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ABSTRACT

The increased number of novel pathogens that potentially threaten the human

population has motivated the development of mathematical and computational mod-

eling approaches for forecasting epidemic impact and understanding key environ-

mental characteristics that influence the spread of diseases. Yet, in the case that

substantial uncertainty surrounds the transmission process during a rapidly devel-

oping infectious disease outbreak, complex mechanistic models may be too difficult

to be calibrated quick enough for policy makers to make informed decisions. Sim-

ple phenomenological models that rely on a small number of parameters can provide

an initial platform for assessing the epidemic trajectory, estimating the reproduction

number and quantifying the disease burden from the early epidemic phase.

Chapter 1 provides background information and motivation for infectious disease

forecasting and outlines the rest of the thesis.

In chapter 2, logistic patch models are used to assess and forecast the 2013-2015

West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with

comparing and contrasting the effects that spatial heterogeneity has on the forecasting

performance of the cumulative infected case counts reported during the epidemic.

In chapter 3, two simple phenomenological models inspired from population bi-

ology are used to assess the Research and Policy for Infectious Disease Dynamics

(RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious dis-

ease scenarios. Because of the nature of the synthetically generated data, model

predictions are compared to exact epidemiological quantities used in the simulation.

In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in

Bombay. This chapter provides evidence that these simple models may be applicable

to infectious diseases no matter the disease transmission mechanism.

Chapter 5, uses the patch models from chapter 2 to explore how migration in the

i



1904 Plague epidemic changes the final epidemic size.

The final chapter is an interdisciplinary project concerning within-host dynamics

of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over

150 grass species. Motivated by environmental nutrient enrichment due to anthropo-

logical activities, mathematical models are employed to investigate the relevance of

resource competition to pathogen and host dynamics.
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Chapter 1

INTRODUCTION

1.1 Infectious Diseases

Epidemics of infectious diseases have been documented throughout history. Ac-

counts describing epidemics of smallpox, typhus, tuberculosis and other deadly dis-

eases can be traced back to ancient Greece and Egypt (Geddes, 2006; Retief and

Cilliers, 1998). In fact, because of their often high mortality rates, infectious dis-

eases have caused severe political and cultural changes. Indeed, evidence suggests

that smallpox is responsible for the death of Pharaoh Ramses V of Egypt (Geddes,

2006) and an infectious disease outbreak in Athens is responsible for reducing 25%

of its population during the time period of 430-427 BCE (Littman, 2009; Poole and

Holladay, 1979).

One of the most devastating infectious diseases ever recorded is plague. Historians

recognize three major plague pandemics, the Justinian Plague, the Black Death (or

the Great Plague) and the Modern Plague. Taking place in the Eastern Roman

Empire, the Justinian Plague (541-542 AD), was the first plague pandemic recorded

and was followed by several smaller outbreaks over the next two hundred years. These

smaller outbreaks would eventually lead to over 25 million people succumbing to the

disease. Originated from China and spread along the Silk Road and other trade

routes, the years of 1334-1353 brought the Black Death, in which an estimated 75

to 200 million people succumbed to plague. In Europe alone, the Black Death was

estimated to be responsible for killing 60% of the population (Benedictow, 2005). In

the 1860s, plague reappeared in China and spread to port cities around the world by
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infected rats on ships. Over a 20 year period, the Modern Plague pandemic claimed

approximately 10 million lives (Khan,2004).

It is important to clarify that the term “plague” has been used to describe other

infectious disease epidemics that may not be the same disease responsible for the

Justinian Plague, the Black Death and the Modern Plague. Indeed, “plague” has

been used to describe the fall of the Han Dynasty (Lee, 2002) and was used to describe

the death of Roman emperor, Lucius Verus, who died in 169, during the Antonine

Plague pandemic (Duncan-Jones, 1996). Nine years later, the Roman historian, Dio

Cassius, describes another epidemic of “plague” where up to 2,000 romans succumbed

to the disease in one day (Gilliam, 1961). Even today, the causes of these plague

epidemics have not been determined, but scholars believe that smallpox or measles is

responsible (McLynn, 2011; Gilliam, 1961; Haeser, 1881).

Although it was declared eradicated in 1967, smallpox, is another example of

an infectious disease that has been documented throughout history. In fact, evi-

dence suggests that it emerged as early as 10,000 BCE. Smallpox was brought to

North America when settlers arrived along the east coast in 1633 in Plymouth, Mas-

sachusetts. Their arrival brought devastating smallpox outbreaks among the Native

American populations and played an important factor in colonization. Smallpox was

also an important factor in the conquest of the Aztecs and the Incas by the Spaniards.

In the 20th century alone, smallpox was responsible for killing over 300 million people.

Infectious diseases have also indirectly reduced human populations. During the

time period of 1845-1852, Ireland experienced the Great Famine, in which mass star-

vation and disease caused approximately 1 million people to die, ultimately decreasing

the population by 20% to 30%. The cause for the famine is partially accredited to

Pythophthora infestans, or commonly known as potato blight, which destroyed potato

crops throughout Europe during the 1840s.
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1.2 Epidemiology

Epidemiology is the branch of medicine that deals with the incidence, distribution

and possible control of diseases and other factors relating to the health of a population.

The individuals who investigate these factors are called epidemiologists. They seek

ways to reduce risk and occurrence of negative health outcomes through research,

community education, and health policy. Without their efforts, it would be near

impossible for assessing and controlling diseases spreading through populations.

One of the founding fathers of modern epidemiology is John Snow. Known for his

work on cholera, Snow, traced the source of the disease to a public water pump during

the 1854 cholera epidemic in Soho, London (Snow, 1855). His findings changed the

way water and waste was managed in London and throughout the world, ultimately

improving public health in general.

Another important historical figure is Ronald Ross. Ross, was a British physician

who received a Nobel prize in 1902 for his work on the transmission of malaria.

He proved that malaria was transmitted by mosquitoes with his discovery of the

malarial parasite inside the digestive tract of a mosquito (Ross, 1897). He further

laid the framework for developing methods for preventing the spread of the disease

and in addition to his biological discovery, Ross, developed a mathematical model that

related the number of mosquitoes and the rate of malaria infection in people (Ross,

1910).

Mathematics has played a role in epidemiology as well. In 1776, Daniel Bernoulli’s

statistical work on smallpox demonstrated the efficacy of vaccinating the public (Bacaër,

2011; Bernoulli and Blower, 2004). Other influential work is Kermack’s and McK-

endrick’s construction of the well-known SIR (susceptible, infected and removed) com-

partmental model that was used to model bubonic plague in Bombay (Kermack and
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McKendrick, 1927). Their modeling ideas were later popularized by the work of May,

(May et al., 1979). Nowadays, more complex versions of the Kermack-McKendrick

model that incorporate more realistic biology are used.

1.3 Disease Epidemics Discussed in this Dissertation

1.3.1 The 2013-2015 Ebola Virus Disease Epidemic

Ebola virus disease, also known as Ebola hemorrhagic fever (EHF) or commonly

referred to as Ebola, is a viral hemorrhagic fever of humans and other primates that

is caused by a negative-sense single stranded RNA virus of the family Filoviridae and

genus Ebolavirus (Chowell and Nishiura, 2014). The five known virus species are

named after the region where they were first identified: Zaire ebolavirus (EBOV),

Sudan ebolavirus (SUDV), Tai Forest ebolavirus (TAFV), Bundibugyo ebolavirus

(BDBV) and Reston ebolavirus (RESTV) (Chowell and Nishiura, 2014). Although,

the reservoir host of Ebola virus remains unknown, researchers believe that the virus

is animal-borne and resides in fruit bats (Leroy et al., 2005). The deadliest of the

five ebolaviruses, EBOV, was first discovered in 1976 near the Ebola River, in what

is now the Democratic Republic of the Congo (formerly Zaire). Also, the 2013 Ebola

outbreak was probably the first to occur in Western Africa as prior outbreaks in Africa

were restricted to regions within Central and Eastern Africa. Ebola virus disease is

usually transmitted through direct contact with blood or body fluids of a person who

is sick with or has died from EVD or through direct contact with infected bats or

primates (Funk and Kumar, 2015; CDC, 2014). Early nonspecific symptoms include

sudden fever, vomiting, weakness, diarrhea, headache and sore throat, but rapidly

progress to internal and external bleeding and possible organ failure.

The 2013 Ebola epidemic that occurred within villages, towns and cities of the
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Western African nations of Guinea, Liberia and Sierra Leone became the most severe

Ebola virus disease (EVD) outbreak in history, with a case fatality rate of 70.8%

(95% confidence interval [CI], 68.6 to 72.8) and a hospitalized fatality rate of 64.3%

(95% CI, 61.5 to 67.0) (Chowell and Nishiura, 2014; WHO Ebola Response Team,

2014). This epidemic was significantly different in both size and duration compared

to previously reported EVD epidemics and as of April 13, 2016, 28,652 cases have

been reported, of which 11,325 patients have succumbed to the disease, making it

the deadliest Ebola epidemic in history (World Health Organization, 2015a). In

addition to these outbreaks, smaller ones occurred in Mali, Nigeria and Senegal,

but were quickly contained due to a rapid response and the availability and quality

of diagnostics tools and overall health care (Cenciarelli et al., 2015; Althaus et al.,

2015a; Frieden TR, 2015).

Standard practices to prevent the outbreak in these countries were not as ef-

fective partly due to their poor health infrastructure, including the lack of public

health surveillance systems to rapidly detect emerging outbreaks (Frieden et al.,

2014). In addition, no licensed vaccine against EVD was available during the 2013-15

epidemic (World Health Organization, 2015c; Agnandji et al., 2015). Instead, quar-

antine, isolation and education programs were used to mitigate the spread of the

disease. This latest outbreak far surpassed the number of reported cases and deaths

from ten major previous Ebola outbreaks combined with an estimated 1,531 cases

and 1,002 deaths (Center for Disease Control, 2015).

1.3.2 Bubonic Plague Epidemic of 1905

In the late 19th century and early 20th century, bubonic plague was a yearly

epidemic in Bombay. Due to the lethal nature of the bubonic plague – it was the

leading cause of death in Bombay for two decades (Klein, 1986) – a commission was
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formed in 1905 to investigate the mechanisms by which the plague was spreading.

A large team of scientists and medical professionals gathered data from 12 different

sections in Bombay including deaths due to plague on a bi-weekly basis (Commission

et al., 1907).

Bubonic plague is an infectious disease that is caused by the bacterium yersinia

pestis. Bubonic plague is spread though inflected flea bites, as well as exposure

to the tissue or fluids of an animal infected with the plague, but not directly from

human to human, unless it is the uncommon pneumonic plague (Stenseth et al., 2008).

Untreated, mortality due to bubonic plague is estimated at 30%-60%. In 1906, the

plague in Bombay exhibited a mortality rate of approximately 90% (Commission

et al., 1907).

When considering the bubonic plague in India, spread of the disease was markedly

seasonal. Early attempts at forecasting plague were informed by weather: low hot

weather and monsoon season temperatures were expected to result in high plague in-

cidences (Rogers, 1933). Some have suggested the seasonality stems from the ability

of the flea to transmit the bacteria to the new host during inclement temperatures,

although new research suggests that temperature does not significantly affect effi-

ciency of transmission (Schotthoefer et al., 2011). Regardless, climate appears to be

extremely important in vector borne diseases (Gage et al., 2008).

Plague was first observed in the Mandvi region of Bombay in 1896 (Gatacre, 1897).

Year after year, the plague epidemic appeared to persist in Bombay in a seasonal

fashion. Roughly half the city attempted to flee in order to escape the plague, but

the plague spread throughout India in the following years. By 1914, more than 8.5

million people had perished, and some areas of India reported plague deaths until the

1940s (Arnold, 1993).
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1.3.3 Cereal Yellow Dwarf Virus

Cereal yellow dwarf virus-RPV, a member of the Polerovirus genus and Luteoviri-

dae family, is a positive-sense single-stranded RNA virus (King, 2011). CYDV-RPV

infects over 150 grass species and generally causes leaf discoloration, stunted growth

and reduced seed production (D’Arcy et al., 1995). The virus is transmitted by feed-

ing aphids in a persistent manner, that is, the virus must be first taken up by the

aphids stylet, then pass through the gut and the salivary glands before the aphid can

infect another plant (Ali et al., 2014). In addition, the virus is circulative, meaning it

does not replicate while inside of the aphid (Ali et al., 2014). However, viruses move

relatively quickly through their plant host, infecting cells throughout the phloem in

less than 24 hours (Carrigan et al., 1983).

1.4 Background of Mathematical Infectious Disease Models

1.4.1 Ebola Virus Disease

Several studies have used mathematical models to quantify the effect that control

interventions and behavior changes had on managing the 2014 Ebola epidemic. Al-

thaus et al., employed an SEIR (susceptible-exposed-infectious-removed, (Anderson

and May, 1991)) model and the estimated effective reproduction number to gain in-

sights into the real-time intervention effects for the 2013-15 EVD epidemic(Althaus,

2014). They concluded that the effective reproduction numbers in Guinea and Sierra

Leone decreased to around unity by the end of May and July 2014 due to sufficient

control measures. However, that was not the case in Liberia where efforts needed

to be improved. In a similar spirit, Chowell et al., employed the logistic model to

capture early signs of intervention and behavior changes in the population (Chowell

et al., 2014a). Furthermore, they showed that phenomenological models are useful
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for understanding early epidemic dynamics, specifically because of the small number

of parameters that need to be estimated. With more complexity, Agusto et al., used

a mathematical model to explore the effects of traditional belief systems and customs

on the transmission process, concluding that the 2014 outbreaks may be controllable

by using a moderately-effective basic public health intervention plan (Agusto et al.,

2015).

Other studies used mathematical models to investigate the affects of spatial struc-

ture on disease dynamics. For instance, Valdez et al., embedded a compartmental

model into a 15-patch spatial framework (representing 15 counties of Liberia) and

showed that reducing mobility only delayed the overall control of the epidemic (Valdez

et al., 2015). Their findings suggested that safe burials and hospitalizations were

key to controlling EVD. In particular, if safe burials and hospitalizations were estab-

lished in mid-July 2014, their model predicts that the epidemic would have been three

months shorter and infected individuals would have been 80% less than if the controls

were implemented in mid-August. Gomes et al., employed the Global Epidemic and

Mobility Model that incorporates mobility and demographic data at a worldwide scale

coupled to a stochastic epidemic model (Gomes et al., 2014). They concluded that the

probability of the disease spreading outside of Africa was highly unlikely. Merler et

al., employed a spatial agent-based model to examine the effectiveness of safe burials,

household protection kits and to estimate Ebola virus transmission parameters (Mer-

ler et al., 2015). They suggested that the majority of infections occurred within hos-

pitals and households. Their findings indicated that the decline in disease incidence

is due in part by the increased number of Ebola treatment units, safe burials and

household protection kits. Using a discrete, stochastic SEIR model that is embedded

within a three-scale community network model, Kiskowski, showed that effects from

community mixing along with stochasticity can explain the different growth rates of
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reported cases observed in Sierra Leone, Liberia and Guinea (Kiskowski, 2014).

Multiple studies have used mathematical models for forecasting the potential num-

ber of future cases and estimating transmission parameters for the 2013-15 Ebola

epidemic. Meltzer et al., constructed the EbolaResponse modeling tool that tracks

patients through multiple stages of infection and categorizes patient infectiousness

depending on whether they are in a hospital, a low-risk community setting or at

home with no isolation (Meltzer et al., 2014). The EbolaResponse model was used to

estimate how control and prevention measures could stop the epidemic and to fore-

cast future cases. Meltzer et al., suggested that policy makers rapidly increase the

number of Ebola treatment units. In another study, Shaman et al. used a stochastic

compartmental model is coupled with the Ensemble Adjusted Kalman Filter (EAKF)

to forecast state variables and parameters six weeks into the future (Shaman et al.,

2014). The EAKF adjusts the parameters and ensemble state variables as more data

becomes available. Parameter estimations provided some evidence that the epidemic

growth was slowing down in Liberia.

For readers interested in more details of the studies see Table B.1.

1.4.2 Bombay Plague

The first influential mathematical model used to investigate the spread of bubonic

plague in Bombay was constructed by Kermack and McKendrick (Kermack and McK-

endrick, 1927), a 3-compartment model featuring susceptible population, infected

population, and immune (or recovered) population. While this model was able to

fit the human plague deaths in 1906, it did not have the capability to shed light on

future outbreaks. Additionally, as human-human infection is rare, occurring only in

pneumonic plague, this modeling framework was not well suited for explaining disease

dynamics.
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Keeling and Gilligan (Keeling and Gilligan, 2000a) formulated a model that in-

cluded susceptible rats, infected rats, recovered rats, average number of fleas per rat,

and free fleas. From this epizootic model, they are able to estimate the number of

human case that arise. Later, they included a human SIR model coupled to the

previous 5-compartment model, but the humans do not transmit the disease within

themselves. Their stochastic metapopulation model was used to predict the proba-

bility that the epidemic would persist in the rodent population for more than 1, 2,

and 10 years (Keeling and Gilligan, 2000b).

Other researchers have furthered this model: Monecke et. al (Monecke et al., 2009)

made slight changes and were able to show agreement with the Bombay 1905-1906

epidemic data. Recently, Bacaer extended the model to consider the seasonality of

the plague by defining the transmission of the plague from flea to human to be based

on temperature, and were able to fit multiple years of data (Bacaër, 2012).

In addition to deterministic models, many have investigated spatiotemporal mod-

eling in order to observe that patterns of propagation of the plague (Yu and Chris-

takos, 2006; Yu et al., 2007). One observation is that the plague often spread during

the spring and autumn seasons, and virtually stopped during the summer, exhibiting

the seasonal behavior described above.

1.4.3 Within-Host Models

Understanding how diseases affect growth and nutritional value of plants is a

significant challenge for supporting a growing human population and satisfying its

demand for sustainable food and fuel resources. From a disease ecology perspective,

recent studies have shown that the dynamics of within-host pathogen populations are

intimately linked to their resource supply and host elemental composition. For in-

stance, researchers have found that nutrient supply alters prevalence and competitive
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interactions among two coinfecting viruses in plants (Lacroix et al., 2014). In another

study, high host carbon to phosphorus ratios (C:P) were shown to inhibit viral pro-

duction of Paramecium bursaria Chlorella virus-1 (PBC-1) in the fresh water alga,

Chlorella NC64A (Clasen and Elser, 2007). On the other hand, virus infection has

been shown to mediate the effects of elevated C02 on plants and their vectors (Trȩbicki

et al., 2016).

The increase in recent studies linking disease ecology and human alterations of

nitrogen, carbon and phosphorus cycles have motivated the development of math-

ematical modeling approaches for studying within-host pathogen dynamics that in-

corporate nutrient effects. While within-host pathogen models have been used for

decades mainly for assessing various pathways and mechanisms, researchers have only

recently started incorporating nutrient effects into mathematical models of within-

host pathogen dynamics. For instance, mathematical models have suggested that

phosphorus levels have implications for controlling cancer cell growth (Kuang et al.,

2004b; Everett et al., 2015).

Several groups have used mathematical models to investigate plant virus dynam-

ics. Spatiotemporal dynamics of plant virus infection was considered by work of Tro-

mas et al. In particular, they used a type of patch model that considered the fraction

of infected cells in each leaf of an infected plant host (Tromas et al., 2014). They con-

cluded that virus expansion between-cell is restricted, most likely due to the spatial

structure of the host environment. Other researchers have employed delayed differen-

tial equations to model the time delay in post-transcriptional gene silencing (PTGS)

and the maturation time of the growing plant tissue (Neofytou et al., 2016b). While

they did not parameterize the model, they did identify parameter regions associated

with recovery and resistant phenotypes and possible chronic infections. In addition to

modeling PTGS, Neofytou et al., introduced a new mathematical model to investigate
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the role of RNA silencing in a plant infected with two competing viruses (Neofytou

et al., 2016a).

1.5 Motivation and the Influence of Data

The mathematical and computational modeling approaches discussed in this dis-

sertation are motivated by the increasing number of novel pathogens that directly

and indirectly (e.g. crop diseases) threaten the human population. Mathematical

models of epidemic disease spread have been used for decades to gain insight into the

transmission dynamics and potential effect of different control strategies, but only

recently have researchers started to use the available computational power to simu-

late, calibrate and generate forecasts of epidemic spread using a variety of epidemic

models. However, if available epidemic information is scarce during a developing in-

fectious disease outbreak, mechanistic models that incorporate detailed transmission

routes and infection processes for specific diseases often cannot be correctly calibrated

quick enough to make informative predictions. Yet, because of their nature, simple

mathematical models utilizing a small number of parameters have the potential to be

provide a starting platform for quantifying uncertainty of infectious disease dynamics

and informing policy makers as an outbreak begins to unfold. To this end, a large

portion of this dissertation is concerned with developing and assessing the forecasting

potential of simple phenomenological models.

An important theme throughout this dissertation is the use of data to guide the

development and iteration of mathematical models. In chapter 2, the simple logistic

equation is extended to incorporate spatial structure, because of the overwhelmingly

rich amount of spatial data that was made available from the 2013-205 Ebola epi-

demic in West Africa. In chapter 3, synthetically generated epidemic data is used to

compare two phenomenological model’s abilities to estimate and forecast key quan-
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tities of the epidemic. In this case, estimations can be compared to true values from

the synthetically generated epidemic. In chapter 4, data from the Bombay plague

epidemic of 1904, motivates the inclusion of a deceleration parameter into the logistic

equation to capture the sub-exponential growth of the early epidemic phase seen in

some of the parts of Bombay. Returning to spatial modeling, in chapter 5, a barren

field separating an important section of Bombay from the rest of the city motivates

the use of spatial models to investigate this natural barricade’s effect on final epidemic

size. Finally, in the last chapter, the best fit solutions from two mathematical models

uncover patterns that otherwise would be hard to detect when viewing the data by

itself.

1.6 Outline of this Dissertation

In chapter 2, logistic patch models are used to assess and forecast the 2013-2015

West Africa Zaire ebolavirus epidemic. We are motivated by the question: How can

we use metapopulation models to understand the role of movement restrictions and

migration patterns on the spread of infectious diseases? In particular, each models

ability to forecast epidemic data was assessed by comparing model forecasting error,

parameter distributions and parameter confidence intervals as functions of the number

of data points used to calibrate the models. The patch models show an improvement

over the logistic model in short-term forecasting, but naturally require the estimation

of more parameters from limited data.

In chapter 3, three simple phenomenological models inspired from population bi-

ology are used to assess the Research and Policy for Infectious Disease Dynamics

(RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious dis-

ease scenarios. Because of the nature of the synthetically generated data, model

predictions are compared to exact epidemiological quantities used in the simulation.
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In particular, we assess the accuracy and performance of estimating the effective

reproduction, final epidemic size and future incidence forecasts.

In chapter 4, we apply the simple models from the previous chapter to the 1904

Plague epidemic that occurred in Bombay. Plague is considered in this chapter be-

cause of the different transmission mechanism (rats) that are the main driver of the

disease burden. This chapter provides evidence that these simple models may be

applicable to a diverse set of infectious diseases no matter the disease transmission

mechanism. The effective reproduction number is estimated and the early growth

phase is analyzed revealing prominent exponential growth in most parts of Bombay.

However, evidence for sub-exponential growth is shown in some parts of Bombay as

well.

Chapter 5 returns to the patch models defined in chapter 2 to explore the effect

that mobility has on final epidemic size. In particular, bifurcation diagrams are

produced by calibrating the 3-patch model with reported case data from sections in

Bombay. This chapter highlights the importance of isolation and quarantine strategies

used in controlling infectious disease epidemics.

The final chapter is an interdisciplinary project concerning within-host dynamics

of cereal yellow dwarf virus-RPV, a pathogen from a virus group that infects over

150 grass species including crops. Motivated by environmental nutrient enrichment

due to anthropological activities, mathematical models are employed to investigate

the relevance of resource competition to pathogen and host dynamics.
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Chapter 2

PATCH MODELS OF EBOLA VIRUS DISEASE (EVD) TRANSMISSION

DYNAMICS

2.1 Introduction

The 2013-2015 West African Ebola epidemic provides a unique chance to assess

the importance of spatial structure in forecasting an infectious disease epidemic due

to the rich amount of spatial data. Our modeling goals here are to accurately describe

the data with simple models.

We present a simple approach that phenomenologically connects the effects of

behavior changes to mitigate transmission rates and population spatial structure.

Our method derives the logistic equation from an assumption about the effect of

population behavior and introduces spatial heterogeneity via logistic patch models.

In particular, we contribute the following:

• The logistic model is derived from a susceptible-infected compartmental model

in section 2.2.1, justifying its use in Chowell et al. (2014a).

• Formulas for the basic and effective reproduction numbers are presented in

Section 2.2.2.

• We build upon the work done in Chowell et al. (2014a), by incorporating spatial

heterogeneity via logistic patch models.

• Models are validated by comparing their fits to total reported case data in

Section 2.4.1.
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• As seen in Fig. 2.4, we show that these models improve upon the short term

forecasting error in section 2.4.2. Furthermore, we perform Kruskal–Wallis tests

to analyze the variation across the different models.

• Further model validation and comparison is presented in Section 2.4.3, via pa-

rameter estimations and confidence intervals. This section shows that patch

models are not well constrained due to limited data.

• We provide estimates and 95% confidence intervals of R0 for Liberia, Sierra

Leone and Guinea respectively in section 2.4.4.

2.2 Modeling Methods

2.2.1 Logistic Equation as an Ebola Cumulative Infections Case Model

From a basic SI compartmental model and an assumption about population be-

havior we can derive the logistic equation. Assuming there are no births, natural

deaths or immigration of susceptible individuals and that infected individuals do not

return to the susceptible class, the classical Kermack and McKendrick infectious dis-

ease model can be adapted to obtain the following:

S(t)′ = − βS(t)I(t)

S(t) + I(t)
,

I(t)′ =
βS(t)I(t)

S(t) + I(t)
− µI(t),

(2.1)

where β is the infection rate and µ is the disease induced death rate. From system (2.1)

the cumulative number of infections at time t, denoted by x(t), has derivative x′(t) =

β SI
S+I
≈ βI, (assuming S

S+I
≈ 1). Below we assume that x′(t) = βI.

As an increasing number of cases are reported during an outbreak, the behavior of

the individuals in the affected region may change due to disease education programs,

an increase in care or quarantine facilities and help from health care workers.
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As an example, dead bodies infected with Ebola virus remain infectious, causing

participants to unknowingly contract the infection during funeral burials. In the

beginning stage of the outbreak, unsuspecting mourners would carry the infection

back to other parts of the community and would infect more individuals. By having

specific handling guidelines of human remains, communities were able to decrease

exposure to the Ebola virus (World Health Organization, 2015d). In general, this

is the notion of a positive behavioral change in the community. Based on these

observations we make what we call the behavior assumption:

• (Behavior assumption): During an epidemic, a change in behavior in the

community that mitigates the transmission rates is expected as an epidemic

unfolds. This response is modeled by a function of the total reported cases and

has a decreasing affect on per-capita infection rate. That is,

I ′(t)

I(t)
= f(x(t)) (2.2)

is a decreasing function of the total number of reported cases x(t).

In the following, we assume that f(x(t)) = r(1 − ax(t)) for some positive constants

r := β − µ and a. Hence

I ′(t) = rI(t)(1− ax(t)) =
r

β
x′(t)(1− ax(t)).

Therefore,

I(t)− I(0) =
r

β

(
x(t)− a

2
[x(t)]2

)
− r

β

(
x(0)− a

2
[x(0)]2

)
.

Since I(0) = x(0) ≈ 0, we see that I(t) can be approximated by

r

β

(
x(t)− a

2
[x(t)]2

)
.
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Therefore

x′(t) = βI(t) = r
(
x(t)− a

2
[x(t)]2

)
= rx(t)

(
1− x(t)

K

)
, (2.3)

where K = 2/a. Here we interpret r as the intrinsic infection rate, a is a proportion-

ality constant that corresponds to strength and effectiveness of disease interventions

and preventive strategies and K is the final epidemic size.

In a study by Chowell et al., the saturation effect of the logistic equation was

used to implicitly account for the behavior change in the population (Chowell et al.,

2014a). The above derivation provides a rigorous framework of this modeling effort

and emphasizes the role behavior plays in the saturation effect. Fig. 2.1 shows the

change in the 95% prediction band using the delta method as more data points are

incorporated when fitting the logistic model to epidemic data (Bickel and Doksum,

2015).

2.2.2 Derivation of the Basic and Effective Reproduction Numbers

During an outbreak, there may not be enough data to calibrate mechanistic models

of the exact transmission processes, thus the logistic model can provide useful insights

into the early outbreak dynamics. To derive R0 and Re first observe that,

I(t+ T ) = Re (t) I (t) , (2.4)

where T is the mean generation interval and is defined as the time between infec-

tion in an index case patient and infection in a patient infected by that index case

patient WHO Ebola Response Team (2014). From equation (2.2), we have that

I ′ (t) = f (x (t)) I(t), integrating both sides from t to t+ T yields

ln (I (t+ T ))− ln (I(t)) =

∫ t+T

t

f (x (s)) ds.

Solving for I(t+ T ) and dividing by I(t) yields I(t+T )
I(t)

= e
∫ t+T
t f(x(s))ds, which from

equation (2.4) yields
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Figure 2.1: Predictions of the cumulative number of Ebola cases in Sierra Leone
by the logistic growth equation (2.3). Data points start at June 2, 2014 and end
December 23, 2015. 95% prediction bands are superimposed. Gray disks are data
points for model calibration, while black dots are forecasting data points.

Re(t) = e
∫ t+T
t f(x(s))ds. (2.5)

Lastly, define R0 := erT which is approximately equal to the usual definition of the

basic reproduction number, β
µ
, of model 2.1 when β

µ
is close to 1.

2.2.3 Incorporating Population Heterogeneity: Multi-Patch Models

District geography, topology, health care centers and quarantined regions can

influence population movement. This motivates the need for incorporating spatial

structure in transmission models. We do this by partitioning a district into a network

of two or more sub-districts (patches). In each sub-district, cumulative infections

19



obey logistic growth individually.

Let xi be the cumulative infections in patch i and let mij be the rate of cumu-

lative infections that travel from patch i to patch j, where i, j = 1, 2, i 6= j.

The equations for the two-patch model are:

x′1 = r1x1

(
1− x1

K1

)
−m12x1 +m21x2,

x′2 = r2x2

(
1− x2

K2

)
−m21x2 +m12x1.

Similarly, the three-patch model is given by:

x′1 = r1x1

(
1− x1

K1

)
− (m12 +m13)x1 +m21x2 +m31x3,

x′2 = r2x2

(
1− x2

K2

)
− (m21 +m23)x2 +m12x1 +m32x3,

x′3 = r3x3

(
1− x3

K3

)
− (m31 +m32)x3 +m13x1 +m23x2.

In addition, consider two special cases of each model: symmetric migration (S) with

mij = mji and homogeneous migration (H) with, mij = m for all i, j and i 6= j.

Assume that ri and Ki are positive in the above models. It is easy to see that these

patch models are cooperative in nature which generate a strictly monotone semiflow.

It is shown that the positive solutions of the above models tend to a unique positive

steady state (see Lemma 3.1 in Gao and Ruan (2012)). Furthermore, all solutions

that start positive remain positive and are bounded. We prove this with the following

two lemmas.

Lemma 2.2.1 (Positivity) All solutions from a general n-patch model,

x′i = rixi

(
1− xi

Ki

)
+

N∑
j 6=i

mjixi −
n∑
j 6=i

mijxi (2.6)
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for i, j ∈ {2, ..., n} with positive initial conditions, remain positive for all t > 0.

Proof Assume xk(0) > 0 for all k ∈ {2, .., n}. Further assume that there exists a

t1 = min{t > 0 : xi(t) = 0, for some i ∈ {1, 2, 3, ..., n}, that is, t1 is the first time

that one of the components goes to zero. Then for t ∈ (0, t1) we have,

x′i = rixi

(
1− xi

Ki

)
+

n∑
j 6=i

mjixi −
n∑
j 6=i

mijxi

> −rixi
Ki

−
n∑
j 6=i

mijxi

= −

(
ri
Ki

+
n∑
j 6=i

mij

)
xi

> −αxi
which implies,

xi(t) ≥ xi(0)e−αt > 0 (2.7)

where α = max
i,j
{ ri
Ki

+
∑N

j 6=imij}. In particular, we find that xi(t1) > 0, a contra-

diction. Therefore, all solutions that start positive, remain positive. �

To see that solutions are bounded we have the following lemma,

Lemma 2.2.2 (Boundedness of solutions) Let r◦ = max ri, r◦ = min ri and

K̄ = maxKi, then
∑n

i=1 xi ≤ nK̄ r◦

r◦
.

Proof Assuming positivity of solutions and defining z =
∑n

i=1 xi we obtain,

z′ =
N∑
i=1

rixi

(
1− xi

Ki

)
≤

n∑
i=1

rixi −
rix

2
i

K̄

≤
n∑
i=1

r◦xi −
r◦
K̄

N∑
i=1

x2i .
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Noting that z2 = (
∑n

i=1 xi)
2

=
∑n

i=1 x
2
i + 2

∑n
i<j xixj and

z2 =

(
n∑
i=1

xi

)2

≤
n∑
i=1

x2i + (n− 1)
n∑
i=1

x2i

or

n∑
i=1

x2i ≥
1

n
z2.

Therefore we obtain,

z′ ≤ r◦z − r◦
nK̄

z2 = r◦z

(
1− z

nK̄ r◦

r◦

)
and solutions are bounded by applying a standard comparison argument. �

2.2.4 The Basic Reproduction Number

Let and x =
∑n

i=1 xi. As with the derivation of Re and R0 for the logistic model

above, define the basic reproduction number for an n-patch model as

Re(t) = exp

(
r̂

∫ t+T

t

1− 2

K̂
x(s) ds

)
,

where r̂ =
∑n
i=1 riKi

K̂
, K̂ =

∑n
i=1Ki are weighted averages and for simplicity we

assume T = 2 weeks, instead of 2.18 days (Agnandji et al., 2015). Similarly to above,

we define R0 := er̂T .

2.3 Comparison Methods

We use district data from the World Health Organization (WHO) patient database,

which contains weekly reported confirmed, suspected and probable infections from

Liberia, Sierra Leone and Guinea (World Health Organization, 2015a). Data ranges

from Mar. 1, 2014 to Aug. 5, 2015.
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Table 2.1: Number of parameters for each model.

Logistic Two-patch (H) Two-patch Three-patch (H) Three-patch (S) Three-patch

Number of parameters 2 5 6 7 9 12

Table 2.1 lists the number of parameters of each model. By studying the spe-

cial cases of the patch models we reduce the number of parameters that need to be

estimated, which constrains model fits and reduces the likelihood of over-fitting the

data.

We use Matlab’s built-in function, fminsearch, to help locate optimized parameter

values for data fitting. fminsearch is a derivative-free method that is based on the

Nelder-Mead Simplex and searches for minimums, but does not guarantee global

minimums (Lagarias et al., 1998). We are searching for a biologically reasonable

parameter set that minimizes the error between the simulations and the observed

data. To this end, we define the weighted error function:

Ew =
1

N − P

N∑
i=1

|yi − ŷi| e−0.1(tf−ti), (2.8)

where tf is the final date that we have an observation for, P is the number of

parameters and N is the number of observations. ŷi denotes the observation at time

ti and yi the value of our model at the i-th observation. We make the assumption

that recent data has higher significance for forecasting future cases, as reflected by

the exponential factor. The value of .1 in the exponential term is used because it

gave a reasonable temporal-weight to the data points.

23



2.3.1 Ranking Models by Fitting and Forecasting Errors

To compare the models, we use absolute and relative errors that penalize models

that have more parameters. The absolute error is calculated using the following

equation,

Eabs =
1√

N − P

√√√√ N∑
i=1

(yi − ŷi)2 (2.9)

and the relative error is given by,

Erel =
1√

N − P

√√√√ N∑
i=1

(
yi − ŷi
ŷi

)2

. (2.10)

Since we are interested in assessing and ranking the forecasting performance of all

models, we define the forecasting error as follows:

Efcst =
1√

N − N̂ − P

√√√√ N̂∑
i=i∗

[y (ti)− ŷ (ti)]
2, (2.11)

where i∗ corresponds to the temporal index at which we start forecasting our models,

N is the total number of observations and N̂ is the total number of observations used

for model calibration and P is the number of parameters. If i∗ was not an integer

value, we took its floor value.

2.3.2 Parameters and Confidence Interval Assessment

To further compare and assess the models we compute 95% confidence intervals

for the logistic, two-patch (H) and three-patch (H) models. Only these models were

considered, because they have the least number of parameters which reduces the

likelihood of overfitting the models to data.
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Bootstrapping can be used as a way to estimate standard errors of parameter

estimates in statistical models. The basic idea is to fit the model to data, find the

residuals and add them to the data. Next, randomly sample with replacement B

times, where B is large and fit the model to each of these newly created data sets to

obtain B different parameter sets from the fitted model. This allows one to obtain

a distribution of the parameters without assuming anything prior about them. For

further details, see Davison and Hinkley (1997); Efron and Tibshirani (1994); Pardoe

and Weisberg (2001).

Recall a statistical model, with y = (y1, ..., yn) being explained by k explanatory

variables x = (x1, ..., xk) using p parameters θ = (θ1, ..., θp):

yi = g(xi|θ) + εi

for i = 1, ..., n. Where g is a mathematical model such as an ordinary differential

equation model, partial differential equation model, algebraic model, etc. ε is the

error and is a random variable and y is another random variable. Let G be the

partial derivative matrix with respect to θ and the leverages, h1, ..., hn be the diagonal

elements of the G(G†G)−1G† matrix, where † denotes matrix transpose.

The bootstrapping method is described below.

1. Fit the model to the original data with an initial parameter set, θ̂, and for each

xi, compute the corresponding residual ε̂i = yi − ŷi for i = 1, 2, ...n, where n is

the total number of data points and ŷi = g(xi, θ̂).

2. Correct for the potential heteroscedasticity in the residual variances by comput-

ing the modified residuals: r̂i = ε̂i√
1−hi

and compute the centered residuals

r∗i = ε̂i − r̂i, where hi are the leverages.

3. Sample with replacement from the n modified and centered residuals.
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4. Generate bootstrap sample, ȳi := ŷi + r∗j , for all i and where j is random.

5. Fit the model to these new ȳi values and obtain a new set of parameter values,

θ̄.

6. Repeat steps 3, 4 and 5 a large number of times 1 of times (say 2,000). This

generates 2,000 bootstrap samples and corresponding sets of parameter estima-

tions.

7. Use the 2,000 parameter estimates to generate distributions to find confidence

intervals.

2.3.3 Challenges

Whenever fitting a mathematical model to time series data that ranges from small

values to very large values, deciding at what time to initiate the model can seriously

influence its forecasting ability. For example, training a model on a large set of data

that is relatively near zero except for the last couple of points will force the fitting to

be heavily biased by the large amount of initial points near zero, thus not providing

a good forecast. We remedied this by starting the models after there were no three

consecutive weeks that had no infections and by using the weighted error (Eq. 2.8) for

fitting. This was done due to the fact that smaller outbreak waves happened before

the main wave of infections appeared.

Forecasting an ongoing disease outbreak in real-time brings many challenges. New

data being available means that computer programs must be designed to process and

incorporate new data sets with ease and in a timely fashion. In our case, fitting six

1Results from Efron and Tibshirani Efron and Tibshirani (1994) suggest that accurate results for
confidence intervals can be obtained from 1000 bootstrap samples. For standard errors this number
is reduced to 200.
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models (including special cases) to forty-one data sets requires a significant amount

of computing resources.

2.4 Results

2.4.1 Data Based Model Validation

To validate the patch models for epidemic modeling, we fit all models to all data

sets and compare model fits and errors.

We report the means for the weighted, relative and absolute error (respectively

equations 2.8, 2.9 and 2.10) for all 39 data sets. Observe that the patch models

show an improvement over the logistic model when fitting the data. Additionally, we

see that the homogeneous migration models perform better than their free migration

versions.

Table 2.2: Mean error statistics

Model Weighted Error Relative Error Absolute

Logistic 82.2822 1.3387 102.198

2-Patch (H) 53.6764 1.1271 63.1193

2-patch 58.6311 1.2124 72.7197

3-Patch (H) 48.709 1.1256 59.3391

3-Patch (S) 55.0951 1.1515 65.1694

3-Patch 54.215 1.1727 66.0885

In what follows, we summarize the different fitting and forecasting cases. Let FTG

be the fitting error from Eq. 2.8 and FCST be the forecasting error from Eq. 2.11.

We use the following convention to denote the different errors: FTG-∆ and FCST-

∆-Ω, where ∆ is the fraction of data used for fitting and Ω is the number of weeks

forecasted ahead.
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Figure 2.2: Illustration of the model fitting and forecasting for Conakry Left column:
models trained on the first one-third data. Right column: models trained on the first
two-thirds of data. Gray shaded region represents 95% prediction bands.

Fitting errors were calculated using Eq. 2.8 and the first one-third and the first

two-thirds of each data set. All fitting errors are provided in Table A.1 given in the

appendix. From Fig. 2.3, most of the patch models had smaller mean fitting error

than the logistic model.
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Four and eight week forecasts were made after training all models to the first

one-third and first two-thirds of the data set. Figure 2.3 shows that in all cases, the

patch models had smaller mean forecasting errors. This supports the hypothesis that

modeling spatial structure within the district improved forecasting error. Addition-

ally, all models perform better when forecasting the short-term rather than long-term

epidemic trajectory. Forecasting error variance was lowest with FCST-2/3-4. In

contrast, the variance was the largest with FCST-1/3-8.
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Figure 2.3: Mean forecasting and fitting errors. Models are along the x-axis and
variance is along the y-axis. We connect points for aesthetic purposes.

Results of Kruskal-Wallis tests were not significant for FCST-1/3-4, FCST-1/3-

8, FCST-2/3-4 and FCST-2/3-8; the mean ranks for all forecasting cases did not

significantly differ. We include the p-values (95%) in table 2.3 for this test.

2.4.2 Forecasting Error as a Function of Forecasting Points

Forecasting error for Port Loko, Guinea, Liberia and Sierra Leone was calculated

for varying amounts of forecasting points.

The forecasting error for Port Loko in Fig. 2.4, suggests that the patch models have

smaller forecasting errors than the logistic equation for short-term forecasts (4 to 70
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Case p-value

FCST-3-4 0.9806

FCST-3-8 0.9872

FCST-23-4 0.9933

FCST-23-8 0.9894

Table 2.3: P-values of the Kruskal-Wallis test show forecasting errors do not signif-
icantly differ across models.
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Figure 2.4: Relative error as a function of forecasting points for the logistic, two
and three patch models with homogeneous migration rate: Port Loko, Guinea, Liberia
and Sierra Leone.

days). Additionally, it shows erratic long-term forecasting of the patch models for Port

Loko, because they are not well constrained due to the limited data. Fig. 2.4 further

shows lower short-term error for Sierra Leone and Liberia by the two-patch model.

We note that the three-patch model yielded the smallest error when forecasting ten

prediction points or less (4-10 days).
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2.4.3 Confidence Interval Assessment

Parameter confidence intervals for the logistic equation decrease in length as we

decrease the number of prediction points (Fig. 2.5) for Port Loko. Similar assessments

were done using data from Sierra Leone, Liberia and Guinea at the country level.

Results were similar as the Port Loko case except for Liberia, where confidence interval

lengths begin to increase when we forecast less data points. In summary, the logistic

model shows well behaved parameter values when we fit to an increasing number of

data points for three out of four data sets used.

The patch models tell a different story. The confidence intervals are larger and

show erratic behavior when forecasting a large number of points. Indeed, for the

two-patch model (Fig. 2.6), the confidence intervals for r1 actually increase when we

are predicting a small number of data points from Port Loko. This variability is seen

to be worse in the confidence intervals for the final epidemic sizes (Ki’s) for both

two and three patch models, but they are so erratic that they cannot be shown in a

reasonable way and therefore are not included. The fact that the patch models have

more parameters allows for different parameter sets that produce a well fit curve, but

allow for large variability in the parameter sets. The same is seen in the confidence

interval assessment using data from Sierra Leone, Guinea and Liberia, (not shown

here).

2.4.4 Implications for Liberia, Sierra Leone and Guinea: R0

From the bootstrapping method, we calculated 95% confidence intervals for R0

in Guinea, Liberia and Sierra Leone, see Table 2.4 for our estimations compared to

values found in the literature.

We use the models and calculate R0 and Re for each Guinea, Liberia and Sierra
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Figure 2.5: 95% CI for r and K from equation 2.3. (Bottom) Plot of the length of
the CI for r and K as a function of the number of forecasting points. District: Port
Loko.
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Figure 2.6: 95% CI for ri and m for i = 1, 2, 3 from 2.6 for Port Loko. (Left) two-
patch confidence interval lengths for intrinsic infection rate and migration parameter.
(Right) Three-patch 95% confidence interval lengths for intrinsic infection rate and
migration rate. Note the variability for high numbers of prediction points for both
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(Althaus, 2014) (WHO Ebola Response Team, 2014) Logistic 2-Patch (H) 3-Patch (H)

Guinea 1.51 (1.50-1.52) 1.71 (1.44 - 2.01) 1.252 (1.249,1.255) 1.52 (1.42, 1.92) 1.45 (1.39, 1.51)

Liberia 1.59 (1.57-1.60) 1.83 ( 1.72 - 1.94) 2.11 (2.07,2.15) 1.45 (1.12, 1.94) 1.43 (1.06, 2.199)

Sierra Leone 2.53 (2.41-2.67) 2.02 ( 1.79 to 2.26) 2.28 (2.25, 2.32) 2.27 (2, 2.62) 2.12 (1.87, 2.26)

Table 2.4: 95% confidence intervals for R0
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Leone. In table 2.4 we provide estimations and 95% confidence intervals for R0 for

the three models. We further provide plots of Re in Fig. 2.7.
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Figure 2.7: Effective reproduction numbers for (a) Liberia: simulations start at
June 10, 2014, (b) Guinea: simulations start at March 25, 2014 and (c) Sierra Leone:
Simulations start at May 27, 2014.

2.5 Discussion

In this chapter, a family of logistic patch models were preliminarily evaluated

for use in disease modeling and forecasting. An explicit formula for the cumulative

number of infectious individuals was derived from a SI compartmental model which

takes the form of the well known logistic model. This derivation follows from the

behavior change assumption, Eq. (2.2). We then extended the logistic model to

include spatial population heterogeneity by using multi-patch models that incorporate
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migration between patches and logistic growth within each patch. Each model’s

ability to forecast epidemic data was assessed by comparing model forecasting error,

parameter distributions and parameter confidence intervals as functions of the number

of data points used to calibrate the models. The patch models show an improvement

over the logistic model in short-term forecasting, but naturally require the estimation

of more parameters from limited data.

The models were tested by fitting them to the total reported case data from

39 districts in West Africa. In particular, the means of the weighted, relative and

absolute errors of the patch models are less than the logistic model’s, suggesting

that spatial structure improved the data fitting. Next, models were compared by

their forecasting capabilities in two ways: comparing forecasting error and comparing

parameter confidence intervals. These latter efforts were restricted to the logistic,

two-patch and three-patch models with homogeneous migration. The forecasting

errors from Fig. 2.3 show that the patch models forecast better than the logistic

model. However, Fig. 2.4 shows long-term forecasting variability from the patch

models, because of the limited data. In contrast to these results, the Kruskal-Wallis

test showed no significant difference in the forecasting errors across the models.

The value of R0 during the outbreak in Liberia, Guinea and Sierra Leone were

estimated to be in the same range as previous studies that were based on compart-

mental models Althaus (2014); Gomes et al. (2014); Khan et al. (2015); Yamin et al.

(2015). In particular, from Table 2.4 the estimates from the two and three patch

models for R0 are similar with Althaus et al., but our confidence intervals are not as

small Althaus (2014). This agreement further supports the reliability of the logistic

and patch models with homogeneous migration.

In reality, early in the Ebola 2013-15 epidemic, the public’s behavior in Liberia,

Sierra Leone and Guinea did not swiftly change in a manner that mediated disease
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transmission nor has there been any evidence supporting that the per-capita infection

rate decreased linearly. Actually, the public’s misunderstanding of the disease, lack

of resources and fear fostered high-risk behaviors and resulted in an increased disease

transmission in West Africa during the epidemic World Health Organization (2015b);

Nielsen et al. (2015). However, health-care workers supplied valuable public aware-

ness programs and medical resources that helped manage the spread. Our modeling

assumptions approximate these notions and provide immediate behavior change in

the spirit of Eq. (2.2), but this is modeled simultaneously everywhere in space and is

one reason why the logistic model does not fit the data well. The patch-models over-

come this issue by modeling behavior changes at different times, rates and locations,

but require more data to be constrained.

Although the patch models performed better in many ways than the logistic equa-

tion, the patch models are not well constrained and parameter identifiability is an

issue. Hence a direction for future work would be to assess parameter identifiability of

the patch models and obtain mobility data for constraining the migration parameters.

Identifiability analysis can be implemented by many different approaches, such as the

Differential Algebra Identifiability of Systems (DAISY) (Saccomani et al., 2003), the

Exact Arithmetic Rank (EAR) (Karlsson et al., 2012) or the Profile Likelihood (PL)

approached as proposed in (Raue et al., 2009). Work by (Raue et al., 2014) provides

a comparison and review of these methods. Similar work can be done with param-

eter sensitivity by using methods such as the Morris and Sobol’ methods and Latin

hypercube sampling-partial rank correlation coefficient (LHS-PRCC), to find which

parameters are most sensitive and should be restricted.

Further work can be done with between-country and between-district scales. The

latter would allow for more parameter constraint, but would have to be restricted to

a small number of patcheshe number of parameters increase quickly as more patches
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are introduced. that represent a small number of neighboring districts. The problem

with incorporating all districts is that it ultimately requires a high-dimensional patch

model with many parameters on a complicated network. This may be remedied

with a partial differential equation model or by using mobility data to constrain the

migration parameters. In addition, exploring different behavior functions would be

another direction to expand this work.

Although the logistic model is phenomenological, it is capable of fitting the sig-

moid curves that usually result from plotting the cumulative reported cases of disease

outbreaks. The logistic and the patch models provide a general framework for dis-

ease modeling, because they do not model specific disease transmission processes.

Specifically, they are based on two fundamental mechanisms that influence disease

outbreaks: behavior change in the community and movement of individuals within

that community. We find that incorporating the latter mechanism decreased fore-

casting errors with respect to the logistic model, but also require more data for model

calibration.
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Chapter 3

USING PHENOMENOLOGICAL MODELS FOR FORECASTING THE 2015

EBOLA CHALLENGE

3.1 Introduction

In this chapter, we use two simple phenomenological models to forecasts syntheti-

cally derived data from the 2015 Research and Policy for Infectious Disease Dynamics

(RAPIDD) Ebola challenge. Our modeling approach is guided by data from a syn-

thetically generated epidemic.

The RAPIDD Ebola challenge was designed to test the forecasting ability of

mathematical models during an epidemic in real-time. Goals of the contest in-

cluded (www.ebola-challenge.org, 2016)),

1. Improving predictive capabilities for future emergencies

2. Guiding the implementation of control measures

3. Illustrating how data quality and availability affect prediction accuracy

In this spirit, synthetic epidemic data was generated by a modified version of the

model published by Merler et al., a detailed individual-based model of Ebola trans-

mission (Merler et al., 2015). Synthetic epidemic data was released at five different

time points with a test release on Sept. 18, 2015. Five batches of data were released

during the contest at time points: Oct. 6, Oct. 25, Nov. 11, Nov. 24 and Dec. 20,

2015, respectively. Model predictions were due two weeks later after each time point.

A diverse set of mathematical models comprising a total of seven independent

teams competed in the contest. Models ranged from simple phenomenological to
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Figure 3.1: Ensemble results from the participating teams. Simulated data (black
squares), ensemble prediction mean (red line) across all model predictions, and pre-
diction cone (shaded gray) are shown. Results are shown for all time points and all
scenarios. Taken from (www.ebola-challenge.org, 2016).

complex mechanistic models, with the goal of assessing and estimating key epidemio-

logical quantities. During the challenge, we used the logistic model to forecast future

cases of the epidemic given by the Ebola-challenge. Fig. 3.1 shows mean ensemble

results. For more detailed information about the data see sub-section 3.2.2.

In this chapter we carry out a systematic comparison of simple phenomenological

models namely the logistic growth model and the generalized-growth model that in-

corporates a flexible range of epidemic growth profiles including early sub-exponential

and exponential growth epidemics in the context of the Ebola challenge based on

synthetic data derived from a detailed individual-based model of Ebola transmis-

sion. Specifically, we assess the reproduction number and forecasts of the epidemic

trajectory and the final epidemic size.
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3.2 Materials and Methods

3.2.1 Model Description

The well-known logistic growth model was previously employed for epidemic fore-

casting the 2015 Ebola epidemic Chowell et al. (2014a), and was the model originally

employed by the Arizona State Team (BP & YK) during the 2015 Ebola Challenge.

This simple model is given by the following differential equation:

C ′ = rC

(
1−

(
C

K

))
, (3.1)

where C ′(t) models the rate of change in the number of new cases at week t. The

logistic growth model relies on two parameters, the intrinsic infection rate, r, and the

final epidemic size K.

For comparative purposes, we also analyzed the performance of the generalized

Richards model Chowell et al. (2016a), which has been recently devised in order to

capture the possibility of early sub-exponential growth epidemics and is given by:

C ′ = rCp

(
1−

(
C

K

)a)
. (3.2)

The GRM is an enhanced version of the Richards model (Richards, 1959) by

incorporating the generalized-growth model (GGM; C ′ = rCp) (Viboud et al., 2016).

Specifically, the GRM incorporates a deceleration of growth parameter p to model

a range of early epidemic growth profiles ranging from constant incidence (p = 0),

polynomial (0 < p < 1) and exponential growth dynamics (p = 1). The GRM

model was recently employed to generate forecasts of the Zika epidemic in Antioquia,

Colombia (Chowell et al., 2016a). All parameter values are positive: r is the growth

rate, K is the final epidemic size, and a is a parameter that modulates the peak

timing.
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3.2.2 Data

As discussed above, synthetic epidemic data was generated by a modified version

of the model published by Merler et al. that was calibrated for an EVD outbreak in

Liberia (Merler et al., 2015). Synthetic epidemic data was released at five different

time points with a test release on Sept. 18, 2015. Five batches of data were released

during the contest at time points: Oct. 6, Oct. 25, Nov. 11, Nov. 24 and Dec. 20,

2015, respectively. Model predictions were due two weeks later after each time point.

During the contest, we only used the country level incidence time series data for our

predictions (see 3.1). Basic demographic information was made available during the

challenge in the form of age dependent infection probabilities, proportion of house-

hold sizes within Liberia and the population of infected counties. Contained in each

of the five batches of released data, four scenarios representing different epidemiolog-

ical conditions, behavioral changes, intervention measures and data availability were

prepared for use in forecasting the epidemic (www.ebola-challenge.org, 2016):

• Scenario 1 consisted of the ideal data-rich scenario, in which district locations

of newly reported EVD cases and Ebola treatment units (ETUs) were disclosed.

• Scenario 2 partially withheld location information of new EVD cases and ETUs

and had a slightly later deployment of safe burial protocols and ETUs than

scenario 1, at weeks 20 and 18 respectively.

• Scenario 3 took action the quickest by deploying an ETU and initiating contact

tracing 20 weeks into the epidemic followed by safe burials by week 25.

• Scenario 4 was the worst-case scenario in which the disease showed no sign of

slowing even with deploying a small ETU at week 18 of the epidemic, enforcing
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safe burials 20 weeks into the epidemic, initiating contact tracing at week 16

and deployment of future ETUs.

Each scenario dataset contained outbreak situation reports, transmission tree data

and weekly reported new EVD cases at the county and country level. All scenarios

included a 20-30% noise level applied to incidences and missing info in patient-level

data. New EVD cases were forecasted at one, two, three and four weeks past each

time point, see Figure 3.1.

3.2.3 The Generation Time

The generation time is defined to be the time between infection in an index case

patient and infection in a patient infected by that index case patient (WHO Ebola

Response Team, 2014). We used transmission tree data (www.ebola-challenge.org,

2016). that was made available for scenarios 1, 3 and 4 to derive their generation

time distributions respectively. In particular, given patient x, we found their infector,

patient y, and calculated how long it took for patient y to infect patient x. This was

done for all recorded patients, except the initially infected ones. For scenario 2 we

used estimations from scenario 1.

3.2.4 The Effective Reproduction Number

The effective reproduction number, Re(t), is defined as the average number of new

infections generated by one infectious individual in the population at time t (Nishiura

and Chowell, 2009). Re(t) was numerically evaluated by training each model on an

increasing amount of data (Chowell et al., 2016a,b) based on the discretized renewal

equation [10,12] (Nishiura and Chowell, 2009; Fraser, 2007):
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Re(ti) =
Ii∑i

j=0 Ii−jρj
(3.3)

where Ii denotes incidence at time ti, ρj denotes the discretized probability distri-

bution of the generation interval, which we assumed to be gamma distributed with a

mean of 16 days (WHO Ebola Response Team, 2014) and the denominator represents

the total number of cases that contribute (as primary cases) to generating new cases

(as secondary cases) (Nishiura and Chowell, 2009).

3.2.5 Performance Statistics and Epidemiological Targets

All teams that participated in the challenge had their models assessed according to

a predefined set of performance metrics, which were used to systematically compare

forecasting performance across the participating models. All metrics were calculated

using model predicted incidences and observed incidences (synthetic incidence data).

Performance metrics included: R2, Pearson’s correlation coefficient, mean square er-

ror (MSE), root mean square error (RMSE), mean absolute error (MAE) and the

mean absolute percentage error (MAPE). Incidence targets consisted of incidence

predictions (new EVD cases) at 1, 2, 3 and 4 weeks after the last observed time point

for a given scenario (see Figure 3.1). The challenge assessed each team’s model per-

formance by comparing incidence targets and nonincidence targets using the metrics

above. Nonincidence targets consisted of effective reproduction number, peak time,

incidence at peak time and final epidemic size.

3.2.6 Uncertainty Method 1

During the Ebola challenge, incidence targets, effective reproduction number, final

epidemic size and peak timing predictions were generated by employing MATLAB’s

(The Mathworks, Inc.) built-in function, LSQCURVEFIT, with the Levenberg-
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Marquardt option to find optimized parameter values for the best fit solution of the

logistic model to the cumulative reported EVD cases (Marquardt, 1963; Moré, 1978).

During the challenge we consistently employed a residual bootstrapping method to

obtain the 25th and 75th percentiles for parameter estimates that is described in (Pell

et al., 2016). In short, we fit the model once and randomly added the residuals back

into the original incidence data to create a new data set. A new optimized parameter

set was then obtained by fitting the logistic model to this new data set and then the

process was repeated 2000 times.

3.2.7 Uncertainty Method 2

For model comparison, Equations (3.1) and (3.2) were fit to the reported inci-

dence data using the built-in MATLAB function LSQCURVEFIT (The Mathworks,

Inc.). With this method, confidence intervals for model parameters and epidemio-

logical forecasting targets were constructed as in prior studies (Chowell et al., 2009,

2007; Viboud et al., 2016) by simulating 200 realizations of the best-fit curve us-

ing parametric bootstrap with a Poisson error structure. 95% confidence intervals

were calculated by taking the 2.5 and 97.5 percentiles from the generated parameter

distributions.

Incidence forecast estimations were generated by extending the 200 realizations

of the best-fit trajectory of a model 4 weeks into the future after the forecasting time

point. The 95% confidence bands for the incidence targets were constructed with the

distributions of incidence predictions at each time point.

3.3 Results

Post-challenge incidence forecasting performance metrics are summarized in Ta-

ble 3.1 and post-challenge incidence forecast trajectories are illustrated for all scenar-
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ios in Figure 3.2. Using Uncertainty Method 2, the GRM model provided improved

incidence target forecasts compared to the logistic model when the models were cal-

ibrated on an increasing set of incidence data. In particular, the GRM had lower

mean RMS values in every scenario than the logistic model (see Table 3.1). For

example, mean RMS decreased from 66.80 (logistic) to 48.39 (GRM) in scenario 2.

Furthermore, the GRM performed better across all scenarios and time points than

the logistic model. In particular, RMS averaged across all scenarios decreased from

78.00 (logistic) to 60.80 (GRM) (Table 3.1). Similar improvements were seen when

taking the mean across all scenarios and time points for Pearsons R score and the

mean absolute percentage error; Pearsons R score increased from .15 (logistic) to .36

(GRM) (an R score closer to 1 means better agreement with the incidence data) and

the MAPE decreased from .38 (logistic) to .32 (GRM).

The GRM slightly outperformed the logistic model in scenario 1 with incidence

RMS decreasing by 1.01% when averaging across all time points (Table 3.1). Addi-

tionally, the GRM had better agreement with the trend of incidence targets with the

higher Pearson R score of .55 than the logistic models 0.33 (Table 3.1).

In scenario 2, the GRM displayed better performance than the logistic model with

incidence RMS decreasing by 27.56% when averaging across all time points. As in

scenario 1, the GRM showed better agreement with the trend of incidence targets

with a higher Pearson R score (GRM: .51, logistic: .47) (Table 3.1).

Once again, the GRM displayed better performance in scenario 3 than the logistic

model with incidence RMS decreasing by 11.68% when averaging across all time

points. The GRM showed better agreement with the incidence targets with a higher

Pearson R score than the logistic (GRM: .31, logistic: -0.10) (Table 3.1).

Scenario 4 displayed the biggest difference in incidence forecasting with the GRM

outperforming the logistic model with a 32.36% decrease in incidence RMS when
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averaging across all time points. Again, the GRM showed better agreement with the

incidence targets with a Pearson R score of .36 compare to the logistic models -0.08

(Table 3.1).

We did not include time point 1 in our analysis for final epidemic size predictions,

because of an insufficient amount of data for model calibration that did not constrain

estimations of K in scenario 4. Considering time points 2-5 and scenarios 1-4, the

overall uncertainty in the predicted epidemic size was reduced as more data was

made available for model calibration, but the GRM achieved better coverage of the

observed final epidemic size than the logistic. In particular, Figure 3.4 shows that 95%

confidence bars of final epidemic size predictions provided by the GRM contained the

true epidemic size 8 out of 16 times (50% success rate) and had an average MAPE of

0.30 across all scenarios. In contrast, the logistic model consistently underestimated

the final epidemic size in all scenarios during time points 2-5 with an average MAPE

of 0.31 across all scenarios and 95% confidence bars that never contained the epidemic

size, see Figure 3.4.

Estimations of the generation interval assuming a gamma distribution yielded

reasonably good fits, with mean generation times in the range of 11.9-17.1 days and

variance in the range of 8.3-42.3 days across scenarios 1, 3 and 4.

Using the estimated mean generation time and variances from transmission tree

data from scenario 1, 3 and 4 to calculate the effective reproduction number yielded

overestimates. Most notable are the estimations by both models in scenario 4, where

the variance was the largest at 23.7 days. Across all scenarios, the GRM performed

better that the logistic with an MAPE of 2.37, while the logistic model had an MAPE

value of 2.64. In contrast, estimates of the effective reproduction number provided

reasonable predictions under the assumption of a gamma distributed generation in-

terval with a mean of 16 days and variance of 8 days, see Figure 3.3 and Table 3.2.
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In particular, the GRM again outperformed the logistic model with an MAPE of 0.08

compared to 0.10, averaged across all scenarios and time points.

Mean estimates of the deceleration of growth parameter (p) during the early

growth phase derived by fitting the GGM to the first 10 weeks of the epidemic ranged

from .35-.71, .51-.92, .26-.5 and .17-.85 for scenarios 1, 2, 3 and 4 respectively (Fig-

ure 3.5). The range of p for scenarios 1 and 3 support sub-exponential growth profiles

with substantial uncertainty. In contrast, scenario 2 and 4 yield ranges of p that may

potentially indicate near exponential growth, but also include values that support

sub-exponential growth.

During the challenge the logistic equation coupled with Uncertainty Method 1

consistently underestimated the final epidemic size, peak timing and the number of

cases at peak timing with an average MAPE of 0.49, 0.36 and 0.40 respectively (Fig-

ure 3.8). Estimations of the effective reproduction number showed similar behavior

with an average MAPE across all scenarios of 0.22 (Figure 3.7). In contrast, quanti-

tative improvements were seen with the logistic model by using Uncertainty Method

2 (Figure 3.7). For instance, the mean MAPE across all scenarios and time points of

the effective reproduction number decreased to 0.10 with Uncertainty Method 2. Sim-

ilarly, across all scenarios, incidence target RMS decreased from 177.83 to 78.00 using

Uncertainty Method 1 and Uncertainty Method 2, respectively (see Table 3.3 and

Table 3.1). Performance statistics for the logistic model using Uncertainty Method

1 are reported in Table 3.3 and should be compared with results from Uncertainty

Method 2 in Table 3.1.

3.4 Discussion

To improve the understanding of real time forecasting of epidemics, we have as-

sessed the forecasting performance of two simple phenomenological models using the
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Figure 3.2: Epidemic forecasts based on the logistic (Equation 3.1; left column) and
the generalized Richards model (Equation 3.2; right column) calibrated on epidemic
data up to the second time point (left vertical line): 20, 27, 14 and 23 epidemic weeks
for scenarios 1, 2, 3 and 4, respectively. The four data points (red circles) contained
in the interior of the region bounded by the two vertical lines are the forecasting
incidence targets used to calculate the statistics in Table 3.1. The mean (solid black
line) and 95% uncertainty bounds for the calibrated model (light blue curves) and the
95% confidence bands (dashed black lines) of 200 forecasting ensembles (gray curves).
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Figure 3.3: Mean estimates of the effective reproduction number from the logis-
tic growth model (Equation 3.1; left column) and the generalized Richards model
(Equation 3.2; right column) derived from Equation 3.3. Models provided reasonable
forecasts among all scenarios (rows). Predictions for each scenario are obtained by fit-
ting the corresponding model to an increasing amount of epidemic data: time points
1, 2, 3 and 4 respectively and using Equation 3 with a gamma distributed generation
time with mean 16 days and variance of 8 days.
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Figure 3.4: The Generalized Richards model (right column) provided improved
forecasts over the logistic model (left column) of the expected epidemic size using
data of the evolving epidemic at different time points namely 20, 27, 14 and 23
epidemic weeks.

49



Figure 3.5: (left column) Short-term epidemic forecasts based on the generalized-
growth model calibrated using an increasing amount of epidemic data (red line with
circles): 5, 10, and 15 epidemic weeks for each scenario. The mean (blue solid line)
of the model fit and forecasting ensembles (gray curves) are shown. (right column)
Mean estimates and corresponding 95% confidence intervals of the deceleration of
growth parameter, p, derived using the generalized-growth model fitted to an increas-
ing amount of case incidence data: 5, 10, and 15 epidemic weeks.
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Scenario Logistic GRM
Pearson’s R RMS MAPE Pearson’s R RMS MAPE

Scenario 1
Time point 1 -0.13 38.43 0.32 0.65 45.17 0.4
Time point 2 -0.79 105.02 0.28 0.95 80.95 0.22
Time point 3 0.76 73.27 0.29 -0.65 140.61 0.56
Time point 4 0.97 80.44 0.64 0.97 51.08 0.4
Time point 5 0.84 31.21 0.78 0.85 7.24 0.16

Scenario mean 0.33 65.67 0.46 0.55 65.01 0.35
Scenario 2
Time point 1 0.98 17.16 0.11 0.98 34.62 0.24
Time point 2 -0.83 107.98 0.46 -0.85 78.89 0.33
Time point 3 0.58 143.75 0.49 0.81 28.14 0.09
Time point 4 0.72 51.79 0.28 0.75 80.9 0.52
Time point 5 0.91 13.37 0.44 0.9 19.41 0.64

Scenario mean 0.47 66.81 0.36 0.52 48.39 0.36
Scenario 3
Time point 1 -0.89 21.16 0.51 0.89 19.48 0.45
Time point 2 -0.97 77.11 0.48 -0.97 62.15 0.41
Time point 3 -0.46 76.43 0.28 0.38 17.86 0.05
Time point 4 0.91 18.14 0.08 0.93 69.41 0.41
Time point 5 0.87 10.38 0.23 0.88 10.56 0.24

Scenario mean -0.11 40.64 0.31 0.42 35.89 0.31
Scenario 4
Time point 1 0.98 61.12 0.48 0.98 31.34 0.28
Time point 2 0.57 73.15 0.23 0.83 93.54 0.31
Time point 3 -0.13 89.53 0.21 -0.13 73.05 0.17
Time point 4 -0.94 171.94 0.4 -0.96 90.24 0.18
Time point 5 -0.9 298.75 0.61 -0.87 181.53 0.37

Scenario Mean -0.08 138.9 0.39 -0.03 93.94 0.26
Mean across all scenarios 0.15 78.01 0.38 0.37 60.81 0.32

Table 3.1: Incidence performance statistics for the logistic growth model and gen-
eralized Richards equation.

synthetic incidence data generated from the 2015 Ebola Challenge. During the contest

we employed the logistic equation to provide estimates of epidemic size, peak timing

and the effective reproduction number using Uncertainty Method 1. The simplicity

of this approach allowed us to provide fast estimates, but produced poor forecasting

estimates when coupled with Uncertainty Method 1 because it failed to capture the

uncertainty associated with the best fit to data. Our retrospective analysis indicates

that improved uncertainty measures can be obtained using parametric bootstrap with

Poisson error structure (Uncertainty Method 2). We compared the performance of the

logistic model and the generalized Richards model calibrated with varying amount
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Scenario GRM Logistic Observed R
Scenario 1
Time point 1 1.46 1.47 1.66
Time point 2 1.38 1.36 1.39
Time point 3 1.27 1.21 1.08
Time point 4 0.79 0.69 0.89
Time point 5 0.79 0.63 0.76
Scenario 2
Time point 1 1.46 1.53 1.54
Time point 2 1.02 0.95 1.04
Time point 3 1.11 0.92 1.05
Time point 4 1.05 0.84 0.88
Time point 5 0.79 0.76 0.64
Scenario 3
Time point 1 1.95 2.18 1.62
Time point 2 1.25 1.26 1.41
Time point 3 1.36 1.30 1.35
Time point 4 1.13 0.99 1.03
Time point 5 0.62 0.63 0.68
Scenario 4
Time point 1 1.66 1.85 1.74
Time point 2 1.46 1.45 1.59
Time point 3 1.22 1.20 1.19
Time point 4 1.04 0.94 0.99
Time point 5 1.01 0.85 1.02

Table 3.2: Predicted and observed values of the effective reproduction number, using
Uncertainty Method 2.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 All Scenarios
R2 -0.41 -2.36 -1.91 -13.73 -0.95
Pearson’s R 0.72 0.58 0.55 -0.24 0.7
MSE 15172.34 26988.96 20969.51 63362.58 31623.35
RMSE 123.18 164.28 144.81 251.72 177.83
MAE 99.4 143.79 124.03 235.55 150.69
MAPE 0.64 0.75 0.79 0.6 0.7

Table 3.3: Summary of mean performance statistics of the incidence targets for
the logistic growth model using method 1, during the challenge. The last columns
averages values across all scenarios.
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Figure 3.6: Distribution of generation times (blue bars) and the fitted gamma distri-
bution with parameters a and b (red line) for scenarios 1, 3 and 4. Note that scenario
2 did not provide any transmission tree data.

of epidemic data. By changing the method used to model error in the best fit to

data, we improved the performance of the logistic models ability to estimate the ef-

fective reproduction number. This highlights the sensitivity the calibration process

can have on a models ability to estimate key quantities. Although, the logistic model

coupled with Uncertainty Method 2 was an improvement, we saw an even further im-

provement when using the GRM. In particular, GRM obtained closer final epidemic

size estimations with less data than the logistic. Finally, the logistic equation and the

GRM provided similar estimates of the reproduction number and provided reasonably

accurate results given their phenomenological nature.

Inclusion of the parameter p in the GRM is motivated by studies that have recently

shown support for the presence of early sub-exponential growth dynamics (Viboud
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Figure 3.7: Means of the effective reproduction number Re(t) throughout the chal-
lenge predicted by the logistic growth model using Uncertainty Method 1 (left col-
umn) and Uncertainty Method 2 (right column). For each scenario, estimations are
based on an increasing number of data points that were made available during time
points 1-5. Observed effective reproduction numbers (red circles) are displayed for
comparison.
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Figure 3.8: Means of the predicted (solid lines) epidemiological quantities and their
true values (dashed lines) for the logistic growth model with method 1 (left column)
and method 2 (right column).

et al., 2016; Chowell and Nishiura, 2015). In addition, the logistic model and GRM

both assume that as more cases accumulate, the susceptible population is depleted.

However, this phenomenological saturation effect in these models only becomes im-

portant during the later stages of the epidemic and could captures behavior changes,

public health interventions and other disease prevention strategies that may take

place during an evolving epidemic.

Because of a misunderstanding during the challenge, estimations were submit-

ted for the basic reproduction number instead of the effective reproduction number.
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Consequently, this led to incorrect predictions of the reproduction number during the

challenge. Here we provide corrected results using Equation 3.3, which are displayed

in( 3.7 (left column) and summarize the rest of the predictions made by the logistic

model during the challenge in Table 3.3 and Figure 3.8 (left column).

Our mean synthetic estimates of the reproduction number during the early epi-

demic growth phase are in broad agreement with published estimates of the repro-

duction number derived from real Ebola epidemics including for past outbreaks in

Central Africa (Chowell et al., 2004; Legrand et al., 2007) and estimates derived for

the 2014-15 Ebola in West Africa (Chowell and Nishiura, 2014; Althaus, 2014; Towers

et al., 2014; Fisman et al., 2014; Nishiura and Chowell, 2014) or estimates based on

a transmission tree of Ebola cases in Guinea during March-August 2014 Faye et al.

(2015). Moreover, it is worth noting that our estimates of the effective reproduction

number follow a declining trend during the early growth phase, a pattern that is in line

with polynomial rather than exponential early epidemic growth dynamics (Chowell

et al., 2014b; Viboud et al., 2016; Chowell et al., 2016b). Polynomial epidemic growth

could result from a number of factors including contact network characteristics (Funk

et al., 2010) and reactive behavior changes that gradually mitigate the transmission

rate (Chowell et al., 2014b). Simple phenomenological models composed of a small

number of equations and parameters have shown promise in generating forecasts of

epidemic impact based on early outbreak data (e.g., (Chowell et al., 2014a; Nishiura

and Chowell, 2014; Fisman et al., 2014; Hsieh and Cheng, 2006)). For instance, the

well-known logistic model provides a simple description of a single epidemic outbreak

using only two parameters: the growth rate r and the final epidemic size K. How-

ever, a limitation of this and other models is the rigid assumption of early exponential

growth dynamics. Using the logistic model, the exponential growth assumption was

shown to work relatively well to describe and generate forecasts of the 2014 Ebola
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epidemic in Liberia (Chowell et al., 2014a), but it failed to provide a good fit to the

early epidemic phase of the Ebola epidemics in Guinea and Sierra Leone (Chowell

et al., 2014a) where polynomial growth better characterized the early epidemic growth

phase of the epidemic in those countries (Chowell et al., 2014b). Our work here based

on synthetic Ebola epidemic data derived from a detailed agent-based model (Merler

et al., 2015) and a recent analysis of a Zika epidemic in Antioquia, Colombia (Chowell

et al., 2016a) further emphasize the importance of designing models that reliably cap-

ture the epidemic growth phase of epidemic outbreaks in order to generate improved

disease forecasts.

Reliably assessing a developing infectious disease outbreak as quickly as possible

allows for policy makers to make swift and well informed decisions on the type and

intensity of interventions that would be needed to ensure epidemic control. When

substantial uncertainty surrounds the transmission, clinical, or epidemiological char-

acteristics of the infectious agent encumbers the development of mechanistic trans-

mission models that incorporate details about transmission modes, epidemiological

stages, and effects of interventions, phenomenological models (e.g. (Chowell et al.,

2014a; Fisman et al., 2013; Hsieh and Chen, 2009)) based on a few number of equa-

tion and parameters have the potential for providing a starting point to forecast

epidemic impact (e.g. epidemic size), assess the early growth phase during the first

few disease generations, and characterize the reproduction number, and represent a

starting point towards a first response suite of mathematical models for addressing

emerging infectious disease outbreaks.
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Chapter 4

ANALYZING THE 1905-1906 PLAGUE EPIDEMIC IN BOMBAY

4.1 Introduction

Up until now, we have used mathematical models to assess Ebola virus disease. In

this chapter, we change gears and assess the ability of simple phenomenological models

to fit epidemic data from a completely different pathogen with a different transmission

process. In particular, 1906 plague epidemic data from Bombay is used, because of

its in-depth account that was recorded by the research commission established in

Bombay during that time.

As discussed in chapter 1, Ebola virus disease is usually transmitted through direct

contact with blood or body fluids of a person who is sick with or has died from EVD

or through direct contact with infected bats or primates (Funk and Kumar, 2015;

CDC, 2014). In contrast, plague was spread by infested fleas as well as exposure

to the tissue and fluids of an animal infected with the plague (Mus rattus (house

rat), Mus decumanus (field rat) and Nesokia bandicota (bandicoot)), but not entirely

human to human.

We compare and contrast the abilities of three simple models to fit plague data for

each of the twelve sections in Bombay during the year 1906. We use the basic logistic

equation, Richards model (Richards, 1959) and the generalized Richards model.

In section 4.2, we introduce the mathematical models that we will be comparing

and contrasting. Section 4.3 contains the results of best-fit parameter estimations.

In section 4.4, we discuss our results and propose further directions.
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4.2 Methods

4.2.1 Models

Two mathematical models are nested if one (the restricted model) is obtained

from the other (the full model) by setting some parameters to zero (i.e. removing

terms from the model), or some other constraint on the parameters.

We employ a family of nested models which for simplicity we’ll call Model 1, Model

2 and Model 3:

C ′ = rC

(
1−

(
C

K

))
, (4.1)

C ′ = rC

(
1−

(
C

K

)a)
, (4.2)

and

C ′ = rCp

(
1−

(
C

K

)a)
. (4.3)

Observe that Model 1 is a nested model of Model 2 and Model 2 is a nested model

of Model 3. Note that Model 1 is the logistic equation, Model 2 is Richards equation

and Model 3 is a generalized version of Richards equation. As in previous chapters

of this dissertation we interpret r as the intrinsic rate of infection, a measures the

temporal behavior change intensity, K as the final epidemic size and p (0 < p ≤ 1) as

a deceleration parameter of the early epidemic growth phase (Viboud et al., 2016).

4.2.2 Derivation of Model 1 and Model 2

The model derivation given in chapter 2 can be extended to derive Richards’

model (Richards, 1959). As before, we make the assumption that the per-capita
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infection rate is a decreasing function of the cumulative number of infected cases,

I ′(t)

I(t)
= f(C(t)) (4.4)

In the following, we assume that f(C(t)) = r(1 − (bC(t))a) for some positive

constants r, b and a. Hence

I ′(t) = rI(t)(1− (bC(t))a) =
r

β
C ′(t)(1− (bC(t))a).

Therefore,

I(t)− I(0) =
r

β

(
C(t)− ba

a+ 1
[C(t)]a+1

)
− r

β

(
C(0)− ba

a+ 1
[C(0)]a+1

)
.

Since I(0) = C(0) ≈ 0, we see that I(t) can be approximated by

r

β

(
C(t)− ba

a+ 1
[C(t)]a+1

)
.

Therefore

C ′(t) = βI(t) = r

(
C(t)− ba

a+ 1
[C(t)]a+1

)
= rC(t)

(
1−

(
C(t)

K

)a)
, (4.5)

where K = (a+1)1/a

b
. Here we interpret r as the intrinsic infection rate, b is a propor-

tionality constant that corresponds to strength and effectiveness of disease interven-

tions and preventive strategies, K is the final epidemic size and a corresponds to a

nonlinear change in the behavior response which can be interpreted as the intensity of

the behavior response as more cases are reported. Observe that Model 1 is a special

case of Model 2 with a = 1.

4.2.3 Data

Data comes as reported death counts from (Commission et al., 1907). The built-in

MATLAB function LSQCURVEFIT was used to obtain parameters estimations for

the best model fit.
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4.2.4 Parameter Estimation

All parameters can be estimated by nonlinear least-square curve fitting to the. As

in previous chapters, we use the built-in MATLAB function lsqcurvefit, to estimate

r, a, p, and K. The initial number of cases C(0) is fixed according to the first

observation.

4.2.5 Statistical Comparison

To compare the best fits using Models 1-3, we perform two F-tests (Model 1 vs

Model 2 and Model 2 vs Model 3). An F-test can be used to compare two nested

models used to fit the same data set to determine whether the model with more

parameters statistically improves the fit. The improvement is said to be statistically

significant if the resulting p-value is less than .05. The F-ratio is defined as

F =
(RSSR −RSSF )/(dfR − dfF )

RSSF/dfF
, (4.6)

where RSS is the sum of squared residuals between model predictions and observed

data. The subscripts F and R, denote the full and restricted model respectively. We

note, that Model 1 is a restricted version of Model 2, Model 2 is a restricted version

of Model 3. The degrees of freedom associated with RSS is df = N − P , where N

is the number of data points and P is the number of fitted parameters. Lastly, to

compute the associated p-value, we calculated the F-distribution evaluated at the

F-ratio with (dfR − dfF , dfF ) degrees of freedom. Comparisons between models was

performed individually for all districts.
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4.3 Results

4.3.1 Best fit: Model 1 vs Model 2

We compared the best fits of using Model 1 and Model 2 by performing an F-test,

which determines which one of the two nested models provides a better data fit from

a statistical standpoint (Section 4.2.5). Results given in Table 4.1 show that Model

2 provides significantly better fits than Model 1 for 9 out of the 12 data sets (with

the p-value< 0.05). For the other data sets (districts 2,4 and 9), the F-test shows

that there is a statistical trend that supports Model 1 (with the p-value ranging from

.07 to .23). We have given the root mean square error (RMSE) Table 4.1 for further

model comparison.

District p-value RMSER RMSEF

1 < .05 7.40 6.59

2 0.19 11.27 10.72

3 < .05 8.85 5.86

4 0.07 6.68 6.25

5 < .05 16.39 10.31

6 < .05 8.15 7.21

7 < .05 10.41 8.30

8 < .05 11.00 7.17

9 0.23 7.05 6.72

10 < .05 6.19 4.96

11 < .05 6.61 3.91

12 < .05 4.52 3.63

Table 4.1: Model comparison results for Model 1 vs Model 2
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District p-value RMSR RMSF

1 < .05 6.59 4.17

2 < .05 10.72 8.64

3 1.00 5.86 5.86

4 0.32 6.25 5.97

5 1.00 10.31 10.25

6 1.00 7.21 7.21

7 1.00 8.30 8.30

8 1.00 7.17 7.17

9 < .05 6.72 4.41

10 0.18 4.96 4.69

11 < .05 3.91 2.78

12 1.00 3.63 3.63

Table 4.2: Model comparison statistics for Model 2 vs Model 3

4.3.2 Best Fit: Model 2 vs Model 3

Results from comparing Model 2 and Model 3 support that Model 2 (the restricted

model) is the better model. Indeed, results given in Table 4.2 show that Model 3

provides significantly better fits than Model 2 for only 4 out of the 12 data sets (with

the p-value< 0.05), while Model 2 has 8 better fits out of the 12.

4.4 Discussion

A family of nested models based on the logistic equation was assessed for use is

modeling the spread of plague. We extended work in Pell et al. (2016) by deriving the

Richards model from a behavior change assumption and showed that the logistic is

a special case when a = 1. Furthermore, we gave an interpretation of the parameter

a as a measure of the nonlinear change in behavior. We introduced the generalized
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Richards model and related the parameter p to a previous study where it was estab-

lished as a measure of sub-exponential, exponential or super-exponential growth in

the early phase of an epidemic depending on if p < 1, p = 1 or p > 1, respectively.

In general, adding more complexity by incorporating the nonlinear behavior change

into the Logistic model gave better fits to plague reported case data from the 1904

epidemic..

Statistical comparison using the F-test, showed that Model 2 is statistically better

than Model 1 and Model 3. Indeed, Model 2 provides significantly better fits for 9 out

of the 12 data sets than Model 1 and provides significantly better fits for 8 out of the 12

data sets than Model 3, see Figure 4.1. These results highlight the importance of the

parameter a in the Richards model. Indeed, as explained above, a can be interpreted

as the nonlinear behavior change of the population as a function of the number of

reported cases. In contrast to parameter a, p is not important for modeling plague

in the generalized Richards model, except when p = 1 which reduces the generalized

Richards model to the Richards model.
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Figure 4.1: Confidence intervals for parameter a of the Richards model for all district
data used. Values near 1 show evidence of a linear behavior change. The red dashed
line represents 1.

Our results support near exponential growth during the 1904 plague epidemic in

Bombay, as found in (Viboud et al., 2016). However, Fort North and South show

signs of sub-exponential growth (p ≈ .4). One possible reason for this is the overall

better quality of the buildings in this part of Bombay. Indeed, the report by the

commission (Commission et al., 1907), describes the houses here being built better

than in the native quarter. Additionally, Fort North and South was surrounded by

the esplanade, where plague was not commonly found and ultimately isolated Fort

North and South from the rest of the city.

Our results also support the use of the very common assumption of exponential

growth in more mechanistic models of plague. Interestingly, not all diseases have
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shown this same characteristic (Viboud et al., 2016).
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Figure 4.2: Confidence intervals for parameter p for the generalized Richards model
for all district data used. Values near 1 show evidence of exponential growth. The
red dashed line represents 1.
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Chapter 5

THE INFLUENCE OF MIGRATION ON FINAL EPIDEMIC SIZE

5.1 Introduction

In this chapter, we numerically explore the impact that migration has on the

final epidemic size and the effective reproduction number by using the 1905 Bombay

epidemic as a case study.

The city of Bombay is a narrow island that is roughly 10 miles long and 3 miles

across at its greatest stretch and roughly comprises 22.4 square miles. During the

1905-06 plague epidemic, Bombay, was joined to the larger island of Salsette by two

causeways and two railway lines. Within the city, many districts existed that were all

interconnected. Interestingly, Fort North and South, a district within Bombay, was

mostly isolated from the other districts by a large barren field, called the Esplanade

(which also was notably exempt from plague).

5.2 Methods

We wish to apply the three-patch model from chapter 2 to model the impact

that the Esplanade has on the final epidemic size and the basic reproduction number

during the 1905 epidemic. In general, we wish to study how the final epidemic size and

the basic reproduction number changes as we change migration between the patches.

With this in mind, we let Forth North and South be patch 1. From the map of

Bombay city, we designate the second patch to be comprised of Mandvim, Chakla,

Market, Oomarkhadi, and Dongri. Lastly, Dhobi Talao, Bhuleshwar, Fanaswadi,

Khara Talao, Khumbharwada and Khetwadi. This partitions part of Bombay into
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Param. r1 r2 r3 m12 m21 m13 m31 m23 m32 K1 K2 K3

Value 0.088 0.062 0.189 0.054 0.004 0.010 0.001 0.607 0.601 333.357 2366.903 2520.110

Table 5.1: Resulting best fit parameter set.

three main patches that we have data for, see figure 5.1.

Next, we simultaneously fit each xi to the corresponding incidence data that was

described above to obtain a best fit parameter set. Throughout the exploration, we

shall keep all parameters fixed to these values, unless we specify.

Recall the three-patch model from chapter 1, where xi, ri, and Ki represent the

cumulative number of infections, intrinsic infection rate and final epidemic size in

patch i. Lastly, mij is the rate at which cumulative infections travel from patch i to

patch j.

x′1 = r1x1

(
1− x1

K1

)
− (m12 +m13)x1 +m21x2 +m31x3,

x′2 = r2x2

(
1− x2

K2

)
− (m21 +m23)x2 +m12x1 +m32x3,

x′3 = r3x3

(
1− x3

K3

)
− (m31 +m32)x3 +m13x1 +m23x2.

Let and x =
∑N

i=1 xi. As with the derivation of Re and R0 for the logistic model

above, define the basic reproduction number for an N -patch model as

Re(t) = exp

(
r̂

∫ t+T

t

1− 2

K̂
x(s) ds

)
,

where r̂ =
∑N
i=1 riKi

K̂
, K̂ =

∑N
i=1Ki are weighted averages and for simplicity we

assume T = 7 days (Ali et al., 2014). Similarly to above, we define R0 := Re(0) ≈ erT .

Although we are not concerned with assessing the model fit to data, we present it

in Figure 5.3 and present the best fit parameter values in Table 5.1.
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Figure 5.1: Map of Bombay. The rectangular region is the study area. Taken from
(Commission et al., 1907)
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Figure 5.2: Enlarged view of the study area. Patch 1 comprises the light blue area,
patch 2 comprises the dark gray area and finally, light gray represents the 3rd patch.
Note how the Esplanade surrounds Fort North and South, creating a barrier between
patch 1 and patch 2 and 3. The numbers show the population per acre.

5.3 Controlling migration in Bombay

Case 1 (migration into patch 1): As migration into patch 1 by the other two

patches increases, the final epidemic size of the system decreases. That is, by sending

people into the patch with smaller intrinsic infection rate (r1) and smaller isolated

final epidemic size (K1), the overall final epidemic size will decrease (Figure 5.4; left).

Case 2 (migration out of patch 1): In contrast to case 1, by increasing migra-

tion out of patch 1 into the rest of the city (patch 2 and 3), the overall final epidemic

size increases for migration values (m12 and m13) near 0, but ultimately decreases the

final epidemic size as migration increases. Simply put, the model predicts that by

sending people into a more volatile patch does not have as large effect as to sending

them to a less volatile patch (Figure 5.4; right).
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Figure 5.3: Model Fit to Incidence Data from Bombay. Patch 1 consists of Fort
North and South. Patch 2 consists of Mandvim, Chakla, Market, Oomarkhadi, and
Dongri. Lastly, patch 3 comprises, Dhobi Talao, Bhuleshwar, Fanaswadi, Khara
Talao, Khumbharwada and Khetwadi.

Case 3 (migration between patch 2 and patch 3): This case models what

happens to the final epidemic size, as migration is changed within the city (patch 2

and 3). We see that, when both patches have approximately equal migration rates

(m32 and m23), the overall final epidemic size increases above the value K1 +K2 +K3

(the final epidemic size when all patches are isolated).
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Figure 5.4: The effect of controlling migration rates in and out of Fort North and
Fort South and how they influence the final epidemic size. (Left; migration into
Fort North and South) In this case the model shows that the final epidemic size is a
decreasing functions of m21 and m31. (Right) The effect of letting people from Fort
North and Fort South into the rest of the city can possibly increase the final epidemic
size above what it would be if all patches were isolated from each other. In this case,
migration does not have as big an impact as in the previous case.

Figure 5.5: Final epidemic size as a function of m23 and m32. The model predicts
that it’s possible for the overall final epidemic size to be larger than K1 +K2 +K3.

5.4 Discussion

The numerical exercise reveals the role of migration and spatial structure in pro-

jecting disease burden. It further shows the insight that can be gained by modeling

the cumulative number of infected individuals with patch models.

The effect of controlling migration rates in and out of Fort North and Fort South
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and how they influence the final epidemic size. In the left plot shown in Figure 5.4, we

see that the final epidemic size is a decreasing functions of m21 and m31. In contrast,

the right panel shows the effect of letting people from Fort North and Fort South into

the rest of the city. Ultimately, the model predicts that this can possibly increase

the final epidemic size above what it would be if all patches were isolated from each

other. Lastly, Figure 5.5 shows that migration can have a positive effect on the final

epidemic size.

In all of these bifurcations we can see the need for quarantine and travel control.

Since the horizontal line represents when all three parts of the district are isolated

from one another the bifurcation diagrams show the impact isolation protocols have

on final epidemic size.
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Chapter 6

WITHIN-HOST DYNAMICS OF CEREAL YELLOW DWARF VIRUS IN AVENA

SATIVA

6.1 Introduction

In this chapter, we change gears from modeling at the population level and model

within-host interactions of Cereal Yellow Dwarf virus-RPV (CYDV-RPV) from an

experiment by Kendig et al. As noted in chapter 1, CYDV-RPV, is a plant virus

that infects over 150 species of grasses and is vectored by Rhopalosiphum padi (the

“RP” in RPV). Like previous chapters, the development and iteration of the two

mathematical models presented here are motivated and guided by data. As we shall

see, the best fit solutions from our models uncover patterns that otherwise would be

hard to identify when viewing the data by itself.

After being injected by the stylus from an infected aphid, CYDV-RPV enters the

phloem cells of its plant host, where it replicates. The phloem cells in plants are used

to transport sucrose throughout the plant (Raven et al., 2005) and help in spreading

the virus. Phloem cells that make up grasses come in two general types: sieve tube

elements (the cells that ”transport” sucrose) and cells that support the sieve tube

elements. This latter class of cells include companion cells and other specialized

parenchyma cells.

Since CYDV-RPV infect sieve tube elements and ultimately damages or destroys

them, they inhibit the movement of crucial resources and carbohydrates to the roots

and leaves. The reduction of nutrients to these plant structures is the proposed

mechanism by which CYDV-RPV reduces the growth of its plant host (Erion and
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Riedell, 2012).

In an experiment by Kendig et al., Avena sativa (common oats) were inocu-

lated with CYDV-RPV. Plant soil then underwent four different nutrient solution

treatments to test the effects of nutrient concentration on virus dynamics within the

plants. Plants were treated with a control solution (CTRL), a nitrogen addition so-

lution (+N), a phosphorus addition solution (+P) and finally a treatment with both

nitrogen and phosphorus addition (+NP), see Fig.6.1. To investigate the dynamics

of the virions (virus particles), we turn to mathematical models.

6.2 Data and Questions

Fig. 6.2 shows interesting dynamics that change under different nutrient treat-

ments. In the control experiment, virion concentrations remain low, until 18 days

post inoculation, when the virion population grows quickly. Furthermore, the virion

population in the control experiment is larger than in all other experiments. In the

nitrogen addition experiment, virion population is dramatically reduced when com-

pared to the control experiment. The phosphorus addition experiment also reduces

virion population, but not as much as the previous case. Additionally, two subtle

“bumps” before the high growth of the virion population can be seen in the CTRL

data.

Motivated by the reduced virion population under different nutrient regimens

compared to the control experiment and the “bumps”, we focus on developing math-

ematical models motivated by the two following questions:

1. How to derive a within-host pathogen model where growth of the virus pop-

ulation is dependent on the resource nutrient concentration taken up by the

plant?
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Figure 6.1: Virion data from plants grown under different nutrient solutions.

2. Can the shape of the data in from the different nutrient regimens be explained

by a delay in virus production?

6.2.1 The Droop Equation

To tackle our first goal, we construct a mathematical model that describes the

dynamics of susceptible cell, infected cell, virus populations and nutrient supply. In

addition, as a first iteration model, we choose to only model one nutrient.

Since virions can only replicate within a host’s cell, it is important to accurately

describe the amount of nutrient in the host’s cells. Nutrient-controlled growth rates

77



0 10 20 30 40 50
Q

0

0.2

0.4

0.6

0.8

1

µ

Q
µ

m

Figure 6.2: Relation between dilution rate (D) and cell quota (Q) where D
µ

is

assumed to be constant. M. Droop 1968 (left). Plot of Droop equation (Equation 6.1),
q = 3, µmax = .8 (right). Note: it is useful to remember that dilution rate is equal to
growth rate when the chemostat is at steady state.

can be employed via the Droop cell model (Droop, 1973a,b, 1974). Droop showed

that there existed an empirical relationship between algal specific growth rate and

the intracellular concentration of vitamin B12 inside the chemostat in which algal was

being grown. Droop defined the cell quota, Q, as the total cell nutrient per unit

biomass. He discovered a simple relationship between specific growth rate (µ) and

the cell quota:

µ = µm

(
1− q

Q

)
, (6.1)

where the subsistence quota, q, is interpreted as the minimum Q required for life

and µmax is the maximum specific growth rate. We present a comparison of Droop’s

original plot of the cell quota equation and Equation 6.1 in Figure 6.2.

Recently, the Droop equation has been applied to model dynamics of cancer

growth (Portz et al., 2012; Everett et al., 2015, 2014) and has been used to derive the

logistic equation (Kuang et al., 2004a).

To generalize to n nutrients one could use Liebigs law of the minimum: an organ-

ism’s growth will be limited by the resource that is in lowest supply with respect to
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the organism’s needs, to obtain a similar growth function,

µ = µm min

{(
1− q1

Q1

)
, ...,

(
1− qn

Qn

)}
.

6.3 Nutrient Growth Model Derivation

Let S and I be the number of susceptible and infected cells respectively and V

be the number of virions. Since virus particles that cause cereal yellow dwarf disease

are restricted to the phloem of host plants we let S represent a typical phloem cell.

Consider the following model derivation with nutrient limited virus and cell growth.

6.3.1 Healthy Phloem Cells and Nutrient Uptake

We assume that in the absence of infection, the susceptible cells obey nutrient

limited growth via the Droop equation Droop (1973b,a, 1974). That is, let NS and

Nf be the nutrient in the plant’s cells and the free nutrient respectively, then the

total amount of nutrient in the (closed) system is Nt = NS + Nf . Let Q = Q(t) be

the plant’s cell nutrient quota. With this, we may write down a governing equation

for S,

dS

dt
= µm

(
1− q

Q

)
S −mS,

where the maximum specific growth rate is µm and we have included a natural death

rate, m, of the cells.

To formulate a governing equation for Q, we let the rate of change of free nutrient,

Nf , change according to

dNf

dt
= −αSNf +DSQ, (6.2)

where the first term approximates the loss of free nutrient by the uptake by cells,

and the second term represents the nutrient that is released back into the environment
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when cells die. Since NS = QS we obtain Nt = Nf + QS. Solving for Q and

differentiating with respect to t and using the fact that
dNf
dt

= −αNf + DSQ, we

obtain

dQ

dt
=
−SN ′f − (Nt −Nf )S

′

S2

=
S (αSNf −DQS)− (Nt −Nf )

(
µm

(
1− q

Q

)
S −DS

)
S2

= αNf − µm (Q− q)

= α (Nt − SQ)− µm (Q− q) .

Therefore, we arrive at a simple model for nutrient cell growth in the absence of

infection,
dS

dt
= µm

(
1− q

Q

)
S︸ ︷︷ ︸

growth

− mS︸︷︷︸
death

dQ

dt
= α (Nt − SQ)︸ ︷︷ ︸

Uptake

− µm (Q− q) .︸ ︷︷ ︸
loss from cell growth

(6.3)

Under the assumption that all parameters are positive, Everett showed this model

exhibits a unique positive steady that is globally asymptotically stable (Everett,

2015).

6.3.2 Infected Phloem Cells

We assume that infection of healthy phloem cells is governed by mass action and

release virus at rate δ. With these assumptions the governing equation for the rate

of change of infected phloem cells is

dI

dt
= βSV︸︷︷︸

infection

− δI.︸︷︷︸
viral shedding

(6.4)

Due to the introduction of infected cells and virus particles, we include the cell
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quota contained within infected cells and virus particle, I (Q+ θ) and θ respectively

in the equation for total nutrient,

Nt = Nf + SQ+ I(Q+ θ) + θV. (6.5)

Where we have assumed that the infected cell population have their growth mech-

anism hijacked by the virus and the amount of nutrient contained within a virus

particle is equal to θ.

6.3.3 Free Virions

Our modeling approach as of now has been similar to work by Fuhrman et

al., but we now diverge from their work by incorporating nutrient dependent virus

growth (Fuhrman et al., 2011).

Virions are relatively homeostatic and must process nutrients within the host to

replicate. Furthermore, virions are simple in structure (a genome and protein capsid)

and elemental composition. Thus we make the assumption that the cell nutrient

inside of a virus particle is constant for all time and is equal to θ.

One way to model the growth function of the virion population is to simply assume

that it also behaves like the Droop equation. That is

b(Q) = bm max{
(

1− qv
Q

)
, 0}, (6.6)

where qv is the minimum amount of nutrient needed for virion production. In the

case when Q < qv, we assume that there is not enough nutrient for virus production

and is therefore 0, which ultimately amounts to introducing the maximum function.

In short, this function relates the growth rate of the virus (b(Q)) to the nutrient

concentration inside the cells of the host plant (Q).
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Free virions are produced at a maximum rate, bm, per infected phloem cell per

unit of time and are destroyed or cleared by the immune system at rate d. Free virions

that are not destroyed or cleared are assumed to be absorbed by neighboring phloem

cells.

dV

dt
= b (Q) δI︸ ︷︷ ︸

New virions

− dV︸︷︷︸
Cleared Virions

− βSV︸︷︷︸
absorption

(6.7)

6.3.4 Free Nutrient Equation

With the added infected cell and virus populations we obtain an updated equation

that governs the free nutrient within the system, equation (6.5). As we did before, to

find an updated governing equation for Q, we let the change of free nutrient change

according to

dNf

dt
= −αNf (S + I) +mSQ+ dθV + δIQ̂, (6.8)

where the first term is the loss of free nutrient due to cell uptake, the second and

third are from the release of nutrient due to healthy cell death and virus death and

the third term represents nutrient that is released when infected cells die, where,

Q̂ = Q︸︷︷︸
Quota initially

in cell

+ θ︸︷︷︸
quota from virions

in cell

− θb(Q)︸ ︷︷ ︸
loss from produced

virions

+
µ(Q− q)

δ
.︸ ︷︷ ︸

production of
quota over length of
the production cycle

(6.9)

Q̂ is interpreted as the remaining nutrient from an infected cell after virus release

that has not been taken up by the virus particles (Fuhrman et al., 2011).
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6.3.5 Full Model

The full model with nutrient dependent virus growth is summarized below:

dS

dt
= µm

(
1− q

Q

)
S︸ ︷︷ ︸

Growth

− βSV︸︷︷︸
Loss from Infection

− mS︸︷︷︸
cell degeneration

dI

dt
= βSV︸︷︷︸

growth

− δI︸︷︷︸
viral shedding

dV

dt
= b (Q) δI︸ ︷︷ ︸

New virions

− dV︸︷︷︸
Cleared Virions

− βSV︸︷︷︸
absorption

dQ

dt
= αNf︸︷︷︸

Uptake

− µm (Q− q)︸ ︷︷ ︸
loss from cell growth

dNf

dt
= −αNf (S + I) +mSQ+ dθV + δIQ̂

(6.10)

where b (Q) = b0 max{
(

1− qv
Q

)
, 0}. If we assume b(Q) = b0 we obtain the model

by Fuhrman et al., who have studied this system fully (Fuhrman et al., 2011).

The assumption that the nutrient is indeed constant allows this model to be

reduced to 4 equations. Indeed, to see this conservation law note that total nutrient

is Nt = Nf (t) + S(t)Q(t) + I(t)(Q(t) + θ) + θV (t) and therefore,

N ′t = N ′f + S ′Q+ SQ′ + I ′Q+ IQ′ + θI ′ + θV ′

= −αNf (S + I) +mSQ+ dθV + δIQ̂

+ µ

(
1− q

Q

)
SQ− βSV Q−mSQ

+ αNfS − µ (Q− q)S

+ βSV Q− δIQ

+ αNfI − µ (Q− q) I

+ θβSV − δθI

+ b(Q)δθI − dθV − βSV Q.
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Canceling like terms, this reduces to

N ′t = δIQ̂− δIQ− µ (Q− q) I − δθI + b(Q)δθI

= δIQ̂− δI
(
Q+

µ(Q− q)
δ

+ θ − b(Q)θ

)
= δIQ̂− δIQ̂

= 0

and allows us to reduce the model to a system of 4 equations.

dS

dt
= µm

(
1− q

Q

)
S︸ ︷︷ ︸

Growth

− βSV︸︷︷︸
Loss from Infection

− mS︸︷︷︸
cell degeneration

dI

dt
= βSV︸︷︷︸

growth

− δI︸︷︷︸
viral shedding

dV

dt
= b (Q) δI︸ ︷︷ ︸

New virions

− dV︸︷︷︸
Cleared Virions

− βSV︸︷︷︸
absorption

dQ

dt
= α(Nt − SQ− I(Q+ θ)− θV )︸ ︷︷ ︸

Uptake

− µm (Q− q)︸ ︷︷ ︸
loss from cell growth

(6.11)

We would like to note that to keep our modeling approach simple, we have decided

not to model explicitly the virus population within the infected cell population. Fur-

thermore, due to the lack of data and literature on this specific virus, we assume that

in each infected cell there are b virus particles and therefore the total virus population

is bI + V .

6.4 Numerical Work

We fit our mathematical model to the virion data from the four different experi-

ments carried out by Kendig et al.
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6.4.1 Susceptible Cells Population Estimation

We use root mass and shoot mass from healthy plants that were grown under

CTRL, +N, +P and +NP and convert this mass into numbers of healthy cells under

the assumption that there are roughly 109 plant cells for 1 gram of plant tissue (Wayne,

2009).

6.4.2 Parameter Estimations

We decided to derive parameter estimations by conducting two model fitting

rounds. The first round of parameter estimations used healthy plant data and the

disease free model of susceptible cell model 6.3. We used nonlinear least squares (im-

plemented in MATLAB with built-in function FMINSEARCH) with susceptible cells

data to estimate parameters µ, m, α, q and initial conditions S(0) and Q(0). These

parameter estimations were then fixed when fitting the complete model (model 6.11)

in the second round, except for Q(0) which was refitted in the second round. This

was done for all four nutrient experiments.

The second round was conducted by fitting bmI + V to virion data to generate

parameter estimations for β, qv, m, d bm and Q(0). δ was held constant at 1/13

day−1 as estimated in (Eweida et al., 1988) for a similar virus as CYDV-RPV. As

discussed above, during this second round of parameter estimations, we fixed the

previous estimations of µ, m, α q, S(0). In both rounds, best fit parameters were

obtained by minimizing the following error function:

err =
N∑
i

(
(bmIi + Vi)− V̄i

)2
. (6.12)

Virion data is given by V̄i and the analogous value given by our model is bIi + Vi.

We use bmIi + Vi because V̄i represents all virions (inside infected cells and free). N
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Parameter Fitted (CTRL) Fitted (+N) Fitted (+P) Fitted (+NP) Units
S(0) 1.12e+8 1.34e+8 1.24e+08 1.93e+8 cells
Q(0) 0.06 .08 0.015 0.15 fmol
µm 0.66 0.38 0.107 0.29 day−1

m 0.55 0.28 6.609e-08 0.26 day−1

α 11.52 19.25 36.55 21.37 fmol cell−1day−1

q 0.0025 0.0034 0.017 0.003 fmol
β 1.937e-10 3.901e-10 3.52e-10 1.09e-09 cells virion−1 day−1

d 1.1336 0.97 0.55 1.94 day−1

δ 1/13 1/13 1/13 1/13 day−1

bm 66.794 19.7 36.7 11.4 virions cell−1 day−1

qv 0.0006 0.0009 0.018 0.034 fmol
Nt 107 107 107 107 fmol
θ 4.106× 10−4 4.106× 10−4 4.106× 10−4 4.106× 10−4 fmol

Table 6.1: Parameter values used in Fig. 6.4 and Fig. 6.3

is the number of data points.

Model fittings are presented in Figure 6.4 and Figure 6.5 and fitted parameters

can be found in Table 6.4.2. It is important to note that the model predicts nutrient

limited virion growth in Figure 6.5, which is a stark difference than in the control

and nitrogen addition experiments. As for now we shall delay our discussion of these

results until the end of this chapter and now focus on our second question: Can the

delay of virion production be a mechanism that explains the “bumps” seen in the

data?
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Figure 6.3: Model fits to healthy plant data. Top row (left to right): control data,
nitrogen addition data, nitrogen and phosphorus addition and phosphorus addition.
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Figure 6.4: Model fits to virus data. (Left column: top) Fitted solutions of bmI+V
against virion data (red dots) from the control experiment. (Left column: bottom)
trajectory of the cell quota. Q does not go below the minimum cell quota for virus
growth, qv, and therefore V does not undergo a decline in virus production. (Right
column: top) Fitted solutions of bmI + V against virion data (red dots) from the
nitrogen addition experiment. (Right column: bottom) trajectory of the cell quota
of the infected plant. In the nitrogen addition experiment, Q does not go below the
minimum cell quota for virus growth, qv, and therefore V does not undergo a decline
in virus production
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Figure 6.5: Model fits to virus data. (Left column: top) Fitted solutions of bmI+V
against virion data (red dots) from the phosphorus experiment. (Left column: bot-
tom) trajectory of the cell quota. Q approaches the minimum cell quota for virus
growth, qv, and therefore V does undergoes a decline in virus production. (Right col-
umn: top) Fitted solutions of bmI+V against virion data (red dots) from the nitrogen
and phosphorus addition experiment. (Right column: bottom) trajectory of the cell
quota of the infected plant. In the nitrogen and phosphorus addition experiment, Q
does go below the minimum cell quota for virus growth, qv, and therefore V stops
virus production.

6.5 Modeling Virion Production Delay

To answer the second question, we develop a mathematical model that incorpo-

rates a delay in virus production. As we’ll see, this leads naturally to a system of

delay differential equations.

As in the previous model, let S and I be the number of susceptible and infected

cells respectively and V be the number of virions (virus particles). Consider the

following model derivation with a delayed virus production.
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6.5.1 Healthy Phloem Cells

We assume that in the absence of infection, the susceptible cells obey logistic

growth with carrying capacity K. Furthermore, we assume a maximum per-capita

proliferation rate µ and a constant per-capita death rate m:

dS

dt
= µ

(
1− S

K

)
S −mS. (6.13)

6.5.2 Rate of Infection

We employ a standard incidence rate of infection: βS(t)V (t)/N(t), where N(t) =

S(t) + I(t), where β can be interpreted as the maximum rate at which virions infect

healthy phloem cells or the probability that a single virion infects any phloem cell in

a healthy plant.

6.5.3 Infected Phloem Cells

We assume the virus is produced with a time delay τ. Where we interpret that

each infected phloem cell on average produces bm viruses in its lifetime with average

life expectancy 1
δ

after infection of τ days.

At any time t, the density of the infected plant cells, I(t), is obtained by integrating

βS(t− θ)V (t− θ)e−δθ

S(t− θ) + I(t− θ)

for θ ≥ 0. Here βS(t−θ)V (t−θ)
S(t−θ)+I(t−θ) , represents the rate of infection at previous times,

and e−δθ represents the probability of a cell surviving the infection from t−θ to t with

natural mortality rate δ. Finally, we note that for any time, t, we do not integrate

past −τ , because these virions have already been released and left the I class. With

these observations we obtain a governing equation for I(t):
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I(t) =

∫ τ

0

βS(t− θ)V (t− θ)e−δθ

S(θ) + I(θ)
dθ.

With a change of variables s = t− θ we obtain:

I(t) =

∫ t

t−τ

βS(s)V (s)eδ(s−t)

S(s) + I(s)
ds

and differentiating with respect to t yields

dI(t)

dt
=

βS(t)V (t)

S(t) + I(t)
− e−δτ βS(t− τ)V (t− τ)

S(t− τ) + I(t− τ)
− δI.

We note that equation 6.5.3 can also be derived from the Mckendrick-von Foerster

age-structured model (Gourley et al., 2008).

6.5.4 Free Virions

Free virions are produced at rate bm per infected phloem cell per unit of time and

are destroyed or cleared by the (innate) immune system ate rate d. Free virions that

are not destroyed or cleared are absorbed by neighboring phloem cells. With these

observations we obtain the governing equation for V,

dV

dt
= be−δτ

βS(t− τ)V (t− τ)

S(t− τ) + I(t− τ)
− dV − βSV

S + I
.

6.5.5 Full Model

With the above considerations we obtain the following delayed virus production

compartmental model,

dS

dt
= r̂

(
1− S + I

K̂

)
S − βSV

S + I

dI

dt
=

βSV

S + I
− δI − e−δτ βS(t− τ)V (t− τ)

S(t− τ) + I(t− τ)

dV

dt
= be−δτ

βS(t− τ)V (t− τ)

S(t− τ) + I(t− τ)
− dV − βSV

S + I
.

(6.14)
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For simplicity and parameter estimation purposes we rewrite the equation for S

as

dS

dt
= r̂

(
1− S + I

K̂

)
S − βSV

S + I
(6.15)

where r̂ = r −m and K̂ = K r̂
r
.

6.5.6 Initial Data

Initial data for the system takes the form of

S(s) = S0(s) ≥ 0, I(s) = I0(s) ≥ 0, V (s) = V0(s) ≥ 0

and K ≥ S(s) + I(s) > 0, I(0) > 0 for s ∈ [−τ, 0],

(6.16)

where

I0(0) =

∫ 0

−τ

βS0(s)V0(s)e
δs

S0(s) + I0(s)
ds. (6.17)

6.5.7 The Basic Reproduction Number

To derive R̃0 we first observe that at the average number of virions produced

per infected cell per timestep is βbe−δτ and the average lifetime of a virion is 1
d+β

.

Multiplying these together yield the basic reproduction number for the model:

R̃0 :=
bβe−δτ

d+ β
.

6.6 Preliminary Analysis

6.6.1 Positivity of Solutions

When modeling populations, it is important that the model makes biological sense.

In particular, populations should never become negative and also be bounded above

by some finite number.

We show below that solutions of system (6.14) with nonnegative initial conditions

remain nonnegative and bounded (and hence exists for all time) for all t > 0.
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Proposition 6.6.1 Each component of system (6.14), subject to initial conditions

(6.16), remains nonnegative and bounded for all t > 0.

Proof Observe that system (6.14) is locally Lipschitz at t = 0. Hence the solution

of system (6.14), subject to initial conditions (6.16), exists and is unique on [0, c) for

some c > 0. Furthermore, if S(0) = 0, then S(t) ≡ 0 for all t > 0. Therefore we may

assume that S(0) > 0. In a similar fashion, if V (0) = 0, then V (t) ≡ 0 for all t > 0.

Therefore we may also assume that V (0) > 0.

To see that S + I is bounded, observe that,

d(S + I)

dt
= r̂

(
1− S + I

K̂

)
S − βS(t− τ)V (t− τ)

S(t− τ) + I(t− τ)

≤ −r̂
K̂

(
S + I − K̂

)
S.

This implies that

d(S + I − K̂)

dt
≤ −r̂

K̂

(
S + I − K̂

)
S

and integrating yields

S(t) + I(t) ≤ K̂ +
[
S(0) + I(0)− K̂

]
exp{−r̂

K̂

∫ t

0

S(s)ds}.

Therefore, if S(0) + I(0) < K̂, then S(t) + I(t) < K̂ for all t > 0.

Case 1: By way of contradiction we assume that there exists t1 ∈ (0, c) such that

S(t1) = 0 and S(t) > 0, I(t) > 0 and V (t) > 0 for t ∈ (0, t1). Observe that for

t ∈ [0, t1],
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dS

dt
= r̂

(
1− S + I

K̂

)
S − βSV

S + I

≥ −
(

βV

S + I

)
S

≥ − max
t∈[0,t1]

{
βV

S + I

}
S

= −αS

Where α = maxt∈[0,t1]
{
βV
S+I

}
and integrating yields,

S(t) ≥ S(0)e−αt > 0,

which is a contradiction when t = t1. Therefore S(t) > 0 for t ∈ [0, c).

Case 2: Assume that there exists a t1 ∈ (0, c) such that V (t1) = 0, I(t) > 0 and

S(t) > 0, I(t) > 0 for t ∈ (0, t1). Therefore, for t ∈ [0, t1],

dV

dt
= be−δτ

βS(t− τ)V (t− τ)

S(t− τ) + I(t− τ)
− dV − βSV

S + I

≥ −
(
d+

βS

S + I

)
V

≥ − max
t∈[0,t1]

{
d+

βS

S + I

}
V

= −α1V

where α1 = maxt∈[0,t1]
{
d+ βS

S+I

}
. This implies,

V (t) ≥ V (0)e−α1t > 0, (6.18)

which yields a contradiction for t = t1. Therefore V (t) > 0 for t ∈ [0, c).

Case 3: Assume that there exists a t1 ∈ (0, c) such that I(t1) = 0 and that

S(t) > 0, I(t) > 0 V (t) > 0 for t ∈ (0, t1). Since I(t) =
∫ t
t−τ

βS(s)V (s)eδ(s−t)

S(s)+I(s)
ds, we have

I(t1) =

∫ t1

t1−τ

βS(s)V (s)eδ(s−t1)

S(s) + I(s)
ds > 0 (6.19)
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a contradiction. Therefore I(t) > 0 for t ∈ [0, c).

Finally we prove a rather large bound for the entire system. Consider W =

S + I + 1
bV

. Then differentiating yields,

dW

dt
= r̂

(
1− S + I

K̂

)
S − δI − d

b
V − βSV

b(S + I)

≤ r̂

(
1− S + I

K̂

)
S − δI − d

b
V

= r̂S − r̂S2

K̂
− r̂SI

K̂
− δI − d

b
V

≤ r̂K̂ − δI − d

b
V

= r̂K̂ − δI − d

b
V + (r̂S − r̂S)

= 2r̂K̂ − δI − d

b
V − r̂S

≤ 2r̂K̂ −min {δ, d, r̂}
(
I + S +

1

b
V

)
= 2r̂K̂ − α2W.

Integrating finally yields us with

W (t) ≤ W (0)e−αt +
2r̂K̂

α3

(
1− e−α2t

)
.

Therefore

lim sup
t→∞

W (t) ≤ 2r̂K̂

α2

,

where α2 = min {δ, d, r̂} . Thus we may conclude that all state variables are

bounded.

The above contradictions together show that components of the solution of sys-

tem (6.14), subject to initial data (6.16), are nonnegative for all t ∈ [0, c). This

together with the uniform boundedness of W = S + I + 1
b
V imply that c =∞. This

completes the proof of the proposition.
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6.6.2 Steady States

There exists two biologically relevant steady states: Ẽ0 =
(
K̂, 0, 0

)
and Ẽ∗ =(

S̃∗, Ĩ∗, Ṽ ∗
)

where,

S̃∗ =
eδτK̂ (dr̂ + bβδ)

βr̂(eδτ − 1)(b− eδτ )
(R∗ − 1)

Ĩ∗ =
eδτK̂ (d+ β) (dr̂ + bβδ)

βdr̂(eδτ − 1)(b− eδτ )
(R∗ − 1)

(
R̃0 − 1

)
Ṽ ∗ =

eδτK̂δ (d+ β) (dr̂ + bβδ)

βd2r̂(eδτ − 1)2
(R∗ − 1)

(
R̃0 − 1

)
(6.20)

and R∗ = eδτ (βδ+d(r̂+δ))
dr̂+bβδ

. Ẽ0 represents a healthy plant and is called the disease

free steady state. Ẽ∗ is the called the endemic equilibrium and represents chronic

infection of the plant by the virus.

Turning our attention to the endemic equilibrium, it’s easy to see that it exists

exactly when the following conditions hold:

R∗ =
eδτ (βδ + d (r̂ + δ))

dr̂ + bβδ
> 1 b > eδτ and R̃0 > 1. (6.21)

We focus on the stability of the biologically relevant equilibria. With this in mind

we compute the characteristic polynomial,

h(λ) = det(λI− P − e−δτe−λτQ). (6.22)

The matrices P and Q are given by,

P =


r̂(−I+K̂−2S)

K̂
− IV β

(I+S)2
− r̂S

K̂
+ SV β

(I+S)2
− Sβ
I+S

IV β
(I+S)2

− SV β
(I+S)2

− δ Sβ
I+S

− IV β
(I+S)2

SV β
(I+S)2

−d− Sβ
I+S
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and

Q =


0 0 0

− IV β
(I+S)2

SV β
(I+S)2

− Sβ
I+S

bIV β
(I+S)2

− bSV β
(I+S)2

bSβ
I+S

.

At Ẽ0 the characteristic equation is

(r̂ + λ)(δ + λ)(βbe(−λτ−δτ) − (d+ β)− λ) = 0

where the roots are λ1 = −r̂, λ2 = −δ and λ3 satisfies λ3 = bβe−(λ3+δ)τ − (d+ β).

Setting λ3 = 0 and rearranging this we obtain,

1 =
bβe−δτ

d+ β
=: R̃0,

the basic reproduction number for the standard incidence model. This further con-

firms our definition of the basic reproduction number since it determines the stability

of the disease free steady state.

Proposition 6.6.2 Ẽ0 is asymptotically stable if R̃0 < 1.

Proof For Ẽ0 to exists, S̃∗ > 0 and therefore K̂ > 0. By the above discussion

the roots of the characteristic polynomial are given by λ1 = −r̂, λ2 = −δ and λ =

bβe−(λ+δ)τ − (d + β). Hence, the first two roots have negative real part. Thus the

stability of the disease free equilibrium depends on the roots of,

g(λ) = λ+ (d+ β)− bβe−(λ+δ)τ .

We prove that g(λ) cannot have a root with nonnegative real part when R̃0 < 1.

By way of contradiction, assume R̃0 < 1, but there does exist a root with nonnegative

real part, λ = x + iy where x ≥ 0 and x, y ∈ R. Setting g(λ) = 0 yields λ =

bβe−δe−λτ − (d+ β) and substituting λ = x+ iy we obtain,
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x+ iy = bβe−δτe−(x+iy)τ − (d+ β)

= bβe−δτe−xτe−iyτ − (d+ β)

= bβe−δτe−xτ (cos(yτ)− i sin(yτ))− (d+ β)

= bβe−δτe−xτ cos(yτ)− (d+ β)− ibβe−δτ sin(yτ).

(6.23)

Equating real parts yields,

x = bβe−δτe−xτ cos(yτ)− (d+ β)

= (d+ β)

(
bβe−δτ

d+ β
e−xτ cos(yτ)− 1

)
= (d+ β)

(
R̃0e

−xτ cos(yτ)− 1
)
< 0.

(6.24)

A contradiction. Thus, any root of g(λ) must have negative real part. �

Proposition 6.6.3 Ẽ0 is unstable if R̃0 > 1.

Proof As in the previous proof, for Ẽ0 to exists, S̃∗ > 0 and therefore K̂ > 0.

Futhermore, stability depends on,

g(λ) = λ+ (d+ β)− bβe−(λ+δ)τ .

Assume R̃0 > 1, then g(0) = d+ β − bβeδτ < 0. Furthermore, for λ ≥ 0 we have,

g′(λ) = 1 + τbβe−δτe−λτ > 0.

Finally, lim
λ→∞

g(λ) = ∞. Since g(λ) is a continuous function that is negative at

λ = 0 and increases to +∞ as λ → +∞, it must cross the cross the λ-axis. This

proves the existence of a positive real root. Therefore, the disease free steady state is

unstable. �
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It is notable to mention that there are other ways to prove the stability of the

disease free steady state. Indeed, exercise 4.9 from (Smith, 2010) or theorem 3.1 from

(Beretta and Kuang, 2002) along with theorem 1.4 from (Kuang, 1993) are other

ways to prove the theorems. We decided to include the proofs that we did, because

of their simple and intuitive arguments.

6.7 Numerical Simulations

As we did with the nutrient model, we estimated r̂, S(0) and K̂ using Equa-

tion 6.13 (β = 0) by fitting it to healthy plant cell data. We then used these parame-

ters as the initial guesses when fitting the full model to the virion data. Our decision

not to keep r̂ and K̂ fixed, but used as the intial guesses is to allow for stochastic

changes that can occur to the plant parameters when the virus is introduced. We did

not do this in the nutrient model since the limiting nutrient (Q(t))) should change,

not the model parameters. For example, when the virus is introduced into the nutri-

ent model, model 6.3, the specific growth rate is what changes due to the now lower

Q(t) (from virion uptake), not the maximum specific growth rate, µm.

Nonlinear least squares was use again with an analogous error function as Equa-

tion 6.12.

We present model fits to virion data in Figure 6.6 and fitted parameters in Ta-

ble 6.7.
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Parameter Fitted (CTRL) Fitted (+N) Fitted (+P) Units
S(0) 1.12e+8 1.34e+8 1.24e+08 cells
r̂ 0.13 0.11 0.19 day−1

K̂ 8.05e+08 8.21e+08 3.40e+08 cells
β 0.14 0.71 0.33 cells virion−1 day−1

d 0.36037 0.24 0.19 day−1

δ 1/13 1/13 1/13 day−1

b 40 5.84 12.89 virions cell−1 day−1

τ 9.4 9.7 10.95 days

Table 6.2: Parameter values used in Fig. 6.6
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Figure 6.6: Model fits to control, nitrogen addition and phosphorus addition exper-
iments.

6.8 Conclusion and Discussion

In this last chapter we formulated two mathematical models to investigate the

virion dynamics under different nutrient regimens. Both of the models were moti-
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vated and guided by the nature of the data. Our first model was motivated by the

virus dynamics and the hypothesis that nutrient conditions inside the infected cells

controlled the virion production. With this in mind, we designed a mathematical

model that was based off (Fuhrman et al., 2011) that related virus production to

nutrient concentration in its host cells. By assuming that virus production can be

approximated by the Droop equation (Equation 6.1), we showed that the behavior

of the virion data of Kendig et al., can be explained by nutrient limited growth of

the virus population. In particular, the model predicts that virion production is not

limited in the control and nitrogen addition experiments. In contrast, the virion

dynamics during the +P and +NP regimens can be explained by nutrient limited

growth.

Our second modeling approach was designed to investigate the plausibility that

the different nutrient regimens delayed the virion production within infected cells.

Model fits for the control, nitrogen addition and phosphorus addition experiments

suggest that delayed virus production is a plausible mechanism for explaining the

dynamics seen in the virion data. In particular, the best fit solutions from our models

uncover patterns that otherwise would be hard to detect when viewing the data by

itself. Moreover, this modeling approach results in at least two new questions: what

mechanisms are capable of delaying virus production and what roles do phosphorus

and nitrogen play in these mechanisms?

The second modeling approach suggests that virion production delay is another

reasonable mechanism for explaining 3 out of the 4 data sets (CTRL, +N and

+P). Since virion estimations from the experiment were taken from leaf tissue sam-

ples, virus particles that move to the roots to replicate and then return to the

leaves (Eweida et al., 1988) could explain the bumps in the data. Another mech-

anism for describing the data could be that the nutrient regimens are changing the
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Experiment Delay model Nutrient model
MSE MAPE MSE MAPE

CTRL 19524 0.52 9275 .42859
+N 1027 0.38 1677 .55992
+P 5894 0.52 8372 .4108

Table 6.3: Error comparison table: Mean absolute and mean square errors from
model 6.3 and model 6.14.

host’s innate immune system (Jones and Dangl, 2006). RNA silencing is one such

defense a plant has against infectious particles and perhaps this mechanism is eventu-

ally overcome by viral silencing suppressors (Csorba et al., 2015), allowing the virus

population to increase as seen in the CTRL data from figure 6.6. Ultimately, since

some of the data points were collected after a nutrient addition, it is plausible that

the patterns in the data could be the results from the increased supply of nutrient.

In all of our simulations, we find that model fits highly depend on the virus

particles within the infected cells. Indeed, Figure 6.4, Figure 6.5 and Figure 6.6 show

that free virus particles are almost nonexistent, but are driving the infection in the

host. This behavior is expected and can be explained by the tightly packed structure

of the phloem cells and the fact that virus particles pass from cell to cell via the

plasmodesmata. Another future direction for both models would be to incorporate

the intracellular virus population.

Table 6.3 shows mean square error and mean absolute percentage error (MAPE)

for both models for experiments: CTRL, +N and +P. The delayed nutrient model

outperformed the nutrient model in experiment +N and has a smaller MSE value in

experiment +P. In contrast, the nutrient model performed better than the delayed

model in the CTRL experiment and had a smaller MAPE in +P.

Although, we did parameterize the model to the best of our abilities, there is

still much that can be done. In particular, both of our modeling approaches do not

explicitly model the virus particles within each infected cell, and instead we make the
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assumption that there are bm (b in model 6.14) viruses per infected cell. This was

done, due to the lack of data and the need for first iteration models. Ultimately, this

does not hinder our goals, which are to show that mathematical models can be used

to explain the behavior seen in the virus data.

As in chapter 1, parameter identifiability and sensitivity analysis could guide the

direction for future model iterations and experiment design. Sensitivity analysis could

be implemented by various methods such as the Morris and Sobol’ methods, Latin

hypercube sampling-partial rank correlation coefficient and the sensitivity heat map

method (Wu et al., 2013), while parameter identifiability could be implemented by

the Differential Algebra Identifiability of Systems (DASIY) and other such methods

discussed in (Saccomani et al., 2003; Karlsson et al., 2012; Raue et al., 2009, 2014).
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Moré, J. J., “The levenberg-marquardt algorithm: implementation and theory”, in
“Numerical analysis”, pp. 105–116 (Springer, 1978).

Neofytou, G., Y. Kyrychko and K. Blyuss, “Mathematical model of plant-virus inter-
actions mediated by rna interference”, Journal of theoretical biology 403, 129–142
(2016a).

Neofytou, G., Y. Kyrychko and K. Blyuss, “Time-delayed model of immune response
in plants”, Journal of theoretical biology 389, 28–39 (2016b).

110



Nielsen, C. F., S. Kidd, A. Sillah, E. Davis, J. Mermin and P. H. Kilmarx, “Improving
burial practices and cemetery management during an ebola virus disease epidemic-
Sierra Leone, 2014”, MMWR Surveill Summ 64, 1–8 (2015).

Nishiura, H. and G. Chowell, “The effective reproduction number as a prelude to
statistical estimation of time-dependent epidemic trends”, in “Mathematical and
statistical estimation approaches in epidemiology”, pp. 103–121 (Springer, 2009).

Nishiura, H. and G. Chowell, “Early transmission dynamics of Ebola virus disease
(EVD), West Africa, March to August 2014”, Euro Surveill 19, 36, 20894 (2014).

Pardoe, I. and S. Weisberg, “An Introduction to bootstrap methods using Arc”, Un-
published Report available at www. stat. umn. edu/arc/bootmethREV. pdf (2001).

Pell, B., J. Baez, T. Phan, D. Gao, G. Chowell and Y. Kuang, “Patch models of EVD
transmission dynamics”, in “Mathematical and Statistical Modeling for Emerging
and Re-emerging Infectious Diseases”, edited by Chowell and Hyman (Springer,
2016).

Poole, J. and A. Holladay, “Thucydides and the plague of athens”, The Classical
Quarterly (New Series) 29, 02, 282–300 (1979).

Portz, T., Y. Kuang and J. D. Nagy, “A clinical data validated mathematical model
of prostate cancer growth under intermittent androgen suppression therapy”, Aip
Advances 2, 1, 011002 (2012).

Rachah, A. and D. F. Torres, “Mathematical Modelling, Simulation, and Optimal
Control of the 2014 Ebola Outbreak in West Africa”, Discrete Dynamics in Nature
and Society (2015).

Raue, A., J. Karlsson, M. P. Saccomani, M. Jirstrand and J. Timmer, “Comparison
of approaches for parameter identifiability analysis of biological systems”, Bioin-
formatics URL http://bioinformatics.oxfordjournals.org/content/early/
2014/01/29/bioinformatics.btu006.abstract (2014).

Raue, A., C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmller
and J. Timmer, “Structural and practical identifiability analysis of partially ob-
served dynamical models by exploiting the profile likelihood”, Bioinformatics 25,
15, 1923–1929, URL http://bioinformatics.oxfordjournals.org/content/
25/15/1923.abstract (2009).

Raven, P. H., R. F. Evert and S. E. Eichhorn, Biology of plants (Macmillan, 2005).

Retief, F. P. and L. Cilliers, “The epidemic of athens, 430-426 bc.”, South African
medical journal= Suid-Afrikaanse tydskrif vir geneeskunde 88, 1, 50–53 (1998).

Richards, F., “A flexible growth function for empirical use”, Journal of experimental
Botany 10, 2, 290–301 (1959).

111

http://bioinformatics.oxfordjournals.org/content/early/2014/01/29/bioinformatics.btu006.abstract
http://bioinformatics.oxfordjournals.org/content/early/2014/01/29/bioinformatics.btu006.abstract
http://bioinformatics.oxfordjournals.org/content/25/15/1923.abstract
http://bioinformatics.oxfordjournals.org/content/25/15/1923.abstract


Rivers, C. M., E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, “Modeling
the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia”,
PLoS currents 6 (2014).

Rogers, L., “The methods and results of forecasting the incidence of cholera, smallpox
and plague in india”, Transactions of the Royal Society of Tropical Medicine and
Hygiene 27, 3, 217–238 (1933).

Ross, R., “On some peculiar pigmented cells found in two mosquitos fed on malarial
blood”, British medical journal 2, 1929, 1786 (1897).

Ross, R., The prevention of malaria (Dutton, 1910).

Saccomani, M. P., S. Audoly and L. D’Angi, “Parameter identifiability of nonlinear
systems: the role of initial conditions”, Automatica 39, 4, 619 – 632, URL http:
//www.sciencedirect.com/science/article/pii/S0005109802003023 (2003).

Schotthoefer, A. M., S. W. Bearden, J. L. Holmes, S. M. Vetter, J. A. Montenieri,
S. K. Williams, C. B. Graham, M. E. Woods, R. J. Eisen and K. L. Gage, “Effects
of temperature on the transmission of yersinia pestis by the flea, xenopsylla cheopis,
in the late phase period”, Parasit Vectors 4, 1, 191 (2011).

Shaman, J., W. Yang and S. Kandula, “Inference and forecast of the current West
African Ebola outbreak in Guinea, Sierra Leone and Liberia”, PLoS currents 6
(2014).

Smith, H., An introduction to delay differential equations with applications to the life
sciences, vol. 57 (Springer Science & Business Media, 2010).

Snow, J., On the mode of communication of cholera (John Churchill, 1855).

Stenseth, N. C., B. B. Atshabar, M. Begon, S. R. Belmain, E. Bertherat, E. Carniel,
K. L. Gage, H. Leirs and L. Rahalison, “Plague: past, present, and future”, PLoS
Med 5, 1, e3 (2008).

Towers, S., O. Patterson-Lomba and C. Castillo-Chavez, “Temporal variations in
the effective reproduction number of the 2014 West Africa Ebola outbreak”, PLoS
currents 6 (2014).
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Freeman, A. L. Yen, G. J. Fitzgerald and J. E. Luck, “Virus infection mediates the
effects of elevated co2 on plants and vectors”, Scientific reports 6 (2016).

Tromas, N., M. P. Zwart, G. Lafforgue and S. F. Elena, “Within-host spatiotemporal
dynamics of plant virus infection at the cellular level”, PLoS Genet 10, 2, e1004186
(2014).
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District Logistic Two-Patch (H) Two-Patch Three-Patch (H) Three-Patch (S) Three-Patch
One-third Two-thirds One-third Two-thirds One-third Two-thirds One-third Two-thirds One-third Two-thirds One-third Two-thirds

BOMI 3.6147 1.198 1.7439 0.39968 2.23 0.49683 1.9891 0.4395 3.1711 0.52022 3.9724 0.47549
BONG 1.4365 0.54448 1.5116 0.42227 1.6447 0.46937 1.6753 0.5351 2.1265 0.49347 2.9081 0.58443
GBARPOLU 0.71881 0.078303 0.6592 0.087046 1.001 0.0887 1.1162 0.095164 1.1436 0.077254 2.5221 0.11758
GRAND BASSA 1.8093 0.68238 1.1774 0.29884 1.8118 0.41695 1.7176 0.38735 2.2839 0.44523 3.2918 0.58292
GRANDAPE MOUNT 3.333 0.5762 3.7319 0.63049 3.8035 0.65232 3.3711 0.67542 5.0092 0.73396 8.0373 0.83729
GRAND KRU 0.61518 0.17033 0.80231 0.099753 0.84577 0.17673 0.64961 0.12372 1.0854 0.1753 2.3581 0.2528
LOFA 5.2755 0.36486 5.6001 0.26833 6.9035 0.36263 7.9303 0.34862 6.4173 0.27562 11.1918 0.47298
MARGIBI 3.4293 0.73833 4.4185 0.67457 4.3363 0.72399 4.5471 0.72418 5.619 0.79608 7.7291 0.89117
MONTSERRADO 4.2503 8.3487 4.922 2.2296 5.2784 1.8897 5.6934 2.3507 6.7871 1.5 9.1043 2.424
NIMBA 1.2104 0.12813 1.351 0.13701 1.4561 0.14135 1.5792 0.1464 1.9673 0.15578 2.7993 0.17449
RIVER GEE 0.15977 0.01381 0.1785 0.015599 0.17445 0.015513 0.18504 0.014329 0.23398 0.019005 0.3597 0.019446
RIVERCESS 0.68386 0.077873 0.51155 0.093633 0.54034 0.027355 1.1207 0.1403 1.6564 0.10546 3.84 0.20521
SINOE 0.71361 0.074711 0.76264 0.069135 0.92105 0.089601 1.1015 0.095067 1.5029 0.099703 2.8564 0.13226
CONAKRY 2.4851 2.2749 2.4127 2.428 3.1721 2.443 3.4615 2.5474 4.0175 2.6153 7.2811 2.9771
COYAH 2.9429 3.1608 1.6338 3.4047 2.0082 2.9153 3.1834 3.1261 5.2135 3.2436 5.4088 4.6479
DUBREKA 1.8975 1.0283 0.84368 1.0297 2.5879 0.70316 5.2154 1.0243 3.0884 1.0003 5.7692 1.1607
FARANAH 2.1281 0.37701 2.1799 0.42643 2.4097 0.41307 3.8266 0.50515 5.0919 0.53024 25.1464 0.24839
FORECARIAH 1.6364 3.1111 2.0821 2.8257 2.2314 3.3816 1.6743 13.7987 2.9266 3.4089 5.3969 3.8571
KANKAN 1.1965 0.14143 2.3918 0.1566 1.4882 0.1561 3.15 0.49163 3.0055 0.16257 3.7905 0.23459
KINDIA 2.0281 1.136 1.1496 0.91487 1.6464 1.071 1.5116 0.38334 2.5737 1.0592 5.3894 1.2542
KISSIDOUGOU 2.9894 0.40939 2.3094 0.47537 3.0904 0.53037 2.3511 1.1683 5.3364 0.39528 21.0685 0.77644
MACENTA 0.4115 5.2217 1.6022 5.5868 1.8795 5.3856 2.0131 0.62805 4.0898 5.9809 6.7702 6.1607
NZEREKORE 2.5579 0.38891 0.44257 0.40024 0.42032 0.41519 1.0254 5.7162 1.3283 0.49414 0.68875 0.53331
SIGUIRI 0.44141 0.30196 3.1856 0.32252 3.5061 0.25171 3.8516 0.4314 5.0128 0.35819 8.8683 0.41559
TELIMELE 0.10555 0.55761 0.42019 0.593 0.4517 0.62469 0.65173 0.34477 0.75666 0.6742 1.8585 0.72794
BO 5.0701 2.2253 0.12915 2.4011 0.13449 2.0631 0.175 0.61298 0.15866 2.4455 0.24843 2.6633
BOMBALI 8.8538 9.0596 1.9431 3.2113 1.7743 4.476 4.0898 2.2312 5.8781 3.8964 6.1361 4.9203
KAILAHUN 13.4441 2.3216 3.0016 0.67132 3.8811 0.66044 4.9654 3.3201 7.8443 2.2252 8.5021 1.2032
KAMBIA 3.0924 2.8205 5.1435 1.6991 3.718 1.1592 7.6597 1.0176 11.6425 1.4946 13.382 1.5634
KENEMA 10.8483 2.4777 1.3423 1.2226 2.1451 0.83164 3.4772 1.4973 4.8896 0.85422 4.7483 1.0399
KOINADUGU 2.18 0.38465 8.1016 0.25254 4.9844 0.44878 6.3207 1.2681 15.0373 0.35363 6.2745 0.40977
KONO 5.3272 3.2919 2.7568 3.3897 3.1007 3.3525 1.7213 0.4554 4.7125 3.2659 7.5391 3.6874
MOYAMBA 2.18 0.38465 6.7662 0.25254 6.8282 0.44878 7.4665 3.6681 9.9778 0.35363 15.8279 0.40977
PORT LOKO 15.4465 15.1163 2.7568 2.2217 3.1007 6.4625 1.7213 0.4554 4.7125 14.2096 7.5391 2.7181
PUJEHUN 0.22985 0.02164 16.4268 0.017028 11.313 0.017084 13.17 3.6144 12.6916 0.017823 17.257 0.048621
TONKOLILI 11.6003 3.3944 0.18359 1.598 0.29053 1.9964 0.2574 0.016134 0.42985 4.0286 0.62986 1.8315
PUJEHUN 0.22985 0.02164 7.3516 0.017028 4.5375 0.017084 4.5832 1.6187 6.898 0.017823 10.2676 0.048621
WESTERN AREA RURAL 8.5967 11.4656 0.18359 3.0142 0.29053 5.9014 0.2574 0.016134 0.42985 7.0712 0.62986 4.0112
WESTERN AREA URBAN 5.639 13.5544 5.7848 8.6758 6.0817 8.771 6.0987 3.1066 7.3591 10.3357 8.545 16.817

Table A.1: Fitting errors for all models. Models were trained on one-third and two-thirds of each district data set.
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Summary/Result/Citation Data Deterministic
or Stochastic

Spatial or
non-spatial

Phenom.∗ or
Mechanistic

Statistical model: a global
reproduction number and
expected number of
additional cases were
calculated from the
expected value of EVD
incidence. Results: Rt

consistently lies above one
for three countries and
below two for Sierra Leone
and Liberia from June to
August 2014. (Nishiura and
Chowell, 2014)

Spline-fitted
of data
reported by
WHO.

Stochastic:
assumes EVD
incidence is
Poisson
distributed
and
generation
time is
exponentially
distributed.

Spatial:
transmission
matrix for
between and
within
countries.

Mechanistic:
models
transmission
route and
mixing of
individuals.

SEIR model: the average
reproduction number,
number of
assessment/treatment beds
and a forecast of addition
cases were estimated based
on a Bayesian fit of the
collected data. Results: R0

is near the threshold of 1 in
December 2014. Bed
capacity lags behind, but
since transmission
decreases, control measures
were able to meet the
demand in early
2015. (Camacho et al., 2015)

WHO patient
database and
daily
situation
reports from
August 10,
2014 to
January 18,
2015.

Stochastic:
assumes
incubation
period is
Erlang
distributed
and contains
other over-
dispersion
parameters.

Non-spatial:
Although, the
infectious
group is
separated into
community
and hospital.

Mechanistic:
Although, the
bed demand
is estimated
based on the
separation of
the infectious
group in a
phenomeno-
logical
way.

SEIRD/SEIR model: points
out the problem with
identifiability of estimating
epidemiological parameters
from early-stage epidemic
data. Results: neglecting
post-death transmission
(PDT) leads to
underestimating R0. PDT
is a key factor to modeling
and control EVD.(Weitz
and Dushoff, 2014)

Cumulative
patient data
(WHO) of the
first 9 months
of the
epidemic.

Stochastic:
the exposed
period for the
latently
infected is
gamma
distributed.

Non-spatial Mechanistic:
models the
post death
transmission
along with its
effect on R0.

An expanded version of the
SEIR model which includes
hospitalization and
post-death transmission
(SEIHFR). Results:
reducing mobility can delay,
but has no effect on the
overall control of EVD. Safe
burials and hospitalization
are keys to control.(Valdez
et al., 2015)

Cumulative
patients data
from March
to August of
2014 (WHO).

Stochastic
(using
Gillespie
algorithm):
with a quasi-
deterministic
representation
(ODEs) that
takes over
after a
threshold.

Spatial: takes
into account
of traveling
between 15
counties of
Liberia.

Mechanistic:
transmission
between
counties is
accounted
along with
post-death
transmission,
hospitaliza-
tion and
others.

Continued on next page
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Continued from previous page

Summary/Result/Citation Data Deterministic
or Stochastic

Spatial or
non-spatial

Phenom.∗ or
Mechanistic

SIRD model: natural
born/death is accounted for.
Results: even with a small
initial number of infected
people, without proper
prevention, the disease can
be spread to the entire
population. (Atangana and
Goufo, 2014)

No data.
Simulations
with
parameters
from
literature.

Deterministic Non-spatial Mechanistic:
examine
transmission
mechanism of
infectious
individuals.

SEIHFR model:
investigated the impact of
increased contact tracing
and pharmaceutical
interventions. Results:
contact tracing and
infection control are
beneficial, but not sufficient
to control EVD.
Pharmaceutical intervention
reduces mortality, but not
much of the overall size.
(Rivers et al., 2014)

Cumulative
patient data
up to Oct. 5,
2014.

Deterministic:
Model fitted.

Non-spatial Mechanistic:
examines the
effect of
several
mitigation
strategies on
the epidemic.

Stage-structure SEIRF:
model parameters are
estimated within a realistic
range, transmission and
interventions are
investigated stage by stage.
Results: transmission is
significant at any stage
(early, late, or
burial). (Eisenberg et al.,
2015)

Cumulative
patients data
(WHO) up to
October 1,
2014.

Stochastic:
the LH
sampling
method is
used instead
of the usual
likelihood-
based
approaches.

Non-spatial Mechanistic:
intervention
methods
during
infection
stage and
transmissions
by recovered
individuals
are examined.

SIR model: adjusted to
account for vaccination rate
(constant) and optimal
control (vaccination rate
that changes with time).
Results: vaccination
should be used as part of an
optimal control strategy to
quickly control
EVD. (Rachah and Torres,
2015)

Cumulative
patients data
(WHO) up to
Oct. 26, 2014.

Deterministic:
data fitting.

Non-spatial Mechanistic:
investigate
the effect of
vaccination at
different rate
and stage of
the epidemics.

Continued on next page
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Continued from previous page

Summary/Result/Citation Data Deterministic
or Stochastic

Spatial or
non-spatial

Phenom.∗ or
Mechanistic

SIRD model: under
different assumptions and
the effect of increasing
treatment centers, case
ascertainment or allocating
protective kits, the averted
number of cases by Dec 15,
2014 is estimated. Results:
R0 is 2.49 for Montserrado.
Protective kits can help
with prevention of EVD,
but not sufficient to control
it; hospital beds are crucial
for control. (Lewnard
et al., 2014)

Cumulative
patients data
(WHO) from
June 14, 2014
to Sept. 23,
2014 for
Montserrado.

Stochastic:
Bayesian
Markov Chain
Monte Carlo
sampling is
used to obtain
uncertainty of
parameters.

Non-spatial Mechanistic:
examine the
effect of
increasing
treatment
centers, case
ascertainment
and allocating
protective kits
on averting
EVD cases,
individually
or together.

SEIT model: stability
analysis of the disease free
and endemic equilibrium
with parameter estimation
by least squares method. R0

is estimated (4.6) along
with its uncertainty.
Results: R0 is sensitive to
the contact rate, especially
in the latent and exposed
period. (Li et al., 2015)

Cumulative
patients data
(WHO) from
March 22,
2014 to
January 25,
2015 for
Guinea.

Deterministic:
fitting the
model to the
data.

Non-spatial Mechanistic:
examine
transmission
mechanism of
infectious
individuals.

The Global Epidemic and
Mobility (GEM) Model:
integrates real demographics
to identify over 3,300
subpopulations areas from
about 220 countries. An
SEIHFR model is coupled
to study the transmission
dynamics of the EVD
within each subpopulation.
Results: EVD is more
likely to spread within
Africa, which can increase
the international risk over a
long period of time. (Gomes
et al., 2014)

Cumulative
patients data
(WHO) and
census
population
and global air
travel
databases.

Stochastic:
aside from
GEM model,
Monte Carlo
simulations,
LH sampling
and other
stochastic
methods are
used to
simulate the
spreading of
EVD locally
and globally.

Spatial:
taking into
account the
travel
between each
census areas.

Mechanistic:
examine
extensively
the
transmission
of EVD by air
between
different
regions of the
world from
the three host
countries.

Continued on next page

119



Continued from previous page

Summary/Result/Citation Data Deterministic
or Stochastic

Spatial or
non-spatial

Phenom.∗ or
Mechanistic

SEIRD model: R0 is
estimated from the
individual reproduction
number, then used to
estimate risk of an outbreak
by an undetected case.
Results: quick intervention
(within one serial interval)
can greatly limit the
transmission of
EDV. (Althaus et al.,
2015b)

Daily
incidence
data

Stochastic:
Gamma
distribution
for the
incubation
period and
Poisson for
incident and
death cases.

Non-spatial Mechanistic:
examine the
effect of
control
measures on
an early
epidemic.

SEIR: incorporates contact
tracing and derives a novel
approach to calculating Re

directly from contact
tracing and reported case
data. Results: Re can be
estimated solely based on
the tracing
quantities. (Browne et al.,
2015)

Cumulative
patients data
and traced
cases for
Guinea and
Sierra Leone
(WHO)

Stochastic:
maximum
likelihood
approach is
used to
estimate Re

with Weibull
distributed
serial interval.

Non-spatial Mechanistic:
investigate
various uses
of contact
tracing data

SEIRX-EAKF (Extended
Adjusted Kalman Filter)
model: incorporates the
deceased population for
data assimilation purpose.
EAKF alters Re and other
parameters. Results:
Forecasts 6 weeks into the
future projects some slowing
down of the current
outbreak. (Shaman et al.,
2014)

Cumulative
patients data
(WHO) Oct.,
2014.

Stochastic:
uniform
distribution
for initial
data, and
multiple
stochastic
parameters.

Non-spatial:
stochasticity
and mixed
construction
may
implicitly
show some.

Mechanistic:
investigate
transmission
dynamics of
EVD.

Target cell-limited model:
practical identifiability
aspect is explored by
examining the parameter
space and re-optimization.
Results: EBOV infection
time is much slower
compared to influenza virus,
but this is compensated by
its high replication
rate. (Van Kinh Nguyen
et al., 2015)

Experimental
data of EBOV
kinetics

Stochastic:
bootstrap
method.

Non-spatial Mechanistic:
provides the
quantitative
details of the
interaction
between
Ebola virus
and the host
cells.

Continued on next page
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Summary/Result/Citation Data Deterministic
or Stochastic

Spatial or
non-spatial

Phenom.∗ or
Mechanistic

SEIR model: highly
expanded to incorporate
many aspect of the EVD
epidemic such as
demographics. Results:
the belief system can affect
greatly the value of R0.
Increasing health care
workers, limiting hospital
visitation and educating
people on their burial
practice help with EVD
control. (Agusto et al.,
2015)

Cumulative
patients data
(WHO) for
Guinea in
2014.

Deterministic Spatial: the
transmission
between
different
settings
(hospital and
community).

Mechanistic:
examine
various
details of the
transmission
of EVD under
different
public health
control
hypothesis.

SEIHR model: the
susceptible population is
divided into low and
high-risk groups. Possible
methods to terminate the
current epidemics are
examined. Results:
significant level of isolation
and reduction of high risk
population can help bring
R0 below one.(Khan et al.,
2015)

Cumulative
patients data
(WHO) and
corrected
data (CDC)
from May 1,
2014 to Oct.
1, 2014

Deterministic Non-spatial Mechanistic:
investigate
the effect of
altering the
high risk
susceptible
population to
transmission
of EVD.

Data-driven stochastic
model: considers 3 stages of
infection: incubation, early
symptomatic and late
symptomatic. Results: R0

is calculated to be between
1 and 2. Isolation of
critically infected individual
early can eliminate the
disease. (Yamin et al., 2015)

Incidence and
case fatality
from July 07,
2014 to Sept.
22, 2014.
Contact-
tracing from
Aug. 7, 2014
to Aug. 26,
2014.

Stochastic:
many
distributions
built from
empirical
data are used.

Non-spatial Mechanistic:
examine the
impact of
disease
progression
and case
fatality and
targeted
intervention
on EVD
transmission.

SEIR model: a
mathematical survey of
SEIR models and their
expanded versions is done.
Parameters and R0 are
estimated through data
fitting. Results: the
simulations with various
values of R0 are used to
confirm the known
dynamics of the outbreak
when R0 is below or above
unity. (Mamo and Koya,
2015)

Patient data
(WHO) up to
Dec. 14, 2014.

Deterministic. Non-spatial Mechanistic:
looks at the
transmission
and case
fatality
dynamics of
EVD.

Continued on next page

121



Continued from previous page

Summary/Result/Citation Data Deterministic
or Stochastic

Spatial or
non-spatial

Phenom.∗ or
Mechanistic

Multi-type branching
model: forecasts are done
under different time-varying
interventions. A novel
method for model
parameterization is
introduced. Results:
hospital capacity is crucial
in controlling the epidemics.
If hospital capacity is low,
then even a 99%
hospitalization rate may not
contain the
outbreak. (Drake et al.,
2015)

Time series of
operational
Ebola
Treatment
Units and
capacity is
estimated.
Patient data
(WHO) up to
September
2014.

Stochastic:
Poisson
distribution is
assumed
various
infection
assumptions.

Spatial:
incorporates
spatial
heterogeneity
in
transmission
dynamics.

Mechanistic:
analyzes the
effect of
increasing the
number of
hospital beds
and safe
burial to the
transmission
dynamics of
EVD.

SIR model: accounts for the
incubation period, burial
practice, underreporting
and the number of hospital
beds. Results: without
increase in treatment, the
number of patients will
double to 8,000 by Sept. 30,
2014. 70% of patients being
treated by late Dec. 2014 is
a threshold to eliminate the
disease. (Meltzer et al.,
2014)

Patient data
(WHO) up to
Aug. 28, 2014
and up to
Sept. 13,
2014. Past
information is
used to
estimate the
mean
incubation
and infection
period.

Stochastic:
distributions
of incubation
and infection
period are
used.

Non-spatial:
However,
different
settings are
considered.

Mechanistic:
quantitatively
show the cost
of delaying
control, the
condition for
effectively
eliminate the
disease.

SEIHFR model: sensitivity
analysis is carried out to
obtain the most key factor
in controlling EVD.
Results: R0 was estimated
to be 2.7. The time until
interventions take effect and
hospitalization rate is
crucial to control
EVD. (Legrand et al., 2007)

Patient data
from WHO
and various
papers for
parameters
values.

Stochastic:
weekly
incidence is
assumed to be
Poisson
distributed.
95%
confidence
intervals are
computed
using LHS.

Non-spatial:
however,
different
settings are
considered.

Mechanistic:
compare the
various
aspects of
EVD in two
different
outbreaks,
Democratic
Republic of
Congo (1995)
and Uganda
(2000).

Table B.1: Literature review of modeling efforts of EVD.
∗ Phenomenological.

Concluded
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