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ABSTRACT 

Affect signals what humans care about and is involved in rational decision-making and 

action selection. Many technologies may be improved by the capability to recognize 

human affect and to respond adaptively by appropriately modifying their operation. This 

capability, named affect-driven self-adaptation, benefits systems as diverse as learning 

environments, healthcare applications, and video games, and indeed has the potential to 

improve systems that interact intimately with users across all sectors of society. The main 

challenge is that existing approaches to advancing affect-driven self-adaptive systems 

typically limit their applicability by supporting the creation of one-of-a-kind systems with 

hard-wired affect recognition and self-adaptation capabilities, which are brittle, costly to 

change, and difficult to reuse. A solution to this limitation is to leverage the development 

of affect-driven self-adaptive systems with a manufacturing vision. 

This dissertation demonstrates how using a software product line paradigm can jumpstart 

the development of affect-driven self-adaptive systems with that manufacturing vision. 

Applying a software product line approach to the affect-driven self-adaptive domain 

provides a comprehensive, flexible and reusable infrastructure of components with 

mechanisms to monitor a user’s affect and his/her contextual interaction with a system, to 

detect opportunities for improvements, to select a course of action, and to effect changes. 

It also provides a domain-specific architecture and well-documented process guidelines, 

which facilitate an understanding of the organization of affect-driven self-adaptive 

systems and their implementation by systematically customizing the infrastructure to 

effectively address the particular requirements of specific systems. 
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The software product line approach is evaluated by applying it in the development of 

learning environments and video games that demonstrate the significant potential of the 

solution, across diverse development scenarios and applications.  

The key contributions of this work include extending self-adaptive system modeling, 

implementing a reusable infrastructure, and leveraging the use of patterns to exploit the 

commonalities between systems in the affect-driven self-adaptation domain. 
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CHAPTER 1 
INTRODUCTION 
 

Affect (emotions, feelings, and moods) is inextricably bound to human cognitive 

processes and expresses a great deal about human necessities (Picard 1997). Today, we 

know that affect signals what matters and what humans care about and, furthermore, that 

affect is involved in rational decision-making and action selection (Picard 2010). 

However, most systems today lack affective capabilities and provide cumbersome and 

rigid interactions that do not emulate the naturalness, flexibility, and robustness of 

human-human communication (Maat & Pantic 2007; Cheng et al. 2009; Calvo & D'Mello 

2010; Van den Broek 2011; Camara, Moreno, & Garlan 2015). An emerging trend aims 

to tackle these limitations by providing systems with affect-driven self-adaptation – the 

ability to recognize users’ affective state changes, understand the meaning of these 

changes, learn from them, and use them to drive real-time reactions that improve system 

behavior. Affect-driven self-adaptation provides principled and automatic adaptation in a 

human-centered context, advancing system functionality and improving human-computer 

interactions in general and user-experience in particular. Learning environments, 

healthcare systems, and video games are just a few of the types of systems that stand to 

benefit from affect-driven self-adaptation to better support their purpose: coaching, 

companionship, entertainment, etc. For instance: 

a) An intelligent tutor detecting students’ affect can realize and respond to a student’s 

need for emotional support. Evidence indicates learning is enhanced when empathetic 

intervention or support is present (Arroyo et al. 2009; Lehman, D'Mello, & Person 

2008). The intelligent tutor can use affect, such as boredom, frustration, and 
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excitement, to provide encouraging comments or to alter the level of support 

(feedback and hints), as well as task difficulty. 

b) A video game can become more compelling by using players’ affect as input to alter 

and adjust the gaming environment. Affect, such as excitement or fear, can be used by 

the game to alter lighting, music, colors, complexity, or level of companionship. 

c) An avatar in a virtual world can mirror a human’s affective expressions. Mirroring 

affect helps the avatar become more believable, likeable, trustable, and enjoyable, as 

well as creating long-lasting relationships (Bickmore & Picard 2005; Burleson & 

Picard 2007).  

d) A healthcare application can provide empathetic interventions and motivational 

support to offer assistance and empower patients to improve their quality of life. 

Affect, such as frustration and confusion, can trigger interventions. 

The motivation behind this doctoral research is to advance the creation of affect-driven 

self-adaptive systems by supporting an approach that empowers the broader deployment 

and increased adoption of the affect-driven self-adaptation capability.  

 

1.1. Challenges 

Imagine that software engineers could provide a new system with an affect-driven self-

adaptation capability or could take an existing software system and improve it by 

augmenting it with this capability, where there was none before, without having to 

rewrite the system from scratch. Now, imagine the engineers could share and reuse tools, 

strategies, or implementation assets to achieve this task. Furthermore, imagine that these 

engineers could achieve their tasks within a few days or weeks, rather than weeks or 
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months, without interfering with the existing system functionalities and properties. 

Achieving this level of deployment for the affect-driven self-adaptation capability in 

software systems involves the following three main challenges: 

a) Affect as a driver of self-adaptation. Although the feasibility of developing affect 

recognition systems has been demonstrated (Picard 1997), most affect recognition 

efforts have been geared toward offline analysis of affect (creation of mathematical 

models). By and large, they have not overcome the challenge of advancing, at-scale, 

software systems working with users in real-time, without human supervision, in 

which affect recognition could trigger self-adaptation of the system.  

b) Explicit modeling of human factors in self-adaptation. To date, self-adaptation 

models mainly deal with performance, resources, and error recovery as variables that 

drive system reactions. Self-adaptation based on human factors, such as affect 

measurement, present a different kind of challenge. Cheng et al. (2009) state that 

incorporating the user as an entity in self-adaptation models (analyzing feedback from 

human-computer interaction) is an issue that needs to be addressed.  

c) Craftsmanship versus manufacturing. Existing approaches to creating affect-driven 

self-adaptive systems limit their applicability by supporting craftsmanship of one-of-

a-kind systems whose purpose is to verify that a specific concept or theory is possible. 

Few models, frameworks, libraries, or software tools are available to allow system 

designers and developers to create or integrate the affect-driven self-adaptation 

capability (or even just affect recognition) into their software projects; therefore, most 

affect-driven self-adaptive systems deployed today have hard-wired affect recognition 

and self-adaptation capabilities. Moreover, the affect recognition and adaptation 
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logics are often dispersed and entwined throughout the system, making it brittle 

(difficult to modify and maintain) and making reuse nearly impossible. Thus, 

developing new systems with the affect-driven self-adaptation capability requires 

significant duplication of effort and, consequently, high cost. Cheng, Garlan, & 

Schmerl (2005) document this problem for engineering self-adaptive systems in 

general and Clay et al. (2009) point out a similar problem for engineering affect 

recognition in systems. Efforts in the manufacturing of affect-driven self-adaptive 

software are rare, and adapting craftsmanship approaches to the demands of 

manufacturing has not yet been successfully demonstrated.  

 

1.2. Opportunities for Improving the State-of-the-Art 

Engineers and researchers have responded to and made some progress in addressing the 

need for affect-driven self-adaptation, albeit somewhat limited. A number of researchers 

have explored self-adaptation using affect to drive real-time reactions with varying 

success, and systems with the affect-driven self-adaptation capability have been 

implemented. For instance, in the Intelligent Tutoring System community, affect-driven 

adaptation support has gained ground in custom-made solutions. On several occasions 

this community has explored the use of affect awareness to improve their systems. These 

efforts have proven the benefit of creating an affective connection with users, by 

modifying system functionality driven by sensing and responding to changes in users’ 

affective states.  

However, in general, the elements required for building adaptation based on human 

factors (such as affect measurement) have not been systematized and most research 
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neither has a manufacturing vision nor follows (or reports to follow) software engineering 

models or methodologies. As a result, affect-driven self-adaptation in today’s systems is 

costly to build, often taking many man-months to develop or retrofit systems with these 

capabilities. Moreover, once added, the capabilities are difficult to modify and usually 

provide only limited treatment of affect recognition and adaptation.  

Chapter 2 describes the state-of-the-art referencing related work; as a summary, the 

affect-driven self-adaptation capability is often: 

§ proof-of-concept oriented and focused on a fixed set of affect-sensing devices, 

inference mechanisms, and quality concerns; 

§ handcrafted with the affect recognition and adaptation logics dispersed and entwined 

throughout the system implementation, making their reuse nearly impossible; 

§ complex, requiring significant developer involvement in gaining affect recognition 

and self-adaptation expertise as they endeavor to implement this capability; and  

§ costly to develop, both for new systems and to evolve modifications and maintenance 

for existing systems. 

While there have been meaningful contributions to the general problem space of affect-

driven self-adaptation, there remain significant limitations. These limitations can be best 

understood in terms of three fundamental issues: generality, feasibility, and cost-

effectiveness. Particular aspects of these limiting issues can be addressed through three 

key elements: a domain-specific model or architecture, a reusable infrastructure, and 

process guidelines. The use of a model and an infrastructure support generalization, the 

use a model and guidelines increase feasibility, and the use of an infrastructure and 

guidelines improve cost-effectiveness. The relationship between the three limiting issues, 
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the aspects of these that are addressed, and the three elements used to do so is depicted in 

Figure 1.1 and described in the following subsections. 

 
Figure 1.1. Relationships between limiting issues, aspects addressed, and elements that impact their 

improvement. 
 

1.2.1. Lack of Generality 

Lack of generality refers to a limited degree of function or range of application. Currently 

we can dynamically recognize affect and share this information with target systems. Also, 

from machine learning and decision theory communities, we have techniques to analyze 

what changes to make, as well as to reason about what course of action to take. However, 

we are missing the following crucial elements:  

a) An explicit structural model to integrate affect recognition and adaptation capabilities 

into the system context or execution environment. A model able to provide a 

systematic and explicit representation of affect recognition and adaptation logics 
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organization. The lack of an explicit structural model creates blind spots in the system 

engineering preventing an understanding of the process and the parts involved. 

Furthermore, this lack of explicit abstractions makes it complicated to reason about 

affect-driven self-adaptation, therefore limiting the use of available resources and 

strategies for their implementation.  

b) An implementation of reusable assets that encapsulates affect recognition and 

adaptation existing expertise. The lack of a systematic and explicit encapsulation of 

affect recognition and adaptation strategies into assets makes it difficult to capitalize 

on expertise already available today, such as real-time affect recognition techniques 

and computational models for handling adaptation rules.   

Addressing these limitations requires: 

a) A structural model that allows software engineers to reason over the affect-driven 

self-adaptation, the core and optional tasks required, the organization of the steps 

involved in each task, and the affect-driven self-adaptive system design choices and 

decisions.  

b) Software components that encapsulate existing expertise in affect recognition and 

adaptation. 

 

1.2.2. Lack of Feasibility  

Lack of feasibility refers to the limited degree to which the requirements, design, or plans 

for a system can be implemented under existing constraints. Feasibility is related to the 

knowledge that the engineers have of the process to be implemented. The lack of 

information usually means that implementation decisions and trade-offs will be affected 
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by the competency of the engineer(s), who might not be familiar with affect or adaptation 

topics. Robust and generalizable guidelines and documentation are needed, including: 

a) Guidelines for designing a self-adaptive system, which help to (1) separate concerns 

for adaptation, thus making the distinct tasks and steps of the process understandable 

to the engineers; and (2) realize adaptation concepts, thus making actions individually 

definable and composable to achieve overall system goals. 

b) Guidelines for assembling an affect recognition logic, including selecting and 

balancing multiple, possibly conflicting, objectives such as accuracy versus 

performance. For instance, in the context of a game or intelligent tutor, providing a 

quick response could be as important or even more important than considering 

affective support for that response. Having the system freeze or be inactive (waiting 

for an internal process to finish before responding to the user) for a long time could 

provide a worse user experience than the traditional user experience without affective 

support or awareness. A naive implementation of decisions and trade-offs means 

systems will suffer from a number of disadvantages. 

c) Documentation about resources. Current approaches address only fixed sensing 

devices and emotional state models, have hardwired responses, lack support for 

multimodal composition and trade-offs, lack resource selection, and do not cater to 

varying systems’ contexts. Thus, adding a new sensing device may be difficult, 

requiring changes that affect many aspects of the system, including those that 

integrate the affect measurements and those that compute trade-offs and decide an 

outcome.   

Addressing these limitations requires a systematic approach, along with guidelines and 
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documentation for how best to couple resources and techniques, in ways that: 

a) allow independence of affect measurement and multimodal integration from the 

adaptation process; 

b) facilitate reasoning about and composing multimodal affect recognition that trades-off 

across multiple dimensions to produce the desired objectives, enabling flexible 

modification of sensing devices and affect measurement integration algorithms; 

c)  enable flexible modification of adaptation rules or preferences to cater to evolving 

contexts. 

 

1.2.3. Lack of Cost-effectiveness 

Cost-effectiveness refers to high cost of both development and maintenance. Building an 

affect-driven self-adaptive system is a costly proposition because one has to develop the 

infrastructure for sensing user signals, infer affect measurements, map them to a common  

reference space, and fuse them, as well as create an infrastructure to monitor the target 

system, a representation to encode constraints, a problem detector to determine adaptation 

opportunities, and adaptation mechanisms to resolve problems and propagate changes to 

the system. All of these parts must also be integrated into a coherent system. Most 

existing approaches have associated toolsets targeting a single sensing device and fixed 

adaptation concerns, often sacrificing system quality. Applying these approaches to a new 

system, often with a different functionality or set of concerns, would require either re-

developing the affect awareness or adaptation mechanisms from scratch or reusing some 

parts and custom-building the remaining capabilities. Both incur significant time and 

effort to develop, integrate, and engineer the adaptation mechanisms appropriately. Once 
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built, modifying or enhancing the sensing and adaptation mechanisms, likewise usually 

entail significant effort. In short, whether developing a software system from the ground 

up with affect-driven adaptation support or retrofitting an existing system, both options 

are usually quite costly. Reducing the costs associated with developing affect-driven 

adaptation support requires the following: 

a) An infrastructure that amortizes cost and effort across multiple systems, enabling 

engineers to avoid re-developing significant mechanisms and that allowing low-effort 

incremental development of affect recognition and affect-driven adaptation 

capabilities. 

b) Extensive guidance and documentation that offer a path to a solution with low risk 

and high payoff; particularly since a special interest exists in supporting the adoption 

of the affect-driven self-adaptation capability in communities where developers’ 

experience or development resources are limited (such as research communities in 

education technology).  

 

1.3. Hypotheses 

To improve the state of current practice and overcome the limitations outlined above, this 

dissertation investigates a solution that takes advantage of affective computing research, 

self-adaptive system models, and advances in software engineering methodologies. The 

thesis discussed in this work addresses the challenges and limitations above and is stated 

as follows:  

It is possible to support a broad creation and integration of affect-driven self-adaptation 

as a core capability of both new and pre-existing systems in a general, feasible, and cost-
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effective manner, while promising adequate software quality (particularly in relation to 

the attributes of understandability, reusability, flexibility, extendibility, and 

maintainability) by defining and developing an approach that: 

a) takes advantage of current affect recognition tools, such as the ones described in 

Calvo & D’Mello (2010), and adapting affect recognition strategies to drive the 

adaptation process;  

b) extends current self-adaptation models, such as the ones described in Cheng, Garlan, 

& Schmerl (2005) for performance-driven and resource-driven self-adaptation, to 

support affect-driven self-adaptation; and  

c) adopts a manufacturing vision where affect-driven self-adaptive systems could be 

developed from a common and managed set of core assets following proven practices 

that guide systematic asset assembly and integration (Greenfield & Short 2003). 

 

1.4. Approach 

To do so, I propose using a software product line (SPL). An SPL supports a 

manufacturing vision capturing and encoding knowledge and proven practices to allow 

systematic development of systems that share a common set of features (Clements & 

Northrop 2002). The rationale behind using SPLs takes into consideration the following 

characteristics of SPLs:  

a) SPLs implement a manufacturing vision focused on satisfying the needs of a 

particular market segment or mission – in this case, the mission to provide affect-

driven self-adaptation.  
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b) SPLs enable the capture and encoding of knowledge and proven practices, allowing 

developers to take advantage of and extend current tools and models – an SPL for 

affect-driven self-adaptive systems captures and encodes expertise associated with 

affect recognition and self-adaptation domains.  

c) SPLs favor generality. They use a systematic reusable infrastructure applicable to 

diverse kinds of systems. Their intent is to apply to a broad spectrum of systems 

without interfering with defined functionalities while retaining quality and trade-offs.  

d) SPLs favor feasibility. They use a domain-specific model and production guidelines 

to make the processes understandable, actions composable, and choices automatable.  

e) SPLs favor cost-effectiveness. Compared with custom, style-specific or empirical 

solutions, an SPL significantly reduces the cost to engineer and evolve systems.  

f) SPLs offer a low-risk and high-payoff practice, implementing systematic reuse aimed 

at improving productivity (cost and time) and quality.  

Moreover, SPLs have been reported as useful in many different domains, including smart 

building systems (Possompes et al. 2010), space flight software (Fant, Gomaa, & Pettit 

2012), runtime interoperability (Siegmund et al. 2009), autonomic pervasive systems 

(Cetina, Fons, & Pelechano 2008), and mobile middleware (Morais, Burity, & Elias 

2009); likewise, SPLs have been applied to address some aspects of adaptation 

(Hallsteinsen et al. 2008; Shen, Peng, & Zhao 2012).  

Following the SPL paradigm, a manufacturing vision can be defined for software with 

affect-driven adaptive capabilities. This affect-driven self-adaptive software product line 

(ADASPL) can: (1) support a broader creation and integration of affect-driven self-



 13 

adaptation; (2) enforce aspects of generality, feasibility, and cost-effectiveness; and (3) 

allow developers to take advantage of current assets and to extend current models.  

The SPL paradigm is further described in Chapter 2. However, at this point, it is worth 

establishing that the application of the paradigm to a domain area, such as affect-driven 

self-adaptation, leads to a three-part technical solution. This three-part solution 

a) formalizes the structure and organization of affect-driven self-adaptive systems;  

b) establishes an infrastructure for affect-driven self-adaptive systems by providing core, 

optional, and customizable components that encapsulate common functionalities;  

c) defines and documents a process for manufacturing affect-driven self-adaptive 

systems.  

 

1.5. Contributions 

This dissertation advances the state-of-the-art in software engineering and human-

computer interaction by improving the understanding of the affect-driven self-adaptation 

capability, its design issues, and the mechanisms for its deployment with a manufacturing 

vision, demonstrating a more expansive coverage of the affect-driven self-adaptation 

problem space. The key contributions of this dissertation include the following:  

a) Extending related work in self-adaptive systems. It defines an architectural model that 

provides a useful set of abstractions to focus engineers on affect-driven adaptation 

concerns, facilitating the systematic customization of a reusable infrastructure to 

advance particular systems. I follow software architecture methodologies, such as 

those described by Bass, Clements, & Kazman (2003) and Fairbanks (2010), to define 
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an architectural model that defines how systems must be built, advancing common 

problems and generalizing them. 

b) Implementing a reusable infrastructure, formed by a collection of customizable 

components and interfaces, to create a framework for Affect-Driven Self-Adaptive 

Systems development, named ADAS. I developed ADAS with core and optional 

components that can be included, extended, and associated with the rest of the 

software in the system by following object-oriented practices. ADAS provides a 

broadly applicable and reusable infrastructure with well-defined customization points 

to cater to a wide range of systems. It provides affect recognition and adaptive 

functionalities to monitor user affective states and target system status, fuse and 

classify affect, detect opportunities for improvements, select a course of action, and 

effect changes.  

c) Leveraging the use of patterns as templates to exploit commonality between systems 

and to document guidelines that specify objectives, properties of interest, and 

articulate strategies for implementation. The guidelines recommend a workflow to 

tailor ADAS for specific systems. They provide step-by-step solutions to common 

necessities and so allow engineers to focus on system functionalities, adaptation 

strategies, or affective computing algorithms improvement. 

d) Demonstrating the efficacy of ADASPL in representative areas of the affect-driven 

self-adaptation domain (learning and video gaming) by developing a set of systems 

and conducting a series of evaluations. 

Figure 1.2 visualizes the approach and its constituent parts: the SPL paradigm applied to 

the affect-driven self-adaptation domain creates ADASPL, which defines a technical 
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solution composed of an architectural model, an infrastructure (ADAS framework), and 

process guidelines. ADASPL does not engage with the organizational specifics. 

Collectively this dissertation provides novel and useful insights that have strong potential 

to influence the way in which software engineers design a broad range of next-generation 

human-centered software systems. 

 
Figure 1.2. Key constituents of the approach. 

 

1.6. Evaluation Plan 

An SPL evaluation involves realizing an in-depth demonstration of the SPL, applying the 

common and reusable infrastructures and customizing pieces for representative systems 

while running a validation of its parts and an empirical evaluation of the operation. For 

this research, each of these is accomplished as follows: 

a) In-depth demonstration. To demonstrate the SPL, I focus on an important subgroup of 

computing systems requiring an enhanced human-centered approach, learning and 
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video gaming systems. Eleven separate systems were variously developed by research 

teams and by undergraduate students involved in capstone projects. 

b) Validation of software assets. The validation of the software assets includes the use of 

techniques for analyzing the architecture and the use of software testing methods to 

validate the framework components. On the one hand, an analysis of the architecture 

reveals trade-offs and sensitivity points and could be conducted following the 

Architecture Tradeoff Analysis Method (ATAM) (Bass, Clements, & Kazman 2003). 

However, architecture analysis is not included in this dissertation since the 

architectural model is an adaptation of related models applied in the self-adaptation 

field. On the other hand, an analysis of the framework confirms framework 

functionalities and qualitatively demonstrates framework generalization across 

different concerns and styles of systems (i.e., broad deployment). A framework can 

be evaluated using a dedicated test bed with case studies of systems with diverse 

concerns, as previously done by Cheng, Garlan, & Schmerl (2005) to validate their 

self-adaptive framework. Additionally, the products assembled using the provided 

assets can be evaluated using software metrics to measure their code complexity and 

structural qualities. 

c) Evaluation of the operation. The empirical evaluation of the SPL operation is 

qualitative and quantitative. On the one hand, qualitative evaluation shows whether 

the SPL is understandable (engineers are able to use the architecture, customize the 

framework, and follow the guidelines) and makes it feasible to deploy the affective-

driven self-adaptation capability. Understandability is evaluated by interviewing 

developers and analyzing how well they applied the SPL process. Data is collected 
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from the developers’ experiences to inspect the balance between the simplicity and 

the power of the framework, i.e., to validate whether the practice provides low risk 

and high payoff. On the other hand, to show these savings quantitatively, a cost-

benefit analysis is performed. This is an important validation of the SPL as it 

demonstrates that developing new systems with the affect-driven self-adaptation 

capability in a traditional way requires a significant duplication of effort and, 

consequently, higher cost. For a cost-benefit analysis, the implementation tasks 

should be characterized to provide coarse-grained task-based estimation of effort, 

keeping track of development time and then qualitatively assessing savings relative to 

traditional practices of implementation. 

 

1.7. Scope of Work 

Several topics are beyond the scope of this dissertation, including: 

a) Security and privacy concerns. Sensing affect raises critical privacy concerns and 

involves ethical and moral decisions and implications. Reynolds & Picard (2004) 

address the importance of considering the inclusion of ethical contracts to ground 

respect for privacy. While it was not incorporated in the materials used by the teams 

in this dissertation, it will be included in the broader dissemination of ADASPL.  

b) Affect recognition devices and techniques. A description of some of these 

unconsidered topics is summarized in Calvo & D’Mello (2010) and includes sensing 

device development; selection of features; classification techniques; fusion methods; 

and performance, robustness, and accuracy of algorithms and tools.  
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c) Include affect in the engineering process. Elicit, analyze, specify, and validate affect 

requirements, affect testing process, affect maintenance, affect configuration 

management, and other affect-specific parts of the software engineering process. For 

instance, Callele et al. (2006) have researched the documentation of emotional 

requirements for video games.  

d) Include adaptation in the engineering process. Elicit, analyze, specify, and validate 

adaptation requirements, adaptation testing process, adaptation maintenance, 

adaptation configuration management, and other adaptation-specific parts of the 

software engineering process. A number of existing approaches provide support for 

this crucial task, most of which are based on the use of temporal logic (Alrajeh et al. 

2009). 

e) Organization management. Although an approach based on the SPL paradigm is 

proposed and this paradigm covers both technical and organizational areas, this 

research takes advantage of technical solution strategies only and does not engage 

with the organizational specifics.  

f) Self-adaptation for learning systems. Self-adaptive learning systems aim to fully 

create an instructionally sound and flexible environment adapting to abilities, 

disabilities, interests, backgrounds, and other characteristics (Shute & Zapata-Rivera 

2007) beyond affective responses. For example, Chi et al. (2010) refer to monitoring 

user-events, such as measuring mistakes, the number of times the student 

gives up, or the number of times the student answers correctly, to create a user-model 

that drives self-adaptation.  

Nevertheless, topics a, c, and d are considered further as part of the future work described 
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in Chapter 10. 

 

1.8. Document Roadmap 

In this dissertation, I make a case for affect-driven self-adaptive systems, survey the 

research landscape, introduce an SPL approach, describe how the approach addresses 

current limitations and achieves the stated goals, discuss the research and engineering 

challenges, and demonstrate the approach with sample applications focusing on 

adaptations to improve learning and video gaming systems. Chapter 2 establishes the 

context by summarizing the terminology and the state-of-the-art of the three topics 

encompassed in this dissertation: self-adaptive system engineering, affective computing, 

and SPLs; it also surveys the research landscape and discusses related solutions and their 

limitations. Chapters 3, 4, 5 and 6 describe the overall research approach for the 

dissertation, and how the approach addresses current limitations and attempts to achieve 

the stated goals. Chapter 7 illustrates the approach to customization for a set of target 

systems, while Chapter 8 analyzes the process applied and systems created in order to 

quantify the evidence in support of this dissertation’s arguments. Chapter 9 evaluates and 

discusses results, issues and limitations, and Chapter 10 provides conclusions, 

highlighting directions for future work. 
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CHAPTER 2 
BACKGROUND AND RELATED WORK 
 

This chapter introduces self-adaptation, affect recognition and the SPL paradigm. It 

summarizes their background and their state-of-the-art. This chapter also presents the 

process measures and software metrics used to assess the SPL’s use and the products 

created with it. It then moves on to discuss research work relevant to affect-driven self-

adaptation, highlighting the foundational elements provided by the state-of-the-art and the 

state-of-the-art limitations addressed in this dissertation. 

 

2.1. Self-Adaptation and the Closed-Loop Paradigm 

Increasingly, modern systems must operate in the face of change and are also expected to 

accommodate themselves to those changes at run time with minimal human oversight. A 

system is said to be self-adaptive if it decides autonomously how to adapt or organize to 

accommodate changes in its environment (Cheng et al. 2009; Gowri et al. 2010) in order 

to sustain or improve the system’s utility.  

A self-adaptive system takes into account two elements: (1) system or environment 

changes that need to be monitored and (2) an adaptation strategy that defines the response 

of the system. Research on self-adaptation has dealt with diverse types of changes, 

classified into four categories (Norvig & Cohen 1997; Stavru 2011): variability in goals 

and trade-offs (e.g., performance), hardware and software resources (e.g., bandwidth and 

service availability), system faults (e.g., server components failing or connections going 

down), and individual differences among users (e.g., level of knowledge, skills, attention, 

preferences, moods, or intentions). Strategies deployed for self-adaptation include, but 
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are not limited to, on-demand service consignment, load balance tactics, recovery 

procedure execution, and (where adaptation is related to users) maintaining for each user 

his/her own personal basis for driving the desired objectives, providing assistance, adding 

or removing the automation of tasks, changing information presentation, and increasing 

or decreasing typicality. 

Since the late 1990s, multiple perspectives on self-adaptive software systems have been 

advanced and several development solutions have been proposed, among them model-

driven self-adaptation (Cheng, Garlan, & Schmerl 2009). Model-driven self-adaptation 

has been reported to be one of the most promising options, particularly model-driven 

approaches based on control theory (Filieri et al. 2015) and in particular on the closed-

loop paradigm. The closed-loop paradigm considers purely algorithmic models to break 

down when the execution of the system is affected by external disturbances – events that 

are not directly visible to or controllable by the software (Shaw 1995). The closed-loop 

paradigm assumes self-adaptation as a control problem with a looping three-step solution 

methodology:  

a) Monitoring changes in the environment and the system and then determining if 

something has gone awry, usually because the change exhibits a value outside 

expected bounds or exhibits a degrading trend. 

b) Determining a course of action to adapt the system once a problem is detected; thus, 

calculating corrective actions according to the objective of the adaptation and the 

strategy to follow. 

c) Acting to carry out a chosen course of action and effecting the changes in the system. 
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Norvig & Cohen (1997) refer to these three steps as “perception,” “reasoning,” and 

“action”; Ramirez & Cheng (2010) name them “monitoring,” “decision-making,” and 

“reconfiguration”; Cheng, Garlan, & Schmerl (2005) name them “monitoring,” 

“modeling,” and “controlling”; and the IBM MAPE-K (Jacob, Lanyon-Hogg, Nadgir, & 

Yassin, 2004; Kephart & Chess, 2003) refers to them as “monitor,” “analyze and plan,” 

and “execute.” Norvig & Cohen (1997) point out that implementing this three-step 

solution methodology requires consideration of the following:  

§ Interfaces to gather information from the environment and the system. 

§ Interfaces to make adjustments to the system.  

§ Design and implementation of alternative functionality choices. 

§ Design and implementation of the decision-making rationale that enables the system 

to reconfigure itself at run time. 

Shaw (1995) proposed an architectural model to represent closed-loop systems, which 

isolates the solution for the adaptation problem and the target system that requires 

adaptive capabilities. Shaw’s model defines two parts: an adaptation logic and a 

functional logic. The adaptation logic monitors changes that drive the adaptation process, 

and calculates and triggers reactions. The functional logic represents the target system 

functionality. In Shaw’s model, the monitored source is the system itself, and reactions 

are also communicated to the system, which forms a closed-loop. Shaw’s model is 

leveraged in Garlan et al. (2004) and in Cheng, Garlan, & Schmerl (2005) with the 

definition of “probes,” “gauges,” and “effectors” as a way to standardize connection 

interfaces between the adaptation logic and the functional logic, as shown in Figure 2.1. 

Probes and effectors should be integrated as part of the system functionality as an 
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addition to the original system. Probes are interfaces to gather information from the 

system operation (changes). Gauges gather information from probes at run time. Effectors 

are interfaces to make adjustments altering system functionality. 

 
 

 

 

 

 

 

 

 
Figure 2.1. Closed-loop architectural model depicting functional logic, adaptation logic, and their interfaces. 
 
 

Isolating the adaptation logic separates the concerns of system functionality from those of 

adaptation behaviors. With the adaptation mechanism as a separate entity, engineers can 

modify and extend it and reason about its adaptation logic with ease. Furthermore, the 

separation of concerns allows the application of this model even to legacy systems with 

inaccessible source code, assuming that the target system provides, or can be 

instrumented to provide, probes and effectors. Finally, providing external adaptation logic 

with generic but customizable mechanisms facilitates reuse across systems, reducing the 

cost of developing new self-adaptive systems. 

 

2.2. Affect and Affective Computing 

Computers are traditionally treated as logical and rational tools (Hussain & Calvo 2009). 
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The field of affective computing aspires to narrow the communicative gap between the 

emotional human and the emotionally challenged computer by developing computational 

systems and devices that can recognize, interpret, process, interact with, and simulate 

human affect (Picard 1997). Affect refers to emotions, feelings, and moods, such as 

surprise, tiredness, boredom, etc. (Hussain & Calvo 2009). Affect can be recognized from 

physiological signals (such as brainwaves, heart rate, and skin conductance), facial 

gestures, speech features, and postures. These constructs have notoriously noisy, murky, 

and fuzzy boundaries that are compounded with individual differences and contextual 

influences in experience and expression. Affective computing is an interdisciplinary field, 

a branch of artificial intelligence spanning computer science, physiology, and cognitive 

science (Hussain & Calvo 2009). Affective computing advocates the claim that having 

computers recognize and respond to affect is an essential part of the next generation of 

human-computer interfaces (Norman, Ortony, & Russell 2003; Picard 1997); computer 

self-adaptation driven by a user’s affect is expected to result in more usable, useful, 

naturalistic, social, and enjoyable software systems. However, creating realistic (i.e., real-

time, multimodal, cost-effective) affective computing applications is still a research field 

(Hussain & Calvo 2009) in which a number of obstacles need to be overcome including: 

improvement of affect recognition devices and algorithms, advancement of fusion 

methods, and reconciliation of emotional state models. The state-of-the-art of these topics 

is described in the following three paragraphs. 

 

Devices and algorithms. Researchers have risen to the affect recognition challenge by 

developing a variety of novel sensors, algorithms, and models. These include galvanic 
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skin conductance sensors, which measure arousal (Strauss et al. 2005); pressure and 

posture sensors, which attempt to detect frustration or interest by applying classification 

algorithms (Qi & Picard 2002; Mota & Picard 2003); brain-computer interfaces, which 

use brainwaves (electrical activity along the scalp produced by the firing of neurons) as 

an information source (Vallabhaneni, Wang, & He 2005); face-based affect recognition, 

which captures images of facial expressions and head movements (Kaliouby & Robinson 

2005); and eye-tracking systems, which measure eye positions, eye movement, and pupil 

dilation, which have been reported to be related to the intensity continuum of affective 

stimulation (Janisse 1973). A more complete survey in affect detection research can be 

consulted in Jaimes & Sebe (2007)	 and	 Calvo & D’Mello (2010). Six devices and 

algorithms are used in this dissertation and a quick reference of them is presented as an 

introduction: 

a) The Emotiv EPOC headset. It is an inexpensive wireless hardware device, which uses 

EEG technology to sense electrical activity in the brain. The device provides 

constructs for excitement, engagement, boredom, meditation, and frustration at a 

sampling rate of 8 Hz and 14 channels of raw brainwave data at a sampling rate of 

128 Hz. 

b) Tobii T60XL eye tracker. It provides data about a user’s focus of attention and focus 

time while performing a task on a screen, including gaze points (x and y values) and 

pupil dilation, at a sampling rate of 60 Hz. 

c) MindReader. It is an affect recognition software that infers emotions from facial 

expressions and head movements, in real time, providing constructs for agreeing, 

concentrating, disagreeing, interested, thinking, and unsureness at a sampling rate of 
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10 Hz. 

d) A custom built skin conductance device, developed in collaboration with the 

Affective Computing group at MIT Media Lab. It measures the electrical conductance 

of the skin. Skin conductance varies with skin moisture level, which depends on the 

sweat glands, which in turn are controlled by the sympathetic and parasympathetic 

nervous systems. Skin conductance is an indicator of psychological or physiological 

arousal (frustration, excitement, etc.). The device reports values at a sampling rate of 

2 Hz. 

e) A custom built pressure-sensing device, developed based on a prototype designed by 

the Affective Computing group at the MIT Media Lab. It detects the amount of 

pressure that the user puts on a controller (such as a mouse or game controller). These 

values can be correlated with levels of frustration, as reported by Qi & Picard (2002). 

It has six sensors reporting the pressure value for each at a sampling rate of 6 Hz. 

f) An custom built posture-sensing device. It is a low-cost, low-resolution pressure 

sensitive seat cushion and back pad with an incorporated accelerometer to measure 

elements of a user’s posture and activity, developed in-house based on the experience 

of using a more expensive high-resolution unit from the MIT Media Lab Affective 

Computing group (Mota & Picard 2003). It measures pressure values in the back pad 

and the seat cushion (in the right, middle, and left zones) at a sampling rate of 6 Hz. 

 

Fusion methods. The use of several channels through a multimodal approach makes it 

possible to recognize a broad range of affect as well as to improve the accuracy of the 

process. Fusing measurements coming from diverse channels requires an adequate 
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selection of an appropriate fusion method. Fusion methods are classified into three levels 

(Vildjiounaite et al. 2009) according to the three-step schema described by Clay, Couture, 

& Nigay (2009): (1) lower level methods merge “signals” captured from the sensors (raw 

data) and only can be applied when the sensors’ information is of the same type; (2) 

feature level methods analyze sensor signals, extract features, and combine those 

features; and (3) decision level methods fuse the interpretations (inferred affect) reported 

for all channels. Support vector machines (SVM), decision trees, Gaussian process 

classification, and hidden Markov models have been applied in the implementation of 

fusion methods (Vildjiounaite et al. 2009). 

 

Emotional state models. Emotional state models describe affective states and their causal 

relationships. The adoption of an emotional state model is a requisite in multimodal affect 

integration to serve as a formalism to classify and interpret the diverse inputs (Gilroy, 

Cavazza, & Benayoun 2009). However, the classification of emotions is an active part of 

affective science in which experts struggle to reconcile competing models. Discussion on 

the different views of emotion has occurred over the years, and two viewpoints have 

strengthened: the discrete model and the continuous dimensional model. The discrete 

model assumes affective states are discrete values and only a finite number of values are 

possible. Although, researchers disagree on the exact number of distinct values. For 

instance, Ekman (1992) concluded that there are six basic emotions (happiness/joy, 

sadness, surprise, fear, disgust, anger), while Tomkins (1962) concluded that there are 

nine basic emotions (enjoyment/joy, interest/excitement, surprise/startle, anger/rage, 

disgust, dissmell, distress/anguish, fear/terror, and shame/humiliation). In this model, 



 28 

affect is seen to be universal to all humans, biologically fixed, and arising from 

evolutionary bases tending to be strong reactions to high-intensity stimuli. Affect is 

supposed to have functional signatures related to physiological signals. A major issue 

here is to define a consensus on the method by which affect can be determined. For 

instance, Ekman (1992) points to using facial expressions as a method to identify a 

number of affective states. A limitation of this model is that it focuses on strong 

emotions, but for analyzing interactions it may be advantageous to use a model that 

accommodates different ranges of any emotion and different combinations of emotions. 

The continuous dimensional model asserts that affective states are continuous values in 

one or more dimensions and conceptualizes affect by defining where it lies in the 

dimensional space. Russell (1980) proposed a 2D model that links pleasure with arousal. 

Pleasure measures how pleasing or displeasing an emotion may be (spanning from 

positive to negative), while arousal measures the intensity of the emotion (spanning from 

calmness to excitement). Mehrabian (1996) proposed a 3D model that measures affect 

response along three dimensions (pleasure, arousal, and dominance) as shown in Figure 

2.2. The additional axis, dominance, represents the controlling nature of the emotion, i.e., 

its influence over others and the surroundings. For example, boredom and engagement 

are opposite states – boredom lies in the low pleasure, low arousal, and low dominance 

quadrant, while engagement is in the opposite quadrant. Since continuous values 

characterize the measurement of affect during interactions, this dissertation proposes to 

use Mehrabian’s model (also known as the PAD model). An example of the use of the 

PAD model in real-time systems (for an art installation) is described by Gilroy, Cavazza, 

& Benayoun (2009).  
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Figure 2.2. Pleasure-Arousal-Dominance dimensional model. 
 

 

2.3. Software Product Lines 

As the size and complexity of software systems increase, the design problem goes beyond 

algorithms, data structures (Feldman 2004), and a people-oriented discipline reliant on 

the craftsmanship of skilled individuals engaged in a labor-intensive manual task 

approach. Moving software construction to an engineering approach where design is done 

in a systematic, disciplined, and quantifiable way requires the application of software 

engineering approaches. One of those approaches, which supports a manufacturing 

vision, is the use of SPLs. SPLs capture and encode knowledge and proven practices to 

allow systematic development of systems that share a common set of features and satisfy 

the specific needs of a particular market segment or mission. SPLs are inspired by the 
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proven benefits of product lines in manufacturing and create new functionality by 

integrating many ready-built and built-to-order components instead of designing and 

writing large amounts of new code in house from scratch. SPLs are supported by the 

advent of object and component technology; in particular, model-driven and component-

based software design approaches are fundamental to the philosophy of SPL practices 

(Clements, Kazman, & Klein 2001).  

The goal of SPLs is to save engineers time and development effort. SPLs take advantage 

of commonality and bounded variation through systematic reuse of design and 

implementation of successful software assets that have already been designed, developed, 

and tested for an application domain; therefore, SPLs yield predictable results (Clements, 

Kazman, & Klein 2001). Systematic reuse differs from opportunistic reuse (in which 

developers cut and paste code from existing programs to create new ones). Systematic 

reuse is an intentional and concerted effort to create and apply multi-use software 

artifacts throughout an organization. Systematic reuse increases software productivity and 

quality by breaking the costly cycle of rediscovering, reinventing, and revalidating 

common software artifacts (Schmidt & Buschmann 2003). Throughout the rest of this 

document when the term “reuse” is used, it means “systematic reuse.” Reusing 

techniques involves code reuse, design reuse, or both. 

Although SPLs have various benefits, it is important to establish that SPLs have a payoff-

point where the cumulative cost of current development practices intersects with the 

cumulative cost of the SPL approach based on the number of products expected to be 

implemented (Weiss & Lai 1999; Clements, Kazman, & Klein 2001). If the goal was to 

implement just one or two affect-driven self-adaptive systems, SPLs would not be the 
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best option, but as stated before, the goal is to broadly support developers to adopt these 

capabilities into their systems.  

Defining an SPL involves three technical elements: an architecture, an infrastructure of 

components, and production guidelines. Each of these topics has essential background 

concepts that are described in the following paragraphs: (1) what an architecture is; (2) 

what components are and why they are integrated into frameworks; and (3) how patterns 

and pattern languages can be used for documenting guidelines. 

 

Architecture. The core of the SPL’s assets is formed by a software architecture, which 

denotes the overall structure shared by the set of systems. The architecture defines how 

systems must be built, advancing common problems and generalizing them while 

addressing the feasibility and quality attributes (Garlan & Shaw 1994). 

Components. A component can range from a class, a set of classes, or a module that 

encapsulates code (both data structures and algorithms) to libraries or complete 

platforms. Components are built on the extensive paradigm of object-oriented 

programming and object-oriented design. SPLs define three categories of components: 

(1) core components that will be used for all the products, (2) optional components that 

may or may not be present in a product, and (3) adjustable components that might be 

tailored according to the product’s needs. Components tend to be organized into 

frameworks and production guidelines defined to describe how to customize and combine 

them (Kastner, Apel, & Kuhlemann 2008). 

 

Frameworks. Frameworks encapsulate components and describe interfaces that make it 
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possible to mix and match these components to build a wide variety of systems from a 

small number of existing components. Frameworks provide a reusable context for 

components – a standard way for components to handle errors, to exchange data, and to 

invoke operations on each other (Johnson 1997). Frameworks are separate from normal 

libraries because they contain three key distinguishing features: inversion of control, 

default behavior, and extensibility (Schmidt & Buschmann 2003). 

 

Patterns. Patterns are one of the more accepted approaches to document interconnection 

and usage rules of components (Johnson 1992); therefore, they are suitable to document 

production guidelines. A pattern is a template that consists of a name, an essay that 

describes a problem to be solved, a solution, the context in which the solution works, and 

a description of its costs and benefits. Patterns provide a common vocabulary for 

describing designs, provide a way to make design tradeoffs explicit, and promote creative 

freedom (Ramirez & Cheng 2010). Patterns address the problem of documenting the 

rationale of experienced designers within the code, providing developers with the means 

to escape traps and pitfalls that traditionally have been avoided only via long and costly 

apprenticeships (Johnson 1997; Schmidt & Buschmann 2003). A quick reference of 

design patterns and architecture patterns used in this work is presented as an introduction: 

a) Observer. It defines a one-to-many dependency between objects so that when one 

object changes a value, all its dependents are notified and updated automatically 

(Gamma et al. 1995). 

b) Delegate. It defines a one-to-many dependency between objects so that an object, 

instead of performing one of its stated tasks, delegates that task to an associated 



 33 

helper object (Deugo 1998). 

c) Facade. It provides a higher-level unified interface to a set of interfaces in a 

subsystem. It makes the subsystem easier to use (Gamma et al. 1995). 

d) Publisher-Subscriber. It defines a one-to-many dependency between objects so that 

some objects, called publishers, produce and send message while other objects, called 

subscribers, which express interest in receiving messages, receive them. Publishers 

works without knowledge of which subscribers, if any, there may be (Buschmann et 

al. 1996). 

e) Blackboard. It defines a one-to-many dependency between objects so that one object, 

called Blackboard, store and integrate large and diverse specialized information 

provided in an asynchronous way from other objects, called sources. The Blackboard 

also implements control strategies to decide which source will have access to post 

information. (Buschmann et al. 1996). As analogy, the Blackboard can be seen as a 

fusion of a board and a professor in a classroom while the sources are students 

participating in the solution of a problem. 

 

Pattern Languages. Grouping patterns together and defining grammatical and semantic 

relationships between them creates a pattern language. A pattern language describes a 

solution space for developing a particular type of system by offering alternative solutions 

to common problems in a specific domain (Buschmann, Henney, & Schmidt 2007). A 

pattern language that records knowledge related to the composition and organization of 

affect-driven self-adaptive systems, an extension of the work described in Gonzalez-

Sanchez, Chavez-Echeagaray, Atkinson & Burleson (2012), guides the description of the 
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ADASPL domain and the definition of the ADASPL architecture presented in Chapter 3. 

 

2.4. Process Measures and Software Metrics 

To quantify the SPL development process and the properties of the software product 

produced, three kinds of metrics were collected for each project:  

a) Process measures. These quantify the involvement of people in the project as they 

add, remove or update files over time. File updates involve the adding or removing of 

lines. Process measures are extracted with GitStats,1 a statistics generator for Git-

distributed revision-control system repositories. GitStats examines the repository and 

produces statistics based on the history of the project. Git repositories were provided 

for each project and their use was enforced. Specifically, GitHub, a web-based Git 

repository hosting service was used. Git repositories store all the assets for the project 

including code and documentation. It is important to note that lines (in commits) are 

not the same as lines of code (referred as a metric), because diverse artifacts (files), 

not only code, are stored in the repository. 

b) Software complexity metrics. These quantify the complexity of the software 

measuring its size (number of files, methods, and LOC), its uses of inheritance, and 

its cyclomatic complexity. These metrics are extracted with a quality analysis tool 

called RSM (Resource Standard Metrics)2. 

c)  Software structure metrics. These quantify the design flaws of the software by 

measuring cohesion and coupling. These metrics are extracted with a structure 

 

1 http://gitstats.sourceforge.net 
2 http://msquaredtechnologies.com/rsm-wizard.html 



 35 

analysis tool called stan4j (Structure Analysis for Java)3.  

 In the next sections process measures and software metrics used are described. The 

software metrics and their value ranges are summarized in Tables 2.1, 2.2, and 2.3, 

respectively. 

 
Table 2.1. Summary of Complexity Metrics 

Name Suggested range 
LOC § 200 per method 

§ 1000 per class 
DIT § Less than 2 is poor use of OO 

§ 2 to 5 is acceptable 
§ More than 5 is complex 

NOC § 0 to 10 is fine 
§ More than 10 is complex 

CC § 0 to 10 is acceptable 
§ 10 to 20 is complex 
§ More than 20 could be a problem 

 
 

Table 2.2. Summary of Cohesion Metrics 

Name Suggested range 
FAT § Less than 60 is recommended 

§ 60 to 120 is acceptable 
§ More than 120 is not recommended 

H § 1.5 to 4.0 is recommended 
 
 

Table 2.3. Summary of Coupling Metrics 

Name Suggested range 
I § 0 is stable, 1 is unstable 
A § 0 is concrete, 1 is abstract 
D § Less than 0.1 is recommended 

§ Less than 0.4 is acceptable 
§ Zone where A = 0 to I = 0 is a pain zone 
§ Zone where A = 1 to I = 1 is a useless zone 

 

3 http://stan4j.com 
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2.4.1. Process Measures 

The software development process is quantified by measuring the following: 

a) Number of commits. Committing is a process that adds, modifies, or removes files 

from the repository (source files or documents). This is quantified per author and per 

date. 

b) Number of lines. Lines added and removed, including lines of source code (LOC) and 

text in documents. This is quantified per author and per date. 

 

2.4.2. Software Complexity 

Software complexity is quantified by measuring software size (quantifying files, 

methods, and LOC), object-oriented design (quantifying DIT and NOC), and 

cyclomatic complexity (Sommerville 2002; Chidamber & Kemerer, 1994; 

McCabe, 1976). These metrics are as follows:  

a) Files in the project. 

b) Methods. The total number of functions within the source code determines the degree 

of system modularity. 

c) LOC. This counts the lines but excludes empty lines and comments. This metric 

represents more accurately the quantity of work performed. An accepted industry 

standard is 200 LOC per function or 1,000 LOC per class. Functions that have a 

higher LOC are difficult to comprehend and maintain. XML files, configuration files 

and auto generated files were excluded in the calculation of this metric. 

d) Average depth of inheritance tree (DIT). This calculates how far down a class is 

declared in the inheritance hierarchy, where the DIT is the length from the class to the 
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root of the inheritance tree. The deeper a class is in the hierarchy, the greater the 

number of methods and state variables it is likely to inherit, which makes it more 

difficult to predict its behavior. It becomes more specialized and it can be hard to 

understand a system with many inheritance layers. However, there is greater potential 

reuse of inherited methods. If a majority of DIT values are below 2, this may 

represent poor exploitation of the advantages of OO design and inheritance; however, 

the recommended DIT is 5 or less. 

e) Average number of children (NOC). This measures the number of direct subclasses of 

each class. The NOC approximately indicates how an application reuses itself. It is 

assumed that the more children a class has, the more responsibility there is on the 

maintainer of the class not to break the children's behavior. The upper recommended 

NOC limit for a class is 10 and the lower limit is 0. If the NOC for a class exceeds 10, 

this may indicate a misuse of sub-classing. 

f) Cyclomatic complexity. This is the degree of logical branching within a function. 

Logical branching occurs when “while”, “for”, “if”, or “case” keywords appear 

within the function. It was calculated the total, average, minimum, and maximum 

value for this metric. Cyclomatic complexity is the count of these constructs. It is 

commonly accepted that a cyclomatic complexity of between 1 and 10 is considered 

simple and easy to understand, between 10 and 20 indicates more complex code, 

which may still be comprehensible, and values of 20 and above are typical of code 

with a very large number of potential execution paths that can only be fully grasped 

and tested with great difficulty and effort. 
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2.4.3. Software Structure 

Software structure quality is quantified by measuring cohesion and coupling at the 

package level using the metrics proposed by Robert C. Martin (2013).  

Cohesion, the grouping of classes, is measured by two metrics: FAT of dependencies 

among a package’s classes and relational cohesion. 

a) Fat for top level class dependencies (FAT) measures the dependency among classes 

forming the package and is calculated as the edge count of the package’s class 

dependency graph. Values less than 60 are encouraged, values less than 120 are 

acceptable, and values above 120 represent a warning. 

b) Relational cohesion (H) represents the average number of internal relationships per 

class in a package. As classes inside packages should be strongly related, the cohesion 

should be high. However, high values may indicate over-coupling. It is calculated as 

H = (FAT + 1) / number of files. A good range of H is 1.5 to 4.0. Projects where H < 

1.5 or H > 4.0 might be problematic. This measure is less applicable to packages 

consisting mostly of interfaces, i.e., it is useful for packages that contain 

implementation classes. 

Coupling, or the relationships between packages, is measured using three metrics: 

instability, abstractness, and distance 

a) Instability (I) is related to the amount of work required to make a change. A package 

is considered stable if it is difficult to change, and it is considered difficult to change 

if has lots of others packages dependent on it, i.e., it has a lot of incoming 

dependencies. On the other hand, a package is considered unstable if it has few or no 
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incoming dependencies. To measure instability, the number of dependencies that 

enter and leave a package are counted.  

Two values are important to calculate: (1) afferent coupling and (2) efferent coupling. 

Afferent coupling (Ca) is the number of classes outside the package that depend on 

classes within the package. Efferent coupling (Ce) is the number of classes inside the 

package that depend on classes outside the package. I is defined as the ratio of Ce to 

total coupling (Ce + Ca), such that I = Ce / (Ce + Ca). The range for this metric is 0 to 

1, with I = 0 indicating a completely stable package and I=1 indicating a completely 

unstable package. 

b) Abstractness (A) measures the abstraction level of the package. A is the ratio of the 

number of abstract classes (including interfaces) in the package to the total number of 

classes in the package. The range for this metric is 0 to 1, with A = 0 indicating a 

completely concrete package and A = 1 indicating a completely abstract package. 

c) Distance (D) is the perpendicular distance of a package from the idealized main 

sequence line given by A + I = 1. It is an indicator of the package’s balance between 

abstractness and stability. A package squarely on the main sequence is optimally 

balanced with respect to its abstractness and stability. Ideal packages are either 

completely abstract and stable (I = 0, A = 1) or completely concrete and unstable (I = 

1, A = 0). D is calculated as D = | A + I - 1 |. The range for this metric is 0 to 1, with 

D = 0 indicating a package that is coincident with the main sequence and D = 1 

indicating a package that is as far from the main sequence as possible. A maximum D 

of 0.1 is recommended. A value for D of less than 0.4 is acceptable. The zone where 
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A = 1 and I = 1 is useless and the zone where A = 0 and I = 0 suggest a rigid and 

undesirable package that is not extensible and difficult to change. 

 

2.5. Related Work Addressing Affect-Driven Self-Adaptation 

This section summarizes milestones that have occurred for a broader deployment of the 

affect-driven self-adaptation capability to software systems. In short, capabilities required 

for building adaptation based on human factors, such as affect measurements, have not 

been considered and most research does not have a manufacturing vision or does not 

follow (or does not report to follow) software engineering models or guidelines. I 

describe various threads of related work, presenting their similarities and differences with 

the approach followed in this dissertation and highlighting advantages and limitations. 

Each subsection below addresses a different project and a summary is provided in the last 

section.   

 

A Platform for Affective Agent Research. Burleson et al. developed an Affective Learning 

Companion (ALC) platform for multimodal sensing and interpretation of affective 

information, which is able to provide a response in real-time through an expressive agent 

(Burleson et al. 2004). Details and extensions to the platform are documented in Kapoor 

& Picard (2005) and  Kapoor, Burleson, & Picard (2007). The ALC platform is formed 

by six modules (sensing, inference engine, behavior modification engine, server, logger, 

and the animated character engine), which work as follows: first, multiple hardware 

channels (including eye tracking, pressure sensors, face-based emotion recognition, and 

skin conductance) sense user changes and report their measures to a server; then, the 
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server continuously stores the data in a text file and runs an inference engine process that 

uses this file as input for a semi-supervised machine-learning inference process; the 

inference engine uses training data to identify specific affective states such as frustration, 

interest, or boredom; finally, the identified affect state is used as the parameter that 

configures the behavior of an animated character; and the behavior is chosen from a set of 

predefined scripts.  

 

A Middleware for Self-Adaptation. Garlan et al. (2004) recognize that adaptation 

mechanisms highly specific to one application and tightly bound to the code are costly to 

build and difficult to modify; therefore, they proposed a middleware for supporting 

adaptation. The middleware leverages a framework, called Rainbow, and guidelines to 

work with it. Their goal is to be able to add self-adaptation capabilities to a wide variety 

of systems, adding external control mechanisms and using a reusable infrastructure.  

 

Human-in-the-loop adaptation. An extension of Garlan et al.’s (2004) research is 

presented by Camara, Moreno & Garlan (2015), who research how to involve humans as 

information sources, decision-makers, or system-level effectors (executors of the 

adaptation when automation is not possible or as a fallback mechanism). They researched 

the explicit modeling of humans to provide a better insight into the trade-offs of 

involving humans in the adaptation loop for safety-critical systems; particularly, 

considering that humans are influenced by factors external to the system (e.g., training 

level, fatigue). Their goal is to combine human interventions and automated adaptations.  
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An Architecture Pattern for Affect Awareness. Clay, Couture, & Nigay (2009) proposed 

an architecture pattern, named emotion recognition branch, as a guide for engineering 

affective systems. Clay, Couture, & Nigay’s architecture pattern is formed by three piped 

components for capturing, analyzing, and interpreting data, as follows: (1) the capture 

unit groups sensor interfaces to acquire raw data from sensors; (2) the analysis unit 

extracts affective relevant cues (features) from the captured data; and (3) the 

interpretation unit is dedicated to the interpretation of cues (features) to infer the affective 

state. Additionally, it defines filters, adaptors, and concentrators, which transform the 

data flow, format, and merge flows together, respectively. A case study is described 

without technical details, inferring affect from a dancer’s body gestures using a motion 

capture system as input source.  

 

A Framework for Affect Recognition. Hussain & Calvo (2009) proposed a framework for 

multimodal affect recognition targeted for learning systems but flexible to other 

applications. The framework does multimodal affect recognition and is able to report 

results to third-party systems by sharing an XML file with them. The Hussain & Calvo 

framework defines a set of four modules for feature extraction, feature selection and 

reduction, feature classification, and decision fusion. Features from multiple modalities 

(including physiological signals, speech analysis, and text analysis) are handled and fused 

with decision-level techniques. Modules are implemented in MATLAB and connected 

with batch processing using XML files as connectors between modules.  
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Affective and Adaptive User Interface in Office Scenarios. Maat & Pantic (2007) describe 

a system, named Gaze-X, developed to support affective multimodal human-computer 

interaction in which a user’s actions and affect are used to adapt user interfaces. Multiple 

hardware channels (including eye tracking, speech, and face-based emotion recognition) 

sense changes in user affect, and the user’s activity (keystrokes and mouse movements) is 

tracked while running applications (web browser, mail, text editor, Adobe reader, and 

music or video player). Adaptation strategies include help provision, addition or removal 

of automation tasks, and changing information presentation.  

 

A Framework for Smart Sensor Integration. Wagner, André, & Jung (2009) describe a 

framework that supports the development of multimodal emotion recognition in real-time 

named Smart Sensor Integration (SSI). SSI offers tailored tools for data segmentation, 

feature extraction, and pattern recognition, both to be applied offline (training phase) and 

online (real-time). SSI is a three-layered framework that is able to handle inputs from 

various input modalities and uses the Pleasure-Arousal-Dominance (PAD) model for 

fusion measurements and to share results with third-party systems. It provides an 

infrastructure to include function calls to external resources, such as signal processing 

libraries, machine-learning libraries, and classifier algorithms; it integrates several 

libraries such as OpenCV, ARToolKitPlus (real-time marker tracking), SHORE (face 

detection), EmoVoice, and Torch (machine learning). Additionally, it offers a generic 

GUI for data acquisition and training. SSI has been used to develop story telling 

interactive systems (with real-time vocal emotion recognition), augmented reality art 
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installation (using a speech recognizer and a Wiimote to alter a virtual tree), and a virtual 

butler that responds to the user’s affective state.  

 

A Framework for Audio-Visual Affect Recognition in a Crowd. Vildjiounaite et al. (2009) 

describe a framework for multimodal audio-visual affect recognition in a crowd. The 

framework was validated in three contexts: theatre, circus, and sports events with the 

audience waiting, leaving, and during the show (looking for approval or interest); the 

shots of the audience were obtained from movies and TV programs. This framework 

incorporates diverse approaches for fusion methods and points to the importance of 

context-awareness during the affect recognition process. It is a modular framework with a 

complex component-based architecture model, although no mention is made or evidence 

shown about the use of patterns or styles. It supports several machine-learning 

algorithms. Additionally, it supports training and classification phases for the creation of 

user models.  

 

A Reference Model for Self-adaptation. Weyns, Malek, & Andersson (2010) defined a 

reference model in which one or more independent self-adaptive units collaborate to 

achieve self-adaptation. Case studies were conducted on intelligent transportation 

systems, using cameras equipped with data processing and communication capabilities to 

monitor traffic jams. The model of Weyns et al. is an agent-based system organized in 

four layers: host infrastructure, agent middleware, organization middleware, and agents 

layer. A technical feature relevant in this approach is that it brings together the concepts 
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of computational reflection and controlled-loop and extends it with constructs necessary 

for decentralization.  

 

Other Efforts. Several other efforts exist, most of them similar to one of the previously 

described and thus with similar limitations. Some of these efforts are as follows: 

multimodal affective user interface by Lissetti & Nasoz (2002); agent-based intelligent 

tutoring system using a facial recognition system by Gowri et al. (2010); a framework for 

an affective intelligent tutor system (Emilie-1 and Emile-2) by Nkambou (2006); the 

SEMAINE framework by Schroder (2010); and  multimodal emotion recognition by Sebe 

et al. (2005). Moreover, in the field of context-aware systems, Hong, Suh, & Kim (2009) 

present a literature review and conclude that social science methodologies, psychology, 

cognitive science, and human behavior related approaches are required and can be 

implemented in context-aware computing. 

 

Table 2.4 presents a summary of the related work described in this section including the 

key elements on affect, adaptation, and software present or absent in each related work. 

The first column provides the reference to the work in the same order that they were 

previously presented. The second column states whether the work is about a system (one 

application), a framework or middleware (components able to be reused), or a model 

(such as a pattern). The third column names the system developed or states whether a 

generic approach was followed, i.e., several systems can be created. The fourth column 

identifies whether the work involves at least the concept of affect. The fifth column 

identifies whether this work supports adaptation. The sixth column states whether or not 
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this work focuses on software developers. Finally, the last column records the 

architectural style reported. 

 
Table 2.4. Comparison of Related Work 

Reference Type Use Affect Adaptation 
User or 

developer 
oriented? 

Architecture 

Burleson 
et al. 2004 

 
system animated 

agent n closed 
loop user Batch 

Garlan 
et al. 2004 

 
middleware generic  closed 

loop developer Layered 

Camara et al. 
2015 middleware generic  

closed 
loop developer Layered 

Clay 
et al. 2009 

 
pattern generic n  developer Pipes & 

Filters 

Hussain and 
Calvo 2009 

 
framework generic n  user Batch 

Maat and 
Pantic 2007 

 
system adaptive 

UI n closed 
loop user Agents 

Wagner 
et al. 2009 

 
framework generic n closed 

loop developer Layered 

Vildjiounaite 
et al. 2009 

 
framework affect in 

crowds n  user Not specified 

Weyns 
et al. 2010 

 
framework generic  distributed developer Layered 

 

Three topics were the focus of the survey of previous work (manufacturing vision, self-

adaptation, and affect). In relation to software engineering, the approaches move from 

creating a one-of-a-kind system to a manufacturing approach; being in the middle 

represents that the approach supports developers but not broad deployment. Related to 

self-adaptation, works reviewed move from being aware of something to adapting to that 
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something. Finally, related to affect, the scale was set up as binary values: the work 

mentions affect at all, yes or no.  

 
 

Figure 2.3. Graphical representation of the related work organized in a dimensional space in which the X-
axis represents their focus on adaptation, the Y-axis represents their support for developers, and colors 

(white or gray) represent whether or not the project is related to affect recognition. 
 

 

Figure 2.3 depicts the state-of-the-art in which the X-axis represents the degree a system 

is related to self-adaptation; the first group does not apply adaptation at all, the second 

group applies adaptation visualizing or changing a visual stimulus, such as an avatar 

behavior or art installation, and the third group is a next step of adaptation, a step in 

which adaptation rules can be defined and any aspect of the system functionality altered. 

The Y-axis represents the degree a system is related to a one-of-a-kind or a 

manufacturing approach, moving down to a means of no support at all for developers, 
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some support, or a developer-oriented approach. Finally, dark gray boxes represent works 

not related to affect and white boxes represent works related to affect. As noted, affect is 

present in almost all related work except in those approaches that look forward to 

applying a manufacturing vision to self-adaptation. The work presented here intends to 

position itself in the upper-right corner of the space. 

 

2.6. Limitations to State-of-the-Art Addressed 

Limitations of the state-of-the-art includes: 

The ALC platform: (1) it responds in real time, aligned with the idea of self-adaptation; 

(2) it identifies and states the significance of multimodality; and (3) it divides the 

responsibilities into modules. It shows that affect can be used to drive adaptation. 

Nevertheless, the platform of Burleson et al. (2004) aims to help end-users (researchers) 

run investigations and test theories about affective responses in learning; thus, it differs 

from this dissertation in its scope which is not an intentional and concerted effort to 

create and apply multi-use software artifacts to support developers in the creation of 

affect-driven adaptation; however, opportunistic reuse (cutting and pasting code from 

existing programs to create new ones) can be applied. 

The Garlan et al. (2004) middleware: (1) it applies the closed-loop paradigm; (2) it 

defines a layered architecture that separates inference, adaptation, and rule evaluation; (3) 

it provides a framework to facilitate the creation of families of systems by means of 

components, constraints, properties, and qualities; and (4) it models interfaces for 

gathering information (probes), interfaces for carrying out a system modification 

(effectors), and interfaces for constraining evaluation (gauges). However, the Garlan et al. 
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middleware differs from this dissertation in the variable that drives the adaptation. It does 

not have the scope of dealing with affect measurements. Garlan et al.’s case studies 

address self-adaptation driven by performance, work balance, and other resource-related 

issues. Dealing with affect measurements increases the complexity of the problem and 

requires additional layers, new engines, and guidelines.  

The human-in-the-loop adaptation approach from Camara, Moreno & Garlan (2015) is 

built upon the Garlan et al. middleware. Humans are included in the adaptation loop by 

considering them effectors (sophisticated sensors). Therefore, humans are used as another 

information source in the decision process. Human involvement is modeled to capture 

factors that can disturb human behavior and its interactions with the system, such as 

training level and fatigue. Their work is particularly focused on safety-critical systems, 

where the goal is to keep the system performance as expected to avoid death or serious 

injury to people, or loss of or severe damage to equipment and property. 

The work of Clay, Couture, & Nigay (2009): (1) it is a generic architecture level 

abstraction that defines modules conceived to be integrated to the target system 

architecture; (2) it is based on the grounding theory of multimodality; and (3) it reflects 

the qualities of modifiability and reusability. Nevertheless, the work of Clay, Couture, & 

Nigay focuses only on the architecture definition and does not provide support to 

developers related to code or components to be applied; Clay, Couture, & Nigay mention 

that as future work. Moreover, the work of Clay, Couture, & Nigay is dedicated to 

engineering affect-aware systems; what the system does with the information about the 

affect measurements is not supported. In my dissertation affect recognition is not a goal 

itself, but rather a means to achieve self-adaptation. 
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The Hussain & Calvo (2009) framework: (1) it identifies and states the significance of 

multimodality and (2) it divides the responsibilities into modules. Nevertheless, the 

Hussain and Calvo framework does not have an intentional and concerted effort to create 

and apply multi-use software artifacts to specifically support developers in the creation of 

affect-driven adaptation. It is mostly a platform similar to the one described in Burleson 

et al. (2004) to support end-users (researchers) in running investigations and specifically 

in testing theories about affective responses in learning; I argue that this is not a 

framework in the software context defined by Johnson (1997) to help developers create 

software. No mention is made about real-time capabilities and thus about supporting self-

adaptation. 

Technical features in Maat & Pantic’s work (2007): (1) it implements a real-time closed-

loop; (2) it adds to the process context-sensitivity identifying user activity and mapping it 

to the sensed emotion; (3) it is a system that runs independently of the applications that 

the user is running; (4) it implements both supervised and unsupervised learning to gather 

user preferences; and (5) it identifies and states the significance of multimodality and 

focus on adaptation (i.e., real-time processing) not only in affect recognition. However, 

the Maat & Pantic’s system appears to be helpful for end-users (researchers) for testing 

adaptability in user interfaces; there is no intentional and concerted effort to create and 

apply multi-use software artifacts to support developers to create affect-driven adaptation. 

The system as described can be used as a whole for affect recognition; this is also noticed 

and stated by Wagner et al. (2009). Maat & Pantic use a framework, called Fleebe, to 

implement their system to run studies in office environments. While Fleebe is a 
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framework, the modules related to affect (which are outside the Fleebe framework) only 

provide opportunistic reuse.  

The SSI framework created by Wagner, André, & Jung (2009): (1) its target audience is 

developers and it has an intentional and concerted effort to create and apply multi-use 

software artifacts where encapsulation, systematic reuse, delegation, and decoupling are 

widely supported and suggested; (2) it provides assets to let developers choose which 

aspects to monitor, which conditions trigger adaptation, and how to adapt the system; and 

(3) the PAD emotional state model is used for fusion measurements. Even though the 

framework supports real-time affect recognition and enables adaptation, the framework 

itself does not provide models or guides about the self-adaptation part of the system. Still, 

the accomplishment of achievements similar to the one described in this project is an 

inspiration.  

Vildjiounaite et al. work (2009): (1) the PAD emotional state model is used for fusion 

measurements; (2) it identifies and states the significance of multimodality; and (3) it 

follows a modular approach. Nevertheless, this platform is similar to the one described in 

Burleson et al. (2004) and Hussein & Calvo (2009) – it can be used as a whole for 

multimodal affect recognition and can report results to third-party systems – but I argue 

that this is not a framework in the software context defined by Johnson (1997) as “a 

skeleton for an application that can be customized” or “a set of reusable components and 

the guidelines for their interaction.” Also, its scope is not an intentional and concerted 

effort to create and apply multi-use software artifacts to support developers in the 

creation of affect-driven adaptation but to help end-users (researchers) facilitate research 

on affect recognition. 
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Weyns et al. (2010) work, as the one I am proposing, describes a systematic engineering 

approach that observes trade-offs among design decisions and addresses software 

qualities. However, the research of Weyns et al. does not address self-adaptation driven 

by affect measurements or the issues related to it. 

In summary, existing approaches only partially tackle the problem of deploying affect-

driven self-adaptive capabilities to software systems; some of them limit their 

applicability to supporting the craftsmanship of one product instead of a common product 

platform to manufacture product families, while others are focused on manufacturing 

self-adaptive but not affect-driven systems. This dissertation addresses two key issues not 

addressed by the above efforts: (1) modeling the process of self-adaptation driven by 

affect measurements with the aim of making it understandable to the system owners and 

developers, and (2) the issue of manufacturing limitations. 

 

2.7. Foundational Elements Provided by the State-of-the-Art 

I argue, in the previous section, that the state-of-the-art of affect-driven self-adaptation 

does not provide software engineers with a generalized, feasible, and cost-effective 

approach for incorporating the affect-driven self-adaptation capability into software 

systems. However, it does provide the foundational elements necessary to do so, as 

follows:  

a) advances in affective computing provide the affect recognition devices, affect models, 

and affect inference techniques that allow computers to recognize, represent, and 

learn about user affective states;  
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b) advances in adaptive systems provide the models and mechanisms to enable the 

implementation of self-adaptation capabilities; these separate the adaptation process 

and the adaptation concerns from the target system’s functionality; and  

c) research in software engineering provides options for implementing a manufacturing 

vision for the development of these software systems. 

An SPL paradigm is employed to provide the missing support and accomplish the goal of 

a generalized, feasible, and cost-effective approach to manufacturing software systems 

with the affect-driven self-adaptation capability. The SPL approach was selected as a 

manufacturing strategy to take advantage of its ability to encapsulate existing knowledge 

(such as advances in affective computing and adaptive systems research) into assets for 

software system design and development.  

As stated in Chapter 1, although SPL covers both the technical and organizational 

aspects, this research takes advantage of technical solution strategies only and does not 

engage with the organizational specifics.  

SPL defines its technical solution strategy as an incremental process for engineering 

products based on an architecture, an infrastructure of components, and a set of process 

guidelines. The purpose of each of these elements is described in Figure 1.1. and 

summarized below:  

a) the architecture supports generality and feasibility by providing a basis for 

understanding and analyzing common behaviors in a family of products (in this case 

affect-driven self-adaptive systems) and supporting early design and implementation 

decisions, as well as facilitating communication between stakeholders; 

b) the infrastructure supports generality and cost-effectiveness by providing a well-
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understood set of components (in this case for affect recognition and adaptation); and 

c) the process guidelines support feasibility and cost-effectiveness by helping engineers 

to understand the details of particular affect and adaptation concepts as operational 

capabilities, and by supporting their implementation in the use or extension of the 

provided infrastructure of components. 

Each of the elements is described in a separate chapter. Each chapter explains how the 

individual element addresses particular challenges. Chapter 3 focuses on the architecture, 

Chapters 4 and 5 on the infrastructure, and Chapter 6 on the process guidelines. 

Furthermore, Chapter 6 also presents and discusses working examples overviewing the 

production process. 

 

2.8. Summary 

Current advances in adaptive technology provide mechanisms to enable self-adaptation, 

in particular to monitor events inside the target system and effect changes, which form 

building blocks to advance system control. Advances in affective computing research 

provide affect recognition devices and algorithms, fusion methods, and emotional state 

models. Advances in software engineering provide rigorous partitioning and composition 

of components techniques, abstraction and modeling methodologies, and recently 

approaches that adopted a manufacturing vision to change methods that were inherently 

focused on building one product at a time to the realization of families; in particular, 

software product lines which promise greater gains and open the door to mass 

deployment. Related research in affect-aware and affect- driven adaptation demonstrates 

point solutions as shown and described in Figure 2.3., which presents a number of 
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limitations and unresolved issues that are addressed in this dissertation. Almost no 

existing approach provides a systematic, integrated approach that combines affect, 

adaptation, and software engineering. While existing approaches do not address system-

level details that engineers grapple with in order to build their systems, I design an SPL 

approach, with a model, an infrastructure and guideline elements, that leverages a global 

perspective. The infrastructure encapsulates core concepts and hoists them as building 

blocks for systems engineering to build the affect-driven self-adaptation capability. The 

overall approach for affect-driven self-adaptation is presented in Chapters 3 to 6. 
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CHAPTER 3 
DOMAIN ABSTRACTION AND ARCHITECTURE DEFINITION 
 

ADASPL encapsulates existing advances in affective computing and adaptive systems 

research into assets for software system design and development. It defines a technical 

solution strategy as an incremental process for engineering products based on an 

architecture, an infrastructure of components, and a set of process guidelines. This 

chapter focuses on the definition of the first element, the architecture, and how it 

overcomes the limitations outlined in Chapter 2, addressing aspects of generality and 

feasibility. However, the definition of an architecture requires knowledge about the 

domain, e.g., the meaningful concepts, process steps, and data involved. Hence, this 

chapter starts by describing these elements of the domain. 

 

3.1. Domain Abstraction  

Meaningful concepts, process steps, and the data involved in affect-driven self-adaptive 

systems are documented in a pattern language, where each pattern documents an 

identified step in the process of affect-driven self-adaptation. This pattern language is an 

extension of the work described in Gonzalez-Sanchez, Chavez-Echeagaray, Atkinson & 

Burleson (2012). It includes seven interrelated patterns: sensing, perception, integration, 

synapse, reaction engine, introspection, and behavior management. These patterns were 

harvested in a pattern mining process examining existing systems. The patterns and their 

relationships are visualized in Figure 3.1 and are as follows: 

a) Sensing is about establishing a connection with a hardware device and collecting the 

signal readings (also called raw data) that the device gathers, for instance, 
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electrophysiological measurements, facial gestures, posture, or brainwaves. 

Numerous hardware devices can be used at the same time to collect signals from 

diverse sources, and each device should be attached to an individual sensing 

component. Each hardware device has particular characteristics, such as data polling 

rate and expected value ranges. 

b) Perception is about interpreting the signal readings and inferring an affective state 

value. The input for perception comes from the output of sensing. For instance, joy 

can be inferred from facial gestures, interest can be inferred from posture while sitting 

in a chair, or meditation can be inferred from brainwaves. Sensing is a functionality 

that does not require changes after implementation unless the hardware or its 

communication protocol is changed; however, inference algorithm changes are 

commonly made to improve or refine the perception process. As a result, it is 

advisable to maintain the independence of each of these functionalities. While not all 

sensing processes require a perception process, all perception processes are dependent 

upon a sensing process. In some cases, sensed values are directly proportional to an 

increase or decrease in an affect measurement. In other cases, sensed values are 

already processed by the device platform and the signal readings include raw and 

inferred values. For instance, the Emotiv EEG device provides raw EEG data (14 

channels) and five affect measurements. In these cases, the perception process can be 

null. But, most of the time, values gathered in the sensing process are not useful 

without an inference algorithm, provided by a perception process, to interpret them. 

For instance, brainwave, pressure, and posture readings need inference algorithms to 

interpret them.  
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c) Integration collects the values gathered by the sensing-perception pairs and then: (1) 

synchronizes them; (2) converts them to a predefined and normalized measurement 

unit; and (3) fuses them into one value. For instance, when using the Mehrabian 

emotional state model, the measurement unit is a 3D vector with values representing 

pleasure, arousal, and dominance and ranging from 0 to 1; a fusion approach that can 

be used with this model consists of adding the vectors together to produce a single 

vector value. 

d) Synapse communicates the affective information to instances outside the affect 

recognition logic. 

e) Reaction engine chooses and executes adaptation rules according to the inputs 

received from the synapse and introspection. 

f) Introspection gathers information regarding the system’s context (system status, 

responses, and failures) and UI events from the target system. For instance, in a 

tutoring system, a student clicking a button asking for hints to solve a problem or, in a 

3D game, a player moving around and exploring the game scenario. 

g) Behavior management stores and manages the adaptation rules that are executed by 

the reaction engine. 

The sensing, perception, integration, and synapse steps fullfil the task of affect 

recognition, while the adaptation, introspection, and behavior management fulfil self-

adaptation. The backbone of affect-driven self-adaptation is formed by the sensing, 

integration, synapse, and reaction engine steps, while perception, introspection, and 

behavior management are support steps. A system can use a sensing (and optionally a 

perception) step to acquire a monomodal affect recognition capability. Or, it can include 
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several sensing (and optionally perception) steps, plus the integration and the synapse 

steps to acquire a multimodal affect recognition capability. 

 

Figure 3.1. Patterns in the pattern language for affect-driven self-adaptive systems. 
 

This domain abstraction drives the definition of the ADASPL architecture. An 

architecture definition is a recursive decomposition process where, at each stage, models 

and patterns are chosen to satisfy quality attributes and then functionality is allocated as 

described by the models and patterns selected. At the end, the architecture is described as 

a set of containers for functionality and the interactions among them. The following 

sections describe the sequence involved in the creation of the ADASPL architecture 
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across multiple stages, from an overall model to three independent logics to the 

components contained in each logic. 

 

3.2. Closed-Loop Model 

The first challenge presented by human-centered systems, such as affect-driven self-

adaptive systems, is how to include the user in the control loop. In order to tackle this, I 

extended the closed-loop adaptation model (Shaw 1995; Cheng, Garlan, & Schmerl 

2005), described in Chapter 2, by integrating the human factor in the form of affect 

measurement. The proposed extension of the closed-loop adaptation model is shown in 

Figure 3.2. It maintains the respective independence of the functional logic and the 

adaptation logic, and incorporates a new, similarly independent element, an affect 

recognition logic. The interconnection between the three logics is standardized, 

maintaining the foundation for a model with low coupling and high cohesion. As in 

Cheng, Garlan, & Schmerl (2005), interfaces either extract information (gauge and probe 

pairs) or change the target system (effectors). The logics and their interactions can be 

summarized as follows: 

a) The affect recognition logic monitors the user’s affective state; it encapsulates affect 

recognition knowledge (which includes gathering the user’s signals, processing them, 

and inferring affect), and makes its findings available to other logics and systems via 

the relevant probe. 

b) The adaptation logic encapsulates the definition and execution of adaptation rules. It 

triggers changes in the functional logic using effector interfaces. The affective state 

reports from the affect recognition logic are used to trigger changes in the functional 



 61 

logic. Adaptation tends to improve user experience and in doing so also can influence 

user affect. 

c) The functional logic represents the target system, one to be newly implemented or an 

existing one. Changes triggered in the functional logic are intended to improve its 

functionality and, in doing so, the user experience, and consequently the user’s 

affective state.  

Affect-driven self-adaptation is improved by supplying information regarding the context 

of the affect, i.e., knowing what is happening inside the system (system status, responses, 

or failures) while the user is interacting with it and what inputs the user is giving to the 

system (UI events). For instance, in a tutoring system, the detection of frustration or 

concentration could mean different things depending on whether the user is reading or 

answering a quiz, or if the system is at a standstill. Adding system context awareness to 

the model requires adding a probe point to the functional logic and a gauge point to the 

adaptation logic. Now the adaptation logic is connected to the functional logic (as in 

Shaw’s closed-loop model) as well as to the affect recognition logic. Figure 3.3 shows the 

model with this addition, in which the adaptation logic and functional logic 

characterizations are expanded as follows: 

a) The adaptation logic establishes a closed-loop control that monitors both the user 

affective state and the system events, processes the information gathered, and then 

triggers adaptive reactions in the system. Affective states and system events are 

acquired by the gauges connected to the probes in the affect recognition logic and the 

system functional logic, respectively. 

b) The implementation of the functional logic is open to the developers without 
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restriction, but developers are required to provide the interfaces for extracting 

information (probes) and for changing the system (effectors). 

 

 
Figure 3.2. Closed-loop architectural model depicting adaptation driven by affective states inferred from a 

human user. 
 
 

 

 
Figure 3.3. Closed-loop architectural model depicting adaptation driven by affective states inferred from a 

human user and the system context. 
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3.3. Components 

The logics are composed of components that separate concerns with respect to their 

described functionalities: 

a) Components for the functional logic are not described since, as stated before, the 

functional logic is a wildcard, and can be any new or existing system.  

b) The components for the adaptation logic originate in the phases documented in 

Cheng, Garlan, & Schmerl (2005) for engineering self-adaptation (monitoring, 

modeling, and controlling), as well as in the categories proposed in Ramirez & Cheng 

(2010) for dynamically adaptive systems (monitoring, decision-making, and 

reconfiguration infrastructure).  

c) The components for the affect recognition logic and the philosophy behind interface 

adaptation and affect recognition are based on the affective system patterns presented 

in previous work (Gonzalez-Sanchez, Chavez-Echeagaray, Atkinson, & Burleson, 

2012), but they are updated to take into account the more recent simplification of 

software infrastructure and process organization. The affect recognition logic has its 

beginnings in the work of Burleson et al. (2004) and Hussein & Calvo (2009), but it is 

further improved by the introduction of distributed computing with an agent-based 

methodology, as well as new and updated sensing devices.  

Core components provide the core features for affect recognition (sensing, integration, 

and synapse). Optional components in the affect recognition logic (perception) and the 

adaptation logic (reaction engine, introspection, and behavior management) provide 

optional and customizable features for the products. Figure 3.4 shows the components 

and their respective logics. 
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Figure 3.4. Architecture showing components that constitute the affect recognition logic and the adaptation 
logic – two devices are depicted. 

 

The components in the affect recognition logic resemble patterns from the pattern 

language for affective adaptive systems, described in section 2.5: sensing, perception, 

integration, and synapse patterns. Sensing is a functionality that does not require changes 

after implementation unless the hardware or its communication protocol is changed; 

however, perception (inference algorithm) changes are commonly made to improve or 

refine the perception process. As a result, it is advisable to maintain the independence of 

these functionalities. While not all sensing processes require a perception process, all 

perception processes are dependent upon a sensing process. For instance, brainwave, 

pressure, and posture readings need inference algorithms to interpret them, from simple 

conditionals to more complex approaches using machine learning. Integration makes 

multimodal affect recognition possible. And, synapse encapsulates the communication 

responsibilities of the affect logic with other logics. 
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The components in the adaptation logic are also inspired by patterns from the pattern 

language for affective adaptive systems, described in section 2.5: reaction engine, 

introspection, and behavior management. The reaction engine chooses and executes 

adaptation rules according to the inputs from the synapse component in the affect 

recognition logic and the introspection component. An action or a sequence of actions is 

triggered using the effector interface that connects the reaction engine to the target 

system. When rules are complex, the reaction engine can delegate the responsibility of 

handling the adaptation rules to a behavior management. Introspection gathers 

information regarding the system’s context (system status, responses, and failures) and UI 

events from the target system via the probes provided for that purpose.  

 

3.4. The Affect Recognition Logic as an Agent Federation  

Considering that affect recognition deals with a diversity of hardware devices and 

inference algorithms which may draw heavily on computing resources because of their 

complexity, it makes sense to allow pairs comprising sensing devices and their 

corresponding inference algorithms to run on different computers if necessary.  

A distributed computer model that provides such capabilities is an agent federation, in 

which units, called agents, autonomously fulfill their responsibilities while they are 

organized by and report to an agent that acts as a central control unit. In an agent 

federation organization, the components of the affect recognition logic are visualized in 

Figure 3.5 and are accommodated as follows: 

a) the sensing-perception pairs are encapsulated in the agents; sensing and perception 

have a symbiotic relationship which makes it logical to locate them in a common unit;  
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b) the integration and synapse components are located in the central control unit.  

 

 
Figure 3.5. Architecture showing the sensing-perception pairs encapsulated as agents. Agents report to a 

central control unit which encapsulates the integration and synapse components – two agents are depicted. 
 

Another iteration of the model, adding internal components to sensing and integration 

components, makes explicit: (1) how communication occurs in the federation and (2) how 

synchronization and fusion are achieved. The complete architecture is shown in Figure 

3.6. 

The responsibilities of the sensing component are assigned separately to two internal 

components as follows:  

a) the device handler gathers values from a hardware device and shares them with the 

perception component to convert the data gathered to affect measurements. 

b) the publisher connects with the integration component, specifically with a subscriber 

component, in the central control unit to report its inferences.  
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The responsibilities of the integration component are assigned separately to three internal 

components as follows:  

a) The subscribers act as counterpart components for the publishers, creating publisher-

subscriber pairs, in which the first element (publisher) provides data to the second 

(subscriber).  

b) The memory acts as a data repository in which the subscriber components deposit the 

data as it arrives from publishers.  

c) The fuser component takes the data from the memory component, synchronizes it, 

fuses it, and puts the synchronized and fused data back in the memory. 

 
 

 
Figure 3.6. Architecture showing the full set of components, including internal components of sensing, 

integration, and reaction engine components – two agents are depicted. 
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Finally, the connection between adaptation logic and affect recognition logic also uses the 

publisher and subscriber components: 

a) the synapse communicates the resulting value externally using a publisher 

component; and 

b) the reaction engine gathers affect measurements from the affect recognition logic 

using a subscriber component. 

 

3.5. Scenarios 

The architecture covers a range of systems that can be classified using a 2D grid. The first 

axis considers affect recognition and ranges from lack of affect recognition to 

monomodal affect recognition capabilities to multimodal affect recognition capabilities. 

The second axis considers adaptive capability and ranges from no adaptation to simple 

conditional adaptation to elaborate adaptation using complex algorithms. Nine regions are 

possible given the possible intersections of the two axes. Within the range of these nine 

regions, three scenarios are considered, all of which include affect recognition. These are: 

a) scenario A includes systems using monomodal affect recognition for affect 

awareness, but with no self-adaptation capabilities;  

b) scenario B includes systems using multimodal affect recognition for affect awareness, 

but with no self-adaptation capabilities;  

c) scenario C includes systems using affect recognition, both monomodal and 

multimodal, and self-adaptation, both simple and elaborate. 

The following three subsections describes these scenarios. The deployment structure of 

the systems considered in each category is depicted using deployment diagrams where 
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3D boxes represent hardware hosts linked by network connections (represented by cloud 

icons). The 3D boxes represent hardware, but not necessarily distinct computers, as the 

system can run on one computer. This distribution can help to avoid, if needed, the 

challenge of computing requirements often encountered in affect recognition (sensing 

devices and inference algorithms). The distribution can help keep these elements from 

interfering with the adaptation and functional logics. Notice that:  

a) The two parts that form the affect recognition logic (central control unit and agents) 

can run on the same or different computers.  

b) Individual agents can run on the same or different computers.  

c) The functional logic and adaptation logic exist in the same application and run on the 

same computer. Therefore, communication between these logics consist of local 

object-to-object communication or method invocation. The functional logic and 

adaptation logic can run on different computers, but this setup is not considered in 

this dissertation; however, there are no limitations to advancing the implementation of 

the effector and probe-gauge connectors and implementing them as network 

connections, as is the case in joining the affect recognition logic (central control unit) 

and the adaptation logic. 

 

3.5.1. Monomodal Affect Recognition for Affect Awareness 

The simplest scenario groups systems that have no adaptive capabilities and monomodal 

affect recognition capabilities. It executes an agent and makes the target system read the 

value or values reported by that agent directly. Process guidelines are provided to 

document the development and the network protocol. Figure 3.7 shows a hypothetical 
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system with this configuration. The infrastructure described in the following chapter 

provides agents for six existing devices and algorithms. A second scenario in this 

category takes into consideration a hardware device not already included in the 

infrastructure and therefore requiring the creation of a new agent. The provided 

infrastructure can be extended to create new agents for new devices. This extension 

procedure is defined in process guidelines.  

 
 

Figure 3.7. Deployment structure for affect aware systems with monomodal affect recognition. 
 

3.5.2. Multimodal Affect Recognition for Affect Awareness 

This scenario groups systems that create a multimodal affect-aware target system, in 

which a set of one or more agents and a central control unit agent are used. The target 

system reads the fused values reported by the central control unit agent using a network 

connection. Figure 3.8 shows a hypothetical system with this configuration. The 

infrastructure described in the following chapter includes agents for six existing devices 

and algorithms. A second scenario in this category includes a hardware device not 
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already included in the infrastructure or one requiring a different approach for fusing data 

in the central unit. This scenario requires the creation of a new agent and the modification 

of the central unit. As mentioned previously, following the architecture, the provided 

infrastructure can be extended to create new agents for new devices. This extension 

procedure is defined in the process guidelines.  

 

 
 
 

Figure 3.8. Deployment structure for affect aware systems with multimodal affect recognition. 
 

3.5.3. Multimodal Affect Recognition and Adaptation 

This scenario groups systems that create a multimodal affect-driven adaptive target 

system, for which the same procedure is used as for multimodal affect recognition, 

employing assets from the infrastructure to drive the coding of the adaptation logic and 

its connection with the target system’s functional logic. The complexity of the adaptation 
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rules impact the complexity of the adaptation logic implemented, but the deployment 

infrastructure is the same in both cases. Figure 3.9 depicts this scenario. 

 

 
 
 

Figure 3.9. Deployment structure for systems with multimodal affect recognition and adaptation 
capabilities. 

 

 
3.6. Summary 

In this chapter, the tasks and steps in the affect-driven self-adaptation domain were 

discussed. These drive the design of the ADASPL architecture. The ADASPL 

architecture supports generality and feasibility by providing a basis for understanding and 

analyzing the behaviors of affect-driven self-adaptive systems and supporting early 

design and implementation decisions. The ADASPL architecture defines and connects 

three logics in a closed-loop relationship. The functional logic encapsulates the 

complexity of the target system and connects it to the adaptation logic with gauge-and-

probe pairs and effectors to the adaptation logic. The adaptation logic consists of three 
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abstract components and is connected to the affect recognition logic by a gauge-and-

probe pair. The affect recognition logic consists of four concrete components, and it is 

modeled as a distributed model using an agent-based approach, due to its complexity. 

Table 3.1 presents a summary of the components of the architecture. The first column 

shows the name of the component. The second column states whether the component is a 

core component or an optional component. The third column states whether the 

component is a concrete component or an abstract component. The ADAS framework, as 

described in the next chapter, provides a set of implementations for concrete components 

but only provides development templates for abstract components; therefore, abstract 

components are  required to be extended for each particular product. The fourth column 

identifies the components that are required and in which number for each of the three 

scenarios (A, B, C) described above. 

 
Table 3.1. Components of the Architecture  

 Core or 
optional 

Concrete or 
abstract 

Number of possible elements per 
scenario category 

   A B C 
Sensing core concrete 1 1 - n 1 - n 
Perception optional concrete 0 - 1 0 - n 0 - n 
Integration core concrete 0 1 1 
Synapse core concrete 0 1 1 
Reaction Engine core abstract 0 0 1 
Introspection optional abstract 0 0 0 - 1 
Behavior Management optional abstract 0 0 0 - 1 
 

Chapter 4 describes the design and Chapter 5 describes the implementation of six 

concrete sensing components (and, when required, their optional perception components), 

an integration component (applying the PAD emotional model), and a synapse 

component (applying TCP/IP protocol for communication). Further, all components are 
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extensible and Chapter 6 presents guidelines for developers to extend the ADAS 

framework by creating new implementations of concrete components and completing the 

implementation of the provided abstract components. 
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CHAPTER 4 
INFRASTRUCTURE DESIGN 
 

The second element of the ADASPL technical solution is an infrastructure that supports 

generality and cost-effectiveness by providing a well-understood set of reusable and 

extensible assets. I created such an infrastructure and organized it as a framework named 

ADAS, for Affect-Driven Adaptive Systems. The ADAS framework supports the 

deployment of systems with structures described in the scenarios of Chapter 3 and 

maintains the principle, inherent in the architecture, of keeping the affect recognition and 

self-adaptation processes independent from one another.  

The ADAS framework is founded on previous work that addresses the implementation of 

the affect recognition infrastructure (Gonzalez-Sanchez, Chavez-Echeagaray, Atkinson, 

& Burleson 2011a); this previous work is expanded in the ADAS framework to take into 

consideration advances in affect recognition devices, emotional state model inclusion 

(PAD), and implementation enhancements that simplify the assets. Also, the ADAS 

framework is founded on previous work that identifies, in affective systems, phases and 

their internal steps (Gonzalez-Sanchez, Chavez-Echeagaray, Atkinson, & Burleson. 

2011b); these allow affect recognition to be seen as an automated process and facilitate 

an understanding of how to use ADAS assets to accomplish objectives in multiple 

scenarios.  

The engineering of the ADAS framework drew deeply on the use of software design 

patterns. It follows a component-based methodology and the object-oriented paradigm 

(Crnkovic 2001; Johnson 1992; Schmidt & Buschmann 2003; Sommerville 2002; 

Kruchten 2004; Clements, Kazman, & Klein 2001). It was an iterative process that led to 
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the creation of packages – namespaces that organize a set of related classes and 

interfaces. The following packages are included in the ADAS framework:  

a) a package for each of the six components described in the architecture, 

b) a package encapsulating common tasks (named toolkit), and 

c) a package encapsulating useful GUI elements (named gui).  

Using these packages tools, in the form of pre-built ready-to-use applications, are 

assembled to support the affect recognition processes. These tool applications help 

developers to get started and all have a GUI to facilitate easy adoption. The following 

tool applications are included in the ADAS framework: 

a) a set of agents for the previously described devices, 

b) a central control unit with a PAD emotional state model as a fusion approach, and 

c) a dashboard to facilitate launching them, when all are used on a single computer. 

The ADAS framework is implemented on the Java platform that provides the 

application’s programming interface, including infrastructure for handling multithreading 

and networking. It uses external native libraries to interface with commercial off-the-

shelf software (including Emotiv SDK and Tobii SDK) and to deal with hardware devices 

connected through serial ports or Bluetooth (some of them developed in-house). A 32-bit 

Java Standard Edition Platform (JSE) was employed, using Java Software Developer Kit 

(JDK) version 8. A 32-bit platform was required since some of the external libraries were 

not available in 64-bit versions. The Java platform was chosen for its portability; 

however, this portability was limited by the required use of external native libraries that 

are only available for Windows environments. This limitation impacts on the pre-built 

ready-to-use agents, which are restricted to running in Windows environments; the 
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central control unit, the adaptation logic, and the functional logic are all open to other 

platforms.  

The ADAS framework structure is depicted in Figure 4.1 and summarized below: 

 

 
Figure 4.1. Structure of the ADAS framework. 

 

 

a) Package ar.sensing contains classes and interfaces for creating new agents and for 

instantiating agents that handle the following devices: Emotiv EPOC headset, Tobii 

T60XL eye-tracking system, MindReader facial emotion recognition, skin 

conductance device, pressure sensing device, and posture sensing device. It 

encapsulates the access to the external native libraries for those devices.  

b) Package ar.perception contains classes and interfaces to define or incorporate 

perception algorithms, some of which require wrapper classes to access external 

native libraries. 
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c) Package ar.integration contains classes and interfaces for fusing values using a 

blackboard-based approach. A fuser based on the PAD emotional state model is 

provided.  

d) Package ad.instrospection contains interfaces that support the implementation and 

integration of introspection capabilities, including the infrastructure to bridge the 

adaptation and functional logics. 

e) Package ad.engine contains interfaces that support the implementation and 

integration of adaptive reaction capabilities. 

f) Package ad.behavior contains interfaces that support the implementation and 

integration of complex adaptation rules. 

g) Package toolkit contains classes and interfaces that implement common tasks for 

network communication and data abstractions. The capabilities of the synapse 

component are embedded in this package. 

h) Package gui provides customized widgets for data visualization, including plotting, 

charts, and customized consoles. 

In the following sections the internal composition of the packages and their internal 

design is detailed; packages related to affect recognition and adaptation are described 

separately. Descriptions of the gui and toolkit package contents are presented in 

conjunction with the packages that use them in the affect recognition and adaptation 

infrastructure. Finally, the tool applications are presented.  

 

4.1. Affect Recognition Infrastructure  

The affect recognition infrastructure facilitates the use of existing affect recognition 



 79 

methods by either encapsulating previous implementations or providing interfaces to 

enable new implementations as needed. It is formed by the ar.sensing, ar.perception, 

and ar.integration packages, the first two of which constitute the agent and the third 

the agent central control unit, as shown in Figure 4.2. The toolkit and gui packages 

support both the agent and the central control unit. The following two subsections 

describe the packages, grouping them by their use in each element of the affect 

recognition infrastructure: agents and central control unit. 

 

 
Figure 4.2. Assembly of the affect recognition logic (central control unit and agents) with the packages 

provided in the ADAS framework.  
 

 

4.1.1. Agents 

Agents collect values from hardware devices and make them available through a network 
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port. The core of each agent is composed of the sensing and perception components; both 

are considered core components since they are needed for all products of the product line. 

Two parameters should be configured in an agent: 

a) the device or source of the data, and  

b) the computer address to which the agent publishes its inferences.  

Creating, modifying, or extending agents requires an understanding of their internal 

structure, i.e., the classes and interconnections inside their packages. The internal 

structure of the components is based on software design patterns, and therefore can be 

understood as a combination of them, particularly, 

a) a Facade pattern for encapsulation; 

b) an Observer pattern for internal communication, where instances that want to share 

information declare themselves as Observable and instances interested in the 

information declare themselves as Observers;  

c) a Delegate pattern to separate sensing and perception processes; 

d) a Publisher-Subscriber pattern for network communication, where Publishers send 

information using a network connection and Subscribers receive information using a 

network connection; and  

e) a Singleton pattern to ensure that only one instance can be created for a particular 

class. 

Further, agents use multithreading, and therefore they can collect and communicate 

values at the same time and several agents can run at the same time. The Runnable 

interface from the Java platform is used to implement multithreading instances. 

There are two categories of agent, defined by how they connect with the sensing device: 
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a) Agents that connect with the device using a network port, named AgentNet. The pre-

built agents for the Emotiv Composer and headset, Tobii eye tracker, and 

MindReader belong to this category. 

b) Agents that connect with the device using a serial port connection, named 

AgentComm. The pre-built agents for skin conductance, posture, and pressure sensing 

devices belong to this category. 

A graphic representation of the classes inside each package, for each category, is shown 

in Figures 4.3 and 4.4, and described below referencing the software design patterns that 

are used with a stereotype label. 

The classes and their responsibilities are as follows: 

a) ThreadDevice (in AgentNet) and ListenerDevice (in AgentComm) are execution 

threads; they implement the Runnable interface and gather information from a 

network port and a serial port, respectively. They share information with the other 

classes using the Observer pattern infrastructure. To declare themselves as a source of 

information they extend the Observable class. 

b) ThreadDevice and ListenerDevice delegate the transformation of the gathered 

data into affect measurements to a helper object from DelegatePerception class. 

DelegatePerception hosts the inference algorithms. They are connected using a 

Delegate pattern infrastructure. If no transformation is required, 

DelegatePerception is null. For instance, when gathering Emotiv affective 

constructs, no additional transformation is required. Inferred values are stored 

together with the gathered values, i.e., kept it in the same data object. 

DelegatePerception is an interface, and so is an extension point. 
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c) SerialPortManager is implemented using the Singleton pattern to guarantee the 

existence of only one manager for the serial ports in the computer. The manager, 

when created, rasterizes all serial ports in the computer, searching for known devices 

(currently skin conductance, posture, and pressure sensors). Then, it creates a list of 

connected devices and the port to which they are connected. ListenerDevice will 

consult that list to locate the physical device from which it has been requested to 

gather data. 

d) Both AgentNet and AgentComm have a GUI with a group of plotting panels (class 

Plot instances), contained in a PlotSet instance, and a console showing data in CSV 

format, provided as a ConsoleObserver instance. Both PlotSet and 

ConsoleObserver extend JPanel and get their data by observing a ThreadDevice or 

ListenerDevice instance. Thus, an Observer pattern guides the interconnection of 

PlotSet and ConsoleObserver with a ThreadDevice or a ListenerDevice, and 

information that arrives to ThreadDevice or ListenerDevice can immediately be 

shown on the GUI.  

e) PublisherThread is also an Observer of a ListenerDevice or a ThreadDevice 

instance. It is responsible for sending the values gathered and inferred by the agent to 

the central control unit. It observes new data in ListenerDevice or ThreadDevice 

and streams it to the Subscribers. PublisherThread is half the implementation of a 

Publisher-Subscriber pattern.  
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Figure 4.3. AgentNet structure with Facade, Observer, Delegate, and Publisher-Subscriber patterns. Notice 
the use of a ThreadDevice instance to connect with the device via a network connection (represented as a 

cloud). 
 
 

 
 

Figure 4.4. AgentComm structure with Facade, Observer, Delegate, Singleton, and Publisher-Subscriber 
patterns. Notice the use of a ListenerDevice instance to connect with the device via a local port 

(represented as a cable). 
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4.1.2. Central Control Unit 

The central control unit is an agent that governs the agents that connect with the hardware 

devices. Its core is composed of the integration and synapse components. The central 

control unit is optional to products that would like to take advantage of a multimodal 

approach. It receives data from running agents and creates an output stream with the 

integrated inferences to a local port. 

The central control unit gathers data from running agents, creating connections to the 

addresses enumerated in Table 4.1 in the column output. The port number to which 

inferences are published is a parameter that should be defined in configuration. The pre-

built central control unit is ready to be used without modification and includes: 

a) a GUI showing plots and a 3D view of the cumulative PAD values in a Canvas 

instance;  

b) a memory component providing a shared repository for data values; and 

c) a fuser component customized to use the PAD emotional state model as a fusion 

approach and a state machine synchronization approach, where the last value received 

from a source is considered still present until a new one arrives. 

Modifying and extending the central control unit requires an understanding of its internal 

structure. The internal structure of the components in the central control unit is based on 

software design patterns, and therefore can be understood as a combination of them, 

particularly, 

a) a Facade pattern for encapsulation; 

b) a Blackboard pattern to provide a shared repository for data values and to coordinate 

separate, disparate systems that need to work together; 
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c) a Delegate pattern to separate the fusion process from the data collection; and 

d) a Publisher-Subscriber pattern for network communication, where Publishers send 

information using a network connection and Subscribers receive information using a 

network connection.  

A graphic representation of the classes inside each package is shown in Figure 4.5 and 

summarized below. The classes and their responsibilities are as follows: 

a) Instances of SubscriberThread listen to PublisherThread instances created on the 

agents. The SubscriberThread uses an Observer pattern implementation to notify 

the Blackboard when a new value arrives. 

b) The Blackboard instance stores a PAD representation of each received value. It 

provides a dynamic data structure that stores the most recent value reported from each 

agent. When a new value is received, the previous one is replaced. The Blackboard 

class belongs to the core of a Blackboard pattern implementation. 

c) The FuseDelegate is an interface used to create the supervisor role, as defined in the 

Blackboard pattern. It is called each time that a new value arrives to the Blackboard 

container and applies the synchronization and fusion algorithm to combine all 

received values into one multimodal measure. An implementation of the 

FuseDelegate interface is provided that synchronizes PAD vectors following a state 

machine approach and fuses PAD vectors by adding them together. The resulting 

value is also put into Blackboard as a PAD object. The Blackboard instance shares its 

stored values using an Observer pattern implementation; it is defined as Observable, 

while PlotSetPAD, Canvas, and PublisherThread instances are Observers. 
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d) A PublisherThread accesses the fused PAD object in Blackboard, implementing the 

Observer interface and communicating it externally. 

 

 
 

Figure 4.5. Central control unit with Facade, Blackboard, Delegate, and Publisher-Subscriber patterns. 
Cloud icons represent input connections from agents and an output for sharing inferences. 

 

 

4.2. Adaptation Infrastructure 

The adaptation logic components are abstract components; therefore, developers must 

provide an implementation extending abstract classes and interfaces. Internally, the 

adaptation logic components consist of two classes to interface with the functional logic 

(Actuator and Introspector), and an abstract class and an interface (Engine and 

Manager, respectively) that outline the adaptation rule implementation approach and 

define extension points. Moreover, an instance of SubscriberThread class allows the 
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adaptation logic to gather affect measurements from the central control unit (specifically 

from the synapse component in the affect recognition logic) via a network port.  

The adaptation rule implementation approach deals with diverse ranges of complexity: it 

can be achieved by using a simple set of nested if-else statements or by using 

sophisticated third-party systems interfaced with the adaptation logic. For instance, there 

are third-party systems that allow the definition and execution of condition-action rules 

and third-party systems that use temporal logic to define alternative weighted decision 

paths.  

The internal structure of the components in this logic is based and can be understood as a 

combination of the following software design patterns: Observer, Delegate, and 

Publisher-Subscriber. A graphic representation of this internal structure (classes and 

interfaces inside each package) is shown in Figure 4.6 and summarized below. 

a) SubscriberThread gets data from emotion recognition using a Publisher-Subscriber 

pattern and shares it with Engine using an Observer pattern. 

b) Introspector gets data from the functional logic using probes. Probes pack 

information in Event instances and notify the Introspector instance of their 

creation. The Event class encapsulates the information that the functional logic wants 

to share with the adaptation logic. The Introspector instance handles events and 

then makes results available to the Engine instance. To do so, an Observer pattern 

implementation is applied. 

c) Engine receives affect data from the Subscriber instance and receives user-event 

updates from the Introspector. It is an abstract class, i.e., an extension point, whose 

functionality must be defined by developers. It delegates the support for complex 



 88 

adaptation rules to Behavior instance. It calculates an action to be triggered, which is 

encapsulated in an Action instance and posted to the Actuator. 

d) Actuator instance handles actions; it is observed by the functional logic and triggers 

reactions there. 

e) Manager is an optional component for systems that require a complex set of 

adaptation rules. When complex adaptation rules are needed, it may be desirable to 

separate the adaptation rules from the system and have a specialized support to handle 

them; thus, modifying the rules does not mean modifying the system itself. External 

support to handle adaptation rules can be provided by a production rule engine. 

Manager is an interface that developers can extend to implement specialized 

functionalities. The Engine class uses a Manager instance set to null by default, i.e., it 

is not required. 

 

 

 
Figure 4.6. Adaptation logic with Observer, Delegate, and Publisher-Subscriber patterns. 
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4.3. Tool Applications 

Using the described infrastructure of components, a set of agents, a central control unit, 

and a dashboard to test them was created. This served as a starting point for developers 

and supports the broader adoption of ADAS. The tool applications included are listed 

below.  

 

4.3.1. Agents 

Six fully implemented agents are provided as tool applications; they are ready to be used 

without modification. They support the devices listed below; details of the devices and 

their data are described in Gonzalez-Sanchez et al. (2011c) and summarized in section 

2.2.  

a) An agent application able to gather data from the Emotiv EPOC headset and the 

Emotiv Composer.  

b) An agent application able to gather data from the Tobii T60XL eye tracker.  

c) An agent application able to gather data from MindReader.  

d) An agent application able to gather data from a skin conductance device.  

e) An agent application able to gather data from a pressure-sensing device.  

f) An agent application able to gather data from a  posture-sensing device. 

All agent applications have a similar GUI that allows developers to  

a) connect and disconnect the agent and the hardware; 

b) show the gathered data in plots; 

c) show the gathered data as a CSV string on a console; and  

d) show the connection status and system messages on a console labeled as ‘::’. 
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Figure 4.7 shows the GUI of the agent application for Emotiv. Each agent is intended to 

run on the computer to which its corresponding hardware device is connected. An 

exception is the Tobii T60XL system, which streams its information via its own network 

connection. Table 4.1 shows the default input and output addresses for the pre-built 

agents.  

 

 
 

Figure 4.7. GUI of the agent application for the Emotiv EPOC headset and Emotiv Composer. The GUI 
includes a tabbed panel that, in real-time, displays and plots the emotional constructs and the raw EEG data 

collected. 
 
 
 

Table 4.1. Configuration of the Provided Application Agents  

Source Input Output 
Emotiv Composer <composer URL>:1726 localhost:7676 Emotiv Headset <headset URL>:3008 
Tobii <jtobiistream URL>:11475 localhost:7031 
MindReader <jmrstream URL>:11476 localhost:7032 
Skin auto detection of a port localhost:8080 
Posture auto detection of a port localhost:8081 
Pressure auto detection of a port localhost:8082 

 



 91 

4.3.2. Central Control Unit 

The central control unit agent gathers information from running agents and implements a 

fusion method based on the PAD emotional state model, which maps constructs to a 

coordinate vector and then adds all the coordinate vectors together, as described in 

Chapter 2. The PAD emotional state model is the affective formalism implemented in 

ADAS. It allows the mapping of multimodal affect reports as PAD vectors, adding the set 

of vectors to produce a single affect report. The selection of this 3D model is based on the 

need to standardize features from diverse sensing devices in real-time systems (Gilroy, 

Cavazza, & Benayoun 2009). Additionally, the central control unit can be run 

disconnected from agents to generate and report random PAD values that can be used for 

testing purposes. Figure 4.8 shows the central control unit agent GUI, which includes 

three tabbed panels:  

a) the first displays PAD values in a 3D space enclosed in a cube;  

b) the second shows a chart plotting pleasure, arousal, and dominance values; and  

c) the third tab, labeled ‘::’, has a console that shows messages relating to the system 

status, including errors or failures. When running in simulator mode or with at least 

one agent connected, the central control unit streams PAD inferences to the following 

ports in the host computer by default: 7474 using the CSV protocol and 7575 using 

the serialized Java object format. 

 

4.3.3. Dashboard 

The ADAS dashboard provides a common GUI for the agents and the central control unit. 

It facilitates the execution of agents and the central control unit in the same computer. 



 92 

Instead of running each of them as an independent application, i.e., having multiple 

windows on the screen, the dashboard allows one application to 

a) execute agents for diverse devices and organize their GUIs in vertical tabs in a single 

window;  

b) execute the central control unit agent; and  

c) monitor the connection status and system messages on a common console.  

Beside the label in each tab is an on/off symbol that updates to show whether or not the 

corresponding agent is running, changing color from green (to indicate on) to gray (to 

indicate off). Figure 4.9 shows the dashboard GUI. The image shows the agent for the 

Emotiv Composer running. It is gathering emotional constructs only, so the 14 raw data 

channels appear empty. Inside the tab for each agent, there are two additional tabs: one to 

visualize plots and another to visualize the data as CSV strings.  

 

 
 

Figure 4.8. GUI of the central control unit dashboard application showing two of the three panels: the first 
panel displays PAD values in a 3D space; the second panel displays PAD values in plots; and the third 

panel (not shown in the figure) is used to display messages from the system console. 
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Figure 4.9. GUI of the ADAS dashboard application. 
 

 

4.4. Summary 

In this chapter, I introduced the ADAS software framework which supports generality 

and cost-effectiveness by providing a well-understood set of assets for affect recognition 

and closed-loop adaptation. In particular, I detailed the set of components that constitutes 

the infrastructure, presenting the key classes of each component as well as their 

interconnections, founded on software design patterns. I also described how the designed 

infrastructure allows the construction of systems that have a deployment structure that 

corresponds to one of the three scenarios described in the previous chapter. Affect 
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recognition can be added to systems either by using the provided applications for already 

integrated hardware, or by extending the infrastructure to add new sensing hardware and 

new inference and integration algorithms. The common ground for adaptation capabilities 

is established so that the particular necessities of the target system can be built upon this. 

The next chapter discusses in detail the implementation of the design described here. 

 

  



 95 

CHAPTER 5.  
INFRASTRUCTURE IMPLEMENTATION 
 

The previous chapter points out how software design patterns underlie the design of 

packages and also describes their key classes, as well as the interfaces and their 

connections. Extending or modifying ADAS requires an understanding of all of these 

classes and interfaces. This chapter introduces the full hierarchies of the classes and 

interfaces that constitute the ADAS cohesive software design, providing: 

a) a complete object-oriented design, shown in UML class diagrams;  

b) a glance at class and interface content with snippets of code; and 

c) a description of the data encapsulation assets. 

 

5.1. Package ar.sensing 

The hierarchy of classes for the sensing package is depicted in Figure 5.1. Red circles 

highlight classes already mentioned in the previous chapter. 

 

5.1.1. Interface Agent 

The Agent interface defines a contract establishing what an agent implementation must 

be. It contains the signatures for methods start, stop, shutdown, and 

getObservableSource. The purpose of start, stop, and shutdown is to perform the 

named action. The method getObservableSource provides access to an 

ObservableSource instance (a ThreadDevice or a ListenerDevice instance). The 

Agent interface is used to implement AgentNet and AgentComm classes.  
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Figure 5.1. UML diagram of the package ar.sensing. In white (and when possible outside of the package 

box) are the classes and interfaces that do not belong to the package but are included to show 
implementation relationships. 

 

 
package adas.ar.sensing; 
 
public interface Agent { 
  public void shutdown(); 
  public boolean start(); 
  public void stop();  
  public ObservableSource getObservableSource(); 
} 
 

 

5.1.2. Class ObservableSource 

The abstract class ObservableSource forces the classes that implement it to have a 

getter method getObject that gives access to a Measure instance (the value being 
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observed). The ObservableSource class extends from Observable to define itself as a 

subject to be observed, making use of the Observer pattern implementation provided in 

the Java platform. ObservableSource standardizes the process in which other classes 

access the values gathered from the hardware by providing a getter method with a known 

name and fulfilling the Observer pattern implementation.  

 

 
package adas.ar.sensing; 
 
public abstract class ObservableSource extends Observable {   
 
  public Object getObject(){return null;} 
 
} 
 

 

5.1.3. Classes AgentComm and AgentNet  

Both AgentComm and AgentNet classes 

a) create a concrete instance of an ObservableSource class descendent: ThreadDevice 

or ListenerDevice (ObservableSource descendants connect and gather values 

from the hardware device) and  

b) create a PublisherThread instance that publishes the gathered values.  

 
package adas.ar.sensing; 
 
public class AgentComm implements Agent { 
 
  private ThreadPublisher threadPublisher; 
  private ListenerDevice listenerDevice; 
 
} 
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5.1.4. Class ThreadDevice 

The ThreadDevice abstract class defines a contract for the classes that implement it to  

a) deal with threading capabilities, by inheriting from the Runnable Java class; and 

b) handle an execution thread, which make a network connection to a specific IP address 

and port. 

The implementation of the thread functionality (i.e., the run method implementation) is 

done at the subclass of ThreadDevice defined for each device to be handled. ADAS 

provides ThreadTobii (for Tobii eye tracker) and ThreadEmotiv (for Emotiv EPOC 

headset). 

 

 
package adas.ar.sensing; 
 
public abstract class ThreadDevice  
       extends ObservableSource implements Runnable { 
 
  protected String ip; 
  protected short port; 
 
} 
 

  

 
package adas.ar.sensing; 
 
public class AgentNet implements Agent { 
   
  private ThreadPublisher threadPublisher; 
  private ThreadDevice threadDevice; 
 
} 
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5.1.5. Class ListenerDevice 

The ListenerDevice abstract class implements SerialPortEventListener, a class 

provided by the RXTX library that facilitates communication with serial ports. The 

SerialPort class from the gnu.io library stores a reference to a physical serial port. By 

implementing SerialPortEventListener, ListenerDevice is notified each time a 

value arrives to a pre-specified serial port in the computer. Then, the value can be 

gathered. For some devices, the values arrive to the port encoded as hexadecimal strings 

and need to be parsed. The parse method is responsible for decoding the data read from 

the port and transforming it into a value. The parse method is abstract in this class, and 

its implementation is done in subclasses of ListenerDevice defined for each device to 

be handled. ADAS provides ListenerPosture, ListenerPressure, and ListenerSkin 

subclasses, which provide parse method implementations for posture, pressure, and skin 

conductance sensing devices, respectively. 

 
 
package adas.ar.sensing; 
 
public abstract class ListenerDevice  
       extends ObservableSource  
       implements SerialPortEventListener { 
   
  protected DelegatePerception delegatePerception;  
  protected SerialPort port; 
  protected abstract void parse(String line);  
 
} 
 

 

5.1.6. Class ThreadPublisher 

The ThreadPublisher class 
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a) creates an execution thread implementing the Runnable Java interface; 

b) implements Observer, and then has immediate access to gathered values from 

ObservableSource objects; and 

c) uses the networking infrastructure provided by the Java platform within 

ServerSocket and Socket classes to deliver Measure instance objects via TCP 

connections. ThreadSubscriber instances make connections to the port used by 

ThreadPublisher to receive those Measure instances. 

 
 
package adas.toolkit.net; 
 
public class ThreadPublisher implements Observer, Runnable { 
 
  private final int port; 
  private ServerSocket listener = null; 
} 
 
 
 

5.2. Package ar.perception 

The perception package, named ar.perception, encapsulates a hierarchy of classes that 

implements a set of perception algorithms whose purpose is to understand the signal 

values and acknowledge an affective state value. The ar.perception package is shown 

in Figure 5.2 using a UML class diagram. Red circles highlight classes previously 

mentioned.  

The DelegatePerception instance provides ThreadDevice and ListenerDevice with 

perception algorithm implementation. It follows a Delegate pattern to connect with a 

perception algorithm provided in the perception package. The perception package is 

optional, since in several cases the perception algorithm is provided by the manufacturer 
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of the hardware device as part of the external libraries. By default, the 

DelegatePerception instance is null. 

The DelegatePerception interface defines the signature for the method infer. Classes 

that implement the DelegatePerception interface override the method infer and 

implement in it the perception algorithm. Instances of both the ThreadDevice and 

ListenerDevice classes call the method to invoke the inference process to be executed. 

 

 
 

Figure 5.2. UML diagram of the package perception. In white (and when possible outside of the package 
box) are the classes and interfaces that do not belong to the package but are included to show 

implementation relationships. 
 

ADAS includes implementation for:  

a) The skin conductance sensor in the DelegatePerceptionSkin class. It filters, cleans, 

and normalizes the values gathered from the sensing process. 

b) The pressure sensor in the DelegatePerceptionPressure class. It infers a 

frustration level from the values gathered from the sensing process.  
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c) The posture sensor in the DelegatePerceptionPosture class. It infers an interest 

level from the pressure values gathered from the sensing process. 

No external SDK is required for these sensors but serial port communication capabilities 

are instantiated to work with this hardware. Algorithms for those sensors are 

implemented as described in Cooper et al. (2009).  

No perception instances are provided by the agents dealing with the Tobii eye tracker, 

Emotiv, or MindReader because 

a) access to Emotiv uses the interfaces Edk and EmoState, and the enumeration 

EdkErrorCode, which are wrapper classes for the Emotiv SDK in Java. They 

provide access to the native implementation of the SDK available for the Windows 

platform. Perception algorithms to infer excitement, engagement, boredom, 

meditation, and frustration are provided by the Emotiv SDK libraries.  

b) access to the Tobii eye tracker is made using a Tobii SDK application coded in C++, 

streaming values into ADAS via a TCP/IP connection. Since the inference of affect 

from pupil dilation is an ongoing research topic, a conclusive algorithm is not defined 

in the framework. 

c) access to MindReader is also achieved through a TCP/IP connection. No perception 

algorithm is required since MindReader reports values for agreeing, concentrating, 

disagreement, interested, thinking, and unsureness. 

Developing additional classes that implement new inference algorithms, for instance, for 

customized algorithms that infer affect from Emotiv BCI raw data or from pupil size 

values, would create new DelegatePerception subclasses.  



 103 

5.3. Package ar.integration 

The hierarchy of classes for the integration package is depicted in Figure 5.3. A red circle 

highlights classes already mentioned. The design is explained in Chapter 4, and no further 

explanations are required aside from noticing that the generic class name Delegate in the 

design is changed here to BlackboardFuseDelegate to differentiate this class from other 

classes fulfilling the role of delegates. 

 

 
 
 

Figure 5.3. UML diagram of the package integration. In white (and when possible outside of the package 
box) are the classes and interfaces that do not belong to the package but are included to show 

implementation relationships. 
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5.4. Package toolkit 

The toolkit package encapsulates a set of resources that support the functionalities of 

other packages. A hierarchy of classes and interfaces implements common tasks for 

networking, port handling, and data abstractions. To keep things in order, three sub-

packages are defined for each set of tasks: toolkit.net, toolkit.comm, and 

toolkit.data. 

 

5.4.1. Package toolkit.net 

In the architecture, communication was the sole responsibility of the synapse component. 

The synapse component’s implementation is absorbed by the toolkit package. The 

package toolkit.net implements distributed communication by defining data 

abstractions following the Publisher-Subscriber pattern. Figure 5.4 depicts its structure, 

which is summarized as follows: 

a) The ThreadPublisher class defines an execution thread by implementing the 

Runnable interface from Java. It implements the Observer interface to make the data 

it gathers available to other classes, using an Observer pattern implementation. It 

receives connection requests via TCP/IP channels using an instance of the Java 

ServerSocket class, and each time a connection request is received 

ThreadPublisher creates an instance of ThreadPublisherMinion and assigns it to 

handle the connection. 

b)  The ThreadPublisherMinion class defines an execution thread by implementing the 

Runnable interface from Java. It sends the data being observed by the 

PublisherThread instance using a Socket instance. 
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c) The ThreadSubscriber class allows a connection to be established with 

ThreadPublisher instances. The ThreadSubscriber instances extend 

ObservableSource, and therefore the data gathered by them is shared using an 

Observer pattern implementation. Using a vector of ThreadSubscriber instances, 

the ar.integration package (particularly the Dashboard class) is able to collect data 

from a set of sources. 

 

 
 
 

Figure 5.4. UML diagram of the package toolkit.net. In white (and when possible outside the package 
box) are the classes and interfaces that do not belong to the package but are included to show 

implementation relationships. 
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5.4.2. Package toolkit.comm 

Physical port reading is achieved with the support of a third-party Java library, RXTX. 

RXTX is a Java native library providing serial and parallel communication for the JDK 

on Windows and Linux platforms. ADAS uses RXTX version 2.1.7 (Windows 

distribution). The operations required for ADAS are encapsulated in the 

SerialPortManager class. It follows the Singleton pattern, and so the instantiation of 

SerialPortManager is restricted to one object; this guarantees that one object 

coordinates all actions across the system’s physical ports. Figure 5.5 depicts its structure, 

which can be summarized as follows: 

a) The SerialPortManager class allows the instantiation, as a Singleton, of an instance 

that scans all ports in the host computer and tries to create a connection with them. 

For the ports that accept a connection, it reads a buffer of data and checks whether the 

package format corresponds to known devices (those for posture, pressure, or skin 

conductance). A ListenerDevice instance is associated with those that fulfill the 

format requirements, and they are stored in a Map data structure. At this point of the 

implementation, adding automatic detection of more devices requires an update of the 

SerialPortManager class. 

b) The SerialDevice class allows the storage of a port reference using a SerialPort 

instance (defined by the RXTX library) along with an attribute that identifies the 

device connected to that port (pressure, posture, or skin conductance). 
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Figure 5.5. UML diagram of the package toolkit.comm. Attributes and methods are included. In white 
(and when possible outside of the package box) are the classes and interfaces that do not belong to the 

package but are included to show implementation relationships. 
 

 
 

 
 

Figure 5.6. UML diagram of the package toolkit.data. In white (and when possible outside of the 
package box) are the classes and interfaces that do not belong to the package but are included to show 

implementation relationships. 
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5.4.3. Package toolkit.data 

This package encapsulates data abstractions in a hierarchy of classes and one interface. 

This keeps the data and facilitates access to it. These classes prevent the data from being 

arbitrarily accessed. Figure 5.6 depicts its structure, which is summarized in the following 

subsections. 

 

5.4.3.1. Interface Measure  

After collecting the data from the device, parsing them, and applying perception 

algorithms if needed, the ThreadDevice and ListenerDevice instances encapsulate the 

resulting values in objects from classes that implement the Measure interface. The 

Measure interface  

a) defines a contract that commit a class to provide an implementation for the method 

toPAD, which defines the algorithm for converting the values stored in the class to a 

PAD value; and  

b) extends Serializable which allows serialization in instances that implement 

Measure. Thus, objects that implement the Measure interface are ready to be shared 

among Observers and Observables.  

ADAS applies the Measure interface to the classes MeasureEmotiv, MeasureTobii, 

MeasureFace, MeasureSkin, and MeasurePressure (which works for both pressure and 

posture device readings). They define the attributes for data values gathered from a 

specific device: 

a) The class MeasureEmotiv includes attributes for five emotions and a stack data 

structure for raw data samples. The class MeasureEmotiv is a composition of the 
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DataEEG and DataEmo instances, which store EEG raw data (14 channels) and Emotiv 

affective constructs, respectively. 

b) The class MeasureTobii includes attributes for gaze points (x and y values) and pupil 

dilation. 

c) The class MeasureFace includes six attributes for six emotions gathered from 

MindReader software.  

d) The class MeasureSkin includes one attribute for arousal level.  

e) The class MeasurePressure includes one attribute for frustration or interest. The 

MeasurePressure instances are used to store both posture and pressure data. 

 
 
package adas.toolkit.data; 
 
public interface Measure extends Serializable { 
 
  public PAD toPAD(); 
} 
 

 
The Measure interface extends the Serializable interface in Java, which enables the 

serialization of objects, i.e., the ability to represent objects as a sequence of bytes, 

including object data, information about the object type, and the type of data stored in the 

object. Serialization facilitates sending and receiving serializable objects following the 

Publisher-Subscriber pattern. Also, the Measure interface forces classes that implement it 

to define a method toPAD() that returns a PAD object equivalent to the Measure instance 

itself. The Measure interface is implemented by the classes MeasureEmotiv, 

MeasureTobii, MeasureSkin, and MeasurePressure.  
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5.4.3.2. Class PAD 

The PAD class implements the Measure interface, and so PAD instances are serializable. 

PAD instances return a reference to themselves in their implementation of the toPAD 

method. The PAD class encapsulates pleasure-arousal-dominance equivalences of affect 

constructs defined by the devices handled in ADAS as constants. The Blackboard class 

(in the ar.integration package) creates a map data structure of PAD objects; this data 

structure has a location where each agent deposits the most recently collected data, 

expressed as a PAD value. 

 

5.4.4. Package gui 

Additionally, ADAS defines GUIs for the predefined agents, which are able to display, 

using plots and the CSV format, the data that is being collected and information about the 

status of the agent connected to the device being handled in real time.  

The GUI structure follows the Model-View-Controller architectural pattern, where  

a) the gui package defines the View; 

b) the Model facade is the ObservableSource abstract class that connects with the 

View using an Observer-Observable structure; and  

c) the controller is built over a listener structure on the panel’s visual components.  

The package’s structure is depicted in Figure 5.7 for agents and Figure 5.8 for the central 

control unit, and described below: 
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Figure 5.7. UML diagram of the package gui. In white (and when possible outside of the package box) are 
the classes and interfaces that do not belong to the package but are included to show implementation 

relationships. 
 

 
a) The Dashboard class is an executable class. When run, it creates a desktop 

application that allows agents for each of the devices predefined in ADAS to be 

started. It puts one instance of each of the APanel subclasses in the same window, 

organized in vertical tabs. Each tab has in its label an on/off image that is updated to 

show whether or not the corresponding agent is running. The Figure 4.9 shows the 

GUI of the Dashboard application.  

b) All the APanel subclasses (APanelEmotiv, APanelTobii, APanelSkin, 

APanelPressure, and APanelPosture) are also executable classes. This allows the 

running of agents individually. When executed directly, they create a window with 

the same content, even though the distribution of the graphical elements varies to 
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make the GUI more user-friendly compared to the tabbed distribution in the 

Dashboard.  

c) The APanel abstract class defines the underlying structure for the agent application. 

It (1) instantiates an Agent instance; (2) instantiates ObservableSource and 

ThreadPublisher instances, which will be passed to the Agent instance as 

parameter; and (3) optionally instantiates a DelegatePerception instance, which is 

passed to the ObservableSource instance (a ListenerDevice or a ThreadDevice) 

as a parameter. If a null parameter is received, the ObservableSource will create a 

Measure object with only the information gathered from the device. For instance, for 

the Emotiv EPOC headset a DelegatePerception is not needed since the Emotiv 

SDK reports emotion constructs directly; however, a DelegatePerception can be 

coded to implement a new algorithm to infer affect from raw brainwaves data. Others 

agents, such as those for Tobii, and skin, pressure, and posture sensing devices, 

require the coding of a DelegatePerception to implement the algorithm. 

d) The APanel abstract class also defines the GUI components that are common to the 

application of all agents: (1) a ConsoleOberver instance that shows the data being 

gathered as a comma separated string and (2) a PlotSet instance that shows a Java 

Panel that creates a PlotPanel instance for each value to be shown, for instance, 29 

are created in total for Emotiv. The ConsoleObserver and PlotSet classes 

implement the Observer interface; therefore, they are notified each time a new value 

is gathered in the ObservableSource, which, as shown before, extends the Observer 

class. 
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e) For the central control unit, whose functionality is implemented in the integration 

package, there is also a GUI CentreDashboard. The Figure 4.8 shows the GUI of the 

CentreDashboard application.  

f) The CubeCanvas class extends the Java Canvas class. It defines a blank rectangular 

area of the screen onto which the application can draw PAD coordinate vectors as 

dots, and trap input events from the user, allowing the rotation and movement of the 

axis to facilitate the exploration and visualization of the cloud of cumulated PAD 

coordinate vectors. 

g) The PlotSetPAD class is a container for three Plot instances that show the pleasure, 

arousal, and dominance values in plots. It is allocated in the second tab of 

CentreDashboard GUI. 

h) The SimulatorThread class is provided as an auxiliary tool. It generates random 

PAD values. Thus, it is possible to play with the CentreDashboard application with 

no agent running, i.e., without using any device. This also allows the testing of the 

adaptation logic and functional logic. 

 

5.5. Package adaptation 

The adaption package hides and allows the extension of simple to complex decision 

processes for behavior-definition handling that defines whether or not an adaptation 

should be triggered, and if so which adaptation. It structure is shown in Figure 5.9.  
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Figure 5.8. UML diagram of the package gui.centre. In white (and when possible outside of the package 
box) are the classes and interfaces that do not belong to the package but are included to show 

implementation relationships. 
 

 
 

Figure 5.9. UML diagram of the package adaptation. In white (and when possible outside of the package 
box) are the classes and interfaces that do not belong to the package but are included to show 

implementation relationships. 
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The core of the adaptation package is the Engine class which 

a) uses a ThreadSubscriber instance to receive data from the affect recognition logic, 

following the Publisher-Subscriber pattern. Received data is encapsulated in Measure 

instances and reported to an Engine instance using the Observer pattern –

ThreadSubscriber is observable and Engine implements Observer. 

b) uses a Manager instance to support dealing with adaptation rules. The Manager 

interface, follows the Delegate pattern; it hides and allows the extension of simple to 

complex processes for behavior-definition handling. Developers extend the class to 

implement specialized functionalities. The Engine class has a Manager instance. It is 

a customizable component. ADAS includes two pre-built implementations of the 

Manager class: a simple one containing a set of conditional statements and a complex 

one using Jess rule engine. 

c) uses an Introspector class to handle the processes for introspection. It is an 

optional component for systems that require context awareness. The Introspector 

class receives notifications about updates in the functional logic and makes them 

available to Engine class through an observer-observable connection – the 

Introspector class extends the Observable class. The functional logic creates an 

Introspector instance and reports packed information to it in Event instances. The 

Event class encapsulates the information that the functional logic wants to share with 

the adaptation logic. 

d) triggers actions in the functional logic using the Actuator class. The Actuator class 

extends the Observable class, and thus can be observed by the functional logic. 
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Particularly, an and interface called ActuatorListener is defined. The functional 

logic can implement the ActuatorListener interface to listen for adaptation that are 

requested to be triggered. Adaptation requests are encapsulated as Action instances. 

 

5.6. Probes and Effectors  

Functional logic is the responsibility of the developers; the only intervention required by 

developers is to provide interfaces for extracting information (probes) and for allowing 

changing the system (effectors). Their implementation is shown in Figure 5.10 and 

described below. 

 

 
 

Figure 5.10. UML diagram for effector and probes. The effector is implemented using the Observer pattern 
between the functional logic and the Actuator class while probes are calls to an Instrospector instance 

method. 
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Effector connections are implemented using an implementation of the Observer pattern: 

the Actuator class is the Observable part and the functional logic implements the 

Observer with the ActuatorListener interface. Developers are required to implement, 

as part of the functional logic, a class that implements the ActuatorListener interface 

that provides a method update(). The method update() is automatically called from the 

Actuator class each time the adaptation logic wants to communicate a change to the 

functional logic. The method update() receives as a parameter the reference to the 

Actuator instance that contains the requested adaptation (encapsulated as an Action 

instance). The Action class is a container for a communication packet. It has two 

attributes: an integer value and a text string to be used as needed.  

Probe connections are implemented using calls to an Introspector instance. The 

functional logic creates an Introspector instance and posts Event objects in it. The 

Event class is a container for a communication packet. It has two attributes: an integer 

value and a text string to be used as needed. The Introspector class implements the 

interface Observer and is observed by the Engine class.  

The code below exemplifies an implementation of the functional logic with an effector 

and a probe in a class named Application. 

 
public class Application implements ActuatorListener{ 

 
private Introspector introspector; 
 
@Override 
public void update(Observable observable, Object arg) { 
 
    Action actionToDo = ((Actuator) observable).getActions(); 
} 
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public void anyMethod() { 
 
  instrospector.setEvent (new Event (1. “event name”); 
  ... 
} 

 
} 
 

 

5.7. Summary 

In this chapter, I detailed the ADAS framework that empowers generality and cost-

effectiveness by providing a well-understood set of assets for affect recognition and 

closed-loop adaptation. All the classes in each component are detailed in terms of object-

oriented programming elements and connections. The implementation details described 

in this chapter are required when there is an intention to further extend or modify ADAS. 
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CHAPTER 6 
PRODUCTION GUIDELINES 
 

The third step in the SPL technical solution is the definition of production guidelines to 

explain how the components of the infrastructure can be integrated and customized. 

Johnson’s (1997) statement that the best documentation for a framework should seem 

similar to a cookbook is taken as the foundation for these guidelines. First domain-

specific patterns are used to reason about and organize the high level structures of the 

system that is to be developed; then, the system can be technically described using 

software design patterns and common object-oriented documentation techniques. I 

present a set of examples that teach developers how to manufacture a system. Three 

aspects of the production guidelines are described in the following sections:  

a) the core component documentation describing how to run them and their basic 

operations at run time;  

b) the optional and extensible component documentation, establishing the rules for their 

association, inclusion, and extension; and 

c) the probe, gauge, and effector documentation. 

The development task described assumes that the ADAS framework is installed on the 

developer’s computer as described in Appendix A. Understanding the production process 

requires confidence in the meaning of the following terms: sensing, perception, 

integration, synapse, reaction engine, introspection, and behavior management. These 

have been described as steps of the affect recognition and adaptation processes. They 

have also been used as names for components and packages in order to relate abstract 

concept and development assets. They are documented in previous work as patterns and 
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their relationships established using a pattern language structure (Gonzalez-Sanchez, 

Chavez-Echeagaray, Atkinson, & Burleson, 2012). They outline the production process 

as depicted in Figures 6.1., 6.2, and 6.3. The production process has four sequential 

stages, which are as follows: (1) establish affect recognition sources, (2) centralize affect 

recognition sources, (3) create the adaptation logic, and (4) connect adaptation with a 

functional logic. Stage 1 and 2 are related to building, extending, or reusing and affect 

recognition logic, and stage 3 and 4 are all about the adaptation and functional logics. 

 

6.1. Establishing Affect Recognition Sources. 

Creating an affect-driven self-adaptive system requires the use of sensing devices for the 

affect recognition process. At least one sensing device is required but more can be used. 

There are three possible circumstances that drive three possible sequences of actions in 

this stage, as observed in Figure 6.1. The result of this stage will be to have one or more 

agents running, each connected to a sensing device. Each agent streams affect 

measurements to a network port. The possible sequences are described in the following 

subsections and can be summarized as follows: 

a) Sequence A: sensing devices to be used are one or more of those in the ADAS 

framework, described in Chapter 4. In this case, running the agent, provided in 

ADAS, completes stage 1. If the intention is to use the sensing device but to modify 

the ADAS agent for that device, follow sequence C. 

b) Sequence B: a new type of sensing device is to be used, one that has inference 

algorithms embedded or has inference algorithms provided as part of its platform; so 

that connecting to the device provides affect measurements directly. In this case, 
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develop a new agent and implement the sensing process. Sensing is a core 

functionality in the agent. 

c) Sequence C: a new type of sensing device is to be used, one that requires developers 

to implement an inference algorithm to transform the signals gathered into affect 

measurements. In this case, proceed as in sequence B and also implement the 

perception process. 

 

 
 
 

Figure 6.1 Production process stage 1: establishing affect recognition sources. 
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6.1.1. Sequence A: Using ADAS Agents 

Follow these steps to execute the ADAS built-in agents: 

a) From the set of known devices, described in section 2.2, select the device to be used 

to collect data. Attach the device to the host computer and set up as needed.  

b) Execute the agent that corresponds to the selected device. The agent GUI guides the 

next sequence of steps. The GUI will visualize the gathered data in plots and as CVS 

strings. 

c) The data that is plotted and listed in the console is also streamed in real-time to a port 

in the host computer using a TCP/IP protocol. The list of ports used by each agent is 

presented in Chapter 4. 

d) A TCP/IP client can access the affective data streamed by the agent. Implementing it 

is a standard procedure in most programming languages. Serialized objects of type 

Measure are streamed from the agent. 

 

6.1.2. Sequence B: A New Type of Agent 

Adding a new device to ADAS requires the steps described below to be followed. It 

assumes knowledge of the internal ADAS structure as described in Chapters 4 and 5. An 

agent for handling a hypothetical heart rate monitor is used as an example. 

 

Class MeasureHeart 

a) Create a new MeasureHeart class that must implement the interface Measure. This 

enables the serialization of the MeasureHeart class. 

b) Inside MeasureHeart class, attributes should be declared to store the values provided 
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for the device. For a heart rate monitor, a single attribute, rate, is enough.  

c) Implementing Measure requires the method getPAD to be overridden. The method 

getPAD returns a PAD vector of [0, f(rate), 0], since heart rate is related to arousal, as 

a function of rate, but pleasure and dominance cannot be inferred from heart rate. 

d) The array LABELS provides the names to be used for GUI elements when plotting 

variables stored in this class. For this example, there is only one: rate. 

e) Implementing Measure also requires the method getValuesFor to be overridden. 

 
public class MeasureHeart implements Measure { 
 
  private double time; 
  private float rate; 
 
  public MeasureHeart(double time, String data)  
    throws Exception { 
    this.time = time; 
    parse(data); 
  } 
     
  protected void parse(String dataIn) throws Exception { 
    value = // convert the string read from the device in a float 
  } 
 
  public static final String[] LABELS = {"heart rate"}; 
 
  @Override 
  public PAD toPAD() { 
    PAD pad = new PAD(); 
    pad.p = 0; 
    pad.a = value; 
    pad.d = 0; 
    return pad; 
  } 
 
  @Override 
  public ArrayList<Float> getValuesFor(int i) { 
    ArrayList<Float> result = new ArrayList(); 
    if (i == 0) { 
       result.add((float) value); 
    } 
    return result; 
  } 
 
} 
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Class ThreadHeart 

Create ThreadHeart and associate it with the SDK of the device. Get familiar with the 

SDK documentation and connect it by calling the SDK methods in this class. Usually, 

these are inside the run() method that must be included since the class implements 

Runnable.  

a) Override the getObject() method. 

b) Override the run() method. The method calculates a timestamp for the data. In this 

method the connection with the hardware device should be implemented. In the 

example below, no real connection is implemented and a random value provided as 

the value for the measure. 

c) For educational purposes, an auxiliary method createAndNotify() is defined to 

create Measure and notify observers. 

 
 
public class ThreadHeart extends ThreadDevice { 
   
  private MeasureHeart measureHeart; 
   
  public ThreadHeart (DelegatePerception dp) throws IOException { 
    super();  
    this.delegatePerception = dp; 
  } 

 
  @Override 
  public Object getObject() { 
 
    return measureDummy; 
  } 
 
  private void createAndNotify (double timestampsystem, double a) {     
     
    measureHeart = new MeasureHeart(timestampsystem, a);        
    setChanged(); 
    notifyObservers();  
 
  } 
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@Override 
  public void run() { 
    stop = false;  
    // time 
    Calendar calendar = Calendar.getInstance(); 
    calendar.set(Calendar.HOUR_OF_DAY, 0);  
    calendar.set(Calendar.MINUTE, 0); 
    calendar.set(Calendar.SECOND, 0); 
    long initsystem = calendar.getTimeInMillis();  
    double timestampsystem = 0; 
    // value   
    while (!stop) { 
      timestampsystem= 
       (System.currentTimeMillis()- initsystem) * .001;       
      createAndNotify (timestampsystem, Math.random()); 
      try {  
        Thread.sleep(pause);}  
      catch (  
        InterruptedException ex) { 
      } 
    } 
    Console.getInstance().log("ThreadDummy:run | done."); 
  } 
   
} 
 

 

Class AgentHeart and APanelHeart  

Create an agent, associate PublisherThread and ThreadHeart with it, and run it: 

 
public class AgentHeart { 
 
  main() { 
 
    ThreadHeart threadHeart = new ThreadHeart(null); 
    ThreadPublisher threadPublisher =  
      new ThreadPublisher(7070, ThreadPublisherMinion.TYPE_OBJECT); 
    agent = new AgentNet(((ThreadDevice) td), tp); 
  } 

 
} 
 

 

Optionally you can add GUI elements inherited from JFrame, using some of the widgets 

provided in ADAS. The init() method is defined in APanel and it creates the Agent 
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instance with the provided PublisherThread and the ThreadHeart. 

 
 
public class APanelHeart extends APanel { 
   
  public APanelHeart(boolean console) { 
    ThreadHeart threadHeart = new ThreadHeart(null); 
 
    ThreadPublisher threadPublisher =  
      new ThreadPublisher(7070, ThreadPublisherMinion.TYPE_OBJECT); 
 
    init( 
      MeasureHeart.LABELS, threadHeart,  
      threadPublisher, indicator, label ); 
 
    createGUI(console); 
  } 
 
 
  private void createGUI(boolean console) { 
    // bar 
    JPanel bar = new JPanel(new BorderLayout()); 
    bar.add(new JLabel("  
      Publishing at 7979 | Mode: OBJECT"), BorderLayout.WEST); 
    bar.add(buttonConnect, BorderLayout.EAST); 
    bar.setBackground(Color.white); 
    // connect 
    JPanel connectionPanel = new JPanel(new BorderLayout()); 
    connectionPanel.setBackground(Color.white); 
    connectionPanel.add(bar, BorderLayout.EAST); 
    createGUI(connectionPanel, console); 
  } 
 
  public static void main(String[] args) { 
    JFrame win = new JFrame("Agent | Dummy"); 
    // window 
    APanelHeart md = new APanelHeart(true); 
    win.setLayout(new GridLayout(1, 1)); 
    win.add(md); 
    win.addWindowListener(new java.awt.event.WindowAdapter() { 
      @Override 
      public void windowClosing(java.awt.event.WindowEvent e) { 
        md.close(); 
        System.exit(0); 
      } 
    }); 
    win.pack(); 
    win.setSize(400, 600); 
    win.setVisible(true); 
  } 
} 
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6.1.3. Sequence C: A New Type of Agent with a New Inference Algorithm 

Proceed as in section 6.1.2 to create a new type of agent. Then write your inference 

algorithm implementing a DelegatePerception. and overriding the method infer. The 

method infer receives an object Measure with the data sensed as a parameter. I define a 

simple one below for demonstration purposes: 

 

 
package adas.ar.perception; 

 
public class DelegatePerceptionHeart  
  implements DelegatePerception { 
   
  @Override 
  public Measure infer(Measure m) { 
 
     // implement here the inference process using m. 
     // store the result in m itself. 
     // update the class MeasureHeart to add attributes as needed. 
     return m;    
  }  
} 
 

 

Then modify the class ThreadHeart to add a call the inference algorithm: 

 
 

public class ThreadHeart extends ThreadDevice { 
    
   //... 
   
  private void createAndNotify (double timestampsystem, double a) { 
 
    MeasureHeart mh = new MeasureHeart(timestampsystem, a); 
    measureHeart = DelegatePerceptionHeart.infer(mh); 
     
    setChanged(); 
    notifyObservers();  
  } 
} 
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6.2. Centralizing Affect Recognition Sources. 

Once the sensing devices and agents are running, the next step is to decide whether the 

central control unit will be used. There are three possible circumstances that drive three 

possible sequences of actions in this stage, as observed in Figure 6.2. The sequences are 

as follows: 

 
Figure 6.2 Production process stage 2: centralizing affect recognition sources.  

 

a) Sequence A: monomodal affect recognition for affective awareness, as described in 

section 3.5.1. and shown in Figure 3.8, does not require the central control unit. The 

central control unit is only required for multimodal affect recognition (synchronizing 

and fusing measurements) and to set an emotional state model for the measurements. 



 129 

b) Sequence B: developers agree to use PAD emotional state model, addition of PAD 

vectors as a fusion technique and a state-machine synchronization approach. In this 

case, use the central control unit provided in the ADAS framework. If a new agent 

was created and is being used, proceed as in sequence B. It will not be necessary to 

define a BlackboardFuseDelegate but the IP address to which the new agent 

streams its information needs to be set up. 

c) Sequence C: a new type of fusion or synchronization approach is to be implemented. 

In this case, develop a new central control unit and implement integration (fusion and 

synchronization processes). Integration is a core functionality in the central control 

unit.  

 

6.2.1. Sequence A: Monomodal Affect Awareness without a Central Control Unit  

Implement your own customized functional logic. An implementation in Java of the code 

in the target system reading data from the agent is as follows: 

 
... 
Measure measure 
 
Socket client = new Socket(InetAddress.getByName(Ip), port); 
ObjectInputStream ois= 
  new ObjectInputStream(client.getInputStream());       
while (!stop) { 
  ...       
  measure = ois.readObject(); 
  ... 
} 
 

 

But also, loading adas.jar in the target application, ADAS classes can be used to read 

data from the agents instantiating a ThreadSubscriber object. Only one parameter is 

need to specify a period time for the thread to suspend execution in order to make 
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processor time available to other threads of the application or other applications that 

might be running on a computer system. 

 
 

  private ThreadSubscriber subscriberThread =  
    new ThreadSubscriber(100); 
  

 

Then the IP and port to which the ThreadSubscriber instance connects are specified. 

When specifying the port, a second parameter defines the type of information that is 

expected, CSV values or serialized Java objects using ThreadSubscriber class public 

static variables TYPE_STRING and TYPE_OBJECT, respectively. Then the thread can be 

executed and an Observer added. 

 
 
public class Demo implements Observer { 

 
  public Demo() { 
    subscriberThread.setIp("localhost"); 
    subscriberThread.setPort(7474, ThreadSubscriber.TYPE_STRING); 
    Executors.newCachedThreadPool().submit(subscriberThread);     
    subscriberThread.addObserver(this); 
  } 
 
  private void close() { 
    subscriberThread.stop();     
  } 
 
  public static void main(String[] args) {  
    Demo tester = new Demo(); 
  } 
 
  @Override 
  public void update(Observable o, Object arg) { 
    System.out.println( ((ThreadSubscriber) o).getObject() ); 
  } 
}   
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6.2.2. Sequence B: Using ADAS Central Control Unit 

This scenario has no adaptive capabilities and a multimodal affect recognition capability. 

It executes a set of agents and a central control unit that synchronizes and fuses the 

multimodal inputs. Follow these steps to execute one of the built-in agents: 

a) Execute the agents that correspond to the selected devices in the computer(s) hosting 

the devices. The GUI of each agent guides the next sequence of steps. The GUI will 

visualize the gathered data in plots and as CVS strings. If you plan to use a single 

computer for all devices then execute dashboard_agents.bat. This will allow you 

to run and stop agents from a single GUI. If not, run the BAT file that corresponds to 

the required agent in each host computer. 

b) The data that is being plotted and listed in the console is also streamed in real time to 

a port in the host computer using a TCP/IP protocol. The list of ports used by each 

agent is presented in Chapter 4. 

c) Execute the central control unit. There are two options for this step: (1) if a single 

computer is used for all agents, then run the central control unit in that host, executing 

dashboard_centre.bat and using the list of default ports available in Chapter 4; or 

(2) run the central control unit in one of the host computers, either one of the 

computers running agents or an additional computer, by executing 

dashboard_centre.bat there. In this case, a file with the address of the computers 

running the agents should be provided and they should be accessible from the central 

control unit host, as in the box below, where the file agents-ipaddress.txt 

contains the address and port to which the agents are streaming data. For example, 
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emotiv 148.202.3.55 1407 
tobii  148.202.3.10 1401 
mouse  148.202.3.75 1405 
chair  148.202.3.44 1404 

 

 

The result of this stage will be to have the central control unit running and connected to 

agents and each agent connected to a sensing device. The agents and the central control 

unit streams affect measurements to a network port. 

 

6.2.3. Sequence C: Customizing the Central Control Unit 

Optional and variant features of the infrastructure are available in the central control unit 

of the affect recognition logic (integration and synapse). Optional capabilities are 

described here, as agents can be used without running a central control unit. Variant 

capabilities for these components can be handled as described below. 

An extension point is in the integration component, where the fusion process in 

multimodal approaches is customized using a delegate. The extension entails the 

following steps:  

First, create a new class that extends the BlackboardFuseDelegate class, and override 

the method fuse(). This method returns a PAD value and receives a reference to a map 

with the PAD values to be fused. The original fuse() method in the 

BlackboardFuseDelegate class uses vector addition as a strategy to fuse values: 

 

 
public class NewFuseDelegate extends BlackboardFuseDelegate { 
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  @override 
  public PAD fuse (Map <String, PAD> values) {    
    synchronized (values) { 
      PAD pad = new PAD(); 
 
      // sync and fuse algorithms here! 
 
      return pad; 
    } 
} 
 

 

Second, when creating a Blackboard instance, assign an instance of the new class to be 

used by the Blackboard instance for fusing values: 

 
 

Blackboard blackboard = new Blackboard(new NewFuseDelegate()); 
 

 

Finally, instantiate a central control unit: 

 

public final class MyCentralUnit { 
   
  // attributes 
 
  private final ExecutorService service  
    = Executors.newCachedThreadPool();   
   
  private final ThreadPublisher publisherThread   
    = new ThreadPublisher (7575, ThreadPublisherMinion.TYPE_OBJECT); 
   
  private final ThreadSubscriber [] subscriberThread ; 
   
  private final Blackboard blackboard  
    = new Blackboard(new FuseDelegate()); 
 
  // main 
   
  public static void main(String args[]) {      
   
    MyCentralUnit cu = new MyCentralUnit(); 
   
  } 
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  // contructor 
  public CentreDashboard() { 
 
    // ... 
    // sensors advocates 
 
    for (int i=0; i<NUM_AGENTS; i++) { 
      subscriberThread[i].setPort 
        (sensor[i].port, ThreadSubscriber.TYPE_OBJECT); 
      subscriberThread[i].addObserver(blackboard);  
    }   
  
    // source = blackboard 
    blackboard.addObserver(publisherThread); 
  
    service.submit(subscriberThread); 
    service.submit(publisherThread); 
   
  } 
    
} 
 

 

 

6.3. Adaptation Logic 

Once the affect recognition logic is running, the final step is to implement adaptation 

logic. There are three possible circumstances that drive three possible sequences of 

actions in this stage, as observed in Figure 6.3. Sequences are as follows: 

a) Sequence A: customize a reaction engine for the system without introspection and 

without support for complex adaptation rules. 

b) Sequence B: customize a reaction engine for the system with introspection but 

without support for complex adaptation rules. 

c) Sequence C: customize a reaction engine for the system with introspection and with 

support for complex adaptation rules using a productions rule engine. 
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Figure 6.3 Production process stage 3: adaptation and functional logics. 

 

 

6.3.1. Sequence A: Reaction Engine 

At this point implement your own affect aware functional logic. A TCP/IP client can be 

implemented to gather the data that any agent or the central control unit are streaming. 

When using the central control unit, as provided in ADAS, the obtained result is a PAD 

value in a PAD instance. When using agents, as provided in ADAS, the obtained result is a 

Measure objects or CSV strings. Implementing a TCP/IP socket is a standard procedure 

in most programming languages. 
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... 
PAD pad; 
Socket client = new Socket(InetAddress.getByName(Ip), port); 
ObjectInputStream ois = 
  new ObjectInputStream(client.getInputStream());       
while (!stop) { 
  ...       
  pad = ois.readObject(); 
  ... 
} 
 

 

But also, loading adas.jar in the target application, ADAS classes can be used to read 

data from both agents and a central control unit instantiating a ThreadSubscriber 

object. The only difference is the port number to be specified. For the central control unit 

two ports are available: 7474 for CSV values and 7575 for serialized objects. 

 

6.3.2. Sequence A: Reaction Engine and Introspection 

Optional and variant features of the infrastructure are also available in the adaptation 

logic, specifically in the Manager interface. As described, adaptation is an optional 

capability and it is meant to handle variant scenarios. This section reviews the simplest 

scenario. Customization of the adaptation logic functionality is realized by following the 

Delegate pattern while implementing the Manager interface. The code below shows a 

simple implementation in a class named ManagerSimple. 

 

 
public class ManagerSimple implements Manager { 
  
  protected LinkedList<Measure> ms; 
  protected LinkedList<Event> es; 
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  @Override 
  public Iterator<Action> analyze (Observable o) { 
    LinkedList<Action> a = new LinkedList<Action>(); 
    if (o instanceof Introspector) { 
      Event e = ((Introspector)o).getEvents(); 
      System.out.println("new object E " + e); 
      es.add( e ); 
    } else { 
      Measure m = ((Measure)((ThreadSubscriber)o).getObject()); 
      System.out.println("new object M " + m); 
      ms.add( m ); 
    }    

 
    // ...calculate new action IF-ELSE ... 
    a.add( new Action(id, name)); 
    return a.iterator(); 
  } 
 
} 
 

 

This code: 

a) implements the Manager interface; 

b) declares containers (LinkedList) to store Measure and Event objects; and 

c) overrides the method analyze(). This method executes each time an Event or 

Measure object is received by the Engine class. It receives an Observable object as a 

parameter, which represents an instance of Introspector or ThreadSubscriber; the 

first provides Event instances and the second Measure instances. Then actions can be 

calculated, in this case using nested if-else statements. Adaptations to be triggered are 

added to a list as Action instances, and finally an iterator to the list is returned. 

 

6.3.3. Sequence A: Reaction Engine and Introspection with Production Rule Engine 

This applies when the implementation of adaptive capabilities goes beyond simple 

conditional scenarios, for instance, when moving to software that has the capacity to 
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"reason" using the knowledge supplied to it. External libraries can be connected to the 

infrastructure. This may require the use of rule engines. Rudolph (2003) suggests the 

following guidelines to decide when it might be valuable to use a rule engine: 

a) the algorithm involves significant conditional branching or decision-making; 

b) the rules are not static but likely to change over time due to the nature of the 

application; and 

c) a convenient structure for separating "business logic" from the rest of the system is 

necessary, aiding in the effort to clearly "separate concerns". 

As an example, I describe the steps to integrate Jess, a rule engine and scripting 

environment written in Java and created at Sandia National Laboratories. Using Jess, you 

can build Java software that has the capacity to "reason" using knowledge you supply in 

the form of declarative rules. Jess is small, light, and one of the fastest rule engines 

available.  

Following the Jess documentation and assuming that Jess is installed as described there, 

embedding Jess with ADAS is relatively straightforward. An implementation of the 

Manager interface that integrates Jess is as follows: 

a) Implement the Manager interface. 

b) There is no declaration of local containers to store Measure and Event objects; 

instead they are added directly to the rule engine, which handles them. 

c) Override the method analyze(). This method executes each time an Event or 

Measure object is received by the Engine class. It receives an Observable object as a 

parameter, which represents an instance of Introspector or ThreadSubscriber; the 

first provides Event instances and the second Measure instances. Then actions can be 



 139 

calculated, in this case using Jess. Adaptations to be triggered are added as Action 

instances to a list, and finally an iterator to the list is returned. 

d) The constructor method in the ManagerJess class shows the inclusion of the Jess 

rule engine by instantiating the Rete class, which loads the rules from a text file 

named rules.clp. The Rete instance can then be repetitively used to process inputs 

with the loaded rules and to calculate actions to trigger. 

 

public class ManagerJess implements Manager { 
   
  private Rete jessEngine; 
 
 
  public ManagerJess() { 
    try { 
      jessEngine = new Rete(); 
      jessEngine.reset(); jessEngine.batch("rules.clp"); 
    } catch (JessException je) {} 
  } 
 
  @Override 
  public Iterator<Action> analyze (Observable o) { 
    // receive Measure and Event instances - trigger Action 
    Action a = null; 
    if (o instanceof Introspector) { 
      Event e = ((Introspector)o).getEvents(); 
      System.out.println("new E " + e); 
      try { jessEngine.add( e );} catch (JessException ex) {} 
    } else { 
      Measure m = ((Measure)((ThreadSubscriber)o).getObject()); 
      System.out.println("new M " + m); 
      try {jessEngine.add( m );} catch (JessException ex) {} 
    } 
 
     
 
    // calculate new action JESS 
    try { 
      jessEngine.run(); 
    } catch (JessException ex) {   
    } 
    return jessEngine.getObjects(new Filter.ByClass(Action.class));    
  } 
} 
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In Jess, every rule has a name, an optional documentation string, some patterns, and some 

actions. A pattern is a statement of something that must be true for the rule to apply. An 

action is something the rule should do if it does apply, for instance, a rule for the 

following statement is shown below:  

"If boredom, send the user a wake up action; but only if a UI event was also reported in 

the last time window unit." 

 
 

(defrule boredom-wakeup 
    "boredom -P-A-D then do something." 
    (Request {quantityEvent >= 0})  
    (Measure {pleasure < 0 && arousal < 0 && dominance < 0}) 
    => 
    (add (new Action "wake up the user"))) 

 

 

6.4. Functional Logic and their Probes and Effectors 

The last stage is to implement the system itself, providing a functional logic with 

effectors, and to include probes if required. A functional logic can be written as follows: 

a) If system context is needed, create an Introspector instance. It is used to send 

notifications of the system’s event to the adaptation logic. In the example, random 

events are sent in a loop in method doIt(). 

b) Create an Engine instance. The following parameters are passed to this instance: (1) 

an EffectorListener that will be notified of adaptation actions to be performed; (2) 

the Introspector instance used to add Events; (3) an Actuator instance, which will 

be linked to the EffectorListener; and (4) a Manager delegate, in this case an 

instance of the ManagerSimple class created above. 
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c) Implement the EffectorListener interface and override the method update(). This 

method is called each time that the Manager infers that a new adaptation must be 

performed. The code shows how Action objects are obtained. In the example, the 

Action instance is stored in the attribute named action and used in the loop inside 

the doIt() method. 

d) Define the functional logic for the system. In this example a dummy functional logic 

is coded in the method doIt(), generating random Event instances and handling 

Action instances as adaptation requests. 

 

 
public class FunctionalLogic implements EffectorListener { 
  
  private Introspector introspector; 
 
  private Action action; 
 
  private Engine engine; 
 
 
 
 
 
  public FunctionalLogic() { 
 
    introspector = new Introspector(); 
    engine = new Engine(this, introspector,   
                        new Actuator(), new ManagerSimple()); 
  } 
 
  public void doIt() { 
 
    int i = 0; 
    while (true) { 
      introspector.setEvent(new Event(i++, "a new event")); 
      if (action != null) { 
        System.out.println ("New Action to be done: " + action); 
        action = null; 
      } 
      try {Thread.sleep(10000);} catch (InterruptedException ex) {} 
    } 
  } 
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  @Override 
  public void update(Observable observable, Object arg) { 
   
    action = ((Effector) observable).getActions(); 
  } 
 
  public static void main(String [] args) { 
   
    FunctionalLogic f = new FunctionalLogic(); 
    f.doIt();     
  } 
   
} 
 

 

6.5. Summary 

In this chapter, the production guidelines are described, defining four stages and the 

sequences of actions to be chosen in each stage: stage 1 describes the selection of  affect 

recognition sources ranging from using a predefined set of sensors and inference 

algorithms to extend infrastructure for new sensing devices and for new inference 

algorithms; stage 2 is about choosing whether to use monomodality, multimodality using 

the provided synchronization and fusion approaches, or multimodality extending the 

infrastructure with new synchronization or fusion approaches; and stage 3 describes the 

adaptation logic creation with options ranging from a simple adaptation logic without 

introspection, a simple adaptation logic with introspection, and an adaptation logic with 

introspection and complex adaptation rules using a production rule engine. 

This chapter examined the manner in which production guidelines enable feasibility and 

cost-effectiveness by helping engineers understand the fine-grained details of particular 

affect and adaptation concepts as operational capabilities and by supporting their 

implementation or extension using the ADAS framework. Three aspects of the 
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production guidelines are described: (1) the core component documentation, providing 

instructions for their use; (2) the optional and extensible component documentation, 

establishing the rules for their association, inclusion, and extension; and (3) the probe, 

gauge, and effector documentation.  
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CHAPTER 7 
CASE STUDIES 
 

This chapter introduces case studies implementing affect recognition, affect awareness, 

and affect-driven adaptation in a number of systems. Case studies were run to evaluate 

the operation of the proposed SPL technical solution, ADASPL. Diverse systems were 

developed adopting ADASPL, incrementally increasing in complexity and number of 

elements. These represent an in-depth demonstration of ADASPL that provide evidence 

(discussed later) for strength of and benefits of adopting this approach. 

Gomaa (2004) stated that a minimum of three systems are required for the evaluation of 

an SPL. Accordingly, I evaluated ADASPL using 11 systems: 9 systems using ADASPL; 

and 2 systems using alternative approaches for comparative purposes. The scenarios 

covered go from partial or full use of the affect recognition logic to affect-driven 

adaptation with conditional rules or fuzzy rules. Particularly relevant are two versions of 

a real-world system: one version using ADAS and another not using it. The systems 

incrementally increase in complexity, integrating more core, optional, and variable 

components. Moreover, two implementations of affect recognition logics were built from 

scratch and compared with ADAS affect recognition. One set of systems was developed 

by undergraduate students participating in capstone projects (C1-C8) and another set by 

staff of research groups (R1-R3). Tables 7.1 and 7.2 summarize each set, respectively. 

These sample applications serve to demonstrate the applicability of the proposed 

approach across two of the three fields of interest, while also demonstrating the feasibility 

of broader deployment.  
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Table 7.1. Summary of Case Studies Developed as Capstone Projects 

ID Name Adaptation Affect 
recognition Status Dates # of 

people Language 

C1 AAE NO from scratch 
(multimodal) 

OK S13-
F13 

3 Java 

C2 Companion 
2D 

from 
scratch 

ADAS 
(monomodal) 

Incomplete S13-
F13 

4 Java 

C3 Pac-Man from 
scratch 

ADAS 
(multimodal) 

OK F13-
S14 

5 Java 

C4 Horror 
Game 

from 
scratch 

ADAS 
(multimodal) 

OK S14-
F14 

5 C++ 

C5 Memory 
Game 

from 
scratch 

ADAS 
(multimodal) 

OK F14-
S15 

6 C# 

C6 Shooting 
Game 

from 
scratch 

ADAS 
(multimodal) 

Incomplete F14-
S15 

5 C++ 

C7 Companion 
3D 

from 
scratch 

ADAS 
(multimodal) 

Discarded F14-
S15 

4 Java 

C8 Videos NO ADAS 
(multimodal) 

Discarded S15-
F15 

4 Java 

 

Table 7.2. Summary of Case Studies Developed by Staff of Research Groups 

ID Name Adaptation Affect 
recognition Status Dates # of 

people Language 

R1 Virtual 
World 

NO ADAS 
(monomodal) 

OK S13 3 Java 

R2 AMT from 
scratch 

from scratch 
(multimodal) 

OK S09-
F12 

15 Java 

R3 Enhanced 
Affective 

Tutor 

ADAS ADAS 
(multimodal) 

OK S15-
F16 

3 Java 

 

 

7.1. Participants 

To evaluate ADASPL, teams of developers were recruited and asked to build affect-

driven adaptive systems; they had the freedom to define the functionality and adaptation 

goals but the domain was limited to learning and gaming, and they were asked to 

primarily address the concern of improving user experience. Case studies were run with: 
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a) research assistants in the Advancing Next Generation Learning Environments 

(ANGLE) Lab. 

b) undergraduate students involved in one-year capstone projects. The capstone project 

courses (two semesters long) are led by teams of senior undergraduate Computer 

Science (CS) and Computer Systems Engineering (CSE) students.  

Both groups participated in the creation of learning and gaming systems, and individual 

teams were composed of three to five members. Additionally, source code from a tutoring 

system (NSF supported project) was created jointly by a team of undergraduate and 

graduate student. The majority of participants were undergraduate students because a 

special interest exists in measuring the usefulness of the adoption of the proposed 

approach in communities (such as HCI and Educational Technology) where developer 

experience or developing resources are limited. Senior undergraduate students are by no 

means experts yet, even though exceptional cases can exist. The ASU CS curriculum 

describes Capstone project I (CSE 485) and Capstone project II (CSE 486) as courses that 

help students to emphasize development process and technical skills, along with 

teamwork and communication. 

Teams defined their own functional requirements, usability requirements related to affect 

measurement, and adaptation logics. Teams were asked to develop their projects 

iteratively, covering analysis, design, implementation, and testing in each iteration. They 

were also asked to deliver a working product that was assessed based on its quality and 

the user experience it offered. It was established that the assessment criteria would focus 

on the quality of the resulting product irrespective of the computational complexity 

achieved, i.e., they were asked to deliver a user experience to the best of their ability. 
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All teams were provided with access to hardware and software on a computer server, 

Intel i7 @ 2.4 GHz processors with 4 GB of RAM running MS Windows 7 (later updated 

to 8 and 10), with all sensor devices installed and running. However, several teams set up 

the sensors and required software on their own computers too. 

 

7.2. Projects  

Over seven years, 11 projects were developed as depicted below (Figure 7.1) and 

described in the following two sections; 3 were professional research projects and 8 were 

undergraduate capstone projects. The engineering effort for the capstone projects is 

presented here:  

a) an academic semester (4 months) was allotted to defining requirements, designing 

and developing the functional logic; and 

b) a second academic semester (4 months) was used for developing and testing.  

 

 
 

Figure 7.1. Case study development from Spring 2009 to Spring 2016. Columns represent semesters and 
boxes enclose the ID of the projects under development during that semester. 

 

Capstone teams were formed of 4 to 5 students who dedicated around 5 hours per week 

each, providing an approximate total of 320 to 400 hours per team per semester. 
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Undergraduate and graduate students participating in research projects were hired for 20 

hours per week for the time the project was running. 

 

7.3. Projects by Research Staff 

Research projects that were analyzed as case studies include: 

a) Closed-loop system to analyze emotional impact on human interaction in virtual 

world environments; a project led by graduate research assistants in the ANGLE Lab 

with ONR support. 

b) Affective Meta Tutor (AMT) source code, supported by NSF.  

c) Enhanced affective support in AMT; a doctoral project. 

These are described in the following subsections.  

 

7.3.1. Project R1: Affect in Virtual Worlds 

Period: Spring 2013 

Team: 3 graduate students from the ANGLE Lab staff. 

Description: This project focused on the role of avatars in interpersonal communication. 

The project integrated a generic, real-time, multimodal affect recognition hub as an input 

in an online virtual world to make an avatar mirror its user’s affective state. Affect 

vectors (determined by PAD coordinates) in a continuous affective space were applied to 

characterize the user’s affective state in real time. 

Details: This system introduced affect into an online virtual world. The system was 

developed to analyze the importance of affect in relation to communication between users 

in virtual worlds and to explore approaches for improving virtual interactions. The system 
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was developed using the Java platform. The system focused on performance, specifically 

the ability to achieve a real-time loop showing an animated representation of the user’s 

current affective state. To simplify, PAD vectors were discretized into four categories: 

frustrated (low pleasure, high arousal, and low dominance), engaged (high pleasure, high 

arousal, and high dominance), bored (low pleasure, low arousal, and low dominance), and 

meditating (high pleasure, low arousal, and high dominance).  

Structure: The system is composed of three parts as shown in Figure 3.7 in Chapter 3. It 

comprises the following components: 

a) A virtual world, a commercial off-the-shelf system named Second Life. 

b) A functional logic that acts as an interface between the virtual world and the ADAS 

affect recognition logic. The interface triggers native system input events (equivalent 

to keyboard strokes) that change the avatar according to an affect vector value.  

c) the ADAS affect recognition logic using one agent, i.e., the core components sensing 

and perception.  

Results: Feasibility of embedded affect demonstration in avatar behaviors was shown to 

be viable mirroring user affective states of frustration, engagement, boredom, and 

concentration, as well as neutrality, using an online virtual world avatar. Efforts to 

improve human-human communication in virtual environments were inconclusive, 

diverse issues were explored. The technical feasibility was shown at a demonstration 

presented at ACII 2013 (Gonzalez-Sanchez et al. 2013). 

 

7.3.2. Project R2: Affective Meta Tutor 

Period: Spring 2009 - Fall 2012 
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Team: Several undergraduate students coordinated by a team of graduate students from 

the NSF project. 

Description: The AMT system comprised (1) a tutor that taught system dynamics 

modeling, (2) a meta-tutor that taught good strategies for learning from the tutor, and (3) 

an affective learning companion that encouraged students to use the learning strategy that 

the meta-tutor recommended. The affective learning companion’s messages were selected 

on the basis of the user’s affective states. Affective interventions are realized between 

tasks, when the student completes one task and is starting the next. The results were 

evaluated by comparing the learning gains under three conditions: with the tutor alone; 

with the tutor and the meta-tutor; and with the tutor, the meta-tutor, and the affective 

learning companion.  

Structure: The system comprises the following components: 

a) an affective companion, which uses legacy code for affect recognition; 

b) a meta-tutor, which uses a production rule engine (Drools) to handle adaptation rules; 

and 

c) an intelligent tutoring system. 

Results: Multiple experiments were run with this tool from 2009 to 2013 and, based on 

the results relating to affective learning companions, it is hypothesized that these 

interactions works best with simple short tasks, perhaps because there are more frequent 

opportunities for interventions between tasks. Improving affective learning companions 

by presenting interventions at affectively appropriate times is mentioned as part of the 

authors’ future work (VanLehn et al. 2014; Zhang et al. 2014). 
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7.3.3. Project R3: Enhanced Affective Tutor 

Period: Spring 2015 - Spring 2016 

Team: 3 staff and volunteers from the ANGLE Lab staff. 

Description: As an evolution of project R2, this new system eliminated the meta-tutoring 

component and focused on the affective support. Taking the R2 software components for 

the tutor and meta-tutor, a new system was developed in which the affect recognition and 

affect-driven reactions were reengineered. The agent interventions are continuous and not 

limited to pauses between task. 

Details: A 2D character was used to assist the user to achieve goals in a tutoring 

environment. It provided direct instructions, practical support, and guidance, while 

showing empathetic behavior. This system was developed using the Java platform. 

Measurements of engagement, boredom, and frustration, as well as information about 

user’s interactions with the tutor interface were used to adapt the interventions made by 

the companion (content and timing) to improve the learning process.  

Structure: The system comprises the following components: 

a) an affective companion, which uses ADAS affect recognition and adaptation rules; 

and 

b) an intelligent tutoring system. 

Results: This project is being used as a tool to support a doctoral dissertation under 

development at ASU. It is a tutoring system that extends the work done in R2, 

implementing and evaluating an adaptive affective agent focused on discouraging 

boredom, promoting engagement, and inducing or maintaining a productive learning 

path.  
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7.4. Projects by Capstone Students 

Every senior undergraduate student in the CS and CSE programs at ASU is required to 

take a two-semester capstone course. This gives students an opportunity to apply their 

technical skills and knowledge of engineering principles and software development 

within a complex, team-oriented software project, system, or device. Students must work 

as a team over two semesters towards a fairly well-defined goal. The team meets and 

communicates with a designated representative (mentor) at regular intervals throughout 

the course of the project. The students are expected to gather requirements for a problem 

and then design, develop, test, and deploy a solution. The mentor does not act as a project 

manager. 

Under Dr. Robert Atkinson and ANGLE Lab sponsorship, I submitted 12 proposals for 

ASU CSE capstone projects between the Spring 2013 and the Spring 2015 semesters. It 

was expected that participating students would have the following skills: 

a) a software development background; 

b) a proficiency in a programming language; and 

c) an interest in human-computer interaction and/or user-interface design.  

The latter was not essential but was deemed to be an advantage. 

I participated in these projects as a mentor. For each proposed project we, as a lab, 

provided teams with mentoring and the tools (hardware and software) that support 

emotion and interest recognition, while challenging them to imagine, design, and build a 

system that exploits those capabilities, including, but not limited to, a next-generation 

learning environment, a more engaging video-game, or an empathetic health support 

system. We encouraged and supported students to present their work at international 
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conferences as a demo, poster, or short paper. Regular meetings were held to provide 

feedback and support, but project management was the sole responsibility of students. 

From the 12 proposals presented, 8 were selected by students and worked on by a 

designated team for a two-semester period. The following subsections summarize the 

proposals presented. Appendix B presents the capstone faculty project proposal template 

submitted to the ASU capstone managers. Submitted proposals follow the template and 

each includes slight variations. 

Grades are those reported by the mentor or mentors and they do not necessarily 

correspond to the final evaluations of the students by the professor responsible for the 

course overall. Grades are based not only on product development, but also on aspects 

such as teamwork, written communication, meeting outcomes, planning and project 

management, documentation, use of resources, and final deliverables. 

 

7.4.1. Project C1: Affect Recognition 

Period: Spring 2013 - Fall 2013 

Team: Capstone team with 3 undergraduate students. 

Description: The goal of this project was to inspire and support student creativity in the 

production of an affective adaptive environment of original design. We provided the 

devices and expertise, and the students were encouraged to create an interactive 

environment that took advantage of multimodal affective adaptation capabilities. By the 

end of the year the students were expected to deliver an interactive computational 

environment of their own choosing (such as a learning environment or a videogame) that 

was able to self-adapt in response to a user’s performance and affective states. 
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Details: The goal of this project was to measure the difficulties in building affect-driven 

adaptive systems without the support of ADASPL. Thus, teams were provided with 

devices, but not the ADAS software, and instructed to create an affective adaptive system 

with them. They were provided with the hardware’s proprietary SDKs and third-party 

libraries. We required them to achieve a relatively simple task: collect data from multiple 

sensors (at least one that uses a serial port and one that uses a network), integrate the 

information (synchronize and merge), and then share it with either the client system of 

their choice or one of their own development.  

Results: Students were able to produce a beta system for multimodal affect recognition 

but did not construct a system that used that data. The final result was a system that 

gathered information, synchronized it, and transformed it into PAD values. It read from a 

serial port sensor, a skin conductance bracelet, and the Emotiv EPOC headset. It was also 

able to take log files of previously collected data as an input for simulation purposes.  

Student grade: B- 

Team report: Students reported difficulties regarding: 

§ dealing with bugs in the third-party libraries. 

§ dealing with hardware-software connection validations. 

§ dealing with the implementation of the task described in the sensing, perception, 

integration, and synapse components, including dealing with numerous data formats 

and synchronizing data. 

§ scheduling and intra-team conflicts. 
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7.4.2. Project C2: Affective Companion with a 2D Avatar 

Period: Spring 2013 - Fall 2013 

Team: Capstone team with 4 undergraduate students. 

Description: This project required gathering affect information using physiological 

sensors and creating an intelligent virtual character able to show a high level of 

understanding of the meaning of the user’s changes in affective state. The affective 

companion was intended to function inside a learning environment; therefore, the system 

focused on achieving a social relationship with students and helping them to improve 

their performance. 

Details: This team was provided with hardware and a beta version of the ADAS 

framework. The team developed a 2D dynamic image (character), an affective 

companion, which was integrated into a computer-based learning environment (already 

developed and focused on teaching the modeling of dynamic systems). The character was 

aware of user actions and affective states and reacted by displaying messages and 

changing its expressions.  

Results: The team focused their work on creating an avatar, including pictures, gestures, 

and design; they also made minor advances in making a connection with affect 

recognition. 

Student grade: A- 

Team report: Students reported difficulties because: 

§ the group did not meet at regular intervals.  

§ they mainly worked on what they described as a distributed development 

environment. 
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7.4.3. Project C3: Affective Pac-Man Videogame 

Period: Fall 2013 - Spring 2014 

Team: Capstone team with 5 undergraduate students. 

Description: The goal of this project was to inspire and support student creativity in the 

production of an affective adaptive environment of original design. We provided the 

tools, software components, and expertise, while students were encouraged to create an 

iterative environment that took advantage of multimodal affective adaptation capabilities. 

By the end of the year the students were expected to deliver an interactive computational 

environment (such as a learning environment or a videogame) that was able to self-adapt 

in response to a user’s performance and affective states.  

Details: This team was provided with both hardware and the ADAS framework. Affect-

driven adaptive capabilities were incorporated into an open version of the well-known 

video game, Pac-Man. The project was developed using the Java platform. Affect 

recognition was used to drive changes in the game, aiming to improve the user experience 

by maintaining or increasing the player’s engagement. The strategy for keeping the user 

engaged was defined as follows: (1) boredom was undesirable, and if the player 

approached this state the game was made far more difficult by decreasing the speed of 

Pac-Man and increasing the number and speed of the ghosts as well as the music tempo; 

(2) frustration was undesirable, and if the user reached this state the game was made 

easier by increasing the speed of Pac-Man, decreasing the number and speed of the ghosts 

and the music tempo, and also providing additional special features such as power pellets 

and fruits; and finally (3) a state of meditation was undesirable, and if the user 

approached this state the game was made slightly more difficult by increasing the speed 
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of Pac-Man and the music tempo in order to push the player toward a state of 

engagement. The system concerns in this case involved both performance and 

improvement in the user experience over time. The project evaluated the ADAS affect 

recognition logic and its interfaces with an adaptation logic. 

Structure: The C3 system was composed of three parts as shown in Figure 3.9 in 

Chapter 3 and described here: 

a) An already implemented functional logic. An open source implementation of the Pac-

Man video game was used. It was modified to include effector points and an 

adaptation logic. 

b) Effectors added to the functional logic.  

c) An adaptation logic and a reaction engine implemented and connected with ADAS 

affect recognition logic. Adaptation logic implementation was not restricted to 

following the ADASPL approach.  

Results: The team successfully accomplished the goal of altering the Pac-Man game in 

order to elicit emotional responses from users. An extended abstract was published and a 

demo presented at ISWC 2014. 

Student grade: A 

Team report: Students reported the successful implementation of the game and 

highlighted their learning outcomes. 

 

7.4.4. Project C4: Affective Horror Game 

Period: Spring 2014 - Fall 2014 

Team: Capstone team with 5 undergraduate students. 
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Description: This project aimed to leverage the inclusion of affect-driven adaptation 

capabilities in gaming environments by inspiring and supporting student creativity in the 

development of an affective adaptive game or gaming environment of original design. By 

the end of the year it was expected that the students would deliver an interactive 

computational game or gaming environment that was capable of affect-driven adaptation.	

Details: This team was provided with both hardware and the ADAS framework. The 

game was puzzle-oriented with horror-type content. It contained stressful and scary 

scenes, including hostile entities, monsters pursuing the protagonist, etc. It focused on the 

frightened and calm emotional states. The game aimed to use emotional information, 

specifically the user’s fear, and the user’s navigational decisions as the basis for changes 

in the game environment. The game environment was developed using Unreal Engine 4 

and a back-end coded in C++. 

Structure: The C4 system was composed of three parts as shown in Figure 3.8 in 

Chapter 3 and described here: 

a) A functional logic created in a game engine. The functional logic was implemented 

from scratch in Unreal Engine 4. 

b) Effectors added to the functional logic.  

c) An adaptation logic and reaction engine implemented and connected with the affect 

recognition logic. The adaptation logic was implemented in Java but was not 

restricted to following the ADAS approach. The project evaluated the ADAS affect 

recognition logic and its interfaces with an adaptation logic. 
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Results: The project was completed but the team was more interested in the design of the 

graphical elements of the game than in its functionality or its adaptive or affective 

capabilities. 

Student grade: A 

Team report: Students reported difficulties regarding: 

§ the time spent learning how to use first the Unity game engine and then Unreal 

Engine 4. 

§ modeling the affective state of fear from the constructs provided by the used sensor 

devices. 

 

7.4.5. Project C5: Affective Working-Memory Game 

Period: Fall 2014 - Spring 2015 

Team: Capstone team with 6 undergraduate students. 

Description: This system aimed to leverage the incorporation of affect-driven adaptation 

capabilities into a game environment by inspiring and supporting student creativity in the 

development of an affective adaptive system of original design. By the end of the year, it 

was expected that the students would deliver an affect-driven self-adaptive environment. 

It was expected that the students would include assets such as software design, testing, 

validation, and documentation. 

Details: This team was provided with both hardware and the ADAS framework. The 

project aimed to find a correlation between affective states and short-term spatial memory 

retention. The game environment was developed using C# and emulating a previous 

version available in MATLAB (Lewandowsky, Oberauer, Yang & Ecker 2010). The 
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implemented game is an adaptation of the spatial short-term memory level of this game. 

The game is a series of memory tests using dots on a grid. In a given level, the system 

selects a number of locations on the grid to place dots. These dots are temporarily and 

simultaneously revealed to the user; when the dots disappear, the user has to remember 

and select the positions in which the dots had appeared. 

The team built and tested a system that changed a game according to the affective state 

and performance of the user. In particular, the user’s frustration levels and performance 

score were used as the basis for adaptations in the level of difficulty. The game scored the 

user’s attempt using a distance-scoring algorithm. Every five levels, the system 

determined whether to increase or decrease the size of the grid and the number of dots in 

the grid based on the user’s distance scores and the PAD values for the previous five 

levels. The game consisted of five sets of five levels.  

Structure: The C5 system was composed of three parts, as shown in Figure 3.8 in 

Chapter 3 and described here: 

a) A functional logic created in a game engine. The functional logic was implemented 

from scratch in C#. 

b) Effectors and probes added to the functional logic. 

c) An adaptation logic and reaction engine implemented and connected with the affect 

recognition logic and functional logic. The adaptation logic was implemented in C#. 

Results: A short paper was submitted to FDG 2015, but it was not accepted for 

publication. 

Student grade: A 

Team report: Students reported: 
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§ a high CPU demand for ADAS when running continuously for long time, suggesting 

a possible memory leak. 

 

7.4.6. Project C6: Affective Shooting Game 

Period: Fall 2014 - Spring 2015 

Team: Capstone team with 5 undergraduate students. 

Description: The project aimed to leverage the inclusion of affect-driven adaptation 

capabilities in either existing or new video games. In particular, this project focused in 

particular on amusing and highly-interactive video games that aimed not only to provide 

entertainment but also to support learning, health improvement, and/or any other social or 

personal outcomes. By the end of the year it was expected that the students would deliver 

an environment capable of affect-driven adaptation. It was expected that the students 

would include assets such as software design, testing, validation, and documentation. 

Details: Students were inspired by project C4 and aimed to emulate the results by 

increasing the number of affective states involved.  

Structure: The structure for project C6 project was comparable to that for project C4.  

Results: The project was completed but the team was more interested in the design of the 

game’s graphical elements than its functionality. 

Student grade: A 

Team report: Team reported difficulties regarding: 

§ the time spent learning how to use both the Unity game engine and Unreal Engine 4. 

§ hardware requirements for executing the game as they had planned. 
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7.4.7. Project C7: Affective Companion with a 3D Avatar 

Period: Fall 2014 - Spring 2015 

Team: Capstone team with 4 undergraduate students. 

Description: We aimed to extend the functionality of virtual companions by adding 

empathy (affect-driven adaptation) as a capability. By the end of the year it was expected 

that the team would: (a) deliver a virtual companion able to show empathetic behaviors, 

achieved by exploring diverse options for its design and (b) integrate the virtual 

companion into an already developed (and provided) learning environment. 

Details: This team was provided with hardware and the ADAS framework. The team 

developed a 3D dynamic image (character), an affective companion. They did not 

accomplish its integration into a computer-based learning environment. The character 

was aware of user actions and affective states and reacted by displaying body gestures.  

Results: The team focused their work on creating a 3D character using motion capture, a 

tools to create 3D human avatars4, and an open source game engine5 in the Java platform. 

They made minor advances in making a connection with affect recognition. They 

advanced from a 2D cartoon to a realistic 3D human figure, and they placed it in a 3D 

game engine. Motion capture technology was used to record and apply realistic animation 

sequences to the character, including: walking, waiting, head shaking, head nodding, 

shrugging, head scratching, waving, and crossing arms. 

Student grade: A 

 

4 www.makehuman.org 

5 www.jmonkeyengine.org 
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Team report: Students reported: 

§ as the team members had diverse interests, they each acted on an individual basis. 

 

7.4.8. Project C8: Affect Recognition in Video Clips 

Period: Spring 2015 - Fall 2015 

Team: Capstone team with 4 undergraduate students. 

Description: We sought to validate the PAD scheme as suitable for use in representing 

multimodal affect information. The team was provided with sensors and the ADAS 

framework. The stimuli used for this project were photos and videos pre-selected to elicit 

very specific affective reactions. By the end of the year it was expected that students 

would complete the system as well as design and implement the study. The students 

worked in collaboration with the research team mentoring this project on the data analysis 

and the interpretation of the results. 

Details: Project was incomplete. Its final stage was limited to a real-time comparison of 

the emotion expected and emotion inferred from a user watching a specific video. It was 

used pre-classified video clips selected from a databases named DEAP (Koelstra et al. 

2012). It included for each video a self-report and sensor data. 

Structure: The structure for project C8 was comparable to that for project C5. 

Results: The first semester of work was very productive, but progress declined in the 

second semester.   

Student grade: B 

Team report: Team reported: 

• communication issues. 
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7.4.9. Additional Projects Proposed but Not Realized 

Four other projects were proposed but not selected by students in the capstone course. 

They are listed below just to show additional potential diversity. The outlines for these 

projects were as follows: 

a) Affective Companions for Learning Environments (Fall 2013 - Spring 2014). This 

project requires gathering affect information using physiological sensors and creating 

an intelligent virtual character able to show a high level of understanding of the 

significance of changes in the user’s behavior. The affective companion is envisioned 

as working inside a learning environment; therefore, it focuses on achieving a social 

relationship with students and helping them to improve their performance. Previous 

work has been done in this area and so the team will work with an existing version of 

this affective companion. 

b) Empathetic Virtual Companions for Learning Environments (Spring 2014 - Fall 

2014). This project aims to extend the functionality of virtual companions by adding 

the capability for empathy. This project is the second phase of a previously completed 

project. The goals to be accomplished include developing or completing an 

implementation that allows students to: (1) move through a set of diverse tasks to 

master a particular concept or skill; (2) solve each task step-by-step; (3) receive 

feedback and hints; and (4) receive affective support.  

c) Exploring the Inclusion of affect-driven adaptive capabilities in apps for the Google 

Glass platform or Apple mobile devices (Spring 2014 - Spring 2015). This aims to 

leverage the inclusion of affect-driven adaptation capabilities in mobile devices 

through inspiring and supporting student creativity in the development of an affective 
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adaptive app of original design for either the Google Glass or Apple mobile devices. 

By the end of the year it was expected that the students deliver an interactive app able 

to adapt itself on the basis of the user’s affective states. 

d) Learning Environment and Companion with Affective Adaptive Capabilities (Spring 

2014 - Spring 2015). This project aims to leverage the inclusion of affect-driven 

adaptation capabilities in learning environments by inspiring and supporting student 

creativity in the development of an affective adaptive learning environment of 

original design. By the end of the year it was expected that the students deliver an 

interactive computational learning environment capable of affect-driven self-

adaptation.  

 

7.5. Projects Selected for Analysis 

The broad range of projects supports the claim to the proposed approach’s generality, 

which is discussed later. However, for a complete evaluation of the approach, it is 

important to measure the properties of the products and the engineering process applied 

for the approach evaluation. To do so, from the 11 systems developed, I selected a subset 

of 7 systems with varying complexity, ranging from those with basic features to those 

integrating diverse components. This selection discards two unfinished projects. For each 

of the projects not included in the selection there is another project that accomplished 

similar objectives, allowing for the appropriate assessment of all objectives offered by the 

ADASPL approach: 

a) C2 and C7 are represented by R1 

b) C6 was not completed and is represented by C4, which has similar characteristics. 
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c) C8 is represented by C3. 

The selected systems are summarized in Table 7.3 and described below: 

a) Project C1. An unguided implementation of a functionality similar to the ADAS 

affect recognition logic.  

b) Project R1. A system with low-level complexity using the ADAS affect recognition 

logic’s core components (sensing and perception) without customization or extension. 

It is a reactive system, i.e., no adaptation mechanisms were implemented.  

c) Project C3 (Pac-Man). A system with low-level complexity using the ADAS affect 

recognition logic’s core components (sensing, perception, integration and synapse) 

and an adaptation logic that customizes the component engine (without an 

introspection component). It is an adaptive system.  

d) Project C4 (Horror Game). A system with low-level complexity using the ADAS 

affect recognition logic’s core components (sensing, perception, integration and 

synapse) and an adaptation logic that customizes the component engine (without an 

introspection component). It is an adaptive system. 

e) Project C5 (Memory Game). A system with low-level complexity using the ADAS 

affect recognition logic’s core components (sensing, perception, integration and 

synapse) and an adaptation logic with the component engine customized to apply 

condition-action pairs (with an introspection component).  

f) Project R2 (AMT). A tutor implementing a functionality similar to the ADAS affect 

recognition and adaptation logics without using ADAS at all. 

g) Project R3 (Enhanced Tutor). A tutor using the ADAS affect recognition logic’s core 

components (sensing, perception, integration and synapse) and an adaptation logic 
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with the component engine customized to apply a production-rule system (with an 

introspection component).  

Additionally, the following comparisons were also made: 

a) C1 is compared with the ADAS affect recognition logic.  

b) R2 (AMT) is compared with R3 (Enhanced Tutor). 

 

Table 7.3. Summary of Case Studies Selected for Further Analysis 

ID Deployment 
scenario ADAS AR ADAS 

adaptation 
Probe 

(introspection) Effector 

C1 
  

R1 Scenario A Monomodal  o o 
C3 

 Scenario C Multimodal Conditional o þ 

C4 
 Scenario B Multimodal  o o 

R2 
  

R3 Scenario C Multimodal Rule engine þ þ 

 

The project process measures and software metrics for these projects are described in the 

next chapter. 

 

7.6. Summary 

In this chapter, the case studies conducted to evaluate the approach presented in this 

dissertation were introduced. They exemplify diverse architectural configurations, uses, 

and customizations of the infrastructure and tools, as well as the application of the 

guidelines for the engineering process. Chapter 8 provides measures and metrics related 
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to each project. These measures and metrics characterize the engineering process and the 

products created in diverse scenarios and allow for their comparison. 
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CHAPTER 8 
ANALYSIS OF PROCESS AND PRODUCTS 
 

Three kinds of metrics were collected for each project to quantify the development 

process and the properties of the software product, as described in section 2.4: (1) process 

measures that quantify the involvement of people in the project over time; (2) software 

complexity metrics that quantify the complexity of the software; and (3) software 

structure metrics related to design flaws that quantify the structural complexity of the 

software. These measures and metrics are presented for projects C1, R1, C3, C4, R2, and 

R3. Reports for code complexity metrics generated by RSM are compiled in Appendix C. 

 

8.1. Analysis of Project C1 

Project C1 built an affect recognition logic from scratch. This project is compared with 

the ADAS affect recognition infrastructure. 

 

8.1.1. Process Measures 

This was a two-semester project running from Spring 2013 to Fall 2013. Commits by date 

as registered in the Git repository are summarized in Figure 8.1. From the number of 

commits, it is apparent that the coding activity begins in March 2013, stops during the 

summer, and increases exponentially towards the end of the school year. 

Each commit adds or removes lines in the repository. Figure 8.2 shows the number of 

lines added and removed, grouped by month.  
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The repository finished with 217,463 lines (344,405 added, 126,942 removed) in 114 

files, but only 61 files and 2755 lines correspond to the source code files. The historical 

growth of the number of lines stored in the repository is depicted in Figure 8.3.  

 
Figure 8.1. Commits per month in project C1. 

 

 
Figure 8.2. Lines added and removed per month in project C1. 

 
 

 
Figure 8.3. Number of lines per month in project C1. 
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The project was developed by a 3-member team. However, the contributions submitted to 

the repository suggest that most of the code can be attributed to one author. Table 8.1 

summarizes the information. Authors’ names correspond to the usernames that students 

used in the Git repository. ‘Mentor’ is a wildcard used to represent all of the mentoring 

staff, not a specific person, and the data for the ‘Mentor’ row corresponds to the sum of 

the activities of all the users in the mentoring staff. 

The system has 2,209 LOC in 53 files. Table 8.2 summarizes the development effort. 

 

Table 8.1. Contributions per Author in Project C1 

Author Commits (%) Lines added Lines removed 
Austin 64.36% 335,869 131,786 
Tom 21.81% 930 110 
Matt 10.63% 1,060 163 
Mentor 3.19% 11,643 5 

 

 

Table 8.2. Effort Estimation for Project C1 

Project Staffing (person) Schedule (month) LOC Ratio 
C1 3 7 2,209 105.19 
 

 

8.1.2. Software Metrics 

Table 8.3 shows: (1) a row with the software complexity metrics for project C1; a row 

with metrics for the ADAS affect recognition logic (ADAS AR) which includes the 

packages adas.ar, adas.gui, and adas.toolkit; and (3) a comparison of the two made 

in the final row, where differences are indicated as improved (+), deteriorated (−), or the 

same (0). This will be discussed further later, but for now it is useful to show these side 
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by side for easy reference. The metrics for each of the ADAS packages are presented in 

section 8.7. 

Table 8.4 shows the software structural metrics for the project. The structural metrics are 

calculated for each package. The most significant numbers for project C1 correspond to 

the largest package shown in Figure 8.4, myStuff, which is the core of the project. 

Notice that it occupies a significantly complex part of the dependency graph. Figures 8.4 

and 8.5 depict the composition of project C1 and ADAS AR, respectively. A graphical 

look at the structure of the project components and the ADAS AR provide an overview of 

the extension of both systems. It is worth remarking that project C1 was not fully finished 

and is therefore an incomplete implementation compared to the ADAS AR.  

 

Table 8.3. Complexity Metrics for Project C1 and for the ADAS Affect Recognition Logic 

Package Files LOC DIT NOC Methods 
CC 

Avg. Max. Min. 
C1 53 2,209 1.00 0.07 243 1.58 24 1 
ADAS-AR 61 2916 1.23 0.19 318 1.96 46 1 
Difference 0 + + + + + + 0 

 

Table 8.4. Structural Metrics for Project C1 

Package FAT H Ca Ce I A |D| 
deo 0 0.5 3 1 0.25 0 0.75 
data 9 1.42 0 0 1 0.29 0.29 
myStuff 69 2.18 3 1 0.25 0.03 0.72 
classSerialization 3 1 0 0 1 0.25 0.25 
scriptEngine 1 1 1 1 0.5 0 0.50 
view 3 0.66 0 1 1 0 0 
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Figure 8.4. Dependency graph depicting the composition of project C1. 
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Figure 8.5. Dependency graph depicting the composition of the ADAS AR. 
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8.2. Analysis of Project R1 

Project R1 built a system that corresponds to scenario A, as described in section 3.5.1, a 

monomodal affect recognition system for affect awareness, i.e., a system without 

adaptation capabilities. Project R1 demonstrates the feasibility of implementation for 

scenario A. 

 

8.2.1. Process Measurements 

This was a one-semester project running in Spring 2013. As this project was developed 

by 3 staff members, and had the goal of showing feasibility in the simplest scenario, no 

measures were registered for the process, neither commits per date and author, nor lines 

added or removed per date and author. However, this group reported 4 weeks of 

developing work.  

The system has 181 LOC in one file. Even though 3 staff members participated, one did 

most of the development and the others ran testing and performed studies related to 

emotional expression in virtual worlds, as described in Gonzalez-Sanchez et al. (2013). 

Table 8.5 summarizes effort estimation measures that give a ratio of 181.0 LOC per 

person per month. 

 

Table 8.5. Effort Estimation for Project R1 

Project Staffing (person) Schedule (month) LOC Ratio 
R1 1 1 181 181.0 
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8.2.2. Software Metrics 

The R1 functional logic consists of a single class. The software complexity metrics and 

software structural metrics for project R1 are shown in Tables 8.6 and 8.7, respectively. 

The code complexity metrics show an average complexity for R1. As it is a single-file 

project structural metrics do not apply because cohesion and coupling cannot be assessed 

with a single file, i.e., with a dependency graph with only one node.  

 

Table 8.6. Complexity Metrics for Project R1 

Package Files LOC DIT NOC Methods 
CC 

Avg. Max. Min. 
R1 1 181 1 0 5 8.80 17 1 
 

Table 8.7. Structural Metrics for Project R1 

Package FAT H Ca Ce I A |D| 
R1 0 1 0 0 1 0 0 
 

8.3. Analysis of Project C3 

Project C3, the Pac-Man video game, built a system that corresponds to scenario C, as 

described in section 3.5.3, a multimodal affect recognition and adaptive system. Project 

C3 shows the feasibility of modifying a third-party system to include affect-driven 

capabilities. 

 

8.3.1. Process Measurements 

This was a two-semester project running in Fall 2013 and Spring 2014. Figure 8.6 

summarizes the commits by date as registered in the Git repository. It can be seen that the 

coding was in fact realized in 4 months (in the second semester of the capstone course), 
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during Spring 2014. Each commit added or removed lines in the repository. Figure 8.7 

shows the amount of lines added and removed per month. The repository started with 

approximately 20 files and 3,000 lines; 11 of those files were Java files. These increased 

steadily to 44 files and a total of 5175 lines, of which 14 were Java files with 2,566 LOC. 

Figure 8.8 shows the total amount of lines per month. 

It is evident that of the 5 students involved in the process, 2 were more active than the 

others in the percentage of commits made. Table 8.8 summarizes the information. 

Authors’ names correspond to the usernames that students used to register in the Git 

repository. As in the previous project, ‘Mentor’ is a wildcard term for the mentoring staff. 

 
Figure 8.6. Commits per month in project C3. 

 

 
Figure 8.7. Lines added and removed per month in project C3. 
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Figure 8.8. Number of lines per month in project C3. 

 

 

Table 8.8. Contributions per Author in Project C3 

Author Commits (%) Lines added Lines removed 
Punky Bruiser 28 (34.15%) 2739 978 
Chaotic Ace 27 (32.93%) 6472 5485 
Akhoch 10 (12.20%) 261 58 
Ryan Kral 10 (12.20%) 3276 384 
Aya 5 (6.10%) 651 481 
Mentor 2 (2.44%) 7 1 
 

 

Table 8.9. Effort Estimation for Project C3 

Project Staffing (person) Schedule (month) LOC Ratio 
C3 5 4 2,143 107.15 
 

 

The system has a total of 2,143 LOC, where 1,257 were reused and 886 were newly 

added. Table 8.9 summarizes the comparison. 
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8.3.2. Software Metrics 

Table 8.10 shows the software complexity metrics for the project. The metrics for the 

original Pac-Man video game, for project C3, i.e., the modified game, and the comparison 

are all presented together.  

Table 8.11 shows the software structural metrics for the project. The rows show the 

metrics for the original Pac-Man video game, for project C3, i.e., the modified video 

game, and finally the difference between the two. 

 

Table 8.10. Complexity Metrics for Original Pac-Man Video Game and C3 

Package Files LOC DIT NOC Methods 
CC 

Avg. Max. Min. 
Initial system 11 1257 1 0 75 4.49 21 1 
C3 14 2143 1 0 117 5.86 50 1 
Difference + + 0 0 + + + 0 
 

 

Table 8.11. Structural Metrics for Original Pac-Man Video Game and C3 

Package FAT H Ca Ce I A |D| 
Initial system 22 2.09 0 0 1 0 0 
C3 36 2.64 0 0 1 0 0 
Difference + + 0 0 0 0 0 
 

 

Finally, a graphical look at the interconnection of project components provides an 

overview of the extension of the systems. Figure 8.9 depicts the composition of the 

system. 
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Figure 8.9. Dependency graph depicting the composition of project C3. 

 

8.4. Analysis of Project C4 

Project C4 built a system that corresponds to scenario B, as described in section 3.5.2, a 

multimodal affect recognition and adaptive system. Project C4 shows the feasibility of 

the scenario with a functional logic deployed separately from the adaptation logic. It built 

a functional logic in Unreal Engine 4, which is not considered for analysis, and an 

adaptation logic in Java, the analysis of which is described below. The code analyzed 

includes the final code for the adaptation logic and the testing tools created during the 

process to allow developers to become familiar with the process.  
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8.4.1. Process Measurements 

The C4 project was a two-semester project running in Spring and Fall 2014. The Git 

repository analysis could not be completed because the developers failed to make 

commits regularly. They only recorded 3 commits at the end of the Fall 2014 semester, as 

shown in Figure 8.10. Figure 8.11 shows the amount of lines added and removed per 

month. The repository had 443 lines. The historical growth of the number of lines stored 

in the repository is depicted in Figure 8.12. 

The project was developed by a 5-member team. However, as shown in Table 8.12, only 

one author submitted contributions to the repository, i.e., participated in the Java 

interface. Therefore, all the code was attributed to that individual. Authors’ names 

correspond to the usernames that students used to register in Git repository. ‘Mentor’ 

represents all the members of the mentoring team together. The students focused on the 

game’s aesthetic, i.e., the Unreal Engine development, which justifies the small amount 

of Java code. Only the Java code is analyzed here – a module with 233 LOC having a 

simple adaptation logic and its interfaces. Table 8.13 shows estimated and real effort and 

schedule estimation. 

 
Figure 8.10. Commits per month in project C4. 
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Figure 8.11. Lines added and removed per month in project C4. 

 

 
Figure 8.12. Number of lines per month in project C4. 

 

Table 8.12. Contributions per Author in Project C4 

Author Commits (%) Lines added Lines removed 
chornbeck 2 (66.67%) 439 0 
Mentor 1 (33.33%) 4 0 
 

Table 8.13. Effort Estimation for Project C4 

Project Staffing (person) Schedule (month) LOC Ratio 
C4 1 1.5 233 155.33 
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8.4.2. Software Metrics  

Table 8.14 shows the complexity metrics for the project and Table 8.15 shows the 

software structural metrics for the project. A graphical representation of the 

interconnection of the project components provides an overview of the project extension 

and is presented in Figure 8.13. 

 

Table 8.14. Complexity Metrics for Project C4 

Package Files LOC DIT NOC Methods 
CC 

Avg. Max. Min. 
C4 4 233 1 0 23 2.43 8 1 
 

 
 

Table 8.15. Structural Metrics for Project C4 

Package FAT H Ca Ce I A |D| 
C4 1 0.4 0 0 1 0 0 
 

 

 
Figure 8.13. Dependency graph depicting the composition of project C4. 
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8.5. Analysis of Project R2 

Project R2, AMT, built a system that corresponds to scenario C, as described in section 

3.5.3, a multimodal affect recognition and adaptive system. It implements affect 

recognition and adaptation logics from scratch. The intention is to compare the results 

with another system using the ADAS affect recognition and adaptation infrastructure and 

processes. The composition of the Summer 2013 version of the AMT system is described 

in Gonzalez-Sanchez et al. (2014). The LOC reported here varies slightly from Gonzalez-

Sanchez et al. (2014), as these are from the final version (Fall 2013). The Fall 2013 

version has an increased number of functions and a decreased LOC due to refactoring. 

However, the structure remains the same. 

 

8.5.1. Process Measurements  

This was a 4-year project running from Spring 2009 to Fall 2013. A total of 15 

developers and 4 managers were involved in different stages of the project. A team of at 

least 4 developers worked concurrently at every stage. Diverse versions of an intelligent 

tutoring system with affective companionship and meta-tutoring capabilities were 

released at intervals of 6 months. 

The 4-year implementation process was managed using a SVN revision-control system, 

instead of Git; there was no particular reason except the preference for using SVN at that 

time for the team that began the development. The project comprises more than 1,600 

revisions and 8 released versions. Differences between released versions include, among 

others, changes in requirements, enhancements in decision-making strategies, and bug 

fixing. The final release, with 22,979 LOC in 114 Java files, has an enhanced affective 
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companion and refactoring improvements. Just for reference, the full project has more 

than 100,000 lines in more than 500 files, which include JPG, XML, TXT, CSV, PNG, 

HMM, BSK, form, GIF, JPG, properties, DLL, DRL, HTML, DAT and others formats. 

Figure 8.14 helps to contextualize each stage of production. In 2009 development was not 

the focus of the activities, in 2010 and 2011 development was related to the tutor module, 

in 2011 and 2012 to the meta-tutor module, and in 2013 (and late 2012) to the affective 

companion module (including affect recognition and the companion avatar). This final 

part of the project did not receive many development iterations.  

 

 
Figure 8.14. Commits per date for project R2. 

 
 

The affective companion (AC) constitutes 4,838 LOC in 36 files. But, 574 lines are 

reused from legacy code that provides access to pressure, posture, and skin conductance 

devices. The effort calculated is shown in Table 8.16. 

 

Table 8.16. Effort Estimation for Project R2 

Project Staffing (person) Schedule (month) LOC Ratio 
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AC 4 12 4,838 100.79 
 

 

8.5.2. Software Metrics  

Table 8.17 shows the software complexity metrics for project R2. The system is 

composed of three main packages. The metrics are separated for each and a total 

presented in an additional row. Table 8.18 shows the software structural metrics for the 

project. The dependency graph provides an overview of the project extension and is 

presented in Figure 8.15. Only the AC component hierarchy is detailed inside the box; the 

other packages are shown as dots above the box. The structure of the legacy code appears 

at center of the box. 

 

Table 8.17. Complexity Metrics for Project R2 

Package Files LOC DIT NOC Methods 
CC 

Avg. Max. Min. 
tutor 54 15,418 1.02 0.03 920 3.34 78 1 
MT 24 2,723 1.03 0.03 224 3.50 74 1 
AC 36 4,838 1.10 0.10 360 2.83 54 1 
Total 114 22,979 1.04 0.05 1,504 3.22 78 1 
 

 

Table 8.18. Structural Metrics for Project R2 

Package FAT H Ca Ce I A |D| 
tutor 288 5.35 23 13 0.36 0.03 0.60 
MT 71 3.00 12 11 0.48 0.00 0.52 
AC 75 2.11 11 12 0.52 0.06 0.42 
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Figure 8.15. Dependency graph depicting the composition of project R2, detailing, inside the box, the 
affective companion package structure. 

 

 

Since the AC was not built from scratch but based on legacy code from diverse sources, it 

is necessary to present the metrics of the legacy code. The values are presented below in 

Tables 8.19 and 8.20. Figure 8.16 shows a graphical representation of the interconnection 

of the components provided as legacy code. Notice the similarity with right part of the 

Figure 8.15. 

 

Table 8.19. Complexity Metrics for Legacy Code Used to Create Package AC 

Package Files LOC DIT NOC Methods 
CC 

Avg. Max. Min. 
Legacy AC 8 574 1.33 0.44 32 4.44 15 1 
 

 

Table 8.20. Structural Metrics for Legacy Code Used to Create Package AC 

Package FAT H Ca Ce I A |D| 
Legacy AC 14 1.87 0 0 1 0.12 0.12 
 



 188 

 
Figure 8.16. Dependency graph depicting the composition of the legacy code used to create the affective 

companion in project R2. 
 

 

8.6. Analysis of Project R3 

Project R3 built a system that corresponds to scenario C, as described in section 3.5.3, a 

multimodal affect recognition and adaptive system. It uses ADAS for the affect 

recognition and adaptation logics. It reuses a previous version of the AMT project, but: 

a) removes the meta-tutor. 

b) replaces the AC emotion recognition functionality with ADAS. 

 

8.6.1. Process Measurements 

This was a 2-year project, running from Spring 2015 to Fall 2016. It was developed by 

undergraduate students and led by a graduate student. It mainly focused on improving the 

tutoring and affective companionship capabilities. The goal was to improve and develop 

an intelligent tutoring system with affective companionship but omitting the meta-
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tutoring capabilities. One semester is dedicated to the reengineering of a tutor and one 

semester to the introduction of affect and adaptation. The final release has an enhanced 

affective companion and 1,101 LOC in a total of 4 Java files. The effort calculated is 

shown in Table 8.21. 

 

Table 8.21. Effort Estimation for Project R3 

Project Staffing (person) Schedule (month) LOC Ratio 
R3 2 6 1,101 91.75 
 

8.6.2. Software Metrics  

Two comparisons can be made with the system produced for this project. The first relates 

to affect recognition, and compares the implementation of affect recognition in R2 and 

the implementation of affect recognition in the ADAS infrastructure. The second relates 

to the structure and complexity of the R3 itself and compares it with R2. Both Jess and 

Drools are external libraries, and the rules themselves are contained in separated files. 

The rule engine (Jess or Drools) does not affect the metrics for the tutor implementation 

significantly. Since Jess has been tested with ADAS, it was selected for use here. Table 

8.22 shows the complexity metrics for the project. Table 8.23 shows the software 

structural metrics for the project. 

 

8.7. Analysis of ADAS AR Infrastructure 

As a reference for further discussion, the metrics for complexity and structure for each of 

the packages that form the ADAS infrastructure are presented. Table 8.24 shows the code 

complexity metrics for the ADAS AR infrastructure. In general, an average complexity 
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project; even though maximum cyclomatic complexity in sensing and toolkit.data 

point out refactoring of a couple of methods is required in each package. The ADAS 

framework uses self-contained components that have high cohesion and low coupling. 

The cohesion is quantified by two metrics and the coupling by three metrics. Table 8.25 

shows the structural metrics. Figure 8.17 shows a graphical representation of the 

interconnection of the components in each of the packages that form the ADAS 

infrastructure. The dependency graph facilitates an appreciation of its simplicity and its 

cohesion properties. 

 

Table 8.22. Complexity Metrics for Project R3 

Package Files LOC DIT NOC Methods 
CC 

Avg. Max. Min. 
tutor 46 8,363 1 0 562 2.81 66 1 
ele 4 1,101 1 0 49 3.27 16 1 
Total 50 9,464 1 0 611 3.04 66 1 
  

 

Table 8.23. Structural Metrics for Project R3 

Package FAT H Ca Ce I A |D| 
ele 3 1.00 15 27 0.64 0 0.36 
tutor.audio 0 1.00 8 1 0.11 0 0.89 
tutor.comm 2 1.00 12 2 0.14 0 0.86 
tutor.data 8 1.12 16 6 0.27 0.25 0.48 
tutor.dialogs 1 0.20 7 15 0.68 0 0.32 
tutor.gui 7 0.88 5 12 0.71 0 0.29 
tutor.log 0 1.00 14 6 0.30 0 0.70 
tutor.model 25 3.25 19 25 0.57 0 0.43 
tutor.parser 8 1.80 7 6 0.46 0 0.54 
tutor.plot 0 1 1 4 0.80 0 0.20 
 

Table 8.24. Complexity Metrics for ADAS AR Infrastructure 

Package Files LOC DIT NOC Methods CC 
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Avg. Max. Min. 
sensing 12 461 2.08 0.92 44 2.05 15 1 
perception 7 42 0.96 0 14 1.00 1 1 
integration 3 94 1.67 0 16 1.19 2 1 
introspection 2 33 1.00 0 10 1.00 1 1 
behavior 3 44 0.67 0 4 1.50 2 1 
engine 4 51 1.00 0 13 1.08 2 1 
toolkit.comm 2 143 1.00 0 12 2.58 8 1 
toolkit.net 3 204 1.33 0 18 2.17 8 1 
toolkit.data 13 608 1.08 0.08 91 1.99 46 1 

 
 

Table 8.25. Structural Metrics for ADAS AR Infrastructure 

Package FAT H Ca Ce I A |D| 
sensing 15 1.33 15 14 0.48 0.33 0.18 
perception 4 0.71 3 1 0.25 0.43 0.32 
integration 1 0.66 1 3 0.75 0 0.25 
introspection 1 1.00 3 0 0 0 1.00 
behavior 2 1.00 1 5 0.83 0.33 0.17 
engine 4 1.25 3 3 0.5 0.25 0.25 
toolkit.comm 1 1.00 1 5 0.83 0 0.17 
toolkit.net 1 0.66 14 2 0.12 0 0.88 
toolkit.data 19 1.53 24 0 0 0.08 0.92 
 

 

8.8. Summary 

Process measures and software metrics for the quantification of the complexity and 

structure of the six selected projects were presented in this chapter. In addition, the 

metrics for the ADAS affect recognition logic are included for the purpose of 

comparisons with projects C1 and R3. Comparisons of these findings and a discussion of 

their relevance to implementing affective adaptive systems using the approach proposed 

in this dissertation are presented in the next chapter, supported by the data presented here.   
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Figure 8.17. Dependency graph depicting the composition of ADAS packages. 
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CHAPTER 9 
EVALUATION AND DISCUSSION OF RESULTS 
 

The empirical evaluation of ADASPL entails an in-depth demonstration of the SPL 

approach by applying the common and reusable architecture, infrastructure, and 

processes, while customizing pieces for representative case studies. The empirical 

evaluation of the SPL approach is both qualitative and quantitative as it involves: 

a) the validation of achieved results and the products created, under diverse conditions. 

b) the validation of the cost-effectiveness of the engineering effort required to achieve 

the results. 

c) the validation of the potential capabilities of the SPL assets (architecture and 

infrastructure) and understandability of the process.  

For each of these points, a claim was made and the case studies allow the claim to be 

evaluated, as discussed in the following sub-sections of this chapter. The analysis of the 

achieved results in terms of product usability is also commented upon.  

 

9.1. Claim of Generality for Broad Deployment 

In Chapter 1, the relationship between generality and the use of a model and an 

infrastructure is described. Both the model and the infrastructure impact on improving 

generality. They support the assembly of a broad range of products with diverse 

functional dimensions. Products are created and then assessed in terms of algorithmic and 

structural complexity. The software quality attributes of reusability, flexibility, 

extendibility, and maintainability are evaluated for each product using software metrics. 
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The purpose of this evaluation is to assess the success of the assembly process for quality 

products, more specifically whether the infrastructure provides the desired functionalities 

in a relatively convenient way, while allowing flexibility in the selection of sensing 

devices, fusion methods, and adaptation algorithms and maintaining system quality 

attributes.  

The evaluation of the developed products has two aspects: 

a) demonstrating the quality and functionality achieved through the application of the 

architecture and infrastructure to create sample applications that show how to use and 

customize the infrastructure. For practical reasons, this evaluation targets a 

representative subset of systems and their functional dimensions. The evaluation was 

performed with representative systems (C3, C4, C5, C6, and R1), and their quality 

was measured using complexity and structural metrics; these measures enable a 

discussion of the necessary trade-offs. 

b) providing an in-depth demonstration in a complex real-life system; I use an intelligent 

tutoring system, operating in the science-learning field. A comparison is made 

between the systems developed with (R3) and without (R2) the use of the ADASPL 

approach. 

 

9.1.1. A Set of Sample Applications 

A key aspect of the demonstration of generality is the application of various parts of the 

ADASPL approach under diverse conditions; in this chapter, generality is demonstrated 

through the implementation of 9 systems. The systems were developed under the 

following diverse conditions: 
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a) Developers: teams of 3 to 6 CS, CSE and informatics BS students. 

b) Goals: virtual world avatars, intelligent companions, games, and tutoring systems. 

c) Languages to implement functionality: Java, but also C++, C#, and interfaces with 

Unreal Engine 4 and Unity. 

d) 3 scenarios with the architecture covering affect awareness and affect adaptation, as 

well as monomodality and multimodality. 

Of these 9 systems: 2 failed to be completed; 3 were submitted as demos or posters to 

conferences on gaming and user interfaces, of which 2 were accepted for presentation and 

publication; 1 was a 4-year NSF-funded project used to run several studies and generated 

diverse publications; and 1 is to be used as a tool in a PhD dissertation. 

The 9 systems represent 3 groups of closely related projects used for analysis and to 

assess the quality of the results achieved: the first is represented by C4 and includes C6 

and C5; the second is represented by R1 and includes C7 and C2; and the final group is 

represented by C3 and also includes C8. From the metrics in Tables 8.7, 8.8, 8.11, 8.12, 

8.15, and 8.16 in Chapter 8, the following observations can be made for each of these 

groups:  

a) R1: simple affect awareness in one file with 181 LOC. All metrics sustained a low 

complexity level. The average cyclomatic complexity of 8.80 is due to the 

functionality implementation (if-else conditions triggering events). Simplicity is also 

supported by perfect structural metrics. 

b) C3: extension of an affect aware video game based on legacy code. There was an 

obvious increment in files and methods, but this did not correspond to a considerable 

increment in LOC. It seems that a decision logic to trigger events in the game logic 
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was implemented and nested in a small number of methods, which would explain the 

maximum cyclomatic complexity of 50, and therefore the increment in the cyclomatic 

complexity average. Even though a cyclomatic complexity of 50 is a red flag (it 

exceeds the recommended limit of 10 and even the warning limit of 20), it is not due 

to the inclusion of the ADAS infrastructure, but rather due to the developer’s ability 

in implementing the functional logic. The game uses ADAS for affect recognition but 

not for the adaptation logic. Regarding structural complexity, FAT and H increase but 

remain within the acceptable range, below 60 and in the range of 1.5 to 4.0, 

respectively. The slight increase from the original is justified by the added 

functionality. As expected, distance, stability, and abstractness do not change. 

c) C4: a game built from scratch using a 3D engine. A small amount of files and a low 

LOC were required. to interface ADAS with the game engine. Game-engine coding 

effort is not considered here. The small system justified the low DIT and NOC: a 

figure of 23 methods with an average cyclomatic complexity of 2.43 is considered 

acceptable. The refactoring of one method that had a cyclomatic complexity of 8 

would be desirable. Structural metrics indicate that the package has low cohesion, 

probably due to its simplicity, and is therefore fully unstable (easy to change) and 

concrete. 

In general, starting from scratch, modifying legacy code, using one common 

programming language, or even linking with external engines did not create a complex 

system. In all circumstances system metrics were acceptable and the complexity related 

to affect recognition is well isolated from the system functionality. 
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9.1.2. Comparison of Real-Life Systems with and without ADAS Infrastructure 

The comparison of R2 and R3, real-life systems with years of development and a diverse 

and extended team, based on the metrics shown in Tables 18, 19, 20, 21, 22 and 23 in 

Chapter 8, suggests the following:  

a) The original system complexity reflects years of work; the complexity of the methods 

is manageable with an average cyclomatic complexity of 3.5. But the system has 

cases that reflect a poor partition of responsibilities in general. However, the AC 

package deserves attention here as having the lowest complexity of the three. 

Problems with this system in fact derive from the structure more than the complexity 

of the programming. The structural complexity metrics for the AC have a FAT value 

of 76 (above the limit), and even though H is within the accepted limits, the structure 

in Figure 14 reflects a lack of architectural design. The high distance (0.42) can be 

attributed to the lack of abstractness, even though instability is balanced. 

b) To create the AC in R2, 32 methods in 8 classes were provided as legacy code for 

reading sensing devices. The legacy code’s cyclomatic complexity is acceptable 

(4.44). The legacy code’s structure is well-established, and the encapsulating package 

is non-FAT with H of 1.87. The 0 values in metrics Ca and Ce for the legacy code 

imply that it is not being used (i.e., is not connected with other packages, for instance, 

a functional logic). Thus, instability and distance are not really significant when 

measured for the package alone. Focusing on complexity, note the increment from a 

maximum cyclomatic complexity of 15 in the legacy code to a maximum cyclomatic 

complexity of 54 in the AMT AC. Even though the average is lower for the AC 

(2.83), this can be attributed to an increase in the number of methods from 32 to 360. 
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The legacy code supported affect recognition, which is a significant part of R2, AC, 

but not its full functionality. The companion, its intelligence, and its integration with 

the tutor and meta-tutor form a complex system. Numbers show that the difficulties in 

the AC are not inherited from the code used to read the sensing devices. 

c) R3 uses the tutor module of R2, removes the MT modules of R2, and reengineers the 

AC using ADAS. The numbers for the AC engineered for R3 show a slight 

improvement in code complexity and a noticeable improvement in structural 

complexity. So, the new approach does not affect the functionality, nor does it 

increase the size or code complexity, but it does improve the structural quality. The 

new structure has low coupling and high cohesion – a key strength for 

understandability, extensibility, and maintainability. 

 

9.2. Claim of Cost-effectiveness of Engineering Effort 

The cost-effectiveness of the engineering effort required to use ADASPL is an important 

validation, as it establishes that the traditional approaches to developing new systems 

requires significant duplication of effort and, consequently, higher costs compared with 

the use of ADASPL. Chapter 1 described the relationship between cost-effectiveness and 

having an infrastructure and process guidelines. Both the infrastructure and the process 

guidelines impact on improve cost effectiveness.  

Measuring the engineering effort to develop a software system, on an absolute scale and 

independently of human factors, is a challenging task. It is dependent on the ease-of-use 

of the approach, its understandability, and the potential reusability of the approach’s 

technical solution. 
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To quantitatively and qualitatively assess cost-effectiveness requires the following tasks: 

a) demonstrate that the approach saves time and development effort for engineers by 

characterizing the self-adaptation tasks and providing a coarse-grained, task-based 

estimation of effort.  

b) assess the effort savings with the proposed approach relative to current practices.  

To show effort savings, 

a) I characterize the development tasks and provide a coarse-grained, task-based 

estimation of effort (for C3, C4, and R1). I then compare these with the estimations 

calculated by an algorithmic software estimation model based on current practices. 

b) I qualitatively assess and evaluate the effort savings for self-adaptation by comparing 

the implementation of a complex real-life system with and without the proposed 

approach. 

Each of these is discussed in detail below. 

 

9.2.1. Capstone Team Effort versus Estimation Effort  

An immediate success can be claimed in that of the seven capstone teams involved in 

applying the approach, all successfully achieved partial or full completion of their 

projects with the desired capabilities, and the two that did not succeed in doing so appears 

to have experienced team management problems rather than issues with the project itself. 

Now, let us consider the details regarding time savings and ease-of-use as relevant to the 

understandability of the approach.  

Chapter 8 provides information regarding the time frames and deployments of the 

projects used to test this approach. From the information in Tables 8.8, 8.12, and 8.16 it is 
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possible to identify the following:  

a) C3 is estimated to take 5 months, with an effort of 2.6 person-months, to produce a 

total of 2,143 LOC. This capstone project was scheduled for an entire year, but the 

development logs show that it was realized over 4 months by 5 developers. However, 

it was observed that 2 developers made 67% of the commits. Therefore, arguably, C3 

could be a 4-month project completed with an effort of 3 person-months. 

b) C4 is estimated to take 2.8 months with an effort of 0.4 person-months to produce 233 

LOC. This capstone project was scheduled for 1 year, but the development logs show 

that it was realized over 2 months by 1 developer (omitting the game environment, 

and just considering the game logic and its interface with ADAS). In this case, reality 

closely resembles the estimation.  

c) R1 is estimated to take 2.5 months with an effort of 0.3 person-months to produce 181 

LOC. This project was realized during 1 semester; it was not formally measured but 

reported to have been completed in 1 month by 1 developer. The reality seems close 

to the estimation. 

In these three cases, it can be said that the time taken to develop this kind of project using 

the ADASPL approach does not differ from the estimation of similar projects in other 

contexts and domains. The application of the ADASPL approach does not add 

complexity to the implementation of functionality, although the estimated functionality 

includes interfaces and code related to connection with the ADAS infrastructure. 

Moreover, it removes the effort related to affect recognition and its inclusion in the 

project. 
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9.2.2. Research Staff Effort with and without ADASPL 

A comparison of the effort needed to implement affect-driven adaptation capabilities 

using ADAS with those needed for the same task using a different approach is measured 

in real-life research projects R2 and R3. The effort required for R2 and R3 is compared 

below.  

 

Project R2  

It is important to remember that R2 implementation has fixed sensor devices, and a 

synchronization approach and emotional state model are implemented. Metrics indicate a 

reduced development time in R2 compared with an estimated for a project with similar 

characteristics. Arguably, the structural metrics could suggest that the quality of the 

software design was sacrificed to deliver the project on time.  

The AC functionality (to improve learning) was not fully achieved (VanLehn et al. 2014), 

which may have been due to limitations in the affect recognition performance. Related 

research has produced positive results with similar approaches (devices and models) 

(Arroyo et al. 2009).  

Notice that in Figure 8.14 the number of commits (i.e., work activity) related to the AC 

(June 2012 to July 2013) is ineffectively low compared to the commits related to the 

creation of the tutor and meta-tutor. As a whole, a low level of commits does not 

necessarily indicate fewer LOC, but it relates to the collaboration process behind the 

composition of the code, especially considering the fact that different developers were 

involved. 
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Project R3  

The effort for R3 was not measured for all steps. However, it begins with an earlier 

version of R2 and makes the following changes: 

a) it removes the meta-tutor; 

b) it removes the AC; 

c) it fixes memory leaks in the tutor; 

d) it replaces the AC with ADAS with the intention of including new sensor devices 

(Emotiv headset and eye-tracking); and 

e) Drools is replaced by Jess as a result of the introduction of ADAS. 

The data in Table 8.20 corresponds with our expectations based on these changes. A 

reduction in LOC is expected, and at least 574 lines from the legacy AC are removed, as 

well as the integration and emotional state modeling code, but, the size of the AC stays 

large. This is perhaps due to its GUI. However, the metrics in Table 8.21 show substantial 

improvement in structural complexity. In summary, 

a) there is no substantial difference in terms of code size, and. 

b) there is a significant difference in terms of potential extensibility and modifiability. 

Therefore, although the data did not indicate a substantial contrast, the real impact of 

these projects relates to the cost of future changes. For instance, changing the emotional 

state model, using new sensing devices, or changing inference algorithms can be 

expected to have a lower cost in R3 than in R2. 

Adaptations run with the Drools rule engine achieve similar results as those run with Jess. 

The separation of the adaptation rules from the system is a positive feature of both R2 

and R3. 
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Finally, regarding understandability, both the team developing R2 and the team 

developing R3, were knowledgeable of affect recognition, adaptation, and rule engines 

topics. Thus, models and patterns to support understanding of the field cannot be 

evaluated for these projects.  

 

9.3. Claim of Feasibility 

In relation to feasibility, I focus on the operational factors showing ADASPL as a 

dependable, low-risk, high-payoff practice, particularly intended for use by engineers 

with limited experience. Chapter 1 described the relationship between feasibility and 

having a model and an infrastructure. Both the model and the infrastructure impact on 

improve feasibility. Operational feasibility is inherently related to: 

a) understandability, i.e., enabling engineers to use the architecture, customize the 

framework, and follow the guidelines. It abstracts away fine-grained details, and in 

the process allows domain experts to define adaptation choices and compose 

adaptation strategies. 

b) the use of high quality tools, i.e., an architecture that guides software engineers in the 

process targeted to achieve composability, and an infrastructure targeted at 

manufacturing diverse kinds of systems provides reusability.  

On the one hand, regarding understandability, a qualitative evaluation shows whether the 

SPL is understandable. I assessed the expressiveness of the approach and the way it 

facilitates an understanding of how to engineer affect recognition, affect awareness, and 

affect-driven self-adaptation capabilities. The assessment was accomplished by surveying 

developers and qualitatively analyzing their achievements. Particularly, analyzing 
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whether the architecture and patterns provide constructs to specify strategies for different 

requirements, support to combine those constructs meaningfully in diverse dimensions, 

and mechanisms to automatically select and carry out adaptations that integrate strategies 

for achieving multiple objectives. This evaluation collected data from the developers’ 

experiences to inspect the balance between the simplicity and the power of the 

framework, i.e., validating whether the practice is low risk and high payoff with the 

provided resources and guidance.  

On the other hand, regarding assets, an in-depth formal analysis of the architecture is not 

performed due to time constraints and the fact that the architectural model is an 

adaptation of related models applied in the self-adaptation field, but an empirical analysis 

is run. This analysis of the infrastructure evaluates its functionalities and qualitatively 

demonstrates its capabilities. The infrastructure validation considers factors inspired by 

Cheng, Garlan, & Schmerl (2005), who evaluate assets for self-adaptation driven by 

resource-related issues. The evaluation of the infrastructure measures its complexity and 

structure, as well as comparing it with an attempt at implementation from scratch.  

 

9.3.1. Understandability of Process as a Result of Architecture and Patterns  

The developers’ understanding of the architecture, framework, and guidelines was 

surveyed and found to be fair, and its integration with libraries, engines, and other 

frameworks found to be feasible.  

To evaluate whether the process was understandable, developers were asked to explain it. 

Each team was asked for a group presentation and a video. They were given the 

following specific instructions: 
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a) Make a final 15-minute presentation on the project to entire whole class. One constant 

in every team’s presentation was the use of a slide to present the stages of the affect 

recognition and adaptation logics as separate from the logic of their project. Another 

constant was the use of one slide to explain their understanding of the PAD emotional 

state model as a cornerstone of how emotions are combined.  

b) Make a 1- to 3-minute video explaining their project. In this video they black-boxed 

the complexity of the process, mostly showing the hardware they were using and 

presenting ADAS as a platform that provided them with what they needed to deal 

with affect and emotion representation. 

Figure 9.1 shows examples of how students modeled the process. They understand the 

process and explain it in a public presentation. Sensing, adaptation, and system 

functionality are clearly separated and intended to be explained as communicating 

entities. 

 

 
Figure 9.1. Student team slides: (a) an affective companion for a tutor; (b) a video game environment. 
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9.3.2.  Quality of Infrastructure 

Complexity. The ADAS infrastructure provides functionalities manufactured through 

several interactions. The complexity metrics from Table 8.24 in Chapter 8 show: 

a) Packages are below the suggested threshold of 1,000 LOC per class. Packages with a 

relatively high LOC are: (1) the package that provides encapsulation for data handling 

(608 LOC), where several LOC are from getter and setter methods, constructor 

methods, and auxiliary methods, and (2) the sensing package (461 LOC), which 

implements the hardware devices in use. These two packages represent a substantial 

portion of the work that the framework alleviates. 

b) DIT and NOC are below the thresholds (2-5 and 0-10, respectively), which for a 

framework seems acceptable. It should be taken into account that the extensibility 

goal of the framework keeps it in low values for these metrics, so that when used 

(extended) the target system’s metrics are not jeopardized.  

c) Cyclomatic complexity mostly stays below the suggested standard threshold of 10. It 

is relevant to notice that the complex packages are those providing key 

functionalities: reading physical ports for data collecting (2.58), networking (2.17), 

and data handling (1.99) and the sensing package, which handles sensor devices 

(2.05). The complexity of these key task implementations is known and has been 

described in previous chapters. The maximum complexity for the sensing and data 

packages (15 and 46, respectively) suggests that methods in each package might 

require refactoring. 

Having a low complexity and good understandability proves the framework’s potential to 

be reused, extended and modified. 
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Complexity in the infrastructure is compared with complexity of C1 as follows: 

a) C1 and ADAS AR have the same amount of files even though C1 implements less 

functionality than ADAS and ADAS has a higher number of LOC.  

b) DIT and NOC are higher in ADAS but not significantly. They are acceptable for both 

systems. 

c) The number of methods in ADAS is higher in accordance with the increase in LOC 

and increased functionality implementations. 

d) Average cyclomatic complexity is slightly higher in ADAS, clearly raised by a 

particular method that could be refactored (represented by the maximum value 46).  

Complexity in general is closely similar in both systems; however, C1 implements less 

functionalities than the ADAS AR. 

Structure. The structural analysis of the infrastructure shown in Chapter 8, Table 8.25, 

shows: 

a) The FAT levels of the infrastructure packages are far below the limit (60). The FAT 

level is so low that the dependency graph for each package is simple and readable, as 

shown in Figure 8.17 in Chapter 8. The packages are slim point in favor of low 

complexity, maintainability and understandability. 

b) The average H is below the suggested lower threshold (1.5 - 4.0). However, for the 

packages sensing and toolkit.data, H is near the lower threshold of 1.5. The 

other packages are mostly interfaces or abstract classes, and so the metric does not 

apply to them. It can be said that cohesion is satisfactory in general. 

c) Ce and Ca highlight the large amount of classes that the sensing package depends on 

and the large number of classes using sensing, toolkt.net, and toolkit.data. 



 208 

This seems normal given that sensing is the starting point for the process, 

toolkt.net is the foundation for communication in the agent-based architecture, 

and toolkit.data supports every step in the process. 

d) Even though the recommended threshold for D, 0.1, is surpassed by all packages, they 

remain close to the ideal main sequence, with the exceptions of toolkit.data 

(0.92), toolkit.net (0.88), and introspection (1.00). Looking at I and A for 

these three cases shows them to be almost 0. This puts those packages in the pain 

zone. It suggests the need for refactoring to increment A, since the high Ca value of 

these two cannot be avoided.  

Overall, the infrastructure has acceptable cohesion, is well suited to internal coupling, and 

has potential for good external coupling. The structural complexity is well-suited for a 

framework, even though refactoring could arguably slightly improve the metrics to put 

them closer to the ideal thresholds. 

Moreover, comparing the ADAS affect recognition metrics with the metrics of the 

attempt at implementing affect recognition from scratch (project C1), it can be seen that: 

a) FAT problems with C1 are evident in Figure 8.4 of Chapter 8, particularly the 

myStuff package, which seems to have the full implementation of C1 functionality. 

The increase in FAT levels for both projects clearly indicates a warning regarding 

C1’s structure. However, H stays within the recommended limits, suggesting an over-

populated package (several relevant classes in one container) instead of a dependency 

problem. 

b) Notice that most of C1 is stable while most of the ADAS affect recognition is 

unstable. Thus, ADAS affect recognition is less resilient to change. Note that the pain 
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zone (A=0, I=0) for ADAS is strongly enclosed in the packages related to networking 

and data handling, while C1 fails to show a defined structure and encapsulates almost 

everything in a single package. C1 extensibility and maintainability is complex. 

The structural complexity of C1 shows resilience to change, limited modifiability and 

therefore reduced reuse possibilities. This demonstrates the importance of the ADAS 

affect recognition implementation and that its use represents a good choice for 

developers, even though the ADAS framework itself could benefit from the refactoring of 

localized classes and methods. 

 

9.4. Product Quality and Usability 

Since there is a considerable amount of work showing that affective support is good, I 

only show that SPL products correspond to those that have been shown to be beneficial. 

An evaluation of the users’ experiences need to be analyzed carefully since several 

factors are involved: the users’ experiences are in part due to the functionality offered by 

the product, i.e., software components external to the SPL, and in part due to the qualities 

and operation of the assets provided by the SPL and the accurate application of the 

processes and guidelines by the developers involved.  

I argue that the manufactured products are along the lines of what has been shown to be 

beneficial.  

Evaluating the user experience entails measuring the following: 

a) Product performance. This related to whether the timing of both the adaptation of the 

target system and the monitoring of affect is able to show results that make the user 

“feel” the computer understands his/her feelings in real-time. It is important to 
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consider that, if the adaptation or the affect measurements undergo a delay, the 

achieved adaptation will not be relevant anymore. This evaluation is informal and 

obtained by surveying a set of users.   

b) Overheads caused by adding ADAS implementation to the execution of the target 

systems. The behavior of a systems in an affect-driven self-adaptive version and a 

traditional non-adaptive and non-affective version were compared.  

User surveys suggest that for the specific population used in the experiment, the user 

experience caused by self-adaptation and affect measurements achieved in the products 

created with the proposed approach positively impact human-computer interaction, i.e., 

the use of affect to drive adaptation within the framework components is shown to be 

viable in diverse contexts with the integration of diverse sensing devices. This is 

specifically evidenced by, 

a) Virtual world avatar demos at ACII. 

b) Modified Pac-Man video game demos at UIST. 

c) Three gaming systems tested and demonstrated as capstone projects between Spring 

2013 and Fall 2015 and two more at the end of Spring 2016. 

Finally, the reviewer’s comments on the papers submitted by students to conference 

demos included the following:  

§  “Having such a full multimodal framework is clearly the main strength of the 

proposed system and as such it deserves to be presented as a demonstration.” 

§  “An interesting demonstration of a multimodal framework; I suggest authors to 

dedicate some time at the demo to present the framework and its potential.” 
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9.5. Summary 

A suite of 9 systems were developed, each applying ADASPL. Only 2 failed to achieve 

its objectives; 3 were submitted as demos or posters to conferences on gaming and user 

interfaces; and 2 were accepted for presentation and publication. One was a 4-year NSF-

funded project used to run several studies and generate diverse publications. An 

immediate success can be claimed in that of the 7 capstone teams involved in applying 

the approach, all successfully achieved partial or full completion of their projects with the 

desired capabilities, and the group that did not succeed in doing so appears to have 

experienced team management problems rather than issues with the project itself.  

Evaluations discussed here included: (1) applying the approach to manufacture several 

systems; (2) quantifying the quality of these systems; (3) reviewing the time frames and 

deployments for the projects; (4) comparing the effort needed to implement affect-driven 

adaptation capabilities using ADASPL with that needed for the same task using a 

different approach; (5) an informal evaluation surveying developers’ understanding of the 

process; and (6) an informal evaluation surveying the users’ experiences that suggests 

that the achieved results positively impact on the human-computer interaction. 
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CHAPTER 10 
CONCLUSION AND FUTURE WORK 
 

In conclusion, the data shows that the ADASPL approach has promise. The research 

hypothesis stated that the proposed approach makes it feasible to include affect-driven 

adaptive capabilities while helping to reduce engineering effort, with a reduction in the 

perceived complexity, for assembling generalized components. And, results confirm this 

feasibility and suggest a decrease in development effort compared to previous 

experiences; developers who applied the ADASPL approach completed a broad set of 

systems in the affect-driven self-adaptation domain on time in almost all cases, and they 

were able to focus on the system functionality rather than the complexity of 

implementing an infrastructure for affect recognition or self-adaptation. Furthermore, 

applying ADAS reduced testing time. Broadly, it can be stated that the use of the ADAS 

framework through ADASPL favors the quality attributes of understandability, 

reusability, flexibility, extendibility, and maintainability. However, limitations also 

surfaced and are important to mention, they present opportunities for improvement and 

can be used to prioritize future work. 

 

10.1. Promising Results 

Our evaluation suggests that it is feasible to achieve cost-effective, affect-driven self-

adaptation using generalized assets; although, it is worth noting that ADASPL rests on 

some important assumptions: (1) it is assumed that sensing devices and their software 

drivers were available and configured in the object machine, or the developers received 

support for their installation in their own computers; and (2) it is expected that the 
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developers’ expertise included threading and networking communication flow (TCP/IP 

sockets), software design patterns, and that they were knowledgeable in object-oriented 

programming concepts of interfaces, abstract classes, and overriding. 

Generality. The results from case studies run with ADASPL seem favorable to affirming 

that it is possible to generalize the assets and processes dealing with the inclusion of 

adaptation driven by human factors, such as affect. Products assembled with the ADAS 

infrastructure following the ADAS architecture show exceptional results when measuring 

structural qualities and do not cause an increase in code complexity when added to 

existing systems nor in new systems compared with implementations from scratch 

following other approaches. For researchers in the area, ADASPL supported the 

development of a research application that compared with a similar one developed 

without the ADASPL approach showed improved structural characteristics and therefore 

flexibility, extensibility, and maintainability. 

Feasibility. The results of having developers using ADASPL indicate the feasibility of 

the ADASPL process, i.e., that it is easily accessible for even inexperienced developers to 

use it in the long-term. ADASPL provides foundational common tasks and structural 

composition allowing developers to better take advantage of new technologies and focus 

on exploring their creativity. For novices in affect and adaptation (undergraduate senior 

students), ADASPL provides the opportunity to understand and practically apply affect 

recognition and affect-driven adaptation. Further, ADASPL helped developers to 

perceive HCI features (such as affect recognition capabilities) as not being overly 

complex. 
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Cost effectiveness. Measuring the development time and the size of the project developed 

shows that effort is comparatively lower using this approach than developing from 

scratch. This represents an advancement in the field since building affect-driven self-

adaptive system such as the ones outlined in Chapter 7 are a costly proposition if 

important components such as the affect monitoring, adaptation, and translation 

mechanisms have to be built from scratch, particularly when there is no guideline 

indicating where to start or how to proceed.  

User experience. Moreover, after testing their products with users, developers informally 

surveyed the users and received positive responses stating that adaptation and affect 

recognition represent improvements in the user-experience and the system’s potential to 

achieve its goals. Empirical results suggest that ADASPL helped developers to 

manufacture enhanced products, especially designs that seek to improve user experience. 

However, it is important to mention that a possible source of bias in the developer 

experience could relate to the excitement of senior students learning about HCI concepts 

and using state-of-the-art devices. Even though it does not change the feasibility results, it 

creates a bias in the engineering process and perhaps also in the user experience. 

 

10.2. Future Work 

Future work to be considered in the short term includes the following:  

a) Framework improvements will need to be implemented. As in any framework or 

library, iterative improvements are part of the software development life cycle. The 

most important quality to be addressed is performance.  



 215 

b) A memory-leak was reported, which caused problems after the prolonged operation 

of the affect recognition threads (after approximately one hour).  

c) Moreover, a refactoring could improve the ADAS quality attributes.  

d) The complete developer’s documentation is to be published online. 

In the medium term, future work consists of addressing the following in the affect 

recognition logic: 

a) Sensing. There are opportunities for future work on the sensor-computer integration. 

So far, the channel to integrate them uses a USB or serial port, or realizes a network 

connection. All sensors in the suite included in ADAS framework satisfied this 

requirement and extensions to include new sensors are possible as long as they use 

these connection channels. 

b) Perception. There are opportunities for future work on the incorporation of additional 

inference algorithms in the ADAS framework. Inference algorithms included in 

ADAS framework encompassed these for the in-house sensors, described in Chapter 

2, and interfaces to the native algorithms provided with commercial off-the-shelf 

devices.  

c) Integration. There are opportunities for future work on the incorporation of additional 

synchronization and fusion algorithms in the ADAS framework. The synchronization 

method included in ADAS framework is a state-machine method which, instead of 

considering an affective state to exist only in the period of time equivalent to the 

sample, assumes that the state persists until a new state is obtained. The fusion 

method included in the ADAS framework maps each affective state measurement to a 

vector in the 3D emotional state model and adds up all of the vectors. 
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d) Synapse. There are opportunities for future work on the incorporation of additional 

data streaming to the ADAS framework. Synapse functionality in ADAS is provide 

with TCP connections among agents and the central control unit and among the 

central control unit and the adaptation logic. TCP provides a point-to-point channel 

for applications that require reliable communications. However, the reliability of TCP 

causes performance degradation and may hinder the usefulness of the service. Other 

approaches, such as UDP, can be explored. 

Also, in the medium term, future work consists of addressing the following three topics in 

the adaptation logic processes: 

a) Distributed adaptation logic. The value of separating the deployment of the affect 

recognition logic from the adaptation and functional logics was proven, since 

developers must trade affective adaptive capabilities off against functional quality 

attributes (such as system performance). For instance, running affect recognition and 

adaptation mechanisms on the same computer with the Pac-Man video game was not 

problematic; however, running affect recognition and adaptation mechanisms on the 

same computer with a game created using sophisticated 3D game engines was shown 

to be risky in some instances. Moving affect measurements to a second computer was 

shown to be feasible even though this was susceptible to network issues. However, 

the application of the same principle to separate the deployment of the adaptation 

logic and functional logic, connecting them using a networking connection, was 

neither considered nor evaluated. 

b) Multi-users. The case studies run considered the implementation of systems that adapt 

to the affective states of one user, to which was attached one or more sensors. Sensors 
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report to agents, agents to their central control unit, which reports to the adaptation 

logic. Having a system adapt to the combined affective states of more than one user 

implies attaching one or more sensors to each user, running their respective agents 

and one central control unit for each user to combine the measures of the agents 

handling the sensors attached to that user. Running several copies of agents and 

central control units is proved to be possible. However, tuning needs to be done to 

specify mechanisms that allow the configuration of which central control unit each 

agent is connected to. Similarly, tuning is needed for an adaptation logic to include 

more than one gauge-point, each of which is to be connected to a central control unit.  

A central control unit, with their corresponding agents, is intended to handle 

multimodal affect recognition, informed by a group of sensors attached to one user. 

Having one adaptation logic connected to multiple central control units can trigger an 

adaptive reaction, driven by multiple users signals. While it has not been tested we 

see no conceptual barrier or limitation to ADASPL been rapidly tuned for systems 

with multiple users. However, this remains to be confirmed, through actual 

experimentation and implementation.  

c) Handling adaptation rules. The ADAS framework provides two approaches to 

handling adaptation rules: (1) interfaces to implement adaptation rules as a method 

with condition-action pairs; and (2) interfaces to include the Jess rule engine. Future 

work can explore a third option: creating an interpreter for an ad-hoc defined domain-

specific language able to facilitate, among others, the representation of affect 

quantification and the prior history of outcomes. A language that can combine the 

imperative specification of procedural algorithms and the declarative specification of 
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decisions. Such a type of language has been already applied to others domains of 

adaptation (Cheng & Garlan, 2012), for instance, being able to ask “user is in a 

pleasured mood then…” instead of a conditional “(pleasure >= 0.5)” or having to 

create a list of pleasured emotions “(state == excited || state == engaged || state == 

meditation ...)”; similarly, it allows the creation of expressions such as “user is bored 

but user was engaged in the activity before the current one then…”. 

Furthermore, it is important that the ADAS infrastructure incorporates the storage of the 

collected data, both affect measurements and system status, which is of interest to 

researchers for data mining and also for machine learning for model definition and 

testing. To accomplish this, data handling approaches need to be evaluated and best 

practices considered. 

Long-term research beyond ADASPL could focus on addressing: 

a) Security and privacy issues, given the sensitivity of the collected information, and 

tools and interfaces for rule definition and validation. 

b) Inclusion of affect in the software engineering process to: elicit, analyze, specify, and 

validate affect requirements; specify and conduct an affect testing processes; analyze 

and perform affect maintenance; establish and maintain an affect configuration 

management; and handle other affect-specific parts of the process.  

c) Inclusion of adaptation in the engineering process to: elicit, analyze, specify, and 

validate adaptation requirements; specify and conduct an adaptation testing processes; 

analyze and perform adaptation maintenance; establish and maintain an adaptation 

configuration management; and handle other adaptation-specific parts of the process.  
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APPENDIX A 
INSTALLATION OF THE ADAS FRAMEWORK 
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The guidelines assume that the ADAS framework is installed and ready to be used. To do 

so, copy the ADAS distribution to the host computer. The ADAS distribution includes the 

following files:  

 

adas.jar 

lib/jna-4.1.0.jar 

lib/opencsv-1.8.jar 

lib/RXTXcomm.jar 

lib/rxtxSerial.dll 

 

 

The full infrastructure is contained in a JAR file and a lid folder contains libraries 

required by the infrastructure as follows: 

a) JNA, acronym for Java Native Access, is a library that provides Java programs easy 

access to native shared libraries, such as the libraries (DLL files) of Emotiv and Tobi 

SDKs. 

b) openCSV is a CSV (comma-separated values) parser library for Java.  

c) RXTXcomm is a Java library that in conjunction with the native library rxtx.dll 

provides serial and parallel communication for Java in Windows platforms.  

Additionally, to use Emotiv headset the following dll files from Emotiv SDK should be 

available in the system path or added to the lib folder 

 

 

lib/edk.dll 
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lib/edk_utils.dll 

 

 

And, in order to run the example with Jess rule systems and/or use Jess for complex 

adaptation handling, Jess library should be added in the lib folder also 

 

 

lib/jess.dll 

 

 

Developers and users can execute adas.jar, double click or using java command line, to 

access ASAS application tools. Running the adas.jar will open a dialog box, as showing 

in Figure A.1., asking for the application that they want to run. The options include:  

a) six pre-build agents for commercial Emotiv headset and Tobii eye tracker, for 

MindReader software, as well as, for in-house built skin conductance, pressure, and 

posture sensors. They are links to execute instances of applications that reside in the 

adas.gui.agent package in Apanel subclasses: APanelEmotiv, APanelTobii, 

APanelMR, ApanelSkin, APanelPressure, and APanelPosture. 

b) a prebuilt agent that does not require to connect to any physical device but generate 

random values and It can be used for application testing purposes. It is a link to 

execute adas.gui.agent.APanelDummy. 

c) the central control unit dashboard, a link to execute 

adas.gui.centre.CentreDashboard, and  
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d) the general ADAS dashboard, a link to execute adas.gui.main.Dashboard. 

Developers can include adas.jar and the libraries in their project to take advantage of the 

framework. The guidelines to accomplish the scenarios described in Chapter 3 are 

described in the following sections. 

 

 

Figure A.1. Dialog box after the execution of ADAS. 
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APPENDIX B 
CAPSTONE FACULTY PROJECT PROPOSAL 
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School of Computing and Informatics Decision Systems Engineering  
Computer Science and Engineering Capstone Faculty Project Proposal 

 
 
1. Contact Information 

Faculty Contact Information 

Name Dr. Robert Atkinson ASU Email Robert.Atkinson@asu.edu 
 
Project Contact Information (if different from Proposer) 
 
Name Javier Gonzalez-Sanchez ASU Email javiergs@asu.edu 

 
 
2. Project Description 
 
a. Project title:  
 
Affect-Driven Adaptive Systems:  
Creating software systems able to adapt itself to user’s emotions and interest. 
 
 
b. Project description:   
 
Affect (experiencing a feeling or emotion) shapes our vision of the world and how we 
experience it, furthermore, affect influences our rational decision-making process and 
action selection. That awareness has created a trend toward improving technology by 
providing it with the intelligent ability to simulate empathy by recognizing human affect 
and adapting its behavior driven by that affect.  
 
We look forward to leverage the inclusion of affect-driven adaptation capabilities in an 
environment through inspiring and supporting student creativity to develop an affective 
adaptive system of their own inspiration. We aim to provide teams with the tools 
(hardware and software) that support emotion and interest recognition and mentoring, 
while challenge them to imagine, design, and build a system that exploits those 
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capabilities such as, but not limited to, a next-generation learning environment, a more 
engaging video-game, an empathetic health support system.  
 
We will support the creation of system which functionality includes: 
 
§ Collecting affect signals from the user through a set of diverse sensing devices 

including but not limited to wireless brain computer interfaces, mobile eye tracking, 
face-based gesture recognition, and wearable physiological sensors. We are able to 
provide all of them for students to play and teach students about how to use them. 
 

§ Combine the affect signals with information about the events of the user’s interaction 
with the environment, i.e., relate the user feelings with what he/she is doing and what 
are the results she/he is getting from the system.  
 

§ Define the behaviors to be implemented to improve user’s experience. 
 
Examples of products that have been developed in previous semesters by fellow capstone 
teams include: 
 
§ Lost in the Dark. An adaptable 3D video game, which uses affect measurements as 

input to alter and adjust the gaming environment; brainwaves were used as input to 
infer meditation, excitement, and engagement; lighting and colors were altered in the 
game according to the user’s affective state. 
 
Bernays, R., Mone, J., Yau, P., Murcia, M., Gonzalez-Sanchez, J., Chavez-
Echeagaray, M. E., Christopherson, R. M., Atkinson, R., and Yoshihiro, K. (2012). 
Lost in the Dark: Emotion Adaption. In Adjunct proceedings of the 25th annual ACM 
symposium on User interface software and technology (UIST 2012). ACM.  
 

§ Empathetic Second Life® Avatars.  A generic real-time multimodal affect 
recognition hub was integrated within an online virtual world to make the virtual 
world’s avatar mirror its owner’s affect aiming to increase believability, likability, 
trustability, and enjoyability, as well as to create long-lasting relationships. 
 
Gonzalez-Sanchez, J., Chavez-Echeagaray, M. E., Gibson, D., and Atkinson, R. 
(2013). Multimodal Affect Recognition in Virtual Worlds: Avatars Mirroring User's 
Affect. In Proceedings of the 2013 Humaine Association Conference on Affective 
Computing and Intelligent Interaction (ACII 2013).  IEEE Computer Society. 
 

§ Including Affect-Driven Adaptation to the Pac-Man Video Game. The well-
known game Pac-Man was modified to provide affect-driven adaptive capabilities; 
the game changes aiming to keep or increase player’s engagement. 
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Harris, A., Hoch, A., Kral, R., Teposte, M., Villa, A., Chavez-Echeagaray, M.E., 
Gonzalez-Sanchez, J., and Atkinson, R. (2014). Including Affect-driven Adaptation to 
the Pac-Man Video Game. In Extended Abstracts Proceedings of the 18th 
International Symposium on Wearable Computers (ISCW 2014). ACM. In press. 

 
 
The tools available on our lab that students could use include: 
 
§ Brain computer interfaces, such as X10 and X24 ABM headset and Emotiv headset. 

 

  

X10 and X24 ABM headset Emotiv headset 

 
 
§ Eye tracking systems,  

 
 
 

 

 
Tobii glasses eye tracking system Tobii wide screen eye tracking system 

 
 
§ Face-based gesture recognition 
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§ Wearable physiological sensors 
 

   
Posture sensor Pressure sensor Skin conductance sensor 

 
 
c. Deliverables:  
 
By the end of the year it is expected that students deliver an environment able to adapt 
itself driven by affect. It is expected that the students include assets such as software 
design, testing, validation, and documentation. 
Additionally, we will be encouraging students to present their work on international 
conferences as a demo, poster, or short paper. If students’ work is accepted to be 
presented, we will support them to attend (travel) to the conference. 
 
 
d. Motivation:   
 
Explode the use of affective-driven adaptive capabilities in software systems to enhance 
user’s experience. 
 
 
e. Student learning experience:  
 
This project represents a singular real-world experience for students in several aspects, 
including: 

 
§ Solving real-world problems with state-of-the-art technology. We aim to create a 

singular opportunity to live a real world experience where creativity is encouraged 
but boundaries in the organization artifacts are defined. Students are not going to be 
building a trivial system from scratch; students will be applying systematic reuse of 
previous work to innovate in technology usages that improve human life.  

 
§ Teamwork Experience. Students will grow up their teamwork skills working in a 

project where new requirements drive the creation of new software components; 
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students will use their analysis, design, programming, testing, and project 
management skills, collaborating with their team mates but also with mentors and 
researchers. 

 
§ Component-driven pattern-based development. As a developing team, we work 

under a component-driven approach. Student’s responsibilities goes beyond 
programming and documenting; it will be required that design and implementation 
follow the component-driven approach, use design patterns, and satisfy organization 
rules. The goal is to create a product but also assure that what is done will be the basis 
for future work. As a team, we support several efforts in learning environments (from 
video games to tutoring systems); therefore, our group guideline for software is the 
creation of families of products instead of isolated efforts. 

 
§ Human Computer Interfaces. Students will have the opportunity to learn more 

about modern human computer interfaces including but not limited to use and work 
with brain-computer interfaces, eye tracking systems, and physiological sensors. 

 
§ Research experience. Students will be collaborating with researchers and will be 

encouraged to get involved in research activities, such as paper writing, poster design, 
and conference presentation. 

 
 
f. Required background:  
 
It is expected that participant students have the following skills: 
 
§ Software development background. 
§ Proficient in a programming language. 
§ Interest in human-computer interaction and/or user-interface design will be a plus. 
 
 
3. Other 
 
Details about our work and related projects that we had supported could be seen in the 
following links (videos): 
 
§ Our lab research foci - http://angle.lab.asu.edu/site/ 
§ Lost in the Dark (videogame) poster and video - http://angle.lab.asu.edu/site/?p=1330 
§ Affect Recognition in Virtual Worlds - http://angle.lab.asu.edu/site/?p=1746 
§ A Sun Devil Story in our lab - http://angle.lab.asu.edu/site/?p=1523 
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APPENDIX C 
COMPLEXITY AND STRUCTURAL METRICS REPORTS 
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Report Generated by RSM  

Reports were generated grouping files in alphabetical order in groups of a maximum of 

20 (the limited number of files in the tool evaluation version). Reports were generated 

for: 

a) Project C1. A total of 53 files are grouped in three partial reports with: files from 

AppSettings.java to Meter.java (20 files), files from MeterAnalyzer.java to 

SerializationManager.java (20 files), and files from SerialSensor.java to 

TCPServer.java (13 files), respectively. Figures C.1, C.2, and C.3 show these reports. 

b) Project R1. 1 file is included in a report, as shown in Figure C.4. 

c) A freeware implementation of the Pac-Man video game used as a basis to develop 

project C3. 11 files are included in a report, as shown in Figures C.5. 

d) Project C3. 14 files are included in a report, as shown in Figure C.6. 

e) Project C4. 4 files are included in a report, as shown in Figure C.7. 

f) Package AC in project R2. 36 files are grouped in 2 partial reports, each with 18 files. 

Figures C.8 and C.9 show these reports. 

g) Legacy code used to create package AC in project R2. 8 files are included in a report, 

as shown in Figure C.10. 

h) Package ELE (affective companion) in project R3. 4 files are included in a report, as 
shown in Figure C.11. 
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Figure C.1. RSM report for project C1 (part 1 of 3) – files from AppSettings.java to Meter.java. 
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Figure C.2. RSM report for project C1 (part 2 of 3) – from MeterAnalyzer.java to 
SerializationManager.java. 
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Figure C.3. RSM report for project C1 (part 3 of 3) – from SerialSensor.java to TCPServer.java. 
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Figure C.4. RSM report for project R1. 
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Figure C.5. RSM report for a freeware implementation of the Pac-Man video game used to create project 
C3. 
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Figure C.6. RSM report for project C3. 
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Figure C.7. RSM report for project C4. 
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Figure C.8. RSM report for package AC of project R2 (part 1 of 2). 
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Figure C.9. RSM report for package AC of project R2 (part 2 of 2). 
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Figure C.10. RSM report for the legacy code used in the AC package of project R2. 
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Figure C.11. RSM report for the legacy code used in the ELE package (affective companion) of project R3. 
 


