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ABSTRACT  

Several prominent research strategy organizations recommend applying life cycle 

assessment (LCA) early in the development of emerging technologies.  For example, the 

US Environmental Protection Agency, the National Research Council, the Department of 

Energy, and the National Nanotechnology Initiative identify the potential for LCA to 

inform research and development (R&D) of photovoltaics and products containing 

engineered nanomaterials (ENMs).  In this capacity, application of LCA to emerging 

technologies may contribute to the growing movement for responsible research and 

innovation (RRI).  However, existing LCA practices are largely retrospective and ill-

suited to support the objectives of RRI.  For example, barriers related to data availability, 

rapid technology change, and isolation of environmental from technical research inhibit 

application of LCA to developing technologies.  This dissertation focuses on 

development of anticipatory LCA tools that incorporate elements of technology 

forecasting, provide robust explorations of uncertainty, and engage diverse innovation 

actors in overcoming retrospective approaches to environmental assessment and 

improvement of emerging technologies.  Chapter one contextualizes current LCA 

practices within the growing literature articulating RRI and identifies the optimal place in 

the stage gate innovation model to apply LCA.  Chapter one concludes with a call to 

develop anticipatory LCA – building on the theory of anticipatory governance – as a 

series of methodological improvements that seek to align LCA practices with the 

objectives of RRI.   

Chapter two provides a framework for anticipatory LCA, identifies where 

research from multiple disciplines informs LCA practice, and builds off the 
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recommendations presented in the preceding chapter.  Chapter two focuses on crystalline 

and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is 

an environmentally motivated technology undergoing extensive R&D efforts and rapid 

increases in scale of deployment.  The chapter concludes with a series of research 

recommendations that seek to direct PV research agenda towards pathways with the 

greatest potential for environmental improvement. 

Similar to PV, engineered nanomaterials (ENMs) are an emerging technology 

with numerous potential applications, are the subject of active R&D efforts, and are 

characterized by high uncertainty regarding potential environmental implications.  

Chapter three introduces a Monte Carlo impact assessment tool based on the toxicity 

impact assessment model USEtox and demonstrates stochastic characterization factor 

(CF) development to prioritize risk research with the greatest potential to improve 

certainty in CFs.  The case study explores a hypothetical decision in which personal care 

product developers are interested in replacing the conventional antioxidant niacinamide 

with the novel ENM C60, but face high data uncertainty, are unsure regarding potential 

ecotoxicity impacts associated with this substitution, and do not know what future risk-

relevant experiments to invest in that most efficiently improve certainty in the 

comparison.  Results suggest experiments that elucidate C60 partitioning to suspended 

solids should be prioritized over parameters with little influence on results.  This 

dissertation demonstrates a novel anticipatory approach to exploration of uncertainty in 

environmental models that can create new, actionable knowledge with potential to guide 

future research and development decisions.   
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CHAPTER 1 

BACKGROUND, MOTIVATION, AND SUMMARY OF APPROACH 

Several prominent research strategy organizations recommend applying life cycle 

assessment (LCA) early in the development of emerging technologies.  For example, the 

US Environmental Protection Agency, (EPA 2012) the National Research Council, (NRC 

2012) the Department of Energy, (DOE 2012) and the National Nanotechnology 

Initiative (NNI 2011) identify the potential for LCA to inform research and development 

(R&D) of photovoltaics and nanomaterial (NM)-enabled products.  LCA is increasingly 

recognized as the proper framework for environmental assessment of products and 

technologies, because the broad boundaries called for prevent shifting of environmental 

burdens from one life cycle phase or impact category to another (Curran 2004; Klopffer 

2007; Eason 2011).  Applying LCA early in the development of emerging technologies 

may identify environmentally problematic processes before significant investments are 

made in R&D and commercialization (Liebowitz and Margolis 1995; Theis, Bakshi et al. 

2011).  In this capacity, LCA offers a potential tool through which future environmental 

impacts of emerging technologies may be anticipated and environmental criteria 

integrated into R&D decisions.   

I. The Growing Case for Responsible Innovation 

Historically, the potential environmental impacts of emerging technologies have 

not been anticipated, but rather identified, regulated, and mitigated only after large-scale 

production and dissemination (Davies 2009).  R&D advancement without consideration 

of potential future environmental impacts is problematic for at least three reasons:  
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1. Much of the environmental impact of an emerging technology becomes locked in 

by early R&D decisions and subsequent investments (Bhander, Hauschild et al. 

2003),  

2. In the later phases of technology development there is little flexibility for 

environmental considerations to redirect the innovation process (Stilgoe, Owen et 

al. 2013), and  

3. Separation of environmental concerns from technology development can result in 

hidden liabilities and costs only identified by retrospective assessment and 

regulation (Owen and Goldberg 2010).   

An alternative model is to promote innovation practices that integrate and are responsive 

to broader environmental concerns identified by applying environmental assessment tools 

like LCA early technology R&D.  For example, LCA may be applied during prototyping 

activities early in the stage-gate model of innovation – in which technologies are 

advanced to increasing stages of readiness through ‘gates’ only when specific criteria are 

met.  It is increasingly recognized that design criteria drawn from environmental 

objectives may structure interventions in the nascent stages of development that are more 

effective than retrospective approaches (Owen, Baxter et al. 2009).  This alternative 

model is consistent with the growing literature describing Responsible Research and 

Innovation as the process through which “…innovators become mutually 

responsive…with a view on the (ethical) acceptability, sustainability, and societal 

desirability of the innovation process and its marketable products…” (Schomberg 2012)” 

– a vision that is gaining recognition in European and US research institutions (EC 2013; 

Guston, Fisher et al. 2014).  While responsible innovation is an intuitively worthwhile 
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goal, there is a lack of practical tools that make the abstract concept tangible to 

government, academic, and industry actors involved in innovation processes.   

II. Life Cycle Assessment as a Practical Tool for Responsible Innovation 

LCA offers one possible tool to support environmentally responsible innovation, 

yet at present there is little formal discussion of LCA in the context of RRI.  To promote 

responsible innovation, LCA must support the pillars of responsible innovation: 1) 

anticipation as the process of imagining potential future environmental impacts and 

building capacity to address them today, 2) engagement with a broad set of actors, 

stakeholders, and disciplinary perspectives to broaden the range of values and 

perspectives considered, 3) integration as the process of incorporating environmental 

criteria into R&D decisions to allow 4) reflexivity of the innovation process by which the 

technology trajectory can be redirected (Stilgoe, Owen et al. 2013).  However, current 

practices in LCA do not promote these components of responsible innovation, and LCA 

of emerging technologies faces numerous methodological barriers that diminish the 

efficacy of LCA for responsible innovation.  LCA historically has been applied to 

established industries (Hunt, Franklin et al. 1996), is data intensive, and portrays near-

certain knowledge of fate, transport, and toxicity data for emitted substances.  In the 

context of emerging technologies, data is scarce, proprietary, uncertain, and not 

representative of eventual commercial processes.  As a result LCA has been largely 

ineffective at redirecting emerging technology development (Seager and Linkov 2009).   
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III. Making LCA Anticipatory for Responsible Innovation 

LCA of emerging technologies proceeds in the context of high uncertainty, which 

pervades all steps defined in international standards (ISO 2006) and renders codified 

approaches unreliable.  Critical uncertainties include: 

1. Predicting a use-phase relevant functional unit that captures the benefits of the 

emerging technology given uncertain performance, market adoption, and 

consumer behavior (Wender and Seager 2011; Miller and Keoleian 2015), 

2. Uncertainty in extrapolating laboratory scale manufacturing inventory data to 

commercial scale production volumes (Gutowski, Liow et al. 2010; Gavankar, 

Suh et al. 2014), 

3. Uncertainty regarding potential releases and impacts associated with direct 

exposure to emerging materials in the environment or workplace (Oberdörster, 

Oberdörster et al. 2005; Wiesner, Lowry et al. 2006; Oberdörster, Stone et al. 

2007; Benn and Westerhoff 2008; Kiser, Westerhoff et al. 2009; Zalk, Paik et al. 

2009). 

To date LCA researchers have made piecemeal advances that address specific barriers, 

but these advances have yet to be integrated into a comprehensive framework.  For 

example, Wender, Foley et al. (2012) demonstrate how thermodynamic modeling can be 

used to explore potential improvement in manufacturing process efficiency that may 

accrue with increased scale and experience, yet these analyses focusing on life cycle 

inventory modeling do not inform impact assessment of emerging contaminants.  

Similarly, Eckelman, Mauter et al. (2012) demonstrate a scenario-based approach to 
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developing aquatic ecotoxicity characterization factors – which convert the mass of 

material released to damages caused in the environment through coupled transport and 

toxicology models (Hauschild, Huijbregts et al. 2008) – using the impact assessment tool 

USETox (Rosenbaum, Bachmann et al. 2008) for nanomaterials, yet focus on impact 

assessment alone excludes use-phase performance modeling or release scenarios.  To 

address these barriers simultaneously, there is a critical need for these isolated advances 

to be integrated into a comprehensive framework capable of prospectively relating 

functional benefits afforded by an emerging technology with potential life cycle damages 

including release and direct exposure to emerging contaminants.  This approach may 

promote environmentally responsible innovation by embracing uncertainty, anticipating 

potential future environmental tradeoffs, and engaging diverse actors including R&D 

decision makers, environmental risk researchers, and social scientists studying broader 

behavioral, market, and political drivers of technology development. 

This dissertation details development of an anticipatory LCA framework that 

incorporates elements of technology forecasting, provides robust explorations of 

uncertainty, and engages innovation actors in overcoming retrospective approaches to 

environmental assessment and regulation.  Anticipatory LCA seeks to provide 

environmental criteria to R&D decision makers in order to broaden the range of values 

used in formulating hypothesis and experimental research agenda, and thereby support 

responsible innovation of emerging technologies.  In this capacity, anticipatory LCA is a 

tool used to advance innovation, as opposed to retrospective LCA which emphasizes 

optimization within existing regulations (see Figure 1, Paper 1 below).  The framework 

builds on previous advances in LCA and structures interdisciplinary interactions and 
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knowledge creation to address the high uncertainty associated with emerging 

technologies.  Specifically, anticipatory LCA identifies contributions from technology 

developers, environmental risk researchers, and social scientists, maps these inputs to 

critical LCA modeling decisions, and identifies three intervention points where 

knowledge feedback may inform innovation actors (see Figure 2, Paper 2 below).  For 

example, the anticipatory LCA framework calls for engagement with environmental risk 

researchers to conduct probabilistic impact assessment for emerging contaminants such 

as NMs, the results of which can identify those NM parameters most influential to LCA 

results (see Figure 3, Paper 3 below).  Communicating these parameters to research 

funders and environmental researchers can prioritize experiments with the greatest 

potential to reduce uncertainty in the life cycle environmental impacts of an emerging 

material, thereby conserving research resources.   

IV. Summary and Synthesis of Research Papers 

This dissertation consists of three related research papers, each focused on 

developing anticipatory LCA methods that promote responsible innovation but exploring 

the topic with different boundaries and scales.  Research paper one (RP1) is the broadest, 

contextualizes LCA within the growing field of Responsible Research and Innovation, 

and draws a distinction between retrospective and anticipatory LCA with an emphasis on 

the innovation actors engaged by each approach.  RP1 surveys conceptual barriers that 

cause misalignment between existing LCA methods and the goals of responsible 

innovation.  Research paper two (RP2) draws narrower boundaries, and focuses on the 

specific emerging technology of photovoltaics by extending the conceptual discussion of 

barriers from RP1 to practical barriers faced in LCA of emerging PV devices.  RP2 
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introduces a generalizable framework for anticipatory LCA that incorporates piecemeal 

methods advancements and structured interdisciplinary collaboration to address critical 

uncertainties.  RP2 identifies three intervention points through which anticipatory LCA 

may promote responsible innovation practices, one of which is explored in detail in 

research paper 3 (RP3).  RP3 draws the narrowest boundaries, focusing on development 

of novel approaches for probabilistic characterization factor development for two 

commercially-relevant nanomaterials.  RP3 modifies the consensus impact assessment 

method USETox, which generates human and ecotoxicity characterization factors based 

on material parameters and toxicology data, to include mechanisms influential to NM fate 

and transport, operate with probabilistic ranges rather than point-value estimates, and 

identify the material parameters most influential to impact assessment results.  Each 

research paper is described in greater detail below, and taken together the dissertation 

demonstrates the necessity, approach, and potential for anticipatory LCA to guide 

responsible innovation of emerging technologies.   

Table 1: Research questions, tasks, and deliverables for chapter 2 

Research question How do current practices in LCA support, and/or fail to support, 

the objectives of RRI? 

Research question To support RRI, what is the appropriate position in stage gate 

innovation to apply LCA, and what actors should LCA target? 

Task Literature review of LCA applied to emerging technologies with 

emphasis on advances and barriers, and review of stated 

principals of RRI related to LCA 

Task Develop simplified model of stage-gate innovation process and 

relevant actors engaged by LCA. 

Deliverable  Peer reviewed journal article in Journal of Responsible 

Innovation 

Intellectual Merit Identification of prototyping stage as appropriate for application 

of LCA for RRI and description of how actors involved in 

prototyping can use LCA. 
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Abstract:  The goal of guiding innovation toward beneficial social and environmental 

outcomes––referred to in the growing literature as responsible research and innovation 

(RRI)––is intuitively worthwhile but lacks practicable tools for implementation.  One 

potentially useful tool is life cycle assessment (LCA), which is a comprehensive 

framework used to evaluate the environmental impacts of products, processes, and 

technologies.  However, LCA ineffectively promotes RRI for at least two reasons: 1) 

Codified approaches to LCA are largely retrospective, relying heavily on data collected 

from mature industries with existing supply chains, and 2) LCA underemphasizes the 

importance of stakeholder engagement to inform critical modeling decisions which 

diminishes the social credibility and relevance of results.  LCA researchers have made 

piecemeal advances that address these shortcomings, yet there is no consensus regarding 

how to advance LCA to support RRI of emerging technologies.  This paper advocates for 

development of anticipatory LCA as non-predictive and inclusive of uncertainty, which 

can be used to explore both reasonable and extreme-case scenarios of future 

environmental burdens associated with an emerging technology.  By identifying the most 

relevant uncertainties and engaging research and development (R&D) decision-makers, 

such anticipatory methods can generate alternative research agenda and provide a 

practicable tool to promote environmental RRI.   
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Figure 1: Intervention Points for LCA and Relevant Actors as Technology 

Readiness Increases 

 
 

 

Table 2: Research question, task, and deliverable for chapter 3 

Research question Where do physical, environmental, and social science 

disciplines inform LCA practice and how do these disciplinary 

perspectives contribute to or reduce uncertainty in LCA 

models? 

Task Influence diagraming to create a “knowledge map” positioning 

existing tools and contributions from physical, environmental, 

and social sciences into LCA framework 

Deliverable  Peer reviewed journal article in Environmental Science & 

Technology 

Intellectual Merit A generalizable framework for anticipatory LCA 

Abstract:  Current research policy and strategy documents recommend applying life 

cycle assessment (LCA) early in research and development (R&D) to guide emerging 

technologies toward decreased environmental burden.  However, existing LCA practices 

are ill-suited to support these recommendations.  Barriers related to data availability, 

rapid technology change, and isolation of environmental from technical research inhibit 

application of LCA to developing technologies.  Overcoming these challenges requires 

methodological advances that help identify environmental opportunities prior to large 

Figure 1. Applying 

LCA earlier in stage-

gate innovation 

overcomes temporal 

delays and technology 

lock-in limiting 

retrospective LCA, and 

thereby has greater 

potential to reorient 

technology 

development  
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R&D investments.  Such an anticipatory approach to LCA requires synthesis of social, 

environmental, and technical knowledge beyond the capabilities of current practices.  

This paper introduces a novel framework for anticipatory LCA that incorporates 

technology forecasting, risk research, social engagement, and comparative impact 

assessment, then applies this framework to photovoltaic (PV) technologies.  These 

examples illustrate the potential for anticipatory LCA to prioritize research questions and 

help guide environmentally responsible innovation of emerging technologies. 

Figure 2: A Framework for Anticipatory LCA of Emerging Technologies 

 

Figure 2. Anticipatory LCA structures interdisciplinary interactions and environmental 

interventions early in R&D.  White boxes present current practices in LCA, which 

emphasize materials flows and feedback, whereas anticipatory LCA emphasizes 

knowledge flows and feedback.   
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Table 3: Components of Chapter 4 – Sensitivity-based research prioritization 

through stochastic characterization modeling 

Research question Can stochastic characterization factor (CF) development 

prioritize laboratory research of risk-relevant parameters? 

Sub question 1 What material parameters are most influential to USETox CF 

results for each NM case study? 

Task Expert solicitation and meta-analysis of review articles to build 

parameter distributions and summarize disconnect between 

specific parameters used in USETox and actual environmental 

behavior of NMs 

Task Develop a Monte Carlo program within USETox and conduct 

global sensitivity analysis to identify those material parameters 

most influential for aquatic ecotoxicity CFs for case study NMs 

Deliverable  Peer reviewed publication in International Journal of Life Cycle 

Assessment 

Modified stochastic USETox tool made freely available on 

Nanohub.org 

Intellectual Merit New probabilistic CFs for two commercially-relevant NMs 

Identification of material parameters most influential to CF 

results 

Abstract Large data requirements, high uncertainty and complexity, and regulatory 

relevance of toxicity impact assessment motivates greater focus on model sensitivity 

toward input parameter variability.  This is particularly useful for emerging contaminants 

like engineered nanomaterials (ENMs) to guide future efforts in data refinement and 

design of experiments.  This study presents a Monte Carlo tool based on USEtox 1.0 that 

allows researchers to rapidly prioritize data needs according to influence on 

characterization factors (CFs).  Using Monte Carlo analysis we demonstrate a sensitivity-

based approach to prioritize research through a case study comparing aquatic ecotoxicity 

CFs calculated with USEtox 1.01 for the ENM C60 and the vitamin B derivative 

niacinamide, two antioxidants used in personal care products.  We calculate CFs via 

10,000 iterations assuming plus-or-minus one order of magnitude variance for fate and 

exposure-relevant inputs.  Spearman Rank Correlation Indices are used for all variable 
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inputs to identify parameters with the largest influence on CFs, which we prioritize for 

data refinement and future experimental investigation.  Based on the importance of 

aggregate multi-species toxicity (average log EC50) and studies suggesting solvent 

residues may yield erroneous toxicity estimates, we recalculate C60 CFs omitting all 

studies using solvents in sample preparation. 

For emissions to freshwater, the C60 CF is log-normally distributed with a 

geometric mean of 280 (geometric standard deviation, GSD: 2.1) PAF m3 day/kg 

compared to 2.6 (GSD: 1.8) PAF m3 day/kg for niacinamide.  C60 CFs are most sensitive 

to varied suspended solids partitioning coefficients (Kpss) and average log EC50, whereas 

variation of other substance parameters has comparatively little effect on model results.  

Insufficient experimental evidence hampers to revise assumptions for Kpss, and we 

suggest prioritizing future experiments that elucidate C60 interactions with suspended 

solids.  Recalculating C60 CFs without toxicity studies that use solvents reduces the 

geometric mean by more than a factor of ten.  This reinforces the importance of thorough 

source term characterization, in this case regarding the presence of solvent residues.  

Calculating stochastic CFs allows sensitivity-based prioritization of data needs and future 

experiments, which is particularly helpful in the context of emerging contaminants like 

C60.  Researchers can conserve resources and address parameter uncertainty by applying 

our approach when developing new or refining existing CFs for the inventory items that 

contribute most to toxicity impacts.  The Monte Carlo tool can be applied to current 

toxicity characterization models like USEtox and is freely available   
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Figure 3:  Relative Influence of Material Parameters input to USETox on CF 

Uncertainty 

 
Fig 3  The five Spearman rank correlation indices with the greatest magnitude out of all 

variable inputs for three C60 aquatic ecotoxicity CFs. Greater magnitude indicates which 

input parameters have the greatest influence on CFs variability for each emission 

compartment.   
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Anticipatory Life Cycle Assessment for Responsible Research and Innovation 

 

Abstract 

The goal of guiding innovation toward beneficial social and environmental outcomes––

referred to in the growing literature as responsible research and innovation (RRI)––is 

intuitively worthwhile but lacks practicable tools for implementation.  One potentially 

useful tool is life cycle assessment (LCA), which is a comprehensive framework used to 

evaluate the environmental impacts of products, processes, and technologies.  However, 

LCA ineffectively promotes RRI for at least two reasons: 1) Codified approaches to LCA 

are largely retrospective, relying heavily on data collected from mature industries with 

existing supply chains, and 2) LCA underemphasizes the importance of stakeholder 

engagement to inform critical modeling decisions which diminishes the social credibility 

and relevance of results.  LCA researchers have made piecemeal advances that address 

these shortcomings, yet there is no consensus regarding how to advance LCA to support 

RRI of emerging technologies.  This paper advocates for development of anticipatory 

LCA as non-predictive and inclusive of uncertainty, which can be used to explore both 

reasonable and extreme-case scenarios of future environmental burdens associated with 

an emerging technology.  By identifying the most relevant uncertainties and engaging 

research and development (R&D) decision-makers, such anticipatory methods can 

generate alternative research agenda and provide a practicable tool to promote 

environmental RRI.   

 

Keywords: Anticipation, Technology Assessment, Foresight, Knowledge Integration  
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Introduction 

Potential environmental impacts of emerging technologies are often only 

identified, regulated, and mitigated after large-scale production and dissemination 

(Davies 2009).  Early research and development (R&D) suffers from a lack of integration 

of environmental research.  This is problematic for at least three reasons: 1) many of the 

environmental impacts caused by a technology become locked-in by R&D decisions 

(Bhander, Hauschild et al. 2003); 2) in the early phases of technology development there 

exists greater flexibility for environmental considerations to guide the innovation process 

(Stilgoe, Owen et al. 2013); and 3) the separation of environmental research from 

technology development positions assessment and regulation as retrospective and 

reactive (Owen and Goldberg 2010).  An alternative model is to integrate broader criteria 

into technology development (Fisher and Rip 2013).  Rather than rely on retrospective 

approaches, design criteria explicitly drawn from social and environmental values can 

structure more effective interventions in the nascent stages of technology development, 

and thereby promote responsible research and innovation (RRI) practices (Owen, Baxter 

et al. 2009).  However, there is a paucity of practicable design tools that effectively 

integrate broader values into technology R&D.  This paper argues for the development of 

anticipatory life cycle assessment (LCA) methods as one tool to promote integration of 

environmental criteria early in the stage-gate innovation model and support the broader 

goals of RRI.  Anticipatory LCA will be a collection of best practices from existing 

prospective studies as well as new methods, codified into a single, cohesive, easy-to-

follow methodology.   

 



  18 

1.  Life Cycle Assessment and its Discontents 

LCA––a comprehensive framework for evaluating environmental impacts of 

processes, products, or technologies––is the preferred analytic framework for 

environmental assessment because the broad boundaries used prevent the shifting of 

environmental burdens from one life cycle phase or environmental compartment to 

another.  For example, the rapid growth in production of corn-derived ethanol was 

partially justified by amelioration of greenhouse gas emissions.  However, the narrow 

policy focus on mitigation of climate change came at the expense of increased 

eutrophication impacts––a tradeoff easily identified by LCA (Miller, Landis et al. 2006).   

To reduce the likelihood of unintended environmental consequences, research 

policy organizations increasingly recommend application of LCA to emerging 

technologies (NRC 2012).  Implicit in such calls is a desire to foster environmental RRI 

by identifying potential impacts before commercial scale production and technology 

diffusion.  However, traditional approaches to environmental LCA ineffectively promote 

RRI of emerging technologies for at least two reasons: 1) Codified practices rely 

extensively on data collected from mature industries with existing supply chains and are 

thereby largely retrospective, and 2) Established practices underemphasize the 

importance (and oversimplify the process) of stakeholder engagement in shaping LCA 

models and results, and thereby suffer diminished social credibility and relevance.  

Regarding the first point, there has been isolated progress in advancing LCA methods 

towards prospective identification and mitigation of environmental impacts, yet these 

tools have not been integrated into a comprehensive framework that supports RRI of 

emerging technologies.  Regarding the second point, this manuscript emphasizes the 
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importance of inclusion of diverse stakeholder values in critical environmental LCA 

modeling decisions, which may identify a need to generate multiple LCA models based 

on what values are included.  Overcoming these barriers builds capacity for LCA to 

engage R&D decision makers with broader environmental values and provides a tool that 

contributes to environmental RRI of emerging technologies.   

2.  From Retrospective to Prospective LCA 

Most LCA applications are retrospective in that they occur after commercial scale 

production by large businesses and distribution to consumers according to laws set by 

regulatory agencies.  Such analyses are useful for informing consumers and regulators 

about the environmental impacts of a product (e.g., carbon footprints, eco-labeling), yet 

have limited ability to reorient technology trajectory because temporal delays and large 

capital investments contribute to technology lock-in (Collingridge 1980).  Qualitative 

approaches such as life cycle thinking (Thabrew, Wiek et al. 2009) can provide useful 

heuristics early in R&D but lack the quantitative rigor of LCA.  To address this 

shortcoming, a growing literature of prospective LCA employs modeling tools that 

require less accurate datasets and focus analyses on potential environmental impacts 

arising from R&D decisions.  Drawing from diverse fields ranging from future studies to 

thermodynamics, published advances include incorporation of backcasting (Herwich 

2005), foresight tools, and scenario development into LCA and material flow analysis 

(Pesonen, Ekvall et al. 2000; Spielmann, Scholz et al. 2004; Wender and Seager 2011; 

Eckelman, Mauter et al. 2012; Dale, Pereira de Lucena et al. 2013; Simon and Weil 2013; 

Zimmerman, Dura et al. 2013), dynamic LCA process modeling (Collinge, Landis et al. 

2013), thermodynamic modeling of manufacturing processes (Gutowski, Branham et al. 
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2009; Gutowski, Liow et al. 2010), and stochastic decision analysis (Canis, Linkov et al. 

2010; Linkov, Bates et al. 2011; Prado-Lopez, Seager et al. 2014).  These tools advance 

LCA methods and call attention to potential future environmental impacts of emerging 

technologies while early in R&D.   

3.  Integrating Societal Values 

Application of LCA early in R&D is insufficient to promote environmental RRI if 

societal values are not integrated and alternative perspectives explored.  Critiques of LCA 

identify long standing challenges in recognizing where and how to incorporate 

stakeholder value preferences into environmentally-focused analysis (Berube 2013), 

which increases the social credibility and relevance of LCA results.  Inclusion of 

stakeholder values in environmental LCA is distinct from the rapidly expanding field of 

social life cycle assessment (S-LCA), which quantifies burdens in defined social impact 

categories such as child labor and indigenous rights (UNEP 2013) or life cycle 

sustainability assessment (LCSA) (Guinee, Heijungs et al. 2011), which entails 

concurrent application of LCA, S-LCA, and life cycle costing to identify environmental, 

social, and economic impacts respectively.  While S-LCA and LCSA have a broader 

scope than environmental LCA and are designed to explicitly represent social impacts, 

these tools may suffer from a similar lack of stakeholder engagement to guide model 

construction.   

While stakeholder engagement is discussed in ISO standards for environmental 

LCA, practitioners typically do not have the requisite training to identify affected parties 

and elicit the relevant value preferences.  There are numerous decisions in environmental 

LCA that are normative, including: 1) system boundary definition (what activities are 
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included), 2) functional unit selection (what service the technology provides), 3) impact 

category selection (what environmental impacts are considered), and 4) weighting (how 

much impacts in one category matter relative to another).    As opposed to a practitioner 

making these decisions in isolation, environmental LCA should employ social science 

engagement methods to identify impacted stakeholders, elicit their value preferences, and 

use these numerous – often conflicting – perspectives to inform modeling decisions.   

Explicit statement and inclusion of these values may result in several model 

configurations (e.g., multiple system boundaries or functional units based on what 

stakeholder values are represented).  The process should be iterative and reflexive – for 

example, system boundary definition influences initial stakeholder identification, what 

activities are included, and how benefits and impacts are distributed.  Conversely, a 

detailed secondary stakeholder analysis may reveal the need to redefine system 

boundaries.  Rather than ignoring stakeholder differences in an attempt to be unbiased, 

LCA should explicitly account for these values and biases and provide a tool to 

quantitatively explore alternative perspectives to complement value sensitive design 

(Taebi et al. 2014).   

4. Toward Anticipatory LCA for Responsible Research and Innovation 

 There is an opportunity to remake LCA as a tool to guide environmentally 

responsible product innovation by building on prospective modeling advances and 

exploring multiple configurations of system boundaries, functional units, impact 

categories, and weights based on modeled stakeholder values.  The goal is to create a tool 

that integrates environmental concerns into the technology development process in a way 

that anticipates foreseeable negative consequences, identifies opportunities for improving 
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the environmental profile of emerging technologies, and communicates findings to R&D 

decision-makers in time to reorient research.  With this objective, we build upon 

advances in the domain of anticipatory governance (Guston 2013) – borrowing the 

terminology to define anticipatory LCA as a forward looking, non-predictive tool that 

increases model uncertainty through inclusion of prospective modeling tools and multiple 

social perspectives.  As opposed to prospective LCA, which treats uncertainty largely as 

a measure of model reliability, anticipatory LCA should not seek to create a realistic 

model but rather to expand uncertainty and perform global sensitivity analysis to identify 

the most environmentally promising research agendas.  In this capacity, anticipatory LCA 

may generate many models all with a high degree of uncertainty in order to explore a 

broad spectrum of possible futures (as opposed to a select few, most likely) to build 

capacity to prepare for many potential outcomes.  Using anticipatory LCA as a tool not to 

predict the future, but to prepare for it, provides one approach to contribute to the broader 

goals of RRI.   

Figure 4 illustrates a sequential stage-gate model of increasing market readiness 

that product innovations typically progress through (Robinson 2009), compares 

intervention points for retrospective and anticipatory LCA, and lists relevant actors 

associated with each stage.  In early R&D activities (bench scale and prototyping phase), 

technology developers and research funders from both industry and academia begin to 

assess the technical performance and financial returns on investment characteristics of the 

technology (Foley and Wiek 2013).  Gates (dotted lines on Figure 1) open and product 

development proceeds only when specific objectives – typically technical, financial, and 

legal – are met. 
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Intervention Points for LCA and Relevant Actors as Technology Readiness 

Increases 

 

Figure 4. Applying LCA earlier in stage-gate innovation overcomes temporal delays and 

technology lock-in limiting retrospective LCA, and thereby has greater potential to 

reorient technology development through integration of broader criteria into bench scale 

research.     

The stage-gate model of product innovation is criticized for considering only technical 

and economic criteria during laboratory scale research and prototyping activities, whereas 

broader socio-environmental impacts (albeit highly uncertain) occurs in later stages, if at 

all (Stilgoe, Owen et al. 2013).  Applying LCA after commercial production and 

diffusion – termed retrospective LCA – filters out unacceptable technologies and serves 

as a tool to maintain compliance.  Alternatively, anticipatory LCA should seek to provide 

broader environmental criteria early in R&D to promote formulation of new research 

agenda, and in doing so become a tool that advances science.   



  24 

The proposed design and assessment tool is not the singular solution to achieve 

RRI, and significant work remains to develop generalizable methods for anticipatory 

LCA.  Nonetheless, as discussed here, it adds reflexivity earlier into the product 

innovation process, integrates knowledge from disparate disciplines, is inclusive of 

broader societal values, and anticipates foreseeable future implications.  While not all 

impacts can be identified or avoided, when implemented in an adaptive approach that 

leverages continuous learning this tool can aid in reducing negative environmental 

impacts.  In this way anticipatory LCA embodies the core principals of RRI outlined by 

Stilgoe et al. (2013) and aligns normative goals regarding socio-ecological impacts with 

von Schomberg’s notion of ‘acceptability, sustainability and societal desirability’ (2013, 

64).  A diversity of researchers, government agencies, and private organizations can 

participate in moving this research agenda forward.  

5. Who Can Use Anticipatory LCA 

Anticipatory LCA requires further attention and development as a practicable 

design tool used to implement environmental RRI into R&D processes.  It provides a 

conceptual model to structure knowledge communication and collaboration between 

numerous stakeholders and a wide range of actors involved in innovation.  Research 

funders could apply anticipatory LCA to systematically and quantitatively generate 

scenarios of potential impacts arising from alternative investment strategies.  As the 

technology remains in a formative stage of development scenarios can overcome 

temporal delays by assessing future, broader impacts.  This information complements 

economic and technical metrics to prioritize investment strategies that maximize positive 

social and environmental outcomes.   Physical scientists, engineers, and other technology 
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developers could apply anticipatory LCA to explore potential broader impacts associated 

with their laboratory research decisions, and could be engaged in structuring R&D 

activities that are responsive to social and environmental concerns.  As a design tool, 

anticipatory LCA could provide timely feedback to technology developers and inform 

initial material selection, energy targets, end of life management strategies, maintenance 

options, and user demands.  Social scientists that engage diverse stakeholders and explore 

the societal implications of emerging technologies could employ anticipatory LCA as a 

tool with increased technical detail than other foresight methods.  Furthermore, this tool 

could provide an opportunity to integrate social scientists with environmental and 

technical researchers while yielding holistic metrics of technology trajectories and 

communicating findings to research funders.  Environmental researchers can use 

anticipatory LCA to prioritize experimental research that will lead to the greatest 

reductions in uncertainty and most environmental improvement across the life-cycle of 

emerging technologies.  Together, these activities engage a broad spectrum of actors in 

innovation processes and can contribute to environmental RRI.    
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Abstract 

Current research policy and strategy documents recommend applying life cycle 

assessment (LCA) early in research and development (R&D) to guide emerging 

technologies toward decreased environmental burden.  However, existing LCA practices 

are ill-suited to support these recommendations.  Barriers related to data availability, 

rapid technology change, and isolation of environmental from technical research inhibit 

application of LCA to developing technologies.  Overcoming these challenges requires 

methodological advances that help identify environmental opportunities prior to large 

R&D investments.  Such an anticipatory approach to LCA requires synthesis of social, 

environmental, and technical knowledge beyond the capabilities of current practices.  

This paper introduces a novel framework for anticipatory LCA that incorporates 

technology forecasting, risk research, social engagement, and comparative impact 

assessment, then applies this framework to photovoltaic (PV) technologies.  These 

examples illustrate the potential for anticipatory LCA to prioritize research questions and 

help guide environmentally responsible innovation of emerging technologies.  
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Introduction 

Research strategy and policy documents published by multiple organizations1,2,3,4 

recommend applying life cycle assessment (LCA) early in the development of emerging 

technologies such as photovoltaics and nanotechnology.  These calls envision LCA as a 

tool to provide research and development (R&D) decision-makers with environmental 

guidance for consideration alongside technical and economic measures of technology 

readiness.  In this capacity, LCA could proactively identify environmental opportunities 

and reorient research trajectories prior to significant investments in product scale-up and 

commercial dissemination.  However, there are at least four critical challenges that make 

LCA ineffective in the context of emerging technologies: 1) Manufacturing and 

emissions databases rely on historical data collected predominantly from mature 

industries, 2) Current practices underemphasize the importance of engaging stakeholders 

to inform critical modeling decisions, 3) Impact assessment tools lack quantitative data 

describing the fate, transport, and toxicity of novel substances, and 4) Existing 

approaches to interpretation of comparative LCA results with high uncertainty present 

unresolved multi-criteria problems.  Fulfilling the aforementioned expectations for 

application of LCA to guide R&D of emerging technologies requires methodological 

advances and interdisciplinary collaboration beyond the scope of existing practices.  

Amongst other challenges faced by LCA practitioners, this paper explores these four as 

they arose from efforts to use LCA proactively in a large multi-disciplinary  photovoltaic 

research center, introduces a framework designed to help LCA practitioners overcome 

them, and applies the proposed framework to examine photovoltaic technologies.   
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1.1 Making LCA Prospective 

The inherent lack of data across the life cycle of emerging technologies 

contributes to high uncertainty5 that renders automated approaches impracticable and 

potentially misleading.  For example, current LCA practices often rely on point-value 

estimates for data including manufacturing and emissions inventories, characterization 

factors that convert masses emitted into the potential impacts they cause, weights used to 

aggregate impacts across diverse impact categories into a single-score indicator, and 

normalization references used to contextualize the magnitude of reported impacts.  These 

practices are inappropriate for prospective assessment of the environmental implications 

of emerging technologies, where parameter uncertainties are compounded by scenario 

and model uncertainty.6,7  For emerging technologies, such as cutting-edge photovoltaics 

(PV) that are experiencing rapid rates of innovation even as they mature, critical data are 

unknown or highly uncertain, including: technology-specific commercial-scale 

manufacturing inventories, use-phase product performance, end-of-life disposal 

pathways, life cycle material releases, and risk-relevant properties are uncertain or 

entirely unknown.  This challenge is distinct from traditional data quality issues that 

beguile LCA of emerging and established technologies alike in that no amount of 

increased effort in inventory data collection will yield representative data sets.  In 

emerging technology cases,8 LCA practitioners have responded with a number of 

strategies including: developing structured scenarios within LCA models,9,10 

thermodynamic process modeling,11 consideration of experience curves from analogous 

industries to identify potential future improvements in efficiency,12 dimensional analysis 

to explore scaling effects,13 exploring market-driven impacts through consequential 
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LCA,14 and uncertainty bounding analyses to provide upper and lower limits to 

environmental impact.15  These advances – often grouped under the term prospective 

LCA16,17 – allow the development of life cycle inventories descriptive of future 

technological developments.   

1.2 Supporting Social Engagement 

Accurate and meaningful inclusion of stakeholder values in environmental LCA is 

distinct from social LCA – which quantifies social impacts in defined categories such as 

human rights18 – and little guidance exists with regard to emerging technologies.  

Environmental LCA is typically conducted without efforts to engage stakeholders on 

broader issues including public perception, behavioral responses to new technologies, and 

stakeholder priorities that inform modeling and interpretation of results.  As a result, 

LCA practitioners make normative modeling decisions19,20 that may overlook impacted 

parties or privilege one stakeholder perspective.  These assumptions are sources of 

scenario uncertainty that often go unexplored, which is particularly important for 

emerging technologies because assumptions made about market adoption and user 

behavior may determine results.  Critical modeling decisions in LCA including system 

boundary definition, functional unit selection, impact category selection, and weight 

determination all have social consequences that should be made explicit to systematically 

explore scenario uncertainty.  To this end, application of LCA to emerging technologies 

must include stakeholder engagement activities21 that inform these modeling decisions.  

Workshops facilitated by social scientists should bring a diversity of actors across the 

technology life cycle and elicit position statements identifying parameters, processes, and 

uncertainties most relevant to their position along the value chain.  These workshops 
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provide LCA practitioners an opportunity to communicate significant data gaps and 

assumptions for stakeholder validation, as well as solicit additional data.  Targeted 

surveys designed to probe user behavior may inform multiple scenarios of technology 

adoption and usage behavior.  These social dimensions data allow creation of 

complementary analyses based on different modeling assumptions and decision contexts, 

the results of which identify tradeoffs and opportunities unique to each stakeholder 

group.   

1.3 Integrating Risk-relevant Research 

Risk characterization requires quantification of the hazard and exposure potential 

associated with emerging technologies, and combination of these factors into models that 

estimate overall risk.  Ideally risk-based data will constitute the basis for life cycle impact 

assessment models and characterization factor databases used in LCA.22  However, risk 

assessment for novel chemicals can take decades or more to complete,23 and the delay 

between technology introduction and risk quantification presents a serious challenge to 

assessment of the potential environmental hazards posed by emerging technologies.24  As 

with LCA in general, the need for extensive data promotes retrospective risk assessment, 

while prospective assessments are more rare and controversial.25  Nonetheless, a lack of 

validated data does not justify omission of these risks from analysis.26  LCA practitioners 

need new methods to incorporate risk research that is characterized by high parameter 

uncertainty and data gaps to have transparent representation of possible risks.  Tools such 

as weight of evidence27 and Monte Carlo exploration of impact assessment models15 help 

integrate uncertainty data into existing impact assessment models to produce timely 

results.  Where objective data is lacking, comparative risk assessments that integrate 



  36 

expert judgments can model relative risks and inform decision-makers despite high 

uncertainty.   

1.4 Supporting Complex Decisions 

 Interpretation of LCA results must support decision-makers presented with 

inconclusive findings, a challenge that is exacerbated for emerging technologies with 

parameter, scenario, and model uncertainties that cumulatively may span orders of 

magnitude.  One approach to truncate data needs is to evaluate emerging technologies in 

a comparative manner, for example relative to existing products or alternative process 

configurations.  Comparative LCAs of emerging technologies can benefit from new 

interpretation methods capable of reconciling tradeoffs between impact categories or 

technology alternatives, and present results in a manner that both portrays uncertainty and 

is easy to interpret.  To this end, researchers have incorporated multi-criteria decision 

analysis tools to inform decision making.22  Examples include use of stochastic multi-

attribute analysis after characterization to generate a probabilistic rank ordering of 

alternatives according to their overall life cycle impacts.28  Such tools can support R&D 

decision-makers in reducing environmental burdens by systematically identifying the 

uncertainties or data gaps that are most influential to changing a decision outcome.  

Uncertainties that have little impact on decision-maker choice may be revealed as a low 

priority thereby conserving research resources.   

1.5 A Model of Anticipatory LCA 

Current solutions to the four barriers described above are practiced in isolation, 

and their coordinated implementation requires interdisciplinary collaboration and 

knowledge transfer beyond the scope of existing practice.  To organize interdisciplinary 
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knowledge sharing around the life cycle of emerging technologies, we introduce a 

generalizable framework for anticipatory LCA, shown in Figure 1. The framework – 

which is neither exclusive nor exhaustive – provides examples of interactions between 

multiple actors, builds on the piecemeal modeling advances described above, and 

engages R&D decision-makers in guiding emerging technologies away from anticipated 

environmental impacts.  Anticipatory LCA is not meant to be predictive.  Informed by 

anticipatory governance strategies,29 anticipatory LCA complements alternatives-based 

approaches such as green chemistry to stimulate the imagination of relevant actors, and 

generate research hypotheses and other governance strategies that reorient the technology 

trajectory towards environmentally advantageous outcomes.   

Figure 5 depicts how knowledge generated by researchers from social, 

environmental, and physical sciences informs anticipatory LCA model formulation.  

Public and private funding organizations (gold) provide resources for physical scientists 

and engineers (orange) to advance technologies through R&D towards commercial 

applications.  Data collected by metering energy consumption, logging chemical 

inventories, and characterizing emission streams from laboratory-scale research is used in 

life cycle modeling software to capture up- and down-stream impacts.  Performance 

characterization and measurements are used to inform functional unit modeling.  

Prospective modeling tools (purple) such as structured scenario analysis, scale-up 

modeling, and uncertainty bounding analyses (among other tools introduced in section 

1.1) are used to account for parameter and scenario uncertainty in exploring how the life 

cycle inventory may change with future developments and alternative process 

configurations.  Social scientists (blue) facilitate stakeholder engagement to inform 
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practitioner modeling of multiple system boundaries, functional units, impact categories, 

and weights as modeling variables to systematically explore scenario uncertainty.  

Stochastic development of characterization factors incorporates variable risk data 

collected by environmental researchers (green) for emerging contaminants.  The 

characterized inventory is explored with decision analysis tools (tan) to identify the most 

significant tradeoffs relative to data uncertainty and present results as a probabilistic rank 

ordering of alternatives.28  Knowledge feedback (grey arrows) enables interventions in 

research funding, technology development, and risk research by identifying the 

uncertainties that undermine confidence in the analysis and prioritizing these for further 

research. 

 

Figure 5: Anticipatory LCA structures interdisciplinary interactions and environmental 

interventions early in R&D. White boxes present current practices in LCA, which 
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emphasize material flows and feedback, whereas anticipatory LCA emphasizes 

knowledge flows and feedback. 

 

Illustrating Anticipatory LCA 

To demonstrate the modeling components and knowledge feedbacks contained in 

the anticipatory LCA framework, we present illustrative examples germane to rapidly 

expanding commercial PV technologies and emerging PV devices containing carbon 

nanotubes (CNTs).  Production and adoption of PV technologies is in part driven by the 

goal of reducing greenhouse gas emissions and improving the environmental profile of 

electricity production, thus use of anticipatory LCA to guide PV innovation may result in 

development of products with greater potential for environmental benefit.  The following 

illustrative examples span the entire anticipatory LCA framework and demonstrate: 1) 

Inclusion of technology foresight and treatment of scenario uncertainty through the 

creation of structured scenarios relative to thermodynamic limits, 2) Incorporation of 

multiple stakeholder perspectives through modeling of multiple system boundaries and 

functional units, 3) Integration of variable CNT risk-data through Monte Carlo simulation 

within existing impact assessment tools, and 4) Improved treatment of uncertainty and 

presentation of results using novel interpretation practices tailored to a specific decision 

context.   

2.1 Structured Scenarios of Future Advances in mono-Crystalline Silicon Photovoltaic 

Devices 

The life cycle greenhouse gas benefits of PV are proportional to the energy 

generated by the panel over its lifetime and inversely proportional to the energy 

consumed in manufacturing the panel.30  These parameters are dynamic, sensitive to 



  40 

manufacturing and deployment locations, and responsive to alternative PV research 

agendas (e.g., research emphasis on increasing efficiency versus reducing manufacturing 

burdens).  The historical trends (solid lines, 1998-2008) in manufacturing energy 

consumption (left axis) and cell efficiency (right axis) are used to formulate quantitative 

scenarios of future changes (dashed lines, 2008-2018), shown in Figure 6.   

 

Figure 6: Historical trends (solid) and future scenarios (dashed) of manufacturing 

energy consumption (blue region, left axis) and cell efficiency (yellow region, right 

axis) over time for single-junction mono-crystalline silicon PV devices.  Comparison 

to the Shockley-Quiesser limit (dotted) indicates that laboratory research directed at 

increasing cell efficiency has limited potential for improvement, whereas increasing 

the efficiency of commercially available cells and continuing to reduce the embodied 

energy of single-junction mono-crystalline PV devices has greater potential to result 

in environmental improvements.     

 

Published estimates of the cradle-to-gate energy consumption of single-junction mono-

crystalline PV production between the years 1998-200831,32,33,34 are varied by +/- 30% 

and normalized to high and low estimates of the Watt-peak (Wp) capacity.  Under 

standard conditions the Wp capacity is a function of cell efficiency, which was bounded 
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by an upper limit of the highest reported research cell efficiency35,36,37,38,39 and a lower 

limit of the average efficiency of new panels entering the market.40  Solar cell efficiencies 

are presented with respect to the Shockley-Quiesser limit41 (dotted line) – the maximum 

possible efficiency of a single-junction cell based on the electronic properties of the 

semiconductor material and the characteristics of the solar spectrum – which is 29.5% in 

the case of mono-crystalline silicon.  Current research cells are within 5% of this limit but 

have hardly improved over the last decade, whereas manufactured cells remain 

significantly less efficient but have shown steady increases.  The embodied energy per 

unit area of panel has decreased historically and will likely continue this trend, although 

with a slower rate of improvement.  These scenarios suggest that R&D resources 

allocated to furthering reductions in manufacturing energy consumption and improving 

the efficiency of manufactured cells have greater potential to improve life cycle 

greenhouse gas savings than investments in increasing laboratory cell efficiency 

marginally closer to their theoretical limit.30  For example, feedback of this 

environmental knowledge to technology developers and research funders at the Quantum 

Energy and Sustainable Solar Technologies (QESST) Engineering Research Center 

contributed to formulation of research agenda focused on reducing silicon material use in 

PV devices through development of thin film silicon devices and novel laser processing 

approaches that reduce material losses in wafering.   

2.2 Stakeholder Engagement Informs Modeling 

 In addition to the technical characteristics of installed PV panels and emissions 

associated with manufacturing, the net greenhouse gas savings associated with PV 

adoption is influenced by consumer behavior in the PV use-phase.  Research on some 
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renewable energy and efficiency-increasing technologies – for example light emitting 

diodes for domestic lighting42 – suggests that environmental benefits do not accrue de 

facto because gains in efficiency are surpassed by increased consumption, a phenomenon 

termed the direct rebound effect.43,44  Conversely, an energy consumer with newly 

installed PV panels may monitor their usage with greater scrutiny, leading to 

environmental improvements derived from both increased efficiency and reduced 

consumption (termed a negative rebound effect).  This type of epistemic uncertainty 

influences LCA results and illustrates the importance of meaningful inclusion of user 

behavior through engagement activities that directly inform development of structured 

scenarios and alternative model configurations.  Figure 7 contrasts a PV manufacturer 

perspective (green line, left axis) – which emphasizes cradle-to-gate CO2 emissions 

associated with their product – and consumer perspective (blue region, right axis), which 

emphasizes CO2 emissions produced by an average US household.   

 

Figure 7: Historical data (solid) and future scenarios (dashed) of cradle-to-gate CO2 

emissions associated with production of 1 kWhp capacity of mono-crystalline PV (green 

line, left axis) and CO2 emissions of the average US household (blue line, right axis).  
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Producing two analyses using different boundaries and functional units tailors results to a 

specific stakeholder and quantitatively incorporates scenario uncertainty arising from 

normative modeling decisions. 

 

Historical data (solid) for cradle-to-gate emissions and future scenarios (dashed) 

correspond to the upper bound from Figure 2, converted to CO2 emissions using a global 

average carbon intensity of 61 gCO2 per MJ of primary energy.45   Historically the CO2 

emissions of the average US household oscillated between 15 and 17 Mmt,46 with future 

scenarios corresponding to an increase or decrease to 18 Mmt or 14 Mmt respectively.  

Producing two complementary analyses informed by engagement activities tailors results 

and identifies opportunities unique to individual stakeholder perspectives, in this case the 

manufacturer’s perspective illustrates the potential for further reductions in embedded 

CO2 whereas the consumer perspective illustrates scenarios of positive and negative 

rebound effects driving household emissions.  Comparing these analyses provides 

insights into the relative magnitude of uncertainties associated with each perspective, in 

this case that continued reductions in the embodied energy of PV may be inconsequential 

if end-user consumption increases.  Through targeted stakeholder engagement, decision 

making power does not lie solely with the LCA practitioner, but is explored and 

negotiated with diverse actors. 

2.3 Stochastic Development of Characterization Factors for Novel Materials 

When emerging PV technologies incorporate novel materials that lack risk data 

entirely or demonstrate high parameter uncertainty LCA practitioners have been unable 

to include impacts associated with their release.26  For example, researchers are exploring 

incorporation of carbon nanotubes (CNTs) into dye-sensitized solar cells because the 

high electron mobility an tunable electronic properties may improve device 
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performance,47,48 but have no guidance regarding potential life cycle environmental 

implications.  The heterogeneity of CNTs, diverse synthesis and post-synthesis treatment 

pathways, and experimental challenges encountered while measuring nanomaterial risk-

relevant parameters49 further contributes to uncertainty in data required to calculate 

ecosystem quality and human health characterization factors (CFs).50  Applying a 

stochastic approach within existing impact assessment tools allows probabilistic 

development of CFs, shown in Figure 8, in place of single value estimates used for 

chemicals with less uncertain data. 

 
Figure 8: Stochastic development of a freshwater ecotoxicity CF for CNTs following the 

approach used in the consensus impact assessment tool USETox.  Results are presented 

as a probability distribution with uncertainty derived from conflicting estimates of 

material properties (e.g., solubility, EC50) and behavior (e.g., partitioning, 

bioaccumulation) in freshwater.  Rank correlation identifies the uncertainties that drive 

CF results. 

 

Extension of prior15 probabilistic explorations of the consensus impact assessment tool 

USETox51,50 to estimate a CNT aquatic ecotoxicity CF allows development of full 

distributions in place of best- and worst-case scenarios.  USETox calculates CFs as the 
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product of a fate factor (FF), an effect factor (EF), and an exposure factor (XF).  Using 

the same data and modeling assumptions described in Eckelman et al 2012, we produce a 

full distribution for XF, which represents the fraction of CNTs that are bioavailable to 

aquatic organisms in the water column.  Similarly, we reproduce EF, which represents the 

toxic effects leading to reductions in species populations in a unit volume of freshwater 

per kg CNT emitted [PAF m3/kg], but model EF as a continuous lognormal distribution 

as is common in hazard assessment.52  Figure 4 shows EF lognormally distributed a mean 

of 200 PAF m3/kg and truncated with minimum of 20 and maximum of 2000 PAF m3/kg 

corresponding to HC50 values of 25 mg/L and .25 mg/L respectively.15  However, we 

deviate from prior studies and USETox to estimate FF, which represents the residence 

time [days] over which CNTs are bioavailable in the freshwater column, by using 

uncertain data taken directly from literature.  Based on available data, FF is modeled as a 

triangular distribution with a lower limit of 2 hours, mode of 30 days,53 and upper limit of 

122 days.15  The low end of this distribution corresponds to non-functionalized CNTs that 

rapidly settle out of water with low concentrations of natural organic matter (NOM), 

which has been shown to stabilize CNTs.  The mode value corresponds to NOM-

stabilized CNTs in freshwater with realistic NOM concentrations, and was informed 

(along with the distribution shape) by expert elicitation.  The product of FF, EF, and XF 

yields the CNT CF [PAF m3 day/kg], which represents the time and space integrated 

freshwater ecotoxicity impacts associated with direct emission of one kg of CNTs.  This 

analysis informs PV researchers about the potential risks associated with inclusion of 

CNTs into PV devices.  Rank correlation statistical analysis of the characterization factor 

inputs can be used to determine which material parameters most influence CF results – in 
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this case EF is most uncertain and further research efforts would be best allocated to 

improving certainty in measured EC50 values for aquatic species.   

2.4 Decision Analysis Simplifies Uncertain Environmental Results 

 Existing interpretation practices struggle to present actionable results for 

seemingly simple decisions, such as choosing the PV technology with the lowest overall 

environmental burden for a given installation, where data uncertainties are large relative 

to differences in environmental impacts associated with each alternative.  In place of bar 

charts produced by commercially available software, anticipatory LCA follows an 

alternative interpretation method54 to compare the impacts of 1 kWh of electricity 

produced by a 3kWp installation of either mono-crystalline silicon, multi-crystalline, or 

cadmium-tellurium (CdTe) panels (all inventory data taken from ecoinvent 2.2 for 3kWp 

slanted roof installation in Switzerland).  Using the impact assessment tool ReCiPe55 and 

pedigree matrix uncertainty56 we overlay probability distributions for each technology 

and compare these in each impact category, shown in Figure 9.   
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Figure 9: Decision-driven comparative LCA results for 1 kWh of electricity produced by 

a 3 kWp mono-crystalline silicon (red), multi-crystalline silicon (blue), or cadmium 

tellurium (green) PV system.  Significance is estimated based on the overlapping area of 

each distribution, with a smaller overlaps corresponding to greater significance.  

Aggregating these impact categories together as a probabilistic rank ordering of 

alternatives incorporates uncertainty and presents results in a manner that is easy to 

interpret. 

 

Presenting results this way identifies those categories in which there is significant 

difference in impact relative to data uncertainty and those categories in which high 

uncertainty overwhelms confidence in the comparison.  Significance is estimated by 

comparing overlap area of each distribution – with greater overlap area corresponding to 

similar performance and a less significant tradeoff – which systematically identifies 

impact categories for which greater certainty is necessary to support the comparison.  

Using equal weights and published outranking algorithms54 aggregating impact 

categories together into a probabilistic rank ordering of technology alternatives presents 

decision makers with an easy-to-interpret output that shows the likelihood of a given 

alternative outperforming the others.  Figure 5 indicates that CdTe PV panels have an 

80% likelihood of being ranked first (lowest overall environmental burden) whereas 

mono-crystalline silicon PV is almost always the most burdensome technology.  

Decision-driven interpretation of comparative LCA results accommodates inclusion of 

large uncertainties throughout modeling, systematically identifies impact categories in 

which greater certainty is necessary to inform decision-makers, and can promote uptake 

of LCA results by simplifying presentation. 

Enacting Anticipatory LCA for Environmentally Responsible Innovation 

This paper identifies four limitations – among numerous other pitfalls identified 

in the literature – that diminish the efficacy of current LCA practices in the context of 
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emerging technologies, and introduces an interdisciplinary framework for anticipatory 

LCA that represents an early attempt to structure LCA as a process not a product in 

itself.8  Anticipatory LCA is not predicative, but rather systematically and iteratively 

explores uncertainties across the life cycle of an emerging technology to prioritizing 

research with the greatest potential for environmental improvement and potentially 

contribute to responsible innovation57,58,59 by redirecting a technology’s development 

pathway.  While this paper focuses on applying anticipatory LCA to PV, it is 

generalizable to other emerging technologies and customizable to fit specific decision 

contexts.  Nonetheless a framework alone is inadequate, and enacting anticipatory LCA 

(and other large, transdisciplinary research efforts) requires advances in data sharing and 

institutional organization that parallel methods advancements.  One practicable first step 

is the creation of formalized working groups within international organizations such as 

the Life Cycle Initiative or International Society for Industrial Ecology, which can 

galvanize support within the LCA community as well as direct contributions from 

relevant disciplines.  With institutionalized support and the continued efforts of 

researchers from numerous backgrounds, it is possible for LCA to begin guiding 

innovation rather than retrospectively assessing its outcomes.      
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Abstract 

Large data requirements, high uncertainty and complexity, and regulatory 

relevance of toxicity impact assessment motivates greater focus on model sensitivity 

toward input parameter variability.  This is particularly useful for emerging contaminants 

like engineered nanomaterials (ENMs) to guide future efforts in data refinement and 

design of experiments.  This study presents a Monte Carlo tool based on USEtox 1.0 that 

allows researchers to rapidly prioritize data needs according to influence on 

characterization factors (CFs).  Using Monte Carlo analysis we demonstrate a sensitivity-

based approach to prioritize research through a case study comparing aquatic ecotoxicity 

CFs calculated with USEtox 1.01 for the ENM C60 and the vitamin B derivative 

niacinamide, two antioxidants used in personal care products.  We calculate CFs via 

10,000 iterations assuming plus-or-minus one order of magnitude variance for fate and 

exposure-relevant inputs.  Spearman Rank Correlation Indices are used for all variable 

inputs to identify parameters with the largest influence on CFs, which we prioritize for 

data refinement and future experimental investigation.  Based on the importance of 

aggregate multi-species toxicity (average log EC50) and studies suggesting solvent 

residues may yield erroneous toxicity estimates, we recalculate C60 CFs omitting all 

studies using solvents in sample preparation. 

For emissions to freshwater, the C60 CF is log-normally distributed with a 

geometric mean of 280 (geometric standard deviation, GSD: 2.1) PAF m3 day/kg 

compared to 2.6 (GSD: 1.8) PAF m3 day/kg for niacinamide.  C60 CFs are most sensitive 

to varied suspended solids partitioning coefficients (Kpss) and average log EC50, whereas 

variation of other substance parameters has comparatively little effect on model results.  
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Insufficient experimental evidence hampers to revise assumptions for Kpss, and we 

suggest prioritizing future experiments that elucidate C60 interactions with suspended 

solids.  Recalculating C60 CFs without toxicity studies that use solvents reduces the 

geometric mean by more than a factor of ten.  This reinforces the importance of thorough 

source term characterization, in this case regarding the presence of solvent residues.  

Calculating stochastic CFs allows sensitivity-based prioritization of data needs and future 

experiments, which is particularly helpful in the context of emerging contaminants like 

C60.  Researchers can conserve resources and address parameter uncertainty by applying 

our approach when developing new or refining existing CFs for the inventory items that 

contribute most to toxicity impacts.  The Monte Carlo tool can be applied to current 

toxicity characterization models like USEtox and is freely available.  
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Introduction 

Coupled fate-exposure-effect models like USEtox (Rosenbaum et al. 2008), 

Impact2002 (Pennington et al. 2005), and USES-LCA (van Zelm et al. 2009) are widely 

used to calculate characterization factors (CFs) for human toxicity and ecotoxicity 

impacts in life cycle assessment (LCA).  CFs allow practitioners and decision makers to 

quantify potential toxic impacts associated with emissions quantified in the life cycle 

inventory.  These models are complicated, require various substance-specific input 

parameters, and their results are typically characterized by an overall uncertainty of two 

to three orders of magnitude depending on emission compartment, exposure scenario, and 

data availability (Jolliet and Fantke 2015; Rosenbaum 2015).  Thus, life cycle impact 

assessment (LCIA) models for characterizing human toxicity and ecotoxicity require 

further improvement, although significant achievements have been made over the last 

decade.  For example, sustained harmonization efforts between divergent ecotoxicity 

LCIA models resulted in the consensus model USEtox (Rosenbaum et al. 2008; Westh et 

al. 2015) and the recently released USEtox 2.0 (http://usetox.org), which are considered 

best practice (Hauschild et al. 2013), recommended by the ILCD handbook (EC 2011), 

and implemented in TRACI (Bare et al. 2012).  The extensive inter-model comparisons 

and streamlining activities addressed model uncertainty and improved transparency and 

credibility (Hauschild et al. 2008).   

However, further development and adoption of current human toxicity and 

ecotoxicity LCIA models faces challenges related to the large number and diverse 

properties of relevant emitted substances, limited availability of high quality data, and 

sparse treatment of parameter uncertainty or variability (Alfonsín et al. 2014; Gust et al. 
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2015; Rosenbaum 2015).  For example, there is a large discrepancy between the ≈ 10,000 

substances included in the latest Ecoinvent inventory library (Weidema 2013) and the ≈ 

3,500 human and ecotoxicity CFs available from the largest toxicity characterization 

models USEtox and USES LCA (Henderson et al. 2011; van Zelm et al. 2009).  In the 

parsimonious model USEtox, each individual CF requires approximately ten substance-

specific input parameters, thereby challenging the experimental and data curation efforts 

required for database validation and expansion.  As a result, a large share of CFs in 

USEtox relies on substance data estimated using outputs from quantitative structure 

activity relationships (QSARs) such as EPI Suite (USEPA 2015b), which are essential for 

filling data gaps but lack experimental evidence and therefore are considered of lower 

quality than measured values (Huijbregts 2010a).  Thus, there is a critical need to explore 

the sensitivity of human toxicity and ecotoxicity LCIA results – and those used in other 

impact categories – to variability and uncertainty in required substance input data, which 

may help expedite database expansion, refinement, and development of future research 

agenda (Cellura et al. 2011; Cucurachi and Heijungs 2014).   

The best available method to evaluate LCIA model sensitivity to variability in 

substance data is to use Monte Carlo analysis to sample from specified distributions 

(Sonnemann et al. 2003) and calculate CFs as frequency distributions as opposed to point 

values (Lloyd and Ries 2007; van Zelm and Huijbregts 2013).  Calculating stochastic CFs 

enables sensitivity analyses that can help expedite data collection by identifying the 

substance-specific parameters with the greatest influence on model results (Saltelli et al. 

2008).  This can help define research agenda and conserve resources by focusing 

attention on experiments with the greatest potential to reduce uncertainty of model 
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results, while substance data with little impact on results may be revealed as a low 

investigative priority.   

The benefits of applying sensitivity-based research prioritization may be greatest 

in the context of emerging contaminants such as engineered nanomaterials (ENMs).  

Widespread concern regarding potential toxicity-related impacts associated with 

emissions of ENMs galvanized an active research community and produced volumes of 

published data that demonstrates high variability between published parameter estimates 

(NSTCCT 2014).  The suitability of human and ecotoxicity LCIA models for ENMs is a 

known issue (Klopffer 2007) and relatively well covered in recent literature (Gilbertson 

et al. 2015; Miseljic and Olsen 2014b; Salieri et al. 2015).  Less emphasized are critical 

data-related challenges include: 

1) The large number of commercially-relevant ENMs and possible permutations 

made through alternative surface coatings leaves comprehensive characterization 

and collection of sufficient data for all ENM emissions impracticable (Alvarez et 

al. 2009; Cohen et al. 2013; Grieger et al. 2010), 

2) Material heterogeneity within even narrow classes of ENMs – for example carbon 

nanotubes with differing lengths, number of walls, chirality – results in high 

variability in risk-relevant parameters reported in the literature (Hendren et al. 

2015; Saleh et al. 2015; Seager and Linkov 2008), and 

3) Computational approaches to estimating substance properties for ENMs are 

nascent (Alvarez et al. 2009; Cohen et al. 2013; Eisenberg 2015) and QSARs 

designed for conventional chemical pollutants may be inapplicable.  For example, 
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EPI Suite does not apply to the ENM C60 because the closed-cage structure is 

incomparable to other carbonaceous materials. 

Together these challenges limit the applicability of existing human and ecotoxicity LCIA 

models to ENMs, and to date there are no CFs specific for ENMs included in any 

commercial LCA software package or database.  Nanomaterial LCA review articles 

identified the lack of ENM-specific CFs as preventing quantification of toxicity impacts 

associated with ENM emissions (Gavankar et al. 2012; Hischier and Walser 2012; 

Miseljic and Olsen 2014a).  In the literature fewer than five studies have developed 

aquatic ecotoxicity CFs for ENMs, predominantly through innovative modifications of 

USEtox including: development of realistic and worst-case scenarios for the ENM’s CF 

(Eckelman et al. 2012), precautionary assumptions (Miseljic and Olsen 2014a), 

qualitative discussion of uncertainty (Rodriguez-Garcia et al. 2014), and development of 

simplified colloidal transport models within USEtox (Salieri et al. 2015).  Only Eckelman 

et al (2012) conducts a thorough Monte Carlo sensitivity analysis on substance 

properties, but the emphasis was on comparing the magnitude of cumulative upstream 

ecotoxicity impacts with those directly from ENM releases, and therefor did not include 

the relative influence of variable substance data on characterization results.   

The present paper introduces a Monte Carlo tool that can be combined with 

USEtox 1.01 that allows users to specify substance data as variable distributions, as 

opposed to point value estimates, and presents resulting CFs as frequency distributions.  

We apply the tool to compare aquatic ecotoxicity CFs of the ENM C60 (CAS 99685-96-8) 

and the vitamin B derivative niacinamide (CAS 98-92-0), both of which are used at low 

concentrations in commercial personal care products because of their antioxidant 
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properties (Benn et al. 2011; Lens 2009; PEN 2013).  The comparison represents a 

hypothetical decision context in which personal care product developers are considering 

substitution of the emerging material C60 for a conventional alternative performing the 

same function.  Given high environmental and regulatory uncertainty regarding ENMs, 

product developers are unsure of potential toxicity impacts and what further research is 

necessary to improve confidence in the material comparison.  Differences in 

performance, which are often the motivation for adoption of new materials, would be 

reflected in functional unit definition and differences in emitted mass are tracked in the 

life cycle inventory, both of which are beyond the scope of this manuscript.  More 

importantly, the comparison illustrates one component of an anticipatory approach to 

LCA that compares an emerging technology to conventional alternatives in order to guide 

research and development decisions towards reduced environmental impacts (Wender et 

al. 2014b).   

2.0 Methods 

USEtox calculates freshwater ecotoxicity CFs per unit mass of emitted substance, 

measured in comparative toxicity units CTUe (PAF m3 d/kg), as the product of a fate 

factor (FF, d), an exposure factor (XF, dimensionless), and an effect factor (EF, PAF 

m3/kg) (Equation 1).  FF, XF, and EF represent the residence time in freshwater, 

dissolved fraction in freshwater, and aggregated multi-species toxicological response, 

respectively (Henderson et al. 2011; Huijbregts 2010a): 

𝐶𝐹   =   𝐹𝐹  ∗    𝑋𝐹  ∗    𝐸𝐹   Eq. 1 
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Model structure, assumptions, and landscape data of USEtox 1.01 were not targeted in 

our Monte Carlo tool and thus model uncertainty is not addressed in this study as the 

focus is exclusively on substance data research prioritization.   

2.1 Description of the Monte Carlo Tool 

To facilitate Monte Carlo operation, we developed a user-friendly interface where 

USEtox-required substance data can be described as any combination of uniform, normal, 

log-normal and triangular distributions, or remain point values as applied in USEtox.  

These distributions are sampled independently n-specified times, the values were used as 

input to USEtox, and resulting CFs plotted as frequency distributions along with 

descriptive statistics.  Additionally, the Monte Carlo tool calculates Spearman Rank 

Correlation Indices for all inputs that are not point values (SI 2.1).  Results for each 

material presented are based on 10,000 Monte Carlo runs, taking approximately one hour 

to complete (2.0 GHz intel i7).  The JAVA-based tool has been made open source and a 

beta version made available for download.   

2.2 Fate and Exposure Data and Modeling Assumptions 

C60
 partitions strongly to dissolved organic carbon, suspended solids, and natural 

organic matter (Yang et al. 2015).  Thus, we implement values from available literature 

according to USEtox requirements for metals as shown in Table 4.  The large quantity of 

publications detailing fate-relevant studies for C60 and its aggregates, combined with 

inconsistent reporting of nanomaterial and matrix characteristics, prohibits a 

comprehensive review.  To emphasize the method of sensitivity-based research 

prioritization we have selected only studies which report USEtox-required parameters by 

name, for example as opposed to studies reporting removal percentages by biomass.   
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Table 4  Fate and exposure relevant data and modeled variance for C60  

Paramete

r 
Description Units 

Midpoin

t 

value(s) 

Baseline 

variance 
Reference 

MW 
Molecular 

weight 
g/mol 721  

721 

Chemical 

formula 

Kow 

Octanol-water 

partitioning 

coefficient 
L/L 4.6 x 106 

 
4.6x105 - 

4.6x107 

Jafvert & 

Kulkarni, 

2008 

Koc 

Organic carbon 

partitioning 

coefficient 
L/kg 

1.2 x 107 

5 x 103 

 
5x103 - 

1.2x107 

Chen & 

Jafvert, 2009 

Avanasi et al, 

2014 

Kh 

Henry’s law 

constant 

Pa 

m3/mo

l 

1 x 10-20  
   1x10-20 

USEtox 

manual 

Pvap Vapor pressure Pa 
6 x 10-4 

1 x 10-20 
1x10-20 - 

6.6x10-4 

SES Research, 

2010 

USEtox 

manual 

Sol 
Solubility in 

water 
mg/L 

2-8 x 10-6 

<100 

nC60 

 
5x10-6 - 1x102 

Jafvert & 

Kulkarni, 

2008 

Fortner et al, 

2005 

Kdoc 

Kpss 

Kpsl 

Kpsd 

Partitioning 

coefficient 

between: 

dissolved 

organic carbon; 

Suspended 

solids; 

Soil particles; 

Sediment 

particles 

L/kg 3.2 x 104 
 

3.2x103 - 

3.2x105 

USEtox 

regression: 

Kdoc=0.08*K

ow 

Assume Kdoc 

= Kpss = Kpsl 

= Kpsd 

Kdeg, air 

Degradation rate 

in air 

1/s 

1 x 10-20 

2 x 10-5 
1x10-20 - 

2x10-5 

USEtox 

manual, 

Tiwari et al, 

2014 

Kdeg, 

water 

Degradation rate 

in water 4.5 x 10-8 
 

4.5x10-9 - 

4.5x10-7 

Avanasi et al, 

2014 

USEtox 

manual Kdeg, soil 
Degradation rate 

in soil 

2.25 x 

10-8  
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2.2x10-9 - 

2.2x10-7 

Kdeg, sed 

Degradation rate 

in sediment 5 x 10-9 5x10-10 - 

5x10-8 

BAF fish 
Bioaccumulation 

factor in fish 
L/kg 

3.2 x 104 

5.12 x 

105 

 
5x104 - 5x106 

Li et al, 2010 

Jafvert & 

Kulkarni, 

2008 

A growing weight of evidence suggests that C60 released to water partitions to 

natural organic matter, biological membranes, and settles to sediment rapidly (PubChem 

2015a; Pycke et al. 2012; USEPA 2010).  Nonetheless some fate-relevant parameters 

published data show high variability, for example Chen and Jafvert (2009) reported the 

first estimate of an organic carbon-water partitioning coefficient (Koc) of ≈ 1.2 x 107 

mL/g, whereas five years later Avanasi et al. (2014) report Koc values as low as 5 x 103 

mL/g based on soil type.  We model Koc as a uniform distribution across this range.  C60 

solubility ranges from virtually insoluble (<10-9 mg/L) as isolated particles to nearly 100 

mg/L as water-stable aggregates (Avanasi et al. 2014), which we model as uniform 

between 5 x 10-6 and 100 mg/L.  Similarly, atmospheric degradation rates (Kdeg, air) of 2 

x 10-5 1/s by environmentally-relevant ozone concentrations was shown in Tiwari et al. 

(2014), although other carbon nanomaterials have been modeled as resistant to 

degradation (e.g., 1 x 10-20 1/s) (Rodriguez-Garcia et al. 2014).  Thus we model Kdeg, air 

as uniform between these two values.  In part the variability in fate and exposure relevant 

substance data for C60 is related to the large number of publications on the ENM, as 

compared to the less-studies niacinamide.  Thus, future efforts can incorporate the 

number of studies into estimates of parameter uncertainty or variability as has recently 

been demonstrated for pesticide dissipation half lives in plants (Fantke et al. 2014).   
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Fate and exposure relevant parameters for which only point values are reported in 

literature or available from QSAR programs, we assume an arbitrary baseline scenario of 

uniform variable distributions of plus-or-minus one order of magnitude from the 

midpoint value.  The USEtox 1.01 manual describes a simple regression to estimate the 

dissolved organic carbon partitioning coefficient (Kdoc) as 0.08 x Kow, giving the 

midpoint value of 3.2 x 104 L/kg.  In the absence of experimental data, we assume Kdoc 

is equal to the suspended solids partitioning (Kpss), sediment particle partitioning (Kpsd), 

and soil particle partitioning (Kpsl) coefficients (Eckelman et al. 2012).  Based on the 

classification of C60 as recalcitrant (Avanasi et al. 2014; Kümmerer et al. 2011) and the 

USEtox manual (Huijbregts 2010b), we model the aquatic degradation rate (Kdeg, water) 

as 4.5 x 10-8 1/s, and the soil and sediment degradation rates as 1/2 and 1/9 of Kdeg, 

water respectively.  Bioaccumulation factors for fish (BAF fish) have been reported as ≈ 

3 x 104 L/kg (Li et al. 2010) and 5 x 105 L/kg (Jafvert and Kulkarni 2008), which is less 

than the assumed baseline variability, thus we model BAF fish as uniform between 5 x 

104 and 5 x 106 L/kg.   

The conventional antioxidant niacinamide that C60 may replace is the subject of 

relatively fewer studies, which is why we rely primarily on EPISuite (USEPA 2015b) and 

supplement with available literature as summarized in Table 5.   

Table 5  Fate and exposure relevant data and modeled variance for niacinamide 

Parameter Description Units 
Midpoint 

value(s) 

Baseline 

variance 
Reference 

MW 
Molecular 

weight 
g/mol 122  

122 

Chemical 

formula 

Kow 

Octanol-water 

partitioning 

coefficient 

L/L 0.42  
4.2x10-2 - 4.2 

OECD 

SIDS 
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Koc 

Organic carbon 

partitioning 

coefficient 

L/kg 8.5  
0.85 - 85 

EPISuite, 

Kocwin 

Kh 

Henry’s law 

constant Pa 

m3/mol 

2.9 x 10-7 

6.45 x10-6 
2.9x10-8 - 

2.9x10-6 

PubChem 

database 

USEtox 

Guidance 

Pvap Vapor pressure Pa 
0.026 

0.05 
 

5x10-3 - 0.5 

EPISuite, 

MPBPVP 

PubChem 

database 

Solubility 
Solubility in 

water 
mg/L 

5e5 

6.9-10 x 

105 

 
5x104 - 5x106 

EPISuite, 

exper. 

OECD 

SIDS 

Kdeg, air 
Degradation rate 

in air 

1/s 

1.8 x 10-6 
 

1.8x10-7 - 

1.8x10-5 

EPISuite, 

AOPWin 

USEtox 

manual 

Kdeg, 

water 

Degradation rate 

in water 
2.1 x 10-7 

 
2.1x10-8 - 

2.1x10-6 EPISuite, 

Biowin 

USEtox 

manual 

Kdeg, soil 
Degradation rate 

in soil 
1 x 10-7  

1x10-8 - 1x10-6 

Kdeg, sed 
Degradation rate 

in sediment 
2.3 x 10-8 

 
2.3x10-9 - 

2.3x10-7 

BAF fish 
Bioaccumulation 

factor in fish 
L/kg 0.9  

0.09 to 9.0 

EPISuite, 

BCFBAF 

Niacinamide was not included in USEtox 1.01, but was covered in the recently released 

USEtox 2.0 (http://usetox.org) with fate and exposure-relevant parameter values nearly 

identical to those presented in Table 2 (SI, 2.2.2).  We collect parameter estimates from 

an OECD Screening Information Dataset, which reports experimentally-determined 

estimates for Kow of 0.42 and solubility of 6.9-10 x 105 mg/L (UNEP 2002), which 

correspond closely with values reported in EPISuite (USEPA 2015b).  The National 

Center for Biotechnology Information database reports Henry’s Constant (Kh) as 2.9 x 
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10-7 Pa m3/mol and a vapor pressure of 0.05 Pa (PubChem 2015b).  We combine 

EPISuite outputs and the USEtox organics manual (Huijbregts 2010c) to model uniform 

distributions for all degradation rates and BAF fish following the baseline scenario of 

plus-or-minus one order of magnitude from these midpoint values.   

2.3 Effect Factor Data and Modeling Assumptions 

We calculate EF for both materials using variable toxicology data from acute and 

chronic toxicity tests on producers (algae), primary consumers (invertebrates), and 

secondary consumers (fish) (Hauschild and Huijbregts 2015; Huijbregts 2010a).  Toxicity 

data for C60 and niacinamide – typically reported as the concentration at which 50 percent 

of the exposed organisms over background exhibit the studied effect (EC50), inhibited 

growth (IC50), or lethality (LC50) – was taken from available literature and is summarized 

in Table 6 and Table 7, respectively.   

Table 6  Data from individual ecotoxicity studies of C60 

Refere

nce 

Species 

(n=10) 

Test type and 

endpoint 

Reported 

value(s) 

Stabilization 

method 

EC50 

value 

Producers 

Tao et 

al, 

2015 

S. obliquus 
72h Chronic 

IC50 
1.94 mg/L 

THF then 

membrane 

filtered 

1.9 mg/L 

Gelca 

et al, 

2012 

S. 

capricornut

um 

5d Chronic IC50 

dark 
0.04 mg/L 

Stirred then 

filtered, 

average of size 

ranges taken 

0.04 mg/L 

5d Chronic IC50 

light 
0.02 mg/L 0.02 mg/L 

Baun et 

al, 

2008* 

P. 

subcapitata 

48h Chronic 

IC30 
90 mg/L Stirring 90 mg/L 

Blaise 

et al, 

2008* 

P. 

subcapitata 

72h Chronic 

IC25  
100 mg/L Mixing 100 mg/L 

Seki et 

al, 

2008** 

P. 

subcapitata 

72h Chronic 

IC50  

14.8 mg/L 

extrapolated 

Grinding with 

sugar and oil 
15 mg/L 

Primary Consumers 
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Seki et 

al, 

2008 

D. magna 
48h Acute EC50 

immobilization  

>2.25 mg/L 

(LOEC) 

Grinding with 

sugar and oil 
5 mg/L 

Blaise 

et al, 

2008 

T. 

platyurus 
24h Acute LC50 >10 mg/L 

Mixing 

5 mg/L 

H. 

attenuata 

96h Acute EC50 

morphological 
>10 mg/L 5 mg/L 

Lovern 

& 

Klaper, 

2006 

D. magna 48h Acute LC50 

7.9 mg/L Sonication 3.9 mg/L 

0.46 mg/L 

THF, filtered 

then 

evaporated 

0.2 mg/L 

Zhu et 

al, 

2009 

D. magna 

48h Acute LC50 10.5 mg/L 

Shaken 

5.3 mg/L 

48h Immobility 

EC50 
9.34 mg/L 4.6 mg/L 

Ji et al, 

2014 

 

D. magna 

96h Acute LC50 

dark 

1.85 mg/L 

(NOEC) 

Mixing then 

filtered 

through .2 

micron 

17 mg/L 

96h Acute LC50 

light 

0.46 mg/L 

(NOEC) 

4.1 mg/L 

M. 

macrocopa 

96h Acute LC50 

dark 
4.1 mg/L 

96h Acute LC50 

light 
4.1 mg/L 

Tao et 

al, 

2009 

D. magna 
48h Acute LC50 

neonatal 
0.44 mg/L 

THF then 

evaporated 
0.2 mg/L 

Zhu et 

al, 

2006 

  

D. magna 48h Acute LC50 0.8 mg/L 
THF then 

evaporated 
0.4 mg/L 

Oberdo

rster et 

al, 

2006 

D. magna 

96h Acute LC50 
>35 mg/L 

(LOEC) 

Stirring 

78 mg/L 

21d Chronic 

Molting delay, 

number of 

offspring 

2.5 mg/L 

(LOEC) 
5.6 mg/L 

Baun et 

al, 

2008 

D. magna 
48h Chronic 

Mobility 

<50 mg/L 

(NOEC) 
Stirring 450 mg/L 

Secondary consumers 

Seki et 

al, 

2008 

O. latipes 96h Acute LC50  
>2.15 

(NOEC) 

Grinding with 

sugar and oil 
19 mg/L 

Oberdo

rster et 
O. latipes 96h Acute LC50 

0.5 mg/L 

(NOEC) 
Stirring 4.5 mg/L 
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al, 

2006 

P. 

promelas 

1 mg/L 

(NOEC) 
9 mg/L 

Usenco 

et al, 

2007 

D. rerio 
96h Acute LC50 

embryonic 

0.2 mg/L 

C60 or C70 

sonicated in 

DMSO 

0.1 mg/L 

4 mg/L C60(OH)24 2 mg/L 

Usenco 

et al, 

2008 

D. rerio 

5d Acute LC50 

dark 
0.3 mg/L 

C60 sonicated 

in DMSO 

0.15 mg/L 

5d Acute LC50 

light 
0.2 mg/L 0.1 mg/L 

5d Chronic 

EC50   

Fin 

malformation 

0.15 mg/L 0.15 mg/L 

Zhu et 

al, 

2007 

D. rerio 

96h Chronic 

EC50 

developmental 

1.5 mg/L 

C60 in THF 

then 

evaporated 

1.5 mg/L 

50 mg/L 

(NOEC) 
C60(OH)24 450 mg/L 

*Although USEtox manual specifies EC50 values, we retain data from studies reporting 

25 and 30 percent effected concentrations as additional uncertainty is included in EF 

modeling. 

**Seki et al (2008) do not reach 50 percent inhibitory concentrations but report an 

extrapolated EC50 value based on lower effect-level concentrations. 

This curated data set demonstrates high variability between reported values, with at least 

two orders of magnitude difference in every trophic level and five orders of magnitude 

difference across all species.  In spite of ongoing improvements to toxicity testing for 

ENMs (Petersen et al. 2015) there is general consensus that C60 presents relatively low 

hazard to aquatic species (Andrievsky et al. 2005).  As noted in Table 3, many of the 

studies compare fullerene toxicity between:  

1) Alternative sample preparation methods (Lovern and Klaper 2006; Seki 2008; 

Usenko et al. 2007; Zhu et al. 2006; Zhu et al. 2007) to elucidate the extent to 

which solvents or other contaminants may cause erroneously high toxicity 

estimates (Henry et al. 2011; Kovochich et al. 2009), and  
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2) Testing conditions exposed to light or kept in darkness (Gelca et al. 2012; Ji et al. 

2014; Usenko et al. 2008) to understand the importance of photoexcitation and 

degradation in driving toxicity (Kolosnjaj et al. 2007).   

A noteworthy source of uncertainty is converting acute, no observed effect concentration 

(NOEC), and lowest observed effect concentration (LOEC) endpoints reported in the 

majority of studies into equivalent chronic EC50 values by dividing by an acute to chronic 

ratio of 2 (Huijbregts 2010a), 1/9, and 4/9 respectively, following studies for non-cancer 

endpoints (Eckelman et al. 2012; Huijbregts et al. 2005).  We apply these factors 

consistently across both materials, and do not test the sensitivity of CFs to these 

assumptions.     

The conventional alternative niacinamide again is the subject of relatively fewer 

studies than the emerging material C60.  Reported toxicity data for niacinamide are 

consistently greater than C60 by at least two orders of magnitude, and all exceed 1 g/L as 

shown in Table 7. 

Table 7  Data from individual ecotoxicity studies of niacinamide 

Reference 
Species 

n=3 

Test type and 

endpoint 

Reported 

value(s) 
EC50 value 

Producers 

OECD SIDS, 

2002 

S. 

subspicatus 

72h Acute EC50 >1000 mg/L 500 mg/L 

Algae - 

generic 

QSAR, 96h Accute 

EC50 

8,934 mg/L 4,500 mg/L 

Primary consumers 

OECD SIDS, 

2002 

D. magna 24h Acute EC50 >1000 mg/L 500 mg/L 

Daphnid - 

generic 

48h Acute EC50, 

QSAR 

16,456 mg/L 8,000 mg/L 

Secondary consumers 

OECD SIDS, 

2002 

P. 

reticulata 

96h Acute LC50 >1000 mg/L 500 mg/L 
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Fish - 

generic 

96h Acute LC50, 

QSAR 

18,189 mg/L 9,000 mg/L 

ECOTox 

database* 

X. laevis 96h Acute EC50, 

embryonic 

0.34 mg/L 0.17 mg/L 

*Misclassified data point contained in ECOTox database. 

Consistent with our treatment of C60 ecotoxicity studies we multiply the acute toxicity 

data reported in Table 4 by 1/2.  The dataset contains a misclassified acute EC50 value of 

0.34 mg/L reported in the ECOTox and RIVM ETox databases (RIVM 2015; USEPA 

2015a), which references a study that considers nicotine and 6-aminonicotinamide 

(Dawson and Wilke 1991) not nicotinamide, and has been brought to the attention of the 

respective database managers.  Unfortunately, this is the only value implemented in the 

recently released USEtox 2.0, which results in a niacinamide ecotoxicity CF for emission 

to freshwater on the order of 105 PAF m³ d/kg – surprisingly large for a vitamin B 

derivative widely considered to be innocuous at relevant commercial and environmental 

concentrations (CIREP 2005).  Thus we exclude this value in calculating EFs for 

niacinamide, although the influence of the data point on aggregate multi-species toxic 

concentration (aveLog EC50) estimation and standard error on the mean (SEM) 

calculation is significant (SI 2.3.1).   

To calculate aveLog EC50 from the individual studies reported in Tables 3 and 4, 

we take the log of the geometric mean of each trophic class, and then calculate the 

arithmetic mean of these values  (Huijbregts 2010a) (SI 2.3.2).  This represents the 

concentration at which half of aquatic species are exposed above their median EC50 

values, and is 0.43 and 3.2 log mg/L for C60 and niacinamide respectively.  We calculate 

the SEM from the log EC50 data, which is 0.12 for C60 and 0.04 for niacinamide (SI 

2.3.2).  Uncertainty in the average toxicity (𝑎𝑣𝑒 𝐿𝑜𝑔) follows a Student’s t distribution 
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(Golsteijn et al. 2012; Van Zelm et al. 2007) centered around aveLog EC50 and scaled by 

the SEM, shown in Eq. 2: 

 𝑎𝑣𝑒 𝐿𝑜𝑔 = 𝑎𝑣𝑒 𝐿𝑜𝑔 𝐸𝐶50 + 𝑆𝐸𝑀 ∗ 𝑡  Eq. 2 

Where t represents a two-tailed t-distribution with n-1 degrees of freedom from n 

different species with experimental toxicity data (SI 2.3.2). 

3 Results and Discussion 

Freshwater aquatic ecotoxicity CFs for C60 and niacinamide emitted directly to 

urban air, continental freshwater, and natural soil (Figure 10 A-C) show approximately 

two orders of magnitude variability resulting from the assumed plus-or-minus one order 

of magnitude in the baseline scenario.  These results are generated through the full 

sampling of distributions specified in Tables 4 and 5 as well as 𝑎𝑣𝑒 𝐿𝑜𝑔 for each 

material, and thus represent the global sensitivity of freshwater aquatic ecotoxicity CFs to 

simultaneous changes in all substance properties.  Emissions to rural air and agricultural 

soil show similar variability and order of preference, and niacinamide emissions to 

marine water are more than 15 orders of magnitude greater than C60 due to its resistance 

to removal via sedimentation (SI 3.1).   

 

Fig 10  Stochastic aquatic ecotoxicity CFs for C60 (black) and niacinamide (orange) 

antioxidants emitted to urban air (A), freshwater (B), and natural soil (C) compartments.  

Solid lines are frequency distributions from 10,000 Monte Carlo runs and dashed lines 
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are normal distributions fit to the log-transformed data (i.e., CFs are log normal 

distributions).  

For emissions to air and freshwater, niacinamide is characterized by a lower toxicity 

potential per unit mass than C60, as opposed to emissions to soil in which case C60 has a 

lower average CF due to its strong partitioning to soil over water.  For emission to 

freshwater, stochastic CFs for C60 and niacinamide are log normally distributed with a 

geometric mean of 280 and 2.6 and geometric standard deviation of 2.1 and 1.8, 

respectively.  All of these differences are significant (Welch’s t-test p < 0.001), with the 

closest scenario (i.e., emission to soil) yielding a Welch’s t-test statistic < 0.05 (SI 3.2) 

(Fagerland and Sandvik 2009).  Although model uncertainty is relatively well studied and 

beyond the scope of this study, these differences are significant with respect to model 

uncertainty, and variability in CFs in the baseline scenario is smaller in magnitude than 

estimated model uncertainty (Rosenbaum et al. 2008) (SI 3.3).  Given baseline scenario 

assumptions, the hypothetical product developers can conclude that C60 has greater 

potential for ecotoxicity impacts per unit mass than niacinamide,  

3.1 Identifying the Most Influential Substance Parameters 

To estimate the relative influence of varied input parameters used to calculate C60 

CFs we take the absolute value of the Spearman Rank Correlation Index for emissions to 

urban air, continental freshwater, and natural soil (Figure 11A-C).  Spearman rank 

correlation assumes independence of observations within each parameter and makes no 

assumptions about the distribution type (Gauthier 2001).  Many of the substance 

parameters in USEtox are themselves calculated as function of other substance input 

parameters using simple regressions, for example estimating Kdoc based on Kow, and are 
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thereby not independent.  We do not account for the interdependence of parameters as the 

focus is on identifying only the few most influential substance properties, although 

Fantke et al. (2012) demonstrate how to decouple true parameter uncertainty (e.g., in 

Kdoc) from regression-related uncertainty.   

 

Fig 11  The five Spearman rank correlation indices with the greatest magnitude out of all 

variable inputs for three C60 aquatic ecotoxicity CFs. Greater magnitude indicates which 

input parameters have the greatest influence on CFs variability for each emission 

compartment.   

 

Figure 11 calls attention to the importance of variability in the suspended solids 

partitioning coefficient (Kpss), 𝑎𝑣𝑒 𝐿𝑜𝑔 aggregate ecotoxicity, and to a lesser extent 

sediment, aquatic, and soil degradation rates (KdegSd, KdegW, KdegSl) as driving 

variance in C60 CF results.  Despite the large variability modeled for C60 solubility, this 

parameter has negligible effect on CFs (SI 2.2.1).  The importance of removal through 

aggregation and sedimentation is consistent with recent reports for other ENMs (Dale et 

al. 2015).  Thus we prioritize these parameters for C60 for further data refinement and 

future experimental research.  In the case of niacinamide, uncertainty in degradation rates 

in air, water, and soil have the greatest influence for all emission scenarios, followed by 

Henry’s constant, the organic-carbon partitioning coefficient, and average ave Log EC50 

(SI 3.4). 
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3.2 Decomposing CFs into Fate, Exposure, and Effect Components 

The two antioxidant compounds display significant differences in terms of their 

freshwater residence time (fate factor FF), dissolved fraction (exposure factor XF), and 

aggregate multi-species toxicity (effect factor EF) as shown in Figure 12A-C, and the 

product of these three yields the CF following equation 1.   

 

Fig 12  Component fate (A), exposure (B), and effect factors (C) for niacinamide 

(orange) and C60 (black) identify significant differences between the two antioxidants, 

specifically the high exposure and low toxicity of niacinamide compared to C60.  Solid 

lines are frequency distributions of 10,000 Monte Carlo runs and dashed lines are normal 

distributions fit to the log-transformed data. 

 

FF for each material is equivalent, with partitioning and sedimentation the dominant 

removal route for C60 and biodegradation dominant for niacinamide.  XF for niacinamide 

is effectively 1 – representing 100 percent of the emission being bioavailable – whereas 

the C60 XF has a geometric mean of 0.1 (corresponding 10 percent dissolved and 

bioavailable) because of strong partitioning to suspended solids, dissolved organic 

carbon, and biomass.  The greatest difference between the two antioxidants is in EF, 

where C60 exceeds niacinamide by three orders of magnitude (geometric mean 190 vs 

0.2), which is not surprising given the low ecotoxicity values reported for niacinamide in 

Table 4. 
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3.3 Refining Estimates of Variability for C60 Substance Data 

Figure 2 indicates that, for the majority of input parameters in Tables 1 & 2, the 

assumed variability of plus-or-minus one order of magnitude has little influence on C60 

aquatic ecotoxicity CFs.  In the case of direct emission to freshwater, the suspended 

solids partitioning coefficient (Kpss) and average toxicity (aveLog EC50) are prioritized 

for data refinement and promising candidates for further experimental investigation.  The 

assumed Kpss with uniform variability between 3 x 103 and 3 x 105 L/kg is based on the 

USEtox 1.01 regression for estimating Kdoc from Kow, which does not warrant 

reduction from our high-uncertainty baseline scenario even though experimental values 

for Kow are available.  C60 is expected to exhibit strong partitioning to suspended solids 

based on reported Koc values (PubChem 2015a), although there are reports of variable 

removal between 10 and 90 percent by high concentrations of heterogeneous biomass 

(which likely has a higher organic content than suspended solids) between alternative C60 

preparation methods (Kiser et al. 2010).  Thus, further reduction of variability in Kpss 

requires identification of dominant preparation methods and experimental investigation 

of C60 partitioning to suspended solids with realistic compositions and concentrations.   

Uncertainty in aveLog EC50 for C60 is similarly influential to CFs and complicated 

by differences between C60 preparation methods, particularly regarding the presence of 

solvent residues and their potential contribution to erroneously high toxicity estimates.  

C60 used in cosmetics is commonly stabilized in castor oil or polymer coatings such as 

polyvinylpyrrolidone (Benn et al. 2011; Lens 2009), and likely will not be prepared using 

solvents.  To explore the sensitivity of C60 EFs and CFs to preparation method, we 

exclude all studies in Table 3 that used solvents to stabilize C60 and calculate a revised EF 
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with a geometric mean of 72 and revised CF of 31, as opposed to 187 and 280 in the 

baseline scenario including all preparation methods, (Figure 13A&B).   

 

Fig 13  Removal of all ecotoxicity studies relying on solvents (black without, blue with) 

reduces the C60 effect factor (A) and characterization factor (B) by more than one order 

of magnitude.  With no solvents the toxicity potential of C60 is closer to niacinamide 

(orange) but still significantly different for emissions to freshwater (C).    

 

The revised CF for C60 emissions to freshwater still exceeds niacinamide by an 

order of magnitude (4C) and is significantly different (Welch’s t test p < 0.001).  This 

suggests that, if solvent residues are not present in C60 emissions, the aquatic ecotoxicity 

potential is marginally greater than niacinamide for direct emission to freshwater.  For 

emissions to rural and continental air, the geometric mean of the C60 CF is at least two 

orders of magnitude greater than niacinamide, whereas for emissions to natural soil, 

agricultural, and marine water niacinamide significantly exceeds C60 (SI 3.4).  Thus, the 

order of preference for the materials depends on the emission compartment.  

Furthermore, there is a critical need to: 1) characterize the form of C60 released regarding 

the presence of solvent residues, and 2) to design new experiments to elucidate suspended 

solids partitioning behavior.   

4.0 Conclusion 

LCIA method developers can apply the Monte Carlo tool to expedite expansion 

and review of toxicity databases by identifying the most influential substance data for 
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distinct chemical classes, and then focusing their efforts on reducing parameter 

uncertainty on these estimates by finding or providing experimental references.  

Analogous to the case shown above, it is likely that only a few model input parameters 

are significant for each chemical class, and building consensus about uncertainty 

estimates for these parameters may allow future quantification of parameter uncertainty 

for all chemicals currently included  in LCIA models (similar to what has been done for 

global estimates of model uncertainty).  Furthermore, we encourage LCA practitioners to 

apply the Monte Carlo tool to the life cycle inventory items that contribute most to 

ecotoxicity impacts to increase confidence in interpretation of LCIA results.   

In the context of emerging contaminants, calculating CFs stochastically allows 

practitioners to identify which input parameters are most influential to characterization 

results, and use this information to help prioritize experimental research agenda.  Our 

results suggest that focusing experimental resources on improving data for suspended 

solids partitioning behavior and multi-species toxicity indicators has the greatest potential 

to reduce uncertainty of current C60 CF estimates.  In this capacity, stochastic evaluation 

of impact assessment models to identify the most influential parameter uncertainties and 

inform future research agenda constitutes an example of anticipatory LCA (Wender et al. 

2014a; Wender et al. 2014b).   

The approach outlined in the present paper has potential for broader application to 

different LCIA models and other impact categories that use simplified fate and effect 

modeling based on variable substance properties.  The controversy, parameter, and 

mechanistic uncertainty surrounding the environmental impacts of ENMs represents an 

opportunity to reevaluate LCIA estimates for commercially-available, well-studied 
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chemicals.  No midpoint impact assessment methods include formal uncertainty analysis, 

thus this approach could improve treatment and presentation of uncertainty for LCA of 

emerging and established technologies alike.    
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CHAPTER 5 

SYNTHESIS 

This synthesis chapter integrates findings from component studies to address the 

guiding research question of “how life cycle assessment (LCA) can be improved to 

inform responsible research and innovation (RRI) of emerging technologies?”  In 

answering this question the dissertation: 1) Identifies several limitations in current LCA 

practice that impede application of LCA early in research and development based on 

capacities summarized in the growing literature describing RRI (Wender et al. 2014a), 2) 

Introduces a framework for anticipatory LCA that addresses these limitations by 

including elements of technology forecasting, social engagement, stochastic risk 

modeling, and multi criteria decision analysis (Wender et al. 2014b), and 3) 

Demonstrates a Monte Carlo human and ecotoxicity impact assessment tool based on the 

consensus model USEtox that explores uncertainty to inform development of future 

research agenda.  The component chapters and contributions address specific questions, 

yet are interrelated and build off one another as summarized in the dissertation graphical 

abstract shown in Figure 14.   
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Figure 14  Graphical Abstract  Development of anticipatory LCA tools facilitates 

exploration of uncertainty in life cycle inventory data and impact assessment models for 

emerging technologies, identifies those parameters with the greatest contribution to 

uncertainty in life cycle environmental impacts, and offers a pathway to integrate 

environmental criteria early in technology development. 

 

Each chapter adopts increasingly narrow boundaries of analysis: Chapter One 

begins with the broader social context, Chapter Two identifies three specific 

interventions, and Chapter Three explores one of these interventions in a detailed case 

study.  The dissertation describes the limitations of current LCA practices and proposes 

methodological advances using illustrative examples of nanotechnology and 

photovoltaics, nonetheless the work is focused the process and methods of environmental 

assessment.  Thus, this dissertation is not about nanomaterials or photovoltaics being 

good or bad for the environment.  Instead, the work contributes improved LCA methods 

that emphasize uncertainty and sensitivity analyses to inform contemporary decisions 
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with an eye towards the research and decisions with the greatest potential to improve 

environmental attributes.   

Chapter One contextualizes LCA within literature from the burgeoning field of 

RRI (Guston et al. 2014; Stilgoe et al. 2013; von Schomberg 2013), and suggests LCA as 

a holistic technology assessment method with potential to operationalize the otherwise 

conceptual discussions of RRI.  The chapter reviews current practices in LCA and 

emphasizes the limitations and opportunities that are relevant to RRI.  Specifically, the 

chapter concludes that the extensive reliance on commercial-scale data – data that is 

inherently not available for emerging technologies and their product applications – 

renders LCA as retrospective and ill-suited for enabling the objectives RRI.  Another 

limitation identified in Chapter One is the lack of treatment of alternative stakeholder 

perspectives in LCA practice.  To broaden the range of values and perspectives included 

in LCA, the chapter identifies several practitioner decisions that are value-based and 

suggest conducting social engagement activities to evaluate how various stakeholders 

may select differently.  These limitations speak directly to the core RRI capacities of 

anticipation and inclusion, and the chapter concludes that advancements in LCA methods 

are necessary to overcome these limitations and align LCA with RRI.   

Chapter Two builds on the objectives and critiques presented above by 

introducing an iterative framework for anticipatory LCA that is forward looking, decision 

directed, inclusive of alternative stakeholder perspectives, and focused on uncertainty and 

sensitivity analysis to inform future research agenda.  The chapter demonstrates each 

component of the anticipatory LCA framework using the illustrative example of 

photovoltaic (PV) technologies to identify:  
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1) The greatest opportunity to improve life cycle greenhouse gas (GHG) savings of 

monocrystalline silicon PV panels is to reduce manufacturing energy 

consumption as opposed in marginally improving use phase efficiency, although 

the latter dominates current research efforts; 

2) The environmental benefits of PV, and greatest opportunities for further 

improvements, quantified in an LCA depend strongly on the selection of 

functional unit and system boundaries, which will be specified differently by PV 

users and manufacturers; 

3) Instances when PV panels contain novel materials – for example incorporation of 

carbon nanotubes or C60 fullerenes into organic PV modules – require impact 

assessment methods that account for relatively greater uncertainty, and the results 

of which have potential to prioritize future research to focus on the risk relevant 

parameters with the greatest influence on environmental impacts; and 

4) Data demands and cognitive limitations faced in interpretation of comparative 

LCA results can be greatly reduced through inclusion of decision analysis tools 

that sort environmental impacts relative to data certainty. 

The proposed anticipatory LCA framework identifies three intervention points (among 

many) at which communication of environmental findings to specific innovation actors 

can guide future research agenda.  Identification and communication of the processes and 

material parameters along the product life cycle with the greatest potential for 

environmental improvement can support integration of environmental criteria into design, 

funding, and risk research decisions.  The chapter concludes that applying this framework 
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iteratively alongside development of emerging technologies can help operationalize the 

principals of RRI. 

Chapter three focuses on one of the identified interventions in greater detail, 

specifically exploring how uncertainty and sensitivity analysis of life cycle impact 

assessment (LCIA) methods can inform risk research for emerging technologies by 

identifying the material parameters and associated uncertainties that are most influential 

to model results.  The chapter introduces a Monte Carlo tool based on the consensus 

human and ecotoxicity impact assessment model USEtox (Westh et al. 2015) that allows 

users to specify all required substance data as probability distributions, presents CF 

results as frequency distributions, and compares the relative influence of variability in 

each material parameter.  Applying this tool to a comparative case study of niacinamide 

and the engineered nanomaterial C60, both of which are used in low concentrations in 

commercial personal care products, suggests that research to improve understanding in 

C60-suspended solids partitioning behavior has the greatest potential to improve certainty 

in human and ecotoxicity estimates for this emerging contaminant.  The sensitivity-based 

approach to research prioritization demonstrated in this chapter has potential for broader 

applicability to other emerging contaminants characterized by high uncertainty or to other 

impact categories beyond human or ecotoxicty.  The completed software is freely 

available and continuing collaborations with USEtox model developers will promote 

broad dissemination. 

Synthesizing the recommendations of each chapter into a brief answer to the 

dissertation’s guiding question: to support the objectives of RRI LCA methods must 

become forward looking (e.g., by overcoming reliance on historical data), integrative of 
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diverse viewpoints (e.g., by comparing alternative model assumptions informed by 

stakeholder engagement), and generate knowledge that is useful for contemporary 

decisions that influence the products eventual environmental impacts.   

Dissertation boundaries and limitations 

Although this dissertation draws motivation from the growing movement for RRI, 

the work stops short of claiming RRI as an explicit outcome.  More subtly, this work 

aligns with the principals of RRI but focuses on the methods that make this otherwise 

conceptual work practicable.  Thus, the principal outcome of this work is a framework 

and impact assessment tool that can be applied to help anticipate potential environmental 

impacts of emerging technologies, explore diverse viewpoints through environmental 

assessment, and integrate environmental criteria into technology development criteria.  

Although case studies are used to demonstrate these tools, the dissertation also does not 

claim improved photovoltaic or nanotechnologies as an outcome.  Furthermore, although 

the dissertation focuses on improving technology assessment methods to align with RRI, 

the advances presented herein will not de facto result in RRI or product improvements, 

but will require sustained efforts.  The remainder of this synthesis surveys noteworthy 

limitations and concludes with two examples of research organizations applying the 

Monte Carlo tool based on USEtox to support environmentally responsible innovation, 

although the associated projects and future publications are outside the scope of this 

dissertation.   

LCA for the process not the product – The methods presented in this work must 

be applied iteratively, as opposed to being applied once to reach a conclusive result, 

which requires a shift in perspective by some decision makers and practitioners.  For 
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example, the Monte Carlo impact assessment tool based on USEtox can identify research 

strategies with the greatest potential to reduce uncertainty, which in turn will result in 

new parameter estimates for input to the model and new results generated.  In this 

capacity, anticipatory LCA is not static, co-evolves with the technology being studied, 

and serves as a holistic framework to organize existing knowledge and prioritize future 

data needs (McKone et al. 2011).   

Diverse disciplinary perspectives – The anticipatory LCA framework requires 

input from a breadth of disciplinary perspectives and cannot be applied by an analyst and 

database in isolation.  For example, Chapter 2 describes the need for stakeholder 

engagement through social science methods such as interviews, focus groups, and 

structured workshops to iteratively explore alternative perspectives (e.g., technology user 

versus manufacturer) in modeling assumptions and results.  This requires training and 

skills not typical for LCA practitioners, and may be prohibitive of broader application.  

Thus, the anticipatory LCA framework is best suited for application by large research 

organizations (e.g., Intel or GE), large funding agencies or government technology 

assessment organizations (e.g., GAO), or interdisciplinary research teams.   

Reduced data needs at the expense of greater modeling efforts – A benefit of the 

anticipatory LCA framework and stochastic impact assessment tool is that their 

application addresses data shortages and high uncertainty in the context of emerging 

technologies.  In the absence of low-uncertainty data, the anticipatory approach 

emphasizes sensitivity analyses and iterative model refinement to identify which data 

needs are most relevant in a specified decision context.  In practice this shifts efforts data 

collection needs toward increased efforts in analysis and interpretation.  Specifically, the 



  98 

framework and stochastic impact assessment tool are designed to be applied iteratively 

and with the understanding that there is not necessarily one correct answer.  Analysts 

must be prepared to develop multiple life cycle models based on different assumptions 

(e.g., system boundaries, functional units), compare results and identify salient 

differences, communicate findings to decision makers and active stakeholders, and then 

reevaluate each model.  Thus reductions in data needs may be offset by greater demand in 

analysis and interpretation. 

Securing decision maker buy in and describing the decision context – The tools 

introduced in this dissertation require contributions and effort on the part of the decision 

maker, not just in interpretation of results but in defining the decision context.  This must 

include what technologies are being compared, what essential functions these serve and 

what figures of merit are used to compare alternatives, and what influence the decision 

maker can have on the extended product system.  All of this in turn will shape the 

boundaries of analysis and inform iterative modeling decisions such as definition of 

functional unit.  In the two illustrative use scenarios presented below, the decision 

context is specified for use of the stochastic impact assessment tool by two different 

research organizations.   

Example usage scenarios 

USEtox model developers – The USEtox human and ecotoxicity impact 

assessment model was developed by an international consortium of researchers under 

sponsorship of the United Nations Environmental Program.  The principal mission of 

USEtox was to help provide tools that address human and ecotoxicity impacts in 

comparative technology assessment.  USEtox is considered best practice in LCA and 
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widely viewed as successful in building consensus around best methods to include this 

important category of impacts in technology assessment.  Unfortunately, the USEtox 

model has large substance-specific data requirements, high uncertainty, and greater 

complexity than models used in other impact categories.  Thus, USEtox model 

developers face serious challenges in quantifying the magnitude and significance of 

parameter uncertainty associated with USEtox CFs, as to date there are only estimates of 

model uncertainty.   

The Monte Carlo tool based on USEtox has been shared with model developers to 

help reduce data needs and expedite expansion and adoption of the model.  Specifically, 

calculating stochastic CFs allows full sensitivity analysis of all variable inputs, which in 

turn identifies the material parameters that are most influential to results as high priority 

for further efforts in data collection.  Likewise, parameters that have little influence on 

Cfs for a given chemical class do not require efforts to define estimates of parameter 

uncertainty.  Thus, USEtox model developers only have to define parameter uncertainty 

estimates for 2-4 substance parameters per chemical class (often 6 used), which is small 

and achievable compared to more than 10 parameters for all substances.  In this capacity, 

the USEtox team will apply the tool to rapidly estimate the parameter uncertainty 

associated with USEtox CFs.  This will improve decision maker confidence in 

interpreting comparative toxicity results and allow direct comparison of parameter and 

model uncertainty.   

The US Army Corps of Engineers – The USACE is tasked with environmental 

assessment and improvement of the Nation’s military assets, and is in the process of 

evaluating the potential environmental implications of novel munitions compounds that 
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will replace the explosive TNT.  USACE researchers are applying LCA to develop a 

holistic understanding of the environmental impacts of these novel compounds, which 

requires significant experimental efforts to collect sufficient fate, exposure, and 

toxicological data.  In personal communications USACE researchers have shared Gantt 

charts detailing years of planned experiments in addition to the numerous studies already 

published.  Thus USACE researchers are faced to allocate fixed research resources across 

a portfolio of possible efforts without clear understanding of the significance of each 

experiment on life cycle impacts.   

Development of the Monte Carlo tool based on USEtox was funded in part by the 

USACE because the tool may help inform future investments in risk research of novel 

munitions compounds by identifying material parameters with the greatest influence on 

life cycle toxicity potential as high priorities for further experimental investigation.  

Conversely, material parameters with relatively little influence on results can be made a 

lower priority, thereby conserving research resources.  In this way, USACE researchers 

can utilize the Monte Carlo tool based on current understanding of material properties 

and associated uncertainty to understand: 1) the human and ecotoxic potential of novel 

munitions compounds as compared to conventional alternatives, 2) identify the 

components within novel munitions compounds that are most problematic, and 3) 

prioritize experimental agenda with the greatest potential to improve certainty in 

interpretation of model results.     
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Supporting Information 2.1 – Screenshots of the program interface for user specification 

of data as any combination of uniform, triangular, normal, or log normal distributions (A) 

and presentation of results as frequency distributions and column statistics (B).  All 

randomly generated data and results are stored in an accessible spreadsheet allowing 

further statistical analysis.   
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Supporting information 2.2.1 – Local sensitivity of C60 aquatic ecotoxicity CFs to 

changes in solubility only shows that uncertainty in solubility – estimated as uniform 

between 10e-6 and 10e2 – has no effect on CF values for any emission scenario.  Point 

values are assumed for all other parameters following Table 1 in the main text.  Instances 

in which experimental and computational values are available in literature, we apply 

experimental values.   
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Supporting information 2.2.2 – Substance data for niacinamide (98-92-0) as implemented 

in new release of USEtox 2.0 are near identical to those used in this paper.  The two 

notable exceptions are organic carbon water partitioning coefficient (Koc) which we 

apply from EPISuite’s KOWIN sub routine and aveLog EC50 where we omit the 

erroneous data point from available ecotoxicity databases (discussed in main text at end 

of section 2.3 and supporting information 2.3.1). 

Parameter Units 
Midpoint of value(s) 

used in this work 
Value reported in USEtox 

2.0 

MW g/mol 122 122.13 

Kow [none] 0.46 0.427 

Koc L/kg 8.5 none 

Kh 
Pa 

m3/mol 
2.9e-7 

6.45e-6 
6.45e-6 

Pvap Pa 
0.026 
0.05 

0.0264 

Solubility mg/L 
5e5 

6.9-10e5 
5e5 

Kdeg, air 

1/s 

1.8e-6 1.75e-6 

Kdeg, water 2.1e-7 2.14e-7 

Kdeg, soil 1e-7 1.07e-7 

Kdeg, sed 2.3e-8 2.38e-8 

BAF fish L/kg 0.9 0.901 

aveLogEC50 log mg/L 3.2, SEM 0.04 -0.77, SEM N/R 
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Supporting information 2.3.1 – Including the misclassified ecotoxicity study reporting a 

0.17 [mg/L] EC50 in the EPA ECOTox and RIVM ETox databases reduces aveLog EC50 

from 3.27 to 2.8 log (mg/L) and increases the standard error on the mean (SEM) from 

0.048 to 0.423.  These differences correspond to EFs (A) with a geometric mean of 0.75 

(with) and 0.27 (baseline) and aquatic ecotoxicity CFs (B) with a geometric mean of 7.6 

(with) and 2.6 (baseline) and geometric standard deviations of 8.7 and 1.8 respectively.   

 

   

 
  

Reported data

Acute to chronic 

converstion

Geometric mean 

of trophic level

Log of each 

geometric mean

Arithmetic mean of 

log values

Producers (Xi)  n=2-3* (Ai)   N=3 (aveLog EC50)

1000 500 1494.48988 3.174492978

8934 4467

Consumers

1000 500 2028.299781 3.307132144 2.814785902

16456 8228

Secondary consumers

1000 500 91.77673097 1.962732584

18189 9094.5

0.34*** 0.17

***Erroneous datapoint from ecotoxicity databases Standard dev. Strd. Error on mean

*n=3 for secondary consumers if erroneous data point excluded 0.740874098 0.42774386
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Supporting information 2.3.2 – Following USEtox guidance aveLog EC50 is calculated 

by taking arithmetic mean of the geometric means (Ai) from variable EC50 data in 

chronic equivalents (Xi), as indicated in representative table in SI 2.3.1.   

𝐴𝑖 = 𝑙𝑜𝑔  (∏ 𝑋𝑖
𝑛
𝑖=1 )1/𝑛  Equation 1 

And then calculate aveLog EC50 as the arithmetic mean of these values: 

𝑎𝑣𝑒𝐿𝑜𝑔 𝐸𝐶50 =  
1

𝑁
∑ 𝐴𝑖

𝑁
𝑖=0   Equation 2 

We calculate the standard error on the mean as: 

 𝑆𝐸𝑀 =
𝑠

√𝑛
=  √

1

𝑁−1
∑ (𝐴𝑖−𝐴̅)2𝑁

𝑖=0

𝑛
  Equation 3 

Comparing niacinamide EFs (A) and CFs for emission to freshwater (B) with (blue) and 

without (orange) the erroneous data point show its inclusion increases the geometric 

mean (0.27 vs 0.75 and 2.6 vs 7.6 for EFs and CFs respectively) and significantly 

increases uncertainty (geometric standard deviations of 1.2 vs 8.0 and 1.8 vs 8.7 for EFs 

and CFs respectively). 

Uncertainty modeling in average toxicity indicator (aveLog EC50) is informed by 

Golsteijn, Hendriks et al. (2012) and Van Zelm, Huijbregts et al. (2007) with uncertainty 

in aveLog EC50 (𝑎𝑣𝑒 𝐿𝑜𝑔) modeled as: 

𝑎𝑣𝑒 𝐿𝑜𝑔 = 𝑎𝑣𝑒 𝐿𝑜𝑔 𝐸𝐶50 + 𝑆𝐸𝑀 ∗ 𝑡  
Where: ave Log EC50 is calculated according to USEtox guidance (Huijbregts 2010; 

Frantke 2015) from available literature and databases and t represents a two-tailed t-

distribution with n-1 degrees of freedom from n different species with experimental 

toxicity data.  As reported in Tables 3 and 4 in the main text, n=10 for C60 (n=9 for the 

no-solvent scenario, see Supporting information 3.4) and n=3 for niacinamide excluding 

X. laevis.  The standard error on the mean (SEM) is calculated for each data set following 

Equation 2 in supporting information 2.3.1.  Distributions of (𝑎𝑣𝑒 𝐿𝑜𝑔) for niacinamide 

(orange) and C60 (black) in the baseline scenario (A) show the relative lower toxicity and 

uncertainty of niacinamide despite the relatively few species for which data is available, 

even when all studies employing solvents are excluded (B). 
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Supporting information 3.1 – Comparison of freshwater ecotoxicity characterization 

factors for C60 and niacinamide emitted to rural air (A), marine water (B), and 

agricultural soil (C). 
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Supporting Information 3.2 – The statistical significance of the difference between 

stochastic aquatic ecotoxicity CFs of C60 and nicainamide are calculated following 

Welch’s t test for distributions with unequal variance as: 

𝑡 =  
𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅

√
𝑆1

2

𝑛1
+

𝑆2
2

𝑛2

 

Where 𝑋̅ is the distribution mean, 𝑆2is the distribution variance, and 𝑛 is the number of 

samples for distributions 1 and 2.   

The degrees of freedom is given by: 

𝑣 =  
(

𝑆1
2

𝑛1
+

𝑆2
2

𝑛2
)

2

𝑆1
4

𝑛1
2 ∗ (𝑁1 − 1)

+
𝑆2

4

𝑛2
2 ∗ (𝑁2 − 1)

 

All calculations are based on n1 = n2 = 10,000 simulations, with standard deviations 

reported in figure for parameter uncertainty and taken from Rosenbaum, Bachmann et al. 

(2008) for model uncertainty.   
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Supporting information 3.3 – Variability from uncertain parameters is smaller in 

magnitude than model uncertainty, which is quantified for emissions to rural air, 

freshwater, and agricultural soil with geometric standard deviations of 13.3, 4.2, and 10.2 

respectively (Rosenbaum, Bachmann et al. 2008) (Figure 2A-C).   

 
Figure 2.  Comparison of parameter (solid) and model (dashed) uncertainty in 

freshwater aquatic ecotoxicity CFs for niacinamide (orange) and C60 (black) 

emissions to rural air (A), freshwater (B), and agricultural soil (C) compartments. 

Nonetheless, the difference in CFs is significant with respect to model uncertainty 

(Welch’s t test p < 0.001) for emissions to rural air and freshwater (2A&B), but not 

significant for emissions to soil compartments (2C) with a Welch’s t test p-value > 0.2.   
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Supporting Information 3.3 – Spearman Rank Correlation Indices for all variable inputs 

used to calculate niacinamide aquatic ecotoxicity CFs for emissions to urban air (A), 

continental freshwater (B), and natural soil (C).   

 
  



  128 

Supporting information 3.4 – Additional characterization factors for C60 prepared 

without solvent and niacinamide emitted to urban air (A), marine water (B), and natural 

soil (C).  Emissions to rural air and agricultural soil are very similar to A and C 

respectively.   
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