A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree
 Doctor of Philosophy

Approved November 2016 by the Graduate Supervisory Committee:

Raja Ayyanar, Chair
Bertan Bakkaloglu
George Karady
Jiangchao Qin

Abstract

Presently, hard-switching buck/boost converters are dominantly used for automotive applications. Automotive applications have stringent system requirements for dc-dc converters, such as wide input voltage range and limited EMI noise emission. High switching frequency of the dc-dc converters is much desired in automotive applications for avoiding AM band interference and for compact size. However, hardswitching buck converter is not suitable at high frequency operation because of its low efficiency. In addition, buck converter has high EMI noise due to its hard-switching. Therefore, soft-switching topologies are considered in this thesis work to improve the performance of the dc-dc converters.

Many soft-switching topologies are reviewed but none of them is well suited for the given automotive applications. Two soft-switching PWM converters are proposed in this work. For low power automotive POL applications, a new active-clamp buck converter is proposed. Comprehensive analysis of this converter is presented. A 2.2 $\mathrm{MHz}, 25 \mathrm{~W}$ active-clamp buck converter prototype with Si MOSFETs was designed and built. The experimental results verify the operation of the converter. For 12 V to 5 V conversion, the Si based prototype achieves a peak efficiency of 89.7%. To further improve the efficiency, GaN FETs are used and an optimized $S R$ turn-off delay is employed. Then, a peak efficiency of 93.22% is achieved. The EMI test result shows significantly improved EMI performance of the proposed active-clamp buck converter. Last, large- and small-signal models of the proposed converter are derived and verified by simulation.

For automotive dual voltage system, a new bidirectional zero-voltage-transition (ZVT) converter with coupled-inductor is proposed in this work. With the coupledinductor, the current to realize zero-voltage-switching (ZVS) of main switches is much reduced and the core loss is minimized. Detailed analysis and design considerations

for the proposed converter are presented. A $1 \mathrm{MHz}, 250 \mathrm{~W}$ prototype is designed and constructed. The experimental results verify the operation. Peak efficiencies of 93.98% and 92.99% are achieved in buck mode and boost mode, respectively. Significant efficiency improvement is achieved from the efficiency comparison between the hard-switching buck converter and the proposed ZVT converter with coupledinductor.

DEDICATED TO
My Parents: Yang Nan and Xia Li
My fiancée: Yue Wang

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Raja Ayyanar, for giving me the great opportunity to work in his Power Electronics Group at ASU. I am extremely grateful to Dr. Ayyanar for his advising, guidance, help and continuous support during the past several years.

I would also like to thank Dr. Bertan Bakkaloglu, Dr. George Karady and Dr. Jiangchao Qin for being my committee members and for their valuable suggestions to my work.

Special thanks to Dr. Youhao Xi from Texas Instruments for giving me a lot of help during the course of a 3-year collaborative project between ASU and Texas Instruments. I am also grateful to Dr. George Liang and Dr. Shuai Jiang, for providing me two great internship opportunities at Intersil and Google, respectively.

Many thanks to all my colleagues in Power Electronics Group at ASU, Mr. Ziwei Yu, Mr. Tong Yao, Mr. Yinglai Xia, Dr. Yingying Tang, Mr. Youyuan Jiang, Mr. Siddharth Kulasekaran, Mrs. Jinia Roy, Mr. Ramanathan Thiagarajan, Mr. Robert Mongrain, Dr. Pavan Kumar Hari, Dr. Xiaolin Mao, Dr. Sixifo Daniel Falcones Zambrano and Dr. Lloyd Caleb Breazeale, for all the help they have given me. Special thanks to Ziwei, Tong, and Yinglai, with whom I spent many hours in discussions which go beyond power electronics. I also want to thank my college friend Lixing Fu for many valuable discussions on power electronics and on life.

Many thanks to all other friends I made at ASU in past several years, too big to list here, for the enjoyable time we spent together.

My deepest appreciation goes toward my parents, Yang Nan and Xia Li, for all the love and support they have given me over the course of my life.

Last but not least, with deepest love, I dedicate my appreciation to my fiancée, Yue Wang, who has always been there with her love, support, understanding and
encouragement. Your love means a lot to me!

TABLE OF CONTENTS

Page
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER
1 INTRODUCTION 1
1.1 Automotive Electrical System 1
1.1.1 14V PowerNet Architecture 1
1.1.2 48V/14V Dual Voltage Power Architecture 2
1.2 System Requirements for Automotive DC-DC Converters 3
1.2.1 Wide Input Voltage Range. 4
1.2.2 Strict EMI Limitation 5
1.2.3 Compact Size and Light Weight 7
1.2.4 Temperature Requirements 7
1.2.5 Feasibility of Interleaving 7
1.3 Topology Review for Automotive DC-DC Converters 8
1.3.1 Hard-switching Buck Converter 8
1.3.2 Soft-switching Converters 10
1.3.3 Topology Review for Low Power Automotive POL converters 13
1.3.4 Topology Review for $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage system 15
1.3.5 Objective, Contributions and Organization of the Thesis 15
2 ACTIVE-CLAMP BUCK CONVERTER FOR AUTOMOTIVE LOW POWER POL CONVERTERS 17
2.1 Introduction 17
2.2 Operating Principle Analysis 18
2.3 Design Considerations 26
2.3.1 ZVS Analysis 26
2.3.2 Clamp Capacitor Requirement 27
2.3.3 Loss of Effective Duty Cycle 28
2.4 Active-clamp Buck Converter Design 29
2.4.1 Design Specifications 29
2.4.2 Resonant Tank Design 29
2.4.3 Clamp Capacitor Design 31
2.4.4 MOSFET Switches Selection 31
2.5 Experimental Verification with Si Devices 34
2.5.1 Hardware Implementation 34
2.5.2 Experimental Results 36
2.5.3 Loss Analysis and Breakdown 36
2.6 Employment with GaN Devices 41
2.6.1 Motivation of Using GaN Devices 41
2.6.2 Hardware Implementation 45
2.6.3 Experimental Results 46
2.6.4 SR Turn-off Time Optimization 49
2.7 EMI Performance 59
2.8 Modeling of the Active-clamp Buck Converter 60
2.8.1 Large-signal Modeling and Verification 61
2.8.2 Small-signal Characterization 65
2.9 Summary 67
3 BIDIRECTIONAL ZERO-VOLTAGE-TRANSITION CONVERTER WITH COUPLED-INDUCTOR FOR AUTOMOTIVE 48V/14V DUAL VOLT- AGE SYSTEM 71
3.1 Introduction 71
3.2 Operating Principle Analysis 72
3.3 Converter Features 79
3.4 Design Considerations 81
3.4.1 ZVS Analysis 81
3.4.2 Auxiliary Switch Gate Timing 83
3.4.3 Design of Leakage Inductance 84
3.4.4 Determination of Turns Ratio 86
3.5 Converter Design and Simulation 87
3.5.1 Design Specifications 87
3.5.2 Turns Ratio of the Coupled-Inductor 88
3.5.3 Leakage Inductance of the Coupled-Inductor 88
3.5.4 Converter Simulation 89
3.6 Experimental Verification 91
3.6.1 Hardware Implementation 91
3.6.2 Experimental Results 94
3.7 Summary 102
4 CONCLUSION AND FUTURE WORK 103
4.1 Conclusion 103
4.2 Suggestions for Future Work 104
REFERENCES 106

APPENDIX

A SCHEMATIC AND LAYOUT DESIGN FOR 2.2MHZ, 5V/5A ACTIVECLAMP BUCK WITH SI MOSFETS 111

B SCHEMATIC AND LAYOUT DESIGN FOR 2.2MHZ, 5V/5A ACTIVECLAMP BUCK WITH GAN FETS... . . 117

C SCHEMATIC AND LAYOUT DESIGN FOR 1 MHZ, 48V/14V, 250 W ZVT BIDIRECTIONAL CONVERTER WITH COUPLED-INDUCTOR 123

LIST OF TABLES

Table Page
2.1 Design Specifications 30
2.2 Key Components Selection and Values for 2.2 MHz Active-clamp Buck Converter 34
2.3 Key Parameters of Several Best-in-class 60 V to 100 V Si and GaN Devices 44
2.4 Key Parameter Values and Components Selection 45
2.5 Q3D Simulation Results 49
2.6 Measured Optimized $S R$ Turn-off Delay Time at 12 V input 55
2.7 Measured Optimized $S R$ Turn-off Delay Time at 8 V input 56
2.8 Measured Optimized $S R$ Turn-off Delay Time at 16 V input 57
2.9 Comparison between Original and Simplified Calculation Algorithm for Optimal $S R$ Turn-off Delay 58
2.10 Simulation and Model Parameters 69
3.1 Prototype Design Specifications 88
3.2 Designed Parameters 91
3.3 Designed Parameters of the Coupled Inductor 93
3.4 Key Components Selection and Values 95

LIST OF FIGURES

Figure Page
1.1 14V PowerNet Architecture in Most Present Passenger Cars. 2
1.2 Automotive 48V/14V Dual Voltage Power Architecture. 4
1.3 Diagram of A Conventional Buck Converter. 9
1.4 Switching Waveforms of Hard-switching and Soft-switching Converters. 11
2.1 Circuit Diagram of the Proposed Active-clamp Buck Converter. 18
2.2 Simplified Circuit Diagram for Operating Principle Analysis 19
2.3 Key Operating Waveforms in a Switching Cycle (Corresponds to As- signed Current Direction in Figure. 2.2). 20
2.4 Topological States in Each Mode (the Arrows Indicate the Actual Di- rection of Current). 21
2.5 Waveforms Illustrating the Loss of Effective Duty Cycle. 29
2.6 ZVS Range of S_{1} at Different Input Voltages. 31
2.7 Plot of Duty Cycle versus Input Voltages. 32
2.8 Plot of $V_{\text {clamp }}$ versus Input Voltages 32
2.9 Plot of V_{s} versus Input Voltages. 33
2.10 2.2 MHz Active-clamp Buck Converter Prototype. 35
2.11 Switching Waveforms of S_{1} 37
2.12 Switching Waveforms of S_{2} 37
2.13 Switching Waveforms of $S R$. 38
2.14 Switching Waveforms of Clamp Diode $D_{\text {clamp }}$. 38
2.15 Voltage on Clamp Capacitor $C_{\text {clamp }}$. 39
2.16 Voltage Waveform across the Resonant Inductor L_{r} and Derived Res- onant Inductor Current Waveform 39

Figure

2.17 Measured Efficiency Curves of Active-clamp Buck at $8 \mathrm{~V}, 12 \mathrm{~V}$ and 16 V Inputs, Respectively. 41
2.18 The Comparison Efficiency v.s. Load between the Active-clamp Buck and Conventional Synchronous Buck Converter, at 12 V Input and 5 V Output 42
2.19 Analytical Loss Break Up at 12 V Input. 42
2.20 Efficiency Comparison between Proposed Active-clamp Buck and Other Active-clamp Based Buck Converters. 43
2.21 Layout Design of S_{1} and S_{2} Driver Loop. 47
2.22 Layout Design of $S R$ Driver Loop. 47
2.23 Prototype of 2.2 MHz GaN Based Active-clamp Buck Converter. 48
2.24 Switching Waveforms of S_{1} 50
2.25 Switching Waveforms of S_{2} 50
2.26 Switching Wavefroms of $S R$ 51
2.27 Voltage Waveform across the Clamp Diode 51
2.28 Voltage Waveform across the Resonant Inductor. 52
2.29 Efficiency Comparison between Using Si MOSFETs and GaN FETs. 52
2.30 Efficiency Curve with Different $S R$ Turn-off Delay at 12 V Input, 5 A Load. 54
2.31 Waveforms Illustrating Optimized $S R$ Turn-off Delay. 54
2.32 Efficiency Curves of GaN Based Active-clamp Buck Converter with Optimal $S R$ Turn-off Delay. 58
2.33 GaN Prototype Efficiency With and Without Optimal $S R$ Turn-off Delay. 59

Figure

2.34 Lab Made H-field Probe. 60
2.35 Radiated EMI Test Setup 60
2.36 EMI Test Results for Conventional Hard-switching Buck and the Pro- posed Active-clamp Buck Converter. 61
2.37 Key Operating Waveforms after Modeling Assumptions. 63
2.38 Verification of the Derived Large-signal Model. 66
2.39 Simulation Results with Average Model and Switch Model. 67
2.40 Bode Plots of the Control-to-output Transfer Function from Simplis Simulation and the Derived Small-signal Model. 68
3.1 Circuit Diagram of the Proposed ZVT Converter with Coupled-inductor. 72
3.2 Equivalent Circuit of the Proposed ZVT Converter with Coupled- inductor. 72
3.3 Simplified Circuit Diagram for Operating Principle Analysis 73
3.4 Key Operating Waveforms in Buck Mode. 74
3.5 Key Operating Waveforms in Boost Mode. 75
3.6 Topological State in Each Mode of Buck Operation. 76
3.7 Auxiliary Cell Current with Different L_{l} Value 84
3.8 Auxiliary Cell Current with Different Coupled-inductor Turns Ratio n. 85
3.9 Index of Average Current in the Auxiliary Cell $\left(A_{i_{r}}\right)$ at Different L_{l} Values. 86
3.10 Index of RMS Current in the Auxiliary Cell (Ampere-squared-second) at Different L_{l} Values 87
3.11 Ampere-squared-second versus L_{l} with $48 \mathrm{~V} / 14 \mathrm{~V}$ Input/Output, $1: 1$ Turns Ratio and Different I_{L} Value. 89

Figure

3.12 Simulation Results under Buck Mode Operation. 90
3.13 2D Structure of the Designed Coupled-inductor 92
3.14 3D Structure of the Designed Coupled-inductor. 93
3.15 Constructed Coupled-inductor. 94
$3.161 \mathrm{MHz}, 250 \mathrm{~W}$ Prototype of the Proposed Bidirectional ZVT Converter with Coupled-inductor. 95
3.17 Gate Signals in Buck Mode. 96
3.18 Switching Waveforms of S_{1} in Buck Mode 97
3.19 Switching Waveforms of S_{2} in Buck Mode. 97
3.20 Voltage Waveforms of Auxiliary MOSFETs in Buck Mode. 98
3.21 Gate Signals in Boost Mode. 99
3.22 Switching Waveforms of S_{1} in Boost Mode. 99
3.23 Switching Waveforms of S_{2} in Boost Mode. 100
3.24 Voltage Waveforms of Auxiliary MOSFETs in Boost Mode. 100
3.25 Efficiency Comparison in Buck Mode. 101
3.26 Efficiency Comparison in Boost Mode. 101
A. 1 Schematic Design 112
A. 2 Top Layer Silkscreen. 113
A. 3 Bottom Layer Silkscreen 113
A. 4 Top Layer Soldermask. 114
A. 5 Bottom Layer Soldermask. 114
A. 6 Top Layer Copper. 115
A. 7 Second Layer Copper. 115
A. 8 Third Layer Copper. 116

Figure

A. 9 Bottom Layer Copper 116
B. 1 Schematic Design with GaN Devices. 118
B. 2 Top Layer Silkscreen. 119
B. 3 Bottom Layer Silkscreen 119
B. 4 Top Layer Soldermask. 120
B. 5 Bottom Layer Soldermask 120
B. 6 Top Layer Copper. 121
B. 7 Second Layer Copper. 121
B. 8 Third Layer Copper. 122
B. 9 Bottom Layer Copper. 122
C. 1 Schematic Design 124
C. 2 Top Layer Silkscreen. 125
C. 3 Bottom Layer Silkscreen 125
C. 4 Top Layer Soldermask. 126
C. 5 Bottom Layer Soldermask. 126
C. 6 Top Layer Copper. 127
C. 7 Second Layer Copper. 127
C. 8 Third Layer Copper. 128
C. 9 Bottom Layer Copper 128

Chapter 1

INTRODUCTION

1.1 Automotive Electrical System

In modern automobiles, electronic devices and electrical loads are ubiquitous. A reliable and high efficient power delivery system is essential to the operation of onboard electrical and electronic loads. This section covers the background on the automotive electrical systems, including current 14 V PowerNet architecture and future $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage power architecture.

1.1.1 14V PowerNet Architecture

Currently, in most internal combustion engine (ICE) based passenger cars, 14V PowerNet architecture, as shown in Figure 1.1, is used for the automotive electrical system [1]. The electrical power is generated by the alternator, and the ac voltage of the alternator output is then rectified and connected to the $14-\mathrm{V}$ dc bus. In addition, a $12-\mathrm{V}$ lead-acid battery is connected to the dc bus as the backup power when the engine is off. During the ignition, the $12-\mathrm{V}$ battery also provides the needed high current to the starter through the cranking system.

The electrical and electronic loads in vehicles are typically powered by point-ofload (POL) converters which are connected to the dc bus through fuses and relays protecting the wires against overheat. The POL converters convert the dc bus or battery voltage to different, well-regulated voltages like $1.8 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5 V for the loads to use. Originally, most of these power converters are linear regulators which can regulate the output to the desired voltage while with low efficiency. With the

Figure 1.1: 14V PowerNet Architecture in Most Present Passenger Cars.
improvement of power electronics technology, most linear regulators in automobiles are now replaced by the high efficiency switching mode power supplies (SMPS). However, the research on further improving the efficiency of the SMPS is still desired, especially at increasing switching frequencies, to save fuel consumption and reduce CO^{2} emissions. Development of high efficiency POL dc-dc converter for low power electronics loads is one of the research objectives in this thesis work.

1.1.2 48V/14V Dual Voltage Power Architecture

The 14V PowerNet architecture for passenger cars have been used for many years since around 1955. However, as ever increasing number of electrical and electronic equipments are being employed to support advanced functionalities, the 14 V PowerNet will reach its limit. Nowadays, the total electronic and electrical loads on vehicles are around 2 kW and, in the future, the total electric power required by most internal combustion engine (ICE) based vehicles may exceed 5 kW [2]. With present 14 V PowerNet, the high current level required by the high power loads will result in thicker and lossy wiring harnesses [3]. Therefore, 42 V PowerNet was proposed in
late 1990s, by the researchers in MIT, to replace the 14V PowerNet [4]. However, the transferring from 14 V PowerNet to 42 V PowerNet was not successful in automotive industry due to many issues, and now this plan has been canceled.

Recently (in 2011), 48-V high voltage battery was introduced by German carmakers as a supplementary power supply, besides the conventional 12-V battery, for high power applications on vehicles, such as Electrical Power Steering (EPS), Electronic Braking Systems (EBS) and HVAC systems. With the 48-V battery, these loads can operate more efficiently and achieve better performance [5]. Moreover, wiring and component weight is reduced leading to reduced fuel consumption and CO^{2} emissions. Meanwhile, 12-V battery is still kept for powering various low power loads, which are operated more efficiently with low dc bus voltage.

Since there are dual voltage systems on board, a bidirectional non-isolated dcdc converter is required to connect the $48-\mathrm{V}$ and $12-\mathrm{V}$ batteries, as shown in Figure 1.2. In this dual voltage architecture, the alternator/rectifier as well as the starter are connected to the high voltage battery. Typically, the power rating of this bidirectional converter is up to 3 kW , according to alternator capacity. Another research objective in this thesis is to development high efficiency and compact bidirectional $48 \mathrm{~V} / 14 \mathrm{~V}$ dc-dc converter for automotive dual voltage systems.

1.2 System Requirements for Automotive DC-DC Converters

Compared with many other applications, automotive application has some of the most challenging electrical and environment requirements for the design of dc-dc converters.

Figure 1.2: Automotive 48V/14V Dual Voltage Power Architecture.

1.2.1 Wide Input Voltage Range

The first design challenging for automotive dc-dc converters is the wide input voltage range. For the present 14V PowerNet architecture, the battery voltage ranges from 8 V to 16 V during most of the time [1]. This is the nominal operating input range for the downstream POL converters without function/performance restrictions. In the jump start situation, the dead battery may be hooked up to a $24-\mathrm{V}$ automotive battery, like in a tow truck, through the jumper cable. Therefore, the vehicle with the dead battery is started with a $24-\mathrm{V}$ battery and the power converters should work with the $24-\mathrm{V}$ input voltage. Moreover, electrical and electromagnetic disturbances are frequently generated in an automotive environment. They will lead to voltage spike or voltage dip in the $14-\mathrm{V}$ bus. One of the most well-known and destructive transients is the so-called load-dump, which refers to the disconnection of the battery from the alternator while the alternator is charging the battery [6]. This load dump may cause a voltage spike as high as 60 V . In most load dump situations, the $14-\mathrm{V}$ bus voltage may reach 42 V . Thus, the POL converters connected to the $14-\mathrm{V}$ bus should withstand an input voltage up to 42 V . Another well-known transient, on
the other side, is the voltage drop during the start of the engine (cranking) when the battery is delivering large current to the starter in a short time [7]. During the cranking, especially the cold cranking, the battery voltage may drop to 6.5 V or even 3.5 V (cold cranking) [8]. For some critical 5-V load that requires operation during cranking, a pre-boost converter may be employed to keep the input voltage of POL converters above 6 V or a higher voltage. In addition to the above two major disturbances, there are many other voltage transients presented at the $14-\mathrm{V}$ bus or the battery, due to the turn-on and turn-off of the inductive loads. The test pulses of these transient disturbances are specified in SAE J1113/11 standard. For the design of the POL converters that connected to the $14-\mathrm{V}$ bus, the immunity of the converters to these voltage transients should be concerned.

For $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage system, the wide input voltage range still exists. Although the voltage variation on $14-\mathrm{V}$ bus is much reduced in dual voltage system, it could still range from 10 V to 16 V under different operating conditions. Regarding the $48-\mathrm{V}$ bus, in most of the time, the bus voltage varies from 36 V to 52 V [5]. This is the nominal operating input range without function/performance restrictions for 48-V converters. During the large transients such as load dump and cold cranking, the $48-\mathrm{V}$ bus voltage can reach 54 V and 24 V , respectively. Therefore, for the POL converters connected to $48-\mathrm{V}$ or $14-\mathrm{V}$ dc buses, and the bidirectional $48 \mathrm{~V} / 14 \mathrm{~V}$ bus converter, the input voltage range is wide. This wide input voltage variation presents a big challenging for the converter design.

1.2.2 Strict EMI Limitation

Another challenging requirement is the strict CISPR-25 Standard for EMI performance of automotive dc-dc converters, as there are many on-board electronic devices susceptible to the EMI noise generated by the dc-dc converters. Usually the conducted

EMI emission problems could be mainly solved by the input EMI filters, besides the proper design and PCB layout of the dc-dc converter. However, the radiated EMI emission is much more complex and more difficult to solve, as the emission could not be attenuated directly by the EMI filters. The mitigation of the radiated emission is more like a system project as it involves the circuit design, components selection, PCB layout and shielding of the dc-dc converters.

It should be emphasized that the AM band, including the Medium wave (531 1611 kHz) and the Extended AM broadcast band (1610 1710 kHz), is the working frequency of many on-board RF receivers which are very susceptible to the noise over this frequency [9]. However, the automotive dc-dc converters with a switching frequency of hundreds of kHz is the major noise source within this frequency band. By the proper PCB layout, shielding and application of some other EMI mitigation techniques, such as spread spectrum, it is possible to reduce the radiated emission of the automotive dc-dc converters to the level below the limitation; but the best AM band EMI mitigation method is, applied at the design stage of the converter, pushing the switching frequency out of the AM band, either above 1.8 MHz or below 500 kHz . The switching frequency above 1.8 MHz is more desired since all the harmonics are outside the AM band. But this also presents another big challenging to the dc-dc converter design - high switching frequency.

Another thing should be noted is that, due to the strict EMI limitation, the PWM converter working at a constant switching frequency is much more desired compared to pulse frequency modulated converters, like resonant converters. This is because the EMI filter could be more effective and be designed more easily for PWM converters.

1.2.3 Compact Size and Light Weight

For most transportation applications, power converters' size and weight are always critical. In automobiles, the space for power converters is limited. With more and more electronic and electrical loads added in vehicles for advanced functionalities, increasing number of POL converters are required. The small size of converters is highly preferred. Weight of converters is also very critical for automobiles, since it affects the vehicle weight and hence the fuel consumption and acceleration performance of the vehicle. Therefore, compact size and light weight of the automotive dc-dc converters are desired. As well known, the most effective and direct way of shrinking the size and reducing the weight of dc-dc converters is increasing the switching frequency. Thus, for automotive dc-dc converters, high switching frequency is preferred.

1.2.4 Temperature Requirements

Another consideration of importance is the wide temperature range in automotive environment, which is critical to the proper operation of dc-dc converters. Depending on the location, the ambient temperature in a vehicle ranges from -40° to more than 120°. Therefore, for the dc-dc converters that may work under this temperature range, all the components in the converters should withstand the temperature stress. In addition, the high efficiency of the converter is desired for avoiding heating up components nearby the converter; and generally, the high efficiency is always desired for energy saving for all the power converters.

1.2.5 Feasibility of Interleaving

This is a requirement unique to automotive $48 \mathrm{~V} / 14 \mathrm{~V}$ bidirectional converter. The power rating of this bus converter is typically 1 kW to 3 kW . If a single converter
is used to deliver the whole power, usually a large heatsink is required resulting in a bulky and heavy converter, which is not desired for automotive applications. Therefore, interleaving several converters is a preferred solution considering the good thermal management and flexibility for power scaling. If the power rating for each phase is low enough that the power loss could be dissipated without heatsink, the size and weight of the converter will be much reduced. Therefore, feasibility of interleaving is required for $48 \mathrm{~V} / 14 \mathrm{~V}$ bidirectional converter.

1.3 Topology Review for Automotive DC-DC Converters

The design of the automotive dc-dc converters, including the topology selection, is a challenging task due to the aforementioned system and environment requirements. The major objective of this research is to develop suitable topologies for automotive low power POL converters and 48V/14V bidirectional converter at high switching frequency (MHz). At present, (synchronous) buck converter is dominantly used as the automotive POL converters and multiphase interleaved synchronous buck converter is widely accepted as the $48 \mathrm{~V} / 14 \mathrm{~V}$ bidirectional converter for automotive dual voltage system. However, synchronous buck converter also presents some issues for automotive applications. In the following, synchronous buck converter is firstly reviewed from the efficiency and EMI point of view. Then, various non-isolated soft-switching techniques/converters are reviewed for two targeted applications, respectively.

1.3.1 Hard-switching Buck Converter

Synchronous buck converter, as shown in Figure 1.3, is widely employed in automotive and most other applications for voltage step-down owing to its simplicity, robustness, low cost and suitability for wide input voltage range. However, for the hard-switching (synchronous) buck converter, high switching frequency brings lots of

Figure 1.3: Diagram of A Conventional Buck Converter.
problems.
The first problem of buck converter is high frequency dependent losses in the circuit, including the switching device turn-on/off loss, body-diode reverse recovery loss, switching device output capacitance $\left(C_{o s s}\right)$ loss, gate drive loss, magnetic components core loss as well as the losses in parasitic inductance and capacitance. Among them, both switching turn-on/off loss and diode reverse recovery loss are partially determined by the device switching speed. Usually, in order to optimize the efficiency, the device switching speed (slew rate) is pushed high and hence the rise/fall time of switching is reduced. The switching loss is therefore reduced. But the rise/fall time cannot be arbitrarily reduced due to strict EMI requirements in automotive applications. Thus, with a reasonable slew rate of switching, it is difficult to achieve high efficiency for automotive buck converters at MHz switching frequency.

Another drawback of buck converter is its high EMI (especially radiated EMI) noise emission due to hard-switching. During the turn-off of the low side switch S_{2}, the reverse recovery of its body diode results in large current spike which further causes the voltage spike on S_{2} through the resonance between stray inductance and
S_{2} output capacitance. This process generates high EMI noise. Another EMI noise source is S_{1} output capacitance discharging during the turn-on of S_{1}. The large EMI noise emission also poses a big challenging for the design. Usually the slew rate of switching is limited to obtain a better EMI performance at the cost of high switching losses. Sometimes, the spread spectrum technique is used to dither the switching frequency and hence spread the noise spectrum. It helps the converter to pass the EMI standard regulation although the total noise energy is not reduced. Shielding is another way to block the noise but at high cost.

From above discussion, it could be seen that buck converter, although being widely used in the industry because of its simple circuitry and low cost, might not be the most suitable topology for the automotive dc-dc converters. It is not efficient under high frequency operation and it does not have a desired EMI performance as well. To resolve the two above issues with buck converter, a soft-switching converter with fixed switching frequency is considered a good replacement, due to its low EMI noise emission and potential to achieve high efficiency at MHz switching frequency.

1.3.2 Soft-switching Converters

In this section, the concept of soft-switching is firstly introduced, followed by a brief review of various kinds of soft-switching converters. Then, detailed topology review for low power automotive POL converters and $48 \mathrm{~V} / 14 \mathrm{~V}$ bidirectional converter are presented.

The soft-switching is a concept on the contrary to the hard-switching. Figure 1.4 shows the switching waveforms in hard-switching and soft-switching converters. In hard-switching converters, there is an overlap between $v_{s w}(t)$ and $i_{s w}(t)$ during switching. This overlap indicates the energy loss in the switch. While in the softswitching converters, this $v_{s w}(t)-i_{s w}(t)$ overlap is eliminated by outside circuit of

Figure 1.4: Switching Waveforms of Hard-switching and Soft-switching Converters.
the device.
Numerous soft-switching topologies have been proposed since the very first introduction of soft-switching concept in [10]. Basically, there are two kinds of softswitching mechanisms: 1) zero-voltage-switching (ZVS) and 2) zero-current-switching (ZCS). In ZVS circuit, the switch voltage is brought to zero before gate voltage is applied. This turn-on transition is ideally loss-less. During the turn-off, capacitor paralleled with device acts as a loss-less snubber and the $v_{s w}(t)-i_{s w}(t)$ overlap is hence small. While in ZCS circuit, the switch current is brought to zero before gate voltage is removed. Ideally, this turn-off transition is loss-less. For the turn-on transition, the inductor in series with the switch acts a loss-less snubber leading to a small $v_{s w}(t)-i_{s w}(t)$ overlap. It should be noticed that, in ZCS circuit, the energy stored in junction capacitance of the switch is dissipated during turn-on transition. Generally, ZVS is more desired for high frequency converters with MOSFETs since it removes all major losses during switching. ZCS is more suited for converters with IGBTs due
to tail-current at turn-off. Therefore, in the following review, ZVS circuit is more focused.

The soft-switching converters could be classified into several types: 1) resonant converters; 2) quasi-resonant converters and 3) resonant transition converters. The resonant converter includes series resonant converter, parallel resonant converter, etc.. Usually, the output of resonant converter is regulated through frequency modulation. The quasi-resonant converters [11], constant-frequency multi-resonant converter $[12,13]$ are the converters that are based on quasi-resonant switches. The major issues of quasi-resonant converter is high voltage stress for switches. Due to the resonant approach, the peak voltage across the switch is more than twice the input voltage, which necessitates the use of switches with much higher voltage rating and hence on-resistance. The multi-resonant converter requires lower voltage rating (still higher than input voltage) compared to quasi-resonant converter, but it has much larger current stress in switches which increases the conduction loss significantly. Another issue of resonant and quasi-resonant is the difficulty of employing PWM control scheme. Although constant-frequency control could be used, it will increase the voltage/current stresses of the switch [14]. Unlike first two types of softswitching converter, resonant transition converters, including zero-voltage-transition converters [15-18] and zero-current-transition converters [19], have the $L-C$ resonance happens only during the switch transition and PWM control scheme could be used. Typically, the voltage stress in this type of soft-switching converters is less than that in a counterpart resonant converters.

For the given automotive applications, since fixed frequency control is much desired, resonant transition converters, specifically the zero-voltage-transition (ZVT) converters are reviewed in more detail.

1.3.3 Topology Review for Low Power Automotive POL converters

A very simple ZVT converter is the quasi-square-wave (QSW) buck converter [16]. The switches in QSW converter have the voltage rating same as the input voltage. However, this converter has large current ripple on the inductor. Moreover, the current ripple increases significantly when input voltage reduces unless the undesired variable switching frequency is employed. Thus, it is not suitable for automotive applications that with wide input voltage range.

The ZVT PWM converter in [15] employs an auxiliary cell consisting of a switch, a diode and a small inductor to achieve ZVS of main switches. There are many ZVT converters consisting a similar auxiliary cell and some of them were evaluated in [20]. Generally, for automotive low power applications, this kind of ZVS converter has relatively large conduction loss in the auxiliary cell.

Passive lossless snubber method [21-23] also helps to achieve ZVS but is less efficient in low power operations [24]. Generally, passive snubber method leads to high voltage or current stress on switches and is not suitable for low power and wide input voltage range applications.

Passive lossless snubber method [21-23] also helps to achieve ZVS but is less efficient in low power operations [24]. Generally, passive snubber method leads to high voltage or current stress on switches and is not suitable for low power and wide input voltage range applications.

Besides the aforementioned methods, active-clamp is another technique to realize ZVS and high efficiency operations in isolated flyback or forward converters [25-31]. It can also be used in non-isolated dc-dc converters, similar to the switched snubber concept proposed in [32]. References [33-35] proposed several families of active-clamp converters for relatively high power applications; however, the active-clamp buck con-
verter discussed in $[34,36]$ has unclamped voltage spike on output rectifier. Thus, high voltage rating device is needed for the output rectifier and the efficiency is impacted. The improved active-clamp buck converter discussed in $[35,37]$ can prevent the voltage spike by using a clamp diode. However, the energy is not saved but dissipated in the clamp diode as conduction loss and it does not help improve the overall efficiency. References [38-41] proposed several coupled-inductor based active-clamp buck or boost converters. The coupled-inductor was introduced to increase the conversion gain and extend the duty cycle, and the active-clamp circuit is employed to recycle the energy stored in the leakage of the coupled-inductor. However, these are not suitable for the targeted applications of this paper, because the duty cycle range is wide under the wide input voltage. With the coupled-inductor, the duty cycle will be close to 100% under the lowest input voltage. This will result in a very large voltage across the clamp capacitor. Furthermore, the coupled-inductor based active-clamp buck converters discussed in above references still have no voltage spike clamping ($[38,39]$) or lossy voltage spike clamping $([40,41])$ for the synchronous output rectifier, affecting the overall efficiency. Another issue of the coupled-inductor is the high cost. Proposed in [42] is a non-synchronous active-clamp boost converter demonstrating high efficiency for power-factor-correction (PFC) applications. Generally, one major issue of active-clamp converter is that it is not well suited for high current applications, since the resonant current ripple would be twice the filter inductor current, increasing the current ripple and hence conduction loss in resonant inductor and the synchronous switch. However, for the relatively low current applications, active-clamp based topologies are a good choice at MHz switching frequency.

1.3.4 Topology Review for $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage system

For this high current and high power application, the ZVT converter employing an auxiliary cell is more suitable. However, the basic ZVT buck converter proposed in [15] also has some issues. The auxiliary switch in [15] suffers hard-switching turnoff. In addition, the ZVT auxiliary cell locates at high voltage side and consequently, the voltage stress of auxiliary switches is at the voltage level of high voltage side. In $[43,44]$, coupled-inductor is employed to achieve ZCS turn-off of the auxiliary switches. Nevertheless, the voltage stress of the auxiliary switches is further increased by employing the coupled-inductor. In addition, the converters proposed in [44] still require a resonant inductor besides the coupled-inductor.

The ZVT auxiliary cell, instead of being located at the high voltage side, could also be placed at low voltage side [45-47]. Therefore, the voltage stresses of two auxiliary switches (both auxiliary switches are active-switches for bidirectional application) are reduced to the low side voltage and the difference voltage between high side and low side, respectively. Moreover, ZCS is achieved for auxiliary switches at both turn-on and turn-off instants. This type of ZVT converter also shows better efficiency and EMI performance among several ZVT converters [20]. However, for high current applications, the current magnitude and duration in the auxiliary cell is large, resulting in a large conduction loss in the cell. Especially, at higher frequency operation this conduction loss is even worse since the total conduction time of the auxiliary cell is fixed while the switching period is reduced.

1.3.5 Objective, Contributions and Organization of the Thesis

The objective of this work is to develop suitable topologies, for automotive low power POL converters and $48 \mathrm{~V} / 14 \mathrm{~V}$ bus converter, which can achieve high efficiency
and generate low EMI noise at MHz switching frequency.
In Chapter 2, a new active-clamp buck converter with synchronous rectification $(S R)$ is proposed for 2.2 MHz , low power (25 W) automotive POL applications. With the added active-clamp circuit, this converter has the advantages of 1) ZVS for all three switches; 2) soft turn-off of $S R$ with much lower di/dt rate; 3) clamped voltage stress for all switches; and 4) high efficiency and low EMI operation due to the soft-switching. In addition, the added energy recovery clamp diode can clamp the voltage spike on $S R$ and, at the same time, recover partial spike energy to the clamp capacitor. The operating principle of the converter, detailed analysis and design according to the given specifications are presented. The experimental results from a $2.2 \mathrm{MHz}, 5 \mathrm{~V} / 5 \mathrm{~A}$ prototype converter with Si MOSFETs demonstrates the superior performance of the proposed active-clamp buck topology. Then, GaN devices are employed to further improve the efficiency. Last, the modeling of the proposed active-clamp buck converter is investigated. Large-signal and small-signal models are derived with the verification in PLECS and Simplis, respectively.

In Chapter 3, for automotive $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage system, a new bidirectional ZVT PWM converter with coupled-inductor is proposed. With the combination of ZVT circuit and the coupled-inductor, this topology features 1) ZVS for main switches and ZCS for auxiliary switches; 2) reduced current and hence conduction loss in the auxiliary cell; 3) high efficiency and low EMI noise operation; 4) compact size of the converter and 5)flexibility for interleaving and power scaling. The detailed analysis, circuit design and implementation are presented. A $1 \mathrm{MHz}, 250 \mathrm{~W}$ prototype was constructed and tested. The experimental results verify the converter operation and show the good efficiency performance.

Chapter 4 covers the conclusion of this thesis work.

Chapter 2

ACTIVE-CLAMP BUCK CONVERTER FOR AUTOMOTIVE LOW POWER POL CONVERTERS

2.1 Introduction

In this chapter, a new active-clamp buck converter is proposed for low power automotive POL applications. The circuit diagram of the proposed active-clamp buck converter is shown in Figure 2.1. An auxiliary network, consisting of auxiliary switch S_{2}, resonant inductor L_{r}, clamp capacitor $C_{\text {clamp }}$, and clamp diode $D_{\text {clamp }}$, is incorporated into the synchronous buck converter. $C_{r 1}$ and $C_{r 2}$ are the combinations of extra paralleled resonant capacitors and the output capacitance of MOSFET S_{1} and S_{2}, respectively. C_{j} and $C_{o s s}$ are the output capacitances of the clamp diode $D_{\text {clamp }}$ and the synchronous rectifier $S R$, respectively. With the added auxiliary network, all three MOSFETs can achieve ZVS operation. The ZVS of S_{1} is realized by the energy stored in L_{r} through the resonance between $C_{r 1}, C_{r 2}$ and L_{r}, while the energy for achieving ZVS of S_{2} and $S R$ comes from the large filter inductor L_{f}, similar to the ZVS mechanism of the synchronous rectifier in synchronous buck converter. The resonant inductor L_{r} inserted between S_{1} and $S R$ helps to realize the soft turn-off of $S R$, further improving the conversion efficiency and EMI performance. The clamp diode $D_{\text {clamp }}$ is placed between the drain nodes of S_{2} and $S R$, in order to clamp the $S R$ voltage spike and recover partial energy in the resonant inductor when $S R$ turns off.

Figure 2.1: Circuit Diagram of the Proposed Active-clamp Buck Converter.

2.2 Operating Principle Analysis

To simplify the analysis of operating principle, the filter inductor is assumed sufficiently large so that the output filter (L_{f} and C_{f}) and load together could be considered as a constant current source (sink) $I_{\text {out }}$. Similarly, it is assumed that $C_{\text {clamp }}$ is large enough and hence the voltage ripple is negligible; thus, $C_{\text {clamp }}$ is represented by a constant voltage source $V_{\text {clamp }}$. The simplified circuit for operation analysis is shown in Figure 2.2. The arrows in Figure 2.2 indicate the reference direction for currents in the analysis. In addition, the MOSFET on-resistance, and the forward voltage drop of the MOSFET body-diodes and the clamp diode are ignored in analysis. However, all the parasitic capacitances of the switches are included in analysis. It also should be noted that $C_{r 1}$ and $C_{r 2}$ are assumed equal to C_{r} because S_{1} and S_{2} employ the same type of MOSFET. Figure 2.3 shows the key operating waveforms of the proposed active-clamp buck converter during one switching cycle and Figure 2.4 shows the topological states in each mode. The operating principle is described as below.

$$
C_{r 1}=C_{r 2}=C_{r}
$$

Figure 2.2: Simplified Circuit Diagram for Operating Principle Analysis.
Mode $0\left(t_{10}-t_{0}\right)$
Prior to t_{0}, main switch S_{1} is on and the entire load current $I_{\text {out }}$ flows through S_{1} and L_{r}. At the same time, S_{2} is off blocking a clamped voltage of V_{s} that amounts to $V_{\text {in }}+V_{\text {clamp }}, S R$ is off blocking input voltage $V_{i n}$, and $D_{\text {clamp }}$ is off blocking a voltage of $V_{\text {clamp }}$.

Mode $1\left(t_{0}-t_{1}\right)$

At t_{0}, the main switch S_{1} is turned off and the load current $I_{\text {out }}$ is divided into three parts, namely $i_{s 1}, i_{s 2}, i_{S R}$, charging the resonant capacitor of S_{1} and discharging the other capacitors, as shown in Figure 2.4. The difference between the output current $I_{\text {out }}$ and the resonant inductor current $i_{L r}$, denoted as $i_{d i f f}$, is the current reduction in L_{r} during this mode and is expressed as

$$
\begin{equation*}
i_{\text {diff }}=\int \frac{V_{\text {clamp }}-v_{\text {Dclamp }}(t)}{L_{r}} \mathrm{dt} \tag{2.1}
\end{equation*}
$$

where $v_{\text {Dclamp }}(t)$ is the instantaneous voltage across $D_{\text {Clamp }}$.

Figure 2.3: Key Operating Waveforms $2 \boldsymbol{1} \boldsymbol{m}^{\text {a }}$ Switching Cycle (Corresponds to Assigned Current Direction in Figure. 2.2).

Figure 2.4: Topological States in Each 21 Mode (the Arrows Indicate the Actual Direction of Current).

Since the $V_{\text {clamp }}$ is not large by proper design and the time interval in this mode is very short, then the $i_{\text {diff }}$ is almost zero during this mode and consequently, $i_{L r}$ equals to $I_{\text {out }}$. The $D_{C l a m p}$ discharge current i_{D} is equal to the $S R$ discharge current $i_{S R}$. And the load current $I_{\text {out }}$ consists of three parts, namely $i_{D}, i_{S 1}$ and $i_{S 2}$. According to the current divider rule,

$$
\begin{align*}
i_{S 1} & =-i_{S 2}=\frac{C_{r}}{2 C_{r}+C_{e q}} \cdot I_{\text {out }} \tag{2.2}\\
i_{D} & =i_{S R}=\frac{C_{e q}}{2 C_{r}+C_{e q}} \cdot I_{o u t} \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
C_{e q}=\frac{C_{j} \cdot C_{o s s}}{C_{j}+C_{o s s}} \tag{2.4}
\end{equation*}
$$

Mode 1 ends when C_{j} is fully discharged to zero and then $D_{\text {Clamp }}$ is forward biased. The time interval of mode 1 could be calculated as

$$
\begin{equation*}
t_{1}-t_{0}=\frac{V_{\text {clamp }} \cdot C_{j}}{i_{S R}}=\frac{V_{\text {clamp }} \cdot C_{j}}{C_{\text {eq }} /\left(2 C_{r}+C_{\text {eq }}\right) \cdot I_{\text {out }}} \tag{2.5}
\end{equation*}
$$

By the end of mode 1, the voltages across switch S_{1}, S_{2} and $S R$ are

$$
\begin{array}{r}
v_{d s_{-} S 1}=0+\frac{i_{S 1} \cdot\left(t_{1}-t_{0}\right)}{C_{r}}=V_{\text {clamp }} \cdot \frac{C_{j}}{C_{e q}} \\
v_{d s_{-} S 2}=V_{s}-v_{d s_{-} S 1}=V_{s}-V_{\text {clamp }} \cdot \frac{C_{j}}{C_{e q}} \\
v_{d_{s_{-} S R}}=V_{\text {in }}-\frac{i_{S R} \cdot\left(t_{1}-t_{0}\right)}{C_{o s s}}=V_{\text {in }}-V_{\text {clamp }} \cdot \frac{C_{j}}{C_{o s s}} \\
=V_{s}-V_{\text {clamp }} \cdot \frac{C_{j}}{C_{e q}} \tag{2.8}
\end{array}
$$

Mode $2\left(t_{1}-t_{2}\right)$

This mode starts when $D_{\text {Clamp }}$ starts conducting at the moment of t_{1}. Then, again, the load current $I_{o u t}$ is divided into $i_{S 1}, i_{S 2}$, and $i_{S R}$, charging $C_{r 1}$ and discharging $C_{r 2}$ and $C_{o s s}$; and $i_{S R}$ is further divided into i_{D} and $i_{d i f f}$. In this mode, L_{r} is linearly discharged by $V_{\text {clamp }}$, thus

$$
\begin{gather*}
i_{\text {Lr }}=I_{\text {out }}-\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{1}\right) \tag{2.9}\\
i_{\text {diff }}=I_{\text {out }}-i_{\text {Lr }}=\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{1}\right) \tag{2.10}
\end{gather*}
$$

The capacitor charging and discharging currents sum up to the load current $I_{\text {out }}$, and according to current divider rule,

$$
\begin{gather*}
i_{S 1}=-i_{S 2}=\frac{C_{r}}{2 C_{r}+C_{o s s}} \cdot I_{o u t} \tag{2.11}\\
i_{S R}=\frac{C_{o s s}}{2 C_{r}+C_{o s s}} \cdot I_{o u t} \tag{2.12}
\end{gather*}
$$

Then,

$$
\begin{equation*}
i_{D}=i_{S R}-i_{d i f f}=\frac{C_{o s s}}{2 C_{r}+C_{o s s}} \cdot I_{\text {out }}-\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{1}\right) \tag{2.13}
\end{equation*}
$$

When the voltage across S_{2} and $S R$ are discharged to zero and the body-diodes of both switches are forward biased, mode 2 ends. Meanwhile, S_{1} voltage is charged to the voltage of V_{s}.

Mode $3\left(t_{2}-t_{3}\right)$

The $D_{\text {Clamp }}$ and the body diodes of S_{2} and $S R$ are conducting. L_{r} is still linearly discharged by $V_{\text {clamp }}$ through $D_{\text {Clamp }}$. Thus, the currents in this mode are

$$
\begin{align*}
i_{L r} & =i_{L r}\left(t_{2}\right)-\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{2}\right) \tag{2.14}\\
i_{D} & =i_{D}\left(t_{2}\right)-\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{2}\right) \tag{2.15}
\end{align*}
$$

$$
\begin{gather*}
i_{d i f f}=i_{\text {diff }}\left(t_{2}\right)+\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{2}\right) \tag{2.16}\\
-i_{S 2}=i_{L r}\left(t_{2}\right)-i_{D}\left(t_{2}\right) \tag{2.17}\\
i_{S R}=I_{\text {out }}-\left(-i_{S 2}\right)=I_{\text {out }}-i_{L r}\left(t_{2}\right)+i_{D}\left(t_{2}\right) \tag{2.18}
\end{gather*}
$$

Mode $4\left(t_{3}-t_{4}\right.$ and $\left.t_{4}-t_{5}\right)$
S_{2} and $S R$ are turned on with ZVS at t_{3}. Then L_{r} is discharged by $V_{\text {clamp }}$ through S_{2} and $S R$. Meanwhile, $S R$ current $i_{S R}$ is increased to keep $I_{\text {out }}$ constant. The current expressions for $i_{L r}$ and $i_{S R}$ are

$$
\begin{align*}
& i_{L r}=i_{L r}\left(t_{3}\right)-\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{3}\right) \tag{2.19}\\
& i_{S R}=i_{S R}\left(t_{3}\right)+\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t-t_{3}\right) \tag{2.20}
\end{align*}
$$

By the end of mode 4, the $i_{L r}$ is at a negative value and correspondingly, $i_{S 2}$ is positive. Since intervals $\left(t_{0}-t_{2}\right)$ and $\left(t_{5}-t_{6}\right)$ are the switching transition time, they are assumed very short compared to interval $\left(t_{2}-t_{5}\right)$ [26]. This assumption is valid even with 2.2 MHz switching frequency (19 ns transition time compared 230 ns on/off time observed in the prototype circuit). Then, based on the charge balance of the clamp capacitor (represented by the voltage source $V_{\text {clamp }}$ in Figure 2.2),

$$
\begin{equation*}
i_{c}\left(t_{5}\right)=-i_{c}\left(t_{2}\right) \tag{2.21}
\end{equation*}
$$

Since the clamp capacitor current is the same as the resonant inductor current, during t_{2} to t_{5}, the resonant inductor current at t_{5} is approximately

$$
\begin{equation*}
i_{L r}\left(t_{5}\right)=i_{c}\left(t_{5}\right)=-i_{c}\left(t_{2}\right)=-i_{L r}(t 2)=-I_{o u t} \tag{2.22}
\end{equation*}
$$

Mode $5\left(t_{5}-t_{6}\right)$

At the moment of t_{5}, both S_{2} and $S R$ are turned off but $S R$ is still conducting via its body-diode. Then the L_{r} starts to resonate with $C_{r 1}, C_{r 2}$ and C_{j}. The current expressions in this mode could be found as

$$
\begin{gather*}
i_{L r}=-I_{\text {out }} \cdot \cos \left(\omega\left(t-t_{5}\right)\right)-\frac{V_{\text {clamp }}}{Z} \cdot \sin \left(\omega\left(t-t_{5}\right)\right) \tag{2.23}\\
i_{S 1}=i_{L r} \cdot \frac{C_{r}}{2 C_{r}+C_{j}} \tag{2.24}\\
i_{S 2}=-i_{L r} \cdot \frac{C_{r}}{2 C_{r}+C_{j}} \tag{2.25}\\
i_{D}=-i_{L r} \cdot \frac{C_{j}}{2 C_{r}+C_{j}} \tag{2.26}
\end{gather*}
$$

where

$$
\begin{equation*}
\omega=\frac{1}{\sqrt{L_{r} \cdot\left(2 C_{r}+C_{j}\right)}}, \quad Z=\sqrt{\frac{L_{r}}{\left(2 C_{r}+C_{j}\right)}} \tag{2.27}
\end{equation*}
$$

Mode 5 ends when S_{1} voltage falls to zero and its body-diode is forward biased. At the same time, $C_{r 2}$ voltage and C_{j} voltage are charged to V_{s}.

Mode $6\left(t_{6}-t_{7}\right)$

Only the body-diodes of S_{1} and $S R$ are on and the other switches are off. The current through L_{r} rises linearly through the two body-diodes.

Mode $7\left(t_{7}-t_{8}\right.$ and $\left.t_{8}-t_{9}\right)$

At t_{7}, S_{1} is turned on with ZVS and L_{r} continues being charged by the input voltage. The $i_{L r}$ and $i_{S R}$ in modes 6 and 7 are

$$
\begin{gather*}
i_{L r}=i_{L r}\left(t_{6}\right)+\frac{V_{\text {in }}}{L_{r}} \cdot\left(t-t_{7}\right) \tag{2.28}\\
i_{S R}=I_{o u t}-i_{L r} \tag{2.29}
\end{gather*}
$$

The L_{r} is charged till its current $i_{L r}$ reaches the load current $I_{o u t}$, and correspondingly $i_{S R}$ is reduced to zero with a slow slew rate. Then $S R$ is turned off and mode 8 is started.

Mode $8\left(t_{9}-t_{10}\right)$
At t_{9}, since the voltage at the drain side of SR is still zero, the L_{r} is still charged by the voltage across it, namely $V_{i n}-v_{d s_{-} S R}$ or $v_{\text {Dclamp }}-V_{\text {clamp }}$. Then $i_{L r}$ is

$$
\begin{equation*}
i_{L r}=I_{o u t}+\int \frac{V_{\text {in }}-v_{d s-S R}(t)}{L_{r}} \mathrm{dt} \tag{2.30}
\end{equation*}
$$

where $v_{d s_{-} S R}(t)$ is the instantaneous voltage across $S R$.
Meanwhile, the $C_{o s s}$ and C_{j} are charged and discharged in a resonant manner till $v_{d s_{-} S R}$ is increased to $V_{\text {in }}$ and $v_{\text {Dclamp }}$ is reduced to $V_{\text {clamp }}$. Then, ideally, this mode would end; but since the resonant inductor current $i_{L r}$ is larger than $I_{o u t}$ at this moment, this extra current (energy) will cause a resonance between $C_{j}, C_{o s s}$ and L_{r} resulting in an oscillation as shown in Figure 2.3. During the resonance, the voltage across $S R$ is clamped to V_{s} (if the resonant peak voltage is higher than V_{s}) and part of the extra energy in L_{r} will be recovered to the $C_{\text {clamp }}$. Also, if the resonant path impedance is low enough and the switching period is short (above MHz switching frequency), the oscillation will not be damped out and the energy will be saved.

2.3 Design Considerations

2.3.1 ZVS Analysis

From the above analysis of operating principle, it could be seen that the energy to achieve ZVS of S_{2} and $S R$ is from L_{f}. Therefore, it could be assumed that the ZVS range for S_{2} and $S R$ is from near-zero load to full load. However, for S_{1}, the energy
to realize ZVS operation comes from L_{r}. In mode 5 , the switch S_{1} voltage expression is determined by

$$
\begin{align*}
v_{d s-S 1}=V_{\text {in }} & +V_{\text {clamp }} \cdot \cos \left(\omega\left(t-t_{5}\right)\right) \\
& -I_{\text {out }} \cdot Z \cdot \sin \left(\omega\left(t-t_{5}\right)\right) \tag{2.31}
\end{align*}
$$

In order to achieve ZVS of S_{1}, the minimum value of $V_{d s_{-} S 1}$ in (2.31) should be less than zero. Then it could be derived that

$$
\begin{equation*}
I_{\text {out }} \geq \sqrt{\frac{\left(2 C_{r}+C_{j}\right) \cdot\left(V_{\text {in }}^{2}-V_{\text {clamp }}^{2}\right)}{L_{r}}} \tag{2.32}
\end{equation*}
$$

Therefore, for the given switches, resonant inductance and the input, there is a minimum load requirement for achieving ZVS operation of S_{1}.

2.3.2 Clamp Capacitor Requirement

During modes 3 and 4 , the resonant inductor L_{r} actually resonates with the clamp capacitor $C_{\text {clamp }}$. To justify the assumption that $C_{\text {clamp }}$ is approximately a constant voltage source, it is required that half of the $L_{r}-C_{\text {clamp }}$ resonance period should be much larger than the maximum of interval $\left(t_{2}-t_{5}\right)$. Neglecting the switching transition time, interval $\left(t_{2}-t_{5}\right)$ is the off time of S_{1} during the operation. Therefore,

$$
\begin{equation*}
\pi \cdot \sqrt{L_{r} \cdot C_{\text {clamp }}} \gg\left(1-D_{\text {min }}\right) \cdot T_{s} \tag{2.33}
\end{equation*}
$$

where $D_{\text {min }}$ is the minimum duty cycle of S_{1} and T_{s} is the switching period.
Regarding the clamp capacitor voltage, from (2.14) and (2.19),

$$
\begin{equation*}
i_{L r}\left(t_{2}\right)-i_{L r}\left(t_{5}\right)=\frac{V_{\text {clamp }}}{L_{r}} \cdot\left(t_{5}-t_{2}\right) \tag{2.34}
\end{equation*}
$$

Then, it could be derived that,

$$
\begin{array}{r}
V_{\text {clamp }}=L_{r} \cdot\left[i_{L r}\left(t_{2}\right)-i_{L r}\left(t_{5}\right)\right] \cdot\left(t_{5}-t_{2}\right) \\
=\frac{2 L_{r} \cdot I_{\text {out }}}{(1-D) \cdot T_{s}} \tag{2.35}
\end{array}
$$

In a proper design, $V_{\text {clamp }}$ should be a relatively low value. This low voltage rating of $C_{\text {Clamp }}$ benefits the use of small ceramic capacitors and commercial halfbridge drivers which can only withstand limited negative voltage on the source of high side switch.

2.3.3 Loss of Effective Duty Cycle

Another significant aspect of the proposed active clamp converter is that the modes 6 and 7 represent a loss of effective duty cycle. In several hundreds of kHz operation, this loss might not be significant but in MHz operation, the effective duty cycle loss cannot be ignored. The effective duty cycle in dc-dc converter is defined in terms of the charging and discharging cycles of the output filter inductor. As shown in Figure 2.5, during modes 6 and 7, the output filter inductor is still discharging and the loss of the duty cycle, ΔD can be derived as

$$
\begin{equation*}
\Delta D=L_{r} \cdot \frac{i_{L r, p e a k}-i_{L r, \text { valley }}}{V_{i n} \cdot T_{s}}=\frac{2 L_{r} \cdot I_{\text {out }}}{V_{\text {in }} \cdot T_{s}} \tag{2.36}
\end{equation*}
$$

where $i_{L r, p e a k}$ and $i_{L r, v a l l e y}$ are the peak and valley values of $i_{L r}$, respectively. Then the required duty cycle for given input/output voltage is

$$
\begin{equation*}
D=\frac{V_{o}}{V_{i n}}+\frac{2 L_{r} \cdot I_{\text {out }}}{V_{i n} \cdot T_{s}} \tag{2.37}
\end{equation*}
$$

Figure 2.5: Waveforms Illustrating the Loss of Effective Duty Cycle.

2.4 Active-clamp Buck Converter Design

2.4.1 Design Specifications

Table 2.1 shows the specifications of a low power POL dc-dc converter for 14 V PowerNet architecture. The static input voltage ranges from 8 V to 16 V , and the circuit should be able to withstand a transient input voltage up to 42 V . The switching frequency is 2.2 MHz which is well above the AM band.

2.4.2 Resonant Tank Design

For converters with ZVS turn-on, small capacitors added in parallel with the MOSFETs help to reduce the turn-off loss significantly. Therefore, a resonant capacitance of 1 nF (including the output capacitance of MOSFET) is added to both S_{1} and S_{2}. Then the resonant inductance needs to be designed, which is related to three param-

Table 2.1: Design Specifications

Nominal Input Voltage	$12-14 \mathrm{~V}$
Static Input Voltage	$8-16 \mathrm{~V}$
Transient Input Voltage	up to 42 V
Output Voltage	5 V
Output Current	5 A
Switching Frequency	2.2 MHz

eters: maximum clamp capacitor voltage, maximum duty cycle, and ZVS range of switch S_{1}.

Figure 2.6 shows the ZVS range of S_{1} at different input voltages with resonant inductance and load current as two variables, according to (2.32), (2.35) and (2.37). The ZVS range is designed for 8 V to 16 V input. Figure 2.6 indicates that, for ZVS down to half load at 16 V input, resonant inductance of at least 80 nH is required. Figure 2.7 shows the maximum duty cycles versus different input voltages, with inductance value as parameters. The inductance could not be arbitrarily large in order to keep duty cycle below one. Shown in Figure 2.8 is the clamp capacitor voltage versus different input voltages, at different values of inductance. Figure 2.8 indicates that the maximum clamp capacitor voltage limits the resonant inductance selection. Usually, the clamp capacitor voltage should be a relatively low value, if a bootstrap half-bridge driver is used for S_{1} and S_{2}. In this design, the maximum clamp capacitor voltage is limited to 12 V .

Considering the limitations by maximum clamp capacitor voltage, maximum duty cycle, and the minimum ZVS range, the resonant inductance is selected as 80 nH .

Figure 2.6: ZVS Range of S_{1} at Different Input Voltages.

With this inductance value, the minimum load current to achieve ZVS of S_{1} at 16 V input is around 2.5 A . When input voltage is lower, the minimum load current for ZVS is much reduced.

2.4.3 Clamp Capacitor Design

According to (2.33), with the designed parameters, the clamp capacitance should be much larger than 0.7 uF . The maximum clamp capacitor voltage is about 12 V as specified previously. Also, the maximum RMS current on the clamp capacitor is

$$
\begin{equation*}
I_{C c l a m p, R M S}^{\max }=\sqrt{\frac{1-D_{\min }}{3}} \cdot I_{o u t, \max } \tag{2.38}
\end{equation*}
$$

For this design, the maximum RMS current in the clamp capacitor is about 2.6 A .

2.4.4 MOSFET Switches Selection

For all the switches in this converter, the maximum blocking voltage is V_{s}, namely $V_{\text {in }}+V_{\text {clamp }}$. Figure 2.9 shows the plot of V_{s} versus input voltage covering the entire

Figure 2.7: Plot of Duty Cycle versus Input Voltages.

Figure 2.8: Plot of $V_{\text {clamp }}$ versus Input Voltages.

Figure 2.9: Plot of V_{s} versus Input Voltages.
range of operation. It could be seen the high clamp capacitor voltage occurs at low input voltage. Thus, with 42 V maximum input, the maximum V_{s} voltage is only about 44 V with 80 nH resonant inductance. Therefore, considering safety margin, 60 V MOSFETs are adequate for all the switches.

The maximum RMS current through S_{1} occurs at maximum load and minimum input voltage, and is given by

$$
\begin{equation*}
I_{S_{1}, R M S}^{\max }=\sqrt{D_{e f f, \max }+\frac{\Delta D_{\max }}{3}} \cdot I_{o u t, \max } \tag{2.39}
\end{equation*}
$$

where $D_{\text {eff,max }}$ is the maximum effective duty cycle, and $\Delta D_{\max }$ is the corresponding duty cycle loss. While for S_{2} and $S R$, the maximum RMS current occurs at maximum load and maximum input voltage, and are derived as

$$
\begin{gather*}
I_{S_{2}, R M S}^{\max }=\sqrt{\frac{1-D_{\min }}{3}} \cdot I_{o u t, \text { max }} \tag{2.40}\\
I_{S R, R M S}^{\max }=2 \sqrt{\frac{1-D_{\min }+\Delta D}{3}} \cdot I_{\text {out }, \text { max }} \tag{2.41}
\end{gather*}
$$

Table 2.2: Key Components Selection and Values for 2.2 MHz Active-clamp Buck Converter

Components	Value/Part Number	Description
MOSFETs S_{1}, S_{2} and $S R$	BSC097N06NS	$60 \mathrm{~V}, 10 \mathrm{~m} \Omega @ 8 V_{g s}$
Clamp Diode $D_{\text {clamp }}$	STPS8H100DEE	schottky, 100V, 8A
Resonant Inductor L_{r}	Coilcraft SLC1175-700	$0.252 \mathrm{~m} \Omega \mathrm{DCR}, 78 \mathrm{nH} @ 2 \mathrm{MHz}$
Filter Inductor L_{f}	Coilcraft EPL7040-152	$1.5 \mathrm{uH}, 6.2 \mathrm{~m} \Omega \mathrm{DCR}$
Clamp Capacitor $C_{\text {clamp }}$	3.3 uF	ceramic cap, 25 V
Filter Capacitor C_{o}	115 uF	68 uF polymer cap + ceramic caps

In this design, the maximum RMS currents of S_{1}, S_{2} and $S R$ are about $4.6 \mathrm{~A}, 2.6$ A and 5.3 A, respectively.

2.5 Experimental Verification with Si Devices

2.5.1 Hardware Implementation

As a proof-of-concept, a 2.2 MHz prototype converter has been built, as shown in Figure 2.10. The schematic and layout design are shown in Appendix A. Table 2.2 shows the components selection and key parameters. A half-bridge driver is employed to drive S_{1} and S_{2}, for low cost and high density design. $S R$ is driven by another low side driver for better timing control (such as adaptive delay control in future work) although it could also use the gate signal for S_{2} and save one driver. In addition, LM5027 is employed as the PWM controller and simple voltage-mode control is used for output regulation.

Figure 2.10: 2.2 MHz Active-clamp Buck Converter Prototype.

2.5.2 Experimental Results

Figure 2.11 and 2.12 show the switching waveforms of S_{1} and S_{2} at 12 V input, $5 \mathrm{~V} / 2.5 \mathrm{~A}$ output. It could be seen that both S_{1} and S_{2} can realize ZVS turn-on. Also, with the added small capacitor in parallel, the turn-off transition is also nearly ZVS. In addition, the $\mathrm{dv} / \mathrm{dt}$ (of $V_{d s}$ waveforms) for all the switches is only around 0.75 V / ns. This is significantly lower than the dv/dt in a high efficiency hard-switching buck converter. Therefore, the EMI noise could be much lower. Figure 2.13 shows the switching waveforms of $S R$. It has ZVS turn-on as well and ZCS turn-off. It should be noted that a slow turn-off (equivalent to a fixed turn-off delay) is employed for $S R$ to reduce $S R$ body-diode conduction time and hence the power loss. For comparison, the switching waveforms of $S R$ without the diode clamp is also shown in Figure 2.13. It can be seen that the voltage spike without the clamp diode is huge. Shown in Figure 2.14 is the voltage across $D_{\text {Clamp }}$. It could be seen that there is some ringing in the waveforms after $S R$ is turned off. Since the converter is operating at 2.2 MHz and it is sensitive to the resonant inductance, the L_{r} current measurement with a wire is not feasible. Instead, the voltage across L_{r} could be measured and then the inductor current waveform could be derived, as shown in Figure 2.16. The derived $i_{L r}$ waveform is close to the analytical waveform shown in Figure 2.3.

2.5.3 Loss Analysis and Breakdown

Figure 2.17 shows the measured efficiency at different input voltages, with and without control and driver loss included. The control and driver power is derived from a separate source and its power is measured as 0.72 W separately. At nominal 12 V input, peak efficiencies of 93.5% and 89.7% are realized without and with driver and control loss included, respectively. It could be seen from Figure 2.17 that the

Figure 2.11: Switching Waveforms of S_{1}.

Figure 2.12: Switching Waveforms of S_{2}.

Figure 2.13: Switching Waveforms of $S R$.

Figure 2.14: Switching Waveforms of Clamp Diode $D_{\text {clamp }}$.

Figure 2.15: Voltage on Clamp Capacitor $C_{\text {clamp }}$.

Figure 2.16: Voltage Waveform across the Resonant Inductor L_{r} and Derived Resonant Inductor Current Waveform.
efficiency with driver and control loss included is much lower than that without driver and control loss included. This is because the driver and control loss is actually the biggest part among all the losses, as shown in Figure 2.19. Figure 2.18 shows the experimental efficiency comparison between the proposed active-clamp buck converter and the conventional synchronous buck converter, at 12 V input and 5 V output. It is indicated that, within most part in the load range, the total efficiency (including driver and control loss) is improved by 1% to 3%. Moreover, in order to reduce switching losses, the $\mathrm{dv} / \mathrm{dt}$ rate of the switching ($\mathrm{dv} / \mathrm{dt}$ of $v_{d s}$ waveforms) in conventional buck converter is much higher than that in the active-clamp buck converter, degrading the EMI performance. The lower $\mathrm{dv} / \mathrm{dt}$ of $v_{d s}$ in soft switching converters improves the EMI performance without the penalty of increasing the switching losses. Figure 2.19 is the calculated relative contribution of losses at 12 V input and 5 V output, for the proposed active-clamp buck converter. The calculation takes into account the conduction losses, switching losses, gate drive losses, body diode losses, magnetic losses, etc. The total calculated power losses under different operating conditions are corrected to experimental results under the same operating conditions as a means of calculation validation. The reason for large drive loss is that the minimum $V_{d d}$ voltage for the specific driver used was 8 V leading to minimum gate voltage of 8 V . If a driver IC with 5 V minimum $V_{d d}$, and therefore, gate voltage at 5 V , can be used the efficiency can be further improved. From a detailed loss analysis considering the increased MOSFET on-state resistance at lower gate voltage, efficiency improvement in going from 8 V gate drive to 5 V gate drive was calculated to be from 89.7% to 91.3%, at 12 V input and 5 V output.

Shown in Figure 2.20 is the calculation/simulation based efficiency comparison of the proposed active-clamp buck converter and other active-clamp based buck converters. Only the power stage efficiencies are compared here. It clearly shows that

Figure 2.17: Measured Efficiency Curves of Active-clamp Buck at $8 \mathrm{~V}, 12 \mathrm{~V}$ and 16 V Inputs, Respectively.
the efficiency of the proposed converter is higher by $0.5 \%-2 \%$. This is because all other previously proposed active-clamp based buck converters employ no voltage spike clamping or lossy voltage spike clamping for the synchronous output rectifier. The overall efficiency is hence impacted. In addition, the active-clamp buck with coupledinductor, compared to the converter with separated inductors, has more conduction loss in the magnetic windings although the core loss is reduced. Also, the conduction loss in synchronous rectifier is much increased due to larger RMS current.

2.6 Employment with GaN Devices

2.6.1 Motivation of Using GaN Devices

One potential solution to improve the efficiency is to employ the GaN FETs that feature lower capacitances and $R_{d s, o n}$ compared to its silicon counterparts [48-52]. In some applications, such as in the voltage regulator, the application of GaN devices

Figure 2.18: The Comparison Efficiency v.s. Load between the Active-clamp Buck and Conventional Synchronous Buck Converter, at 12 V Input and 5 V Output.

Figure 2.19: Analytical Loss Break Up at 12 V Input.

Figure 2.20: Efficiency Comparison between Proposed Active-clamp Buck and Other Active-clamp Based Buck Converters.
has demonstrated significant efficiency improvement over the Si MOSFET based regulators [53]. This is because the GaN FETs with lower capacitances can switch much faster than Si MOSFET; thereby the switching loss in buck converter is much reduced. However, for automotive POL converters, the switching transition speed is usually limited by EMI consideration and could not be arbitrarily reduced. Automotive buck converters cannot fully utilize the capability of fast switching provided by GaN devices and hence the efficiency improvement with GaN devices might not be significant. This is part of the motivation of using the soft-switching converter to improve the efficiency. With the ZVS operation, the switching transition speed is not critical and does not impact the efficiency. However, the trade-off of no switching loss in soft-switching topologies is usually higher RMS current in switches. With Si MOSFET, the conduction loss is considerable. More importantly, the Si MOSFETs with low $R_{d s, o n}$ usually have large $C_{i s s}$ and hence Q_{g}. Thus, the gate drive loss at

Table 2.3: Key Parameters of Several Best-in-class 60 V to 100 V Si and GaN Devices

Devices		$V_{D S}$	$R_{d s, o n}$	Q_{g}
Si MOSFET $\left(V_{g s}=6 \mathrm{~V}\right)$	BSC097N06NS	60 V	$12 \mathrm{~m} \Omega$	7.5 nC
	BSC039N06NS	60 V	$4.8 \mathrm{~m} \Omega$	16.2 nC
	BSC160N10NS3 G	100 V	$17.6 \mathrm{~m} \Omega$	11.4 nC
GaN FET $\left(V_{g s}=5 \mathrm{~V}\right)$	EPC2001C	100 V	$5.6 \mathrm{~m} \Omega$	7.5 nC

high switching frequency is very significant. This has been noticed from the loss breakdown of the Si based prototype. However, the GaN FETs with same $R_{d s, o n}$ have much smaller $C_{i s s}$ than Si MOSFET and then the gate driver loss could be much saved. Another benefit of GaN FETs, when using resonant gate driver, is much smaller internal gate meshed resistance R_{G}. For Si MOSFETs, R_{G} usually ranges from 1Ω to 2Ω; while for EPC GaN FETs, R_{G} is only 0.3Ω to 0.4Ω. Usually it is hard to achieve high efficiency of resonant gate driver with large R_{G}. In summary, the combination of GaN FETs and soft-switching topology for automotive low power POL converters could be promising [54].

Table 2.3 shows the key parameters of several best-in-class 60 V to 100 V Si MOSFETs and GaN FETs. It could be seen that the 100 V GaN devices either have lower $R_{d s, \text { on }}$ or lower Q_{g} compared to 60 V Si MOSFET. The advantages of 100 V GaN FET are more significant over 100 V Si MOSFET. Thus it could be concluded that the employment of GaN devices can further improve the efficiency of the proposed active-clamp buck converter for low power automotive applications.

Table 2.4: Key Parameter Values and Components Selection

Components/Parameters	Values
Resonant Capacitor C_{r}	1.3 nF
Resonant Inductor L_{r}	80 nH
Clamp Capacitor $C_{\text {clamp }}$	3 uF
MOSFET S_{1}, S_{2} and $S R$	EPC2001C
MOSFET Driver	LM5113
Schottky Diode Paralleled with GaN FETs	DFLS160-7
Clamp Diode $D_{\text {clamp }}$	DFLS160-7

2.6.2 Hardware Implementation

The design specification is the same as that for Si devices, as shown in Table 2.1. The key parameters and components selection for GaN based prototype is shown in Table 2.4. The schematic and layout design are shown in Appendix B.

As shown in Table 2.4, EPC enhancement-mode GaN (eGaN) FET EPC2001 is selected as the switches in this converter. The implementation with eGaN FET is very challenging. One challenging is the gate driver design that should make the driver loop stray inductance minimized [55]. This is because once the gate voltage ringing is higher than 6 V , the gate of EPC eGaN FET will be damaged. The layout of the gate drive loop for all switches are shown in Figure 2.21 and 2.22. The red (solid and dashed) lines indicate the turn-on path and the orange (solid and dashed) line indicate the turn-off path. Physically, the loops are minimized by layout. To accurately estimate the stray inductance in the path, the ANSYS Q3D is used to
simulate the parasitic parameters of the driver loop path and the results are shown in Table 2.5. Since the stray inductance in S_{1} and S_{2} drive loops is large enough to make ringing higher than 6 V , external gate resistors of several ohms are needed to damp the resonance between $L_{\text {stray }}$ and $C_{g s}$. Because of ZVS turn-on, the relative slow turn-on speed due to external resistance would not impact the switching loss and hence the efficiency.

In addition, to minimize the stray inductance associated loss in the power loop, the layout of the high frequency power loop $C_{\text {in }}-S_{1}-C_{\text {clamp }}-S_{2}-G N D-C_{i n}$ is optimized [56]. The ANASYS Q3D simulation result shows that the stray inductance in this loop is only 0.776 nH .

Another issue special to eGaN FET is the relatively large reverse conduction voltage drop, such as 1.8 V with 0.5 A reverse current. The deadtime for eGaN devices should be minimized to reduce the large reverse conduction loss, or adaptive gate driver could be used to further avoid the reverse conduction loss [57]. In this design, Schottky diodes with minimized package inductance are selected to be in parallel with each eGaN FET, in order to avoid eGaN reverse conduction loss.

The built 2.2 MHz prototype of the GaN based active-clamp buck converter is shown in Figure 2.23.

2.6.3 Experimental Results

Figure 2.24 and 2.25 show the switching waveforms of S_{1} and S_{2} at 12 V input, $5 \mathrm{~V} / 2.5 \mathrm{~A}$ output. It could be seen that both S_{1} and S_{2} can realize ZVS turn-on. Also, with the added small capacitor in parallel, the turn-off transition is also nearly ZVS. In addition, the $\mathrm{dv} / \mathrm{dt}$ for all switches is only around $0.70 .75 \mathrm{~V} / \mathrm{ns}$. Figure 2.26 shows the switching waveforms of $S R$. It has ZVS for both turn-on and turn-off. Shown in Figure 2.27 is the voltage across the clamp diode. Figure 2.28 shows the

Figure 2.21: Layout Design of S_{1} and S_{2} Driver Loop.

Figure 2.22: Layout Design of $S R$ Driver Loop.

Figure 2.23: Prototype of 2.2 MHz GaN Based Active-clamp Buck Converter.

Table 2.5: Q3D Simulation Results

	$L_{\text {stray }}(\mathrm{nH})$	$R_{\text {stray }}(\mathrm{m} \Omega)$
S_{1} turn-on loop	6.08	13.20
S_{1} turn-off loop	6.29	9.69
S_{2} turn-on loop	3.40	11.69
S_{2} turn-off loop	2.09	6.97
$S R$ turn-on loop	2.64	10.31
$S R$ turn-off loop	1.16	4.49

voltage across the resonant inductor.
Figure 2.29 shows the efficiency comparison between using GaN FETs and Si MOSFETs. It should be noted that, for both prototypes, the $S R$ is turned off at the same time of S_{2} turn-off. Figure 2.29 indicates that, without considering control and driver loss, the efficiency improvement from GaN FETs is from 0.5% to 3%. However, when considering the driver and control loss, GaN based prototype shows much higher efficiency than Si based prototype efficiency. This is because with the same on-resistance, the gate charge of GaN FET is smaller than that of Si MOSFETs. Also, considering the $V_{g s}$ voltage difference (5 V vs. 8 V), the gate driver loss is much reduced in GaN FETs based converter. Even assuming $5 \mathrm{~V} V_{d d}$ for Si based prototype, the calculated peak efficiency is only 91.3% at 12 V input and 5 V output.

2.6.4 SR Turn-off Time Optimization

It has been pointed out that the $S R$ deadtime loss is a major part among the total losses. The deadtime here means the interval between the turn-off of $S R$ channel and

Figure 2.24: Switching Waveforms of S_{1}.

Figure 2.25: Switching Waveforms of S_{2}.

Figure 2.26: Switching Wavefroms of $S R$.

Figure 2.27: Voltage Waveform across the Clamp Diode.

Figure 2.28: Voltage Waveform across the Resonant Inductor.

Figure 2.29: Efficiency Comparison between Using Si MOSFETs and GaN FETs.
the turn-off of $S R$ body-diode. If the $S R$ is turned off at the same time as S_{2} turnoff, the $S R$ body-diode will conduct current with an average value of I_{o} for $\Delta D \cdot T_{s}$. Thus, the conduction loss in $S R$ body-diode is considerable. With the digital control used in GaN FETs based prototype, it is easier to delay the turn-off of $S R$ to reduce its conduction loss. The problem is to find an optimized delay time for $S R$ turnoff, and under different operating conditions, this optimized delay time varies. Two methods (measurement and calculation, and measurement results are used to calibrate the calculation algorithm) are employed together to help find this optimized delay. First, several $S R$ turn -off delay times are used and the corresponding efficiencies are measured. For example, Figure 2.30 shows the efficiency curve with different $S R$ turn-off delay times on 12 V input, 5 A load condition. By interpolation based on the tested data, the $S R$ turn-off delay leading to highest efficiency could be read. Similarly, for other load conditions, the optimized delay time (maximum efficiency) could be measured, as shown in Table 2.6. This table also shows the calculated optimized $S R$ turn-off delay. The calculation is based on the assumption that the highest efficiency occurs when the $S R$ turns off at the moment that resonant inductor current reaches filter inductor current. Figure 2.31 illustrates the optimized $S R$ turnoff delay in two cases: ZVS of S_{1} is achieved and not achieved. Based on the equations describing the converter operation, the delay time could be calculated. Table 2.7 and Table 2.8 show the measured optimized delay and calculated delay for $S R$ turn-off at 8 V and 16 V inputs, respectively. From tables 2.6, 2.7 and 2.8 , it could be seen that the calculated delay time is close to the measured $S R$ turn-off delay time.

However, the calculation method used above involves the equations describing the converter operation. It is hard to be used for adaptively changing the $S R$ turnoff delay in real-time. Therefore, a simplified calculation algorithm is needed for implementation.

Figure 2.30: Efficiency Curve with Different $S R$ Turn-off Delay at 12 V Input, 5 A Load.

With ZVS

Figure 2.31: Waveforms Illustrating Optimized $S R$ Turn-off Delay.

Table 2.6: Measured Optimized $S R$ Turn-off Delay Time at 12 V input

$V_{i n}$	I_{o}	Measured Efficiency	Measured Optimal $S R$ Turn-off Delay	Calculated Optimal $S R$ Turn-off Delay
12 V	4.95 A	93.00%	58 ns	64 ns
12 V	4.5 A	93.10%	53 ns	59.8 ns
12 V	4.01 A	93.13%	46 ns	52.8 ns
12 V	3.51 A	93.22%	42 ns	47.7 ns
12 V	2.99 A	93.21%	37 ns	43 ns
12 V	2.50 A	93.11%	34 ns	37.9 ns
12 V	2.01 A	92.44%	34 ns	33.5 ns
12 V	1.50 A	91.17%	30 ns	31 ns
12 V	1.02 A	88.21%	29 ns	28.8 ns

Figure 2.31 implies that the optimal $S R$ turn-off delay consists of two parts: S_{1} deadtime and another interval that $i_{L r}$ takes to reach $i_{L f}$, denoted as Δt here. Since S_{1} deadtime is usually a fixed one, only Δt needs to be calculated. It is assumed that

$$
\begin{equation*}
\Delta t=\frac{L_{r} \cdot\left(I_{\text {out }}-\frac{\Delta I}{2}\right)}{V_{\text {in }}} \cdot K \tag{2.42}
\end{equation*}
$$

where K is a proportional gain. Then the optimal $S R$ turn-off delay is

$$
\begin{equation*}
t_{\text {opt_SR_delay }}=t_{d _S_{1}}+\frac{L_{r} \cdot\left(I_{\text {out }}-\frac{\Delta I}{2}\right)}{V_{\text {in }}} \cdot K \tag{2.43}
\end{equation*}
$$

where $t_{d-S_{1}}$ is the deadtime between S_{2} turn-off and S_{1} turn-on. This method of obtaining an optimal $S R$ turn-off delay involves very simple calculation based on

Table 2.7: Measured Optimized $S R$ Turn-off Delay Time at 8 V input

$V_{i n}$	I_{o}	Measured Efficiency	Measured Optimal $S R$ Turn-off Delay	Calculated Optimal $S R$ Turn-off Delay
8 V	4.45 A	93.39%	79.9 ns	84.7 ns
8 V	3.98 A	93.53%	70.0 ns	76.5 ns
8 V	3.48 A	93.63%	61.3 ns	67.7 ns
8 V	3.03 A	93.71%	52.8 ns	59.4 ns
8 V	2.50 A	93.66%	47.3 ns	51.5 ns
8 V	1.98 A	93.37%	40.2 ns	42.4 ns
8 V	1.48 A	92.48%	35.0 ns	35.6 ns
8 V	1.06 A	90.77%	29.0 ns	30.8 ns

sensed parameters $\left(I_{\text {out }}, V_{\text {in }}\right)$ and fixed design values $\left(L_{r}, K\right)$. Therefore, it is able to do this calculation by digital control or analog circuitry during the operation of the converter and apply this turn-off delay to $S R$ gate.

If K equals to one, it implies that, by the end of S_{1} deadtime, the resonant inductor current $i_{L r}$ is zero. In fact, by the end of S_{1} deadtime, $i_{L r}$ is either negative (at high load) or positive (at light load). Thus it is desired to have a larger $K(>1)$ for calculation at high load and a smaller $K(<1)$ for calculation at light load. At light load, since Δt is only a small part of the total $S R$ turn-off delay time (much of the total turn-off delay time is S_{1} deadtime), large K will not affect the accuracy of the calculated $S R$ turn-off delay time much at light load. For this design, the K value is designed as 1.4. Then the comparison between two calculation algorithms is shown in Table 2.9. It is shown that the calculation results from two methods are

Table 2.8: Measured Optimized $S R$ Turn-off Delay Time at 16 V input

$V_{i n}$	I_{o}	Measured Efficiency	Measured Optimal $S R$ Turn-off Delay	Calculated Optimal $S R$ Turn-off Delay
16 V	4.93 A	92.60%	44 ns	50.6 ns
16 V	4.49 A	92.62%	41.6 ns	47.6 ns
16 V	4.01 A	92.72%	37.8 ns	43.2 ns
16 V	3.48 A	92.62%	34.6 ns	39.2 ns
16 V	3.23 A	92.61%	31.7 ns	37.5 ns
16 V	2.35 A	91.68%	29.5 ns	32.3 ns
16 V	1.54 A	89.10%	28.5 ns	28.4 ns
16 V	1.07 A	85.08%	27.6 ns	26.2 ns

close to each other.
Then, Figure 2.32 shows the efficiency curves with adaptive optimal $S R$ turn-off delay at 2.2 MHz . Figure 2.33 shows the efficiency comparison of the GaN based prototype between using $S R$ turn-off delay and not using $S R$ turn-off delay, at 12 V input. It could be seen that the adaptive $S R$ turn-off delay significantly improves the efficiency of the proposed active-clamp buck converter. With optimal $S R$ turn-off delay, the peak total efficiency (including driver and control loss) is 93.22% and the total efficiency is above 91% with $I_{\text {out }}>1.5 \mathrm{~A}$.

It should be noted that, the optimal $S R$ turn-off delay could also be used for Si based active-clamp buck converter only if the control circuit can calculate the optimal delay time for $S R$ and apply this delay time to the gate of $S R$. In the prototype with Si MOSFETs, the commercial PWM controller LM5027 is used, which is not

Table 2.9: Comparison between Original and Simplified Calculation Algorithm for Optimal SR Turn-off Delay

I_{o}	Original at 8Vin	Simplified at 8Vin	Original at 12 Vin	Simplified at 12 Vin	Original at 16 Vin	Simplified at 16 Vin
1 A	30.86 ns	31.89 ns	26.84 ns	27.22 ns	25.41 ns	25.53 ns
2 A	43.57 ns	45.38 ns	33.58 ns	36.20 ns	30.44 ns	32.26 ns
3 A	60.06 ns	58.86 ns	43.09 ns	45.19 ns	35.50 ns	38.99 ns
4 A	77.67 ns	72.34 ns	54.10 ns	54.17 ns	43.37 ns	45.73 ns
5 A	96.15 ns	85.82 ns	65.55 ns	63.15 ns	51.65 ns	52.46 ns

Figure 2.32: Efficiency Curves of GaN Based Active-clamp Buck Converter with Optimal $S R$ Turn-off Delay.

Figure 2.33: GaN Prototype Efficiency With and Without Optimal $S R$ Turn-off Delay.
compatible with $S R$ turn-off delay.

2.7 EMI Performance

One benefit of the proposed active-clamp buck converter is the reduced EMI noise emission due to soft-switching and slow dv/dt rate of switching. For conducted EMI, line-impedance-stabilization-network (LISN) is used for standard test. For radiated EMI, standard test requires a semi anechoic room or a TEM cell. For this project, the aim is to compare the EMI noise emission between conventional hard-switching buck and the proposed active-clamp buck converter. Therefore, for simplification, an H -field probe which is inexpensive and good for relative measurement is used to measure the EMI noise. Figure 2.34 shows the lab-made H -field probe used for the test. Figure 2.35 shows the setup for radiated EMI test. Shown on Figure 2.36 is the

Figure 2.34: Lab Made H-field Probe.

Figure 2.35: Radiated EMI Test Setup.

EMI test results for both converters running at 2.2 MHz . It is clear that the proposed active-clamp buck converter has much better EMI performance than the conventional buck converter, especially at frequencies above 20 MHz .

2.8 Modeling of the Active-clamp Buck Converter

The modeling of the proposed active-clamp buck converter is important for accurate compensator design. In this work, a straightforward and insightful averaged large-signal model for active-clamp buck converter is firstly derived, with reducedorder but high accuracy. Then, the small-signal performance is characterized and verified by Simplis simulation.

Figure 2.36: EMI Test Results for Conventional Hard-switching Buck and the Proposed Active-clamp Buck Converter.

2.8.1 Large-signal Modeling and Verification

Modeling Assumptions and Approximations

The modeling and dynamic study of the converter are of interest in the frequency range of below switching frequency or even half switching frequency. Therefore, some high frequency (higher than switching frequency) attributions of the converter are ignored during the modeling process, since they only have effects on the frequency response at very high frequency. The assumptions made here include: 1) resonant transition modes (Mode 1 and Mode 3 in 2.2) are ignored, since the intervals of these two modes are very small compared to the switching period; 2) resonance after $S R$ body diode turn-off is ignored; 3) the circuit parasitics are not considered during the modeling. After these assumptions, the key operating waveforms are modified from

Figure 2.3 and the simplified waveforms are shown in Figure 2.37. The following model derivation is based on Figure 2.37.

Large-signal Model Derivation

Since there is one more inductor and one more capacitor in the active-clamp buck converter, compared with conventional buck converter, there are totally four state variables in this converter system: $i_{L r}, v_{\text {clamp }}, i_{L f}, v_{C o}$. Furthermore, $v_{\text {clamp }}, i_{L f}$, $v_{C o}$ are assumed to have small ripple. The model inputs include duty cycle d, input voltage $v_{i n}$ and load current i_{o}. The model output is $v_{C o}$.

As seen in Figure 2.37, there is a $\Delta d \cdot T_{s}$ interval indicating the duty cycle loss of the active-clamp buck converter. Therefore, the averaged voltage at the point before the output $L_{f}-C_{o}$ filter (drain node of $S R$) is determined by Δd, which is an intermediate variable between the state variables and the output. It is hence important to derive the expression for Δd with state variables, model inputs and circuit parameters. According to Figure 2.37, Δd is derived as

$$
\begin{equation*}
\Delta d=\frac{(1-d) \cdot L_{f} \cdot v_{c l a m p}-(1-d) \cdot L_{r} \cdot v_{C o}}{L_{f} \cdot v_{i n}+L_{r} \cdot v_{C_{o}}} \tag{2.44}
\end{equation*}
$$

Since $v_{\text {clamp }}, v_{C o}$ and $v_{\text {in }}$ have small ripple, Δd can also be expressed with averaged state and input variables,

$$
\begin{equation*}
\Delta d=\frac{(1-d) \cdot L_{f} \cdot \overline{v_{c l a m p}}-(1-d) \cdot L_{r} \cdot \overline{v_{C o}}}{L_{f} \cdot \overline{v_{i n}}+L_{r} \cdot \overline{v_{C_{o}}}} \tag{2.45}
\end{equation*}
$$

It is critical to notice that 2.45 is valid not only for steady state but also for transients. Then, assuming $t_{1}=0$, the state variable $i_{L r}$ can be expressed with Δd and other state variables and inputs,

Figure 2.37: Key Operating Waveforms after Modeling Assumptions.

$$
i_{L r}= \begin{cases}i_{L_{f}}-\frac{v_{i n}}{L_{r}} \cdot \Delta d \cdot T_{s}+\frac{v_{i n}}{L_{r}} \cdot t & t \in\left[0, \Delta d \cdot T_{s}\right] \tag{2.46}\\ i_{L_{f}} & t \in\left[\Delta d \cdot T_{s}, d \cdot T_{s}\right] \\ i_{L_{f}}-\frac{v_{\text {clamp }}}{L_{r}} \cdot t & t \in\left[d \cdot T_{s}, T_{s}\right]\end{cases}
$$

Since Δd is also a function of other state variables and inputs, $i_{L_{r}}$ is not an independent state. Consequently, there are only three independent states: $v_{\text {clamp }}, i_{L_{f}}$ and $v_{C o}$. Since all independent states, inputs are with small ripple, they are re-defined as

$$
\begin{gather*}
\boldsymbol{x}=\left[\overline{v_{\text {clamp }}}, \overline{i_{L_{f}}}, \overline{v_{C o}}\right]^{T} \tag{2.47}\\
\boldsymbol{u}=\left[d, \overline{v_{i n}}, \overline{i_{o}}\right]^{T} \tag{2.48}
\end{gather*}
$$

The state space equations for these states are

$$
\begin{gather*}
\frac{d \overline{v_{\text {clamp }}}}{d t}=\frac{1}{C_{\text {clamp }}} \begin{cases}0 & t \in\left[0, \Delta d \cdot T_{s}\right] \\
0 & t \in\left[\Delta d \cdot T_{s}, d \cdot T_{s}\right] \\
\overline{i_{L_{r}}} & t \in\left[d \cdot T_{s}, T_{s}\right]\end{cases} \tag{2.49}\\
\frac{d \overline{i_{L_{f}}}}{d t}= \begin{cases}\frac{1}{L_{f}} \cdot\left(0-\overline{v_{C o}}\right) & t \in\left[0, \Delta d \cdot T_{s}\right] \\
\overline{v_{i n}}-\overline{v_{C o}} & t \in\left[\Delta d \cdot T_{s}, d \cdot T_{s}\right] \\
\overline{L_{r}}+L_{f} & t \in\left[d \cdot T_{s}, T_{s}\right] \\
\frac{1}{L_{f}} \cdot\left(0-\overline{v_{C o}}\right) & t \in\left[\begin{array}{l}
\overline{v_{C o}} \\
\frac{d \overline{v_{C o}}}{d t}
\end{array}\right) \frac{1}{C_{o}} \cdot\left(\overline{i_{L_{f}}}-\frac{1}{R}\right.\end{cases} \tag{2.50}\\ \tag{2.51}
\end{gather*}
$$

Then, the large-signal model can be derived by averaging 2.49, 2.50 and 2.51. However, it should be noted that $i_{L_{r}}$ in 2.46 is a variable with large ripple which cannot be averaged directly. From the operating principle analysis in Section 2.2, it
is found that $i_{L_{r}}$ only interact with $v_{\text {clamp }}$ when $t \in\left[d \cdot T_{s}, T_{s}\right]$, namely in $(1-d) \cdot T_{s}$. Thus, in 2.49, $\overline{i_{L_{r}}}$ should be the average value of $i_{L_{r}}$ in $(1-d) \cdot T_{s}$, as

$$
\begin{equation*}
\overline{i_{L_{-}-(1-d) T_{s}}}=\overline{i_{L_{f}}}+\frac{\overline{v_{i n}}-\overline{v_{C o}}}{2\left(L_{r}+L_{f}\right)} \cdot(d-\Delta d) \cdot T_{s}-\frac{\overline{v_{c l a m p}}}{2 L_{r}} \cdot(1-d) \cdot T_{s} \tag{2.52}
\end{equation*}
$$

Then, substituting 2.52 into 2.49 , the averaging of the state space equations could be obtained,

$$
\begin{gather*}
\frac{d \overline{v_{c l a m p}}}{d t}=\frac{1}{C_{\text {clamp }}} \cdot\left[\overline{i_{L_{f}}}+\frac{\overline{v_{i n}}-\overline{v_{C o}}}{2\left(L_{r}+L_{f}\right)} \cdot(d-\Delta d) \cdot T_{s}-\frac{\overline{v_{c l a m p}}}{2 L_{r}} \cdot(1-d) \cdot T_{s}\right] \cdot(1-d) \tag{2.53}\\
\frac{d \overline{i_{L_{f}}}}{d t}=-\frac{\overline{v_{C o}}}{L_{f}} \cdot(1-d+\Delta d)+\frac{\overline{v_{i n}}-\overline{v_{C o}}}{L_{r}+L_{f}} \cdot(d-\Delta d) \tag{2.54}\\
\frac{d \overline{v_{C o}}}{d t}=\frac{1}{C_{o}} \cdot\left(\overline{i_{L_{f}}}-\frac{\overline{v_{C o}}}{R}\right) \tag{2.55}
\end{gather*}
$$

where

$$
\begin{equation*}
\Delta d=\frac{(1-d) \cdot L_{f} \cdot \overline{v_{c l a m p}}-(1-d) \cdot L_{r} \cdot \overline{v_{C o}}}{L_{f} \cdot \overline{v_{i n}}+L_{r} \cdot \overline{v_{C_{o}}}} \tag{2.56}
\end{equation*}
$$

as derived in 2.45. 2.53-2.55 is thus the large-signal model of the proposed activeclamp buck converter. In order to verify the accuracy, the model is built in PLECS in comparison with a switch model, as shown in Figure 2.38. Figure 2.39 shows the simulation results when duty cycle changes from 0.8 to 0.9 . It could be seen the average model results match very well with switch model results.

2.8.2 Small-signal Characterization

Based on the large-signal averaged model, defining

$$
\begin{equation*}
f(\boldsymbol{x}, \boldsymbol{u})=\frac{d \boldsymbol{x}}{d t} \tag{2.57}
\end{equation*}
$$

Figure 2.38: Verification of the Derived Large-signal Model.

$$
\begin{equation*}
g(\boldsymbol{x}, \boldsymbol{u})=\boldsymbol{y}=\left[{\overline{v_{C o}}}^{T}\right. \tag{2.58}
\end{equation*}
$$

and then $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ matrices could be calculated as,

$$
\begin{equation*}
\boldsymbol{A}=\frac{\partial f}{\partial \boldsymbol{x}}, \quad \boldsymbol{B}=\frac{\partial f}{\partial \boldsymbol{u}}, \quad \boldsymbol{C}=\frac{\partial g}{\partial \boldsymbol{x}}, \quad \boldsymbol{D}=\frac{\partial g}{\partial \boldsymbol{u}} \tag{2.59}
\end{equation*}
$$

Therefore, the linearized small-signal model could be obtained,

$$
\begin{gather*}
\frac{d \hat{\boldsymbol{x}}}{d t}=\boldsymbol{A} \hat{\boldsymbol{x}}+\boldsymbol{B} \hat{\boldsymbol{u}} \tag{2.60}\\
\hat{\boldsymbol{y}}=\boldsymbol{C} \hat{\boldsymbol{x}}+\boldsymbol{D} \hat{\boldsymbol{u}} \tag{2.61}
\end{gather*}
$$

and the transfer functions are also derived,

$$
\begin{equation*}
\boldsymbol{y}(s)=\left[\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D}\right] \boldsymbol{u}(s) \tag{2.62}
\end{equation*}
$$

Figure 2.39: Simulation Results with Average Model and Switch Model.

Figure 2.40 shows the bode plots of control-to-output (\hat{d} to $\widehat{\widehat{v_{C o}}}$) transfer function from Simplis simulation and the derived small-signal model. The simulation and model parameters are shown in Table 2.10. It could be seen that the magnitude plot from the model matches Simplis simulation result very well up to the half switching frequency. For the phase plot, the matching between Simplis simulation and derived model is also good till one tenth of the switching frequency. In addition, the maximum phase error between the model and simulation is only 15°, at half switching frequency.

2.9 Summary

In this chapter, a new active-clamp buck topology is proposed for $2.2 \mathrm{MHz}, 25 \mathrm{~W}$ automotive POL converters. The detailed operating principle for the circuit including

Figure 2.40: Bode Plots of the Control-to-output Transfer Function from Simplis Simulation and the Derived Small-signal Model.

Table 2.10: Simulation and Model Parameters

$V_{\text {in }}$	12 V
$V_{\text {out }}$	12 V
I_{o}	5 A
L_{r}	80 nH
L_{f}	1.3 uH
$C_{\text {clamp }}$	3 uF
C_{o}	60 uF
f_{s}	2.2 MHz

all the parasitic capacitances is presented. In addition, several important design considerations including factors affecting ZVS performance, selection of clamp capacitor and the impact of loss of effective duty cycle are addressed, leading to extensive design equations for various components. The design, implementation and evaluation of a 2.2 $\mathrm{MHz}, 5 \mathrm{~V} / 5 \mathrm{~A}$ hardware prototype using only commercial silicon devices are presented in detail. The experimental results verify the converter operation, ZVS characteristics and show the limited $\mathrm{dv} / \mathrm{dt}$ rate of the switching. The measured efficiency data at various operating conditions confirm the superior efficiency performance of the proposed active-clamp buck converter over the conventional buck converter. The peak efficiencies of the active-clamp buck converter can reach 89.7% and 93.5%, with and without considering the driver loss, respectively. Details of loss breakdown are presented and correlated with measured efficiency. In order to further improve the efficiency, a GaN FETs based prototype is built and tested. Also, the optimal $S R$ turn-off delay is derived and applied to optimize the efficiency. The final efficiency
with GaN FETs and optimal $S R$ turn-off delay reaches 93.22% at 12 V input, 5 V output and 2.2 MHz frequency. In addition, the EMI test results show significant improvement in the EMI performance with the proposed active-clamp buck converter. In the last of this chapter, the modeling of the proposed active-clamp buck converter is addressed. The large-signal averaged model and small-signal model are derived and verified with simulation, respectively. It shows that the response in the derived models matches very well to the response in the simulation with switching circuit model.

Chapter 3

BIDIRECTIONAL ZERO-VOLTAGE-TRANSITION CONVERTER WITH COUPLED-INDUCTOR FOR AUTOMOTIVE 48V/14V DUAL VOLTAGE SYSTEM

3.1 Introduction

In this chapter, a new bidirectional zero-voltage-transition (ZVT) converter with coupled-inductor is proposed for automotive $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage system [58]. The circuit diagram of the proposed converter is shown in Figure 3.1. The converter consists of two main switches S_{1} and S_{2}, two auxiliary switches $S_{a u x 1}$ and $S_{a u x 2}$, and a coupled-inductor. For high frequency applications, all switches are implemented with MOSFETs and thus there is a body-diode anti-paralleled with each switch. The coupled-inductor integrates the filter inductor and an extra winding into one magnetic structure. The primary to the auxiliary side turns ratio is 1:n. C_{r} is the resonant capacitor which combines external $C_{d s}$ and output capacitance of the main switches (S_{1} and S_{2}).

The coupled-inductor in the circuit can be modeled as a combination of a magnetizing inductance, an idea transformer with a turns ratio of $1: n$, and a leakage inductance. The magnetizing inductance L_{f}, referred to the primary side, is employed as the filter inductance of the converter. L_{l} is the leakage inductance referred to the auxiliary side, used as the resonant inductance during the operation. The equivalent circuit is shown in Figure 3.2.

Figure 3.1: Circuit Diagram of the Proposed ZVT Converter with Coupled-inductor.

Figure 3.2: Equivalent Circuit of the Proposed ZVT Converter with Coupledinductor.

3.2 Operating Principle Analysis

In order to simplify the analysis of operating principle, the magnetizing inductance is assumed sufficiently large so that it could be considered as a constant current source I_{L}. It is also assumed that all components are ideal and the circuit is operating under steady-state condition. The simplified circuit for operation analysis is shown in Figure 3.3. Figure 3.4 and 3.5 shows the key waveforms of the proposed converter in buck mode and boost mode, respectively. The reference direction for currents is indicated

Figure 3.3: Simplified Circuit Diagram for Operating Principle Analysis.
by the arrows in Figure 3.3. It should be noted that, in the key waveforms of boost mode, the high voltage output side is still labeled as $V_{i n}$ and the low voltage input side is labeled as V_{o}. Since the operations of buck and boost modes are dual, only buck mode operating principle is described as following. In steady state operation, a switching cycle could be divided into eight modes and Figure 3.6 shows the topological state in each mode of buck operation.

Mode $1\left(t_{8}-t_{1}\right)$
Prior to t_{1}, high side switch S_{1} is off and low side switch S_{2} (synchronous rectifier in buck mode) is conducting the magnetizing current I_{L}. $S_{a u x 2}$ is off blocking a voltage of $(n+1) \cdot V_{o} . S_{a u x 1}$ is off as well but blocks zero voltage. Thus, the auxiliary cell is off and hence no current is in the ideal transformer.

Mode $2\left(t_{1}-t_{2}\right)$
At t_{1}, the auxiliary switch $S_{a u x 2}$ turns on and then the leakage inductance L_{l} is linearly charged by $(n+1) \cdot V_{o}$ through $S_{a u x 2}, S_{a u x 1}$ body-diode and S_{2}. The current

Figure 3.4: Key Operating Waveforms in Buck Mode.

Figure 3.5: Key Operating Waveforms in Boost Mode.

Figure 3.6: Topological State in Each Mode of Buck Operation.
in the auxiliary cell is

$$
\begin{equation*}
i_{r}=\frac{(n+1) \cdot V_{o}}{L_{l}} \cdot\left(t-t_{1}\right) \tag{3.1}
\end{equation*}
$$

Meanwhile, due to the reverse coupling, the current in primary winding decreases proportionally,

$$
\begin{equation*}
i_{p}=I_{L}-n \cdot \frac{(n+1) \cdot V_{o}}{L_{l}} \cdot\left(t-t_{1}\right) \tag{3.2}
\end{equation*}
$$

During this mode, the switching pole current $i_{\text {pole }}$ is

$$
\begin{equation*}
i_{\text {pole }}=i_{p}-i_{r}=I_{L}-\frac{(n+1)^{2} \cdot V_{o}}{L_{l}} \cdot\left(t-t_{1}\right) \tag{3.3}
\end{equation*}
$$

By the end of this mode, $i_{\text {pole }}$ changes from positive to a negative value that is sufficient for realizing ZVS turn-on of S_{1}. Also, the duration of this mode is

$$
\begin{equation*}
t_{2}-t_{1}=\frac{i_{r_{-} \max } \cdot L_{l}}{(n+1) \cdot V_{o}} \tag{3.4}
\end{equation*}
$$

where $i_{r _m a x}$ is a designed current value in the auxiliary cell corresponding to the sufficient $i_{\text {pole }}$ value for ZVS.

Mode $3\left(t_{2}-t_{3}\right)$

At t_{2}, S_{2} is turned off, then $i_{\text {pole }}$ is divided into two parts, charging and discharging the C_{r} of S_{1} and S_{2}, respectively, in a resonant manner. Till t_{3}, the voltages across S_{2} and S_{1} reach $V_{i n}$ and zero, respectively. The resonant currents in the auxiliary cell during this mode is derived as

$$
\begin{align*}
i_{r}=\frac{V_{o} \cdot \sin \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]}{Z}+\frac{I_{L}}{n+1} & \cdot\left(1-\cos \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]\right) \\
+ & i_{r-\max } \cdot \cos \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right] \tag{3.5}
\end{align*}
$$

Then, $i_{\text {pole }}$ is

$$
\begin{array}{r}
i_{\text {pole }}=I_{L}-\frac{(n+1) \cdot V_{o} \cdot \sin \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]}{Z}-I_{L} \cdot(1-\cos [(n+1) \\
\left.\left.\cdot \omega\left(t-t_{2}\right)\right]\right)-(n+1) \cdot i_{r_{-} \max } \cdot \cos \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right] \tag{3.6}
\end{array}
$$

where

$$
\begin{equation*}
\omega=\frac{1}{\sqrt{L_{r} \cdot 2 C_{r}}}, \quad Z=\sqrt{\frac{L_{r}}{2 C_{r}}} \tag{3.7}
\end{equation*}
$$

Also, the voltages across S_{1} and S_{2} during this mode are

$$
\begin{align*}
& v_{S 1}=V_{i n}-\left(i_{r_{-} \max }-\frac{I_{L}}{n+1}\right) \cdot Z \cdot \sin \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]-V_{o} \cdot\left(1-\cos \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]\right) \tag{3.8}\\
& v_{S 2}=V_{i n}-v_{S 1}=\left(i_{r _\max }-\right.\left.\frac{I_{L}}{n+1}\right) \cdot Z \cdot \sin \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right] \\
&+V_{o} \cdot\left(1-\cos \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]\right) \tag{3.9}
\end{align*}
$$

Mode $4\left(t_{3}-t_{4}\right)$

During this mode, the body-diode of S_{1} is forward biased. L_{l} starts being linearly discharged by $(n+1) \cdot\left(V_{i n}-V_{o}\right)$, and $i_{\text {pole }}$ is still negative. S_{1} should be turned on within this mode to realize ZVS.

Mode $5\left(t_{4}-t_{5}\right)$
L_{l} continues being linearly discharged by $(n+1) \cdot\left(V_{i n}-V_{o}\right)$ till its current i_{r} falls to zero, at t_{5}, and then the body-diode of $S_{a u x 1}$ is turned off softly. Consequently, the current in the primary winding of the coupled inductor rises back to I_{L}. Also, $i_{\text {pole }}$ increases back to I_{L}. The currents during this mode are expressed as

$$
\begin{equation*}
i_{r}=i_{r}\left(t_{4}\right)-\frac{(n+1) \cdot\left(V_{i n}-V_{o}\right)}{L_{l}} \cdot\left(t-t_{4}\right) \tag{3.10}
\end{equation*}
$$

$$
\begin{align*}
& i_{p}=I_{L}-n \cdot i_{r}=I_{L}-n \cdot i_{r}\left(t_{4}\right)+\frac{n \cdot(n+1) \cdot\left(V_{\text {in }}-V_{o}\right)}{L_{l}} \cdot\left(t-t_{4}\right) \tag{3.11}\\
& i_{\text {pole }}=i_{p}-i_{r}=I_{L}-(n+1) \cdot i_{r}\left(t_{4}\right)+\frac{(n+1)^{2} \cdot\left(V_{\text {in }}-V_{o}\right)}{L_{l}} \cdot\left(t-t_{4}\right) \tag{3.12}
\end{align*}
$$

Mode $6\left(t_{5}-t_{6}\right)$

During this mode, $S_{a u x 2}$ is switched off with ZCS. I_{L} flow from input to output through $S_{1} . S_{a u x 1}$ is off blocking a voltage of $(n+1) \cdot\left(V_{i n}-V_{o}\right)$.

Mode $7\left(t_{6}-t_{7}\right)$

S_{1} is turned off at t_{6}. During this mode, switching pole current is transferred from S_{1} to the body-diode of S_{2} in a soft-switching manner. The transition in this mode is the same as that in a conventional synchronous buck converter. Also, it should be noted that, during this transition, the voltage blocking device in the auxiliary cell is changed from $S_{a u x 1}$ to $S_{a u x 2}$, and the blocked voltage is changed from $(n+1) \cdot\left(V_{i n}-V_{o}\right)$ to $(n+1) \cdot V_{o}$.

Mode $8\left(t_{7}-t_{8}\right)$

The body-diode of S_{2} is forward biased in this mode and S_{2} should be turned on within this mode to achieve ZVS. After t_{8}, S_{1} is off and S_{2} is on. Circuit state is the same as that in Mode 1.

3.3 Converter Features

From the above analysis of operating principle, it could be seen that the proposed bidirectional ZVT converter with coupled-inductor has several advantages for
automotive dual voltage system.

Soft-switching for all switches

In the proposed converter, two main switches S_{1} and S_{2} are switched with ZVS and auxiliary switches $S_{a} u x 1$ and $S_{a} u x 2$, and their body-diodes, are switched with ZCS. Therefore, it has potential to achieve high efficiency and low EMI noise at high frequency operation.

Wide ZVS range

In many other soft-switching converters, ZVS is lost at light load or at high input voltage. The proposed converter can still achieve ZVS at light load and at high voltage only if the i_{r} is sufficiently large and then the energy stored in leakage inductance would be enough to charge and discharge the resonant capacitors paralleled with S_{1} and S_{2}, respectively. Actually, for this ZVT converter, achieving ZVS at light load is easier.

Low conduction loss in auxiliary cell

Because of the coupled-inductor, the peak current required in the auxiliary cell could be much lower than the magnetizing inductance current while the ZVS of S_{1} (in buck mode) or S_{2} (in boost mode) is still realized. Furthermore, with the coupled-inductor, the charging and discharging voltage across the leakage inductance during Mode 2 and Mode 4 are increased by a factor of $(n+1)$, compared to the charging and discharging voltages with a separate resonant inductor. Then the charging and discharging time is much shortened. Therefore, with the coupled-inductor, the average current and hence conduction loss in the auxiliary cell, which is a very lossy part in high current applications, could be much reduced.

Low magnetic core loss

Another benefit comes from the coupled-inductor is much reduced magnetic core loss. In the ZVT converter with a separate resonant inductor, the large current swing in the resonant inductor results in a considerable core loss, especially at high current and high frequency application. However, the coupled-inductor helps to cancel the large flux generated by the large current swing. Therefore, the core loss is only related to the current ripple in the magnetizing inductance, which is usually small. In addition, the cancellation of large flux help to reduced the winding loss caused by proximity effect.

Compact size

Compared with the filter inductor in conventional buck/boost converter, the coupledinductor in the proposed converter only needs a secondary winding which carries a small average current. Thus secondary winding space could be small. The magnetic core size could be basically unchanged from that in a conventional buck/boost converter running at the same frequency. However, with ZVS operation, the switching frequency in the proposed ZVT converter could be much higher, resulting in smaller passive components size.

3.4 Design Considerations

3.4.1 ZVS Analysis

S_{1} and S_{2} work as the synchronous rectifier in boost and buck mode, respectively. The energy for achieving ZVS comes from the magnetizing inductance. Thus, it is natural to achieve ZVS for S_{1} in boost mode and S_{2} in buck mode.

However, for S_{1} in buck mode and S_{2} in boost mode, the energy to achieve ZVS
is from the energy stored in the leakage inductance. To realize ZVS for the given circuit parameters, there is a minimum current required in the leakage inductance before the switching transition. Here, the buck mode is taken as an example for calculating the minimum current requirement but the result also applies to the boost mode operation.

The targeted ZVS transition corresponds to Mode 3 in the operating principle analysis. The voltage expression of S_{1} during this mode, as shown in 3.8, is repeated here.
$v_{S 1}=V_{\text {in }}-\left(i_{r_{-} \max }-\frac{I_{L}}{n+1}\right) \cdot Z \cdot \sin \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]-V_{o} \cdot\left(1-\cos \left[(n+1) \cdot \omega\left(t-t_{2}\right)\right]\right)$

In order to achieve ZVS of S_{1}, the minimum value of $v_{S 1}$ in (3.13) should be less than zero. Then it could be derived that

$$
\begin{equation*}
i_{r_{-} \max } \geq \sqrt{\frac{2 C_{r} \cdot V_{i n} \cdot\left(V_{i n}-2 V_{o}\right)}{L_{l}}}+\frac{I_{L}}{n+1} \tag{3.14}
\end{equation*}
$$

where $i_{r_{-} \max }$ is the required leakage inductance current before the ZVS transition. For both buck and boost operation, the magnitude of this required leakage current is the same. Also, this is a designed value by designing the time interval by which the auxiliary cell is turned on prior to the turn-off of S_{2} (in buck mode) or S_{1} (in boost mode). Equation (3.14) also demonstrates how the turns ratio of the coupledinductor affect the required peak current value (for achieving ZVS) in the auxiliary cell.

3.4.2 Auxiliary Switch Gate Timing

Auxiliary switch gate timing is critical in the proposed converter. In the buck mode $S_{a u x 2}$ should turn on prior to the turn-off of S_{2} by an interval of $t_{2}-t_{1}$, as shown in Figure 3.4. Similarly, in the boost mode, $S_{a u x 1}$ should turn on before the turn-off of S_{1} by $t_{2}-t_{1}$.

Considering above ZVS analysis, $t_{2}-t_{1}$ in buck mode is calculated as

$$
\begin{equation*}
t_{2}-t_{1} \geq \frac{i_{r_{-} \max } \cdot L_{l}}{(n+1) \cdot V_{o}} \tag{3.15}
\end{equation*}
$$

For the boost mode,

$$
\begin{equation*}
t_{2}-t_{1} \geq \frac{i_{r_{-} \max } \cdot L_{l}}{(n+1) \cdot\left(V_{i n}-V_{o}\right)} \tag{3.16}
\end{equation*}
$$

Also, it should be noted that the auxiliary switch should turn off after the leakage inductance current falls to zero. In buck mode,

$$
\begin{equation*}
t_{5}-t_{4}=\frac{i_{r}\left(t_{3}\right) \cdot L_{l}}{(n+1) \cdot\left(V_{i n}-V_{o}\right)} \tag{3.17}
\end{equation*}
$$

In boost mode,

$$
\begin{equation*}
t_{5}-t_{4}=\frac{\left|i_{r}\left(t_{3}\right)\right| \cdot L_{l}}{(n+1) \cdot V_{o}} \tag{3.18}
\end{equation*}
$$

where $i_{r}\left(t_{3}\right)$ is usually assumed equal to $i_{r _m a x}$ for simplifying the design. The interval $t_{4}-t_{2}$, denoted as t_{d}, is the deadtime between S_{1} and S_{2} during which the resonant transition happens. Thus, the minimum on-time $t_{\text {on_minimum }}$ for each auxiliary switch is

Figure 3.7: Auxiliary Cell Current with Different L_{l} Value.

3.4.3 Design of Leakage Inductance

The leakage inductance of the coupled-inductor is a key parameter in the proposed ZVT converter. Although any leakage inductance can store enough energy to achieve ZVS, it determines the shape of the current and hence the conduction loss in the auxiliary cell. Figure 3.7 and 3.8 show the auxiliary cell current waveforms with different leakage inductances and coupled-inductor turns ratios (n), respectively. The turns ratio of zero corresponds to the design in which a separate resonant inductor is used.

The conduction loss in the auxiliary cell consists of the body-diode forward conduction loss and the RMS current loss in resistance. It is hence related to the average and RMS currents in the cell. To eliminate the relationship with the switching period (or frequency), the average current is estimated to be proportional to the area under the current waveform, denoted as $A_{i_{r}}$. The proportional gain is value of the switching frequency. According to the operating principle analysis, the equations describing

Figure 3.8: Auxiliary Cell Current with Different Coupled-inductor Turns Ratio n.
the auxiliary cell current and its duration could be derived, assuming 1) $i_{r_{-} \max }$ is just enough to achieve ZVS; 2) deadtime is the same as the resonant transition time. Figure 3.9 shows $A_{i_{r}}$ versus L_{l}, for a given set of parameters. It is observed that $A_{i_{r}}$ decreases a lot as n changes from 0 to 1. Also, $A_{i_{r}}$ decreases as L_{l} decreases. Thus, lower leakage inductance results in a lower value of average current in the auxiliary cell.

However, keeping decreasing L_{l} is not practical, and it may also increase RMS current in the auxiliary cell. Figure 3.10 shows the relationship between L_{l} and ampere-squared-second $\left(\int_{t_{1}}^{t_{5}} i_{r}^{2} d t\right)$ in the auxiliary cell. Interval $t_{5}-t_{2}$ is the current duration in the auxiliary cell and $\int_{t_{1}}^{t_{5}} i_{r}^{2} d t$ equals to $i_{r_{-} R M S}^{2} \cdot T_{s}$. From Figure 3.10, it could be seen that, for each n, there is a value of L_{l} corresponding to the minimum ampere-squared-second and hence the minimum RMS current in the auxiliary cell. In most designs, the leakage inductance should be designed to this L_{l} value. It is also noticed that the coupling $(n \neq 0)$ helps to reduce the ampere-squared-second and

Figure 3.9: Index of Average Current in the Auxiliary Cell $\left(A_{i_{r}}\right)$ at Different L_{l} Values.
hence the RMS current significantly.

3.4.4 Determination of Turns Ratio

The turns ratio of the coupled-inductor is another parameter needs to be designed. Higher turns ratio helps to reduce the conduction loss in the auxiliary cell but increases the voltage stress on the auxiliary switches. With a turns ratio of n, for both buck and boost modes, the voltage stresses on $S_{a u x 1}$ and $S_{a u x 2}$ are $(n+1) \cdot\left(V_{i n}-V_{o}\right)$ and $(n+1) \cdot V_{o}$, respectively. Thus, a trade-off exists during the selection of the turns ratio.

Figure 3.10: Index of RMS Current in the Auxiliary Cell (Ampere-squared-second) at Different L_{l} Values.

3.5 Converter Design and Simulation

3.5.1 Design Specifications

For automotive dual voltage system, power rating of the $48 \mathrm{~V} / 14 \mathrm{~V}$ bidirectional converter usually ranges from 1 kW to 3 kW . For better efficiency and thermal management, interleaving is usually employed for this converter. Also, by interleaving, the converter power capability could be easily scaled up as required. However, the power capability for each phase needs to be determined. Lower power rating for each phase helps to reduce the power loss and better dissipate the heat while it requires more components and hence cost. For a compromise of thermal management and number of components, the power rating for each phase is specified as 250 W in this work. Therefore, a 250 W prototype is designed and eventually built to verify opera-

Table 3.1: Prototype Design Specifications

Rated Power	250 W
Switching Frequency	1 MHz
High Side Voltage	$24-54 \mathrm{~V}$
Low Side Voltage	$10-16 \mathrm{~V}$

tion of the proposed bidirectional ZVT converter with coupled-inductor. The design specification of the prototype is shown in Table 3.1.

3.5.2 Turns Ratio of the Coupled-Inductor

Aforementioned analysis shows that higher turns ratio n results in higher voltage rating for the auxiliary MOSFETs. It also should be noted, from Figure 3.9 and 3.10, that the average and RMS current in auxiliary cell have most significant improvement from $n=0$ to $n=1$; however, the improvement from $n=1$ to $n=2$ is not that significant. It could be proved that the marginal improvement is less and less as n increases. Therefore, a turns ratio of $1: 1$ is designed considering the trade-off between the voltage stress and current stress on auxiliary switches.

3.5.3 Leakage Inductance of the Coupled-Inductor

It should be noted that the optimal leakage inductance determined in Section 3.4.3 varies with the operating conditions, especially the filter inductor current. Figure 3.11 shows the ampere-squared-second versus L_{l} with $48 \mathrm{~V} / 14 \mathrm{~V}$ input/output, $1: 1$ turns ratio and different I_{L} value. It could be seen that the optimal L_{l} value is low for high load situation while the optimal L_{l} value increase as load decreases. To balance the optimization at both high load and light load situations and also considering

Figure 3.11: Ampere-squared-second versus L_{l} with $48 \mathrm{~V} / 14 \mathrm{~V}$ Input/Output, $1: 1$ Turns Ratio and Different I_{L} Value.
the minimum leakage inductance achievable by the coupled-inductor, the leakage inductance is designed to be 40 nH .

3.5.4 Converter Simulation

Table 3.2 shows the designed parameters for the prototype and Figure 3.12 shows simulation results at 48 V input, 14 V output and 18 A load under buck operation. It can be seen that the ZVS for both S_{1} and S_{2} are realized even when the auxiliary branch peak current is less then the primary winding current.

Figure 3.12: Simulation Results under Buck Mode Operation.

Table 3.2: Designed Parameters

Coupled-Inductor Turns Ratio $1: n$	$1: 1$
Magnetizing Inductance L_{m}	1.5 uH
Leakage Inductance L_{l}	40 nH
Output Capacitance C_{o}	80 uF
Resonant Capacitance C_{r}	1.2 nF

3.6 Experimental Verification

3.6.1 Hardware Implementation

Design of the Coupled-Inductor

A converter prototype per the specifications shown in Table 3.1 is built to verify the operation of the proposed converter. The coupled-inductor is a key component in this prototype. For this design, the required leakage inductance is 40 nH while the magnetizing inductance is 1.5 uH . This requires a high coupling coefficient of 0.973 . For the conventional design with vertical cores and wire-based windings, it is difficulty to achieve such a high coupling coefficient. Moreover, it is hard to precisely control the leakage inductance to the designed value. In this prototype, a planar core structure and PCB windings are employed for the coupled-inductor because they can provide low and controllable leakage inductance. Furthermore, the fabrication of planar design with PCB windings makes it easier to achieve repeatable and significantly lower parameter tolerance between two coupled-inductors, which is critical for a multiphase converter considering the current sharing issue $[59,60]$.

Figure 3.13 shows 2D structure of the designed coupled-inductor. Two separate

Figure 3.13: 2D Structure of the Designed Coupled-inductor.
but same 4-layer PCBs are employed as primary and auxiliary windings, respectively. It is clearly shown that part of the leakage path is the gap between two PCB windings. Therefore, by adjusting this gap distance and hence the leakage path reluctance, the leakage inductance of the coupled-inductor could be controlled to a small value. Figure 3.14 is Maxwell 3D model of the designed coupled-inductor. Finite-elementanalysis simulation is employed to calculate the gap between two PCBs. Table 3.3 shows the designed parameters for this coupled-inductor. A ferrite core 3F45 from Ferroxcube suitable for $<3 \mathrm{MHz}$ operation is chosen. For each PCB, each layer has only one turn and the configuration is paralleled layer 1 and 3 , in series with paralleled layer 2 and 4. For further improving the efficiency, two 6-layer PCBs could be employed to reduce DCR .

The constructed coupled-inductor is shown in Figure 3.15. The measured leakage inductance is 30 nH . Considering the PCB trace and interconnection stray inductance, the total leakage inductance is around $35-40 \mathrm{nH}$, as desired. In fact, once the

Figure 3.14: 3D Structure of the Designed Coupled-inductor.

Table 3.3: Designed Parameters of the Coupled Inductor

Core Material	3 F 45
Core Shape	$\mathrm{E} 22 / 6 / 16+\mathrm{PLT} 22 / 16 / 2.5$
Primary/Auxiliary Number of Turns	2 turns
$\Delta B_{\max }$	60 mT
DCR	$3.1 \mathrm{~m} \Omega$
Air Gap l_{g}	0.3 mm
Leakage Gap	0.2 mm

Figure 3.15: Constructed Coupled-inductor.
leakage gap is finalized by experiment, only one PCB is enough for both primary and secondary windings, with distance between two winding layers the same as the leakage gap. Since the secondary winding carries very small average current, only one layer is enough for the secondary winding. Then, the secondary winding almost takes no space, and the coupled-inductor size could be kept the same as the filter inductor size in conventional buck converter.

Power Stage Design

The built $1 \mathrm{MHz}, 250 \mathrm{~W}$ prototype is shown in Figure 3.16. The schematic and layout design for this prototype are given in Appendix B. Table 3.4 shows the key components selection and parameters.

3.6.2 Experimental Results

Figure 3.17 shows the gate signals of S_{1}, S_{2} and $S_{a u x 2}$ in buck mode operation. $S_{a u 1}$ is kept off in buck mode. Figure 3.18 and 3.19 are the switching waveforms of S_{1} and S_{2}, respectively, at 48 V input, 14 V output and 15 A load. It could be seen that

Figure 3.16: $1 \mathrm{MHz}, 250 \mathrm{~W}$ Prototype of the Proposed Bidirectional ZVT Converter with Coupled-inductor.

Table 3.4: Key Components Selection and Values

Components	Part Number	Parameters
Main MOSFETs	BSZ123N08NS3G	$80 \mathrm{~V}, 12.3 \mathrm{~m} \Omega, 6.3 \mathrm{nC}$
Auxiliary MOSFETs	BSZ440N10NS3G	$100 \mathrm{~V}, 44 \mathrm{~m} \Omega, 9.1 \mathrm{nC}$
Main MOSFETs driver	UCC27211	bootstrap
Auxiliary MOSFETs driver	UCC27524	2-channel, low side

Figure 3.17: Gate Signals in Buck Mode.

ZVS of both switches are realized. At light load, ZVS realization of S_{1} is more easily. In addition, since two small capacitors are paralleled with S_{1} and S_{2}, respectively, slowing the voltage rising during turn-off transition, the turn-off of S_{1} and S_{2} is almost ZVS. Figure 3.20 shows the voltage waveforms across auxiliary MOSFETs in buck mode operation. The waveforms present some ringings. The voltage ringing in $S_{a u x 1}$ waveform is due to the resonance between the leakage inductance and $C_{o s s}$ of $S_{a u x 1}$ when the body-diode of $S_{a u x 1}$ turns off. The ringing on $S_{a u x 2}$ waveform happens when the load current transfers from S_{1} to S_{2} (body-diode). It is resulted from the resonance between the leakage inductance and $C_{o s s}$ of $S_{a u x 2}$.

The waveforms associated with boost mode operation are also shown. Figure 3.21 is the gate signals of S_{1}, S_{2} and $S_{a u x 1}$, and $S_{a u x 2}$ is constantly off in boost mode. The switching waveforms of S_{1} and S_{2}, at 14 V input, 48 V output and 4 A load, are shown in Figure 3.22 and 3.23, respectively. Both switches can achieve ZVS turn-on and almost ZVS turn-off. Figure 3.24 shows the auxiliary MOSFETs voltage

Figure 3.18: Switching Waveforms of S_{1} in Buck Mode.

Figure 3.19: Switching Waveforms of S_{2} in Buck Mode.

Figure 3.20: Voltage Waveforms of Auxiliary MOSFETs in Buck Mode.
waveforms. Still, $S_{a u x 1}$ withstands the higher voltage at steady state.
The conversion efficiency of this prototype is also measured for both buck mode $(48 \mathrm{~V}$ to 14 V$)$ and boost mode (14 V to 48 V) operations. The efficiency curves at different output power are shown in Figure 3.25 and 3.26. A peak efficiency of 93.98% is achieved in buck mode operation. In boost mode operation, the peak efficiency achieved is 92.99%. For comparison, the measured efficiency data from a hard-switching buck/boost converter with the same circuit parameters and components is shown in Figure 3.25 and 3.26 as well. It could be seen that the proposed ZVT converter with coupled-inductor has significantly improved efficiency performance.

Figure 3.21: Gate Signals in Boost Mode.

Figure 3.22: Switching Waveforms of S_{1} in Boost Mode.

Figure 3.23: Switching Waveforms of S_{2} in Boost Mode.

Figure 3.24: Voltage Waveforms of Auxiliary MOSFETs in Boost Mode.

Figure 3.25: Efficiency Comparison in Buck Mode.

Figure 3.26: Efficiency Comparison in Boost Mode.

3.7 Summary

In this chapter, a novel bidirectional ZVT converter with coupled-inductor is proposed for automotive dual voltage system. With the combination of the ZVT circuit and coupled-inductor, this converter requires less current in the auxiliary cell to realize ZVS operation of main MOSFETs. Generally, this converter features high efficiency, low EMI noise, scalability for high power output, and low profile design. The detailed operating principle analysis of the proposed converter is presented. Several important design considerations, including ZVS analysis, auxiliary switch gate timing, leakage inductance design and selection of the coupled-inductor turns ratio, are also presented. A $1 \mathrm{MHz}, 250 \mathrm{~W}$ prototype converter with planar magnetic structure is then built and tested. The comprehensive experimental results verify the converter operation in both buck and boost mode. The measured efficiency data shows peak efficiencies of 93.98% in buck mode and 92.99% in boost mode are achieved. Moreover, the efficiency comparison indicates the proposed ZVT converter with coupled-inductor has significant efficiency improvement than hard-switching bidirectional buck/boost converter.

Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis work, the electrical systems in automobiles, including the present $14-\mathrm{V}$ PowerNet architecture and future $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage architecture, are firstly introduced. Then, the system requirements for automotive dc-dc converters are studied. The major design challenging includes the wide voltage range at the converter input and the requirement of low EMI noise operation. The hard-switching (synchronous) buck converter is firstly reviewed. Although it is currently widely used in industry, buck converter has several drawbacks: 1) hard-switching and hence low efficiency at high switching frequency; 2) high EMI noise emission due to the hardswitching. Thus, the buck converter is not perfect for automotive applications. Then, various known soft-switching topologies are reviewed. However, each of them suffers from one or more issues for the given automotive applications. Therefore, in this thesis, two novel soft-switching topologies are proposed.

First, a new active-clamp buck topology is proposed for automotive POL converters. Comprehensive analysis for this topology is given. Then a $2.2 \mathrm{MHz}, 5 \mathrm{~V} / 5 \mathrm{~A}$ active-clamp buck converter is designed and constructed. The experimental results verify the converter operation and the efficiency measurement shows 89.7% peak efficiency with $12 \mathrm{~V} / 5 \mathrm{~V}$ conversion. Detailed loss breakdown is presented. In order to further improve the efficiency, GaN FET as well as optimal $S R$ turn-off delay are employed. The peak efficiency is then improved to 93.22%. In addition, the EMI test results show that the proposed active-clamp buck converter has significantly better

EMI performance than hard-switching buck converter. Last, the modeling of the proposed active-clamp buck converter is addressed. The large-signal averaged model and small-signal model are derived and verified with simulation, respectively. It shows that the response in the derived models matches very well to the response in the simulation with switching circuit model.

Then, for the automotive $48 \mathrm{~V} / 14 \mathrm{~V}$ dual voltage system, a new bidirectional ZVT converter with coupled-inductor is proposed. This converter features high efficiency and low noise operation. In addition, it is flexible for interleaving and the size of the converter could be very compact. The detailed operating principle of this converter and several design considerations are presented. A $1 \mathrm{MHz}, 250 \mathrm{~W}$ prototype converter with planar coupled-inductor is then built and tested. The comprehensive experimental results verify the operation of the converter in both buck and boost mode. The peak efficiencies are measured at 93.98% in buck mode and 92.99% in boost mode. Moreover, significant efficiency improvement is achieved from the efficiency comparison between the proposed converter and hard-switching buck converter.

4.2 Suggestions for Future Work

In automotive applications, high switching frequency of dc-dc converters is desired to avoid AM band and reduce the converter size. In this thesis, soft-switching topologies are employed to achieve better efficiency at high switching frequency. There is also another way to achieve compact size and possible better efficiency by employing multilevel converters or emerging switched capacitor based hybrid converters. By using more active switches, the passive components in these converters could be much reduced at a moderate switching frequency. However, in most of these converters, hard-switching still exists and affects the efficiency. Some resonant switched capacitor converters can achieve ZVS or ZCS but regulation capability is lost. Therefore, it
is worth to investigate more on multilevel converters and switched capacitor based hybrid converters, and see if it is possible to combine both soft-switching and regulation capability on these converters.

REFERENCES

[1] M. Rashid, Power Electronics Handbook. New York: Academic, 2010.
[2] D. Flores Cortez, G. Waltrich, J. Fraigneaud, H. Miranda, and I. Barbi, "Dcdc converter for dual-voltage automotive systems based on bidirectional hybrid switched-capacitor architectures," Industrial Electronics, IEEE Transactions on, vol. 62, no. 5, pp. 3296-3304, May 2015.
[3] "42-volt electrical system," Wikipedia term: https://en.wikipedia.org/wiki/42volt_electrical_system.
[4] J. Kassakian, "Automotive electrical systems-the power electronics market of the future," in Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, vol. 1, 2000, pp. 3-9 vol.1.
[5] G. M. Jan Fischer-Wolfarth, Advanced Microsystems for Automotive Applications 2014: Smart Systems for Safe, Clean and Automated Vehicles. Springer, 2014.
[6] Maxim Integrated, Active High-Voltage Transient Protectors Trump Conventional Approaches in Automotive Electronics, 2008.
[7] Freescale Semiconductor, Low Battery Cranking Pulse in Automotive Applications, 2010.
[8] Texas Instruments Inc., Automotive Wide VIN DC/DC Brochure, 2014.
[9] C. Rostamzadeh, F. Canavero, F. Kashefi, and M. Darbandi, "Automotive amband radiated emission mitigation techniques, a practical approach," in Electromagnetic Compatibility (EMC), 2012 IEEE International Symposium on, Aug 2012, pp. 162-166.
[10] N. O. Sokal and A. D. Sokal, "Class e-a new class of high-efficiency tuned singleended switching power amplifiers," IEEE Journal of Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun 1975.
[11] K.-H. Liu and F. Lee, "Zero-voltage switching technique in dc/dc converters," Power Electronics, IEEE Transactions on, vol. 5, no. 3, pp. 293-304, Jul 1990.
[12] F. Lee, "High-frequency quasi-resonant and multi-resonant converter technologies," in Industrial Electronics Society, 1988. IECON '88. Proceedings., 14 Annual Conference of, vol. 3, Oct 1988, pp. 509-521.
[13] W. Tabisz and F. Lee, "Zero-voltage-switching multiresonant technique-a novel approach to improve performance of high-frequency quasi-resonant converters," Power Electronics, IEEE Transactions on, vol. 4, no. 4, pp. 450-458, Oct 1989.
[14] D. Maksimovic and S. Cuk, "Constant-frequency control of quasi-resonant converters," Power Electronics, IEEE Transactions on, vol. 6, no. 1, pp. 141-150, Jan 1991.
[15] G. Hua, C. Leu, Y. Jiang, and F. Lee, "Novel zero-voltage-transition pwm converters," Power Electronics, IEEE Transactions on, vol. 9, no. 2, pp. 213-219, Mar 1994.
[16] V. Vorperian, "Quasi-square-wave converters: topologies and analysis," Power Electronics, IEEE Transactions on, vol. 3, no. 2, pp. 183-191, Apr 1988.
[17] D. Maksimovic, "Design of the zero-voltage-switching quasi-square-wave resonant switch," in Power Electronics Specialists Conference, 1993. PESC '93 Record., 24th Annual IEEE, Jun 1993, pp. 323-329.
[18] R. W. A. A. D. Doncker, D. M. Divan, and M. H. Kheraluwala, "A three-phase soft-switched high-power-density dc/dc converter for high-power applications," IEEE Transactions on Industry Applications, vol. 27, no. 1, pp. 63-73, Jan 1991.
[19] G. Hua, E. X. Yang, Y. Jiang, and F. C. Lee, "Novel zero-current-transition pwm converters," IEEE Transactions on Power Electronics, vol. 9, no. 6, pp. 601-606, Nov 1994.
[20] J. Smith, K.M. and K. Smedley, "A comparison of voltage-mode soft-switching methods for pwm converters," Power Electronics, IEEE Transactions on, vol. 12, no. 2, pp. 376-386, Mar 1997.
[21] _—, "Properties and synthesis of passive lossless soft-switching pwm converters," Power Electronics, IEEE Transactions on, vol. 14, no. 5, pp. 890-899, Sep 1999.
[22] R. Li and H.-H. Chung, "A passive lossless snubber cell with minimum stress and wide soft-switching range," Power Electronics, IEEE Transactions on, vol. 25, no. 7, pp. 1725-1738, July 2010.
[23] J. Xue and H. Lee, "A 2-mhz 60-w zero-voltage-switching synchronous noninverting buck-boost converter with reduced component values," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 62, no. 7, pp. 716-720, July 2015.
[24] I. Matsuura, K. Smith, and K. Smedley, "A comparison of active and passive soft switching methods for pwm converters," in Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE, vol. 1, May 1998, pp. 94-100 vol.1.
[25] K. Yoshida, T. Ishii, and N. Nagagata, "Zero voltage switching approach for flyback converter," in Telecommunications Energy Conference, 1992. INTELEC '92., 14th International, Oct 1992, pp. 324-329.
[26] R. Watson, F. Lee, and G. Hua, "Utilization of an active-clamp circuit to achieve soft switching in flyback converters," Power Electronics, IEEE Transactions on, vol. 11, no. 1, pp. 162-169, Jan 1996.
[27] P. Alou, O. Garcia, J. Cobos, J. Uceda, and M. Rascon, "Flyback with active clamp: a suitable topology for low power and very wide input voltage range applications," in Applied Power Electronics Conference and Exposition, 2002. APEC 2002. Seventeenth Annual IEEE, vol. 1, 2002, pp. 242-248 vol.1.
[28] X. Wu, J. Zhang, X. Ye, and Z. Qian, "Analysis and derivations for a family zvs converter based on a new active clamp zvs cell," Industrial Electronics, IEEE Transactions on, vol. 55, no. 2, pp. 773-781, Feb 2008.
[29] J. Zhang, X. Huang, X. Wu, and Z. Qian, "A high efficiency flyback converter with new active clamp technique," Power Electronics, IEEE Transactions on, vol. 25, no. 7, pp. 1775-1785, July 2010.
[30] X. Huang, J. Feng, W. Du, F. C. Lee, and Q. Li, "Design consideration of mhz active clamp flyback converter with gan devices for low power adapter application," in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), March 2016, pp. 2334-2341.
[31] W. Li, L. Fan, Y. Zhao, X. He, D. Xu, and B. Wu, "High-step-up and highefficiency fuel-cell power-generation system with active-clamp flyback-forward converter," IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 599610, Jan 2012.
[32] K. Harada and H. Sakamoto, "Switched snubber for high frequency switching," in Power Electronics Specialists Conference, 1990. PESC '90 Record., 21st Annual IEEE, 1990, pp. 181-188.
[33] C. Duarte and I. Barbi, "A family of zvs-pwm active-clamping dc-to-dc converters: synthesis, analysis, design, and experimentation," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 44, no. 8, pp. 698-704, Aug 1997.
[34] C. Da Cunha Duarte and I. Barbi, "A new family of zvs-pwm active-clamping dc-to-dc boost converters: analysis, design, and experimentation," Power Electronics, IEEE Transactions on, vol. 12, no. 5, pp. 824-831, Sep 1997.
[35] C. Duarte and I. Barbi, "An improved family of zvs-pwm active-clamping dc-to-dc converters," Power Electronics, IEEE Transactions on, vol. 17, no. 1, pp. 1-7, Jan 2002.
[36] C. Nan, R. Ayyanar, and Y. Xi, "High frequency active-clamp buck converter for low power automotive applications," in Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, Sept 2014, pp. 3780-3785.
[37] N. Lakshminarasamma, M. Masihuzzaman, and V. Ramanarayanan, "Steadystate stability of current-mode active-clamp zvs dc-dc converters," Power Electronics, IEEE Transactions on, vol. 26, no. 5, pp. 1295-1304, May 2011.
[38] T.-F. Wu, J.-C. Hung, Y.-S. Lai, H.-S. Nien, and H. Su, "Analysis and design of an active-clamp buck converter with coupled inductors," in Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE, vol. 1, March 2005, pp. 399-405 Vol. 1.
[39] T.-F. Wu, Y.-S. Lai, J.-C. Hung, and Y.-M. Chen, "Boost converter with coupled inductors and buck/boost type of active clamp," Industrial Electronics, IEEE Transactions on, vol. 55, no. 1, pp. 154-162, Jan 2008.
[40] Y. Zhao, W. Li, and X. He, "Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell," IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2869-2878, June 2012.
[41] G. Chen, Y. Deng, X. He, Y. Wang, and J. Zhang, "Zero-voltage-switching buck converter with low-voltage stress using coupled inductor," IET Power Electronics, vol. 9, no. 4, pp. 719-727, 2016.
[42] Y. Jang and M. Jovanovic, "A new, soft-switched, high-power-factor boost converter with igbts," Power Electronics, IEEE Transactions on, vol. 17, no. 4, pp. 469-476, Jul 2002.
[43] M. R. Mohammadi and H. Farzanehfard, "New family of zero-voltage-transition pwm bidirectional converters with coupled inductors," IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 912-919, Feb 2012.
[44] N. Lakshminarasamma and V. Ramanarayanan, "A family of auxiliary switch zvs-pwm dc-dc converters with coupled inductor," Power Electronics, IEEE Transactions on, vol. 22, no. 5, pp. 2008-2017, Sept 2007.
[45] L. C. de Freitas and P. R. C. Comes, "A high-power high-frequency zcs-zvs-pwm buck converter using a feedback resonant circuit," IEEE Transactions on Power Electronics, vol. 10, no. 1, pp. 19-24, Jan 1995.
[46] E. Adib and H. Farzanehfard, "Zero-voltage-transition pwm converters with synchronous rectifier," Power Electronics, IEEE Transactions on, vol. 25, no. 1, pp. 105-110, Jan 2010.
[47] J. H. Lee, D. H. Yu, J. G. Kim, Y. H. Kim, S. C. Shin, D. Y. Jung, Y. C. Jung, and C. Y. Won, "Auxiliary switch control of a bidirectional soft-switching dc/dc converter," IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5446-5457, Dec 2013.
[48] L. Fu, X. Zhang, M. Scott, C. Yao, and J. Wang, "The evaluation and application of wide bandgap power devices," in Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo, Aug 2014, pp. 1-5.
[49] M. J. Scott, L. Fu, X. Zhang, J. Li, C. Yao, M. Sievers, and J. Wang, "Merits of gallium nitride based power conversion," Semiconductor Science and Technology, vol. 28, no. 7, p. 074013, 2013.
[50] C. Nan, T. Yao, and R. Ayyanar, "A 1 mhz egan fet based 4-switch buck-boost converter for automotive applications," in Wide Bandgap Power Devices and Applications (WiPDA), 2015 IEEE 3rd Workshop on, Nov 2015, pp. 365-370.
[51] L. Fu, X. Zhang, F. Guo, and J. Wang, "A phase shift controlled current-fed quasi-switched-capacitor isolated dc/dc converter with gan hemts for photovoltaic applications," in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), March 2015, pp. 191-198.
[52] H. Li, C. Yao, L. Fu, X. Zhang, and J. Wang, "Evaluations and applications of gan hemts for power electronics," in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), May 2016, pp. 563-569.
[53] D. Reusch, D. Gilham, Y. Su, and F. C. Lee, "Gallium nitride based 3d integrated non-isolated point of load module," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb 2012, pp. 38-45.
[54] C. Nan, R. Ayyanar, and Y. Xi, "A gan based high frequency active-clamp buck converter for automotive applications," in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Sept 2016.
[55] Y. Xi, M. Chen, K. Nielson, and R. Bell, "Optimization of the drive circuit for enhancement mode power gan fets in dc-dc converters," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb 2012, pp. 2467-2471.
[56] D. Reusch and J. Strydom, "Understanding the effect of pcb layout on circuit performance in a high-frequency gallium-nitride-based point of load converter," IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2008-2015, April 2014.
[57] J. Xue, L. Cong, and H. Lee, "100-v 2-mhz isolated qsw-zvs three-level dc-dc converter with on-chip dynamic dead-time controlled synchronous gate driver for egan power fets," in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), March 2015, pp. 451-454.
[58] C. Nan and R. Ayyanar, "A 1 mhz bi-directional soft-switching dc-dc converter with planar coupled inductor for dual voltage automotive systems," in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), March 2016, pp. 432-439.
[59] S. Luo, Z. Ye, R.-L. Lin, and F. C. Lee, "A classification and evaluation of paralleling methods for power supply modules," in Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE, vol. 2, 1999, pp. 901-908 vol.2.
[60] C. Nan, S. Angkititrakul, and Z. Liang, "Optimal design of a redundant high current dc/dc converter," in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), March 2015, pp. 2109-2115.

APPENDIX A

SCHEMATIC AND LAYOUT DESIGN FOR 2.2MHZ, 5V/5A ACTIVE-CLAMP BUCK WITH SI MOSFETS

Figure A.1: Schematic Design.

Figure A.2: Top Layer Silkscreen.

Figure A.3: Bottom Layer Silkscreen.

Figure A.4: Top Layer Soldermask.

Figure A.5: Bottom Layer Soldermask.

Figure A.6: Top Layer Copper.

Figure A.7: Second Layer Copper.

Figure A.8: Third Layer Copper.

Figure A.9: Bottom Layer Copper.

APPENDIX B

SCHEMATIC AND LAYOUT DESIGN FOR 2.2MHZ, 5V/5A ACTIVE-CLAMP BUCK WITH GAN FETS

Figure B.1: Schematic Design with GaN Devices.

Figure B.2: Top Layer Silkscreen.

Figure B.3: Bottom Layer Silkscreen.

Figure B.4: Top Layer Soldermask.

Figure B.5: Bottom Layer Soldermask.

Figure B.6: Top Layer Copper.

Figure B.7: Second Layer Copper.

Figure B.8: Third Layer Copper.

Figure B.9: Bottom Layer Copper.

APPENDIX C

SCHEMATIC AND LAYOUT DESIGN FOR 1 MHZ, 48V/14V, 250 W ZVT BIDIRECTIONAL CONVERTER WITH COUPLED-INDUCTOR

Figure C.1: Schematic Design.

Figure C.2: Top Layer Silkscreen.

Figure C.3: Bottom Layer Silkscreen.

Figure C.4: Top Layer Soldermask.

Figure C.5: Bottom Layer Soldermask.

Figure C.6: Top Layer Copper.

Figure C.7: Second Layer Copper.

Figure C.8: Third Layer Copper.

Figure C.9: Bottom Layer Copper.

