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ABSTRACT 

Proteins are essential for most biological processes that constitute life. The 

function of a protein is encoded within its 3D folded structure, which is determined by its 

sequence of amino acids. A variation of a single nucleotide in the DNA during 

transcription (nSNV) can alter the amino acid sequence (i.e., a mutation in the protein 

sequence), which can adversely impact protein function and sometimes cause disease. 

These mutations are the most prevalent form of variations in humans, and each individual 

genome harbors tens of thousands of nSNVs that can be benign (neutral) or lead to 

disease. The primary way to assess the impact of nSNVs on function is through 

evolutionary approaches based on positional amino acid conservation. These approaches 

are largely inadequate in the regime where positions evolve at a fast rate. We developed a 

method called dynamic flexibility index (DFI) that measures site-specific conformational 

dynamics of a protein, which is paramount in exploring mechanisms of the impact of 

nSNVs on function. In this thesis, we demonstrate that DFI can distinguish the disease-

associated and neutral nSNVs, particularly for fast evolving positions where evolutionary 

approaches lack predictive power. We also describe an additional dynamics-based metric, 

dynamic coupling index (DCI), which measures the dynamic allosteric residue coupling 

of distal sites on the protein with the functionally critical (i.e., active) sites. Through DCI, 

we analyzed 200 disease mutations of a specific enzyme called GCase, and a proteome-

wide analysis of 75 human enzymes containing 323 neutral and 362 disease mutations. In 

both cases we observed that sites with high dynamic allosteric residue coupling with the 

functional sites (i.e., DARC spots) have an increased susceptibility to harboring disease 

nSNVs. Overall, our comprehensive proteome-wide analysis suggests that incorporating 
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these novel position-specific conformational dynamics based metrics into genomics can 

complement current approaches to increase the accuracy of diagnosing disease nSNVs. 

Furthermore, they provide mechanistic insights about disease development. Lastly, we 

introduce a new, purely sequence-based model that can estimate the dynamics profile of a 

protein by only utilizing coevolution information, eliminating the requirement of the 3D 

structure for determining dynamics.  
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CHAPTER 1 

1 INTRODUCTION 

 

“... If we were to name the most powerful assumption of all, which leads 
one on and on in an attempt to understand life, it is that all things are made 
of atoms, and that everything that living things do can be understood in 
terms of the jiggling and wiggling of atoms.”        
–Richard Feynman, The Feynman Lectures on Physics 

 

 

 

Some parts of this chapter are excerpted from:  

Kumar, A., Butler, B., Kumar, S., and Ozkan, S.B. “Integration of structural dynamics 

and molecular evolution via protein interaction networks: a new era in genomic 

medicine,” Current Opinion in Structural Biology 35, 135-142 (2015). 

 

 The genome contains the blueprints for the synthesis of proteins, which carry out 

crucial biological functions. Protein synthesis occurs in the exome (coding region of the 

genome), in which transcribed DNA (mRNA) is translated on the ribosome to produce a 

chain of amino acids (polypeptide), which then folds into a unique 3D protein structure. 

This tertiary structure is defined by the specific sequence of amino acids. Thus, every 

amino acid sequence encodes a specific 3D protein structure with a particular function. 

This sequence-structure-function relationship has long been at the epicenter of biological 

research. Advanced high-throughput sequencing of individual genomes has led to the 

burgeoning discovery of new sequences, with millions of unique sequences in public 

databases. Moreover, for the past two decades, scientists have been profiling genomic 
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variations in healthy and diseased individuals. These variations are responsible for the 

uniqueness between individual genomes (i.e. variations give rise to differences in the  

 population) according to the Neutral Theory of Molecular Evolution (NTME) (Nei et al., 

2010). Genome-wide association studies, whole-genome sequencing, and exome 

sequencing have shown that each personal genome contains millions of genetic variants, 

thousands of which are related to the development of Mendelian (monogenic) disease or 

complex (polygenic) disease (Hamosh et al., 2005; Green and Guyer, 2011; Stenson et 

al., 2014; Sidore et al., 2015). Thus, interpreting these variants and assessing their 

potential harm is at the forefront of personalized medicine. 

 The different types of genetic variants will be discussed, as depicted in Figure 1.1. 

A single nucleotide variant (SNV) arises when a single nucleotide base in the three-base-

 

Figure 1.1: Types of single nucleotide variants in the genome. Each personal 
genome contains around 3 million single nucleotide variants (SNVs), most of 
which occur in the non-coding region. Comparatively few SNVs are found in the 
coding region due to strong purifying selection effects. Within the coding region, 
SNVs can be synonymous (silent) mutations or non-synonymous (nSNVs) which 
can affect protein function. Most coding SNVs are non-synonymous. In addition, 
non-synonymous SNVs can either be nonsense mutations (i.e. they result in a stop 
codon that halts the synthesis of the protein which can lead to disease) or missense 
mutations, which can lead to the development of various Mendelian or complex 
diseases.  
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pair codon is mutated (e.g. GAG to GTG), which can occur in the coding or non-coding 

region of the genome. In the coding region, the mutated codon can encode a different 

amino acid or the same amino acid. A coding SNV that leads to an amino acid 

substitution is termed a non-synonymous SNV (nSNV), because it results in a different 

polypeptide sequence in its corresponding protein (see Figure 1.2). Conversely, a 

synonymous SNV (silent mutation) does not affect the encoded amino acid due to 

degeneracy in the genetic code (i.e. different codons can code for the same amino acid). 

Generally, most synonymous variants do not lead to harmful phenotypes, and therefore 

are usually considered inconsequential. However, synonymous variants should not be 

overlooked, as they can sometimes impact phenotype by disrupting transcription, 

translation, splicing, or mRNA stability (Chamary et al., 2006; Goymer, 2007; Kimchi-

sarfaty et al., 2007). Moreover, insertions and deletions can also have harmful functional 

effects and play a role in genetic variation (Mullaney et al., 2010). Most emphasis is 

currently on non-synonymous SNVs, which can occur in two different forms. A nonsense 

nSNV leads to a premature stop-codon that obstructs the synthesis of the protein, which 

produces a non-functional protein. Although uncommon, nonsense nSNVs have been 

implicated in several genetic disorders such as the blood disorder Thalassemia (Chang 

and Kan, 1979) and several types of muscular dystrophy (Flanigan et al., 2011). The most 

common non-synonymous variant, a missense nSNV (depicted in Figure 1.2), yields an 

amino acid substitution that results in an altered polypeptide chain. This amino acid 

change can disrupt post-translational modification, protein folding, stability, binding 

affinity, and other functional properties (Katsonis et al., 2014). Thus, missense nSNVs 
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can manifest as disease in humans by producing dysfunctional proteins that lead to 

various ailments. For instance, the genetic disorder Sickle Cell Hemoglobin is attributed  

to a missense variant in the gene that codes for Hemoglobin, the protein responsible for 

carrying oxygen in red blood cells. Figure 1.2A depicts the occurrence of this missense 

variant at the genomic level. A single nucleotide on the DNA template strand is mutated 

from A to T in the codon GAG, yielding a different codon GTG. The codon GTG is 

transcribed on the mRNA strand as GUG. Finally, the codon GUG translates to Valine 

 

Figure 1.2: A missense mutation of the hemoglobin protein that leads to sickle cell 
disease. On the top, the wild type nucleotide base pairs on the original DNA 
template strand (CTC) are transcribed to mRNA, in which the codon GAG (not 
shown here) encodes the amino acid Glutamic Acid (Glu) in the protein sequence. 
At the protein level, this results in normal functional hemoglobin that forms into 
quaternary structures. On the bottom, the mutated DNA contains a missense 
mutation, where a single nucleotide is mutated from T to A in the template 
sequence and A to G in the transcribed mRNA sequence (not shown here). This 
yields a different codon GUG in the transcribed DNA, which encodes a different 
amino acid Valine (Val). This is known as an amino acid substitution caused by a 
non-synonymous single nucleotide variant or nSNV (also referred to as missense 
mutation). The amino acid substitution leads to a new sequence, which expresses as 
a dysfunctional protein that forms clumps and cannot function. [Source: National 
Library of Medicine, National Institutes of Health (left panel) and Understanding 
Evolution. 2016. University of California Museum of Paleontology 
(www.evolution.berkeley.edu) (right panel)]. 
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(Val), which is a different amino acid than without the mutation (wild type). In the wild 

type, the original codon GAG is translated as Glutamic Acid (Glu), which results in the 

normal Hemoglobin protein. This particular amino acid substitution gives rise to the 

disease Sickle Cell Anemia by altering the shape of Hemoglobin, allowing it to form 

aggregates that inhibit its normal function (Figure 1.2B). Indeed, non-synonymous SNVs 

are responsible for at least half of all known Mendelian diseases (Hamosh et al., 2005; 

Stenson et al., 2014). Thus, the challenge is discriminating between nSNVs that will 

severely impact function (deleterious) and those that are benign (neutral). It is now 

established that each personal genome contains tens of thousands of nSNVs, most of 

which are rare (Dudley et al., 2012; Sidore et al., 2015). Deleterious variants are rapidly 

purged from the population through purifying selection before they have the opportunity 

to become fixed (Dudley et al., 2012; Tennessen et al., 2012). That is, variants that cause 

detrimental effects are swiftly eliminated by natural selection in order to preserve the 

population. The frequency of a variant in a population is given by the minor allele 

frequency (MAF), where rare variants have MAF <0.5% and common variants MAF 

>5%. Sorting based on MAF provides a first approximation in isolating potentially 

harmful variants, which typically have MAF <1% (M. X. Li et al., 2012). Analysis of 

genomic data has revealed that nSNVs are highly abundant in the non-coding region and 

less abundant in the coding region (Dudley et al., 2012). Essentially, nSNVs in the highly 

functional coding region are under intense selection pressure, since they are likely to 

impact protein function. For this reason, the coding region is disproportionately skewed 

toward containing rare (MAF <1%) deleterious nSNVs (Marth et al., 2011; Dudley et al., 

2012). The common variants (MAF >5%) in the coding region are usually found to be 
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synonymous SNVs (Dudley et al., 2012). Therefore, predictive studies focus their efforts 

on rare nSNVs, since they represent the strongest candidates for disease development. 

 With the sequencing of each new personal exome, the constellation of known 

nSNVs is expanding at a remarkable rate. But the translation of a personal exome 

variation profile into biomedically relevant information remains a challenge, especially 

since the majority of novel nSNVs are rare and hard to detect (Tennessen et al., 2012; 

Dudley et al., 2012). Multiple databases have been cataloguing human genetic variation 

in a systematic way that can be utilized in functional studies. For instance, The Human 

Gene Mutation Database (HGMD) is a collection of nSNVs that are associated with 

human inherited disease (Stenson et al., 2014). The Online Mendelian Inheritance In 

Man (OMIM) database contains nSNVs related to all known Mendelian disorders 

(Hamosh et al., 2005). The dbSNP database (Sherry et al., 2001) contains population 

nSNVs, including variation data collected from the 1000 Genomes Project (Abecasis et 

al., 2012). The Genome-Wide Associate Studies (GWAS) project has characterized 

thousands of nSNVs that are associated with human disease (M. J. Li et al., 2012). 

Finally, The Cancer Genome Atlas (Chang et al., 2013) and the Catalogue of Somatic 

Mutations In Cancer (COSMIC) (Forbes et al., 2011) are specific to variants associated 

with cancer. Experimental studies that elucidate the functional effects of nSNVs are 

sparse, mainly due to prohibitive cost limitations and time inefficiency. Based upon the 

current wealth of genomic variation data, efficient and reliable in silico tools are needed 

to interpret the effects of nSNVs, which can be integrated into personalized medicine to 

diagnose disease susceptibility. To this aim, computational approaches that leverage 
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genomic variation databases are emerging as the primary way to assess the functional 

impacts of nSNVs. 

 Many computational methods that estimate the effect of nSNVs exploit 

evolutionary information, particularly by using probabilistic scoring functions that 

leverage positional amino acid conservation and/or phylogenetics based on known 

sequences (S. Kumar et al., 2009; Liu et al., 2015). A position that is highly conserved in 

a multiple sequence alignment (MSA) of related homologs is assumed to be essential for 

function, and thus the occurrence of an nSNV at that position is likely to have a severe 

effect. Indeed, it has been evinced that deleterious nSNVs are overabundant at highly 

conserved positions and underabundant at variable positions (Miller and Kumar, 2001; 

Vitkup et al., 2003; Kumar et al., 2011). Some computational methods to predict 

deleterious variants based on evolutionary conservation include SIFT (Ng and Henikoff, 

2003), Gumby (Prabhakar et al., 2006), and GERP++ (Davydov et al., 2010). In addition 

to conservation, sequence-based features such as amino acid physicochemical properties 

(i.e., composition, polarity, and size) is used to quantify the severity of a given amino 

acid change (Grantham, 1974). Amino acid substitutions that are associated with disease 

typically exhibit large physicochemical changes between the wild type and mutant amino 

acid (i.e., radical substitutions), whereas neutral substitutions are less radical (Miller and 

Kumar, 2001; Vitkup et al., 2003). Several approaches use a combination of sequence 

conservation and amino acid physicochemical properties such as MAPP (Stone and 

Sidow, 2005) and Align-GVGD (Tavtigian, 2005). These sequence-based features can 

also be coupled with machine learning algorithms based on training sets to make 

enhanced predictions as in PhD-SNP (Capriotti et al., 2006), Parepro (Tian et al., 2007), 
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and MutationTaster (Schwarz et al., 2010). Although evolutionary conservation has 

proven to be a very effective tool in nSNV diagnosis, it has posed limitations for 

evolutionary methods that are dependent on it. Conservation scores lead to distinguished 

prediction accuracies for damaging nSNVs at highly conserved positions, but the 

accuracies decrease dramatically for damaging nSNVs at variable positions (S. Kumar et 

al., 2009; Kumar et al., 2011). In addition, conservation also struggles to correctly 

identify benign nSNVs at highly conserved positions, since they are presumed to be 

damaging. Moreover, the accuracy of evolutionary conservation also hinges on the ability 

to obtain accurate conservation scores from the multiple sequence alignment, which must 

contain a sufficient number of sequence homologs that are evolutionarily related. Thus, if 

the quality of the sequence alignment is not optimal, the conservation scores may not 

accurately portray the most functionally related positions.  

Beyond the sequence-based methods, there have been many efforts to utilize 

structural properties in the diagnosis of nSNVs. The proliferation of available 

experimental structures in the Protein Data Bank (PDB) (Berman et al., 2000) has 

allowed for the use of structural information to study human disease, especially with 

databases that enable mapping of missense mutations to three-dimensional (3D) 

structures (Luu et al., 2012). As a result, a number of approaches leverage structural 

information to assess the functional effects of missense mutations such as stability, 

binding energy, and solvent accessibility. Stability has been widely used to study the 

effects of mutations. A protein must fold into a stable conformer and adopt a specific 3D 

structure in order to function. Mutations can destabilize a protein by disrupting essential 

interactions such as electrostatic interactions, hydrogen bond networks, binding affinities, 
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and hydrophobic interactions (Steward et al., 2003; Stefl et al., 2013), which can impact 

function in many ways, including obstructing protein folding, promoting aggregation, and 

inhibiting the required formation of protein-protein complexes. Many diseases, including 

Parkinson’s disease, Alzheimer’s disease, and cancer are associated with destabilizing 

missense mutations that inhibit normal protein functions (Stefl et al., 2013; Stehr et al., 

2011; Shi and Moult, 2011; Lori et al., 2013; Grant et al., 2007; Moore et al., 2003). 

Indeed, the majority of mutations involved in Mendelian diseases are destabilizing (Yue 

et al., 2005, 2006; Wang and Moult, 2001), therefore stability is widely used in 

phenotypic prediction studies. The change in stability due to a mutation is quantified as 

the change in folding free energy ∆∆� upon mutation (i.e., ∆∆� = ∆��	 − ∆��	). This 

can be estimated using molecular dynamics (MD) simulations with a potential energy 

function, although it is computationally expensive and only suitable for small-scale 

studies (Worth et al., 2011). Other in silico tools estimate ∆∆� using statistical/empirical 

potential energy functions based on known structures (Topham et al., 1997; Parthiban et 

al., 2006; Worth et al., 2011; Guerois et al., 2002) or machine learning algorithms based 

on structure and/or sequence (Cheng et al., 2006; Capriotti, Fariselli, and Casadio, 2005; 

Capriotti et al., 2004; Capriotti, Fariselli, Calabrese, et al., 2005), or a combination of 

both (Pires et al., 2014; Dehouck et al., 2011; Masso and Vaisman, 2010). These 

integrated computational approaches are faster and more efficient in stability estimations 

than MD, making them more attractive for large-scale applications in nSNV prediction 

studies. However, recent surveys have revealed that their capacity in diagnosing nSNVs 

are quite limited, with modest accuracies around 60% (Potapov et al., 2009; Khan and 

Vihinen, 2010). Another structural attribute, solvent accessibility, is a scoring metric of 
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sites according to their location on the 3D structure (e.g. buried or exposed) and is used to 

study the functional effect of nSNVs (Dobson et al., 2006; Wei et al., 2012; David et al., 

2012). A review of different structural attributes used in nSNV studies found that the 

feature based on nearest neighbors (13Å structural neighbor profile) was more successful 

at predicting disease association than solvent accessibility, and it was nearly as successful 

as sequence conservation, which emphasizes the importance of microenvironments 

around nSNVs in determining their functional effects (Ye et al., 2007). Some methods 

use machine learning methods to integrate both evolutionary and structural features into 

their approaches such as PolyPhen-2 (Adzhubei et al., 2010), SVM-3D (Capriotti and 

Altman, 2011), SNAP (Bromberg and Rost, 2007), SNPs3D (Yue et al., 2006), and 

nsSNPAnalyzer (Bao et al., 2005). Finally, there are also consensus methods such as 

PredictSNP (Bendl et al., 2014) that classify nSNVs based on the combined results of 

many different prediction methods. The advent of using these structural features 

combined with already successful evolutionary features was optimistically thought to 

lead to advancements in disease prediction accuracies. However, the incorporation of 

structural information has only resulted in a marginal ~4% increase in disease prediction 

accuracies compared to evolutionary methods. This lackluster improvement is primarily 

because of two reasons. First, commonly used structural features (i.e., solvent 

accessibility, structural neighbor profiles, b-factors, and secondary structure) are based on 

a static protein structure and does not account for the intrinsic dynamic motions of a 

protein, which are critical for assessing functional importance. Thus, the inclusion of 

proteins dynamics is paramount in prediction analysis to further improve the accuracies 

of evolutionary methods. Second, proteins do not function in isolation; rather, they 
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interact with each other in order to function, thus, protein-protein interactions should also 

be considered. Although the importance of conformational dynamics is recognized, it has 

not been introduced to genomic analysis due to the lack of position-specific based metrics 

that probe dynamics. Here, we develop a dynamics-based technique to fill this gap.  

In Chapter 2, the methodological details implemented in the work presented thesis 

will be outlined. An in-depth review of the theoretical approaches to investigate 

conformational dynamics of proteins will be presented. Full atomic models such as 

molecular dynamics (MD) and normal mode analysis (NMA) that are based on complex 

empirical potential energy functions will be discussed as well as their limitations and lack 

of applicability to large-scale proteomic studies. Then coarse-grained approaches based 

on elastic network models (ENM) will be discussed, specifically the Gaussian network 

model (GNM), anisotropic network model (ANM), and perturbation response scanning 

(PRS). Their broad range of applicability will be highlighted to motivate their use in the 

proteome-wide studies presented in this thesis, as well as some of their inherent 

limitations. 

Currently, most machine learning methods that utilize structural features are 

based on static 3D structures, which neglect protein conformational dynamics. However, 

protein structure-encoded dynamics, which span a broad timescale of motion from atomic 

fluctuations and side chain rotations to collective domain movements, underlie a protein’s 

biological function. Protein evolution studies of several different protein families have 

shown that changes in conformational dynamics through allosteric regulation lead to new 

functions (e.g., green fluorescent protein (GFP), beta-lactamase inhibitors, and nuclear 

receptors (Glembo et al., 2012; Zou et al., 2015; Kim et al., 2015)). Moreover 
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evolutionary rates are strongly correlated with the flexibility of individual positions 

obtained from conformational dynamics (Nevin Gerek et al., 2013; Liu and Bahar, 2012; 

Liberles et al., 2012). Protein dynamics studies assert that protein function can be 

explained by analyzing the individual contribution of residues to the conformational 

dynamics and stability of a protein (Nevin Gerek et al., 2013; Liu and Bahar, 2012; 

Butler et al., 2015). Therefore, conformational dynamics-based metrics can also be 

utilized in predicting the impact of nSNVs on protein function. Gerek et al. used an 

amino acid site-specific dynamic flexibility index (DFI) metric to evaluate the effect of 

flexibility of individual sites on biological fitness and function. DFI is a position–specific 

metric that quantifies the resilience of each residue to a perturbation occurring at another 

part of the chain (i.e., all other residues in the network), thus identifying the flexible and 

rigid parts of a protein (Nevin Gerek et al., 2013). Analysis of disease-associated and 

neutral nSNVs for more than 100 human proteins revealed that disease-associated nSNVs 

occur predominately at low DFI sites (i.e., rigid hinge sites), signifying the importance of 

hinge sites that control functionally crucial motions. In contrast, neutral variants are more 

abundant at positions with high DFI, suggesting that flexible sites are more robust to 

mutations (Nevin Gerek et al., 2013). Furthermore, DFI profiles of over a thousand sites 

harboring mutations revealed that sites at protein interfaces have lower average DFI than 

those at non-interfaces, suggesting that protein–protein interfaces have less dynamic 

flexibility (Butler et al., 2015). These results suggest that hinge positions at interfaces are 

crucial for binding, thus mutations at these hinge sites will likely be damaging. 

 Another way to assess the phenotypic effects of nSNVs is by considering the 

interactions among protein-protein complexes. A structural mapping of observed nSNVs 
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on human protein–protein interaction (PPI) networks revealed that damaging nSNVs are 

largely found at protein–protein interfaces (Wang et al., 2012). For this reason, some 

methods have focused on modeling interfaces and predicting changes in binding affinities 

to distinguish damaging from benign nSNVs. The proliferation of available experimental 

structures in the Protein Data Bank (Berman et al., 2000) and current advancements in 

homology modeling have facilitated the development of human structural interaction 

network (HSIN) databases of protein–protein and domain–domain interactions (Mosca et 

al., 2012), and mapping nSNVs to three-dimensional (3D) structures (Luu et al., 2012). 

The structural mapping of nSNVs has revealed that nSNVs at interfaces may disrupt or 

enhance protein–protein interactions, thus they are commonly implicated in pathogenesis 

(Schuster-Böckler and Bateman, 2008; David et al., 2012). Similar to core residues, 

interface residues are generally more hydrophobic, thus mutations involving polar or 

charged residues may destabilize important interface interactions necessary for binding 

(Yates and Sternberg, 2013). The loss of obligate electrostatic interactions due to 

interface mutations may lead to complete loss of function of the complex. On the other 

hand, mutations that enhance binding interactions may cause aggregation or aberrant 

recognition, as observed in cancers (Yates and Sternberg, 2013). Because interface 

mutations can drastically affect binding interactions, efforts to predict the effects of 

mutations by measuring the difference between the free energy change upon binding of 

the wild type and the mutant (∆∆�) have shown success. Free energy differences upon 

binding calculated via thermodynamic integration and free energy perturbation 

approaches using molecular dynamics (MD) are computationally expensive, particularly 

for large–scale protein complexes. Therefore, in silico tools have been developed as a fast 
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alternative to estimate ∆∆� upon binding using statistical energy functions based on 

known protein structures (Dehouck et al., 2013; Li et al., 2014), empirical force fields 

(Schymkowitz et al., 2005; Guerois et al., 2002), and/or machine learning techniques 

using training sets (Berliner et al., 2014; Zhao et al., 2014). However, the accuracy of 

these calculations are not robust because local structural changes upon mutations are 

generally neglected (Potapov et al., 2009; Khan and Vihinen, 2010). In particular, the 

change in physicochemical properties upon mutation, such as large changes in polarity 

and hydrophobicity, do not significantly alter the binding energy, making it challenging 

to assess nsSNVs (Teng et al., 2009). Evaluating the importance of individual interface 

residues to binding can be used to predict the effect of nsSNVs, as only a small fraction 

of interface residues contribute significantly to binding. Experimental methods to identify 

critical binding sites involve mutating each site to alanine and measuring the 

corresponding change in binding affinity. The sites that contribute the most to binding 

energy are known as hotspots (Bogan and Thorn, 1998). These hotspots are often located 

at highly conserved positions with large changes in accessible surface area (ASA) upon 

binding (Keskin et al., 2008; Tuncbag et al., 2010). Thus, methods to predict hotspot 

residues at binding interfaces are largely based on ASA as in the webserver HotPoint 

(Tuncbag et al., 2010). If an nSNV occurs at a hotspot site, it will likely be damaging 

since it will drastically affect crucial binding interactions. Incorporating hotspots into 

machine learning methods has been successful in predicting disease nSNVs at protein-

protein interfaces (Schuster-Böckler and Bateman, 2008). It remains a challenge to 

predict the effect of interface nSNVs occurring at non-hotspots. 
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 Chapter 3 will provide insight into how conformational dynamics can elucidate 

the mechanism of disease association of nSNVs in protein-protein complexes. We will 

introduce the dynamic flexibility index (DFI) as a tool to estimate site-specific 

conformational dynamics, which is based on the coarse-grained ENM and PRS method 

(discussed in Chapter 2). The majority of proteins must form complexes in order to 

function, thus interfaces residues are critical to the overall stability and function of 

interacting proteins. It was found using DFI that interface sites have lower flexibility 

compared to other parts of the protein, and that nSNVs at these sites are highly 

susceptible to disease. Using DFI, the phenotype of nSNVs at interfaces could be 

discriminated, whereas the static-based metric accessible surface area (ASA) commonly 

employed in evolutionary methods was not indicative of phenotype. Evolutionary 

methods alone are highly suitable for nSNV diagnosis for highly conserved residues, but 

their accuracy is remarkably low for less conserved residues. This weakness indicates a 

necessity for improvement for the purposes of overall more accurate predictions. We will 

show that DFI has the capacity to predict nSNV phenotypes in the less conserved regime, 

where evolutionary methods are inadequate, making it a useful tool that can complement 

existing evolutionary methods and increase overall prediction accuracies. 

 Allostery is the mechanism for regulation of cellular functions through the 

alteration of protein dynamics and structure based on an action at a distant site. Allostery 

is an inherent property in maintaining the function and stability of biomacromolecules, 

thus it is recognized as a crucial factor in disease development and is used to design 

allosteric drugs (Wagner et al., 2016; Nussinov, 2016). Pathogenicity can result from the 

disruption of allosteric regulation in a number of ways. For instance, nSNVs can impair 
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allosteric post-translational modification as observed in driver mutations in cancer 

(Nussinov and Tsai, 2015; Nussinov et al., 2013). Deleterious nSNVs can also change the 

ON/OFF populations in cell signaling by altering the stability of certain conformations 

and/or dynamics. Mutations may lead to disease by shifting allosteric pathways, as 

observed in the nSNV that gives rise to Hyperekplexia (Shan et al., 2012). 

Conformational dynamics is directly connected to allostery in proteins, which was 

evinced by MD simulations and NMR spectroscopy (Guo and Zhou, 2016; Boulton and 

Melacini, 2016; Lisi and Loria, 2016). An MD analysis conducted for disease mutations 

of human ferritin (Kumar, Glembo, et al., 2015) showed that mutations distally located to 

functionally critical sites can allosterically impair hinges of the protein (i.e., rigid parts), 

softening the functionally critical regions, which leads to the loss of allosterically-

regulated conformational dynamics. Allostery also provides a mechanism for the severe 

impact of nSNVs that are located distally to hotspot residues but are dynamically linked 

to hotspots (Tennessen et al., 2012). Hotspots evaluated by the HotPoint server (Tuncbag 

et al., 2010) of the protein complexes in the dataset studied in Butler et al. (Butler et al., 

2015) indicated that most mutations occurring at hotspots are deleterious. However, 

among the hundred deleterious nSNVs at interfaces, only ~50% were located at hotspots. 

This raised the question as to how nSNVs at non-hotspot sites were so significant in 

disease development. This was studied using a new dynamic-based metric called the 

dynamic coupling index (DCI) (Kumar, Glembo, et al., 2015). DCI quantifies the 

resilience of each residue upon the perturbation of only the functionally crucial sites (e.g., 

hotspots, catalytic sites, ligand binding sites). Thus, DCI enables the identification of 

dynamically linked sites that are important for allosteric regulation in the protein. 
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Intriguingly, ~80% of deleterious mutations at non-hotspots exhibited high DCI (i.e., 

strongly dynamically linked to hotspots), indicating that allosteric impairment of the 

hotspot residues resulted in a loss of function.  

 In chapter 4, we will focus on the allosteric impact of nSNVs in enzymatic 

proteins that have known catalytic functions. We will present a case study of the GCase 

protein that is implicated in Gaucher disease. Although it has been well-studied over the 

past century, a plausible mechanism has yet to be firmly established. All-atom molecular 

dynamics (MD) simulations were performed for the native protein as well as 4 known 

mutants in order to elucidate the change in dynamic flexibility (DFI) upon mutation. The 

MD results indicated an overall rigidification of the mutated proteins, including their 

active sites and ligand recognition sites, which are important for enzymatic function. The 

loss of flexibility inhibits the mobility of the ligand recognition sites, making it 

impossible for them to reorient themselves to accommodate binding substrates for 

function. Moreover, when the active sites become exceedingly rigid, their functional 

efficiency is hampered. This provides a mechanism to Gaucher disease, which is 

associated with a loss of catalytic efficiency. In addition, we examine the allosteric 

effects of the 4 mutations, which are distal to the active sites, on global conformational 

dynamics. We implement a new dynamic feature, dynamic coupling index (DCI) that 

measures the resilience of a site to a perturbation at functionally critical residues. The 

results showed a remarkable decrease in allosteric dynamic linking to the active sites for 

each mutation. Each mutation severely impaired the global allosteric coupling to the 

active sites, which altered the conformational dynamics of the protein. This highlights the 

relationship of conformational dynamics and allostery and points to the importance of  
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dynamics in disease development. We extended the analysis to a large and diverse set of 

enzymatic proteins to see if the DFI and DCI metric could be used to diagnose nSNVs on 

a large proteomic scale. Both DFI and DCI were able to distinguish between neutral and 

deleterious nSNVs. Moreover, for a subset of cases where common evolutionary methods 

(i.e., EvoD, PolyPhen-2, and SIFT) misdiagnosed a given nSNV, our dynamics based 

metrics were remarkably effective in diagnosing them with accuracies around 72%. This 

study reveals that protein conformational dynamics can be a complementary feature in 

genomic variation analysis and disease prediction, as also substantiated by the former 

analysis (Chapter 3) and the work of Gerek et. al. 

It has recently become possible to utilize evolutionary sequence variation in 

protein families to examine structural and molecular properties of proteins. Specifically, 

the coevolution of amino acids throughout the evolution of sequences in a family gives 

insight to their relationship in the 3D structure (see Figure 1.3). Amino acid positions that 

exhibit concordant substitution patterns (coevolve) in an alignment of sequence homologs 

 

Figure 1.3: Coevolving residues in two columns of a multiple sequence alignment 
(MSA) (left) are used to infer structural contacts in the tertiary structure (right). 
Evolutionary couplings are often close in proximity in the 3D protein structure. 
They represent an evolutionary constraint on function between similar proteins 
(homologs) in a protein family. From an MSA of a given protein family, the 3D 
structure can be predicted using coevolving residues [Source: (Marks et al., 
2011)]. 
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in a given family are evolutionary couplings (ECs). The degree of coupling is indicative 

of their spatial proximity in the tertiary structure (i.e. strong couplings are representative 

of native 3D contacts). As shown in Figure 1.3, there are two columns i, j where amino 

acids coevolve in the multiple sequence alignment, which serve as an evolutionary 

constraint on function. From this, it can be inferred that these two residues i, j are in 

spatial proximity in the 3D folded structure. This technique is particularly valuable in the 

prediction of non-local contacts where the structure is unknown. The coevolution of 

amino acids from sequences of protein families has been used to successfully reproduce 

known 3D structures (Marks et al., 2011; Morcos et al., 2011) including notoriously 

difficult membrane proteins (Hopf et al., 2012). It has also been used to predict the 

interactions between protein complexes (Hopf et al., 2014). Moreover, coevolution can 

be used to determine important functional sites (Marks et al., 2012), allosteric 

interactions in proteins for drug discovery (Wagner et al., 2016), and functional 

landscapes of complex biomolecules (Jana et al., 2014).   

Chapter 5 will focus on the use of coevolution to approximate the dynamic 

behavior of a protein strictly from protein sequences and no a priori knowledge of the 

structure. Typically a crystal 3D structure must be provided when obtaining the 

conformational dynamics of a protein. In many cases, however, the structure is 

unavailable since there are vastly more known sequences than there are available 

structures in the PDB. To address this, we introduce a new way to obtain approximate 

protein dynamics with only knowledge of a protein sequence. The 3D structural contacts 

are estimated from the co-evolution of residues in a family of protein sequences. Then by 

taking the 3D contacts to be nodes in the Gaussian Network Model (GNM) the 
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vibrational dynamics are calculated from the mean-square fluctuations (B-factors). Using 

3D contacts in known experimental crystal structures, the GNM has been used to 

accurately predict mean-square fluctuations of native proteins. A Kirchhoff matrix is 

formed according to network connectivity, where non-bonded contacts exist between 

residues within a specified cutoff distance surrounding a given residue in the 3D network. 

As an alternative to using the known structure, evolutionary couplings can equally serve 

as non-bonded contacts in the Kirchhoff matrix. The inverse of the Kirchhoff matrix 

yields the theoretical mean-square fluctuation values (B-factors) for each site, which 

compare well to experimental B-factors and those calculated using the known structure. 

Thus, in this novel approach, the protein vibrational dynamics can be explored using 

exclusively sequence information and no a priori knowledge of structure. Given the 

remarkably disproportionate number of sequences available compared to experimental 

structures, this could be an invaluable tool in genomic variation studies that focus on 

disease prediction for proteins that have unknown structures. Moreover, this technique 

can be utilized in aiding in de novo structure prediction and refinement.  

 In short, this thesis will elucidate the potential role of protein conformational 

dynamics in genomic variation analysis. The current methods for diagnosing the 

functional impact of variants are based on evolutionary methods and have well-known 

weaknesses. Therefore, there is clearly a need for improvement in order to optimize the 

accuracy of these diagnosis methods. The evolutionary methods have attempted to 

include structure in their predictions, which resulted in a disappointing ~4% increase in 

accuracy, mainly due to the use of a static protein structure. In this thesis, we show that 

protein conformational dynamics provides insights that cannot be obtained using the 
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static structure and can distinguish between disease and neutral phenotypes of known 

variants. In particular, our dynamics-based metrics have the capacity to diagnose variants 

in the regimes where evolutionary methods are inadequate, which provides another step 

forward in accurate variant diagnosis to assess an individual’s predisposition to disease 

based on their genome. Lastly, the discovery of novel protein sequences continues to 

outpace the experimental determination of 3D crystal protein structures, therefore the use 

of conformational dynamics in genome variation studies is inherently limited. We address 

this dilemma by proposing a new method to approximate protein dynamics using only 

sequence information and no a priori knowledge of the 3D structure. This would extend 

the range of applicability of conformational dynamics to match evolutionary methods that 

also rely on sequence information. The ultimate goal in genomic analysis and 

phylomedicine is to better understand the impact of variants on phenotype in humans and 

assess an individual’s predisposition to disease. The work presented in this thesis will 

make the case that conformational dynamics of proteins can be used in conjunction with 

existing methods to achieve this goal. 
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CHAPTER 2 
 

2 COMPUTATIONAL METHOD FOR STUDYING PROTEIN FUNCTIONAL 

DYNAMICS 

 

2.1 Introduction 

 A myriad of resolved 3D folded protein structures have been characterized and 

deposited in the Protein Data Bank (PDB) (Berman et al., 2000) based on x-ray 

crystallography and NMR experiments. Despite the abundance of known structures, 

leveraging structural information to gain mechanistic insights about how a mutation can 

lead to disease development remains a challenge. Overall, the current methods exploring 

the effect of mutations on a protein employ a static structure, e.g. solvent accessibility, 

which quantifies the amount of solvent that is accessible to the surface (Tsodikov et al., 

2002). While this static-based metric has shown some success in studying the effect of 

mutations due to its simplicity and fast computation (Wei et al., 2012; Adzhubei et al., 

2013), it does not account for the intrinsic dynamics of proteins which is important for 

function. Indeed, the biological function of a protein is based on collective motions that 

sample different conformational states around the equilibrium structure, such as the open 

and closed forms of an enzyme. We devised a dynamic flexibility index (DFI) as a 

measure to explore site-specific dynamics of proteins, and it has been used to elucidate 

the mechanism of disease development (Nevin Gerek et al., 2013; Butler et al., 2015; 

Kumar, Glembo, et al., 2015). DFI uses the coarse-grained technique known as 

Perturbation Response Scanning, which is based on an Elastic Network Model (ENM) 
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and Linear Response Theory. The ENM, while rooted in the classical full-atomistic 

Normal Mode Analysis procedure, is much more computationally efficient and yields 

nearly identical results. In this chapter, the all-atom models of Molecular Dynamics and 

Normal Mode Analysis will be discussed, followed by the detailed formulation of the 

coarse-grained approaches utilizing ENMs: Gaussian Network Model, Anisotropic 

Network Model, and Perturbation Response Scanning. 

 All-atom molecular dynamics (MD) is an atomistic approach that solves 

Newton’s equations of motion for all atoms in a protein using an empirical potential 

energy function (McCammon et al., 1977; Levitt, 1983). MD predicts the intrinsic 

dynamics of a native protein around its equilibrium conformation (i.e., mean-square 

displacement of atoms) and has been widely used over the past 40 years to investigate 

protein dynamics. Despite its success, MD has some limitations: First, it often fails to 

predict large-scale collective motions of globular proteins (e.g. domain movements); 

Second, the complexity of the force fields used to compute equations of motion at the 

atom level make these calculations computationally expensive. These factors impose 

strict limitations on the size of proteins that can be used in MD calculations. Another 

approach to investigate protein dynamics, normal mode analysis (NMA), revealed that 

the low-frequency modes (� < 30 cm-1) are responsible for cooperative motions (i.e., 

functionally-related motions) of a protein and also contribute significantly to the entropy 

of the system, whereas the fast modes correspond to localized movements of few atoms 

and are less crucial for function (Bahar and Rader, 2005; Go et al., 1983; Brooks et al., 

1983; Eyal et al., 2011). NMA has been successfully used predict the mean-square 

displacements in globular proteins, such as the bovine pancreatic trypsin inhibitor (Go et 
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al., 1983). Similar to MD, however, NMA calculations also depend on complicated 

potentials, which impose the same computational restrictions as MD. Moreover, NMA 

yields unstable modes that can be difficult to extract, leading to final configurations often 

disagree with experimental observations (Tirion, 1996).  

Low-frequency modes of motion (soft modes), which usually correspond to 

functional motions, can be found using simplified mechanical models, independently of 

complicated and computationally expensive force-field potentials (Doruker et al., 2000). 

For instance, the dynamics of G-actin found was obtained using a single-parameter 

Hookean potential and turned out to be in close agreement with the dynamics obtained by 

NMA (Tirion, 1996). Subsequently, coarse-grained approaches were developed that 

enjoy simplified potentials to obtain soft mode dynamics such as the Gaussian network 

model (GNM) (Bahar et al., 1997; Haliloglu et al., 1997), the anisotropic network model 

(ANM) (Atilgan et al., 2001), and perturbation response scanning (PRS) (Atilgan and 

Atilgan, 2009; Atilgan et al., 2010; Gerek and Ozkan, 2011). These coarse-grained 

models offer simplicity and fast computational times, yet they can effectively capture 

functional motions due to soft modes independently of complicated empirical potentials 

used MD and NMA (Atilgan et al., 2010; Bahar and Rader, 2005; Cui and Bahar, 2005). 

Moreover, these simplified approaches have made it feasible for computational 

investigations of the dynamics of large proteins (>500 residues) (Hinsen, 1998; Hinsen et 

al., 1999; Tama and Sanejouand, 2001) as well as proteome-wide studies to study the 

functional impact of nSNVs on a wide range of proteins (>100 proteins) (Nevin Gerek et 

al., 2013; Butler et al., 2015; Zheng and Tekpinar, 2009). This chapter will focus on the 
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details of the primary coarse-grained approaches–GNM, ANM, and PRS–and their 

applications in investigating functional protein dynamics. 

2.2 Coarse-grained Approaches 

2.2.1 Gaussian Network Model 

 The Gaussian network model (GNM) is an isotropic model for protein dynamics 

based on contact topology and is rooted in the early work of random polymer networks 

(Flory, 1976; Pearson, 1977; Kloczkowski et al., 1989). The protein is coarse-grained 

such that the C-alpha atoms represent nodes in an elastic network, and the interactions 

between each node is approximated by an elastic spring if the distance between them is 

within a specified cutoff distance. In contrast to the empirical force-field potentials used 

in MD and NMA (Equation 2.1), the pairwise interaction between inter-connected C-

alpha atoms are given by a simple Hookean single-parameter potential (Tirion, 1996) of 

the form 

 �� = �2 ������ − ����� ��� (2.1) 

Where ��� and ����  are the instantaneous and equilibrium separation vectors between 

connected pairs (see Figure 2.1) and � is a uniform constant. In this topological model, 

sequentially-bonded residues (covalent bonds) are in contact similar to the Rouse chain 

model (Rouse, 1953); in addition, non-bonded residues that are sequentially and spatially 

distant can also be in contact (tertiary contacts) if the distance between them, ���, is less 

than a specified cut-off distance, ��. A sufficient cut-off distance for residue contacts was 

determined to be �� ≤ 7Å (Bahar et al., 1997). Essentially, an interaction sphere with 

radius �� can be imagined to surround a residue i, such that any other residue j within the 



 

 

26

sphere will be in contact with residue i. A connectivity matrix Γ (Kirchhoff) is then 

constructed as 

 Γ�� =
�� 
�!−1						$ % &	and	��� ≤ ��0						i % &	and	��� ( ��−) Γ���,�+� 					$ = &  (2.3) 

Where ��� is the separation distance between residue pairs i and j, and �� is the specified 

cut-off distance (Haliloglu et al., 1997). The Kirchhoff matrix has dimensions , -, 

with N being the total number of C-alpha atoms in the protein. The off-diagonal elements 

of each row are assigned –1 if the pairs are in contact and zero if they are not in contact. 

The diagonal element for each row is found by taking the negative sum of all other 

 

Figure 2.1: Equilibrium fluctuations of C-alpha atoms in the GNM. A section of 
a protein is shown as a dashed line with black dots representing the Cα atoms as 
nodes in the elastic network. The equilibrium position vectors are ��� and ���, 
which correspond to two C-alpha atoms i and j. Similarly, their instantaneous 
position vectors are �� and ��. Their separation distance vectors are ����  (solid 

line) and ���  (dashed line) respectively. The fluctuation of the equilibrium 
position vectors are .�� and .�� in the X, Y, and Z directions between i and j 

and the change in inter-residue distance can be expressed as ∆��� = ��� − ���� =∆�� − ∆��. [Source: (Eyal et al., 2011)] 
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elements in that row via the sum Γ�� = −∑Γ��. The diagonal of the Kirchhoff matrix 

represents the local packing density surrounding each residue $ (Bahar et al., 1997; 

Haliloglu et al., 1997; Bagci et al., 2002).  

Residues in the native protein undergo Gaussian-distributed isotropic thermal 

fluctuations about their mean positions given by Δ�� and Δ�� as in Figure 2.1 (Bahar et 

al., 1997; Haliloglu et al., 1997). The conformational potential energy of the system is 

then  

 12� = �2 3)�Δ��� − Δ���� ��2
�,� 4 = �2 3)Δ��Γ��Δ��2

�,� 4 (2.4) 

Where � is a uniform constant, Γ is the , -, Kirchhoff matrix, and ∆� is a , - 1 

column vector comprised of all residue fluctuations 5Δ�6, Δ��, Δ�7, … , Δ�29 (Eyal et 

al., 2011). It follows that the configurational partition function can be written similarly as 

in the theory of random polymer networks (Flory, 1976; Pearson, 1977; Kloczkowski et 

al., 1989) as  

 :2 = �2;<=>?− @AB⁄ D E5Δ�9 (2.5) 

Where V is the GNM potential in Equation 2.4, kB is the Boltzmann constant, T is the 

temperature of the system, and E5Δ�9 = 5EΔ�6, EΔ��, EΔ�7, … , EΔ�29. The cross-

correlation of fluctuations Δ�� and Δ�� between C-alpha atoms i and j is given by their 

statistical ensemble average (Pearson, 1977; Kloczkowski et al., 1989): 

 
〈Δ�� ⋅ Δ��〉 = 1:;�Δ�� ⋅ Δ���<=>?− @AB⁄ DE5Δ�9	

= I3@AB �⁄ K?ΓL6D�� (2.6) 
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The mean-square fluctuations of each residue i can be calculated by taking i=j in 

Equation 2.6 as 

 〈Δ�� ⋅ Δ��〉 = 〈IΔ��K�〉 = I3@AB �⁄ K?ΓL6D�� (2.7) 

 Since the determinant of the Kirchhoff is zero, the inverse Kirchhoff ΓL6 cannot 

be evaluated directly. Instead, the pseudoinverse is evaluated by single value 

decomposition (SVD) using eigenvalues MN and eigenvectors ON of Γ as  

 〈Δ�� ⋅ Δ��〉 = 3@AB �⁄ )?Δ�� ⋅ Δ��DN = 3@AB �⁄ )PMNL6ONONTQ��2L6
N

2L6
N  (2.8) 

Where the summation is over all , − 1 non-zero modes, k, of Γ (1 ≤ @ ≤ , − 1) 

(Atilgan et al., 2001). The eigenvalues MN and eigenvectors ON, which correspond to the 

frequency and shape of each of the k modes of motion respectively, allow us to analyze 

the form of each mode separately. Particularly, the contribution of correlated motion by 

the kth mode is given by  

 ?Δ�� ⋅ Δ��DN = 3@AB� MNL6?OND�?OND� (2.9) 

Where ?OND� is the ith element of ON. A plot of ?OND�� with respect to residue index i is the 

normalized distribution of mean-square fluctuations in the kth mode (kth mode shape). 

The slowest modes are related to broad collective motions of residues that are usually 

involved principally in biological function. They may be cooperative motions such as 

domain movements to accommodate a substrate or bind to a partner to function. In 

essence, the slow modes represent the most function-related modes. Conversely, the 

fastest modes correspond to highly constrained residues undergoing very small and fast 

movements in their local environment.  
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 The cross-correlation of fluctuations Δ�� and Δ�� is the same as in an , - , 

covariance matrix (i.e. R�� = 〈Δ�� ⋅ Δ��〉), and the largest contribution to the covariance 

comes from the slowest modes (Eyal et al., 2011). Thermal fluctuations in the GNM are 

isotropic such that 

 〈IΔS�K�〉 = 〈IΔT�K�〉 = 〈IΔ:�K�〉 = 〈IΔ��K�〉 3⁄  (2.9) 

And are proportional to the crystallographic B-factors determined by experiment 

 U� = 8W�3 〈IΔ��K�〉 = 8W�@AB� ?ΓL6D�� (2.10) 

Several studies have shown the B-factors predicted by GNM are in good agreement with 

crystallographic B-factors for a diverse set of proteins (Bahar et al., 1997; Haliloglu et 

al., 1997). A proteome-wide analysis by Kundu et al. found that for 113 high-resolution 

structures (resolution <2.0 Å) the B-factors predicted by the GNM correlated 

significantly with observed B-factors (Kundu et al., 2002). Moreover, mean-square 

fluctuations from GNM were also shown to correlate with ANM, MD simulations, 

crystallography, and NMR (Doruker et al., 2000). 

Equations 2.6 and 2.7 yield the magnitude of cross-correlations and mean-square 

fluctuations and, thus, have no direction dependence. The GNM does not require 

directionality or the 3D coordinates of residue displacements – only the contact topology 

of C-alpha atoms (the relative distances between pairs) is necessary to obtain 〈IΔ��K�〉. 
This simplistic model allows for fast, efficient calculations of protein dynamics with 

minimal input. The computational bottleneck of the GNM is inverting the Kirchhoff 

using SVD, which depends on the size of the protein. This still pales in comparison to the 

computational cost of MD or NMA calculations. The GNM describes isotropic 
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fluctuations of the , − 1 modes of motion of a protein in N-dimensional configurational 

space. The incorporation of directional preferences of 3D motion is accounted for in the 

anisotropic network model, which will be elaborated on in the following section.  

2.2.2 Anisotropic Network Model 

The Anisotropic Network Model (ANM) is a coarse-grained approach where a 

protein is viewed as an elastic network model, akin to the GNM described in the previous 

section. Whereas in the GNM all residue fluctuations are isotropic, the ANM differs in 

that it accounts for the 3D directionality of fluctuations (i.e. fluctuations can be 

anisotropic). Therefore the ANM has the capacity to evaluate the 3D character of the 

normal modes of a protein. Consider two interacting residues i and j (Figure 2.1) 

connected by a an elastic spring with the ANM potential 

 

�� = �2 ���� − ���� ��	
= �2 XY�S� − S��� + �T� − T��� + �:� − :���[6 �⁄ − ���� \� 

(2.11) 

Where � is a uniform spring constant and ��� and ����  are the instantaneous and 

equilibrium separation between i and j (��� = �� − ��). S�, S�, T�, T�, :�, and :� are the 

vector components of �� and �� in Figure 2.1. This potential can also be written in terms 

of the network of N residue pairs as 

 

]2� = �2)���� − ���� �������� �2
�,� 	

= �2)Y�S� − S��� + �T� − T��� + �:� − :���[6 �⁄ ������ �2
�,�  

(2.12) 
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Where ������ � is a Heaviside step function such that ������ � = ^−1						���� ≤ ��				0						���� ( �� (i.e. 

interacting pairs are assigned −1 whereas non-interacting pairs 0) (Bahar and Rader, 

2005; Atilgan et al., 2001; Tama and Sanejouand, 2001). Alternatively, ������ � can also 

represent an exponential decay function that attenuates with increasing separation 

distance (Hinsen, 1998). For the ANM, a cutoff distance of �� = 13Å was found to 

produce the most realistic vibrational frequency distribution (Atilgan et al., 2001). The 

first-order derivative of  with respect to the S component of �� in for two interacting 

residues $ and & are 

 

__S� = − __S� 	
= −��S� − S���1 − ���� ���` � (2.13) 

 And the second-order derivative is 

 

_�_�S�� = _�_�S��	
= � Y1 + ���� �S� − S��� ���7` − ���� ���` [ (2.14) 

Similar equations hold for the T and : components of ��. At equilibrium, ��� = ����  such 

that these equations become  

 
__S� = − __S� = 0 (2.15) 

 
_�_�S�� = _�_�S�� = ��S� − S��� ����`  (2.16) 

And similarly the cross-derivatives between the S and T components are 
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_�_S�_T� = −��S� − S���T� − T�� ����`  (2.17) 

When considering all neighbors & of residue $ then the second-order derivatives can be 

expressed as  

 
_�_S�� = �)�S� − S�	��� ����`  (2.18) 

 
_�_S�T� = �)�S� − S���T� − T��� ����`  (2.19) 

 Where the summation is over all neighbors & of residue $. For a protein with , residues, 

the second-order derivatives are stored in a 3, - 3, Hessian matrix a, which has the 

form  

 a = bc66 c6� ⋯ c62c�6 c�� ⋯ c�2⋮ ⋱ ⋮c26 c2� ⋯ c22g (2.20) 

Where each super-element c�� is a 3 - 3 matrix containing all second-order cross-

derivatives given by Equation 2.17 for off-diagonal super-elements c�� ($ % &) as 

 c�� =
hii
iii
ij _�_S�S� _�_S�T� _�_S�:�_�_T�S� _�_T�T� _�_T�:�_�_:�S� _�_:�T� _�_:�:�kll

lll
lm
 (2.21) 

The diagonal super-elements ($ = &) of a are constructed as 
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 c�� =
hi
ii
ii
j _�_S�� _�_S�T� _�_S�:�_�_T�S� _�_T�� _�_T�:�_�_:�S� _�_:�T� _�_:�� kl

ll
ll
m
 (2.22) 

Where the diagonal and off-diagonal elements are constructed using Equation 2.18 and 

2.19 respectively. The Hessian matrix in the ANM is analogous to the Kirchhoff matrix 

in the GNM. The single value decomposition of the Hessian results in 3, − 6 non-zero 

eigenvalues MN and eigenvectors ON from which its pseudoinverse can be written as 

 aL6 = ) PMNL6ONONTQ72L6
N  (2.23) 

Now the cross-correlations between residue fluctuations in the ANM are calculated as 

 

〈Δ�� ⋅ Δ��〉 = 〈ΔS�ΔS�〉 + 〈ΔT�ΔT�〉 + 〈Δ:�Δ:�〉	
= @AB� Pa7�L�,7�L�L6 +a7�L6,7�L6L6 +a7�,7�L6 Q (2.24) 

And the mean-square fluctuations are calculated as 

 

〈IΔ��K�〉 = 〈IΔS�K�〉 + 〈IΔT�K�〉 + 〈IΔ:�K�〉	
= @AB� Pa7�L�,7�L�L6 +a7�L6,7�L6L6 +a7�,7�L6 Q (2.25) 

Unlike the GNM, the fluctuations of ΔS�, ΔT�, and Δ:� are treated separately in the ANM 

to account for anisotropy. Similar to the GNM, theoretical B-factors can be calculated in 

the ANM in terms of the inverse Hessian as U� = opqNr	7s tuIv��L6K. In a study of the w-

amylase inhibitor protein, the 3D molecular motions predicted by ANM correlated well 

with all-atom MD simulations and experiment, which was superior to that of the GNM 
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(Doruker et al., 2000). ANM has been used in multiple studies to probe the directionality 

of collective dynamic motions brought about by the low-frequency modes of proteins. 

For instance, ANM was used to predict fluctuation dynamics of the slow modes of the 

retinol binding protein that correlated with experimental values (Atilgan et al., 2001).  

 The GNM and ANM are both based on elastic networks, and they each have 

applications in which one is more useful over the other. In general, the GNM is preferred 

when seeking the magnitude of fluctuations as well as analyzing the contribution of 

fluctuations to individual modes. Indeed, it has been evinced that B-factors estimated by 

the GNM are more comparable with experimental B-factors than those of ANM (Kundu 

et al., 2002). However, the motions of biomolecules occur in all directions, thus 

incorporating anisotropic effects is important to for gaining mechanistic insights of 

function, particularly when analyzing directional components of motion. ANM accounts 

for the magnitude and direction of fluctuations resulting from the slowest modes, which 

represent an accurate depiction of natural cooperative motions of proteins undergoing 

biological function. Thus analyzing directional motion of biomolecules requires the use 

of ANM instead of the GNM to produce the most realistic model. While both GNM and 

ANM are exponentially less computationally intensive than NMA or MD, GNM offers a 

time-scale advantage over ANM, which only needs to invert a , - , matrix as compared 

to a 3, - 3, matrix. An application of elastic network models to capture the effects of 

external perturbations on a protein structure will be discussed in the following section. 

2.2.3 Perturbation Response Scanning 

The elastic network models (ENM) described above are ways to obtain 

equilibrium fluctuation profiles of proteins by extracting the most essential normal modes 
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(i.e., low-frequency modes). Although they are simple and efficient, they are also 

restrictive since they only measure correlations between residue fluctuations around the 

equilibrium state. Inducing a perturbation in the elastic network and measuring the 

dynamic responses can reveal underlying information about energy landscapes that go 

beyond the equilibrium fluctuations. Thus, several studies have used a modified ENM 

approach in an attempt to measure the effect of perturbing the network, where structural 

perturbations were induced by adjusting the strength of force constants of springs 

between interacting residues (Zheng et al., 2007) or changing the distance between 

interacting residues (Zheng and Brooks, 2005). Another ENM-based technique known as 

Perturbation Response Scanning (PRS) measures the residue fluctuations of the elastic 

network upon perturbation of a single node (i.e., C-alpha atom). This perturbation on a 

node acts to mimic the natural scenario of an approaching ligand exerting a force on the 

binding pocket. Accordingly, its application has been used in a wide range of studies, 

including elucidating mechanisms of ligand binding (Atilgan and Atilgan, 2009), 

binding-induced conformational changes (Atilgan et al., 2010; Bolia and Ozkan, 2016), 

allostery in small PDZ domain proteins (Gerek and Ozkan, 2011), identifying critical 

regions for function/stability (Abdizadeh et al., 2015), and improving flexible docking for 

ligand binding (Bolia and Ozkan, 2016). PRS is a coarse-grained approach in which the 

native protein is modeled as a 3D elastic network (ENM) as described above. A 

perturbation in the form of a random external force (i.e. Brownian kick) is sequentially 

applied on each C-alpha atom in the network (see Figure 2.2). This leads to a cascade of 

perturbations throughout the network, where the resulting displacements of all other 

residues are given by linear response theory. 
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Linear response theory (LRT) was used in structural biology to investigate the 

structural changes of a protein upon ligand binding (Ikeguchi et al., 2005). The theory 

asserts that the mechanical response behavior upon a binding event is linearly related to 

the intrinsic equilibrium fluctuations in the unperturbed state (i.e., unbound ligand-free 

state). Thus, structural changes elicited by such a binding even can be estimated simply 

with the knowledge of the residue cross-fluctuations in the ENM, 〈Δ�� ⋅ Δ��〉. Given an 

external force applied on a residue & in the unperturbed state, the response of another 

residue $ is given by 

 〈∆��〉 ≅ 1@AB)〈Δ��Δ��〉�y��  (2.26) 

Where 〈Δ��Δ��〉� is the fluctuation covariance in the unperturbed state, and y� is a 

single-vector representing the external force acting on residue & (Ikeguchi et al., 2005). 

The covariance term 〈Δ��Δ��〉� can be equivalently obtained from either an all-atom MD 

simulation or the inverse Hessian in ENM (Equation 2.23). The structural changes 

predicted by Equation 2.25 is not dependent on the direction or position of the applied 

external force (Ikeguchi et al., 2005), so y� is essentially a random external force. The 

approximation of LRT is realistic in the regime where the low-frequency modes of a 

protein contribute the most to conformational changes upon binding; Hence, if faster 

modes contribute more to conformational changes, LRT is not applicable due to 

unrealistically large external forces, y� = @AB ∑ 〈∆��∆��〉�L6〈∆��〉z�  (Yang et al., 2014). 

This is usually not the case, however, since high-frequency modes generally correspond 

to miniscule changes such as side change rotations that do not drastically affect the 

overall structural conformation. Conversely, larger conformational changes that relate to 
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function are almost always due to the low-frequency modes. Thus, the slowest modes 

relevant for function are used to calculate 〈Δ��Δ��〉� in Equation 2.26 which are 

sufficiently predicted by the ENM.  

 A recent study developed a generalized version of LRT that incorporates time-

dependence (Yang et al., 2014), which can model the mechanical propagation of a force  

throughout the protein (due to ligand binding) as a function of time. The response 

displacement of a residue $ to a constant external force y� on a residue & over time is 

 〈∆��ItK〉 = 1@AB)P〈Δ��I0KΔ��I0K〉� − 〈Δ��ItKΔ��I0K〉�Qy��  (2.27) 

 

Figure 2.2: A free-body diagram illustrating the Perturbation Response 
Scanning method (PRS). Each sphere contains the pairwise interactions between 
C-alpha atoms (black dots in (A) and grey dots in (B)). The origin is taken to be 
a single residue i, which is connected to other residues j via elastic springs 
(given by Equation 2.1). (A) The unperturbed elastic network where no external 
forces (perturbation) are being applied, and the network is in the equilibrium 
state, where only the internal forces holding the network in equilibrium are at 
play. (B) An external force (perturbation), ∆{|, is applied on residue j resulting 
in a net displacement of all C-alpha atoms from their equilibrium positions (as 
in A). [Source: (Gerek and Ozkan, 2011)] 
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Here, the time-dependent (td-LRT) equation is almost the same as the time-independent 

equation above except for the additional term 〈Δ��ItKΔ��I0K〉�, which vanishes as t →
∞ and it reduces to time-independent LRT.  

 As mentioned, LRT is used in conjunction with ENM in the PRS approach to 

elucidate conformational motions of proteins. Consider the free-body diagram of C-alpha 

atoms in the PRS model in Figure 2.2 where each C-alpha atom is connected by an elastic 

spring. In the absence of an external force (Figure 2.2A) all of the C-alpha atoms must be 

in equilibrium in accordance with force balance (see equations below). In the case of a 

3D elastic network with , residues (C-alpha atoms) and � interactions between residues 

that are less than the specified cutoff distance ��, then the force balance is  

 ?�D72-�?∆yD�-6 = 0 (2.28) 

Where � the direction cosine matrix, ∆y contains the internal interaction forces aligned 

in the direction of the bond between two interacting residues (i.e., if a residue has 6 

contacts as in Figure 2.2A, then ∆y is a 6 - 1 column matrix).  

 In the presence of an external force ∆{� as in Figure 2.2B, the nodes of the 

network undergo small displacements away from their original positions. Thus, force 

balance requires that the sum of all the interaction forces be equal to the external applied 

force  

 ?�D72-�?∆yD�-6 = ?∆�D72-6 (2.29) 

Where the ∆� matrix contains the components of the applied force acting on a particular 

residue. For a given residue $ the applied force vector is  

 ∆�T = P000⋯Δ{��Δ{��Δ{��⋯000Q6-72 (2.30) 
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Where the perturbed residue is ∆�� = �Δ{��Δ{��Δ{��� and all other residues entries are 

zero. As mentioned, the external force applied to a residue in Figure 2.2B causes a 

positional displacement ∆� of each of the interacting residues from their equilibrium 

positions. Moreover, the distances between each connected residue ∆� (bond distance) 

also change concordantly with ∆�, in which their relationship is given by 

 ?�TD�-72?∆�D72-6 = ?∆�D�-6 (2.31) 

Where �T is the transpose of �.  

 For an elastic network that consists of nodes that are connected by springs, the 

internal interaction forces between nodes ∆y are related to the bond distances ∆� by 

Hooke’s law as 

 ?�D�-�?∆�D�-6 = ?∆yD�-6 (2.32) 

Where the coefficient matrix � is diagonal. Two different spring constants have been 

devised (Gerek and Ozkan, 2011) to account for bonded interactions, ��, and non-bonded 

interactions, ���. For bonded interactions, �� = 1, whereas the non-bonded interactions 

between residues $ and & is given by the inverse square of their separation distance ��� as 

��� = 8 ����⁄ . Although the original PRS method used uniform spring constants (Atilgan 

and Atilgan, 2009), this can be problematic since the optimal values are different across 

different proteins (Hinsen et al., 2000; Yang et al., 2009). This modified version of PRS 

that delineates between bonded and non-bonded interactions was able to correctly predict 

the conformational changes on a benchmark set of 25 protein structures (Gerek and 

Ozkan, 2011). 

 Upon substituting Equations 2.31 and 2.32 into Equation 2.29, we obtain the 

external forces necessary to induce the sequential displacement of residues  
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 I?�D72-�?�D�-�?�TD�-72K?∆�D72-6 = ?∆�D72-6 (2.33) 

Where ���T is equivalent to the Hessian matrix a (Atilgan et al., 2001). Finally, to 

calculate the response of individual residues to an applied external force this expression 

can be rearranged as  

 ?∆�D72-6 = I?�D72-�?�D�-�?�TD�-72KL6?∆�D72-6 (2.34) 

And substituting the Hessian for ?�D72-�?�D�-�?�TD�-72 Equation 2.34 becomes 

 ?∆�D72-6 = ?aD72-72L6 ?∆�D72-6 (2.35) 

Which describes the total response displacement of each residue of the protein due to a 

perturbation by an external random force.  

 The Hessian a is obtained from the interactions between C-alpha atoms in the 

coarse-grained ENM in using described in Section 2.2.2 and its inverse is evaluated by 

single value decomposition. Alternatively, aL6 can be replaced by the 3, - 3, 

covariance matrix � as calculated by all-atom MD simulations as 

 ?∆�D72-6 = ?�D72-72?∆�D72-6 (2.36) 

 Which as discussed is computationally intensive to obtain as compared to the coarse-

grained approaches. We primarily use the coarse-grained PRS method to investigate 

protein dynamics for large datasets. However, the PRS method cannot calculate the 

difference between the wild type and mutant forms of a protein (since it is not amino acid 

specific). Thus, to study the changes in dynamics between the wild type and mutant 

forms of the GCase protein (presented in Chapter 4), we will use all-atom MD 

simulations to obtain the covariance matrix and use Equation 2.36 to get the dynamics.  
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CHAPTER 3 

3 CONFORMATIONAL DYNAMICS ON PROTEIN-PROTEIN INTERATIONS 

INFORMS FUNCTIONAL IMPACT OF GENETIC VARIANTS  

 

As excerpted from:  

Butler, B., Gerek Z., Kumar, S., and Ozkan, S.B. “Conformational dynamics of 

nonsynonymous variants at protein interfaces reveals disease association,” Proteins 83: 

3, 428-435 (2015). 

 

3.1 Introduction 

 Advances in sequencing technologies are providing a wealth of data on human 

genetic variation. It is now clear that any personal exome contains thousands of variants, 

the majority of which are non-synonymous single nucleotide variants (nsSNVs) (Kumar 

et al., 2011). However, distinguishing between neutral variants (i.e., those with little or 

no effect on phenotype) from variants associated with disease still remains a major 

challenge for both monogenic (Mendelian) and complex diseases (S. Kumar et al., 2009; 

Kumar et al., 2011). The current state-of-the-art methods for diagnosing amino acid 

variants primarily employ evolutionary information obtained from multispecies sequence 

analysis in a variety of ways (S. Kumar et al., 2009; Kumar et al., 2011; P. Kumar et al., 

2009; Kumar et al., 2012; Dudley et al., 2012; Adzhubei et al., 2010). While these 

methods have been used extensively, they often fail to correctly diagnose damaging 
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variants at evolutionarily variable positions and neutral variants at highly conserved 

positions (S. Kumar et al., 2009). 

 Several methods have been proposed to incorporate structure-based information 

from protein structures. Two prominent methods are to use accessible surface area 

(ASA), which determines the surface area of a protein accessible to a solvent, and the 

change in protein stability, which utilizes the difference in free energy between the folded 

and unfolded state upon mutation through empirical calculation based on the 3-D 

structure (Cline and Karchin, 2010; Cheng et al., 2008; Li et al., 2011; Wei et al., 2012; 

Yue et al., 2005, 2006). Interestingly, the addition of these modalities has only produced 

a marginal 3-4% improvement in the rate of true positive diagnosis (Li et al., 2011; 

Huang, Wang, et al., 2010; Huang, Shi, et al., 2010). A common feature among these 

methods is that they are based on the static 3-D structure of the protein, which fails to 

capture the dynamic motion of the protein structure. From the conformational transitions 

of allosteric proteins to the required flexibility of a ligand-binding site, proteins must 

fluctuate to achieve their function (Zheng et al., 2007; Wang et al., 2004; Velazquez-

Muriel et al., 2009; Tzeng and Kalodimos, 2011; Martin et al., 2012; Liu et al., 2010; 

Liberles et al., 2012; Kalodimos, 2012; Jackson et al., 2009; Glembo et al., 2012; 

Eisenmesser et al., 2005, 2002; Echave and Fernandez, 2009; Echave, 2008; Bhabha et 

al., 2011; Bahar et al., 2010). 

 A reason for the lack of methods incorporating protein dynamics into nsSNV 

diagnoses could be the absence of amino acid site-specific measures that can statistically 

quantify the contribution and impact of each position on the conformational dynamics of 

the protein in a fast and efficient way. We recently developed a dynamic flexibility index 
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(dfi), which measures the contribution of each position to functionally important 

dynamics (Nevin Gerek et al., 2013). Through dfi analyses of more than 100 monomeric 

proteins, we found that the added feature of protein dynamics has the potential to 

distinguish between nsSNVs that impact biological function and those that have no effect 

on function (neutral nsSNVs) at a proteome scale (Nevin Gerek et al., 2013). Moreover, 

this large-scale analysis including population variations implicated in diseases, 

functionally critical positions (catalytic and binding sites), and evolutionary rates of 

substitutions produced concordant patterns; it established that the preservation of 

dynamic properties of residues in a protein structure is critical for maintaining the 

protein/biological function (Nevin Gerek et al., 2013). 

 The dfi metric has not yet been evaluated for biological assemblies. Many 

proteins form biological assemblies in order to perform their specific functions in the cell. 

Recent studies have shown that nsSNVs located at protein-protein interface sites are often 

associated with disease (Wei et al., 2012; David et al., 2012) where additional metrics 

beyond evolutionary information can be useful (Jordan et al., 2010). Therefore, we report 

the dfi analysis for proteins that form biological assemblies and its relationship with 

evolutionary conservation. We also compare the difference between the dfi of disease-

associated and neutral nsSNVs when it is calculated in biological assemblies and when it 

is calculated by using proteins as monomers in order to determine which is more 

informative at phenotypic prediction. Moreover, we compare dfi with the static measure 

of solvent accessible area, which has also been used to predict disease-associated nsSNVs 

in biological assemblies (Wei et al., 2012). 
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3.2 Methods 

3.2.1 Data Set  

 We generated a curated dataset of 1,174 protein nsSNVs using available 

databases, including HumVar that contains 301 disease-associated and 200 neutral 

population variants compiled for PolyPhen-2 (Adzhubei et al., 2010), 383 neutral variants 

from the 1000 Genomes Project with those having population frequency greater than 10% 

(Abecasis et al., 2012), and 290 disease-associated variants from the Human Gene 

Mutation Database (HGMD) (Stenson et al., 2003). The set of 333 unique multimeric 

proteins containing 591 disease-associated and 583 neutral nsSNVs was modeled such 

that all the proteins formed assemblies and have 3-D structures in the Protein Data Bank 

(Bernstein et al., 1977) with >80% sequence identity between the reference sequence and 

experimentally-derived protein structures and >80% sequence coverage using BLAST. 

The high constraints were imposed to ensure that the structures used in this study are real 

experimental human proteins rather than pure homology models. 

3.2.2 The dfi Metric for Biological Assemblies 

 The dynamic flexibility index (dfi) is a metric to determine the structural 

flexibility at specific sites on a protein. We applied our original method (Nevin Gerek et 

al., 2013) directly to biological assemblies (BAs) such that the dynamic flexibility for 

each position in the BA is considered. In brief, the method is based on the perturbation 

response scanning (PRS) method where the equilibrium structure of a protein is 

constructed as a 3-D elastic network model (ENM) in which the nodes are represented by 

C-alpha atoms (Tirion, 1996; Hinsen, 1998), and the pairwise potential between each 

atom is given by the potential of a harmonic spring. A small perturbation in form of 



 

 

45

random Brownian kick is applied sequentially to each C-alpha atom in the elastic 

network. The perturbation on a single residue results in a cascade of perturbations to all 

other atoms in the network, thus inducing a global response. The fluctuation response 

profile of the positions upon perturbation of a single residue (?∆�D72-6) is obtained using 

linear response theory and given by the equation 

 ?∆�D72-6 = I?�D72-72KL6?∆�D72-6 (3.1) 

Where the ∆� vector contains the components of the externally applied random unit force 

vectors (��K on the selected residues, and �L6is the inverse of Hessian matrix (i.e., �, the 

Hessian, is a 3, - 3, matrix composed of the second order derivatives of the harmonic 

potential with respect to the components of the position vectors for the chain of length N).  

To minimize the effects of randomness, this perturbation procedure is performed ten 

times to ensure that the applied force is isotropic with a zero angular average (〈��〉 = 0), 

and the response vector ∆���  is averaged. 

 In short, the application of the random Brownian kick to a given residue on the 

3D elastic network perturbs the residue interaction network of the protein beyond 

fluctuations inherent in the system at equilibrium and elicits responses from all other 

residues in the structure. Through the perturbation response scanning method (PRS) 

(Gerek and Ozkan, 2011; Atilgan et al., 2001), we compute the fluctuation response of 

residue j, ∆��� , both in direction and magnitude upon perturbation. We repeat this 

perturbation on each single residue for all positions in chain and obtain the response 

profiles of all other positions. The dynamic flexibility index, dfi, is then obtained by the 

equation 
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 �{�� = ∑ �∆���2��6 �∑ ∑ |∆��|�2��62��6  

 

(3.2) 

Where �∆���� = �〈∆��〉 is the magnitude of positional displacements for residue j in 

response to a perturbation at residue i after averaging out the response vector ∆���  over 

ten different random directional unit forces, and N is the total number of positions on the 

biological assembly. Note that we compared the dfi values obtained from the coarse-

grained ENM model with those obtained from all-atom replica exchange molecular 

dynamics simulations for several proteins in our earlier work (Nevin Gerek et al., 2013) 

in which the dfi values obtained from these two different simulation approaches yield 

very high correlations, as Pearson correlation coefficients between PRS and all-atom MD 

ranged from 0.64 to 0.88 for 5 proteins.  

 For the monomeric analysis of biological assemblies, the dfi value is estimated 

using the monomeric unit alone (i.e., for a homomeric dimer with two units of 2N 

residues only the N residue position of the monomeric unit is considered). Thus, the 

impact of the interactions aroused due the interaction of interface residues between each 

unit in the BA is not considered. In estimating the dfi values for the BA, however, the 

whole complex (i.e., 2N residue positions of the two homomeric units) is used such that 

the interactions between the interface positions in the BA are explicitly included in the 

Hessian. Moreover, the flexibility response of residue i on unit 1 after perturbing residue j 

on unit 2 is computed and included in the dfi profile of unit 1. A workflow depicting the 

methodology for the dfi analysis of the BA and monomeric unit is provided in Figure 3.1. 

 Since we collectively analyze atomic positions for a wide variety of protein 

structures, dfi must be normalized. Thus, the dfi value of a specific atomic position in the 
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protein is expressed as %dfi, which is a percentile rank of that atom in a sorted array of 

all dfi values in a given protein. The dfi calculation is performed on each biological 

assembly, which is comprised of two or more chains. The calculation is then done on a 

single chain taken from the biological assembly (Figure 3.1). 
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Figure 3.1: The schematic diagram of the method followed for structural 
dynamics analysis of each multimeric protein. We identify a three-dimensional 
(3-D) structure for each protein sequence through a BLAST search using 
protein data bank (PDB). In this search, the sequence coverage and the 
sequence identity between the reference sequence query and the known protein 
structures is set to >80% and >80%, respectively. The identified 3-D 
experimental structures from PDB are then used for the Perturbation Response 
Scanning (PRS) model to predict the dynamic flexibility index (%dfi) for each 
residue position. 
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3.2.3 Accessible Surface Area (ASA) 

      We compare the dfi metric with a static metric known as accessible surface area 

(ASA) and its capability to quantify phenotypes of nsSNVs. The ASA metric determines 

the amount of surface area in the crystal that is accessible (i.e. exposed to a solvent). We 

calculated ASA by using the DSSP program (Kabsch and Sander, 1983). Following the 

dfi procedure, we normalized ASA values for each residue position and expressed them 

as %ASA. 

3.2.4 Prediction of Interface Sites 

      The prediction of molecular interface residues of BAs were determined using the 

PISA server (Krissinel and Henrick, 2004, 2007, 2005). PISA is a computational tool that 

predicts the strength of interaction between two monomers and the interfaces between 

them, resulting in the multimer that is likely the functional form of the BA. 

3.2.5 Evolutionary Rates 

 We estimate the absolute evolutionary rate at each site by using a previously 

described method (S. Kumar et al., 2009), which computes the number of amino acid 

substitutions in a given phylogeny following the parsimony algorithm for each site 

independently (Fitch, 1971). The evolutionary rate of amino acid changes across species 

is then the number of amino acid substitutions divided by the total time elapsed in the 

tree. Evolutionary rates are in the units of substitutions per amino acid per billion years 

(Byrs) and are based on protein sequence alignments of 46 species available from the 

University of California-Santa Cruz resource (UCSC Human Genome Browser) (Kent et 

al., 2002).  

3.3 Results and Discussion 
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 To assess the effect of using biological assemblies (BAs) on the estimation of 

conformational dynamic parameters, we compared the dfi values of all 1,174 nsSNVs in 

333 BAs with those obtained by using only the monomeric units. Many sites harboring 

sequence variants showed large differences in %dfi calculated from the BA and 

monomeric forms (Figure 3.2A). For example, many high %dfi sites in the  

monomeric calculations show rather low %dfi in the BA calculation. We found many of 

these residues to be located at interface sites in the BA, which seems reasonable since 

residues at interfaces exhibit a different fluctuation profile in assemblies. This is due to 

their interaction with the residues of another unit, unlike the monomeric forms where the 

same residues would interact with a solvent instead. When considering only the interface 

sites (357 of 1,174), we observe a large difference (p < 0.0001) in the cumulative %dfi 

distributions (Figure 3.2B) between the monomeric and multimeric forms with an 

average %dfi of 31% for the BA unit and 51% for the monomeric unit. The interface 

 

Figure 3.2: Distributions of interface and non-interfaces sites in the biological 
assembly proteins and their corresponding monomeric units. A scatter plot is 
shown in (A) of the %dfi values for all variants, disease-associated and neutral, 
using the biological assembly units (y-axis) their corresponding monomeric units 
(x-axis). Each axis is scaled logarithmically. Many sites exhibit low dfi in the BA 
but much higher dfi in their monomers, indicating that they are located at 
interfaces. Cumulative %dfi distributions of interface sites (B) and non-interface 
sites (C) for the BA units and their corresponding monomeric units.  
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variants had lower dynamic flexibility, with over 50% showing %dfi ≤ 25%. This 

tendency is expected since the interactions with other monomeric units in the BA lead to 

a decrease in flexibility. On the other hand, the cumulative %dfi distributions of 

monomeric and BA units are very similar for the nsSNVs at non-interface sites (817 of 

1,174), as shown in Figure 3.2C. For these sites, the average %dfi for BA units was 50% 

and that for their monomeric units was 46%. 

 The above pattern prompted us to investigate whether considering the structural 

dynamics of the BA is more powerful in distinguishing disease-associated nsSNVs. We 

computed the cumulative distributions of 207 disease-associated nsSNVs from 62 

proteins and 150 neutral nsSNVs from 71 proteins separately for interface sites (Figure 

3.3). There is a distinct separation between the two cumulative distributions. At lower dfi, 

the separation of the two curves was pronounced, indicating that sites containing disease-

associated variants have lower dfi than those containing neutral variants at interfaces. The 

 

Figure 3.3: Cumulative %dfi distributions of protein interface sites for disease-
associated variants (black line) and neutral variants (grey line) from the human 
population (compiled from HumVar and the 1000 genomes project). The 
average %dfi for disease-associated variants at interfaces is 23% while that for 
neutral variants is 42% (p < 0.0001). 
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average %dfi for disease-associated variants at interfaces is 23% while that for neutral 

variants is 42% (p < 0.0001). 

 We chose two case studies to shed light on the mechanistic differences for the 

analysis of individual proteins and BAs. Human pyridoxine-5'-phosphate oxidase (1NRG 

in the Protein Data Bank) is a homodimer that serves as an important enzyme to catalyze 

reactions in the vitamin B6 metabolism pathway. Two variants with known disease 

implications from HGMD were mapped onto the protein interface, as shown in Figure 

3.4A. The structure is colored within a spectrum of red–yellow–green–cyan–blue, where 

red shows the highest and blue the lowest values of %dfi. Based on Figure 3.4A, it is 

clear that these two variants located at the interface have low dynamic flexibility (ARG-

95 and ARG-229 have a %dfi of 0.07981 and 0.15962 respectively). With such low dfi 

values those sites are likely critical for function, thus a mutation there will likely lead to a 

 

Figure 3.4: The ribbon diagrams of two proteins containing disease and neutral 
nSNVs given by their dfi profiles. (A) recombinant human pyridoxine-5'-
phosphate oxidase (PDB code: 1NRG) and (B) human carboxypeptidase A1 
(PDB code: 1PYT) with respect to dynamic flexibility index, %dfi, are shown. 
Each structure is colored within a spectrum of red–yellow–green–cyan–blue, 
where red shows the highest (flexible) and blue the lowest values (rigid) of %dfi. 
(A) Two disease-associated variants at interface sites are predicted to be rigid by 
dfi. (B) Two neutral variants at interface sites are predicted to be flexible by dfi. 
The colors of their sticks and spheres correspond to their %dfi. 
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disruption in function. For instance, the site ARG-229 is mutated to TRP-229, which 

results in the potentially fatal disease, neonatal epileptic encephalopathy (NEE) (Stenson 

et al., 2003; Mills et al., 2005). For the second case, three neutral variants from the 1000 

Genomes Project were mapped to the model structure of human carboxypeptidase A1 

(homologous structure is 1PYT in the Protein Data Bank) with TYR-435 occurring at an 

interface site and the other two at non-interface sites (Figure 3.4B). From Figure 3.4B, it 

can be seen that these sites have noticeably higher dynamic flexibility. Interestingly, even 

TYR-435 had a high dfi score of 0.62084 despite its location at an interface. It is expected 

that interface sites generally have lower dfi values since they are interacting with residues 

of another protein, thus high dfi at an interface is surprising and could lend useful 

information relating to the phenotype. Fig. 3.4 shows how variants within an individual 

protein could lead to the general trend seen in Figure 3.3, which is based on the analysis 

of more than 100 proteins. Moreover, the trend exhibited in Figure 3.3 and the case study 

presented in Figure 3.4 together gives further indication to the notion that dfi may 

discriminate disease-associated from neutral variants. 

 For comparison, we also examined the performance of ASA, a metric based on 

the static form of the protein structure, which has also been utilized to differentiate 

disease-associated nsSNVs from neutral variants (Jordan et al., 2010; Franzosa and Xia, 

2009; Wei et al., 2012). We found that the average %ASA showed only a small 

difference (45% for disease-associated and 66% for neutral population variants), as 

compared to a 2.5 times difference observed for average %dfi (21% for disease associated 

and 54% for neutral population variants). We found that there is a correlation between 

ASA and dfi, as sites with low ASA that are surrounded with other residues rather than 
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solvent would exhibit fewer fluctuations and cause lower dfi values. However, among 

these low ASA positions, certain positions can be more dynamically critical in translating 

or controlling the functionally related motion than others due to their residue interaction 

pattern within the protein structure. By utilizing dfi, we are able to capture these 

dynamically critical positions. Thus, the above result suggests that the interface residues 

that play an important role in the collective motion of the BA are more susceptible to 

damaging mutations. 

 We examine whether the predictive capabilities of dfi for the BA go beyond that 

afforded by evolutionary conservation of positions involved by estimating the 

evolutionary rate (r) for each nsSNV site (as described in the methods section). We 

divided the estimated evolutionary rate (r) into two different categories: ultra-conserved 

(r = 0) or less-conserved (r > 0).  In our analysis, 37% of interface sites and 30% non-

interface sites were ultra-conserved sites. Likewise, 63% of interface sites and 70% of 

non-interface sites were less-conserved sites. This difference in evolutionary rates is 

rather small, as compared to conformational dynamics where a higher fraction of 

interface sites have very low dfi (53% of interface sites and 29% non-interface have dfi ≤ 

25%). This prompted us to consider the phenotypic prediction of nsSNVs at interface 

sites, as the ability to correctly identify disease associated variation at less-conserved 

sites is not high for many evolutionary rate based in silico prediction tools (S. Kumar et 

al., 2009; Kumar et al., 2011) and many interface sites are at less conserved positions. 

We surmised that dfi calculated using BAs might provide information beyond that 

afforded by evolutionary conservation at those sites. Thus, we explored the ability of dfi 

to discriminate disease-associated and neutral nsSNVs at less-conserved sites (r > 0). 
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 We compared box plots of %dfi and %ASA for disease-associated and neutral 

variants at interface sites that were less-conserved (Figure 3.5A). Remarkably, the 

average %dfi of disease-associated nsSNVs is approximately 2.5 times lower than that of  

neutral nsSNVs gathered from human population statistics (Adzhubei et al., 2010). The 

average %dfi for disease-associated variants was 25% at less-conserved sites at 

interfaces, whereas the average %dfi for neutral variants from the 1000 Genomes Project 

and HumVar was 45% (p < 0.001 when comparing both datasets). This suggests that dfi 

is likely a useful metric for predicting phenotypes of nsSNVs at less-conserved sites. In 

comparison, we did not see a suggestive difference in ASA between neutral and disease-

associated variants, as the average %ASA for disease-associated sites was 47% at less-

conserved interface sites, whereas the average %ASA for neutral sites was 52% (p = 0.63 

for disease vs. 1000 Genomes Project and HumVar). We then conducted a receiver 

 

Figure 3.5: A box plot of %dfi (green) and %ASA (brown) distributions comparing 
disease-associated and neutral nsSNVs for less-conserved variants (evolutionary 
rate r > 0) occurring at protein interfaces. Box plots show median, upper, and 
lower quartiles, and whiskers represent maximum and minimum values. (B) A 
receiver operating characteristics (ROC) curve for dfi and ASA using a test set that 
was generated from 10% of the whole data set. The area under the curve (AUC) for 
dfi and ASA was 0.71 and 0.56 respectively. TPR and FPR are true and false 
positive rates in predicting disease associated nsSNVs to be identified as non-
neutral, respectively. 
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operating characteristics (ROC) curve analysis for %dfi and %ASA to elucidate their 

ability to distinguish between disease and neutral phenotypes of nsSNVs. A randomly 

generated test set consisting of 10% of the entire data set (which only includes nsSNVs at 

interfaces) was used and the remaining 90% was used for training (Stone, 2014; Kumar et 

al., 2012). The area under the curve (AUC) for dfi is 0.71 and 0.56 for ASA (Figure 

3.5B). Therefore, the use of dfi appears to be advantageous for use in future diagnostic 

methods. 

3.4 Conclusion 

      This work has provided evidence that non-synonymous variants observed at protein 

interface sites with low dfi are more likely to be disease-associated. This may be due to 

the fact that protein interface sites with low dfi play a critical role in modulating the 

functionally important inter-dynamics of biological assemblies. Indeed, evolutionary 

based metrics as well as proteins’ static structure based metrics such as ASA have unique 

strengths in predicting the phenotypic impact, thus incorporating metrics based on 

structural dynamics (such as dfi) along with other metrics may increase the prediction 

accuracy of phenotypes of interface nsSNVs. 
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CHAPTER 4 

4 DYNAMICS AND ALLOSTERY IN GENETIC ANALYSIS OF ENZYMES 

 

As excerpted from:  

Butler, B., Kumar, A., and Ozkan, S.B. “DARC spots: dynamic allosteric residue 

coupling reveals disease mechanism for Gaucher disease and nSNVs across the 

proteome,” Nature Communications, Submitted. 

 

4.1 Introduction 

 Advancements in genome sequencing have led to an exponential growth in the 

number of known non-synonymous single nucleotide variants (nSNVs). Each individual 

genome contains millions of variants, many of which are rare nSNVs (Kumar et al., 

2011). Further, variations in exomes (protein coding regions) have been associated with 

more than a thousand major diseases (Kumar, Butler, et al., 2015; Nussinov and Tsai, 

2013; S. Kumar et al., 2009; Kumar et al., 2011). The grand challenge has been 

transforming exome variation data into biomedically relevant information that informs 

actionable treatment recommendations. The amount of nSNV data found through 

genome-wide association studies, whole-genome sequencing, and exome sequencing has 

led to a vast array of computational techniques that leverage evolutionary, biophysical, 

structural, and dynamics information to assess the impact of nSNVs on protein function 

and, thus, phenotypic expression. However, despite these prodigious efforts, explicitly 

defining the relationships between disease and nSNVs, estimating the level of risk of a 
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given individual, and elucidating the underlying molecular mechanisms remains a hurdle 

yet to be surmounted (Kumar, Butler, et al., 2015; Nussinov and Tsai, 2013; S. Kumar et 

al., 2009; Kumar et al., 2011). 

 Shedding light on the molecular mechanisms of missense nSNVs is particularly 

crucial; the manner in which missense variants impact protein function enables us to 

correctly identify a causal relationship between specific variations and disease 

contributions. Moreover, a better understanding of these mechanisms can potentially 

provide novel therapeutic strategies. It is known that disease-associated variants alter the 

stability of a protein (Guerois et al., 2002; Alber, 1989; Yue et al., 2005). Conversely, a 

recent study based on high-throughput functional assays of over 2000 variants revealed 

that only one-third of mutations led to a decrease in protein stability (Sahni et al., 2015). 

Rather than affecting stability, disrupting binding or both, a large fraction of disease-

associated variants impair protein-ligand function or enzymatic activity (Butler et al., 

2015; Kumar, Butler, et al., 2015; Wang et al., 2012). Additionally, disease-associated 

variants are not always located at highly conserved (i.e., functionally critical) positions. 

Since current state-of-the-art methods focus or even rely on assessing these conserved 

positions, they often fail to accurately diagnose variants at non-conserved positions (S. 

Kumar et al., 2009). To confound the problem, studies that combine evolutionary 

approaches with biochemistry for protein design have also revealed disease-causing 

mutations at non-conserved sites can involve very complex and poorly understood 

mechanisms. The basic evolutionary principle that biochemically similar substitutions on 

non-conserved sites do not alter function does not necessarily hold. On the contrary, 

regardless of biochemical similarity, amino acid substitutions at non-conserved sites lead 
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to a wide-range of outcomes, increasing or decreasing functional activity at up to three 

orders of magnitude (i.e., rheostatic pattern of change) (Swint-Kruse, 2016).  

 Conformational dynamics of proteins are essential to explain the complexity of 

functional responses upon an amino acid substitution. In proteins, all positions are 

dynamically linked to each other within a network, where the strength of each link varies 

across the protein. These intrinsic dynamics are structure-encoded and govern protein 

function (Haliloglu and Bahar, 2015). The obsolete view of the single native structure has 

been long replaced by “an ensemble of substates” that accurately represent the native 

state (Tawfik and Tokuriki, 2009). In the ensemble model, a protein samples a variety of 

conformations through local changes such as loop motions, side-chain rotations, or global 

changes through domain rearrangement. Allostery, commonly known as regulation at a 

distance, is a widely used emergent property of this ensemble view. Rather than forming 

a new structure, a ligand binding to a remote site promotes a shift in dynamics, changing 

the intrinsic structure-encoded dynamics and dynamic linking (i.e., distribution of 

accessible conformational states in the ensemble), promoting easy access to certain 

conformers for allosteric regulations (Nussinov and Tsai, 2013; Guo and Zhou, 2016; 

Woldeyes et al., 2014). Furthermore, the ensemble view also agrees with the evolutionary 

adaptability of a protein in which the same conserved 3D native fold can adopt new 

functions (Haliloglu and Bahar, 2015). Mutations throughout protein evolution alter 

conformational dynamics, shifting the distribution of the ensemble and lead to the 

emergence of new functions (Zou et al., 2015; Kim et al., 2015; Glembo et al., 2012; 

Bhabha et al., 2013; Campbell et al., 2016) and adaption to different environments (Villy 

Isaksen et al., 2016). 
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 The importance of protein structure-encoded dynamics in allostery, evolution, and 

disease, prompted the recently developed position-specific metric, dynamic flexibility 

index (DFI) that can statistically measure the functional contribution and impact of each 

amino acid position on structural dynamics. DFI quantifies the resilience of a given 

position to the perturbations that occur at different parts of the protein using linear 

response theory, capturing the multi-dimensional effects when the protein structure is 

displaced out of equilibrium and identifies flexible and rigid positions in the structure 

(Nevin Gerek et al., 2013; Butler et al., 2015). DFI can be considered a measure of the 

local conformational entropy of a given position within the set of interactions governed 

by the 3D fold of the protein due to its ability to probe the conformational space of a 

protein at the residue level. A DFI analysis on the evolution of different protein families, 

including green fluorescence proteins (GFP) (Kim et al., 2015) and beta-lactamase 

inhibitors (Zou et al., 2015), has revealed that mutations of conserved regions observed 

during evolution alter the local flexibility/rigidity of different parts of the structure;  this 

leads to changes in structure-encoded dynamics and the emergence of new biological 

functions. A proteome-wide conformational dynamics analysis of over 100 human 

proteins showed strong correlations between DFI profiles and corresponding evolutionary 

rates of individual positions (Nevin Gerek et al., 2013). Another analysis of DFI profiles 

of the wild type light chain subunit of the human ferritin protein along with its neutral 

and disease forms revealed that neutral variants exhibit similar DFI profiles to the wild 

type, in which experimentally-determined critical functional sites act as hinges (i.e., sites 

with low flexibility) for controlling global motions. However, the disease mutations 
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caused these hinges to become loose (i.e., increased flexibility), impairing the structural 

dynamics and function of the protein (Kumar, Glembo, et al., 2015). 

 The present study focuses on disease nSNVs occurring in human enzymes that are 

commonly misdiagnosed by machine learning approaches based on evolutionary 

principles. The misdiagnosed nSNVs are usually at non-conserved sites, distal to catalytic 

sites, yet they impair enzymatic function and lead to disease phenotypes. Our earlier 

studies suggested that conformational dynamics might provide insights for these cases 

(Kumar, Glembo, et al., 2015; Butler et al., 2015). We investigated the dynamic allosteric 

coupling of disease sites with the catalytic sites using our dynamic coupling index (DCI) 

metric. DCI can identify dynamic allosteric residue coupling sites (DARC spots), which 

are strongly coupled to active sites that are critical for function. A mutation at a DARC 

spot likely influences the conformational dynamics and allosteric regulation and thus, is 

highly susceptible to disease phenotype.    

 One of the signature human enzymes with over 200 disease-associated nSNVs is 

β-Glucocerebrosidase (GCase). Missense mutations in the GCase lead to Gaucher disease 

(GD) (Lieberman, 2011). GD is a human catabolic disorder that leads to a buildup of its 

substrate Glucocerebroside (GlcCer). The buildup of GlcCer leads to “Gaucher cells” 

which result in enlarged organs, splenomegaly, hepatomegaly and, in severe cases, 

central nervous system disorders (Hruska et al., 2008). GD was first discovered by 

Philippe Gaucher in 1882 while treating a woman with an enlarged spleen, and is highly 

prevalent in the Ashkenazi Jewish population (Beutler et al., 1993; Hruska et al., 2008). 

Most of the mutations are far from functional catalytic sites but still impact enzymatic 

rates (Lieberman, 2011). We focused on four specific disease mutations—H255Q (Stone 
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et al., 2000), M123V (Finn et al., 2000), V375L (Finn et al., 2000) and N370S 

(Lieberman et al., 2007)—where the common prediction servers (e.g., PolyPhen-2 and 

SIFT) misdiagnosed them as benign. These disease mutations are shown to be expressible 

in a stable, folded protein, yet the catalytic activity of the protein is significantly reduced. 

Previous GD studies have catalogued mutations that have genotypic and phenotypic 

correlations (Beutler et al., 2005; Hruska et al., 2008). However, few studies investigated 

the mechanistic impact of these mutations on conformational dynamics and allosteric 

regulation (Lieberman et al., 2007).  

 Here we report a case study of GCase, which revealed that GD mutations disrupt 

allosteric regulation due to changes in dynamic flexibility around the catalytic sites, 

thereby impacting the function of the enzyme. Thus, the disease mutation sites manifest 

as key dynamic allosteric coupling sites (i.e., DARC spots). The results indicate that DFI 

can identify sites in GCase where mutations have a severe functional impact. To further 

study the role of dynamics and allostery in missense variants, we conducted a proteome-

wide DFI analysis on a set of enzymes showed that DFI is a robust predictor of the 

impact of nSNVs and is complementary to established evolutionary metrics.   

4.2 Results  

4.2.1 Missense Variants of GCase 

 Over a century of research on Gaucher Disease (GD) has provided an extensive 

catalogue of missense mutations of GCase that lead to the disruption of the enzymatic 

function of the protein. GCase is a member of the family of glycoside hydrolases that 

uses catalytic glutamates for general acid/base hydrolysis. Specifically, GCase 

hydrolyzes its primary substrate, glucocerebrosidase, into glucose and ceramide, and its  
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secondary substrate glucosphingosine, into glucose and sphingosine. GCase (PDB code: 

1OGS) is a 497-residue protein that consists of three domains. As Figure 4.1 shows, the 

first domain (residues 1-85) is an anti-parallel β-sheet (red); the second domain (residues 

86-424) is a TIM barrel that contains the active site (blue); the third domain (residues 

425-497) is a β-barrel (green). The active site consists of two residues, Glu235 and 

Glu340 obtained from the Catalytic Site Atlas (Porter et al., 2004). Residues that line the 

glucose-binding region are Arg120, Asp127, Phe128, Trp179, Asn234, Tyr244, Phe246, 

Try313, Cys342, Ser345, Trp381, Asn396, Phe397, and Val398. The aromatic residues 

are important for ligand recognition and the polar residues stabilize the substrate through 

the formation of hydrogen bonds (Henrissat, 1991). 

 

Figure 4.1: Structure and active region of GCase (A) Ribbon diagram of GCase 
(PDB code: 1OGS), an enzyme whose malfunction leads to Gaucher Disease 
(GD). GCase is a member of the family of glycoside hydrolases that use 
glutamates for hydrolyzing glucocerebrosidase into glucose and ceramide. It is 
comprised of three domains. The first domain (red) is an anti-parallel βpsheet; the 
second domain (blue) is a TIM barrel that contains the active site. The third 
domain (green) is a βpbarrel. (B) A close-up view of the active region contained 
in the second domain including the two catalytic sites; the catalytic sites Glu235 
and Glu340 are shown as grey spheres. 
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 Despite the identification of over 200 GD-associated missense mutations, there is 

little mechanistic insight as to how these mutations disrupt the function of GCase 

(Beutler et al., 2005; Sidransky, 2004; Grabowski, 2004; Germain, 2004; Lieberman et 

al., 2007). Determining the mechanism of GD is confounded by the anomaly that GCase 

with a GD-associated mutation is expressed as a stable protein, yet the catalytic activity is 

reduced. We address this by investigating the role of conformational dynamics in GCase 

by using the dynamic flexibility index (DFI). The DFI method utilizes the perturbation 

response scanning method (PRS) (Nevin Gerek et al., 2013) that couples linear response 

theory (Ikeguchi et al., 2005) along with the covariance matrix of the C-alpha atoms 

obtained from molecular dynamics simulations or an elastic network model. The method 

consists of applying a random Brownian kick as a mechanical perturbation to a single 

residue, and then computing the fluctuation response profile of all other residues in the 

network to this perturbation. Repeating this random perturbation sequentially for each 

site, we are able to compute the normalized response profile (i.e., DFI score) for every 

residue in the protein. The residues with low DFI indicate dynamic stability; they can 

absorb and transfer a perturbation throughout the chain in a cascade fashion. Low DFI 

positions will often be the hinge parts of the protein that control critical functional 

motions, similar to joints in a skeleton (i.e., the motion of a forearm is only possible by 

the elbow acting as a hinge). Conversely, sites with high DFI are more susceptible to 

perturbations in the amino acid chain. They are structurally flexible sites and important 

for biochemical function (e.g., anchoring sites during binding or signaling). DFI can, 

therefore, elucidate the mechanism of missense mutations by measuring changes in 

conformational dynamics and dynamic allosteric coupling. 
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 The mutant forms of GCase include a neutral mutation, Q169R, and four disease 

mutations that are shown to produce structurally stable proteins (Beutler et al., 2005; 

Sidransky, 2004). The four disease-associated mutations, H255Q (Stone et al., 2000), 

M123V (Finn et al., 2000),V375L (Finn et al., 2000) and N370S (Lieberman et al., 

2007). M123V, V375L and N370S, lead to mild type I GD, which is the most frequent 

non-neuropathic form of the disease (Sidransky, 2004); H255G leads to severe type II 

GD which results in traumatic and rapid neurological devastation (Sidransky, 2004). The 

neutral mutation, Q169R, and the disease mutations—H255Q, M123V, V375L—were 

found in the HumVar database (Adzhubei et al., 2010). These disease mutations provided 

an excellent test set, as evolution-based servers have misdiagnosed them as neutral. The 

mutant forms were modeled using the mutagenesis wizard in PyMol (Schrodinger, 2010) 

and the wild type crystal structure was obtained from the Protein Data Bank (PDB code: 

1OGS). The N370S mutation was chosen for two reasons. First, this mutation is 

commonly found in approximately 70% of the Ashkenazi Jewish population and has been 

extensively studied (Lieberman et al., 2007). Second, it is not necessary to model this 

mutant structure like the other variants since the crystal structure of the N370S mutant is 

available (PDB code: 3KE0). This allows us to compare the native equilibrium dynamics 

of N370S using the crystal structure as the initial structure for the simulation with the 

modeled mutant structures of the other mutations to verify the efficacy of the models.  

 The spatial distance of each disease mutation to a catalytic site was determined by 

computing the distances between their respective C-alpha atoms. All four mutations were 

found to be located remotely from the active site of GCase with distances ranging from  
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12.2Å to 22.2Å (Figure 4.2A). This rules out the possibility that direct interactions with 

the active site disrupted the function upon mutation.  

4.2.2 Disease Mutations Alter Conformational Dynamics 

 The decreased enzymatic activity upon mutation suggests that the mutation sites 

are allosterically coupled to the catalytic sites (Glu235 and Glu340). To verify this, we 

computed the dynamic coupling index (DCI) scores for each site, which is a site-specific 

metric that quantifies the degree of dynamic allosteric residue coupling with specified  

 

Figure 4.2: Disease mutations of GCase. (A) The positions of the four disease 
mutations (red sticks)—M123V, H255G, V375L, and N370S—are mapped onto 
the crystal structure of GCase (PDB code: 1OGS). The mutations M123V, V375L, 
and N370S are known to lead to mild type I Gaucher Disease while H255G leads 
to severe type II Gaucher Disease. The catalytic sites are shown as gray spheres. 
The distance between the C-alpha atom of each mutation site and the catalytic sites 
are labeled with a yellow dashed line. The large distances, ranging from 12.2–
22.2Å, indicate that mutation sites are not in direct interaction (i.e., van der Walls 
interaction) with the catalytic sites. (B) A ribbon diagram of GCase is colored 
according to its DCI profile. The DCI metric measures the dynamic allosteric 
residue coupling to functional residues, which here are the catalytic sites (grey 
spheres). Positions in red are highly coupled to the catalytic sites, whereas 
positions in blue are weakly coupled to the catalytic sites. The disease mutations 
(yellow, orange, and red sticks) are strongly coupled to the active site. 
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sites that are critical for function (e.g., active sites such as catalytic residues). Essentially, 

it measures the change in the response fluctuation profile of a site upon perturbing only  

functional sites as compared to the average response profile of perturbing all sites. Sites 

distal to the active sites that exhibit high DCI values are DARC spots (i.e., dynamic 

allosteric residue coupling spots), and a mutation there would likely also impact the 

active sites. Figure 4.2B presents a ribbon diagram of GCase colored according to its DCI 

profile from a spectrum of red-orange-yellow-green-cyan-blue, where red indicates sites 

that are strongly coupled to the catalytic sites (high DCI), whereas sites in blue are 

weakly coupled (low DCI). The disease mutations exhibit high DCI (yellow/orange), 

indicating they are dynamically linked to the catalytic sites. In addition to these four 

disease mutations, we also computed the distance of 84 other missense GD mutations 

 

Figure 4.3: The probability distribution of the minimum distances to nearest 
catalytic sites (u��� ) of the disease sites exhibiting %DCI >0.5 (i.e., highly 
coupled). The minimum distance, u���, is the distance of a given nSNV site to the 
closest catalytic based on their relative C-alpha positions. The distribution of 
disease nSNVs shows that over 80% are distally located to catalytic sites, which 
indicates that they are dynamically coupled (DARC spots) important for allosteric 
regulation. 
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(categorized as severe impact (Beutler et al., 2005)) from the catalytic sites and compared 

this to their respective DCI scores. Approximately 80% of the disease mutations that 

exhibited high DCI (>0.5) were not in direct contact with the catalytic sites (See Figure  

4.3). This highlights the role of dynamic allosteric residue coupling between mutation 

sites and catalytic sites, which suggests that mutations at DARC spots alter 

conformational dynamics at catalytic sites, leading to suppression of enzymatic activity in 

GCase (Sinha and Nussinov, 2001).   

 To further elucidate the change in conformational dynamics upon mutation, we 

obtained DFI profiles of each mutant form and compared them with that of the wild type. 

The average DFI profile of the disease mutants differs from the wild type, particularly in 

the first and second domains (TIM barrel) where the catalytic site exhibits lower DFI 

values at specific locations (Figure 4.4A). Our earlier analysis on ancestral proteins and 

proteome-wide analysis of missense variants suggests that the distribution of rigid and 

flexible parts of the proteins and their communication through dynamic allosteric 

coupling channels underlies the function of the protein (Glembo et al., 2012; Zou et al., 

2015; Kumar, Butler, et al., 2015). The change in the average DFI profile of disease 

mutants compared to the wild type agrees with our earlier findings that the selected 

mutations allosterically affect conformational dynamics (Kumar, Glembo, et al., 2015). 

Specifically, mutations not only affect conformational dynamics of sites within the 

vicinity of mutation, but also affect the dynamics of distal sites through dynamic 

allosteric coupling. 

 Figure 4.4A shows the average DFI profile of the four disease mutants (red) as 

compared to the wild type (black). There is an appreciable decrease in the DFI profile of  
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Figure 4.4: DFI profile of disease mutants. (A) The DFI profile of the wild type 
(black) and average DFI of disease mutants (red). Residues exhibiting high DFI are 
the most flexible parts of the protein, whereas residues with low DFI are the most 
rigid parts of the protein. The average disease profile is significantly different than 
the wild type indicating that the disease variants rigidified at specific regions of the 
protein. (B) The color-coded ribbon diagrams of GCase using pDFI ([DFIdisease – 
DFIwt] / DFIwt) profiles for each disease mutant, where red indicates an increase in 
the flexibility of the residue upon mutation; blue indicates a decrease in the 
flexibility. The catalytic residues at the active site are shown as spheres. The 
residues represented as sticks are key sites in binding recognition and ligand 
stability. Overall, all disease mutants show a rigidification around the active site 
suggesting alteration of ligand binding rates as a plausible mechanism. (C) The 
color-coded ribbon diagram of loop1 based on pDFI for the disease mutant 
N370S, which shows an increase in flexibility of loop1 (red). 



 

 

70

mutants compared to wild type in three regions. Interestingly, the first region, residues 

59-65, includes the glycosylation site N60 (Figure 4.4A) which is known to be critical for 

enzymatic function (Pol-Fachin et al., 2016). It follows that a drastic decrease in the  

flexibility of this position as exhibited in disease mutants may interfere with 

glycosylation. The functional role of the other two regions, 187-190 and 405-409  (Figure 

4.4A) are not known. However, the mutation D409H is a unique case where a an 

intracellular change in GCase activity generates a phenotypic response, including specific 

cardiovascular symptoms (Pasmanik-Chor et al., 1996). Likewise, region 187-190, 

includes position N188 where the atypical mutation N188S is associated with myoclonic 

epilepsy (Kowarz et al., 2005) due to decrease of functional activity in GCase (Tajima et 

al., 2010). 

 We further quantified the change in flexibility per position upon a disease 

mutation by computing the fractional change in DFI as ΔDFI ([DFIdisease  – DFIwt] / 

DFIwt) with particular interest in positions identified as binding and recognition sites near 

catalytic sites. In Figure 4.4B ribbon diagrams of the mutant structures are color-coded 

according to their ΔDFI profiles for each disease mutant. Regions that exhibit a large 

decrease in DFI as compared to the wild type become more rigid upon mutation (blue). 

Interestingly, Figure 4.4B shows that each mutant structure shows a consistent trend 

where disease mutations lead to the rigidification of the two catalytic sites. Moreover, 

most of the positions critical for ligand binding and recognition (shown as sticks in 

Figure 4.4B) exhibit a large decrease in DFI, suggesting that the decreased flexibility 

may impair catalytic turnover rates in enzymatic function. 



 

 

71

 Among the 5 loops surrounding the active site, we observe that loop1 (312-317) 

and loop4 (237-248) exhibit an increase in DFI (Figure 4.4A), suggesting that increased 

flexibility of these loops could contribute to the decrease in enzymatic activity by 

hindering the accessibility of the ligand to the active site as observed in previous work 

(Li et al., 2015). In accordance with work of Liebermen et al (Lieberman et al., 2007), 

the N370S mutant shows the most drastic increase in DFI of loop1 (Figure 4.4C). Based 

on crystal structures of IFG bound N370S, unbound N370S and wild type, it was 

proposed that binding of IFG to loop1 of the N370S mutant leads to increased enzymatic 

efficiency and trafficking due to stabilization of loop1, locking GCase into a substrate-

bound conformation (Lieberman et al., 2007). The increase flexibility of loop1 in N370S 

allows conformations where Tyr313 would hydrogen bind to Glu235, hindering the 

accessibility of substrate to the active site (Lieberman et al., 2007). Indeed, Figure 4.4C 

shows a notable increase in flexibility of Tyr313 and Phe316 (i.e., the positions where 

IGF binds and stabilizes).  

 In summary, the change in DFI profiles of disease mutants provides an 

explanation as to why the mutant forms are expressed as stable proteins yet have 

decreased enzymatic activity. The disease mutations lead to a protein where certain 

regions (binding and recognition sites) become highly rigid while other regions (loop1 

and loop4) exhibit enhanced flexibility. Importantly, the flexibility was restricted to only 

these localized changes, as a global increase in flexibility would likely lead to a drastic 

destabilization of the enzyme. Therefore, the disease mutants are still stable enough to be 

expressed. In addition to increased flexibility of loop1 and loop4, we also observed 

decreased flexibility of ligand recognition sites in disease mutants as compared to the 
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wild type, which suggests another possible mechanism: when the orientations of 

recognition and binding sites become restricted, they lose the required flexibility 

necessary to accommodate the ligand binding event. This may lead to decreased catalytic 

turnover rates of the enzyme and obstruct enzymatic function. Furthermore, these results 

show an allosteric mechanism in which mutation sites that are not in direct contact (i.e., 

Van der Waals interactions) with the critical functional sites could still alter their 

conformational dynamics. 

4.2.3 Loss of Dynamic Allosteric Coupling in Missense Variants 

 In general, GCase is a large protein with three domains, where dynamic allosteric 

coupling between residues in different domains, beyond the TIM Barrel active region, 

likely plays a role in overall function for this enzyme. Indeed it has been shown that 

interaction with Saposin C (SapC) is critical for GCase activity by remodeling the lipid 

membrane, presumably by helping GCase access the short head group of the lipid 

bilayers (Qin, 1996). Thus, dynamic allosteric coupling between the catalytic domain and 

the other two domains of GCase should play a key role in regulation of enzymatic 

function. We further investigated how dynamic coupling of each position to the two 

catalytic sites (E235 and E340) changes upon disease mutation using the dynamic 

coupling index (DCI). Here, we use DCI to determine whether or not disease sites are 

DARC spots, and if mutations at DARC spots impair the long-range dynamic coupling of 

catalytic sites to the rest of the chain. Interestingly, the DCI profiles of all four disease 

mutants showed a drastic decrease in dynamic allosteric residue coupling as shown in 

Figure 4.5A. It is remarkable that all disease mutants lead to a global loss of dynamic 

coupling with the two active site positions due to changes in dynamic flexibility, 
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particularly with the decreased flexibility of critical positions (i.e., binding recognition 

sites) near the catalytic sites. We further analyzed the fractional change in dynamic 

coupling of the catalytic sites as upon disease mutation compared to the wild type as 

ΔDCI ([DCIdisease – DCIwt] / DCIwt). Figure 4.5B shows ribbon diagrams of the mutant 

structures color-coded according to their ΔDCI profiles for each disease mutant. Regions  

 

Figure 4.5: DCI profiles of disease mutants. (A) The DCI profile of the wild type 
(black) and disease mutants—H255Q (red), M123V (blue), V375L (green), N370S 
(purple). The DCI metric measures the dynamic allosteric residue coupling to 
functionally critical residues in a protein, which in this case are the catalytic 
residues Glu235 and Glu340. Residues with high DCI values are strongly coupled 
to the catalytic sites; residues with low DCI values are weakly coupled to the 
catalytic sites. All disease mutants show a global loss in dynamic coupling to the 
catalytic sites. This global loss of allosteric coupling disrupts any allosteric 
pathway involved in the regulation and function of the protein. (B) A ribbon 
diagram of the disease mutants colored according to ΔDCI ([DCIdisease – DCIwt] / 
DCIwt). The catalytic sites are colored as grey spheres. The positions in red indicate 
an increase in dynamic coupling upon mutation as compared to the wild type. The 
positions in blue indicate a decrease in dynamic coupling upon mutation as 
compared to the wild type. All residues involved in ligand binding have decreased 
ΔDCI profiles, indicating a loss in allosteric coupling with the catalytic sites and a 
loss in allosteric regulation for enzyme catalysis.  
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that exhibit a large decrease in DCI as compared to the wild type become less coupled to 

the catalytic sites upon mutation (blue). The ΔDCI of all binding sites showed a severe 

loss in dynamic coupling to catalytic sites. These results suggest a plausible disease 

mechanism: a loss in dynamic coupling with catalytic sites, particularly binding 

recognition sites, can explain the drastic decrease in catalytic activity of GCase in disease 

mutants. It is worth noting that the modeled disease mutants exhibit similar DFI and DCI  

profiles with the N370S mutant in which the available crystal structure was used (PDB 

code: 3KE0), suggesting that the equilibrium dynamics of the modeled structures are 

reasonable and give consistent results with the simulation of the N370S crystal structure. 

 We did further analysis by comparing the DFI profiles of the neutral mutation, 

Q169R (found in the Humvar Dataset (Adzhubei et al., 2010)), to the disease mutation 

M123V. The Q169R mutation is accepted as neutral putatively due to its prevalence in a 

large portion of the human population and thus has not been associated with the disease. 

However, this must be taken with caution since recent studies have reported that variants 

 

Figure 4.6: Ribbon diagram of the ΔDFI profile of the Q169R neutral mutation 
compared to the M123V disease mutation. The neutral mutation Q169R shows a 
slight decrease in the flexibility of the active site and residues involved in binding, 
however the degree of rigidification is significantly less than that of the disease 
variant M123V. 



 

 

75

often observed in healthy individuals can still be weakly disruptive for molecular 

function (Bromberg et al., 2013). The ΔDFI profile of Q169R indicates that the dynamics 

are only slightly altered as compared to a much more significant change exhibited in 

M123V (Figure 4.6). In particular, the sites critical for binding and recognition show a 

minimal change in dynamics in Q169R as compared to those in M123V, which exhibits a 

large decrease in flexibility. This evidence further substantiates our proposed mechanism  

that local changes in dynamic flexibility due to a mutation disrupts critical dynamic 

allosteric residue coupling with the catalytic sites, hampering catalytic activity. 

 

Figure 4.7: Observed-to-expected ratio of severe Gaucher Disease mutations. 
The expected set is the dynamic coupling index (%DCI) distribution of all 
residues in the protein. The observed set is the %DCI distribution of all 
residues associated with a severe type II Gaucher Disease missense mutation 
(Beutler et al., 2005). The observed-to-expected ratio of %DCI shows that 
severe mutations are abundantly found at high %DCI, which are sites 
allosterically coupled to catalytic residues and disproportionately not found at 
sites of low %DCI. A mutation at high %DCI sites will allosterically impact 
the dynamics of functional sites, leading to disruption in dynamic coupling and 
decreased enzymatic activity. 
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4.2.4 A Majority of GD Variants at DARC Spots 

 Given the observation that the four disease mutations are allosterically coupled to 

the catalytic sites and lead to changes in DFI profiles of positions at distal sites in GCase, 

we speculated that this may be a general trend in 84 missense variants in GCase 

categorized as severe Type II GD (Beutler et al., 2005). The DCI values were ranked into 

percentiles (%DCI) and sorted into bins of .10. The observed-to-expected ratio of %DCI 

values were computed, where the expected values were based on the %DCI distribution 

of all sites in GCase, and the observed values were the %DCI values of the 84 mutations. 

Under the null hypothesis of no effect, the ratio of the expected and observed numbers of 

sites hosting disease mutations should be close to 1.0 for each %DCI bin. A strong 

relationship between severe mutation sites and dynamic allosteric coupling with the 

active site (i.e., those exhibiting high DCI) would reject the null hypothesis that disease 

mutations are distributed uniformly in sites with low and high dynamic coupling. This 

null hypothesis was rejected in our analysis (p <0.046). Figure 4.7 shows the observed-

to-expected ratio of %DCI which indicates that severe disease mutations are 

overabundant at high %DCI sites (%DCI value of 0.8-1.0) with values greater than 1.0. 

This evinces that mutations at DARC spots likely impact function, leading to disease 

phenotypes.  

4.2.5 Proteome-wide Analysis: Conformational Dynamics and DARC Spots 

 The role of site-specific structure-encoded dynamics was first demonstrated in a 

proteome-wide study using a dataset of Mendelian diseases, which revealed the 

correlation between the dynamic flexibility index (DFI) of residues in monomeric 

proteins and the biological phenotype of nSNVs (Nevin Gerek et al., 2013). A subsequent 
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study demonstrated the efficacy of DFI in analyzing the impact of nSNVs in biological 

assemblies (Butler et al., 2015). These studies confirmed the utility of structural 

dynamics-based measures as a way to predict the functional impact of nSNVs across the 

proteome. Here we investigated the role of dynamic allosteric residue coupling with 

catalytic sites in human enzymes. We computed DFI and DCI profiles for 75 monomeric 

enzymes containing 685 missense mutations in which the phenotype was known (See  

 Methods for the dataset). The DFI and DCI profile of each protein was converted to a 

percent ranking, %DFI and %DCI, so that the values could be compared across different 

proteins. As Figure 4.8A shows, the %DFI distribution for the 362 disease mutations  

exhibits a distinctly opposite trend as compared to the 323 neutral mutations (p <0.0001), 

in agreement with our previous findings (Butler et al., 2015; Kumar, Butler, et al., 2015). 

The average %DFI for disease variants is 0.37 while that for neutral variants is 0.6, 

quantifying the validity of DFI as a measure of the functional and biological impact of 

mutations. 

 

Figure 4.8: DFI and DCI distributions of nSNVs in a proteome-wide analysis of 
conformational dynamics of nSNVs. The %DFI distribution (A) and %DCI 
distribution (B) of 362 disease variants and 323 neutral variants expressed as a 
probability mass function (PMF). A student t-test comparing the disease and neutral 
distributions revealed a significant difference for both %DFI and %DCI (p 
<0.0001). 
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 We also calculated dynamic coupling index (DCI) profiles for the enzymes in our 

data set to measure the dynamic allosteric residue coupling of mutation sites to catalytic 

sites. A given mutation may not occur at a hinge (i.e., low %DFI sites) but can be 

strongly coupled to, and thus dynamically alter, a catalytic site from distances of over 

10Å. The DCI metric can, therefore, identify disease mutations that may have otherwise 

been overlooked by DFI. A mutation at a site that is highly coupled to an active site 

(%DCI >0.6) is a DARC spot that will likely disrupt function and lead to a disease 

phenotype. Figure 4.8B shows the %DCI distributions of 362 disease and 323 neutral 

mutations, which show opposite trends (p <0.0001). As expected, the frequency of 

disease variants begins to increase sharply for %DCI >0.6, confirming that sites highly 

coupled to catalytic sites are likely to be disease-associated. Some neutral mutations (i.e., 

abundant in human population) were also found at DARC spots, which suggests the 

possibility that substitutions at these positions may still impact function, being mildly 

disruptive as implied by other approaches (Bromberg et al., 2013; Reeb et al., 2016). The 

DCI metric is particularly useful for two reasons: first, it can discriminate between 

disease and neutral phenotypes for mutations that are not spatially close to active sites. 

Second, it can be used in conjunction with DFI to ascertain likely disease mutations with 

increased prediction accuracy.  

 Computational methods for diagnosing phenotypic effects of mutations (e.g., 

EvoD (Kumar et al., 2012), PolyPhen-2 (Adzhubei et al., 2013), SIFT (Ng and Henikoff, 

2003), PhD-SNP (Capriotti et al., 2006), PANTHER (Thomas et al., 2003), MutPred (Li 

et al., 2009), SNPs&GO (Calabrese et al., 2009), SNAP (Bromberg and Rost, 2007) and 

nsSNPAnalyzer (Bao et al., 2005)) can achieve accuracies between 70-80% on 
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independent, non-trained datasets. These metrics, which are largely based on 

evolutionary information such as conservation, tend to fail for disease variants at highly 

variable positions and benign variants at highly conserved positions (Kumar et al., 2011; 

S. Kumar et al., 2009). Thus, we further explored whether dynamics can be used as a 

complementary feature to evolution. From our original dataset we selected all instances 

where at least one evolutionary method misdiagnosed an nSNV phenotype (i.e., EvoD, 

PolyPhen-2, Sift). This subset of data was divided into 90% training and 10% test sets 

where the features %DFI and %DCI were used to train a logistic regression model to 

predict whether an nSNV was deleterious or neutral. We evaluated the performance of  

 

Figure 4.9: An ROC Curve for evolutionary misdiagnosed variants. From the dataset 
we selected all instances where at least one evolutionary method misdiagnosed 
nSNV phenotype (i.e., EvoD, PolyPhen-2, Sift). The dataset was divided into 90% 
training and 10% test sets and the features %DFI and %DCI were used to train a 
logistic regression model to predict whether an nSNV was deleterious or neutral. We 
evaluated the performance of our model by calculating an ROC curve, which yields 
an area under the curve (AUC) of 0.879, indicating that DFI and DCI are superior 
predictive metrics where evolutionary methods are deficient. Thus, dynamics can 
complement evolutionary methods in disease classification to obtain overall better 
results. A 5-fold and 10-fold cross-validation was also performed and shown in 
supplementary Figure 4.10. 
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our model by calculating an ROC curve (Figure 4.9), which yielded an area under the 

curve (AUC) of 0.879, indicating that DFI and DCI are predictive metrics and can 

complement evolutionary methods in classifying nSNVs. Furthermore, a 5-fold and 10-

fold cross-validation analysis resulted in a mean AUC of 0.79 and 0.77 respectively 

(Figure 4.10). These results suggest that dynamics-based metrics such as DFI and DCI 

can provide complementary information that can assist evolution-based models, 

particularly in the regime where they lack predictive ability.  

4.3 Discussion 

 Previous analysis of our work and that of others has demonstrated the important 

role of conformational dynamics in the emergence of new functions from protein  

 

Figure 4.10: A K-fold stratified cross-validation plot. From the dataset we selected 
all instances where at least one evolutionary method misdiagnosed nSNV phenotype 
of a variant (i.e., EvoD, PolyPhen-2, Sift). A stratified K-fold cross-validation was 
performed in which our dynamics-based features DFI and DCI were used to train a 
logistic regression model to predict whether an nSNV was deleterious or neutral. (A) 
In a 5-fold cross-validation the AUC ranged from 0.74 to 0.84 with a mean AUC of 
0.79. (B) In a 10-fold cross-validation the AUC ranged from 0.71 to 0.85 with a 
mean AUC of 0.77. This indicates that DFI and DCI are robust predictors for cases 
where the evolutionary methods are lacking in predictive power. 
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evolution (Zou et al., 2015; Kim et al., 2015; Glembo et al., 2012; Bhabha et al., 2013; 

Campbell et al., 2016; Kumar, Glembo, et al., 2015; Kumar, Butler, et al., 2015; Butler et 

al., 2015; Nevin Gerek et al., 2013). Our site-specific DFI analysis revealed that amino 

acid substitutions alter the flexibility/rigidity of various regions within a given protein, 

leading to the emergence of new functions. Additionally, DFI analysis of protein 

evolution showed that sites subject to drastic flexibility change during evolution are not 

the actual mutational sites but at sites distal to these mutations, indicating allosteric 

regulations play a role in protein evolution. For instance, the emergence of red-emitting 

proteins is achieved by 13 mutations of the least-evolved green fluorescence ancestor 

protein. While DFI profiles of these mutations do not significantly change, this 

distributed set of mutations on GFP causes enhanced flexibility of several positions near 

the chromophore that propagates throughout the protein, ultimately converging on a 

distant location for compensatory stiffening (Kim et al., 2015).  

 If nature uses dynamic allosteric residue coupling for the emergence of new 

functions it follows that disease mutations could exploit the same mechanism for disease 

pathogeny. Here we explored the mechanistic role conformational dynamics in human 

disease. In particular, we focused on how disease mutations influence protein dynamics, 

whether they impair critical allosteric residue couplings to catalytic sites and, 

subsequently, their impact on enzymatic function. We first analyzed the missense 

variants associated with GD. There are over 200 missense variants frequently observed in 

human populations that drastically decrease the enzymatic function of GCase and lead to 

different GD phenotypes (Hruska et al., 2008). Interestingly, we have found a majority of 
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disease mutations occur at DARC spots, meaning they have long-range dynamic coupling 

to the catalytic sites.  

 We did a rigorous evaluation of four disease variants that are often misdiagnosed 

as neutral in many evolution-based prediction methods. DFI profiles of GD mutations 

show a significant change in flexibility/rigidity profiles as compared to the wild type. In 

agreement with the earlier work of Liebermen et al (Lieberman et al., 2007) disease 

variants, particularly N370S, exhibited an increased flexibility of both loop1 and loop4 

and a decrease in flexibility of the sites involved in binding; both changes could interfere 

with enzymatic function. Overall, this analysis shows that mutations remotely alter the 

flexibility of the regions critical for the enzymatic function, a phenomenon we also 

observed in the emergence of new functions in protein evolution. Furthermore, disease 

mutations also lead to loss in dynamic allosteric coupling of the catalytic site with the rest 

of protein. This results in a global affect on the protein’s allosteric network and may 

significantly impact enzymatic function. As discussed in a review (Gunasekaran et al., 

2004), allostery is a common property among all proteins and is necessary for enzymatic 

function. In GCase, this network disruption could interfere with communication between 

the enzymatic domain and SapC interacting domains. In previous work we also observed 

how disease mutations altered the dynamic coupling of the functional loop in human 

ferritin (Kumar, Glembo, et al., 2015; Kumar, Butler, et al., 2015). 

 Lastly, we conducted a proteome-wide analysis of 75 monomeric human enzymes 

to investigate the role of conformational dynamics and dynamic allosteric residue 

coupling. To our knowledge, this is the first proteome-wide analysis of disease mutations 

in enzymes. We observed the same trend as seen in missense disease variants of GCase. 



 

 

83

Compared to neutral mutations, most of the disease mutations occurred at low DFI 

positions and/or have high DCI values indicating they are DARC spots. Interestingly, 

when we focused on cases that are challenging to correctly diagnose by evolution-based 

prediction methods, we observed that DFI and DCI was able to complement these 

methods and correctly predict at least 70% of misdiagnosed missense variants.  

 To summarize, we are in the era of rapid development of next-generation methods 

for whole-genome, whole-exome, and targeted sequencing that has generated an 

unprecedented amount of data. Among all the variation data, the most commonly 

observed variants are nSNVs, and identifying the nSNVs with pathogenic effects that 

contribute to disease or drug sensitivities is the primary goal of 21st century genomic 

analysis and phylomedicine. As stated in a review of allostery by Liu and Nussinov (Liu 

and Nussinov, 2016),  uniting the genetic code, which constitutes “the first secret of life,” 

and allostery, “the second secret of life,” could reveal a generalized disease mechanism 

and allow for discovery of novel drugs, as well as the blueprints for deeply innovative 

personalized treatment methods. 

4.4 Methods  

4.4.1 Dataset 

 A total of 75 individual monomeric protein structures from the Protein Data Bank 

(PDB) (Berman et al., 2000) were collected from a BLAST search of sequences with 

requirements of ≥80% sequence identity and ≥80% query coverage to ensure only 

structures that could be accurately mapped to human variation data were included. 

Human genetic variations were obtained from the HumVar and HumDiv databases 
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(Adzhubei et al., 2010) with a total of 685 non-synonymous single nucleotide variants 

(nSNVs), where 323 were neutral and 362 were deleterious.  

4.4.2 Determining Catalytic Sites 

 The catalytic sites were gathered from the Catalytic Site Atlas (CSA) database 

(Furnham et al., 2014) which identifies the residues that are directly involved in 

catalyzing the reactions of enzymes. Since these residues are critical for protein function, 

they were used as input into our dynamic coupling index (DCI) metric. The entries in the 

CSA were either “original entries” derived from the literature itself or “homology 

entries” based on sequence comparison with the literature-based original entries. In either 

case, the catalytic sites purported by the CSA should accurately represent functional sites 

on the protein. Our dataset contained 75 enzymatic proteins that mapped to entries in the 

CSA database.  

4.4.3 Calculating Functional-dynamics Profiles 

 The method for obtaining the dynamic flexibility index (DFI) is based on the 

perturbation response scanning (PRS) method (Atilgan and Atilgan, 2009), in which the 

C-alpha atom of each residue in the protein is modeled as a node in an elastic network 

model (ENM). The interaction between each node is modeled by a harmonic potential 

with a distance-dependent spring constant (Atilgan and Atilgan, 2009; Atilgan et al., 

2001). A small perturbation in the form of an external random force (i.e., Brownian kick) 

is sequentially applied on each node in the network and the perturbation response of all 

nodes is recorded according to linear response theory as 

 ?∆�D72-6 = ?aD72-72L6 ?∆�D72-6 
 

(4.1) 
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Where � is the external random force, aL� is the inverse Hessian, and ∆� is the 

positional displacement of all N nodes in three dimensions. Each perturbation is 

performed in ten different directions to ensure an isotropic response. The perturbation is 

repeated for every node in the network, and the positional displacements ∆� of each node 

are stored in a perturbation matrix � given by 

 ?�D2-2 =
hi
ii
j ∆|�6|6 ∆|��|6 ⋯ ∆|�2|6∆|�6|� ∆|��|� ⋯ ∆|�2|�⋮ ⋮ ⋱ ⋮∆|�6|2L6 ∆|��|2L6 ⋯ ∆|�2|2L6∆|�6|2 ∆|��|2 ⋯ ∆|�2|2 kl

ll
m
 (4.2) 

Where �∆���� = �〈∆��〉 is the magnitude of the positional displacement of each residue i 

in response to a perturbation at residue j. The DFI score of residue i is defined as the sum 

of the total displacement of residue i induced by a perturbation on all residues, which is 

computed by taking the sum of the ith row of the perturbation matrix A, 

 �{�� = ∑ �∆���2��6 �∑ ∑ |∆��|�2��62��6  

 

(4.3) 

Where the denominator is the total displacement of all residues, used as a normalizing 

factor. 

 Recently, we have extended this method to identify allosteric links or dynamic 

coupling between any given residue and functionally important residues by introducing a 

new metric called the dynamic coupling index (DCI) (Kumar, Glembo, et al., 2015). The 

DCI metric can identify DARC spots, which are sites that are distal to functional sites but 

control them through dynamic allosteric coupling. This type of allosteric coupling is 

important; sites with strong dynamic allosteric coupling to functionally critical residues 

(DARC spots), regardless of separation distance, likely contribute to the function as well. 
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Thus, a mutation at such a site can disrupt the allosteric dynamic coupling or regulation, 

leading to functional degradation. As defined, DCI is the ratio of the sum of the mean 

square fluctuation response of the residue i upon functional site perturbations (i.e., 

catalytic residues) to the response of residue i upon perturbations on all residues. DCI 

enables us to identify DARC spot residues, which are more sensitive to perturbations 

exerted on residues critical for function. This index can be utilized to identify the residues 

involved in allosteric regulation. It is expressed as 

 �R�� =
∑ �∆����2��������� ��2���������  ,z¡��¢�£�¤¥¦∑ |∆��|�2��6 ,`  

 

(4.4) 

Where �∆���� is the response fluctuation profile of residue i upon perturbation of residue 

j. The numerator is the average mean square fluctuation response obtained over the 

perturbation of the functionally critical residues Nfunctional and the denominator is the 

average mean square fluctuation response over all residues. As discussed below, the DFI 

and DCI profiles can also be computed using the covariance matrix obtained from 

Molecular Dynamics simulations rather than the inverse Hessian of the elastic network 

model.  

4.4.4 Molecular Dynamics Simulations 

 Molecular Dynamics (MD) simulations were performed using the AMBER 14 

MD package (Pearlman et al., 1995).  Simulations were run using the Amber14SB 

forcefield. The TIP3P (Sun and Kollman, 1995) water model was used for solvation. The 

pmemd.cuda (Salomon-Ferrer et al., 2013) executable of the AMBER14 package was 

used for GPU acceleration. All simulations were run for 50ns. 
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 To obtain dynamics for each variant, each trajectory was divided into 5ns 

windows. The covariance matrix G for each window was extracted, instead of the inverse 

hessian in the ENM (as in Equation 1), and used to calculate the corresponding DFI and 

DCI profiles as 

 ?∆�D72-6 = ?�D72-72?∆�D72-6 
 

(4.5) 

The DFI and DCI profiles calculated from the last four windows (the final 20ns) were 

averaged to calculate an average DFI and DCI profile. We further investigated the change 

in dynamics upon mutation compared to the wild type structure using ΔDFI and ΔDCI. 

The delta-DFI (ΔDFI) profile was calculated as 

 ∆�{�� = �{�§�¨©¤¨© − �{�ª¢�{�ª¢  

 

(4.6) 

Where DFIdisease is the dynamics profile for the mutated protein structure and DFIwt is the 

dynamics profile for the wild type structure. Similarly, the delta-DCI (ΔDCI) profile was 

calculated as 

 ∆�R�� = �R�§�¨©¤¨© − �R�ª¢�R�ª¢  

 

(4.7) 
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CHAPTER 5 

5 ESTIMATING DYNAMICS FROM PROTEIN SEQUENCES 

 

 We describe a novel approach that estimates the dynamics profile of a protein 

from its amino acid sequence. This de novo approach leverages the evolutionary principle 

of coevolution and the Gaussian network model (GNM). We demonstrate that our 

sequence-based GNM approach produces values in good agreement with crystallographic 

B-factors as well as theoretical values predicted from the original GNM that uses the 

structure with a distance cutoff. Remarkably, the results also suggest the ability of our 

sequence-based approach to classify the phenotypes of genomic variants across the 

proteome. 

5.1 Introduction 

 The advent of high-throughput genomic sequencing has led to a burgeoning of 

sequences, providing an unprecedented amount of data for genomic analysis. 

Furthermore, this has also driven the rapid classification of novel genetic variations 

through genome-wide association studies (M. J. Li et al., 2012; Xie et al., 2014). Genetic 

variations usually manifest as non-synonymous single nucleotide variants (nSNVs) that 

can severely impact protein function and lead to disease. Evolutionary approaches based 

on positional amino acid conservation are the most common way to diagnose nSNVs. 

Protein dynamics can also be used to elucidate the functional impact of nSNVs and 

mechanisms of disease, and some recent studies have evinced that a site-specific 

conformational dynamics was capable of diagnosing nSNVs irrespective of evolutionary 
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conservation (Nevin Gerek et al., 2013; Butler et al., 2015; Kumar, Butler, et al., 2015). 

This was the first implementation of site-specific conformational dynamics into proeome-

wide analysis to predict the functional impacts of nSNVs. Although the importance of 

protein dynamics in genetic variation analysis is undeniable, the 3D structure from the 

Protein Data Bank (Berman et al., 2000) is still required to calculate protein dynamics. 

This drastically limits the range of applicability in genomic analysis, since there are 

exponentially more sequences than experimental structures.   

 Recently, coevolution has become a popularized tool for its ability to predict 

structural contacts of 3D structures from sequence information (Marks et al., 2011; Hopf 

et al., 2014; Morcos et al., 2011; Marks et al., 2012; Hopf et al., 2012). Coevolving 

residues are inferred from a multiple sequence alignment (MSA) of a given protein 

family, whereby if two given amino acids exhibit concordant patterns of evolution 

throughout the MSA then they are assumed to be close in spatial proximity in the folded 

3D structure. For a given protein family, the conservation of certain mutations over 

different homologs serves as a restraint on function, which is why there can be many 

different sequences in a family that lead to a protein with the same function. Thus, this 

evolutionary principle allows us to leverage sequence information to describe protein 

topology, making de novo structure predictions possible (Marks et al., 2012). It has been 

reported that only one correct contact for every 12 residues in a protein is necessary for 

accurate topology-level modeling (Kim et al., 2014). A study by Marks et al. used 

coevolution to predict 15 structures from different fold classes (ranging between 50-260 

residues), including a G-protein coupled receptor (a class of membrane proteins that are 

notoriously difficult to predict) with minimal RMSD error between 2.7–4.8 Å relative to 
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the known structure (Marks et al., 2011). In addition to structure prediction, coevolution 

analysis has also been used to identify critical interactions between protein complexes 

(Hopf et al., 2014) important functional sites (Marks et al., 2012) and allosteric response 

(Smock et al., 2010). The use coevolution in structure prediction is largely possible for 

two reasons. First, the amount of sequence data for different protein families is sufficient 

to be leveraged by this technique to make predictions. Second, the methods for inferring 

coevolving residues from an MSA are becoming increasingly superior and accurate (de 

Juan et al., 2013). 

 Inferring evolutionary couplings from an MSA are based on three primary 

approaches: maximum entropy models, Bayesian network models, and machine learning. 

A problem in coevolution analysis is that many residue pairs predicted to be correlated in 

are not close in spatial proximity, and thus are not true structural contacts. This is mainly 

due to transitive correlations in the MSA of the protein family that leads statistical 

“noise” and incorrectly predicted couplings (indirect couplings). For instance, if residue 

B is correlated with A and C, then we may find that A and C are correlated even though 

they may not be structural contacts–A and C is a transitive correlation. Thus, the 

challenge is discerning coevolving pairs that are true spatial contacts (direct couplings) 

from the background of noise created by weakly correlated mutations due to transitive 

effects that are not true spatial contacts (indirect couplings). Mutual information (MI) is a 

statistical model that has been used to infer coevolving residue pairs in an MSA 

(Gouveia-Oliveira and Pedersen, 2007; Dunn et al., 2008). It considers the frequency of 

occurrence of amino acids in each column i,j in a given MSA and uses Shannon 

information entropy to determine which pairs are most likely correlated. For a given 



 

 

91

column i in an MSA, ��I«K is the frequency count of a particular amino acid, A.  

Likewise, for a pair of columns i,j in an MSA, ���I«, UK is the frequency of amino acids, 

A and B, appearing simultaneously in the two columns. Then the MI score indicates the 

degree of correlation between two residues i,j (columns in the MSA) as  ���� =
∑ ���I«, UK ln z�I],AKz�I]KzIAK],A  (Cover and Thomas, 2006). The MI method is a local measure 

of correlations (i.e., it only considers the correlation of one residue pair at a time), thus it 

is inherently limited by the transitivity effect and cannot discern direct from indirect 

couplings (Marks et al., 2011). For this reason, MI is not sufficient to describe spatial 

proximity of contacts in the 3D structure. Direct coupling analysis (DCA) is a global 

approach that can disentangle direct couplings from indirect couplings and captures true 

spatial contacts (Morcos et al., 2011). This statistical approach is based on the maximum 

entropy method, which gives the maximal probability function of residue pair 

correlations over the whole sequence of length L as ®I«6, … , «¯K =
6° expP∑ <��I«, UK + ∑ ℎ�I«K��µ� Q, with Z being a normalizing factor, <��I«, UK the 

pairwise couplings, and ℎ�I«K a local bias field. This formulation is analogous to the 

Ising model describing neighboring spin interactions in ferromagnetic materials. The 

pairwise couplings <��I«, UK and ℎ�I«K are solved by various numerical technqies (e.g., 

mean field approximation). Then the strength of coupling between residue pairs is given 

by their direct information (DI) score as ���� = ∑ ®��¶�·I«, UK ln X �̧¹�ºI],AKz�I]KzI]K\],A , where 

®��¶�·I«, UK is the effective pair probability and ��I«K and ��IUK are the single residue 

frequencies. A notable difference between DI and MI is that the local frequency count 
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���I«, UK in MI is replaced by the pair probability ®��¶�·I«, UK which captures global 

coupling effects over all pairs i,j in the sequence. Thus, the DCA approach eliminates the 

problem of transitive correlations that occurs with MI, and can be surmised as a “noise 

filter” that can identify the most causative correlations that represent spatial contacts in 

the tertiary structure. 

 Several web servers have been developed that use DI in the DCA framework such 

as EVfold (Marks et al., 2011) and PSICOV (Jones et al., 2012). Another approach uses 

pseudo-likelihood maximization (PLM) instead of DI to infer direct couplings (Ekeberg 

et al., 2013), which is implemented in the servers GREMLIN (Kamisetty et al., 2013) 

and CCMpred (Seemayer et al., 2014). Bayesian network models can also be used to 

predict evolutionary couplings and improve contact map prediction (Burger and Van 

Nimwegen, 2010). Regardless of the method, the accuracy of detecting coevolving 

residues that correspond to structural contacts is contingent on the number of sequence 

homologs in the MSA (a sufficient number is on the order of 5 ×[length of protein 

sequence]). Most of the current methods use only the sequence homologs of the protein 

family of the target sequence, which is often less than the optimal number of homologs to 

produce accurate statistical inferences. Dunn et al. previously addressed this concern by 

integrating multiple protein families that were orthologs (i.e., they share similar 

phylogeny and retain similar functions) to increase the number of homologs (Dunn et al., 

2008). A recent approach, RaptorX, leveraged this joint family approach and used a 

supervised machine learning method along with coevolution information to infer 3D 

contacts, and has proven to obtain higher accuracy than the other methods (Ma et al., 

2015; Wang et al., 2016). 
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 We propose a novel sequence-based approach to estimate the dynamics profile of 

a protein, with no a priori knowledge of its 3D structure. This de novo approach based on 

a Gaussian network model (GNM) enables the prediction of the magnitude of mean-

square fluctuations of residues, which are proportional to the B-factors determined by X-

ray crystallography experiments (as described in detail in Chapter 2). However, instead of 

using a cutoff distance to determine 3D contacts as in the original GNM, we use 

coevolving residues (evolutionary couplings (ECs)) in our model. We show that the 

theoretical predictions from our sequence GNM are in good agreement with experimental 

crystallographic B-factors as well as values obtained from the original GNM. We also 

extend this analysis to determine the capacity of our model to assess the functional 

impact of nSNVs. We will demonstrate that the dynamics as predicted from the sequence 

GNM can classify disease and benign nSNVs across the proteome.  

5.2 Methods 

5.2.1 Dataset 

 A curated set of 139 structures was procured from a previous dataset used by 

Butler et al. in a proteomic study of enzymes (presented in Chapter 4). These structures 

were selected for several reasons. First, they have high query coverage (>80%) and 

sequence identity (>80%) as found from a BLAST search, and the structures had already 

been modeled using the Modeller software package (Eswar et al., 2006) to account for 

any missing residues. Second, genetic variants were previously mapped onto these 

structures, such that the positions containing known nSNVs were already determined, 

enabling us to easily compare our results using sequence coevolution with the genetic 

variation data. A total of 738 genetic variants were obtained from the HumVar database 
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(Adzhubei et al., 2010), which was comprised of 436 disease and 302 neutral nSNVs. 

Finally, the structures were either monomers or the single-chain unit of a multimer with 

<600 residues, allowing for tractable calculations of residue coevolution using the 

RaptorX web server. A table summarizing the dataset is presented in Table 1. 
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PDB Length Resolution 
(Å) 

Biological Unit Disease 
nSNVs 

Neutral 
nSNVs 

12ca 255 2.4 MONOMERIC 2 1 0.489 0.605 0.479 
12gs 208 2.1 DIMERIC  1 0.332 0.664 0.374 
1bix 275 2.2 MONOMERIC  1 0.247 0.731 0.420 
1c7p 133 2.4 MONOMERIC 1 1 0.671 0.696 0.715 
1crm 256 2 MONOMERIC 3 16 0.530 0.640 0.487 
1d4a 273 1.7 DIMERIC  2 0.432 0.673 0.191 
1d5r 307 2.1 MONOMERIC 8  0.500 0.621 0.469 
1d6n 214 2.7 DIMERIC 12 7 0.085 0.359 0.283 
1dhf 182 2.3 DIMERIC 2  0.616 0.649 0.750 
1eai 240 2.4 TETRAMERIC  1 0.636 0.770 0.734 
1ege 387 2.75 TETRAMERIC 3 4 0.244 0.248 0.765 
1eh5 279 2.5 MONOMERIC 5  0.464 0.646 0.552 
1f7z 213 1.55 DIMERIC 2  0.678 0.551 0.820 
1fb5 320 3.5 TRIMERIC 37 3 0.349 0.738 0.523 
1fj2 229 1.5 MONOMERIC  1 0.827 0.560 0.573 
1fro 176 2.2 DIMERIC  1 0.566 0.404 0.921 
1gv7 123 2.1 MONOMERIC 5 1 0.337 0.569 0.692 
1h0n 288 2.4 DIMERIC 2  0.462 0.561 0.574 
1hdr 236 2.5 DIMERIC 5 2 0.352 0.622 0.561 
1hne 218 1.84 HEXAMERIC 11  0.660 0.779 0.767 
1hrk 359 2 DIMERIC 2  0.411 0.581 0.530 
1hrn 335 1.8 DIMERIC 2  0.397 0.443 0.691 
1hyo 416 1.3 DIMERIC 6  0.636 0.586 0.467 
1i0z 332 2.1 TETRAMERIC  9 0.729 0.611 0.721 
1iat 556 1.62 DIMERIC 5 3 0.624 0.485 0.556 
1ib0 272 2.3 MONOMERIC 7 2 0.559 0.644 0.704 
1ihg 364 1.8 MONOMERIC  2 0.255 0.399 0.704 
1is7 194 2.8 EICOSAMERIC 7  0.541 0.534 0.719 
1itq 369 2.3 DIMERIC  1 0.517 0.729 0.811 
1ivh 387 2.6 TETRAMERIC 1  0.366 0.426 0.739 
1j9w 257 2.6 MONOMERIC  3 0.298 0.522 0.584 

Table 1: Proteins used to compute theoretical B-factors based on sequence GNM 
and structural GNM approaches.  
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1jph 357 2.1 DIMERIC 7 2 0.532 0.556 0.781 
1jqi 384 2.25 TETRAMERIC  1 0.561 0.573 0.774 
1jxv 149 2.2 HEXAMERIC 1 2 0.201 0.407 0.809 
1k62 450 2.65 TETRAMERIC 1  0.549 0.573 0.696 
1l1f 496 2.7 HEXAMERIC 3 16 0.420 0.267 0.799 
1li4 430 2.01 TETRAMERIC  1 0.240 0.306 0.657 
1ls6 288 1.9 MONOMERIC  2 0.391 0.637 0.296 

1m9n 590 1.93 DIMERIC 1 1 0.402 0.233 0.571 
1mc5 373 2.6 DIMERIC  1 0.335 0.364 0.625 
1mir 313 2.8 DIMERIC  1 0.552 0.704 0.638 
1og2 462 2.6 MONOMERIC  1 0.549 0.594 0.704 
1ogs 497 2 MONOMERIC 53 1 0.362 0.688 0.576 
1ohv 461 2.3 DIMERIC 1 10 0.435 0.518 0.265 
1ore 179 2.1 DIMERIC 1  0.657 0.744 0.794 
1pf7 288 2.6 TRIMERIC 2  0.490 0.576 0.721 
1q6x 600 2.5 MONOMERIC 1 3 0.515 0.684 0.673 
1qo5 360 2.5 TETRAMERIC  7 0.582 0.445 0.319 
1r46 390 3.25 DIMERIC 23  0.490 0.554 0.774 
1rx0 384 1.77 TETRAMERIC 2  0.415 0.497 0.692 
1ry0 319 1.69 MONOMERIC  1 0.607 0.698 0.400 
1s8o 545 2.6 DIMERIC  1 0.439 0.641 0.638 
1sir 390 2.6 TETRAMERIC 13 4 0.311 0.363 0.684 
1spj 236 1.7 MONOMERIC  1 0.767 0.826 0.809 
1sw0 247 1.71 DIMERIC 2 2 0.442 0.303 0.695 
1t1u 597 1.55 MONOMERIC 10  0.478 0.731 0.670 
1tdi 218 2.4 DIMERIC  1 0.743 0.596 0.446 
1u7t 255 2 TETRAMERIC 1  0.374 0.411 0.759 

1umk 271 1.75 MONOMERIC 1 1 0.778 0.788 0.682 
1v9e 259 1.95 MONOMERIC 3  0.620 0.733 0.644 
1vrp 370 2.1 DIMERIC  1 0.401 0.550 0.804 

1waw 366 1.75 DIMERIC  2 0.615 0.671 0.785 
1wsr 371 2 DIMERIC 2  0.622 0.655 0.760 
1wva 309 1.94 TRIMERIC 1  0.305 0.365 0.808 
1xfb 342 3 TETRAMERIC 1 4 0.680 0.566 0.778 
1yuw 554 2.6 MONOMERIC  3 0.453 0.637 0.722 
1z10 465 1.9 MONOMERIC  8 0.418 0.678 0.698 
1zmc 472 2.53 DIMERIC 1 18 0.436 0.528 0.728 
2aaq 461 2.6 DIMERIC  1 0.290 0.415 0.596 
2ag5 256 1.84 TETRAMERIC  1 0.568 0.459 0.769 
2bh9 489 2.5 DIMERIC 34  0.403 0.422 0.811 
2boa 404 2.2 MONOMERIC  1 0.677 0.382 0.388 
2c9y 218 2.1 MONOMERIC  1 0.265 0.343 0.788 
2cga 245 1.8 DIMERIC  1 0.167 0.636 0.337 
2esl 181 1.9 DIMERIC  1 0.543 0.616 0.775 
2etl 223 2.4 MONOMERIC 1  0.435 0.596 0.586 
2f3b 326 1.8 TETRAMERIC  1 0.680 0.552 0.708 
2fpg 305 2.96 DIMERIC 1  0.254 0.498 0.402 
2fvl 323 2.4 MONOMERIC  1 0.288 0.425 0.417 
2gao 186 2 DIMERIC 1  0.160 0.677 0.472 
2h57 165 2 MONOMERIC 4 10 0.433 0.621 0.739 
2he3 185 2.1 TETRAMERIC  1 -0.060 0.180 0.533 
2hgs 472 2.1 DIMERIC 1 4 0.600 0.600 0.627 
2i3y 188 2 TETRAMERIC  1 0.227 0.413 0.469 
2ib7 391 2.05 TETRAMERIC 1 5 0.540 0.709 0.768 
2iw2 478 1.82 DIMERIC 3  0.388 0.586 0.445 
2j0f 446 2.31 DIMERIC 2  0.148 0.464 0.418 
2j6l 497 1.3 TETRAMERIC 1 1 0.614 0.365 0.325 
2jao 196 2 DIMERIC  1 0.833 0.625 0.577 
2jbm 290 2 HEXAMERIC  1 0.500 0.204 0.458 
2jif 381 2 TETRAMERIC  1 0.482 0.398 0.838 

2o48 331 2.59 DIMERIC  2 0.645 0.537 0.651 
2ozl 362 1.9 TETRAMERIC 6 8 0.454 0.350 0.604 
2p02 380 1.21 DIMERIC 5  0.641 0.705 0.600 
2p9q 416 2.7 MONOMERIC 7 17 0.391 0.490 0.704 
2pla 343 2.51 DIMERIC 2 6 0.140 0.323 0.675 
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2vcy 332 2.41 DIMERIC  1 0.488 0.636 0.819 
2w2j 268 1.6 MONOMERIC  4 0.810 0.746 0.736 
2w8n 480 2 TETRAMERIC 2 1 0.234 0.157 0.519 
2wd9 533 2.6 MONOMERIC  1 0.105 0.249 0.416 
2wid 527 2.3 MONOMERIC 11 9 0.518 0.704 0.771 
2wkl 497 2.7 MONOMERIC 3 3 0.317 0.655 0.530 
2xe6 413 1.74 MONOMERIC 1 8 0.568 0.567 0.781 
3bur 325 1.62 MONOMERIC 2  0.375 0.751 0.393 
3cmq 405 2.2 MONOMERIC  2 0.496 0.631 0.513 
3ecr 339 2.18 MONOMERIC 1  0.552 0.656 0.572 
3fw1 228 1.75 DIMERIC  2 0.385 0.580 0.596 
3gro 277 2.53 DIMERIC 1  0.472 0.618 0.521 
3h53 387 2.01 DIMERIC 1  0.459 0.557 0.753 
3hlm 401 2.5 DIMERIC  1 0.369 0.265 0.948 
3i2b 138 2.3 TRIMERIC 9  0.410 0.480 0.643 
3iar 360 1.52 MONOMERIC 6 1 0.384 0.552 0.788 
3ibd 465 2 MONOMERIC  1 0.419 0.519 0.663 
3k9v 464 2.5 MONOMERIC 4  0.426 0.490 0.692 
3o9m 531 2.98 TETRAMERIC 6 4 0.454 0.630 0.777 
3pm0 463 2.7 MONOMERIC 2  0.528 0.509 0.643 
3qic 453 2.2 MONOMERIC 1 7 0.107 0.676 0.415 
3ruk 473 2.6 MONOMERIC 2 16 0.511 0.329 0.383 
3sza 447 1.48 DIMERIC  2 0.627 0.795 0.790 
3t1g 349 2.35 MONOMERIC 12  0.658 0.786 0.753 
3u2o 366 2.18 MONOMERIC 1  0.567 0.553 0.507 
3v9g 541 2.5 DIMERIC  1 0.414 0.443 0.796 
3vn9 291 2.6 MONOMERIC  3 0.580 0.705 0.669 
4ah6 589 3.7 DIMERIC 2  0.269 0.420 0.680 
4aj4 331 1.9 TETRAMERIC  1 0.560 0.428 0.878 
4ald 363 2.8 TETRAMERIC 1 1 0.745 0.500 0.404 
4aoh 123 1.04 MONOMERIC 10  0.581 0.616 0.729 
4awn 260 1.95 MONOMERIC  2 0.590 0.739 0.743 
4b3e 153 2.15 DIMERIC 24  0.762 0.471 0.484 
4fdi 494 2.2 DIMERIC 3  0.471 0.715 0.371 
4g1c 267 1.94 DIMERIC  1 0.699 0.526 0.542 
4gab 316 1.6 MONOMERIC  1 0.374 0.707 0.342 
4h2i 524 2 DIMERIC  1 0.429 0.625 0.736 
4hva 238 2.07 TETRAMERIC  1 0.631 0.665 0.735 
5pnt 157 2.2 MONOMERIC  1 0.775 0.684 0.747 
7pck 314 3.2 TETRAMERIC 2  0.450 0.548 0.713 
1dch 104 3 TETRAMERIC 1  – – 0.477 
1pbh 317 3.2 MONOMERIC  1 – – 0.656 
1xwn 174 – MONOMERIC  1 – – 0.932 

 

5.2.2 Obtaining Coevolved Residues  

 The amino acid sequence from each of the 139 structures was used as input for 

the evolutionary coupling (EC) analysis. The choice of taking the amino acid sequence 

from the structure was done so that the predicted EC contacts could be compared directly 

to the experimentally observed structure contacts as verification that the model was 

producing realistic contact maps. Moreover, the theoretical B-factors predicted by our 

sequence-based model could be directly compared to the experimental B-factors for each 
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protein. If the structure was unknown, however, sequence databases (e.g. UniProt, 

PFAM, etc.) as discussed in Chapter 1 could be used. The PDB sequences were given to 

the RaptorX web server (Wang et al., 2016; Ma et al., 2015), which computed the 

relative probability of each residue pair i, j of being in 3D contact based on their 

coevolution strength. In order to ensure consistency between different proteins of varying 

lengths, we converted the raw scores into percentile ranks. We then used a threshold 

value, taking only the top scoring evolutionary couplings (i.e., the strongest couplings are 

more likely to be in spatial contact). An optimized threshold value was systematically 

evaluated and is discussed in the Results (Section 5.3). 

5.2.3 Sequence-based GNM Model  

 The Gaussian network model (GNM) is an isotropic approach based on the 

contact topology of a crystal protein structure to obtain the equilibrium fluctuations of 

residues due to thermal motion. It uses a specified cutoff distance to define interacting 

pairs that are connected by springs with a single-parameter harmonic potential (detailed 

review in Chapter 2). In this structure-based GNM, the interacting residue pairs within 

the cutoff range are represented as contacts in the Kirchhoff (connectivity matrix). 

 In the proposed sequence-based GNM approach we will instead use coevolving 

residue pairs (evolutionary couplings) as contacts in the Kirchhoff. In this way, the 3D 

structure is no longer a prerequisite to form a GNM. To construct the Kirchhoff, a 

threshold is defined where any evolutionary coupling scores above that threshold are 

sufficiently coupled such that they are spatially close in 3D structure. If a given 

evolutionary coupling pair meets the threshold criteria, it is assigned a value in the 

Kirchhoff for non-bonded contacts of –1 multiplied by its evolutionary coupling score 
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(i.e., –1×ECscore). This will permit that the strength of each connection will attenuate 

proportionally to the evolutionary coupling strength. The Kirchhoff can be decomposed 

into the individual contributions from the bonded contacts representing the chain 

connectivity (Rouse chain) and that from the non-bonded contacts (Bahar et al., 1997). In 

the sequence GNM the contribution of non-bonded contacts to the Kirchhoff is 

constructed according to 

 Γ��	�� = �� 
�!−1 - EC½¾¿ÀÁ,								$ % &	   evolutionary	coupling								0,															i % &									no	coupling																								− ) Γ���,�+� ,									$ = &																																																												  (5.1) 

Similarly, the chain connectivity (Rouse chain) matrix was constructed such that every 

residue pair i, i ± 1 to i, i ± 3 are in contact as 

 Γ��	�� =
�� 
�! −1,							$ % &				and				) $, $ ± @¯

�|N�6,�,7 	0	,									$ % &					else																															– ) Γ���,�+� ,				$ = &																																													 (5.2) 

Then the overall Kirchhoff is the combination of the two contributions (Γ�� = Γ���� + Γ����). 

The vibrational dynamics due to thermal fluctuations can then be evaluated in the same 

way as the original GNM by inverting the Kirchhoff matrix. The magnitude of mean-

square fluctuations is then written in terms of the inverse Kirchhoff as 

 〈IΔ��K�〉 ≅ ?ΓL6D�� (5.3) 

This is proportional to the Debye-Waller temperature factors or B-factors, which describe 

the attenuation of X-ray scattering due to the thermal motions of atoms (U� =
8W�〈IΔ��K�〉 3⁄ ). Here there is no single-parameter force constant as in the structure 

GNM (Tirion, 1996), and the pair-wise interactions are simply the strength of the 
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evolutionary couplings as given by their ranked scores. The theoretical predictions of our 

sequence GNM can be compared to the predictions of the original structural GNM as  

well as observed crystallographic B-factors. A general workflow of our method is 

presented as a flow diagram in Figure 5.1.   

5.3  Results and Discussion 

5.3.1 Optimizing Threshold Value for EC Scores 

 Not all of the predicted EC contacts are true 3D contacts, largely due to noisy 

artifacts in the MSA such as the transitivity of correlations and phylogeny. With this in 

mind, we decided to accept only the top scoring contact scores predicted by RaptorX. To  

 

Figure 5.1: A workflow of our method to use predicted evolutionary couplings to 
determine protein dynamics and assess the functional impact of nSNVs. The 
initial input is an amino acid sequence, which is given to the RaptorX webserver 
to predict evolutionary coupling pairs that are used as contacts in the GNM 
model. Using a GNM, we compute the dynamics profile of each protein, which 
can give insight into the functional impact of nSNVs. This was done for a 
curated set of 139 structures. 
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 ensure consistency when analyzing different proteins with varying lengths, we converted 

the raw scores into a percentile rank. We then computed the sequence GNM for all 139 

structures using a constant threshold value, and measured the correlation between the B-

factors predicted by our sequence GNM to the original GNM. To determine the optimal 

threshold value, this procedure was done 8 times using a range of threshold values from 

0.92 to 0.99. A threshold value ≤0.92 yields superfluous contacts leading to a noisy 

contact map, and thus, a lower overall correlation (Figure 5.2). Conversely, a threshold 

value ≥0.99 gives a deficient number of contacts, which yields an excessively sparse 

contact map and a lower overall correlation. As Figure 5.2 shows, a threshold value of 

0.98 produced the best overall correlation with the original GNM and, thus, was taken to 

be the optimal threshold value used in the analysis. 

 

Figure 5.2: A boxplot comparing the correlations of predicted B-factors by the 
sequence GNM with that of the structural GNM for all 139 structures using a 
constant threshold for EC contacts. In order to determine the optimal threshold 
value the GNM analysis was conducted 8 times using a constant threshold 
(between 0.92 and 0.99) each time. The best correlations were produced when the 
constant threshold value of 0.98 was used. In this context the average correlation 
coefficient was 0.63 for all 139 cases. 
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5.3.2 B-factor Correlations: Sequence, Structure, and Experimental  

 We compared our theoretical predictions using the sequence GNM with the 

original structural GNM and crystallographic B-factors. Unreliable B-factors are common 

for many PDB structures. For instance, poor B-factors could be due to low-resolution X- 

ray diffraction data, the fact that crystal contacts are formed during the experiments that 

impede motion and do not accurately reflect the protein in the cellular environment, or 

the temperature of the experiment was not at physiological temperature, which will affect 

the thermal motions. Thus, for the experimental comparison we extracted a subset of 39 

structures that had a resolution better than 2.0 Å to obtain more realistic crystallographic 

B-factors. The same cutoff of 2.0 Å was used by Kundu et al. to compare GNM predicted 

B-factors with those determined by crystallography (Kundu et al., 2002). For all 39 

 

Figure 5.3: Comparing the distribution of correlation coefficients of experimental B-
factors with the theoretical B-factors from the sequence GNM and the structure 
GNM. (A) A boxplot showing the correlation of predicted B-factors by the sequence 
GNM with experimentally observed B-factors (blue) in comparison to that of the 
structural GNM (orange) for a subset of 39 structures with resolution better than 2.0 
Å. (B) A distribution plot of the same correlations binned in into 10 bins with sizes 
of 0.1. A student t-test revealed no significant difference between the two 
distributions (p=0.05508) indicating that the sequence GNM is producing 
competitive results compared to the original structural GNM. The mean correlation 
of the sequence GNM is 0.53 while that of the structural GNM is 0.58. 
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structures, the sequence GNM and structure GNM was computed and their estimated B-

factors were compared with the observed B-factors, yielding a correlation for each 

protein. As shown in Figure 5.3A, the boxplot distributions of correlations are similar 

between the sequence and structure GNM (p = 0.055 in a student t-test), with the 

structure GNM appearing to be slightly superior to the sequence GNM. Figure 5.3B 

shows the same distribution separated into 10 individual bins of size 0.1. The overall 

shapes of the two distributions are similar, except for the exaggerated peak of the 

sequence GNM at 0.4. Interestingly, the sequence GNM has a higher count of 

correlations between 0.8–0.9 compared to structure GNM by a factor of 2. It should also 

be noted that for these cases where sequence GNM had low correlations, the EC 

threshold could be adjusted to yield much higher correlations. If this were done on a case-

by-case basis, the overall correlation distribution would be almost identical. Using the 

threshold as an adjustable parameter to tune the correlation coefficient such that it is 

maximal is entirely possible. For instance, we could compute the sequence GNM using 5 

different threshold values and accept the value that yields the best correlation with 

experiment. Although this technique would likely produce as good or better results as the 

structure GNM, the procedure would no longer be de novo since it would rely on 

knowledge of the structure. The mean correlation coefficient for the sequence GNM was 

0.53 while the mean correlation coefficient for the structure GNM was 0.58. This is 

consistent with the findings of Kundu et al. that computed the GNM for 113 high-

resolution structures (resolution <2.0 Å) in which the mean correlation coefficient with 

observed B-factors was also 0.59 (Kundu et al., 2002). The fact that the sequence GNM 

produces comparable correlation coefficients to the structure GNM, and is superior in the 
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range of coefficients between 0.8–0.9, is an impressive result, particularly in that it is a 

rather crude model to approximate protein dynamics using only a protein sequence.  

 Even when using high-resolution X-ray structures, there is still some uncertainty 

about the realistic nature of crystallographic B-factors. For this reason, a more plausible 

way to determine the efficacy of the sequence GNM is to compare it directly with the 

structure GNM. The structure GNM is a powerful tool to describe thermal fluctuations in  

a protein, and in many cases it performs as good or better than the ANM or MD (Doruker 

et al., 2000; Kundu et al., 2002). We systematically evaluated the sequence and structure 

GNM for the entire set of 139 structures and obtained the correlation coefficients for each 

protein (Figure 5.4). The average correlation between the two models is 0.63. As seen in 

Figure 5.4, the distribution of correlation coefficients increases monotonically until 0.8, 

and then subsequently decreases. Interestingly, there are still an appreciable number of 

exceedingly high correlations from 0.8 to 1.0. A distinguishing feature of the distribution 

 

Figure 5.4: The distribution of correlation coefficients between the sequence and 
structure GNM predicted mean-square fluctuations as computed from 139 structures 
(listed in table 5.1). The threshold for evolutionary couplings was 0.98 and the 
average correlation coefficient was 0.63. 
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is the pronounced peak in the bin from 0.7 to 0.8. The saturation of high correlations 

between 0.7–0.8 provides evidence that the sequence GNM is clearly capturing protein 

dynamics. This is indicative of the efficacy of using evolutionary couplings as contacts in 

the GNM in place of the structure contacts.  

 We also considered two high-resolution proteins (<2.0 Å), 1UMK and 1SPJ, to 

examine their B-factor profiles and predicted contact maps. Coevolution analysis using 

 

Figure 5.5: A plot of theoretical B-factors as calculated by our sequence GNM 
(blue), the original GNM (orange), and observed experimental B-factors (black) for 
two proteins, Human Erythrocyte NADH-cytochrome b5 Reductase (PDB code: 
1UMK) and Human Kallikrein 1 (PDB code: 1SPJ). The respective contact maps are 
shown to the right. These two proteins 1UMK and 1SPJ are adequate for comparing 
experimental B-factors since they have resolution of 1.75 Å and 1.7 Å respectively, 
thus their B-factors are likely more reliable. In both cases our sequence GNM 
produced exceptional correlations with both experimental and structural GNM B-
factors. For 1UMK the sequence GNM produced a correlation of 0.78 with 
experiment, and 0.68 with the structural GNM. For 1SPJ the sequence GNM 
produced a correlation of 0.77 with experiment, and 0.81 with the structural GNM. 
Moreover their contact maps reveal the predicted contacts between the sequence and 
structural GNM approaches are remarkably similar.  
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DCA has been shown to recapitulate accurate structural contact maps for many proteins 

(Morcos et al., 2011; Marks et al., 2012, 2011). As expected, in both cases the contact 

maps between sequence and structure GNM were remarkably similar (Figure 5.5). In 

looking at their B-factor profiles, both sequence and structure GNM exhibit good 

agreement with observed B-factors, capturing each of the peaks. The correlation between 

the sequence GNM and observed B-factors is 0.78 for 1UMK and 0.77 for 1SPJ, whereas 

the correlation between the structure GNM and observed B-factors is 0.79 for 1UMK and 

0.83 for 1SPJ. We surmise that the sequence GNM produces exceptional correlations 

with crystallographic B-factors that are very close to those produced by the structure 

GNM. Moreover, both theoretical B-factor profiles identified the catalytic sites on these 

proteins (i.e., low mobility sites).  

 As a further test to the efficacy of the sequence GNM, we superimposed the 

predicted B-factors on the structures of three diverse proteins–2JAO, 1FJ2, and 1UMK–

to visually contrast the predicted B-factors with that of experiment. Figure 5.6 shows 

each protein color-coded according to their B-factor profile on a spectrum of blue–white–

red, where blue represents the lowest B-factors (less mobility) and red represents the 

highest B-factors (more mobility). The left panel shows the experimental B-factors for 

each protein, while the right panel shows the theoretical values predicted by the sequence 

GNM. We investigated whether secondary structure was a factor in how the B-factors 

were distributed across the protein, and if certain secondary structure domains would 

exhibit less agreement with experiment. In this context, the proteins were selected so that 

they had a variety of secondary structure components–2JAO contains primarily alpha 

helices, 1UMK is mainly composed of beta-sheets, and 1F2J is a combination of alpha  
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 helices and beta-sheets. For 2JAO, the exterior helices that are flexible (red) in the 

observed structure are all reproduced in the predicted structure. The one highly rigid 

(blue) helix in the observed structure was more flexible in the predicted structure, but was 

 

Figure 5.6: The observed crystallographic B-factors (left) and the predicted B-
factors from the sequence GNM superimposed on the structure. The three proteins 
selected–2JAO, 1F2J, and 1UMK–were high-resolution structures better than 2.0 Å. 
The B-factors are color-coded according to their B-factor profile on a spectrum of 
blue–white–red where blue represents the lowest B-factors (less mobility) and red 
represents the highest B-factors (more mobility). The B-factor scores were 
converted to a percentile rank so that they could be compared across different 
proteins. Each protein was also rotated 180° so that both sides could be visualized 
and compared. Moreover, the proteins were selected so that they had a variety of 
secondary structure components–2JAO contains primarily alpha helices, 1UMK is 
mainly composed of beta-sheets, and 1F2J is a combination of alpha helices and 
beta-sheets.  
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still in overall agreement. 1FJ2 shows a remarkable agreement between observed and 

predicted structures, particularly considering that it is a combination of alpha helix and  

beta-sheet elements. Similarly, 1UMK showed excellent agreement aside from some very 

miniscule differences. Overall, this gives further credence to the efficacy of our sequence 

GNM model, as it is capable of recapitulating crystallographic B-factor profiles for many 

cases.  

5.3.3 Assessing nSNV Phenotypes Using the Sequence GNM 

 Crystallographic B-factors have previously been used to assess the impact of 

nSNVs on protein function (Chasman and Adams, 2001; Adzhubei et al., 2010; Alber et 

al., 1987; Nevin Gerek et al., 2013). A study by Alber et al. found that mutations on 

lysozyme that impaired function exhibited lower than average temperature factors, 

suggesting that rigid sites on the protein are more susceptible to destabilizing nSNVs than 

flexible sites (Alber et al., 1987). Another study also revealed a relationship between 

crystallographic B-factors and the impact of nSNVs on protein function (Chasman and 

Adams, 2001). A commonly used tool to diagnose nSNVs, PolyPhen-2, that uses 

machine learning coupled with evolutionary information and structural information uses 

crystallographic B-factors in their predictions (Adzhubei et al., 2010). In essence, these 

studies indicate that crystallographic B-factors can be used to predict the tolerance of a 

given residue to an nSNV (i.e., whether or not the occurrence of an nSNV would impact 

function).  

 We investigated whether B-factors predicted by the sequence GNM was 

indicative of biological phenotype for nSNVs in the human population. A total of 738 

nSNVs were mapped to the 139 enzymes, in which 436 are associated with disease and 
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302 are neutral. Table 5.1 shows the number of disease and neutral nSNVs that occur on 

each protein. The sequence GNM was computed systematically for all 139 enzymes to 

obtain their dynamics profiles. The theoretical B-factors scores were converted into a 

percentile rank so that the values could be compared across different proteins.  

 We initially looked at two human enzymes, human lysozyme (PDB: 1C7P) and 

human cytochrome reductase (PDB: 1UMK). They were chosen because they were short  

proteins with each containing a disease and neutral nSNV. Human lysozyme is a 

glycoside hydrolase that functions in the immune system by causing damage to cell walls 

of bacteria. Human cytochrome b5 reductase is involved in many oxidation/reduction 

reactions including converting methemoglobin to hemoglobin (Elahian et al., 2012). Each 

structure is color-coded according to its theoretical B-factor profile on a spectrum of 

blue–white–red. Sites that exhibit high mobility (flexible) are red, and sites that have low 

 

Figure 5.7: A ribbon diagram for two human enzymes, human lysozyme (A) and 
cytochrome reductase (B) colored according to their predicted B-factors by the 
sequence GNM. Red indicates high mobility sites, and blue indicates low mobility 
sites. Each protein contains two known nSNVs. I56T and R57Q are disease-
associated, and they occur on low mobility (rigid) sites. Conversely, the neutral 
nSNVs T116S and T70N occur on high mobility sites.  
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mobility (rigid) are blue. Regions that are characterized by low mobility are usually 

important for maintaining stability and function, thus a mutation could act to destabilize 

the protein and impair its function. Figure 5.7A shows the disease mutation I56T 

occurring on a rigid site with a B-factor of 0.0075. The neutral mutation T70N has a B-

factor of 0.96 indicating that it is a highly mobile site. Both I56T and T70N occur on loop 

regions. Although loops are generally more flexible, three alpha helical domains 

encompass the loop containing I56T, which implies that it may be involved in 

interactions that contribute to stabilizing the functional conformation. Thus, the I56T 

mutation may disrupt these critical interactions and impair the enzymatic function. In the 

case of cytochrome reductase (Figure 5.7B), the disease mutation R57Q is also on a rigid 

site with a B-factor of 0.14. Instead of being located near the core, R57Q is highly 

exposed protruding outwardly from a beta-barrel. However, since beta-barrels often 

harbor functional residues, the R57Q mutation may disrupt certain interactions critical for 

modulating function. The neutral mutation T116S is located on a loop and has a B-factor 

of 0.96, indicating that is it has a high mobility. Sites that are highly flexible (e.g., loop 

regions, or superficial sites) are more robust to mutations. Conversely, rigid sites are 

more susceptible to mutations that significantly impact function. For these two cases, the 

theoretical B-factors produced by the sequence GNM convincingly discriminated 

between the disease and neutral nSNVs.  

 The findings based on the two enzymes encouraged us to look at a proteome-wide 

set of 139 enzymes to determine whether the distribution of B-factors for all 436 disease 

and 302 neutral nSNVs was predictive. The B-factor scores were ranked into percentiles 

(%B-factor) and then binned into 5 bins of size 0.2. Then we computed the observed-to-
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expected ratio of B-factors, where the expected values were based on the B-factor 

distribution of all 51,618 sites across all 139 proteins, and the observed values were based 

on the B-factors of the 436 disease sites. The same process was done for the 302 neutral 

nSNVs. Then under the null hypothesis of no effect, the ratio of expected and observed 

sites harboring disease mutations for each %B-factor bin should be close to 1. A strong 

relationship between disease sites and the %B-factor score would reject the null 

hypothesis that disease sites are distributed uniformly between sites with low and high  

mobility. For the 436 disease nSNVs, this null hypothesis was rejected (p <0.001). Figure 

5.8 shows the observed-to-expected ratio plot of disease and neutral nSNVs, which 

indicates that disease nSNVs are overabundant at low %B-factor sites (<0.4) and 

underabundant at high %B-factor sites. Conversely, neutral nSNVs are overabundant at 

high %B-factor sites (>0.6) and underabundant at low %B-factor sites. This strong 

evidence purports that the occurrence of an nSNV on a site with a low B-factor is likely 

damaging, whereas an nSNV on a high B-factor site is likely to be benign. Low B-factors 

 

Figure 5.8:  The relationship of observed-to-expected numbers between 436 disease 
nSNVs (red) and 302 neutral nSNVs (blue) from 139 human enzymes. The %B-
factor scores derived from the sequence GNM are binned into 5 bins of size 0.2. 
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usually signify a residue that is crucial for modulating functional motions (e.g., a hinge) 

and high B-factor sites are more flexible sites such as loops that are more robust to 

mutations. Figure 5.8 reveals the ability of predicted B-factors to discriminate between 

disease and neutral nSNVs using only sequence as input. The distributions in Figure 5.8 

are remarkably similar to an observed-to-expected ratio plot in a previous DFI analysis of 

nSNV phenotype (Nevin Gerek et al., 2013).  
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CHAPTER 6 

6 CONCLUSION 

 

6.1 Summary of Current Work 

 This thesis has presented research on a novel method to explore the role of protein 

conformational dynamics in genomic variation. Some recent studies have evinced that 

molecular evolution utilizes dynamics as a means to control protein function (Haliloglu 

and Bahar, 2015; Tawfik and Tokuriki, 2009; Zou et al., 2015; Kim et al., 2015; Glembo 

et al., 2012; Bhabha et al., 2013; Campbell et al., 2016; Nevin Gerek et al., 2013). Over 

the course of evolution, changes in the conformational landscapes of a protein allow for 

development of new functions or optimization of existing functions (e.g., enzyme 

function), which suggests that molecular evolution and protein dynamics are intertwined 

(Campbell et al., 2016). One evolutionary mechanism that induces changes in protein 

dynamics is mutation. With advanced sequencing technologies it is now known that each 

exome contains many thousands of single nucleotide variants (nSNVs) that can be 

harmful to function. Detecting which variants will lead to human disease is of paramount 

importance, and most current methods involve using evolutionary information. The 

evolution-based methods, which depend largely on amino acid conservation, are able to 

diagnose nSNVs for highly conserved positions but often fail to predict disease-

associated nSNVs at less conserved positions or neutral nSNVs at highly conserved 

positions. Efforts to include structural information resulted in only a minimal increase in 

predictive power, principally because of the use of a static structure. We demonstrated 
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the importance of including protein conformational dynamics, which plays a significant 

role in nSNV phenotype.  

 Proteins usually perform their function by forming complexes biomolecules that 

act in conjunction. The interactions between these complexes at protein-protein interfaces 

is very crucial to their ability to function, thus nSNVs that occur at specific interface sites 

are highly susceptible to disease. We used a novel metric called the dynamic flexibility 

index (DFI) that measures the contribution of site-specific conformational dynamics to 

functional importance. It predicts which sites are flexible and which are more rigid (i.e., 

act as hinges). We demonstrated in a proteome-wide analysis using the DFI metric that 

interface sites are less flexible than non-interface sites, and that particularly low 

flexibility sites (low DFI) at interfaces are more likely to harbor disease nSNVs. Indeed, 

we observed that disease nSNVs at interface sites had appreciably low DFI, whereas 

neutral nSNVs had higher DFI. The DFI metric can quantify which sites contribute the 

most to function (i.e., low DFI sites are more susceptible to damaging nSNVs), and it can 

also identify sites that are less important for function (i.e., high DFI sites are more robust 

to damaging nSNVs). Thus, our dynamics-based metric was able to discriminate disease 

and neutral nSNVs at interface sites. Moreover, we observed that accessible surface area 

(ASA), a metric based on static structure commonly used to study nSNV phenotypes, was 

inferior to DFI in discriminating disease and neutral nSNVs. This emphasizes the 

importance of considering protein dynamics in these types of analysis. Finally, we 

showed that even for the regime of fast-evolving amino acid positions, where 

evolutionary methods tend to be inadequate, DFI was still able to discriminate nSNV 
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phenotypes. These findings point toward the potential efficacy of dynamics-based metrics 

like DFI in genomic analysis of nSNVs.  

 The concept of allostery (i.e., action at a distance) has been studied extensively 

recently for its role in protein function regulation and application in drug design. Certain 

sites on a protein are distal to crucial functional sites (e.g., active sites or binding sites) 

but can still have an impact on those sites and, thus, affect the functional activity of the 

protein. We developed a new dynamics-based metric called the dynamic coupling index 

(DCI), which can identify such sites (called DARC spots) that are distal to active sites but 

are dynamically coupled to them. These DARC spots are sites that are not located in 

close proximity to functional sites but are still important for allosteric regulation and 

function of the protein. Through DCI, we analyzed the enzyme GCase, which has over 

200 mutations that lead to Gaucher disease (GD) in humans. The disease associated 

mutations lead to a drastic decrease in catalytic efficiency that disrupts the function of the 

enzyme. Despite the hundred years of research (i.e., since it was discovered in the late 

19th century), GD has neither a cure or an accepted mechanism for the disease 

(Lieberman, 2011; Hruska et al., 2008; Beutler et al., 1993; Lieberman et al., 2007). 

Through DFI we analyzed four common GD mutations that evolutionary-based methods 

usually misdiagnose as neutral. We observed that each mutation leads to a significant loss 

in flexibility at two highly functional catalytic sites and ligand binding recognition sites, 

both responsible for enzymatic function. This loss in flexibility (i.e., rigidification) 

restricts these sites from modifying their structural conformations to attain the required 

orientations for accommodating a substrate for catalytic function, which results in lower 

catalytic efficiency. Moreover, a DCI analysis of the four mutations revealed that each 
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mutation resulted in a global loss in allosteric coupling between remote sites and the 

active sites. The breaking of crucial allosteric regulation networks between remote sites 

and the active sites is catastrophic for enzymatic function. Thus, these findings provide a 

plausible mechanism for GD based on conformational dynamics. In an analysis of all 

other ~200 GD-related mutations, the DCI metric revealed that the majority of all GD 

occur at high DCI sites (i.e., DARC spots). Since this appeared to be a general trend, we 

conducted a proteome-wide analysis of enzymes, in which we demonstrated that disease 

nSNVs were largely located at DARC spots. Thus, the DCI metric is shown to be able to 

identify important sites (DARC spots) that are more susceptible to damaging nSNVs. We 

also showed that DFI and DCI as a combined metric exhibited remarkable predictive 

power for cases where evolutionary metrics were lacking predictive power in nSNV 

phenotypes. This further illustrates the obvious utility of conformational dynamics-based 

metrics (e.g., DFI and DCI) as in silico tools in genomic analysis to systematically 

quantify and assess nSNVs in terms of their disease risk.  

 Investigating protein conformational dynamics is contingent on the knowledge of 

a 3D native structure. While there is a large body of available experimental structures in 

the Protein Data Bank (PDB), there is still a disproportionate amount of readily available 

sequence data compared to known structures. This wealth of data is a result of advanced, 

high-throughput sequencing technologies and is projected to further increase at an 

exponential rate, continuing to outpace the much slower determination of experimental 

structures. Since our overall goal is to integrate conformational dynamics into genomic 

analysis, the inherent limitations of this must be addressed. The ability to obtain site-

specific conformational dynamics is dependent on the known 3D structure. This begs the 
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question: how can protein dynamics be used in genome-wide analysis to predict 

functional impacts of nSNVs? In particular, the evolutionary methods that use sequence 

information are able to predict the consequences of nSNVs where the structure is 

unknown. For this reason, there is a need to be able to obtain protein dynamics by 

leveraging only sequence information, without a priori knowledge of a 3D structure. This 

ability would be a tremendous achievement considering the abundance of sequence data. 

We have developed a novel method to estimate the dynamics profile of a protein, using 

only a sequence as input. The method uses the coevolution of amino acids in an 

alignment of sequences (which tend to be spatially close in the 3D tertiary structure) and 

a simple Gaussian network model (GNM) to obtain dynamics. The original GNM based 

on the 3D structure is well-known for its intrinsic ability to describe residue dynamics 

profiles due to thermal motions in proteins (i.e., B-factors). We showed that our 

sequence-based GNM model was able to recapitulate the mean-square fluctuations (B-

factors) produced by the original GNM. Our estimates of B-factors for a proteome-wide 

set of proteins exhibited an impressive correlation with the structure GNM. Moreover, 

our estimated B-factors were in good agreement with crystallographic B-factors for many 

cases. To address the issue of how protein dynamics can assess the impact of nSNVs 

occurring across the genome where there are no known 3D structures, we tested the 

ability of our predicted dynamics from the sequence GNM to assess nSNV phenotypes. 

For a large set of 738 nSNVs, the predicted B-factors using the sequence GNM was able 

to discriminate between disease and neutral nSNVs. A plot of the observed-to-expected 

ratio of the predicted B-factors revealed distributions of disease and neutral nSNVs that 

are remarkably similar to those in a previous DFI analysis (Nevin Gerek et al., 2013). 
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This preliminary analysis shows that the sequence GNM approach makes it now possible 

to obtain estimates of dynamics without the use of a 3D structure, which allows for the 

plausible integration of conformational dynamics into large-scale analysis of genomic 

variants.  

6.2 Future Directions 

 The research on protein conformational dynamics presented in this thesis can be 

exploited in the field of genomic medicine. Many of the current approaches to developing 

novel therapeutic drugs to treat diseases employ the concept of allostery. The ability to 

observe changes in conformational dynamics of specific regions of a protein in response 

to an event at a distance location (e.g. the binding of a substrate) is valuable for the 

development of novel drugs that act on proteins using allostery. Our dynamics-based 

metrics (DFI and DCI) make it possible to monitor changes in site-specific 

conformational dynamics due to external perturbations such as mutations or approaching 

ligands. In addition, they allow for identification of crucial allosteric regulation networks 

that are critical for maintaining protein function. Thus, site-specific conformational 

dynamics can be leveraged to investigate potential drug targets for novel therapeutic 

strategies. It has applications to genomics to systematically quantify and assess sites on a 

protein that are more, or less susceptible to harboring a harmful nSNV that may lead to 

disease. Moreover, the ability to estimate dynamics without a structure expands the 

breadth of its utility across the entire genome, such that it can compliment evolutionary 

methods regardless of whether the structure is known. As the cost of sequencing 

individual genomes is rapidly decreasing, complimentary metrics to assess human 

variations are especially enticing. Overall, the in silico tools proposed in this thesis can be 
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used with current approaches in genomic medicine to increase the efficacy of systematic 

assessments of an individual’s disease risk based on their genome, as well as determine 

specialized treatment plans in personalized medicine that are tailored to each individual. 

 The characterization of 3D folded structures using through experimental methods 

(e.g., X-ray crystallography) remains essential for mechanistic understanding biological 

function of proteins (Shi, 2014). A problem in this area is that many crystal structures are 

low-resolution (e.g., worse than 4 Å) as they exhibit weak diffraction patterns, resulting 

in poor quality electron density maps. Methods to refine these low-resolution structures 

have been proposed, including using known homologous structures as a constraint to 

enhance the quality of electron density maps (Schröder et al., 2010). Moreover, recent 

advances in single-particle electron cryo-microscopy (cryo-EM) is showing promise for 

obtaining higher resolution structures and complementing crystallography (Cheng, 2015). 

Our sequence-GNM method, which only requires an amino acid sequence to estimate the 

thermal motions of C-alpha atoms, may be used as an additional model to fit X-ray 

diffraction data to enhance the otherwise poor quality electron density maps. Thus, this 

could be applied to further complement current refinement methods for low-resolution 

diffraction data. 
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