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ABSTRACT

A method for modelling the interactions of dislocations with inclusions has been

developed to analyse toughening mechanisms in alloys. This method is different from

the superposition method in that infinite domain solutions and image stress fields

are not superimposed. The method is based on the extended finite element method

(XFEM) in which the dislocations are modelled according to the Volterra dislocation

model. Interior discontinuities are introduced across dislocation glide planes using

enrichment functions and the resulting boundary value problem is solved through the

standard finite element variational approach. The level set method is used to describe

the geometry of the dislocation glide planes without any explicit treatment of the

interface geometry which provides a convenient and an appealing means for describing

the dislocation. A method for estimating the Peach-Koehler force by the domain form

of J-integral is considered. The convergence and accuracy of the method are studied

for an edge dislocation interacting with a free surface where analytical solutions are

available. The force converges to the exact solution at an optimal rate for linear finite

elements. The applicability of the method to dislocation interactions with inclusions

is illustrated with a system of Aluminium matrix containing Al2Cu precipitates. The

effect of size, shape and orientation of the inclusions on an edge dislocation for a

difference in stiffness and coefficient of thermal expansion of the inclusions and matrix

is considered. The force on the dislocation due to a hard inclusion increased by 8% in

approaching the sharp corners of a square inclusion than a circular inclusion of equal

area. The dislocation experienced 24% more force in moving towards the edges of a

square shaped inclusion than towards its centre. When the areas of the inclusions

were halved, 30% less force was exerted on the dislocation. This method was used

to analyse interfaces with mismatch strains. Introducing eigenstrains equal to 0.004

to the elastic mismatch increased the force by 15 times for a circular inclusion. The
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energy needed to move an edge dislocation through a domain filled with circular

inclusions is 4% more than that needed for a domain with square shaped inclusions.
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Chapter 1

INTRODUCTION

1.1 Introduction to Dislocations

In crystalline solids, atoms or molecules repeat themselves in fixed distances. The

position of such atoms or molecules is governed by the cell parameters. But in re-

ality, these atoms or molecules are not perfectly arranged. The periodic patterns

are interrupted by crystallographic defects and these defects strongly influence many

properties of a material. Elastic fields of one such defect were originally defined by

Volterra in 1907; through the displacement of a cut cylinder, Volterra introduced

several types of dislocations.

Point defects are generally related to a single lattice point. For example, vacancy

defects are due to vacant lattice points which would be otherwise occupied in a perfect

crystal and interstitial defects are caused by atoms that occupy sites where there

usually are no atoms. Larger defects in ordered structures are called dislocations.

Dislocations are line defects around which atoms of an ordered structure are skewed.

Three scientists working independently, Taylor (1934), Orowan and Polanyi devised

the term ‘dislocation’ to refer to a defect on an atomic scale in 1934.

The best description of a dislocation is obtained from a study of its formation in a

crystalline lattice. A crystal plane is cut and one-half of it is slid across the other half

by a lattice vector. The halves are then fit back together to form the new, distorted

lattice. The lattice structure itself is almost perfect except near the plane of cut. The

resulting line imperfection near the plane of cut is a dislocation line. Three types

of dislocation lines may be formed. If the atoms over the cut surface are shifted in

1



a direction perpendicular to the plane of cut, an edge dislocation is created in the

lattice; if the shift is parallel, a screw dislocation is created; if the shift is neither

parallel nor perpendicular to the plane of cut, a mixed dislocation is created. Just by

looking at the interior of the crystal, it is not possible to tell as to how the dislocation

was created. The structure and properties of a dislocation, therefore, do not depend

on how they were introduced in the crystal lattice.

Edge dislocations can also be created by adding an extra half plane of atoms in

a crystal structure. This causes the adjacent plane of atoms to distort and bend

themselves around the edge of the terminating plane so that the crystal structure is

ordered everywhere else. The inter-atomic bonds are distorted only in the immediate

vicinity of the dislocation. This is similar to inserting half a sheet of paper into a

stack of papers. The defect is visible at the edge of the half sheet.

Screw dislocations are slightly harder to visualise. In the process of creating a

screw dislocation, the atom planes perpendicular to the dislocation line are turned

into a helical ramp. The screw dislocation itself is a pole about which the ramp

circles. The atom planes are analogous to the floors of a parking structure. A car

would have to travel on a spiral upward/downward slope to access other floors. The

motion of a screw dislocation is also due to the application of shear stress. The defect

line moves perpendicular to the direction of applied stress and atom displacement.

The total deformation of both the edge and screw dislocation is the same.

A dislocation is described by the line direction, which is the direction along the

top or bottom edge of the extra half plane, and the Burgers vector, which describes

the magnitude and direction of distortion of the lattice. In an edge dislocation, the

Burgers vector is perpendicular to the line direction, i.e., the defect line movement

is parallel to the direction of applied stress and atom displacement. The line direc-

tion and Burgers vector of the dislocation in most materials in neither parallel nor
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perpendicular. Such dislocations known as mixed dislocation, containing aspects of

both edge and screw dislocations.

Dislocations allow deformation to occur at a much lower stress than in an ordered

structure. Dislocation movement is, therefore, important in understanding non-linear

bulk material behaviour and plasticity. A dislocation moves by a small amount at a

time. The dislocation in the top or bottom half of the crystal moves by slipping one

plane at a time to the left or right from its original position. In the course of slipping

one plane at a time, the dislocation propagates across the crystal. This movement of

the dislocation ultimately causes one-half of the crystal to move with respect to the

other half. However, only a small portion of the bonds are broken at any given time

resulting in smaller forces deforming the crystal instead of breaking all the bonds at

once which would require a much larger force. There is an alternative mechanism of

dislocation motion that allows an edge dislocation to move out of its slip plane and

onto a plane directly above or below the slip plane. The driving force for a dislocation

climb is the movement of vacancies in a lattice. If a vacancy is present next to the

edge of a half plane of atoms in an edge dislocation, the atom in the plane closest

to the vacancy will jump and fill the vacancy. This shift causes a vacancy in the

line of half plane of atoms known as a positive climb due to vacancy annihilation. In

contrast, a vacancy can also be absorbed in the edge of half plane of atoms known as

a negative climb.

Dislocations are created as a result of breaking of atomic bonds along a line in

a crystal lattice. This phenomenon requires the simultaneous breaking of multiple

bonds which demands a concentrated stress. Irregularities at the grain boundary and

uneven stress distribution at the crystal surface are more likely to produce disloca-

tions.

The linear elastic theory accurately describes the long-range elastic stresses but it
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breaks down in the immediate region surrounding the dislocation centre, known as the

dislocation core. The dislocation core properties have been studied extensively due

to their important role in crystal plasticity. The core properties influence dislocation

movement which then affects the ductility or brittleness of solids. Two types of theo-

retical approaches have been employed to study dislocation core properties. The first

method using direct atomistic models, though considerably more accurate, is compu-

tationally more expensive for studying dislocation properties. The second method is

based on the Volterra model of dislocations which offers a better alternative.

Volterra Model of Dislocations

An edge dislocation is inserted by introducing a cut along the crystal plane (y = 0)

such that the boundary of the cut is out of the plane (z-axis). Let u+(x) and u−(x) be

the displacement fields on the upper and lower surfaces respectively. The dislocation

is created by shifting the lower surface with respect to the upper surface by the

Burgers vector and then reattaching the two surfaces together. The misfit across the

plane would be defined to be equal to u+(x)− u−(x). u(x) is then a step function in

the Volterra dislocation,

u+(x)− u−(x) =


−b, if x < 0

0, otherwise

(1.1)

The distribution of misfit across the plane of cut is described by the dislocation

density, which for the Volterra dislocation is a delta function. This distribution al-

though simple is inaccurate by being singular along the dislocation line itself. This

prediction is non-physical and the Peierls-Nabarro model (P-N model) corrects the

singularity by spreading the Burgers vector around the dislocation centre. The ac-

tual shape of the dislocation density distribution is now selected in the P-N model to
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u-(x)

u+(x)

b
x

y

Figure 1.1: The Volterra edge dislocation introduced in a crystal. (from Bulatov
and Cai (2006))

0

-b
u(x)

ρ(x)

x

0

Figure 1.2: In the Volterra model of a dislocation, distribution of u(x) across the cut

plane is a step function and its distribution density ρ(x) = du(x)
dx

is a delta function.
(from Bulatov and Cai (2006))
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consider the non-linearity involved in the dislocation core. The basic idea of the P-N

model is to separate the dislocated solid into two elastic parts across their common

interface known as the glide plane. The P-N model attempts to find the displacement

field across the glide plane that would minimize the total energy of the solid. One of

the considerable achievements of the P-N model is that it provides a reasonable esti-

mate of the dislocation core size. Belytschko and Gracie (2007) considered compatible

(P-N model) and incompatible (Volterra model) enrichments to model dislocations in

systems with arbitrary material interfaces. The accuracy of the two enrichments was

found to be of the same order for the problems considered, suggesting the details of

the core representation did not affect the results significantly.

1.2 Review of the Extended Finite Element Method

In the analysis by conventional finite element method, the continuum is discretized

into a series of nodes connected in a specific way, called the mesh. However, in the

presence of internal defects like interfaces, voids, inclusions, etc., meshing becomes

difficult. The element boundary must now coincide with the geometric edge of the

defect which induces some distortion in the element. Also, defects like cracks can

only propagate along an element edge and not along an arbitrary path.

Within the framework of the finite element method, a re-meshing technique was

traditionally used for modelling cracks. Swenson and Ingraffea (1988) presented a

finite element method that allowed discrete cracks to propagate through the mesh

in arbitrary directions through re-meshing. This was an improvement over earlier

methods that assumed cracks to propagate along pre-defined mesh lines (usually a

straight line). This re-meshing technique was performed near the crack-tip to align

the element edges with the crack faces and proved to be quite arduous in the case

of dynamic crack propagation where a new mesh is generated each time the crack
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grows. In addition, a dynamic solution depicts an evolving history requiring the need

to preserve said history when the mesh is updated. This is achieved by mapping data

from the old mesh to the new mesh which can result in loss of accuracy.

A simpler method to simulate crack growth is the element deletion method wherein

the crack is allowed to propagate in any direction and does not require re-meshing

or the definition of new contact surfaces. Strong discontinuities in the field variable

are not explicitly represented as the fractured elements are failed such that they can

no longer sustain deviatoric or tensile volumetric stresses. Beissel et al. (1998) put

forward an algorithm for element deletion for the finite element analysis of dynamic

elastic-plastic fracture mechanics. Recently, Song et al. (2008) published a compara-

tive study of extended finite element method (XFEM), element deletion method and

inter-element crack method for dynamic crack propagation in brittle materials.

The idea to enrich the approximation field was introduced in the global-local anal-

ysis strategies. The general idea was to get a global solution using a coarse mesh of

finite elements and accurate results were then found by focusing on the areas of in-

terest, refining the mesh and using field variables from the global analysis as inputs

for the refined mesh. The detailed (local) analysis was performed by assimilating

known physical behaviours and/or analytical solutions (as boundary conditions) into

the computational model to achieve convergence. Noor (1986) presented an assess-

ment of the potential of different global-local analysis strategies for predicting the

non-linear responses of structures. In a more recent application of global-local anal-

ysis strategies, Kim et al. (2008) presented an analysis of interacting cracks using

a generalised finite element method (GFEM) enriched with global-local functions,

where the global approximation space was enriched using the solutions of the local

boundary value problems estimated in a global-local analysis.

Gifford and Hilton (1978) extended the finite element method by enriching the
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field variable with the analytical solution for calculating the combined mode I and

mode II stress intensity factor for axisymmetric and planar structures of arbitrary

geometry and loading. The approximated displacement was taken to be a combination

of the conventional FEM polynomial expression and an enrichment term such that

u = ustd + uenr. But, this enrichment reduced the sparsity of the stiffness matrix

and required a higher order Gaussian quadrature for numerical integration. Also, the

crack tip had to be defined specifically on the node of an element for this scheme to

work.

Belytschko et al. (1988) developed a method by which localisation zones (thin

bands of high strain in materials) were embedded (enriched) at an element level.

This was achieved by altering the strain field within the framework of a three-field

(displacement, strain and stress fields) variational principle. The strain is discontin-

uous across the interfaces between the localisation band and the remainder of the

element, and the jump in strain field across the localisation band was found by im-

posing traction continuity and compatibility within the element. This methodology

called the embedded finite element method (EFEM) was intended in cases where the

localisation area was significantly smaller than the element size. This method reduces

the dependence of the finite element method on mesh size and allows for approxima-

tions to be calculated by meshes which are not adjusted to the solutions prior to the

calculations. Oliver (1996b) used EFEM to address the finite element approximation

to the solution of the strong discontinuity problem (Oliver (1996a)). In this work, an

additional discontinuous displacement field is incorporated into the finite element for-

mulation within the framework of EFEM i.e. an approximation to the displacement

jump is added to the standard element. Jirásek (2000) evaluated a number of tech-

niques that enriched the standard finite element interpolation with additional terms

corresponding to a displacement or strain discontinuity within a unified framework.
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The enriched approximation of the field variable was expressed in a generic form as,

u ≈ Nd+Ncdc (1.2)

ϵ ≈ Bd+Ge (1.3)

σ ≈ Ss (1.4)

where N is the standard displacement interpolation matrix (containing the shape

functions), B is the standard strain interpolation matrix (containing the derivatives

of the shape functions), Nc and G are matrices carrying enrichment terms for dis-

placement and strains respectively, S is the stress interpolation matrix, and vectors

dc, e and s are the enriched degrees of freedom and are unknown. In contrast, the

extended finite element method (XFEM) also being a local enrichment scheme, in-

stead uses the partition of unity (PUM) to incorporate an enrichment function into

the field variable. A prominent aspect of employing PUM in XFEM is that it enforces

the conformity of the global approximation space.

Dolbow and Belytschko (1999) proposed a new computational method called the

extended finite element method (XFEM), aimed at correcting the above shortcomings

by using conventional FEM to model cracks and other defects with discontinuous

interfaces. XFEM made a significant improvement to the foundation of conventional

FEM. In the last 17 years, XFEM has been continually improved and advanced,

making it a powerful and promising method for treating discontinuous fields, localised

deformation, fracture, etc. It is being widely used in civil engineering, aviation,

material science etc.

The core idea of XFEM is to use a discontinuous function to capture the jump

in field variables (e.g. displacement) in the computational domain. This way an ar-

bitrary discontinuity can be added to the finite element function independent of the

mesh. It is this advantage that makes it suitable for dealing with problems involving
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defects. Another advantage of XFEM is that it uses known analytical solutions to

construct the enrichment shape functions, so accurate results can be obtained. When

applying conventional FEM to model defects containing singularities, a very dense

mesh has to be used. However, in XFEM, by introducing known displacement solu-

tions for the defects into the enrichment shape function, an acceptable solution can

be derived for a relatively coarser mesh.

XFEM is not only used to model cracks, but also to model voids and inclusions.

The difference is that for cracks, the discontinuous field is displacement whereas,

for inclusion and voids, it is the strain. These two settings are defined as a strong

discontinuity (jump in the displacement field) and a weak discontinuity (jump in the

derivative of the displacement) respectively. Two different enrichment shape functions

will have to be used to model the two different discontinuities.

The finite element method is based on mesh interpolation; low-quality meshes

generate larger errors, require remeshing and may not be feasible in the case of three-

dimensional models. Also, the classical mesh-based methods are not apt to solve

models with discontinuities that do not align with the element boundary. Remeshing

or discontinuous enrichment will need to be used to deal with moving discontinuities.

However, remeshing is expensive, difficult in three dimensions and requires a transfer

of quantities between consecutive meshes which in turn leads to a reduction in accu-

racy. A feasible alternative would be the extended finite element method (XFEM)

which enriches the approximation space such that weak and strong discontinuities can

be represented. Dependence on the mesh to formulate the approximation can also be

eliminated with meshless methods (MM). The element-free Galerkin method (EFG)

was one of the first meshless methods built on the global weak form. Using only

nodal data, Belytschko et al. (1994) formulated the element-free Galerkin method for

arbitrary shapes. The trial and test functions for the weak form were constructed
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using moving least-squares interpolants. Least-squares approximation was first used

to fit the interpolants (polynomial) to the nodal values in Nayroles et al. (1992)’s

method to develop the Galerkin equations using only a mesh of nodes and a bound-

ary description thus eliminating the need of a finite element mesh completely. Unless

the weighting functions are singular, the moving least-squares method interpolants

do not pass through the data as the interpolation functions are not equal to unity at

the nodes. This works against the application of essential boundary conditions but

is greatly outweighed by the benefits of eliminating elements and the consequent el-

ement meshing. Detailed review and applications on meshless methods can be found

in review papers by Belytschko et al. (1996) and Nguyen et al. (2008).

Melenk and Babuška (1996) discussed the mathematical foundation of the par-

tition of unity finite element method (PUFEM). They showed that PUFEM has

the ability to include the partial differential equation being solved in the finite ele-

ment space knowledge. PUFEM has been the basis of the extended finite element

method. The basic idea was to include a non-smooth enrichment function, usually

non-polynomial into the approximation using the partition of unity. This produces

an enriched basis function which could be non-smooth and non-polynomial depend-

ing on the type of enrichment used. It is, therefore, possible to locally approximate

the field variable with a non-smooth function. Belytschko and Fleming (1999) used

the idea of PUM to expand the EFG basis with non-polynomial functions so as to

successfully incorporate discontinuities in the approximation or the derivative of the

approximation space within the framework of meshless methods.

The idea of modelling crack problems with minimal or no remeshing was devel-

oped by Belytschko and Black (1999). They added discontinuous functions to the

finite element approximation to describe the boundary of the crack. This method

enabled arbitrary alignment of the crack within the mesh, but it required remeshing
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for severely curved cracks. The Haar function and an asymptotic near tip field for

modelling crack growth by enrichment was introduced by Dolbow and Belytschko

(1999). With the improved methodology, the entire crack could now be represented

independently from the mesh, based on the construction of the enriched approxima-

tion. This method came to be known as the extended finite element method (XFEM).

The next significant step was by Dolbow et al. (2000) in presenting a technique to

model arbitrary discontinuities in the finite element framework by locally enriching

a displacement based approximation using the partition of unity method and con-

sidering cracks and crack growth in two-dimensional elasticity and Mindlin-Reissner

plates as specific examples. When the elements containing the crack surface and

crack tip are enriched, some nodes have both the standard and enriched degrees of

freedom. The elements containing these nodes (known as the blending elements)

would decrease the efficiency of computation since they do not satisfy the partition

of unity. XFEM was extended to model three-dimensional cracks by Sukumar et al.

(2000). For three-dimensional crack modelling, a discontinuous function was used

to model the interior of the crack surface and added to the finite element approx-

imation within the context of a displacement based Galerkin formulation. Chessa

et al. (2003) improved the performance of these elements by using a variant of the

assumed strain method known as the enhanced strain method, which is based on the

Hu-Washizu variational principle. The enrichment function in the blending domain

introduces undesirable and additional terms; these terms were eliminated using the

enhanced strain field. Extensions of finite element method for modelling cracks with

multiple branches, multiple holes and cracks emanating from the hole were presented

by Sukumar and Belytschko (2000).

The level set method (LSM) to represent the crack location, including the location

of crack tips was coupled with the extended finite element method to model crack
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Figure 1.3: FEM discretization of the domain Ω.

growth by Stolarska et al. (2001). In modelling arbitrary discontinuities in finite el-

ements, both discontinuities in the function and its derivatives were considered by

Belytschko et al. (2001). Level sets were used to update the position of disconti-

nuities by constructing the discontinuous approximation in terms of signed distance

functions. Duflot (2007) published an overview of the representation of cracks with

level set functions with additional and improvised methods of describing the level set

functions for crack propagation problems in 2D and 3D.

Since the discontinuities can be arbitrarily aligned, independent of the mesh,

within the framework of XFEM, holes and inclusions can also be easily modelled

using XFEM. On the other hand, modelling holes and inclusions using the standard

finite element method require the mesh to conform to the shape of holes and in-

clusions. The ease with which holes and inclusions could be modelled using XFEM

was shown by Sukumar et al. (2001). Material interfaces in composites can also be

modelled to predict the mechanical properties of the material using XFEM.

XFEM locally incorporates special functions describing the field behaviour into

the finite element approximation. It is based on the partition of unity method and is

able to completely capture all the features of the discontinuity. The following lines will

illustrate the XFEM methodology using a 1-D model to locally enrich a field. The

1-D domain Ω, is discretized into sub-domains Ω1,Ω2,Ω3,Ω4. The coordinates of the

nodes are xi = {x1, x2, x3, x4, x5}. We now associate each node with an interpolation

function (or shape function) ϕi to help approximate the field. These shape functions

have contact supports ωi = {ω1, ω2, ω3, ω4}, which correspond to the union of element
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Figure 1.4: Interpolation functions.

sub-domains connected to node i. The corresponding FEM approximation is:

uh(x) =
5∑

i=1

ϕi(x)ui (1.5)

We now need to define a function to capture the local features of the discontinuity

in order to approximate the field accurately; let p(x) be the approximating function

locally, that approximates the field u in the region of discontinuity. p(x) could be

defined as a Heaviside function H(x) to represent the jump in the displacement field

(one of many examples). We pick element Ω3 to be enriched with the function H(x)

in the interval [x3, x4]. Consequently, the nodes associated with the supports Ω3

and Ω4 will be enriched. We then need to define the partition of unity functions

in the region of interest. Since the standard finite element shape functions already

possess the partition of unity property, they can be used as the interpolants ϕ3 and

ϕ4 (any polynomial/non-polynomial function can be used as an interpolant as long

as it satisfies eq. 1.6).
n∑

i=1

ϕi(x) = 1 (1.6)

The enrichment term can now be incorporated as

4∑
j=3

ϕjp(x)aj (1.7)

14



u

Ω

Figure 1.5: Discontinuity in the field u over Ω.
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Figure 1.6: XFEM discretization of the domain Ω.

where aj are the enriched degrees of freedom. The corresponding extended approxi-

mation of the standard FEM is

uh(x) =
∑
i∈I

ϕiui +
∑
i∈J

ϕip(x)ai (1.8)

where I is the set of all nodes, I = {x1, x2, x3, x4, x5} and J is the set of enriched

nodes, J = {x3, x4} with J ⊂ I.

• when i ∈ I

uh(xi) =
∑

ϕiui = ui (1.9)

This is a case of standard FEM where an approximation is in terms of the nodal

values.

φ1 φ5φ4φ3φ2

x3 x4

Figure 1.7: Standard FEM interpolation functions with additional PUM functions.
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• when i ∈ J

uh(xi) =
∑

ϕiui +
∑

ϕip(xi)ai = ui + p(xi)ai (1.10)

Nodal interpolation is no longer a viable approximation, i.e u(xi) ̸= ui

Discontinuities arbitrarily aligned with the mesh can be modelled with the help of

extended finite element method through the use of the partition of unity. Any function

(typically non-polynomial) can be incorporated into the FEM approximations with

the concept of partition of unity. The general concept includes defining functions

whose sum is equal to one on the domain ΩPUM , see eq. 1.6.

When using the partition of unity functions, it can be observed that

∑
i∈I

ϕip(x) = p(x) (1.11)

where p(x) is the local approximating function. This illustrates that any function

multiplied with the partition of unity function can be exactly reproduced. It also

inherits the smoothness of partition of unity function.

Let si be the space of functions by which the field uh|ωi
can be approximated well,

the global space uh|Ω can be approximated with S such that

S =
∑

ϕisi (1.12)

Owing to the characteristics of partition of unity functions (their sum is equal to

1 and their ability to reproduce any function), any function of any nature can be

added to the local approximation space. The local approximation functions can be

polynomial functions, non-polynomial functions, discontinuous functions (Heaviside,

Delta, absolute value function), singular functions, trigonometric functions, logarith-

mic functions, or any function of known solution characteristics. We can now define

the enriched functional space as {p1(x), p2(x), .....pi(x)}. For example, in modelling
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crack growth, at least two enrichment functions are used. For elements completely

cut by the crack, Heaviside enrichment is used with the following enriched space of

functions,

si = {H(x)} (1.13)

For the element(s) containing the crack tip, at least one enrichment function obtained

from the analytical solution employing linear elastic fracture mechanics (LEFM) is

used. The corresponding enriched approximation space of functions is,

si = {p(x)} (1.14)

We can then form the partition of unity basis functions by multiplying the standard

finite element interpolation with the local enrichment functions,

ϕenr = ϕjpk(x) (1.15)

where j = 1 to nenr, nenr is the number of enriched nodes and k = 1 to nENR, nENR is

the number of enrichment functions for each enriched node. In general, any function

that qualifies to be a partition of unity function can be used to obtain the enriched

basis by multiplying it with the local approximating function (standard finite element

shape functions are popularly used).

We can now write the extended finite element basis as,

ϕi|neni=1 = ϕstd ∪ ϕenr (1.16)

ϕi|neni=1 = ϕi|neni=1 ∪ {ϕjp1(x), ϕjp2(x), .....ϕjpk(x)}|nenr
j=1 (1.17)

where nen is the total number of nodes in the domain.

Let the nodal shape functions for finite element method be defined by N , then

the nodal shape function for extended finite element method would be,[
N

]
=

[
Nstd Nenr

]
(1.18)
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and the gradient of shape functions will be,[
B

]
=

[
Bstd Benr

]
(1.19)

An XFEM approximation (say displacement) can now be written as,

uXFEM =
nen∑
i=1

Niui +
nenr∑
j=1

Nj

(
nENR∑
k=1

pk(x)aj

)
(1.20)

uXFEM = ustd + uenr (1.21)

In general,

uXFEM =

[
Nstd Nenr

]ustd

uenr

 (1.22)

1.3 Introduction to Inclusions

The term ‘inclusion’ in the context of metallurgy and metal processing refers

to the hard particles that enter or form in the liquid metal during the melt stage of

processing which are eventually trapped when the melt solidifies. These hard particles

could act as a crack propagator or as a region of high stress intensity. A dislocation

in the vicinity of such an inclusion experiences attractive or repulsive force depending

on the difference in the material properties of the inclusion and the matrix containing

the dislocation. A harder inclusion will tend to repel a dislocation while a softer one

will attract it. In alloys, dislocations may either interact with atoms that replace

atoms comprising the metallic crystals in case of substitutional alloys or they may

interact with atoms trapped in the spaces between the atoms of the crystal matrix in

case of interstitial alloys.

The force on a dislocation interacting with inhomogeneity was first examined

by Head (1953b), by considering an infinite elastic medium of shear modulus G1

for x > 0, and G2 for x < 0, with a dislocation running parallel to the interface.
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He concluded that the dislocation was simply either attracted or repelled by the

inhomogeneity. These results were later used by Fleischer (1960) to study the effect

of non-uniformities on the hardening of crystals. The effect of changes in elastic

modulus and lattice parameter on the ease with which a dislocation can move in a

crystal was examined. This paper concluded that dislocations that cross into a region

of different lattice constant create immobile dislocations at the interface and that the

interface dislocations which exist at a free surface will result in surface hardening.

Sendeckyj (1970) considered a screw dislocation ‘1’ near an elastic elliptic cylindrical

inclusion ‘2’ and observed that a hard inclusion (K > 0 i.e. µ2 > µ1) would repel the

dislocation, while a soft one (K < 0 i.e. µ2 < µ1) would attract it.

K =
µ2 − µ1

µ2 + µ1

(1.23)

where µ is the shear modulus.

Dundurs and Mura (1964) showed that the interaction between a dislocation and

an inclusion was not limited to either simply an attraction or a repulsion but that the

dislocation was under stable equilibrium at a finite distance from the interface. They

considered the interaction energy to be minimum at the stable equilibrium position

in an attempt to the study the motion of dislocations near inhomogeneities. Their

results indicated that the interaction was affected by material constants to a large

extent, particularly on the difference in Poisson’s ratios in addition to the difference

in shear moduli of the inclusion and the matrix containing the dislocation.

Nicholson et al. (1960) examined thin foils of aluminium alloys using transmis-

sion electron microscopy wherein dislocations were introduced in the alloys by rolling

before thinning. These dislocations were observed to move under the effect of ther-

mally induced stresses. The interactions between the dislocations and precipitates

showed that the dislocations pass through zones, coherent and partially coherent pre-
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cipitates but avoid incoherent precipitates. Dislocations with high mobility inside

manganese sulphide inclusions in steel were discovered during a study of the effect of

non-metallic inclusions on the weldability of steel by Boniszewski and Baker (1963).

Considering these observations and with an intend to pursue further the study by

Dundurs and Mura (1964), Dundurs and Sendeckyj (1965) observed the behaviour of

an edge dislocation situated inside an inclusion within the framework of the classi-

cal theory of elasticity. The conditions under which the centre of the inclusion is a

stable equilibrium position for the dislocation were given and it was also established

that the equilibrium positions away from the centre are unstable. The results showed

that the difference in material constants contributed significantly towards the above

conclusion.

Fukuzaki and Shioya (1986) and Fukuzaki and Shioya (1987) in their studies on

the interaction between an edge dislocation and two circular inclusions in an infinite

medium arranged the edge dislocation on the axis of symmetry of the two inclusions

in the order of inclusion-inclusion-edge dislocation and inclusion-edge dislocation-

inclusion respectively. The results showed that the interaction was considerably af-

fected by the geometrical relations and combination of elastic constants of the in-

clusions and dislocation involved. It was shown that the dislocation had a stable

equilibrium position or an unstable equilibrium position at some distance from the

inclusions defined by the combination of elastic constants. They observed that the

force on the dislocation increased as the dislocation approached the inclusions, and

that the force with which it was attracted to or repelled by the inclusion depended

heavily on the difference in elastic constants of the inclusion and the matrix containing

the dislocation.

Arsenault and Fisher (1983) suggested that the increased strength of Al-SiC com-

posites could be explained by the occurrence of high dislocation density in the alu-
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minium matrix. This study found at least three Burgers vector at any given location.

The large difference (10 : 1) in the coefficients of thermal expansion of aluminium

and SiC was seen as the driving mechanism for the dislocation generation of such

high density. When the composite is cooled from high temperatures in the action

of processing, misfit strains large enough to generate dislocations are induced as a

result of differential thermal contraction at the Al-SiC interface. In a different study

by Chawla and Metzger (1972) of Cu-W composites using etch-pitching studies, a

high dislocation density at the Cu-W interface reduced with increasing distance from

the interface. A difference (4 : 1) in coefficients of thermal expansion of copper and

tungsten caused the dislocations to materialise. Dislocations may also be introduced

into composites during plastic deformation process of manufacturing such as extru-

sion or dislocations may not be completely removed but trapped by the composite

constituents, resulting in high dislocation density even after annealing. Arsenault

and Shi (1986) cooled Al-SiC composites from annealing temperatures to observe dis-

locations at the Al-SiC interface. This study noted that the intensity of dislocation

generation at the Al-SiC interface was related to the size and shape of SiC particles

with the intensity being low for small and nearly spherical particles. Also, thermal

cycling caused the dislocations to disappear at high temperatures and reappear at

the Al-SiC interface and precipitates on cooling.

1.4 Why Is This Study Useful?

Mechanical properties of materials are considerably affected by the defects in

them. These defects need to be modelled and the cost of these computations is

usually very high with a limiting factor on the model size. Hence, the formulation

of computationally efficient models is needed. In a continuum-based approach, the

analytical infinite domain solutions and image stress fields need to be superimposed
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to obtain the total stress field. A finite element model with boundary conditions

to cancel the effect of the infinite domain dislocation fields will have to be chosen

to obtain the solution. For a dislocation core close to a boundary, a large number

of integrations points are needed to estimate the total stress field accurately. Also,

the cost of these computations increases with increase in the number of dislocations

as the infinite domain fields and image stress fields would have to superimposed for

each dislocation. In these models, the image stress is only approximately calculated

from analytical equations that are applicable only to simple boundary geometries.

Additionally, selecting boundary conditions to exactly cancel the effect of the infinite

domain dislocation fields is difficult and this was shown by Devincre et al. (2001).

Methods based on superposition are difficult to apply to problems involving anisotropy

and material interfaces. Besides, the standard FEM is only able to capture the slip

across the glide plane in an average sense and is, therefore, unable to represent the

discontinuity in a field variable within a single element.

A method which does not depend on the analytical solution, does not use super-

position or require the calculation of image stresses is therefore needed. XFEM allows

arbitrary discontinuities to be modelled in the framework of the finite element mesh.

An arbitrary discontinuity can be introduced into a finite element solution without

the need for it to conform to the mesh in any way. The ease with which arbitrary

discontinuities can be modelled with XFEM is its principal benefit to this study. The

slip across the glide plane can be modelled exactly within a single element within the

framework of XFEM. This method can be extended to anisotropic materials and to

easily solve problems involving interfaces. XFEM is not to replace the superposition

methods but to solve problems involving material interfaces more efficiently, which is

difficult for existing methods.

Foreign atoms in solid solutions, precipitates in alloys and other kinds of inhomo-
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geneities play an important role in determining the mechanical properties of materials

because of their interaction with dislocations. In this study, some aspects of the inter-

action between the larger scale inhomogeneities and dislocation have been analysed

by considering an edge dislocation in the vicinity of impenetrable inclusions whose

elastic properties are different from those of the matrix containing the dislocation.

Dislocations in composites may materialise during cooling from high annealing or

processing temperatures due to differential thermal contraction of the constituents

involved. The interaction of these dislocations generated at the interfaces with the

precipitates will dictate the mechanical properties of the composite in the form of

increased strength of the matrix in the Al-SiC composite for example. It is there-

fore of interest to model the interactions between dislocations and inclusions using a

computationally more efficient method.
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Chapter 2

NUMERICAL METHOD

2.1 Problem Formulation

Consider a body with domain Ω bounded by Γ with tractions t̄ defined on the

boundary Γt. Displacement boundary conditions are applied at the boundary surface

Γu allowing us to write Γ = Γt ∪ Γu. In addition, the body contains an internal

discontinuity, a dislocation⊥ denoted by Γ⊥. The corresponding scenario is illustrated

in fig. 2.1.

Ω
Γu

Γ

t

Γt

x

y

Γ

Figure 2.1: Domain definition and notation.
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The strong form of the equilibrium equation is,

∇ · σ + b = 0 (2.1)

The boundary conditions for the domain Ω are,

σ · n = t̄ on Γt (2.2)

σ · n = 0 on Γ⊥ (2.3)

u = ū on Γu (2.4)

where n is the outward unit normal and σ is the cauchy stress tensor.

Adopting a small strain and linear elastic formulation, the strain-displacement

relation can be expressed as,

ϵ = ∇su (2.5)

where ϵ is the strain tensor and ∇su is the symmetric part of the displacement gra-

dient.

The constitutive equation as per Hooke’s law is,

σ = C : ϵ (2.6)

where C is the elastic material stiffness tensor.

The space of admissible displacement field is given as,

u ∈ U = {u ∈ C0, u = ū on Γu, u is discontinuous on Γ⊥} (2.7)

and the test function is given as,

w ∈ W = {w ∈ C0, w = 0 on Γu, w is discontinuous on Γ⊥} (2.8)

The weak form of the equilibrium equation is now given as,∫
Ω

ϵ(w)T : σ(ϵ(u)) dΩ−
∫
Ω

g · w dΩ−
∫
Γt

t̄ · w dΓ = 0 (2.9)
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Figure 2.2: Signed distance function.

2.2 Level Set Representation of Discontinuities

Osher and Sethian (1988) introduced the level set method for tracking moving

interfaces. The main idea of the level set method is to represent the interfaces at

any time t, with a zero level set function i.e ϕ(x, t) = 0, where ϕ(x, t) is the level set

function.

For modelling a dislocation, the level set function is taken as a signed distance

function such that the level set function has positive values on one side of the interface

and negative values on the other side of the interface and the interface is represented

by the zero level set function. As the dislocation is a discontinuity that does not divide

the domain into two distinct parts entirely, we define two level set functions to fully

characterise the dislocation, (i) a normal level set function f and (ii) a tangential level

set function g. Both the level set functions are defined as signed distance functions.

For determining the signed distance functions, let Γ⊥ represent a dislocation ⊥.

Then for an arbitrary point x, we find a point xΓ⊥ on the discontinuity such that

|x − xΓ⊥| is minimum. We then define a unit vector n̂, normal to the discontinuity

at xΓ⊥ . The signed distance function is then represented as:
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f(x) = (x− xΓ⊥) · n̂ (2.10)

Eq. 2.10 is the normal level set function. The tangential level set function is

calculated by determining the minimum signed distance function to the normal at

the discontinuity. The signed distance function corresponding to the tangential level

set function is,

g(x) = (x− xΓ⊥) · t̂ (2.11)

where t̂ is the normal to the normal at the discontinuity. The dislocation can now be

fully characterised by the two level set functions f and g such that f = 0 and g < 0

on the glide plane. The dislocation core can be identified by the intersection of the

normal and tangential zero level set functions i.e intersection of f = 0 and g = 0.

Formally we can write this as:

Γ⊥ = {x⃗ ∈ R : f(x⃗) = 0 ∩ g(x⃗) ≤ 0}

∂Γ⊥ = {x⃗ ∈ R : f(x⃗) = 0 ∩ g(x⃗) = 0}
(2.12)

The level set functions are computed over the entire domain. Within the rest of

the domain f , will have a positive value above the glide plane and a negative value

below the glide plane. The function g, on the other hand, will have a positive value

to the right of the normal at the dislocation core and negative values on the left of

the normal to the dislocation core.

Within the framework of finite element method, the level set functions f and g

defined above can be interpolated within an element using the standard finite element

shape functions as:

ϕ(x) = Ni(x)ϕi (2.13)

where ϕi are the values of the level set functions at the nodes.
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Figure 2.3: Description of an edge dislocation using level set functions f(x) and
g(x). b is the Burgers vector.

Furthermore, within the framework of XFEM, the level set functions can also

be employed to determine the Heaviside enrichment function. We can define an

enrichment function H as:

H =


+1, ϕ > 0

0, ϕ < 0

(2.14)

Issues with Modelling Dislocations Using the Level Set Method

The Level set method offers an elegant way of modelling discontinuities. Modelling

discontinuities using level set functions within the framework of XFEM was first used

by Stolarska et al. (2001). These functions can be used to identify the elements

through which the glide plane passes as well as the element containing the dislocation.

The elements cut by the glide plane can be found by:

fmin ∗ fmax < 0 and gmax < 0 (2.15)

In cases where the glide plane passes through or very close to a node, incorrect
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Figure 2.4: Heaviside function for an element completely cut by the glide plane of
the dislocation.

enrichment is obtained. This is corrected by modifying the signed distance functions.

If the signed distance function for a particular node is less than 1
100

th
of the element

size, it is set to be equal to 1
100

th
of the element size. This effectively shifts the glide

plane, forming a slight kink in it around the node. Algorithm 1 describes the concept

used.

Algorithm 1 Shift glide plane around nodes

1: Compute element size.
2: Cut-off distance = 1% of element size.
3: for each node do
4: if f ≤ cut-off distance then
5: f = cut-off distance
6: return false
7: end for

The next issue lies in the element containing the dislocation core. gmax < 0 in

eq. 2.15 is not sufficient to determine the element containing the dislocation core. In
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Figure 2.5: Parent element signed distance function values. Element edge numbers
are indicated in parentheses.

such a case, algorithm 2 in addition to eq. 2.15 is adopted.

Algorithm 2 Enrich element containing the dislocation

1: for each node in element do
2: if gmin < 0 then
3: for each element edge do
4: if f e

1 · f e
2 < 0 then

5: Compute ξ0 =
fe
1+fe

2

fe
1−fe

2

6: Compute g(ξ0) =
1
2
(1− ξ) ge1 +

1
2
(1 + ξ) ge2

7: if g(ξ0) < 0 then
8: return true
9: return false
10: end for
11: return false
12: end for

2.3 Dislocation Enrichments

Theoretically, the basic idea of the XFEM is to superimpose one or many enrich-

ment terms to the conventional continuous interpolation. Enrichment terms involved

in the approximated quantities are vital for describing any discontinuity. Discontinu-

ities occurring in heterogeneous materials and structures are of two types (see fig 2.6):

strong discontinuities, where there is a jump in the physical field and weak discontinu-

ities where there is a jump in the gradient of the physical field. Enrichment functions

are accordingly classified into two types. Functions corresponding to the first type are

discontinuous and are used to describe strong discontinuities: the Heaviside function

is popularly used in literature. Fries (2008) suggested that the sign step function
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}Displacement jump

}Strain jump

E1 E2

Kink in displacement

Figure 2.6: Left, Strong discontinuity in a cracked bar with a jump in the field
variable. Right, Weak discontinuity in a bi-material bar with a jump in the gradient
of the field variable.

can provide the same approximation as the Heaviside function. Functions used to

model weak discontinuities are continuous, but their derivatives are not. Hansbo and

Hansbo (2004) developed a method for modelling both strong and weak discontinu-

ities; the approximation was constructed using two different independent fields. In

this method, the crack properties were obtained by overlapping elements instead of

involving additional degrees of freedom. The additional element was superimposed on

the element cut by the discontinuity in order to construct the enriched field. Later,

Areias and Belytschko (2006) commented that the Hansbo-Hansbo method can be

derived using a linear combination of XFEM basis of the Heaviside type.

Incompatible Enrichment

An edge dislocation ⊥ is described by a glide plane, a core and a Burgers vector,

b. The glide plane is a strong discontinuity with a jump in magnitude equal to the

Burgers vector in the displacement field. For an edge dislocation, the Burgers vector

is tangential to the glide plane. Implementing the Volterra model of dislocations,

the jump along the glide plane is inserted by adding an internal discontinuity to the

displacement field. The displacement approximation with incompatible enrichment

for an edge dislocation with Burgers vector b has the following form,

uh(x) =
∑
I∈nen

NI(x)uI + b
∑

J∈nenr

NJ(x)H(f(x))H(g(x)) (2.16)
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glide plane

core

Figure 2.7: Description of the enrichment scheme. Dashed line depicts the glide
plane and the black dots represent the nodes that are enriched.

where nen is the set of all nodes, nenr is the set of enriched nodes, NI and NJ are the

standard finite element shape functions, u(x) are the nodal displacement degrees of

freedom, f(x) is the function defined by eq. 2.10 that describes the glide plane, g(x)

is the function defined by eq. 2.11 that describes the location of the core ⊥ and H(z)

is the Heaviside function given by eq. 2.14. The nodes that are enriched, i.e those in

the set nenr are shown in fig. 2.7.

The form of enrichment terms in the displacement approximation eq. 2.16 is not

suitable for imposing essential boundary conditions as the approximation loses its

Kronecker-delta property. As the nodal displacement is now a function of both the

standard and the enriched degrees of freedom, the enrichment functions need to be

shifted such that they vanish at the nodes. Each enrichment function is shifted by

a constant, as suggested by Belytschko et al. (2001) and Ventura et al. (2005). The

shifted approximation is,

uh(x) =
∑
I∈nen

NI(x)uI + b
∑

J∈nenr

NJ(x)
[
H(f(x))H(g(x))−H(f(xJ))H(g(xJ))

]
(2.17)
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Figure 2.8: Magnitude of enrichment at element faces. Shifting the enrichment
function causes the enrichment to disappear at the nodes (dots).
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Figure 2.9: A four-node quadrilateral element.

2.4 Shape Functions

For a four noded isoparametric quadrilateral element, the standard finite element

shape functions associated with each node are given as (Zienkiewicz et al. (1977)),

N1 =
1

4
(1− ξ)(1− η) (2.18)
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N2 =
1

4
(1 + ξ)(1− η) (2.19)

N3 =
1

4
(1 + ξ)(1 + η) (2.20)

N4 =
1

4
(1− ξ)(1 + η) (2.21)

The corresponding displacement approximation is,

u(x) =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4





ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4



= N4Q
stdd

e (2.22)

where de is the nodal displacement matrix of an element. For an arbitrary enrichment

function p(x), the enriched shape function matrix is,

Nenr =

N1p(x) 0 N2p(x) 0 N3p(x) 0 N4p(x) 0

0 N1p(x) 0 N2p(x) 0 N3p(x) 0 N4p(x)


(2.23)

Knowing the shape functions and their gradients, the discretized gradient operator

is,

Bstd =


N1,x 0 N2,x 0 N3,x 0 N4,x 0

0 N1,y 0 N2,y 0 N3,y 0 N4,y

N1,y N1,x N2,y N2,x N3,y N3,x N4,y N4,x

 (2.24)
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and the enriched discretized gradient operator is,

Benr =


(N1p),x 0 (N2p),x 0 (N3p),x 0 (N4p),x 0

0 (N1p),y 0 (N2p),y 0 (N3p),y 0 (N4p),y

(N1p),y (N1p),x (N2p),y (N2p),x (N3p),y (N3p),x (N4p),y (N4p),x


(2.25)

When p(x) is the Heaviside function H(x), the derivative of the enrichment term will

be,

(NIH),x = NI,xH (2.26)

2.5 Stiffness Matrix

The approximated displacement using a single enrichment function p(x) can be

expressed from eq. 1.20 as,

uXFEM =
nen∑
i=1

Niui +
nenr∑
j=1

Njp(x)aj (2.27)

The corresponding strain approximation is,

ϵ = ∇sNiui +∇s(Njp(x))aj (2.28)

where ∇s is the symmetric gradient operator.

Using eq. 2.6, the stress approximation will then be,

σ =
[
C
][
∇sNiui +∇s(Njp(x))aj

]
=
[
C
][
Bstdui +Benraj

] (2.29)

where Bstd = ∇sNi and Benr = ∇s(Njp(x)) as discussed earlier.

Substituting these approximations into the weak form of the equilibrium equation

(eq. 2.9) which is the standard principle of virtual work,∫
Ω/Γ⊥

ϵTσ dΩ = δxF (2.30)
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δui

δaj


∫
Ω/Γ⊥

Bstd

Benr

[C] [Bstdui Benraj

]
dΩ =

δui

δaj


 f ext

f glide

 (2.31)

∫
Ω/Γ⊥

BT
stdCBstd BT

stdCBenr

BT
enrCBstd BT

enrCBenr


ui

aj

 dΩ =

 f ext

f glide

 (2.32)

Kuu Kub

KT
ub Kbb


u
a

 =

 f ext

f glide

 (2.33)

where u =
[
u1, u2.....unen

]
are the standard nodal degrees of freedom and nen is

the number of nodes. The vector a =
[
a1, a2, .....anenr

]
is the degrees of freedom

associated with the enriched nodes and f glide is the vector of reaction forces along the

glide plane. The other terms are,

Kuu =

∫
Ω/Γ⊥

BT
stdCBstd dΩ (2.34)

Kub =

∫
Ω/Γ⊥

BT
stdCBenr dΩ (2.35)

Kbb =

∫
Ω/Γ⊥

BT
enrCBenr dΩ (2.36)

f ext =

∫
Ω

NTg dΩ +

∫
Γt

NT t dΓ (2.37)

The Burgers vector b defining the slip is assumed to be given, so its effect appears in

the discrete equations as an additional force. The nodal displacements are obtained

using eq. 2.33 and are given by,

u = K−1
uu (f

ext −Kuba) (2.38)

The dislocations are now represented in eq. 2.38 by nodal forces Kuba. The stiffness

matrix Kuu is independent of the location and geometry of the dislocation and there-

fore does not change for a given mesh as the dislocation moves, whereas the nodal

forces, Kuba will vary. Note that the discrete equations in eq. 2.38 are the standard
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finite element equations and the effect of the dislocation manifests completely in the

form of external forces, i.e the right-hand side of the equation. Accordingly, the pro-

posed XFEM method can be effortlessly incorporated into a standard finite element

software. Additionally, the stiffness matrix needs to be inverted only once and all

ensuing steps would only involve the cheaper alternative of back-substitution.

Application of Displacement Boundary Conditions

Boundary conditions are imposed in a way similar to as they would be in a stan-

dard finite element method, i.e by constraining the nodal degrees of freedom. Through

shifting in eq. 2.17, a node on the boundary of the domain, denoted as xB will be

bereft of enrichment. Effectively, the nodal displacements at xB are u(xB) = uB, or

the standard FEM. Specific displacements along a boundary are applied by constrain-

ing specific uB in the solution of eq. 2.38. In the case of a free surface, no uB will

need to be altered, as the homogeneous natural boundary conditions follow directly

from the weak form. In the case of a fixed boundary, the constraint uB = 0 along the

desired direction must be applied. Attention must be given to when the dislocation

glide plane intersects boundaries where displacement boundary conditions are to be

applied. To check if the necessary boundary conditions are imposed, the displacement

of nodes on the boundary may be inspected.

2.6 Peach-Koehler Force

Peach and Koehler (1950) showed that the force F exerted on a line element ξds

of a dislocation with a Burgers vector b by a stress σ is given by,

F = −ξ × (σ · b) ds (2.39)
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where ξ is the local line tangent direction at the point on the dislocation line where the

force is calculated. The cross product ensures that the Peach-Koehler force is always

perpendicular to the line itself. The importance of the Peach-Koehler formula is that

the force experienced by a dislocation is completely defined by the local stress σ on

the dislocation, regardless of the origin of said stress. Local stresses can be induced

by nearby dislocations or any other strain producing defects in addition to the surface

traction forces. Using the superposition method, the stress σ on the dislocation is

given by,

σij = σ∞
ij + σimage

ij (2.40)

where σ∞
ij is the stress on a dislocation in an infinite medium (or self-stress) and σimage

ij

is the image stress field due to the boundary of a finite body. The image stress can

be calculated by solving the boundary value problem such that the surface traction

σimage
ij nj cancels the original traction σ∞

ij nj on the surface, where nj is the component

of normal vector to the surface. The self-stress can be calculated using the analytical

infinite domain solutions.

Using the finite element solution of eq. 2.38 to compute the stresses needed to

employ the superposition method is not accurate as the proposed method computes

the total stress field which requires a greater mesh refinement at the core to achieve

decent accuracy. Instead, image field methods like those described in Van der Giessen

and Needleman (1995) may be more suitable.

Eshelby (1951) conceptualised that the force related to a singularity can be esti-

mated as an integral over a surface enclosing it. This integral consists of the elastic

field terms related to the singularity in an infinite medium multiplied by the difference

between these terms and those actually involved. The expression for force is of the

same form irrespective of its source. The force being estimated can be due to applied

surface tractions, the presence of a free surface of a body or other singularities. In
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Figure 2.10: Conventions for calculation of the Peach-Koehler force from the J-
integral.

this method, Eshelby’s energy-momentum tensor is integrated over a closed contour

around the dislocation core. Eshelby called this force a configurational force so as to

distinguish it from an ordinary force which can be balanced by a weight or a spring.

Batra (1987) extended Eshelby’s work to non-linear elastic materials by showing that

the configurational force on a defect in such solids is also a true force exerted on the

core of the defect by the surrounding medium. The formulation was given in terms

of the inverse deformation gradient and results compared with Eshelby (1980)’s work

on force on a disclination in a nematic liquid crystal.

For linear materials, the Peach-Koehler force as given by Eshelby (1951) is,

Fl = −
∫
Γc

[
1

2
σijϵijδkl − σikui,l

]
nk dΓ (2.41)

where with reference to fig. 2.10, Γc is a closed contour around the dislocation and n

is the unit outward normal of Γc. Rice (1968) showed that the integral in eq. 2.41 has

the same values for all paths around a class of notches in two-dimensional deformation

fields of linear or non-linear elastic materials. This integral is now widely known as

Rice’s path independent J-integral.
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q(r)

Figure 2.11: Structured integration domain for estimating the forces acting on the
dislocation. The variation of the weight function q(r) is also shown.

The contour integral discussed above is in a form that is ill-suited for finite element

calculations as the stress fields of the finite element models are not continuous. For

numerical purposes, it is beneficial to recast an area/domain form of the integral in lieu

of the line/contour integral. Moran and Shih (1987) provided the domain form of the

J-integral which is more accurate than the contour form. Using appropriate balance

laws, crack tip flux integrals were derived and examined for path-independence in the

crack-tip region to yield non-trivial results. The domain form of the J-integral is,

Fl = −
∫
Ωc

[
1

2
σijϵijδkl − σikui,l

]
ql,k dΩ (2.42)

where Ωc is the domain containing the dislocation core bounded by Γc and q is

the weight function. For the two-dimensional examples considered in this study, the

energy released by a virtual advance of the dislocation is integrated over an area

surrounding the dislocation. The integral in eq. 2.42 is numerically evaluated over
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an annular region defined by ri < r < r0, around the dislocation. A local polar

coordinate system is defined for the dislocation in terms of the level set functions.

The coordinates of a point x(r, θ) are associated with the global coordinates by,

x(r, θ) = x0 + rRξ⃗

xI = x0 + r

 cos(θ) sin(θ)

−sin(θ) cos(θ)

 ξ⃗
(2.43)

where x0 is the location of the dislocation. The domain form of the J-integral in polar

coordinates will then be,

Fl = −
∫ r0

ri

∫ 2π

0

[
1

2
σijϵijδkl − σikui,l

]
ql,k rdrdθ (2.44)

The vector field q as defined by Oswald et al. (2011) is chosen to be,

q(r) = ∇g(x0)ρ(r)

ρ(r) =
(r − r0)

2

(ri − r0)2

(2.45)

One other possible way to integrate the integral in eq. 2.42 is by defining Ωc to be

a square with a thickness of (ro − ri), centred at the dislocation core. The weight

function q is defined to be equal to 1 at all nodes at a distance of ri from the core and

decreases linearly to 0 at ro. The definition of Ωc described above is based on that

used by Dolbow and Belytschko (1999) for crack tips and is illustrated in fig. 2.12.

The domain Ωc must contain only one dislocation core compelling the radius of

the integral contour to be as small as possible in order to be able to implement the

proposed XFEM method to dislocations. The domain form of the integral in eq. 2.42

contains the term, dq/dx which means that the integral will be evaluated only when

dq/dx ̸= 0. The integral is effectively evaluated around a contour surrounding the

point of singularity. In the case when the dislocation is close to the boundary of the

body, the area over which the integral is evaluated may not completely lie inside the
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Figure 2.12: Left, Integration domain definition for the domain form of J-integral
around a dislocation core. The weight function q has a value of 1 at a distance of ri
from the core and a value of 0 in the region outside of a distance of ro from the core.
Right, Weight function q as a function of distance r from the dislocation core.

body. Consequently, the integral would be evaluated along a contour not surrounding

the point of singularity, resulting in the inaccurate representation of the dislocation

energies involved.

Integrating the Element Containing the Dislocation Core

The integrand in eq. 2.16 and eq. 2.38 is discontinuous in the element containing

the dislocation core as the Heaviside function of g(x) in eq. 2.16 turns off in the

element. The use of a few gauss quadrature points to integrate such a discontinuous

function would introduce an error in the approximated displacement values. The

accuracy at the dislocation core can be improved in one of the following three ways.

The parent element of the element containing the dislocation core can be divided

into a large number of smaller squares and one integration point could be placed

at the centre of every square with equal weights being assigned to every integration

point. Although expensive, the need to do this for only one element justifies its use

to improve the accuracy of integration at the core.
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Figure 2.13: The parent element is divided into smaller squares with an integration
point at the centre of each square. Equal weights are assigned to each integration
point.

Another possible method to improve the accuracy of integration would involve

shifting the dislocation to an element edge in the pre-processing stage as seen in

fig. 2.14. In doing so, the integrand would no longer be discontinuous in the element

containing the dislocation as H(g(x)) would turn off only at the element edge, en-

suring that the entire core element has been integrated. Once the element containing

the dislocation is identified, the points at which the glide plane f(x) = 0, intersects

the element edges are determined. The distance of these points from the dislocation

g(x), is calculated using parts of algorithm 2 and the dislocation is moved along the

glide plane to the nearest intersection point. The distance of the dislocation from the

free surface is accordingly updated.

Yet another method that can be used to evaluate the integrand precisely in the

element containing the dislocation consists of dividing said element into smaller areas

for integration. The region of the core element in which H(g(x)) is active is split into

smaller areas and these smaller areas are then individually integrated using integration

points defined by gauss quadrature. Evaluating the integrand in the region of the core

element in which H(g(x)) is inactive is not necessary as the enrichment function has

been turned off in that region of the core element. In the example illustrated by
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Figure 2.14: Illustration of shifting the dislocation to an element edge. a) The
element containing the dislocation is identified and points at which the glide plane
intersects the element edges are marked b) The dislocation is shifted to the nearest
edge

fig. 2.15, the core element has been divided into triangles by considering the points

at which g(x) = 0 intersects the element edges, the location of the dislocation and

nodal positions. These triangles in their natural coordinates are then transformed into

quadrilaterals by repeating a local nodal position. The integrand is now evaluated at

the integration points in the transformed element and combined with similar results

from the other triangles.
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Figure 2.15: Illustration of dividing the core element into triangles for improving the
accuracy of integration. a) Core element is divided into triangles by identifying the
nodal positions, dislocation location and points where g(x) = 0 intersects the element
edges b) depicts the local coordinates of the triangular element under consideration
c) Integration points defined by gauss quadrature are placed in the triangle d) shows
the triangular element transformed into a quadrilateral element
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Chapter 3

RESULTS AND ANALYSIS

3.1 Dislocation in a Semi-infinite Domain

To simulate an edge dislocation in a semi-infinite domain near a free surface, a

1× 1 µm domain containing a dislocation core with a horizontal glide plane as shown

in fig. 3.1 is considered. The free surface is located at x = 0 and the domain is

then defined by −L < x < L and −L < y < L. The dislocation is located at a

distance of L = 0.5 µm from the free surface and the glide plane is perpendicular to

the free surface, along y = 0. The elastic modulus, Poisson’s ratio and the magnitude

of Burgers vector are 121.41 × 103 MPa, 0.34 and 8.551× 10−4
µm respectively. A

structured and an unstructured mesh of four-noded quadrilateral elements as shown

in fig. 3.2 are used. Along the top, bottom and right boundaries of the domain, a

displacement boundary condition corresponding to the analytical solution for an edge

dislocation near a free surface, as given by Head (1953a) in eq. 3.1 and eq. 3.2, is

applied.

σxx =
Eb

4π(1− ν2)

[
−
y
(
3(x− L)2 + y2

)
((x− L)2 + y2)2

+
y
(
3(L+ x)2 + y2

)
((L+ x)2 + y2)2

4Lxy
(
3(L+ x)2 − y2

)
((L+ x)2 + y2)2 ((L+ x)2 + y2)

]

σyy =
Eb

4π (1− ν2)

[
y
(
(x− L)2 − y2

)
((x− L)2 + y2)2

−
y
(
(L+ x)2 − y2

)
((L+ x)2 + y2)2

+
4Ly

(
y2(2L+ 3x) + (2L− x)(L+ x)2

)
((L+ x)2 + y2)3

]

σxy =
Eb

4π (1− ν2)

[
(x− L)

(
(x− L)2 − y2

)
((x− L)2 + y2)2

−
(L+ x)

(
(L+ x)2 − y2

)
((L+ x)2 + y2)2

+
2L

(
6xy2(L+ x) + (L− x)(L+ x)3 − y4

)
((L+ x)2 + y2)3

]
(3.1)
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Figure 3.1: An edge dislocation in a semi-infinite domain, close to a free surface.
The subdomain ABCD is the numerical simulation domain.

ux =
by

4π(ν − 1)

[
−4Lν + 7L+ x

L2 + 2Lx+ x2 + y2
+

L− x

L2 − 2Lx+ x2 + y2
−

4L
(
L2 + Lx+ y2

)
(L2 + 2Lx+ x2 + y2)

2

+
2(ν − 1) tan−1

(
L−x
y

)
y

+
2(ν − 1) tan−1

(
L+x
y

)
y

]

uy =
b

8π(ν − 1)

[
−

2
(
L2(4ν − 3) + 4L(ν − 1)x+ x2

)
L2 + 2Lx+ x2 + y2

+ (1− 2ν) log
(
L2 − 2Lx+ x2 + y2

)
+ (2ν − 1) log

(
L2 + 2Lx+ x2 + y2

)
+

2(L− x)2

L2 − 2Lx+ x2 + y2
− 8Lx(L+ x)2

(L2 + 2Lx+ x2 + y2)
2

]
(3.2)

The shear stress along the glide plane, f(x) = 0 is plotted in fig. 3.8 against the

exact solution. It is evident that the shear stress is captured perfectly away from

the dislocation core. The stress near the core is only approximately captured as the

enrichment approximation, eq. 2.16 is a regularization of the step discontinuity of the

exact solution. The regularization of the step discontinuity approaches a step discon-

tinuity with mesh refinement leading the shear stress near the core to be accurate.
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Figure 3.2: Left, A structured mesh to discretize ABCD. Right, An unstructured
mesh to discretize ABCD
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Figure 3.3: Displacement ux in µm. Left, results for an exact field. Right, results
using XFEM for an unstructured mesh

Figures 3.3 - 3.7 show that the proposed method correctly estimates the displacement

and stress fields for a dislocation near a free surface.

In order to study the accuracy of the Peach-Koehler force estimated by the domain

form of J-integral in eq. 2.42, the domain of integration, Ωc is fixed. An annular shaped

domain with ri/L = 0.2 and ro/L = 0.4 around the dislocation core is chosen as per

fig. 2.11. The domain over which the J-integral was evaluated was chosen to be larger

than would be in an actual simulation in order to accommodate coarser meshes in the
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Figure 3.4: Displacement uy in µm. Left, results for an exact field. Right, results
using XFEM for an unstructured mesh
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Figure 3.5: Stress σxx in MPa. Left, results for an exact field. Right, results using
XFEM for an unstructured mesh

convergence study. Fig. 3.10 and fig. 3.11 show the convergence of the relative error

in computing the Peach-Koehler force in the glide direction with decreasing element

size for a structured mesh and an unstructured mesh respectively. The relative error

converges at a rate of 2.0 with respect to the element size in both cases. Thus the

proposed method approximates the glide force well and the glide force converges to

the exact solution at an optimal rate of h2
e for linear finite elements over a fixed area

around the core; he is the element size.
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Figure 3.6: Stress σxy in MPa. Left, results for an exact field. Right, results using
XFEM for an unstructured mesh
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Figure 3.7: Stress σyy in MPa. Left, results for an exact field. Right, results using
XFEM for an unstructured mesh
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Figure 3.8: XFEM and exact shear stress σxy along the glide plane of an edge
dislocation near a free surface for a structured mesh on the left and for an unstructured
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Figure 3.9: Convergence of the Peach-Koehler force for a structured mesh. The
integration domain definition used in fig. 2.12 was employed.
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Figure 3.10: Convergence of the Peach-Koehler force for a structured mesh. The
integration domain definition used in fig. 2.11 was employed.
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Figure 3.11: Convergence of the Peach-Koehler force for an unstructured mesh. The
integration domain definition used in fig. 2.11 was employed.
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Figure 3.12: Peach-Koehler force for various inner radius of the integration domain
for an unstructured mesh of about 100×100 elements; he ≈ 10 nm.

In studying the convergence of the Peach-Koehler force for a structured mesh, a

square shaped domain with ri/L = 0.3 and ro/L = 0.7 around the dislocation was

also chosen as per fig. 2.12. The relative error converges at a rate of about 2.0 with

respect to the element size as well. This domain definition performed poorly for an

unstructured mesh and was hence not included in this study.
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Figure 3.13: Peach-Koehler force for various width (thickness) of the integration
domain for an unstructured mesh of about 100×100 elements; he ≈ 10 nm.

Integration domains of different sizes were also considered for an unstructured

mesh of about 100×100 elements, with an approximate element size of 10 nm. Fig. 3.12

illustrates the relative error in computing the Peach-Koehler force for various values of

the inner radius of the integration domain. The inner radius is considered in terms of

the number of elements away from the dislocation core. From the figure, it is evident

that when the inner radius is relatively small, increasing it improves the accuracy

of J-integral. This shows that the stress field at the core is not accurately captured

and that it is less accurate close to the core than slightly farther away from the core.

But, beyond a certain point in the domain, increasing the inner radius reduces the

accuracy by a small amount. Hence, the inner radius of the integration domain must

be selected sufficiently far from the core but yet in the vicinity of the core. Fig. 3.13

illustrates the Peach-Koehler force and the relative error for various values of thick-

ness (width) of the integration domain. The thickness is also considered in terms of

the number of elements across the integration domain in an average sense. The figure

depicts that the accuracy of J-integral is poor for too thin an integration domain.
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Figure 3.14: Variation of the Peach-Koehler force with the number of integration
points chosen in the angular direction for an unstructured mesh of about 100×100
elements; he ≈ 10 nm.

The accuracy increases with increasing thickness but only to a certain point, beyond

which increasing the domain thickness has no effect on the accuracy.

Fig. 3.14 shows the variation in the relative error in computing the Peach-Koehler

force for an increasing number of integration points in the angular direction. The

integration points were distributed in the angular direction using the trapezoidal rule.

The error reduces with increasing number of integration points until a certain range

of values beyond which the error remains nearly unchanged. Fig. 3.15 depicts the

variation in the relative error in computing the Peach-Koehler force for an increasing

number of integration points in the radial direction. The integration points were

spread in the radial direction using gauss quadrature. The error also reduces with

increasing number of integration points but a very large number of integration points

would only be fitting a polynomial through the noise that may have been captured

in the integration domain. Thus the number of integration points in the radial and

angular direction must be chosen sufficiently large enough but yet not large enough

to cause overfitting and lead to longer computation time.
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Figure 3.15: Variation of the Peach-Koehler force with the number of integration
points chosen in the radial direction for an unstructured mesh of about 100×100
elements; he ≈ 10 nm.

3.2 Dislocation near a Single Inclusion

Aluminium-copper (Al-Cu) alloy films are extensively used for interconnects in

integrated circuits. Ames et al. (1970) found that the lifetime of aluminium films

subjected to high current densities at elevated temperatures could be improved by

adding copper to the films. This discovery resulted in extensive examination of Al-Cu

thin films and lines. The amount of copper added usually varies from 0.2% to 2%.

At temperatures above 500◦C, copper remains suspended in the solid solution but

at room temperatures, most copper will be incorporated into the matrix as Al2Cu

precipitates. Gardner and Flinn (1990) reported volume changes during the solid

solution-precipitate transformation to be a source of localised stress fields. Other

phenomena that contribute to stress changes include elastic behaviour (mismatch),

recrystallization, grain growth, plastic behaviour, yield strength, and film hardening

from precipitates. Material properties such as yield strength, ductility, etc. of the

matrix are affected by the presence of these precipitates. Therefore, the interaction
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Figure 3.16: Nomenclature for an edge dislocation interaction with a circular inclu-
sion.

between an edge dislocation and these precipitates is considered in this section.

To simulate the above scenario, an edge dislocation near a circular inclusion in a

1×1 µm domain as shown in fig. 3.16 is considered. The domain is supported so as to

prevent rigid body motion. The domain is discretized into an unstructured mesh of

four-node quadrilateral elements. A circular inclusion of radius a =0.15 µm is located

with its centre on the glide plane f(x) = 0, of the dislocation with a Burgers vector

of 8.551× 10−4
µm. The Aluminium matrix has an elastic modulus of E1 = 70× 103

MPa and a Poisson’s ratio of ν1 = 0.345 and the Al2Cu precipitate has an elastic

modulus of E2 = 99× 103 MPa and a Poisson’s ratio of ν2 = 0.345. The solution to

this problem was given by Head (1953b) and later used to study the Peach-Koehler

force on an edge dislocation near a circular inclusion by Dundurs and Mura (1964).
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They calculated the force on the dislocation to be,

F = − G1b
2

π(κ1 + 1)a

1

β

(
B + A

β2 − 1
+

3A−B

β2

)
(3.3)

Herein,

β =
c

a
≥ 1 (3.4)

and

A =
1− Γ

1 + Γκ1

, B =
κ2 − Γκ1

κ2 + Γ
(3.5)

where

Γ =
G2

G1

(3.6)

where G is the shear modulus, κ = 3− 4ν for plane strain and κ = 3− 4ν for plane

stress, ν being the Poisson’s ratio. a is the radius of the inclusion, c is the distance

of the dislocation from the centre of the inclusion, b is the Burgers vector of the

dislocation, and ‘1’ and ‘2’ refer to the matrix and the inclusion respectively.

In order to eliminate the effect of free surfaces on the computational results, the

domain under consideration is embedded at the centre of a much larger domain; the

1× 1 µm domain is placed at the centre of a 10× 10 µm domain. The larger domain

is discretized to have a coarse mesh that linearly refines into a finer mesh in the

computational domain under consideration as shown in fig. 3.17 .

The glide component of the Peach-Koehler force obtained by using XFEM is com-

pared to that from eq. 3.3 for various distances between the dislocation and the

circular inclusion in fig. 3.18. It is evident from the plot that the force experienced

by the dislocation increases as it approaches the inclusion. The force being repul-

sive is due to the larger elastic modulus of the inclusion than the matrix containing

the dislocation. When the elastic modulus of the matrix is larger than that of the

inclusion, the dislocation will be attracted to the inclusion as it moves in the vicin-

ity of the inclusion. This force of attraction increases as the dislocation approaches
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Figure 3.17: The computational domain (in red) is embedded in a much larger
domain to eliminate the influence of the free surfaces.

Figure 3.18: Comparison of the glide component of the Peach-Koehler force cal-
culated using XFEM with the exact result for an edge dislocation near a circular
inclusion.
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the inclusion as well. As can be seen, the Peach-Koehler force computed using the

domain form of J-integral with ri = 4he and ro = 8he compares well with the exact

solution. The accuracy reduces due to inadequate mesh resolution as the dislocation

approaches the inclusion. Mesh refinement near the inclusion can be used to increase

the accuracy of the glide force estimation. This can easily be achieved as the element

edges do not have to conform to the glide plane when using XFEM.

Precipitates in alloys or composites may occur in the shape of a cube depending

on the shape of the constituents. An inclusion in the shape of a square with the

equal area and similar material properties as the aforementioned circular inclusion

is considered in the following analysis. The square shaped inclusion with an edge

length of 0.265µm is located with its centre on the glide plane. Two orientations

of the square shaped inclusions are considered, one with its edges perpendicular to

the glide plane (referred to as square shaped inclusion in this study) and the other

with its diagonals perpendicular to the glide plane (referred to as diamond shaped

inclusion in this study). Fig. 3.19 shows a comparison of the Peach-Koehler force for

an edge dislocation approaching the centre of a circular, square shaped and diamond

shaped inclusion. All the inclusions are located at the same point in the domain.

The dislocation experiences greater repulsive force when approaching the diamond

shaped inclusion as the elastic mismatch between a circular inclusion and the matrix

is evenly distributed along the circumference of the circular inclusion whereas the

elastic mismatch is concentrated at the sharp corners of a square and diamond shaped

inclusion. Therefore, a dislocation approaching the corners of an inclusion with sharp

corners will tend to experience a greater force than from any part of the circular

inclusion.

The size of the inclusion also affects the force on the dislocation. When the radius

of the circular inclusion and the edge length of the square and diamond shaped
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Figure 3.19: Comparison of the Peach-Koehler force for an edge dislocation near a
circular, square shaped and diamond shaped inclusion.

inclusions were halved, with their centres at the same point, the glide force on the

dislocation is as shown in fig. 3.20. It can be seen from the figures that force on the

dislocation reduces as the size of the inclusion reduces. Again, the force due to the

diamond shaped inclusion is slightly more than that from the circular inclusion.

In studies by Arsenault and Fisher (1983), Arsenault and Shi (1986) and Chawla

and Metzger (1972), the difference in coefficient of thermal expansion between the

inclusion and the matrix containing the inclusion was the source of high dislocation

density generation at the inclusion-matrix interface. This thermal mismatch caused

changes to the mechanical properties of the material. As the solid solution cools

from processing temperatures of about 500◦C to room temperature, Al2Cu particles

coalesce into precipitates that attract or repel dislocations in their vicinity based on

their thermal and elastic mismatch with the aluminium matrix. Thermal stresses for

a circular, square shaped and diamond shaped Al2Cu particle in Al matrix is shown

in fig. 3.21.
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Figure 3.20: Comparison of the Peach-Koehler force for an edge dislocation near a
smaller circular, square shaped and diamond shaped inclusion.
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Figure 3.21: Stress σxy in MPa for a circular (left), square shaped (centre) and
diamond shaped (right) Al2Cu particle inside an Al matrix with elastic and thermal
mismatch.
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Figure 3.22: Illustration of an edge dislocation approaching the centre of the top
half of a circular (left), square shaped (centre) and diamond shaped (right) Al2Cu
particle in an Al matrix with elastic and thermal mismatch.

61



Figure 3.23: The Peach-Koehler force due to thermal mismatch for an edge dislo-
cation approaching the centre of the top half of a circular inclusion.

Fig. 3.23 shows the Peach-Koehler force on the dislocation due to elastic mismatch

and elastic as well as thermal mismatch in approaching the centre of the top half of

the circular inclusion (see fig. 3.22). The dislocation is now repelled from the inclusion

with a force augmented by the thermal mismatch between the aluminium matrix with

a coefficient of thermal expansion of 24× 10−6C−1 and the Al2Cu precipitate with a

coefficient of thermal expansion of 16.2× 10−6C−1. Fig. 3.24 depicts the comparison

of the Peach-Koehler force experienced by the dislocation due to thermal mismatch

in approaching the centre of the top half of a circular, square and diamond shaped

inclusion.

Fig. 3.26 depicts the comparison of the Peach-Koehler force experienced by the

dislocation due to thermal mismatch in approaching the top of a circular, square and

diamond shaped inclusion (see fig. 3.25).
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Figure 3.24: Comparison of the Peach-Koehler force due to thermal mismatch for
an edge dislocation approaching the centre of the top half of a circular, square and
diamond shaped inclusion.

x

y

E2, 2

E1, 1

a

x

y

E2, 2

E1, 1

a
2

a

x

y

E2, 2

E1, 1

a

a
2

Figure 3.25: Illustration of an edge dislocation approaching the top of a circular
(left), square shaped (centre) and diamond shaped (right) Al2Cu particle in an Al
matrix with elastic and thermal mismatch.

63



Figure 3.26: Comparison of the Peach-Koehler force due to thermal mismatch for
an edge dislocation approaching the top of a circular, square and diamond shaped
inclusion.
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Figure 3.27: Left, A domain filled with circular inclusions. Centre, A domain filled
with square shaped inclusions. Right, A domain filled with diamond shaped inclusions

3.3 Dislocation near Multiple Inclusions

A 1× 1 µm domain with an array of circular inclusions is considered. This com-

putational domain is embedded into a 10 × 10 µm domain in order to reduce the

effect of free surfaces on the results as shown in fig. 3.17. The domain is supported

so as to prevent rigid body motion. The Peach-Koehler force due to elastic mis-

match on an edge dislocation with a Burgers vector of 8.551× 10−4
µm, as it travels

in an Al matrix filled with circular Al2Cu precipitates is shown in fig. 3.28. As the
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Figure 3.28: The Peach-Koehler force due to elastic mismatch for an edge dislocation
near an array of circular inclusions.

Figure 3.29: A comparison of the Peach-Koehler force due to elastic mismatch for
an edge dislocation near an array of circular, square shaped and diamond shaped
inclusions.
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dislocation moves from one edge of the domain to another as shown in fig. 3.27, it

experiences attractive and repulsive forces depending on its location in the domain.

The force on the dislocation at the centre of the domain vanishes due to the symmetry

in placement of the inclusions. Since the force with which the inclusions attract the

dislocation causes the dislocation to move without the need of external influence, the

work done on the system (plastic strain created) in moving the dislocation through

the domain only involves the force of repulsion acting on the dislocation. Therefore,

1.1× 10−4 pJ is needed to move the dislocation through a domain containing an array

of impenetrable circular inclusions exhibiting elastic mismatch with the correspond-

ing matrix. Correspondingly, a comparison of the Peach-Koehler force due to elastic

mismatch for an edge dislocation near an array of circular, square shaped and dia-

mond shaped inclusions in shown in fig. 3.29. Work done in moving the dislocation

through a domain filled with square and diamond shaped inclusions is 1.4× 10−4 pJ

and 0.8× 10−4 pJ respectively. Therefore, more work needs to be done to move a

dislocation in a domain with multiple square shaped particles.

When a thermal mismatch between the Al2Cu precipitates and Al matrix due

to a difference in their coefficient of thermal expansion is introduced, the Peach-

Koehler force on an edge dislocation is shown in fig. 3.30. On addition of a thermal

mismatch to the existing elastic mismatch between the circular inclusions and matrix,

9.1× 10−3 pJ (an additional 9× 10−3 pJ) is needed to propel the dislocation through

the domain.

When the circular inclusions are replaced with an array of square and diamond

shaped inclusions of similar area and material properties, a comparison of the glide

force on the dislocation is as shown in fig. 3.31. In case of square and diamond shaped

inclusions with elastic as well as thermal mismatch with the matrix, 8.8× 10−3 pJ and

6.3× 10−3 pJ respectively is needed to push the dislocation through the domain.

66



Figure 3.30: The Peach-Koehler force for an edge dislocation near an array of
circular inclusions.

Figure 3.31: A comparison of the Peach-Koehler force due to elastic and thermal
mismatch for an edge dislocation near an array of circular, square and diamond shaped
inclusions.
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Chapter 4

CONCLUSION AND FUTURE WORK

An extended finite element method (XFEM) for modelling the interactions of

dislocations with inclusions was presented. A finite element method was used to

estimate the stress fields due to configurational forces on the dislocation. The internal

discontinuity was introduced across the glide plane in the form of dislocation slip. As

the method presented here uses the finite element method to capture stress fields, the

mesh needs to be sufficiently refined to capture the singularity at the dislocation core.

This method fares better than the standard finite element method in being able to

capture the discontinuity in the field variable within a single element. This method

eliminates the need to superimpose the image stress fields and analytical infinite

domain solutions for determining the Peach-Koehler force, making it computationally

more efficient.

The incompatible enrichment scheme based on the Volterra dislocation model in-

volving a sharp cut-off in the discontinuity was considered. The enrichment function

was shifted by a certain amount to be able to impose displacement boundary con-

ditions when needed. In addition to the enrichment scheme considered here, other

core enrichment functions (compatible core enrichment based on the Peierls-Nabarro

model of dislocations) could be developed in accordance with experimental or simu-

lation results and used in lieu of the incompatible enrichment scheme.

Al2Cu particles in an Al matrix was the system observed in this study. Two

orientations of an inclusion in the shape of a square were considered, one with its

edges perpendicular to the glide plane was referred to as a square shaped inclusion

and the other with its diagonals perpendicular to the glide plane was referred to as a
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diamond shaped inclusion.

The outcomes of the study are summarised as follows:

• The proposed method approximates the glide force well and the Peach-Koehler

force calculated using the domain form of J-integral converges to the exact

solution at an optimal rate for linear finite elements in case of an edge dislocation

near a free surface.

• Although the accuracy when using an unstructured mesh reduces slightly in

comparison to a structured mesh due to skewed elements, the method converges

well.

• A moderate sized contour with an inner radius and outer radius equal to 4 and

8 times the effective element size respectively produces results with only 1%

error.

• Integration points as few as 25 along the radial direction and 60 along the

angular direction result in as little as 1% error.

• With the above considerations, the domain form of J-integral for a 100 × 100

element mesh was solved in 3 s on a single CPU PC.

• For an edge dislocation interacting with an impenetrable circular inclusion, the

XFEM and exact solutions are in agreement.

• Effect of shape: The force on the dislocation due to elastic mismatch in ap-

proaching the centre of a diamond shaped inclusion is 8% more than in ap-

proaching the centre of a circular inclusion of equal area.

• Effect of orientation: The force on the dislocation due to elastic mismatch

increases by 24% when approaching the centre of a diamond shaped inclusion
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instead of a square shaped inclusion.

• Effect of size: When the areas of the inclusions were halved, the dislocation

experienced 36% and 30% decrease in force in approaching a square shaped and

diamond shaped inclusion, and a circular inclusion respectively.

• On introducing a thermal mismatch between the inclusion and matrix (interface

strains equal to 0.004), the force on the dislocation in approaching a circular

inclusion grew 15 times.

• In approaching the centre of the top half of the inclusion, the force on the

dislocation due to elastic as well as thermal mismatch was 6% and 63% more

for a diamond shaped inclusion than a circular or a square shaped inclusion

respectively.

• When the dislocation moved towards the top of the inclusion instead, the force

on it due to elastic and thermal mismatch was 12% and 56% more for a square

shaped inclusion than a circular or a diamond shaped inclusion.

• There was a 34% decrease and 68% increase in the force experienced by the

dislocation due to elastic and thermal mismatch in approaching the top of the

diamond and square shaped inclusion than in approaching the centre of the

top half of the two inclusions respectively. The change in force for a circular

inclusion was minuscule.

• The energy needed to push a dislocation through a domain filled with circular

inclusions increased 81 times when thermal mismatch was introduced to the

elastic mismatch between the inclusions and the matrix.
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• The work done to move an edge dislocation through an array of circular inclu-

sions was 4% and 44% more than that needed to move it through an array of

square and diamond shaped inclusions respectively.

• In observing the dislocation motion through the domain, the stiffness matrix

was assembled only once and the execution time for the assembly and solution

of a 100× 100 element mesh using Matlab on a single CPU PC was 10 s.

Using the outcomes listed above, the following observations can be made:

• The method proposed here works well for an unstructured mesh. The applica-

tion of XFEM to an unstructured mesh to study dislocation interactions with

inclusions in unprecedented (to the author’s knowledge).

• The method is computationally fast and efficient with an error of 1%.

• Sharp corners (centre of a diamond shaped inclusion and top/bottom of a square

shaped inclusion) exert a greater force on a dislocation due to stress concentra-

tion effects.

• A small spherical inclusion will exert the least force on a dislocation (not con-

sidering thermal effects).

• The introduction of eigenstrains increases the force experienced by the disloca-

tion to a large extent.

• A larger amount of work is done in moving a dislocation through a domain filled

with circular inclusions.

Increasing the inner radius of the integration domain exceeding what was chosen

increased the accuracy slightly but only to a certain point beyond which the accuracy
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reduced. Hence, the inner radius must be selected sufficiently far from the disloca-

tion core but yet in the vicinity of the core. Increasing the width of the integration

domain was found to increase the accuracy but only to certain value beyond which

increasing the domain thickness had next to no effect on the accuracy in calculat-

ing the Peach-Koehler force. Doubling the number of integration points along each

direction increased the computational time to 8 s and quadrupling it increased the

time to 28 s. Since increasing the number of integration points was found to increase

the accuracy of the solution up to a certain extent and the amount of computational

time needed increased rapidly, a suitable trade-off between the two is necessary for a

computationally efficient method.

While none of the existing methods have the adaptability of the proposed method,

it does have a few drawbacks of its own that could be addressed in the studies to

follow. This study only considered a symmetric array of inclusions, in nature, parti-

cle arrays are usually much more disoriented. A dislocation interacting with pristine

inclusions was considered in this study, whereas in deformation experiments, disloca-

tions will most likely interact with inclusions as well as debris left behind by previous

dislocations in a mechanism examined by Xiang et al. (2004). This mechanism used

the FFT approach to solve elasticity equations in determining the total stress field of

the dislocation, limiting its application to isotropic materials. The proposed method

could be used to overcome this handicap and facilitate the calculation of required

repulsive forces in anisotropic materials. The inclusions considered here are hard

(impenetrable) particles, but they may also occur as misfitting (penetrable) particles

and impenetrable misfitting particles. When observing the dislocation-inclusion or

dislocation-dislocation interactions (with differently oriented burgers vectors), this

method requires more mesh resolution than methods based on superposition and im-

age fields, but its compatibility with standard finite elements ought to make this
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method appealing. The method here has been limited to an edge dislocation in 2D,

however, its extension to other types of dislocations is straightforward.
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