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ABSTRACT  

Monitoring vital physiological signals, such as heart rate, blood pressure and 

breathing pattern, are basic requirements in the diagnosis and management of various 

diseases. Traditionally, these signals are measured only in hospital and clinical settings. An 

important recent trend is the development of portable devices for tracking these 

physiological signals non-invasively by using optical methods. These portable devices, 

when combined with cell phones, tablets or other mobile devices, provide a new 

opportunity for everyone to monitor one’s vital signs out of clinic. 

This thesis work develops camera-based systems and algorithms to monitor several 

physiological waveforms and parameters, without having to bring the sensors in contact 

with a subject. Based on skin color change, photoplethysmogram (PPG) waveform is 

recorded, from which heart rate and pulse transit time are obtained. Using a dual-

wavelength illumination and triggered camera control system, blood oxygen saturation 

level is captured. By monitoring shoulder movement using differential imaging processing 

method, respiratory information is acquired, including breathing rate and breathing volume. 

Ballistocardiogram (BCG) is obtained based on facial feature detection and motion 

tracking. Blood pressure is further calculated from simultaneously recorded PPG and BCG, 

based on the time difference between these two waveforms. 

The developed methods have been validated by comparisons against reference 

devices and through pilot studies. All of the aforementioned measurements are conducted 

without any physical contact between sensors and subjects. The work presented herein 

provides alternative solutions to track one’s health and wellness under normal living 

condition. 
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CHAPTER 1 

INTRODUCTION 

 Monitoring vital physiological signals, such as heart rate and breathing pattern, are 

basic requirements in the diagnosis and management of various diseases [1, 2]. 

Traditionally, these signals are measured only in hospital and clinical settings. An 

important recent trend is the development of portable devices for tracking the vital 

physiological signals non-invasively based on optical methods. These portable devices, 

when combined with cell phones, tablets or other mobile devices, provide a new 

opportunity for everyone to monitor one’s vital signs anytime and anywhere [3-5].  

This thesis describes new methods for non-contact monitoring of several 

physiological signals in real-time. Signal amplification and minimization of noise due to 

unwanted body movement forms an important part of the discussion. Based on PPG, I 

obtained heart rate, pulse transit time (PTT) and blood oxygen saturation at peripheral 

capillary (SpO2). Based on tracking body movement, I obtained respiratory signal and 

ballistocardiogram (BCG). Based on two cardiac signals, I tracked the pulse transit time. 

Presented methods have been validated by comparison against reference technologies used 

to measure the corresponding physiological signals. Small scale pilot studies were also 

conducted to evaluate the reproducibility of the presented work. To demonstrate the 

robustness of my methods, these studies were conducted on subjects of different age, 

gender, and skin color. 

The presented work contains first demonstrations of non-contact optical imaging 

methods to determine PTT difference, exhalation flow rate, and BCG. Since the method 



                                                                                                                            

  2 

presented in this work does not require contact with the subject’s body or any extra devices 

to measure these physiological signals, it has the advantage of providing an easier and 

burden-free way to measure these parameters when compared to the currently available 

methods which, to the best of the authors’ knowledge, are mainly contact-based, for 

different measurements. 

The novelty of this research includes: 

1) The first demonstration of a non-contact method to obtain pulse transit time 

difference between two photoplethysmogram (PPG) waveforms. 

2) The first demonstration of respiratory exhalation flow rate estimation using a 

video-based method.  

3) The first demonstration of blood oxygen saturation level monitoring using a 

camera system with dual-wavelength illumination. 

4) The first demonstration of monitoring ballistocardiogram (BCG)—an important 

cardiac waveform—without wearing any extra equipment or marker by the subject. The 

developed method is very robust and easy to implement. Based on the time difference 

between BCG and PPG, a correlation can be found between the time difference and blood 

pressure (BP). 

I hope that the presented work will help in the development of a new generation of 

low-cost, non-contact, and convenient monitoring systems that rely on a single primary 

sensor—a camera—which, by the virtue of its ubiquity, has the potential to enable readily 

accessible vital physiological signal monitoring. Such monitoring systems have 
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applications that range from a common household to areas where traditional monitoring 

systems may be difficult to acquire. 
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CHAPTER 2 

NON-CONTACT PHOTOPLETHYSMOGRAM MONITORING 

2.1 Photoplethysmogram Basic Concept and Physiological Relevance 

 Photoplethysmogram (PPG) tracks the pulsatile blood volume change caused by 

cardiac activity. It provides valuable information about the cardiovascular system. Portable 

medical devices have been developed to track physiological signals non-invasively based 

on monitoring PPG. These PPG-based efforts can be divided into two approaches: 

The first one involves contact-based method, whereby a person presses their finger 

against optical sensors (photodiode or camera) built in the mobile devices for PPG 

measurement [6]. For devices that use photodiodes, LED-based light sources are used. The 

amount of light that remains after transmission through or reflection from the fingers, is 

detected by the photodiode. For camera-based devices, ambient light, or that from the 

photoflash, may be used. The amount of light that is reflected by the finger is detected by 

the camera. While useful, this traditional approach requires steady physical contact of one’s 

finger with the PPG devices [7, 8] or the cameras, which makes it impractical for 

continuous PPG monitoring under normal life conditions, whereby obtaining the 

measurements requires no special attention or action from user and there is no 

inconvenience caused by any extra physical burden. Another PPG acquisition approach is 

based on non-contact mode [9]. For example, heart and breathing rates were obtained from 

the images of faces [10, 11], upper arms [12] and palms [13] recorded with digital cameras, 

including industrial cameras [14-16], smartphone cameras [17] and webcams [18, 19].  
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PPG measured at a single wavelength of light can be used to monitor heart rate, 

heart rate variability (HRV) and respiration rate [10, 20, 21]. PPGs measured at two 

different wavelengths of light can be used to measure blood oxygen saturation [14, 16, 22]. 

Two PPGs, or one PPG with another cardiac signal, like electrocardiogram (ECG) or BCG, 

can further provide PTT [14, 23, 24].  

Non-contact PPG measurement by using camera has been demonstrated by many 

researchers. Despite of the attractive features of imaging-based non-contact approach, the 

signals extracted from the images contain noise from various sources [25]. To combat the 

noise issue, Poh et al. [18, 19] used an independent component analysis (ICA) method that 

separates a multivariate signal into additive subcomponents supposing the mutual 

statistical independence of the non-Gaussian source signals. Using ICA, they demonstrated 

the detection of heart rate, which typically varies between 0.8 - 3 Hz. Verkruysse et al. [10] 

determined a movement artifact map by averaging the powers at bandwidths around the 

heart rate. These efforts helped to minimize unwanted noise in the measured heart rate 

signals.  

PTT is an artifact of PPG, and is related to blood pressure pulse wave velocity 

(PWV), which can indicate cardiovascular parameters, such as arterial elasticity and 

stiffness [26, 27]. Traditionally, PWV has been measured using a galvanometer [28] and 

ultrasound techniques [29, 30]. Recently, PTT was determined by performing simultaneous 

ECG and PPG [31-33]. For example, Babchenko et al. [34] used contact pulse oximetry to 

determine the difference in PTT of left index finger and left second toe. The PTT difference 

is related to the change in arterial distensibility due to epidurally induced sympathetic block. 
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The acquisition of PTT related information has the potential to measure parameters that 

can help diagnose cardiovascular diseases. 

2.2 Method of Measurement 

 A schematic illustration of the experimental setup for non-contact PPG monitoring 

is shown in Figure 2-1. Different digital cameras, including Logitech colored webcam (HD 

720p), Pike black and white camera (F-032B) and Pike color camera (F-032C), were used 

to capture videos of each subject’s face, palms and upper body. These cameras (colored or 

black and white) have different inherent noise, but they all produced satisfactory results in 

terms of determining the physiological parameters. The videos were taken indoors under 

ambient light condition, using 60 W fluorescent lamps at a height of 5 m for illumination. 

More controlled light sources, including LEDs and desk lamps, were also used, but no 

evident improvement in the signals was detected as they all provided sufficient illumination. 

The subjects were asked to sit at a distance of approximately 50 cm from the camera lens. 

As long as good quality and clear focus were guaranteed for the image, distance between 

the camera and the subject did not affect the signals within a range of 30 cm to 80 cm. All 

the videos and data were analyzed with a Matlab based user interface. The user interface 

was designed to show the real-time video of the user, allow the selection of regions of 

interest (ROI), perform signal processing of the data in the ROIs to determine the 

physiological signals, and display the results in real-time. 
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Figure 2-1 Schematic Illustration of Experimental Setup. 

 

For heartbeat monitoring, a video of a subject’s face was recorded for typically ~30 

seconds in each experiment and fast Fourier transform (FFT) was performed on the 

intensity signal averaged over all the pixels in each selected ROI to obtain the frequency 

spectrum of the detected physiological signal. Note that longer recording times may 

produce better results, but make the process less user-friendly due to longer testing duration 

required. 

2.3 Obtained Signal and Reference Validation 

 Using the methods described above, the ROI FFT spectrum of the ROI revealed the 

heartbeat signal as a peak at a frequency corresponding to the heart rate. In order to 

optimize the signal-to-noise ratio (SNR), the results of red, green and blue channels were 

compared, and the green channel was found to give the largest peak amplitude in the FFT 

spectrum, which corresponds to the strongest heartbeat signal (Figure 2-2 (a)). This finding 

is supported by previous report [10]. One of the possible reasons is that oxygenated 

hemoglobin has different light absorption characteristics and it absorbs green light more 
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than red light. Another possible reason is that green light penetrates deeper into the skin 

tissues compared to blue light—the former can penetrate epidermis, dermis, and 

hypodermis layers, while the latter can only penetrate epidermis and dermis layers. Since 

the SNR may also depend on the selection of ROI, the peak amplitude in each pixel was 

extracted and plotted on a colormap to analyze the heartbeat signal variation in different 

facial regions (Figure 2-2 (b)). The regions around lips and nose have larger heartbeat 

amplitudes, which is consistent with the fact that these regions have more blood vessels. 

Note that eye regions and face edges also appear to have large heartbeat amplitudes, which 

are due to body movement, rather than the real heartbeat signals. This conclusion is 

supported by the SNR colormap, obtained by normalizing the peak amplitude of each pixel 

in the FFT spectrum with the noise level near the peak (1). The noise is defined as the 

average power of the noise spectrum around the heart rate peak. The SNR is given as 

follows: 

   peak amplitude at HR
SNR

noise


     (1) 

The SNR colormap shows that the regions around the eyes and edges of faces have 

rather low SNR values (Figure 2-2 (c)). 

For heart rate measurement validation, a Zephyr device was used. The heart rate 

was measured in beats per minute (BPM) and the ECG raw data was obtained from output 

files generated by Zephyr.  
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Figure 2-2 PPG Acquisition, Analysis and Validation. 

(a) Original image with an ROI (blue rectangle) near the mouth is shown on the left. An FFT 

spectrum of the ROI is shown on the right. Red, green and blue lines represent the R, G and B color 

channels respectively, and the green channel gives the strongest heartbeat signal. (b) Colormap of 

FFT peak amplitude in each pixel at heartbeat frequency (heart rate). The color scale from blue to 

red indicates the FFT peak amplitude at heart rate. (c) Signal-to-noise ratio (SNR) colormap at heart 

rate. (d) Heartbeat waveform obtained with the presented method. (e) Heartbeat detection 

validation. Heartbeat waveform obtained with a commercial device (Zephyr). 

 

2.4 Pulse Transit Time Difference from Two PPGs 

 Non-contact optical imaging method was also used to determine PTT related 

information. The variations in PTT to different body parts were obtained by analyzing the 

time difference of PPG signals measured simultaneously for these parts. The PTT 
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difference can be obtained from the time difference between the peaks of two PPG signals 

in the same heartbeat cycle. Figure 2-3 is a representative plot that depicts the method to 

calculate PTT difference. 

 

Figure 2-3 PTT Difference Obtained from Two PPG Signals. 

 

The PTT difference in Figure 2-3 can be calculated as 

2 1 PTT Difference t t 
.     (2) 

PTT delays were detected between different body parts. In Figure 2-4 (a), the PTT from 

heart to mouth, and to left and right palms are indicated by t1, t2 and t3, respectively. The 

ROI selections of three parts from the video sample are shown in Figure 2-4 (b) as three 

rectangles with different colors. Figure 2-4 (c) shows the PPG signals obtained from the 

ROIs. Time delays were found between PPG signals from different body parts in every 

heart cycle. The PPG signal detected from the mouth area (blue curve) arrived earlier than 

the PPG signals detected from the two palm areas (red and green curves). A delay sample 

of the delay is shown in Figure 2-4 (c) to illustrate PTT difference between mouth and 
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palm. PTT difference was not obvious between left and right palms, which is consistent 

with the observation by Jago et al. [31] with a contact method. 

 

Figure 2-4 PTT Difference among Different Body Parts.  

(a) PTT definition for three parts of the body. (b) Corresponding ROIs of three parts. (c) PPG 

signals obtained from the ROIs. Time delay was about 30ms between PPG signals obtained from 

mouth and palm. 

 

Several signal processing algorithms were evaluated to determine the PTT 

difference among different body parts. The first algorithm was based on comparing peak 

locations of different PPG signals by linear curve fitting method [Figure 2-5]. Matlab 

function “polyfit” was used to predict a linear curve from the observed signal,  

1 2( )p t p t p 
.     (3) 

In (3), p1 and p2 are the coefficients of the one-degree polynomial p(t) that fits to the 

detected PPG signal. 
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Figure 2-5 (a) is an original PPG signal sample obtained from one subject. One 

heartbeat cycle (indicated by red dashed rectangle) was selected for further analysis. The 

peak location of the selected signal was estimated by fitting two linear curves on the rising 

(left part) and falling edge (right part) of the signal (Figure 2-5 (b)). The point of 

intersection (indicated by the green arrow) of two linear curves is the estimated peak 

location. PTT differences were determined by comparing the peak locations of PPG signals 

obtained at different body parts (e.g., mouth and palm). 

 

Figure 2-5 Estimate Peak Location by Using Linear Curve Fitting Method.  

Take one cycle from PPG signal (a) and use two linear curves (black dashed lines) to fit the original 

signal from the left part (red) and the right part (blue) independently (b). The point of intersection 

of two linear curves (green arrow) is the estimated peak location in that particular heartbeat cycle. 

 

Nine tests conducted on one subject were analyzed to obtain the average value of 

PTT difference between mouth and palm areas (Table 2-1). PTT difference for each test 

was an average result from all the available heartbeat cycles in that time period. Each test 

lasted for 30 seconds. 
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Table 2-1  

PPG Delay Estimation Results between Different Sites.  

The values are calculated based on linear curve fitting method. The estimated delay values obtained 

from facial area to two palm areas are similar, about 30-31 ms. 

 

 from mouth to

left palm (ms)

from mouth to

right palm (ms)

1 72 22.50 22.28

2 78 34.50 32.37

3 78 28.36 29.35

4 72 30.39 32.23

5 72 23.35 27.82

6 71 33.97 35.64

7 106 25.99 28.26

8 96 34.56 36.04

9 96 34.13 35.61

29.75 31.07

16% 15%SD/Average

Test 

No.

Heart Rate 

(bpm)

Average

PTT Difference

 

Matlab functions “findpeaks” and “xcorr” were also used to estimate the PTT 

difference value. Function “findpeaks” provides the peak location of the input data by 

searching for the local maximum value of the sequence. Function “xcorr” realizes phase 

shift estimation between two signals by taking their convolution and searching for the delay 

that gives the largest convoluted result. However, the standard deviations of the calculated 

PTT differences obtained from these two methods were higher than the standard deviation 

obtained from the first one (linear curve fitting method). Therefore, the first method was 

used to estimate the PTT differences among different body parts. Test results in Table 2-1 

show that the PTT difference between palm and mouth is about 30 ms. The results are 

consistent with the values of PTT difference reported by other researchers [28-30]. The 

accuracy of PTT difference calculation can be further improved at faster video frame rates 

(current value is 120 frames per second) that help to provide more accurate PPG peak 

locations. 
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A small scale pilot study was conducted for PTT difference calculation. Ten tests 

were conducted on four subjects. The average PTT difference between mouth and palm 

areas was about 30-40 ms (Table 2-2). 

Table 2-2  

PTT difference estimation results for four subjects.  

The calculated values were based on linear curve fitting method. The average PTT difference 

between mouth and palm areas was about 35 ms from mouth to left palm and 37 ms from mouth to 

right palm.  

 

from mouth to 

left palm (ms)

from mouth to 

right palm (ms)

1 female 29.75 31.07

2 female 35.02 32.06

3 male 32.96 41.67

4 male 42.03 43.29

34.94 37.02

15% 17%

Subject 

No.
Gender

Average

SD/Average

PTT Difference

 

2.5 Discussion 

 Non-contact PPG monitoring can be affected by motion artifacts. Using motion 

tracking based on phase correlation may help to correct some of the unwanted motions 

(more details in Section 4.1). Other methods may also help to improve the influence of 

body motions, such as, using the combination of multiple color channels with different 

weighing factors, instead of using a single channel [20].   

 The PTT difference obtained from two PPGs is potentially correlated with blood 

pressure. The accuracy of PTT difference is limited by video temporal resolution. To see 

an obvious PTT difference during blood pressure change, it is preferable to measure the 

two corresponding PPGs at locations which are not close to each other. For example, PTT 

difference between head and foot will be more obvious than that between head and neck. 

However, using a single camera to capture video including two body parts with enough 
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distance is not very practical for implementation. Based on this concern, measuring the 

PTT difference from two cardiac signals at the same location will be a potential solution, 

which will be discussed in more detail in Section 6. 
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CHAPTER 3 

NON-CONTACT BLOOD OXYGEN SATURATION MONITORING 

3.1 Physiological Relevance and Related Work 

 Oxygen saturation is a vital physiological parameter. It is a relative measure of the 

oxygen amount dissolved or carried in a given medium, such as blood. It indicates whether 

a person has sufficient supply of oxygen and reflects the health level of the 

cardiorespiratory system. Continuous monitoring of oxygen saturation level is important 

in detecting hypoxemia under many medical situations, including anesthesia administration, 

sleep apnea, and parturition. It is employed in intensive care, operating room, emergency 

care, neonatal care, sleep study, and veterinary care [35]. 

Mixed venous oxygen saturation (SvO2), tissue oxygen saturation (StO2) and 

arterial oxygen saturation (SaO2) are a few major methods used for the determination of 

oxygen saturation levels in human body. SvO2 measures the oxygen remaining in the blood 

after passing through the capillary bed, which is an indicator of moment-to-moment 

variation between oxygen supply and demand [36]. Fiber optics catheters are used when 

monitoring SvO2. StO2 provides an assessment of tissue perfusion and it can be measured 

by near infrared spectroscopy. SaO2 measures oxygen saturation in the arteries. An 

estimation of SaO2 at peripheral capillary is called SpO2, which is the primary focus of this 

chapter. Unlike traditional SaO2 measurement, which is normally conducted invasively via 

a blood test with a blood gas analyzer, SpO2 can be measured by noninvasive methods. 

Monitoring SpO2 provides a quick and convenient assessment of a person’s oxygenation 

status. The most widely used device for SpO2 monitoring is pulse oximetry, which is often 
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attached to the finger for measurement purpose. The hardware implementation of pulse 

oximetry includes two main components: 1) an illumination source usually composed of a 

dual-wavelength LED, and 2) a photodetector—typically a photodiode. SpO2 values 

typically range from 95% to 100% in healthy individuals. Continuous low SpO2 levels (< 

90%) may indicate an oxygen delivery problem [37]. 

Recent technological advances have enabled measurements of some of the 

physiological signals using non-contact methods [10, 14, 19]. Remote SpO2 detection 

provides people with a method to measure oxygen saturation non-invasively under normal 

daily setting. Absence of physical contact between the subject and the device allows for a 

more comfortable and less stressful measurement condition. The inaccurate SpO2 readings 

caused by varied pressure applied from finger to the contact sensor can also be avoided 

[38], besides preventing skin irritation that can occur in some individuals, especially infants, 

during extended monitoring periods. Non-contact pulse oximetry also provides a suitable 

SpO2 measurement alternative for individuals with finger injuries, or for those with poor 

peripheral perfusion or dark pigmentation on fingers, for whom traditional pulse oximetry 

may otherwise lead to inaccurate measurements [39]. 

In recent years, researchers have attempted different SpO2 measurement 

approaches using non-contact methods. Humphreys et al.  [40, 41] used a CMOS camera 

with LED arrays that emit two different wavelengths as the light source for non-contact 

pulse oximetry. Due to low frame rate and sensitivity to ambient light, the noise in the 

measured PPG signals was too large to obtain accurate SpO2 values. Wieringa et al. [16] 

also used a CMOS camera, but with three different wavelengths to investigate the 
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feasibility of an “SpO2 camera”. However, no SpO2 results were presented due to poor 

SNR of the PPG signals. Kong et al. [42] used two CCD cameras, each mounted with a 

narrow band-pass filter to capture PPG signals at two different wavelengths (520 nm and 

660 nm) in ambient lighting condition. The test only covered a narrow SpO2 range (97%-

99%). For practical applications, such as clinical settings, it is necessary to be able to 

measure SpO2 over a wider range (at least 80%-100%). Tarassenko et al. [43] and Ufuk et 

al. [44] used a camera to calculate SpO2 based on the PPG information obtained from the 

RGB channels under ambient lighting condition. Other researchers have found that the 

PPG signals extracted from the red and blue channels were noisier than those extracted 

from the green channel [10, 45, 46]. Moreover, for digital cameras, each color channel (red, 

green, or blue) covers a band of optical spectrum [47] with a width of ~100 nm, which is 

different from the traditional pulse oximetry method that uses monochromatic light sources 

with wavelengths selected to maximize the detection sensitivity of oxygenated and 

deoxygenated hemoglobin in blood. Tsai et al. [48, 49] used a CCD camera with red and 

infrared LEDs to take still images of hand, and analyzed SpO2 by looking into the reflective 

intensity of the shallow skin tissue. These authors compared the SpO2 results against partial 

pressure of oxygen values (PaO2), instead of the standard pulse oximetry. Although they 

showed correlation between the results obtained using the two methods, a direct 

demonstration of SpO2 measurement is still lacking. 
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3.2 SpO2 Measurement Using a Dual-Wavelength Imaging System 

 SpO2 is the percentage of oxygenated hemoglobin at peripheral capillary and can 

be expressed by the following equation, 

 
   

2

2

2

100%.
HbO

SpO
HbO Hb

 
      (4) 

where [HbO2] is the concentration of oxygenated hemoglobin and [Hb] is the concentration 

of deoxygenated hemoglobin. 

Traditional pulse oximetry measures SpO2 based on the differential absorption of 

light by HbO2 and Hb at two wavelengths. Depending upon the optical absorption spectrum 

of HbO2 and Hb shown in Figure 3-1, it is possible to select two wavelengths, λ1 and λ2, 

such that absorbance by HbO2 is more at λ2 than at λ1, while the absorbance by Hb is more 

at λ1 than at λ2. 

 

Figure 3-1 Absorption Spectrum of HbO2 and Hb. 

The extinction coefficients are used from [50] with permission. 
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The Beer-Lambert law—widely used to determine a solution’s concentration by 

optical transmittance measurement—states that light absorption by a substance in a 

solution is proportional to its concentration [51]. Pulse oximetry assumes that the pulsatile 

component (AC) of optical absorption originates from the pulsatile arterial blood, and the 

non-pulsatile component (DC) contains contributions from non-pulsatile arterial blood, 

venous blood, and other tissues. The pulsatile signals (AC) can be normalized by the non-

pulsatile signals (DC) at λ1 and λ2, to give the pulsatile absorbance rates as follows,  

1

1
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
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      (5) 
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The ratio of absorbance at two wavelengths is defined as ratio of ratios, RR, 

1 1 1

2 2 2
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/
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  

  

 

     (7) 

RR can be regarded as nearly linear with respect to SpO2 [3, 42, 44], 

2 .SpO k RR b  
     (8) 

where k and b are linear equation coefficients. Thus, SpO2 value can be obtained by 

measuring RR. This dual-wavelength ratio method provides an easy way to determine SpO2, 

and the result is independent of both light path length and concentration of blood 

constituents that absorb light. 

The presented SpO2 detection method is based on the same optical principles as the 

traditional pulse oximetry. A key difference is the ability of the presented work to track 
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SpO2 change using a non-contact method based on the reflected light. Further details of 

this method are provided in Section 3.4. 

3.3 Light Source Selection 

 As mentioned earlier, SpO2 detection using the RR value requires employing at 

least two wavelengths. For accurate measurement, it is preferable that: 1) the measured 

PPG signals have high SNR at both wavelengths, and 2) optical absorption associated with 

HbO2 and Hb are opposite and the differences are large at the two wavelengths, as shown 

in Figure 3-1. 

 The traditional contact-based pulse oximetry uses a dual-wavelength LED at red (λ 

= 660 nm) and near infrared (NIR, λ = 940 nm) wavelengths as light source, and a 

photodiode as light detector. For transmission mode pulse oximetry, the LED and 

photodiode are placed at either sides of the tissue (e.g., finger or earlobe), and for reflection 

mode pulse oximetry, the LED and photodiode are positioned on the same side of the tissue. 

As per Figure 3-1, the red light at 660 nm is absorbed more by Hb than by HbO2, while the 

NIR light at 940 nm is absorbed more by HbO2 than by Hb. The 660 nm and 940 nm 

wavelength combination produces high quality data for the contact pulse oximetry, but it 

is not suitable for the presented non-contact method. 

It was observed that the use of red LED at 660 nm for the non-contact method 

results in poor PPG signal. To find a suitable replacement for the 660 nm LED, the non-

contact PPG signals were evaluated at various wavelengths, ranging from 470 nm to 940 

nm. It is observed that the best PPG signal is obtained when green light is used, which is 

consistent with the literature [10, 45, 46]. However, the optical absorption difference 
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between HbO2 and Hb at green is small (Figure 3-1), thereby making green unsuitable for 

SpO2 measurement. Blue was ruled out because its optical absorption is similar to NIR 

with high HbO2 absorbance and low Hb absorbance despite the fact that its use produces 

good quality PPG signal [52]. Orange (λ = 590 nm to 635 nm) was determined to be the 

most suitable substitute to red for this application because its optical absorption property 

fulfils the specified criteria—high Hb and low HbO2 absorbance—and due to the superior 

PPG signals (shown in Figure 3-2) measured via the non-contact method when using 

orange (λ = 611 nm) LED, as compared to red (λ = 660 nm) LED. 

 

Figure 3-2 PPGs Measured Simultaneously with Red and Orange LEDs. 

 

I also examined the suitability of the 940 nm LED—used in conventional contact 

pulse oximetry—for the presented imaging system, and found the PPG signal obtained 

using it to be unsatisfactory due to low SNR. The primary reason for this was the low 

quantum efficiency of the CMOS imager at 940 nm. NIR at wavelength 880 nm was found 
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to provide better quality PPG signal obtained using the camera sensor. Moreover, 880 nm 

and 940 nm have similar optical absorptions by HbO2 and Hb. These two reasons prompted 

the use of 880 nm LED, instead of 940 nm LED, in conjunction with the 610 nm orange 

LED for the presented method. 

Performance of the 610 nm orange and 880 nm NIR combination was examined 

with a simulation of the dependence of RR on SpO2 from 70% to 100%. The simulation 

was based on the Beer-Lambert law and the assumption that absorption of light in blood is 

only related to HbO2 and Hb, which lead to the following RR equation, 

2 1 1

2 2 2

_ _

_ _

(1 )
.

(1 )

HbO Hb

HbO Hb

s s
RR

s s

 

 

 

 

   


   
     (9) 

where s is the oxygen saturation (SpO2),   and  are the extinction coefficients of HbO2 and 

Hb at the two wavelengths [51]. The simulation result, as shown in Figure 3-3, indicates 

that SpO2 is linearly proportional to RR (R2 ~ 1) with a maximum error < 0.6% over a 

broad range (70%-100%), and can be approximated by (8). The linear relationship is 

consistent with other studies [3, 42, 44]. Coefficient k, in (8) can be estimated from the 

linear fit curve slope, which is −12.1 as shown in Figure 3-3. 
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Figure 3-3 Relationship between SpO2 and RR (with wavelengths at 610 nm and 880 nm) based 

on (6) using extinction coefficients from [45]. The red line is a linear fit. 

Similar simulations with different wavelength combinations were carried out to 

determine the best wavelength combination for accurate SpO2 measurement (see Figure 3-

4). For easy comparison of results at different wavelength combinations, each plot was 

normalized by the corresponding RR value at 100% SpO2. The steeper the curve, the more 

sensitive a combination is to SpO2 change. The red/NIR combination, which is widely used 

in the traditional pulse oximetry, shows the steepest curve. When SpO2 drops from 100% 

to 70%, RR changes by 319%, indicating that this combination is most sensitive to SpO2 

change. However, for the green/NIR and blue/NIR combinations, RR changes by only 14% 

and 5%, respectively, indicating their unsuitability to detect SpO2 changes. The 

orange/NIR combination shows a change of RR by 190%. Although it is not as good as the 

red/NIR combination, it is the best choice for non-contact SpO2 tracking when the SNR of 

the PPG signals are considered. 
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Figure 3-4 Simulated Plots of Normalized RR vs. SpO2. 

Based on four different wavelength combinations. (1) Red (λ = 660 nm) and NIR (λ = 

880 nm); (2) Orange (λ = 610 nm) and NIR (λ = 880 nm); (3) Green (λ = 528 nm) and 

NIR (λ = 880 nm); (4) Blue (λ = 470 nm) and NIR (λ = 880 nm). The extinction 

coefficients used are from [50]. 
 

3.4 Hardware Implementation 

 The experimental setup is shown in Figure 3-5. A PixeLINK monochromatic 

camera PL-B741EU with a Fujinon HF16HA-1B 16 mm f/1.4 fixed focal lens was used to 

record the videos. The illumination system consisted of two identical LED arrays placed 

symmetrically on the left and right sides of the camera. Each array included alternating 

rows of NIR (QED223, Fairchild Semiconductor) and orange (SLI-570DT3F, Rohm 

Semiconductor) LEDs. A microcontroller (Texas Instruments MSP430F5348) was used to 

generate LED and camera trigger signals to switch the NIR and orange LEDs on and off 

alternatively, so as to capture an image every 50 ms at the camera’s trigger signal rising 

edge when either the NIR or the orange LEDs were on. The camera was triggered 20 
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times/s, so for each wavelength, the corresponding frame rate was 10 frames/s. All videos 

were taken indoors without ambient lights to avoid noise. 

 

Figure 3-5 Experimental Setup and Control Signals. 

 

3.5 Design of Experiment 

The subjects were asked to sit still approximately 30 cm from the camera and LED 

arrays. As long as clear focus and proper size were guaranteed for the region of interest 

(ROI), the distance did not affect the signal much, which was partially due to AC/DC 

normalization. A blindfold was used for comfort and eye protection. Each experiment 

lasted 5 minutes. As mentioned earlier, the normal SpO2 range is 95-100% in healthy 

people. To validate the presented method for low SpO2 (<90%), the subjects were asked to 

hold their breath until they felt uncomfortable. This resulted in their blood reaching a low 

oxygen saturation level—a technique also used by other researchers [3, 42]. There is no 

known risk associated with holding breath for 0.5-1.5 minutes in healthy people. To 

produce a noticeable drop in SpO2, the subjects must hold their breath for at least 30 

seconds. Notwithstanding this equal time duration, the SpO2 drop observed varied from 



                                                                                                                            

  27 

one individual to another because of the varying lung capacity and hemoglobin 

oxygenation efficiency. It was also noticed that after holding breath for one minute, SpO2 

dropped below 90% in some subjects while in others, the drop was much smaller. 

The subjects were asked to breathe normally for the first two minutes, during which 

the SpO2 value was stable due to the sufficient oxygen supply. After this initial two-minute 

period, each subject was asked to hold breath as long as possible to produce an SpO2 drop. 

When the subject resumed breathing, SpO2 recovered to the same level as that before 

holding breath, usually within a few seconds. 

SpO2 measurements were also carried out simultaneously using a commercial 

contact pulse oximeter (Homedics PX-100) for comparison. The commercial device 

provided a reading nearly every 10 seconds. 

3.6 Data Processing 

 Previous study [14] has shown that the area around the lips provides a suitable 

region for good PPG signal measurement. For this reason, an area of 160 × 120 pixels 

around the lip was selected as the ROI. After capturing the videos, the ROI was analyzed 

using the following procedure. The acquired images were sorted into two groups, viz. NIR 

and orange as shown in Figure 3-6, based on the wavelength at which they were captured. 

  



                                                                                                                            

  28 

 

Figure 3-6 Image Sequence Acquisition with Two Different Wavelengths. 

 

In each group, the image intensity was averaged over all the ROI pixels in every frame to 

obtain the PPG signal at the corresponding wavelength. Each of the two PPG signals was 

divided equally into ten second subsets to provide SpO2 data with a time resolution similar 

to the commercial contact pulse oximeter. For each of these subsets, the AC and the DC 

components of the PPG signal were obtained using the average peak-to-peak (see Figure 

3-7) and average value, respectively. Fast Fourier transformation (FFT) can also be used 

to extract the PPG signal AC component [53-58], but it works well only when the heart 

rate remains constant, and yields inaccurate results when heart rate variability is high. The 

RR values were determined from (4) by using the measured AC and the DC PPG signal 

components. To extract SpO2 from RR, equation (5) was used, where k was determined 

from the slope of the plot shown in Figure 3-3, and the intercept b was determined from 

the baseline SpO2 level and corresponding average RR value obtained during the initial 

two minutes of each test. 
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Figure 3-7 AC Value Obtained from PPG. 

 

3.7 Validation of Wavelength Selection 

 I first validated the detection of non-contact PPG signals at 611 nm and 880 nm. I 

recorded PPG signals at the two wavelengths simultaneously, both showing heart beating 

clearly as plotted in Figure 3-8. AC/DC normalization was used for compensating the 

difference in image intensities at the two wavelengths (2, 3). FFT spectra of the 

simultaneously recorded PPGs at the two wavelengths show pronounced peaks at 1.5 Hz, 

which correspond to the heart rate. 
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Figure 3-8 PPGs at Two Wavelengths.  

Signals obtained at 611 nm and 880 nm (a, c), and the corresponding FFT spectra (b, d). 

 

When SpO2 drops, HbO2 concentration decreases, and Hb concentration increases. 

In this case, it is expected that more orange light and less NIR light will be absorbed. 

Consequently, the reflectance of orange light will drop and that of the NIR light will 

increase. When SpO2 increases, opposite changes in the reflectance are expected. Figure 

3-9 shows that the average intensity at 880 nm increased when the subject held breath 

(SpO2 dropped) and decreased after the subject resumed breathing (SpO2 increased). It also 

shows an opposite trend at 611 nm. These observations are consistent with the optical 

absorption properties of HbO2 and Hb at 611 nm and 880 nm. 
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Figure 3-9 Image Intensity Changes Due to SpO2 Variation.  

Each PPG signal has been smoothed by a 100-point moving average filter. 

 

3.8 SpO2 Measurement Results 

 Figure 3-10 shows two sets of measurements performed for validation purpose, 

wherein SpO2 values were obtained using the presented method (black curve) and were 

compared against those obtained using the reference device (red curve) every ten seconds 

over a five minute measurement duration. The stable SpO2 value at 98% corresponds to 

the normal breathing period of two minutes and the evident reduction corresponds to the 

time period for which breath is held. The SpO2 value restoration corresponds to the 

resumption of normal breathing. A delay (~10 s) in the reading of the reference pulse 

oximeter was corrected for comparison with the non-contact SpO2 detection. The 

comparison shown in Figure 3-10 indicates that the SpO2 measured using the non-contact 

method is consistent with that measured using the contact-based reference method. 
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(a) 

 

(b) 

Figure 3-10 SpO2 Monitoring with Presented Method and Reference. 

(a, b)  SpO2 measured using a pulse oximeter (reference method, red curve) and using the presented 

method (black curve). 

 

3.9 Small Scale Pilot Study 

 To demonstrate the robustness of the presented non-contact method to monitor 

SpO2, a small-scale pilot study was conducted and statistical analysis of the data was 

completed. Six subjects were enrolled in the Institutional Review Board (IRB) study 

approved by Arizona State University (No. STUDY00002240). The subjects were of 

different genders (three males, three females), ages (27.3 ± 2.8 years old, mean ± SD), and 

skin colors. Informed consents were obtained from all the subjects following an approved 
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protocol. None of the subjects had any known respiratory disease. I repeated the test as 

described in the last section on different subjects and compared the lowest SpO2 values 

determined using the presented method and reference pulse oximetry. Figure 3-11 shows a 

plot of the lowest SpO2 values from 43 tests and linear least square regression. A good 

linear correlation (R2 = 0.87) is found between the presented and reference methods over 

a wide range of oxygen saturation levels. Slope of the linear fitting curve is about 0.86, 

with standard error of 0.05, which is smaller than the ideal value of 1. The data is dispersed 

around the linear curve, which may be attributed to subject movement, and light scattering 

effects. The red line is a linear fit. 

 

Figure 3-11 Correlation with Reference Method. 

Correlation between the lowest SpO2 values obtained from the presented non-contact and reference 

contact methods.  

 

Bland–Altman plot was used to further evaluate the test results (Figure 3-12). The 

mean of the differences between the presented method and reference method is -0.07%. 

The interval for 95% limits of agreement between the two methods is from -2.65% to 

2.51%, which is calculated by mean difference ± 1.96 × standard deviation of the 
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differences. The root-mean-square error (RMSE) is 1.3 and r is 0.936 (p < 0.001). Since p 

< 0.05 indicates a significant correlation between the two methods under comparison, it 

can be concluded that the observed correlation between the presented non-contact SpO2 

detection method and the traditional contact pulse oximetry is statistically significant. 

 

Figure 3-12 A Bland–Altman Plot for Analysis. 

The plot shows the difference between the SpO2 values measured using the presented non-contact 

method and the commercial contact pulse oximetry vs. the average values of the two methods. 

 

3.10 Discussion 

 The lowest SpO2 observed during testing for the presented work was 83%. Lower 

SpO2 values were difficult to achieve by holding breath in healthy individuals. A person 

with SpO2 lower than 80% is considered to be in a state of hypoxia. The presented method 

was validated for SpO2 values ranging from 83%-100%, which is the normal oxygen 

saturation level range in most healthy individuals. Thus, the presented method can be used 

for daily SpO2 monitoring. 
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Compared to the traditional contact pulse oximetry, non-contact pulse oximetry is 

considerably more challenging. This work demonstrated the feasibility of measuring SpO2 

accurately with a non-contact method, but there are several improvements that can be made 

in the future, some of which are discussed here. Firstly, the camera used for PPG signal 

detection in the presented work has a sampling rate of 20 Hz, which is much lower than 

the 480 Hz sampling rate that the photodiodes used in the traditional pulse oximeter can 

typically reach [41]. Yet another related issue is the missing frames, which can range from 

5%-10% of the total number of captured frames, due to the camera’s hardware and software 

limitations. Both of these issues can be addressed by using a higher quality imaging system. 

Secondly, although this work’s scope is limited to the validation of the presented non-

contact method for SpO2 tracking with subjects sitting relatively still on a chair, motion 

tracking algorithms can be used in the future works to mitigate PPG signal deterioration 

arising from subject movements [59, 60] so as to improve the system’s robustness and 

augment the extent of utilization. Lastly, in the presented work, a commercial pulse 

oximeter was used as reference instead of arterial blood gas analysis—the gold standard 

for pulse oximetry development. The error of commercial pulse oximeter is about ± 2-3% 

for normal SpO2 (95%-100%) and can be as large as ± 8% when SpO2 drops to very low 

levels (< 80%) [61]. Replacing commercial pulse oximeter with blood gas analyzer (e.g. 

CO-oximeter) to perform in vivo calibration will improve the accuracy of the presented 

method. However, blood gas analysis is typically an invasive technique and requires 

special equipment usually only available in clinical settings—the lack of which during the 

development of the presented system limited the analysis to the use of a theoretical model 
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such as (6), which is derived using the Beer-Lambert law. As stated earlier, the curve for 

RR and SpO2 was approximated to be linear over the SpO2 range of 70% to 100% when 

using (6) and the linear coefficient k was determined for it. Nevertheless, the Beer-Lambert 

law does not take into account the effects of light scattering at the skin surface when 

measuring PPG in reflective mode. Light scattering changes the optical path length and 

thus affects the total apparent absorbance [61]. Building a more accurate optical model to 

incorporate the effects of light scattering is a difficult task. Therefore, other researchers 

adopt approaches that include development and application of advanced mathematical 

models [62, 63] or empirical correction schemes to better describe the relationship between 

RR and SpO2. These correction methods could be implemented in the future works to 

further improve the presented method. 
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CHAPTER 4 

NON-CONTACT RESPIRATION MONITORING 

4.1 Method of Measurement 

 I also used imaging-based method to monitor respiration activity. The breathing 

pattern was determined by detecting and analyzing the body movement associated with 

breathing using camera. Different parts of the body move with breathing differently. Chest 

and abdomen may have the largest movements with breath [64], but these regions are not 

easily accessible to camera for imaging under normal conditions. For this reason, the face, 

the neck and upper body are preferred as sites for measuring breathing pattern. A region of 

40 x 40 pixels around the edge of shoulder was selected to be the ROI for breathing 

detection (Figure 4-1, left panel). The ROI size was chosen after considering an optimal 

size that was large enough to capture the complete range of possible shoulder movement 

due to breathing activity while at the same time was sufficiently small so that it could still 

sensitively track small shoulder movements due to breathing. Then the derivative of the 

ROI was taken along vertical direction to obtain a differential image of the ROI. Shoulder 

edge in this differential image was revealed as a bright line (Figure 4-1, right panel).  

The line location indicates the position of the shoulder edge. To accurately 

determine the shoulder position, the differential image of the selected ROI was divided into 

two equal portions along the shoulder edge. The derivative of the ROI of the top portion is 

referred to as dA and that of the bottom portion as dB. When the shoulder moves up and 

down with breathing, dA increases (or decreases) and dB decreases (or increases). The 

vertical movement of shoulder can be determined by 
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dA dB
dI

dA dB




 .     (10) 

The difference, dA – dB, in (10) is sensitive to the vertical movement and is immune 

to common noise in dA and dB. Dividing dA – dB by dA + dB further reduces noise 

associated with the intensity fluctuations of the light source. For example, if the light 

changes, dA and dB will change in a similar way, and the normalization will remove the 

effects of light intensity instability. The value dI is calculated for every frame, and plotted 

against time after applying a low-pass filter with a cut-off frequency of 2 Hz. 

 

Figure 4-1 Original and Derivative Images.  

Left: A zoomed-in image showing subject’s right shoulder. Right: Derivative image with respect 

to vertical direction, where the shoulder edge is shown as a bright line. 

 

The accuracy of breathing pattern measurement may be affected by body 

movements unrelated to breathing during these measurements. Compared with heart rate 

monitoring, it is even more challenging to track breathing pattern, especially breath-by-

breath, because breathing frequency is much lower than the heart rate. In a typical ambient 

environment, low frequency noise, particularly noise associated with body movement, is 

much greater than noise at high frequencies. 

I implemented a motion tracking algorithm to correct such motion artifacts based 

on the phase correlation method [65]. The algorithm checked the shift of the ROIs due to 
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the body movement approximately every two seconds and corrected it by updating new 

locations of the ROIs (Figure 4-2). Suppose the original location of one pixel was (x, y), 

the updated location would be  

_

_

new

new

x x shift x

y y shift y

 


  .     (11) 

where shift_x and shift_y were the location differences along the horizontal and vertical 

directions calculated by phase correlation method. 

 

Figure 4-2 Motion Tracking Algorithm Workflow. 

 

 The presented motion tracking algorithm can also be applied to PPG measurement 

to help on correction of motion artifacts.  
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4.2 Breathing Pattern Monitoring 

 An example of breathing waveforms obtained with the method described in section 

4.1 is shown in Figure 4-3 A region of 40 × 40 pixels around the edge of each shoulder was 

selected to be the ROIs for breathing detection (Figure 4-3) (left panel). The downhill 

cycles correspond to exhalation periods when the thoracic cavity is shrinking and the 

shoulders move downwards, whereas the uphill cycles correspond to inhalation periods 

when the thoracic cavity is expanding and the shoulders move upwards. The breathing 

patterns obtained from the left and the right shoulders are consistent with each other (Figure 

4-3) (right panel). 

 

Figure 4-3 Breathing Pattern Detection by Shoulder Movement Tracking.  

Left: An ROI is selected on each shoulder (red box), and each ROI is divided into two sub-regions, 

A and B, along vertical direction. Right: Corresponding breathing cycles from the ROIs using 

differential detection method. 

 

To further demonstrate the reliability of the method for real-time monitoring of 

breathing pattern, the subject was instructed to change breathing pattern intentionally. 

Initially, the subject breathed normally for six cycles, followed by four cycles of deep 

breathing and then eight cycles of rapid breathing. The results shown in Figure 4-4 
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demonstrate that the presented method successfully captures the breathing pattern 

variations. 

 

Figure 4-4 Obtained Different Breathing Patterns. 

 

The effectiveness of the motion tracking algorithm is shown in Figure 4-5 (a), 

which compares the results with and without the motion tracking algorithm. Without 

applying the motion tracking algorithm, the measured breathing signal was overwhelmed 

by the body movement. In contrast, the breathing pattern was clearly observed after the 

implementation of the motion tracking algorithm. The algorithm worked effectively since 

the breathing-related body movement of the shoulders has small amplitude and is primarily 

in the vertical direction, which is different from the relatively large body movement that 

may occur in all directions and at different time scales from regular breathing. 

Two reference technologies were used for validation and calibration, viz., a Zephyr 

wearable device and an Oxycon metabolic analysis instrument. The Zephyr device used a 

movement sensor integrated in a belt wrapped around the user’s chest and reported user’s 

breathing rate in BPM. Since the Zephyr device does not provide exhaled breath volume 
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data, the Oxycon instrument was used to measure both the breathing frequency (unit: BPM) 

and exhaled breath volume (unit: L) via a turbine flow meter attached to a mask worn by 

the user. 

The breathing pattern measured with the presented image processing method results 

in signal waveforms that are consistent with those obtained using the reference devices 

Zephyr (Figure 4-5 (b)) and the Oxycon (Figure 4-5 (c)) devices in terms of both breathing 

frequency and relative breathing amplitude. 

 
 

Figure 4-5 Respiration Monitoring with Reference Validations. 

(a) Effectiveness of motion tracking algorithm for breathing pattern detection. Left: Image of a 

study subject with a selected ROI on the right shoulder. When the motion tracking algorithm is 

enabled, the ROI follows the body movement (blue box). In contrast, when the motion tracking 

algorithm is disabled, the ROI is fixed in the image and the shoulder may move out of the ROI (red 

box). Right: Breathing patterns with (blue curve) and without (red curve) the motion tracking 

algorithm. (b) Comparison of breathing patterns obtained with the presented method (red line) and 

Zephyr (black line). (c) Comparison of breathing patterns obtained with the presented method (red 

line) and Oxycon device (black line). 
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4.3 A Small-Scale Pilot Study for Breathing Rate and Heart Rate Detection 

 To demonstrate the robustness of the developed methods to monitor heart rate and 

breathing rate, a small-scale pilot study was conducted for statistical analyses. Ten subjects 

were enrolled in the IRB study approved by Arizona State University. The subjects were 

of different genders (6 males, 4 females), age (27.3 ± 4.5 years old, mean ± SD), ethnic 

profiles and skin colors. Informed consents were obtained from all subjects following 

approved protocol. 

Bland-Altman plots were used to compare presented physiological signal detection 

methods with reference technologies. Figure 4-6 shows the Bland-Altman plot for heart 

rate detection. The differences between presented non-contact method and a commercial 

pulse oximetry (y-axis) were plotted against the average of the two methods (x-axis). The 

mean difference was 0.86 bpm with 95% limits of agreement (±1.96 standard deviation) at 

-2.47 bpm and 4.19 bpm. The root-mean-square error (RMSE) was 1.87 bpm and r was 

0.98 (p<0.001). Figure 4-7 shows the Bland-Altman plot for breathing rate detection. The 

differences between presented non-contact method and Zephyr (y-axis) were plotted 

against the average of the two methods (x-axis). The mean difference was 0.02 breaths/min 

with 95% limits of agreement (±1.96 standard deviation) at -2.40 breaths/min and 2.45 

breaths/min. RMSE was 1.20 breaths/min and r was 0.93 (p<0.001). 



                                                                                                                            

  44 

 

Figure 4-6 A Bland-Altman Plot for Heart Rate Monitoring Evaluation.  

The plots shows the average of the heart rate measured with a commercial pulse oximetry and the 

presented method, plotted against the difference between them. 

 

 

Figure 4-7 A Bland-Altman for Breathing Rate Monitoring Evaluation. 

The plot shows the average of the breathing rate measured with a commercial device Zephyr and 

the presented method, plotted against the difference between them. 
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Both the presented method and the reference technologies can introduce errors in 

the test results. For statistical analyses, p<0.05 is considered to be a significant correlation 

between the two compared methods. I therefore concluded that the overall error rates were 

acceptable. 

4.4 Determination of Exhalation Flow Rate 

 Exhalation flow rate is an important physiological parameter and proportional to a 

subject’s metabolic rate [55]. Based on presented video-based method, the amplitude of 

the breathing-related shoulder movement is associated with the exhaled breath volume 

per breathing cycle, or VE. The relationship was examined by plotting the amplitude vs. 

exhalation flow volume obtained with the Oxycon instrument. Six tests were carried out, 

and in each test, the subject changed the exhalation rate. Figure 4-8 shows a plot of the 

breathing amplitude (from the differential signal, dI) of the tests vs. the exhaled breath 

volume obtained with the Oxycon instrument, which shows linear relationship (R2 = 

0.81) between dI and the exhaled breath volume. 

 

Figure 4-8 Correlation between the Exhaled Breath Volumes and Differential Signal.  

Reference exhaled breath volumes are measured from a commercial device. In the presented 

method, the exhaled breath volume is taken from the shoulder movement, or dI. Data from six tests 

can be fit with a linear curve. For every unit of dI, the volume change is about 0.15 L. 
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The exhalation flow rate can be calculated as the exhaled breath volume divided by 

exhalation time (12), 

  
  

 

exhaled breath volume
exhalation flow rate

exhalation time


     (12) 

This observation demonstrates a method to remotely determine exhalation flow rate 

under normal living condition. 

4.5 Discussion 

 All of the experiments were all conducted with the subject sitting on a chair. The 

subject was allowed moderate movements. I anticipate challenges if the subject has 

significant movements, since it may be more difficult to isolate motions which are due to 

respiration activity and motions which are due to motion artifacts. However, I also believe 

that more accurate motion tracking algorithms can be created in the future to overcome the 

limitation of current method. 
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CHAPTER 5 

NON-CONTACT BALLISTOCARDIOGRAM MONITORING 

5.1 Ballistocardiogram Basic Concept and Traditional Measurement Methods 

 Ballistocardiogram (BCG) measures repetitive body motion caused by the cardiac 

contraction and ejection of blood during cardiac cycles. BCG waveform contains features 

that can indicate some physiological attributes [66, 67], and an irregular BCG may reveal 

abnormal circulation and cardiac diseases [68-71]. Typically, a BCG waveform consists of 

several waves, which are distinguished by shape, relative amplitude, and the sequence of 

occurrence. Each of these constituents is associated with a different cardiac event [72]. For 

instance, the “IJ wave” of acceleration BCG may be used to measure ejection force and 

stroke volume [68, 73-76]. An increase in IJ amplitude implies an increase in cardiac 

ejection, which can be used as a potential indicator of recovery in patients with heart 

diseases. 

Starr introduced modern BCG in 1930s [66-68, 71, 76-79]. Traditionally, BCG 

measurements used table-based apparatuses, such as suspended bed [79], and suspended 

rigid platform [80]. Elliott et al. developed an electrochemical method to measure BCG 

[81]. These BCG apparatuses were bulky and hard to implement compared with other 

medical procedures, such as ECG, which led to a decline in the use of BCG after 1970s. 

With the development of new sensor technologies, BCG has attracted research interest 

again in recent years. An ear-worn device was demonstrated for ECG, BCG, and PPG 

monitoring [74, 82-84], where the BCG was obtained from an accelerometer integrated in 

the device. Other approaches used to measure BCG include weighing scale [23, 73, 85-87], 
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polypropylene film coated with electrically conductive layers [88, 89], and force sensor 

mounted in bed [90]. In addition to these acceleration and force measurements, 

displacement BCG was also obtained using a linear variable displacement transformer 

position sensor [91]. 

The aforementioned BCG monitoring methods require direct contact between the 

measuring instrument and subject, which is not always desirable. A non-contact video-

based method can provide a more natural and comfortable way for BCG monitoring. 

Moreover, it is an MRI-safe measurement that can track the subject’s cardiac activities in 

a changing magnetic field environment [92]. However, non-contact monitoring of BCG is 

not well established. Balakrishnan et al. [93] detected heart rate by tracking the vertical 

movement of head, but the full BCG features were not resolved. Krug et al. [92] used a 

camera to track the motion of a marker with moiré pattern worn by the subject on the nasal 

bridge. The subject also needed to wear a head coil fitted with a cushion to avoid motion 

artifacts. 

In this thesis, a non-contact method is reported to monitor BCG using a camera 

without wearing any extra equipment or marker by the subject. The BCG measured using 

the presented non-contact method showed a similar waveform as that measured using direct 

body BCG system [78]. Furthermore, the method was validated by comparing the obtained 

BCGs with those recorded with an accelerometer worn by the subjects. 

5.2 Design of Experiment and Data Acquisition 

 A Pike color camera (F-032C) was used to capture the video of a subject’s face at 

a frame rate of 60 frames/second under indoor ambient light condition (Figure 5-1 (a)). 
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BCG acquisition is easily affected by various noise factors, such as respiratory activity and 

random body movement [66]. To minimize the latter, the subject was asked to lie down, 

face upward, on a yoga mat at a distance of approximately 0.5 m from the camera lens. 

Based on current experiment setting, one pixel in the captured image is equivalent to 

approximately 1×10-4 m on the subject’s face. The video was recorded for 30 seconds in 

each experiment. The first ten seconds of the video are discarded during processing, since 

that is the amount of time it takes the camera to ramp up to the desired stable frame rate of 

60 frames/second.  

 

(a) 

 

(b) 

Figure 5-1 Overview of the Method.  

(a) Video recording and flowchart of the presented BCG monitoring method. (b) ROIs and related 

facial features for BCG detection are highlighted in green with arrows. Related facial features are 

annotated in sample images. 

 

For BCG detection, an ROI was selected, including at least one facial feature. For 

each subject, based on his or her personal characteristics, it was found that multiple options 

of the facial feature could be used to track BCG. Examples of the features that have 
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successfully used include mole, facial hair, nostril, acne, and skin pigmentation. The BCGs 

from different facial features on the same subject were similar (Figure 5-3). 

Mouth, and its surrounding area, was selected as the ROI due to the availability of 

abundant distinct facial features for BCG tracking (Figure 5-2 (b)).  

5.3 Signal Processing 

 Feature points in the defined ROI were detected from the first frame of the video 

based on the method proposed by Shi et al. [94]. The motion of each detected feature point 

was tracked over video frames with the Kanade-Lucas-Tomasi algorithm (KLT) [95, 96]. 

For an affine motion field 

Dx d   ,     (13) 

where d is the translation of the feature window’s center and D is the deformation matrix, 

which is given by 

xx xy

yx yy

d d
D

d d

 
  
 

.     (14) 

KLT determines the motion parameters D and d that minimize the dissimilarity ɛ between 

two adjacent frames, viz.  I and J, in a given feature window around position x. ɛ is 

expressed as               

  
2

(1 ) ( ) ( )
W

J D x d I x w x dx     ,     (15) 

where w(x) is the weighting function.     

The vertical displacement (in the direction along feet to head) contains BCG [82, 

92], which was analyzed in detail. To convert the feature dimensions represented in terms 

of the number of pixels into meters, a conversion factor was defined as  
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feature_dimension( )

feature_pixel_number( )

m

pixel
  .     (16) 

This conversion factor was determined by measuring facial feature dimension (e.g., 

mouth) using a ruler and counting the pixel numbers of the corresponding feature in the 

image. 

For each frame, n, the vertical components of point locations, yi, were averaged 

over all the detected feature points, and plotted against time to provide displacement BCGd, 

which can be written as   

1

( )

( )

k

i

i
d

y n

BCG n
k

 


,     (17) 

where k is the number of detected feature points and may vary depending on the type of 

facial feature. 

The first and second temporal derivatives of the displacement BCG were then 

calculated, leading to velocity BCGv and acceleration BCGa, respectively. 

Several features were extracted from measured BCG waveforms, including 

ensemble averages, IJ intervals and amplitudes. Ensemble averaging was performed over 

the obtained waveforms to look into the morphology of these signals. In order to obtain the 

ensemble average, the 20 seconds duration signal was plotted as an eye diagram over one 

cardiac cycle. Multiple individual cycles (~ 20 beats) were aligned and then averaged to 

obtain an ensemble waveform. This is similar to the methods reported in literature [84, 85] 

to analyze BCG. A time duration of 20 seconds results in adequately stable ensemble 

waveform [84]. IJ interval was calculated as the time difference between acceleration BCG 
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Ia peak and Ja peak in the same beat, while IJ amplitude was the absolute value of the 

amplitude from Ia peak to Ja peak. 

Compared to PPG, BCG frequency components are more complex and have a wider 

distribution in the spectrum (Figure 5-2 (d)). The majority of BCG power stays in the range 

of 1 - 10 Hz [84, 88]. Therefore, the SNR of BCG was evaluated based on two methods: 

one of them employing maximum likelihood and the other using sample correlation 

coefficient [85, 97]. 

SNR estimation based on maximum likelihood can be obtained by: 

,1 ,2

1

2

,1 ,2

1
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
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,     (18) 

where EAsub,1 is the sub-ensemble average for the first ten seconds of the measured 

displacement BCG, and EAsub,2 is that for the remaining ten seconds. N is the number of 

samples in the sub-ensemble averages, and i is the sample time index. 

Another SNR estimation method is based on sample correlation coefficient r: 
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The SNR can be then calculated as: 

1
r

r
SNR A B

r
 


,     (20) 

where A and B are given by: 
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5.4 Detected BCG Waveforms 

 Figure 5-2 shows the BCG waveforms obtained from a video with a male subject. 

The Jd-peak, one of the most prominent features of BCG, is clearly resolved in the 

displacement BCG obtained with the presented video method (Figure 5-2 (a)). The 

corresponding velocity and acceleration BCGs were obtained by taking first and second 

temporal derivatives first, and then filtered with a 2nd order Butterworth filter with a 

passband of [0.5, 10] Hz (Figure 5-2 (b) and Figure 5-2 (c)). DC bias is removed from these 

signals. Ensemble averages of these waveforms are provided on the right of the figures. 

The power spectra of the displacement BCG are shown in Figure 5-2 (d). 
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(d) 

Figure 5-2 Detected BCG Waveforms.  

(a) Displacement BCG. (b) Velocity BCG. (c) Acceleration BCG. (d) Displacement BCG 

frequency spectrum. 

 

Figure 5-3 shows the BCGs detected from three different facial features (facial hair, 

mole and nostril) using the same video of a male subject. BCGs obtained from different 

features look very similar. The Pearson’s linear correlation coefficients between every two 
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signals are larger than 0.95, implying that the displacement BCGs obtained from the three 

features are strongly correlated. 

 

Figure 5-3 BCG Waveforms Detected from Different Facial Features.  

(a) Video sample and three different facial features (facial hair, mole and nostril). (b) BCG detected 

from mole. (c) BCG detected from facial hair. (d) BCG detected from nostril. Corresponding 

ensemble averages of the waveforms are on the right. 

 

5.5 Reference Validation 

 To validate the presented BCG detection method, I compared the measured BCG 

waveforms against those in literature [78, 98], and also carried out BCG measurement 

simultaneously with the accelerometer, which is a well-accepted method for acceleration 

BCG monitoring [74, 82, 83, 99]. The accelerometer (LSM330) used for the purpose of 

this study is that found in a commercial off-the-shelf Samsung S4 smartphone. The sample 

rate of the accelerometer is set at 50 Hz, and based on the datasheet, the linear acceleration 

sensitivity is typically around 0.007 m/s2. The noise level is about 0.005 m/s2, which is 

estimated from the standard deviation by keeping the smartphone stationary on a flat 
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surface for 30 seconds. For measurements with test subjects, the smartphone was placed 

on the subject’s forehead and held in place with a rubber band (Figure 5-1 (a)). The y-axis 

(feet-head direction) acceleration measured by the accelerometer was compared to the 

vertical acceleration BCG obtained using the presented method. The Pearson’s linear 

correlation coefficients between ensemble averages, IJ amplitudes and intervals obtained 

using the two methods were calculated. 

The acceleration BCGs along feet-head direction obtained using the presented, and 

the reference methods are plotted in Figure 5-4. Both waveforms are filtered with a 2nd 

order Butterworth filter with a passband of [0.5, 10] Hz. The obtained BCG waveform from 

the video is resampled from 60 Hz to 50 Hz to match the sampling rate of the accelerometer 

for comparison purpose. The overall patterns and the obtained cardiac cycles from the two 

methods are consistent with each other, which validates the presented non-contact method 

for BCG monitoring. 
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Figure 5-4 BCG Validation.  

(a) Vertical acceleration from video. (b) Vertical acceleration from accelerometer. 

 

To further examine the detailed features of the BCGs obtained with the two 

methods, ensemble averaging was performed for two subjects over a duration of 20 seconds, 

and the resulting waveforms, including individual cycles (dash lines) and ensemble 

averages (solid lines), are shown in Figure 5-5. 
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Figure 5-5 Comparison of Acceleration BCG Waveforms. 

BCGs obtained with the presented non-contact method and reference method over 20 seconds. (a) 

BCG waveforms, for a female subject (heart rate = 1.3 Hz), measured from 25 individual cardiac 

cycles (dash lines) and ensemble average for the 25 cycles (solid line). The major waves (H, I, J, 

and K), IJ amplitude (|a|), and IJ interval (t) are denoted with letters. (b) BCG for the female subject 

in (a), measured simultaneously using an accelerometer. (c) BCG waveforms, for a male subject 

(heart rate = 1.1 Hz), measured from 19 individual cardiac cycles (dash lines) and ensemble average 

for the 19 cycles (solid line). (d) BCG for the male subject in (c), measured simultaneously using 

an accelerometer. 

 

For both subjects, the major peaks in BCG waveforms from the presented and 

reference methods are similar, and the Pearson’s linear correlation coefficients are larger 

than 0.95, implying that the test results obtained from the two methods are strongly 

correlated. Furthermore, the obtained BCGs from both methods are also consistent with 

the typical direct body measurement BCG waveforms reported in literature [78, 99]. 
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5.6 Small Scale Pilot Study 

 A small-scale pilot study was carried out to demonstrate the presented video-based 

method for monitoring BCG. The study included 23 subjects (approved by Institutional 

Review Board at Arizona State University, No. STUDY00003483). The subjects included 

15 males and 8 females of different ages (29 ± 5 years old, mean ± SD) and ethnic profiles, 

and from different geographic regions (North America, South America, East Asia and 

South India). The skin colors of the subjects ranged from type II (white) to type V (brown) 

based on the Fitzpatrick scale [100]. Informed consents were obtained from all the subjects 

following an approved protocol. None of the subjects had any known cardiovascular 

disease. 

In the small-scale pilot study, I performed the test as described in previous section 

on each subject. Figure 5-6 shows the displacement BCGs obtained from seven different 

subjects for the purpose of demonstration. The overall BCG waveforms are similar for all 

subjects, but the detailed features show substantial variations due to different physiological 

attributes, which have also been reported by other literatures [85, 101, 102]. The largest 

amplitudes of the measured displacement BCG J-peaks ranged from 1 × 10-4 to 2 × 10-4 m. 

The velocity and acceleration peaks varied from 2 × 10-3 to 6 × 10-3 m/s, and 0.05 to 0.15 

m/s2, respectively. These values are comparable to those reported by other researchers 

using different methods (Table 5-1). For the same subject, the measurement error for these 

values was about 10% in consecutive tests. 
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Figure 5-6 Displacement BCGs Obtained from Different Subjects. 
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Table 5-1  

BCG Values Comparison.  

 

 

I compared the IJ amplitudes (|a|) and intervals (t) of acceleration BCGs 

determined using the presented method with those using the reference accelerometer. 

Figure 5-7 and Figure 5-8 show the plots of these two values from 73 tests with linear least 

square regression. Good linear correlation is found between the presented and reference 

methods for both plots (R2 = 0.82 and R2 = 0.7). The difference between the two methods 

may be attributed to different body locations (mouth region for presented method and 

forehead for accelerometer). The accuracy may also be affected by the calibration error. 
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Figure 5-7 IJ Amplitude Comparison between Two Methods. 

Correlation between the IJ amplitudes of acceleration BCGs obtained using the presented and 

reference methods. The red line is a linear fit of the scattered data. The blue line is the identity line 

(slope = 1). 

 

 

Figure 5-8 IJ Interval Comparison between Two Methods. 

Correlation between the IJ intervals of acceleration BCGs obtained using the presented and 

reference methods. The red line is a linear fit of the scattered data. The blue line is the identity line 

(slope = 1). The plot has overlapping data points. 
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Figure 5-9 summarizes the Pearson’s linear correlation coefficients between the 

BCGs measured using the presented method and reference accelerometer. Figure 5-10 

shows the BCG SNR values based on maximum likelihood (8) and sample correlation 

coefficient (10) using the presented method. All the test results are divided into four groups 

based on the types of facial features used for motion tracking. The SNR values and the 

standard deviations are comparable to those in [20] using weighing scale. Figure 5-9 and 

Figure 5-10 suggest that the selection of facial features is not a key factor for video-based 

BCG monitoring since the values are comparable among different features. 

 

Figure 5-9 Pearson Correlation Coefficients between Two Methods. 

Analysis is based on different facial features. 
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Figure 5-10 SNR Estimation of BCG. 

SNR estimation using the presented method, with standard deviation, based on maximum 

likelihood (SNRML) and sample correlation coefficient (SNRr). 

 

5.7 Signals from Other Posture 

 The presented method was also validated against sitting position. Figure 5-11 

shows the signals obtained when the subject was sitting on a chair. BCG was obtained by 

tracking facial feature (mole) and PPG was obtained from the mouth region, using the same 

methods as described in the previous section. The subject was the same as the one in Figure 

5-11. Accelerometer was also used as reference device for comparison. The Pearson’s 

linear correlation coefficient between the presented method (Figure 5-11 (c)) and reference 

device (Figure 5-11 (d)) is 0.97. BCG waveforms show difference between sitting and 

supine positions, which has also been reported in other literature [25]. 
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Figure 5-11 BCG Waveforms with a Sitting Position. 

(a-d) Detected signals (on the left) with corresponding ensemble averages (on the right). (a) 

Displacement BCG. (b) Velocity BCG. (c) Acceleration BCG from video-based method. (d) 

Acceleration BCG from reference device. 

 

5.8 Discussion 

 The selection of facial features is not critical for BCG monitoring, but sharp focus 

of facial features in the video is beneficial for accurate tracking of BCG. Compared to 

supine position, sitting position is more easily affected by motion artifacts, since the body 

is more prone to involuntary movement in the latter posture due to an absence of support 

that is typically afforded in the former posture. 
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Future works will also include clinical studies with more subjects, especially those 

with abnormal cardiovascular functions, which will help relate BCG features to 

physiological conditions of the subjects, and further validate the clinical value of the 

presented technique. If faster frame rate could be reached in the future, it will be beneficial 

for analyzing the high frequency features and the timing characteristics of the signals 



                                                                                                                            

  67 

CHAPTER 6 

NON-CONTACT BLOOD PRESSURE MONITORING 

6.1 Blood Pressure Monitoring Based on Cardiac Signals Timing Analysis 

 Different approaches have been attempted towards cuffless blood pressure (BP) 

measurement. MEMS devices, such as accelerometer [103] and conducting polymer 

actuator [104], have been implemented for this purpose. In addition, optical methods which 

are mainly based on utilization of pulse transit time (PTT) estimation have also been 

reported. PTT can be regarded as the relative timing between proximal and distal 

waveforms indicative of the arterial pulse [105], or the time interval for the pulse signal to 

travel between two body sites. Most published PTT-based BP monitoring studies look into 

the time difference between ECG and PPG signals [24, 106]. There are also studies on PTT 

acquisition based on PPG time delay between two body parts [14]. Some patents also 

describe similar ideas. In [107], a camera is used to capture blood volume pulses from 

subject’s face, hand or foot, and the PTT can be extracted to determine relative BP. In [108], 

the inventors claimed to use the front and back cameras on the smartphone to get PTT for 

the same purpose. Kim etc. [23] demonstrated BCG can be used as proximal timing 

reference for cuffless BP measurement. A merit of BCG is that it can be measured at a 

distal location [105] (e.g., head, feet, wrist). Pinheiro etc. [109] has shown a correlation 

between the PTT obtained from ECG and PPG, and the PTT obtained from BCG and PPG. 

Researchers [86, 87, 110, 111] used weighting scale to measure BCG and ECG, and 

showed that the time interval between ECG “R” peak to BCG “J” peak is strongly 

correlated with cardiac pre-ejection period and systolic blood pressure. In other published 
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works which are related to BP monitoring based on BCG, Chen etc. [112, 113] presented 

a method to monitor BP based on BCG obtained from microbending fiber sensor, together 

with PPG obtained from a contact-based finger probe. These studies suggest BCG as a 

potential alternative pulse signal to measure PTT for estimating. 

 Non-contact monitoring BP using PTT-based methods can track the fast and 

transient changes in BP, which are difficult to obtain by traditional cuff-based method. 

These are also suitable for long term monitoring, since the users do not need to wear any 

extra device during the measurement. 

6.2 Relationship between Pulse Transit Time and Blood Pressure 

 The relationship between PTT and BP can be assumed based on two models: 

arterial wall model and arterial wave propagation model [105]. If the arterial vessel model 

is simplified as an elastic cylindrical tube, then PTT can be regarded as the time to travel 

along the tube over a distance l. PTT and the internal pressure of the tube P are inversely 

related, and the relationship can be expressed as 

/PTT l C A .     (21) 

where ρ is blood density, A is vessel cross-sectional area, and C is compliance, which 

represents the ability of vessel to distend and increase volume with increasing transmural 

pressure or the tendency of a vessel to resist recoil toward its original dimensions on 

application of a distending or compressing force [114].  

Based on the simplified model, blood pressure P can be expressed with respect to 

PTT by 
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where Am , P0 and P1 are subject-specific parameters [105, 115]. If assuming the values of 

the parameters based on reference [115], an inverse correlation can be found between PTT 

and BP in Figure 6-1. 

 

Figure 6-1 Relationship between PTT and BP. 

The simulation is obtained based on (22) using parameters from [115] (P1 = 1.8 mmHg, Am = 0.011 

cm2, ρ = 1.06 g/cm3, l = 10 cm, A = 2.77 cm2, P0 = 2.2). 

 

 Other researchers have also reported that BP can be empirically correlated with 

PTT with equations such as: 

1 2ln( )BP K PTT K  , (23) 

1
2

K
BP K

PTT
  , (24) 
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where Ki (i = 1, 2, 3) are subject-specific parameters [105]. Therefore, it is expected that 

BP and PTT show correlation. 

6.3 Method of Measurement 

 I used a Pike camera (F-032C) to monitor PPG and BCG. Mouth, and its 

surrounding area, was selected as the ROI due to the availability of abundant distinct facial 

features for BCG tracking. The PPG signal obtained from this ROI was also satisfactory. 

The camera setting was overall similar as the one in Figure 5-1. Meanwhile, I used EPIC 

Sensors (PS25451) to monitor ECG as a reference cardiac signal. Prominent features of 

these signals were identified by the time they occurred in each cardiac cycle. The features 

included: ECG “R” peak, PPG peak, and displacement BCG “Jd” peak. I further estimated 

the time difference between every two signals in each cardiac cycle, which included: (1) 

PTT1: time delay from displacement BCG “Jd” peak to PPG peak; (2) PTT2: time delay 

from ECG “R” peak to displacement BCG “Jd” peak; and (3) PTT3: time delay from ECG 

“R” peak to PPG peak. The obtained time delays were plotted against time. Within these 

values, PTT1 can be obtained by using just the camera. The obtained PTT values were 

averaged every ten seconds to reduce the influence of artifacts (e.g. respiration). A 

commercial cuff-based blood pressure monitor (Omron BP786) was used as reference to 

record BP values about every 40-50 seconds. The measurement error of the reference BP 

monitor is about ± 5 mmHg. 
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6.4 Design of Experiment 

 To validate the presented method for blood pressure tracking, the subjects were 

asked to do exercises to alter their blood pressure. Researchers have reported that systolic 

blood pressure (SBP) is inversely correlated with PTT after exercise [116]. Depending on 

the effort level and body condition of the subjects, SBP changed from 5 to 30 mmHg, and 

diastolic blood pressure (DBP) changed from 1 to 10 mmHg. Based on literature, SBP 

correlates better with PTT compared to DBP [24, 106]. 

 Each experiment had five stages including 400-second video recording. The five 

stages were as follows: 

 Stage I: System setup (120 seconds). The subject was asked to lie down and keep 

relaxed. Camera was adjusted to a proper view with good focus for video recording. 

Two ECG electrodes were in contact with the skin. Reference BP monitor was 

attached to subject’s upper arm through a cuff. 

 Stage II: Resting 1 (100 seconds). Video and ECG data were recorded 

simultaneously. Reference BP monitor measured the BP values every 40-50 

seconds. 

 Stage III: Exercise (60 seconds). The subject was asked to perform moderate 

exercise (sit up or push up) for about 1 minute. 

 Stage IV: Re-setup (20-60 seconds). The subject was asked to lie down and relax. 

Camera, ECG sensors, and reference BP monitor were set up again to measure 

corresponding values from subject after exercise. The re-setup time was to be as 
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short as possible to capture BP recovery after exercise. It typically took about 20-

60 seconds.  

 Stage V: Resting 2 (~200 seconds). The system resumed data collection until the 

end of the experiment. 

Due to the intense body motions in Stages III and IV, data recording (including 

video, ECG and reference BP) were not performed during these two time periods. The 

estimated changes in BP and PTT in different stages are illustrated in Fig 6-2.  

 

Figure 6-2 Experiment Workflow and Estimated Changes in BP and PTT. 

 

6.5 Blood Pressure Tracking Results 

Figure 6-3 shows the blood pressure tracking results and correlations with SBP 

measured by reference technology with a male subject (#1). Obtained PTT values were 

averaged every 10 seconds to reduce the influence of artifacts (Figure 6-3 (a-c)). SBP and 

DBP values were obtained from reference BP monitor every 50 seconds. The timing of the 

BP values was obtained when the BP readings were available on the device display. The 

shadowed areas indicate the time periods during which measurements were unavailable 
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due to exercise or waiting for system setup (Figure 6-3 (a-e)). Correlations are calculated 

between PTT values and SBP during BP recovery period after exercise (Figure 6-3 (f-h)). 

The SBP values are interpolated to reach a time resolution of ten seconds. In regular cuff-

based BP device, SBP value is obtained earlier than DBP. Therefore, SBP was shifted in 

time by 20 seconds to compensate for this delay. Outliners, which may be caused by 

different sources of artifacts, such as unwanted body motions, or slow reference device 

response, were removed. The SBP increase due to exercise in this experiment was about 

10 mmHg. 

Correlation between blood pressure (especially SBP) and PTT values can be seen 

from all the plots in Figure 6-3 (a-c). The trends are clearer with Figure 6-3 (a) and Figure 

6-3 (b). After exercise, the PTT values were lower than those before exercise. A quick 

recovery can be noticed right after the exercise, followed by a slow ascent. Among the 

three calculation methods, using PTT from PPG to BCG to track blood pressure, is the 

main interest of this work since both PPG and BCG waveforms can be obtained with a 

single camera simultaneously [117]. 

Figures 6-4 to 6-8 are the experimental results following the same protocols 

obtained from male subjects #2, #3, and female subjects #4, #5, #6. 
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Figure 6-3 PTTs, BPs Tracking Results and Correlations (Subject #1). 

(a-c) PTT values obtained from three methods. (d-e) Reference BP values. (f-h) Correlations 

between three PTT values and SBP. The red lines are linear fits. 
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Figure 6-4 PTTs, BPs Tracking Results and Correlations (Subject #2). 

(a-c) PTT values obtained from three methods. (d-e) Reference BP values. (f-h) Correlations 

between three PTT values and SBP. The red lines are linear fits. 
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Figure 6-5 PTTs, BPs Tracking Results and Correlations (Subject #3). 

(a-c) PTT values obtained from three methods. (d-e) Reference BP values. (f-h) Correlations 

between three PTT values and SBP. The red lines are linear fits. 
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Figure 6-6 PTTs, BPs Tracking Results and Correlations (Subject #4). 

(a-c) PTT values obtained from three methods. (d-e) Reference BP values. (f-h) Correlations 

between three PTT values and SBP. The red lines are linear fits. 
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Figure 6-7 PTTs, BPs Tracking Results and Correlations (Subject #5). 

(a-c) PTT values obtained from three methods. (d-e) Reference BP values. (f-h) Correlations 

between three PTT values and SBP. The red lines are linear fits. 
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Figure 6-8 PTTs, BPs Tracking Results and Correlations (Subject #6). 

(a-c) PTT values obtained from three methods. (d-e) Reference BP values. (f-h) Correlations 

between three PTT values and SBP. The red lines are linear fits. 

 

With all the subjects, PTT1 and PTT2 show overall better correlations with BP 

compared with PTT3. Relying completely on ECG may introduce variability in pre-ejection 
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period [83], and PPG at current state has considerable noise level. Combining these two 

factors together probably makes PTT3 have the worst correlation with BP. 

6.6 Detection of Premature Ventricular Contraction 

During the experiment for BP monitoring, premature ventricular contraction (PVC) 

was also detected with both presented video-based method and reference ECG. 

PVC is the extra, abnormal heartbeat that begins in one of the heart’s two lower 

chambers. It is a sign of decreased oxygenation to the heart muscle. It occurs in most people 

at some point with the feeling as “skipped beats”. Causes of PVC may include medications, 

alcohol, anxiety, and so on. For most people with isolated PVCs, treatment is not needed. 

However, if PVCs occur continuously for longer than 30 seconds, it may indicate serious 

cardiac condition.  

 Traditional method to diagnose PVC is based on ECG. PVC pattern can be easily 

distinguished from a normal heart beat. Normally, to detect PVC, the patients are required 

to wear a conventional Holter monitor to record ECG continuously for about 48 hours, and 

the data is saved and analyzed by doctors later. The electrodes of Holter monitor are 

attached to the patients’ chest, resulting in discomfort and limitation of freedom. Other than 

ECG-based methods, researchers have also reported PVC detection based on PPG and 

BCG waveforms with contact-based methods. In PPG recorded by sensor attached to the 

finger, PVC can be recognized by an abnormal longer peak-peak interval [118]. Inan et al. 

detected PVC based on acceleration BCG using weighing scale by finding the significantly 

lower BCG “IJ” amplitudes.  
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During the experiment, the occurrences of PVC were found with one subject. The 

frequency of PVC appearance was about twice in five minutes. The PVC patterns can be 

recognized from both PPG and BCG waveforms and the happenings of PVC were also 

confirmed by the synchronized ECG recordings. 

Figure 6-9 and Figure 6-10 show the occurrences of PVC with the same subject on 

different days. The shadowed areas indicate the occurrences of PVC. ECG, PPG, and BCG 

waveforms were recording simultaneously. In ECG (Figure 6-9 (a) and Figure 6-10 (a)), 

the abnormal forms of PVC were found in QRS-complex. In PPG (Figure 6-9 (b) and 

Figure 6-10 (b)), longer peak-peak intervals were found. In displacement BCG (Figure 6-

9 (c) and Figure 6-10 (c)), Jd peaks showed lower amplitudes and the whole cycles looked 

incomplete compared with regular heartbeat cycles. In acceleration BCG (Figure 6-9 (d) 

and Figure 6-10 (d)), the “IJ” amplitudes of PVC were lower than those in neighboring 

normal heartbeat cycles. 
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Figure 6-9 Occurrence of PVC in Different Cardiac Signals. 

(a) ECG. (b) PPG. (c) Displacement BCG. (d) Acceleration BCG. Shadowed areas indicate the 

occurrence of PVC. 
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Figure 6-10 Occurrence of PVC with the Same Subject in Another Day. 

(a) ECG. (b) PPG. (c) Displacement BCG. (d) Acceleration BCG. Shadowed areas indicate the 

occurrence of PVC. 
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6.7 Discussion 

 For the blood pressure experiment, the subjects were asked to exercise to change 

their blood pressure. Exercise makes muscles consume more oxygen. As a result, the heart 

pumps more blood around the body together with more powerful contractions which 

increases the blood pressure. However, exercise may introduce extra body motions which 

influence the PPG and BCG qualities, especially for BCG, which is a recording of small 

body movement. New test protocols may be needed to validate presented method without 

introduction of extra motion artifacts. One of the potential solutions is using medicine (e.g. 

Nitroglycerin), which will change blood pressure without extra body movements. However, 

the implementation of this protocol may need collaboration with professional medical staff. 

 Individual calibration is a limitation of blood pressure monitoring using PTT 

method, which is due to the mechanical properties of an individual’s vascular wall and 

other factors [106]. Currently, PTT-based methods have been proven to track the trend of 

blood pressure change especially for SBP, however, getting absolute blood pressure values 

without calibration is difficult to achieve.   

 Using video-based technique potentially can potentially provide a non-contact 

solution for long term PVC monitoring. A better understanding of PVC patterns in PPG 

and BCG may help automate recognition of such events. 
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CHAPTER 7 

CONCLUSIONS AND PERSPECTIVE 

In summary, this work presented non-contact methods to monitor multiple 

physiological signals through the use of camera. By implementing different algorithms, 

different physiological waveforms were obtained, based on which, vital signs were further 

extracted. The major contributions of this work include: 

1) A PPG detection system in ambient light condition, which can measure not only 

heart rate, but also PTT from two PPG waveforms at different body sites. 

2) A dual-wavelength illumination system with triggered-camera control, which 

can measure SpO2. 

3) A respiration monitoring platform based on differential image processing, from 

which respiration rate and exhalation flow rate can be estimated. 

4) A BCG detection method based on facial feature motion tracking.  

5) A blood pressure tracking method based on PTT analysis from PPG and BCG 

waveforms, both of which are obtained from the same body location with one video clip. 

6) As a byproduct of the experiment, PVC patterns can also be measured from 

acquired waveforms, either PPG or BCG, from video data. 

Subject tests have been carried out as preliminary studies to validate these 

developed methods and applications. 

There are some limitations and issues associated with the presented work:  
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1) For some of the measurements, like exhalation flow rate, SpO2 and blood 

pressure, individual calibration is needed for each subject. The lack of a general calibration 

solution limits the practicality of the presented method.  

2) Faster frame rate is always preferable to achieve higher temporal resolution for 

aforementioned waveforms. The fastest frame rate that can be reached based on the current 

equipment settings is 120 frames/second (with Pike camera). If faster frame rate can be 

obtained by using more advanced hardware resource, it will be beneficial for analyzing the 

high frequency features and timing characteristics of the signals.  

3) In some of the measurements, due to resource limitation, the reference 

technologies are not the best options. For example, CO-oximeter will be more accurate to 

calibrate the presented SpO2 measurement platform than the reference device used in this 

work, which is a commercial pulse oximeter. For BP measurement, a real-time BP monitor 

will also be a better choice than the cuff-based BP monitor used for reference, since the 

former one could provide beat-to-beat measurement of BP, which may help in obtaining a 

better correlation between the PTT values measured using the presented method and the 

absolute BP values.  

4) Since all of these signals are sensitive to motion-induced artifacts, an effective 

tracking algorithm may help mitigate noise due to unwanted body motions. Accurate 

recording of these physiological signals may help better interpret the corresponding 

waveforms for further applications. In this work, only phase correlation method is used. 

Although it can help correct some of the motion artifacts, in some cases, when the motion 

is intense or has similar frequency range as the physiological signals of interest, its 
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performance is not satisfactory. Researchers have reported their efforts on this topic [20, 

119], and while their methods are effective under certain circumstances, a more generic 

and comprehensive solution is still lacking. 

5) For the pilot studies in the presented work, almost all of the subjects were young 

and healthy. If clinical study could be conducted with population with abnormal 

cardiovascular functions, it might be helpful to find the physiological relevance between 

the obtained waveform features and related disease symptoms, which can further validate 

the clinical values of the presented techniques. 

If these issues were to be addressed in the future, the presented method could be 

further improved. 

A potential application model based on the presented work can be an integrated 

physiological measurement platform intended for use in daily life as an extension of 

professional medical equipment that are normally hard to employ in home environment. 

Continuation of miniaturization, improvements in power dissipation, data transmission and 

overall camera optics at a pace similar to that seen in the past few years, will make the 

camera-based methods easier to implement and operate, which could provide convenient 

and low-cost medical measurements and health tracking solutions for all of the population. 
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