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ABSTRACT 

The power system is the largest man-made physical network in the world. Performing 

analysis of a large bulk system is computationally complex, especially when the study 

involves engineering, economic and environmental considerations. For instance, running a 

unit-commitment (UC) over a large system involves a huge number of constraints and 

integer variables. One way to reduce the computational expense is to perform the analysis 

on a small equivalent (reduced) model instead on the original (full) model.  

The research reported here focuses on improving the network reduction methods so 

that the calculated results obtained from the reduced model better approximate the 

performance of the original model. An optimization-based Ward reduction (OP-Ward) and 

two new generator placement methods in network reduction are introduced and numerical 

test results on large systems provide proof of concept. 

In addition to dc-type reductions (ignoring reactive power, resistance elements in the 

network, etc.), the new methods applicable to ac domain are introduced. For conventional 

reduction methods (Ward-type methods, REI-type methods), eliminating external 

generator buses (PV buses) is a tough problem, because it is difficult to accurately 

approximate the external reactive support in the reduced model. Recently, the holomorphic 

embedding (HE) based load-flow method (HELM) was proposed, which theoretically 

guarantees convergence given that the power flow equations are structure in accordance 

with Stahl’s theory requirements. In this work, a holomorphic embedding based network 

reduction (HE reduction) method is proposed which takes advantage of the HELM 

technique. Test results shows that the HE reduction method can approximate the original 

system performance very accurately even when the operating condition changes. 
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1 

1 INTRODUCTION 

1.1 Overview 

Power system planning and operation on a large network is a complicated engineering 

problem. Recently, the growing concerns about economics and the environment have made 

the problem interdisciplinary and more complicated. For example, the Engineering, 

Economic, and Environmental Electricity Simulation Tool (E4ST) group of Cornell is 

focusing on the power system planning problem which not only considers the grid 

reliability but also pricing of the energy and emission of the NOx and SOx gases. Such 

problems, are complex to solve for a large-scale bulk system and require exponentially 

increasing large amounts of memory and computation time. Thus there exist the need to 

reduce the computational burden. 

Two main paths to reducing the computational burden are to 1) generate small 

equivalent networks to replace the original large networks (network reduction) and 2) 

simplify the problem by making assumptions or improving the algorithms. The first path 

is the focus of the dissertation. The second path is also a subject of ongoing research but is 

beyond the scope of this work. One of the most popular approaches of the second path is 

the dc approximation to the ac problem which simplifies the complex nonlinear power flow 

problem to a linear problem. 

1.2 Literature Review 

Network reduction methods are widely used in different studies. In this work, we focus 

on the reduction methods used in static analysis. Three major categories of network 
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reduction methods have been historically used: 1) the Ward-type methods, 2) the REI-type 

methods and 3) the PTDF-based methods.  

The Ward reduction was first proposed by J.B. Ward [1]. A Ward-type reduced network 

is generated by performing partial matrix factorization. During partial matrix factorization, 

the external buses are eliminated by Gauss elimination [2]. The equivalent model thus 

produced is often very dense and with high impedance branches. This is because the non-

zero fills in the factorized matrix create fictitious (or equivalent) branches in the reduced 

model and the value of the fills are equal to the branch admittances. Some of the fills have 

extremely small values, which implies that the corresponding equivalent branches have 

extremely high impedances. These high-impedance branches can be discarded with 

minimal impact on accuracy in order to reduce the density of the equivalent model proved 

the impedance threshold selected is sufficiently high. When PV buses are eliminated from 

the model, the predictions of the Ward equivalent may deviate far from the original model 

when the operating point changes. This is mainly due to the elimination of external PV 

buses. The voltage magnitude of the PV buses are given in the power-flow formulation and 

constrained in the calculations. To maintain the voltage magnitude at the specified value, 

reactive power is generated to support the bus voltage. When the operating point changes, 

the reactive power support from the PV buses is hard to approximate accurately which 

leads to the degradation in performance of the models produced by Ward-type and other 

conventional reduction methods. Two improved reduction methods were proposed to deal 

with the problem. The first improvement was the Ward-PV method, [3], [4], which retains 

all the external PV buses and eliminates the external load buses (PQ buses) only. This 

method bypasses all of the problems of eliminating PV buses and can accurately 
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approximate the original model performance over a broader range of operating conditions. 

However, when the number of PV buses is large, the reduced model is not small enough to 

reduce the computational burden significantly. Another method, the extended-Ward 

method, [3], [5]-[7], was derived to approximate the Ward-PV method. The main idea is 

to make the incremental response of VAr support close to the Ward PV method. This 

method adds one fictitious PV bus to every boundary PQ bus to provide reactive support. 

The fictitious PV buses are radially connected to the boundary PQ buses. 

Though Ward reduction can be performed in a relative simple way, one drawback is 

that it has to split the external generators and distribute them across the boundary buses. 

Two problems arise. First, for a boundary PQ bus, if fractions of external generators (PV 

buses) are distributed to it, the bus type is strictly neither PV nor PQ. Second, for optimal 

power-flow (OPF) studies, the generator fractions make the equivalents unusable. One way 

to solve the problems is to use to the REI reduction method and the other way is to keep 

the generators whole and to move/place the external generators at “appropriate” boundary 

buses.  

The REI (radial equivalent independent) was first introduced by P. Dimo [8] in 1975. 

It has been implemented and improved by many researchers [7], [9]-[13]. The REI 

equivalence is a bus-aggregation-based equivalencing technique. The general steps of REI 

require one to: 

1. Define the essential buses and non-essential buses. The non-essential buses are to be 

equivalenced. 

2. Group the non-essential buses into different study areas. 

3. Create a zero power balance network for each study area. 
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4. Eliminate all zero injection buses in all zero-power-balance networks via Gaussian 

elimination. 

The REI method groups the external buses instead of splitting them by constructing the 

zero-power balance network. It can avoid the problem of assigning boundary bus types. 

Unlike the Ward reduction, which generates a reduced network (topology and branch 

reactances) independent to the different operating conditions. The REI method is a hot start 

method, which needs the power-flow solution of the base case. As a result, the REI 

reduction has following two properties: 

1. The REI reduction is case dependent. The equivalent is created based on the base-case 

power-flow solution. 

2. At the base case the REI equivalent can perform exactly the same as the original system; 

however when the operating condition changes, the predictions become approximate, 

with the approximation growing worse the further the operating point moves from the 

base case. 

The property 2 above motivated researchers to develop the online calibrating methods 

so as to make the REI equivalent perform as close to the original system as possible in 

different operating conditions [9], [10]. An X-REI method was proposed in [10] and an S-

REI method was proposed in [9]. Both X-REI and S-REI methods enable online calibrating. 

The X-REI adds one calibrating bus to each of the zero–power-balance networks which 

updates the boundary bus power injection in accordance with the changes of the operating 

condition. The S-REI method solves an overdetermined problem (obtained from redundant 

real-time measurements, i.e., state estimation) to update the boundary power injections and 

applies system identification techniques to update the equivalent network parameters. 
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In addition, a critical factor of the REI method is the criteria used for grouping the 

external buses. In [9] and [11], theoretical studies were performed and strict criteria on bus 

grouping were proposed. However, the theoretical criteria are too strict and hard to 

implement in practical analysis. Some heuristic criteria are purposed in [10] and [13]. 

One new group of reduction methods, strictly applicable to only dc models, was 

proposed which are based on the power transfer distribution factors (PTDF) [14]-[16]. 

These methods focus on approximating the original system’s interactions between areas 

and generate the network equivalents using the following steps: 

1. Group all buses into different areas. 

2. Calculate the area PTDF of the original system. 

3. Represent each area as a fictitious bus and connect the adjacent areas with fictitious 

branches. Calculate the fictitious branch admittance. 

This method has proved to be useful in planning studies. However, several challenges 

need to be dealt with in the implementation. First, calculating the fictitious branch 

admittances involves solving an overdetermined homogeneous system. One can always 

find the trivial “all zeros” solution to the problem. To find a non-trivial solution, some 

techniques must be applied. In [14], the author iteratively found the cut nodes of the system 

and divided the original large system into several sub-systems. Then the problem was 

formulated based on the subsystems and each individual subsystem was solved separately. 

In [15], the author used the QR factorization method to solve the problem. It turns out the 

QR factorization is an effective way which not only can find the non-trivial solution but 

also reduces the computational memory requirements because it can find the most linearly 

independent rows and columns in the original problem. 
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For the studies based on dc-modeling assumptions, all three groups of equivalent 

methods can be applied. However, for ac-type studies, the fundamental assumptions in the 

derivation of the PTDF-based methods are violated. The reason is simple: in the ac scenario, 

the PTDF matrix is a function of operating point which means that at different operating 

points the PTDF matrices are different. This is due to the changes in the line losses.  

1.3 The Need for ac Model Reductions 

As introduced earlier, it is impractical to solve the complicated planning problem over 

a large system due to the high computational demand. Though the dc-assumption-based 

network reduction is desirable in many applications because of its simplicity [17], [18], a 

nonlinear ac model reduction, which is more computationally complex and more accurately 

models the system, is needed when the nonlinear features of the power system become 

important, such as for reactive power planning (RPP). For the RPP problem, which studies 

the placement and size of reactive power sources in the network to maintain voltage levels 

within appropriate ranges, the dc assumption, which assumes all voltage to be 1.0 pu, 

renders the formulation useless. Further, an RPP problem is a mixed-integer nonlinear 

programming (MINLP) problem which is of high computational complexity when applied 

to a large system; thus a reduced ac model is typically necessary. For example, in [21], and 

[22], a 17-bus equivalent model of the New Zealand power system was used to solve the 

RPP problem while incorporating the voltage stability constraints. In [23], the New 

England 39-bus system and a 2069-bus equivalent of the eastern-interconnection were used. 

Reduced-order ac models are also found to be useful for investment studies. For example, 

in [19], [20] a 46-bus and an 87-bus ac equivalent model of the Brazilian power system 
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were applied to the optimal investment problem. In [24], the authors show that the ac 

reduced model is also applied in online operations when the data of the external network 

is not available. 

1.4 Objective 

The network reduction work reported here focuses on three objectives: 1) Improve 

flexibility, 2) Improve robustness and 3) Improve accuracy. 

To improve flexibility, an optimization-based network reduction method (OPNR) is 

proposed. This method formulates an optimization problem which can be treated as a 

framework for a class of PTDF-based reductions. The objective function and constraints 

can be modified to generate different equivalents for different studies. It is shown in this 

work that OPNR can replicate the Ward reduction on large test systems (IEEE 118-bus 

system, IEEE 300-bus system). In addition, the method can improve the accuracy and 

sparsity pattern of the Ward reduction by appropriately compensating for the elimination 

of high impedance equivalent branches. 

Planning studies require running OPFs. Ward reduction splits the external generators 

into fractions and distributes them across (typically) a large fraction of the boundary buses, 

which adds computational complexity to OPF-type algorithms, which already have a high 

order of complexity. One way to solve the problem (albeit an approximate technique) is to 

move each of the external generators to one “appropriate” boundary buses. In this work, 

different generator placement methods are investigated. An important metric which can be 

used to evaluate a generator method is its robustness (defined more precisely later.) After 

placing the external generators in the reduced network, the reduced-model OPF may not 
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be feasible under certain operating conditions for which the full model OPF is feasible. The 

robustness is measured by the frequency of the occurrence of infeasibility on the reduced 

model. Compared to finding the optimal solution, achieving a feasible solution is more 

fundamental. Naturally, a basic requirement of the equivalent model is that a feasible 

solution exists when the original model has a feasible solution. It is shown in this work that 

the generator placement in the network reduction process can significantly affect power-

flow robustness. Three generator placement methods are proposed and: 1) the shortest-

electrical–distance-based method (SED), 2) the optimization-based generator placement 

method (OGP), 3) the minimum-shift-factor-change-based method (MIN-SF). Results of 

tests on large and existing systems (IEEE 118, ERCOT, WECC) are shown and discussed. 

One of the most fundamental and critical problems in power system analysis is solving 

the ac power-flow problem using reduced network equivalents. It is shown that the 

traditional reduction methods (e.g., Ward, REI) fail to yield accurate results when the 

operating condition changes. This is mainly due to two reasons. One is that the 

approximation to real and reactive power losses is inaccurate and the other one is that the 

external controlled reactive power generation is hard to approximate. In this work, a novel 

network reduction method, taking advantage of the holomorphic embedding (HE) 

technique is proposed. Results show that the HE equivalent yields superior results 

compared to the Ward-type or the REI-type methods. 
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2 GENERATOR PLACEMENT METHODS IN NETWORK REDUCTION 

2.1 Introduction 

In network reduction, after generating the reduced network, the next step is to place the 

external power injections: generators and loads. In this work, the goal is to find a generator 

placement method which can be integrated in the network-reduction process and yield good 

accuracy in terms of matching the full-model dc OPF results. In this work, the metrics used 

for accessing accuracy of matching the full-model dc OPF results are bus LMP, generation 

dispatch and the total cost. 

Placing external load is less complex than placing generators since a load does not have 

an “identity,” unlike generators which have individual real and reactive power limits and 

production cost curves. One can split the load and distribute the fractional load across the 

reduced network in order to match the branch flows in reduced model to those in the full 

model. A brief introduction of one method to distribute the load will be given in Section 

2.5. 

For planning or market studies conducted by the (E4ST) application, formerly known 

as the SuperOPF, generators need to be moved whole. It is impractical to use fractions of 

the external generators, which are generated in the traditional Ward reduction for at least 

two reasons. First, Ward reduction distributes the external generators to all boundary buses. 

This process will generate a huge number of fictitious generators in the reduced model. 

Consequently, in a large system where significant bus reduction takes place, there will be 

a large number of variables related to the splitting of the generators. Second, for each 

external generator, the power output of each fraction may not be scheduled independently 
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in the planning study. Outputs of fractions of one external generator must always hold a 

fixed proportional relationship and their sum must be constrained to operate within the 

generator’s capability. Consequently, there will be a large number of constraints involved 

in the dc OPF study related to the generator fractions. Thus a reduced model with generator 

fractions may be more complex the than the original model, defeating the purpose of 

network reduction. 

2.2 Shortest Electrical Distance (SED) Based Method 

One method for moving generators whole is known as the shortest electrical distance 

(SED) method. The SED method, [26], [30], moves each external generator to a boundary 

bus via the shortest path in terms of electrical distance. There are many definitions of 

electrical distance. Here the electrical distance of a path between two buses is the sum of 

impedances (reactance with dc assumptions) in that path. 

Internal System

G1 G2

i

k
j

1
2

 

Fig. 2-1 Example to show electrical distance 

As shown in Fig. 2-1, for generator G1 there are three possible paths to boundary buses: 

path 1 is from bus 1 to bus i, path 2 is from bus 1 to bus j and path 3 is from bus 1 to bus k 

via bus 2. The distance of path 1 and path 2 are same as reactance values of the lines 

connecting the two buses. For path 3, the path distance is the sum of the reactances of the 
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line connecting bus 1 and 2 and the line connecting bus 2 and k. The shortest path can be 

found using Dijkstra’s algorithm [33]. 

The SED method is an optimal method in terms of finding the minimum electrical 

distance. Its accuracy in terms of approximating the full-model dc OPF results will be 

studied and discussed in the following. 

2.3 Optimization Based Generator Placement (OGP) Method 

2.3.1 Formulation 

The OGP method places external generators on retained buses by solving an 

optimization problem. The formulation of the problem shares aspects of the dc OPF 

formulation as it is applied to the reduced model.  

Recall that for the dc OPF formulation, the LMP is influenced by two system features: 

the marginal energy cost, which is a function of the generation mix, and marginal 

congestion cost, which is a function of generator location (which may be thought of as a 

feature characterized by topology and branch parameters.) When producing a reduced 

equivalent the generation mix is fixed. Given that the topology and branch parameters of a 

network equivalent are also determined by Ward reduction, the only remaining free 

variables available to match the marginal congestion cost component of the LMP’s are the 

placement of generators, placement of the loads, or both, so that congestion in the full and 

reduced models is maintained. 

With the strategy mentioned above, formulation of the generator placement problem 

can be made by somewhat generalizing the dc OPF formulation applied to the reduced 
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model with binary variables added to specify generator placement. A set of new variables 

are introduced. 

,

1, if external generator is placed at internal bus

0, otherwisee

e

g k

g k
x


 


 

To balance power generation and consumption, the external load should be moved to a 

retained bus. In the OGP problem, each external load is also moved to one “appropriate” 

retained bus. Similar to moving generators, a set of binary variables is introduced: 

,

1, if load on external bus  is moved to retained bus

0, otherwisee

e

k k

k k
x


 


 

Since the new set of variables are binary, the optimization problem becomes a mixed 

integer programming (MIP) problem. The objective function can be written as 

  IEe
Jrj

f
reducedj

f
fulljj

GgGg

g

kk
g

kg KkKkPPWPPc
EeI

e

e
 



,,min ,,
,

,  (2-1) 

Two components are included in the objective function. The first component minimizes 

generation cost which maintains similarity between the OGP solution and the reduced-

model dc OPF solution. The second component minimizes the flow error on the retained 

congested lines between the full-model dc OPF solution and the OGP solution. In the 

second component, 
f

fulljP ,  is the line flow (MW) on branch j which is assumed to be a priori 

knowledge. Since line j is congested, the line flow is actually the same as the limit. As 

formulated, the OGP benefits from knowledge of the full model dc OPF results or the 

congestion profile in the full system.  

In the second component of (2-1), the parameter Wj  is the weight of line-flow error of 

the congested line j. It is important to assign an appropriate value to Wj. The effects of 
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different weight assignments will be discussed later in this chapter and a tentative strategy 

will be proposed. 

The constraints of the OGP formulation can be divided into four groups. The first group 

is the modified reduced-model dc OPF formulation: 

 
 

 
EeI

EGeg

eg

kek

Jij

f

j

Jij

f

j

l

iek

l

k

IGig

g

k
KkKkPPPkPPP 








 



,,0
,

,.)()(.,

,  (2-2) 

II
k

g
k

g
k

g KkGgPPP  ,,maxmin  (2-3) 

JjPPP f

j

f

j

f

j  ,maxmax  (2-4) 

  Jj,BP
tjfjj

f

j
  , (2-5) 

where KI and KE are the sets of internal and external buses respectively and jf and jt are 

the indices of the from and to end buses. 

The second group of the constraints are configured to assign external generators to 

retained buses: 

EeEeIkg
g

k

g

kk GgKkKkxPP
e

e

e

e

e
 ,,,,max,  (2-6) 

EeEeIkg
g

k

g

kk GgKkKkxPP
e

e

e

e

e
 ,,,,min,  (2-7) 

Ee

Kk

kg Ggx
I

e




,1,  (2-8) 

  IEekg KkGgx
e

 ,,1,0,  (2-9) 

Constraint sets (2-6) and (2-7) impose limits on the external generators. Constraint set 

(2-8) ensures that each external generator is moved to one and only one retained bus.  

A third group of the constraints assigns each external load to a retained bus: 
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EeIkk
l

k
l

kk KkKkxPP
eee

 ,,,,  (2-10) 





I

e

Kk
Eekk Kix ,1,  (2-11) 

  Eekk Kkx
e

 ,1,0,  (2-12) 

Constraint set (2-10) guarantees that the load at each external bus is moved to an 

“appropriate” retained bus. Note that after placing the external generators and loads by the 

OGP method, the load will be redistributed by running the inverse power flow illustrated 

in Section 2.5. 

In the objective function, (2-1), the second component involves calculation of the 

absolute value of line-flow errors. Calculation of the absolute value can be reformulated 

into linear expressions. The reformulation involves a set of variables t and also a group of 

constraints: 

rr

f

reducedj

f

fulljj JjPPt
rrr

 ,,,  (2-13) 

rr

f

reducedj

f

fulljj JjPPt
rrr

 ,,,  (2-14) 

Constraint sets (2-13) and (2-14) indicates that jt  is greater or equal to the absolute 

value of the line flow error. The objective function can be updated as: 

  EeI
Jrj

jj
GgGg

g

kk
g

kg KkKktWPPc
EeI

e

e
 



,,min
,

,  (2-15) 

As shown in (2-15), the OGP problem is a minimization problem and the weights are 

all positive. In the process of solving the problem, tj will be equal to the absolute value of 

the flow error. 
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Consequently, the OGP problem formulation includes the objective function (2-15) and 

constraints (2-2)-(2-14). 

2.3.2 Discussion on the OGP method 

2.3.2.1 Calculation complexity 

The number of binary variables needed in the formulation is equal to the number of 

external generators multiplied by the number of retained buses. As the system size grows, 

the number of binary variables will grow rapidly. Solving optimization problems on large 

scale power systems involves a large number of binary variables and constraints combining 

binary and non-integer variables. In these situations, common techniques like Lagrangian 

Relaxation [31] and Benders Decomposition [32] can be applied to reduce execution time. 

In the problem formulation, constraints (2-6)-(2-9) are imposed on every external generator 

individually and constraints (2-10)-(2-12) are imposed on every external load or buses 

individually. Only constraint (2-2) is imposed on all binary variables. A practical way to 

apply Lagrangian Relaxation and enable parallel computation is to dualize constraint (2-2) 

and then the problem can be solved by parallel computing with every sub-problem 

involving only one external generator or load bus. 

2.3.2.2 Weights of line flow error of congested lines 

In (2-15), value of weights Wj can significantly affect the accuracy. Tests presented in 

[30] show that large weights will make the OGP tend to focus more on minimizing the 

congested line flow error. This may result in small bus LMP errors but large generation 

dispatch errors [30]. 
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One strategy for assigning these weights is to use the value of the optimized Lagrange 

multiplier of the line-flow limit constraint (marginal flow gate price) for every congested 

line on the full model. In this way the weights on the congested lines will depend on the 

significance of the congested lines. 

2.4 The Minimum Shift Factor Change (Min-SF) Based Method 

In addition to the OGP method proposed in the previous section, a second generator 

placement strategy, the Min-SF, method is proposed. The Min-SF method assigns each 

external generator to a bus whose shift factor is closest to the shift factor of the external 

bus at which the external generator initially resided. The shift factor associate with a bus 

is defined as the vector of branch flows occurring due to an injection of 1 pu MW at that 

bus. Each column of a PTDF matrix is a shift factor. Fig. 2-2 shows the PTDF matrix and 

the column of shift factor of bus i inside the PTDF matrix. 

11 1 1

1

1

i n

j ji jn

m mi mn

  

  

  

 
 
 
 
 
 
  

Φ

iSF

 

Fig. 2-2 Shift factor and PTDF matrix 

The reasoning for using this approach is that, after moving the external generator to the 

retained bus, the change in the line flows on all branches in the reduced model is minimal. 
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If multiple generators share the same bus assignment in the original model, they will be 

moved to the same retained bus since these generators have the same shift factor. 

The Min-SF method requires three distinct steps in its implementation. The first step is 

to generate the full model PTDF matrix while being careful to select the reference bus iref 

as one of the external buses. The variable refr,i

iΦ  represesnts a column in the PTDF matrix 

corresponding to the chosen generator bus. The second step is to calculate the shift factor 

change between, ref

e

r,k

kΦ  and all other columns corresponding to retained buses, I

r,k

k K,kΦ ref  : 

1

ref

e

refref

e

r,k

k

r,k

k

r,k

k,k ΦΦΔΦ   (2-16) 

In this step, the superscript r indicates that the comparison only involves the rows that 

correspond to the retained lines. This second step needs to be repeated for each external 

generator bus. The third step is to find, for each external generator bus, the retained bus 

that has the minimum shift factor change. The generator will then be placed at that bus. 

2.5 Load Redistribution 

After placing external generators on retained buses, the load needs to be redistributed 

in order to match the full-model line flow solution. In this work, the load is redistributed 

by solving the inverse power flow [29]. 

For the dc power-flow problem, bus injections of the reduce model can be calculated 

as: 

reduceddbus,reduce

lg θBPP   (2-17) 
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where Pg and Pl are vectors of real-power generation (after placing the external generators) 

and load on all buses, respectively, dbus,reduceB  is the bus susceptance matrix of the reduced 

model and reducedθ  is the vector of bus voltage angles. 

The redistributed load can be calculated as: 

In (2-18), 
r

full
θ  is the vector of bus angles of retained buses given in the full model 

solution.  

2.6 Numerical Test Results 

The three aforementioned generator placement methods were tested on the IEEE 118-

bus system. The SED method and the Min-SF method were tested on the ERCOT and 

WECC system. The OGP method was not tested on the ERCOT and WECC system. The 

reason is explained in Section 2.6.2. 

2.6.1 Measurements of accuracy and robustness 

A good generator placement should lead to a reduced model that produces accurate 

LMP values and is robust in the sense that the reduced model has a feasible solution when 

the full model has a feasible solution. Three test metrics were chosen to measure accuracy 

and robustness in the numerical tests performed. The combined metrics show how well the 

reduced-model dc OPF results match the full-model dc OPF results.  The metrics chosen 

are as follows: 

r

fulldbus,reduce

gl θBPP   (2-18) 
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2.6.1.1 Error measurement 

Reduced model accuracy is measured in terms of the average bus LMP error ($/MWh) 

and the average energy cost (AEC, $/MWh) error. 

The average bus LMP error ($/MWh) is calculated as: 

N

LMPLMP

Error Ki

r
i

f
i

LMP








 (2-19) 

The AEC error ($/MWh) is calculated as: 







Ki

l

i

reducedfull

AEC
P

AECAEC
Error

 (2-20) 

where f
iLMP  and r

iLMP  are the LMP value of bus i in the full and reduced model 

respectively; K is the set of all buses; fullAEC  and reducedAEC  are the AEC obtained from 

the full and reduced-model dc OPF results, respectively. 

2.6.1.2 Robustness 

Since the load is redistributed after generator placement for all three methods, the 

reduced-model dc OPF is always feasible under the base case. However, when the 

operating point shifts, the reduced-model dc OPF may become infeasible. Tests will be 

conducted under different operating conditions to determine robustness. The robustness of 

each method is measured by counting and comparing the number of infeasible cases under 

varied loading conditions. A method with fewer infeasible cases will be regarded as more 

robust. 
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2.6.2 IEEE 118-bus system 

The IEEE 118-bus system was reduced to a 35 bus system in the test. Fig. 2-3 and Fig. 

2-4 show the diagrams of the original system and the reduced system respectively. 

 
Fig. 2-3 IEEE 118-bus system 

 

 
Fig. 2-4 Reduced model of IEEE 118-bus system (35 bus) 
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The system was divided into three zones shown in Fig. 2-5. The statistical data of the 

zones is shown in Table 2-1. The motivation for dividing the system was to provide more 

selective scaling of the loads so that different operating conditions which result in 

congestion may be easily created. 

 

Fig. 2-5 Zone division in IEEE-118 bus system 

Table 2-1 Statistics of Zones in IEEE 118 Bus System 

 
# of 

buses 

Total 

load 

(MW) 

Total 

load (%) 

# of 

generators 

Total capacity 

(MW) 

Total 

capacity 

(%) 

Zone 1 35 963 22.7 15 2576 25.8 

Zone 2 38 1670 39.4 16 3674.2 36.9 

Zone 3 45 1609 37.9 23 3716 37.3 

 

The original IEEE 118-bus system model does not include line limits. It is known that 

with no line congestion, the bus LMP’s will be identical across entire network. In that case, 



 

22 

comparing the average energy cost error is meaningless. Thus it is necessary to add limits 

to all the transmission lines. 

In this work, three different congestion levels are created by adding three different sets 

of line limits. The congestion levels are set as low (4%), medium (10%) and high (14%). 

The percentage in the parentheses is the percentage of congested branches out of all 

branches. 

The line limits are generated in three steps. First, the dc OPF is run on the system with 

no line limits. Second, using the dc OPF results, the limits on the Njr branches with the 

limits are set at 90% of the line-flow value obtained from the dc OPF solution. Here Njr is 

the number of congested branches. Other branch limits are set to be 120% of their line flow 

value obtained from the dc OPF solution. Third, the dc OPF is rerun on the system with 

the added line limits and the number of congested lines is checked. The total number of 

lines in the IEEE 118 bus system is 186. Table 2-2 shows the congestion profile data of the 

three congestion levels. 

Table 2-2 Three Congested Level Systems 

Njr Number of 

Congested Lines 

Percentage of 

Congested Lines 

Congestion Level 

10 7 4% Low 

20 19 10% Medium 

30 26 14% High 

 

The tests are performed for four different scenarios for every congestion level. The four 

different scenarios are generated based on different load scaling metrics. 
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Table 2-3 Test Scenarios 

Scenario Load scaled area 

1 Zone 1 

2 Zone 2 

3 Zone 3 

4 Entire system 

As shown in Table 2-3, Scenarios 1 to 3 only scale loads over a range of values in one 

zone and Scenario 4 scales the load in the entire system. Since load is redistributed by 

running an inverse power flow, there is no need to scale the load in the reduced model. 

The average LMP error comparison results are shown in the figures below. The 

horizontal axis is the load scaling factors. The vertical axis is the average LMP error 

($/MWh). If one generator placement method yields an infeasible solution under an 

operating condition, its curve is interrupted for such a condition. For example, in Fig. 2-6, 

the curve of OGP method has no value under load-scaling level from zero to 0.35 indicating 

the reduced-model dc OPF is infeasible under such operating conditions. 

The average LMP error comparison between the three placement methods in the four 

scenarios of the low-congestion-level system are shown in Fig. 2-6-Fig. 2-9. 
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Fig. 2-6 Average LMP error comparison of low congestion level IEEE 118-bus 

system (Scenario 1) 
 

 

 
Fig. 2-7 Average LMP error comparison of low congestion level IEEE 118-bus 

system (Scenario 2) 
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Fig. 2-8 Average LMP error comparison of low congestion level IEEE 118-bus 

system (Scenario 3) 
 

 

Fig. 2-9 Average LMP error comparison of low congestion level IEEE 118-bus 

system (Scenario 1) 
 

The average LMP error comparison between the three placement methods in the four 

scenarios of the medium congestion level system are shown in Fig. 2-10-Fig. 2-13. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

A
v
er

ag
e 

L
M

P
 e

rr
o

r 
($

/M
W

h
)

Load scale

Average LMP error comparison of low congestion level IEEE 118-

bus system (Scenario 3)

SED OGP MinSF

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
v
er

ag
e 

L
M

P
 e

rr
o
r 

($
/M

W
h
)

Load scale

Average LMP error comparison of low congestion level IEEE 118-

bus system (Scenario 4)

SED OGP MinSF



 

26 

 
Fig. 2-10 Average LMP error comparison of medium congestion level IEEE 118-bus 

system (Scenario 1) 
 

 

 
Fig. 2-11 Average LMP error comparison of medium congestion level IEEE 118-bus 

system (Scenario 2) 
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Fig. 2-12 Average LMP error comparison of medium congestion level IEEE 118-bus 

system (Scenario 3) 
 

 
Fig. 2-13 Average LMP error comparison of medium congestion level IEEE 118-bus 

system (Scenario 4) 
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The average LMP error comparison between the three placement methods for the four 

scenarios of the high congestion level system are shown in Fig. 2-14-Fig. 2-17. 

 

Fig. 2-14 Average LMP error comparison of high congestion level IEEE 118-bus 

system (Scenario 1) 
 

 
Fig. 2-15 Average LMP error comparison of high congestion level IEEE 118-bus 

system (Scenario 2) 
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Fig. 2-16 Average LMP error comparison of high congestion level IEEE 118-bus 

system (Scenario 3) 
 

 
Fig. 2-17 Average LMP error comparison of high congestion level IEEE 118-bus 

system (Scenario 4) 
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The SED method has a high probability of yielding infeasible cases or of yielding very 

large LMP errors. The OGP method, yielded more infeasible cases then the other two 

methods. The Min-SF methods was (on average) more accurate than the other two methods, 

taking account of all operating conditions.  

Fig. 2-18-Fig. 2-20 show the AEC error comparisons for all congestion levels where 

all generator placement methods yielded OPF solutions which were feasible. 

 

Fig. 2-18 4% Congestion Level AEC error with all placement yield feasible cases 
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Fig. 2-19 10% Congestion Level AEC error with all placement yield feasible cases

 

Fig. 2-20 10% Congestion Level AEC error with all placement yield feasible cases 

A comparison of the AEC errors for the three different congestion levels over all 

scenarios shows that the SED method performed better than the OGP and Min-SF methods.  
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Fig. 2-21-Fig. 2-23 show the number of infeasible cases with different congestion 

levels for all scenarios. 

 

Fig. 2-21 Number of infeasible cases with 4% congestion level system 

 

Fig. 2-22 Number of infeasible cases with 10% congestion level system 
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Fig. 2-23 Number of infeasible cases with 14% congestion level system 

As shown in Fig. 2-21-Fig. 2-23, (with load redistribution,) all methods yielded feasible 

cases under the base-case operating point, however, feasibility is not guaranteed when the 

operating point shifts. The Min-SF method is the most robust method since this method 

had the highest percentage of cases (tested here) with feasible solutions. The OGP method 

is less robust than the Min-SF method however it is more robust than the SED method. 

The tests on the IEEE 118-bus system showed that the OGP method is less robust and 

less accurate than the Min-SF method. Compared to the SED method, the OGP method did 

not show advantages in terms of both accuracy and robustness. Moreover, for large systems 

the memory requirement is high. As a result, the OGP method was not tested on the ERCOT 

and the WECC systems in the numerical results that follow. 
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2.6.3 ERCOT system 

The original full ERCOT system is a 5633 bus model. The detailed statistics of the full 

model are shown in Table 2-4. 

Table 2-4 Statistics of the ERCOT Full model 

Number of buses 5633 

Number of branches 7053 

Number of generators 687 

Total load (MW) 72824.36 

 

The statistics of the reduced model of the ERCOT system are shown in Table 2-5. 

Table 2-5 Statistics of the ERCOT Reduced Model 

Number of buses 389 

Number of branches 1658 

Number of generators 687 

Total load (MW) 72824.36 

 

The tests on ERCOT were performed using operating conditions obtained by uniform 

load scaling across the entire system. The cases, in which the full-model dc OPF is 

infeasible, were eliminated from the test set. The full-model dc OPF had feasible solutions 

when the load was uniformly scaled between 50% and 110% of base-case load. The 

average LMP error is shown in Table 2-6. 
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Table 2-6 ERCOT Test Results of Average LMP Error 
 

Load Scale (%) 

Average LMP Error ($/MWh) 

SED Min-SF 

50 <0.01 <0.01 

60 0.41 0.41 

70 0.41 0.41 

80 0.39 0.39 

90 2.49 1.90 

100 2.30 2.28 

110 9.78 9.77 

 

The AEC error is shown in Table 2-7. 

Table 2-7 ERCOT Test Results of AEC Error 

Load Scale (%) 

AEC Error ($/MWh) 

SED Min-SF 

50 3.19E-15 1.60E-14 

60 0.03 0.01 

70 0.04 0.04 

80 0.06 0.07 

90 0.13 0.15 

100 0.26 0.31 

110 0.47 0.54 
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As shown in Table 2-6 and Table 2-7 the Min-SF method yielded better accuracy in 

terms of bus LMP than the SED method. The SED method yielded better AEC accuracy 

for some operating conditions. The advantage of the Min-SF method over the SED method 

was small. One reason is that, on most of the branches, the power flows were significantly 

lower than the branch-flow limits. For example, in the base case only 12 out of 7053 

branches are congested.  

The reduced-model dc OPF with the SED and the Min-SF methods were feasible under 

all operating conditions. The robustness of the two methods in these tests was identical 

because the line flows were far from the branch-flow limits. To further test the robustness 

performance, another set of tests were performed with reduced line limits. The line ratings 

were set to 85.6% of the original ratings. For this series of six test scenarios, the dc OPF of 

the reduced model with the SED method was infeasible in every scenario while for the 

Min-SF method, all scenarios were feasible. This indicates that the Min-SF method is more 

robust at times than the SED method, which is the same conclusion reached from the test 

results from the IEEE-118 bus system. 

2.6.4 WECC system 

The WECC system statistics are shown in Table 2-8. The reduced-model statistics are 

shown in Table 2-9. 
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Table 2-8 Statistics of the WECC Full Model 

Number of buses 16796 

Number of branches 20280 

Number of generators 3281 

Total load (MW) 1.74E+5 

 

Table 2-9 Statistics of the WECC Reduced Model 

Number of buses 2273 

Number of branches 4433 

Number of generators 3281 

Total load (MW) 1.74E+5 

 

The test on the WECC system were performed and the same metrics (as applied on the 

ERCOT tests) were used to assess performance. On the WECC system, the full model dc 

OPF was feasible when load was uniformly scaled between 25% and 100% of base-case 

load. The average LMP error and the AEC error results are shown in Table 2-10 and Table 

2-11, respectively. 
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Table 2-10 Average LMP Error Results of WECC 

Load Scale (%) 
Average LMP Error ($/MWh) 

SED Min-SF 

30 1.39E-14 3.33E-14 

40 2.23E-8 2.43E-9 

50 1.22 1.22 

60 1.06 1.05 

70 1.99 1.98 

80 2.53 2.52 

90 4.51 3.77 

100 3.51 3.32 

 

Table 2-11 AEC Error Results of WECC 

Load Scale (%) 
AEC Error ($/MWh) 

SED Min-SF 

30 1.25E-14 2.33E-14 

40 4.37E-14 1.33E-13 

50 0.01 0.01 

60 0.04 0.04 

70 0.05 0.05 

80 0.06 0.06 

90 0.12 0.12 

100 0.15 0.15 

 

In terms of the average LMP error, the Min-SF method performed better than the SED 

method though the advantage is very small. The AEC error yielded by the two methods 

were almost the same. 
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2.7 Conclusions 

On the lightly congested systems tested here, the performance of the Min-SF method 

and the SED method were very close. On a tightly constrained system, the Min-SF method 

is superior to the SED method in terms of the robustness. 
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3 THE OP-WARD REDUCTION 

3.1 Taxonomy of Network Reduction Methods 

For large scale system problems, it is sometimes hard or even impossible to perform 

analysis or simulations on the full-system model. A reduced “equivalent” model of the 

original full model is often used. However, the reduced equivalent used is rarely exactly 

equivalent: a reduced model may be accurate for one study purpose but inaccurate for 

others. Thus, it is crucial for a researcher to decide which reduction method is required 

based on the study purposes. 

Reduction

Linear
Non-linear

Matrix Factorization Based* REI Based

PF OPF

Linear tunning

Contingency 
analysis

Operation
Security Analysis

ANN*** based

*** ANN: Artificial 
Neural Network

Regression based**

Non-linear tuning

PFPFPF

Contingency 
analysis

Operation 
Security Analysis

* Including All 
variation of Ward 

reduction

Market

OPF

Market

OPF OPFPF OPF

Market
Operation 

Security Analysis
Operation 

Security Analysis

** Including PTDF 
based method

Operation
Security Analysis

Aggregation based

PTDF based

Various Various

 

Fig. 3-1 Taxonomy of network reduction 

 

There have been many reduction methods developed. Fig. 3-1 shows a taxonomy of 

network reduction methods. An inevitable question for researchers is how to determine the 

best method for their purpose, taking into account the accuracy and complexity of 
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calculation. An attractive idea is to generate a unified method or framework that can 

combine all major methods and allow the user to then tailor the reduction method to their 

needs. 

3.2 Optimization Based Ward Reduction (OP-Ward) Method 

Historically, a Ward equivalent model is generated by matrix factorization [2] which 

provides the topology, fictitious branch reactance and generator injections at each 

boundary bus. Rather than using matrix factorization, a different approach is to structure 

the Ward reduction as an optimization problem. If this optimization approach is successful 

in duplicating Ward reduction, the next step would be to determine if such an optimization 

based approach could be generalized to include different variants of the Ward method and 

variants of the bus aggregation based methods [14]-[25]. The most significant advantage 

of an optimization-based Ward reduction method is that it is flexible, allowing users to 

modify the objective function and constraints according to their needs. One implementation 

is to use the OP-Ward to improve the accuracy and sparsity pattern of the Ward reduction 

while eliminating high-impedance branches created by the Ward reduction. 

Ward reduction performs two operations seamlessly. It performs the network 

reduction/equivalencing calculation at the same time it parcels generation to guarantee that 

the reduced network’s boundary conditions match those of the full network should it be 

“cut” at the boundary buses. Modified Ward reduction handles boundary condition 

matching in various ways [6], [13] and [26]. The idea of the OP-Ward method is to handle 

the network reduction and boundary condition matching separately. The first step is to 

duplicate the reduced network (equivalent to that of Ward reduction) but using an 
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optimization-based method. The second step is to perform boundary matching, including 

generator placement. 

Two factors need to be determined to generate the reduced network. One is to determine 

the topology and the other one is to calculate the network parameters or the equivalent-

branch reactance values.  

3.2.1 Topology of the reduced network 

The topology of the reduced network can be determined without performing any 

numerical calculations. Only symbolic calculations are needed. It is well known that in 

Ward reduction if one bus is eliminated, equivalent lines will be created to interconnect 

buses adjacent to the bus that was removed. In other words, during Ward reduction, once 

an external bus is eliminated, an equivalent branch will be created interconnecting all of its 

neighboring buses. Fig. 3-2 shows the common “wye-delta” conversion, which can be 

regarded as a reduction process that eliminates the “star” point bus in the wye connection. 

The dashed lines in Fig. 3-2 are the equivalent lines created in the reduction process which 

together with the retained buses construct a complete graph. Calculating the topology of a 

reduced network may be handled using a simple symbolic calculation that is well known. 

1

2 3

1

2
3

4  

Fig. 3-2 Wye-Delta conversion 
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With the pre-defined topology of the reduced network obtained from symbolic 

calculations, we can create the node-branch incidence matrix, rC , of the reduced model in 

which an element in row j and column i ( ),( ijrC ) is 1 or -1 if and only if branch j connects 

bus i, otherwise the element is 0. The sign depends on the assumed flow direction. The bus 

admittance matrix, busB , and branch admittance matrix, branchB , with variables representing 

the equivalent lines admittance values can be derived: 

  r

T

rbus CYdiagCB   (3-1) 

rbranch diag(Y)CB   (3-2) 

where the vector Y includes variables of admittances of the equivalent lines 

( reducednmBnmii JiiKiiy
nm

 ),(,,, , BK  is the set of boundary buses, reducedJ  is the set of 

branches in the reduced model) and values of the admittances of retained lines and the 

matrix diag(Y) is a diagonal matrix whose diagonal elements are the variables of the 

equivalent branch reactances and the values of the admittances of the retained branches.  

3.2.2 Calculate the reactance value of the equivalent lines 

It is well known from Ward reduction that the branch-admittance values of the branches 

spanning the internal buses or spanning an internal and a boundary bus (internal branches) 

remain unscathed by the reduction process. Hence the rows corresponding to the internal 

branches in the branch-admittance matrices of the full model and the reduced model are 

the same. In this work, superscript r indicates the sub-matrix that only includes data 

pertaining to the retained branches and retained buses. A schematic of a PTDF matrix is 

shown in Fig. 3-3: 
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Fig. 3-3 Sub-matrix Φr in the full branch admittance matrix Φfull 

In fact, in the PTDF matrix, fullΦ , the submatrix corresponding to the retained lines and 

retained buses (Φr , shown as red blocks in Fig. 3-3) remains unchanged after Ward 

reduction. Based on the two aforementioned properties, we can derive the objective 

function of the optimization problem: 

p

r

reduced

r

full ΦΦ min  
(3-3) 

Using traditional dc-modeling assumptions, the real-power injection at every bus can 

be calculated as: 

θBP businj   (3-4) 

where Pinj is a vector which includes the real-power injections at all buses, Bbus is the bus-

admittance matrix and θ is the vector of bus-voltage angles.  

Branch flow in the network can be calculated as: 

θBP branchf   (3-5) 

where Pf  is a vector which includes the real-power flows on all branches. 

The PTDF matrix (Φ ) describes the relationship between bus-power injection and 

branch power flow: 

Retained branches 

Retained buses 
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injf ΦPP   
(3-6) 

Thus combining equations (3-4)-(3-6) we can calculate the PTDF matrix as: 

1 busbranch BBΦ  (3-7) 

With variables representing the equivalent branch admittances, the symbolic form can 

be written as: 

  1
 r

bus

r

branch

r

reduced BBΦ  (3-8) 

Both (3-3) and (3-8) involve a symbolic inverse of the bus-admittance matrix in which 

the reactance of each equivalent line is a variable. As the system size grows, the problem 

quickly becomes unwieldy. Based on (3-8), the symbolic expression of the branch-

admittance matrix can be written as: 

r

bus

r

full

r

branch BΦB   (3-9) 

Based on (3-9) the objective function can be rewritten as: 


 


r

I

ref

Jj Ki
p

ir

jibranchB
,

,,min  (3-10) 

where i is the column index corresponding to bus i¸ iref is the index of the reference bus, j 

is the row index corresponding to branch j, rJ  is the set of indices of the retained branches, 

and IK  is the set of indices of retained buses. 

p

r

bus

r

full

r

lbranch,ful BΦBΔBranch   (3-11) 

Observe that this is an unconstrained minimization problem which is easy to solve. 

Note that in (3-11) the subscript p indicates the type of norm used in the problem. If p=1, 

the objective is minimizing the sum of absolute value of the mismatches between the 

elements in the submatrix (denoted with superscript r) of the unreduced and reduced 
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models. With p=1, this problem can be reformulated as a linear-programming problem. If 

p=2, the problem is minimizing the sum of square values of the errors. The problem 

becomes a least-squares problem. 

Equation (3-11) can be rewritten as shown in (3-12) from which one can understand 

the structure of the formulation more clearly, 

by 
iy

min
 

(3-12) 

where  
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

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(3-13) 
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(3-14) 

and where C  is the branch-node incidence matrix of the reduced model; N is the number 

of buses in the reduced model; y is the vector of the equivalent line susceptances; yi is the 

ith element in the y vector; bi is the ith column in the partial branch susceptance matrix 

corresponding to the retained buses and branches.; The dimension of   is   retainedLN 1  

by Leq where Lretained and Leq are the number of retained and equivalent branches, 

respectively. 
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3.3 Rank Deficiency Problem 

The aforementioned formulation was tested on various systems and reduction cases. In 

some pathological cases, the calculated equivalent branch reactance values differed from 

the equivalent line reactance values calculated from partial LU factorization. It was found 

that the   matrix was rank deficient in such cases.  

3.3.1 Pattern of the pathological cases 

3.3.1.1 Star-mesh conversion 

The origin of the rank deficiency problem is illustrated by the following example. The 

star-mesh conversion eliminates the “star point” bus and creates a full graph among the 

adjacent buses. In Ward reduction, which eliminates buses consecutively, the elimination 

of one bus is conducted by doing a star-mesh conversion. In other words, the star-mesh 

conversion is a fundamental and quantum step of the Ward reduction. 

A five-bus star-mesh conversion is shown in Fig. 3-4 (the wye-delta conversion shown 

in Fig. 3-2 is also a star-mesh conversion.) 

A

B C

D A

B C

D

E
 

Fig. 3-4 Five-bus star-mesh conversion 

 

Consider the Ward reduction case of eliminating bus E in Fig. 3-4. No physical 

branches are retained in the reduced model; all branches are fictitious. While there is no 
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problem applying partial LU factorization to generate the reduced network, the OP-Ward 

is based on an optimization formulation, rather than partial matrix manipulation. Note that 

in this case, the matrix rPTDF  is a null matrix in the OP-Ward formulation and the   

matrix in (3-13) is consequently also a null matrix.  

3.3.1.2 Conditions of pathological cases 

The star-mesh conversion in the small system reported above is a special pathological 

case. In fact, it is very rare in an implementation that no branch is retained. However, even 

if some physical branches are retained, the rank deficiency problem still can and does 

occur. A general description of the patterns of the pathological cases are discussed as 

follows. Note these patterns include the star-mesh conversion. 

To make the introduction clearer, consider the modified IEEE 14-bus system as an 

example. The topology of the 14-bus system is shown in Fig. 3-5. Define a radial loop as 

part of the network which is connected to the rest of the network via one bus referred to as 

a “semi-radial” bus. For example, each part of the network in the red circle is a radial 

“loop”. Bus 4, 9 and 7 are the semi-radial buses of Loop 1, Loop 2 and Loop 3. Note that 

the semi-radial loop is same as the cut-node introduced in [14]. 

1 5

2

3

4 9

7

8

10 11

6

121314

Loop 1

Loop 2

Loop 3

 
Fig. 3-5 Topology of the modified IEEE 14-bus system 
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In general, two topology conditions lead to the rank-deficiency problem: 

Topology condition 1: There are radially connected buses or radial loops in the original 

network. 

Topology condition 2: If, during a traditional Ward reduction, an equivalent branch is 

generated which interconnects two different radial loops/radially connected buses. 

To illustrate these conditions, consider two reduction cases:  

Case 1: Eliminate bus 2.  

Case 2: Eliminate bus 9.  

Eliminating bus 2 using Ward reduction will create equivalent branches 

interconnecting buses within Loop 1 thus, Condition 2 is not satisfied and   is of full rank. 

For Case 2, eliminating bus 9 will create three equivalent branches which interconnect 

buses 4, 10 and 14 (in delta form.) Two of these branches are interconnecting radial Loop 

1 and radial Loop 2. By Condition 2, this case will (and does) produce the rank deficiency 

problem. 

3.3.2 Remedy to the problem 

The star-mesh conversion problem reveals that some reduction cases retain no branches 

therefore, the OP-Ward is not usable. A method to solve this problem is to add pseudo 

branches in the original network [30].  

Fig. 3-6 shows the same star-mesh conversion as shown in Fig. 3-4 but with added 

pseudo branches shown as green lines. As one can see, the reduction case which eliminates 

bus E now retains two pseudo branches and the OP-Ward reduction can be formulated 

based on these two retained branches. 
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Fig. 3-6 Five bus star-mesh conversion with pseudo branches 

3.3.2.1 Brute-Force Approach 

Two heuristic guidelines were used for constructing a brute-force approach for adding 

pseudo branches to obtain a  matrix of full rank. 

1). The added pseudo branches must not change the reduced network topology or 

change the reactance value of the equivalent branch from what it would be without the 

pseudo branches . 

2). The added pseudo branches must solve the rank deficiency problem. 

To satisfy the first guideline, the pseudo branch must interconnect only the boundary 

buses.  

To satisfy the second guideline, the number of pseudo branches must be sufficient in 

number to eliminate the rank deficiency problem. A brute-force approach (BFA) based on 

this heuristic is to add one pseudo branch parallel to every equivalent branch.  

While this strategy is guarantee to solve the problem, it will significantly increase the 

complexity of the calculation by increasing the dimension of the Λ matrix. It is desirable 

to find a minimum set of pseudo branches needed to minimize the complexity. Next, an 

improved strategy is introduced for finding what is hoped is a near minimum set of pseudo 

branches. 
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3.3.2.2 Minimum Set Selection Strategy (MSSS) 

The MSSS is based on QR factorization [33], [34]. This strategy is an iterative method 

used to identify the location of pseudo-branches needed to maintain the full rank of the Λ 

matrix. In this approach, rank-revealing QR factorization is used to identify the subset of 

the most linearly independent columns of the Λ matrix. The remaining, linearly dependent 

columns, each of which corresponds to a fictitious/equivalent branch, identify the location 

where pseudo-branches need to be added. Consider an m-by-n Λ matrix (m>n) and rank(Λ) 

= k < n. The use of QR factorization with column pivoting can find the k linearly-

independent columns and also the (n-k) linearly-dependent columns. Since each column in 

the Λ matrix corresponds to an equivalent branch, there will be (n-k) equivalent branches 

which are linearly dependent. In parallel with one of the (n-k) equivalent branch we add a 

pseudo branch in the original network and recalculate the Λ matrix. If the new Λ is rank 

deficient, we repeat the above steps by performing QR factorization with column pivoting 

and then add another pseudo branch to the original network. We repeat these steps until the 

Λ matrix is of full rank. Since the number of rows is usually significantly greater than the 

number of columns in the Λ matrix, it is more efficient to perform QR factorization on the 

(ΛTΛ) matrix than on the Λ matrix.  

The MSSS is tested and the test results are introduced in section 3.6. 

3.4 Improve Ward Reduction 

Clearly, using the OP-Ward approach is more computationally complex than using 

traditional Ward reduction however it conveys certain advantages. For example, this 

process can be used to improve Ward reductions that are used in practice as follows. 
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Typically, a Ward reduction creates a dense reduced model. One way to improve the 

sparsity pattern of the reduced model is to eliminate the high-reactance equivalent branches. 

Setting the high-reactance threshold value of the high-reactance equivalent branches to be 

eliminated is a tradeoff between accuracy and sparsity. If the threshold is too large, then 

eliminating the high reactance branches cannot effectively improve the sparsity pattern. If 

the threshold is too small, the reduced model will not match the original model accurately. 

With the OP-Ward method, one can eliminate the equivalent branches by constraining 

their susceptances to be equal to zero in the optimization formulation. In this case, the OP-

Ward problem is formulated as (3-15) and (3-16), 

by min  (3-15) 

s.t. 

 iy iw ,0,  (3-16) 

where Ψ is the set of all equivalent branches to be eliminated from the reduced model. The 

reduction is then a two-step process. First, traditional Ward could be used to identify all 

high reactance equivalent branches and assign them to the set Ψ. The second step is to solve 

(3-15) and (3-16) with the pre-defined Ψ, yielding the optimal susceptance values of all 

retained equivalent branches. Compared to the conventional method which directly 

eliminates the high reactance equivalent branches, the OP-Ward is more accurate in terms 

of matching the branch flows over a range of operating conditions, as will be shown later. 

Solving (3-15) and (3-16) does not require using a constrained optimization solver. One 

can simply eliminate the columns in the Λ matrix which corresponding to the variables in 

Ψ. Denote the updated Λ matrix as Λ0. The solution is calculated as (3-17). 
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 (3-17) 

3.5 A Unified Framework of dc Network Reduction 

3.5.1 Inter-zonal reduction 

In references [14]-[16], the inter-zonal reduction was introduced. The inter-zonal 

reduction aggregates all buses into the respective zones. The topology of the reduced 

network is pre-defined based on the original model topology. The equivalent branch 

reactances are calculated by solving an optimization problem formulated (3-18),  

    r
eq

r
eqT

rr
y

CydiagCydiagCPTDF
eq intint
int

min   (3-18) 

where 
eq

yint  is the vector of the equivalent branches susceptances. 

The derivation of the reduced-model PTDF matrix PTDFr is based on (3-19) and (3-20), 

injflowinjinjr PPTDFPPTDF   (3-19) 

  1
 T

injinj
T
injflowr PTDFPTDF  (3-20) 

where inj  is the matrix which sums the power injections of buses into different zones; 

flow  is the matrix which sums the branch flows in the original network into the inter-zonal 

branch flows. In (3-19), both sides calculate the inter-zonal branch flows. In (3-20), the 

PTDFr matrix is calculated. The dimension the matrix inj is NzonesNb where zonesN  is the 

number of zones in the network is. Since inj  is not a square matrix, calculation of 
r  is 

an over-determined problem. 

To find the non-trivial solution one needs to add constraints, shown in (3-21), 
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My
eq

int  (3-21) 

where M is a very small number. 

The inter-zonal reduction is formulated with the objective (3-18) and subject to the 

constraint (3-21). The solution of the problem can be obtained based on the eigenvalue 

decomposition [15]. 

3.5.2 The framework 

Under the dc assumption, the target of the Ward reduction and the inter-zonal reduction 

is to preserve the relationship between the power injections of retained buses/zones and the 

flows between them. This property makes them share the same objective: preserve the 

known part of the reduced-model PTDF matrix. 

For the inter-zonal reduction, the buses are aggregated to the respective zones. Thus, 

in (3-19) and (3-20), the elements in inj  are equal to either one or zero indicating if the 

bus is in the respective zone. For the OP-Ward reduction, the external power injections are 

split and distributed to the boundary buses. One cannot obtain the inj  matrix for the OP-

Ward reduction in the same way. Therefore, the inter-zonal reduction preserves the 

calculated reduced-model PTDF while the OP-Ward preserves the same fraction of the 

full-model PTDF as Ward-reduction preserved, that is, the portion corresponding to the 

retained buses and branches. 

Because the inter-zonal reduction preserve no branches in the reduction, the inter-zonal 

reduction process must solve an Ax=0-type problem. Thus, one needs to add additional 

constraints, (3-21), to avoid the trivial solution that all variables equal to zero. The OP-

Ward framework proposed here, devolves to the inter-zonal approach if none of the original 
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system is preserved. But more importantly, it shows that if at least one real branch is 

preserved in the system, the solution process becomes much simpler. The solution is then 

obtained by solving an overdetermined Ax=b problem.  

The unified objective of the two reduction methods allows us to use one framework to 

do both reductions shown in (3-22), 

    r
eq

r
eqT

rr
y

CydiagCydiagCPTDF
eq

min  (3-22) 

where 
eq

y  is the vector of equivalent branch susceptance. 

3.6 Numerical Tests 

The tests in this section focus on two objectives. One is to verify whether the OP-Ward 

can replicate the Ward reduction results. The other one is to verify whether the OP-Ward 

can yield more accurate results in cases where high-reactance equivalent branches are 

eliminated. 

3.6.1 Replicating Ward reduction 

3.6.1.1 Test cases and metrics 

The OP-Ward method and the two proposed remedies to the rank deficiency problem 

were tested on systems including the IEEE 118-bus system, the IEEE 300-bus system and 

an ERCOT 557 bus system. The objective of the tests is twofold. One is to verify whether 

the OP-Ward can precisely calculate the equivalent line reactances of a reduced model 

giving the same values (with reasonable precision) as the Ward method. The other one is 

to evaluate the efficiency of the MSSS. 
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The metric to evaluate the accuracy of calculation of equivalent line reactance is the 

branch-reactance error: 

ll
Ll

Error xxX ˆmax 


 (3-23) 

where XError is the calculated error of equivalent line reactance, lx  and lx̂  are the values of 

the lth equivalent line reactance calculated by partial LU factorization and the OP-Ward 

reduction, respectively, and L is the set of all equivalent branches. 

The efficiency of MSSS is measured by two metrics. Denote the number of pseudo 

branches added to the network by the MSSS and the BFA by MSSS
branchN  and

BFA

branchN , 

respectively. The first comparison is between the MSSS
branchN  and 

BFA

branchN . As mentioned, 

the added pseudo branches affect the size of the Λ matrix. Denote the Λ matrix of the 

networks with pseudo branches added by MSSS and BFA respectively by ΛMSSS and ΛBFA. 

The second comparison is between the number of rows in the ΛMSSS and ΛBFA. The two 

metrics together show how effective the MSSS can be in terms of reducing the number of 

pseudo branches and the size of the   matrix. 

The statistics of the three test cases are shown in Table 3-1. The fourth column in the 

table shows the number of equivalent branches that generated by the Ward method which 

is also the number of the variables in the optimization problem. 

Table 3-1 Statistics of Test Cases 

 System Number of external buses Number of equivalent branches 

1 IEEE 118-bus 83 338 

2 IEEE 300-bus 200 384 

3 ERCOT 557-bus 200 4122 
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The diagram of the IEEE 118-bus system and its 35-bus reduced model are shown in 

Fig. 2-3 and Fig. 2-4 respectively. The IEEE 300-bus and its 100-bus reduced model are 

shown in Fig. 3-7 and Fig. 3-8 respectively. 

 

Fig. 3-7 IEEE 300-bus system 

 

 

Fig. 3-8 Reduced IEEE 300-bus system (100 bus) 
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The diagrams of the ERCOT 557 bus and ERCOT 357 bus systems are shown in Fig. 

3-9 and Fig. 3-10 respectively. 

 

Fig. 3-9 ERCOT 557 bus system 
 

 
Fig. 3-10 Reduced ERCOT 557 bus system (357 buses) 
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3.6.1.2 Results 

The results of the three test cases are shown in Table 3-2. In Table 3-2, the second 

column is the degree of rank deficiency without adding any pseudo branches. Parameters 

BFA

rowN  and MSSS
rowN  are the number of rows of the ΛBFA and ΛMSSS matrices. In the table, XError 

is the value of the reactance calculation error metric, (link equation in here), with the 

pseudo branches added by the MSSS method. 

Table 3-2 Test Results of OP-Ward Reduction 

System 

Degree of rank 

deficiency 

BFA
branchN  MSSS

branchN  BFA
rowN  MSSS

rowN  ErrorX  

IEEE-118 22 338 9 12,705 1,190 1.4E-11 

IEEE-300 80 384 34 43,600 8,600 2.7E-12 

ERCOT 557 176 4122 81 67,292 10,981 1.6E-13 

The ErrorX  value is very small (on the order of expected round off error) which 

indicates the OP-Ward reduction yielded results of accuracy consistent with that of the 

conventional Ward reduction. The BFA method yielded an XError value which was on the 

same order of magnitude as that produced by the MSSS. The MSSS can significantly 

reduce the number of pseudo branches as compared to the BFA, and which consequently 

can reduce the dimension of the Λ matrix by 80% for cases tested here. Thus the OP-Ward 

and MSSS are shown to be accurate and computationally practical for the cases tested here. 

3.6.2 Improved Ward reduction 

As introduced, Ward reduction creates high-reactance equivalent branches within the 

reduced model. Such high reactance branches are typically eliminated using a reactance 
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threshold. By doing this, sparsity of the reduced model is increased. In the IEEE 118-bus 

system, the typical branch reactance value is approximately 0.05 pu. To test the accuracy 

of OP-Ward versus traditional Ward, a range of reactance threshold values for eliminating 

equivalent branches was chosen from 0.5 pu. to 10 pu. The flows on the retained branches 

in the reduced model were compared to those in the full model.  

The metric used to quantify branch-flow errors in percent is shown in (3-24), 

W
Lre

i

Ward
iflow

WardOP
iflow

i
flow Ki

Lim

PP
Error 






,100max
,,

 (3-24) 

where 
WardOP
iflowP 

,  and 
Ward

iflowP ,  are the flow on the ith retained branch in the base case of OP-

Ward reduction and Ward reduction, respectively; iLim  is the line rating the ith retained 

branch; W
LreK  is the set of all retained branches. The error metric quantifies the magnitude 

of the largest branch-flow error as a percentage of the line-flow limit.  

3.6.2.1 IEEE 118-bus system 

A modified IEEE 118 bus system was used which includes line ratings for all branches 

in the system [35]. 
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Fig. 3-11 Maximum branch flow error on retained branches in IEEE 118-bus system 

tests (high reactance equivalent branches eliminated) 
 

The curves in Fig. 3-11 show the results of the maximum branch flow error on retained 

branches versus threshold values for elimination of high-reactance lines. In general, OP-

Ward improves the line-flow accuracy on the retained branches. When the threshold is high, 

the errors of both methods are low.  

Table 3-3 shows the number of equivalent branches created in the reduction process as 

a function of different threshold settings. Choosing a low threshold improves the sparsity 

pattern because more equivalent branches are eliminated. However, as expected, the 

accuracy worsens as more branches are eliminated. In the tests reported here, when the 

threshold was set as 1.0 pu, the Ward and the OP-Ward methods yielded 13% and 6% 

maximum branch-flow errors, respectively. In addition, choosing 1.0 pu as the threshold 

significantly reduced the number of fictitious branches.  
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Table 3-3 Number of the Equivalent Branches and the Threshold of High Reactance 
 

Threshold (pu) Number of equivalent branches 

None 213 

10 94 

5 88 

3 77 

1 46 

0.5 29 

 

The tests showed that, for this case, the OP-Ward is numerically stable and can be used 

to increase sparsity of the reduced model while maintaining more acceptable branch-flow 

errors.  

3.6.2.2 ERCOT 6073-bus system 

The diagram of the ERCOT 6073-bus system is shown in Fig. 3-12. The statistics of 

the system are shown Table 3-4. 

A 6073- to 277-bus reduction was generated for the ERCOT system which preserved 

the high voltage buses (voltages greater than or equal to 230 kV). The diagram of the 

reduced model is shown in Fig. 3-13. (The equivalent branches are not shown in the figure). 

In total, there are 6009 equivalent branches generated in the reduction.  
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Fig. 3-12 ERCOT 6073 bus system 

 

Fig. 3-13 277 bus reduced ERCOT model 
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Table 3-4 Statistics of the ERCOT System 

Number of buses 6073 

Number of branches 7504 

Number of generators 687 

Total loads (MW) 7.28E4 

Total generation capacity (mw) 1.02E5 

 

The reduction of the system is very aggressive. (About 95% of buses were eliminated.) 

This resulted in a large number of high-reactance branches in the reduced model. A 

histogram of the branch reactances in the reduced model, shown in Fig. 3-14, shows that 

about 68% branches are high reactance branches whose reactance values are greater or 

equal to 50 pu.  

 

Fig. 3-14 Histogram of branch reactance values in the full and reduced models 
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The error of the power flow on the retained branches was calculated using (3-24) and 

plotted versus threshold values as shown in Fig. 3-15 using a logarithmic scale. As can be 

seen from Fig. 3-15, for both the Ward and the OP-Ward reduction, if the threshold was 

chosen less than or equal to 20 pu the error was prohibitively large, greater than 50%. When 

the threshold was chosen as 30 pu, the error of the Ward and the OP-Ward were 61.5% and 

20.4% respectively. When the threshold was chosen as 60 pu, the error of the Ward and 

the OP-Ward were 30.3% and 5.6% respectively. The number of equivalent branches in 

the reduced model with different threshold values for high reactance fictitious branches is 

shown in Table 3-5. 

Table 3-5 Number of Equivalent Branches in the Reduced Model with Different 

Threshold of High Reactance 

Threshold Number of equivalent branches 

20 1485 

30 1669 

60 2307 

 
Another test was performed to validate the reduced-model performance under different 

operating conditions. Perturbations (in percentage of base loading) were added to all power 

injections in the full and the reduced models at the retained buses. For every bus, the 

perturbation was a random number in a fixed range, 0-5%, 5-10%, etc. For every 

perturbation range, the 100 sets of such random numbers were generated, and the line flows 

calculated on the full and reduced models were compared. The maximum error was 

calculated. 
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Results shown in Fig. 3-16 indicate that the OP-Ward can approximate the flows on 

the retained branches over a range of operating condition better than the Ward method 

when the high-impedance branches were eliminated. An error duration curve shown in Fig. 

3-17 reveals the error distribution among all retained branches in the 100 runs under the 

10-15% load perturbations. The results shown in Fig. 3-17 indicates that the OP-Ward is 

significantly more accurate than the Ward reduction and more than 92% of errors were 

lower than 10%. 

 

Fig. 3-15 Flow error on the retained branches 
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Fig. 3-16 Flow error under different operating conditions 

 

Fig. 3-17 Error duration curve under 10-15% load perturbation 
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3.7 Conclusions 

A new approach for generating the Ward reduction is introduced which casts the Ward 

reduction as an optimization problem. The objective of the OP-Ward is to preserve the 

PTDF submatrix which corresponds to the retained buses and branches in the original 

model. We show that the OP-Ward framework encompasses the inter-zonal (bus 

aggragation) reduction and has numerical advantages over the strict inter-zonal approach 

if at least one branch in the original network can be retained.  

The proposed OP-Ward reduction method can be used to improve upon the Ward 

reduction when eliminating high-reactance branches is desired, a strategy often employed 

to improve sparsity of the reduced model. While there is an expected tradeoff between the 

accuracy and the sparsity we show that the OP-Ward provides superior performance over 

traditional Ward as measured by branch-flow accuracy. 
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4 HOLOMORPHIC EMBEDDING NETWORK REDUCTION METHOD 

4.1 Background Introduction 

The conventional network reduction methods like Ward or REI methods, can match the 

original system solution with high accuracy at the base case. However, when the operating 

condition deviates, the accuracy deteriorates. The reason is that these methods treat the 

power injections at the boundary buses from the external network (external injections) and 

the losses of the external network as fixed values. However, when the operating condition 

changes, the external injection and the external system losses also change. The 

conventional reduction methods are unable to approximate the changes of power injection 

at the boundary buses and external system losses, especially the change of the reactive 

power generation of external generators. Some methods, like the extended Ward, were 

proposed to deal with this problem but still lack accuracy. Some methods, like S-REI [7] 

and X-REI [9] require online calibration which may increase the computational burden. In 

this chapter, a novel HE-based network-reduction method is introduced, which takes the 

advantage of the HE-based power-flow method and can perform nonlinear approximation 

to the external power injections. Test results show that the HE reduction method is superior 

to the conventional methods. 

4.1.1 The ac power-flow problem 

The ac power flow problem is formulated in order to determine the value of the 

following four quantities at every bus: 

 Voltage magnitude V  
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 Voltage magnitude θ 

 Net real power injection P 

 Net reactive power injection Q 

Each bus in the network has two quantities specified and two variables to be determined. 

The assignment of the specified variables of every bus depends on the type of the bus. 

Typically, the buses are categorized into three types:  

 Slack bus: provides voltage reference of the network.  

 PQ bus: also called the load bus at which the net-real and net-reactive power 

injections are specified. 

 PV bus: also called a generator bus at which the bus voltage magnitude and the 

net-real-power injection are specified. 

Table 4-1 shows the specified and unknown variables of each type of buses. 

Table 4-1 Variables of Different Bus Types 

Bus type Specified Unknown 

slack bus V , θ P, Q 

PQ bus P, Q V , θ 

PV bus P, V  Q, θ 

 

Based on the specified bus variables and the network parameters (including the branch 

admittances and shunt admittances), the ac power-flow solution is calculated by solving 

the power-balance equations (PBEs) (in current-balance form for the purposes here) 

described in (4-1). Noted that in the PBE, the bus voltage is complex (V=Vre+jVim)where 

Vre and Vim are the real and imaginary parts respectively. The net real- and reactive-power 
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injections (P and Q) are the difference between the generation and load: P=Pg-Pl 
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(4-1) 

In (4-1),  is the (i, k) element in the bus admittance matrix; iV  and kV  are the complex 

bus voltages of bus i and bus k, respectively; l
iP  and l

iQ  are the real and reactive loads, 

respectively, at bus i; g
iP  and g

iQ  are the real and reactive generation values, respectively, 

at bus i (equal to zero for a PQ buses). 

4.1.2 Conventional methods 

The most widely used conventional methods are iterative methods. Such methods 

include the Newton-Raphson method, Gauss-Seidel method, and fast-decoupled methods 

[36]-[39]. These methods are usually able to solve the problem efficiently if the operating 

condition is not close to a saddle-node bifurcation point (SNBP). However, if the operating 

condition is close to the SNBP the Jacobian matrix calculated at every iteration is close to 

singular or, at minimum, ill-conditioned and the iteration process can diverge. If the 

process is divergent or non-convergence (oscillates), the power flow program may 

terminate for a number of reasons, e.g., division by zero, but often ends after reaching a 

programmed limit on the maximum number of iterations. In this case, it is impossible, 

using the program’s output, for the user to judge whether: 

1) A solution exists, but the algorithm did not converge. 

2) A solution does not exist. 

ikY
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The continuation power flow (CPF) [40] is an improved iterative method. Compared 

to the full Newton-Raphson method, this method adds a new load parameter in the problem 

formulation and uses a predictor-corrector scheme to find the solution on the trajectory. 

With the new parameter, the Jacobian matrix calculated at each iteration is non-singular 

even when the operating condition is close to the bifurcation point. Thus, the CPF is widely 

used to estimate the voltage collapse point [41]. However, as an iterative method, the 

convergence of CPF depends on proper selection of the initial solution and the step size 

between consecutive iterations. In other word, the CPF cannot guarantee convergence [42]. 

In subsequent sections the holomorphic-embedding-based method is applied to the power 

flow problem. 

4.2 HE Based Power Flow Formulation 

Both sides of the PBEs are formulated to balance the current injection at every bus as 

shown in (4-1). With the HE technique, the solution of the unknown voltage variables will 

be holomorphic in the variable  and therefore must have a Maclaurin series [44]; hence, 

the bus voltage of bus i may be approximated as the truncated series: 

Vi(α)=Vi[0]+ Vi[2]α2….+Vi[n]αn (4-2) 

where  iV  is the Maclaurin series of complex voltage solution of bus i; Vi[n] is the 

complex-valued coefficient of the nth term in the power series.  

The aforementioned three different types of buses must be modelled in the power-flow 

problem. The holomorphic embedding approach has many formulations [43]. To be useful 

for the network reduction application envisioned here, the reduced model must be valid 

over a range of different operating conditions. Hence the ac power-flow problem is 
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represented by a scalable HE formulation. The following subsection gives the HE equations 

in scalable form. 

4.2.1 Scalable form of HE 

 Slack bus 

For the slack bus, the voltage magnitude and voltage angle are specified. The power 

injection of the slack bus provides power which balances the network power injections and 

losses. The model of the slack bus can be simply written as,  

  slackVV 0  (4-3) 

where slackV  is the specified complex bus voltage of the slack bus; in this work, a single 

slack bus is assumed whose index is assumed to be 0. 

 PQ bus 

For a PQ bus, the relationship between the complex voltage and the load (real and 

reactive) is described as shown in (4-4), 

      pqi
l
i

l
i

Kk
kik KiWjQPVY 



,***
  (4-4) 

where, pqK  is the set of all PQ buses  iW  is the reciprocal of the voltage power series  iV  

satisfying (4-5) 

    KiWV ii  ,1  (4-5) 

where K is the set of all buses ( pvpq KKK  ,
pvK  is the set of PV buses). 

 PV bus 

For a PV bus (e.g., bus i), the bus voltage angle and reactive generation,  g

i
Q  must 

be consistent with the voltage magnitude constraint (4-6) and the PBE in (4-7), in which 
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the following are assumed to be known: the specified voltage magnitude 
sp

iV  and the real 

power generation g
iP . 

    pvi

sp

ii KiWVV  ,**
2

  (4-6) 

           pvi

g

ii

l

i

g

i

l

i

Kk

kik KiWjQWjQPPVY 


,*****
  (4-7) 

Combining equations (4-3)-(4-7), the scalable form of the HE representation of the ac 

power-flow problem is given as shown in the equation set (4-8). 

  slackVV 0  

(4-8) 
      pqi

l

i

l

i
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kik KiWjQPVY 


,***
  

    pvi
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ii KiWVV  ,**
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   

          pvi
g
ii

l
i

g
i

l
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Kk
kik KiWjQWjQPPVY 



,*****
  

 

    KiWV ii  ,1  

4.2.2 The germ solution 

Solving the HE power flow problem results in obtaining a truncated power series of all 

variables. To calculate the coefficients of all terms of the power series of the unknowns, 

one starts the series form of the solution using a solution to a known operating point. The 

formulation introduced in this work requires using the no-load condition solution as that 

operating point, which is known as the germ. Observing (4-8), we find that the scaling 
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parameter, , is effectively scaling the loads and real power generation across the system. 

The no-load condition power-flow solution is equivalent to the solution obtained when α=0. 

Observing (4-8), when α=0, the equation set is rewritten as (4-9). 

  slackslack KiVV  ,00  

(4-9) 
  pq

Kk
kik KiVY 



,00  

    pvi

sp

ii KiWVV  ,00 *
2

  

      pvi
g
i

Kk
kik KiWjQVY 



,000 *

 

 

    KiWV ii  ,100  

Note that the last two equations are nonlinear. Obtaining a closed-form solution for a 

multi-bus system is nontrivial. Solving this nonlinear problem numerically may be handled 

in a number of ways. One approach is to use a non-scalable form of the HE method, treating 

(4-9) as a nonlinear power flow problem, which is described in the next section. The non-

scalable form has following properties: 

a. The calculation based on this formulation only involves solving linear equations. 

b. The non-scalable form is constructed to solve (4-9) so that its germ can be found 

by inspection. 

c. The result is only meaningful when 1 . 

The non-scalable form is only used to obtain the numerical value of the germ solution 

of the scalable form. Once the germ solution is found for the scalable form, we can calculate 

the higher-order-term coefficients of the scalable form. 
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4.2.3 Non-scalable form 

In order to distinguish the solutions between the scalable (original power-flow problem 

formulation) and the non-scalable form (power-flow-like problem for finding the germ of 

the series solution to the original power-flow problem, i.e., (4-9) ), the letters E and F, are 

used for voltages and reciprocal of voltages in the non-scalable form which satisfy (4-10). 

In the non-scalable form, β is used as the scaling parameter. 

    KiFE ii  ,1  (4-10) 

In the non-scalable form, the slack bus PBE is formulated as (4-11). 

   110  slackEE   (4-11) 

The PQ bus PBE is formulated as (4-12). 

    pqi

sh

i

Kk

k

trans

ik KiEYEY 


,  
(4-12) 

Since the germ problem is the no-load condition, the only current injection at the PQ bus 

is the current through the bus shunt. In (4-12), 
sh

iY  is the shunt admittances (including the 

bus shunt admittance, branch charging admittance and the equivalent shunt branch from 

the pi model of any transformers with off-nominal voltage-magnitude taps incident on the 

bus) at bus i. The parameter trans
ikY  which is defined by (4-13) is the (i, k) element in a 

modified bus admittance matrix 
trans

Y . 












kiYY

kiY
Y

sh
iii

iktrans
ik

,

,
 

(4-13) 

The PV bus is formulated as (4-14) and (4-15). 
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    pvi
sp

ii KiFVE 














  ,11 **
2

  
(4-14) 

         pvi

sh

ii

g

i

Kk

k

trans

ik KiEYFjQEY 


,**   
(4-15) 

Equation (4-14) is used to constrain the voltage magnitude and (4-15) is the PBE of the 

PV bus. In the no-load condition, the current injected at a PV bus includes the current 

through the bus shunt and the reactive power generation from the generators. 

The non-scalable form is defined by (4-10)-(4-15). 

Since the non-scalable form is used to calculate the germ for the series solution of the 

original power-flow problem, which is the solution of the no-load condition of the scalable 

form, all loads and real power generation must be zero and are forced to zero when β=0, 

which of course is consistent with (4-9).  

The identical steps are used for solving the scalable and non-scalable forms: we first 

must obtain the germ of the E series, which is the solution of case β=0. When β=0, the 

equations (4-10)-(4-12) and (4-14)-(4-15) are written as: 

  100 E  (4-16) 

  pq
Kk

k
trans

ik KiEY 


,00  
(4-17) 

    pvii KiFE  ,00 *
 (4-18) 

       pvi
g
i

Kk
k

trans
ik KiFjQEY 



,000 *

 
(4-19) 

    KiFE ii  ,100  (4-20) 

Note that in (4-12) and (4-15), 
sh

iY  is moved to the RHS. Since 
sh

iY  is multiplied by β 

in this formulation, no shunt elements exist at β=0; therefore, if no phase shifters are 
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present, there is no place for current to flow from the slack bus and therefore there are no 

branch voltage drops and all voltages must be 1.0 pu. Hence, the constant term of the 

voltage power series (E(0)) must be 01  and therefore the constant term of F(β) and 

 g
iQ  are 01  and zero respectively.  

Given the germ of the E series defined by the flat voltage profile, the coefficients of 

the non-constant terms in the power series are then calculated (illustrated in section 4.2.4.1).  

4.2.4 Calculating the power series 

4.2.4.1 Solve the germ and voltage solution of the no-load case 

As mentioned earlier, the germ solution of the non-scalable form for the no-load case 

power-flow problem (4-10)-(4-15) is trivial to find, (E=1, F=1, Qg=0). Given the flat 

voltage profile as the constant term (germ solution of the no-load case), calculating the nth 

(n≥1) term coefficients are performed using the following recursion relationships.  

   110  slacki EnE   (4-21) 

    pqi
sh

i
Kk

k
trans

ik KinEYnEY 


,1  
(4-22) 

      pvi
sp

iii KinFVnFnE 






  ,11 *
2

*
 

(4-23) 

         pvi
sh

i

n

t
i

g
i

Kk
k

trans
ik KinEYtFtnjQnEY 



,
0

*
 

(4-24) 

     KitFtnE
n

t
ii 



,0
0

 
(4-25) 

The parameter i  satisfies following relationship: 
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

 


otherwise,0

if,1 in
i  

Solving the linear equations (4-21)-(4-25) recursively yields the nth term coefficients, 

which yields the power series for all unknowns. The respective Padé approximant of every 

power series is then calculated as introduced in section 4.3. Evaluating the power series 

with β=1 will yield the germ solution of the scalable form; however, the power series may 

suffer from the non-convergence problem. This problem and its solution is discussed in 4.3. 

4.2.4.2 Solve the scalable form for the base case 

Given the germ solution (n=0) for the base case, the calculation of the nth (n1) term 

coefficients are performed by solving equation (4-26)-(4-30). 

  00 nV  (4-26) 

      pqi

l

i

l

i

Kk
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

,1**

 (4-27) 

    pvi
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ii KinWVnV  ,0*
2

 (4-28) 

         
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 (4-29) 

            KitnWtVWnVnWV
n

t

 




,00
1

1

 (4-30) 

The coefficients of all terms are calculated recursively from n=1 to n=2L+1.  

4.3 Padé Approximants  

Solving the aforementioned formulations yields a truncated power series with solved 

values for all of the Maclaurin-series coefficients. No power series converges for every 
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value of the series parameter. The radius of convergence (ROC) is defined as the region 

where the power series converges. More precisely, the ROC is the radius of the largest disk, 

within which the power series converges to a unique solution.  

For the voltage function power series, V(), the ROC is often smaller than 1.0 [44], 

which indicates the solution cannot be calculated directly from the power series. Though 

the power series diverges outside of the ROC, the power series carries enough information 

to calculate the solution anywhere else on one branch of the multivalued problem, if it can 

converge at one point on the branch [44]1. Analytic continuation is a technique to extend 

the domain of an analytic function. The diagonal and the near-diagonal Padé approximants 

have been proven to be an effective tool of analytic continuation. If the function obeys the 

conditions of Stahl’s theorem [45], [46], the Padé approximant is the maximal analytic 

continuation of the function. In this work, the diagonal Padé is exploited. 

4.4 Calculating the Padé Approximants 

With the coefficients of all series evaluated, the Padé approximants of the 

corresponding variables are then obtained as described in this section.  

The Padé approximant is a rational fraction [47], which can be written as: 

M
M

L
L

bbbb

aaaa
ML













2

210

2
210]/[  

(4-31) 

where, L is the degree of the numerator polynomial and M is the degree of the denominator 

polynomial. In this work, since the diagonal Padé is used, we have L=M. Given a power 

                                                           
1 This assumes that the entire domain of the function is contiguous and uninterrupted by singularities. 
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series, calculating its Padé approximant is synonymous with calculating the coefficients in 

its Padé approximant. 

Define the Taylor expansion centered at zero (Maclaurin series) of an analytic function 

)(f  as: 







0

)(
i

i
icf   

(4-32) 

where ic  is the coefficient of the ith degree term. 

The coefficients of the Padé approximant are obtained by solving (4-33). 

    
 1

2
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21010


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L
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M
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aaaaabbbcc



 
 

(4-33) 

Equating both sides of the equation (4-33), two sets of linear equations are derived. The 

first set of equations (4-34) equates the coefficients for terms whose degree are less or 

equal to L. 

000 abc   

(4-34) 
10110 abcbc   

  

LLLL abcbcbc   0110   

The second set of equations (4-35) equals the coefficients for terms whose degree are 

greater than L. 

01101   MMLLL bcbcbc   

(4-35) 021102   MMLLL bcbcbc   

  
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0110   MLMLML bcbcbc   

The homogeneous system (4-34) always has a trivial solution with all variables equal 

to zero. Since there are M equations and M+1 unknowns, thus one of its variable can be 

chosen freely [48] which effectively scales the coefficients in the denominator and 

numerator. In this work, b0 is set to 1.0. Rewriting (4-35) in the matrix form and moving 

the column of b0 to the RHS yields: 
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(4-36) 

The numerator coefficients are then calculated based on:  





































































 LLLL a

a

a

a

b

b

b

ccc

ccc

cc

c

2

1

0

2

1

01

012

01

0 1





 

(4-37) 

In general, the equations (4-21)-(4-25) and (4-26)-(4-30) are applied to obtain the 

power series of all unknowns. The equations (4-36) and (4-37) are applied to obtain the 

Padé approximants of all variables. 

4.5 Solve the HE Power Flow Problem 

Solving the ac power-flow problem involves calculation of the unknown Maclaurin 

series coefficients for every bus as illustrated in Table 4-1. Unlike the conventional power-

flow methods which yield the numerical value of the unknown voltages as complex-valued 

scalars, the HE method uses Padé approximants of the (possibly divergent) Maclaurin 
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series to obtain a converged solution that represents the behavior of the PV curve for any 

scaling of the load, VAr limits ignored for the moment. The scalable form of HE 

formulation of the power flow problem is solved in six steps: 

1) Calculate the germ of no-load problem 

2) Calculate the voltage series for the no-load problem. 

3) Calculate the Pade approximant of the no-load problem 

4) Evaluate the Pade approximant at β=1 to obtain the germ of the base-case problem. 

5) Calculate the voltage series for the base-case problem, V(). 

6) Calculate the Pade approximant of the base-case problem. 

4.6 Convergence of Power Flow Solution 

The result of the power flow solution is validated by checking its convergence based 

on the convergence criterions. The convergence check is done in the base case. Evaluating 

the Padé approximant with α=1 yields the base case power flow solution. 

The convergence criteria are set as follows: 

a. The tolerance of the largest power mismatch among all buses is 0.1 MW or 0.1 

MVar. 

b. The difference between consecutive Padé approximant values for the bus-voltage 

magnitude and angle are calculated. The tolerance of the largest voltage magnitude 

difference is selected as 1E-4 p.u. The tolerance of the largest voltage-angle 

difference is selected as 1.0 degree. 



 

84 

4.7 Calculating the Saddle Node Bifurcation Point (SNBP) 

The SNBP indicates the voltage stability margin of the static system defined by the 

system model parameters and injections, i.e., the power-flow equations. In this work, the 

SNBP is calculated as the smallest load scaling factor which pushes the system to voltage 

collapse. Hence the power flow solution, defined by the Padé approximants of the bus 

voltages, is valid in the load scaling range between zero and the SNBP. 

As mentioned earlier, the Padé approximant is the maximal analytic continuation of a 

power series given that the defining function meets Stahl’s theorem requirements [45], [46]. 

Theoretically if there are a sufficient number of terms in the Maclaurin series, the Padé 

approximant can find the solution on the branch on which the germ resides for any loading 

level provided the α scaling factor is limited between zero and the SNBP, with a caveat of 

numerical precision limitations and Stahl’s theorem conditions.  

To guarantee the number of terms of the Padé approximant is sufficient, the algorithm 

checks the convergence once the solution is obtained. If the convergence criteria are not 

satisfied, then the HEM power flow is recalculated with two more terms added to the power 

series and consequently the denominator and numerator power series of the Padé 

approximant will have one more term. The convergence check and term increment are 

repeated until the criteria are met. In this work, the power series are started with 60 terms 

and the corresponding Padé approximant is started with 30 terms in the 

numerator/denominator polynomials.  

Since convergence must be check at the SNBP, which is unknown a priori, the SNBP 

must be calculate. The SNBP can be calculated by following steps: 
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1. Solve the power flow using a scalable form of the HEM and obtain Padé 

approximants for all unknowns. 

2. Start with α=0. 

3. Evaluate the approximant using the present estimate of the SNBP load-scaling 

factor, α, and check the convergence criteria. 

If the convergence criteria are satisfied in step 2 then increment α by 0.01 and go back 

to step 3. If the convergence criteria are not satisfied and the maximum number of terms in 

the power series is not reached, then increment the number of terms in the power series by 

two and go back to step 3. If the convergence criteria are not satisfied and the maximum 

number of terms in the power series is reached, then the current α value exceeds the SNBP 

and the SNBP should be set to α-0.01. In this study, the maximum number of terms in the 

power series is chosen as 121. The HEM power flow is formulated and solved as introduced 

in the previous subsections. The HEM reduction is based on the HEM power flow solution 

which is also referred as the “full-model solution” in the reduction process. In the following 

subsections the HEM reduction is introduced. 

4.8 Generating an Improved Reduced Network Using the HEM 

When constructing a reduced network, the buses in the full model are divided into three 

groups: the external buses, the boundary buses and the internal buses. Based on this 

division, we can group and order the PBEs into PBEs of external buses, boundary buses 

and internal buses, respectively.  Correspondingly, the bus admittance matrix (Ybus) is 

written as shown in (4-38). 
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(4-38) 

In (4-38), the block YEE includes all the branches spanning only the external buses and 

includes the bus shunts of all external buses. The block YBE (transpose of YEB) includes all 

branches spanning one external and one boundary bus. The block YBB includes all branches 

spanning only boundary buses and includes the shunt admittances of boundary buses. The 

block YBI (transpose of YIB) includes all branches spanning one boundary and one internal 

bus. The block YII includes all branches spanning two internal buses and includes the bus 

shunts of the internal buses. 

Given the HEM power-flow-formulation notation and the notation of (4-38), the 

power-flow equations can be written schematically as shown in (4-39). 
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 (4-39) 

In (4-39), VE(α), VB(α) and VI(α) are vectors of voltages of the external, boundary and 

internal buses respectively. SE(α), SB(α) and SI(α) are vectors representing the shunt 

complex power injections at the external, boundary and internal buses, respectively. 

The HEM reduction generates the reduced-model network in the same way as Ward, 

which is by doing partial LU factorization upon the full-model bus admittance matrix 

shown in (4-40). In this process, all the external components are factorized. 

r
reduced

busrbus UYLY 
 (4-40) 

In (4-40), rL  and rU  are the partially factored lower and upper triangular matrices 

respectively; reduced
busY  is the reduced-model bus-admittance matrix. The reduced-model 
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network topology and network parameters (branch impedances, bus shunt admittances) are 

obtained from reduced
busY . This process is explained in more detail later. 

4.9 Distribute the External Current Injection 

After generating the reduced-model network, the external current is distributed to the 

boundary buses so that the system power injection can be balanced. To distribute the 

external current, we need to revisit the partial LU factorization process. 

4.9.1 Distribution factor  

The partial LU factorization shown in (4-40) can be explicitly written as (4-41). 
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(4-41) 

Combining (4-39) and (4-41), the power-flow equations are rewritten as (4-42). 
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(4-42) 

Multiply both sides of (4-42) by the inverse of the lower triangular matrix ( 1
rL ), the 

equation is then rewritten as (4-43). 
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(4-43) 

Define 
1

rL  as: 



 

88 

full
b

full
b NN

be
r

ee
r

r

I

IL

L

L























2

1
1 ˆ

ˆ
 

(4-44) 

where  

ee

rL̂ : a 
ee NN   submatrix. Ne is the number of external buses. 

be
rL̂ : a 

eb NN   submatrix. Nb is the number of boundary buses. 

1I : a 
bb NN   identity matrix. 

2I : a 
ii NN   identity matrix. Ni is the number of internal buses. 

The omitted part of the matrix are all zeros. 

Equation (4-43) is written as (4-45). Observing (4-45), we can find the voltages of the 

reduced model at the boundary buses and at the internal buses remain unchanged from 

those of the full model. The current injections at the internal buses also remain unscathed. 

For the boundary buses, the added current injection terms in (4-45) are nonlinear injections 

accounting for injections from the external buses and external system losses. The matrix 

be
rL̂  effectively provides the distribution factors based on which the external current is split 

and added to the boundary buses. The external current injection ( )()( ****  EE WS ) is 

distributed to the boundary buses based on the distribution factors 
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In be
rL̂ , the element ijl̂  which is on the ith row and jth column of the matrix defines the 

proportion of injected power of external bus j split to the boundary bus i, where, typically 

1ˆ0  ijl . 

4.9.2 Distribute the external power with HE based power flow solution 

4.9.2.1 Methodology 

Distributing the external power to the boundary buses involves four steps: 1) solve the 

HEM power flow and obtain V(α), 2) convert the external power injections to nonlinear 

current injections; 3) split the external nonlinear current injections to the boundary buses 

based on the distribution factors; 4) calculate the nonlinear power injections (in series form) 

from the external network at every boundary buses, if power injections (rather than 

nonlinear current injections) are desired. 

An example of splitting the power injection of the external bus e and distributing the 

respective proportion to the boundary bus a is shown as follows: 

Step 1: Given a solved power flow problem using HEM, the current injected as a 

nonlinear power series in  at bus e is calculated by evaluating (multiplying out) (4-46). 

Note that (4-46) represents the general case of a PV bus injection. If the bus is a PQ bus, 

then g
eP  and )(g

eQ should be zero. 

     ****
)(  e

g
e

l
e

l
e

g
ee WjQjQPPI





   (4-46) 

Step 2: The current distribution from the external bus e to the boundary bus a is  a
eI  

calculated by performing the multiplication indicated by (4-47). Note that the distribution 

factor may be a complex number. 
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    eae
a
e IlI ˆ  (4-47) 

If there are multiple buses contributing power/current to bus a, the power series of total 

external current injections  ex

aI  at bus e is: 

   



a
exKe

a
e

ex
a II   (4-48) 

where a
exK  is the set of the external buses which contribute power/current to bus a. 

Step 3: Calculate the complex power injection from the external network to the bus a 

if such is needed. The preference between using a power-injection-model power series and 

a current-injection-model power series may depend on the purpose of the study to be 

conducted, which is beyond the scope of this work. 

The power injected at bus a from the external network is:  

       a

ex

a

ex

a VIS
**  (4-49) 

Two notes should be made. First the current injection term in (4-49) may originate from 

two different types of complex power injection models: PQ or PV bus models, which are 

modeled as either constant (fixed) values (load and real power generation) or modeled as 

a function of α (reactive power generation of the PV buses). These two different current 

injection models are subscripted by “fixed” and “qg” respectively. The equations of current 

injection  ex
aI  and the  ex

aS  are then written as: 

     
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a
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a
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a
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a
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The second note is that the identity of each external power injection must be preserved 

as follows. The (a,e) element of be
rL̂ , denoted as 

ae
l̂ , distributes the power injection from 

external bus e to boundary bus a. If bus a has equivalent boundary injections from multiple 

sources, the external power injection into bus a can be written as (4-52), 
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(4-52a) 

(4-52b) 

 

4.10 Solve the Reduced-Model Power Flow 

Solving the reduced-model power flow is very similar to solving the full-model power 

flow. The difference is that the power injection at the boundary bus includes not only the 

native power injections but also the external power injections which are represented as 

series, which may possibly be divergent. 

The problem is formulated in a scalable form and the germ of the scalable form is 

solved based on a non-scalable form. To avoid conflict and confusion of the notation, the 

scalable form of the reduced-model power flow takes γ as the scaling parameter and the 

non-scalable form takes η as the scaling parameter. 

4.10.1 Calculate the germ of the reduced model 

Either a scalable or non-scalable HE power-flow formulation may be use to solve the 

power-flow problem associated with the reduced model. To find the germ of the reduced 

model, the no-load case must be solved. In the no-load case using a scalable form, the only 

power injection to the system is the reactive-power generation. Therefore, in the reduced 
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model, the external power injections of the boundary buses are sourced from the reactive-

power generation from the external system. 

The external current-injection-model power series,  a
eI , of a boundary bus, a, is 

calculated as (4-46) with g
eP , l

eP  and l
eQ  equal to zero. The external power-injection-

model power series (  ex
iS ) is calculated based on (4-49).  

Denote a variable i  where 

Ki
i

i 




 ,
otherwise ,0

busboundary  a is   bus if,1
  

The reduced-model power-flow germ (germr) problem is formulated as shown in 

(4-53)-(4-57). 

   11,0  slackr EE   (4-53) 
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 (4-56) 

    KiFE riri  ,1,,   (4-57) 

where the subscript “r” indicates reduced-model solution/parameter. The term 

    **

,

*  ri

ex

i FS  is the current injection of the boundary bus from the external network. 

The problem formulation (4-53)-(4-57) is solved recursively starting from the case of 

η=0. At η=0, the external injections at the boundary buses are zero. For all bus voltage 
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power series, the constant term   10, riE  and therefore, the constant term of the reciprocal 

power series   10, riF . The constant term of the reactive-support series   00, riQ . The nth 

term of all power series are calculated as: 

   11,0  slackr VnE   (4-58) 
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(4-62) 

The power series of the germr is obtained by solving (4-58)-(4-62) based on which, the 

corresponding Padé approximants are obtained by solving (4-36) and (4-37). Evaluating 

the Padé approximants at η=1, the value of germr for the reduced model is obtained. 

4.10.2 Calculate coefficients of the high power order terms of the reduced model 

With the external power-injection power series at the boundary buses, the reduced-

model power-flow problem is formulated as shown in (4-63)-(4-67). 

  slackr VV ,0  (4-63) 
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    KiWV riri  ,1,,   (4-67) 

Starting from germr obtained in 4.10.1, the high-order-term coefficients are calculated 

recursively based on (4-63)-(4-67). The nth (n>0) term coefficients of the power series are 

calculated as (4-68)-(4-72). 
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4.11 Implementation 

The conventional linearization-based reduction methods, like Ward-type or REI 

reductions, match the full-model solution exactly only at the base case. However, without 

online boundary matching, [6], [9], when the system operating condition deviates from the 

base case the conventional reduction does not approximate the full-model performance 

accurately. In this dissertation, three types of operating-condition deviations are considered.  



 

95 

4.11.1 Scaling the system injections uniformly—on the α line 

In this scenario, where all loads and real-power generation are scaled uniformly, the 

solution of the full and reduced-model voltages are identical for all values of  between 

zero and the SNBP. (Recall that, as introduced in Section II, the embedded parameter  

functions as a scaling parameter of loads and real power generation.) Hence, once the full-

model solution is obtained, the bus voltages of the reduced-model solution, which are a 

subset of the full model, are calculated by simply evaluating the corresponding full-model 

Padé approximants at the desired  value. In other words, solving the power-flow problem 

for the reduced model is not necessary. However, for the purpose of validating the 

numerical stability of these algorithms, the reduced-model power flow for cases along the 

α line was solved by modeling the external injections both as fixed values (evaluated at the 

desire α using (4-52)) and using external injections as the series defined by (4-52), with 

results essentially identical.  

4.11.2 Change the loads on retained buses non-uniformly—off the α line 

In practice, the power injections of different buses do not all change uniformly over 

time and we tested whether we could handle non-uniform load/generation changes 

theoretically as well as numerically as described below.  

Ideally, if parameters are embedded in the PBE’s to scale each injection independently 

in the full model, one can use the scaling parameters to describe all operating conditions. 

In the next chapter, a bivariate HEM which embeds two parameters in the formulation is 

introduced and tested. The bivariate HEM yields promising results in terms of accuracy, 

however, it also reveals that the bivariate (or multi-variate) HEM has some important 
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drawbacks which motivated us to propose an alternative method (illustrated below) to 

handle the non-uniformly-varying loads. 

Our approach was to determine whether we could derive an equivalent  value that 

would allow the Padé approximants of the full-model bus voltages (obtained using the 

univariate HEM) to approximate the reduced-model’s response to the non-uniform system 

injections with sufficient accuracy as to be useful. This, again, allows the bus voltages of 

the reduced model to be calculated by simply evaluating the Padé approximants of interest 

that were obtained from the full-model solution. This calculation is computationally less 

complex than re-solving the power-flow problem, as required when using conventional 

reduced-order equivalents. 

In [50], five different methods for calculating an equivalent  for radial distribution 

systems were tested. The two best-performing methods, shown in (4-73) and (4-74), were 

used to calculate the equivalent  values in this work and are given by,  
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  (4-74) 

where 
l

newmP ,  and l
newmQ ,  are the perturbed real and reactive loads at bus m, l

oldmP ,  and 

l
oldmQ ,  are the real and reactive loads without the perturbation, and Kint is the set of all 

retained buses. Once the equivalent  is calculated, it is used to evaluate Padé approximants, 

Vpade(α),  padegQ ,

, obtained from the full model power flow solution.  
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As with the “on-the--line” scenario, there is no need to solve the reduced-model 

power flow for different operating conditions if the base-case full-model solution is given. 

One only needs to evaluate the retained bus solutions (Padé approximants) and use the 

equivalent . In the next section, we show test results quantifying the accuracy of the 

reduced-model bus-voltage solutions when using these equivalent  values by comparing 

the results with the full-model power-flow solution. 

4.11.3 Scale the system injections uniformly and imposing VAr limits on external PV 

buses 

Different generators will hit their VAr limits at different power scaling levels. When 

each term in the summation in (4-52) is treated as a separate injection, the identity of the 

external bus producing that injection will be preserved. With the HE reduction,  g

eae
Ql̂  is 

the part of the equivalent boundary power injection sourced from the partial reactive-power 

generation of external PV bus e and acts to model bus voltage support.  

Assume 
e

min
  and 

e

max
  are the loading levels at which the generators at bus e 

collectively reach their lower and the upper VAr limits, respectively. When 
e

min
 <  <

e

max
 , 

bus e is not on VAr limits and the equivalent boundary injection of bus e is calculated as 

shown in (4-52). If  ≤
e

min
 (≥

e

max
 ), the generators modeled at bus e will be on their 

lower VAr limit (upper VAr limit); the equivalent boundary injection should be calculated 

as shown in (4-52) in which the term  g

e
Q  is replaced by 

min,g

e
Q (

max,g

e
Q ). 

Unlike the previous two scenarios, when VAr limits are encountered, the reduced-

model power flow must be solved (as opposed to evaluating the existing Padé 
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approximants). In this case, the equivalent injections must be modeled following the 

strategy illustrated in the previous paragraph. 

4.12 Simulations 

Simulations were performed to evaluate the HE reduction accuracy under the three 

loading scenarios mentioned in the previous section. Two systems were used in the tests: 

the IEEE 118-bus system and an ERCOT-based 6057-bus system. Three different scenarios 

were simulated in the tests: loads changed uniformly (on the  line); loads changed non-

uniformly (off the  line); and imposing VAr limits while loads changed uniformly. The 

reduced-model performance is compared to the full-model solution. 

4.12.1 Models 

For the tests performed on the IEEE 118-bus system, a 35-bus reduced-order model 

was produced. In the reduced model, all buses whose nominal voltages were greater than 

138 kV and the terminal buses of frequently congested branches were retained. The 118-

bus system includes 53 PV buses, 14 of which were preserved in the reduced model.  

The ERCOT 6057-bus system was obtained from Energy Visual [51]. The diagram of 

the full model is shown in Fig. 4-1. The reduced model generated in the test was a backbone 

reduction which preserved 3721 buses. The reduced model included all buses whose 

nominal voltage were no lower than 138 kV and the terminals of the frequently congested 

branches. The full model included 530 PV buses. The reduced model preserved 275 PV 

buses. 
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Fig. 4-1 ERCOT 6057-bus system (full model) 
 

4.12.2 On the  line 

In this scenario, loads and real power generation across the entire system were scaled 

uniformly using the parameter .  

The performance of the HE reductions was compared with the performance of 

conventional reduction methods: Ward, Extended-Ward and the REI method. Two metrics 

were chosen for the comparisons. One measured the maximum voltage magnitude error (in 

pu) and one measured the maximum voltage angle error (in degrees) over all retained buses 

in the system. The HEM-based power-flow solution of the full system model was taken as 

the reference. 

The voltage-magnitude and angle-error results of the IEEE 118-bus reduction are 

shown in Fig. 4-2 and Fig. 4-3, respectively. The curves shown in the two figures use a 



 

100 

logarithmic scale. The voltages for the HE reduction were calculated by solving the 

reduced-model power flow to test the numerical accuracy of the approach, though in 

practice one need only evaluate V(α) and Qg(α), which yielded numerically identical results 

after taking into account the roundoff error and the processor precision limitations. To 

solve the power-flow problem using the reduced-order models obtained from conventional 

methods, the traditional Newton-Raphson method was used with a starting voltage profile 

equal to the base-case voltage solution. The results of equivalent tests on the ERCOT 

system are shown in Fig. 4-4 and Fig. 4-5. 

 

Fig. 4-2 Maximum voltage-magnitude error comparison (on the  line) for IEEE 118-

bus system reduction 
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Fig. 4-3 Maximum voltage-angle error comparison (on the  line) for IEEE 118-bus 

reduction 

 

Fig. 4-4 Voltage-magnitude error comparison (on the  line) in ERCOT system test 
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Fig. 4-5 Voltage-angle error comparison (on the  line) in ERCOT system test 

The results shown in Fig. 4-2-Fig. 4-5 indicate that the HE reductions match the full-model 

performance with voltage-magnitude (and angle) errors better than E-10 pu (deg) for much of the 

loading range. The HE reductions perform better because they can match the external boundary 

power injections as precisely as desired, given the limitation of precision, roundoff and number of 

voltage power-series terms calculated. The error performance of the HE reductions decreases as 

loads approach the SNBP due to the numerical limitations that are more pronounced near the SNBP. 

As expected, the linearization-based methods have extraordinary accuracy only at the base case, 

with the errors due to linearization and non-scalability of the generator equivalent reactive power 

injections growing quickly as one moves away from the base case. Note also, that Newton’s method 

fails to converge when using these conventional reductions much in advance of the SNBP, which 

is another limitation of the conventional reduced-order models. 
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4.12.3 Getting ofF the  line 

In this test scenario, the desire was to model loads that changed non-uniformly. There 

are of course many ways to vary loads. The approach here was to recognize that loads vary 

somewhat uniformly during a day or between seasons, but each injection will deviate 

somewhat, but generally not radically, from uniform scaling. Therefore, the load at each 

bus was modified by adding a 0-5% random perturbation to the scaled base-case loading 

to every retained PQ bus, as shown in (4-75). 

   100/1100/1
,,,,

q

m

l

oldm

p

m

l

oldm

l

newm

l

newm
QPjQP    (4-75) 

In (4-75), the 
p

m
  and 

q

m
  are the perturbation factors of the real and reactive loads, 

respectively, of bus m that were drawn from a random sample uniformly distributed 

between 0-5%. The generation values on the retained PV buses were uniformly scaled by 

μ which is calculated by (4-76). 






m

l

oldm

m

l

newm

P

P

,

,

  (4-76) 

In the plots below, the 
p

m
  and 

q

m
  were applied to the loads at all retained buses for base-

load scalings of 0%, 5%, 10% etc., up to 25%.  

For every base-load scaling, 100 sample vectors of random-load increments were 

generated and the resultant loads applied to the full and reduced-order models. Two metrics 

were used in the tests. One was the maximum voltage magnitude error, calculated as shown 

in (4-77). The other one was the average retained branch flow error calculated as shown in 

(4-78). 
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In (4-77), 
fmag

tm
V ,

,  and 
rmag

tm
V ,

,  are the voltage magnitudes of bus m in the full- and reduced-

model solutions, respectively and t is the index of the random sample. In (4-78), the 
fflow

ti
S ,

,  

and 
rflow

ti
S ,

,  variables are the apparent-power flows on branch i in the full and reduced models, 

respectively; Limi is the rating of branch; Kint is the set of all retained buses; Lint is the set 

of all branches spanning the retained buses. As shown in (4-78), the flow error calculated 

in this work is in percentage of the line rating. For this off-the-α-line scenario, the HE 

reduction performance is compared to the extended-Ward method, which gave the best 

performance of the conventional reduction methods.  

The voltage-magnitude-error and branch-flow-error results for the reduced-order 

model created from the IEEE 118-bus system are shown in Fig. 4-6 and Fig. 4-7, 

respectively, using the two equivalent α values calculate by (4-77) and (4-78). Equivalent 

results for the ERCOT system tests are shown in Fig. 4-8 and Fig. 4-9, respectively. 
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Fig. 4-6 Maximum voltage-magnitude error for IEEE 118-bus reduction 
 

 

Fig. 4-7 Average branch-flow error IEEE 118-bus reduction 
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Fig. 4-8 Maximum voltage-magnitude error for 3721 bus reduction of ERCOT 6057 

bus system 

 

Fig. 4-9 Average branch-flow error for 3721 bus reduction of ERCOT 6057 bus system 
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The HE reduced-order model is clearly superior to the extended-Ward approach as the 

voltage-magnitude and branch flow errors are consistently smaller when using type-one  

equivalent, 1. Further, convergence at higher load values is not a problem for the HE 

approach, while it is problematic for NR applied to the conventional reductions. Note that 

the voltage magnitude error is less sensitive to selection of equivalent α than branch-flow 

error. The type-one equivalent, 1, was more accurate than the type-two equivalent, 2, 

and both were more accurate than the extended-Ward method in the ERCOT test. In the 

IEEE 118-bus test, the type-two equivalent is less accurate than the extended-Ward in 

terms of the branch flow. The HE reduction performed better than the extended-Ward 

method because the external injections at the boundary buses were approximated more 

accurately. It is believed that 1 is more accurate than the 2 (at least in terms of the branch 

flow error) because 2 allows reactive power cancellation to occur in estimating the overall 

system flow levels, while 1 does not. Since one of the advantages of the HE reductions is 

retention of the nonlinear characteristics of the load and the appropriate calculation of 

system flow losses, it would not be surprising that allowing reactive power flow 

cancellation to occur might underestimate losses. 

4.12.4 Imposing VAr limits 

In this scenario, the loads are scaled uniformly and the VAr limits are imposed on all 

generators. The conventional methods like the Ward-type methods and the REI methods 

cannot easily impose VAr limits on the external generators, because the reactive generation 

of every generator under different loading levels is unknown. With HE reduction, the VAr 
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limits can be imposed on the external generators following the method introduced in 

section 4.11.3. 

The maximum voltage-magnitude and maximum angle errors of the tests conducted on 

the IEEE 118-bus system are shown in Fig. 4-10 and Fig. 4-11, respectively. Equivalent 

results for the ERCOT system are shown in Fig. 4-12 and Fig. 4-13 respectively. In the 

figure legend “HE Lim” and “HE” denote the HE reduction with and without imposing 

VAr limits, respectively. 

 

Fig. 4-10 Maximum voltage-magnitude error comparison (on the  line, with VAr 

limits) in IEEE 118-bus reduction 
 

 

Fig. 4-11 Maximum voltage-angle error comparison (on the  line, with VAr limits) 

in IEEE 118-bus reduction 
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Fig. 4-12 Voltage-magnitude error comparison (on the  line, with VAr limits) in 

ERCOT system test 

 

Fig. 4-13 Voltage-angle error comparison (on the  line, with VAr limits) in ERCOT 

system reduction 
 

The errors shown in Fig. 4-10-Fig. 4-13 indicate that the HE reductions are more 

accurate over nearly all of the operating points tested and have acceptable accuracy over a 

broader load range than the conventional reduction methods because of the ability to 

accurately model nonlinear load/generation injections and to more accurately model VAr 

limits of external generators in the reduced model. 
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4.12.5 Conclusions 

The conventional reduction methods generate reduced-order models by using 

linearization about the base case somewhere in the process. Therefore, power-flow 

solutions of these reduced-order models only match the full-model solutions at the base 

case and the errors grow rapidly as one moves away from the base case. The HE reduction 

method is a nonlinear-structure-preserving reduction approach that matches the full-model 

solution numerically exactly when the operating condition changes along the so-called  

line. (Exact matching is expected theoretically and supported by numerical results when 

the limitations of roundoff error, processor precision and number of terms included in the 

voltage series are accounted for.) Moreover, when one moves off the  line an equivalent 

α value can be easily calculated that allows the model to retain surprising accuracy. 

Whether on or off the α line, the solution for the reduced-model bus voltages is obtained 

by evaluating existing Padé approximants if the VAr limits are not imposed, which is 

numerically much less complex than re-solving the reduced-model power flow, as required 

when using conventional reductions. The HE reduction has additional capabilities that 

conventional methods do not: it allows the enforcement of VAr limits on the external 

generators in an approximate way that turns out to be quite accurate outright and much 

more accurate the any of the conventional methods. Also, the method has the potential to 

be embedded into the more complicated problem of reactive-power planning (RPP) which 

is of high computational complexity when applied to a large system. 

 



 

111 

5 APPLYING BIVARIATE HOLOMORPHIC EMBEDDING POWER FLOW WITH 

CHISHOLM APPROXIMANTS 

The HEM method introduced in Chapter 4 is univariate. The user is limited to using 

only one variable to scale the power injections across the entire system. In practice, the 

power injections of different buses are independent from each other, thus it is desirable to 

improve the flexibility of the HEM so that the method can yield accurate results when 

multiple independent scaling parameters are used. In this chapter, the bivariate HEM which 

involves two scaling parameters is formulated and tested. The bivariate HEM applies a 

bivariate Padé approximant, known as a Chisholm approximant, to achieve analytic 

continuation. The assessment of the bivariate HEM gives an estimate of the effectiveness 

and efficiency of the multi-variate HEM. 

5.1 Formulation 

As the name suggests, the bivariate HEM includes two variables which separately scale 

different system parameters. A three-bus example is taken here to show the formulation 

which uses two variables to scale the loads of the two load buses respectively. Note that 

for a system including more than three buses, one can divide the systems into two zones 

and use two variables to scale the loads in the two zones. 

The diagram of the three-bus system is shown as Fig. 5-1. Bus 1 is the slack bus. Bus 

2 and bus 3 are the PQ buses. 
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1

2

3

 

Fig. 5-1 Diagram of the three-bus system 
 

In this three-bus system example, two scaling parameters, α and β, are embedded as 

scaling factors of the bus 2 and bus 3 loads, respectively. 

The slack-bus voltage is assumed to be independent of the loading level of the system. 

Therefore, the equation defining the slack bus remains the same as in (5-1). The PBE’s of 

bus 2 and bus 3 are separately formulated as (5-2) and (5-3). 

  slackVV  ,0  (5-1) 
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where the voltage power series V(α,β) has the form shown as (5-4), 
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 (5-4) 

and where V[m,n] is the coefficient of the term αmβn.  

For the bivariate power series, define Dz as the set of the coefficients of the terms whose 

combined degrees of α and β is z (m+n=z).  
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5.2 Solve the Bivariate HEM Power Flow 

The three-bus system power flow problem is formulated explicitly by (5-1)-(5-3). As 

with solving the univariate HEM, we assume W(α,β) is the reciprocal of V(α,β), which must 

satisfy the relationship (5-5). 

    1,,  WV  (5-5) 

The coefficients of all bivariate power series are calculated term-by-term based on the 

following equations, 
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As for the univariate HEM, the germ solution for all bus voltages is 1.0 if there are no 

shunts in the system. If shunts exist in the system, the germ solution is obtained by solving 

(5-11). 
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5.3 Chisholm Approximants 

5.3.1 Definition 

Given a bivariate voltage power series, V(α,β), written as (5-12), its corresponding [L/L] 

Chisholm approximant is defined by (5-13) which must therefore satisfy (5-14) through 

substitution, 
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where, a[m,n] and b[m,n] are the coefficients of the (m,n) terms in the numerator and the 

denominator. The second component on the right-hand-side (RHS) of (5-14) is the error 

from the truncation of the terms in the sets {Dz, z>2L}. 

5.3.2 Calculate the Chisholm approximant 

Because the degree of α and β vary between zero and L, the numerator and denominator 

power series includes in total 2(L+1)2 coefficients. The [0, 0] term satisfies (5-15), which 

indicates b[0,0] is arbitrary. In this work, b[0,0] is set to 1.0 and a[0,0] is equal to c[0,0]. 

Given a[0,0] and b[0,0] as known coefficients, there are in total 2(L+1)2-2=2L2+4L 

coefficients yet to be determined. 
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Based on the assumptions about the values of the a[m,n] and b[m,n] power series 

coefficients given in (5-16), we write equations in the form of (5-17) and (5-18) to calculate 

these coefficients. 
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Equation (5-17) and (5-18) equate the coefficients of the terms in the set {Dz, 1≤z≤2L} 

on both sides. Given a specific z, based on the combinatorial analysis, the number of 

elements in a set Dz is z+1. The number of the elements in {Dz, 1≤z≤2L} is 2L2+3L. 

Compared to the number of unknown coefficients, 2L2+4L, L additional equations are 

needed to obtain a unique solution. These additional equations are formulated by equating 

the coefficients of terms whose power order is 2L+1 derived from (5-14). The additional L 

equations are written as (5-19). 
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Using (5-18) and (5-19), we can calculate the denominator coefficients. Given the 

denominator coefficients the numerator coefficients are calculated based on (5-17). 

5.4 Simulation Results 

In this work, the focus is on demonstrating the flexibility and accuracy of the bivariate 

HEM and the accuracy of Chisholm approximants. 
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5.4.1 Tests on three-bus system 

5.4.1.1 System parameters 

The system diagram is shown as Fig. 5-1. The loads on bus 2 and 3 are (0.5+j0.2) MVA 

and (1.0+j0.4) MVA respectively and the impedance of branches (1, 2), (1, 3) and (2, 3) 

are (0.8+j2.0) pu, (0.4+j1.0) pu and (0.2+j1.6) pu, respectively. 

5.4.1.2 Test metrics 

Three different metrics were used to assess accuracy in the simulations: bus voltage 

magnitude, bus voltage angle and system SNBP.  

To compare the voltage magnitudes and angles, the loads of the two buses were scaled 

by different combinations of α and β which is equivalent to different loading levels of the 

system. The benchmark used in comparing voltage calculations was the results obtained 

with the NR algorithm whose convergence tolerance was set to 1E-8. In some operating 

conditions, the NR algorithm failed to converge. Such operating conditions are labeled as 

the non-convergent point (NCP) in this work. 

The SNBP for different α to β ratios was also used as a metric. These simulation 

scenarios are succinctly characterized by the angle  in (5-20). 
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With the univariate HEM, the power flow problem needs to be resolved as  changes. 

The original loads in zone 1 and zone 2 are multiplied by sin and cos respectively as the 

input to the HEM. As one can see, the solution of the univariate HEM with different  

values are the solutions of different load profiles. 
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With the base-case bivariate HEM solution (Chisholm approximants of all bus 

voltages), the SNBPChisholm of the system was calculated using the following iterative 

procedure: 

1. Obtain the bus voltages by evaluating the Chisholm approximant with the scaling of (α, 

β) given for a specific θ starting from (0, 0). 

2. Calculate the PBE mismatch based on the voltages calculated in step 1 under the 

corresponding load scaling. If the mismatch is less than 0.1 MVA, then increment the 

scaling factor by 0.01 and repeat step 1. If the mismatch is greater than or equal to 0.1 

MVA, the SNBPChisholm (in terms of (,) scaling) is the current scaling level minus 

0.01. 

The benchmark that the SNBPChisholm was compared to is the SNBPPadé [49] with the 

base case loading level ratio set according to the specified θ. 

1) Test results 

The SNBP comparison between SNBPPadé and SNBPChisholm is shown in Fig. 5-2. The 

markers in Fig. 5-2 show the SNBP calculated by the Padé and the Chisholm approximants. 

Since the two different markers almost exactly overlap each other, the SNBP calculated by 

different methods are almost identical. Fig. 5-2 also indicates that bus 2 is weaker than bus 

3 because the SNBP in the cases of θ>45° is smaller than the SNBP in the cases of θ≤45°. 

The reason is that the impedances of branch (1, 2) is greater than branch (1, 3).  
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Fig. 5-2 Comparison of SNBP 
 

 

Fig. 5-3 Bus 2 voltage-magnitude error 
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Fig. 5-4 Bus 2 voltage-angle error 

The surface plots of the bus 2 voltage-magnitude error and voltage-angle error are 

shown, respectively, in Fig. 5-3 and Fig. 5-4. In general, the voltage-magnitude error is less 

than 1E-3 pu and the voltage angle error is less than 1E-2 deg. when the load/generation 

profile scaling is less than 95% of the SNBP. Increasing the number of terms in the 

Chisholm approximant will allow it to accurately predict voltages arbitrarily close to the 

SNBP, numerical precision issues notwithstanding. As mentioned earlier, the univariate 

HEM requires a constant θ value equal to that of the base case as we scale the 

load/generation profile, and with this constant θ the errors of the univariate HEM are very 

similar to the bivariate formulation.  
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5.4.2 Tests on the 14-bus system 

The bivariate HEM was also tested on a modified IEEE 14-bus system. In this 14-bus 

system, all buses are modified to become PQ buses except bus 1, which is the slack bus. 

Compared to the un-modified IEEE 14-bus system, the topology is not changed. The base-

case real and reactive power generation in the original IEEE 14-bus system were treated as 

negative constant P/constant Q loads. 

In the three-bus system tests, α and β scale the loads on the two load buses respectively. 

In the 14-bus system test, α and β were used to scale all the loads in zone 1 and zone 2 

respectively. Zone 1 includes buses 1 to 5 and zone 2 includes the rest. The loading 

statistics of the two zones are shown in Table 5-1. The real load in zone 1 is negative. This 

is because in the original IEEE 14-bus systems, zone 1 includes more generation than load. 

Table 5-1 Statistics of Zones in the 14-Bus System 

 Zone 1 Zone 2 

Real load (MW) -112 393.9 

Reactive load (MVar) 24.2 229.5 

 

The SNBP comparison is shown in Fig. 5-5. As can be seen in Fig. 5-5 the SNBP 

calculated by the Chisholm approximant is very close to the value calculated with the Padé 

approximant.   
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Fig. 5-5 SNBP comparison of the 14-bus system 

The surface plots of bus 14 voltage-magnitude and voltage-angle error are shown in 

Fig. 5-6 and Fig. 5-7, respectively. As shown in these figures, the voltage-magnitude error 

is less than 1E-3 and voltage angle error is less than 1E-2 when the load scaling is less than 

99% of the SNBP. Arbitrary accuracy may be obtained by increasing the number of terms 

used in the power series, precision issues notwithstanding. 
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Fig. 5-6 Bus 14 voltage-magnitude error 

 

Fig. 5-7 Bus 14 Voltage-angle error 
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5.5 Discussion and Conclusion 

5.5.1 Discussion on complexity of bivariate HEM 

The Chisholm approximant improves the flexibility of the HEM as compared to the 

univariate HEM power flow. The voltage comparison (Fig. 5-3-Fig. 5-4, Fig. 5-6-Fig. 5-7) 

indicates that the bivariate HEM can yield accurate results with α and β set to any value 

within the range between 0 and the SNBP if sufficient terms are used in the Chisholm 

approximant; however, a limitation of the bivariate HEM is that the number of variables 

and equations becomes large. An [L/L] Chisholm approximant includes 2L2+4L unknown 

coefficients, which requires solving this same number of equations. For the same order 

Padé approximant, only 2L coefficients need to be calculated. For the three-bus- and 14-

bus-system tests, at high-loading levels (80% of the SNBP), the Chisholm approximant 

needed to be at least of the same degree (the greatest degree of α or β in the approximant) 

as the Padé approximant which leads to 2L2+2L more coefficients. For an [L/L] n-variate 

Padé approximant the order of complexity of the rational function calculation is O(Ln), 

which indicates that the number of coefficients grows exponentially with the number of 

embedded variables. 

5.5.2 Conclusions 

This chapter presents the study of the bivariate HEM applied to the power flow problem 

and the implementation of Chisholm approximants. The accuracy and the flexibility of the 

method is demonstrated by simulations on a three-bus and a 14-bus system. On the three-

bus system, the two scaling factors allow the user to scale the loads on the two PQ buses 

independently. On the 14-bus system, the two parameters are used to scale the two zones 
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of the system. Both simulations showed that arbitrary accuracy can be obtained by allowing 

the number of terms in the Maclaurin-series expansion to grow. In general, the bivariate 

HEM allows users to change the system operating condition with two variables. This 

approach might be used, for example, when one wants to use one approximant while 

scaling residential and industrial loads independently or scaling the P and Q loads 

separately.  
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6 CONCLUSIONS 

In this dissertation, the mathematical underpinnings of three major network-reduction 

techniques were developed and numerically tested: generator placement methods in dc 

network reduction; the OP-Ward method and the unified framework for dc network 

reduction; the holomorphic embedding method applied to ac network reduction. 

The first problem tackled was that of generator placement methods in dc network 

reductions. Two new generator placement methods were proposed: the OGP method and 

the Min-SF method. The two new methods were tested and compared to the SED method. 

Results showed that the Min-SF method was the most accurate and robust. 

The second problem tackled was the development of a unified framework for dc 

network reduction, which was validated by applying it to the large-impedance fictitious-

branch elimination problem. The so-named OP-Ward reduction method replicates the 

conventional Ward reduction under dc assumptions using an optimization formulation 

which allows it to be more flexible. When applied to the large-impedance fictitious-branch 

elimination problem it was found to be more accurate than the threshold approach used 

with conventional Ward reduction. The OP-Ward formulation developed here can be 

regarded as a unified framework for dc network reduction. 

The third major focus dealt with improving the accuracy of ac network reductions by 

using HE techniques. The theory behind HE reductions was developed and numerical 

validation of the theory presented. The simulation results showed that the HE-reduced 

model can match the original full-model power-flow solution very accurately if the power 

injection is scaled uniformly. In theory the agreement is exact. And while precision 

limitations and computation-time considerations limit the accuracy of the approach, the 
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numerical accuracy is still well beyond anything required for engineering analysis and 

design. If the power injections are scaled non-uniformly, the theory indicates that the 

reduced model is no longer theoretically exact, but an equivalent scaling parameter can be 

calculated that allows the HE reductions to yield more accurate results than the Ward-type 

and the REI methods. Finally, the conventional reduction methods ignore the external 

generator VAr limits which can lead to large errors in reduced-network models. The HE 

reduction can account for the external generator VAr limits in an approximate way leading 

to more accurate results than the conventional methods. 

Finally, a multivariate HE method was investigated and shown to rival the univariate 

HE method in terms of accuracy while providing more flexibility, but the cost for this 

flexibility is increased computational complexity which limits it applicability. 
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