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ABSTRACT 
 

The beginning of our Solar System, including events such as the formation 

of the first solids as well as the accretion and differentiation of planetary bodies, is 

recorded in meteoritic material. This record can be deciphered using petrographic, 

geochemical and isotopic investigations of different classes of meteorites and their 

components. In this dissertation, I have investigated a variety of isotope 

systematics in chondritic and achondritic meteorites to understand processes that 

have shaped our Solar System. Specifically, the investigations conducted here are 

in two main areas: 1) Hydrogen isotope systematics in a meteorite representing 

the freshest known sample of the martian crust, and 2) Isotopic studies 

(specifically relating to high resolution chronology, nucleosynthetic anomalies and 

mass-dependent fractionations) in calcium-aluminum-rich inclusions, which are 

thought to be the earliest-formed solids in the Solar System. Chapter 1 of this 

dissertation presents a review of the hydrogen isotopic compositions of various 

planetary bodies and reservoirs in the Solar System, which could serve as tracers 

for the volatile sources. Chapter 2 focuses on an investigation of the hydrogen 

isotopic systematics in the freshest martian meteorite fall, Tissint, using the 

Cameca IMS-6f secondary ion mass spectrometer (SIMS). These first two chapters 

comprise the first part of this dissertation. The second part is comprised of 

chapters 3 through 6 and is focused on isotopic analyses of Calcium-Aluminum-rich 

Inclusions (CAIs). Chapter 3 is a review of CAIs, which record some of the earliest 

processes that occurred in the solar nebula. Chapter 4 presents the results of an 

investigation of the 26Al-26Mg short-lived chronometer (half-life ~0.72 Ma) in two 

CAIs and their Wark-Lovering (WL) rims from a CV3 carbonaceous chondrite using 

the Cameca NanoSIMS 50L. Chapter 5 is focused on the results of a study of the Zr 

isotope compositions of a suite of 15 CAIs from different carbonaceous chondrites 
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using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), in 

order to identify nucleosynthetic anomalies in the CAI-forming region. Chapter 6 

focuses on the mass-dependent Mg isotopic compositions measured in 11 CAIs 

from the Allende CV3 carbonaceous chondrite using MC-ICPMS, to evaluate effects 

of thermal processing on CAIs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  iii 

ACKNOWLEDGMENTS 
 

This thesis work would not have been possible without the help and support 

of many individuals. First, I would like to thank my supervisory committee, in 

particular my advisor Meenkshi Wadhwa for her mentoring me. I have learned 

counteless things under her apprenticeship within last five years that have made 

me a better scientist. I am deeply grateful to Rick Hervig for introducing me to the 

SIMS instrument and training me to experiment with this wonderful tool that 

turned out to be essential for my research work. I would like to thank Steve Desch 

for many discussions that helped me develope the understanding of astrophysical 

implications of my research. I would like to thank Laurence Garvie for his guidance 

to improve my scientific writing skills and for his contagious enthusiasm and 

curiosity towards scientific research, which encouraged me through out my PhD. I 

am grateful to Jim Bell for his encouragement to think about bigger implications of 

my research. 

 I would also like to thank Phil Janney, Kate Souders, Steve Romaniello, 

Vinai Rai and Rebekah Hines for all their help in the ICGL lab, as well as Maitrayee 

Bose, and Lynda Williams for their assistance in the NanoSIMS and SIMS lab. I 

have been fortunate to have a great group of friends and colleagues in the Center 

for Meteorite Studies and the School of Earth and Exploration including Matt 

Sanborn, Greg Brennecka, Curtis Williams, Karen Rieck, Daniel Dunlap, Emilie 

Dunham, Zack Torrano, Alice Stephant, Cameron Mercer, Kim Ward-Duong, Julie 

Mitchell and many more. Thank you all for countless scientific and non-scientific 

discussions, friendships and support that made my graduate school experience 

memorable. Finally, I would like to thank my family, friends and teachers back 

home, especially my mother, for all the encouragement and support to pursue my 

professional interests. 



  iv 

TABLE OF CONTENTS 

           Page 

LIST OF TABLES .......................................................................................... viii  

LIST OF FIGURES ......................................................................................... ix 

CHAPTER 

1     HYDROGEN ISOTOPIC SYSTEMATICS IN THe SOLAR SYSTEM MATERIAL  .....  1  

Introduction ....................................................................................... 1  

Galactic D/H Ratio  .............................................................................. 3 

Solar D/H Ratio ................................................................................... 5 

Fractionation Processes on Planetary Bodies ........................................... 5 

  Atmospheric Loss Processes………………………………….………………….………5 

Magmatic Processes………………………………..……………….………………….….10 

Secondary Alteration Processes……………………………….…………….……….11 

D/H  Ratios on Planetary Bodies…………………………………………………………………..12 

Earth…………………………………..………..………………………………………….………12 

Moon……………………………………………..………………………………………….…..…16 

Mars..……………………………………………………….……………………..….……………17 

Venus.…………………..……………………..………..……………………..………..………20 

Jupiter.……………………………..…………..………..…………………………….…………21 

Comets.………………………..………………..…………………………………………….….22 

Interplanetary Dust Particles (IDPs).……………..………………………….……22 

Hydrogen Isotope Systematics in Tissint: Objectives and Motivation…….…23 

 
2     HYDROGEN ISOTOPIC COMPOSITION OF THE MARTIAN MANTLE INFERRED 

FROM THE NEWEST MARTIAN METEORITE FALL TISSINT  .....................  25  

Introduction ..................................................................................... 25 

Sample Description ........................................................................... 29  



  v 

CHAPTER          Page 

Methods ........................................................................................... 30 

Sample Preparation.……………………………………………………………..….…….30 

Electron Microprobe Analyses.……………………………………………..….…….32 

Secondary Ion Mass Spectrometry Analyses.………………………...…….32 

Results ............................................................................................ 36 

Discussion ........................................................................................ 39 

Evaluating Effects of Sample Preparation Techniques……………………39 

Comparison with Previous Hydrogen Isotope Studies on Tissint....42 

Cause(s) of δD Variations within and between Phases in Tissint…..43 

Implications for the δD Signature of the Martian Mantle…………….…48 

Proposed Scenario for the Evolution of δD in Tissint…………………..…52 

Water Contents of Tissint Phases and its Parent Magma……….…..…55 

Conclusions ..................................................................................... .60 

 
3     ISOTOPIC INVESTIGATIONS OF CALCIUM_ALUMINUM-RICH INCLUSIONS ..  64  

Introduction ..................................................................................... 64 

Types of Refractory Inclusions ............................................................ 65  

 Wark-Lovering rims………………………………….………………………………………..……….67 

26Al-26Mg Relative Age Dating of Wark-Lovering Rims ............................. 69 

Zirconium Nucleosynthetic Anomalies in CAIs……………………………………………..71 

Mass Dependent Mg Isotopic Variations in CAIs………………………………….……...72 

 Future Work………………………………………………………………………………………………….73 
 
 
4     FORMATION TIMESCALES OF RIM SEQUENCES AROUND CALCIUM-ALUMINUM-

RICH INCLUSIONS FROM A CV3 CHONDRITE .......................................  75  

Introduction ..................................................................................... 75  



  vi 

CHAPTER          Page 

Methods ........................................................................................... 76  

Scanning Electron Microscopy………...………………………………….….….….76 

Trace Element Analysis (Ba, Sr, and Eu)………………………….……..…...77 

Oxygen Isotopic Analysis……………………………………………..…………....….77 

Al-Mg Analysis……………………….………………………………………..….…..……..78 

Results..…………………………………………………………….…………………………..………….….80 

Petrography of CAIs and their WL rims………….……………………..….....80 

Trace Element Abundances of CAIs and their WL Rims………..…...…86 

Oxygen Isotopic Composition of CAIs and the WL Rims……..….…….87 

Al-Mg Systematics of CAIs and the WL Rims….…………..……..…..…...88 

Discussion . ………………………………………………………………………………………..…..….…90 

Formation History of WL Rim Sequence..…………………………….......….90 

Al-Mg Relative Ages of WL Rims..…….….……..………………..…..……..….93 

Conclusions ……………………………………………………………………………………………..…..96 

 
5     ZIRCONIUM ISOTOPE SYSTEMATICS OF CALCIUM-ALUMINUM-RICH 

INCLUSIONS: IMPLICATIONS FOR THE DEGREE OF ISOTOPIC HOMOGENEITY 

AND THE PRESENCE OF LIVE 92Nb IN THE SOLAR SYSTEM. .................. 102  

Introdution ..................................................................................... 102  

Sample Description ......................................................................... 106 

Methods……………………………………………………………………….………………………..…...106  

Analytical Materials and Reagents……………………………………..…………107 

Elemental Abundances…………………....………………………………….….……107 

Ion Exchange Chromatography for Zr-Separation…………………..….108 

Mass Spectrometry…………….…..…………………………………….………..…..110 

Isobaric interferences……….……………………….………………….……………..111 



  vii 

CHAPTER          Page 

Data Reduction………………………………………………………………………………114 

Results……………………………………………………………………………………….………………114 

 Discussion…………………………………………………………………………………….…………..118 

  Origin of Zr Isotopic Anomalies…………………………………………………...118 

Comparison with Nucleosynthetic Anomalies in Other Isotopic 

Systems………………………………………………………………………………………….119 

Implications for the Degree of Isotopic Heterogeneity in the Solar 

Nebula……………………………………………….…………………………………………..121 

Implications for the Initial 92Nb/93Nb Ratio for the Early Solar 

System………………………………………………………………………………..…………122 

 Conclusions………………………………………………………………………………..……………..123 

 
6     Mg AND U ISOTOPIC SYSTEMATICS IN ALLENDE CAIs: IMPLICATIONS FOR THE 

ORIGIN OF URANIUM ISOTOPIC VARIATIONS IN THE EARLY SOLAR SYSTEM  

…………………………………………………………………………………………………………………….124 

Introduction... ................................................................................ 124  

Sample Description ......................................................................... 125  

Methods ......................................................................................... 126 

Results .......................................................................................... 128 

Discussion ...................................................................................... 130  

Conclusions……………………………………………………………………..…………………………132 
 

 
REFERENCES..............................................................................................133



  viii 

LIST OF TABLES 

Table Page 

1.1      Jeans Parameter for H2 for Terrestrial Planets ........................................  9 

1.2      δD Values for Different Terrestrial Rock Types Derived from Upper Mantle 

Source ...................................................................................  14 

2.1      The H2O content an dHydrogen Isotpic Composition of Mineral Phases in Tissint 

 .............................................................................................  62 

4.1 Al-Mg Systematics of CAI-1 and CAI-2 and their WL Rims……………………….97 

4.2 Trace Element Abundance of Interior and Rim Minerals of CAI-1 and CAI-2 

…………………………………………………………………………………………………………..…….…99 

4.3  Oxygen Isotopic Composition of CAI-1 and CAI-2 Interior and WL Rim  

Minerals…………………………………………..………………………………………………………….99 

5.1      Column Chromatogrphy (Step 1: Separation of Zr from CAI Matrix)………108 

5.2      Column Chromatography (Step 2: Fe Clean up Column) .....................  109 

5.3      MCICPMS Set up for Zr Isotopic Measurements .................................  110 

5.4      Faraday Collector Configuration for Zr Isotope Measurements Using 

MCICPMS…. ..........................................................................  111 

5.5      Isobaric Interferences on Zr Isotopes ...............................................  112 

5.6      Zr Isotopic Composition of Allende and Simpson CAIs ........................  116 

6.1     Mg and U Isotopic Composition of 11 Allende .....................................  129 

 

 



  ix 

LIST OF FIGURES 

Figure Page 

1. 1    Two Major Processes of Thermal Escape ................................................  6 

1.2     Isotopic Fractionation of Xe in Martian Meteorites ...................................   6 

1.3     δD Vs Water Content in tephra from Little Glass Mountain ......................  10 

1.4     Hydrogen Isotopic Composition of the Solar System Objetcs ..................  13 

1.5     Hydrogen Isotopic Composition of Different Reservoirs on Earth .............  14 

2.1     Backscattered Electron Images showing Mineral Phases in Tissint ............  31 

2.2     Hydrogen Isotopic Composition Vs Water content in Tissint Merrilites and     

Maskelynites  ....................................................................................  38 

2.3    δD Vs 1/H2O for Phases Analyzed in the Tissint ATS  ..............................  41 

2.4    Estimates of δD of Primitive (Mantle) Water on Mars Based on Analyses of 

Minerals in the Martian Meteorites .......................................................  50 

2.5     A Schematic Depiction of Processes that Likely Affected the D/H Ratios in Tissint 

at Different Stages in its History  .........................................................  53 

4.1    External Reproducibility of δ26Mg* on San Calros Olivine and Lake County 

Plagioclase………………………………………………………………………………………………………79     

4.2    Backscattered Electron Image and X-ray Elemental Map of CAI-1 .............  81 

4.3    Backscattered Electron Image and X-ray Elemental Map of CAI-2 .............  83 

4.4    Backscattred Electron Image of a WL rim Sequence from CAI-1 ...............  84 

4.5    Na Abundances of CAI Interior and WL Rim Anorthites  ............................ 85 

4.6    Ba/Sr and Eu/Sr Ratios of Anorthites from WL Rims and CAI Interiors…..…86 
    
4.7    Oxygen Isotopic Composition of Mineral Phases in CAI-1 and CAI-2 and their WL 

Rims………………………………………………………………………………………………………………..87 

4.8    Al-Mg Relative Isochrons of CAI-1 and CAI-2 interiors and their WL Rims..…89 

 



  x 

Figure                                                                                                      Page 

4.9      Early Solar System Chronology  .........................................................  95 

5.1      Elution Curves for Zr Separation Chemistry Using DGA Resin  ..............  109 

5.2      Zr Isotopic Measurements of NIST 3169 at Different Concentrations………113 

5.3      Zr Isotopic Composition of Allende CAIs ............................................  116 

5.4      Zr Isotopic Composition of Simpson CAIs  .........................................  116 

5.5      92Nb-92Zr Isochron (Simpson CAIs) ...................................................  117 

5.6      Relative r-process Variation in Elements in Allende and Simpson CAIs……120 

6.1  Trace Element Abundances of Allende CAIs…………………………………………….125 

6.2      External Reproducibility of DSM-3 Mg Isotopic Standards ..................... 128 

6.3      δ25Mg and δ238U of the 11 CAIs from Allende .....................................  130



  1 

CHAPTER 1 

HYDROGEN ISOTOPIC SYSTEMATICS IN THE SOLAR SYSTEM MATERIAL 

1.1 Introduction 

Hydrogen is the most abundant element in the Universe. It is also the 

element with the largest relative isotopic mass difference ratio (Δm/m), which leads 

to the largest isotopic fractionation effects observed for any element during chemical 

and physical reactions. Hydrogen was formed during primordial nucleosynthesis, i.e., 

during the first few minutes after the Big Bang (Alpher et al., 1948). As deuterium is 

destroyed during stellar nucleosynthesis to create heavier elements, the D/H ratio 

progressively should decrease along with the metal abundances over time in the 

universe (e. g., Linsky, 2002). On a modern galactic scale, accurate measurements 

of the deuterium to hydrogen (i.e., D/H) ratio are important to test the validity of 

assumptions of galactic chemical evolution models. 

On a planetary scale D/H ratio is an indicator of sources of volatiles on 

different planetary bodies. Dynamic models of Solar System formation suggest that 

water accreted beyond ~1 to 5 AU (e.g., Morbidelli et al., 2000), causing depletion of 

water in the inner Solar System. The terrestrial planets accreted in this region would 

be depleted in water whereas giant planets would be enriched in water. The giant 

planets show a heliocentric gradient in their D/H signature (Figure 4), with Jupiter’s 

D/H ratio very close to the solar value (Geiss and Gloeckler, 1998). However, the 

bulk terrestrial planets, although being closer to the sun have much higher D/H ratio 

(e.g., the bulk earth = ~ (1.49 ± 0.03) × 10-4; Lécuyer et al., 1998), therefore the 

volatile reservoirs of the terrestrial planets may have been delivered later by comets 

and asteroids, containing volatiles with high D/H ratios (e.g., Alexander et al 2012; 

Morbidelli et al., 2000). The hydrogen isotopic compositions of comets and primitive 

meteorites parent bodies can be used to identify the potential provenance of volatiles 
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on terrestrial planets (Robert, 2000). For example, one of the recent dynamic models 

(‘the Grand Tack model’) suggests first inward and then outward migration of 

Jupiter, causing first depletion of the asteroidal belt and later refilling it with 

scattered asteroids, including some trans-Neptunian objects (Walsh et al., 2012). 

Since CI chondrites have D/H ratio higher than Neptune, they are thought to be 

trans-Neptunian objects and as their D/H ratio is very close to that of the Earth, they 

are predicted to be the primary source of water on the Earth (Alexander et al., 

2012). 

After planetary accretion and differentiation, various atmospheric processes 

that can alter D/H ratios of a planetary body also cause a remarkable diversity in 

planetary atmospheres in our Solar System. For example, Venus and Earth have 

comparable sizes, however Earth’s atmosphere is nitrogen-rich whereas Venus has a 

thick carbon dioxide-rich atmosphere, resulting in a huge greenhouse effect. The 

Jovian moon Callisto and Saturnine moon Titan are similar in their sizes; however, 

Titan has a thick nitrogen-rich atmosphere, and is considered potentially hospitable 

for life, whereas Callisto is essentially airless. The composition and evolution of a 

planetary atmosphere could be indicators of the habitability of that planet. Processes 

that determine the fate of planetary atmospheres also affect the isotopic ratios of the 

gaseous species present in these atmospheres. The hydrogen isotopic composition of 

a planetary atmosphere can serve as a key indicator for such processes, and hence 

may be used to understand the conditions for habitability (e.g., Catling and Zahnle, 

2009). 

The hydrogen isotopic system can be applied towards understanding a variety 

of galactic- to planetary-scale processes. In this review chapter, sections 1.2 and 1.3 

include discussions of our current understanding of galactic and solar D/H ratios. 

Section 1.4 discusses various processes that can fractionate hydrogen isotopes in 
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planetary reservoirs and environments. Section 1.5 summarizes the current state of 

knowledge of D/H ratios in different planetary bodies and planetary materials based 

on remote observations or sample analyses.  

 

1.2 Galactic D/H ratio  

Determining the primordial D/H (i.e., soon after the Big Bang) is important since 

it would constrain the density of baryons in the first 100 to 1000 seconds of the 

universe, therefore testing assumptions of theories regarding the Big Bang and 

nucleosynthesis (e.g., Burles et al., 2001). The best place to measure this value 

would be a cloud of gas where little star formation or chemical fractionation has 

taken place. However, finding such locations in the galaxy is very difficult (Linsky, 

2002). 

It is also important to determine the D/H ratio in different parts of the galaxy to 

test galactic chemical evolution models. As a galaxy evolves over time, stars form 

within molecular gas clouds, destroy deuterium and create heavier elements 

(‘metals’). As stars die, they return the D-poor and metal-rich material to the 

interstellar medium (by supernova explosions and winds). The rate of this process 

depends on various factors such as initial stellar mass, and is important for 

theoretical models of galactic chemical evolution. Determination of the D/H ratio in 

different parts of the galaxy can help to validate these theoretical models and their 

underlying assumptions (Linsky, 2002). Validation of the galactic chemical evolution 

models is important as they can then be used to predict the initial hydrogen isotopic 

composition of our solar nebula. 

The hydrogen isotopic composition of our galaxy is unlikely to be homogenous. 

Various spectroscopic techniques (summarized by Linsky, 2002) estimate the D/H 

ratio of our galaxy to vary from 5 × 10-6 to 2.2 × 10-5 (See Appendix 1 for different 



  4 

notations to express D/H ratio). The Far Ultraviolet Spectroscopic Explorer mission 

(FUSE, Moos et al., 2000) measured the D/H ratio of the gas in different regions of 

the galaxy. Within our galaxy, the Sun is located inside a region of a very low density 

called the ‘local bubble’. The local bubble mainly consists of small clouds of warm 

ionized gas formed by winds and supernovae and extends 100-200 pc1 from the Sun. 

FUSE measured the D/H for the gas in the local bubble to be 1.56 × 10-5, but beyond 

the local bubble the D/H ratio varied by a factor of four (Linsky, 2007). One possible 

explanation for this variation is different rates of astration2. However, if astration 

were the cause of this variation, other metal abundances would be expected to 

correlate with the D/H ratio, but no such correlation was seen (Linsky, 2002). Draine 

(2006) proposed the ‘deuterium depletion hypothesis’ to explain this variation. 

According to this hypothesis, when the interstellar gas is allowed to cool for a long 

time, deuterium preferentially deposits on to dust grains. Local variations of D/H 

ratio may then be caused in recently shocked regions or regions near hot stars, 

where deuterium has evaporated back into the gas phase (Draine, 2006). 

Interplanetary dust particles, considered to be the representative of interstellar dust, 

analyzed in laboratories show significant deuterium enrichment (D/H = ~0.008; 

Messenger, 2000), which supports the deuterium depletion hypothesis. 

 Cold interstellar clouds show very high HDO/H2O ratio (~10-3), as determined by 

UV spectra from the Hubble Space Telescope (HST) (Linsky, 2002). An important 

factor to note here is that water is present as ice in these clouds, in contrast to the 

gas measured by FUSE. This ratio is large because deuterated molecules are more 

tightly bound in ice crystals than non-deuterated ones. At cold temperatures this 

difference in binding energies results in large mass fractionation effects. Another 
                                            
1 pc (Parsec) is an astronomical unit of distance. 1 pc = 3.08 ×1013 km. 
 
2 Astration is defined as the incorporation of matter into a stellar interior during star 
formation, especially when referring to a specific element or isotope.!
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factor that can cause variation in the D/H ratio in the galaxy is photo-dissociation. H2 

molecules in the interstellar clouds are self-shielded compared to HD; therefore 

variation in fluxes of stellar and diffused UV photo-dissociates HD to different 

degrees (Linsky, 2002). In the nearby local interstellar medium (LISM), the D/H ratio 

has been measured to be (1.6 ± 0.2) × 10-5 (Linsky et al., 1996).   

 

1.3 Solar D/H ratio  

Based on solar wind implantation on lunar soils, the solar D/H ratio is 

estimated to be (2 ± 0.4) × 10-5, which is much lower than the value estimated for 

the bulk Earth (Geiss and Gloecker, 1998). Another estimate for solar D/H ratio (2.1 

± 0.5) × 10-5, comes from isotopic studies of primitive meteorites, where 3He/4He is 

used as a proxy for D/H, (described in more detail in Section 5.5). The solar D/H 

ratio is significantly lower than that of the bulk Earth ((1.49 ± 0.03) × 10-4; Lécuyer 

et al., 1998), which implies that either the Earth did not accrete water directly from 

the solar nebula or/and various planetary processes, such as atmospheric loss, 

significantly changed the D/H ratio on the Earth. 

 

1.4 Fractionation processes on planetary bodies   

1.4.1 Atmospheric Loss Processes. Planetary bodies in our Solar System 

show large variation in atmospheric composition and density. It is evident that 

planetary bodies with atmospheres have undergone a variety of atmospheric loss 

processes (Catling and Zahnle, 2009), which can cause significant isotopic 

fractionation. These processes can be broadly classified into two types: thermal and 

non-thermal escape. Thermal escape is the most common process of atmospheric 

loss on planets like the Earth. There are two important thermal escape mechanisms 

by which loss of atmosphere occurs: hydrodynamic escape and Jeans escape.   
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1.4.1.1 Hydrodynamic Escape. 

The UV radiation emitted by the Sun is absorbed by the uppermost layers of a 

planet’s atmosphere, which expands in response. As the air molecules rise, they 

accelerate and some attain escape velocity. The lighter molecules like H2 accelerate 

quickly, and they also drag heavier molecules like O2 along with them. The heaviest 

molecular species that can be removed by this process is called the crossover mass. 

Hydrodynamic escape coupled with diffusion caused fractionation of hydrogen in the 

early history of the terrestrial planets 

(Hunten et. al., 1987; Pepin, 1991; 

Lammer et. al., 2008) (Figure 1.1). 

Hydrodynamic escape 

requires a large source of energy 

and a hydrogen-rich atmosphere. 

Isotopic evidence suggests that early 

Earth, Mars, and Venus suffered 

significant atmospheric losses by this 

process, when the UV radiation from the young Sun was much more intense than 

Figure 1.1. Two major processes of thermal escape. (Source: Catling & Zahnle, 2009) 

Figure 1.2. Isotopic fractionation of Xe in 
martian meteorites.  Bogard et al., 2001) 
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today. Hydrodynamic escape is the only process by which chemically unreactive 

nobles gases could fractionate (Jean’s escape is effective for major species; noble 

gases usually makeup only a minor fraction of planetary atmospheres). Martian and 

terrestrial atmospheres show deficits of lighter isotopes of noble gases like Ne, Ar, 

and Xe, which are considered strong evidence of hydrodynamic escape in the early 

history of these planetary bodies (e.g., Bogard et al., 2001) (Figure 1.2). 

 

1.4.1.2 Jeans Escape. Jean’s escape is a thermal loss process where 

molecules are lost from the uppermost part of the atmosphere. This is a slow 

process, but it can cause significant isotopic mass fractionation over planetary 

timescales. This process is prevalent above an altitude called an ‘exobase’, above 

which the density of the air is so low that the air molecules hardly collide and can 

escape easily. However, below the exobase, the collisions between molecules confine 

them and keep them from escaping (Figure 1). This is the altitude where the scale 

height is equal to the mean free path of the gas molecules (Johnson, 2010). Scale 

height is defined as: 

  

where k is Boltzmann’s constant, T is the temperature, mi the mass of the species 

and g is the gravitational acceleration and the mean free path defined as the average 

distance travelled by a particle between successive collisions. 

At a given temperature, gas molecules will have a range of speeds (or 

energies) described by the Maxwell-Boltzmann distribution (described in Appendix 

2). Molecules at the high-energy tail of the distribution will have higher velocities 

than the escape velocity of the planet (√(2GM/r)) and will escape the atmosphere. 

The rate of Jean’s escape from a planetary atmosphere depends on the temperature 

i

kTH
m g

=
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and strength of the gravitational field of that planetary body.  Hydrogen being the 

lightest element reaches the exobase first and therefore escapes faster and is 

affected by this process significantly.  

The escape velocities for Earth and Mars are 11.2 km/s and 5 km/s, 

respectively. Therefore Jeans escape is more efficient on Mars than on Earth. This 

process primarily affects major gases in the atmosphere and has little effect on the 

minor components. It is prevalent on present day Earth, Mars, and possibly Titan.  

However in Earth’s atmosphere, most hydrogen exists as water vapor (H2O). After 

being heated and evaporated, it condenses back in the form of rain. Other hydrogen-

bearing species in the Earth’s atmosphere include trace amounts of carbon dioxide 

and methane, and therefore only small amounts of hydrogen escape the Earth’s 

atmosphere by Jean’s escape (Catling and Zahnle, 2009). 

Transition between hydrodynamic and Jeans escape depends on Jeans 

parameter (λ). It is defined as the ratio of gravitational to thermal energy of 

molecules in a planet’s atmosphere. 

λ = Ur/kTr = r/H 

Where  Ur = molecule’s gravitational energy at radius r 

Tr = temperature at radius r 

k = Boltzmann’s constant 

H = scale height (defined earlier; H = kT/mg) 

 For λ > 2, above the exobase of the planet, Jeans escape prevails, whereas if λ ≤ 2, 

hydrodynamic escape is the efficient process for atmospheric loss (Hunten, 1982). 

The Jeans parameters for Earth, Mars and Venus are given in the Table 1.1 
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Table 1.1 

Jeans parameter for H2 for terrestrial planets (source: Chassefiere & Leblanc, 2004) 

 

 

 

 

 

 

 

1.4.1.3 Non-thermal processes. Non-thermal escape processes are those 

during which chemical reactions or particle collisions cause escape of atmospheric 

gas molecules. Planetary magnetic fields play an important role in controlling escape 

rates of charged species since they usually keep charged species from escaping. The 

field lines for a planet with a magnetic field usually loop together at the pole; 

however, at higher latitudes they might remain open due to disturbance by solar 

wind and make the escape of charged species easier. In the case of Mars, in 

particular, it is easy to imagine that the loss of its magnetic field ~4 Ga ago 

(Connerney et al., 2001) was a non-thermal process that resulted in significant loss 

of charged species from its atmosphere.  

Another type of non-thermal process is photochemical escape. In this 

process, air molecules are ionized by solar radiation; as they split or collide with each 

other, they gain enough velocity to escape the atmosphere. For planetary bodies 

without intrinsic magnetic fields, like Mars, sputtering is also an important non-

thermal process where the exposed upper atmosphere is scooped away by solar 

wind.  

Planet Exobase 

(km) 

T at exobase 

(K) 

λex 

Earth 500 1000 7.1 

Venus 200 275 22.9 

Mars 250 300 4.6 
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Yet another significant process responsible for the loss of planetary 

atmospheres is impact erosion. As a projectile like an asteroid or a comet hits a 

planetary body, it vaporizes a significant mass from its surface. The hot plume of 

material then expands and rises faster than the escape velocity. Since it is a fast 

process, it may not be very significant for isotopic fractionation. However, during the 

Late Heavy Bombardment this process was likely very significant in stripping off the 

original atmospheres of planetary bodies and replacing them with secondary 

atmospheres (i.e., from volatiles brought in by comets) with different isotopic 

compositions. (Zahnle et al. 1998) 

1.4.2 Magmatic 

processes. Hydrogen isotope 

systematics have been 

investigated in a variety of 

terrestrial igneous rock types to 

understand the origin and 

evolution of volatiles in their 

parent magmas. Magmatic 

degassing is an important process 

that can fractionate hydrogen 

isotopes (Taylor, 1986). One of 

the earliest attempts to 

understand the effects of 

degassing on hydrogen isotope 

composition of magmas was a 

study of rhyolitic glasses 

(obsidian), which showed a 

Figure 1.3. δD Vs water content in tephra from 
Little Glass Mountain. The solid lines show closed 
and open system Rayleigh fractionation curves 
for comparison. (Taylor et al., 1983) 
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correlation of δD with the water content (Figure 1.3) (Taylor et al., 1983).   

Similar but more detailed studies performed more recently on igneous rocks of 

basaltic to andesitic compositions from Indonesian arc basalts reveal that hydrogen 

isotopic fractionation depends on speciation of water in the magma (H2O versus OH), 

water content of the magma and, to a lesser extent, temperature of the magma. 

Since these parameters are not constant during the degassing process, hydrogen 

isotopic fractionation is not constant. The δD values of these rocks vary from -109‰ 

to -57‰ (DeHoog et al., 2009). Open system degassing shows larger isotopic 

fractionation effects than closed system degassing, as seen in Figure 1.3. 

 

1.4.3 Secondary alteration processes. Secondary alteration processes can 

affect the D/H ratios of rocks. When aqueous fluids are involved, one of the main 

factors affecting the D/H composition of the altered rocks is the composition of the 

fluids that cause the alteration. On Earth, these fluids are primarily seawater, 

meteoric water, juvenile water (primary magmatic water that has never been 

exposed to the surface), pore fluids, and sedimentary brines. The initial δD 

composition of these fluids is essential to understand the effects of secondary 

alteration processes on the hydrogen isotopic composition of the altered rocks. The 

δD composition of seawater can be directly measured and by definition is 0 ± 10 ‰ 

(see Appendix 1). The variation in δD of seawater in the past 2 Ga is estimated to be 

from -40 to 10‰ (Ohmoto et al 1983).  The δD composition of meteoric water, 

based on analysis of clays is ~ 0‰ (Taylor 1979). The hydrogen isotope 

compositions of magmatic and juvenile waters, estimated from analyses of fluid 

inclusions, are -65 ± 20 ‰ (Taylor, 1979). Sedimentary basin brines from oil fields 

show higher variation in δD, varying from -150 to +20 ‰. These fluids also 

characterized by higher salinities and temperatures (Clayton, 1979). Kazahaya and 
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Matsuo (1986) studied effects of salinity on H isotopic fractionation and saw 

variations of up to 10‰ in the temperature range of 150 – 300 °C. 

When these isotopically different fluids interact with country rock, isotopic 

gradients are seen in hydrothermally altered rocks. These gradients have been 

extensively studied in volcanic rocks affected by meteoric and hydrothermal fluids 

and hydrothermal ore deposits (e.g., Ohmoto, 1986). The δD zonation is also used to 

quantify geochemical and hydrological parameters such as the minimum water/rock 

ratio (from the magnitude of variations), minimum mass of the fluids and size of the 

heat source (Ohmoto, 1983). An extensive study of oceanic sediments and shales 

(δD = ~ 5.5 ± 8.7‰) has shown that these sediments are in isotopic equilibrium 

with the ocean water (Savin and Epstein, 1970). 

 

1.5 D/H ratios on other planetary bodies 

Hydrogen isotopic composition of different solar system objects is 

summarized in Figure 1.4 Starting with Jupiter with D/H ratio very close to the solar 

value, giant planets show a gradient, where D/H ratio increases with increasing 

distance from the Sun. However terrestrial planets and carbonaceous chondrites 

have a higher D/H ratio.   

 1.5.1 Earth. Earth, being one of the most dynamic planets, shows a wide 

range in D/H ratios in different environments and geochemical reservoirs. Various 

physical, chemical and biological processes in Earth’s lithosphere, atmosphere, 

hydrosphere and biosphere affect the hydrogen isotopic composition. Direct samples 

relating to different processes affecting the hydrogen isotopic composition are easily 

accessible on Earth. Therefore, analyses of appropriate samples recording various 

terrestrial processes are key to understanding the behavior of hydrogen isotopes 
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during such processes and provides the ability to compare to data obtained for other 

planetary bodies (by remote analyses or through sample return missions).  

Based on D/H ratio of various terrestrial reservoirs and their contribution to 

terrestrial water inventory, the D/H ratio for the bulk earth is estimated to be (1.49 

± 0.03) × 10-4 (Lécuyer et al., 1998). This value is very close to the D/H of the 

carbonaceous chondrites (Alexander et al., 2012). 

Figure 1.5 summarizes the δD composition of various terrestrial reservoirs. 

Earth’s oceans have a δD value of 0, by definition. However, Earth’s mantle is 

comparatively depleted in deuterium. This is primarily because early hydrodynamic 

escape and ongoing Jean’s escape would have fractionated the atmosphere, 

enriching it in the heavier isotope. Since the terrestrial oceans are in equilibrium with 

the atmosphere, they reflect the hydrogen isotopic composition of the atmosphere. 

Sedimentary rocks show a larger range of δD, as they are affected by low 

Figure 1.4. The hydrogen isotopic composition of the Solar System objects. 
Source: Saal et al., 2013; Data for proto-solar nebula and Jupiter: Geiss and 
Gloeckler, 1998; Titan: Abbas et al., 2010; Enceladus: Waite et al., 2009; Bulk 
Earth: Lécuyer et al., 1998; Mars: Hallis et al., 2012; Jupiter Family Comet: 
Hartogh et al., 2011; Oort cloud comets: Balsiger et al, 1995; Bockelée-Morvan 
et al., 1998; Meier et al., 1998; Biver et al., 2006; Hutsémekers et al., 2008; 
Villanueva et al., 2009 and IDPs: Messenger, 2010. 
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temperature chemical and physical processes that may have fractionated the 

hydrogen isotopes and altered their hydrogen isotopic composition. Biological 

processes on the Earth also contribute to D/H fractionation, but are not discussed 

here since they are beyond the scope of this paper. 

 

 

 

 

 

 

 

 

 

 

 

1.5.1.2 Composition of Earth’s mantle. The variation in δD shown above 

(from -125 to 0 ‰) has been attributed to three main processes by Kyser and O’Neil 

(1984); 1. degassing 2. addition of seawater at magmatic temperatures and 3. low 

temperature hydration of glasses. 

Table 1.2 

δD values for different terrestrial rock types derived from upper mantle sources 

Rock-Type     δD (‰)  References  

Primary Submarine basalts:   -70 to -80 Kyser and O’Neil 1984 

Obsidian from Oceanic islands:  -80 ± 4 Sheppard and Harris, 1985 

Hydrous minerals from xenoliths:  -95 to -65 Deloule et al 1991 

Figure 1.5. Hydrogen isotopic composition of different reservoirs on Earth. (Source: J. 
Hoefs, 2003) 
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Hydrous minerals from xenoliths (Hawaii): -125  Deloule et al 1991 

MORBs      -60  Clog et al 2013 

Arc magmas:                                           -45 to -25 DeHoog et al 2009 (and          

references therein) 

Ocean Island Basalts (Baffin Island)           <-218‰ Hallis et al 2015 

 

 These processes are especially effective for arc magmas near subduction 

zones, because there is a mixing of sediments and seawater with the magmas in 

these environments. Given that mantle-derived rocks typically have a δD value ~-70 

‰, and meteoric water has a δD of 0‰, it is difficult to explain the δD value of -

125‰ for Hawaiian magmas. This suggests that there is heterogeneity in the Earth’s 

mantle. Deloule et al. (1991) studied the variation in δD in a single pargasite grain 

(< 200µm) from a xenolith in a Hawaiian magma and reported that the mineral was 

zoned, with a δD value of -64‰ in the interior and -125‰ in the outer zones. Since 

meteoric waters in Hawaii have δD = ~ -5‰, this zoning cannot be explained by 

secondary alteration. This variation is explained in terms of multiple growth events 

separated by time and space and recording variation in mantle magmas (Deloule et 

al., 1991). Another study of southern pacific Mid Oceanic Ridge Basalts (MORBs) 

yielded a δD value of -60‰ for these upper mantle-derived rocks, which is 10-20 

‰, higher than previous reports and has been attributed to heterogeneity in the 

mantle (Clog et al., 2013). A more recent study of basalts from Baffin Island 

indicates much lighter D/H ratios for deep terrestrial mantle. Given the primordial 

nature of these rocks suggested by their high 3He/4He ratios, the lowest δD 

measured in these rocks -218‰, suggests that Earth’s deep mantle may be lighter, 

inheriting volatiles with low D/H ratios, directly from the protosolar nebula (Hallis et 

al., 2015).  
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1.5.2 Moon. Until the last few years, analyses of the Apollo lunar samples 

had indicated that the Moon was essentially anhydrous. However, recent analyses of 

lunar volcanic glasses and apatites indicate that the Moon has a significant amount of 

indigenous water (McCubbin et al., 2010; Saal et al., 2008). Furthermore, the D/H 

ratio in the igneous apatites from Apollo samples shows significant variation (-215 to 

+1010 ‰; Greenwood et al., 2011). These apatites do not show any correlation of 

δD with water content; hence processes such as mixing, degassing, or diffusion 

cannot explain this variation. According to these authors, three main processes likely 

contributed to the variability in δD recorded in these apatites. Apatites from basalts 

from lunar highlands have δD values of +240 to +340 ‰, which are thought to be 

representative of the low δD mantle reservoir on the Moon. If the initial lunar mantle 

had a hydrogen isotopic composition similar to that of the Earth (Earth mantle δD = 

~-70‰), hydrodynamic escape following the moon formation event could have 

elevated the primordial δD to +240‰. Cometary bombardment could be the source 

of the high δD component that would mix with the lunar mantle to provide higher 

values up to +1010‰. However, the low δD values (i.e., -215‰) in some apatites 

are primarily due to implantation of solar wind protons on lunar rocks that were 

further metamorphosed by impact processes, superimposing the solar wind signature 

over the initial δD. 

Another recent study of Apollo samples and lunar meteorites showed that 

apatites in low-Ti lunar basalts have a large range of OH content but restricted δD 

values, whereas high-Ti basalts show a restricted range of OH content but a wider 

range in δD (Tartèse et al., 2013). The variation in δD seen in these apatites was 

interpreted by these workers to be a magma degassing effect. Specifically, high-Ti 

basalts that formed in reducing conditions outgassed H2, and therefore have a 

restricted range in δD. In contrast, the low-Ti basalts outgassed hydrogen in the 
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form of H2 followed by OH, producing a bigger range of δD. However, The initial 

hydrogen isotopic composition of the Moon has been estimated to be similar to that 

of the carbonaceous chondrites (Saal et al., 2013; Tartèse et al., 2013). Robinson et 

al., 2016 D/H ratios of the Moon.  

 

1.5.3 Mars. The D/H ratios of reservoirs on Mars have been estimated from 

Earth-based telescopic observations, remote analyses by spacecraft (i.e., NASA’s 

Mars Science Laboratory mission), as well as laboratory analyses of the martian 

meteorites (Figure 6). 

Earth-based observations show that the martian atmosphere has an elevated D/H 

ratio that is ~5.2 times that of the Earth (Bjoraker et al., 1989). The D/H ratio of 

water in the present-day martian atmosphere varies as a function of latitude, peaking 

at a subsolar latitude (~500S) and decreasing towards the poles, but overall matches 

that of the higher values seen in the martian meteorites (Nowak et al., 2011). 

Recently, the SAM (Sample Analysis at Mars) instrument suite on the Mars Science 

Laboratory’s Curiosity rover has also analyzed the isotopic composition of the martian 

atmosphere and of gases released from heating experiments on soils from the Rock 

Nest area; these data are in agreement with the D/H values estimated for the martian 

atmosphere and crustal rocks (Leshin et al., 2013; Webster et al., 2013) (Figure 6).  

The observed deuterium enrichment in the martian atmosphere is thought to be the 

result of loss of the martian atmosphere over geological timescales (e.g., Carr, 1990; 

Jakosky, 1990; Jakosky, 1991; Owen, 1992; Yung et al., 1988). The ubiquitous 

presence of valley networks (Bakers, 1982) and lake deposits (Squyres, 1989) on 

ancient martian terrains is evidence for the presence of surface water and of a thicker 

atmosphere in the early history of Mars. However, the present-day relatively dry 

conditions on Mars, with its thin CO2-dominated atmosphere, suggest that a 
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significant quantity of volatiles were subsequently lost. NASA’s MAVEN mission (Mars 

Atmosphere and Volatile EvolutioN Mission) specifically focuses on atmospheric loss 

processes on Mars and their early results suggest that interplanetary coronal mass 

ejection events may have resulted in an enhanced escape rate of ions to space and 

similar solar events early in martian history, likely contributing to the long-term 

evolution of the hydrogen isotope composition of the martian atmosphere (Chaffin et 

al., 2015; Jakosky et al., 2015). However, there are varied estimates of how much 

water was originally present in martian reservoirs, and questions relating to how and 

when this water may have been lost remain controversial. 

Martian meteorites potentially provide a means of understanding the origin and 

evolution of the hydrologic cycle on Mars. The hydrogen isotopic composition of 

magmatic minerals in these meteorites can provide constraints on the initial 

composition of the primordial mantle reservoir, as well as on the process and 

timescales of volatile loss from this planet.  Investigations of D/H ratios in minerals of 

the martian meteorites have shown that they record varying degrees of deuterium 

enrichment. (e.g., Leshin, 2000;  Boctor et al., 2003; Greenwood et al., 2008; Hallis 

et al., 2012 and Usui et al.,  2012) The proposed explanations for these observed 

variations in D/H ratios include: isotopic fractionation during degassing of the parent 

magma, fractionation during subsolidus diffusion of hydrogen, mixing between at 

least two distinct reservoirs having different H isotopic compositions, and varying 

degrees of terrestrial contamination. Isotopic fractionation during degassing of 

magma has been observed in terrestrial igneous rocks (e.g., De Hoog et al., 2009). 

However, mixing between distinct reservoirs is the favored explanation for the D/H 

variations in minerals of the martian meteorites since it is difficult to explain the large 

variations seen in their D/H ratios by other physical processes (e.g., Leshin, 2000; 

Boctor et al., 2003; Greenwood et al., 2008; Hallis et al., 2012 and Usui et al., 2012). 
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The mixing hypothesis requires at least two reservoirs with distinctly different D/H 

ratios. The end-member reservoir with the high D/H ratio is considered to be the 

crustal fluids that are in equilibrium with the atmosphere (which has a high D/H). 

Rocks interacting with this fluid reservoir would approach equilibrium with it and 

therefore will have high D/H. The other reservoir with the lower D/H ratio is thought 

to represent the martian mantle. Due to the cessation of plate tectonics in the early 

history of Mars (e.g., Sleep, 1994), crustal reservoirs will not be recycled into the 

mantle and therefore it is assumed that the martian mantle likely preserves its 

primordial hydrogen isotope composition. In situ analysis of impact glasses from 

some martian meteorites suggest an existence of water reservoir with intermediate 

D/H ratio (2-3 times D/H of earth’s ocean water). This reservoir likely represents 

hydrated crust or ground ice inter-bedded with sediments (Usui et al., 2015). Sample 

Analysis on Mars (SAM) instrument on Curiosity rover analyzed D/H ratios of clay 

minerals from Hesparian era Gale crater sediments and these results also support a 

presence of intermediate D/H reservoir (Mahaffy et al., 2015). Constraints on the D/H 

value for the primordial martian mantle are important for inferring the ultimate source 

of water on Mars and the amount of water that has been lost from that planet through 

time.  

1.5.4 Venus. There are no direct samples available from Venus for laboratory-

based analyses of D/H ratios. However, spacecraft missions like Pioneer Venus 

Orbiter (1978) analyzed the hydrogen isotope composition of the Venusian 

atmosphere using the Large-probe Neutral Mass Spectrometer (LNMS). The D/H ratio 

of the Venusian atmosphere is 1.9 × 10-2(McElroy et al 1982), which is 120 ± 40 

times that of terrestrial value Based on these results, it was concluded that the 

planet had much more water in the past compared to the present-day abundance 

(200-300 ppm) in its atmosphere. Assuming present-day rate of hydrogen escape, 
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the initial water inventory on Venus was concluded to be at least ~0.3% of that 

represented by the terrestrial oceans (McElroy et al., 1982; Kulikov et al., 2006). 

 The initial water inventory and primordial D/H ratio of Venus remain 

controversial. There are two primary hypotheses that predict the early water 

inventory and loss of hydrogen. The first hypothesis predicts that since Venus 

accreted close to the Sun, it had much less abundant water than the Earth. Also, 

sputtering by energetic solar wind from the early young Sun would cause the early-

unmagnetized Venus to lose its hydrogen. However, the CO2 inventory of the planet 

should also be lost in this process, altering the carbon isotopic signature, but the 

carbon isotopic composition of Venus is comparable to that of the Earth. Therefore 

this phenomenon is unlikely (Kulikov et al., 2006). The second hypothesis predicts 

accretion of Venus with a comparable amount of water to Earth (Donahue et al., 

1982). This substantial amount of water in the early history of Venus is required to 

explain the early onset of greenhouse effect, which is observed today. This is 

possible since during accretion, Venus may have captured icy planetismals from 

beyond the snowline. Another possibility is addition of water from comets. This leads 

to two different possibilities. The first is that early Venus had warm oceans on its 

surface, but that the runaway greenhouse effect changed the climate to extremely 

hot and dry. Alternatively, another scenario is the humid greenhouse effect where 

most of the water was present in the atmosphere in vapor phase, and hydrogen was 

lost by diffusion based hydrodynamic escape due to high X-ray and UV radiation 

(Kulikov et al., 2006). 

 One important observation is that the enrichment of the heavy isotopes seen 

in the hydrogen isotopic system is unique, as other elements like carbon, nitrogen, 

and oxygen show isotopic compositions for the Venusian atmosphere that are 

comparable to that of the Earth’s atmosphere. Given that the hydrogen isotopic 
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system only has two stable isotopes, it does not allow one to differentiate between 

mass-independent and mass-dependent effects. Given this, and lacking D/H ratios 

for other crustal or mantle reservoirs on Venus, it limits the ability to infer the initial 

abundance of water and the primordial D/H ratio of this planet.  

 

1.5.5 Jupiter. Jupiter, being a gas giant, is primarily made up of hydrogen 

(88-92%) and helium (8-12%) and is expected to reflect the composition of the solar 

nebula from which our solar system formed. An indirect method of determining the 

D/H ratio of the solar nebula (and therefore Jupiter) is to measure the 3He/4He ratio 

in the solar wind. The initial deuterium in the solar nebula (most of which was 

sequestered in the Sun) has been converted to 3He by thermonuclear reactions. 

Therefore, the D/H ratio of the early solar nebula can be estimated using the 

following equation: 

D/HSolarNebula
 = (3He/4HeSolarWind - 3He/4HeSolarNebula) × 4He/HSolarNebula 

Where 3He/4HeSolarNebula can be estimated from this ratio in chondrites or Jupiter’s 

atmosphere. Based on this approach Geiss and Gloeckler (1998) estimated the D/H 

ratio for Jupiter to be (2.1 ± 0.5) × 10-5. However this estimate is based on the 

assumption that the 3He/4He ratio in chondrites or Jupiter’s atmosphere is not 

fractionated and does not have any mass-independent effects. An actual 

measurement of the D/H ratio in Jovian atmosphere was made by NASA’s Galileo 

probe and these analyses yielded a D/H = (2.6 ± 0.7) × 10-5 (Mahaffy et al., 1998). 

The Jovian and therefore solar D/H ratio is lower than that of the Earth, other 

terrestrial planets and carbonaceous chondrites, which may reflect significant 

fractionation in these objects favoring heavier isotopes. 
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1.5.6 Comets. As discussed earlier, terrestrial planets are thought to have 

accreted from dry planetary embryos. One of the hypotheses regarding the origin of 

water on the Earth is delivery of water by comets (Hartogh et al., 2011). 

Determining the D/H ratio of comets is important for testing this hypothesis. Thus 

far, the D/H ratio of water in six comets (Halley, Tuttle, Hyakutake, Hale-Bopp, 

Ikeya-Zhang and LINEAR) originating from the Oort cloud (>5000 AU from the Sun) 

has been measured and is approximately two times higher than this ratio in the bulk 

Earth (Balsiger et al, 1995; Bockelée-Morvan et al., 1998; Meier et al., 1998; Biver 

et al., 2006; Hutsémekers et al., 2008 and Villanueva et al., 2009). Based on these 

results, the contribution of cometary water to the Earth is estimated to be less than 

10% of the total water inventory on the Earth. However, a recent study of the 

Jupiter family comet Hartley 2, originating from the Kuiper belt (30-50 AU from the 

Sun) shows D/H = (1.61!±!0.24)!×!10−4 (Hartogh et al., 2011), which is similar to the 

value for Earth and carbonaceous chondrites. This new study suggests that such 

comets could have contributed substantially to the Earth’s volatile inventory. Another 

important implication of this work is that the hydrogen isotopic composition of the 

early solar nebula did not have a heliocentric gradient as was suggested by some 

previous studies. 

 

1.5.7 Interplanetary Dust Particles (IDPs). Interplanetary Dust Particles 

(IDPs) are fine-grained (0.1 to 100 µm), mineralogically and chemically 

heterogeneous particles that are mineralogically, chemically, and texturally primitive 

in nature. IDPs have been collected in deep sediments, on the surface of Earth, and 

from Earth’s stratosphere. These particles are believed to have originated from 

comets and asteroids, and are typically less altered by secondary processes than 

other known meteoritic materials. Hydrogen isotopic compositions of these particles 
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show significant variation, ranging from as low as 9 × 10-5 (McKeegan et al., 1985; 

McKeegan, 1987) to as high as 8 × 10-3 (Messenger, 2010). This large variation is 

likely caused by reactions in the cold regions of interstellar clouds, where deuterium-

rich components condense on the dust grains (McKeegan et al., 1985; Messenger, 

2010).  Hydrogen isotopic studies of IDPs are complementary to astronomical 

observations and help to verify the hypotheses for producing hydrogen isotopic 

fractionation in the interstellar medium as described earlier. 

 

1.6 Hydrogen isotope systematics in Tissint: Objectives and Motivation 

Chapter 2 discusses the hydrogen isotopic composition of the newest martian 

meteorite fall, Tissint. The hydrogen isotopic composition of planetary reservoirs can 

provide key constraints on the origin and history of water on planets. The sources of 

water and the hydrological evolution of Mars may be inferred from the hydrogen 

isotopic compositions of mineral phases in martian meteorites, which are currently 

the only samples of Mars available for Earth-based laboratory investigations. 

Previous studies have shown that δD values in minerals in the martian meteorites 

span a large range of -250 to +6000 ‰. The highest hydrogen isotope ratios likely 

represent a martian atmospheric component: either interaction with a reservoir in 

equilibrium with the martian atmosphere (such as crustal water), or direct 

incorporation of the martian atmosphere due to shock processes. The lowest δD 

values may represent those of the martian mantle, but it has also been suggested 

that these values may represent terrestrial contamination in martian meteorites. 

Here we report the hydrogen isotopic compositions and water contents of a variety of 

phases (merrillites, maskelynites, olivines and an olivine-hosted melt inclusion) in 

Tissint, the latest martian meteorite fall that was minimally exposed to the terrestrial 

environment. We compared traditional sample preparation techniques with 



  24 

anhydrous sample preparation methods, to evaluate their effects on hydrogen 

isotopes, and find that for severely shocked meteorites like Tissint, the traditional 

sample preparation techniques increase water content and alter the D/H ratios 

towards more terrestrial-like values. In the anhydrously prepared Tissint sample, we 

see a large range of δD values, most likely resulting from a combination of processes 

including magmatic degassing, secondary alteration by crustal fluids, shock-related 

fractionation and implantation of martian atmosphere. Based on these data, our best 

estimate of the δD value for the martian depleted mantle is -116 ± 94 ‰, which is 

the lowest value measured in a phase in the anhydrously prepared section of Tissint. 

This value is similar to that of the terrestrial upper mantle, suggesting that water on 

Mars and Earth was derived from similar sources. The water contents of phases in 

Tissint are highly variable, and have been affected by secondary processes. 

Considering the H2O abundances reported here in the driest phases (most likely 

representing primary igneous compositions) and appropriate partition coefficients, 

we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt. %. 
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CHAPTER 2 

HYDROGEN ISOTOPIC COMPOSITION OF THE MARTIAN MANTLE INFERRED 

FROM THE NEWEST MARTIAN METEORITE FALL TISSINT 

2. 1 Introduction 

Determining the hydrogen isotopic compositions of distinct planetary 

reservoirs is important for constraining the source(s) of volatiles and the processes 

that have affected the evolution of the atmosphere, surface and interior of a planet. 

Jupiter’s D/H ratio is (Geiss and Gloeckler, 1998), which is thought to be 

representative of the primordial D/H ratio of the solar nebula. The D/H ratio 

estimated for the bulk Earth is significantly higher (D/H = 1.49 ± 0.03 × 10-4; 

(Lécuyer et al., 1998). This value, however, is similar to that for CI chondrites, which 

are thought to have originated on parent bodies in the outer asteroid belt (Alexander 

et al., 2012). Therefore, much of Earth’s water was likely derived from planetary 

embryos and planetesimals originating in the inner Solar System (Morbidelli et al., 

2000; Hartogh et al., 2011; Alexander et al., 2012). Similarly, eucritic meteorites 

derived from the asteroid Vesta show D/H ratios similar to carbonaceous chondrites, 

also suggesting that water on this early-formed body was derived from planetesimals 

formed in the inner Solar System (Sarafian et al., 2014). However, a recent study 

has suggested that primordial water sequestered in the deep mantle of the Earth has 

a D/H ratio significantly lower than that of the upper mantle (Hallis et al., 2015). 

This may be indicative of the presence of a component in the Earth’s interior that has 

a hydrogen isotope composition inherited directly from the protosolar nebula, but 

this needs to be verified with further investigations.  

At present there is significant uncertainty regarding the origin of water on 

Mars. Martian meteorites provide an opportunity to estimate the D/H ratio of water 

in the martian interior, which could yield insights into the sources of water and other 
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volatiles on Mars. In situ hydrogen isotopic measurements of various phases in 

martian meteorites, such as phosphates (Boctor et al., 2003; Greenwood et al., 

2008; Hallis et al., 2012a), kaersutite, biotite (Leshin, 2000), olivine, feldspathic 

glass (Boctor et al., 2003; Usui et al., 2015), and melt inclusions in olivine (Usui et 

al., 2012), reveal a large D/H range (δD from -250 to +6000 ‰, where δD is the 

measured D/H ratio relative to that of Standard Mean Ocean Water in parts per 

1000). It has been suggested previously that the lower end of the range in δD 

recorded in magmatic minerals in the martian meteorites represents the hydrogen 

isotopic composition of primordial water in the martian mantle (Watson et al., 1994; 

Leshin et al., 1996; Leshin, 2000; Gillet et al., 2002; Hallis et al., 2012a; Usui et al., 

2012). Alternatively, it has been proposed that these low δD values reflect a mixture 

of martian and terrestrial components (Boctor et al., 2003; Hallis et al., 2012a; Hallis 

et al., 2012b; Usui et al., 2012). The highest δD values recorded in the various 

phases of the martian meteorites, however, likely reflect martian near-surface 

processes. Specifically, the D enrichment in the martian atmosphere (δD ~5000-

7000 ‰; Bjoraker et al., 1989; Novak et al., 2011; Webster et al., 2013; Villanueva 

et al., 2015) is likely indicative of substantial atmospheric loss of hydrogen through 

processes such as Jeans escape over time following early hydrodynamic escape on 

Mars (e.g., Leshin, 2000, and references therein). Early results from NASA’s Martian 

Atmospheric and Volatile EvolutioN (MAVEN) mission suggest that interplanetary 

coronal mass ejection events result in an enhanced escape rate of ions to space and 

similar solar events early in martian history likely contributed to the long-term 

evolution of the hydrogen isotope composition of the martian atmosphere (Chaffin et 

al., 2015; Jakosky et al., 2015). Martian crustal water reservoirs, thought to be in 

equilibrium with the atmosphere, also show high δD as determined by the analyses 

of volatiles released from martian soils and sedimentary rocks by the Sample 
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Analysis at Mars (SAM) instrument on NASA’s Mars Science Laboratory mission 

(Leshin et al., 2013; Webster et al., 2013; Mahaffy et al., 2015).  The highest δD 

values in phases in the martian meteorites (including alteration products) approach 

those of the martian atmosphere and crustal water, and are suggested to result from 

exchange of hydrogen with crustal fluids or incorporation of martian atmosphere 

(Watson et al., 1994; Leshin et al., 1996; Leshin, 2000; Boctor et al., 2003; 

Greenwood et al., 2008; Usui et al., 2015). Absence of plate tectonics on Mars 

through much of its geologic history (Golombek et al., 2009) has effectively isolated 

the martian mantle from its atmospheric and crustal reservoirs; therefore, the 

martian mantle is considered to preserve the planet’s primordial D/H ratio. As such, 

constraining the hydrogen isotopic composition of the martian mantle is important 

for inferring the source of water on Mars and evaluating different planetary accretion 

and formation hypotheses. 

A variety of mechanisms have been proposed to explain the large δD range 

recorded in martian meteorites, including: isotopic fractionation during magma 

degassing, sub-solidus diffusion of hydrogen during cooling or impact-induced shock 

processes (Tyburczy et al., 2001; Minitti et al., 2008a; Minitti et al., 2008b), mixing 

between distinct isotopic reservoirs via crustal assimilation by the parent magma 

and/or alteration of erupted materials by crustal fluids on Mars (Leshin, 2000; Boctor 

et al., 2003; Usui et al., 2012, 2015), and terrestrial contamination (Boctor et al., 

2003; Hallis et al., 2012a; Usui et al., 2012). Mixing between distinct low- and high-

δD reservoirs has been the favored explanation for the large δD range observed in 

phases of martian meteorites, a range which is orders of magnitude larger than 

expected for physical processes such as degassing or diffusion.  

Of the ~152 classified martian meteorites (some of which are paired), only 

five are observed falls, with Tissint being the most recent. Whereas meteorite finds 
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are exposed to various degrees of alteration depending on the environment and 

duration of their terrestrial residence, falls are typically only minimally affected if 

they are recovered soon after landing on Earth. Terrestrial contamination in 

meteoritic materials is evidenced by the formation of weathering products such as 

calcite and clays, as well as alteration of trace element patterns (Crozaz and 

Wadhwa, 2001) and isotopic ratios (Hallis et al., 2012a; Hallis et al., 2012b).  The 

effects of terrestrial contamination are of particular concern for measurements of 

D/H ratios in meteoritic samples, because hydrogen is highly mobile and readily 

equilibrates between meteoritic phases and terrestrial fluids. Hence, contamination 

due to residence in the terrestrial environment poses a serious concern for 

determination of the indigenous hydrogen isotopic composition of martian meteorite 

phases. Another potential source of terrestrial contamination is sample handling and 

preparation in the laboratory. Most δD analyses of martian meteorite phases have 

been performed by secondary ion mass spectrometry (SIMS) on samples prepared as 

standard geological thin sections which are cut, ground, and polished in water or 

other aqueous fluids (Leshin, 2000; Boctor et al., 2003). Moreover, as these 

meteorites are typically highly shocked and fractured, the traditional vacuum 

impregnation with epoxy while preparing thin sections can further cause hydrogen 

contamination (Hallis et al., 2012a; Hallis et al., 2012b; Usui et al., 2012). Such 

contamination effects (whether from terrestrial residence or processing in a 

laboratory) on the measured δD values in martian meteorites have been reported 

previously (Boctor et al., 2003; Greenwood et al., 2008; Hallis et al., 2012a; Hallis et 

al., 2012b; Usui et al., 2012). Tissint provides a unique martian sample with minimal 

terrestrial contamination from interaction with terrestrial fluids, because of its short 

residence time on Earth. We attempt to evaluate the effects of sample preparation 
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techniques on Tissint, and its implications for the hydrogen isotopic signature of the 

martian interior. 

The Tissint strewn field lies in an arid region south-southwest of Tissint in 

Morocco near the Algerian border. The fall occurred on 18th July 2011 and many 

whole stones and fragments were recovered within weeks of this event (Aoudjehane 

et al., 2012; Irving et al., 2012). Petrographic and geochemical investigations 

suggest that Tissint is one of the freshest available martian meteorites, with virtually 

no observable effects of terrestrial weathering (Aoudjehane et al., 2012; Balta et al., 

2015). As such, this meteorite represents a unique opportunity to study a martian 

basaltic rock with minimal, if any, terrestrial contamination. In this study, we report 

the hydrogen isotopic compositions of phases analyzed in two samples of Tissint that 

were prepared specifically to evaluate the effects of different sample preparation 

techniques. Based on the analyses of these samples, we present the implications for 

the hydrogen isotopic composition of the martian mantle. 

 

2.2 Sample Description 

On the July 18th 2011, a large fireball across northwest Africa heralded the 

arrival of the fifth martian meteorite fall (Aoudjehane et al., 2012). Glossy, fusion-

crusted stones were picked up several weeks later in southern Morocco, near the 

town of Tissint from which the meteorite’s name is derived. Tissint is a depleted 

basaltic shergottite containing abundant magnesian olivine phenocrysts in a 

groundmass of fine-grained pyroxenes and maskelynites (Balta et al., 2015). It is 

one of the oldest known shergottites, with a crystallization age of 574 ± 20 Ma 

(Brennecka et al., 2014b), and has a cosmic-ray exposure age of 0.7 ± 0.3 Ma 

(Aoudjehane et al., 2012). Tissint shows evidence of surface weathering on Mars, as 

recorded in the chemistry of the impact melt glass produced during the shock event 
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that ejected the sample from Mars and incorporated martian surface alteration 

products. Specifically, this glass is enriched in volatiles such as H2O, CO2, F, and Cl 

(Chen et al., 2015), as well as in light rare earth elements (Aoudjehane et al., 2012). 

Most phases in Tissint are highly fractured as a result of shock, with the exception of 

maskelynite, which is a diaplectic glass, produced during this shock (Figure 2.1).  

 

2.3 Methods 

2.3.1 Sample Preparation. We obtained a sample of Tissint from the 

meteorite collection in the Center for Meteorite Studies at Arizona State University 

(ASU); this was derived from a fragment that was one of the earliest recovered 

pieces. To assess the effects of different preparation techniques on hydrogen isotope 

analyses, we prepared two polished sections from this sample: one was a standard 

epoxy impregnated polished thin section (referred to hereon as “PTS”; this section 

was designated as “Tissint, 6” and was studied by Balta et al., 2015) and the other 

was a polished thick section prepared without the use of water, hydrocarbon-based 

fluids or epoxy (referred to hereon as the anhydrously prepared thick section or 

“ATS”). To prepare the Tissint ATS, a fusion-crusted piece (the interior of which was 

not exposed until it was cut in the laboratory) was cut with a saw without the use of 

any lubricant. The cutting was performed very slowly to avoid heating the sample. A 

thick section of approximately 5 mm thickness was cut from this piece. The section 

was dry-polished on various grit sized polishing papers. The final polish was done 

with a dry velvet cloth coated with ~1 µm diamond powder. This polishing cloth was 

prepared by first coating the velvet with the diamond powder that was suspended in 

a water-based solution, followed by drying overnight in a 60°C oven. Both the PTS 

and the ATS were coated with carbon before the EPMA and SIMS analyses. 
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Figure 2.1. a) Backscattered electron (BSE) image showing various phases in the 
Tissint PTS prior to SIMS analyses. It can be somewhat difficult to distinguish 
merrillites (shown in the image with a red outline) from surrounding pyroxenes in a 
BSE map, but they were easily identified in the elemental maps that were also 
obtained by us. b) BSE image of an olivine-hosted melt inclusion showing an area 
where SIMS analyses (3 repeat runs) were conducted. 
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2.3.2 Electron microprobe analyses. The PTS was documented and its 

mineral compositions were determined using the Cameca SX-100 electron 

microprobe at the University of Tennessee; the analytical details for these analyses 

are given by (Balta et al., 2015)). The Tissint ATS was documented using a JEOL 

JXA-8530F Hyperprobe at ASU. Backscattered electron (BSE) imaging and elemental 

EDS mapping were conducted to identify mineral phases in the ATS. After the 

isotopic analysis, SIMS craters in the PTS and ATS were examined again with BSE 

imaging using the JEOL Hyperprobe at ASU. 

 

2.3.3 Secondary ion mass spectrometry analyses. Hydrogen isotopic 

compositions and H2O contents were measured using the Cameca IMS-6f secondary 

ion mass spectrometer (SIMS) at ASU. A Cs+ primary beam (10 kV accelerating 

voltage) with a beam current ranging from 7 to 10 nA was used. Negative secondary 

ions were accelerated to 5 kV from the sample into the mass spectrometer. The Cs+ 

primary beam has an advantage over O- beam, since it results in lower instrumental 

mass fractionation and matrix effects (Deloule et al., 1991). Also, it is preferable to 

use negative secondary ions, since H2
- interference on D is negligible (McKeegan et 

al., 1985), allowing the use of low mass resolving power (~500), which results in 

higher secondary ion intensities; this is especially important for analyzing the 

hydrogen isotopic compositions of nominally anhydrous phases that are targeted 

here. Each SIMS analysis run consisted of 60 cycles, with each cycle consisting of 

measurements of H (for 1 second) and D (for 10 seconds). The typical analysis spot 

size was ~20 µm, but the circular area from which secondary ions were accepted 

into the mass spectrometer was set at 8 µm, at the center of the crater, using the 

smallest (100 µm) field aperture. The total analysis time for each spot was ~15 

minutes. A dead time correction of 42 ns was applied to all the analyses. At the end 
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of each analysis, 16O- was measured, providing H-/16O- ratios that were used to 

determine the H2O content. A normal-incidence electron gun was used to neutralize 

the positive charge build-up in the sputtered crater. We used a GaN sample to align 

the electron gun using cathodoluminescence (Chen et al., 2013). The measured 

hydrogen isotopic compositions are reported relative to Standard Mean Ocean Water 

(SMOW; D/H=0.0001559), as follows: 

δD = ([(D/H)Sample/(D/H)SMOW] - 1) × 1000 

Durango apatite, with a reported δD value of -120‰ (Greenwood et al., 

2011), was used as the standard for hydrogen isotope analyses of merrillite. For 

silicates, a rhyolitic glass (“Macusanite rhyolitic glass” with δD = -150‰; Pichavant 

et al., 1987) was used as the standard for hydrogen isotope measurements. For 

determining the H2O contents of various phases in Tissint, a set of three rhyolitic 

glasses (with known H2O contents of 0.5, 1.3, and 2.4 wt.%) along with Durango 

apatite (0.09 wt.% H2O) were used to determine the slope of a calibration line in a 

plot of H-/16O- versus H2O abundances. Based on repeat analyses of these standards 

during the different analysis sessions, we estimate the external reproducibility (2SD) 

of our measurements of H2O contents to be ±20%.  

Analyses of the nominally anhydrous Lake County plagioclase, co-mounted in 

an epoxy mount with the apatite and rhyolite glasses, were performed to assess the 

hydrogen blank during SIMS measurements. The hydrogen ion signal on this 

standard epoxy mount varied depending on the analysis session and the amount of 

time the mount resided in the vacuum chamber. The resulting H-/16O- ratios 

suggested that the best blank value on the standard epoxy mount (still likely to be 

higher than the blank during actual sample analyses; see below) was ~30 ppm. We 

anticipate the blank is lower for the actual analyses of the Tissint PTS and ATS 

measured here because epoxy is minimized (in the PTS) or absent (in the ATS), and 
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these samples were stored under vacuum prior to analyses (see below). 

Nevertheless, since the blanks were measured in a separate mount than the 

samples, we cannot know their precise value for the actual sample analyses. As a 

result, while we can place an upper limit on the blanks for our analyses, no blank 

correction has been applied to the data reported in Table 1. For phases with 

measured H2O contents higher than a few hundred ppm the blank is smaller than the 

analytical uncertainty and is not significant. However, we may be overestimating the 

H2O contents given in Table 1 of phases with the lowest concentrations by at most a 

factor of ~2. 

The data on the Tissint PTS and ATS were acquired over three analysis 

sessions lasting for 3 to 4 days each. The instrumental mass fractionation varied 

from -40 to -150 ‰ between sessions. The D/H ratio of nominally anhydrous 

minerals can be significantly affected by residual H atoms present in the sample 

chamber vacuum (Hallis et al., 2012a). As such, the Tissint samples were left inside 

the SIMS sample chamber under vacuum for a duration ranging from several hours 

(for the PTS) to overnight (for the ATS) before each analytical session. For all 

analyses reported here, the measured δD values showed no correlation with the 

pressure reading in the sample chamber, and so this effect was insignificant. The 

samples were pre-sputtered for a minimum of 3 minutes before each analysis to 

remove any surface contamination.  

As we used rhyolitic glass standards to determine the calibration curve for 

calculating the H2O content of Tissint merrillites, maskelynites and olivines, we must 

also consider potential matrix effects. The influence of matrix effects between the 

maskelynite and rhyolite glass have not been investigated. However, (Aubaud et al., 

2007) described nearly identical calibrations for Ca-rich basalts and Ca-poor 

rhyolites, and hence we have assumed that any matrix effect between the Ca-rich 
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glassy maskelynite and our rhyolite glass standards is also insignificant. The 

influence of such matrix effects on merrillites is unknown, and therefore no 

correction was applied. We did, however, apply a matrix effect correction for H2O 

contents measured in olivines. Using a similar analytical procedure to that utilized 

here (i.e., detecting hydrogen as the H- species), (Aubaud et al., 2007) showed that 

the slope of the calibration line for olivine in a plot of H-/30Si- versus H2O abundances 

was approximately 2.9 times that for rhyolite. Mosenfelder et al. (2011) has shown 

that changing the matrix ion from Si to O changes the absolute calibration, but not 

the linearity of the calibration. We applied this correction factor to our olivine 

analyses, and so the H2O contents reported for this mineral (shown in italics in Table 

1) have been corrected for this matrix effect. We note that while the accuracy of the 

absolute H2O contents reported here may be affected to some (greater or lesser) 

degree by matrix effects, the relative H2O contents for a set of analyses of any one 

mineral phase are robust. Other laboratories have detected hydrogen as 16OH- 

species when determining the H2O contents of nominally anhydrous phases and 

these studies observe smaller matrix effects between olivine and rhyolite glass (e.g., 

Tenner et al., 2009). However, if we were to detect hydrogen as the 16OH- species 

instead of as H- species, we would need to operate at much higher mass resolving 

power (translating to lower transmission) to isolate the 17OH- and 16OH2
- ions from 

the 16OD- ion for determining isotopic ratios, and so we opted to run at nearly 

maximum transmission by detecting hydrogen as H- species (e.g., Hauri et al., 

2002).  

It was recently shown that for SIMS measurements, averaging isotopic ratios 

collected over the course of a measurement results in a bias compared to the true 

ratio if the ion intensity for one of the isotopes is low (Ogliore et al., 2011). To 

address this data analysis artifact, we calculated the D/H ratio by using the sum of 
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all counts for D and H measured during each measurement, instead of averaging the 

individual D/H ratios obtained for every cycle in that measurement. The errors on the 

δD values reported in Table 1 are two times the standard errors of the mean; those 

analyses where the standard error was more than two times larger than the best 

possible (Poisson) errors from counting statistics were discarded. For SIMS analyses, 

the best possible (Poisson) errors from counting statistics are comparable to the 

standard errors of the mean. The discarded analyses (where the standard error is 

significantly higher than the Poisson errors) showed significant variations in the 

isotopic ratios during a single run which were attributed to the beam sputtering 

through different phases or encountering grain boundaries or cracks during the 

analysis. This was verified following the SIMS analyses via examination of the 

analysis spots using the electron microprobe at ASU.  

 

2.4 Results 

We report here the hydrogen isotopic compositions and H2O contents in 

merrillite, maskelynite, and olivine in each of the two sections (PTS and ATS) of 

Tissint. We additionally analyzed multiple spots within a single melt inclusion hosted 

within an olivine in the ATS. These data are reported in Table 2.1.  

In the PTS, merrillites show a range in δD of -105 ± 20‰ to +524 ± 16‰, 

and their H2O contents vary from 0.29 to 0.96 wt.% (2900 to 9600 ppm) (Figure 

2.2a, Table 2.1). Maskelynites in the PTS (Figure 2.2b, Table 2.1) show δD of +119 

± 24‰ to +1340 ± 22‰ with H2O content varying from 0.014 to 0.061 wt.% (140 

to 610 ppm) (except one analysis on a fracture with a significantly higher H2O 

content of 0.62 wt.% and δD of -51 ± 24‰). Two olivine grains analyzed in this 

section show low δD values of -43 ± 9 ‰ and -121 ± 5 ‰ and H2O contents of 

0.037 and 0.035 wt.% (370 and 350 ppm) (Table 2.1). 
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In the ATS, merrillites (Figure 2.2a, Table 2.1) show δD of +272 ± 28‰ to 

+2418 ± 15‰ and H2O content of 0.04 – 0.38 wt.% (400 to 3800 ppm), whereas 

maskelynites (Figure 2.2b, Table 2.1) have an even larger spread in δD of -116 ± 

94‰ to +3682 ± 40‰ and H2O content of 0.003 – 0.054 wt.% (30 to 540 ppm). 

Olivines show considerably lower δD values and a smaller spread (δD ranging from 

+12 ± 53‰ to +470 ± 37‰) compared to the merrillites and maskelynites (Table 

2.1). Their H2O content ranges from 0.005 to 0.035 wt.% (50 to 350 ppm). Several 

analyses of a single olivine-hosted melt inclusion show δD values ranging from +904 

± 16‰ to +1397 ± 22‰ and H2O contents from 0.15 to 0.20 wt.% (1500 to 2000 

ppm) (Table 2.1).  
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Figure 2.2. a) Hydrogen isotopic composition plotted against H2O content in Tissint 
merrillites. The solid black diamonds are analyses on the anhydrously prepared thick 
section (ATS); the open black diamonds are on a polished thin section (PTS) 
prepared using epoxy. b) Hydrogen isotopic composition plotted against H2O content 
in Tissint maskelynites. The solid blue circles are analyses on the ATS; open blue 
circles are on the PTS. The gray boxes in these figures highlight the compositions 
that appear to be largely unaffected by contamination during sample preparation.  
 

a 

b 
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2.5 Discussion 

2.5.1 Evaluating effects of sample preparation techniques. Comparison 

of PTS with ATS data demonstrates the effects of sample preparation on the degree 

to which different phases can be contaminated. In particular, δD values in the PTS 

merrillites show a negative correlation with their H2O contents, whereas there is no 

such correlation in merrillites in the ATS (Figure 2.2a). Furthermore, the PTS 

merrillites have higher H2O contents and a restricted range in δD compared to the 

ATS merrillites (Figure 2.2a, Table 2.1). Merrillite is a nominally anhydrous mineral, 

but it can form a solid solution with the mineral whitlockite, the end-member 

composition of which can have up to ~8500 ppm H2O (McCubbin et al., 2014; 

Hughes et al., 2006). Some of the merrillites analyzed in the Tissint PTS have up to 

9600 ppm H2O, which is more than the merrillite-whitlockite system can 

accommodate. Therefore, we believe that these analyses of the PTS merrillites have 

some contribution from epoxy filling the microcracks commonly found in this mineral 

in the martian meteorites. Although only two olivines were measured in the PTS, 

these analyses too show significantly higher H2O contents and low δD compared to 

olivines analyzed in the ATS (Table 2.1). As such, it seems plausible that H2O 

contents and hydrogen isotope systematics in merrillites and olivines in the Tissint 

PTS have been affected to a greater extent than the Tissint ATS by the addition of a 

terrestrial water component characterized by a low δD. In contrast, maskelynites in 

both the PTS and ATS show a similar range of H2O contents (with the exception of 

one analysis in the PTS that was obtained on an epoxy-filled crack and has a 

significantly higher H2O abundance). The PTS maskelynites do show a somewhat 

more restricted range in δD values compared to ATS maskelynites and there may be 

a hint of an anti-correlation between δD and H2O content (Figure 2.2b), but this may 

be a sampling artifact given the fewer analyses of this phase conducted on the PTS. 
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Given these data, it appears that highly fractured grains such as merrillite and 

olivine can be significantly contaminated with terrestrial hydrogen during PTS 

preparation involving epoxy impregnation and cutting and polishing in water. In this 

context, it may be worth noting an apparently weak anti-correlation between δD and 

H2O content in ATS olivines (Figure 2.3) possibly suggesting a small degree of 

terrestrial contamination recorded in this mineral even in the ATS. However, since 

there are only few analyses of ATS olivines, and they all have systematically higher 

δD and lower water content than PTS olivines, any terrestrial contamination of this 

mineral in the ATS is still inferred to be minimal.  In contrast, a glassy, unfractured 

phase such as maskelynite appears to be significantly less affected by laboratory 

contamination. Furthermore, the lack of correlation between δD values and H2O 

contents in phases measured in the ATS (with the possible exception of olivine; see 

above) strongly suggests that hydrogen isotope systematics in Tissint are minimally, 

if at all, affected by terrestrial contamination in the field prior to recovery. These 

results have implications for interpretations based on previously reported SIMS 

hydrogen isotope data obtained on shocked and fractured mineral phases in polished 

thin sections of the martian meteorites prepared with epoxy and water. 

In light of the above, in the following discussion sections, any interpretations 

regarding the hydrogen isotopic compositions of martian reservoirs or processes on 

Mars affecting the δD of martian crustal rocks are based only on the hydrogen 

isotope data obtained on the Tissint ATS (Figure 2.3). 
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Figure 2.3. δD versus 1/H2O for phases analyzed in the Tissint ATS; linear trends in 
such a plot may be explained by mixing between distinct components in this 
composition space. Maskelynites (solid blue circles) and merrillites (solid black 
diamonds) show considerable scatter in their δD, with the lowest δD values close to 
zero. Red squares show olivine analyses while green triangles show multiple analyses 
on a single devitrified olivine-hosted melt inclusion. The range of compositions shown 
here can be explained by mixing between three components, the end-members of 
which are defined by the apices of the gray triangle: (1) A wet, high δD component 
(upper left) most likely representing martian crustal fluids (i.e., aqueous fluids that 
have exchanged hydrogen with the martian atmosphere); the δD of this component 
is taken to be the highest possible value based on the measurement of the martian 
atmosphere by the SAM instrument on the Mars Science Laboratory (shown as the 
horizontal purple box bounded by the purple dashed lines showing δD = +4950 
±1080 ‰; Webster et al., 2013). (2) A drier, low δD component (lower right) 
representing a martian magmatic signature (specifically, primary magmatic 
compositions of different minerals would be expected to fall along the horizontal 
brown line representing the martian mantle, with H2O contents consistent with their 
respective mineral/melt partition coefficient; the lower right corner of the gray 
triangle shown here is constrained by the measured ATS maskelynite compositions). 
(3) A wet, low δD component that could represent either a terrestrial-like martian 
component (such as evolved, volatile-rich magmatic fluid) or terrestrial 
contamination. 
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2.5.2 Comparison with previous hydrogen isotope studies on Tissint. 

Preliminary data reported by Hallis et al. (2014) for the primary igneous minerals 

olivine and pyroxene in Tissint showed higher H2O contents (0.07 – 0.36 wt.%) and 

more restricted δD values (-150 to +100‰) compared to the ATS olivines analyzed 

here. In that study, olivine-hosted melt inclusions also showed significantly higher 

H2O contents of 0.49 – 0.56 wt.% and a more limited range in δD of -98 to +372‰, 

compared to the olivine-hosted melt inclusion analyzed here (Table 1). Hallis et al. 

(2014) additionally reported that shock melts in Tissint have H2O contents of 0.02-

0.23 wt.% and δD ranging from -66 to +4224‰. 

 A more recent study by Chen et al. (2015) has reported H2O contents and the 

hydrogen isotopic compositions of impact melts and maskelynites in Tissint. These 

authors demonstrated that Tissint impact melts (δD values varying from +45 to 

+4867 ‰ and H2O contents ranging from 0.02 to 0.24 wt.%) showed a negative 

linear correlation between 1/H2O and δD, indicative of mixing between two end-

member water reservoirs on Mars. The CO2, S, F and Cl concentrations and C isotope 

compositions in these impact melts suggest that this mixing trend is due to the 

incorporation of volatile-rich alteration products formed by groundwater on Mars 

(and characterized by a high δD similar to the martian atmosphere) into a volatile-

poor, low-δD magmatic component (i.e., a mixture of primary igneous minerals 

olivine, pyroxene and plagioclase) during impact-induced melting on Mars (Chen et 

al., 2015). These authors additionally reported that Tissint maskelynites had H2O 

contents <0.01 wt.% and a restricted δD of -222 to +296‰; three of their 

maskelynite data points showed higher δD values of +1171 to +2970‰, but they 

attributed these to contributions from phosphates during their SIMS analyses. While 

the majority of our ATS maskelynites (5 of 9) do indeed have H2O contents <0.01 

wt.%, some have higher H2O abundances (up to ~0.054 wt.%). Moreover, our ATS 
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maskelynites have a wide range in δD (-116 to +3682‰) that is not correlated with 

their H2O content. Post-analysis BSE imaging of these maskelynites did not show 

beam overlap with any other phases and, as such, we believe that the range in H2O 

abundances and δD is characteristic of this phase in Tissint. This does not preclude 

the possibility that the original plagioclase was characterized by low H2O and δD as 

suggested by Chen et al. (2015) based on the negative linear correlation between 

1/H2O and δD in impact melt glasses. This merely implies that the same shock event 

that produced these impact glasses (from melting of different proportions of 

magmatic minerals including plagioclase) also produced the maskelynite, which 

acquired its variable H2O contents and δD values during this event (see section 

below on “Shock-related fractionation and implantation of martian atmosphere” for a 

more detailed discussion of this possibility). 

 

2.5.3 Cause(s) of δD variation within and between phases in Tissint. 

There are various processes that may have affected the hydrogen isotope 

systematics of Tissint. In the following, we discuss these possibilities and examine 

the rationale for which ones may be the most likely to result in the inter- and intra-

phase variations in δD reported here.  

 

2.5.3.1 Crustal assimilation. Geochemically, shergottites are classified as 

enriched, intermediate and depleted, based on their trace element compositions 

(McCoy et al., 2011). These shergottite groupings also correlate with their radiogenic 

isotope systematics and magmatic redox conditions (Wadhwa, 2001; Herd et al., 

2002; Borg and Draper, 2003; Treiman, 2003; Debaille et al., 2008; Symes et al., 

2008; Basu Sarbadhikari et al., 2009; Usui et al., 2010; Brandon et al., 2012). It has 

been suggested previously that these shergottite groupings imply the presence of at 
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least two distinct geochemical reservoirs on Mars: one that is an incompatible 

element-depleted, reduced reservoir and another that is an incompatible element-

enriched, oxidized reservoir. These two geochemically distinct reservoirs could either 

both reside in the martian mantle (Borg and Draper, 2003; Debaille et al., 2008; 

Symes et al., 2008; Brandon et al., 2012) or the depleted reservoir may reside in 

the mantle while the enriched reservoir could be in the martian crust (Wadhwa, 

2001; Herd et al., 2002; Basu Sarbadhikari et al., 2009). Previous studies have 

suggested that crustal assimilation by the shergottite parent magmas may have 

affected their light isotope systems such as hydrogen (Usui et al., 2012) and sulfur 

(Franz et al., 2014). Martian crustal material that has been altered by crustal fluids, 

which equilibrated with the Mars atmosphere, is expected to have high δD. If 

shergottite parent magmas originated from a mantle with relatively low δD, then 

assimilation of altered crust with high δD into such magmas could result in δD 

variations among the different martian meteorites. However, variations in δD on the 

micron-scale (i.e., between and within individual phases) as seen in Tissint cannot be 

readily explained by this type of mixing process. Furthermore, trace element and 

radiogenic isotope systematics in Tissint suggest that it is one of the most depleted 

shergottites, implying minimal (if any) crustal assimilation (Brennecka et al., 2014b; 

Balta et al., 2015). Therefore, the hydrogen isotopic compositions of the phases in 

Tissint are not likely to have been affected by crustal assimilation. 

 

2.5.3.2 Magmatic degassing. Hydrogen isotope systematics have been 

investigated in a variety of terrestrial igneous rock types in order to understand the 

evolution of volatiles in their parent magmas. Magmatic degassing is an important 

process that can fractionate hydrogen isotopes (Taylor, 1986). Specifically, 

depending on the magmatic redox conditions, hydrogen release from silicate 
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magmas occurs either through dehydrogenation (H2 loss) or dehydration (H2O loss) 

(e.g., Newman et al., 1988). While dehydrogenation results in an increase in δD and 

negative correlation between δD and H2O content, dehydration typically results in a 

decrease in δD and a positive correlation between δD and H2O (e.g., Demény et al., 

2006). 

One of the earliest attempts to understand the effects of degassing of water 

on the hydrogen isotopic composition of magmas was a study of rhyolitic glasses 

which showed a correlation of δD with the H2O content (Taylor et al., 1983).  A more 

detailed study performed recently on Indonesian arc basalts reveals that the extent 

of hydrogen isotopic fractionation during dehydration of magma depends on the 

species being degassed from the magma (i.e., water dissolved as hydroxyl or as 

molecular water) and, to a lesser extent, temperature of the magma (De Hoog et al., 

2009). Since these parameters are not constant during the degassing process, the 

extent of hydrogen isotope fractionation during degassing of water depends on the 

evolution of the magma system. Nevertheless, dehydration of magmas typically 

results in hydrogen isotope fractionation on the order of ≤~150‰.  

Under more reducing conditions, such as in lunar magmas, hydrogen release 

occurs primarily through dehydrogenation (degassing of H2). This process can 

increase δD significantly in the residual magma. Degassing of up to 95-98% of H2 

can increase δD by up to 800-1000‰ and produces a negative correlation between 

δD and H2O content (Saal et al., 2013; Sharp et al., 2013; Tartèse et al., 2013). 

Given the reduced nature of Tissint (log fO2 ~ QFM -4 to -2.4; (Balta et al., 2015), it 

is possible that H2 degassing during crystallization could have contributed, at least in 

part, to the variation in δD. Nevertheless, the total δD range reported here in the 

ATS maskelynites (from as low as ~-100 up to as high as ~+3700‰) is not readily 

explained by H2 degassing alone. Combined C-O-H species have also been argued to 
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be possibly present in martian magmas and could influence degassing species (and 

the extent of associated hydrogen isotope fractionation). However, given the low 

molar abundances of carbon present compared with hydrogen, these species would 

likely have little to no impact on the δD recorded in these rocks (Stanley et al., 

2014).  

 

2.5.3.3 Secondary alteration by crustal fluids. The ubiquitous presence 

of valley networks (e.g., Bakers, 1982) and lake deposits (e.g., Squyres, 1989) on 

ancient martian terrains indicates the presence of surface water and of a denser 

atmosphere in the early history of Mars. Among martian meteorites, shergottites lack 

extensive evidence of secondary alteration and weathering compared to other 

martian meteorite groups such as the nakhlites (McSween, 1994). Tissint in 

particular lacks significant mineralogical evidence for secondary weathering and 

alteration.  However, hematite occurs in impact melt glass, and has been interpreted 

to reflect incorporation of a surface component during impact (Kuchka et al., 2014). 

Tissint also contains magnetite, which is argued to be a deuteric alteration product of 

ulvöspinel (Gattacceca et al., 2013).  It has additionally been argued that some of 

the geochemical and isotopic characteristics of the abundant impact melt glasses in 

Tissint are the result of incorporation of a near-surface weathered component during 

the impact event on Mars (Aoudjehane et al., 2012). 

Crustal fluids on Mars that equilibrated with the D-enriched martian 

atmosphere are expected to have a similarly high δD value. Assuming that the 

primary igneous minerals in the shergottites have a low δD reflecting that of the 

shergottite mantle source, interaction with a relatively D-enriched crustal fluid 

(under conditions with relatively low fluid to rock ratios) could result in variable 

increases in δD in these minerals through incomplete exchange of hydrogen with the 
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fluid. As proposed earlier for phases in other martian meteorites (Watson et al., 

1994; Boctor et al., 2003; Greenwood et al., 2008; Usui et al., 2012, 2015), such 

near-surface fluid interactions on Mars could also be responsible for the large 

variations seen in δD in Tissint phases. Given that the crystallization age of Tissint is 

~575 Ma (Brennecka et al., 2014), this fluid-rock interaction may have taken place 

anytime since then but prior to ~0.7 Ma, the time of ejection of this sample from the 

surface of Mars (Aoudjehane et al., 2012). Moreover, this process could have been 

continuous or episodic based on the availability of water in the near-surface 

environment on Mars during this time period. 

 

2.5.3.4 Shock-related fractionation and implantation of martian 

atmosphere. Shergottites have experienced one or more shock events, with the 

final impact resulting in their ejection from the surface of Mars (~0.7 Ma ago in the 

case of Tissint; (Aoudjehane et al., 2012). Shock effects in these meteorites are 

evidenced by the presence of phases such as maskelynite, ringwoodite, and impact 

melt pockets. Tissint in particular shows a variety of shocked phases such as 

ringwoodite, akimotoite, lingunite, majorite, tuite, stishovite, silicate perovskite and 

impact-produced glass (Baziotis et al., 2013; Walton et al., 2014) and two new high-

pressure minerals, ahrensite and tissintite (Ma et al., 2014). It is estimated to have 

experienced peak shock pressure in the range of ~25 to 40 GPa (Baziotis et al., 

2013). Analysis of natural remnant magnetization (NRM) shows that this meteorite 

was re-magnetized during multiple impact events (Gattacceca et al., 2013). 

Therefore, there is extensive evidence of shock effects in Tissint.  

There have been several experimental studies that demonstrated that impact-

related shock causes an increase in δD of the residual solid (Tyburczy et al., 2001; 

Minitti et al., 2008a; Minitti et al., 2008b).  However, these experimental studies on 
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serpentinite (Tyburczy et al., 2001) and kaersutite (Minitti et al., 2008a) show that 

impact-induced fractionation only increases δD by ~100‰. Furthermore, some 

shock experiments on bulk amphibolites and kaersutitic amphiboles show that the 

H2O content of the shocked material increases (Minitti et al., 2008a; Minitti et al., 

2008b). This increase is primarily attributed to two processes. First, the reduction 

reaction of Fe3+ to Fe2+ in kaersutites during impact is expected to increase the H2O 

content. Specifically, the crystal chemistry of amphibole couples the water content 

and oxidation state of Fe via the following reaction, which would move towards the 

left during impact (Minitti et al., 2008a; Minitti et al., 2008b): 

 Fe2+
Kaersutite + OH-

Kaersutite ⇔Fe3+
Kaersutite + O2-

Kaersutite + ½H2External  

The second process that likely affects the H2O content is shock implantation of 

atmospheric gases, which would also greatly affect the δD under martian conditions 

(Minitti et al., 2008a). Indeed, there is evidence of shock-implanted martian 

atmosphere in several shergottites (Bogard and Johnson, 1983; Marti et al., 1995; 

Beck et al., 2007). Thus, shock implantation of a D-enriched martian atmosphere 

could have increased the δD in the phases in Tissint. Given the micron-scale 

heterogeneity of the effects of shock metamorphism in the martian meteorites, it is 

possible that the δD (and H2O content) were variably affected on the micron-scale as 

well.  

 

2.5.4 Implications for the δD signature of the martian mantle. The δD 

of the terrestrial upper mantle is determined through the analysis of terrestrial 

basalts originating from it. One of the first estimates was from Mid Ocean Ridge 

Basalts (MORB) that have δD of ~-80 ‰ (Kyser and O'Neil, 1984). Subsequent 

studies show that MORBs have a range of δD from -100 to -20 ‰ (Poreda et al., 

1986; Chaussidon et al., 1991; Honma et al., 1991; Kingsley et al., 2002; Pineau et 
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al., 2004; Clog et al., 2013). Most recently, Clog et al. (2013) re-investigated a suite 

of MORB samples and estimated that the δD of the terrestrial depleted upper mantle 

is -60 ± 5‰. 

Previous estimates of the δD value of the martian mantle range from ~-100 

to ~+1000 ‰ (Watson et al., 1994; Leshin, 2000; Boctor et al., 2003; Hallis et al., 

2012a; Usui et al., 2012) (Figure 2.4). In particular, some previous studies suggest 

that the martian mantle has a relatively high δD (possibly as high as ~+1000 ‰; 

(Leshin, 2000). If this is true, the distinct δD values for the mantles of Mars and 

Earth would imply that sources of water for the terrestrial planets were different. 

Other analyses suggest that the δD value of the martian mantle may be similar to 

that of the Earth’s upper mantle (Gillet et al., 2002; Boctor et al., 2003; Hallis et al., 

2012a). The reasons for such a range in the estimated δD values of the martian 

mantle (based on analyses of different phases in different types of martian 

meteorites, with distinct magmatic/post-magmatic histories on Mars and varying 

terrestrial exposure histories) are likely to be complicated. In particular, it can be 

difficult to rule out the effects of terrestrial contamination, and deconvolve them 

from other effects associated with degassing and shock. For example, minerals in 

some martian meteorites show a negative correlation of δD with water contents 

(e.g., Leshin, 2000; Boctor et al., 2003), which could imply mixing between either 

two distinct martian reservoirs, or a martian reservoir with high δD and low H2O 

content and a terrestrial component with low δD and high H2O content. The data 

reported here for merrillites in the Tissint PTS (Figure 2.2a) suggest that such a 

trend could potentially result from contamination during sample preparation. More 

recently, Usui et al. (2012) have made the case that the martian mantle has an 

Earth-like δD (≤+275 ‰) based on analyses of the olivine-hosted melt inclusions in 

a geochemically depleted basaltic shergottite; however, allowing for some terrestrial 



  50 

contamination of these melt inclusions yields an upper limit on the martian mantle 

δD of ~+1000 ‰.  

Tissint is unique among martian meteorites since it sampled one of the most 

depleted mantle source reservoirs on Mars (Aoudjehane et al., 2012; Brennecka et 

al., 2014b; Balta et al., 2015). As discussed earlier, as the freshest martian 

meteorite fall and most rapidly delivered to modern laboratories, it is also the least 

affected by residence in the terrestrial environment. As such, it is currently the best 

representative among the known martian meteorites of a sample derived from the 

depleted mantle on Mars. Nevertheless, we see a large range (greater than an order 

of magnitude) in the δD of merrillites and maskelynites of the Tissint ATS, which we 

argue is likely the result of processes occurring on Mars.  

 

Figure 2.4. Estimates of δD of primitive (mantle) water on Mars based on analyses of 
minerals in the martian meteorites. The current best estimate of the δD value for the 
terrestrial upper mantle (-60‰; Clog et al., 2013) is shown as the horizontal blue 
line. 
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Each of the processes described in the previous section may have contributed 

to the hydrogen isotope systematics in Tissint, though it is difficult to deconvolve 

these effects. Nevertheless, the only processes among those discussed above that 

could produce the large δD variation seen in Tissint ATS merrillites and maskelynites 

(Figure 2.3) are either secondary alteration by martian crustal fluids or shock 

implantation of the martian atmosphere (or both). Given that both of these 

processes are expected to increase the resulting δD for martian rocks, we may 

reasonably conclude that the elevated δD in some of the analyses reported here 

results from these processes and that the lower end of the δD in our measurements 

represents the δD value of the Tissint depleted mantle source on Mars. To estimate 

the δD of this depleted mantle source end-member we must therefore assess the 

possible variation due to the other processes we discussed in the previous section. 

All processes described earlier result in an increase in the δD, with one exception: 

dehydration (H2O loss) could decrease the δD of an originally hydrous Tissint parent 

magma. Based on studies of terrestrial igneous rocks, however, it is evident that 

such degassing of H2O can fractionate the δD value of the parent magma only by 

≤150‰ (De Hoog et al., 2009). Furthermore, since reducing conditions are thought 

to have prevailed for the Tissint parent magma ((Balta et al., 2015), 

dehydrogenation rather than dehydration is more likely during degassing and would 

have resulted in an increase in the magmatic δD. As we have argued that the data 

obtained here on the Tissint ATS are only minimally, if at all, affected by terrestrial 

contamination, it is reasonable to hypothesize that the lowest δD values reported 

here for Tissint ATS phases (i.e., -116 ± 94‰; Table 2.1), corresponds to that of its 

parent magma. This lowest δD value is (within error) similar to the current best 

estimate of the δD of the terrestrial depleted upper mantle (-60 ± 5‰; Clog et al., 

2013).  As such, we suggest that the D/H composition of Tissint’s depleted martian 
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mantle source is similar to the Earth’s depleted upper mantle. Figure 2.4 summarizes 

all previous estimates of the δD value for primordial water in the martian mantle, 

and includes the estimate presented in this study. 

Mars has been characterized as a failed planetary embryo, having accreted 

mostly within the first ~2 Ma of Solar System formation (Dauphas and Pourmand, 

2011), whereas Earth continued its accretion through runaway growth. Since their 

accretionary mechanisms are hypothesized to be different, the similarity of the D/H 

compositions of the source mantles of these two terrestrial planets could imply either 

that the accreting material for both had similar δD values or that water was added 

later (via a “late veneer”) to both from a similar source. The CI chondrites have been 

suggested to be the major source of water on the Earth (Alexander et al., 2012) and 

Vesta (Sarafian et al., 2014); as such, the similarity of D/H ratio in the terrestrial 

and martian mantles would suggest that the CI chondrites could be the major source 

of water on Mars too. Finally, as discussed previously by Leshin (2000), if Mars 

started with a D/H ratio similar to that of the Earth, the exchangeable water 

reservoir on Mars would have had to experience ~80-90% loss to reach the present 

day D-enrichment in the martian atmosphere, i.e., the present-day inventory of 

exchangeable water on Mars is only 10-20% of its initial abundance. 

2.5.5 Proposed scenario for the evolution of δD in Tissint. Assuming 

that the δD of the upper mantle of Mars is similar to that of the terrestrial upper 

mantle (as discussed in the previous section), Figure 2.5 provides a schematic 

illustration of the likely processes that have affected the δD values in the phases in 

Tissint. The parent magma of Tissint inherited the δD composition of its source in the 

martian mantle since partial melting and crystal fractionation do not fractionate 

hydrogen isotopes significantly (Bindeman et al., 2012). The trace element and 

radiogenic isotope systematics of Tissint indicate that it originated from a depleted 
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mantle source (Brennecka et al., 2014). As such, crustal contamination is unlikely to 

have affected the hydrogen isotope systematics of the Tissint parent magma to any 

significant degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.5. A schematic depiction of processes that likely affected the D/H ratios in 
Tissint at different stages in its magmatic and post-magmatic history. Partial melting 
in the mantle does not fractionate hydrogen isotopes to any significant degree; since 
water is expected to behave incompatibly during mantle melting, the water content 
of the Tissint parent melt will be higher than that in its source mantle. Subsequent 
magmatic degassing can fractionate the D/H ratio and lower the H2O content of the 
parent melt; in the case of Tissint (thought to form under relatively reducing 
magmatic conditions; Balta et al., 2015), any degassing is likely to be in the form of 
dehydrogenation which would raise the D/H ratio in the parent melt. Crustal aqueous 
fluids on Mars are characterized by high δD owing to equilibration with the martian 
atmosphere. Therefore, interaction and sub-solidus exchange of hydrogen with such 
crustal fluids is likely to increase the δD (and water content) in Tissint phases. This 
process can take place anytime during the span of hundreds of millions of years, 
from the time of magmatic emplacement and crystallization (at 574 ± 20 Ma; 
(Brennecka et al., 2014b) till ejection from the martian surface due to impact (at 0.7 
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± 0.3 Ma; (Aoudjehane et al., 2012). At the next stage, during impact, hydrogen 
isotopes are additionally likely to fractionate in the rock; experiments suggest that 
this process may result in an increase in δD up to ~100 ‰ and may also increase 
the water content of the shocked phases. Furthermore, during the impact, martian 
atmospheric hydrogen could be implanted into the phases in the rock, causing an 
increase in their δD. All these processes probably contributed to varying degrees to 
the δD range reported here within and among Tissint phases, but the lowest δD 
values recorded in these phases are likely to be close to the initial magmatic value. 
See text for details. 
 

If the Tissint parent magma was hydrous, then the extent and direction of δD 

evolution would depend on whether this magma experienced dehydration (up to 

~150‰ decrease in δD; De Hoog et al., 2009) or dehydrogenation (up to ~800 to 

1000‰ increase in δD(Saal et al., 2013; Sharp et al., 2013; Tartèse et al., 2013). 

Following crystallization in a near-surface environment, Tissint likely interacted with 

crustal fluids with high δD values (~+5000 ‰; (Leshin et al., 2013; Webster et al., 

2013; Mahaffy et al., 2015) and under conditions of relatively low fluid:rock ratios. 

This process would have resulted in variable increases in the δD of the primary 

igneous minerals in Tissint through incomplete exchange of hydrogen with these 

fluids. Such fluid-rock interactions would have occurred anytime between the time of 

its crystallization (~575 Ma; Brennecka et al., 2014) until the time when it was 

ejected from Mars as a result of an impact event (at ~0.7 Ma; Aoudjehane et al., 

2012). During this time period it may also have experienced multiple impact events 

that could have variably increased the δD of mineral phases depending on the 

degree of shock experienced during such events. The final (and most significant) 

impact event that ejected the rock from the martian surface ~0.7 Ma ago is also 

likely to have caused variable increases in the δD in Tissint phases. Therefore, the 

inter- and intra-grain variations in δD in various Tissint phases reported here are 

considered to be a combined record of the superposed effects of each the above 

processes at different times in the history of this meteorite. 
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2.5.6 Water contents of Tissint phases and its parent magma. The H2O 

contents reported here in the various phases in Tissint have the potential for 

furthering our understanding of the volatile inventory of martian reservoirs. 

Nevertheless, it must be emphasized that there is a significant caveat to the 

following discussion. As discussed in a previous section, a variety of post-magmatic 

processes could have altered the water contents of primary igneous minerals in 

Tissint. Therefore, inferences about the water content of the Tissint parent magma 

that are based on the assumption that the water contents measured in Tissint 

phases have not been significantly altered by secondary processes may not be 

correct. Given this caveat, such inferences must be considered tentative until such 

time as there is further confirmation of the magmatic water content of phases in 

Tissint. 

 A recent study of the water content of magmatic apatites in the enriched 

shergottite Shergotty and the depleted shergottite QUE 94201 suggested that the 

water contents of both the geochemically enriched and depleted shergottite parent 

magmas were similar (730-2870 ppm) and their mantle sources were estimated to 

contain 73-290 ppm water (McCubbin et al., 2012). In contrast, (Usui et al., 2012) 

measured water contents in melt inclusions from an enriched shergottite (LAR 

06319) and a depleted shergottite (Y980459) and argued that the source mantle of 

the depleted shergottites was comparatively water-poor (≤116 ppm water), and the 

enriched shergottite parent magmas derived additional water from crustal 

assimilation. A more recent study of water contents in shergottites using apatite-

based melt hygrometry suggests that parent melts of the enriched and depleted 

shergottites have distinctly different water contents and the mantle source reservoir 

of the depleted shergottites may be drier than that of the enriched ones (McCubbin 

et al., in press). As Tissint is a highly REE-depleted shergottite (Balta et al., 2015), 
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the model proposed by these authors predicts low water content (up to ~200 ppm) 

in the Tissint parent magma. However, this predicted water content is substantially 

below that measured here in the Tissint melt inclusion.  

 A single olivine-hosted melt inclusion was measured in this study and shows 

δD ranging from +904 to +1397‰ and H2O contents of 0.15 to 0.20 wt.%. These 

H2O abundances are elevated relative to those reported for melt inclusions in the 

depleted shergottite Y980549, but similar to that for a melt inclusion in the enriched 

shergottite LAR 06319 ((Usui et al., 2012). Although, as discussed previously, our 

calibration for determining H2O contents leaves the potential for significant 

uncertainties, these abundances are a factor of 5-10 times those reported for melt 

inclusions in the depleted shergottite Y980459; even the most significant corrections 

estimated by us (see “Methods” section) would suggest that the Tissint melt 

inclusions are far more water-rich than those reported for Y980459. The δD in this 

melt inclusion is also elevated relative to that proposed for the depleted martian 

mantle by several previous studies (e.g., Boctor et al., 2003; Hallis et al., 2012a; 

(Usui et al., 2012); it is, however, similar to that proposed by Leshin (2000) for the 

martian mantle. Usui et al. (2012) interpreted the relatively high water content and 

elevated δD in the melt inclusion in the enriched shergottite LAR 06319 as evidence 

for interaction with a high-δD martian crustal reservoir. However, Tissint is a 

depleted shergottite and there is no evidence of any contamination of the Tissint 

parent magma prior to or during crystallization (Balta et al., 2015). Therefore, the 

elevated δD and water content in the Tissint melt inclusion cannot be from 

assimilation of martian crust into the parent magma. In fact, this melt inclusion is 

unlikely to record magmatic conditions given that it is crystalline, has cracks and the 

host olivine is highly fractured (Figure 1b). Moreover, the variation in the δD (+904 

to +1397‰) and the H2O content (0.15 to 0.20 wt.%.) within the melt inclusion 
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further suggests that post-crystallization processes may be responsible for both. 

Subsolidus processes such as interaction (and partial equilibration) with martian 

crustal fluids or diffusive loss of hydrogen from the inclusion could produce the 

elevated δD in this melt inclusion. Such processes could additionally account for the 

difference in the δD values measured in this melt inclusion and those of olivines that 

host such inclusions (which are significantly lower) (Figure 3).  Moreover, these 

processes would also have altered the H2O content of this inclusion. As such, the H2O 

concentrations reported here in the olivine-hosted melt inclusion (Table 1) are 

unlikely to be reliable indicators of magmatic water content for Tissint. 

  Additional, potentially more reliable, information on the H2O content in the 

Tissint parent magma may be obtained from H2O abundances measured in various 

phases in this shergottite. Water is able to substitute into the merrillite structure as a 

whitlockite component (Hughes et al., 2006) and our measured water contents of 

0.04-0.38 wt.% in the Tissint ATS phosphates would suggest a substantial 

whitlockite component. Taken at face value, such a component would suggest 

equilibration with hydrothermal or aqueous fluids at subsolidus temperatures below 

~1050 °C (McCubbin et al., 2014; Hughes et al., 2008). However, we have not 

established the structural position of the water within this phosphate mineral and 

whitlockite components have not previously been verified in martian meteorites 

using structural data (McCubbin et al., 2014); without a full characterization of the 

mineral structure we hesitate to suggest that these high water contents reflect a 

substantial whitlockite component and thus have adopted the term “merrillite” as the 

appropriate description for this phosphate mineral. Even accepting a possible large 

uncertainty on merrillite water contents as for the other phases, our measured water 

contents are significantly higher than those reported recently for merrillites from 

Shergotty (McCubbin et al., 2014). As discussed in an earlier section, the lack of 
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correlation between water content and δD in Tissint ATS merrillites implies minimal, 

if any, contribution from terrestrial contamination (Figure 2a). Moreover, since the 

measured δD values are far below those estimated for martian crustal fluids in 

equilibrium with the Mars atmosphere (Usui et al., 2012, 2015), the high water 

contents in this mineral are unlikely to reflect solely addition during shock processes 

or interaction with such crustal fluids. Alternatively, however, it is possible that the 

δD values (which are in the range of +272 to +2418 ‰) and the relatively high 

water contents in the Tissint ATS merrillites are the result of partial equilibration with 

aqueous fluids derived from a distinct martian reservoir comprised of hydrated crust 

or ground ice (Usui et al., 2015). In any case, in addition to the above potential 

complications, we cannot specifically quantify the parent magma H2O content based 

on these merrillites due to the lack of constraints on mineral/melt partitioning. 

 Partition coefficients for water have been measured experimentally for both 

olivine and plagioclase, potentially allowing these phases to be used as our best 

constraints on the Tissint parent magma water contents. Olivines may be particularly 

useful in this analysis as they are among the earliest crystallizing minerals in Tissint 

and their cores likely spent substantial time at magmatic temperatures prior to 

crystallization of other phases, which should eliminate possible kinetic effects on 

water incorporation (Balta et al., 2015). However as discussed in the “Methods” 

section, water contents in anhydrous phases such as olivine may be overestimated 

by a factor of 2 even after the correction for matrix effects. Nevertheless, if we take 

the H2O contents reported in Table 1 at face value, the magmatic water content of 

Tissint olivines may be assumed to be in the range of 0.005-0.035 wt.%. Partition 

coefficients for the incorporation of water in olivine have been measured on natural 

and experimental olivines and are typically very low (e.g.,(Hauri et al., 2006; 

Johnson, 2006); use of these partition coefficients produces parental magma H2O 
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contents >1 wt.%. However, all our analyses of olivines (regardless of water 

contents) show elevated δD values, a possible indication of either selective loss of H 

relative to D from the olivines through diffusive loss after water was able to degas 

from the Tissint magma following olivine crystallization, or subsolidus alteration by 

D-rich martian crustal fluids. In either scenario, the measured water contents in the 

ATS olivines are unlikely to reflect primary magmatic compositions. 

 Previous estimates for the water partition coefficient for plagioclase have 

large ranges (Johnson, 2006). A partition coefficient of 0.007 was recently used to 

estimate the water content of lunar parental magmas (Hui et al., 2013), while a 

value of 0.004 was used for higher-Na feldspars from Mt. St. Helens (Johnson, 

2005). Moreover, the H2O contents reported here in ATS maskelynites have a wide 

range (0.003-0.054 wt.%; Table 1). As illustrated in Figure 2.3, the range in ATS 

maskelynite compositions is likely to be the result of mixing between three end-

member components (represented by the apices of the gray triangle in Figure 3): 1) 

a high δD, high water component representing martian crustal fluids, 2) a low δD, 

low water component representing the primary magmatic mineral composition, and 

3) a low δD, high water component that may represent either a terrestrial-like 

martian component (such as a late-stage magmatic fluid enriched in water and 

volatiles) or terrestrial contamination. Given this, the lowest H2O content reported 

here in ATS maskelynites (~30 ppm; Table 2.1 and Figure 2.3) is likely to be closest 

to the magmatic composition of the original plagioclase. We note again that more 

appropriate blank and calibration corrections may be necessary and could result in 

lowering the H2O contents reported here in the ATS maskelynites. As such, the value 

of 30 ppm for the H2O content for the primary magmatic plagioclase (based on the 

lowest value measured here for the ATS maskelynites) is still likely to be an upper 

limit. If this value is used, partition coefficients in the range of 0.004 to 0.007 yield 
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H2O contents in the range of 0.4 to 0.8 wt.% for the melt in equilibrium with the 

Tissint plagioclase. Unlike olivine, plagioclase was formed later in the crystallization 

sequence of Tissint (Balta et al., 2015), and therefore a correction additionally needs 

to be made for a substantial degree of crystal fractionation (possibly ~80-90%) to 

obtain the true water content of the Tissint parent magma.  Assuming ~80% crystal 

fractionation prior to the onset of plagioclase, and 30 ppm as an upper limit on the 

abundance of H2O in the original magmatic plagioclase, the H2O content in the Tissint 

parent magma is estimated to be ≤0.2 wt.%.  

 In summary, based on the water contents of the nominally anhydrous phases 

analyzed here and our estimated corrections, the Tissint parent magma H2O content 

is likely to be ≤0.2 wt. %. This upper limit is about an order of magnitude higher 

than the water content suggested for the parent magmas of the depleted martian 

shergottites by (Usui et al., 2012) and McCubbin et al. (this issue), but it is 

nevertheless consistent with these studies.  

 

2.6 Conclusions 

We analyzed the hydrogen isotopic compositions of various phases in Tissint, 

one of the freshest martian falls. This meteorite provides a unique opportunity to 

analyze a martian crustal sample with minimal terrestrial contamination. In order to 

assess the effects of laboratory contamination on the hydrogen isotope compositions 

of phases in the martian meteorites during sample preparation, a comparison was 

made between traditional sample preparation techniques involving mounting in 

epoxy and epoxy-free anhydrous sample preparation methods. We see a strong 

effect of laboratory-based sample contamination on igneous minerals in Tissint that 

are highly fractured by shock. An anhydrously prepared section shows minimal, if 

any, evidence of such contamination, and δD values in phases analyzed in this 
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section range from values that are terrestrial upper mantle-like to highly elevated 

values approaching that of the martian atmosphere. Various processes such as 

magmatic degassing, secondary aqueous alteration by crustal fluids, or shock 

processes may have contributed to the large δD range in the Tissint phases. Taking 

into account the effects of processes that are likely to have affected the δD values of 

Tissint phases, we argue that the lowest δD value of -116 ± 94‰ measured in the 

Tissint ATS is likely representative of the martian mantle. As such, we conclude that 

martian mantle has a similar hydrogen isotopic signature to the terrestrial upper 

mantle, and suggest that irrespective of distinct accretion mechanisms, the 

primordial water on Mars and Earth had similar sources. 
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Table 2.1 
 
The H2O content and hydrogen isotope compositions of phases analyzed in the 
Tissint polished thin section (PTS) and anhydrously prepared thick section (ATS). For 
each analysis on a particular phase, the number indicates a distinct grain and the 
alphabet indicates a different spot on the same grain.  
 
 H2O Content  δD (‰)2  
 (wt. %)3  

 

 
Maskelynites 
Maskelynite-1 0.015 461 ± 31  
Maskelynite-2 0.031 290 ± 29 
Maskelynite-3 0.013 744 ± 30 
Maskelynite-4 0.620 -51 ± 24 
Maskelynite-5 0.014 887 ± 27 
Maskelynite-6 0.023 1340 ± 22 
Maskelynite-7 0.061 119 ± 24 
 
Olivines3 
Olivine-1 0.037 -43 ± 9 
Olivine-2 0.035 -121 ± 5 
________________________________________ 
 
ATS: 
Phosphates       
Merrillite-1 0.09 1834 ± 33 
Merrillite-2 0.13 1308 ± 39 
Merrillite-3 0.05 1960 ± 42 
Merrillite-4 0.38 272 ± 28 
Merrillite-5 0.05 1679 ± 35 
Merrillite-6 0.19 2308 ± 19 
Merrillite-7 0.07 1967 ± 25 

                                            
!

PTS: 
Phosphates 
Merrillite-1a 0.96 

              
119 ± 9 

Merrillite-1b 0.69 21 ± 26 
Merrillite-2 0.38 524 ± 16 
Merrillite-3 0.35 303 ± 30 
Merrillite-4 0.34 212 ± 25 
Merrillite-5 0.89 111 ± 12 
Merrillite-6 0.91 -105 ± 20 
Merrillite-7 0.29 339 ± 25 
Merrillite-8 0.67 183 ± 26 
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Merrillite-8 0.22 2418 ± 15 
Merrillite-9 0.13 848 ± 15 
Merrillite-10 0.04 522 ± 27 
 
Maskelynites 
Maskelynite-1 0.007 -116 ± 94 
Maskelynite-2 0.005 1342 ±74 
Maskelynite-3 0.054 839 ± 41 
Maskelynite-4 0.003 135 ± 121 
Maskelynite-5 0.025 2570 ± 39 
Maskelynite-6 0.017 2839 ± 27 
Maskelynite-7 0.007 3682 ± 40 
Maskelynite-8 0.025 651 ± 36 
Maskelynite-9 0.009 -45 ± 113 
 
Olivines3 
Olivine-1a 0.007 470 ± 37 
Olivine-1b 0.005 380 ± 34 
Olivine-1c 0.016 12 ± 53 
Olivine-2 0.019 127 ± 38 
Olivine-3 0.012 106 ± 46 
 
Melt Inclusion 
MI-1a 0.197 1283 ± 27 
MI-1b 0.150 1397 ± 22 
MI-1c 0.168 904 ± 16 
 
1The external reproducibility (2SD) of the measured H2O contents is estimated to be 
±20% based on repeat analyses of the standards used in this study (see text for 
details). 
 
2The uncertainty (2σ) in the δD is from counting statistics only. 
 
3The H2O content of olivines has been corrected for matrix effect as described in the 
Methods section. 
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CHAPTER 3 

ISOTOPIC INVESTIGATIONS OF CALCIUM-ALUMINUM RICH INCLUSIONS 

3.1 Introduction to Calcium-Aluminum-rich Inclusions and its components. 

Primitive meteorites preserve petrographic and geochemical records of early 

events that shaped our Solar System. They contain refractory inclusions, known as 

Calcium-Aluminum-rich Inclusions (CAIs), which are the first solids to have formed 

within the proto-solar nebula (Amelin et al., 2002; Amelin et al., 2010; Bouvier and 

Wadhwa, 2010; Connelly et al., 2012). Elemental and isotopic abundances of these 

inclusions record early events in the Solar System. The refractory minerals and 

textures of the CAIs suggest they formed as high temperature condensates in a 

reducing environment (Grossman, 1972). Thermodynamic models indicate that the 

mineralogy of CAIs is similar to the first mineral phases expected to condense out of 

a gas of solar composition (Grossman, 1972; Ebel and Grossman, 2000).  

Absolute high-resolution dating of CAIs has been undertaken using the Pb-Pb 

radiogenic chronometer, which shows them to be the oldest solids in the Solar 

System, forming at 4568-4567 Ma. (Amelin et al., 2002; Amelin et al., 2010; 

Bouvier and Wadhwa, 2010; Bouvier et al., 2011; Connelly et al., 2012). Another 

useful high-resolution dating technique is the 26Al-26Mg short-lived chronometer, 

which has been used extensively for relative dating of CAIs (e.g., (MacPherson et al., 

1995; Bizzarro et al., 2004; Jacobsen et al., 2008). Most CAIs have a constant 

canonical initial 26Al/27Al ratio of ~ 5 × 10-5 (MacPherson et al., 1995). These CAIs 

occur in all chondrites, and are particularly abundant in carbonaceous chondrites. 

Many CAIs have a uniform Solar O isotopic composition and they also show evidence 

for in situ decay of live 10Be, which is a produced during irradiation near the 

protosun, suggesting that they formed in a restricted region near the protosun 

(MacPherson, 2005). Some CAIs show evidence for later thermal processing, 
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followed by cooling with slow cooling rates (2-50C°/hr), for up to 0.7 Ma 

(MacPherson et al., 2012). 

3.1.1 Types of refractory inclusions. Based on their composition and 

texture, normal CAIs are classified as type A, type B, or type C (MacPherson, 2014). 

Type A inclusions are further classified, as fluffy type A, or compact type A. Fluffy 

type A CAIs are unmelted aggregates of hibonite, spinel, perovskite and melilite, 

which condensed from a gas of solar composition (Grossman, 1972; Ebel and 

Grossman, 2000).  They are typically 16O-rich and have irregular shapes. The 

compact type A CAIs contain spinel, perovskite, Al-Ti rich pyroxene, rhönite and 

coarse-grained melilite. They are 16O-rich and have rounded shapes. They formed 

through crystallization from a melt following evaporation of nebular dust and gas. 

Type B inclusions formed by crystallization from molten droplets. They are unique to 

CV carbonaceous chondrites, and show evidence for multiple thermal events 

(Grossman, 1975). They are further classified as type B1, type B2 and type B3 that 

grade into each other. Minerals in type B CAIs show variable degrees of 16O 

enrichment. Type B1 CAIs are zoned, containing melilite, spinel, Al-Ti rich pyroxene, 

and sometimes glass that formed rapidly from crystallization from a homogenous 

melt. Type B2 CAIs have higher anorthite/melilite ratio and are more silica-rich than 

Type B1. Their mineralogy and texture suggests that they have crystallized slowly 

from isolated melt pockets of their precursor material (Grossman, 1975). Type B3 

are rare forsterite-bearing inclusions that are only found in CV and CB chondrites. 

The type B3 CAIs contain a core of 16O-rich spinel, pyroxene and forsteritic olivines 

and a mantle of 16O-depleted anorthite and melilite mantles. Type C CAIs are coarse 

grained with diverse textures and mineralogies. They contain 16O-poor melilite, 

anorthite, pyroxene and spinel. Their relatively high volatile content suggests that 
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they melted under either high pressures or high gas/dust ratios. They are thought to 

be the precursors for Al-rich chondrules (MacPherson, 2016). 

Amoeboid Olivine Aggregates (AOAs) are another set of unusual refractory 

inclusions found in primitive meteorites (Grossman and Steele, 1976). These are 

olivine-rich fine-grained inclusions that are less refractory than other CAIs. Other 

AOA minerals include spinel, Al-rich pyroxene, anorthite, and rarely melilite. It has 

been suggested that they likely formed in the same region as the normal CAIs but 

experienced cooler condensation temperatures (Fagan et al., 2004). 

Some CAIs are classified as FUN (Fractionated and Unknown Nuclear effects) 

inclusions, based on their unusual isotopic compositions (Wasserburg et al., 1977; 

MacPherson, 2014). Their mineralogies and textures are similar to normal CAIs, 

however their isotopic compositions differ significantly. For example, they show large 

mass-dependent fractionation in O, Mg, and Si isotopes (Wasserburg et al., 1977) as 

well as non-linear isotopic anomalies in Ca, Ti, Cr, Sr, Ba, and Nd systems (Birck, 

2004). Large mass-fractionation effects resulting in heavy isotopic composition of O, 

Si, and Mg suggest a high temperature origin, possibly indicating evaporative 

environments. FUN inclusions lack evidence for 26Al, suggesting that they formed 

before normal CAIs, prior to the injection of 26Al into the early Solar System (Sahijpal 

and Goswami, 1998), or they formed in a spatially distinct region that lacked 26Al 

(Holst et al., 2013). 

The CM carbonaceous chondrites also contain hibonite-bearing inclusions, 

namely PLACs (PLAty hibonite Crystals) and SHIBs (Spinel-HIBonite spherules). 

These inclusions are smaller than normal CAIs (~ 50-100 µm). PLACs lack evidence 

for in situ decay of 26Al (Liu et al., 2012), however they exhibit large nucleosynthetic 

non-linear anomalies in Ti and Ca isotopes, whereas SHIBs show subcanonical initial 
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26Al/27Al ratios and large non-linear anomalies in Ca, Ti, and Si isotopes (Ireland et 

al., 1988). 

3.1.2 Wark-Lovering rims. CAIs are surrounded by multi-mineralic layers, 

which are termed as ‘Wark-Lovering rims’ (Wark and Lovering, 1977). This rim 

sequence represents unique yet universal events in the early Solar System. They are 

composed of refractory minerals such as hibonites, spinels, perovskites, melilites, 

and Al-rich pyroxenes. The WL rims were first described by (Wark and Lovering, 

1977), where type A CAIs exhibit rim sequence of Fe-rich spinel + 

perovskite/anorthite (altered to nepheline, sodalite etc)/Ti-Al rich pyroxenes/Al-rich 

diopside. Type B CAIs show hibonite/Fe-rich spinel/nepheline +sodalite. Classically 

defined WL rims contain at least spinel, melilite (and/or its alteration products) and 

pyroxene (Wark and Lovering, 1977; Wark and Boynton, 2001). Various mechanisms 

have been proposed to account for WL rim mineralogy and their isotopic signatures; 

1. Condensation: Textural studies and high-spatial-resolution focused-ion-beam 

transmission electron microscopy (FIB TEM) of WL rims show a complex 

mixture of polycrystalline grains, with the presence of subhedral grains 

suggesting a condensation origin. (Toppani et al., 2006; Stroud et al., 2007; 

Zega et al., 2007; Ito et al., 2010; Bolser et al., 2016). Oxygen isotopic 

variations in WL rims suggest that rims are a product of condensation 

processes as CAIs cycled between 16O-rich and 16O-poor nebular reservoirs, 

incorporating different isotopic signatures in their rims (Ito et al., 2010; 

Simon et al., 2016b). 

2. Crystallization from a melt: Textural studies and FIB TEM studies of WL rims 

show a complex mixture of polycrystalline material, and the presence of triple 

junctions and subhedral grains suggest formation from melt, which has been 

considered as evidence for flash heating, caused by mechanisms such as 
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shock waves (Stroud et al., 2007; Zega et al., 2007; Ito et al., 2010). 

Oxygen isotopic variations measured in WL rims have been explained by flash 

heating and subsequent re-equilibration with nebular gas (Hirai et al., 2002; 

Ito and Messenger, 2008). 

3. Evaporation residue: Based on their refractory element compositions, WL rims 

were considered to be a consequence of flash heating (at >2500 K for <2 s) 

and were thought to represent the evaporation residues from such events 

(Wark and Boynton, 2001). 

4. Nebular alteration: Growth of layers as a result of chemical gradients present 

during alteration of the interiors of inclusions in the nebula (MacPherson et 

al., 1982). This hypothesis suggests that the rims formed as a product of 

condensation in a 16O-rich environment and the 16O-poor component was 

introduced later as a product of alteration and disturbance (Cosarinsky et al., 

2005; Yoshitake et al., 2005).   

Multiple mechanisms: Contradicting textural, elemental and isotopic evidence 

suggest multiple mechanisms, as these analyses were conducted on different mineral 

layers (MacPherson et al., 1982; Wark and Boynton, 2001; Simon et al., 2011; 

Simon et al., 2016a). Therefore, the WL rim sequence likely formed as a 

consequence of multiple processes (Davis et al., 1986; Murrell and Burnett, 1986). 

WL rims in many CAIs show alteration phases, however there are CAIs with WL rims 

consisting of only high temperature mineral phases, therefore alteration events most 

likely post date the WL rims formation. 

This diversity of refractory inclusions found in primitive chondrites records 

various processes that were active in the early Solar System. This and the following 

three chapters focus on isotopic investigations of normal CAIs. By determining their 

chronology and mass dependent as well as non-mass dependent isotopic anomalies, 
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I attempt to determine the nature of these processes and the timescales over which 

these processes were active. CAIs record isotopic variations in many elemental 

systems. Broadly, these anomalies can be attributed to following processes: 

1. Radioactive decay of short-lived and long-lived radionuclides (e.g., 26Al, 41Ca, 

238U) 

2. Nucleosynthetic anomalies (due to incomplete mixing of presolar 

components). (e.g., 48Ti, 54Cr, 96Zr) 

3. Mass dependent fractionation (due to primary (evaporation and condensation) 

as well as secondary (thermal and aqueous alteration) processes). (e.g., Mg 

and Si isotopes). 

 

3.2 26Al-26Mg relative age dating of Wark-Lovering rims 

The WL rims have been described as the 'early Solar System stratigraphy' by 

G. J. Wasserburg (Wark and Lovering, 1977). The rims consist of one or more 

mineral layers, which are consistent in thickness around the CAIs, including over 

sharp and irregular corners. WL rims are absent around the broken regions of the 

CAIs. They are present around CAIs from different chondritic groups (e.g., Allende 

(CV3), Murchison (CM2) and Lance (CO3.5)) (Frost and Symes, 1970; Grossman, 

1975; Grossman et al., 1977); however other chondritic components like chondrules 

do not exhibit WL rims around them.   

Oxygen isotopic studies of some WL rims show heterogeneous oxygen 

isotopic compositions, which suggest that the rim sequences tapped different oxygen 

reservoirs (Ito and Messenger, 2008; Simon et al., 2011; Simon et al., 2016a). This 

discovery is significant because it predicts a protoplanetary disk that was 

heterogeneous and dynamic where CAIs may have journeyed a significant distance 

over the duration of rim formation. It is fundamental to put time constraints over 
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such a large-scale transport event in order to understand the origin and formation 

conditions of the WL rims.  

One of the most commonly used chronometer for chondritic components is 

the 26Al-26Mg system. 26-Aluminum is a short-lived radionuclide (half-life of ~0.73 

My) that undergoes β decay to form 26Mg. This isotope system has been used to 

obtain the relative chronology of early Solar System events with sub-million-year 

precision (e.g., (Young and Galy, 2004)). Analysis of many CAIs shows that the 

initial Solar System abundance of 26Al in terms of the 26Al/27Al ratio was ~5 x 10-5, 

and that these refractory inclusions were formed within a very narrow time interval 

on the order of less than a few hundreds of thousands of years (MacPherson et al., 

1995; Bizzarro et al., 2004; Jacobsen et al., 2008; Villeneuve et al., 2009). The 26Al-

26Mg chronometer has the potential to provide high-resolution time constraints on 

WL rim formation. However, one of the limiting factors in establishing the 

chronometry of these rims is their small size. Their total thickness varies from 50-

200 microns, with individual layers being 10s of microns thick. The application of the 

high-spatial-resolution in situ secondary-ion mass spectrometry (NanoSIMS) 

provides an opportunity to use the Al-Mg chronometer on WL rims to date the 

relative formation time of these rim sequences. NanoSIMS has revolutionized the 

field of isotope cosmochemistry because it allows spatial resolution of 10s to 100s of 

nanometers (see review by (Zinner, 2003). Recent studies of the Al-Mg system using 

NanoSIMS 50L show that it can provide precision on Mg isotopes corresponding to 

time resolution of 0.4-0.6 million years (Ito and Messenger, 2010). Such spatial 

resolution coupled with high temporal resolution is critical to date individual layers in 

WL rims, making NanoSIMS the only technique available currently for this purpose. 

In chapter 4, I discuss 26Al-26Mg relative chronology of two CAIs from NWA 

8323 (CV3 oxidized carbonaceous chondrite) and their WL rims. The results of this 
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study suggest that these WL rims formed ~2-3 Ma after CAI formation. These results 

suggest that CAIs remained free floating in the solar nebula for at least 2-3 Ma, 

before being accreted onto their parent bodies. Moreover, some mineral layers from 

the rims may have formed contemporaneously with chondrules, possibly by the 

similar transient heating mechanisms. 

 

3.3 Zirconium Nucleosynthetic Anomalies in CAIs  

 Nucleosynthetic anomalies have been identified in various meteoritic 

components in many elemental systems including Ca, Ti, Cr, Sr, Ba, Zr, Mo, Hf, Gd, 

Dy, and Ru etc (Birck, 2004). These non-linear isotopic variations suggest that there 

were multiple inputs of extra-stellar material in the early Solar System. 

Determination of these nucleosynthetic variations answers questions about the 

following;  

a. The origin of these anomalies,  

b. The carrier phases that brought these anomalies into our Solar System,  

c. The mixing mechanisms and timescales of mixing of these carrier phases with 

the Solar System material and  

d. The degree of preservation of these carriers phases in the meteoritic 

materials.  

 Chapter 5 presents results of high-precision Zr isotopic composition 11 CAIs 

from the Allende CV3-oxidized carbonaceous chondrite and four CAIs from CV3 (NWA 

6991, and NWA 6619), and CK3 (NWA 4964 and NWA 6254) meteorites, using 

multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). This 

same set of CAIs has also been analyzed for other isotopic systems including Ti, Cr, 

Sr, Mo, Ba, Nd, Sm, Gd, and Dy (Brennecka et al., 2010; Brennecka et al., 2013; 

Mane et al., 2014; Mercer et al., 2015; Shollenberger et al., 2015; Mane et al., 
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2016; Shollenberger et al., 2016), therefore this is the first attempt to study an 

extensive suit of nucleosynthetic anomalies and their possible stellar sources in the 

same sample set. Zirconium has five stable isotopes, 90Zr, 91Zr, 92Zr, 94Zr, and 96Zr, 

of which four form primarily via the s-process (slow neutron capture process), 

whereas 96Zr has a significant contribution of r- process nucleosynthesis. The Zr 

isotopic composition of 14 out of 15 CAIs shows identical excess (within analytical 

uncertainty) in 96Zr, suggesting that the CAI-forming region was homogenous, 

however, distinct than the terrestrial and bulk chondritic composition. Additionally, 

one CAI from NWA 6254 (CK3 chondrite) reported here shows a lesser enrichment in 

96Zr, and excess in 92Zr, which is a decay product of a short-lived radionuclide 92Nb 

(half-life ~37 Ma). The Nb-Zr isotopic systematics of CAIs reported here defines a 

Solar System initial 92Nb/93Nb of (1.31 ± 0.72) × 10-5. These results suggest injection 

of supernova material into the early Solar System. 

 

3.4 Mass dependent Mg isotopic variations in CAIs  

CAIs are the oldest solids that have been dated using long-lived Pb-Pb 

absolute chronometry, with a high precision (within ± 0.16 Ma) (Amelin et al., 2002; 

Amelin et al., 2010; Bouvier and Wadhwa, 2010; Connelly et al., 2012). This dating 

method assumes a constant U isotopic ratio (238U/235U = 137.88) for early Solar 

System material. However, it was recently shown that 238U/235U varies significantly in 

CAIs, affecting the calculated age by up to 6 Ma (Brennecka et al., 2010). This 

variation was attributed to the presence of short-lived 247Cm in the early Solar 

System that decays to 235U (t1/2 ~15.6 Ma) (Brennecka et al., 2010; Tissot et al., 

2016). However, other processes such as mass-dependent isotopic fractionation 

caused by thermal and/or secondary alteration processes, and incomplete mixing of 

nucleosynthetic carriers with U isotopic anomalies could also produce the observed 
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heterogeneity in U isotopes (Amelin et al., 2009; Connelly et al., 2012). As U has 

only two primordial isotopes, it is difficult to distinguish between the mass-

dependent isotopic fractionation and non-mass-dependent isotopic anomalies. In 

order to evaluate whether thermal processes (during evaporation/condensation) 

and/or secondary alteration processes are responsible for U isotopic variations, I 

analyzed mass dependent Mg isotopic composition of 11 CAIs from Allende 

meteorite. These CAIs were previous analyzed for their U isotopic composition 

(Brennecka et al., 2010). The thermal processes that could cause U isotopic 

fractionation are expected to fractionate Mg isotopes as well, resulting in correlation 

between the 238U/235U and 25Mg/24Mg. The Mg isotopic composition of the Allende 

CAIs suggest that isotopic fractionation during thermal processes may have 

contributed to relatively small U isotopic variation in a subset of these samples, 

however, CAIs showing larger U isotopic variations do not correlate with 25Mg/24Mg 

ratios, suggesting that the U isotope variation in these samples may be dominated 

either by 247Cm decay or by the presence of nucleosynthetic anomalies. 

 

3.5 Future Work 

Isotopic analysis is a powerful tool used in cosmochemistry to determine the 

nature of early Solar System events. In chapter 4, I report relative age dating of WL 

rims around two type B inclusions from NWA 8323 CV3 carbonaceous chondrite. As 

discussed in this chapter, mineral layers in WL rims likely formed by different 

mechanisms and therefore determining the chronology of WL rims sequences around 

different types of CAIs and CAIs from different primitive meteorites would improve 

our understanding of timescales of WL rim formation. Combining this age dating 

analysis with other techniques such as high-resolution microscopy, which enables 

determining the mechanisms of formation for the different mineral layers in the WL 
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rims, would provide a wholesome insight into the processes associated with the WL 

rim formation and the timescales over which they were active. 

 In chapter 5, I discuss Zr isotopic composition of 15 CAIs from 5 different 

carbonaceous chondrites. All of these inclusions show a homogenous yet distinctly 

anomalous isotopic composition in ε96Zr and homogenously terrestrial isotopic 

composition for ε91Zr and ε92Zr, indicating isotopic homogeneity in the CAI forming 

region. However, one CAI, Homer from NWA 6254 (CK3) suggests some amount of 

heterogeneity in the Zr isotopic composition. This data set needs to be extended to 

include CAIs from other carbonaceous chondrites, to asses the isotopic homogeneity 

in Zr and other isotopic systems in the CAI-forming region. Isotopic analysis of CAIs 

to determine nucleosynthetic anomalies in multiple isotopic systems, coupled with 

age dating would provide a comprehensive picture of mixing processes and its 

timescales in the early Solar System. 
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CHAPTER 4 

FORMATION TIMESCALES OF RIM SEQUENCES AROUND CALCIUM-

ALUMINUM-RICH INCLUSIONS FROM A CV3 CHONDRITE  

4.1 Introduction 

Relative and absolute dating techniques suggest that CAIs are the first 

formed solids in the Solar System (Amelin et al., 2002; Bouvier and Wadhwa, 2010) 

that condense at high temperatures (most refractory phases starting at ~1750 K) 

(Grossman, 1972). CAIs are surrounded by a sequence of mono- or bi- mineralic 

layers, termed as WL rims (Wark and Lovering, 1977). These rims have been 

described as the early Solar System stratigraphy (Wark and Lovering, 1977). The 

width of these individual layers is less than a few microns, which make their isotopic 

analysis a major analytical challenge. Recent advances in analytical techniques, 

allowed analyses of Oxygen isotopes in the WL rims. In some CAIs, these rims show 

variation in the non-mass dependent oxygen isotopic composition, suggesting that 

during the rim formation event(s), the CAI was transported to different regions of 

the Solar nebula, with distinct oxygen isotopic signatures (Simon et al., 2011; Simon 

et al., 2016a). It is crucial to put time constraints over such a large-scale transport 

event in order to understand the origin and formation conditions of the WL rims.. 

The WL rims show a general mineralogical sequence spinel-perovskite-

hibonite-melilite-anorthite-Al rich clinopyroxene- forsterite (Wark and Lovering, 

1977). Alteration phases such as nepheline, anorthite, sodalite, grossular and 

wollastonite have also been reported in the rim sequences (MacPherson et al., 

1982). Incomplete WL rims around broken CAIs and absence of rims around other 

chondritic components such as chondrules, suggest restricted spatial or temporal 

conditions of rim formation (Wark and Lovering, 1977). Various mechanisms have 

been proposed to explain the formation of WL rims, they include: 1) condensation 
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and subsequent accretion on the CAI surface (Ito and Messenger, 2008; Simon et 

al., 2011; Bolser et al., 2016; Simon et al., 2016a), 2) crystallization from a melt, by 

the flash-heating mechanisms (Keller et al., 2013), 3) formation as evaporation 

residues (Wark and Boynton, 2001), 4) growth of layers as a result of chemical 

gradients set up during alteration of the interior of inclusion, in nebular settings 

(MacPherson et al., 1982). Putting time constraints on the WL rim formation is 

crucial for understanding the transport of material in the early Solar System. 

One of the main limiting factors in establishing the chronometry of these rim 

sequences is their size. Their total thickness varies from 50-200 µm, with individual 

layers being 10s of µm. The application of the high spatial resolution in situ 

Secondary Ion Mass spectrometry technique (NanoSIMS) provides a unique 

opportunity to use the Al-Mg chronometer on Wark-Lovering rims to date the relative 

formation time of these rim sequences. 26Al is a short-lived radionuclide (half-life of 

~0.705 My (Norris et al., 1983) that undergoes β decay to form 26Mg. Therefore, this 

system can be used to obtain the relative chronology of early Solar System events 

with sub-million year precision (Young and Galy, 2004). I report high spatial 

resolution Al-Mg chronology of CAIs and their rims using a Cameca Amtek NanoSIMS 

50L at ASU.  Specifically, I analyzed two CAIs and their WL rims from the Northwest 

Africa (NWA) 8323, in order to determine the time difference between the formation 

of host CAIs and their WL rims. NWA 8323 is an oxidized CV3 carbonaceous 

chondrite, with a low shock grade as well as low weathering grade (Meteoritic 

Bulletin, 2014).  

 

4.2 Methods 

4.2.1 Scanning Electron Microscopy. Back scattered electron images and 

elemental abundances of mineral phases in CAIs and their WL rims were obtained 
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using JEOL JXA-8530F electron microprobe at Arizona State University (ASU) and FEI 

NOVA NanoSEM, 600 field emission gun Scanning Electron Microscope at the 

Smithsonian Institute. For both CAIs, BSE images, X-ray elemental MAPs and WDS 

spot analyses for major elemental abundances of different mineral phases were 

obtained. 

4.2.2 Trace element analysis (Ba, Sr and Eu). Ba, Sr, and Eu abundances 

of WL rims and CAI interior were analyzed using Cameca 6f Secondary Ion Mass 

Spectrometer at ASU using protocols described in (Zinner and Crozaz, 1986; Hinton, 

1990). A O- primary beam with a primary current of ~15 nA was used to sputter an 

area of ~20 × 20 µm2. A combination of contrast aperture of 400 µm and a field 

aperture with a diameter of 150 µm, was used to target the analysis area of ~4 µm. 

Si+, 88Sr+, 138Ba+, and 151Eu+ secondary species were detected on an electron 

multiplier in a pulse counting mode, with a mass resolving power of ~9000 (m/ Δm). 

Five cycles of mass calibration were performed before every analysis in order to 

minimize the possible hysteresis effects of the magnetic field control. Energy filtering 

was used to minimize the molecular interference, with an energy offset of -75V and 

energy slit width of 40 V. A pre-sputtering time of 300 seconds was applied before 

every analysis. In order to calculate elemental abundances in ppm, calibration was 

done using standard glasses, NIST 610, NIST 612 and NIST 614 and secondary 

standards ML3BG and KL2G (basalts glasses). Each analysis lasted for ~1.5 hours 

with 30 cycles containing 2 measurements each. The uncertainties reported here 

are1σ poisson error. 151Eu+ has a molecular interference from 135Ba16O+ species that 

was corrected empirically with BaO+/Ba+ = 0.049 ratio (Hinton, 1990) reported for 

silicates, using methods described in (Zinner and Crozaz, 1986).  

4.2.3 Oxygen Isotopic Analysis. The oxygen three-isotopic analysis was 

performed using the Cameca IMS-1280 ion microprobe at WiscSIMS lab, University 
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of Wisconsin, Madison, using analytical protocols similar to that of (Kita et al., 2010; 

Tenner et al., 2013). A Cs+ beam with ~20 pA primary current was used to sputter ~ 

3 × 4 µm2 area to target smaller phases in the WL rims and CAI interior. The normal 

incidence electron gun was used for charge compensation. Each spot was 

presputtered for 180 seconds before the analysis. Secondary ion species of 16O- 

(Faraday cup), 17O- and 18O- (Electron multipliers) were simultaneously detected with 

typical 17O- count rates of ~6 – 8 × 103 cps . The contribution of the tailing of 16OH- 

interference on 17O- was corrected empirically, and was always lower than 0.3‰.  

San Carlos olivine (SCO) was used as a bracketing standard (δ18O = 5.32 ‰; (Kita 

et al., 2010)) to correct for instrumental mass bias (each series of 10-15 sample 

analyses bracketed with 8 SCO analyses). Terrestrial spinel, gehlenitic and 

åkermanitic melilites, anorthite, diopside and synthetic fassaite glasses were used to 

correct for potential matrix effects. The measured 17O/16O and 18O/16O ratios were 

reported relative to VSMOW (Vienna Standard Mean Ocean Water). The errors 

reported here are 2 standard deviation (2SD) of the bracketing standard; SCO (~1 

‰ for δ17O, δ18O, and Δ17O). After the analyses, SIMS pits were verified using EPMA 

at ASU, to make sure there was no overlap with cracks, inclusions or other phases. 

The oxygen isotopic composition of the CAIs and their WL rims is reported in Table 

4.2. 

4.2.4 Al-Mg analysis. Mg isotopic analysis was conducted at Secondary Ion 

Mass Spectrometry (SIMS) labs at ASU using Cameca NanoSIMS 50L. Gold or 

carbon-coated polished thick sections of samples were sputtered by a 16keV primary 

O- beam with a primary current of ~20 to 50 pA. The primary beam was rastered 

over 5 × 5 µm areas on the sample. Positive secondary ions were collected from the 

central 2.5 × 2.5 µm by using electronic gating. Positive secondary ions of 24Mg+, 

25Mg+, 26Mg+ and 27Al+ were collected simultaneously using electron multipliers, in 
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isotope ratio mode. Potential isobaric interferences such as 23NaH, 12C2, 24MgH, 13C2, 

and 12C14N are completely resolved using a mass resolving power of <9000. We used 

the NMR (Nuclear Magnetic Resonance) tool, to regulate magnetic field stability, 

within a session the variation in the magnetic field was >10 ppm. The variation in 

the magnetic field was < 10 ppm for the entire session. The raw ratios were 

corrected for dead time. The instrumental mass bias was corrected using terrestrial 

standards. Analysis time varied between 30-90 minutes per spot for different mineral 

phases. The long-term external reproducibility of δ26Mg* on San Carlos olivine is 

3.24‰ (Figure 4.1a) and on Lake County plagioclase is 11.9 ‰ (Figure 4.1b). The 

Mg isotopic composition and Al/Mg ratios of different mineral phases in CAIs and 

their WL rims are reported in table 4.1. 

 Figure 4.1a. External reproducibility of δ26Mg* on San Carlos olivine 
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Figure 4.1b. External reproducibility of δ26Mg* on Lake Country plagioclase 

 

4.3 Results 

4.3.1 Petrography of CAIs and their WL rims. CAI-1 is a coarse-grained 

inclusion consisting of melilite, spinel, anorthite and pyroxene (Figure 4.2a and 

4.2b). The WL rim sequence is more or less continuous and it consists of pyroxene, 

spinel, and anorthite. Some of the anorthites show hedenbergite needles crystallizing 

inside anorthites in the WL rims. Some spinels also show evidence for melting, with 

Fe-rich composition and relict spinel grains in the rims. The outermost pyroxene 

layer however, is fine-grained and does not show any evidence for melting. CAI-2 is 

similarly a coarse-grained inclusion that is containing spinel, anorthite, Ti-rich 

pyroxene, and melilite (Figure 4.3a and 4.3b). This inclusion also contains some Fe-

Ni metal. The WL rim sequence consists of anorthite, spinel, pyroxene and some 

patchy occurrence of nepheline (Figure 4.4). The WL rim only partially surrounds the 
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CAI, the other part exposes interior anorthite. Some regions in the WL rim of CAI-2 

show presence of glass (Figure 4.4), suggesting very quick crystallization after 

melting. 

 

Figure 4.2a. Backscattered electron image of CAI-1 
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Figure 4.2b. X-ray elemental map of CAI-1 
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Figure 4.3a. Backscattered electron image of CAI-2 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3b. X-ray elemental map of CAI-2 
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Figure 4.4. Back-Scattered Electron Image (BSE) of a WL rim sequence from CAI-1 
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 4.3.2 Trace element abundances of CAIs and their WL rims. 

 a. Na abundances: Anorthite occurs as a primary well as a secondary 

alteration phases in CAIs. A correlated analysis of Al-Mg system and Na abundances 

was performed on a Type B Vigarano CAI USNM 1623-8 (Macpherson and Davis, 

1993). Coarse-grained anorthite and melilite in this inclusion shows elevated Na 

abundances and no correlation between Al/Mg ratios and 26Mg* abundances. Given 

the coarse grained nature of anorthite in this inclusion, it was suggested that 

anorthite was initially formed as a nebular alteration product, which was later melted 

during a brief melting event, which did not allow all the Na to evaporate (Macpherson 

and Davis, 1993). We compared the Na abundances from this inclusion with the 

anorthite analyzed for this work (Figure S3) and they are significantly lower than Na 

abundances reported for USNM 1623-6 anorthites.  Unlike USNM 1623-6, the Al-Mg 

systematics in CAI-1 and CAI-2 define well-correlated isochrons. 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.5. Na abundances of CAI interior and WL rim anorthites. Na abundances 
in anorthites from Vigarano CAIs affected by secondary alteration (with reset Al-
Mg isochrons) are plotted for reference (MacPherson and Davis, 1993) 
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b. Trace elemental abundances: In many CAIs, fine-grained anorthite occurs 

as an alteration product of melilite. However, alteration products derived from 

melilite show loss of Sr. Trace elemental abundances of Eu, Ba and Sr were analyzed 

in two Type B CAI from Allende, TS23 and TS 24 (Davis et al., 1994). Primary 

anorthites that show canonical initial 26Al/27Al ratio do not show constant Eu/Sr ratio 

but a variable Ba/Sr ratio. However, alteration products derived from melilite show a 

positive trend that suggests Sr loss in these phases. When compared to interior as 

well as rim anorthites from CAI-1 and CAI-2, they also show variable Ba/Sr ratio but 

constant Eu/Sr ratio, suggesting that these interior and rim anorthites are primary 

and not an alteration product derived from melilite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Ba/Sr and Eu/Sr ratios of anorthites from WL rims and CAI interiors. For 
Comparison anorthites from Allende CAIs that are relatively unaltered (showing 
canonical Al-Mg isochrons) and alteration products that show evidence for Sr loss 
(Davis et al., 1994) 
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4.3.3 Oxygen Isotopic Composition of CAIs and their WL rims. Oxygen 

isotopic analyses of the two inclusions analyzed for this study shows variation in the 

interior as well as rims (Figure 4.6a and 4.6b). In terms of Δ17O, phases in the two 

CAIs range from the CAI end-member (Δ17O = -25‰) up to the terrestrial value 

(Δ17O = 0‰). The interior spinels show Δ17O values of -24 ± 2 ‰ (2SD). The 

interior pyroxenes also show a restricted range in Δ17O of -24.2 ± 1.6 ‰ to -20 ± 1 

‰. The interior melilites show Δ17O values that are close to terrestrial (ranging from 

-9 ± 2 ‰ to -1 ± 2 ‰). The interior anorthites show a range in Δ17O of -11 ± 2 ‰ 

to -1 ± 2 ‰. The WL rim spinel show a restricted range in Δ17O of -19 ± 2 ‰ to -

22 ± 2 ‰. The rim pyroxenes show Δ17O values ranging from -24 ± 2 ‰ to -8 ± 2 

‰. The rim anorthites show Δ17O values in the range of -4 ± 2 ‰ to 0 ± 2 ‰. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7a. Oxygen isotopic composition of mineral phases in CAI-1 and its WL rim 
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Figure 4.7b. Oxygen isotopic composition of mineral phases in CAI-2 and its WL rims. 

 

4.3.4 Al-Mg Systematics of CAIs and their WL Rims. The interior of the 

CAI-1 shows evidence for a 26Al/27Al ratio of (5.2 ± 0.6) × 10-5, with initial (δ26Mg*)0 

of 1.7 ± 4.7‰ (MSWD = 2.9). In the WL rim for CAI-1, the 26Al/27Al ratio was 

inferred to be (6.2 ± 3.2) × 10-6, with initial (δ26Mg*)0 of 3.4 ± 2.7‰ (MSWD = 

0.5). The relative time between formation of CAI-1 interior and its WL rim is  

Ma. The interior of the CAI-2 shows evidence for a 26Al/27Al ratio of (5.2 ± 0.4) × 10-

5, with (δ26Mg*)0 of 5.8 ± 3.9‰ (MSWD = 2.1). In the WL rim for CAI-2, the 

26Al/27Al ratio was inferred to be (4.5 ± 3.4) × 10-6, with (δ26Mg*)0 of 4.4 ± 3.1‰ 

(MSWD = 1.0). The relative time between formation of CAI-2 interior and its WL rim 

is  Ma. The Al-Mg isochrons for both the CAIs and their rims are shown in 

Figure 5a and 5b. 
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Figure 4.8a. Al-Mg relative isochrons CAI-1 interior and WL rims. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8b. Al-Mg relative isochrons CAI-2 interior and WL rims. 
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4.4 Discussion 

4.4.1 Formation history of WL rim sequence. The WL rim sequences 

observed in these two inclusions, coarse-grained anorthite and euhedral spinel 

suggesting formation of these layers crystallized from a melt, whereas the outermost 

pyroxene layer is finer-grained suggesting a likely condensation origin. Classically 

defined WL rims have at least spinel, melilite (and/or its alteration products) and 

pyroxene. Other rim sequences observed around CAIs include spinel/diopside, 

spinel/anorthite or melilite/diopside layers (Wark and Boynton, 2001). Wark and 

Boynton, 2001 (Wark and Boynton, 2001) argued that unless their formation 

mechanisms are the same, these rims should not be considered as WL rims. The 

rims studied here show a strong textural evidence of crystallization from a melt, 

hence indicating a transient heating mechanism responsible for their formation. 

Although the sequence of minerals in these rims is not classical, they still show 

concentric mono- to bi- mineralic layers of refractory mineral assemblages that are 

primary. Therefore we consider these rims as a WL rim sequence. 

Oxygen isotopic composition of various chondritic components provides 

information about different nebular environments where objects like CAIs and 

chondrules formed and underwent secondary processing, like thermal metamorphism 

and aqueous alteration (Clayton, 1993). Particularly in CAIs, O isotopes record 

evidence for varying nebular environments. The Solar O isotopic composition inferred 

from the Solar wind samples by the genesis mission suggests Solar δ17O and δ18O ~ 

-60‰ (McKeegan et al., 2011). Compared to the rest of the Solar System material, 

CAIs, AOAs (Amoeboid Olivine Aggregates) and their accretionary rims show 16O- 

rich composition, with δ17O and δ18O values as negative as ~-40‰ (E.g. (Clayton et 

al., 1973; McKeegan et al., 1998; Krot et al., 2002). Mineral phases in some igneous 

CAIs show variation in their δ17O and δ18O values varying from Solar to terrestrial 
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composition e.g., (Aléon, 2016), defining a mass independent mixing line with slope 

~1 (CCAM: Carbonaceous Chondrites Anhydrous minerals). Most CAIs show 16O-rich 

solar like isotopic composition, whereas chondrules show intermediate δ17O and δ18O 

values ranging from -10‰ to 5‰ (Clayton, 1993; Kita et al., 2010; Tenner et al., 

2013). O isotopic composition of chondrules shows variation in different chondrite 

groups, however their O isotope values are intermediate between CAIs and 

secondary alteration products.  

Most oxygen isotopic analyses of WL rims show 16O enrichment (similar to the 

CAI parent reservoir) as well as the presence of a 16O poor component. Both these 

components are present within the same rim sequence (Hirai et al., 2002; 

Cosarinsky et al., 2005; Yoshitake et al., 2005; Ito and Messenger, 2008; Simon et 

al., 2011; Simon et al., 2016b). These variations in oxygen isotopes have been 

explained by flash heating and subsequent re-equilibration with nebular gas (Hirai et 

al., 2002; Ito and Messenger, 2008). Alternatively, it has been suggested that rim 

sequences are a product of condensation processes and CAIs cycled between 16O rich 

and 16O poor nebular reservoirs, trapping different isotopic signatures in their rims 

(Ito and Messenger, 2008; Simon et al., 2011; Simon et al., 2016a). Yet another 

hypothesis suggests that the rims formed as a product of condensation in a 16O-rich 

environment and the 16O-poor component was introduced later as a product of 

alteration and disturbance (Cosarinsky et al., 2005; Yoshitake et al., 2005).   

The O isotopes in anorthites in the rims and the interiors are partially exchanged 

whereas both interior and rim spinels and pyroxenes are 16O-rich, suggesting that 

both interior and rim anorthites may have started with a 16O-rich composition and 

later exchanged. Although the spatial resolution for O isotopic analyses presented 

here is not sufficient to determine the O isotope heterogeneity across a single 

mineral layer, as seen elsewhere, these rims show heterogeneity from one spot to 
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the other. Interaction of CAI minerals with multiple O isotopic reservoirs in the 

nebular environment as they crystallize, can explain this heterogeneity. Starting with 

16O-rich reservoir where spinel formed followed by crystallization of melilite and 

anorthite ad partial exchange with 16O-poor reservoir. This was followed by the rim 

anorthite formation in 16O-poor reservoir. Rim spinel layer formed in 16O-rich 

reservoir, followed by rim pyroxene that shows varying degree of partial exchange 

with 16O-poor reservoir. Alternatively, secondary alteration on the parent body could 

also explain the O-isotope variation seen in the CAI and WL rims minerals. Melilite 

and anorthite have a high O diffusivity, whereas spinels and pyroxenes are more 

resistant to O diffusion (Ryerson and McKeegan, 1994). However, there is no other 

evidence of secondary resetting in the anorthite and melilite. Therefore, it is more 

likely that the remelting of anorthites occurred in 16O-poor gas, where the spinels 

remained unaltered but anorthites exchanged. The pyroxene layer formed later, 

which also shows heterogeneity and 16O-rich composition. 

There is abundant evidence of secondary alteration in CAIs, especially from CV3 

oxidized meteorites like Allende. The two CAIs analyzed here also show evidence for 

secondary alteration in certain patches. However, relatively pristine areas in the 

interior of both the CAIs define a canonical Al-Mg isochron. Therefore we conclude 

that interior and rim anorthites in CAI-1 and CAI-2 are primary igneous in nature. 

We cannot rule out the possibility of the rim anorthite forming as secondary 

alteration product, which later underwent a melting event that evaporated all the Na 

and other volatiles and homogenized Sr abundances. As anorthite is the innermost 

layer of the WL rim sequence, other layers formed later.  

Considering both the oxygen isotopic systematics and elemental abundances in 

these two CAIs, the WL rims studied here were likely produced by melting in the 

solar nebula and were not significantly altered on the parent body. More textural 
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evidence for this melting event is from glass and Fe-rich euhedral spinels that are 

also seen in the rims.  

 

4.4.2. Al-Mg relative ages of WL rims. Anorthites provide an opportunity to 

resolve radiogenic 26Mg excesses because of their high Al/Mg ratios (80-400), which 

helps constraining the slope of the isochron with higher precision. Although coarse-

grained anorthite is a primary mineral in CAIs, anorthite also occurs as an alteration 

product of melilite in many CAIs. However anorthite in the interior and rims of these 

two CAIs is primary for following reasons, 1) they show a coarse grained texture, 

(Figure 4.3), which is typical of crystallization from a melt, whereas alteration 

products are typically fine-grained 2) The interior and rim anorthites form two 

distinct well-correlated linear arrays defined by multiple individual analyses in Al-Mg 

system, for each CAI (Figure 4.5a and 4.5b), whereas, altered anorthites typically 

show a scatter on Al-Mg space. 3) Alteration products in CAIs show elevated 

abundances of volatile elements such as Na. A correlated study of Al-Mg system and 

Na abundances of anorthites from a Vigarano CAI, suggests that reset anorthites 

also show elevated Na abundances (Macpherson and Davis, 1993). Comparing their 

results with the anorthites from CAIs reported here, there is no evidence for 

secondary processing of these anorthites (Figure 4.7) 4) Trace elements such as Sr, 

Ba and Eu behave like tracers of aqueous alteration (Davis et al., 1994). As seen in 

some anorthites and other alteration products derived from melilite in CAIs, aqueous 

alteration results in loss of Sr (Davis et al., 1994). Unaltered anorthites from Allende 

CAIs do not show such evidence for Sr loss, and maintain relatively undisturbed Al-

Mg isochrons; neither do the anorthites (from the rims as well as the interiors) 

reported here (Figure 4.8). 
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The relative time difference reported here dates two different melting events, one 

that melted the entire CAI and the second one that formed the WL rims. As 

anorthites represent the innermost layer of the WL rim sequence (Figure 4.3), the 

principle of superposition suggests that the intermediate spinel and outermost 

pyroxene layers must have formed after the anorthite layer. There is a likelihood 

that the rim anorthite represents an alteration product of the interior melilite that 

was later melted and crystallized. During such heating event, evidence of any 

nebular fluids carrying Na or Sr diffusion could have been erased and homogenized. 

However after melting and crystallization, these anorthites did not experience any 

significant alteration.  

Al-Mg systematics suggests that CV CAIs precursors formed in a short time 

interval of ≤ 20 ka in the early Solar System (Thrane et al., 2006; Jacobsen et al., 

2008), and their melting continued for at least 0.2 Ma (Hsu et al., 2000; MacPherson 

et al., 2010; MacPherson et al., 2012) and up to 0.7 Ma for some CAIs (MacPherson 

et al., 2012). However, some of the rim minerals show a near-canonical 26Al/27Al 

ratio (Simon et al., 2005; Kawasaki et al., 2016), suggesting the onset of WL rims 

formation contemporaneous with CAIs formation. Our results suggest that the rim 

formation continued for ~2 Ma either in a spatially isolated nebular region 

continuously or as multiple episodic events (Figure 4.9).  
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Figure 4.9. Early Solar System chronology 

 

The ~2-3 Ma time difference also coincides with chondrule formation. 

Chondrule precursors formed as early as ~0.9 Ma after the first solids (Villeneuve et 

al., 2009), but their meting continued  for ~4 Ma, with peak intensities at ~1.5 and 

~ 3 Ma (Villeneuve et al., 2009). This suggests that chondrule formation probably 

occurred as episodic events, where melting of chondrules occurred due to transient 

heating events such as gravitational instabilities-driven shock or planetismal bow 

shock events (Desch et al., 2012). Similar heating mechanisms may have caused 

formation of at least some layers in the WL rim sequence. Chondrules from different 

chondritic groups show distinct size distribution, O isotopic composition and 26Al-26Mg 

relative ages, suggesting that chondrules from each chondritic group formed in 

isolated environments (Kita et al., 2005), however their melting mechanism was 
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similar. O isotope systematics in at least some CAIs records an evidence for large-

scale transport. Therefore, in spite of forming in distinct settings, CAIs and 

chondrules record similar processes. 

If the Al-Mg system is recording the WL rim formation, our results imply that 

these CAIs may have remained as free-floating objects for ~2-3 Ma before being 

accreted on their meteoritic parent bodies, suggesting that the CAI-forming region 

was turbulent and dynamic. Additionally many differentiated meteorites show 

evidence of early accretion of differentiated parent bodies within first two million 

years after CAIs (Dauphas and Pourmand, 2011; Kruijer et al., 2014a), 

carbonaceous and ordinary chondrites were probably the residues of planetary 

formation, instead of being the primary building blocks of planets.  

 

4.5 Conclusions 

 Formation of Wark-Lovering (WL) rims around Calcium-Aluminum rich 

Inclusions (CAIs) in primitive meteorites marks a brief but unique event in the early 

Solar System history. Each mineral layer in these rims represents an absolute time 

marker. In some CAIs, these rims show variation in the non-mass dependent oxygen 

isotopic composition, suggesting that during the rim formation event(s), the CAI was 

transported to different regions of the solar nebula, with distinct oxygen isotopic 

signatures. Here we present relative ages of WL rims, using 26Al-26Mg chronometer, 

suggesting that at least some layers in these rims formed ~2-3 Ma after the host CAI 

formation. The time difference of ~2-3 Ma coincides with the majority of chondrule 

formation ages, suggesting that these rims may have formed in flash-heating events 

similar to those that produced the majority of chondrules in the early Solar System. 
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Table 4.1 

Al-Mg Systematics of CAI-1 and CAI-2 and their WL rims 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
27Al/24Mg 2 s.d δ26Mg* 2 s.d 

CAI1-Int1 286 37 88.2 11.9 
CAI1-Int2 6 2 4.3 7.4 
CAI1-Int3 485 37 183.6 11.9 
CAI1-Int4 208 37 81.9 11.9 
CAI1-Int5 293 37 115.7 11.9 
CAI1-Int6 451 37 185.9 11.9 
CAI1-Int7 431 37 163.3 11.9 
CAI1-Int8 489 37 200.5 11.9 
CAI1-Int9 4 2 6.1 7.4 
CAI1-Int10 6 2 4.9 7.4 
CAI1-Int11 6 2 5.1 7.4 
CAI1-Int12 55 37 22.3 11.9 
CAI1-Int13 342 37 92.1 11.9 
CAI1-Int14 93 37 35.2 11.9 
CAI1-Int15 3 2 6.6 7.4 
CAI1-Int16 4 2 6.4 7.4 
CAI1-Int17 260 37 123.0 11.9 
CAI1-Int18 87 37 20.1 11.9 

     CAI1-Rim1 43 2 2.3 11.9 
CAI1-Rim2 151 37 9.5 11.9 
CAI1-Rim3 31 2 4.8 7.4 
CAI1-Rim4 144 37 5.5 11.9 
CAI1-Rim5 2 0 2.3 2.7 
CAI1-Rim6 30 2 5.8 7.4 
CAI1-Rim7 79 37 8.6 11.9 
CAI1-Rim8 110 37 4.0 11.9 
CAI1-Rim9 423 37 23.3 11.9 
CAI1-Rim10 3 0 4.5 2.7 
CAI1-Rim11 8 2 4.6 2.7 
CAI1-Rim12 69 37 10.8 11.9 
CAI1-Rim13 40 2 4.5 11.9 
CAI1-Rim14 247 37 8.0 11.9 
CAI1-Rim15 275 37 21.7 11.9 
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CAI2-Int1 385 37 131.4 11.9 
CAI2-Int2 282 37 100.9 11.9 
CAI2-Int3 315 37 99.5 11.9 
CAI2-Int4 713 37 298.7 13.6 
CAI2-Int5 793 37 328.7 14.1 
CAI2-Int6 644 37 241.9 12.1 
CAI2-Int7 277 37 123.1 11.9 
CAI2-Int8 17 2 7.2 7.4 
CAI2-Int9 8 2 6.4 7.4 
CAI2-Int10 11 2 4.3 7.4 
CAI2-Int11 2 0 2.6 7.4 
CAI2-Int12 459 37 159.3 11.9 
CAI2-Int13 421 37 153.1 11.9 
CAI2-Int14 2 0 12.1 7.4 
CAI2-Int15 11 2 13.6 7.4 
CAI2-Int16 8 2 16.7 7.4 
CAI2-Int17 2 0 10.1 7.4 
CAI2-Int18 812 37 332.0 11.6 

     CAI2-Rim1 112 37 5.3 11.9 
CAI2-Rim2 38 2 6.5 7.4 
CAI2-Rim3 200 37 12.2 11.9 
CAI2-Rim4 130 37 -2.7 11.9 
CAI2-Rim5 93 37 6.2 11.9 
CAI2-Rim6 2 0 1.8 2.7 
CAI2-Rim7 12 2 10.7 7.4 
CAI2-Rim8 75 37 17.5 11.9 
CAI2-Rim9 348 37 18.8 11.9 
CAI2-Rim10 4 0 3.4 7.4 
CAI2-Rim11 8 2 3.0 7.4 
CAI2-Rim12 102 37 8.5 11.9 
CAI2-Rim13 321 37 16.7 11.9 
CAI2-Rim14 203 37 4.7 11.9 
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Table 4.2 

Trace element abundance of interior and rim minerals of CAI-1 and CAI-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 

 Oxygen isotopic composition of CAI-1 and CAI-2 interior and WL rim minerals. 

 
δ18O 2SE δ17O 2SE Δ17O 2SE 

       CAI-1 Area 1 An 1 (Int)  8.10 0.80 1.50 1.93 -2.72 1.96 
CAI-1 Area 1 An 2 (Int) 8.30 0.80 2.96 1.93 -1.35 1.96 
CAI-1 Area 1 An 3 (Int) 4.94 0.80 0.10 1.93 -2.47 1.96 
CAI-1 Area 2 An 4 (Int) -10.14 0.80 -14.36 1.93 -9.09 1.96 
CAI-1 Area 2 An 5 (Int) -13.74 0.80 -18.60 1.93 -11.46 1.96 
CAI-1 Area 2 An 9 (Int) 8.96 0.80 2.96 1.93 -1.70 1.96 
CAI-1 Area 2 An 6 (rim) 8.67 0.80 1.67 1.93 -2.84 1.96 
CAI-1 Area 3 An 7 (rim)  8.38 0.80 4.11 1.93 -0.25 1.96 
CAI-1 Area 5 An 8 (rim) 9.87 0.80 2.34 1.93 -2.79 1.96 

       
       CAI-1 Area 2 Spi 1 (rim) -38.15 1.16 -38.58 2.44 -18.74 2.27 
CAI-1 Area 2 spi 2 (rim) -38.27 1.16 -42.21 2.44 -22.30 2.27 
CAI-1 Area 2 spi 5 (rim) -40.85 0.85 -43.60 1.09 -22.36 1.24 

 
Ba/Sr 2 s.d Eu/Sr 2 s.d 

CAI1-Int1 0.44 0.02 0.74 0.19 
CAI1-Int2 0.84 0.06 1.96 0.58 
CAI1-Int3 0.48 0.04 0.72 0.29 
CAI1-Rim1 0.73 0.03 0.71 0.20 
CAI1-Rim2 0.69 0.05 1.73 0.49 
CAI1-Rim3 1.69 0.08 0.64 0.23 
CAI1-Rim4 1.33 0.05 0.68 0.20 
CAI1-Rim5 1.07 0.04 0.59 0.18 

     CAI2-Int1 0.30 0.02 0.77 0.22 
CAI2-Int2 0.15 0.02 0.86 0.28 
CAI2-Rim1 0.55 0.04 0.42 0.21 
CAI2-Rim2 1.17 0.07 0.07 0.06 
CAI2-Rim3 0.78 0.11 2.04 1.13 
CAI2-Rim4 2.16 0.17 1.83 0.87 
CAI2-Rim5 1.71 0.10 0.94 0.38 
CAI2-Rim6 1.38 0.07 0.39 0.19 
CAI2-Rim7 0.51 0.05 0.29 0.22 
CAI2-Rim8 0.28 0.04 0.59 0.39 
CAI2-Rim9 0.28 0.04 0.59 0.39 
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CAI-1 Area 4 spi 3 (int) -45.17 1.16 -47.36 2.44 -23.87 2.27 
CAI-1 Area 4 spi 4 (int) -44.48 1.16 -48.55 2.44 -25.42 2.27 

       
       CAI-1 Area 2 pyr 1 (rim) -18.19 1.16 -22.40 2.44 -12.94 2.27 
CAI-1 Area 2 pyr 2 (rim) -18.47 1.16 -22.82 2.44 -13.22 2.27 
CAI-1 Area 5 pyr 5 (rim) 

 
1.16 

 
2.44 

 
2.27 

CAI-1 Area 2 px 9 (rim) -15.33 0.85 -19.52 1.09 -11.55 1.24 
CAI-1 Area 5 pyr 6 (rim) -41.64 1.16 -45.44 2.44 -23.79 2.27 
CAI-1 Area 2 px 7 (int)  -35.30 0.85 -39.10 1.09 -20.75 1.24 
CAI-1 Area 2 px 8 (int) -33.21 0.85 -37.29 1.09 -20.02 1.24 
CAI-1 Area 4 pyr 3 (int)  -40.32 1.16 -42.05 2.44 -21.09 2.27 
CAI-1 Area 3 pyr 4 (int) -42.52 1.16 -46.24 2.44 -24.13 2.27 

       
       CAI-1 Area 2 mel 1 (int) 4.69 1.16 -1.16 2.44 -3.59 2.27 
CAI-1 Area 2 mel 2 (int) 2.71 1.16 -2.87 2.44 -4.28 2.27 
CAI-1 Area 4 mel 3 (int) 2.77 1.16 -1.84 2.44 -3.28 2.27 
CAI-1 Area 2 mel 4.5 (int) 4.15 0.85 0.20 1.09 -1.96 1.24 
CAI-1 Area 3 mel 5 (int) 7.16 0.85 1.53 1.09 -2.19 1.24 

       
       CAI-1 Area 3 hd 1 (rim) 7.98 0.85 2.84 1.09 -1.31 1.24 
CAI-1 Area5 hd 2 (rim) 7.21 0.85 3.11 1.09 -0.64 1.24 

       CAI-2 Area 4 An 1 (rim) res 
201 8.73 0.74 2.33 1.71 -2.21 1.86 
CAI-2 Area 4 An 2 (rim) 5.47 0.74 -0.83 1.71 -3.67 1.86 
CAI-2 Area 1 An 3 (rim) 7.49 0.74 2.97 1.71 -0.92 1.86 
CAI-2 Area 1 An 4 (rim) 9.75 0.74 2.38 1.71 -2.69 1.86 
CAI-2 Area 5 An 6 (int) -8.23 0.74 -13.53 1.71 -9.25 1.86 
CAI-2 Area 5 An 7 (int) -5.43 0.74 -11.68 1.71 -8.86 1.86 
CAI-2 Area 5 An 8 (int) -2.42 0.74 -6.43 1.71 -5.17 1.86 
CAI-2 Area 5 An 9 (int) 
res=202 -5.41 0.97 -11.15 1.39 -8.33 1.60 
CAI-2 Area 5 An 10 (int) 9.83 0.97 3.35 1.39 -1.76 1.60 
CAI-2 Area 5 an 4 (int) 9.74 0.74 3.32 1.71 -1.74 1.86 

       
       CAI-2 Area 4 sp 1 (rim) -44.43 0.74 -47.23 1.71 -24.13 1.86 
CAI-2 Area 4 spi 2 (rim) -42.04 0.74 -44.35 1.71 -22.49 1.86 
CAI-2 Area 2 spi 5 (rim) -45.00 0.97 -48.22 1.39 -24.82 1.60 
CAI-2 Area 2 spi 6 (rim) -43.86 0.97 -46.92 1.39 -24.12 1.60 
CAI-2 Area 2 spi 7 (rim) -44.58 0.97 -46.35 1.39 -23.17 1.60 
CAI-2 Area 5 spi 3 (int) -43.90 0.97 -46.97 1.39 -24.15 1.60 
CAI-2 Area 2 spi 4 (int) -43.46 0.97 -46.85 1.39 -24.25 1.60 

       
       CAI-2 Area 1 pyr 1 (rim) -7.27 0.74 -11.83 1.71 -8.04 1.86 
CAI-2 Area 2 pyr 4 (rim) -34.81 0.97 -40.45 1.39 -22.35 1.60 
CAI-2 Area 5 pyr 2 (int) -37.76 0.97 -41.40 1.39 -21.77 1.60 
CAI-2 Area 5 pyr 3 (int) -43.66 0.97 -46.91 1.39 -24.20 1.60 
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       CAI-2 Area 5 mel 2 (int) 7.15 0.97 2.89 1.39 -0.83 1.60 
CAI-2 Area 4 mel 1 (int) -2.34 0.74 -6.72 1.71 -5.50 1.86 
CAI-2 Area 2 mel 3 (int) -9.75 0.97 -14.25 1.39 -9.19 1.60 

       
       CAI-2 Area 4 Glass 1 (rim) 10.59 0.74 4.00 1.71 -1.51 1.86 
CAI-2 Area 4 glass 2 (rim) 10.27 0.97 4.14 1.39 -1.20 1.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  102 

CHAPTER 5 

ZIRCONIUM ISOTOPE SYSTEMATICS OF CALCIUM-ALUMINUM-RICH 

INCLUSIONS: IMPLICATIONS FOR THE DEGREE OF ISOTOPIC HOMOGENEITY 

AND THE PRESENCE OF LIVE 92Nb IN THE SOLAR NEBULA 

5.1 Introduction 

Nucleosynthetic variations record the isotopic fingerprints of various stellar 

sources that may have contributed material to the early Solar System. Different 

isotopic systems record these nucleosynthetic variations in presolar grains, Calcium-

Aluminum rich Inclusion (CAIs) as well as in bulk meteorites. Presolar grains 

condense in extra-stellar environments, such as winds from Asymptotic Giant Branch 

(AGBs) stars or supernovae, and in many cases are the carriers of nucleosynthetic 

anomalies. However, when did they condense and how long did they survive in the 

interstellar medium before being incorporated in our molecular cloud, remains to be 

answered. Nucleosynthetic anomalies in bulk meteorites represent average isotopic 

composition on planetary scale, identifying different regions in the solar nebula. Bulk 

meteorites record homogenization of nucleosynthetic anomalies up to a few millions 

years from CAI formation. 

CAIs in primitive meteorites preserve records of the early Solar System 

processes (MacPherson, 2014). Absolute Pb-Pb ages suggest that CAIs are the oldest 

solids in the Solar System that formed ~4567-4568 Ma (Amelin et al., 2010; Bouvier 

et al., 2011; Connelly et al., 2012). 26Al-26Mg relative ages of bulk CAIs suggest that 

the precursors of CAIs formed in very short time span of ~30,000 years (Jacobsen et 

al., 2008; Larsen et al., 2011). However, internal 26Al-26Mg isochrons suggest that 

their thermal processing continued for up to ~0.7 Myrs (MacPherson et al., 2012). 

Their oldest age suggests that they probably escaped homogenization, and thus they 

provide the best chance of preserving earliest Solar System reservoir(s). CAIs record 
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nucleosynthetic anomalies in a number of isotopic systems that are distinct than rest 

of the early Solar System material (Meyer and Zinner, 2006). Although presolar 

grains have not been found in CAIs, CAIs record evidence for in situ decay of many 

short-lived radionuclides like 26Al, 41Ca, 53Mn, 182Hf, and 247Cm (Lee et al., 1976; 

Birck and Allègre, 1985; Srinivasan et al., 1994; Brennecka et al., 2010), providing a 

direct evidence for input from external stellar source(s). 

  Nucleosynthetic anomalies have been identified in CAIs in various isotopic 

systems such as Ca, Ti, Cr, Ni, and Zr etc. (Birck, 2004). Some of them exhibit 

homogenously distinct anomalies than the bulk earth (e.g., r- process isotopes of Sm 

and Nd) and rest of the primitive meteoritic material, whereas, some of them show 

heterogeneous isotopic anomalies (p- process isotopes of Sm and Nd) (Andreasen 

and Sharma, 2006). Correlated isotopic analyses of multiple systems are of 

particular interest, as they provide strict constraints about common external sources 

that may have contributed material to the early Solar System. For example, analysis 

of Ti isotopes in the Solar System material records a correlated heterogeneity in ε46Ti 

and ε50Ti (Trinquier et al., 2009). As 46Ti and 50Ti have two distinct nucleosynthetic 

sources, this correlated heterogeneity was attributed to different degrees of thermal 

processing of homogenous material of well-mixed molecular cloud (Trinquier et al., 

2009). Another study encompasses isotopic composition of a variety of elements 

such as Ti, Cr, Sr, Mo, Ba, Nd, Sm, Gd, Dy, Er, and Yb in the same set of CAIs from 

Allende (Brennecka et al., 2013; Brennecka et al., 2014a; Mane et al., 2014; Mercer 

et al., 2015; Shollenberger et al., 2015). Zirconium isotope systematics is of 

particular interest because Zr is a highly refractory element, which was condensed 

into the CAIs early in the Solar System history. It has a high diffusion coefficient; 

therefore it does not alter very easily during the secondary alteration processes. 
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Slow and rapid neutron capture (s- and r-) processes are primarily 

responsible for the production of nuclides beyond Fe. Zirconium isotopic systematics 

is of particular interest, as Zr has five stable isotopes, four of which (90,91,92,94Zr) are 

predominantly formed in stellar environments characterized by low neutron density 

(s- process). A small amount of 90Zr is also produced by proton capture (p-) process 

(Travaglio et al., 2011). Although 96Zr has some contribution from proton capture (p-

) process and s-process, up to ~45 % of total 96Zr requires higher neutron density 

environments (r- process), which are typically seen in supernovae (Arlandini et al., 

1999). Therefore Zr isotopes provide an opportunity to determine contribution of 

nuclides formed in different stellar environments.  

Additionally, 92Zr can also be produced as a daughter product of the decay of 

the short-lived radionuclide 92Nb (t1/2  = 37 Ma (Holden, 1990)). 92Zr has been 

previously demonstrated to cause isotopic variation in meteoritic material and 

therefore 92Nb-92Zr system has potential as a relative chronometer that could be 

used to date the processes that fractionate Nb and Zr. As both the parent and 

daughter elements are refractory in nature, this is system is less likely to be 

disturbed by secondary loss by volatilization. In addition, Zr and Nb are strongly 

incompatible elements that are not fractionated during melting and magma 

crystallization. Therefore 92Nb-92Zr system closure records condensation and 

accretion of planetary materials. The isotopic signatures of in situ decay of 92Nb, as a 

correlated excess in 92Zr was first observed in an iron meteorite Toluca, with initial 

(92Nb/93Nb)0 ratio (1.6 ± 0.3) × 10-5 (Harper, 1996; Harper Jr, 1996). However, later 

studies in CAIs from Allende meteorite, rutile grains from iron meteorite Zagora and 

zircons from a mesosiderite Chaunskij, reported initial (92Nb/93Nb)0 ratio of ~10-3 

(Münker et al., 2000; Sanloup et al., 2000; Yin et al., 2000). Internal isochrons from 

an ordinary chondrite Estacado Camel Donga and a eucritic clast from a mesosiderite 
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Vaca Muerta define a lower Solar System initial ratio of (92Nb/93Nb)0 < 3 x 10-5 

(Schonbachler et al., 2002). Analysis of Allende CAIs does not show correlated 

excess in 92Zr and therefore defines an initial (92Nb/93Nb)0 ratio <10-4 (Schönbächler 

et al., 2003). Internal isochrons of differentiated meteorites NWA 4590 (angrite), 

Agoult (eucrite) and Ibitira (ungrouped achondrite) define a Solar System initial 

(92Nb/93Nb)0 of (1.7 ± 0.6) × 10-5 (Iizuka et al., 2016). The discrepancy seen in the 

Solar System initial ratio of (92Nb/93Nb)0 demands further constrains on the Zr 

isotopic composition of early Solar System material. 

We report Zr isotopic composition of 11 CAIs from Allende (CV3 carbonaceous 

chondrite) and 4 CAIs from other carbonaceous chondrites (CV3 and CK3 

carbonaceous chondrites), to understand degree of mixing in CAIs from different 

carbonaceous chondrite parent bodies. The Allende CAIs reported here have been 

analyzed for elements like Sr, Mo, Zr, Ba, Nd, Sm, Gd, and Dy, U, and they show 

evidence for the r-process decoupling at mass ~140 (lighter elements like Sr, Mo, 

Zr, and Ba showing evidence of r-process excess whereas heavier elements like Nd, 

Sm, Gd, and Dy show r-process deficits) (Brennecka et al., 2013; Brennecka et al., 

2014a). For the four non-Allende CAIs, isotopic systematics of Cr, Ti, Mo, Ba, Sr, 

Sm, Nd, Er and Yb have been previously reported (Shollenberger et al., 2015; Mane 

et al., 2016; Shollenberger et al., 2016). This cooperative effort in analyzing multiple 

isotopic systems in the same set of CAIs is crucial for understanding the origin of 

nucleosynthetic anomalies, identifying the various carrier phases of these anomalies, 

and the distribution and preservation of these nucleosynthetic anomalies. This 

sample set includes different textural types such as fine-grained and coarse-grained 

CAIs, as well as CAIS with different REE patterns, suggesting that they experienced 

different thermal histories. This paper reports Zr isotopic composition of CAIs from 

carbonaceous chondrites other than CV3, for the first time. We analyzed 4 CAIs from 
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different groups of carbonaceous chondrites, one of them showing resolvable excess 

in 92Zr/90Zr ratio, in order to define the initial value for the CAI forming region. 

 

5.2. Sample Description 

Eleven CAIs from Allende (164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 

and 175) were analyzed for their Zr isotopic composition. CAIs 166, 167, and 175 

are fine grained inclusions that show Group – II Rare Earth Element (REE) pattern 

(Brennecka et al., 2010), suggesting formation from a fractionated reservoir (Fahey 

et al., 1987), where as CAIs 164, 165, 168, 170, 171, 172, 173, and 174 are coarse 

grained inclusions with a flat REE pattern (Brennecka et al., 2010), that can be easily 

explained by condensation from a Solar nebula of CI composition. Additionally four 

CAIs (referred to hereon as Simpson CAIs) were analyzed, each from a different 

carbonaceous chondrite. Isotopic systematics of Ti, Cr, Sr, Ba, Sm, Nd, Er and Yb of 

these four CAIs have been reported previously (Shollenberger et al., 2015; Mane et 

al., 2016; Shollenberger et al., 2016). Marge and Lisa are from two different CV3 

carbonaceous chondrites (NWA 6619 and NWA 6991 respectively). Bart and Homer 

are from two CK3 carbonaceous chondrites (NWA 4964 and NWA 6254 respectively). 

Bart, Lisa and Marge show a flat Group III REE patter whereas Homer shows a 

modified Group II REE pattern.  

 

5.3. Methods  

We developed a new protocol for the separation and analysis of Zr isotopes 

from the CAI matrix. In contrast to methods reported earlier, this procedure has 

following advantages:  

1. total Zr recovery >90%.  
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2. Isotopic analysis using MC ICPMS provides, degree of ionization (≥95%) 

(Rehkämper et al., 2001), which allows precise analysis of CAI samples with low Zr 

abundances.  

3. The first part of column ion exchange chemistry gives simultaneous separation of 

Zr and Ti; the Ti clean up chemistry and isotopic data is reported elsewhere (Torrano 

et al in prep). 

5.3.1 Analytical materials and reagents. The Zr separation chemistry was 

performed in Isotope Cosmochemistry and Geochronology Lab (ICGL) at Arizona 

State University (ASU). Samples were digested Teflon Savillex beakers that were 

exclusively used for extra-terrestrial samples, in order to avoid cross-contamination 

with terrestrial material. Nitric (HNO3) and hydrochloric (HCl) acids were double 

distilled using Savillex acid distillation assembly. 

Optima grade hydrofluoric (HF) and perchloric (HClO4) acids and Optima 

grade H2O2 (Fisher Chemical) was used during the first step of chromatography to 

elute Ti. Milli-Q water (resistivity >18 MΩ cm-1) used for acid dilutions and 

chromatography. The Eichrome DGA resin was cleaned with 6M HCl and Milli-Q water 

alternatively, three times each, before loading onto the columns. AG1-X8 200-400 

mesh anion exchange resin was cleaned repeatedly in a sequence of following 

reagents; Milli-Q water, 4N HNO3, Milli-Q water, 6N HCl, Milli-Q water, 1N HNO3, 

Milli-Q water, 1N HCl, Milli-Q water (before loading onto the columns).  For both the 

steps, resins were packed in acid-cleaned Bio-Rad Poly-Prep® columns (d = ~5.5 

mm, h = 42 mm). 

5.3.2 Elemental Abundances. Elemental abundances and Nb/Zr ratios for 

Allende CAIs were measured using a Thermo X-series quadrupole ICP-MS at the W. 

M. Keck Laboratory for Environmental Biogeochemistry at ASU. These CAIs were 

analyzed for their U isotopic composition and the results of this analysis have need 
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reported elsewhere (Brennecka et al., 2010). These elemental abundances were 

analyzed after the U isotopic composition; therefore the Nb/Zr ratios measured here 

may show some fractionation. The elemental abundances and Nb/Zr ratios for 

Simpson CAIs were measured at Lawrence Livermore National Laboratory.  

5.3.3 Ion Exchange Chromatography for Zr Separation. Zr was 

separated from the rest of the matrix using, a two-step ion exchange 

chromatography protocol. The first step of this chemistry derived from (Zhang et al., 

2011) and described in table 1. Pre-cleaned DGA resin was loaded in the Bio-Rad 

columns. DGA resin is a low-density resin that tends to float on high molarity acids, 

such as 12M HNO3. Therefore the columns were fritted from the top, after loading the 

resin. These columns and the resin were further cleaned with 3M HNO3, a mixture of 

3M HNO3 +1 wt% H2O2 and MQ water. The resin is then preconditioned with 12M 

HNO3 and the samples are loaded. Major matrix elements, like Ca are then eluted 

with 12M HNO3, followed by Ti in a mixture of 12M HNO3  + 1 wt% H2O2. Zr (with Hf) 

was eluted in a mixture of 3M HNO3 + 0.3 M HF. The 3M HNO3 and H2O2 mixtures 

were made fresh, and stored for <5 hours before use, whereas all the other acid 

mixtures could be stored for up to a few months. 

Table 5.1 
 
Column Chromatography (Step 1): (Separation of Zr from CAI matrix) 
   (ml)  (Acid strengths) 
 
Clean Resin  10  3M HNO3 

   10  3M HNO3 + 1 wt% H2O2 

     4  H2O 
  
Preconditioning 15  12M HNO3 
Load Sample  10  12M HNO3 
Rinse Matrix (Ca) 10  12M HNO3 
Ti           10  12M HNO3 1 wt% H2O2 
Fe   10  3M HNO3 
Zr and Hf  20  3M HNO3 + 0.3 M HF 
REEs   20  0.2M HF 
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 Figure 5.1. Elution curves for Zr separation chemistry using DGA resin 

 

Whole rock samples and some CAIs (especially the ones with low Zr/matrix 

ratio) show some amount of Fe and other elements, therefore step 2 of this protocol 

removes any remaining matrix elements from the Zr cut (table 2). After the clean up 

columns, Zr cuts were dried and re-dissolved in 3% HNO3 + trace HF (0.014M) for 

isotope measurements. The procedural blank was <0.05 ng. Multiple sets of whole 

rock standards were also run before and along with the standards.  

Table 5.2 
 
Column Chromatography (Step 2): (Fe clean up column) 
 
   (ml) 
Clean Resin  10  3M HNO3 

   18  MQ H2O 

    12  6N HCl 
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Preconditioning 5  6N HCl 
Load Sample  1  6N HCl 
Elute Cr +Zr  4  6N HCl 
Elute Zn  8  3N HNO3 

 

5.3.3 Mass Spectrometry. All Zr isotopic abundances were measured using 

Thermo Scientific Neptune Multi-Collector Inductively Coupled Plasma Mass 

Spectrometer (MC-ICPMS) at ICGL, ASU. To maximize the sensitivity of the 

measurements and reduce the oxide generation we used a 50-µl/minute nebulizer, 

an ESI Apex-Q sample introduction system with a Jet sample cone and an H skimmer 

cone. These measurements were conducted in low resolution (m/Δm = ~2000) and 

using the integration time of 8.4 seconds. All the isotopes were measured on 

Faraday cups.  

Table 5.3 
 
MCICPMS set up for Zr isotopic measurements 
Mass Spectrometer Setup  
MC-ICP-MS Thermo Scientific Neptune 
RF Power ~950 W 
Pt Guard Electrode On, grounded 
Gas Flow  
Cooling gas ~14 L/min Ar 
Auxiliary gas 0 
Sample gas ~ 1.2-1.4L/min Ar 
Interface cone Jet (sampler) and H (Skimmer) 
Analyzer pressure ~109 Torr 
Nebulizer (Flow rate) 50 µl/minute 
Data Acquisition Parameters  
Acquisition mode Static analogue detectors 
Detection System Faraday Cups 
Resolution Mode Low Resolution (m/Δm = ~2000) 
Single analysis protocol 8.4 s integration per cycle, 25 cycles 
Wash out time/Take up time 40 s /60 s 
 

Zr detection sensitivity for 90Zr varied from ~15 to 20 V for 100 ppb Zr solution. Zr 

isotopic abundances were measured simultaneously, while monitoring 179Hf++, 95Mo+ 

and 99Ru+ interferences, (For cup configuration see table 4). Prior to isotopic 
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analysis, the pure Zr solutions were checked for Ti, V, Cr, Fe, and Hf concentrations 

to make sure that they were below the levels that would the Zr isotopic 

measurements (See section 5.3.4). Each isotopic analysis consisted of 8.4 seconds 

integrations of repeated 25 cycles. Each sample analysis was bracketed with NIST 

SRM 3169 analysis, to correct for instrumental mass bias. The concentration of the 

samples was matched to that of the bracketing standards within 10%, this is a 

crucial step because of the unidentified interference on 96Zr (See results, section: 

5.3.4). Blank solution 3% HNO3 + trace HF (0.014M) was analyzed after every 15 

analyses for blank correction. Electronic baselines were measured for NIST SRM 

3169 standard after every 15 to 20 analyses. Before analyzing the samples, a set of 

whole rock geologic standards (Allende and BCR-2), pure NIST SRM 3169 standard 

that was passed through the column chemistry, were also analyzed for their Zr 

isotopic ratios, to check the efficiency of ion exchange chromatography as well as the 

accuracy of the mass spectrometric analysis. In order to determine the level at which 

presence of interfering elements can affect the accuracy of measured Zr isotopic 

analysis we performed elemental doping tests. Specifically, we measured Zr isotopic 

composition of NIST SRM 3169 standard, doped with different proportions of a single 

interfering element (X), with X/Zr ratios varying from 0.0001 to 0.5.  

Table 5.4 
 
 Faraday collector configurations for Zr isotope measurement using MCICPMS 
 
Cup L4 L3 L2 L1 C H1 H2 H3 
Species 179Hf++ 90Zr+ 91Zr+ 92Zr+ 94Zr+ 95Mo+ 96Zr+ 99Ru+ 
Mass 89.4729 89.9047 90.9056 91.9050 93.9063 94.9058 95.9082 98.9059 
Amplifiers  1012 Ω 1011 Ω 1011 Ω 1011 Ω 1011 Ω 1011 Ω 1011 Ω 1012 Ω 

 

5.3.4 Isobaric Interferences. The argide interferences of Ti, Cr, V, and Fe 

cause major concern for Zr isotopic measurements. Additionally isobaric 

interferences of Mo and Ru can cause significant variation in Zr isotopic ratios. 
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Doubly charged species of Hf and W isotopes additionally cause isobaric interferences 

on 90Zr, 91Zr, and 92Zr. Different interfering species for Zr isotopes have been 

summarized in table 5.5. Zr isotopic abundances were measured using low mass 

resolution mode (m/Δm  = ~2000), in order to allow maximum transmission. We ran 

doping tests for Ti, Cr, V, Fe, Hf, Mo and Ru (described in Section 3.3). These tests 

suggest following limits, below which presence of these interfering elements is 

permissible and it does not affect the Zr isotopic measurements. For argide 

interferences, Ti/Zr < 1; Cr/Zr < 1; V/Zr < 10; and Fe/Zr <5 are permissible. 

However, geo-standards and CAI samples, Ti, Cr, V and Fe abundances were well 

below these ratios. The ion exchange chromatography technique used for these 

samples does not allow complete separation of Zr from Hf, but low mass resolution 

mode still allows complete separation of Hf++ and Zr+ peaks. Lastly interferences of 

40Ar40Ar12C+, 40Ar40Ar14N+, 40Ar40Ar16O+, and 80Kr16O+ interferences cannot be avoided, 

and their effects on Zr isotopic composition are evident in analysis of NIST SRM 3169 

standard solutions of different concentrations (10 ppb, 20ppb, 40ppb, 80ppb, and 

200ppb Zr) that is bracketed with 100ppb standard solution (Figure 2). This 

mismatch in the concentrations of standard causes a significant shift in Zr isotopic 

ratios; therefore Zr concentration of each sample was matched within 15% to that of 

the bracketing standard. 
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Table 5.5 
 
Isobaric interferences on Zr isotopes 
 
Zr Isotope Interfering 

Species 
Mass m/Δm 

90Zr+ 50Ti40Ar+ 89.90717 37791 
 50Cr40Ar+ 89.90843 24248 
 50V50Ar+ 89.90954 18579 
 180Hf++ 89.97327 1311 
    
91Zr+ 51V40Ar+ 90.90634 130988 
 182W++ 90.97410 1327 
    
92Zr+ 52Cr40Ar+ 91.90289 42736 
 92Mo+ 91.90681 51924 
 40Ar40Ar12C+ 91.92476 4659 
 184W++ 91.97546 1305 
    
94Zr+ 54Cr40Ar+ 93.90126 18587 
 54Fe40Ar+ 93.90199 21730 
 94Mo+ 93.90509 76552 
 40Ar40Ar14N+ 93.92784 4362 
    
96Zr+ 56Fe40Ar+ 95.89732 8756 
 40Ar40Ar16O+ 95.91968 8410 
 80Kr16O+ 95.91129 31800 
 96Mo+ 95.90468 26685 
 96Ru+ 95.90760 142044 
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Figure 5.2. Zr isotopic measurements of NIST SRM 3169 at different concentrations 
show a shift in the Zr isotopic composition, where significant shifts in ε96Zr ratios are 
seen, however smaller shifts are seen in ε91Zr and ε92Zr. 
 

5.3.5 Data Reduction. Blank solution (3% HNO3 + trace HF (0.014M)) was 

measured after every 15 analyses, each sample and the bracketing standard were 

corrected for blanks using these measurements. After blank correction of signal 

intensities of each isotope, the raw ratios were calculated. The mass bias coefficients 

(β) were calculated by internally normalizing measured 94Zr/90Zr ratios in the sample 

and bracketing standards to a fixed 94Zr/90Zr = 0.3381 (Minister and Ricard, 1981) 

using the exponential mass fractionation law, 

                 RT = RM (m1/m2)β 
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where RM is the measured isotopic ratio, RT is the true ratio, m1 and m2 are the 

masses of the two isotopes, and β represents the intrumental mass bias. 

β = ln [(94Zr/90Zr)true/(94Zr/90Zr)measured]/ln [m94Zr/m90Zr] 

The interference from 92Mo+, 94Mo+, 96Mo+, and 96Ru+ can affect Zr isotopic ratios 

significantly, therefore 95Mo+ and 99Ru+ (when applicable) abundances were 

measured simultaneously and Zr isotopic ratios were corrected for the Mo and Ru 

interferences. However, the ratios measured in samples of 95Mo/90Zr  < 0.001 and 

99Ru/90Zr < 5 ± 10-6. After mass bias correction and interference correction the 

isotopic ratios are expressed in epsilon (ε) units,  

ε = (Rm/Rstd -1) × 10000 

Where, Rm is the measured isotopic ratio and Rstd is the isotopic ratio of the 

bracketing standard (average of measured one before and after the sample).  

 

5.4. Results 

5.4.1 Reproducibility of Standards. The long-term external reproducibility 

of NIST SRM 3169 for 100 ppb solution is ε91Zr, ε92Zr, and ε96Zr is ±0.14, ±0.14 and 

±0.31 respectively. The whole rock standards also showed terrestrial composition; 

for BCR-2, ε91Zr, ε92Zr, and ε96Zr values are -0.02 ± 0.14, -0.03 ± 0.14, and -0.02 ± 

0.48 respectively and for Allende, ε91Zr, ε92Zr, and ε96Zr values are -0.05 ± 0.19, -

0.09 ± 0.14, and 1.36 ± 0.33 respectively. Both the geo-standards agree with 

previously reported literature values (Akram et al., 2013).  

 

5.4.2 Zr Isotopic Composition of Allende and Simpson CAIs. Zr isotopic 

composition of Allende and Simpson CAIs has been reported in table 6. All Allende 

CAIs show terrestrial ε91Zr and ε92Zr values and a homogenous ε96Zr enrichment of 

~2 (table 6, figure 3). Three of the Simpson CAIs, Bart, Lisa and Marge also show 
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terrestrial ε91Zr and ε92Zr values and an enrichment in ε96Zr of  ~2. Homer however 

shows a terrestrial ε91Zr composition, but resolvable excess in ε92Zr of 0.37 ± 0.14 

and enrichment in ε96Zr of 0.99 ± 0.40. Except Homer, all other CAIs show a 

homogenous enrichment in ε96Zr with an average of 2.05 ± 0.38. 

Table 5.6  
 
Zr isotopic composition of Allende and Simpson CAIs 

 

 

 

 

 

 

 

CAIs ε91Zr 2SD ε92Zr 2SD ε96Zr 2SD # of 
Analyses 

Concentrations 

164 0.05 0.13 0.11 0.11 2.15 0.29 3 400 ppb 
165 0.04 0.22 -0.03 0.14 2.16 0.32 3 400 ppb 
166 0.23 0.14 0.02 0.14 1.93 0.31 2 100 ppb 
167 0.08 0.25 0.01 0.25 1.56 0.77 5 100 ppb 
167 0.11 0.14 0.05 0.14 2.04 0.31 5 100 ppb 
168 0.08 0.19 0.09 0.16 2.17 0.47 3 400 ppb 
170 0.09 0.25 0.00 0.27 1.94 0.47 5 100 ppb 
170 0.11 0.20 0.05 0.14 2.12 0.31 5 100 ppb 
171 0.11 0.23 -0.01 0.25 1.87 0.22 3 400 ppb 
171 0.14 0.16 0.01 0.14 2.23 0.31 7 100 ppb 
172 0.13 0.11 -0.02 0.13 1.96 0.25 3 400 ppb 
173 0.08 0.14 0.01 0.11 1.94 0.32 3 400 ppb 
174 -0.01 0.21 0.04 0.15 1.99 0.22 3 400 ppb 
175 0.18 0.14 -0.05 0.14 2.10 0.38 3 100 ppb 
Bart 0.20 0.22 0.09 0.15 2.37 0.36 5 100 ppb 
Lisa 0.12 0.15 0.08 0.14 2.28 0.38 5 100 ppb 
Marge 0.11 0.15 0.08 0.14 2.12 0.31 5 100 ppb 
Homer 0.01 0.19 0.37 0.14 0.99 0.40 5 100 ppb 
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   Figure 5.3a. Zr isotopic composition of Allende CAIs 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 5.3b. Zr isotopic composition of Simpson CAIs 
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5.4.5 92Nb-92Zr Decay System. For Allende CAIs, as elemental abundances 

were measured after U chemistry, we did not consider these for Nb-Zr systematics 

due to possible parent-daughter fractionation experienced with previous chemistry. 

Within the Simpson CAIs, Homer shows resolvable excess in ε92Zr, and therefore the 

bulk isochron defined by these four CAIs shows an initial (92Nb/93Nb)0 of (1.3 ± 0.7) 

x 10-6 with the MSWD of 0.026 and 92Zr/90Zr intercept of 0.3333776 ± 0.0000003 

(figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. 92Nb-92Zr bulk isochron defined by Simpson CAIs. 
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5.5. Discussion 

5.5.1 Origin of Zr isotopic anomalies in the Solar System. Both 96Zr 

excess and deficits have been observed in different presolar grain components. 

Mainstream SiC grains from Murchison (CM2) as well as presolar graphite grains 

show s-process excess, i.e., deficiencies in 96Zr and enrichment in all other isotopes 

(Nicolussi et al., 1997; Nicolussi et al., 1998; Davis et al., 1999). These grains 

experienced relatively low neutron density environments and therefore indicate 

formation in low mass AGB stars (Anders and Zinner, 1993). A small fraction of SiC 

(1%) as well as presolar graphite grains are characterized by enrichment in 96Zr 

(Nicolussi et al., 1998; Pellin et al., 2006). The former suggests formation in neutron 

burst of a supernova (Pellin et al., 2006), whereas the latter suggests formation in 

either high-density s-process in AGB stars or r-process nucleosynthesis in a core 

collapse supernova environment (Nicolussi et al., 1998).  

 Zirconium isotopic measurements of bulk meteorites including carbonaceous, 

ordinary, and enstatite chondrites, eucrites, mesosiderites, and lunar rocks show a 

homogenous isotopic composition that is indistinguishable from the terrestrial Zr 

isotopic composition, suggesting homogeneity in Zr isotopes on planetary scale 

(Schönbächler et al., 2003). These results suggest that there was large-scale 

transport and mixing of various presolar components on the planetary scale. In 

contrast, stepwise leaching experiments of carbonaceous chondrites, Allende (CV), 

Mucrchison (CM), and Orgueil (CI) reveal large anomalies in Zr isotopic composition 

(ε96Zr up to ~50‰), with the most distinctive 96Zr enrichment in the acetic acid 

leachate step, suggesting an unidentified low acid resistant presolar component. 

These 96Zr enrichments decrease with the increasing acid strengths, and the final 

leaching step shows a deficit in 96Zr (Schönbächler et al., 2005). These results 

suggest that even though there was homogeneity in the average Solar System 
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material, different presolar components with distinct nucleosynthetic anomalies are 

well preserved in the carbonaceous chondrites.  

The Zr isotopic composition the CAIs analyzed here has been shown in Figure 

3 and 4. The data for all CAIs are within uncertainty of the measured terrestrial 

composition for ε91Zr. However, each of the analyzed CAIs, except Homer shows 

excess in ε96Zr that is identical within the analytical errors. Our CAIs data yield an 

average value for ε96Zr of 2.05 ± 0.38 (2SD). Our data shows that the CAI-forming 

region was somewhat homogenous for its Zr isotopic composition. Comparing these 

studies with the bulk meteorites, we conclude that the CAI-forming region was 

distinctly homogenous in its Zr isotopic composition, with uniform enrichment in 96Zr, 

compared to the average Solar System material, which also shows a homogenous Zr 

isotopic composition. As CAIs are the first formed solids in the solar system (Amelin 

et al., 2002; Bouvier and Wadhwa, 2010; Connelly et al., 2012), assuming that they 

represent the isotopic composition at the time of the Solar System formation, either 

later addition of presolar carrier phases with ε96Zr deficits or some mechanism 

(discussed in section 5.2) that may have altered the Zr isotopic composition of the 

average Solar System material on the planetary scale, caused rapid homogenization 

of the material, before planetary accretion. 

5.5.2 Comparison with Nucleosynthetic Anomalies in Other Isotopic 

Systems. CAIs host a variety of nucleosynthetic anomalies, including Ti and Cr 

(Trinquier et al., 2009), Mo (Burkhardt et al., 2011), Ru (Chen et al., 2010), and W 

(Kruijer et al., 2014b). An integrated isotopic analysis of Sr, Mo, Ba, Nd, and Sm 

suggests isotopic homogeneity in the CAI forming region (Brennecka et al., 2013). 

Our analysis of Zr isotopic composition of the same set of CAIs, suggests distinct Zr 

isotopic homogeneity in the CAIs forming region recorded in all CAIs, except one 

inclusion (Homer). This homogenous distinct r-process enrichment in CAI forming 
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region could either suggest that CAIs formed in an isotopically distinct reservoir that 

was spatially different than the bulk Solar System, or there was a later injection of 

freshly synthesized material into the early Solar System after CAI formation 

(Brennecka et al., 2013). Comparing Zr isotopic composition of these samples with 

isotopic composition of Sr, Mo, Ba, Sm, Nd, Gd, and Dy, there is a distinct 

enrichment in r-process isotopes for Sr, Zr, Mo, and Ba whereas, there is a distinct 

depletion in r-process isotopes of Nd, Sm, Gd, and Dy, with a decoupling at mass 

~140 (Figure 5.6).  

 

 
Figure 5.6. Relative r- process variations seen in in different elemental systems rom 
the same set of Allende and Simpson CAIs are shown as black bars. The grey bars 
show literature data from different sample sets [Chen et al. 2010; Burkhardt et al., 
2012]. The red Zr bar is defined by the data presented here. Figure is adapted from 
[Brennecka at al., 2013]. 
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5.5.3 Implications for the degree of isotopic heterogeneity in the early 

Solar System. Lesser anomalies in Homer, could suggest three possibilities;  

1. Sample Contamination: Simpson CAIs show lesser nucleosynthetic anomalies 

in other isotopic systems such as Sr and Ba (Shollenberger et al., 2015), 

which was explained by the disturbance of these mobile elements by later 

alteration of the CAI or contamination of the CAI by the meteoritic matrix  

sample processing. However, as Zr is highly refractory element, it is present 

in the CAIs in much higher abundance than the matrix. Zr is also immobile 

element and therefore is less easily affected by secondary processes. Homer 

is the only CAI that shows excess in ε92Zr, which would be diluted if the Zr 

isotopic systematics were compromised.  Therefore it is less likely that the 

lesser enrichment in Homer is due to disturbances by secondary alteration 

processes.  

2. Initial Zr isotopic heterogeneity in the CAI-forming region: Isotopic 

heterogeneities in the CAI forming region would suggest that the molecular 

cloud was not completely homogenized. Heterogeneity in 96Zr was reported 

for the CAI-forming region (Schönbächler et al., 2003; Akram et al., 2013). 

Out of 15 CAI samples discussed here, only one shows lesser enrichment in 

ε96Zr, nevertheless excess in the r-process dominated isotope. Homer also 

shows highly fractionated REE pattern (Schollenberger et al., in prep), 

suggesting it is an unusual CAI, recording complex thermal history. Therefore 

it is possible that Homer records unusual anomalies, not representative of the 

CAI-forming region.  

3. Late formation of Homer relative to other CAIs: Given its fractionated REE 

patterns, it is likely that Homer has seen more complex thermal history and 

may have formed later than rest of the CAIs. As indicated by 26Al-26Mg short-
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lived relative radio-chronometer, most CAI precursors formed within the first 

20,000 to 30,000 years (Jacobsen et al., 2008; Larsen et al., 2011), their 

internal isochrons suggest that they did see a prolonged thermal history (Hsu 

et al., 2000; MacPherson et al., 2012). Homer could be such a CAI that may 

have formed later, recording late input of incompletely homogenized s-

process material, that was later injected in the Solar System, before 

terrestrial planet formation (Brennecka et al., 2013). This hypothesis could be 

tested by relative age dating of Homer and rest of the CAIs. 

 

5.5.4 Implications for the Initial 92Nb/93Nb ratio for the early Solar 

System. Homer has higher Nb/Zr ratio and shows excess in ε92Zr. The four Simpson 

CAIs define a slope of initial (92Nb/93Nb)0 ratio of  (1.31 ± 0.72) x 10-5. Although this 

slope is defined by the ε92Zr excess seen only in one CAI, it is consistent with the 

early Solar System initial (92Nb/93Nb)0 ratio defined by an iron meteorite Toluca, with 

initial (92Nb/93Nb)0 ratio (1.6 ± 0.3) × 10-5 (Harper Jr, 1996), an equilibrated 

ordinary chondrite and a eucrite clast (Schonbachler et al., 2002), and Internal 

isochrons of differentiated meteorites NWA 4590 (angrite), Agoult (eucrite) and 

Ibitira (ungrouped achondrite) that define a Solar System initial (92Nb/93Nb)0 of (1.7 

± 0.6) × 10-5 (Iizuka et al., 2016). However this slope does not agree with the 

higher initial (92Nb/93Nb)0 ratio of ~10-3 (Münker et al., 2000; Sanloup et al., 2000), 

defined by bulk isochrons. As discussed in precious studies, this discrepancy could be 

because of the heterogeneous distribution in the initial (92Nb/93Nb)0, or variation in Zr 

isotopic composition or analytical artifacts (Iizuka et al., 2016).  However, the initial 

(92Nb/93Nb)0 calculated by our data agrees with the internal isochrons of 

differentiated meteorites, which are also verified using a long-lived radiochronology 

technique like U-Pb dating (Schonbachler et al., 2002; Iizuka et al., 2016). Our data 
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suggest that live 92Nb was injected into either the molecular cloud or CAI forming 

region, before formation of most of the CAIs. The initial (92Nb/93Nb)0, is in agreement 

with the initial (92Nb/93Nb)0 calculated by the internal isochrons of differentiated 

meteorites, hence it was homogenously distributed into the early Solar System and 

could be used as a relative chronometer. 

 

5.6. Conclusion 

The Zr isotopic composition of 11 Allende CAIs and 4 CAIs from different 

carbonaceous chondrites is reported here. Our results suggest that the CAI-forming 

region was mostly homogenous with respect to Zr isotopes and enriched in stellar 

material derived from a neutron-rich environment. The enrichment in the r-process 

isotope 96Zr is consistent with a model of systematic r-process enrichments and 

depletions following previous work on the same sample set for the isotopic systems 

of Sr, Mo, Ba, Nd, Sm, Gd, and Dy (Brennecka et al., 2013; Brennecka et al., 

2014a). One inclusion Homer, reported here shows lesser enrichment in 96Zr, 

suggesting either some degree of isotopic heterogeneity in the CAI forming region or 

later formation of this inclusion, that may have recorded incomplete mixing of later 

injected material. Homer also shows excess in 92Zr that correlates with Nb/Zr ratios, 

recording in situ decay of short-lived 92Nb. The bulk isochron defined by the Simpson 

CAIs shows the initial (92Nb/93Nb)0 ratio of (1.31 ± 0.72) x 10-5, which is in 

agreement with the internal isochrons defined by differentiated meteorites.  
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CHAPTER 6 

Mg AND U ISOTOPIC SYSTEMATICS IN ALLENDE CAIs: IMPLICATIONS FOR 

THE ORIGIN OF URANIUM ISOTOPIC VARIATIONS IN THE EARLY SOLAR 

SYSTEM 

6.1 Introduction 

Determining absolute ages of CAIs using long-lived radiogenic chronometers 

such as Pb-Pb, and relative ages using short-lived radiogenic chronometers such as 

26Al-26Mg, is important for establishing the chronology of early Solar System events 

and timescales of formation of meteoritic parent bodies. The long-lived Pb-Pb 

chronometer has been utilized extensively for precise absolute age dating of early 

Solar System objects (e.g., (Amelin et al., 2002; Bouvier and Wadhwa, 2010; 

Connelly et al., 2012). In earlier studies, this method assumed a constant ratio of 

238U/235U (=137.88). However, recent studies have shown that the U isotopic 

composition varies in early Solar System materials, particularly in CAIs (Amelin et 

al., 2009; Brennecka et al., 2010). In Allende CAIs, the U isotopic variation was 

attributed to the decay of short-lived 247Cm to 235U (t1/2 ~15.6 Ma) based on the 

observed correlation of the 238U/235U ratios with the Th/U or Nd/U ratios (as Nd and 

Th are anticipated to have similar geochemical behavior to Cm during nebular 

fractionation processes) (Brennecka et al., 2010).  

Other possibilities, such as the presence of nucleosynthetic anomalies or 

isotopic fractionation (during evaporation/condensation or secondary alteration 

processes) in the early Solar System are also plausible explanations for the variation 

in U isotopes in CAIs (Amelin et al., 2009; Brennecka et al., 2010; Connelly et al., 

2012). However, because U has only two primordial isotopes, it is difficult to 

distinguish between these processes. To evaluate whether isotopic fractionation 

during the thermal processing of CAIs is a primary driver for U isotopic variations in 
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the CAIs, we analyzed the Mg isotopic composition of 11 CAIs from the Allende CV3 

carbonaceous chondrite that were previously measured for U isotopes (Brennecka et 

al., 2010). If isotopic fractionation due to thermal evaporation or condensation was 

the primary cause of the U isotope variation in these CAIs, then we expect a 

correlation in the 238U/235U and 25Mg/24Mg ratios, thereby providing clues to the origin 

of U isotopic variation in CAIs. 

 

 

 

 

 

 

 

Figure 6.1. Trace Element Abundances of Allende CAIs (Brennecka et al., 2010) 

 

6.2. Sample Description 

 Eleven CAIs from Allende (164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 

and 175) were analyzed for their Mg isotopic composition. CAIs 166, 167, and 175 

are fine-grained that show Group – II Rare Earth Element (REE) pattern (Brennecka 

et al., 2010) (Figure 6.1), suggesting formation from a fractionated reservoir (Fahey 

et al., 1987). CAIs 164, 165, 168, 170, 171, 172, 173, and 174 are coarse grained, 

with flat REE patterns (Group III) (Brennecka et al., 2010) (Figure 6.1). This Group – 
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III pattern is consistent with condensation from a Solar nebula of CI composition 

(Mason and Taylor, 1982). 

 

6.3 Methods 

Sample processing and isotopic analysis was performed under clean 

laboratory conditions in the Isotope Cosmochemistry and Geochronology Laboratory 

(ICGL) at Arizona State University (ASU). The Mg isotopic compositions of the 

Allende CAIs were measured using procedures adapted from (Spivak-Birndorf et al., 

2009; Bouvier et al., 2011). A ~5% aliquot of each dissolved CAI (equivalent to ~6-

16 µg Mg) was passed through a cation exchange column (packed with AG x8 200-

400 mesh resin), and Mg was eluted in 1N HNO3. This column procedure was 

repeated three times for each sample to assure complete separation of Mg from Al, 

Ca, and other interfering cations, and ensured recovery of >98% of the Mg for each 

sample. In order to test if there was any isotopic fractionation during column 

calibration, a matrix addition test was performed, where an Mg-free matrix of 

Allende was doped with DSM-3 Mg standard and was processed through the 

columns. The purified Mg was then analyzed for its isotopic composition. Allende 

whole rock (WR) and the terrestrial basalt standard BCR-2 were also processed 

through the same column chemistry procedure and analyzed along with the CAIs to 

verify the accuracy and precision of our analytical protocols. Prior to Mg isotopic 

analysis of the purified samples, a small portion of the samples (~1%) were 

analyzed for interfering cations, such as Ca, Ti, Al, and Fe, using Thermo X7 Series 

quadrupole ICP MS in the Keck Foundation Laboratory for Environmental 

biochemistry at ASU. This test was performed to make sure that the abundance of 

these elements was much below the level that could affect the Mg isotopic 

composition as shown by the doping tests. 
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Magnesium isotopic analyses were determined on the Thermo-Finnigan 

Neptune Multicollector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) 

in ICGL at ASU. The purified Mg samples, diluted to 250 ppb Mg in 3% HNO3 were 

introduced into the mass spectrometer with a flow rate of 100 µl/min using an ESI 

APEX® dissolvating nebulizer system. The sensitivity achieved at 24Mg was ~22-25V. 

The mass spectrometer was operated in medium resolution mode (m/Δm = 5000), in 

order to separate molecular interferences of 12C+, 12C14N+ and 24MgH+. The 

instrumental mass bias was corrected using the sample-standard bracketing method, 

where DSM-3 was used as a bracketing standard. The concentrations of the samples 

and standards were matched to ~10%. Each measurement cycle consisted of 20 

integrations of 8 s each. Each measurement was repeated 3 times. The errors 

reported here are 2 s.d of the three repeat measurements of every sample. The 

isotopic ratios are expressed in per mil units (‰). The radiogenic 26Mg* excess was 

calculated by internally normalizing 26Mg/24Mg to 25Mg/24Mg = 0.12663 (Catanzaro et 

al., 1966) using the exponential law (β = 0.5128) (Davis et al., 2015). 

Presence of interfering elements can generate matrix effects and significantly 

affect the accuracy and precision of Mg isotopic measurements. Results of the 

elemental doping tests suggest that element/Mg > 0.1 affects δ25Mg. Therefore 

presence of interfering elements below 25 ppb (in 250 ppb Mg solution), does not 

affect the isotopic ratios. Therefore, Mg samples analyzed here for Mg isotopic 

composition have typical matrix element/Mg < 0.005, which is well below the 

proportions that can affect the isotopic measurements. 
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Figure 6.2. External reproducibility of DSM-3 Mg isotopic standard 

 

The long-term reproducibility on DSM-3 internal standard is ±0.11‰ (Figure 

6.2). The terrestrial whole rock standard BCR-2 that was processed through the 

columns along with the CAIs shows δ25Mg = -0.15 ± 0.11 ‰ and the whole rock 

Allende shows δ25Mg = -0.05 ± 0.06 ‰. Both these values agree with previous 

studies (Baker et al., 2005; Bizzarro et al., 2005). 

 

6.4 Results 

The 25Mg/24Mg ratios (expressed relative to the DSM3 standard in parts per 

mil, or δ25Mg) of the 11 Allende CAIs, Allende WR, and BCR-2 are reported in Table 

6.1. Also presented in Table 1 are the U isotope compositions of each of these 

samples from (Brennecka et al., 2010)  (but corrected for the updated U isotope 

composition of the SRM950a standard (Richter et al., 2007)). The δ 25Mg values for 
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the Allende CAIs range from +4.80 to -1.28 ‰. Figure 6.3 shows the U isotope 

compositions of these CAIs versus their δ25Mg values.  

Table 6.1  
 
Mg isotopic compositions of the 11 Allende CAIs. U isotope composition are from 
(Stirling et al., 2007; Brennecka et al., 2010), and are corrected for the updated 
SRM950a standard value (238U/235U = 137.837(Richter et al., 2010)). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample δ25Mg 2SD δ238U 2SD 

Allende  -0.15 0.09  -0.45 0.11 

BRC-2 -0.05 0.07 -0.27 0.19 

CAI 164  3.32 0.09 -0.30 0.12 

CAI 165  4.13 0.06 -0.33 0.11 

CAI 166 -0.50 0.05 -3.42 0.28 

CAI 167 -0.99 0.05 -1.76 0.30 

CAI 168  4.80 0.06  0.04 0.11 

CAI 170  3.54 0.06 -0.51 0.28 

CAI 171  3.04 0.04 -0.56 0.22 

CAI 172  4.02 0.06 -0.31 0.28 

CAI 173 -0.54 0.05 -0.61 0.28 

CAI 174  4.35 0.07 -0.23 0.11 

CAI 175 -1.28 0.09 -1.45 0.22 
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Figure 6.3. δ25Mg and δ238U of the 11 CAIs from Allende. The orange symbols 
represent fine-grained CAIs whereas the blue symbols represent coarse-grained 
CAIs. Group II CAIs have been identified in a box. The U isotopic composition is from 
(Brennecka et al., 2010). The orange rectangles show bulk Solar isotopic 
composition. The orange line passing through the bulk Solar composition defines 
behavior of these isotopic systems during Rayleigh fractionation. The purple line is a 
regression line defined by the coarse grained CAIs. 
 

6.5. Discussion 

It has recently been suggested that isotopic fractionation during CAI-forming 

processes may have contributed to some, if not all, of the U isotope variation in CAIs 

(Brennecka et al., 2010). As can be seen in Figure 6.3, coarse-grained Allende CAIs, 

which have undergone melting and thermal processing, show a weak correlation 

(correlation coefficient R2 = 0.73) between δ238U and δ25Mg. This correlation 

suggests that isotopic fractionation during thermal processing contributed to the U 

isotope variation in this subset of samples. It is interesting to note that the 
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regression line passing through these coarse-grained inclusions (Figure 6.3) also 

passes through two fine grained inclusions, indicating that the precursors of the 

coarse grained inclusions may have had different starting Mg isotopic composition 

than the Bulk Solar System. 

On the other hand, fine-grained Allende CAIs (166, 167, 173, and 175), which 

did not undergo melting, are characterized by relatively light Mg isotopes (i.e., δ25Mg 

values between -0.5 and -1.5‰). These CAIs show a much larger range of U 

isotopic compositions than the coarse-grained CAIs, which do not correlate with 

δ25Mg. Therefore the U isotope variation in these samples may be dominated either 

by 247Cm decay or by the presence of nucleosynthetic anomalies. Previous work on 

the same sample set for the isotopic systems of Sr, Mo, Ba, Nd, Sm, Gd, and Dy, are 

consistent with a CAI source reservoir that was homogenous (at the level of precision 

of these analyses), yet distinct from the terrestrial composition (Brennecka et al., 

2013), thus suggesting that large isotopic variation among “normal” (i.e., non-FUN) 

CAIs due to nucleosynthetic anomalies in U may be unlikely.  

It is notable that three of the fine-grained Allende CAIs (166, 167 and 175) 

are also classified as group II inclusions (highlighted by a brown box in Figure 6.3). 

The previously reported correlation of U isotopes with Th/U and Nd/U in Allende CAIs 

(Brennecka et al., 2010) is dominated by the compositions of these group II 

inclusions and is additionally suggestive of 247Cm decay as being the dominant cause 

of the U isotope variation in these fine-grained CAIs. Another possible process that 

could cause relatively large variations (>1‰) in the U isotope composition without 

systematically affecting the Mg isotope composition may be secondary alteration 

under different redox environments. Uranium is a redox-sensitive element, which 

shows significant isotopic fractionation effects under variable redox conditions in 

terrestrial systems e.g., (Stirling et al., 2007; Weyer et al., 2008). In contrast, Mg is 
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not redox sensitive, and different redox conditions would not affect its isotopic 

composition. Further detailed investigations of redox indicators in fine-grained 

inclusions along with their U isotope compositions will be required to rigorously 

evaluate this possibility. 

 

6.5 Conclusions 

 The mass dependent Mg isotopic composition of 11 CAIs from Allende CV3 

carbonaceous chondrite was determined. These CAIs show evidence for mass 

dependent fractionation in Mg isotopes, possibly caused by thermal processes such 

as evaporation and condensation in the solar nebula. However, mass dependent Mg 

isotopic variation does not correlate with the U isotopic variation observed in the 

same set of CAIs, implying that the mass dependent fractionation due to thermal 

processes was not the major cause of U isotopic variation in Allende CAIs. Therefore, 

to explain U isotopic variation in Allende CAIs, other mechanisms such as in situ 

decay of live 247Cm, nucleosynthetic anomalies in U isotopes and redox controlled 

isotopic fractionation should be considered.
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