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ABSTRACT

Identifying chemical compounds that inhibit bacterial infection has recently gained a con-

siderable amount of attention given the increased number of highly resistant bacteria and

the serious health threat it poses around the world. With the development of automated

microscopy and image analysis systems, the process of identifying novel therapeutic drugs

can generate an immense amount of data - easily reaching terabytes worth of informa-

tion. Despite increasing the vast amount of data that is currently generated, traditional

analytical methods have not increased the overall success rate of identifying active chem-

ical compounds that eventually become novel therapeutic drugs. Moreover, multispectral

imaging has become ubiquitous in drug discovery due to its ability to provide valuable in-

formation on cellular and sub-cellular processes using florescent reagents. These reagents

are often costly and toxic to cells over an extended period of time causing limitations in

experimental design. Thus, there is a significant need to develop a more efficient process of

identifying active chemical compounds.

This dissertation introduces novel machine learning methods based on parallelized cel-

lomics to analyze interactions between cells, bacteria, and chemical compounds while re-

ducing the use of fluorescent reagents. Machine learning analysis using image-based high-

content screening (HCS) data is compartmentalized into three primary components: (1)

Image Analytics, (2) Phenotypic Analytics, and (3) Compound Analytics. A novel software

analytics tool called the Insights project is also introduced. The Insights project fully in-

corporates distributed processing, high performance computing, and database management

that can rapidly and effectively utilize and store massive amounts of data generated using

HCS biological assessments (bioassays). It is ideally suited for parallelized cellomics in high

dimensional space.

Results demonstrate that a parallelized cellomics approach increases the quality of a

bioassay while vastly decreasing the need for control data. The reduction in control data

leads to less fluorescent reagent consumption. Furthermore, a novel proposed method that

i



uses single-cell data points is proven to identify known active chemical compounds with

a high degree of accuracy, despite traditional quality control measurements indicating the

bioassay to be of poor quality. This, ultimately, decreases the time and resources needed in

optimizing bioassays while still accurately identifying active compounds.
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Chapter 1

INTRODUCTION

With the rise of antibiotic resistant bacteria, identifying novel drugs that can inhibit bacte-

rial infections has become a top priority in the medical field. The World Health Organization

recently released a global report that stated: “A post-antibiotic era–in which common in-

fections and minor injuries can kill–far from being an apocalyptic fantasy, is instead a very

real possibility for the 21st century” [97]. Moreover, many different strains of deadly bac-

teria can be easily weaponized posing a serious global threat given the rise of asymmetric

warfare around the world [95]. Unfortunately, the pharmaceutical industry average for the

success rate of novel antibiotic drugs is ≈ 4.5% using traditional analysis methods [15]. As

of 2013, the capital cost expenditure for a single New Molecular Entity (NME) to become

available is approximately 2.558 billion dollars over an eleven year period [28].

Figure 1.1 provides a high level description of the process for identifying novel therapeu-

tic drugs. According to the FDA’s Center for Drug Evaluation and Research (CDER), the

new drug development and review process has four major stages, post identifying hits in the

drug discovery stage, which include pre-clinical research, patient-based clinical trials, new

drug application, and FDA review. The initial drug discovery stage is, therefore, vital for

successful identification of novel drugs in an efficient manner. The drug discovery process

has incorporated automated high throughput screening (HTS), which allows for hundreds

of thousands of chemical compounds to be interrogated in a short period of time using

optimized biological assessments (bioassays) for efficacy. Though increasing the number

of chemical compounds that can be analyzed relatively quickly using automated HTS for

efficacy, the success rate remains low. In fact, as a result of the increase in the number of

compounds being analyzed, many false positive compounds identified as effective, demand

more resources to be expended on in depth analysis without fruitful results [89, 88, 70].
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Clearly, too many false positives causes a substantial increase in the cost and time used

to eliminate these compounds in subsequent stages. On the other hand, a high number of

false negatives that appear to not be effective may cause the complete elimination of po-

tential novel drugs from further screening with unknown duration as to when the discarded

compound may be considered again.

Figure 1.1: The Drug Discovery stage is the initial screening to identify the most promising
potential drug candidates (Hits) for further testing. Subsequent stages provide more in
depth testing to ensure safety and efficacy before FDA approval for use by the general
public. This process takes billions of dollars over a decade time span to accomplish.

With advancements in automated microscopy, a comprehensive image-based platform

called high content screening (HCS) was developed to assist in large scale HTS campaigns

to better identify effective chemical compounds. Automated HCS is capable of generating

a massive amount of data due to two primary factors: (1) HCS was designed for single cell

analysis. The high number of cells typically produced in a bioassay increase the amount

of data to be analyzed. (2) Florescent reagents have provided the ability of multispectral

imaging of cells. In fact, multispectral imaging has become a ubiquitous component of HCS

data that produces an immense amount of biological information across cellular and sub-
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cellular data domains [87]. These domains are generally defined by the different spectral

wavelength created by fluorescent reagents or by different microscopy technologies such as

bright-field, dark-field, phase contrast, differential interference contrast, etc.

Fluorescent reagents can be grouped into three primary categories of covalent labels,

non-covalent labels, and florescent indicator dyes [88]. A covalent label such as the green

fluorescent protein (GFP) shown in Figure 1.2c is often used to monitor a specific protein

of interest or identify and track labeled microbes. This label provides crucial information

on microbe-cell interaction when analyzing infection or protein-cell interaction in siRNA

endeavors. A non-covalent label such as Hoescht 33342 shown in Figure 1.2a is used to

stain DNA, thereby marking the nucleus and providing valuable sub-cellular information.

In addition to providing cell cycle information, nucleus staining provides critical information

often used in cell segmentation. An indicator dye such as Live/Dead1 far red, is shown in

Figure 1.2d is employed to determine the viability of cells after the introduction of bacteria

or other lethal treatments. A compromised cell membrane will result in the red viability dye

permeating into the cell indicating cell death. Viability information is crucial in determining

the safety and efficacy in potential drug candidates.

In contrast to fluorescent reagents, certain microscopy technologies utilize the visible

light spectrum in conjunction with a magnifying lens to better visualize objects that are

too small to be viewed by the human eye. Bright-field microscopy is the most elementary

of the different technologies; it simply passes white light through a magnifying lens and

object capturing the amplitude change of the light in the final image. Although bright

field microscopy has been used extensively, phase contrast microscopy has become increas-

ingly popular given its ability to produce better contrast in cells that would otherwise

be translucent using bright-field microscopy. Phase contrast microscopy not only detects

amplitude changes but also phase changes of light by converting shifts in the phase to am-

plitude changes. The phase contrast image shown in Figure 1.2b provides a more nuanced

description of a cell membranes than bright-field, otherwise, could provide.

1This dye is produced by Life Technologies https://www.lifetechnologies.com/us/en/home.html
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(a) Hoescht 33342 nucleus channel. (b) Non-florescent phase contrast image.

(c) GFP bacterial image. (d) Live/Dead Far Red viability image.

Figure 1.2: Multi-wavelength imaging of infected hMDMs. hMDMs were infected with F.
tularensis SCHU4 for 30 hours and then stained, fixed and imaged. (a) Nuclear image show-
ing Hoechst 33342 fluorescence. (b) Phase Contrast whole cell image. (c) Bacterial image
showing GFP expression. (d) Viability image showing dead cells stained with Live/Dead
fixable viability stain.

1.1 The Era of Big Data

Automated HCS has ushered in an era of “big data” analytics in drug discovery endeav-

ors by utilizing multispectral imaging of individual cells. This has provided a mosaic of

in depth information of cell and sub-cellular processes and perturbations. Although, mul-

tispectral imaging has produced an immense amount of valuable information, it has also

produced several challenges. The most obvious challenge is how to properly utilize, store,

and retrieve the massive amounts of data generated. Traditional methods have become

obsolete in this new age of big data analysis in drug discovery. For instance, generating

a single readout dataset for analysis of activation or inhibition of a specific protein has
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been replaced by generating a high dimensional dataset requiring multivariate analysis. A

medium scale screen of 25,000 compounds in duplicate has been shown to generate upwards

of ≈ 600 GB of raw image data alone, while a large scale screen of a million compounds

can produce over 25 TB of raw image data [17]. Assuming a modest one hundred cells

treated per compound and the control data needed to ensure quality of a bioassay, a screen

is capable of producing anywhere between 2.5 billion to well over 100 billion individual data

points for medium to large scale screening. In addition, each data point can be defined in a

feature space ranging from a single feature to tens of thousands of features. The amount of

data generated provides a daunting task of identifying useful information that could but-

tress compound hit selection. Interactive applications such as CellProfiler and CellClassifer

have provided researchers with powerful tools to more efficiently incorporate multivariate

data in phenotype analysis of cells [16, 74]. Unfortunately, despite these powerful tools, the

majority of automated HCS analysis in drug discovery endeavors is still performed using

single readout analysis [82]. This lag in use of multivariate data is partially due to the lack

of knowledge on how to properly mine the data and implement multivariate analytics in an

automated manner.

Another challenge created by automated HCS originates from the cost of using florescent

reagents due to the sheer number of cells being generated for multispectral analysis. This

is due to not only the cost of the reagents themselves, but also other associated operational

costs such as the expertise and the specific ”wet lab” environment required to administer,

handle, and store the reagents. Moreover, the reagents are toxic to cells over a prolonged

period of time. This, unfortunately, limits the analysis of cell populations to a brief period

of time. Limiting temporal information in compound analysis does not allow for optimal

vetting of cell response to chemical compounds over extended periods of time. Increasing

temporal analysis may provide additional information to fully understand the perturba-

tions caused by chemical compounds on cell phenotypes as well as cell microenvinronmet

interactions.
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1.2 Motivation

“Parallelized cellomics” attempts overcome the challenges previously described by inte-

grating the latest machine learning algorithms using parallel processing in a high perfor-

mance computing (HPC) environment in the following three major components of image-

based HCS:

• Image Analytics

Image Analytics is concerned with the quality of the images and segmentation of

individual cell sub-images within a single image. Computer vision has made significant

gains in recent years where this component is certain to benefit from.

• Phenotypic Analytics

Phenotype Analytics pertains to the measurable perturbations that occur as a result

of cell exposure to bacteria or chemical compounds. Traditionally, phenotype analysis

has been conducted based on biological hypotheses of the type of perturbation one

would expect to observe given a cell’s interaction with a biological target and chemical

compounds. A single readout or a hand full of measurements were then taken of these

phenotypes changes for further analysis creating a “bottom-up” approach. Another

more robust approach that is demonstrated is the top-down approach, which measures

a significant number of different image properties and allows for feature selection

algorithms to identify those that measure significant phenotype perturbations.

• Compound Analytics

Compound Analytics is the process of identifying active compounds of interest that

activate or inhibit a target protein, gene, or microbe. Traditional methods used in

compound hit selection have relied upon single readout activity measurements derived

from cell population distribution. These measurements are generally represented using

a single value such as the mean, median, quartile, etc. of a cell population treated

with a compound. Single cell analytics, also known as cellomics, has provided the
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ability to move away from univariate distribution analysis into multivariate single cell

analysis. Cellomics allows for incorporating powerful machine learning algorithms

that are capable of handling large quantities of data instances in high dimensional

space.

These components form what is called the I3 paradigm defined as:

• Identify individual cells.

• Identify pertinent phenotypes.

• Identify active compounds.

In this paradigm, Image-base HCS data acts as the mediator or link between the “wet lab”

and computational analysis. The primary question investigated is: To what extent paral-

lelized cellomics can have in improving analysis in the I3 paradigm to facilitate successful

screening of active chemical compounds that inhibit bacterial infection? In addition, inves-

tigation is focused on the impact of using more sophisticated machine learning algorithms

in analyzing optical microscopy data while limiting florescent reagent utilization. The pri-

mary focus of this dissertation is, therefore, to demonstrate the extent to which machine

learning can be utilized to overcome big data analytical problems and reduce dependency

of florescent reagents in each component while maintaining competitive results in the I3

paradigm.

1.3 Roadmap

A roadmap is provided that describes how the rest of this dissertation is organized.

The Image Analytics component as it pertains to cell segmentation will be thoroughly

discussed in chapter 2. Chapter 3 will cover the Phenotypic Analytics component and how

feature selection can play an pivotal role in phenotype perturbation analysis. Chapter 4 will

discuss the Compound Analytics component and how integration of cellomics coupled with

machine learning provide a robust and powerful alternative to traditional single readout
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analysis. Chapter 5 describes the “Insights” project- a powerful parallel processing pipeline

designed specifically for big data analysis of image-based HCS data. Chapter 6 will discuss

the trajectory of future research on such an important area from which humanity will

undoubtedly benefit.
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Chapter 2

IMAGE ANALYTICS

The Image Analytics component deals with image acquisition and subsequent segmentation

of individual cells from the acquired images. The acquisition of images is outside of the

scope of this dissertation. However, it goes without saying that image acquisition follows

the old adage of “garbage in, garbage out.” It is necessary to acquire quality images to

increase the probability of successful HCS campaigns.

The identification of cells in an image, often referred to as “segmentation”, plays a sig-

nificant role in the quality of the results obtained in screening campaigns. For instance,

Hill et al. demonstrated that SK-BR-3 cells that were well segmented increased their abil-

ity to resolve specific changes in perturbed cells [40]. A common obstacle to overcome in

segmentation of cells is the transparency of many different cell lines, which also limits the

amount of biological information that can be subsequently extracted when using bright-field

microscopy. Phase contrast microscopy has provided a viable alternative to bright-field mi-

croscopy by converting phases shifts in light to visible amplitude changes. Unfortunately, in

addition to random noise caused by factors such as irregular lighting and external artifacts,

phase contrast is also prone to systematic errors. Certain types of noise, such as “halos”

and “shade-offs”, are quite prevalent in phase contrast microscopy. Figure 2.1 provides

a view of this inherent noise in phase contrast images. There has been extensive research

in attempting to overcome these issues to better identify individual cells for use in HCS

analysis using different methods that are further described in subsequent sections. First, a

problem statement is provided, followed by describing a number of different methods that

attempt to segment individual cells.
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Figure 2.1: The phase contrast channel presents various issues when trying to segment
individual cells. (a) Shade offs. (b) Halos. (c) Closely clustered cells.

2.1 Problem Statement

In the simplest terms, the problem statement for cell segmentation can be described at

a high level as identifying the region of pixels pertaining to individual cells in an image with

high accuracy. Let Ipc be a phase contrast image where (r, c) represents the row and column

of each pixel. Each pixel is assigned a label y(r, c)pc = {1, 0} for cell and background region,

respectively. The objective function to minimize the error of pixel classification is formally

defined as:

minimize
wpc

R∑
r=1

C∑
c=1

(ypc(r, c)− θ(Ipc(r, c)) ∗wpc)
2, (2.1)

where θ represents the feature space of a pixel Ipc(r, c) and wpc represents the weights

assigned to each feature. There should be a distinct boundary that allows for the clear

delineation of each cell in an image. Since Ipc is a gray scale image, finding the appropriate

feature space θ that can best delineate between different cells is non-trivial. This is because

the edge information may often be compromised when cells cluster together or due to

random and systematic noise inherent in phase contrast images. Therefore, defining θ plays
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just as an important role as weighting θ using wpc to properly segment cell and nucleus

regions. SIFT [57], Haralic [36], and HoG [24] are examples of well known feature spaces

often used in image segmentation. Unfortunately, often times these features spaces are not

well suited for automated HCS campaigns where large number of images are generated.

There are two primary measurements that are used in determining the quality of cell

segmentation: (1) enumeration and (2) pixel area overlap. Enumeration compares the true

number of cells that are in an image to the number identified by a chosen segmentation

method. Pixel area overlap is a measure that quantifies how well the appropriate pixel

region and boundary of the cells are identified.

2.2 Cell Segmentation

Cell segmentation has been thoroughly investigated within the confines of computer

vision analysis. This type of segmentation is unique from object segmentation in an image

in that it is not a complex object to be segmented but rather millions of simple objects

in a complex environment. Several methods are subsequently described that attempt to

accomplish this task on phase contrast microscopy images specifically for use in automated

HCS campaigns. Figure 2.2 demonstrates the efficacy of the different described methods for

cell segmentation on a dense cluster of cells, which often occurs in automated HCS images.

2.2.1 Thresholding Methods

The first to be described is the thresholding methods, which tend to be the simplest

and fastest methods. In theory, using phase contrast images, cellular regions should be

identifiable through global thresholding techniques such as Otsu or Kurita et al.’s methods

[67, 49]. These methods are extremely fast and efficient and are well suited for large-scale

HCS campaigns. Unfortunately, there are two significant drawbacks using these threshold-

ing methods. First, they are quite susceptible to the systematic noise previously described

in phase contrast images which often hinder the use of such thresholding methods. Second,

they are quite susceptible to lighting issues as demonstrated in Figures 2.2b and 2.2c.
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In light of these drawbacks, the obvious solution would be to find a method that removes

the systematic noise prior to using the thresholding methods. Previous methods have

attempted this task by minimizing the presence and effects of systematic noise using a

variety of distinct approaches. For instance, Yin et al. focused on a pure phase contrast

image restoration by removing the “halo” and “shade-off” artifacts using phase contrast

microscopy properties coupled with an iterative optimization algorithm that approximates

the restored artifact-free image [101]. A simple thresholding algorithm could then be used

to determine cell pixels from background pixels. Su et al. followed up with this work by

proposing a phase contrast image restoration method based on the dictionary representation

of diffracting patters [85]. Unfortunately, both methods are not well suited for large-scale

data sets and are still susceptible to irregularities in microscope lighting using traditional

global threshold methods. They also require microscopy information that is often difficult

to obtain.

A method named PHANTAST by Jaccard et al. provides a much more robust and

faster method of identifying cell regions in phase contrast images without requiring the

removal of noise beforehand [42] . This method is quite powerful and efficient in estimating

the boundary regions of cells in a phase contrast image. The method analyzes the local

contrast within a predefined window. The window is a soft-edge Gaussian kernel with

standard deviation of σ also defined by the user. Formally, the local contrast can be defined

as

C =

√
(w ∗ I2 − (w ∗ I)2

(w ∗ I)
, (2.2)

where I is the image of interest, w is the Guassian kernel window and ∗ is the convolution

operator. This computes the local contrast which is defined as the standard deviation in

image I within window w divided the mean within the same window. The center pixel of

window w stores the local contrast value for window w. A binary image G is then derived

using a global local contrast threshold ε applied to matrix C.
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G(x, y) =

 1 If C(x,y) > ε

0 If C(x,y) ≤ ε
(2.3)

The binary image G provides a reliable approximation of cell pixels since these pixel

are located in regions of high intensity variation. The ε value is set at 0.03 while the σ

parameter is set to 1.4 in the original paper and yielding results in Figure 2.2e.

2.2.2 Superpixel Methods

Unfortunately, none of the thresholding methods discussed using phase contrast restora-

tion or not perform well on images containing high density cell clusters. In an effort to over-

come segmentation of clustered cells, superpixel methods were designed. Superpixels are

contiguous pixel regions that pertain to the foreground or background of objects of interest.

They generally detect boundary regions but also over segment objects requiring that they be

incorporated with some merging algorithm. The Simple Linear Iterative Clustering (SLIC)

algorithm is a well known efficient and fast superpixel algorithm that has demonstrated the

ability to identify superpixels at comparable and in some cases better results than most

superpixel algorithms that currently exist [1]. The effectiveness of the use of superpixels

in the segmentation of images was demonstrated by [46] using SLIC in conjunction with

DBScan. Unfortunately, this method did not perform well placing boundaries within clearly

distinguishable cells in phase contrast images. This is due to the amount of noise inherent

and actual variance within the image and cell regions.

2.2.3 Watershed Variant Methods

The watershed variant methods are extremely powerful and are well known in computer

vision tasks [93, 61]. The name is derived from the way the methods intuitively behave like a

catchment basin. In order to mitigate well known over segmentation issue, watershed variant

methods that used either local minima or predefined markers to initially grow a region were

developed. The most reliable methods of segmenting individual cells rely on nucleus staining
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(a) Original Phase Contrast Im-

age.

(b) Otsu thresholding (c) Kurita thresholding

(d) Artifact removal algorithm by

Yin et al.

(e) PHANTAST. (f) SLIC with DB Scan.

(g) Proposed nucleus-based cell

segmentation.

(h) Watershed variant with fluo-

rescent staining.

Figure 2.2: Different thresholding methods used as baselines in this work.

to give initial markers that can be subsequently used in watershed variant cell segmentation

methods [4, 64, 10]. This has caused fluorescent reagents to be directly relied upon for

cell segmentation. This reliance requires the additional step and corresponding resources

to ensure that all cells have their respective nuclei stained with florescent reagents in a

bioassay. This becomes a burdensome but necessary step when huge campaigns of tens of

millions of cells are conducted.
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2.3 Proposed Nucleus-based Cell Segmentation

The watershed variant methods that relied on a seed point used fluorescent reagents to

identify the nucleus region of the cell and provide that seed point. As such, research was

conducted to determine whether the nucleus region of a cell could be identified in a phase

contrast image without using fluorescent reagents. Accomplishing this task would reduce

cost and complexity of identifying seed points while sustaining the rapid, accurate segment

of cells using watershed variant methods. Two novel concepts called nucleus protrusion

and spatial variance are introduced as key measurements required for automated nucleus

segmentation to occur.

Nucleus protrusion is the extent to which the nucleus protrudes from the cell causing a

natural or induced visual cue for detection. The more nucleus protrusion that exists, the

more visible the nucleus becomes. Figure 2.3 demonstrates a range of nucleus protrusion in

synthetic data at 10% intervals in an 8-bit grayscale image with values ranging from 0 to

255. At 10%, the nucleus is completely invisible to the human eye. This provides very little

visual cues for any learning algorithm to exploit. At 100%, the nucleus is clearly protruding

from the cell causing a clear visual cue that any well trained learning algorithm could utilize.

Using florescent reagents artificially increases the nucleus protrusion to a much higher range

than other wise would be achieved naturally while minimizing noise from non-nucleus pixels.

This allows for rapid and highly accurate segmentation of nuclei using simple thresholding

methods.

Spatial variance is the extent to which the nucleus will arbitrarily be located within the

confines of a cell. The nucleus is generally located near the center of the cell. However, this

can change depending on a number of factors such as clustering or the health of a cell. Thus,

four primary regions are defined within a cell, where each larger region encompasses the

previous smaller one as shown in 2.4. If a nucleus is consistently located in a single location,

then the dataset is considered to have no spatial variance. If, however, the nucleus varies

extensively in the different regions, then a high spatial variance is given to the dataset.
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Figure 2.3: The nucleus protrusion scale ranges from no visibility to complete visibility.

Figure 2.4: The local variance demonstrates the region of a cell the nucleus can be located
in. The regions overlap each other with R0 representing a stationary point in the cell.

Ideally one would like a dataset with either no spatial variance or high nucleus protru-

sion. As previously described, the more robust and accurate cell segmentation methods rely

on nucleus staining using fluorescent reagents to yield data that enumerates the number

cells in an image as well providing a seed point for cell segmentation. This is why florescent

staining data is considered the gold standard in image-based HCS analysis for obtaining nu-

cleus information. Unfortunately, the process is massively disruptive to biological processes

eventually leading to cell death. In addition, the staining processes affect environmental

and phenotype characteristics such as spatial distribution and morphology [42]. As a result,
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although highly accurate cell segmentation is achieved, the fluorescent staining limits an

assay to an incomplete and often flawed “snapshot” of important biological processes of a

cell and the intricate microenvironment. Therefore, a nucleus segmentation with minimal

use of florescent reagents would be ideal to achieve accurate cell segmentation, provide DNA

information, and ensure minimal disruption of biological processes.

Unfortunately, none of the algorithms previously described for cell segmentation are

capable of identifying the nucleus region of cells and, furthermore, make no attempt to do

so. There are only a few methods that have attempted to identify the nucleus regions of cells

in phase contrast channels. Kazmar et al. proposed one of those few works that has used

phase contrast microscopy to identify the nucleus region of cell without the use of florescent

reagents or staining [44]. Dewan et al. demonstrated the feasibility of segmenting nuclei in

phase contrast images using features based on intensity, convexity, and texture [27]. They

utilized the more popular feature spaces for use in gray scale images defined by the Haarlick

features [36]. These features are derived by the use of a gray level cooccurence matrix

(GLCM) and measure different textures of the image. A convolutional neural network

architecture was also implemented by Song et al. to segment stained nuclei in cervical

cancer cells [83]. However, their nuclei had high visual cue due to the staining process.

These methods, unfortunately, fail unless the nuclei have a nucleus protrusion value and

are clearly visible to the human eye. As previously stated, visibility of the nuclei in a phase

contrast image is not always certain and is a function of the cell, the microscopy technology,

and the magnification being employed. Therefore, investigation is done into whether spatial

variance is low enough that it can supplement visual cues.

2.3.1 Proposed Methods

A multi-layered convolutional neural network (CNN) was implemented to utilize visual

cues and spatial information in phase contrast images to identify the nucleus region of a cell

as shown in Figure 2.5. Convolutional neural networks (CNN) are currently at the forefront

of computer vision tasks. They have demonstrated the capacity to outperform state-of-
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the-art methods remarkably well in image segmentation and classification for a variety of

datasets [47, 22, 21]. Biological image analytics has especially benefited from advancements

in implementation of convolutional neural networks. Ciresan et al. demonstrated the supe-

rior capabilities of CNN in biological image analytics when segmenting neuronal structures

[19]. In addition, Ciresan et al. utilized deep CNNs to identify mitosis in cervical breast

cancer cells [20]. Recently, Hou et al. have demonstrated the utility of CNNs in classifying

three of the most common sub-types of Low-Grade Glioma (LGG) using multi-gigapixel

images [41].

Figure 2.5: The spatial and texture information is researched to determine whether it can
be used to identify the nucleus in a cell with low visual cues.

A convolutional neural network is a hierarchical neural network architecture consisting

of a series of convolutional layers alternating with sub-sampling layers. This is followed

by a number of fully connected layers that are subsequently passed into a classification

layer. Convolutional layers use filters or two dimensional kernels that are convolved with the

previous layer’s output to extract feature mappings containing pertinent image information.

Convolutional layers contain three parameters: 1) size of kernel K, 2) Number of kernels

N , and 3) size of strides S used for convolution. These parameters determine the number

and the size of its output feature mapping. The larger the number of convolutional layers,

the more complex the CNN architecture becomes. The proposed CNN architecture shown

in Figure 2.6 had the following parameters, which will be described in more detail: Layer

0-K = 6, N = 50, S = 1. Layer 1- K = 4, N = 50, S = 1. Layer 2-K = 4, N = 100, S = 1.
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The CNN architecture consisted of three convolutional layers with 50 feature maps in

the first two layers and 100 feature maps in the final layer. The feature maps are designed

to look for visual cues that discriminate between nucleus pixels and non-nucleus pixels.

In addition, the spatial information is utilized to determine whether feature maps can be

produced to substitute for visual cues.

Sub-sampling is done to minimize the data as it traverses through the CNN while main-

taining pertinent information. Previous research has demonstrated improved performance

using max pooling versus other sub-sampling methods such as averaging [75, 76]. Max

pooling splits feature mapping into non overlapping regions where the max value is used to

represent a given region. Max pooling size was set to 2 which means that each layer a 2x2

section was converted to the max value of that section.

The CNN architecture provided a single hidden layer with 250 fully connected neurons.

In order to mitigate over-fitting of the training data, the dropout method was implemented

to create thinned neural networks [84]. Srivasta et al. demonstrated that the dropout

method reduced over-fitting and provided lower training error rates. In addition, rectified

linear unit ReLU were implemented as activation functions as they have demonstrated the

ability to improve deep learning performance in object recognition [63, 43].

Logistic regression with soft max was used as the classification layer. Elastic net was

also implemented into the weights of the neurons to mitigate over-fitting. The L1-norm and

L2-squared norm were assigned parameter values of 0.01. These values were obtained from

the recommendations of Theano deep learning tutorial [8, 9].

Initial feature maps were generated from two primary images containing spatial and

surface information. Figure 2.7 shows the two images are the distance transform and

the original image with contrast enhancement using adaptive histogram equalization of

the approximated cell region. The distance transform image provides spatial information

to detect location patterns and consistency of those patterns of the nuclei in a cell. The

original image with contrast enhancement using adaptive histogram equalization provides
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Figure 2.6: The convolutional neural network architecture implemented for pixel classifi-
cation of nuclei regions uses both spatial and texture information.

(a) Distance transform of cell region provides use-

ful spatial information.

(b) Contrast enhanced imaging provides more nu-

anced information of boundaries.

Figure 2.7: Information used in nuclei analysis is displayed in the following two images:
(A) Distance transformation provides a spatial dimension to nucleus analysis. (B) Contrast
enhancement is done to assist in identifying texture changes between cell and nuclei regions.

enhanced texture information to capture nuanced changes in the membrane. Adaptive

histogram equalization effectively redistributes image intensity at the local level allowing

for more crisp phase contrast image. Since phase contrast images are quite noisy, adaptive

histogram equalization is much more effective since it operates on local regions of an image.

Approximated cell regions were used to reduce the number of pixels to be analyzed. The

images that were generated consisted of 1040 x 1392 pixels each. A single phase contrast

image, therefore, contains 1,447,680 pixels, which leads to over 10 million pixels to be

analyzed in a bioassay plate for each well sectioned into 8 sites. However, the majority

these pixels are not nuclei pixels. Since a nucleus pixel must necessarily be a cell pixel,
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limiting the search space to cell pixels only will reduce the number of pixels to analyze.

Song et al. demonstrated the utility in reduction of pixels space in preprocessing stages of

CNNs used to identify nucleus regions of cells [83]. The method was reliant upon staining to

identify cell regions. The method proposed here relies on the unique characteristics of phase

contrast microscopy to reduce the pixel space and create approximated cell regions. In order

to identify cell pixels, the PHANTAST method previously described was used [42]. This

method tends to overestimate cell regions of clustered cells and seldom underestimates cell

regions in phase contrast images making it ideal for use in approximation. Hole-filling and

artifact removal are needed due to the noise inherent within phase contrast images and limit

the false negative and false positive errors, respectively. In order to minimize false positive

cell region estimation, artifact removal size is set to 900. It is assumed conservatively that

the cell regions will be no less than a 30x30 pixel area. During preprocessing, this removes

any items in the original image that contain high variance but are, in fact, too small to

accurately reflect a cell. During post-processing, PHANTAST checks the foreground labeled

pixels in the image and removes any items in the binary image that have a total area less than

900 in order to remove any anomalies not found in the preprocessing stage of PHANTAST.

Hole filling is used to reduce the false negative cell region estimation. The hole filling

size was set to 128 and is derived from the estimation of the space between three perfectly

circular cells touching each other.

HF =
1

2
r(2
√

3− πr), (2.4)

where r is the radius of each cell. The cell radii is used to create a triangular window, where

the base of the triangle is the diameter of the bottom-most cell, and the tip of the triangle

stops at the midpoint of the top most cell. Therefore, the triangle’s height is found using

Pythagorean theorem. Assuming a cell size of 50 pixels, if the area is smaller than 128, it

is filled in and considered to be part of the cell region.

Since the original image is 1040x1392, the approximated cell region images are a cascaded
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Figure 2.8: The preprocessing stage provides two initial feature maps that are split into
sub-images for each pixel.

set with dimensions 1040x1392x2. Training pixels are extracted from the converted set into

an SxSx2 sub-images where S is the sub-image size determined to best capture nucleus

information. As previously notes, the parameter S was set to 49 to yield a sub-image that

is larger than a nucleus region but smaller than a cell region. These sub-images is used in

training the proposed convolutional neural network to determine nucleus regions.

Post-processing was done on the results of the CNN classifier using a constrained exact

cover variant approach. The ground elements P = {p1, p2, ...pn} represent the pixels clas-

sified as nuclei. The subsets S1, S2, ...Sk ⊆ P are defined by all nuclei that fall within a

predefined window W of size 35. The window size was selected to encompass the average

nucleus size. Since all pixels are given the same weight, an integer linear programming can

be formally defined as:
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minimize
x

k∑
i=1

xi

subject to∑
i:p∈Si

xi ≥ 1, ∀p ∈ P

xi ≤ 1, ∀i ∈ {1, ..., k}

xi ∈ N, ∀i ∈ {1, ..., k}

Si ∩ Sj = {}, ∀(xi, xj = 1)

The constraint for all pixels to be selected is removed and replaced with most pixels

to be selected. Additional constraints were placed on the selected subsets to ensure that

the subsets were within a cell and the distance between the center C of two subsets was

greater than some predefined value τ . The τ was set to 45 to reflect the distance between

two nuclei centers. The ILP can now be formulated as:

maximize
x

k∑
i=1

xi ∗ |Si|

subject to

xi ≤ 1, ∀i ∈ {1, ..., k}

xi ∈ N, ∀i ∈ {1, ..., k}

Si ∩ Sj = {}, ∀(xi, xj = 1)

Ci − Cj ≥ τ, ∀(xi, xj = 1).

An approximated simple greedy solution is to rank all subsets S ⊆ P in descending order

by the number of pixels that they cover and then select the top subsets with no overlapping

pixels where the center is at least τ units away.
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2.4 Results

In order to determine the effectiveness of the proposed methods, they were compared to

known nucleus segmentation algorithms previously discussed. Approximately 140,000 pixels

were used from different densely clustered cell sub-images. Since the number of nuclei can

become extremely large dependent on the data set, we obtain training and testing labeled

data using Adiga et al.’s proposed method for generating nucleus masks with florescent

reagents [3]. The use of florescent reagents to determine the nucleus regions assures the

training and testing data are an accurate estimation of where the nucleus region of a cell is

located. The CNN demonstrated the ability to classify nucleus pixels with high accuracy

and a relatively small number of training data.

As demonstrated in Figure 2.9, the results indicate that the use of spatial and texture

information allows comparable performance to the nucleus staining method and better

performance than the phase contrast method. In addition, subsequent cell segmentation

using the identified nucleus regions as seed points produces comparable results to those

generated by fluorescent reagents as shown in Figure 2.2g.

To what extent the spatial information improved the CNN model was also investigated.

First, a comparison was done using CNNs trained with contrast-enhanced images versus

those trained with contrast-enhanced images as well as spatial information. Table 2.1

demonstrates the significant impact that spatial information has when using spatial infor-

mation across over forty different images in 6 different wells. Since the majority of pixels

generally tend to be background pixels that neither pertain to the cell or nucleus region,

the statistical analysis can be misleading providing overly accurate results. Thus, analysis

is limited to the more difficult challenge of separating nucleus pixels from cell pixels.

CNNs trained with contrast enhanced images and spatial information out perform those

that do not use spatial information. However, the CNNs still overestimate nucleus regions,

which is in large part due to low visual cues and the existence of spatial variance. Using the

previously described set cover algorithm, the overestimation error can be mitigated quite
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(a) Proposed CNN method for identifying nucleus

regions of cells.

(b) Results of image segmentation using an artifact

removal algorithm by [27].

(c) [3] method using florescent reagents to stain

nuclei.

Figure 2.9: Nuclei segmentation methods are compared to each other to show the difference
between segmentation using florescent reagents and phase contrast microscopy.

effectively as shown in Figure 2.10.

2.5 Summary

Learning algorithms have demonstrated the ability to identify and classify obvious and

clearly distinguishable objects in an image. Nucleus protrusion and spatial variance are two

measurements introduced to describe the visual cues and spatial location of nuclei in an

image. Two methods were proposed that incorporate spatial location in addition to nucleus

protrusion to identify nucleus regions that are not clearly visible or distinguishable. This

25



Table 2.1: 2D CNN results compared to 1D CNN.

Contrast Enhanced Contrast Enhanced And Spatial Information

Mean Standard Deviation Mean Standard Devation

Accuracy 0.8679 0.013862 0.86737 0.013614

Precision 0.92099 0.033026 0.97984 0.0071874

Specificity 0.74262 0.13144 0.92671 0.028584

Sensitivity 0.44109 0.060217 0.53557 0.0456

F1 score 0.29677 0.025221 0.34569 0.01909

(a) No set cover analysis. (b) Using set cover analysis.

Figure 2.10: Nucleus overestimation can be mitigated using set cover analysis in conjunc-
tion with CNN trained models.
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is information, although available, is not apparent to the human eye. However, a multi-

layered convolutional neural network or random forest using a predefined feature space is

able to detect these patterns and reveal the location of nuclei in macrophage cells using

phase contrast microscopy.

The results of the nucleus segmentation can then be utilized by the watershed variant

method proposed by [3]. As previously shown in Figure 2.2g, results demonstrate that if the

nucleus is properly estimated using a CNN, cell segmentation can be done rapidly yielding

good approximations of cell regions. Unfortunately, CNNs tend to not cope well with high

cell density regions despite using spatial information. This is an open ended problem that

will need to be addressed in the future.
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Chapter 3

PHENOTYPIC ANALYTICS

The Phenotypic Analytics component focuses on properly identifying phenotypes that accu-

rately reflect perturbations that have been induced in a cell due to exposure to a biological

target, chemical compound, or both. Feature selection has become a critical component of

phenotype perturbation analysis when using high dimensional HCS data. This is due to

phenotype measurements of multispectral images that may be redundant or noisy providing

no useful information while increasing complexity. Phenotype measurements are considered

features of the cells they originate from and are produced using different channels in an

effort to capture cell and sub-cellular phenotype perturbations. These phenotype perturba-

tions shed light on important biological process changes or disruptions. The visualization of

these perturbations has caused image-based HCS to become more prevalent in cell biology

and drug discovery endeavors. Feature selection is an essential component in phenotype

analysis of cells and their corresponding biological processes by identifying the phenotype

perturbations that best distinguish between different controls.

3.1 Defining the Domain

We analyzed three assay plates each with a total of 384 wells. Sixty four of these wells

were reserved for control data of healthy cells and those infected with a virulent microbe

while the other 320 were treated with different compounds. Two particular inquiries were

made with respect to the feature domains and the information provided. The first inquiry

was pertaining to how well each domain was able to separate the infected cells from the

healthy cells. The second inquiry pertained to how many wells were required to get optimal

classification accuracy.

The feature spaces that were defined for the plates were based on the optical microscopy
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Figure 3.1: Multispectral image channels define the different feature space domains.

images that were obtained. Figure 3.1 demonstrates the composition of the feature space

for each image channel. Since the number of features was significantly large, the mRMR

algorithms [72] was incorporated to identify the most discriminative features. The Min-

imum Redundancy Maximum Relevance (mRmR) algorithm is a state-of-the-art feature

selection method that not only selects the most discriminative features, but also mitigates

the redundancy inherent between the features using the correlation-based measurements on

continuous and discrete data. A support vector machine (SVM) model using a radial basis

function (RBF) kernel with cost parameter C = 8 was trained in conjunction with features

found by mRMR. The number of features was varied from five to one hundred with incre-

ments of five. The cost parameter was estimated using a cross-validated grid search. The

accuracy across the different domains with using the optimal number of features identified

by 10-fold cross-validation is shown in Figure 3.2.

Since the bug domain is defined by the channel corresponding to green florescent protein-

labeled bacteria (GFP), it is not surprising that it contains the most informative features.

Unfortunately, the domains corresponding to the the phase contrast channel are not nearly

as informative or discriminative as those corresponding to the bacteria GFP channel. The
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(a) Plate 20110420 domains performance analysis. (b) Plate 201101104 domains performance analysis.

(c) Plate 201101097 domains performance analysis.

Figure 3.2: The performance of the domains was measured using control data with different
algorithms and varying number of training wells.

least descriptive was the pseudopod domain of the phase contrast channel. This domain

obtains feature measurements from the identified boundary region of each cell. The ex-

planatory power, or lack there of, may be due to no biological difference between healthy

and infected cell boundary regions. Or, and this is more likely, the lack of explanatory

power is due to the algorithm’s identification of the boundary region, which seems much

smoother than actual boundary regions.
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3.1.1 Data Size Analysis

We additionally measured how many wells were needed to obtain a trained classification

model in each domain also shown in Figure 3.2. The bug domain demonstrated the need for

1-2 wells to reach optimal classification accuracy. Moreover, the number of features needed

to obtain optimal classification accuracy was fairly small - approximately 5-10 features or

so. The features identified were indicative of what would biologically be expected with

respect to infection. The cell domain behaved a bit more erratically across different plates.

In some plates, the number of wells needed to reach optimal classification accuracy was 2,

while in others the optimal classification accuracy was achieved using16 wells. Moreover, the

number of features needed to reach optimal classification ranged between 25 to 30 features.

However, the difference between 2 wells and 16 wells was generally not significant.

What has been clearly established is that the features in the bug domain defined by

the GFP image channel tend to provide the most discriminative information of bacterial

infection. Moreover, only a small fraction of these features are needed using only 1-2 control

wells of infected and uninfected cells to properly train a highly accurate classifier in the bug

domain. The nuc domain provided less descriptive features, although they reached slightly

better classification rates than those in the cell domain across the different plates. The

features in the cell domain were the third most descriptive followed by the features in the

environment and pseudopod domains.

3.2 Domain Information Transfer

Since current state-of-the-art machine learning methods of feature selection and classi-

fication have demonstrated the lack of information in phase contrast channel compared to

florescent channels, research was done to determine whether transferring information into

the phase contrast channel is a viable option. In order to properly utilize transferred infor-

mation, there are two primary challenges that must be overcome. First, since the different

domains contain heterogeneous data, a connection from one domain to the other is needed
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(a) Plate 20110420 phasenuc performance. (b) Plate 201101104 phasenuc performance.

(c) Plate 201101097 phasenuc performance.

Figure 3.3: The transferring of information from the Hoescht nucleus channel to the phase
contrast channel improves accuracy across three different plates.

to transfer information in a manner that improves classification. The second challenge is

how to appropriately utilize the transferred information.

3.2.1 Nucleus Transfer

The transferring of information from the Hoescht florescent channel into the phase con-

trast channel was investigated to determine the subsequent impact on classification accuracy.

The simplest way to accomplish this was to take the nucleus masks identified in the Hoescht

florescent channel using [3] and use it in the phase contrast channel. A hybrid domain is

therefore, defined by the phase contrast channel and nucleus mask and is referred to as the

phasenuc domain.
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3.2.2 Results

Across three different plates, the phasenuc domain provided more informative informa-

tion than the cell domain. The phasenuc domain classification accuracy was also comparable

to the nuc domain classification accuracy in Figure, 3.3b. This indicates that the trans-

ferring of information from the Hoescht florescent channel into the phase contrast channel

is effective at improving classification accuracy using nucleus mask information. Unfortu-

nately, the information that is transferred corresponds to an individual cell. This means

that a nucleus mask in the Hoescht nucleus channel corresponds to a specific cell in the

phase contrast channel and, therefore, the cell must exist in the Hoescht nucleus channel in

order to use it in the phase contrast channel. Unless, of course, the nucleus can be identified

with relying on fluorescent reagents, which was demonstrated as a viable endeavor in the

previous chapter.

3.3 Simultaneous Heterogeneous Feature Augmentation and Feature Selection

Research was also done whether it was possible to transfer information from the bug

domain to the cell domain in a Heterogeneous framework. Heterogeneous data such as

the bug and cell domain data is prevalent in the field of biological image analytics. Since

state-of-the-art feature selection algorithms are reliant upon data that share a common

feature space, useful information that is shared between domains may not be fully utilized

when down-selecting in each domain. Recent transfer learning and domain adaptation

algorithms are designed to perform specific classification and pattern recognition tasks but

provide limited information on the importance of features within their respective domains.

This feature information is vital for the analysis of individual cells. A novel algorithm is

proposed that addresses these issues by allowing the transfer of knowledge between domains

in order to select the most discriminative features for classification analysis. The algorithm

demonstrates its ability to utilize information in different domains to select the features

that reach higher discriminative accuracy.
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Performance of feature selection algorithms in identifying the most discriminative fea-

tures generally tend to degrade significantly when small sample sizes are used [80, 81].

Although previously demonstrating that the bug domain using GFP attached to bacteria

is capable of identifying the most discriminative features using a single well, all cell pop-

ulations treated with compounds must still use GFP reagents. As previously noted, the

number of cells used in large scale HCS campaigns can reach into the tens of millions.

We investigate the use of domain adaptation to transfer information from the bug domain

which we consider the source to the cell domain which is considered the target using a

small number of cells. This information is subsequently leveraged to assist in feature selec-

tion. Previous research in heterogeneous domain adaptation has demonstrated the ability

to transfer information between source and target domains [37, 48, 23].

In order to properly utilize transferred information, there are two primary challenges

that must be overcome. First, since the heterogeneous data are in different feature spaces,

a connection from one domain to the other is needed to transfer information in a manner

that facilitates feature selection. The second challenge is how to appropriately utilize the

transferred information to improve feature selection. In an attempt to overcome these

challenges, a novel feature selection algorithm is proposed based on `2,1-norm minimization

called Simultaneous Feature Augmentation and Feature Selection (SHFAFS) that is capable

of transferring knowledge between heterogeneous domains to assist in supervised feature

selection. The `2,1-norm regularization parameter has been extensively used in feature

selection endeavors [65, 100, 39, 105]. In addition, Argyriou et al. demonstrated the ability

to select features in data sets with heterogeneous tasks and homogeneous domains using

`2,1-norm regularization [6]. The proposed method builds upon these methods by allowing

for feature selection in data sets with heterogeneous domains. The main contributions of

this method are as follows:

• A principled approach to investigate heterogeneous domain adaptation for feature

selection that is able to effectively leverage source domain information in a target
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Figure 3.4: SHFAFS transfers information from one domain to the other using a common
domain space. Feature selection is subsequently applied to the common domain and target
domain combined.

domain is proposed.

• A novel framework, SHFAFS, that uses feature augmentation and sparse learning to

accomplish feature selection by utilizing heterogeneous datasets is proposed.

• Experiments are conducted on real world datasets to demonstrate the effectiveness of

the proposed framework.

The performance of the algorithm is compared to well known, state-of-the-art supervised

feature selection algorithms. Results demonstrate comparable if not better results indicating

that data from heterogeneous domains can be used to select pertinent features that improve

accuracy in the bright-field domain.

3.3.1 Problem Description

In practice, one very common situation in image-based high content screening is that

obtaining the labeled data in some domains is expensive. For example, the use of fluorescent
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reagents for nuclear staining of cells incurs costs associated with the reagents themselves

as well as the instruments and expertise needed to fully utilize its capabilities. In other

words, if X1 ∈ Rn1×d1 is the data matrix for that domain, the number of instances, n1, is

very small while number of features d1 is usually very large, which usually results in poor

performance for the task at hand because a small dataset cannot represent the distribution

of the samples in the domain very well. Though obtaining labeled data in one domain is

expensive, it is relatively cheap to get labeled data from a closely related domain1. For

example, bright-field microscopy is much less costly then fluorescent reagents for cells. Let

X2 ∈ Rn2×d2 be the data from such a domain. Since X1 and X2 are closely related, we would

like to transfer some information from X1 to X2 to alleviate the small data size problem.

However, one problem is that number of features in these two domains are different. Also,

X1 and X2 lie in two different high-dimensional spaces where information in X2 cannot be

simply transferred to X1. Thus, we need to make a connection between X1 and X2 first.

To make the connection and effectively utilize the heterogeneous features from the two

domains, we want to project the two datasets into a common feature space so that these

features lie in the same space. Motivated by [25, 68], we augment the the features using

projection matrices P ∈ Rd1×dc and Q ∈ Rd2×dc as follows:

φ1(X1) = [X1P,X1,0] ,

φ2(X2) = [X2Q,0,X2]

(3.1)

In Eq.(3.1), P is the projection matrix which projects X1 to X1P ∈ Rn1×dc and Q is another

projection matrix to project X2 to X2Q ∈ Rns×dc . φ1(X1) and φ2(X2) are considered to be

in a common space. In addition, φ1(X1) and φ2(X2) also contain the original features. The

common space feature makes the connection for transfering information and the original

features provides discriminative information. Now φ1(X1) and φ1(X2) can be think of as

data points from the same domain.

With the augmented features defined in Eq.(3.1), we are able to perform feature selec-

1Two domains are closely related if they are from the same objects or they share certain properties
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tions by utilizing both domains. Since we can treat φ1(X1) and φ1(X2) as data points from

the same domain, we can apply popular `2,1-norm based feature selection algorithm on it

as follows:

min
W,P,Q

(1− α)||Y1 − φ1(X1)W||2F

+ α||Y2 − φ2(X2)W||2F + γ‖W‖2,1,
(3.2)

where W are the corresponding weight of the features in the source, target, and common

domains and can be written as:

W = [Wa;Wb;Wc] . (3.3)

The augmented feature space in the objective function now contains the original and trans-

formed features from each domain. Feature selection on the augmented feature space is

accomplished on the original domains by using the `2,1-norm regularization parameter on

the weights W of the features in conjunction with the projection matrices P and Q.

min
W,P,Q

(1− α)||Y1 − φ1(X1)W||2F

+ α||Y2 − φ2(X2)W||2F

+ β(||PWa||2,1 + ||QWa||2,1)

+ γ(||Wa||2,1 + ||Wb||2,1 + ||Wc||2,1)

s.t. PTP = I,QTQ = I

(3.4)

An additional orthogonal constraint is given to the projection matrices P an Q to ensure

no redundancy between features and avoid all zero elements in each matrix. Previous

research has demonstrated the utility in optimizing by constraining the projection matrices

to contain orthogonal columns [35]. In addition, the `2,1-norm parameter is also used to

ensure sparsity on the weights defined by PWa and QWa of the source and target domains,

respectively. This ensures that the latent space does not over fit the data in the source and

target domains.

It is easy to see that this algorithm is a generalized form of the least squares with `2,1-

norm minimization algorithm for two different domains. Simply setting parameter Wa to
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0 yields

min
Wb,Wc

α||Y1 −X1Wb||2F + (1− α)||Y2 −X2Wc||2F

+ γ||Wb||2,1 + γ||Wc||2,1.
(3.5)

The process of optimizing the objective function is accomplished in an iterative manner

by holding P and Q constant when updating the weights W and holding W constant when

updating P and Q. This ensures that a global optimum is achieved.

The subproblem of updating P is given by

min
PTP=I

L(P) = ||X1PWa −A||2F + ||PWa||2,1, (3.6)

where A = Y1−X1Wb. Following [35], to solve this orthogonal constraint problem, we use

the gradient descent optimization procedure with curvilinear search [96]. First, we calculate

the derivative of L(P) with respect to P

G1 =
∂L(P)

∂P
= 2XT

1 X1PWaW
T
a − 2XT

1 AW
T
a

+ 2DapPWaW
T
a

(3.7)

where Dap is a diagonal matrix with Dap(i, i) = 1
2||(PWa)(i,:)||2

2.

G1 is then used to compute the skew-symmetric matrix

F1 = G1P
T −PGT

1 (3.8)

A potential solution for updating P is then computed using F1 and a parameter τ .

Pk(τ) = (I +
τ

2
F1)−1(I− τ

2
F1)P (3.9)

2In practice, Dap(i, i) = max( 1
2||(PWa)(i,:)|| 2

, ε), where ε is a small value such as 10−16 to prevent Dap(i, i)

from being too close to zero
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The parameter τ controls the step size of the curvilinear search function that derives

Pk. The parameter τ is updated using an iterative process that decreases its values using

a another parameter µ such that

τ = τ ∗ µ (3.10)

where 0 ≤ µ ≤ 1. The value of τ that solves the subproblem of updating P is found when

the Armijo-Wolfe conditions as defined in [35] are met. If the conditions are not met within

a specified number of iterations, a local minimum has been found for P and Q and the

search is completed.

The subproblem of updating Q is

min
QTQ=I

L(Q) = ||X2QWa −C||2F + ||QWa||2,1, (3.11)

where in this case C = Y2−X2Wc. The update rule of Q is found using the same method

described for the update rule of P. The derivative of Q is first found.

G2 =
∂L(Q)

∂Q
= 2XT

2 X2QWaW
T
a − 2XT

2 AW
T
a

+ 2DaqQWaW
T
a .

(3.12)

The skew-symmetric matrix is then computed

F2 = G2Q
T −QGT

2 (3.13)

A potential solution for updating Q is then given by

Qpot(τ) = (I +
τ

2
F2)−1(I− τ

2
F2)Q (3.14)

The optimal parameter value for τ is then found using the iterative approach that was

described for finding the updated P.

The subproblem of updating Wa is

39



min
Wa

L(Wa) = ||X1PWa −A||2F + ||X2QWa −C||2F

+ ||PWa||2,1 + ||QWa||2,1 + ||Wa||2,1
(3.15)

The derivative of Eq.(3.15) is

∂L(Wa)

∂Wa
= 2PTXT

1 X1PWa − 2PTXT
1 A

+ 2QTXT
2 X2QWa − 2αQTXT

2 C

+ 2PTDapPWa + 2QTDaqQWa

+ 2DaWa,

(3.16)

where Da, Dap, and Daq are diagonal matrices with Da(i, i) = 1
2||Wa(i,:)||2

, Dap(i, i) =

1
2||(PWa)(i,:)||2

and Daq(i, i) = 1
2||(QWa)(i,:)||2

, respectively. The update rule of Wa is

Wa = ((1− α)PTXT
1 X1P + αQTXT

2 X2Q

+ β(PTDapP + QTDaqQ) + γDa)
−1

∗ ((1− α)PTXT
1 A + αQTXT

2 C)

(3.17)

The subproblem of updating Wb is

min
Wb

L(Wb) = ||X1Wb −E||2F +
γ

(1− α)
||Wb||2,1 (3.18)

where E = Y1 −X1PWa. The derivative is

∂L(Wb)

∂Wb
= 2XT

1 X1Wb − 2XT
1 E + 2γDbWb (3.19)

where Db is a diagonal matrix with Db(i, i) = 1
2||Wb(i,:)||2

. Thus, the updating rule of Wb is

Wb = (XT
1 X1 +

γ

(1− α)
Db)

−1(XT
1 E) (3.20)

The subproblem of updating Wc is

min
Wc

L(Wc) = ||X2Wc − F||2F +
γ

α
||Wc||2,1 (3.21)
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where F = Y2 −X2QWa. The derivative is

∂L(Wc)

∂Wc
= 2XT

2 X2Wc − 2XT
2 F + 2

γ

α
DcWc (3.22)

where Dc is a diagonal matrix with Dc(i, i) = 1
2||Wc(i,:)||2

. Thus, the updating rule of Wc is

Wc = (XT
2 X2 +

γ

α
Dc)

−1(XT
2 F) (3.23)

Krylov subspaces are the initial building blocks for the projection matrices of the

SHFAFS algorithm. Krylov subspaces comprise of the data X and corresponding label

space Y where their relationship is

Zk = span{XTY, (XTX)XTY, ...(XTX)k−1XTY}, (3.24)

where Zk is the kth column in the projection matrix that is part of the optimal solution for

min
W
||Y −XZW||2. (3.25)

Projecting into Krylov subspace has demonstrated the ability to obtain an approximate

optimal solution that significantly reduces the residual error with a small number of columns

in Z [32]. This is quite suitable for transferring domain information since the label space

is common to both domains in training data. Thus the domain space of the labeled data is

shared between both domains of interest.

In order to satisfy the orthogonal constraint, the Lanczos-Golub-Kahan (LGK) bidiag-

nolization method was use to find the initial P and Q matrices that solved the following

optimization problems [32].

min
W

(1− α)||Y1 −X1Z1W||2 (3.26)

min
W

α||Y2 −X2Z2W||2 (3.27)

We set P = Z1 and Q = Z2. Multiplying X1 by P and X2 by Q columns projects X1

and X2 into a Krylov space. In both cases, P and Q are orthogonal and the objective value

is minimized with a fraction of the total feature space for both domains.
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The weights Wa,Wb and Wc are all derived by letting the respective diagonal matrices

equal to an identity matrix.

Wc = (XT
2 X2 +

γ

α
Ic)
−1(XT

2 Y2) (3.28)

Wb = (XT
1 X1 +

γ

(1− α)
Ib)
−1(XT

1 Y1) (3.29)

Once P, Q, Wb, and Wc were found, Wa is initialized as

Wa = ((1− α)PTXT
1 X1P + αQTXT

2 X2Q

+ β(PT IapP + QT IaqQ) + γIa)
−1

∗ ((1− α)PTXT
1 A + αQTXT

2 C).

(3.30)

Algorithm 1 Simultaneous Heterogeneous Feature Augmentation and Feature Selection

Require: X1 ∈ Rn1×d1 ,Y1 ∈ Rn1×c,X2 ∈ Rn2×d2 ,Y2 ∈ Rn2×c, α, β, γ,m

Ensure: The rank of features in descending order

1: Initialize P,Q,Wa,Wb,Wc

2: repeat

3: Update Wa using Equation 3.17

4: Update P,Q using [35]

5: Update Wb using Equation 3.20

6: Update Wc using Equation 3.23

7: calculate objective function

8: until stopping criteria is reached

9: return feature index of X1 in descending order according to ||Wb(i, :)||2 and feature

index of X2 in descending order accodring to ||Wc(i, :)||2

After applying Algorithm 1, we get the feature scores in descending order. These scores

describe the amount of variation that a feature explains in the response variable, suggesting
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its contribution in reaching the optimal objective function value. The top k features can

subsequently be selected by the user for training using any given classifier. Moreover, phe-

notype analysis can be done using the score ranked features to further understand biological

properties of the underlying domains.

The SHFAFS algorithm has four primary parameters, α, γ, β, and m that influence the

SHFAFS performance. The α parameter defines the influence of the two domains relative

to each other on the objective function. The value ranges from 0 to 1. The α value was

measured at values [0.25, 0.5, 0.75]. The gamma parameter is associated with the `2,1-norm

cost function for the feature weights W . This ensures small values across different classes

and sparsity of the weights. The values of γ were set to [0.1, 0.5, 1, 2, 10]. The β parameter

controls the sparsity of the weights defined by the projection matrices in conjunction with

Wa. The values of β were set to [0.1, 0.5, 1, 2, 10]. The m parameter is the size of the

common domain space. The m parameter was set to 15 given that there was little change

in the residual of the model with any larger value. Figure 3.5 demonstrates the effects that

the parameters have on the features selected and their corresponding accuracy. In this case,

α = 0.5 to analyze the behavior of the algorithm w.r.t. the β and γ parameters. The lower

the β and γ parameters, the higher the accuracy from the resultant features. Since, the β

and γ parameters control sparsity, this dataset required less sparsity and, therefore, more

information from source and target domains to select the best performing feature subset.

We did a similar grid search across all parameter values for each training data set to fully

optimize the parameters.

3.3.2 Related Works

Feature reduction in heterogeneous domain adaptation (HDA) is generally accomplished

through common latent space projection of source and target domains. The common la-

tent space projection occurs when two heterogeneous domains are projected into the same

reduced feature space. For instance, Shi et al. proposed using a linear transformation

objective function called Heterogeneous Spectral Mapping (HeMap) to define projection

43



Figure 3.5: A grid search was performed to find the best parameter values for β and γ.

matrices for the source and target domain. The projection matrices were defined by the top

eigenvalues and vectors of a matrix A which is found through a linear combination of the

source and target domains [79]. Wang et al. proposed the use manifold alignment to create

projection matrices that map source and target domains into a common feature space. This

method aligns the manifolds by matching corresponding instances while preserving local ge-

ometry [94]. Duan et al. proposed a heterogeneous feature augment (HFA) method that

used the standard SVM with hinge loss to find source and target projection matrices [30].

Unfortunately, reduction of feature space using projection matrices makes analysis of origi-

nal target feature space much more difficult. As a result, phenotype analysis becomes much

less intuitive in high content screening and cell biology. We, therefore, expand upon HDA

analysis by making the feature selection in the target domain of primary importance. This

not only identifies descriptive phenotypes but also improves performance of classification.

3.3.3 Results

In order to test the feasibility of the proposed algorithm, a biological assay was designed

using image-based high content screening (HCS) data. The assay was designed using images

from primary human monocyte-derived macrophages (hMDMs) cell. The data consisted of

two classes defined by healthy hMDMs cells and those infected with a green fluorescent pro-

tein (GFP)-tagged strain of virulent Francisella tularensis. The objective was to determine
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the ability of the SHFAFS to utilize fluorescent domain information in feature selection of

bright-field domain features using a small number of data points in each domain. A com-

bination of public and proprietary algorithms measured 6,000 features for each cell across

the 2 different domains of interest. Approximately 3,000 of these features were obtained

from WNDCharm [66]. A portion of the proprietary feature measurements generated have

been described previously in [3]. There were a total of 5,827 features in the phase contrast

domain and 162 features in the bacterial fluorescence domain. Therefore, we leveraged the

data in the fluorescent domain to reduce the feature space of the phase contrast domain.

The SHFAFS algorithm was compared to four well known feature selection algorithms:

• Relieff [45] is a multi-class feature selection algorithm that weights features by selecting

random data points and computing the distance to their the closest k neighbors in

the same and different classes.

• The Minimum Redundancy Maximum Relevance (mRmR) [72] not only selects the

most discriminative features, but also mitigates the redundancy inherent between the

features using the the F-statistic and correlation measurements.

• The Fast Correlation Based Filter (FCBF) [103] compares feature-class and feature-

feature correlation using symmetrical uncertainty to select the most discriminative

features and remove redundant features.

• The least squares with `2,1-norm minimization algorithm is the SHFAFS algorithm

on a single domain setting Wa = 0.

Each algorithm was ran on four different size training data sets of 20, 50, and 75, 100

data points. Testing was then done by randomly selecting 5 different wells on an assay plate.

The total number of data points for each testing data set was≈ 1500 cells. Sampling without

replacement for both training and testing data was accomplished using balanced data sets.

The algorithms were implemented using matlab and a feature selection package provided

and maintained by Arizona State University [109]. The feature selection algorithms were
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Table 3.1: Comparison of SHFAFS method to other well known feature selection algo-
rithms.

Algorithm 25 50 75 100

SHFAFS 74.03 75.14 75.23 77.28

`2,1-norm 74.01 74.90 74.72 76.47

Relieff 70.48 74.90 74.87 73.83

MRMR 74.01 72.79 73.68 75.02

FCBF 73.03 71.02 72.07 74.92

All Features 54.67 69.50 70.66 72.54

compared using a random forest classifier. The classifier was implemented using N = 50

trees. The random forest classifier was trained on the dataset using the top k features of

each of the feature selection algorithms. The value of k features was iterated from 1 to 100

in increments of five. The average maximum accuracy from 10 iterations of a random forest

classifier is subsequently reported in Table 3.1 for the different training sizes used.

The SHFAFS algorithm reached accuracy rates comparable or better than the other

feature selection algorithms employing the use of heterogeneous domains. Although the

gains in accuracy were relatively small, the importance lies in that information can be

transferred from one heterogeneous domain to the other to improve selecting the most

discriminative features. This is especially beneficial to phenotype analysis of cells where

a small number features is much more reasonable for investigation then large numbers of

redundant features. Moreover, our method demonstrated as good as or better performance

than simply utilizing a more specific form of our algorithm in the least squares with `2,1-

norm minimization.

The rate of change in accuracy improvement can be seen in Figure 3.6. It demonstrates

as the number of source data points increases, the improvement change in classification
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Figure 3.6: SHFAFS improvement in accuracy becomes larger as the number of data
points in the source domain increases.

accuracy also increases. The most improvement in accuracy is, seen, when the number of

source data points is 100.

Unfortunately, the extent to which SHFAFS can contribute to selecting better features

is reliant upon the amount of beneficial information in the source domain. In addition,

there are more parameters that need to be tuned adding complexity to the traditional

least squares with `2,1-norm minimization method. Finding these parameters requires more

computation time as well. In the following, section we will describe how the parameters

were tuned. The ability of SHFAFS to transfer information from one domain to the other

to select the most discriminative features using a relatively small number of data points,

provides a promising alternative to traditional feature selection algorithms relegated to the

information contained in a single domain.

3.3.4 Summary

A novel feature selection algorithm called Simultaneous Heterogeneous Feature Aug-

mentation and Feature Selection (SHFAFS) has been proposed. The algorithm initially

finds projection matrices in Krylov space for source and target domains. The projection

matrices assist in selecting the best features in the target domain through the use of a least

squares with `2,1-norm minimization function. The method proposes using alternating op-

timization where the projection matrices are optimized using a curvilinear search method.
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The algorithm was compared to state-of-the-art feature selection algorithms demonstrating

generally comparable or better performance. We further demonstrated that this algorithm

is a generalization of the least squares with `2,1-norm minimization method. We applied

this algorithm to image-based HCS data focusing on fluorescent and phase contrast do-

mains. The results demonstrate that florescent domains are capable of assisting bright-field

domains using a small number of data points relative to the data set.

The SHFAFS algorithm can be extended in a number of different directions for future

research. Specifically, future work will investigate different heterogeneous data sets and

tasks such as tumor samples with genetic expressions. In addition, future work will focus on

identifying the parameters in a non-exhaustive search manner. We will investigate whether

domain correlations can better determine the parameters to use. Additionally, we plan on

investigating the extent to which a source or target domain size are imbalanced and how

that affects the amount of information that is transferred.

3.4 Maximum Distance Minimum Error

Another challenge that was investigated was weather the distribution of the data in

each of the domains could negatively impact the selection of features that were the most

discriminative. The features that measure phenotype perturbations in high dimensional

space are often continuous values. Discretization is often employed when continuous data

is utilized requiring additional resources and testing to determine how many bins the data

should be split into [53]. Methods, such as minimum description language [33], are dis-

cretization processes that try to find the most optimal number of bins that reduce the

error within each bin. Nevertheless, the discretization process may lose crucial data, re-

quire more resources to be utilized, and may not provide an optimal binning of the data.

As such, statistically-based feature selection methods are often preferred to those that re-

quire an additional discretization step. Methods such as F-test, T-test, Fisher’s method,

and Maximum Relevance Minimum Redundancy (mRMR) are all powerful well known fea-

ture selection algorithms that utilize continuous data when selecting the optimal feature

48



Figure 3.7: Log-normal distribution is not ideally suited for parametric analysis. The
mean and standard deviation are both adversely influenced causing the error region to be
over estimated within a certain region of the log-normal distribution.

set. However, these algorithms utilize mean and standard deviation parameters to select

features that can best distinguish between classes.

Relying on parametric-based feature selection algorithms has its inherent limitations.

For instance, image-based HCS data focuses on measuring cell phenotype perturbations

caused by the introduction of a biological target and chemical compounds. Generally, as

previously described, the HCS data is categorized into two groups of healthy, unperturbed

cells and those perturbed due to a biological target of interest called negative and positive

control data, respectively. Using differentiated cell lines, there should be similarity and

minimal phenotype perturbations in negative control data, reflecting feature measurements

that follow a normal distribution with small variance. Differentiated cell line populations

tend to be uniform where very little difference exists between one individual cell and the

next. The same assumptions cannot be made about positive control data. For instance,

cells infected with a bacterial biological target may be impacted differently depending on

the infection rate and latent influences on biological processes caused by different bacteria.

Generally, a Gaussian distribution is assumed using HCS datasets justifying this assumption

by the enormous amount of data generated and the central limit theorem [82].

The variance of the phenotype perturbation and its corresponding feature measurement

in positive control data may be much greater than feature measurements of unperturbed
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cells. In addition, the phenotype perturbations may not follow a normal distribution. Sev-

eral studies have found that real world datasets, such as biological data, often resemble more

of a log-normal distribution than normal distribution [52, 77]. Figure 3.7 demonstrates how

positive and negative control distributions may very depending on the effects that a bacteria

has on a cell line. If mean and standard deviation are computed for each distribution, the

infected cells distribution is capable of providing rather dubious results by assuming nor-

mal distributions. This has severe implications with respect to parametric feature selection

algorithms where error regions may be over estimated with phenotype perturbation mea-

surements that follow a log-normal distribution. As demonstrated in Figure 3.7, if the error

region is over estimated, parametric feature selection algorithms may inaccurately consider

a highly discriminative measurement on par with a low discriminative measurement that

demonstrates a normal distribution. Image-based HCS high-dimension data may also be in-

herently noisy and redundant as has been previously demonstrated [92]. Well known issues

such as plate effects and microscopy systematic noise such as those encountered using phase

contrast technology, may yield datasets that are not normally distributed [59]. Therefore,

this systematic noise may change the data distribution and pose a challenge that normal

parametric assumptions may be ill equipped to handle.

A novel method based on a nonparametric approach that is better suited to identifying

pertinent features in image-based HCS datasets is proposed. This approach is based on

the well known Kolmogorov-Smirnov (K-S) test that is often utilized to test the similarity

between two distributions when no assumption can be made about the distribution. Our

contributions are as follows:

• Overestimation of error region when assuming normal distribution. In section 3.4.1, we

demonstrate that a log normal distribution will always provide a normal distribution

counterpart that will increase the error region of a feature within a specific interval.

• The K-S test provides a robust non-parametric alternative to feature selection. In

3.4.2, we demonstrate how the K-S test better discerns between two classes without
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assuming normal distribution.

• Data sets where one class follows a normal distribution and the other a log-normal

distribution will yield sub-optimal feature selection results when used with parametric-

based approaches. In section 3.4.3, noisy synthetic data is generated where the most

discriminative features are those that follow a log-normal distribution in one class

and show how our non-parameteric based approach outperforms parametric based

approaches.

There are two primary reasons for utilizing synthetic data: (1) Synthetic data is easy

to control with clearly known properties, and (2) demonstrates the necessity to pursue a

non-parametric approach. In addition to utilizing synthetic data, we also utilize well known

datasets previously used to test feature selection, and real world image-based HCS data.

3.4.1 Problem Description

Let X ∈ Rnxd be dataset where n is the number of data points in a dimensional space of

size d. Let Y ∈ {0, 1} represent the class labels of positive control data and negative control

data, respectively. Furthermore, we assign the positive class distribution (+) to having a

log-normal distribution and negative distribution (−) to having a normal distribution. This

is more reflective of the measurements of the biological processes that are perturbed by

bacterial targets of interest.

The corresponding normal distribution will produce an error region of a log-normal

distribution that is over estimated within a certain interval. Parametric feature selection

algorithms will give lower results when the majority of other normal distributions intersect

this interval.

Theorem 1 (Normal - Log-Normal error relationship ). Let fLN ∼ N (x, µ, σ) be a log-

normal distribution and fN ∼ N (x,m, s) be the corresponding normal distribution, then

fN will produce an interval region Rε that over estimates the error regions in parametric

feature selection.

51



Proof. The mean m and variance s2 of the corresponding normal distribution to the log-

normal distribution is

m =e(µ+
σ2

2
) = eµ · e

σ2

2 ,

s2 =e(2µ+σ
2)(eσ

2 − 1) = e2µeσ
2
(eσ

2 − 1).

It is easy to show that m ≥ µ+ 1. Since the variance σ2 must necessarily be positive

e
σ2

2 ≥ 1,

and

eµ · 1 ≥ µ.

If µ ≥ 0 than m ≥ 1. If µ ≤ 0 than m will approach 0 but remain positive.

This shift of distribution creates an interval region between two values, a and b, where

the area of the probability density function (pdf) of the log-normal distribution is less than

the area of the corresponding normal pdf.

1

2s
√

(2π)

∫ b

a
e
−(x−m)2

(2s) >
1

2xσ
√

(2π)

∫ b

a
e
−(ln(x)−µ)2

2σ2 .

Using Bowling et al.’s logistic approximation of the cumulative distribution function

[12], we demonstrate that the interval spanned from the mean to one standard deviation

away from the mean of the corresponding normal distribution fN will produce an over

estimated error region of the true log-normal distribution.
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φ(z) =
1

1 + e−(αz3+βz)
,

s.t.

α = 0.07056

β = 1.5976,

where the z value is the given centered and standardized value of x.

z =
x− µ
σ

.

We can approximate the probability between two values z1 and z2 by

φ(z2)− φ(z1) =
1

1 + e−(αz
3
2+βz2)

− 1

1 + e−(αz
3
1+βz1)

.

In a normal distribution, the area between the mean and two standard deviations away

is a constant C ≈ 0.47724. However, in a log-normal distribution, the corresponding region

tends to shift given the mean and variance.

Allowing x1 = m and x2 = m + 2 ∗ s to represent the region between a and b of the

corresponding normal distribution, the z values for a log-normal distribution become

z1 =
ln(x1)− µ

σ

z2 =
ln(x2)− µ

σ
.

z1 can be reduced to the following

z1 =
ln(x1)− µ

σ

=
ln(e(µ+

σ2

2
))− µ

σ

=
(µ+ σ2

2 )− µ
σ

=
σ

2
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Since σ must be positive, the starting point of the log-normal distribution cannot be less

than the mean of the corresponding normal distribution.

The z2 can also be reduced

z2 =
ln(x2)− µ

σ

=
ln(e(µ+

σ2

2
) + 2 ∗ ((e(2µ+σ

2)(eσ
2 − 1))1/2)− µ

σ

=
σ

2
+
ln(1 + 2 ∗ (eσ

2 − 1)1/2)

σ
.

(3.31)

Since the normal distribution area is constant, the following is shown

φ(z2)− φ(z1) < C. (3.32)

Setting

A = eα((z2)
3+βz2)

B = eα((z1)
3+βz1),

we can rewrite Equation 3.32 as

1

1 + 1
A

− 1

1 + 1
B

< C

A−B
(A+ 1)(B + 1)

< C

1 < C + (C ∗B) +
C

A
+
C ∗B
A

+
B

A

1 < C + (C ∗B) +
C

A
+ (C + 1) ∗ B

A

(3.33)

Since σ > 0 then B is lower bounded by 1.

Since Equation 3.31 contains σ in the denominator, we take the limit of σ as it approaches

0.

lim
σ→0

ln(1 + 2 ∗ (eσ
2 − 1)1/2)

σ
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Lemma 2.

lim
x→0

ex − 1

x
= 1

lim
x→0

ex − 1 = x

Allowing x = σ2, we can make the following substitution

lim
σ→0

ln(1 + 2 ∗ (ex − 1)1/2)

σ

lim
σ→0

ln(1 + 2 ∗ (x)1/2)

σ

lim
σ→0

ln(1 + 2 ∗ (σ2)1/2)

σ

lim
σ→0

ln(1 + 2 ∗ σ)

σ

Lemma 3.

lim
x→0

ln(x+ 1)

x
= 1

lim
x→0

ln(x+ 1) = x

Now we set x = 2 ∗ σ, we can rewrite the

lim
σ→0

ln(1 + x)

σ

lim
σ→0

x

σ

lim
σ→0

2 ∗ σ
σ

lim
σ→0

2

Therefore, as σ approaches 0, z2 approaches 2. Moreover, taking the derivative of z2,

d

dσ

[
σ

2
+
ln(1 + 2 ∗ (eσ

2 − 1)1/2)

σ

]

=
1

2
+

2σ ∗ eσ2

e(σ2−1)1/2 + 2eσ2 + 2
− ln(1 + 2(eσ

2 − 1)1/2)

σ
,
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Figure 3.8: The derivative of z2 demonstrates that its corresponding slope tends to be
negative below σ ≈ 0.5 indicating that z2 decreases as σ initially moves away from 0.

we can determine the behavior of z2 as it approaches 0. Plotting the derivative as shown in

Figure 3.8, we observe that the slope remains negative until around σ ≈ 0.5. Therefore, z2

increase in value as it approaches 0 starting at σ ≈ 0.5

Since, Equation 3.33 holds when σ ≥ 0.5 due to C ∗ B, it is sufficient to show that at

σ = 0 that the following inequality holds,

1 ≤ 2 ∗ C +
C

eα∗8 ∗ eβ∗2
+

(C + 1)

eα∗8 ∗ eβ∗2
.

By necessity, at σ > 0, the strict inequality of Equation 3.33 holds since B gets larger and

A gets smaller. Substituting z1 = 0 and z2 = 2 back into B and A, respectively, we can

express the inequality as
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1− 2 ∗ C ≤ C

eα∗1 ∗ eβ∗1
+

(C + 1)

eα∗1 ∗ eβ∗1

0.0455 ≤ 0.47724

e1.7585∗24.4151
+

1.47724

e1.7585∗24.4151

0.0455 ≤ 0.0455

Since the inequality holds, the proof is completed demonstrating that a log-normal distribu-

tion will always produce a corresponding normal distribution with an over estimated error

region between the mean and two standard deviations greater than the mean on the normal

distribution.

This has negative effects when using parametric-based feature selection algorithms as

we demonstrate using synthetic and real-world data. Selecting the most optimal subset S

of features is an NP-hard problem with exponential number of feature subsets as potential

solutions. This becomes intractable as the dimensionality of the dataset becomes extremely

large. Parametric feature selection algorithms may not provide the most optimal subset S

given the distribution and the error region that is subsequently formed when log-normal

distributions are the true representative of positive class distribution. We, therefore, pro-

pose a non-parametric feature selection method based on the K-S test to overcome these

challenges.

3.4.2 Non-parametric Feature Selection

In order to mitigate the parametric shortcomings during feature selection, we propose the

Maximum Distance Minimum Error (MDME) method, which is based on the Kolmogrov-

Smirnov (K-S) test; this test is a non-parametric statistical method that compares the

cumulative distribution functions (CDF) of two sample to determine whether they are
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statistically equivalent. The K-S test has previously proven its utility in HCS analysis of

phenotype perturbation descriptors and immunofluorescence analysis of cells [34, 73, 50, 7].

Previous feature selection algorithms have also utilized the K-S test in removing redundant

features [11, 86]. We demonstrate the ability of the K-S test to, instead, provide a robust

score to gage the importance of each feature.

Quantifying the distance between the the respective CDFs of two distributions is ac-

complished using what’s known as the D value.

Di = sup
x
|f+i (x)− f−i (x)|, (3.34)

where the function f(·) is given as

f(x) =
1

n

n∑
i=1

I[−∞,x](xi) (3.35)

and the indicator function I(·) is defined as

I[−∞,x](xi) =


1 if xi ≤ x

0 if xi > x.

(3.36)

Figure 3.9 demonstrates how the CDF of two sample distributions is utilized to obtain

a quantifiable distance measurement D. The distance is tested to determine whether a

null hypothesis of that the distributions come from the same distribution is rejected or

accepted. The distance measurement, D, provides a non-parametric alternative to scoring

features for importance and facilitate the selection of the optimal subset of features that

can best distinguish between two classes.

In feature selection, we can allow the D ∈ [0, 1] value to represents how distinct one

class distribution is from the other where 0 implies the two distributions are identical

and therefore inseparable and 1 implies optimal difference in population distributions and

completely separable. If a feature xi has a D value of 1, then the distribution of the classes

is optimally separated. The D value can be thought of as essentially measuring the amount
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Figure 3.9: The D value provides a decision boundary that minimizes the error regions
between two distributions.

of overlap between two classes; the closer to 1 the D value is, the less overlap exists. Using

the D-value allows for incorporating decision theory to select those features where there is

minimal overlap, and therefore minimum error regions, between the two classes.

The decision boundary is defined by the x value that produces the superum for D.

Decision regions R are naturally derived using the decision boundary such that the error

region for each class is minimized. For instance in Figure 3.9, the Di value defines a

maximum and minimum value. These values naturally reduce the error region between two

classes for a single variable. In this case, the maximum value produces a decision boundary

for the negative class and the min value produces a decision boundary for the positive class.

Any value greater than the maximum value is considered an error region for the negative

class and, as a corollary, any value less than the min value is considered an error region for

the positive class. For each region, two bins are defined as follows

Bf
ε+ = ∀(xfi− ∈ Rf+)

Bf
ε− = ∀(xfi+ ∈ Rf−).

These bins identify inherent error that exists when the D value of feature f is used.

Therefore, we propose a score that takes into account both the D value and the error

regions created by the D value. Each feature is given a Mscore based on the D value the

K-S test and an error minimization function E(·).
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Mscore(Xf ) = Df −
1

|S|
∑
s∈S

E(Xf , Xs) (3.37)

In many filter-based feature selection approaches, a common method of expanding the

selected subset of features has been accomplished by either selecting the top scoring features

or focusing on minimizing the amount or redundancy that exists within the selected subset

using correlation measurements such Pearson’s correlation or K-S test. We demonstrate

how error minimization in conjunction with the D value produces a model that, instead,

reduces residual error rather than redundancy. Thus, in selecting a subset of features, the

goal is to reduce the area of the error region that is left uncovered by each of the subsequent

features selected as the optimal subset.

The adding of a feature to the subset S is done by the function E(·), which attempts

to explain the error left uncovered by features s ∈ S while minimizing the amount of error

introduced by the new feature.

E(Xf , Xs) = α ∗ (1− J+(f, s))

+ (1− α) ∗ (1− J−(f, s)),

(3.38)

where J(·) is

J+(f, s) =
|Bf

ε+ |+ |Bs
ε+ |+ 2 ∗ |Bf

ε+ ∩Bs
ε+ |

n+
(3.39)

J−(f, s) =
|Bf

ε− |+ |Bs
ε− |+ 2 ∗ |Bf

ε− ∩Bs
ε− |

n−
, (3.40)

where n+ and n− are the total number of data points in the positive and negative classes,

respectively. The MDME method provides an additional parameter α that allows the user

to tune the method based on the importance of error minimization in one class, proving

useful when a user has a priori knowledge of class importance and data distribution. Since

MDME uses CDF, it is less prone to outliers as the raw value does not influence the score
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directly. In addition, normalizing the values is not necessary as the cumulative distribution

function will not change when the data is normalized.

Algorithm 2 Maximum Distance Minimum Error

Input: X ∈ Rnxd, α = 0.5, k

Output: S

1: for i = 1 to d do

2: D(X:i) = supx |f+i (x)− f−i (x)|

3: end for

4: D̂ = sort(D) in descending order

5: Add D̂(1)→ S

6: for j = 2 to K do

7: for m ∈ {X \ S} do

8: Mscore(X:m) = Dscores(m)− 1
|S|
∑

s∈S E(Xm, Xs)

9: end for

10: max(Mscore)→ S

11: end for

12: return S

In order to determine the effectiveness of the proposed method, we analyzed synthetic

datasets, well known feature selection datasets from ASU feature selection repository, and

real world world high content screening datasets. Table 3.2 provides specific information

of the sixteen different datasets that were analyzed. Sampling was determined based on

the number of instances in the data. If there were less than 100 total instances in the ASU

repository feature selection datasets, a leave one out (LOO) approach was implemented.

Otherwise, 10-fold cross validation was implemented. For synthetic data and real world

image-based HCS data, a bootstrapping approach was implemented since there are tens of

thousands of data sets and and is more reflective of real world processes.

We implemented four different classifiers to determine how well the features that were
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selected from each statistical algorithm performed.

• Support Vector Machine (SVM): A linear support vector machine classifier was trained

where the cost parameter C was varied from 0.5 to 8 by doubling the cost at each

increment. A grid search approach was done to find the best C value for each feature

selection method.

• Gaussian Naive Bayes: A Gaussian Naive Bayes classifier was trained on the data.

• Random forest : A random forest classifier was trained on the data where the number

of trees T was varied from 10 to 50 with increments of 10. A grid search approach

was done to find the best T value for each feature selection method.

• Decision Tree: A decision tree finds the best splits in data that reduce entropy.

Using Scikit-learn [71], each of the classifiers were trained using normalized data for the

real-world and feature selections datasets and unnormalized data for the synthetic dataset.

Synthetic data was developed by randomly generating a set or 1, 500 features. The

features representing the negative control class were generated by randomly selecting a

variance value σ2N = [1, 10] and mean value µn = [10, 50]. The positive control distribution

was created to ensure a discriminative log-normal distribution F+
LN with its corresponding

normal distribution F+
N significantly overlapping the negative control distribution for no

more than 30 features. The rest of the features were randomly generated with the same

mean and variance for both classes to represent noisy data. This process was accomplished

50 times for two different versions and the the maximum average accuracy was computed.

Version 1 allowed the mean of the corresponding positive normal distribution to the log-

distribution and negative distribution range to one standard deviation away from each other.

Version 2 only allowed the mean from each distribution to be a half of a standard deviation

away. Thus, the version 2 synthetic data represented a much nosier dataset than data 1.

There were 5 well known feature selection algorithms that were implemented using scikit-

feature [51] in python. We chose four statistical parametric-based methods that assumed a
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Gaussian distribution and one statistical non-parametric method based on Chi-square test.

The Chi-square test is a powerful non-parametric tool for determining dependency between

groups [60]. It has previously demonstrated its effectiveness in phenotype perturbation

analysis [58] and selecting features for text categorization [99]. We briefly describe each of

the 5 that were implemented.

• maximum Relevance Minimum Redundancy (mRMR) [72]: The mRMR algorithm is

a well known and powerful method that attempts to select those methods that are

most discriminative while minimizing the amount or redundancy.

• F-score[98]: The F-score was proposed by Sewall Wright in 1965 as a correlation

coefficient in biological applications. The F-score can handle multiple classes.

• T-score[26]: The T-score is similar to the F-score, except that it can only handle

binary classes when determining the correlation coefficients.

• Fisher score[31]: The Fisher Score selects a subset of features such that the sample

variance within the same class is small while the variance of the samples from different

classes are large.

• Chi-Square[54]: The Chi-square algorithm discretized numeric data while ascertaining

which features best reduce error.

3.4.3 Results

The number features was varied using f = {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} to

determine how well each feature selection method performed with each classifier previously

described. We separate the synthetic dataset results from the other datasets because the

synthetic datasets were specifically generated to demonstrate the shortcomings of the other

statistical parametric-based features selection methods. Figures 3.10 and 3.11 provide ac-

curacy information for the different feature selection methds using each of the classififiers
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Table 3.2: Dataset information used in testing MDME.

# Instances #Features Type Sampling #Test #Train

Syn V1 4000 1500 Synthetic Data Bootstrapping 3900 100

Syn V2 4000 1500 Synthetic Data Bootstrapping 3900 100

ALLAML 72 7129 Biological Data LOO 1 71

arcene 200 10000 Mass Spectrometry 10-fold 20 180

gisette 7000 5000 Digit recognition 10-fold 700 6300

madelon 2600 500 Artificial 10-fold 260 2340

SMK CAN 187 187 19993 Biological Data 10-fold 19 168

Prostate GE 102 5966 Biological Data 10-fold 10 92

201100812 1 Well ≈ 6874± 541 2530 HCS Bootstrapping ≈ 6211± 597 ≈ 663± 167

201100812 2 Well ≈ 6956± 505 2530 HCS Bootstrapping ≈ 5567± 459 ≈ 1389± 301

201104270 1 Well ≈ 2490± 264 2530 HCS Bootstrapping ≈ 2239± 253 ≈ 251± 116

201104270 2 Well ≈ 2352± 257 2530 HCS Bootstrapping ≈ 1857± 257 ≈ 495± 173

201104288 1 Well ≈ 1812± 151 2530 HCS Bootstrapping ≈ 1619± 146 ≈ 193± 57

201104288 2 Well ≈ 1874± 101 2530 HCS Bootstrapping ≈ 1500± 107 ≈ 374± 89

201101095 1 Well ≈ 3718± 368 2530 HCS Bootstrapping ≈ 3347± 347 ≈ 371± 147

201101095 2 Well ≈ 3552± 386 2530 HCS Bootstrapping ≈ 2819± 424 ≈ 733± 227

201101097 1 Well ≈ 3716± 377 2530 HCS Bootstrapping ≈ 3305± 336 ≈ 411± 186

201101097 2 Well ≈ 3679± 361 2530 HCS Bootstrapping ≈ 2964± 353 ≈ 715± 201

previously described. Version 2 demonstrates much more variance corresponding with the

noisier synthetic data. For both versions of the synthetic data, the proposed MDME method

outperformed the other feature selection methods and in the case of version 1 had less vari-

ance in the accuracies. The complete set of results is provided in the Appendix at the end

of the dissertation.

Table 3.3 provide information on performance of each feature selection algorithm us-

ing the different classifiers across the different datasets. The results demonstrate that the

MDME method performed comparable to, and often times better than the other feature

selection methods across the different datasets by different amounts. The MDME method

performed consistently better than the other methods when using the HCS datasets con-

sistent with log-normal distribution hypothesis of the data. Traditional parametric feature
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(a) Decision Tree. (b) Random Forest

(c) Linear SVM. (d) Naive Bayes.

Figure 3.10: Version 1 of the synthetic data generated demonstrated that MDME and
chi-squared were both better able to handle datasets where one class had a log-normal
distribution.

Table 3.3: Number of datasets where maximum accuracy is achieved.

MDME MRMR Fisher Score T score F score Chi Square

Linear SVM 10/16 6/16 6/16 5/16 6/16 1/16

Gaussian NB 13/16 2/16 2/16 3/16 2/16 3/16

Random Forest 14/16 0/16 0/16 3/16 0/16 0/16

Decision Tree 10/16 1/16 1/16 5/16 0/16 0/16

selection methods rely on normal distribution assumptions to identify the most relevant

features capable of distinguishing between different classes. Unfortunately, many real world

datasets such as image-based HCS data often tends to follow a log-normal distribution in-

stead. We demonstrated how parametric-based feature selections methods do not perform
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(a) Decision Tree. (b) Random Forest

(c) Linear SVM. (d) Naive Bayes.

Figure 3.11: Version 2 of the synthetic data was much noisier and demonstrated that
parametric-based models performed below non-parametric methods.

well when one of the classes of a given dataset has a log-normal distribution. Synthetic

datasets demonstrated how well known parametric-based feature selection methods identi-

fied sub-optimal feature sets. We proposed a novel non-parametric approach using the well

known K-S test. This method has several advantages including being less prone to outlier

influence and not requiring normalizing the data. Across 16 data sets, the proposed MDME

method performed comparable to and often times better than the parametric-based feature

selection methods with varying number of training instances. It demonstrated the ability to

consistently perform better than the other algorithms on real world HCS data. The MDME

can, therefore, be considered a viable option for feature selection on real world data where

a normal distribution cannot be assumed.
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3.4.4 Summary

Traditional parametric feature selection methods rely on normal distribution assump-

tions to identify the most relevant features capable of distinguishing between different

classes. Unfortunately, many real world datasets such as image-based HCS data often

tends to follow a log-normal distribution instead. We demonstrated how parametric-based

feature selections methods do not perform well when one of the classes of a given dataset

has a log-normal distribution. Synthetic datasets demonstrated how well known parametric-

based feature selection methods identified sub-optimal feature sets. We proposed a novel

non-parametric approach using the well known K-S test. This method has several advan-

tages including being less prone to outlier influence and not requiring normalizing the data.

Across 16 data sets, the proposed MDME method performed comparable to and often times

better than the parametric-based feature selection methods with varying number of training

instances. It demonstrated the ability to consistently perform better than the other algo-

rithms on real world HCS data. The MDME can, therefore, be considered a viable option

for feature selection on real world data where a normal distribution cannot be assumed.
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Chapter 4

COMPOUND ANALYTICS

With the development of automated microscopy and image analysis systems, the process of

identifying novel therapeutic drugs generates an immense amount of data - easily reaching

terabytes of information, as previously noted. Despite increasing the amount of data gener-

ated during drug discovery endeavors, traditional analysis methods have not increased the

overall success rate. The Compound Analytics section introduces a novel method based on

parallelized cellomics that uses a small number of individual cells in high dimensional space

to analyze interactions between cells, bacteria, and chemical compounds. The novel method

demonstrates the capacity to distinguish between bacterially infected and uninfected con-

trol data using a small number of cells at comparable accuracy levels as using large control

datasets, reducing the amount of data needed for quality control. Results further indicate

that the proposed method can identify chemical compounds that inhibit bacterial infection

using a fraction of the control data generated, allowing for more in depth interrogation of

chemical compounds.

Figure 4.1: Active chemical compounds will preserve a healthy cell profile while protecting
against infection.
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The goal is to integrate multivariate image-based HCS data with compound hit selection

to competitively identify effective chemical compounds that inhibit bacterial infection. A

massively parallel method is proposed that uses high dimensional image-based HCS data

to identify compounds that inhibit infection while preserving cellular health. Identifying

compounds that inhibit bacterial infection in human cells provides unique biological prop-

erties to exploit. For instance, compounds that inhibit bacterial infection of a healthy cell

should have minimal impact on that cell such that the phenotype signature or profile of cells

treated with a chemical compound should closely resemble the profile of healthy, untreated

cells. Motivated by Loo et al. where a support vector machine (SVM) classifier was used

to determine a compound profile [56], a “healthy cell” profile defined by a random forest

classifier is analyzed. This simplifies the compound hit selection process significantly by

allowing a comparison of healthy, untreated cells to treated cells exposed to bacteria. Addi-

tionally, unless using undifferentiated cells, the majority of healthy cells should demonstrate

a similar profile even if the cell cycle has not been arrested. This implies that the number

of healthy, untreated cells needed to create a reliable profile can be small, reducing the need

for large control data sets. Figure 4.1 demonstrates the intuition behind these biological

properties. The proposed novel method takes advantage of these assumptions when iden-

tifying chemical compounds that inhibit bacterial infection. Contributions of the proposed

method are summarized below:

• Demonstrating the ability to differentiate between control infected and uninfected data

with high accuracy using high dimensional cell measurements from HCS bioassays.

In section 4.4.5, the proposed method demonstrate that even with a low Z’ factor

given to a bioassay plate using traditional measurements, it achieves high accuracy

separating the control data.

• Reducing control data needed to measure differentiation has minimal impact on ac-

curacy. Section 4.4.6 provides results that demonstrate that the control data can be

reduced to a single positive and negative control well using a hundred individual cells
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from each while still maintaining high accuracy.

• Compound hit selection that inhibits bacterial infection can be accomplished using a

small amount of control data. We demonstrate in section 4.4.7 that known, active

compounds can be identified using a fraction of the data traditionally required.

These contributions are reliant upon the quality of automated image analytics to prop-

erly segment individual cell images and to subsequently produce high dimensional mea-

surements for each cell. Although the proposed method demonstrates the ability to handle

noisy data, improving the quality of image analytics is outside the scope of this paper.

4.1 Problem Statement

Let C = {c1, c2, ...cn} be the n compounds to be interrogated in an HTS campaign.

Let T = {t1, t2, ...tn} be the biological targets of interest such as protein or, in this specific

case, bacteria tested against the respective n compounds where, generally, t1 = t2... = tn.

Let X = {B+, B−, B1, B2, ..., Bn} be the complete biological entity data set, which in this

case are healthy cells. Bi = {bi1, bi2, ..., bik} are the k cells treated with ci where ti is the

biological target of interest. B+ and B− are the control data sets with biological targets of

interest introduced in one and absent in the other, respectively. A healthy cell is defined as

bik ∈ Rd where d is the number of features measured for each cell in phenotype analysis.

A perturbation function G(·) is defined that assesses the interaction between a healthy

cell, a chemical compound, and a biological target.

G(bij , ci, ti) = bij +H(ci, ti), (4.1)

where H(·) is compound-target interaction function that introduces the perturbation that a

compound and target have on a healthy cell. An optimal chemical compound would cancel

out any bacterial effect while contributing no effect of its own on a cell. However, both

the compound and bacteria generally introduce some perturbation or error νi ∈ Rd to the
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healthy cell such that

H(ci, ti) =

 0, Optimal

νi, Otherwise.
(4.2)

A compound activity function Aeff (·) provides a protection score defined as

Aeff (Bi, ci, ti) =
1

K

K∑
k=1

||G(bik, ci, ti)− b∗||22, (4.3)

where b∗ ∈ Rd is an optimal healthy cell profile. This can be rewritten as

Aeff (Bi, ci, ti) =
1

K

K∑
k=1

||νi||22, (4.4)

where the compound and bacterial effects on healthy cells is measured using Euclidean

distance via the sum of the l2-norm squared. The lower the activity protection score, the

less error is introduced to a healthy cell indicating more protection from the compound. A

compound activity indicator function f(·) is defined as

f(ci, ε, CE) =

 1, CE ≤ ε,

0, Otherwise
, (4.5)

where CE is a “compound effectiveness” score defined by an estimated Aeff (·) and the prob-

ability of finding that level of protection randomly. The function returns 1 if a compound

is active and 0 otherwise. An active compound will sustain a healthy cell profile for treated

cells to not exceed an acceptable user-defined ε threshold level. We propose a method that

limits the amount of data in C, T , and B required to obtain an accurate Aeff (·) for f(·) to

determine compound effectiveness. The method is composed of two primary components:

(1) Phenotypic Analyis and (3) Compound Analysis. The Phenotypic Analysis component

consists of feature measurements and feature selection while the Compound Analysis con-

sists of quality control and compound hit selection. We examine implementation of each of

these components and how to overcome big data challenges by exploiting parallel processing

using HPC systems.
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4.1.1 Parallel Processing in HPC Environment

To effectively use an HPC system, the proposed method was designed with the HPC

architecture in mind. Modern HPC systems are built up from layers of parallelization,

shown in Figure 4.2. The lowest level of parallelization is the vector unit, which can evaluate

multiple floating point operations (FLOP) concurrently, as long as the operation on each

element of the vector is the same. A core is able to execute a single thread at a time and

can have multiple vector units within it. Multiple cores are present on each individual

processor chip, often referred to as a socket, after the location where it is placed within the

motherboard. There can be multiple sockets on a single node. As illustrated in Figure 4.2,

each node has a memory bank that all of the sockets are able to access. A HPC system can

then be built from multiple nodes that are connected with a network.

Figure 4.2: Simplified diagram of modern computer. A network connects multiple nodes,
and each node has shared memory and multiple sockets where a chip can be inserted. Each
socket has multiple cores, and each core has multiple vector units.

Software implementation of the proposed method was also designed to exploit parallel

processing. A given sequence of instructions is a thread and can run on a single core. It

is possible for a single process to have multiple threads, and thus run on multiple cores.

However, the memory associated with a process must occupy a single virtual address space

specified by the operating system, and thus must be located on a single node. Thus, threads

in a single process may share memory between them, but may not (in general) share memory
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with other nodes. There are multiple paradigms for writing multi-threaded programs, such

as pThreads, C++11 threads, Java threads, and OpenMP. For the implemented code, all

threaded programs have been written using OpenMP.

The HPC industry has long coalesced around the message passing interface (MPI) stan-

dard for communication between processes. An MPI program executes multiple processes,

referred to as ranks, to complete its computation. Each rank has its own address space

and, in general, that address space is not shared between ranks. MPI ranks that exist

on different nodes can send messages to each other over a network. MPI ranks may also

coexist on the same node. The ability to expand beyond a single node is beneficial for both

increasing available cores and available memory. The caveat is that communication over a

network is much slower than communication through system memory.

There is a general HPC paradigm referred to as “MPI + X” where X can be pThreads,

OpenMP, accelerator offload (e.g. Intel Xeon Phi), or other methods to try to get perfor-

mance out of a system. In MPI + X, there are multiple MPI ranks in a program, but the

ranks may then be broken up into threads or other subunits. The threads for a single rank

may share memory amongst themselves and use MPI messages to communicate with other

groups of threads. A common approach is to use 1 MPI rank per node (or per socket) and

then use OpenMP to have that rank use all of the cores available to it.

The ability to exploit HPC in a given problem is reliant upon how well both functional

domain decomposition (concurrent analysis of different algorithms) and data domain de-

composition (concurrent analysis of different cells, wells, etc) can be achieved. The ease of

exploiting parallel processing in this case is largely reliant on the computational indepen-

dence of individual or small sets of cell, feature, and compound measurements. The more

measurement inter-dependency, the more difficult it is to implement parallel processing due

to the increased communication burden. In some situations where there is no required

communication, completely separate processes can be launched to make use of the available

computational resources. In these situations MPI is not needed at all and OpenMP may
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still be used to parallelize common structures such as for loops. Discussion follows as to

how to implement parallel processing in the Phenotypic Analysis and Compound Analysis

components and when to use OpenMP and MPI.

4.2 From Phenotypes To Features

The Phenotypic Analtyics component is responsible for identifying the most perti-

nent cellular phenotype measurements capable of distinguishing between infected cells and

healthy cells. The proposed approach breaks from traditional methods of measuring dif-

ferent phenotypes perturbations of a cell and selecting the most pertinent measurements.

Although the proposed approach tends to be more sophisticated, it is also more computa-

tionally expensive since it operates in a high dimension feature space. Distributed processing

in a HPC environment allows for rapid execution of the proposed approach and completely

mitigates many of the prohibitive time constraint issues that would be faced with individual

cells in a high dimensional feature space.

4.2.1 Feature Measurements

The standard method of identifying pertinent phenotype measurements was based on

a priori biological knowledge. This approach required that the biologist determine which

phenotype measurements were capable of detecting the potential changes that would occur

between infected and healthy cells. Two ubiquitous phenotype measurements using image-

based HCS were cell density and cell infection index, as measured by green florescent probes

(GFP) attached or genetically engineered into bacteria. Unfortunately, this approach is

limited to what is previously known by biologists pertaining to cell-bacteria interaction and

specific florescent signals that may be noisy.

In contrast, no a priori assumption of knowledge of phenotype changes is made in this

work, instead producing ≈ 11, 000 different image measurements for each cell using a combi-

nation of public and proprietary algorithms. Approximately 3,000 of these algorithms were

obtained from WNDCharm [66]. A large portion of the algorithms have been described
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previously in [3] as well. These cell features are derived across the multiplexed channels de-

fined by the Hoescht (Figure 1.2a), GFP-labeled bacteria (Figure 1.2c), and phase contrast

(Figure 1.2b) images.

Depending on the size of the data, hundreds of thousands, if not millions, of individ-

ual cells will require that ≈ 11, 000 different image measurements be taken for each cell.

Parallel processing in a distributed environment can reduce the amount of real time nec-

essary to generate the measurements making, it necessary for high-dimensional big data

analysis. In this particular case, the vast majority of the algorithms generate small sets of

feature measurements and are computationally independent allowing for functional domain

decomposition. Additionally, the vast majority of algorithms are performed on one cell at

a time and therefore allow for data domain decomposition. The combination of two easily

decomposed domains makes this problem ideally suited for massive parallelization, using a

single stand-alone OpenMP process for each site. A site is a group of cells captured in a

set of images that is assigned to a node. Within each site, a list of < algorithm, cell >

combinations is created and OpenMP is used to evaluate each element of that list in par-

allel. Figure 4.3 demonstrates how parallel processing is implemented in a HPC cluster in

a distributed manner. Depending on the number of cores available and the number of cells

that must be analyzed, the real computational time needed to complete this task can be

greatly reduced, often by orders of magnitude.

4.2.2 Feature Selection

Since high dimensional cell data is generated for each cell, an additional preprocess-

ing step is required to remove redundant and irrelevant features. The most discriminative

features of healthy cells are selected using Minimum Redundancy Maximum Relevance

(mRMR) feature selection algorithm [72]. This is a powerful method that not only selects

the most discriminative features, but also mitigates the redundancy between the features

using correlation between different features versus the correlation of a feature and the dif-

ferent classes [72, 109]. In establishing both maximum relevance and minimum redundancy,
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Figure 4.3: Using OpenMP, a node is assigned to a group of cells obtaining feature mea-
surements of both compound-treated and control cells. This parallelization is critical due
to the extremely large quantities of cells that must be analyzed.

mutual information is used for categorical data.

min(WI ,WI) =
1

|S|2
∑
i,j∈S

I(i, j) (4.6)

max(VI , VI) =
1

|S|
∑
i∈S

I(h, i), (4.7)

where h is class of interest for the ith feature and S is the set of features that have already

been selected. For continuous data, Pearson’s correlation is used for feature-feature corre-

lation and the F-test is used for feature-class correlation. The use of the F-test provides

the basis for the following proof.

Theorem 4 (mRMR-Z’-factor relationship ). Let f∗z be the feature with the highest Z’-

factor in the complete feature space D, then f∗z ∈ S where S is the mRMR reduced feature

space.

Proof. Contradiction- The first feature fi that is selected by the mRMR algorithm has the
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highest F-test value defined as

F (fi,K) =

∑K
k=1 nk(µki − µi)2

(K − 1)
· n−K∑2

k=1(nk − 1)σ2ki
, (4.8)

where K is number of classes and n is the total number of data points. When K = 2, the

F-test can be rewritten as

F (fi, k) =
(n1(B(µ2i − µ1i))2 + n2(A(µ2i − µ1i))2)(n− 2)

(n1 − 1)σ21i + (n2 − 1)σ22i

s.t. A =
n1

n1 + n2

B =
n2

n1 + n2
.

(4.9)

A, B, n1, n2, and n are all constant values shared between features. Let us assume that

there is another feature fj that has a higher Z’ factor than fi, Zfj > Zfi , such that

Zfj = 1− 3σ1j + 3σ2j
|µ1j − µ2j |

Zfi = 1− 3σ1i + 3σ2i
|µ1i − µ2i|

.

The inequality can be written as

|µ1j − µ2j |
|µ1i − µ2i|

>
σ1j + σ2j
σ1i + σ2i

s.t. σ1j ≤ σ1i

σ2j ≤ σ2i

|µ1j − µ2j | > |µ1i − µ2i|

(4.10)

with the given constraints to ensure that Zfj > Zfi . The absolute value of the mean

difference |µij − µij | can be used in Equation 4.9 without changing the result. Since the

only non-constant change to fi and fj the squaring of the σ and µ values for each class then

|µ1j − µ2j |
|µ1i − µ2i|

=√
(n1(B(|µ2j − µ1j |))2 + n2(A(|µ2j − µ1j |))2)
(n1(B(|µ2i − µ1i|))2 + n2(A(|µ2i − µ1i|))2)
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and

|µ1j − µ2j |
|µ1i − µ2i|

>

√
σ21j + σ22j√
σ21i + σ22i

.

Changes to the mean and standard deviation of fj and fi do not change the inequality.

This implies that if Zfj > Zfi then F (fj , k) > F (fi, k). However, this is a contradiction

since fi has the highest F-test value. Therefore, fi must also have the highest Z’ factor.

The proof demonstrates the ability of the mRMR method to initially identify the feature

with the highest Z’ factor on a balanced dataset with the given constraints. Subsequent

features added to the subset provide more explanatory power. If the constraints are re-

moved, the mRMR method chooses the features with the best strictly standardized mean

difference (SSMD) [108]. This QC metric has demonstrated to be more robust and statis-

tically rigorous in determining the quality of an RNAi-based assay than the Z-score QC

metric. Thus, using mRMR, a properly tuned classification algorithm can perform as well

as or better than using a single feature with optimal Z’-factor in distinguishing control data.

Moreover, using discrete data demonstrated better results, in part, due to the reduction of

noise inherent in continuous data [72]. In order to fully maximize mRMR, the bioassay data

is discretized using the minimum description language program (MDLP) algorithm [33].

The mRMR feature selection algorithm is well designed for big data analysis given its

relatively low computational complexity for identifying a relevant set of descriptive features.

Its greedy search algorithm allows for implementation in a parallel processing environment,

demonstrating the ability to reduce real time spent on computation from hours to seconds

depending on the size of the data. Both main components of the mRMR algorithm as

shown in Equations 4.6 and 4.7 can be parallelized. Figure 4.4 demonstrates how parallel

processing is implemented in computing the F-test and Pearson’s correlation for a feature

set and class label. In the case of the F-test, data domain decomposition can be easily

achieved as each feature is tested independently against the class label. For the Pearsons

correlation, the data domain decomposition is that each calculation is based on a pair of
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features and each pair is computed independently.

In situations such as the computing of F-test and Pearsons coefficient, OpenMP works

well by using shared memory to hold the class labels and all of the feature measurements.

Since the feature measurements are read only at this point, shared memory can safely be

used to avoid unnecessary memory copies. A list of features for the F-test, or pairs of

features for the Pearsons coefficient, to evaluate is created and then OpenMP is used to

evaluate that list in parallel.

Additionally, the MPI+OpenMP architecture works well here if it is found that a single

node is too slow. The same list that is generated for the OpenMP method is created, but

it is now distributed amongst the different ranks. Each rank uses OpenMP to parallize

evaluation of a smaller set of features, and MPI is used to gather results at the end. For the

Pearson’s coefficient, compared to the F-test, the calculations lead to far more occurances

of the same data being read into memory on multiple ranks. Intelligent task distribution

algorithms can reduce, but not eliminate, this extraneous memory usage, though this would

still show a significant benefit because of the additional cores in use.

4.3 Compound Analytics

Compound inhibition of bacterial infection intuitively leads to a simple phenotype pro-

file, which we exploit to reduce the number data points needed for quality control, to train

a classifier, and, ultimately, identify active compounds. We discuss briefly a traditional

method of measuring quality control using control data of a plate and how classification

analysis is capable of fulfilling the same function with significantly less control data needed.

We also propose a simple efficacy measurement that provides a value describing the activity

of a compound, eliminating the reliance on traditional single readout analysis.

4.3.1 Quality Control

This single readout analysis was dependent on the quality of the readout to determine

compound activity. This lead to the development of Z’-factor score used as a quality control
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(a) Parallelized F-test computation. (b) Parallelized Pearson’s correlation.

Figure 4.4: The mRMR algorithm has two primary components that are ideally suited
for parallel processing using using MPI + OpenMP and capable of reducing real time for
computation. (a) Computation of the F-test in the mRMR algorithms requires the class
label with each of the K features. (b) Computing the Pearson’s correlation can also be
parallelized since previously selected subset of features S is used with each remaining M
features not yet selected.

(QC) measure to identify the dynamic range of a single readout [106]. The dynamic range

provides information on the extent or the separation between measured activity and inac-

tivity of control data. The Z’-factor uses the mean and variance of each control population

to determine the control separation. Subsequent compound analysis will not occur until an

acceptable Z’-factor has been achieved ensuring reliable quality.

Using multivariate image-based HCS, the quality of data is no longer reliant on a single

readout. We demonstrate that classification analysis is much more powerful at discerning

plate quality using control data. The selection of an active compound C is reliant upon the

accuracy of the interaction function Ia given in Equation 4.1. In order to properly asses a

compound’s activity, a threshold value needs to be specified on the acceptable amount of

change introduced by compound and target into Ia to change the status of a healthy cell.

We propose that allowing a classifier to determine the acceptable threshold will produce a

powerful healthy cell profile.

Since we assume no a priori knowledge of the effects of bacteria on healthy cells, we
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approximate all possible phenotype perturbations as measured by feature changes caused

by the target bacteria as νT ∈ Rd . We let Eb+j ,ti [H(b+j , ti)] = 1
Ni

∑Ni
j=1H(b+j , t+) be the

expected feature measurements across all Ni control infected cells. We use b̂ to approximate

the original b+j healthy cell profile. The average negative change to a healthy cell profile

by a target bacteria is, therefore, given by

νTave = Eb+j ,t+ [H(b+j , t+)]− b̂. (4.11)

We can subsequently approximate the activity of a compound by

Âeff (Bi, ci, ti) =
1

K

K∑
k=1

||l(bik, ci, ti) ∗ νTave||22, (4.12)

where l(·) is a cell classifier trained on control data and the two possible class values returned

are defined as

0 : Healthy

1 : Infected.

The approximate healthy cell profile contains a certain amount of noise b̂ − bij = εb.

The larger εb is, the more it affects Aeff . Therefore, a classifier that is robust to noise and

variance is ideal for determining b̂. A random forest classifier is well suited for image-based

HCS data given its computational efficiency and its robustness to noise. A random forest

classifier is a collection of tree-structured classifiers {l(x, θr), r = 1, ...R), where R is the

number of trees and {θr} is a random vector [13]. The injected randomness of {θk} allows

the classifier to be more robust to noise and variance than other ensemble methods when

measuring compound activity. The approximated activity using random forest classifier is

given by

Âeff (Bi, ci, ti) =
1

K

K∑
k=1

||avrI(l(bik, ci, ti, θr)) ∗ νTave||22, (4.13)

where avrI(·) is the average prediction across R trees using indicator function I(·) to return

majority class prediction. For simplicity, we let avrI(l(bk, ci, ti, θr)) = avrI(l(bk)). It can
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be further reduced to

Âeff (Bi, ci, ti) =
1

K

K∑
k=1

||avrI(l(bik)) ∗ νTave||22

=
1

K

K∑
k=1

avrI(l(bik)) ∗ (νTave)
T (νTave)

=
(νTave)

T (νTave)

K

K∑
k=1

avrI(l(bik))

Since (νTave)
T (νTave) is constant across all compounds, it can be dropped so that the

effectiveness of a compound is based on the effectiveness of the random forest classifier to

properly identify healthy and infected cells.

Âeff (Bi, ci, ti) =
1

K

K∑
k=1

avrI(l(bik)) (4.14)

This allows for the rapid classification of healthy cells treated with a specific compound.

An activity score can then be computed for each compound.

Algorithm 3 Compound Activity

Input: X = {B1, B2, ...Bn, B+, B−}, C = {c1, c2, ...cn}, T = {t1, t2, ...tn}

Output: AC

bik ∈ X is initialized with 11k features; AC = [ ]

1: for i = 1 to n do

2: BN+ , BN− , BNi = Normalize(B+, B−, Bi)

3: B̃N+ , B̃N− = features(BN+ , BN−): mRMR

4: l = train(B̃N+ , B̃N−): Random forest classifier

5: Compute: AC(i) = Âeff (B̃Ni , ci, ti)

6: end for

7: return AC

Given that the computational complexity is approximately O(M ∗(m∗n∗loge(n))) where

M is the total number of trees, m is the number of features, and n is the number of data

points, the initial training of a random forest classifier is relatively fast. Moreover, once
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the random forest algorithm has been trained, classification of individual cells is typically

computationally inexpensive.

The random forest algorithm, as demonstrated, is most effective on a specific plate when

using matching control data. Training a random forest classifier for each plate can be done

in a HPC environment using distributed processing, exploiting data domain decomposition

because each plate is computationally independent. MPI once again is not necessary as no

communication is necessary between plates. OpenMP can be used by iterating over a given

list of trees. Figure 4.5 demonstrates how plate analysis can be parallelized for training

a classifier and, subsequently, identifying active chemical compounds. Depending on the

number of plates M that are being analyzed, the parallelized method can save a significant

amount of real time in hit selection analysis. This differs from traditional analysis that

relied on combining compound data across different plates using single variate analysis.

The more nuanced approach of splitting the analysis at the plate level is possible due to

the robustness of the proposed method with plate level noise.

4.3.2 Hit Selection

Traditional single readout analysis has used two prominent methods called the “top K”

and “outliers” method for hit selection. The top K method simply ranks all compounds

based on desired single readout results and chooses the first K compounds. The outliers

method selects those compounds that have desired activity levels two standard deviations

away from the activity level of all other compounds tested. Since both of these methods

rely on a relative ranking of compounds, they are susceptible to two primary shortcomings:

(1) Identifying inactive compounds in a set of other inactive compounds. (2) Miss relevant

compounds in a set of active compounds.

Using Âeff in conjunction with f(ci, ε, CE), a simple compound effectiveness score is

derived to replace the single readout methods, mitigating their shortcomings.

CE = α ∗ P + (1− α) ∗ U, (4.15)
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Figure 4.5: Using OpenMP allows compound analysis to be done at the plate level in a
distributed environment for training a random forest classifier and subsequently using the
classifier in hit selection analysis.

where P is the protection score and U is the uniqueness score assigned to a compound.

The α parameter allows for the weighting of the importance of uniqueness of activity versus

protection.

The protection score is simply

P = 1− Âeff . (4.16)

If a compound has a low number of cells classified as infected than that compound is

demonstrating high protection.

The uniqueness score is the probability of finding a compound’s protection activity

by random chance on a given bioassay plate. The probability of finding k number of

uninfected cells in a compound well Ci of interest is represented by the p-value PCi of the

hypergeometric distribution

PCi(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , (4.17)
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where K is the number of uninfected cells across the compound wells in a bioassay plate,

N is the total number treated cells across the bioassay plate, and n is the number of cells

treated with compound Ci. The hypergeometric p-values of some compounds, especially

the most effective, tend to get extremely small. Therefore, the uniqueness score is given in

a normalized log-based score.

U =
−log(PCi)

max(−log(PC))
. (4.18)

If there are many compounds that have high efficacy in a plate then the uniqueness score

will be lower.

Algorithm 4 Cell analytics compound hit selection

Input: AC, ε

Output: hit list

hit list = [ ]

1: for i = 1 to n do

2: Compute P using AC(i)

3: Compute U using P and AC(i)

4: Compute CE using P and U

5: hit = f(ci, ε, CE)

6: if (hit = 1) then

7: hit list = [hit list, ci];

8: end if

9: end for

10: return hit list

The proposed method relies on only fraction of the control data to not only implement

effective QC but also train a powerful learning algorithm, thus, creating a cell profile.
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4.4 Results

Evaluation was accomplished by selecting five bioassay plates to test the proposed

method. Three main questions were answered - (1) How well can the random forest classi-

fier discriminate between healthy and infected cells? (2) How much dataset reduction can

be accomplished while retaining high discriminative power? (3) How well does the method

identify known, active chemical compounds?

4.4.1 Experiment

Bioassays were designed using primary human monocyte-derived macrophages (hMDMs)

on 384-well plates. The control dataset consisted of two classes defined by healthy hMDMs

and those infected with a green fluorescent protein (GFP)-tagged strain of a virulent bacte-

ria species. Infection was allowed to proceed for 30 hours and then cells were stained, fixed

and imaged. There were 32 positive and 32 negative control wells per plate with total con-

trol population sizes ranging from 20, 000 to over 30, 000 cells. The remaining 320 wells per

plate were reserved for hit selection analysis, yielding over 1, 500 total chemical compounds

to interrogate.

4.4.2 Image Aquistion and Analysis

Images were acquired using MD Image Xpress Micro fluorescent/phase contrast micro-

scopes for each bioassay plate. Eight sites per well were imaged excluding well edges and

corners in order to capture at least 100 cells per well. As previously described in Chapter

1, four Images were captured for every site defining four distinct channels: Hoechst 33342

nuclear staining (377/477 nm excitation/emission), phase contrast cell images (no filter),

GFP bacteria fluorescence (485/524 nm excitation/emission), and Live/Dead Far Red vi-

ability staining (628/692 nm excitation/emission). All images were collected as 12 bits in

a 16 bit short integer data type. Individual cell image segmentation was accomplished as

described in [2, 3] resulting in the creation of a nuclear and cell mask that identified the
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boundaries of the nuclear and membrane regions of each individual cell, respectively. These

masks were used in conjunction with the images in each channel to derive all phenotype

measurements.

4.4.3 Preprocessing Data

Imputation was implemented by discarding any data point that had missing feature

values. In addition, dead cells identified by Live/Dead Far Red viability were removed from

all wells. In order to avoid any bias from either control population, the data was split so

that training and testing datasets were balanced to contain the same number of positive

and negative data points during control well analysis.

4.4.4 Parameter Implementation

Random forest classifier, mRMR feature selection, and hit selection implementation was

accomplished in Matlab. The mRMR algorithm was implemented using the feature selec-

tion package distributed by Arizona State University’s Data Mining and Machine Learning

Laboratory (DMML) [109]. The following parameters were used:

• Random forest: 30 decision trees with 10 features randomly sampled for each tree.

• mRMR: Top 100 features; Mutual information on discretized data.

4.4.5 Multi-Well Classification Analysis

Five iterations of k-fold cross validation was performed using 10%, 20%, 50%, 80% and

90% of the control wells for training. The average of each of the five iterations is shown

in figure 4.6. The accuracy of a random forest classifier using different numbers of training

wells contained little variation. This demonstrated that the classifier remained consistent

whether 30 or 3 control well pairs were selected. Moreover, the accuracy of different plates

remained consistently over 95% even though the plates contained very low Z’ factor values

for the traditional univariate measurements.
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Figure 4.6: Cell classification accuracy using different number of training wells.

4.4.6 Multi-Well Versus Single-Well Classification Analysis

We further reduced the dataset to 200 data points randomly selected from a random

pair of positive and negative control wells in each iteration of the k-fold cross validation.

The 200 data point analysis was accomplished up to 10 times for each iteration, depending

on the number of training wells. This produced over a thousand iterations across all k-fold

cross validation runs for 200 randomly selected data points. The single-well control analysis

demonstrated more variation then the multi-well control analysis with respect to accuracy.

Figure 4.7 demonstrates the variation in accuracy when 200 data points from a single well

were used.

However, the variance was not sufficient to significantly impact the average accuracy.

Table 4.1 shows the average accuracy across all iterations for both single well and muti-

well training. The results demonstrate that 200 data points from randomly selected single

control well pairs with a reduced feature space was sufficient to achieve comparable results to

using 90% of control wells. In fact, plate 201101104 demonstrated the most change of ≈ 1%.
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(a) Multi-well analysis (b) Single-well analysis

Figure 4.7: Analysis of accuracy for multi-well and single-well selection.

Table 4.1: Single-well versus multi-well average across all iterations of cross validation.

201101097 201100939 201101095 201100812 201101104

Multi-well Single-well Multi-well Single-well Multi-well Single-well Multi-well Single-well Multi-well Single-well

Accuracy 0.972 0.969 0.990 0.988 0.986 0.983 0.986 0.979 0.970 0.961

Sensitivity 0.979 0.976 0.992 0.987 0.989 0.982 0.993 0.991 0.977 0.969

Specificity 0.966 0.963 0.989 0.990 0.984 0.983 0.980 0.968 0.963 0.954

Precision 0.966 0.964 0.989 0.990 0.984 0.983 0.980 0.971 0.964 0.955

Recall 0.979 0.976 0.992 0.987 0.989 0.982 0.993 0.991 0.977 0.969

F1 Score 0.972 0.969 0.990 0.988 0.986 0.982 0.987 0.980 0.970 0.962

This accuracy was accomplished despite all five plates receiving very low Z’ factor scores

using traditional univariate measurements of infection and cell density as demonstrated in

Table 4.2.

4.4.7 Hit Selection Classification Analysis

The five different bioassay plates contained known, confirmed compounds that inhibit

bacterial infection. The α value was set at 0.5 to give equal weight to the efficacy and

uniqueness of compound activity. A standard Bonferroni correction was applied to the

hypergeometric distribution’s p-value using the number of compounds tested per plate.
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Table 4.2: Z’ factor analysis of the individual plates using traditional readout measurement
for bacteria analysis.

201101097 201100939 201101095 201100812 201101104

Cell Density Infectivity Cell Density Infectivity Cell Density Infectivity Cell Density Infectivity Cell Density Infectivity

PC Mean 269.22 5626.73 277.38 3465.44 263.47 4906.28 448.75 3399.10 280.28 5339.22

PC SD 98.60 994.22 49.29 409.46 90.44 964.15 134.44 271.03 117.25 1080.72

NC Mean 544.66 2583.64 471.71 2023.61 517.78 2378.99 756.68 2053.10 517.13 2669.15

NC SD 123.61 92.51 117.94 149.16 90.57 83.33 136.80 99.28 131.05 108.31

Z’ Factor -1.42 -0.07 -1.58 -0.16 -1.14 -0.24 -1.64 0.17 -2.15 -0.34

Table 4.3: Compound hit selection using single-well analysis.

Bioassay Plate Active Known Jaccard Enrichment

201101097 23 25 0.0870 0.9130

201100939 8 4 0.5 0.5

201101095 23 26 0.0870 0.9130

201100812 1 1 0 1

201101104 11 14 0.0909 0.9091

The ε threshold was derived by:

ε = α ∗ (0.7) + (1− α) ∗ −log(0.005)

max(−log(PC))
,

where PC is the lowest p-value in the plate of interest. The threshold placed equal impor-

tance on those compounds that had healthy cell populations above 70% and those that had

a hypergeometric p-value below 0.005.

4.4.8 Feature Selection Variance Analysis

Using the Jaccard and the Hamming distance measures two important feature properties

respectively: (1) Overlap of features rankings and (2) Alignment of feature rankings. The
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Figure 4.8: Compound hit selection for each plate where active compounds have high
overlap with known compounds.

distance values for both the Hamming and Jaccard range from 0 to 1 with optimal overlap

and alignment being 0 and no overlap or alignment being 1. Table 4.4 demonstrates these

results for the top 105 features identified through the mRMR algorithm for each plate using

different numbers of training wells ranging from a single pair to ten pairs.

4.4.9 Plate Variance Analysis

We analyze how the variance between 47 different plates tends to impact the effectiveness

of the profile to discern between infected and healthy cells. One, two, and four microtiter

plates were randomly selected for training a random forest model. Letting Wi be the set of

controls wells used to train a random forest model, avrIi, where i specifies the number of

well pairs used, then W1 ⊆ W2 ⊆ W4. This provides a view to the extent that additional

wells from other plates will improve classification accuracy. Using random sampling with

replacement, the process sampling the training and testing plates was repeated 30 times.
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Table 4.4: Feature selection intra-plate variance analysis.

One Well Two Wells Five Wells Ten Wells

Jaccard Hamming Jaccard Hamming Jaccard Hamming Jaccard Hamming

201101097 0.7675 0.9940 0.6964 0.9913 0.6561 0.9913 0.6703 0.9901

201100939 0.7151 0.9916 0.6548 0.9901 0.6416 0.9900 0.6420 0.9888

201101095 0.8015 0.9942 0.6857 0.9910 0.6622 0.9916 0.449 0.9882

201100812 0.7501 0.9916 0.7253 0.9900 0.6903 0.9884 0.6914 0.9879

201101104 0.7838 0.9950 0.7627 0.9930 0.7202 0.9925 0.7129 0.9911

Table 4.5: Inter-plate classification variance analysis.

Mean Std Runs with Improved Accuracy

1 Plate 0.8607 0.028 -

2 Plates 0.8840 0.028 17%

4 Plates 0.8756 0.029 6 %

Figure 4.9 demonstrates the average classification accuracy for avrIi models that had the

same number of training control wells for all 30 runs. Using the Wilcoxon rank sum test,

we also compared the accuracy of each avrIi model in a specific run to determine whether

using more wells caused a statistically significant shift (α = 0.005) toward higher accuracy.

For instance, Table 4.5 demonstrates that avrI4 model had a statically significant higher

accuracy than avrI2 model in 16% of the 30 separate runs. The first two columns of Table

4.5 represent the average accuracy across all 30 runs fore each of the avrIi models.
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Figure 4.9: The accuracy of a random forests classifier in inter-plate control data analysis.

4.5 Discussion

The features selected by mRMR demonstrated that control data could be separated

with a high degree of accuracy even with low Z′− factors from traditional single readouts.

The number of features was determined based on the fact that a random forest classifier’s

effectiveness is reliant upon the strength of the individual tree classifiers and the correlation

between the features used in each tree. Therefore, to reduce feature correlation, we provided

a larger pool from which to select descriptive features. Training a highly accurate random

forest classifier was subsequently accomplished using ≤ 1% of total control population.

However, as figure 4.7b shows limiting the number of training points increases the variance

of accuracy; this was especially true in plate 201100812. The origins of the variance are more

than likely a product of noise from image analytics and data collection i.e. environmental

effects or handler error. In addition, smaller numbers of data points tend to be affected

more by outliers. Although quality control is still necessary to reduce the effects of noise,
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the process becomes simplified with the use of k-fold cross validation and a substantially

smaller data set. The use of 200 data points to create a healthy cell profile tends to buttress

the biological assumption of little variance in healthy cell phenotypes.

The healthy cell profile is limited to per plate analysis due to the amount of noise that

exists in the data. This is why quality control is needed using traditional methods. The

mRMR algorithm has a significant amount of variance for features selected even within a

plate regardless of the number of wells used. This underscores the importance of having high

dimensional feature space to select from as opposed to a priori assumptions of phenotype

perturbation measurements that may not yield fruitful results. In a low dimensional space,

this noise may be too severe for accurate measurement of phenotype perturbations. Allowing

a feature selection algorithm to determine the best features provides a robust method for

overcoming this noise.

Variance analysis across different plates also demonstrates that enough noise exists to re-

quire a random forest classifier to be trained per plate. If a random forest classifier is trained

using a single plate for use across different plates, a sub-optimal profile will be produced

that may impact the ability to properly identify active chemical compounds. Moreover,

combining data from different plates demonstrates a rate of diminishing returns. This is

a departure from traditionally combining data from different plates to analyzing individ-

ual plates and provides a more nuanced approach taking into consideration noise and data

variance. It also provides considerable amount of parallel processing to be exploited for com-

pound analysis. Parallelized cellomics becomes critical for high and ultra-high dimensional

analysis given the amount of data generated in image-based HCS bioassays.

Table 4.3 demonstrates the proposed method’s ability to identify known compounds with

a high degree of accuracy. The enrichment score is the percentage of active compounds

that are known compounds. The enrichment score and Jaccard distance confirms that

active compounds and known compounds share a high overlapping area across different

plates except in plate 201100939; this plate had a total of four known compounds and the
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proposed method identified all four. However, it also identified four other compounds that

have not been confirmed. These could be false-positive compounds or simply unconfirmed

compounds. In plate 201100812, there was only one known compound and it was identified

by the proposed method as the top scoring compound. Figure 4.8 shows the enrichment of

all plates consistently identifying known compounds at the top of the active compounds list.

These results buttress the healthy cell profile hypothesis for identifying novel compounds

that inhibit bacterial infection.

4.6 Related Work

One of the earliest analyses of phenotype profiling using multivariate imaged-based HCS

was performed by Perlman et al. [73]. The study investigated the dose-dependent pheno-

type changes induced by different drugs in human cell cultures. Young et al. profiled

phenotype changes by compounds that affect cell proliferation using factor analysis on 36

different cytological features [102]. The application of factor analysis yielded six highly de-

scriptive factors in projected space that were capable of describing the biological response of

all cells to the chemical compounds. Christophe et al. used an image-based HCS platform

to discover novel compounds that were effective at treating macrophage cells infected with

different Mycobacterium tuberculosis strains using principle component analysis to project

multivariate data into a univariate feature space [18]. These methods differ from the pro-

posed method in that the feature space is much smaller, projection was used, and parallel

processing was not utilized.

Liu et al. discussed using HPC systems in computational drug discovery and design

(CDDD) for personalized medicine using virtual screening, molecular dynamics simulation,

and protein folding [55]. Zhang et al. also implemented an automated massively parallel

virtual screening pipeline for drug discovery endeavors [107]. Virtual screening and molec-

ular simulation show promising results but are not substitutes for actual screening, which

the proposed method accomplishes.
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4.7 Summary

A novel, massively parallel method has been proposed that identifies chemical com-

pounds capable of inhibiting bacterial infection. Implementation in a parallel processing

environment allows it to work in high dimensional space with as little as 200 data points.

Results indicate that biological properties such as minimal phenotype variance in healthy

cells can be exploited to reduce the number of data points needed to train a classifier. This

results in significantly fewer resources needed to identify active compounds through hit

selection analysis. We further demonstrate that using mRMR feature selection algorithm

ensures that features with optimal SSMD and constrained Z’ factor will always be selected

for analysis. Given the current process of identifying novel drug therapies, the reduction

in data needed to identify compounds that inhibit bacterial infection improves the overall

process while reducing the associated cost and time.

Investigation into optimizing single well analysis is needed to minimize performance

variance. Factors such as plate location of control wells and cell density will be analyzed to

determine the impact on the quality of control data. Investigating the reduction of noise in

inter-plate single control well analysis to assist in the identification of effective compounds

may further reduce the use of costly resources as well. Analyzing compound mechanisms of

action using the novel activity measurements that have been defined in the proposed method

in conjunction with random forest probability estimations is also planned. Finally, any hit

selection endeavor such as antiviral vaccine identification where a healthy cell profile is ideal

will benefit from this analysis. Therefore, investigation will extend to the application of the

proposed method to identifying novel therapeutic drugs across a wide range of diseases.
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Chapter 5

INSIGHTS PROJECT

The Insights project is an evolving software analytics platform that currently incorporates

many of the proposed novel methods presented in previous chapters. It represents the next

generation of image-based cellomics providing a parallelized architecture for fast and power-

ful analysis. An increased throughput of data acquisition, coupled with increased analytics

from massive algorithm libraries, has created new big data handling problems within the

novel drug discovery process of antimicrobial chemical compounds. The Insights project

fully incorporates distributed processing, high performance computing, and database man-

agement that can rapidly and effectively utilize and store massive amounts of biological

data generated using image-based high content screening (HCS) assays.

The first stage of the novel drug discovery process is responsible for identifying the most

”active” chemical compounds that influence a specific biological outcome. This target is

usually a protein structure of interest or a specific type of microbe. The result of this stage

is the identification of compounds of interest or “hits” to further investigate. One key fac-

tor in identifying hits is defining the chemical compound search space. Estimates of the

theoretical chemical compound space range from 1080 to 10180 with the number of those

already discovered and commercially available at over 68, 000, 000 [29]. Methods such as

combinatorial chemistry have allowed for the rapid synthesis of large numbers of chemical

compounds in a relatively short period of time [69]. Dependent on the bioassay being con-

ducted, a large number of chemical compounds can either be selectively developed based on

the biological target of interest or obtained via commercially available libraries. The vast

number of chemical compounds, bacteria, and cell types to investigate produce the chal-

lenge for biologists and chemists of narrowing down the search space to those compounds

that potentially have therapeutic properties. Narrowing down this search space is compu-
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Figure 5.1: The data flow of Insights project virtual pipeline for compound analysis.

tationally expensive and generates large data sets. The Insights project was developed to

assist in automated large-scale HTS campaigns by providing a more advanced method of

interrogating large quantities of compounds in a relatively short period of time.

The Insights project follows the I3 paradigm connecting the different components into

a seamless, continuous virtual pipeline. Figure 5.1 demonstrates how this virtual pipeline

manages information from one component to another utilizing different data management

technologies to store and retrieve pertinent information. In addition, the Insights project is

flexible enough to allow for the implementation of different pipelines by modularizing and

varying the algorithms used within each component dependent on the biological assessment

being conducted.

In this chapter, the critical role that computer vision, database management, high per-

formance computing (HPC), and machine learning play in handling the extremely large

amount of data generated by the Insights project when analyzing compounds for antibiotic

properties is investigated. The Insights project handles the unique challenges that each of
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the previously described HCS components present in not only generating but also analyzing

and storing the data. An example of a common bioassay for bacterial inhibitors centered

on the host-pathogen interaction with human macrophage cells as described in [92, 3] is

provided to demonstrate how the Insights project moves from one component to the other.

5.1 Image Analytics Implementation

HCS assays generate massive amounts of data, due in large part to the host-pathogen and

pathogen-only HCS assays being based on images of cell populations where each population

is treated with a different compound. HCS instrumentation can vary depending on the

size and requirements of the assay (A thorough list of available automated microscopy

instrumentation can be found in [104]). The number of fields analyzed per microplate well

also contributes to the amount of data generated. The fields, or sites, of a well refer to

non-overlapping regions unless otherwise specified. The number of sites a well is split into

depends on the magnifying objective, which typically ranges from 10x to 67x depending on

the instrumentation used [14]. Images are subsequently acquired from the different sites of

a well.

There are a number of different file formats used for microscopy imaging such as TIFF,

ICS\ICS2, DIB, JPEG, etc. Since the uncompressed TIFF format is lossless by default

and preserves cell imaging data obtained from the HCS instrumentation device, it is a safe

option for use in storing cell imaging data. The instrumentation used in the Insights pipeline

generates uncompressed 12-bit grayscale TIFF images, stored using 16 bits per pixel; each

pixel is capable of holding 1 of 4096 different values. The bit depth describes how many gray

levels there are in a gray scale image produced by different imaging microscopy. Opaque

gray scale images have bit depths of 8, 12, or 16, for available numerical ranges of 0 to

255, 4095, or 65,535, respectively. Typically the pixel values are visually represented as

a smooth transition from black (0) to white (the maximum value), though the reverse is

possible. Since uncompressed TIFF files are only available as 8 or 16 bit files, 12-bit gray

scale images are stored in 16-bit TIFF files with only the first 12 bits being utilized.
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5.1.1 Image Acquisition

The MD ImageXpress XLS system can obtain phase contrast and a number of different

fluorescent reagent-based images at different spectral channels. Using eight predefined sites

within each well, and 4 spectral channels per site, the Insights project pipeline can produce

a total of 32 12-bit TIFF images, resulting in ≈ 88 MB worth of data per well. Increasing

the sites per well, or channels per site, will increase the data size for a single well beyond

88 MB.

In addition to the large space requirement, the sheer number of files can have detrimental

effects, especially when they are all stored in the same directory, as the MD Image Xpress

microscopy system does. A 384-well microtiter plate with 32 images per well yields over

12,000 images all placed within the same directory. Popular high performance file systems,

such as Lustre [78], are designed to handle a small number of large files extremely well,

rather than a large number of small files. Thus, the Insights project uses archiving programs

with lossless compression, such as those that generate .zip files to address both problems

simultaneously. Given this arrangement, placing the images for a single well into an archive

file reduces the file count by a factor of 32 and, from experience, yields compression of

between 50% and 60%.

Image acquisition is the cornerstone of any HCS platform. It can have a profound

effect on the quality of the bioassay and impact all subsequent stages. The quality of the

images taken has a significant impact on the overall HCS process. Systematic noise, such

as microscopy lighting, image focusing, and optical errors - such as phase contrast halo and

shadeoffs, etc. - are propagated through the rest of the analysis and exacerbate known

issues such as plate effects. Therefore, image preprocessing is often needed to correct noise.

Since it is impossible to manually analyze every image produced, methods such as those

proposed in [101, 85] incorporate computer vision optimization methods in conjunction with

microscopy information to automate the removal of noise that is specific to phase contrast

microscopy. The Insights project’s modularity allows for correction methods such as those
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previously mentioned to be integrated into its pipeline with relative ease.

5.1.2 Image Segmentation

Image segmentation is responsible for identifying individual cells and their corresponding

nuclei within a given image. Since the number of individual cells to be segmented can be

on the order of tens to hundreds of millions depending on the size of the HTS campaign,

computer vision is needed to accomplish this task in an automated and rapid manner. The

location of each cell within each site must also be stored after identification for future use.

There are two primary measurements that are used in determining the quality of cell

segmentation: (1) enumeration and (2) pixel area overlap. Enumeration compares the true

number of cells and nuclei that are in an image to the number identified by a chosen seg-

mentation method. Pixel area overlap is a measure that quantifies how well the appropriate

pixel region, including the boundary of the cells and their nuclei, are identified. Methods

such as those proposed in [2, 3] that identify both individual cell and nucleus regions by

using fluorescent reagents result in both accurate enumeration and appropriate pixel area

overlap and are obviously preferred. These methods rely on relatively fast thresholding and

a variant of the watershed-based algorithm for segmentation, and require less than a minute

to segment a site with 1392x1040 12-bit TIFF images when run on a single core using lan-

guages that compile to machine code, such as C/C++ or Fortran. With these algorithms

implemented in an interpreted language, such as Python or R, the computational require-

ments undoubtedly increase. While each individual site is fast, the sheer number of sites

where segmentation is done provides a computational challenge on traditional computer

systems. For example, assuming a low-end value of 20 seconds to segment each site, 8 sites

per well, and 384 wells per microtiter plate, it would still require approximately 17 hours

of computation (core-hours) using a single-threaded program to segment all the sites for a

single plate alone. Fortunately, the task of cell segmentation is ideal for parallel process-

ing where each image can be evaluated independently of other images. With enough cores

working in parallel, such as on a HPC system, an entire plate could be segmented in 20
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(a) Nucleus Segmentation. (b) Cell Segmentation.

Figure 5.2: Using [3, 2], the cell and nucleus regions are labeled for each individual cells
creating a label image. The gray shading of the images indicates the integer label assigned
to the cell and corresponding pixels. The brighter the cell region, the higher the integer
label assigned.

seconds of real time using the Insights project. This would require synchronized execution

across 3,072 cores and would still use 17 core-hours of computational time.

The previously described cell segmentation methods used in the Insights project produce

two mask images (Figure 5.2) per site in gray scale: one each for cells and nuclei. Each pixel

in a mask image will either be 0 to indicate background or a positive integer to indicate

that the pixel in the TIFF image is within the bounds of a cell or nucleus. Each cell-nucleus

pair within a site is assigned a unique integer label. The mask images label the pixels of

interest, meaning that each pixel is critical and that a compression algorithm that is used

must be lossless. For the Insights project, compression is chosen at the image level using

the PNG image file format. The mask images are made up of large areas where each pixel is

the same value, bordered by areas that are likewise homogeneous. This type of data layout

is well suited to compression. Assuming 8 sites in a well, there will be 16 mask images (8

cell masks and 8 nucleus mask). These PNG images tend to be relatively small where the

size ranges between 5 and 50 kB dependent upon the number of cells or nuclei within a

given site. Therefore, each well can produce between 80 and 800 kB worth of mask images.

The number of files can be an issue again, but the Insights project ameliorates these issues

by archiving the masks.
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5.2 Phenotypic Analytics Implementation

Phenotypic analysis identifies pertinent image measurements that describe correspond-

ing phenotype perturbations and cellular process disruption. It is done on each individual

cell and nucleus region that has been segmented and labeled. In the bacteria-based as-

say example, there are 100 to 1000 individual cells per well out of a 384-well microtiter

plate. This produces between 250,000 and 2.5 million cells for analysis even from a small

HCA screening study with six to twelve microtiter plates. A high dimensional approach

is implemented where the number of different phenotype measurements for each cell can

be extremely large. Each value for each phenotype measurement is recorded for further

analysis. Feature selection chooses the most useful phenotype set from across the expo-

nentially large sets of possible feature spaces that exist, and its role in phenotypic analysis

is discussed further below. The Insights project provides phenotypic analysis with HPC,

intelligent data storage, and machine learning, efficiently obtaining and storing results.

5.2.1 Phenotype Measurements

There are no prescribed phenotype measurements or feature spaces for a HCS assay; it

is dependent upon the biological inquiry the assay is seeking to answer. The most common

phenotype measurements for antimicrobial compound assays are infection levels as defined

by GFP reagents and cell density. HCS assays are image-based and are, therefore, capable of

creating high dimensional features spaces of phenotype measurements. The Insights project

expands upon single variate phenotype measurements to produce much more descriptive

assays where thousands of measurements per cell can be taken [3, 92].

Single variate analysis is ideally suited for target-based assays where compound activity

is based on its effects on a target protein i.e. inhibition or activation. However, the com-

plexity of a cell and its respective response to a compound cannot be easily gleaned from

a single measurement. Although high dimensional phenotype measurements increase data

size and add complexity to an experiment, it is also better suited to providing phenotype
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Figure 5.3: Phenotype measurements using [66, 3] in conjunction with the (Red) nucleus
mask and (Yellow) cell mask can produce features that describe important cellular and
sub-cellular characteristics.

information describing host-pathogen and host-compound interaction. Different biological

image libraries such as WNDCharm [66] and those proposed by [3] produces image measure-

ments based on well known edge, shape, texture, and intensity descriptors such as Gabor

filters, Haralick, Laplacian, Gaussian features,etc. Utilizing the small set analysis in WND-

Charm and those proposed by [3] alone, the Insights project is capable of producing over

11, 000 features per cell when used in conjunction with phase contrast, GFP, and nucleus

channels in a host-pathogen designed assay. The number of features increases to close to

20, 000 when large set analysis is used in WNDCharm. Figure 5.3 demonstrates the region

of the cell and nuclei phenotype measurements that are obtained from using cell and nucleus

masks in conjunction with the different spectral channels.

Evaluation for the vast majority of features (> 99.9%) at the cell level are independent

allowing for massive parallelization to occur. Additionally, while a small group of features

may be interrelated, separate groups of features are independent from each other. This

domain decomposition in both the spatial and functional domains provides a wealth of

parallelism to exploit. Depending on the hardware and compilers available, the normalized

feature evaluation computational cost is between 30 core-seconds and one core-minute per

cell. For a screen with with 100 million cells, that is roughly equal to 100-200 core-years of

computational time. While segmentation benefits from HPC, the phenotype measurement

phase is where HPC becomes critical to the Insights project.

In ultra high dimensional space, raw feature data is too large to effectively store and

retrieve in a traditional database. The Insights project solution is to aggregate the data
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and store all of the features for a single plate in an HDF5 file [90] following the completion

of phenotype measurement. The use of HDF5 provides a number of advantages over a

traditional database:

• No server requirement.

• No file or dataset size limits (MySQL has a hard limit of 4096 columns per table.

[MySQL 5.7 Reference Manual, Appendix C.10.4, p. 4146])

• A single file containing all features and meta-data can be sent to colleagues for further

or alternative analysis.

• Built-in lossless compression.

• Hierarchical structure (file system within a file) allows for easy navigation to values.

• Well-supported in multiple languages, including popular post-processing languages

such as Python and R.

• HDF5 files can be accessed in parallel.

The HDF group also provides tools for converting HDF5 files to text (comma separated

variable), as well as a cross-platform spreadsheet viewer to explore an HDF5 file. Wells are

stored separately within the HDF5 file as groups, which are analogous to directories in a

file system. Within each well group, the results for each feature are stored continuously

rather than storing the results for each cell contiguously. This reduces the time spent in the

Phenotype Identification sub-component and the Compound Analytics component where

only a small subset of features are used at any given time to prevent inefficient strided data

accesses. In addition, the conversion from uncompressed text to compressed native-format

floating point numbers yields a median compressed size ≈ 25% that of the original.

105



5.2.2 Phenotype Identification

The Insights project generates high dimensional data that is often noisy and redundant.

It, therefore, requires an additional preprocessing step to reduce redundancy and remove

irrelevant and noisy phenotype measurements. A powerful tool in machine learning known

as dimensionality reduction has become an integral component to reducing high dimensional

feature space to the most important components. Methods such as factor analysis and

principle component analysis project the multivariate data to a reduced subspace for further

phenotypic analysis. Other supervised feature selection methods such as sparse learning

[91], Fast Correlation-Based Filter (FCBF) [103], maximum relevance minimum redundancy

(mRMR) [72] select the most descriptive phenotype measurements in the original data

space making them more ideally suited for phenotypic analysis. The Insights project allows

the end user to select from several of the previously mentioned dimensionality reduction

techniques.

Supervised feature selection methods require additional data as they rely on ground

truth labeled data to determine the importance of features. Control data has proven to be a

viable substitute as ground truth training labeled data quite well, especially if the pathogen

being used is extremely infectious. The computational complexity of the different feature

selection algorithms may also require HPC if the control data being utilized is sufficiently

large. For instance, mRMR and FCBF feature selection methods can be implemented in

a parallel processing environment reducing real time spent on computation by an order of

magnitude or more. The total amount of data generated in this stage is small, amounting

to a list of feature names and associated values (scores) each time an algorithm is run and,

therefore, can be redundantly stored in a traditional database and file system for convenient

future access.
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5.3 Compound Analytics Implementation

The Compound Analysis component is responsible for utilizing the previously gener-

ated data to identify active compounds that demonstrate therapeutic properties. Machine

learning has proven its utility in providing a more robust multivariate analysis of chemical

compounds compared to traditional single variate statistical methods. The Insights project

is specifically designed for multivariate machine learning analysis of chemical compound

activity. This component generates very little data by utilizing the data from the previous

components to determine the reliability of the generated data and, subsequently, compound

activity. Quality control is the fist step of Compound Analysis; it ensures that the data

generated in the previous components is viable and capable of distinguishing truly active

compounds from those that are inactive. Once the reliability of the bioassay is verified the

initial primary screening is achieved using the compound activity measurement.

5.3.1 Quality Control

Two widely accepted quality control (QC) measurements are the Z’- and Z-factors [106].

These methods measure the overlap between two distributions obtained from control and

compound data calculated using the dynamic range and variance. The dynamic range repre-

sents how distant the means of two different distributions are from each other. The variance

provides information on how spread out each distribution is. The control data has tradi-

tionally been used to give an approximated upper and lower bound on a compound activity

measurement. If the measurement contains too much overlap, then it results in a poor

Z’-factor value. Similarly, the Z-factor determines the overlap between the distributions

produced by test compounds and the control data.

There are a few major drawbacks with the Z’- and Z-factors QC measurements. First,

they assume that the test and control data distributions are normal. Second, they require

a significant number of data points to compute and obtain a confident QC measurement,

increasing the required size of data for an HCS assay. Third, they are designed for single
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dimension measurements requiring dimensionality reduction of multivariate data to a single

feature.

Machine learning algorithms do not require massive amounts of data and are designed

to work with multivariate data. In addition, there are many powerful learning algorithms

that do not make any assumptions on data distributions. To assess the quality of an HCS

assay, cross-validation can be performed on control wells, using part of the controls to train

a classifier and testing that classifier on the rest of the controls. For instance, the Z’-factor,

as previously described, is used to determine how well a phenotype measurement separates

control wells; Trevino et al. previously demonstrated that even when a plate produces

an unacceptably low Z’-factor for each feature, a random forest classifier can still separate

infected from uninfected cells with greater than 95% accuracy [92]. Moreover, the amount of

cells required to train a highly accurate classifier was approximately 10% of the total control

data available. This shows the ability of machine learning algorithms to give a more robust

and accurate quality assessment of bioassays in multidimensional space. Accordingly, the

Insights project uses machine learning techniques and accomplishes quality control using

cross-validation.

5.3.2 Hit Selection

In HCS platforms, compound activity is derived from the phenotype measurements of

the cell population treated with a given compound. Traditionally, a single phenotype mea-

surement was taken for each cell in a well. A well summary value would subsequently replace

the individual cell phenotype measurements with a single value representative of the pop-

ulation. Different well summary methods include the mean, median, percentile scores, and

other distribution characteristics of a cell population. Compound activity measurement was

based on these well summary values making them a product of cell population distribution

characteristics. With a single value representing compound activity, each individual com-

pound was subsequently quantitatively compared to other compounds. Two of the most

widely used comparison methods are the “top K” approach and the “outliers” approach.
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Figure 5.4: The quality of a plate can be defined by a learning algorithm as the accuracy
of separating infected from uninfected control data points [92].

The top K approach orders the compound activity measurement from the value considered

most effective to least effective. A threshold is manually selected to choose the top K com-

pounds as being active. The outliers method assumes a normal distribution from all the

compound activity measurements available. Those measurements that are three standard

deviations or more away from the mean of the compound activity distribution that signify

inhibition of bacteria are considered active.

There are drawbacks to these comparison methods. First, the comparison methods

are based on activity relative to other compounds. If none of the compounds that are

being analyzed are effective, the comparison methods will simply identify the ineffective

compounds. On the other hand, if there are a substantial number of effective compounds,

neither comparison method will identify all effective compounds. Second, the comparison

methods are reliant upon a single value to represent compound activity. Not surprisingly,

Singh et al. showed that most biological assessments still utilize 1 to 2 dimensional space

when analyzing compound activity [82]. This requires that multivariate data at the cell level

be reduced to a single value in order to properly utilize these methods. Using a single value
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to represent the complexity of compound activity limits the analysis to a one dimensional

description.

Multivariate cellomics can be used to define a more robust compound activity measure-

ment. Loo et al. demonstrated the feasibility of machine learning in compound activity

analysis by allowing a support vector machine (SVM) to define a compound activity profile

based on cellomics [56]. A SVM hyperplane separates compound-treated cells from the con-

trol cells; this hyperplane represents the respective compound activity profile. In addition,

Trevino et al. defined a “healthy cell” profile to identify compounds that inhibit bacterial

infection by training a random forest classifier using control positive and control negative

cells. This profile was subsequently used to predict compound-treated cells as either in-

fected or uninfected [92]. Compound activity was then determined based on a compound

effectiveness (CE) score that incorporated protection and uniqueness scores based on the

number of cells classified as infected and uninfected. This method demonstrated the ability

to properly identify known compounds that inhibited bacterial infection even when plate

quality is low by traditional quality control standards as given by the Z’- factor.

The Insights project incorporates the use of both random forest and support vector

machine, in addition to many other learning algorithms that can be used to analyze mul-

tivariate data. With the use of these algorithms, there is no need to compress phenotype

pertubation measurements into a single value. The computational cost of training a ma-

chine learning system varies widely between algorithms and depends heavily on the size

of the feature space the cell data is in, the classifying power of the cell features, and the

amount of training data used. Although, the initial training of a learning algorithm may

be computationally expensive, once a learning algorithm has been trained classification is

typically computationally inexpensive.

5.4 Software Pipeline Description

The full implementation of the Insights project pipeline is a multifaceted approach heav-

ily reliant on parallel processing in a HPC environment. Figure 5.6 provides an overview of
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Figure 5.5: Hit selection using machine learning to determine compound activity based
on cellomics as desribed in [92]. A compound activity score called compound effectiveness
(CE) score determines the most active compounds.

the architecture used to fully implement the pipeline. At the heart of the distributed process-

ing is the MindModeling@home project [38]. This project is built upon the Berkeley Open

Infrastructure for Network Computing (BOINC) software [5] with a proprietary web-based

user interface. The interface is composed of a web server and database package known as

µBatch that is responsible for launching and tracking the status of different parallel jobs. A

dedicated project web server is responsible for providing the MindModeling@Home project

with the necessary information needed to run the pipeline. The project web server is also

responsible for interfacing with the user or client and converting their requested pipeline im-

plementation into a series of jobs or a batch. Once a batch request is made, the project web

server takes the batch information and launches parallel jobs through automated messaging

to the µBatch web server. The project web server also updates a project database with

pertinent metadata information required by the different pipeline components. The µBatch

web server, subsequently, updates the corresponding µBatch database with pertinent job
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information. BOINC clients on supercomputer nodes are launched and retrieve jobs from

the µBatch database following what is known as a “bag of tasks” paradigm. The different

jobs retrieve the necessary data files for each pipeline component from a remote parallel

file system and store that data in a more local parallel file system “workspace” that HPC

compute nodes are able to access. This complex series of interactions allow the pipeline

to be implemented in a highly parallelizable manner cutting down the amount of real time

needed to obtain results. Once the results are obtained, the project web server provides the

user with a hyper link to the location where the desired results are stored.

Each compound going through the pipeline produces a modest amount of data easily

over 100 MB. As the number of compounds and control data increases, the amount of total

data generated and computational resources used also increases. Logistical support for the

pipeline is critical to ensure that data is generated and utilized in an efficient and accurate

manner. Each component in a pipeline will generate data that will subsequently be uti-

lized in other components as previously shown in Figure 5.1. The images (raw and mask),

the phenotype measurements, the selected features, and the final hit selection all require

tracking from one stage to the next in the pipeline. There is a combinatorial explosion of

paths from image acquisition to hit selection due to the wide array of different algorithms

that can be incorporated in each stage of a pipeline. Thus, the more modular and flexible

each component in a pipeline is, and based on how many different algorithms have been

incorporated, the more tracking of data is required from one stage to the next. One way

to address this need is by utilizing a relational database to track the dependencies between

the stages. For instance, each execution of a stage in a pipeline is assigned a job identifica-

tion number (JID) and carries with it a set of metadata including the JID of the previous

stage and stage dependent information. The data stored on the file system can then be

stored in directories or HDF5 groups that include the JID for an organized, programmatic

way of accessing the data. As mentioned before, the results from the phenotype identifi-

cation and hit selection stages are very small, and can therefore be stored directly in the
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Figure 5.6: The Insights project utilizes the MindModeling@Home project to implement
its virtual pipeline in a parallelized manner.

database. Utilizing a relational database allowed researchers to quickly identify all hits for

a given screen, examine patterns in feature identification across different high-throughput

biochemical assay campaigns and perform more efficient compound analysis to tease out

novel relationships.

One significant challenge to overcome was determining the extent to which the different

algorithms implemented could be parallelized given the data. This influences the number

of computational resources that are expended in a specific component or sub-component

of the pipeline. Larger data sizes in each component does not necessarily imply that more

computational resources will be used. For instance, the Insights project was deployed and

implemented the pipeline utilized in [92]. Figure 5.7 gives a summary of the data distribution

that was generated with the following specifications:

• 384-well microtiter plate.

• 8 sites per well.
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Figure 5.7: The distribution of data shows that the majority of the data comes from the
Image Analysis component.

• 4 TIFF images per site (phase contrast, covalent florescent, non-covalent florescent,

indicator florescent channels).

• 2 PNG label images (nucleus and cell regions) per site using image segmentation [3].

• 1 HDF5 file per plate containing 11,000 features per cell using [66, 3].

• Hit selection using [92].

This particular pipeline is capable of producing over 2 TB worth of information when

conducting a medium scale screening of 25, 000 compounds and over 123 TB worth of infor-

mation in large scale screening comprising a million or more compounds. HPC computing

resources were overwhelmingly relegated to calculating phenotype measurements in the Phe-

notypic Analysis component as shown in Table 5.1 even though the majority of data was

generated in the Image Analysis component. Although identifying the most descriptive

phenotypes and most active compounds requires the least amount of HPC resources, they

can have memory requirements in the multi-GB range. In order to overcome this obsta-

cle, algorithms, such as FCBF for feature selection, were re-implemented for parallelizing,

reducing the real time to perform the calculation and allowing the memory burden to be

distributed. In addition, different algorithms were ported over to C++ from a number of
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Table 5.1: Compute hours in a sample image-based HCS pipeline for each step requiring
HPC resources.

Completed Jobs Mean Standard Deviation Median

Image Segmentation 175 3.82 3.71 2.84

Phenotype Measurement 138 877.43 283.44 848.62

Phenotype Identification 157 0.25 0.20 0.31

Hit Selection 161 0.32 0.35 0.14

different languages including C# and Java to more efficiently execute in a HPC environ-

ment.

5.5 Summary

Image-based HCS assays have produced a massive amount of data in modern day an-

tibiotic drug discovery endeavors. As a corollary, computer science and HPC have become

necessary to sufficiently handle this increase in data. We introduce the Insights project, a

software tool that exploits the latest technology in HPC, machine learning, and data man-

agement to more efficiently and effectively analyze cellular processes. The Insights project

creates a virtual, automated, and contiguous pipeline through the use of distributed pro-

cessing and is modular enough to allow for the expansion of learning algorithms across the

different pipeline components.

The future of novel drug discovery will continue to witness an increase in the already

massive amounts of data generated during HTS campaigns for antibiotic compounds. With

next generation (next-gen) sequencing technology producing more specific genome informa-

tion, more hybrid-like assays will be developed that combine HCS phenotypic analysis with

next-gen sequencing. Next-gen sequencing has increased the number of DNA Base-pairs

(Bp) per run from 96 kB to 1-3 GB per run [62]. This increase in DNA Bp allows a more

nuanced target-based analysis that will incorporate corresponding phenotypic analysis. It
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has also increased the amount of data needed to be analyzed and stored leading to computer

science undoubtedly playing a more crucial role in future phenotype perturbation analysis.
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Chapter 6

FUTURE WORK AND CONCLUSION

This dissertation investigates the ever increasing role that machine learning plays in drug

discovery endeavors. Specifically, parallelized cellomics is investigated to determine whether

improvements in initial chemical compound screening, called “hit selection’,’ can be ac-

complished over traditional single readout methods. Novel methods were proposed and

investigated for the three major components that define an automated HCS assay. In the

Image Analytics component, a promising method was introduced that segments individual

cells by identifying the corresponding nucleus regions using a convolutional neural network

that uses spatial and texture information in conjunction with a modified set cover algo-

rithm. In the Phenotypic Analytics component, two novel methods were introduced. The

first transfers information from the bug domain to the cell domain to improve feature se-

lection in the cell domain. The second novel method is a non-parametric feature selection

algorithm that does not assume a Gaussian distribution in datasets. The algorithm outper-

formed well known feature selection algorithms that assume Gaussian distribution. In the

Compound Analytics component, a parallelized cellomics-based method was proposed that

demonstrated its ability to develop a highly accurate classifier using a small number of cells

as data points. The proposed method further demonstrated the ability to identify active

chemical compounds using a “compound effectiveness” score. A software analytics tool

called the Insights project was also described that provides a virtual pipeline for analysis

in the different components. The Insights project provides a robust and efficient platform

for handling the massive amounts of data generated in automated HCS assays.

There are many extensions, theoretical and applicable, that are worth further explor-

ing. For instance, research into whether matrix completion is a viable tool for transferring

information from the rich and descriptive bug and nuc domains to the cell domain is worth
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pursuing in a continued attempt to minimize fluorescent reagent use. If this is a viable al-

ternative, than the cost and time to analyze HCS data will undoubtedly decrease. Another

exciting direction will be to allow deep learning algorithms to select chemical compounds

from start to finish. This will be a computationally intensive task that can currently only be

accomplished in a parallelized HPC environment. Allowing deep learning networks to com-

municate between themselves on the information needed to make proper decisions at each

of the different components previously described will undoubtedly create a sophisticated

and powerful hit selection process with the potential to increase the success of identifying

candidate chemical compounds that eventually become novel therapeutic drugs.

The Insights project will also continue to evolve into a more powerful and effective

automated HCS software pipeline. Its modularity allows for expansion with ease across

the Image Analytics, Phenotypic Analytics, and Compound Analytics components. As the

data continues to increase, big data platforms such as Apache Hadoop and Spark will be

investigated to determine the feasibility of integrating them into the software pipeline.

The current state of the drug discovery process is inefficient and costly with present

trends making the future look bleak. However, computer science has the unique opportunity

to revolutionize and propel novel drug discovery into a new golden age of discovery. This will

undoubtedly have a social and economic impact on society and humanity, as a whole. As

trends continue to move towards personalized medicine, consequently increasing the amount

of data generated, big data analytics using machine learning algorithms will continue to

expand its role in important biological endeavors such as novel drug discovery.
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Table A.1: Syn V1 dataset.
MDME mRMR Fisher Score T score F score Chi Square

Gaussian NB 99.02 89.78 89.79 89.51 89.79 96.83
Linear SVM 77.02 65.93 65.93 65.67 65.93 74.61
Random Forest 97.94 82.22 82.08 82.44 82.62 95.03
Decision Tree 94.6 86.66 86.58 86.22 86.8 93.57

Table A.2: Syn V2 dataset.
MDME mRMR Fisher Score T score F score Chi Square

Gaussian NB 71.94 63.91 63.92 64.06 63.92 67.49
Linear SVM 60.47 57.05 57.05 56.65 57.05 59.13
Random Forest 69.8 61.7 61.84 61.59 61.77 65.72
Decision Tree 69.46 63.99 64.0 64.47 63.88 66.44

Table A.3: Arcene dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 77.5 73.5 72.5 70.0 72.5 68.0
Gaussian NB 69.0 66.5 66.5 65.5 66.5 65.5
Random Forest 76.5 67.5 68.0 67.0 66.5 62.0
Decision Tree 77.5 64.5 64.0 64.5 66.0 67.5

Table A.4: Gisette dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 94.01 93.76 93.76 93.76 93.76 93.86
Gaussian NB 88.33 88.01 88.01 88.06 88.01 88.4
Random Forest 95.87 95.67 95.33 95.29 95.39 95.31
Decision Tree 92.21 92.69 92.69 92.39 92.44 92.24

Table A.5: ALL AML dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 98.61 98.61 98.61 98.61 98.61 95.83
Gaussian NB 95.83 95.83 95.83 95.83 95.83 95.83
Random Forest 98.61 97.22 95.83 98.61 97.22 95.83
Decision Tree 93.06 90.28 91.67 95.83 90.28 90.28

Table A.6: Madelon dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 61.69 61.85 61.85 61.85 61.85 61.85
Gaussian NB 61.77 61.62 61.62 61.62 61.62 61.77
Random Forest 84.92 85.19 85.46 85.73 85.04 85.27
Decision Tree 78.5 78.58 78.5 79.19 78.35 78.58
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Table A.7: SMK Can 187 dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 73.71 76.46 76.46 74.88 76.46 74.27
Gaussian NB 72.63 73.65 73.65 73.68 73.65 67.28
Random Forest 75.41 74.18 74.18 72.66 73.68 73.65
Decision Tree 71.43 69.3 70.44 71.64 69.44 67.28

Table A.8: Prostate GE dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 91.18 92.27 92.27 92.27 92.27 90.18
Gaussian NB 93.09 93.09 93.09 93.09 93.09 88.18
Random Forest 92.09 91.09 92.09 93.18 92.18 92.09
Decision Tree 85.27 86.36 85.36 87.18 86.27 86.27

Table A.9: High content screening plate 201100812 1 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 76.77 76.28 76.28 76.28 76.28 74.99
Gaussian NB 73.39 71.41 71.41 71.41 71.41 68.31
Random Forest 75.84 74.69 74.75 74.79 74.56 74.08
Decision Tree 69.68 68.63 68.62 68.49 68.59 67.7

Table A.10: High content screening plate 201100812 2 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 78.66 78.51 78.5 78.5 78.5 77.8
Gaussian NB 75.86 73.44 73.44 73.44 73.44 70.64
Random Forest 77.9 77.0 76.96 76.97 77.12 76.38
Decision Tree 70.74 69.96 69.92 69.97 70.02 69.33

Table A.11: High content screening plate 201104270 1 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 77.65 76.9 76.9 76.9 76.9 75.68
Gaussian NB 77.18 76.26 76.26 76.26 76.26 73.05
Random Forest 77.35 77.01 77.09 76.97 76.94 76.89
Decision Tree 71.26 70.68 70.48 70.5 70.43 69.97

Table A.12: High content screening plate 201104270 2 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 79.39 79.56 79.56 79.56 79.56 78.62
Gaussian NB 77.5 77.05 77.05 77.05 77.05 74.24
Random Forest 78.51 78.11 77.89 77.94 77.93 77.77
Decision Tree 71.6 71.66 71.72 71.96 71.62 70.67

Table A.13: High content screening plate 201104288 1 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 72.18 72.39 72.3 72.33 72.33 70.07
Gaussian NB 69.79 68.95 68.95 68.95 68.95 62.29
Random Forest 71.65 71.01 71.13 70.97 71.05 70.92
Decision Tree 66.37 66.1 66.27 66.29 66.07 65.61
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Table A.14: High content screening plate 201104288 2 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 74.53 74.31 74.3 74.3 74.3 72.07
Gaussian NB 70.97 69.58 69.57 69.57 69.57 61.76
Random Forest 74.13 72.79 72.8 73.04 73.08 72.09
Decision Tree 66.96 65.94 66.07 66.29 66.09 64.85

Table A.15: High content screening plate 201101095 1 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 79.66 78.76 78.89 78.75 78.75 77.16
Gaussian NB 77.98 77.03 77.03 77.03 77.03 73.06
Random Forest 79.04 78.76 78.7 78.71 78.62 77.93
Decision Tree 71.9 71.79 71.66 71.74 71.66 71.04

Table A.16: High content screening plate 201101095 2 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 81.58 81.32 81.31 81.31 81.31 80.51
Gaussian NB 78.68 77.65 77.65 77.65 77.65 75.19
Random Forest 80.3 80.02 79.75 80.03 79.92 79.81
Decision Tree 73.22 72.57 72.53 72.61 72.52 72.41

Table A.17: High content screening plate 201101097 1 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 76.18 75.85 75.85 75.85 75.85 75.24
Gaussian NB 75.93 74.93 74.91 74.91 74.91 71.43
Random Forest 76.39 76.06 76.08 75.86 75.79 75.28
Decision Tree 69.69 69.35 69.28 69.27 69.29 68.23

Table A.18: High content screening plate 201101097 2 well dataset.
MDME mRMR Fisher Score T score F score Chi Square

Linear SVM 77.73 78.02 78.06 78.06 78.06 76.24
Gaussian NB 76.41 75.55 75.55 75.55 75.55 74.01
Random Forest 77.55 76.88 76.93 76.95 76.79 76.09
Decision Tree 69.9 69.53 69.69 69.59 69.52 68.55
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