approaches take too simple approaches by consid-

ering only the transfer sizes and ignoring any overhead involved in load operations. This

can exaggerate the performance of basic block level code management techniques. Accu-

rate timing models cannot only improve the accuracy of the results, but can open up more

opportunities of improvements.

Fourthly, it may not be beneficial to fetch all instructions from the SPM. For small

pieces of non-loop code that lie in nonconsecutive address ranges, loading them can be

more expensive than fetching them directly from the main memory, depending on the cost

of load operations and the main memory access times. At the same time, when main mem-

9 To reduce this overhead, Cai et al. (2017) presented a technique based on static analysis to identify the
call sites where the outcome of SPM-state-checking codes can be determined at compile-time. In the call
sites where the callee function is guaranteed to be already loaded or to stay loaded once it is loaded, the state
checking code can be eliminated or hoisted out of a loop. We did not use this technique in this work.

82

ory accesses are cached, we should avoid unexpectedly increasing the WCET by causing

additional cache misses.

83

Chapter 4

WCET-AWARE DYNAMIC STACK FRAME MANAGEMENT

When the call stack resides in a size-limited scratchpad memory, the stack frames must

be evicted to and loaded back from the main memory to avoid stack overflows. In this chap-

ter, we present a technique to find optimal program locations to perform stack management

operations such that the WCET of a given program is minimized.

4.1 Introduction

The typical sizes of SPMs are not large—within a few megabytes in most proces-

sors (Wang et al., 2016). Moreover, given the lack of virtual memory support of SPMs

(due to the nature of explicit management), programs running on an SPM-based proces-

sor can easily have stack overflow errors, if the entire stack is kept in the SPM. Keeping

the stack in the main memory prevents the problem but will significantly degrade perfor-

mance. Most previous approaches solve this problem by allocating the SPM space for

selected stack variables (that are critical for performance) while the rest of the stack data in

the main memory (Avissar et al., 2002; Kim, 2011; Nguyen et al., 2009; Suhendra et al.,

2005; Udayakumaran et al., 2006; Wan et al., 2012). The key question in both types of ap-

proaches is which stack variables should be kept in the fast SPM. To answer this question,

a compiler would need to obtain all possible target addresses of all memory references and

evaluate how much each reference contributes to the WCET. This is very challenging and

often incurs significant pessimism when there are input-dependent memory references or

data-dependent control flows (Ramaprasad and Mueller, 2005; Staschulat and Ernst, 2006).

Lu et al. (2013), on the other hand, take a different approach. In this approach, the stack

resides in the SPM, but stack frames are temporarily evicted to (and restored from) the main

84

memory at selected call sites, to accommodate future stack frames and thus prevent any

stack overflow. All stack data accesses can benefit from the fast latency of the SPM, and

the only long-latency main memory accesses are for stack frame management before and

after a selected function call. Therefore, the key decision here is to pick such call sites to

perform stack management. One definite benefit with this approach is that the compiler can

be completely agnostic about the data access patterns when making the decision to select

call sites to perform stack management. Another benefit is that this approach makes WCET

analysis trivial at least with regard to stack data references since all stack data references

will have constant costs.

In this chapter, we present not only a WCET analysis technique that finds the WCET

of a program for a set of call sites to perform stack management, but also a technique to

optimally select the call sites such that the resulting WCET is minimized. Our approach is

based on integer linear programming (ILP) and takes the stack frame sizes of all functions

and the maximum execution frequency of each basic block as input. We evaluate our ap-

proach using Mälardalen WCET benchmark suite (Gustafsson et al., 2010b). Compared

to a recently-proposed WCET-optimizing management technique (Liu and Zhang, 2015)

that also works at the granularity of the whole stack frames, our approach can reduce the

WCET up to 48%. Compared to the caches of the same size, our approach can achieve

WCETs that are comparable to the WCETs obtained by the de-facto standard static cache

analysis technique (Cullmann, 2013).

4.2 Related Work

SPM management in the context of reducing WCETs has been extensively studied in

the literature. As hard real-time applications rarely use heap data, researchers have focused

on how to use SPMs for program code (Falk and Kleinsorge, 2009; Kim et al., 2014) or

stack/global data (Avissar et al., 2002; Kim, 2011; Liu and Zhang, 2015; Nguyen et al.,

85

2009; Suhendra et al., 2005; Udayakumaran et al., 2006; Wan et al., 2012). Using these

techniques, a compiler can allocate SPM space for selected code/data blocks at compile-

time (static management) (Avissar et al., 2002; Falk and Kleinsorge, 2009; Kim, 2011;

Nguyen et al., 2009; Suhendra et al., 2005) or transform the code so that different code/-

data blocks are loaded to and evicted from their allocated space at runtime (dynamic man-

agement) (Kim et al., 2014; Liu and Zhang, 2015; Udayakumaran et al., 2006; Wan et al.,

2012). WCET-aware C compiler framework (WCC) (Falk and Lokuciejewski, 2010) in-

cludes similar techniques to use the SPM space for code and global data.

Our closest related work is dynamic stack management by Lu et al. (2013). This work

optimizes circular stack management (Shrivastava et al., 2009) by eliminating the runtime

stack manager that checks the available space in the SPM. It, however, considers only the

overall DMA transfer overhead and cannot optimize the WCET of a given program. We

find an optimal set of such function call sites in a program to perform data movement such

that the WCET is minimized.

In terms of stack data management, the stack-frame-level management mechanism used

in our approach has two unique characteristics. Firstly, it makes all local variable accesses

to be SPM accesses, which simplifies static WCET analysis and accords closely with the

premise of SPMs as a time-predictable alternative to caches. Most previous approaches

either i) divide the stack into two (one in the main memory and the other in the SPM)

using two stack pointers (Avissar et al., 2002; Nguyen et al., 2009) or ii) allocate SPM

space for only selected stack variables Kim (2011); Suhendra et al. (2005); Udayakumaran

et al. (2006); Wan et al. (2012). This allocation is typically done by creating a copy of

a stack variable in the SPM as a global variable (Suhendra et al., 2005; Udayakumaran

et al., 2006). These techniques require accurate value analysis to decide which variables

to keep in the SPM, which is challenging in the presence of input-dependence or data-

dependence (Ramaprasad and Mueller, 2005; Staschulat and Ernst, 2006).

86

The second uniqueness is the use of data movement between the SPM and the main

memory. Stack data have a unique characteristics of transience since the stack frame of a

function disappears as the function returns. Therefore, almost all previous approaches (Avis-

sar et al., 2002; Kim, 2011; Liu and Zhang, 2015; Nguyen et al., 2009; Suhendra et al.,

2005; Udayakumaran et al., 2006; Wan et al., 2012) do not involve data transfer operations.

In our approach, the whole stack is moved from the SPM to make space for incoming stack

frames before a selected function call, and the stack is restored after the function returns.

Since the size of the stack before each function call can be determined at compile-time

once stack frame sizes are available, the costs of data movement operations are also deter-

ministic. Thus, the use of data movement does not harm time predictability. It also helps

with performance as data movement based on direct memory access (DMA) operations can

benefit from burst mode accesses to transfer the contiguous memory ranges.

Recently, Liu and Zhang (2015) proposed a WCET-optimizing allocation technique for

multi-level SPMs. Since they treat a stack frame as a single aggregated data object, this

approach also works at the granularity of stack frames, not individual variables. They

formulate an ILP to decide whether the stack frame of each function should be allocated in

the SPM or in the main memory. The ILP objective function tries to maximize the profit

of using the SPM, but it cannot directly consider the WCET impact nor the change of the

worst-case execution path. Since the worst-case execution path can dynamically change

according to SPM allocation decisions, this approach cannot find an optimal allocation

scheme.

In the context of caches, many researchers have proposed techniques to lock selected

instructions or data blocks into cache to optimize worst-case performance. Mittal (2016)

recently presented an extensive survey of such techniques. Also, Schoeberl and Nielsen

(2016) have designed a specialized cache for stack data, separating the stack data accesses

from other data accesses.

87

// Management code before a function call
DMA store the stack to the main memory;
reset the stack pointer;
call a function; // selected call site
// Management code after a function call
DMA load the stack from the main memory;
restore the stack pointer;

Figure 4.1: Code modification at a selected call site

4.3 Background: Dynamic Stack Frame Management

The dynamic stack frame management mechanism used in this work is first presented

by Lu et al. (2013). It works in two steps. First, the set of call sites (program locations

where a function call takes place) to perform stack management is selected. At each se-

lected call site, the program code is transformed to transfer stack frames between the SPM

and the main memory, as shown in Figure 4.1. All stack frames residing in the SPM at the

moment are evicted before the call and then restored after the call.

This mechanism is an optimized version of the circular stack management (Bai et al.,

2011; Shrivastava et al., 2009) with much less dynamic code overhead (Lu et al., 2013).

In the circular stack management, a pair of stack management function call (for evicting

and restoring stack frames) is inserted at every call site, unlike our mechanism that inserts

management code at selected call sites. The management function keeps track of the stack

size and performs transfer operations if the remaining SPM size is not enough for the stack

frame size of the callee function. While the whole stack residing in the SPM is evicted

in our management scheme, circular stack management evicts only the latest stack frames

(the closest from the top) that are just enough to free up the SPM space for the next stack

frame. This causes much higher computation overhead at runtime than our management

mechanism.

As Figure 4.2 illustrates, a stack management operation in this management mechanism

requires the previous execution history. For example, stack frames may need to be evicted

88

stack

Previously
evicted
stack
frames

Main memory SPM

Evict/restore
stack frames
by DMA

Figure 4.2: Moving stack frames needs the previous execution history to find source/des-
tination addresses for DMA operations.

multiple times in a cascading manner, when the stack grows deep for a long call chain. In

this case, the destination address for evicting stack frames depends on the previous eviction

history. A naive implementation would use a data structure such as stack to record the sizes

of evicted frame sizes and calculate the correct addresses for DMA operations at runtime.

While how to efficiently perform stack management is not our direct focus nor a con-

tribution in this work, we would like to stress that all necessary information to perform

management is in fact, available at compile-time. Using compile-time hard-coded informa-

tion rather than runtime data structure can reduce the overhead of performing management

operations. The stack depth at a given program location depends on its execution context

(function call history), and an execution context can be represented as a unique path on a

call graph. Using compile-time hard-coded information rather than runtime data structure

can reduce the overhead of performing management operations.

For a function that can be called by multiple callers, software control flow checking

method using signatures (Oh et al., 2002) can be used. Using a signature variable, we can

keep track of the call history and identify the execution context at runtime. The manage-

ment code shown in Figure 4.1 can be inserted for each possible signature value.

89

4.3.1 Limitations

One limitation of the approach in this chapter is the lack of support for recursive func-

tions calls. Since hard real-time applications hardly use recursion, this does not critically

limit the application of our technique. The approach by Lu et al. (2013) supports direct

recursions by simply evicting the stack frame of a recursive function every time it is called,

but indirect recursion is not supported.

Another limitation is that our approach cannot guarantee a correct execution if a func-

tion accesses data in another function’s stack frames through a pointer variable passed by

a parameter. This is because the address value in a pointer variable is no longer valid after

the stack frames are moved to the main memory. Cai and Shrivastava Cai and Shrivastava

(2016) solve this problem by inserting additional code before pointer accesses to explicitly

perform address translation at runtime.

4.4 WCET-Aware Dynamic Stack Frame Management

The focus of this work is to select the call sites to perform stack frame management

operations. We present a technique based on integer linear programming (ILP) to find an

optimal set of call sites to perform management operations such that the WCET of a given

program is minimized. We use the inline CFG from Section 2.4.1 to represent an input

program.

Note that unlike code management from Chapter 2, our stack frame management mech-

anism does not require any preliminary analysis. This is because all management opera-

tions are deterministic and have no runtime variability, whereas our code management tech-

niques employ conditional DMA operations, like cache miss handling, and require static

analyses to estimate the outcome of the conditional statements.

90

4.4.1 ILP Formulation

We take an inlined CFG G, the size of the SPM, stack frame sizes, and the loop bounds

as input. Our formulation needs the graph G to be acyclic, so we remove all back edges

first, assuming that G is reducible. Variables are written in capital letters, and constants are

in small letters.

Wv is the WCET from basic block v to the end of the program. The objective is to

minimize the WCET of the whole program.

minimize Wvs (4.1)

Let nv be the execution frequency of basic block v, and tv be the time it takes to execute

the instructions in v for once in the worst-case. Then v contributes to the WCET with the

sum of its computation cost nv · cv and any management cost Cv (defined later). For Wv to

be an upper bound of the WCET starting from v, Wv is greater than or equal to the sum of

the contributions of v and its successor w as follows.

∀(v,w) ∈ E, Wv ≥ Ww + nv · (tv + Cv)

Wvt = nvt · (tvt + Cvt)
(4.2)

Let C ⊂ V be the set of all basic blocks containing a function call. For each function

call, there is the first basic block in the caller function after the callee function returns.

Let R ⊂ V be the set of such functions. There is one-to-one correspondence between

basic blocks in C and R, so mapping cl : R→C states that for all v ∈ R, cl (v) is the basic

block where the corresponding function call occurs. These are the candidates to place stack

management operations.

All non-candidate basic blocks have zero management cost.

∀v ∈ V \ (C ∪ R), Cv = 0 (4.3)

91

A basic block v ∈ C has a management cost only if a management code block is inserted

at v, which is denoted by a binary decision variable Mv (Mv is 1 if the management code is

inserted before and after the function call at v, and 0 otherwise.). The management cost at

v ∈ R depends on the management operation before its corresponding function call (Mcl (v))

because any evicted stack frames must be restored when the execution of the caller function

resumes.

∀v ∈ C, Cv =

moc(Sv) if Mv = 1

0 if Mv = 0

(4.4)

∀v ∈ R, Cv =

mor (Sv) if Mcl (v) = 1

0 if Mcl (v) = 0

(4.5)

where Sv is the variable to calculate the stack size at v (defined later), and moc(x) and

mor (x) are the management overhead to evict and restore the stack, respectively, when

the size of the stack in the SPM is x bytes. These are not symbols but linear equations

to calculate the management overhead on the target hardware platform, e.g., moc(x) is

the time to execute the additional code for management plus the DMA operation time for

transferring x bytes, which again, is a constant setup time plus a transfer time proportionate

to x.

The above constraints in Equation (4.4-4.5) need to evaluate if-then-else condition

between variables, which can be linearized using the big M method Luenberger and Ye

(2015). For example, the following is a linearized form of Equation (4.4).

Cv − moc(Sv) +M · (1 − Mv) ≥ 0

Cv − moc(Sv) −M · (1 − Mv) ≤ 0

Cv +M · Mv ≥ 0

Cv −M · Mv ≤ 0

(4.6)

92

whereM is a sufficiently large integer.

The stack size at basic block v depends on the the stack size at the parent function (the

caller function) and whether the stack had been evicted before the current function was

called. If the stack was evicted before the current function was called, the stack at v will

only have the stack frame of the current function. Let p(v) denote the basic block in which

the current function is called. If v is in the starting function (fn (vs)), e.g. main, there is no

parent function. In the following, Vmain denotes the set of all basic blocks in the starting

function.

∀v ∈ Vmain, Sv = szfn (vs) (4.7)

∀v < Vmain, Sv =

szfn (v) if Mp(v) = 1

Sp(v) + szfn (v) if Mp(v) = 0

(4.8)

∀v ∈ V, Sv ≤ SPMSIZE (4.9)

where szf denote the stack frame size of function f and SPMSIZE is the size of the SPM.

The conditional expression in the Equation (4.8) needs to be linearized similarly as in

Equation (4.6).

When a solver finds an optimal solution for the above ILP, we can find an optimal set

of call sites from Mv variables. The final objective value is the WCET of the program. If

the SPM size is smaller than the largest stack frame in the program, the solver would find

it infeasible to solve the ILP.

Using the ILP for WCET analysis purpose only: When the set of locations to perform

stack management operations is already given as input, this ILP can be used to calculate

a safe upper bound of the WCET, after setting the values of the decision variables Mv’s

according to the input.

93

…
call B

…
return

…

𝑣"	𝜖	𝒞
𝑓𝑛 𝑣" = 𝐴

𝑣*	𝜖	𝑉 ∖ 𝒞 ∪ ℛ
𝑓𝑛 𝑣* = 𝐵

𝑣0	𝜖	ℛ
𝑓𝑛 𝑣0 = 𝐴

𝑣"	(𝑣2)

𝑣*

𝑣0	(𝑣4)

Figure 4.3: A simple inlined CFG used as an example

4.4.2 Example

We illustrate our ILP formulation using a very simple example shown in Figure 4.3.

Function A consists of two basic blocks, vx and vz, and function B a single basic block,

vy. A calls B at vx . For simplicity, we assume that each basic block is executed at most 10

times (nv is 10 for all basic blocks.), and it takes at most 10 cycles to execute each basic

block (tv is 10 for all basic blocks.).

Wvx = Wvy + 10 · (10 + Cvx)

Wvy = Wvz + 10 · (10 + Cvx)

Wvz = 10 · (10 + Cvx)

Let us also assume that the management overhead when the stack size is x bytes is

simply x cycles, regardless of whether it is evicting or restoring stack frames. In this case,

94

the management cost at Cvz is the same as Cvx .

Cvx − Svx +M · (1 − Mvx) ≥ 0

Cvx − Svx −M · (1 − Mvx) ≤ 0

Cvx +M · Mvx ≥ 0

Cvx −M · Mvx ≤ 0

Cvy = 0, Cvz = Cvx

Stack frame sizes of function A and B are 32 bytes and 64 bytes, respectively. The size

of the SPM is 64 Bytes.

Svx = Svz = 32

Svy − 64 +M · (1 − Mvx) ≥ 0

Svy − 64 −M · (1 − Mvx) ≤ 0

Svy − (64 + Svx) +M · Mvx ≥ 0

Svy − (64 + Svx) −M · Mvx ≤ 0

Svx ≤ 64, Svy ≤ 64, Svz ≤ 64

In this example, we can safely substitute all appearances ofM for SPMSIZE since it

is the maximum possible value for both Cvx and Svy .

The above formulation can find the WCET of the example, which is ((100 + 3200) +

100) + 100 + 3200 = 6700, and the solution yields that Mvx = 1 to insert the management

code at vx and vz.

4.5 Evaluation

We evaluate our approach by comparing the WCET estimates with two previous ap-

proaches: SSDM (Smart Stack Data Management) heuristic by Lu et al. (2013) and a

95

WCET-optimizing allocation technique by Liu and Zhang (2015). We also compare against

2-way set associative caches using a static cache analysis technique (Cullmann, 2013).

We use benchmarks from Mälardalen WCET suite (Gustafsson et al., 2010b). We mod-

ified our existing framework from Chapter 2 to generate inlined CFGs from binaries com-

piled for ARMv4 ISA, perform the cache analysis, and simulate the benchmarks. Due to

the limitation of this implementation with instruction decoding, we were not able to gen-

erate CFGs for 2 benchmarks. After excluding 14 that have less than 3 functions, 2 with

recursions, and 4 with pointer accesses to the local variables in another function, we use all

remaining 13 benchmarks.

Here we consider only stack data accesses and ignore all instruction accesses or other

global data accesses assuming that they are already loaded in another SPM. This is to

simplify the analysis and to focus on the effects on stack data accesses.

Loop bounds are found by profiling, we use the Gurobi optimizer 1 to solve ILPs.

4.5.1 Comparison with Previous Techniques

We assume that transferring x bytes through a DMA operation takes 20 + dx/4e cycles

and a load/store access to the main memory takes 20 cycles. For each benchmark, we use

two different memory sizes, min + (max −min) ∗ 0.5 and min + (max −min) ∗ 0.7, where

min is the largest stack frame size and max is the maximum stack depth.

Figure 4.4 shows the WCET reduction results over the WCET optimizing technique

from Liu and Zhang (2015). The memory access overhead for their technique comes from

direct main memory accesses, which happens when the stack frame of a certain function

needs to be left in the main memory. Based on ILP, their technique finds an optimal allo-

cation to maximize the profit of using the SPM. In our approach, all SPM accesses have

zero overhead (1 cycle), but the overhead comes from DMA operations and executing ad-

1 Gurobi Optimization, Inc. http://www.gurobi.com

96

-5%

15%

35%

55%

75%

95%

adpcm bsort100 cnt compress crc expint fft1 lms ludcmp matmult minver qurt statemate

Re
du
ct
io
n	
in
	th

e	
nu
m
be
r	
of
	

cy
cl
es
	in
	th

e	
w
or
st
-c
as
e

Comparison	with	Liu	and	Zhang	[11]

Total	execution	time Memory	access	overhead

Figure 4.4: Compared to a technique by Liu and Zhang Liu and Zhang (2015), our ap-
proach can significantly reduce memory access overhead. The WCET reduction ranges
from 0% to 48%.

-5%

15%

35%

55%

75%

95%

adpcm bsort100 cnt compress crc expint fft1 lms ludcmp matmult minver qurt statemateRe
du
ct
io
n	
in
	th

e	
nu
m
be
r	
of
	

cy
cl
es
	in
	th

e	
w
or
st
-c
as
e

Comparison	with	SSDM	[12]

Total	execution	time Memory	access	overhead

Figure 4.5: SSDM heuristic cannot always find a good solution.

ditional code for management. Their technique has very little overhead when most stack

frames can be allocated in the SPM (e.g. bsort100, crc, expint, and matmult) but suf-

fers greatly from the long latency of main memory accesses, in most cases. Unfortunately,

many benchmarks do not extensively access stack data. Although memory access overhead

was greatly optimized in most benchmarks, the WCET reduction ranges from 0% to 48%.

Figure 4.5 shows the WCET reduction results over SSDM (Lu et al., 2013), a greedy

heuristic optimized for average-case performance. We calculated the WCET by feeding

the solution obtained by SSDM as input to the ILP. As the differences only come from the

locations for stack management operations, there was no meaningful reduction in WCET

when SSDM could find exactly or almost the same solution that the ILP did. This happens

easily for benchmarks with very simple call patterns such as a called function never calling

another function, e.g. bsort100, expint, and statemate. Often times, however, SSDM

97

0%
10%
20%
30%
40%
50%
60%

Re
du
ct
io
n	
in
	th

e	
W
CE
T

Comparison	with	Caches

Figure 4.6: The reduction in WCET, compared to 2-way set associative cache, ranges from
0% to 49%.

suffers from its greedy characteristics and gets stuck in local optima. As the figure shows,

in cnt, matmult, and qurt, SSDM leads to significantly longer WCETs for larger SPM

sizes, quite counter-intuitively, because the larger memory made the heuristic to make bad

initial choices.

4.5.2 Comparison with Caches

We estimate the WCETs for 2-way set associative caches with LRU replacement policy

using the de-facto standard cache analysis technique (Cullmann, 2013) and implicit path

enumeration technique (IPET) Li and Malik (1995). We assume that each line is 16 bytes

and cache miss penalty is 20 cycles. Since a possible cache size for a 2-way set associative

cache with 16-byte line size is a multiple of 32, the size of cache/SPM for each benchmark

is set as the smallest multiple of 32, greater than min + (max − min) ∗ 0.5 where min and

max are the largest stack frame size and the maximum stack depth as used in the previous

subsection.

Figure 4.6 shows the reduction in WCETs over the caches. Our approach outperforms

the caches in all benchmarks, but the difference is overall, not significant, except a few

benchmarks. It is, however, worth noting that using our approach can reduce almost 50%

98

of the WCET compared to caches for qurt and over 10% for several benchmarks. The

main reason behind this is the cache conflict misses in nested loops on the worst-case

execution path. While caches are not optimized for the worst-case, our approach always

finds an optimal solution for the WCET.

4.6 Summary

When the program call stack is kept in a software-managed scratchpad memory, the

stack frames must be explicitly managed between the SPM and the main memory at run-

time, to avoid stack overflows. In this chapter, we described a technique to find optimal

locations to perform stack management operations in order to minimize the WCET of a

given program. Compared to most previous approaches that require selection of local vari-

ables to be used in SPM, this approach simplifies the WCET analysis. Evaluation results

show that our approach can effectively schedule management operations on the worst-case

execution path and reduce the WCET.

99

Chapter 5

CONCLUSION AND FUTURE WORK

Hard real-time systems must undergo a thorough timing verification to ensure the cor-

rect temporal behavior. Timing verification based on non-exhaustive measurement or test-

ing, although widely used in practice, cannot be considered safe due to the lack of guarantee

of coverage. While timing verification based on static analysis guarantees the safety of the

approach, the conventional practice in processor microarchitecture design can complicate

static analysis and make the results pessimistic. In efforts to find timing-predictable al-

ternatives to the traditional microarchitectures, scratchpad memories (SPMs) have gained

researchers’ attention. SPMs facilitate static analysis with the software-controlled nature

but require a change in the processor tool chain to insert explicit data movement instruc-

tions in the code. SPM management techniques used in a compiler decide how to use the

SPM space by data allocation and access scheduling. As such decisions have a significant

impact on performance and predictability, management techniques used for hard real-time

systems must be intelligent and able to optimize the worst-case execution times (WCETs)

of tasks. In this dissertation, we present several management techniques for program code

and stack data. The proposed management techniques, while facilitating static analysis, can

greatly improve the WCETs of many benchmarks in comparison with other management

techniques or hardware caching. The comparison study with other management techniques

offers several insights on future research directions.

The main focus of this thesis is to develop SPM management techniques for single-task

execution environments. Although the results of this work demonstrates the effectiveness

and the promise of using SPM-based processors in hard real-time systems, there is more

work to complete this work. The following is the list of future work.

100

Global data management: All types of data need to be managed, not just code and

stack. As hard real-time applications rarely use heap data, we need a WCET-aware man-

agement technique for global data. One can also consider converting local variables to

global variables, or vice versa, as it can affect the overall WCET.

Intra-task SPM partitioning: After developing management techniques for all types

of data, SPM space needs to be partitioned for different types of data. Each type of data

will be allocated a separate SPM space, not corrupting the memory space for other types of

data. This partitioning must be done in a way to optimize the WCET. For example, it could

be beneficial for a task to have more SPM space for code and very little space for stack.

Single-core multi-tasking or Inter-task SPM partitioning: When multiple tasks are

scheduled preemptively on one core sharing its local SPMs, we can divide the SPM into

multiple partitions that will be assigned to tasks as private SPM spaces. As SPMs inher-

ently provide access privatization, any preemption delays, caused by the access interference

among tasks, can be automatically eliminated. This partitioning scheme will need to care-

fully consider the trade-off in sizing partitions, as the WCETs of the tasks will be affected

by using only a fraction of a given SPM. One can also consider designating an SPM space

for shared data or library code for the benefit of all tasks.

Multi-core multi-tasking or Task-mapping: When there are multiple cores, we need

to decide which tasks to share a core. This will become more challenging and interesting in

heterogeneous multi-cores where cores can have different characteristics. When the target

architecture has a shared SPM, shared by different cores, it can be used similarly to the

shared partition in SPM partitions. All these decisions can be either made at compile-

time with a static scheduling policy or at run-time by the operating system with a dynamic

scheduling policy.

101

REFERENCES

Altmeyer, S. and C. M. Burguière, “Cache-related preemption delay via useful
cache blocks: Survey and redefinition”, Journal of Systems Architecture 57,
7, 707 – 719, URL http://www.sciencedirect.com/science/article/pii/
S1383762110001062, special Issue on Worst-Case Execution-Time Analysis (2011).

Altmeyer, S., R. I. Davis and C. Maiza, “Cache Related Pre-emption Delay Aware Re-
sponse Time Analysis for Fixed Priority Pre-emptive Systems”, in “Proceedings of the
2011 IEEE 32Nd Real-Time Systems Symposium”, RTSS ’11, pp. 261–271 (IEEE Com-
puter Society, Washington, DC, USA, 2011), URL http://dx.doi.org/10.1109/
RTSS.2011.31.

Amrutur, B. S. and M. A. Horowitz, “Speed and Power Scaling of SRAMâĂŹs”, IEEE
Journal of Solid-State Circuits 35, 2, 175–185 (2000).

Avissar, O., R. Barua and D. Stewart, “An Optimal Memory Allocation Scheme for
Scratch-pad-based Embedded Systems”, ACM Trans. Embed. Comput. Syst. 1, 1, 6–26,
URL http://doi.acm.org/10.1145/581888.581891 (2002).

Axer, P., R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Marwedel,
J. Reineke, C. Rochange, M. Sebastian, R. V. Hanxleden, R. Wilhelm and W. Yi, “Build-
ing Timing Predictable Embedded Systems”, ACM Trans. Embed. Comput. Syst. 13, 4,
82:1–82:37, URL http://doi.acm.org/10.1145/2560033 (2014).

Bai, K., J. Lu, A. Shrivastava and B. Holton, “CMSM: An Efficient and Effective
Code Management for Software Managed Multicores”, in “Proceedings of the Ninth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis”, CODES+ISSS ’13, pp. 11:1–11:9 (IEEE Press, Piscataway, NJ, USA, 2013),
URL http://dl.acm.org/citation.cfm?id=2555692.2555703.

Bai, K., A. Shrivastava and S. Kudchadker, “Stack Data Management for Limited Lo-
cal Memory (LLM) Multi-core Processors”, in “ASAP 2011 - 22nd IEEE International
Conference on Application-specific Systems, Architectures and Processors”, pp. 231–
234 (2011).

Baker, M. A., A. Panda, N. Ghadge, A. Kadne and K. S. Chatha, “A Performance Model
and Code Overlay Generator for Scratchpad Enhanced Embedded Processors”, in “Pro-
ceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis”, CODES/ISSS ’10, pp. 287–296 (ACM, New York, NY,
USA, 2010), URL http://doi.acm.org/10.1145/1878961.1879011.

Banakar, R., S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel, “Scratchpad Mem-
ory: Design Alternative for Cache On-chip Memory in Embedded Systems”, in Banakar
et al. (2002b), pp. 73–78, URL http://doi.acm.org/10.1145/774789.774805.

Banakar, R., S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel, “Scratchpad
Memory: Design Alternative for Cache On-chip Memory in Embedded Systems”, in
“Proceedings of the Tenth International Symposium on Hardware/Software Codesign”,

102

CODES ’02, pp. 73–78 (ACM, New York, NY, USA, 2002b), URL http://doi.acm.
org/10.1145/774789.774805.

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill and
D. A. Wood, “The Gem5 Simulator”, SIGARCH Comput. Archit. News 39, 2, 1–7, URL
http://doi.acm.org/10.1145/2024716.2024718 (2011).

Bradley, S. P., A. C. Hax and T. L. Magnanti, Applied Mathematical Programming
(Addison-Wesley Publishing Company, 1977).

Buttazzo, G. C., Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications (Springer Publishing Company, 2011), 3rd edn.

Cai, J., Y. Kim, Y. Kim, A. Shrivastava and K. Lee, “Reducing Code Management Over-
head in Software-Managed Multicores”, in “Proceedings of the Conference on Design,
Automation and Test in Europe (To Appear)”, DATE âĂŹ17 (2017).

Cai, J. and A. Shrivastava, “Efficient Pointer Management of Stack Data for Software Man-
aged Multicores”, in “Proceedings of the International Conference on Application Spe-
cific Systems, Architectures and Processors (ASAP)”, (2016).

Cazorla, F. J., E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo and D. Maxim,
“PROARTIS: Probabilistically Analyzable Real-Time Systems”, ACM Trans. Embed.
Comput. Syst. 12, 2s, 94:1–94:26, URL http://doi.acm.org/10.1145/2465787.
2465796 (2013).

Chattopadhyay, S. and A. Roychoudhury, “Cache-Related Preemption Delay Analysis for
Multilevel Noninclusive Caches”, ACM Trans. Embed. Comput. Syst. 13, 5s, 147:1–
147:29, URL http://doi.acm.org/10.1145/2632156 (2014).

Cousot, P. and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints”, in “Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages”, POPL ’77, pp. 238–252 (ACM, New York, NY, USA, 1977), URL http:
//doi.acm.org/10.1145/512950.512973.

Cullmann, C., “Cache Persistence Analysis: Theory and Practice”, ACM Trans. Embed.
Comput. Syst. 12, 1s, 40:1–40:25, URL http://doi.acm.org/10.1145/2435227.
2435236 (2013).

Deverge, J.-F. and I. Puaut, “WCET-Directed Dynamic Scratchpad Memory Allocation of
Data”, in “19th Euromicro Conference on Real-Time Systems (ECRTS’07)”, pp. 179–
190 (2007).

Ding, H., Y. Liang and T. Mitra, “WCET-Centric Dynamic Instruction Cache Locking”,
in “2014 Design, Automation Test in Europe Conference Exhibition (DATE)”, pp. 1–6
(2014).

103

Egger, B., C. Kim, C. Jang, Y. Nam, J. Lee and S. L. Min, “A Dynamic Code Placement
Technique for Scratchpad Memory Using Postpass Optimization”, in “Proceedings of the
2006 International Conference on Compilers, Architecture and Synthesis for Embedded
Systems”, CASES ’06, pp. 223–233 (ACM, New York, NY, USA, 2006), URL http:
//doi.acm.org/10.1145/1176760.1176788.

Falk, H. and J. C. Kleinsorge, “Optimal Static WCET-aware Scratchpad Allocation of Pro-
gram Code”, in “Proceedings of the 46th Annual Design Automation Conference”, DAC
’09, pp. 732–737 (ACM, New York, NY, USA, 2009), URL http://doi.acm.org/
10.1145/1629911.1630101.

Falk, H. and H. Kotthaus, “WCET-driven Cache-aware Code Positioning”, in “Proceedings
of the 14th International Conference on Compilers, Architectures and Synthesis for Em-
bedded Systems”, CASES ’11, pp. 145–154 (ACM, New York, NY, USA, 2011), URL
http://doi.acm.org/10.1145/2038698.2038722.

Falk, H. and P. Lokuciejewski, “A Compiler Framework for the Reduction of Worst-case
Execution Times”, Real-Time Syst. 46, 2, 251–300, URL http://dx.doi.org/10.
1007/s11241-010-9101-x (2010).

Ferdinand, C., “Worst-case execution time prediction by static program analysis”, in “18th
International Parallel and Distributed Processing Symposium, 2004. Proceedings.”, p.
125âĂŞ127 (2004).

Ferdinand, C. and R. Wilhelm, “Efficient and precise cache behavior prediction for real-
time systems”, Real-Time Systems 17, 2, 131–181 (1999).

Gracioli, G., A. Alhammad, R. Mancuso, A. A. Fröhlich and R. Pellizzoni, “A Survey on
Cache Management Mechanisms for Real-Time Embedded Systems”, ACM Comput.
Surv. 48, 2, 32:1–32:36, URL http://doi.acm.org/10.1145/2830555 (2015).

Guan, N., M. Lv, W. Yi and G. Yu, “WCET Analysis with MRU Caches: Challenging
LRU for Predictability”, in “2012 IEEE 18th Real Time and Embedded Technology and
Applications Symposium”, pp. 55–64 (2012).

Gustafsson, J., A. Betts, A. Ermedahl and B. Lisper, “The Mälardalen WCET benchmarks
– past, present and future”, in Gustafsson et al. (2010b), pp. 137–147.

Gustafsson, J., A. Betts, A. Ermedahl and B. Lisper, “The Mälardalen WCET benchmarks
– past, present and future”, in “Proceedings of International Workshop on Worst-Case
Execution Time Analysis”, edited by B. Lisper, pp. 137–147 (OCG, Brussels, Belgium,
2010b).

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite”, in
“Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE Interna-
tional Workshop”, WWC ’01, pp. 3–14 (IEEE Computer Society, Washington, DC,
USA, 2001), URL http://dx.doi.org/10.1109/WWC.2001.15.

104

Huber, B., S. Hepp and M. Schoeberl, “Scope-Based Method Cache Analysis”, in “Pro-
ceedings of International Workshop on Worst-Case Execution Time Analysis”, vol. 39,
pp. 73–82 (2014).

Janapsatya, A., A. Ignjatović and S. Parameswaran, “A Novel Instruction Scratchpad
Memory Optimization Method Based on Concomitance Metric”, in “Proceedings of the
2006 Asia and South Pacific Design Automation Conference”, ASP-DAC ’06, pp. 612–
617 (IEEE Press, Piscataway, NJ, USA, 2006), URL http://dx.doi.org/10.1145/
1118299.1118443.

Johnson, R., D. Pearson and K. Pingali, “The Program Structure Tree: Computing Control
Regions in Linear Time”, in “Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation”, PLDI ’94, pp. 171–185 (ACM,
New York, NY, USA, 1994), URL http://doi.acm.org/10.1145/178243.178258.

Jung, S. C., A. Shrivastava and K. Bai, “Dynamic Code Mapping for Limited Local Mem-
ory Systems”, in “ASAP 2010 - 21st IEEE International Conference on Application-
specific Systems, Architectures and Processors”, pp. 13–20 (2010).

Kahle, J. A., M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer and D. Shippy,
“Introduction to the Cell Multiprocessor”, IBM J. Res. Dev. 49, 4/5, 589–604, URL
http://dl.acm.org/citation.cfm?id=1148882.1148891 (2005).

Kandemir, M. and A. Choudhary, “Compiler-directed scratch pad memory hierarchy design
and management”, in “Proceedings of the 39th Annual Design Automation Conference”,
DAC ’02, pp. 628–633 (ACM, New York, NY, USA, 2002), URL http://doi.acm.
org/10.1145/513918.514077.

Khedker, U., A. Sanyal and B. Karkare, Data Flow Analysis: Theory and Practice (CRC
Press, Inc., Boca Raton, FL, USA, 2009), 1st edn.

Kim, H., D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava and J. Oh, “A Predictable
and Command-level Priority-based DRAM Controller for Mixed-Criticality Systems”,
in “21st IEEE Real-Time and Embedded Technology and Applications Symposium”,
pp. 317–326 (2015).

Kim, H., D. De Niz, B. Andersson, M. Klein, O. Mutlu and R. Rajkumar, “Bounding
and Reducing Memory Interference in COTS-based Multi-core Systems”, Real-Time
Systems 52, 3, 356–395, URL http://dx.doi.org/10.1007/s11241-016-9248-1
(2016a).

Kim, S., “Using Scratchpad Memory for Stack Data in Hard Real-Time Embedded
Systems”, in “Memory Architecture and Organization Workshop, co-located with
ESWEEK”, (2011).

Kim, Y., D. Broman, J. Cai and A. Shrivastava, “WCET-Aware Dynamic Code Manage-
ment on Scratchpads for Software-Managed Multicores”, in “2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS)”, pp. 179–188 (2014).

105

Kim, Y., J. Cai, Y. Kim, K. Lee and A. Shrivastava, “Splitting Functions in Code Manage-
ment on Scratchpad Memories”, in “Proceedings of the 35th International Conference
on Computer-Aided Design”, ICCAD ’16, pp. 60:1–60:8 (ACM, New York, NY, USA,
2016b), URL http://doi.acm.org/10.1145/2966986.2967075.

Lee, E. A., “Cyber Physical Systems: Design Challenges”, in “Proceedings of the 2008
11th IEEE Symposium on Object Oriented Real-Time Distributed Computing”, ISORC
’08, pp. 363–369 (IEEE Computer Society, Washington, DC, USA, 2008), URL http:
//dx.doi.org/10.1109/ISORC.2008.25.

Li, F., M. Zhao and C. Xue, “C3: Cooperative Code Positioning and Cache Locking for
WCET Minimization”, in “2015 IEEE 21st International Conference on Embedded and
Real-Time Computing Systems and Applications”, pp. 51–59 (2015).

Li, Y.-T. S. and S. Malik, “Performance Analysis of Embedded Software Using Implicit
Path Enumeration”, in “Proceedings of the 32Nd Annual ACM/IEEE Design Automation
Conference”, DAC ’95, pp. 456–461 (ACM, New York, NY, USA, 1995), URL http:
//doi.acm.org/10.1145/217474.217570.

Liu, I., J. Reineke, D. Broman, M. Zimmer and E. A. Lee, “A PRET Microarchitecture
Implementation with Repeatable Timing and Competitive Performance”, in “2012 IEEE
30th International Conference on Computer Design (ICCD)”, pp. 87–93 (2012).

Liu, T., Y. Zhao, M. Li and C. J. Xue, “Task Assignment with Cache Partitioning and
Locking for WCET Minimization on MPSoC”, in “2010 39th International Conference
on Parallel Processing”, pp. 573–582 (2010).

Liu, Y. and W. Zhang, “Scratchpad Memory Architectures and Allocation Algorithms for
Hard Real-Time Multicore Processors”, Journal of Computing Science and Engineering
pp. 51–72, URL http://dx.doi.org/10.5626/JCSE.2015.9.2.51 (2015).

Lu, J., K. Bai and A. Shrivastava, “SSDM: Smart Stack Data Management for Software
Managed Multicores (SMMs)”, in “Proceedings of the 50th Annual Design Automa-
tion Conference”, DAC ’13, pp. 149:1–149:8 (ACM, New York, NY, USA, 2013), URL
http://doi.acm.org/10.1145/2463209.2488918.

Luenberger, D. G. and Y. Ye, Linear and Nonlinear Programming (Springer Publishing
Company, Incorporated, 2015).

Lundqvist, T. and P. Stenström, “Timing Anomalies in Dynamically Scheduled Micro-
processors”, in “Proceedings of the 20th IEEE Real-Time Systems Symposium”, RTSS
’99, pp. 12– (IEEE Computer Society, Washington, DC, USA, 1999), URL http:
//dl.acm.org/citation.cfm?id=827271.829103.

Metzlaff, S. and T. Ungerer, “Impact of Instruction Cache and Different Instruction Scratch-
pads on the WCET Estimate”, in “2012 IEEE 14th International Conference on High
Performance Computing and Communication 2012 IEEE 9th International Conference
on Embedded Software and Systems”, pp. 1442–1449 (2012).

Metzlaff, S. and T. Ungerer, “A comparison of instruction memories from the WCET per-
spective”, Journal of Systems Architecture 60, 5, 452–466 (2014).

106

Mittal, S., “A Survey of Techniques for Cache Locking”, ACM Trans. Des. Autom. Elec-
tron. Syst. 21, 3, 49:1–49:24, URL http://doi.acm.org/10.1145/2858792 (2016).

Montgomery, S. L., Guidelines for the Use of the C Language in Critical Systems (Motor
Industry Research Association, 2013).

Nguyen, N., A. Dominguez and R. Barua, “Memory Allocation for Embedded Systems
with a Compile-time-unknown Scratch-pad Size”, ACM Trans. Embed. Comput. Syst.
8, 3, 21:1–21:32, URL http://doi.acm.org/10.1145/1509288.1509293 (2009).

Oh, N., P. P. Shirvani and E. J. McCluskey, “Control-Flow Checking by Software Signa-
tures”, IEEE Transactions on Reliability 51, 1, 111–122 (2002).

Pabalkar, A., A. Shrivastava, A. Kannan and J. Lee, “SDRM: Simultaneous Determination
of Regions and Function-to-region Mapping for Scratchpad Memories”, in “Proceed-
ings of the 15th International Conference on High Performance Computing”, HiPC’08,
pp. 569–582 (Springer-Verlag, Berlin, Heidelberg, 2008), URL http://dl.acm.org/
citation.cfm?id=1791889.1791947.

Paolieri, M., E. Quiñones and F. J. Cazorla, “Timing Effects of DDR Memory Systems
in Hard Real-time Multicore Architectures: Issues and Solutions”, ACM Trans. Embed.
Comput. Syst. 12, 1s, 64:1–64:26, URL http://doi.acm.org/10.1145/2435227.
2435260 (2013).

Pitter, C. and M. Schoeberl, “A Real-time Java Chip-multiprocessor”, ACM Trans. Em-
bed. Comput. Syst. 10, 1, 9:1–9:34, URL http://doi.acm.org/10.1145/1814539.
1814548 (2010).

Plazar, S., J. C. Kleinsorge, P. Marwedel and H. Falk, “WCET-aware Static Locking of
Instruction Caches”, in “Proceedings of the Tenth International Symposium on Code
Generation and Optimization”, CGO ’12, pp. 44–52 (ACM, New York, NY, USA, 2012),
URL http://doi.acm.org/10.1145/2259016.2259023.

Prakash, A. and H. D. Patel, “An Instruction Scratchpad Memory Allocation for the Pre-
cision Timed Architecture”, in “Proceedings of the Conference on Design, Automation
and Test in Europe”, DATE ’12, pp. 659–664 (EDA Consortium, San Jose, CA, USA,
2012), URL http://dl.acm.org/citation.cfm?id=2492708.2492874.

Puaut, I. and C. Pais, “Scratchpad memories vs locked caches in hard real-time systems:
a quantitative comparison”, in “2007 Design, Automation Test in Europe Conference
Exhibition”, pp. 1–6 (2007).

Radio Technical Commission for Aeronautics Special Committee (152), Software Consid-
erations in Airborne Systems and Equipment Certification: B (RTCA, 1992).

Ramaprasad, H. and F. Mueller, “Bounding worst-case data cache behavior by analytically
deriving cache reference patterns”, in “11th IEEE Real Time and Embedded Technology
and Applications Symposium”, pp. 148–157 (2005).

107

Redd, B., S. Kellis, N. Gaskin and R. Brown, “The Impact of Process Scaling on Scratchpad
Memory Energy Savings”, Journal of Low Power Electronics and Applications 4, 3, 231,
URL http://www.mdpi.com/2079-9268/4/3/231 (2014).

Reineke, J., Caches in WCET Analysis: Predictability - Competitiveness - Sensitivity.,
Ph.D. thesis, Saarland University (2009).

Reineke, J., I. Liu, H. D. Patel, S. Kim and E. A. Lee, “PRET DRAM Controller: Bank
Privatization for Predictability and Temporal Isolation”, in “Proceedings of the Seventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis”, CODES+ISSS ’11, pp. 99–108 (ACM, New York, NY, USA, 2011), URL
http://doi.acm.org/10.1145/2039370.2039388.

Reineke, J., B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger and B. Becker,
“A Definition and Classification of Timing Anomalies”, in “6th International Workshop
on Worst-Case Execution Time Analysis (WCET’06)”, edited by F. Mueller, vol. 4 of
OpenAccess Series in Informatics (OASIcs) (Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2006), URL http://drops.dagstuhl.de/opus/
volltexte/2006/671.

Schoeberl, M., “Is Time Predictability Quantifiable?”, in “2012 International Conference
on Embedded Computer Systems (SAMOS)”, pp. 333–338 (2012).

Schoeberl, M. and C. Nielsen, “A Stack Cache for Real-Time Systems”, in “2016 IEEE
19th International Symposium on Real-Time Distributed Computing (ISORC)”, pp. 150–
157 (2016).

Shrivastava, A., A. Kannan and J. Lee, “A Software-only Solution to Use Scratch Pads
for Stack Data”, Trans. Comp.-Aided Des. Integ. Cir. Sys. 28, 11, 1719–1727, URL
http://dx.doi.org/10.1109/TCAD.2009.2030592 (2009).

Staschulat, J. and R. Ernst, “Worst case timing analysis of input dependent data cache
behavior”, in “18th Euromicro Conference on Real-Time Systems (ECRTS’06)”, pp. 10
pp.–236 (2006).

Steinke, S., N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan and P. Marwedel,
“Reducing Energy Consumption by Dynamic Copying of Instructions Onto Onchip
Memory”, in “Proceedings of the 15th International Symposium on System Synthesis”,
ISSS ’02, pp. 213–218 (ACM, New York, NY, USA, 2002a), URL http://doi.acm.
org/10.1145/581199.581247.

Steinke, S., L. Wehmeyer, B.-S. Lee and P. Marwedel, “Assigning Program and Data Ob-
jects to Scratchpad for Energy Reduction”, in “Proceedings of the Conference on Design,
Automation and Test in Europe”, DATE ’02, pp. 409– (IEEE Computer Society, Wash-
ington, DC, USA, 2002b), URL http://dl.acm.org/citation.cfm?id=882452.
874376.

Suhendra, V. and T. Mitra, “Exploring Locking & Partitioning for Predictable Shared
Caches on Multi-cores”, in “Proceedings of the 45th Annual Design Automation Con-
ference”, DAC ’08, pp. 300–303 (ACM, New York, NY, USA, 2008), URL http:
//doi.acm.org/10.1145/1391469.1391545.

108

Suhendra, V., T. Mitra, A. Roychoudhury and T. Chen, “WCET centric data allocation
to scratchpad memory”, in “26th IEEE International Real-Time Systems Symposium
(RTSS’05)”, pp. 10 pp.–232 (2005).

Suhendra, V., T. Mitra, A. Roychoudhury and T. Chen, “Efficient Detection and Exploita-
tion of Infeasible Paths for Software Timing Analysis”, in “Proceedings of the 43rd
Annual Design Automation Conference”, DAC ’06, pp. 358–363 (ACM, New York, NY,
USA, 2006), URL http://doi.acm.org/10.1145/1146909.1147002.

Udayakumaran, S., A. Dominguez and R. Barua, “Dynamic Allocation for Scratch-pad
Memory Using Compile-time Decisions”, ACM Trans. Embed. Comput. Syst. 5, 2, 472–
511, URL http://doi.acm.org/10.1145/1151074.1151085 (2006).

Um, J. and T. Kim, “Code Placement with Selective Cache Activity Minimization for Em-
bedded Real-time Software Design”, in “Proceedings of the 2003 IEEE/ACM Interna-
tional Conference on Computer-aided Design”, ICCAD ’03, pp. 197– (IEEE Computer
Society, Washington, DC, USA, 2003), URL http://dx.doi.org/10.1109/ICCAD.
2003.49.

Ungerer, T., F. J. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quiñones,
M. Gerdes, M. Paolieri, J. Wolf, H. CassÃĹ, S. Uhrig, I. Guliashvili, M. Houston,
F. Kluge, S. Metzlaff and J. Mische, “Merasa: Multicore Execution of Hard Real-Time
Applications Supporting Analyzability”, IEEE Micro 30, 5, 66–75 (2010).

Verma, M., L. Wehmeyer and P. Marwedel, “Dynamic Overlay of Scratchpad Memory
for Energy Minimization”, in “Proceedings of the 2Nd IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis”, CODES+ISSS ’04,
pp. 104–109 (ACM, New York, NY, USA, 2004), URL http://doi.acm.org/10.
1145/1016720.1016748.

Wan, Q., H. Wu and J. Xue, “WCET-aware Data Selection and Allocation for Scratchpad
Memory”, in “Proceedings of the 13th ACM SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, Tools and Theory for Embedded Systems”, LCTES ’12,
pp. 41–50 (ACM, New York, NY, USA, 2012), URL http://doi.acm.org/10.1145/
2248418.2248425.

Wang, C., C. Dong, H. Zeng and Z. Gu, “Minimizing Stack Memory for Hard Real-Time
Applications on Multicore Platforms with Partitioned Fixed-Priority or EDF Schedul-
ing”, ACM Trans. Des. Autom. Electron. Syst. 21, 3, 46:1–46:25, URL http://doi.
acm.org/10.1145/2846096 (2016).

Wehmeyer, L. and P. Marwedel, “Influence of Memory Hierarchies on Predictability for
Time Constrained Embedded Software”, in “Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 1”, DATE ’05, pp. 600–605 (IEEE Computer
Society, Washington, DC, USA, 2005), URL http://dx.doi.org/10.1109/DATE.
2005.183.

Whitham, J. and N. Audsley, “Implementing Time-predictable Load and Store Operations”,
in “Proceedings of the Seventh ACM International Conference on Embedded Software”,

109

EMSOFT ’09, pp. 265–274 (ACM, New York, NY, USA, 2009), URL http://doi.
acm.org/10.1145/1629335.1629371.

Whitham, J. and N. Audsley, “Optimal Program Partitioning for Predictable Performance”,
in “2012 24th Euromicro Conference on Real-Time Systems”, pp. 122–131 (2012).

Whitham, J. and M. Schoeberl, “WCET-Based Comparison of an Instruction Scratch-
pad and a Method Cache”, in “2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing”, pp. 301–308
(2014).

Wilhelm, R., J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat
and P. Stenström, “The Worst-case Execution-time Problem–Overview of Methods and
Survey of Tools”, ACM Trans. Embed. Comput. Syst. 7, 3, 36:1–36:53, URL http:
//doi.acm.org/10.1145/1347375.1347389 (2008).

Wu, H., J. Xue and S. Parameswaran, “Optimal WCET-aware Code Selection for Scratch-
pad Memory”, in “Proceedings of the Tenth ACM International Conference on Embed-
ded Software”, EMSOFT ’10, pp. 59–68 (ACM, New York, NY, USA, 2010), URL
http://doi.acm.org/10.1145/1879021.1879030.

Zhao, P. and J. N. Amaral, “Function Outlining and Partial Inlining”, in “Proceedings of the
17th International Symposium on Computer Architecture on High Performance Comput-
ing”, SBAC-PAD ’05, pp. 101–108 (IEEE Computer Society, Washington, DC, USA,
2005), URL http://dx.doi.org/10.1109/CAHPC.2005.26.

Zimmer, M., D. Broman, C. Shaver and E. A. Lee, “FlexPRET: A processor platform for
mixed-criticality systems”, in “2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS)”, pp. 101–110 (2014).

110

APPENDIX A

CACHE ANALYSIS

111

In our evaluations throughout this dissertation, we use our own implementation of the

de-facto standard static cache analysis algorithm for set associative caches with the least

recently used (LRU) replacement policy, first proposed by Ferdinand and Wilhelm (1999).

The original algorithm, however, has a bug that can lead to unsafe and underestimation

of the WCETs, which is caused by an overestimation of the capacity of set associative

caches (Cullmann, 2013). The bug is fixed by Cullmann (2013) recently, which is used in

a widely-used WCET analysis tool, aiT WCET Analyzer 1 and also in our implementation.

We give a brief introduction of the algorithm in this section.

Based on abstract interpretation (Cousot and Cousot, 1977), the algorithm constructs

an abstract representation of cache states before and after executing each instruction. It is a

fixed point algorithm such that the abstract cache states are calculated for every instruction

by visiting every basic block until the the abstract cache states do not change any more.

Algorithm 8 shows the overall procedure. For a basic block v, let I (v) denote the set

of instructions in v. The abstract cache states acs.in(v, i) and acs.out(v, i) represents the

cache state before and after executing instruction i in v, respectively. For each instruction

i ∈ I (v), we use addr (i) to denote the set of memory addresses accessed in i.

The algorithm consists of three analyses, called Must, May, and Persistence analy-

sis, and calls AnalyzeBB (shown in Algorithm 9) to perform these analyses at each basic

block. After performing an analysis, it categorizes each memory access as Always-Hits,

Always-Misses, or First-Misses. As the names suggests, a memory access is categorized

as Always-Hit if the access is guaranteed to never cause a cache miss. If the access occurs

in a loop and can be guaranteed to be a cache hit in every iteration after only one miss, it is

First-Miss. Otherwise, the access is categorized as Always-Miss.

1 AbsInt Angewandte Informatik GmbH, https://www.absint.com/ait

2 see Cullmann (2013) for the details.

112

Algorithm 8: Cache analysis
Input: Inlined CFG (G)

Output: Access Categorization (cat(v, i, a) for all v ∈ V , i ∈ I (v), and a ∈ addr (i))

1 Let acs be an empty cache state

2 repeat foreach v ∈ V do acs = AnalyzeBB(G, v, Must, acs)

until acs does not change any more

3 foreach v ∈ V do

4 foreach instruction i ∈ I (v) do

5 foreach address a ∈ addr (i) do

6 if acs.in(v,i) contains a then cat(v,i,a) = Always-Hit

else cat(v,i,a) = Not-Classified

7 repeat foreach v ∈ V do acs = AnalyzeBB(G, v, May, acs)

until acs does not change any more

8 foreach v ∈ V do

9 foreach instruction i ∈ I (v) do

10 foreach address a ∈ addr (i) that is cat(v,i,a) = Not-Classified do

11 if acs.in(v,i) does not contain a then cat(v,i,a) = Always-Miss

12 repeat foreach v ∈ V do acs = AnalyzeBB(G, v, Persistence, acs)

until acs does not change any more

13 foreach v ∈ V do

14 foreach instruction i ∈ I (v) do

15 foreach address a ∈ addr (i) that is cat(v,i,a) = Not-Classified do

16 if acs.in(v,i) contains a in a non-virtual line2 then cat(v,i,a) = First-Miss

Each analysis defines two operations: update and join. Update operation is executed for

each instruction in a basic block. It describes how the abstract cache state that corresponds

113

Algorithm 9: AnalyzeBB: perform cache analysis for a given basic block
Input: Inlined CFG (G), Basic Block (v), Analysis Mode (Mode), Current Abstract Cache

State (acs)

Output: Updated Abstract Cache State (acs)

function AnalyzeBB(G, v, Mode, acs)

1 acs.in(v, iv1) = acs.out(pv
1 , i(pv

1)1)

2 for k = 2 to |pred(v) | do

3 acs.in(v, iv1) = Join(acs.in(v, iv1), acs.out(pv
k
, i(pv

k
)1), Mode)

4 for k = 1 to |I (v) | do

5 foreach address a ∈ addr (iv
k
) do

6 acs.out(v, iv
k
) = Update(acs.in(v, iv

k
), a, Mode)

7 if k , |I (v) | then acs.in(v, iv
k+1
) = acs.out(v, iv

k
)

8 return acs

to the state after executing an instruction is updated given the set of memory addresses

that the instruction accesses. Join operation is, on the other hand, executed to calculate the

starting cache state for a basic block that has two or more predecessors. It describes how to

merge two incoming abstract cache states, each of which is the cache state after executing

the last instruction in a predecessor basic block. Join operation is thus used to calculate

the abstract cache state that corresponds to the state before executing the first instruction in

a basic block with multiple predecessors. Algorithm 9 shows function AnalyzeBB where

two operations are applied for a given basic block. For a basic v, pred(v) denotes the set of

114

its predecessors. Each predecessor is uniquely identified as pvk where 1 ≤ k ≤ |pred(v) |.

The k-th instruction in a basic block v is represented as ivk where 1 ≤ k ≤ |I (v) |.

In Cullmann (2013), the update and join operation for each analysis are precisely de-

fined. Algorithm 10 and 11 show an implementation of update and join operation, and for

brevity, we only show the implementation for Must analysis.

To update an abstract cache state acs with a new access to a in Must analysis, function

Update first looks up a in acs. If it is present in the most recently used line (age 0), there

is no change to be done for Must analysis. If it is present in the cache but not in the most

recently used line, the line that a resides (acs.line(h)) is merged with the line younger by

one (acs.line(h − 1)) and a is removed from the line. All lines younger than the line that

a used to reside now age by one. If a is not present in acs, all cache lines are aged by one,

which makes the least recently used line be flushed. The most recently used line becomes

to contain only one item with address a.

The join operation for merging two abstract cache state acsA and acsB in Must analysis

returns the abstract cache state that is a union of two. Thus, all items that are present either

in acsA or acsB remain in the resulting abstract cache state. The age of each item is set

by the maximum age between its age in acsA and acsB. The implementation for other

analyses is straightforward and similar to the one for Must analysis.

115

Algorithm 10: Update operation
Input: Abstract Cache State (acs), Address (a), Analysis Mode (Mode)

Output: Updated Abstract Cache State after Accessing address a (acs)

function Update(acs, a, Mode)

1 h = lookup (acs, a) // h is the age of a in its set, 0 being the most

recently used. If a is not present in acs, h = −1

2 switch Mode do

3 case Must

4 if h > 0 then // Cache hit

5 acs.line(h) = acs.line(h − 1) ∪ acs.line(h) // line h is

merged with line h − 1

6 acs.line(h) = acs.line(h) \{a} // remove a from line h

7 for l = h − 1 to 1 do

8 acs.line(l) = acs.line(l − 1) // line l ages by one

9 acs.line(0) = {a} // line 0 has only a

10 else // Cache miss

11 for l = associativity − 1 to 1 do

12 acs.line(l) = acs.line(l − 1) // line l ages by one

13 acs.line(0) = {a} // line 0 has only a

14 case May

15 see Cullmann (2013)

16 case Persistence

17 see Cullmann (2013)

18 return acs

116

Algorithm 11: Join operation
Input: Two Abstract Cache States (acsA and acsB), Analysis Mode (Mode)

Output: Updated Abstract Cache State after Accessing address a (acs)

function Join(acsA, acsB, Mode)

1 Let acs be an empty cache state

2 switch Mode do

3 case Must // Take a union with using the maximum age

4 for s = 0 to S − 1 do // S is the number of sets in acs

5 for l = 0 to associativity − 1 do

6 foreach address a in acsA.set(s).line(l) do

7 h = lookup (acsB, a)

8 if h > l then // age in acsB is older

9 add a into acs.set(s).line(h)

10 else

11 add a into acs.set(s).line(l)

12 case May

13 see Cullmann (2013)

14 case Persistence

15 see Cullmann (2013)

16 return acs

117

