
 

Effects of Physical Activity on Sleep in Sedentary Adults with Sleep Problems 
 

by 
 

Jonathan M. Kurka 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 

Approved November 2016 by the 
Graduate Supervisory Committee: 

 
Barbara E. Ainsworth, Chair 

Marc A. Adams 
Siddhartha Angadi 
Matthew P. Buman 

Shawn D. Youngstedt 
 
 
 
 
 
 

 
 
 
 
 

ARIZONA STATE UNIVERSITY 
 

December 2016



i 

ABSTRACT 

Physical activity is critical for optimal health and has emerged as a viable option 

to improve sleep. Moderate- and vigorous-intensity physical activity comparisons to 

improve sleep in non-exercising adults with sleep problems is limited. The purpose was 

to determine the effects of moderate- or vigorous-intensity exercise on sleep outcomes 

and peripheral skin temperature compared to a no-exercise control. The exercise intensity 

preference also was determined. 

Eleven women (46.9±7.0 years) not participating in regular exercise and self-

reporting insomnia completed a graded maximal exercise test followed by a crossover 

trial of three randomly assigned conditions separated by a 1-week washout. Participants 

performed moderate-intensity [MIC, 30 minutes, 65-70% maximum heart rate (HRmax)] 

or high-intensity (HIT, 20 minutes, 1-minute bouts at 90-95% HRmax alternating with 1-

minute active recovery) treadmill walking or a no-exercise control (NEC) on two 

consecutive weekdays 4-6 hours prior to typical bed time. A dual-function wrist-worn 

accelerometer/temperature monitor recorded movement and skin temperature from which 

sleep-onset latency (SOL), sleep maintenance, sleep efficiency, total sleep time (TST), 

and peripheral skin temperature changes were calculated. Participants self-reported sleep 

outcomes weekly, enjoyment of exercise the morning after HIT and MIC, and exercise 

intensity preference upon completing all conditions. Mixed models analysis of variance 

examined differences between and within conditions controlling for demographic 

characteristics and habitual physical activity. 
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HIT resulted in up to a 90-minute TST increase on night four (448 minutes, 95% 

CI 422.4-474.2) compared to nights one-three. MIC nights three (43.5 minutes, 95% CI 

30.4-56.6) and four (42.1 minutes 95% CI 29.0-55.2) showed nearly a 30-minute SOL 

worsening compared to nights one-two. No other actigraphy-measured sleep parameters 

differenced within or between conditions. Self-reported sleep outcomes, peripheral skin 

temperature change, and exercise enjoyment between conditions were similar (p>0.05). 

More participants preferred lower (n=3) to higher (n=1) intensity activities. 

Early evening high-intensity and moderate-intensity exercise had no effect on 

sleep outcomes compared to a control in non-exercising adults reporting sleep 

complaints. Sleep benefits from HIT may require exercise on successive days. 

Participants indicated partiality for lower intensity exercise. More information on timing 

and mode of physical activity to improve sleep in this population is warranted.  
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CHAPTER 1 

INTRODUCTION 

Physical activity elicits benefits on the human condition, including improvements 

on cardiovascular, metabolic, muscular, and bone outcomes1. While physical activity is 

regarded an important behavior for optimal health, nearly 80% of the U.S. adult and child 

populations fail to engage in the evidence-based recommendations for physical activity 

into their daily routine2. This is of concern since physical activity engagement decreases 

throughout the lifespan, with sharper declines found among middle-aged and older 

adults3. 

In addition to not meeting physical activity recommendations, more than one-

quarter of the U.S. population reports occasionally not getting enough sleep. Nearly 50-

70 million Americans report sleep complaints annually4,5. A poll conducted by the 

National Sleep Foundation reported that approximately 60% of respondents did not get a 

good night’s sleep at least once in the previous week and almost half of those reporting at 

least one poor night’s sleep stated that poor sleep was a nightly occurrence6. Sleep 

problems are important determinants of both physical and mental health and are 

associated with premature mortality7,8. 

Parallel to declines in physical activity with age, problems with sleep also 

increase with age9. Despite spending more time in bed, older adults report poorer sleep 

quality and quantity compared to their younger counterparts because the ability to sleep 

diminishes with age, often due to insomnia10. Insomnia is characterized by difficulty 
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falling asleep, difficulty staying asleep, early morning awakenings, and reduced sleep 

efficiency (ratio of time spent asleep to time spent in bed)11. 

The prevalence of sleep complaints in the adult population is relatively high. 

Nearly one third of adults surveyed report sleep complaints, of which 10% report having 

insomnia. As well, 30% of employed adults report suboptimal sleep duration12,13. 

Insomnia and suboptimal sleep duration are each associated with overall poor health, 

cardiovascular (CVD) disease and CVD biomarkers, metabolic dysfunction, stroke, 

mental well-being status and medical illness, and mortality10. If untreated, sleep 

disturbances may result in poor physical performance in motor skills, increased risk of 

falls, chronic fatigue, and increased risk for the aforementioned poor health outcomes14. 

Accordingly, researchers have become increasingly interested in understanding ways to 

improve sleep quality and quantity in adults with poor sleep15. 

Physical activity has emerged as an attractive treatment for poor sleep because of 

the positive effects it has on virtually all bodily systems that are negatively affected by 

poor sleep16. Physical activity also lacks the deleterious side effects that are common with 

hypnotics and other sleep aids17. Epidemiological studies have shown that leisure-time 

physical activity and structured exercise are positively associated with sleep 

improvements in people with a wide range of demographic characteristics18. A 

mechanism for this improvement may be alterations in circadian rhythms that become 

normalized with exercise in poor sleepers, thereby improving symptoms of insomnia19,20. 

Regular exercise also is positively associated with health outcomes that are predictive of 

sleep disturbances such as depression, anxiety, high blood pressure, body temperature 
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regulation, and hormonal circadian rhythms21,22,23,24,25. Exercise also causes 

thermoregulatory adaptive reactions and improves cutaneous circulation in the 

extremities which may improve the body’s ability to fall into and stay asleep26. 

Not all studies report a positive effect of physical activity on sleep27,28, possibly 

due to considerable differences in study designs and the dose of physical activity 

prescribed.  The dose of physical activity can vary based on the number of occasions an 

activity is performed over a specified time (frequency), the amount of time one is 

engaged in an activity during each session (duration), the exertion level required by the 

activity (intensity), and the time of day an activity is performed. The type of physical 

activity performed (mode) generally is determined by a purpose for engaging in an 

activity. An activity may be performed with the intention of improving health outcomes 

(e.g., structured exercise routine), as part of competition (e.g., sports), or incorporated 

into one’s daily routine (e.g., during leisure, occupation, or transportation).  

Most studies on the effects of physical activity and sleep have used continuous 

exercise sessions as the activity duration29. Few studies have used short bouts of high-

intensity exercise coupled with short bouts of rest or light intensity activity on sleep 

outcomes30. While the high-intensity exercise paradigm has been effective in improving 

cardiovascular disease biomarkers and metabolic dysfunction in adults31,32, few studies 

have evaluated the effects of high-intensity exercise on sleep quality. For example, 

Passos et al.30 showed moderate-intensity activity and high-intensity activity positively 

affected sleep onset latency, sleep maintenance, and sleep efficiency in 36-52 year old 

females with insomnia. 
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While moderate-intensity activity is commonly prescribed as the dose for physical 

activity in sleep studies, in comparison, high-intensity activity often takes substantially 

less time (e.g. 30 minutes vs 50 minutes) and is prescribed at a lower volume of 

exercise31,32. High-intensity activity also elicits greater increases in core body 

temperature during exercise followed by a core body temperature down-regulation 

through cutaneous vasodilation and increase in skin temperature33,34. This is important 

since an increased core body temperature is a potential mechanism for poor sleep. 

In 1983, Horne and Staff33 published the earliest results showing the positive 

relationship between activity intensity and sleep. However, there is a misconception that 

high-intensity activity, particularly when performed in the evening, disrupts sleep. How 

one perceives the intensity of a physical activity depends on their age, body weight, and 

physical fitness level. Those with lower levels of physical fitness, older age, and higher 

body weight will experience higher levels of exertion at lower levels of absolute physical 

activity than their more physically fit, younger, and leaner counterparts. Thus, the 

association of high-intensity activity to sleep disruptions may be highly individual35. 

While some high-intensity activity protocols are considered impractical and intolerable to 

adults and persons with lower fitness levels31, Little et al.36 found that a protocol of 10 x 

1-minute high-intensity activity bouts evenly disbursed with 1-minute light-intensity 

activity bouts were enjoyable in adults with type 2 diabetes. Heart failure patients also 

tolerated this protocol successfully. 

When administered separately, moderate-intensity activity and high-intensity 

activity appear to be effective in improving sleep acutely37,38. However, no study has 
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compared the prolonged effects of moderate-intensity activity and high-intensity activity 

on sleep outcomes. It is speculated that a two consecutive days of an high-intensity 

activity interval protocol of 10 x 1-minute bouts of high intensity treadmill walking 

followed by 10 x 1-minute bouts light-intensity treadmill walking, will improve sleep at 

similar levels as two consecutive days of moderate-intensity activity. Thus, this study will 

use a crossover design to study the effects of two consecutive days of a high-intensity 

activity protocol and two consecutive days of continuous moderate-intensity activity with 

a no-exercise control period on measures of sleep quality in adults with self-reported poor 

sleep quality. 

Statement of the Problem 

 People without obstructive sleep apnea that have sleep disturbances, such as 

difficulty falling and staying asleep and feeling dissatisfied or worried about their sleep 

are commonly prescribed hypnotics or hormone therapy, while proper sleep hygiene is 

recommended39,40. Some treatments can be expensive and the beneficial effects on sleep 

quality may dissipate quickly. Plus, they do not aid in treating comorbid conditions that 

are related to poor sleep, such as diabetes and heart disease. Exercise is gaining attention 

as a low cost and efficacious treatment to improve sleep41. The benefits of participating in 

regular physical activity on health outcomes are well understood42. However, little 

research is available about the efficacy of physical activity on sleep quality41. Regular 

physical activity, specifically structured exercise, is effective in improving sleep due to 

increases in energy expenditure and improved body temperature regulation prior to and 

during sleep33,43. Thus, exercise routines may be an effective treatment modality for 

adults who are poor sleepers and do not engage in regular exercise routines3,44. To date, 
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little evidence exists of the benefits of bouts of moderate- and vigorous-exercise on sleep 

quality over consecutive days. In addition, no published studies have compared the 

effects of moderate- and vigorous-intensity exercise on sleep quality over consecutive 

days. Given the popularity of intermittent high intensity exercise on health outcomes31,32, 

the question remains whether two consecutive days of a low-volume, high intensity 

exercise has a differential effect than continuous, moderate-intensity exercise or a no-

exercise on sleep quality in inactive adults with sleep complaints. 

Research Study Aims 

The primary purpose of this research is to compare the effects of two consecutive 

days of moderate-intensity continuous exercise and intermittent bouts of high-intensity 

exercise with a no-exercise control group on sleep quality in inactive adults with self-

reported sleep problems. The secondary purpose of this research is to examine changes in 

thermoregulation following moderate- and high-intensity exercise sessions as a 

mechanism between engagement in exercise of different intensities and symptoms of 

insomnia. The tertiary purpose of this research is to examine the participant’s subjective 

preference of an exercise intensity in improving sleep quality. To test these study 

hypotheses, the following specific aims will be addressed using a crossover trial that 

includes a no-exercise control. 
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Specific Aims and Hypotheses 

Aim 1A 

Purpose 

The purpose of Aim 1A was to examine the effects of high intensity interval 

exercise (HIT) and moderate-intensity continuous exercise (MIC) versus a no-exercise 

control (NEC) on actigraphy-measured sleep outcomes. 

Null Hypothesis 

There will be no difference between HIT, MIC, and NEC on actigraphy-measured 

sleep-onset latency (SOL), sleep maintenance (WASO), and sleep efficiency (SE). 

Alternate Hypothesis 

HIT and MIC will result in superior sleep outcomes of actigraphy-measured sleep 

onset latency (SOL), sleep maintenance (WASO), and sleep efficiency (SE), compared to 

a NEC. 

Aim 1B 

Purpose 

The purpose of Aim 1B was to examine the effects of HIT and MIC versus a NEC 

on self-reported sleep outcomes. 

Null Hypothesis 

There will be no difference between HIT, MIC, and NEC on self-reported SOL, 

WASO, and SE. 
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Alternate Hypothesis 

HIT and MIC will result in superior self-reported sleep outcomes of SOL, WASO, 

and SE compared to a NEC. 

Aim 2 

Purpose 

The purpose of Aim 2 was to examine the effects of HIT and MIC versus a NEC 

on peripheral distal body temperature changes as a predictor of sleep-onset latency. 

Null Hypothesis 

There will be no difference between HIT, MIC, and NEC on peripheral body 

temperature to predict sleep-onset latency. 

Alternate Hypothesis 

HIT and MIC will result in a greater change in peripheral distal body temperature 

predicting improved sleep-onset latency compared to a NEC. 

Aim 3 

Purpose 

The purpose of Aim 3 was to determine the subjective assessment of exercise 

intensity preference as a method of improving sleep. 

Null Hypothesis 

There will be no difference between HIT and MIC as a method of improving 

sleep. 
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Alternate Hypothesis 

Participants will prefer HIT over MIC as a method of improving sleep. 

Significance of the Research 

Physical activity and exercise recommendations have called for older adults to 

engage in moderate-intensity exercise, such as brisk walking to improve health42. Sleep 

hygiene recommendations suggest exercise can promote good sleep and that vigorous-

intensity exercise should be performed in the morning or late afternoon6. This latter 

recommendation is based on the study by Driver et al.35 showing vigorous-intensity 

exercise prior to bedtime disrupted sleep. However, this finding is inconsistent as Passos 

et al.30 showed vigorous-intensity, interval training led to improved sleep quality. 

Additional studies are needed to examine the optimal frequency, intensity, volume, and 

time-of-day of exercise needed to improve sleep quality in adults with self-reported sleep 

problems. 

 Epidemiological studies have shown that sedentary lifestyle is positively 

associated with sleep disturbances45,46. Conversely, those who self-report being 

physically active also report better sleep quality and/or fewer sleep disturbances than age-

matched inactive adults47. In particular, moderate-intensity exercise is related to sleep 

improvements48. 

Recent evidence from studies using high intensity exercise suggests short bouts of 

near-maximal exercise during the evening confers multiple health benefits, including 

improved sleep complaints49. Thus, if high-intensity exercise is interval in design, 

including rest intervals between the high-intensity bouts, the exercise mode may be as 
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tolerable and as preferable as continuous moderate-intensity protocols in improving sleep 

quality. This question has relevance since the prevalence of high intensity-classified 

exercise decreases and the incidence of sleep disturbances increases with age3,50. 

The proposed research will identify whether differences exist in the intensity of 

exercise that relates to sleep improvement among a sample of 35-60 year-old adults with 

self-reported sleep disturbances. Specifically, the research will study differences between 

intermittent high-intensity exercise and continuous moderate-intensity exercise 

performed in the late-afternoon and early-evening periods of two consecutive days as 

compared to no exercise-control on sleep quality in sedentary adults with self-reported 

sleep disturbances. 

Definition of Key Terms 

Physical Activity: Any bodily movement produced by skeletal muscles that results in 

energy expenditure51. 

Exercise: Physical activity that is planned, structured, repetitive, and purposive in the 

sense that improvement or maintenance of one or more components of physical fitness is 

an objective51. 

Moderate-intensity Exercise: Exercise at an intensity of 70-80% of maximal heart rate52. 

Vigorous-intensity Exercise: Exercise at an intensity of 80-90% of maximal heart rate52. 

High-intensity Interval Exercise: Exercise that is characterized by relatively short bursts 

of vigorous activity, interspersed by periods of rest or low intensity exercise for 

recovery31. 
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Sleep-onset Latency: How many minutes it takes to fall asleep, starting from the moment 

of intention to fall asleep53. 

Wake After Sleep Onset: Total amount of time awake during the night, excluding sleep-

onset latency, and the time between the final awakening and the time of getting out of 

bed53. 

Sleep Efficiency (percentage): Percent of time in bed spent asleep53. 

Sleep Quality: Subjective sleep quality, typically defined by responses on an ordinal or 

visual analog scale53. 

Insomnia: Generic term with criteria of sleep-onset latency or wakefulness after sleep 

onset of more than 30 minutes, frequency of at least 3 times a week, and duration of at 

least 6 months54. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Introduction 

 Physical activity benefits to human health include improvements in 

cardiovascular, metabolic, muscular, and bone function. Ever since scientific associations 

between physical activity and health were described in the mid-20th century, various 

types and doses of physical activity have been examined on health outcomes55,56. Health 

professionals recognize physical inactivity and insufficient sleep as important health 

concerns due to their negative relationships and effects on health1,55,57–59. Sleep is of 

particular interest because of the possible bidirectional relationship with physical 

activity41. While enhanced sleep is likely to result in increased levels of physical activity 

the following day, a lack of physical activity may result in poorer sleep outcomes. This 

review of literature will explain a brief review of physical activity and health research, 

the history of and importance of sleep on health, and the relationship between movement 

patterns (physical activity) and sleep outcomes. 

Physical Activity and Health: A Brief Overview of History and Recommendations 

Since the 1950’s, physical activity has been regarded as a health-enhancing 

behavior. However, it took nearly 40 years of epidemiological studies of physical activity 

and chronic disease outcomes to accumulate the evidence needed to make evidence-based 

recommendations for levels of physical activity needed for good health. One of the first 

sources of evidence was Morris’60 1953 seminal study of London transit workers where 

they examined cardiovascular mortality and overweight status between 31,000 London 
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bus drivers and London bus conductors (ticket takers) (age range = 35-64). Conductors 

spent their shifts running up and down stairs while drivers spent their shifts in a sedentary 

behavior and experience the stress of driving in London traffic. Conductors had lower 

rates of cardiovascular disease mortality (30%) and were less likely to be overweight than 

the drivers. The investigators concluded the lower rates of mortality and overweight 

among the conductors were due to the differing physical activity levels between the 

occupations. Morris61 replicated the findings in a study comparing postal carriers who 

walked to deliver mail with postal workers who sat and answered telephones or stood and 

sorted the mail (sample size not reported, age range = 35-59). Results showed that higher 

levels of physical activity during work was associated with lower levels of cardiovascular 

disease mortality (50%). These studies opened the discussion that physical activity is 

related to health outcomes. 

In 1978, Paffenbarger et al.62 directly addressed the question of whether physical 

activity is related to health outcomes and published a seminal study examining the 

association between leisure-time physical activity and risk for a first heart. In a 

prospective cohort study of 16,936 male alumni (age range = 35-74) from Harvard 

University, Paffenbarger et al. showed that higher levels of energy expended in climbing 

stairs, walking city blocks, or participating in strenuous sports was inversely associated 

with risk for a first heart attack. Those who expended more than 2,000 kcal/week reduced 

their risk for heart attack by 64%; thus, higher levels of physical activity lowered risk for 

a first heart attack. 
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With the evidence accumulating about the protective effects of regular physical 

activity on health outcomes, in 1987 Powell et al.63 published a review showing the 

epidemiological criteria for a causal association between regular, moderate-intensity 

physical activity and a reduction of morbidity and mortality from CVD. Accordingly, the 

American Heart Association identified a lack of physical activity as a risk factor for 

coronary heart disease64. Other organizations have since established physical activity 

recommendations or guidelines on the dose of PA needed to reduce the risk for chronic 

diseases and premature mortality. In 1995, the Centers for Disease Control and 

Prevention and the American College of Sports Medicine provided a joint statement on 

physical activity and health stating that every U.S. adult should accumulate 30 minutes or 

more of moderate to vigorous intensity physical activity on most, preferably all days of 

the week65. In 1996 the Surgeon General released a report titled, Physical Activity and 

Health that emphasized the importance of expending 150 kcal/day or 1,000 kcal/week 

through moderate, at minimum, intensity activity (e.g., 30 minutes of brisk walking or 15 

minutes of running on most if not all days of the week). Nearly a decade later in 2008, the 

U.S. Department of Health and Human Services released the Physical Activity 

Guidelines for Americans (PAG)1. This was the first comprehensive guidelines on 

physical activity issued by the federal government. These guidelines further described 

physical activity as a behavior that reduces the risk of a variety of adverse health 

outcomes and that additional benefits occur as the amount of physical activity increases 

through higher intensity, greater frequency, or longer duration. The PAG recommend 

adults engage in at least 150 minutes a week of moderate intensity or 75 minutes a week 

of vigorous intensity health-enhancing physical activity to receive most health benefits. 
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Also, they should perform strength training at least twice per week. Ironically, none of 

the physical activity recommendations or the PAG address sedentary behaviors aside 

from advising adults to avoid sedentary behaviors. Because evidence is lacking, there is 

no reference to the time of day that performing physical activity may be most beneficial 

for improving organ systems, sleep, or bodily functions.  

Measurement of Physical Activity and Sedentary Behaviors 

Terminology 

In 1985, Caspersen et al.51 defined the terms physical activity, exercise, and 

physical fitness to clarify the use of these terms in epidemiological research. Physical 

activity is defined as “any bodily movement produced by skeletal muscles that results in 

energy expenditure”. Exercise is defined as “planned, structured, and repetitive physical 

activity with the purpose of improving physical fitness components.” If performed with 

sufficient frequency, intensity, and duration, physical activity and exercise result in 

increased levels of physical fitness, defined as a set of attributes that people have or 

achieve that are often inversely related to energy expenditure. Whereas physical activity 

is necessary to sustain life, the amount of and purpose for which physical activity is 

performed is dependent on the individual. Physical activity can occur in different 

domains and at different intensities that can affect health outcomes. For example, the 

domain of occupational physical activity is activity performed as a requirement of a job. 

Recreational or leisure-time physical activity is activity performed during one’s leisure 

time. Transportation physical activity is activity performed during travel from one place 

to another. Other physical activity domains include household, lawn and garden, and 
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childcare activities. The effects of physical activity and exercise on physical fitness 

differs due to the energy costs of movement. Higher levels of the energy cost of 

movement result in higher levels of physical fitness. The opposite is true. Lower levels of 

movement, termed sedentary behaviors, will cause reduced levels of physical fitness. 

Sedentary behaviors include activities that involve sitting or lying down and can occur in 

similar domains as physical activity, such as a recreation or leisure-time activity (e.g. 

watching TV), during transportation (e.g. sitting in a vehicle), or as part of one’s 

occupation (e.g. sitting at a desk). 

To assess the energy costs of movement, it is important to know how to identify 

and how to measure physical activity and sedentary behaviors. This next section 

describes methods used to measure physical activity and sedentary behaviors directly 

with physiological monitors, motion detectors and observation systems and indirectly 

with questionnaires, diaries and logs. 

Direct Measurement of Physical Activity and Sedentary Behaviors 

Direct measures of physical activity and sedentary behaviors include the use of 

observation, accelerometers, pedometers, and physiological recording devices. The types 

of movement recordings and the determination of the energy cost of movement vary with 

each measurement device. The benefits of using direct measures are that they are less 

prone to recall and social acceptability bias. However, with the exception of direct 

observation, direct measures of physical activity and sedentary behaviors are not capable 

of detecting the domain in which physical activity or sedentary behaviors are performed; 

instead, they are focused on indicating movement or the lack of movement. Specific to 
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physical activity behaviors, direct measures also may not reflect the true physical activity 

intensity relative to the individual, as most accelerometers employ a universal cut-point 

to translate acceleration signals into intensity levels. This is an important consideration 

for the use of accelerometers and other direct methods to measure movement as the data 

processing may lead to different interpretations of physical activity behaviors of 

individuals or a population. 

A brief description of direct measurement of physical activity and sedentary 

behaviors follows and includes direct observation, accelerometers, pedometers, and 

physiological recordings. 

Direct Observation 

Direct observation allows the researcher to observe an individual performing an 

activity while recording the type, duration, intensity, and possibly the context of the 

activity (e.g., leisure, occupation, transportation, and household) using video, electronic, 

or paper data capture tools. Because direct observation often occurs in free-living 

environments, the observer can record a range of activities performed, the context in 

which the activity is occurring, and the varying amounts of intensity at random. An 

example of direct observation used to assess physical activity and sedentary behaviors 

within a context is the System for Observing Play and Leisure Activity in Youth 

(SOPLAY). SOPLAY was designed to measure the number of children participating in 

leisure physical activity in a target area, classifying them into sedentary (lying down or 

sitting), walking, or very active categories. McKenzie et al.66 used SOPLAY to assess the 

physical activity and sedentary behaviors of children in the school environment. In a 
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sample of 1,081 students across 24 schools in grades 6-8, SOPLAY accurately identified 

the percentage of boys and girls participating in sedentary activities or moderate-to-

vigorous intensity physical activity throughout the school day. An example of the use of 

direct observation in a school setting is the System for Observing Fitness Instruction 

(SOFIT). SOFIT was designed as a system for schools to provide a measure of student 

activity levels during class time. The use of SOFIT to estimate physical activity and 

sedentary behaviors of children during school was presented by Honas et al.67. Thirty-

eight students in classrooms for grades 2 through 5 were categorized on a 5-point Likert 

scale from lying down to very active. SOFIT provided an accurate estimation of 

classroom based physical activity. Direct observation also is appropriate for use in public 

health settings. Adams et al.68 videotaped 15,574 people to determine the effects of a 

research model on a persons’ use of stairs or escalators in an airport.  

In summary, direct observation has several advantages over other forms of direct 

measurement of physical activity. Direct observation is not dependent on laboratory-

derived algorithms used to identify movement duration, frequency, and intensity and can 

provide the context for the performance of physical activity and sedentary behaviors. In 

addition, direct observation allows the investigator to record the types of movements 

performed using electronic data capture systems or with video recordings.  

Accelerometers 

Accelerometers record acceleration of human movement in two-to-three planes 

resulting in the frequency, intensity, and duration of movement. After adjusting for 

gravity and filtering out non-human movement (e.g., acceleration of body from riding in 
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vehicles), accelerometers can provide an accurate measure of physical activity and 

sedentary behaviors. Within the past 20 years, accelerometers have gained popularity 

with researchers since they provide objective physical activity and sedentary behavior 

information in both laboratory and free-living settings69,70. Accelerometers are worn on 

the hip, wrist, thigh, or around the chest to reflect participant movement. Movement 

accelerations are captured at a pre-determined sampling rate, typically 40-100 times per 

second (hertz) and are interpreted as counts to reflect intensity and duration of 

movements. Various types of accelerometers exist and include brands such as the 

ActiGraph, GENEactiv, ActivPal and other less popular models71.  

The most widely used research grade accelerometer is produced by ActiGraph 

(ActiGraph LLC, Pensacola, FL) which has been consistently shown to provide an 

accurate assessment of physical activity frequency, duration, and intensity using 

threshold and algorithm methods72. The ActiGraph software guides the researcher 

through various types of data processing and has several of the established movement 

count threshold criteria embedded in the program. Researchers process the data using 

count thresholds to determine frequency, intensity, and duration of movement in 

meaningful ways to reflect patterns of physical activity and sedentary behaviors. Count 

thresholds vary depending on the physical activity component of interest and the 

population studied. Freedson et al.73 were the first to establish ActiGraph accelerometer 

count thresholds. In a laboratory setting, 50 adults performed treadmill exercises at three 

different speeds while wearing a waist-worn accelerometer. Physical activity intensity 

thresholds were determined by comparing counts to measured energy expenditure values. 

Evenson et al.74 also established count thresholds in children 5-8 years of age. Thirty-
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three children wore two different accelerometers at the waist and, similar to Freedson et 

al., they compared counts to energy expenditure to establish count thresholds for physical 

activity intensity. The ActiGraph is used in research and in surveillance settings. The 

National Health and Nutrition Examination Survey uses the ActiGraph accelerometer to 

monitor population trends in physical activity and sedentary behaviors. In 2008, Troiano 

et al.3 first reported accelerometer-measured physical activity in 6,830 individuals, a 

representative sample of U.S. adults ages 18-49 years. They showed that less than 5% of 

adults were active at levels sufficient to meet national physical activity recommendations. 

These data represented the initial estimates of prevalence of adherence to physical 

activity recommendations from objectively-monitored physical activity. Accelerometers 

also are used to measure movement in research studies. In the Trial of Activity in 

Adolescent Girls, Pate et al.75 used accelerometer-measured physical activity counts to 

examine the age-related changes in physical activity over two years. Adolescent girls 

(n=2,331) wore an accelerometer for six days per year to assess the frequency, intensity, 

and duration of physical activity performed. Despite the intervention efforts, moderate-to-

vigorous intensity physical activity declined at a rate of 4% per year. 

In the previous examples of the ActiGraph accelerometer uses, investigators used 

count thresholds to rate the duration and intensity of movement. Despite the wide use of 

count thresholds, debate remains about the validity of existing cut-points when 

classifying physical activity intensity in free-living settings. Thus, efforts have led to the 

examination of machine-learning algorithms and individually developed algorithms to 

assess the duration and intensity of movement70. The GENEactiv (Activinsights Ltd, 

Cambridgeshire, UK) is a research grade accelerometer that benefits from the use of 



21 

machine-learning algorithms and individually developed algorithms. The wrist-worn 

GENEactiv collects movement accelerations and outputs data without initial data 

processing. This provides the researcher with the capacity to process the acceleration data 

using established thresholds or with individually developed algorithms. An advantage of 

the GENEactiv is that it is worn on the wrist for 24-hour monitoring of movement, 

including sleep. While the GENEactiv is a relatively new research-grade accelerometer, 

studies have shown the feasibility and utility of the monitor as compared with other 

accelerometers. Huberty et al.76 compared the feasibility of three accelerometers during 

three weeks of 24-hour monitoring in 21 women, 30 to 64 years old. They deemed 

GENEactiv as acceptable with 100% of the eligible person-days of GENEactiv data 

captured for data analysis as compared with lesser amounts of data captured with the 

other monitors. 

A third example of an accelerometer is the ActivPAL (PAL Technologies Ltd, 

Glasgow, Scotland). The ActivPAL assesses postures and movement during physical 

activity and sedentary behaviors. The ActivPAL is worn on the thigh and collects 

acceleration and the angle at which the thigh is positioned with an inbuilt uni-axial 

accelerometer and inclinometer, respectively. Researchers can determine how much time 

a person spent in sedentary activities such as sitting or lying down, and in non-sedentary 

activities such as standing or walking. While the ActivPAL is capable of recording step 

number for walking cadence, the strengths of the device are in the identification of 

physical activity and sedentary activity changes and in the assessment of time spent in 

different postures and sedentary behaviors77,78. In a validation study, Edwardson et al.79 

examined the accuracy of time spent in different postures and sedentary behaviors 
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between thigh- and waist-worn accelerometers, including the ActivPAL, in 34 males and 

females ages 21-33 years. Results showed the ActivPAL correctly identified 91% of 

sitting, 100% of lying, and 99% of upright postures.  

Pedometers 

Pedometers count steps taken by an individual as they go through their daily 

routines. Early mechanical pendulum pedometers counted steps based on a heel-strike 

during walking activities. In recent years, pedometers use piezoelectric technology that 

incorporates steps taken in a unit of time allowing researchers to determine the frequency 

and duration of physical activity. Earlier pedometer models were  designed to be worn at 

the hip and are excellent in measuring steps at walking speeds > 2 mph80. Models that are 

more recent also are worn at the level of the wrist, chest, ankle, and in pockets. The most 

accurate readings of steps taken involve wearing pedometers at the ankle. Investigators 

have compared different brands of pedometers for accuracy. In 2004, Schneider et al.81 

examined the validity of 13 electronic pedometers for measuring steps in 10 subjects with 

age ranging from 21-45 years while walking at various speeds. Compared to direct 

observation of steps, several pedometers were within ±1% of the actual steps taken. The 

most accurate brands included Kenz, Yamax. New-Lifestyles, and Sportline. Advances in 

technology allow pedometers to store data for weeks and to display the results easily. For 

example, most electronic pedometers use Bluetooth applications to show results of step 

data using computer websites and smartphone applications. 

The primary advantage of the pedometer is the output metric of steps which 

makes physical activity easily translatable to both consumers and researchers. For 
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example, Tudor-Locke and Bassett82 identified step cut-points to reflect varying levels of 

physical activity behaviors ranging from sedentary-to-highly active. In a 2004 review, 

they described sedentary lifestyles as < 5,000 steps per day, low active lifestyles 

including typical daily activities without sports and exercise as 5,000-7,499 steps per day, 

somewhat active lifestyles including exercise or elevated occupational activity demands 

as 7,500-9,999 steps per day, and active lifestyles as ≥ 10,000 steps per day. Another 

advantage of the pedometer is the output metric of steps per minute can be used to 

estimate physical activity intensity when walking. Pillay et al.83 studied 58 men and 

women, ages 24-38 years, and identified a cadence of 60-120 steps per minute as a 

moderate-intensity movement. Thus, pedometers provide a practical and inexpensive way 

to estimate the duration and intensity of physical activity behaviors. 

Physiological Recordings 

Recordings of one’s heart rate and galvanic skin responses are types of 

physiological recordings that determine the frequency, duration, and intensity of physical 

activity and sedentary behaviors in laboratory and free-living settings. These associations 

are possible through the linear relationship between physical activity intensity and 

physiologic responses to movement or lack of movement84. Physiological responses to 

increased physical activity vary by an individual’s fitness level. Thus, it is possible to 

individualize the assessment of physical activity using monitors that measure 

physiological responses to movement behaviors. An example of a physiological 

recording device is the SenseWear armband (BodyMedia, Inc., Pittsburgh, PA). The 

SenseWear armband is worn over the triceps muscle and collects movement acceleration 

and records skin temperature and galvanic skin responses using electrical conductivity of 
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the skin. These input signals have a direct linear relationship with physical activity that 

allows an estimation of the frequency and duration of physical activity. One strength of 

the SenseWear armband is the ability to measure various modes of physical activity 

accurately. In 2004, Jakicic et al.85 evaluated the SenseWear armband against indirect 

calorimetry in a sample of 40 adults, 19-27 years old. The SenseWear armband provided 

accurate measures of physical activity accrued from walking, cycling, stepping, and arm 

ergometry. Another strength of the SenseWear armband is the accurate measurement of 

light-to-moderate physical activity intensity. Alternatively, a limitation of the SenseWear 

armband is the lack of accuracy in assessing sedentary or standing activities or vigorous-

intensity activity levels. In 2014, Van Hoye et al.86  examined the accuracy of the 

SenseWear armband to assess light-to-moderate and vigorous physical activity intensities 

against indirect calorimetry in sample of 44 adults, 20-23 years old. The SenseWear 

armband accurately assessed light-moderate intensity walking but underestimated 

vigorous-intensity jogging exercise. 

Another example of a physiological monitor used to measure physical activity and 

sedentary behaviors is the Zephyr BioHarness (Zephyr Technology, Annapolis, MD). 

The Zephyr BioHarness (referred to as the BioHarness) combines accelerometry, heart 

rate measurement and respiration measures through a chest-worn strap providing the 

researcher with movement accelerations, beats per minute, and breaths per minute to 

estimate physical activity and sedentary behaviors. The BioHarness has been evaluated 

for accuracy against previously validated physiological systems. In 2013, Kim et al.87 

demonstrated the BioHarness accurately assessed heart rate and breathing rate during 

graded treadmill exercise as compared to a 12-lead electrocardiogram and open-circuit 
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spirometer, respectively, in 12 health men ranging in age from 21-29 years. Also in 2013, 

Jovanov et al.88 showed the BioHarness was accurate in showing postural changes when 

compared to direct observation in seven healthy subjects performing a sequence of sitting 

and standing movements. The BioHarness system is useful in-practice and in sports 

performance settings as it is easy to use, has training system software, has device 

integration with performance clothing, and it provides Bluetooth integration for real-time 

feedback. 

Overall, all direct measures of physical activity and sedentary behavior offer an 

accurate assessment of the frequency and duration of those behaviors and the intensity of 

physical activity. While some measures incorporate physiological recordings to aid in 

measurement of movement, all methods, including direct observation, aim to evaluate the 

movement of the individual. As the strengths and limitations of each measurement device 

vary, researchers should consider the types of physical activity or sedentary behavior they 

wish to measure before using a particular type or brand of objective monitor. 

Indirect Measures of Physical Activity 

Indirect measures of physical activity and sedentary behaviors include the use of 

questionnaires, records, and logs. All indirect measures benefit from the ability to capture 

the purpose, self-reported frequency and duration of physical activity and sedentary 

behaviors, and the intensity of varying types of physical activity89. In addition, each 

indirect measure has a unique benefit when estimating physical activity and sedentary 

behaviors. From these self-reported metrics, researchers can compute the estimated 

energy cost of movement. However, because of the reliance on the individual self-
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reporting of physical activity or sedentary behaviors, subjective measures have a 

reporting bias. Common sources of bias include the inability of some population groups 

to complete questionnaires, logs, or records because of a lack of understanding of the 

construct of physical activity or sedentary behaviors queried or poor literacy. Further, 

limited memory, problems telescoping one’s behavior beyond the recall time period, and 

social desirability to be more active than one’s actual activity levels  can result in an 

over- or under-reporting of physical activity and  of sedentary behaviors90. The indirect 

measures described here include questionnaires, records, and logs. 

Questionnaires 

Questionnaires are presented in various forms and require respondents to estimate 

their own physical activity and/or sedentary behavior levels. The level of detail in a 

questionnaire varies. Most questionnaires ask participants to recall the duration and 

intensity of physical activity or sedentary behaviors they did over a defined time period 

such as a week or month55. Three types of questionnaires are used in research and/or 

surveillance settings. Global questionnaires categorize a participant as active or inactive 

based on their physical activity level derived from a few brief questions. For example, the 

United States Behavioral Risk Factor Surveillance System uses a single question to 

classify individuals as engaging in physical activities during the past month91. Recall 

questionnaires are more detailed than global questionnaires and ask the participant to 

provide information about the frequency, duration, and intensity of different types of 

physical activity or sedentary behaviors performed over a specified period such as the 

previous week or month. Recall questionnaires also may ask respondents to provide 

domain-specific activities, such as daily duration of computer use at work (e.g., 
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occupational sedentary behavior), or weekly frequency of walking to a bus stop (e.g., 

transportation physical activity). An example of a recall questionnaire is the short form of 

the International Physical Activity Questionnaire (IPAQ). The IPAQ has respondents 

answer how many days and how much time they spent in the past week doing vigorous 

activities, moderate activities, walking, and time spent sitting during a usual day. 

Quantitative history questionnaires may have as many as 70 items and are more 

comprehensive than recall questionnaires. They require respondents to recall the 

frequency, intensity, and duration of physical activities over a period in the past (e.g., 

past month, year, or lifetime). A strength of quantitative history questionnaires is the 

inclusion of various types of categories, such as occupational, household, different types 

of sport and leisure, transportation, family care, and home and yard activities, which is 

impossible to know unless one directly observes the behaviors. An example of a 

quantitative questionnaire is the Minnesota Leisure Time Physical Activity 

Questionnaire. It lists 18 major activity groups and 62 individual activities and asks 

respondents to indicate the number of occasions per month they performed each activity 

and average duration of the activity92.  

In general, questionnaires are limited in their utility due to biases in their internal 

and external validity. Internal validity is reduced if respondents are unable to understand 

the questionnaire to complete the items accurately. External validity often is limited 

depending on the population measured. Older adults, children, and those with poorer 

education are underrepresented when designing questionnaires and when performing 

validation studies. Thus, questionnaires may not be relevant to such populations and the 

external validity of the questionnaire may be unknown for such populations. 
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Records 

When using physical activity or sedentary behavior records (records), individuals 

list physical activity and sedentary behaviors during the day as they occur. To complete 

the record, individuals identify each behavior and record a new entry into a paper or 

electronic form when the behavior changes, such as changing from sitting watching TV 

to standing and doing the dishes. By recording information as behaviors change, 

researchers obtain a better understanding of the social context of physical activity and 

sedentary behaviors, such as attitude toward an activity or support for the activity. 

Dunton et al.93 provided an example of record use in a study that matched accelerometer-

measured physical activity in 121 children to self-completed electronic records. Children 

recorded the activity, location of activity, if any friends were present during the activity, 

mood during the activity, and enjoyment of the activity. The record information allowed 

researchers to determine empirically that physical activity was most enjoyable when they 

performed it outdoors and was least enjoyable when performed alone. Records may 

include various information depending on the study objectives. For example, to obtain 

information about time spent in differing postures, a researcher may have respondents 

record the duration of an activity while sitting, lying down, standing, or walking. A 

researcher also can obtain information about the purpose of the activity (e.g. child care, 

household, transportation) and a respondent’s perceived effort of the activity (light, 

moderate, or vigorous)94.  

Logs 

Logs require individuals to record specific activities or sedentary behaviors into a 

simplified record as they participate in the activities throughout the day. A logbook often 
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requires the respondent to identify movement information within discreet periods (e.g. 

15- or 30 minute intervals) throughout the day or at the end of the day. Logs provides a 

simple way to collect information about types or intensities of physical activity and 

sedentary behaviors performed during each day. Several types of logs exist for use in 

research and in practice settings. A popular log is the Bouchard Activity Log95. This 3-

day log has respondents identify specific activities performed every 15-minutes according 

to their intensity level on a scale from 1 to 9. Examples of activities and respective 

intensities range from sleeping (n=1) to high-intensity sports activities (n=9). The main 

benefit of recording specific activities, in addition to identifying the activity intensity, is 

the accurate reflection of the individual’s physical activity intensity fluctuations over a 

period of time or throughout the day. 

 In summary, various types of methods are available to assess physical activity and 

sedentary behaviors. Direct measures of acceleration, posture, and physiological 

responses have the greatest accuracy to assess the frequency, duration, and intensity of 

movement. While dependent on self-report, indirect measures are best to identify the 

types of movement or sedentary behaviors performed. Combining direct and indirect 

measures provide the most complete measure of physical activity and sedentary 

behaviors.  

Measurement of Sleep Behaviors 

Terminology 

Sleep behaviors are identified using quantitative or qualitative sleep parameters 

that employ a classification system to allow consistency in the definition of terms96. 
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Quantitative sleep parameters identify the time one spends in bed attempting to sleep and 

the time one spends asleep each night. These parameters include the measurement of 

sleep duration (time spent asleep), sleep onset latency (time spent in bed attempting to 

fall asleep initially), sleep maintenance (time spent awake and number of awakenings 

during the night after falling asleep initially), and sleep efficiency (the ratio of time spent 

asleep to time spent in bed). Alternatively, qualitative sleep parameters reflect the overall 

quality of one’s sleep. Sleep quality can be rated from poor-to-excellent as measured with 

self-report ratings of poor sleep quality overall, self-reported bad dreams resulting in 

trouble sleeping, self-reported or physician-reported taking of medication to help with 

sleep due to trouble sleeping, self-reported feeling of restlessness during sleep, or self-

reported difficulty concentrating and irritability during the day due to trouble sleeping. 

Sleep quality also can be determined by detecting brain wave patterns and comparing 

time spent asleep in light sleep stages that are less restorative to time spent asleep in deep 

sleep (slow wave sleep) that are more restorative. 

Sleep researchers use both direct and indirect methods to measure quantitative 

and qualitative sleep parameters. Direct methods used to measure quantitative and 

qualitative sleep parameters include polysomnography and the Zmachine. These methods 

record brain wave activity during sleep. Indirect methods that measure quantitative and 

qualitative sleep parameters include the measurement of bodily movements during the 

night and the use of self-report questionnaires and diaries about one’s sleep. This section 

describes the direct and indirect methods of measuring sleep parameters. 
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Direct Measurement of Sleep 

Polysomnography 

Polysomnography is a comprehensive recording of the bio-physiological changes 

that occur during sleep. Polysomnography records and analyzes   brain wave activity, eye 

movements, respiration, skeletal muscle activation, and heart rhythm during sleep by 

placing electrodes and sensors on the head, face, and body. From these measurements, 

clinicians and researchers can distinguish the body states of wake, sleep, and sleep stages 

(light, deep, and REM) to examine quantitative and qualitative sleep parameters. The 

quantitative sleep parameters include sleep duration, sleep onset latency, sleep 

maintenance, and sleep efficiency. The qualitative sleep parameters include time spent in 

light sleep stages, time spent in slow wave sleep, and time spent in REM sleep. 

Polysomnography is considered the gold-standard in sleep measurement due to its 

precision in distinguishing wake versus sleep states and in identifying time spent in light 

sleep, slow wave sleep, and REM sleep stages. These measures allow the accurate 

quantification of disturbances in quantitative and qualitative sleep parameters. Thus 

polysomnography is the preferred method of screening for disorders such as sleep apnea, 

restless-leg syndrome, and narcolepsy which are characterized by disturbances in sleep 

parameters97. 

While polysomnography is considered the gold-standard for assessing sleep 

stages, it has limitations that make it difficult to capture the variability in sleep 

parameters over longer periods of time to determine typical sleeping patterns97. In 1966, 

Agnew et al.98 described the phenomena of the “first-night effect” of polysomnography in 
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a sample of 43 adults, age ranging 16-31 years. Participants experienced 

polysomnography for four consecutive nights. The first-night effect was described as 

having poorer sleep on the first night of polysomnography testing compared to the three 

succeeding nights of testing. Results showed the first night effect resulted in more time 

spent in light sleep stages, delayed slow-wave sleep, and more changes between light and 

slow-wave sleep. These changes were small and non-significant between the second and 

fourth nights indicating the presence of a first-night effect. The first-night effect was 

likely due to the unfamiliar sleeping environment and monitoring equipment.  

When using polysomnography to measure sleep status, multiple nights of data 

collection are preferred to capture normal night-to-night variability in sleep. However, 

the high cost and time commitment associated with polysomnography makes it difficult 

to collect data for more than one night99. While polysomnography is considered the most 

accurate method to measure sleep, its limitations may outweigh the benefits for non-

clinical uses. Therefore, polysomnography should not be the only tool used to diagnose 

sleep disorders that are characterized by the persistence of poor sleep parameters such as 

insomnia53. 

Zmachine 

The Zmachine (General Sleep Corporation, Euclid, OH) is a portable single 

channel electroencephalographic (EEG) system used to measure brain wave activity 

during sleep. Electrodes placed on the differential mastoid behind each ear measure brain 

wave activity and output data in 30-second epochs and are classified as wake, light sleep, 

slow wave sleep, and REM sleep of the sleeper. The Zmachine can accurately detect 
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wake versus sleep states to determine quantitative sleep parameters and it can accurately 

score sleep stages to determine sleep quality (light, deep, or REM stages). To measure the 

accuracy of the Zmachine as a quantitative measure of sleep, Kaplan et al.100 enrolled 99 

normal and sleep-disordered adults, ages 18-60 years. Compared to sleep technologist 

observations of sleep brain wave patterns, the Zmachine epoch-scoring algorithms 

accurately identified quantitative sleep parameters of total sleep time, sleep efficiency, 

sleep onset latency, and sleep maintenance. In the same sample, Wang et al.101 reported 

the Zmachine as a valid measure of qualitative sleep parameters. When compared to sleep 

technologist observations, the Zmachine algorithms calculated correctly the time spent in 

light sleep stages, time spent in slow wave sleep, and time spent in REM sleep. The 

Zmachine also is easy to use as a portable device for in-home analyses of sleep. 

Rosenberger et al.102 used the Zmachine to validate four wearables to measure the 

quantitative sleep parameter of sleep duration in 40 subjects, age range 21-76 years in an 

at-home, 24-hour study. Overall, when compared to polysomnography, the Zmachine is 

useful in measuring various sleep parameters due to its non-intrusiveness on sleep and its 

portability for in-home analyses of sleep. 

Indirect Measurement of Sleep 

Actigraphy 

Actigraphy is the process of using motion capture devices, such as the 

accelerometer worn on the wrist or ankle, or possibly placed under a pillow during sleep 

to collect data on motor activity during sleep behaviors. Actigraphy objectively identifies 

quantitative sleep parameters of sleep duration, sleep onset latency, sleep maintenance, 
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and sleep efficiency through the collection of movement data downloaded to a computer 

for analysis of activity or inactivity using wake and sleep algorithms. 

In 1995, Sadeh et al.103 published a seminal review summarizing the validity of 

actigraphy to measure quantitative sleep parameters. They compared the sleep parameters 

obtained from actigraphy with the gold-standard polysomnography in adults, ages 20-76 

years. The summary of empirical data showed no significant differences between 

actigraphy and polysomnography for quantitative sleep parameters of sleep duration, 

sleep onset latency, sleep maintenance, and sleep efficiency (p > 0.05). They also showed 

that actigraphy may be helpful in the assessment of insomnia, circadian-rhythm disorders, 

and restless leg syndrome that are characterized by disturbances in quantitative sleep 

parameters103. Based on these conclusions and other validation studies104,105, the Board of 

Directors of the American Sleep Disorders Association recognizes actigraphy as a 

reliable and valid method for detecting quantitative sleep parameters.. 

As with all sleep assessment methods, actigraphy has advantages and limitations 

to its use. Actigraphy is not capable of distinguishing qualitative sleep parameters, such 

as time spent in sleep stages because it does not collect brain wave activity recorded with 

direct measures such as polysomnography and the Zmachine. Alternatively, the 

advantages of using actigraphy over direct measures of sleep include the non-invasive, 

longitudinal method of examining quantitative sleep parameters in the ambulatory, free-

living setting thereby reflecting individuals’ night-to-night variability in quantitative 

sleep parameters106. In addition, actigraphy does not result in a first-night effect on 

sleep107,108.  These advantages were demonstrated by Rowe et al.109 who used actigraphy 
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to examine sleep parameters in 103 adults, aged 60 and older, for 14 consecutive nights. 

They determined that at least three days of actigraphy measurement was feasible and that 

having an increased frequency of measurement more accurately reflected one’s 

quantitative sleep parameter patterns. To increase the accuracy of actigraphy in 

measuring sleep parameters, Rowe et al. recommended that researchers and/or clinicians 

average the quantitative sleep parameter of sleep-onset latency over a period of at least 

seven days to reflect the night-to-night variability that naturally exists when in bed 

attempting to fall asleep initially.  

Self-report Measures 

Self-report measures of sleep provide useful subjective information of one’s 

quantitative and qualitative sleep parameters in free-living settings. Quantitative sleep 

parameters measured by self-report measures include sleep duration, sleep onset latency, 

and sleep maintenance. Qualitative sleep parameters include self-reporting bad dreams 

resulting in trouble sleeping, taking medication to improve poor sleep, and whether 

trouble sleeping may be affecting activities (i.e. work, exercise), concentration, or mood 

the following day. Self-report measures to examine sleep parameters include diaries and 

questionnaires. 

Diaries, also called sleep logs, are records of sleep behaviors that have the 

participant record daily wake times and nightly bed times. Diaries also may require the 

participant to record the previous night’s sleep onset latency and wake time on the 

subsequent morning. Diaries are acceptable measures of sleep duration110. However, 

participant burden may be high as subjectively estimating one’s wake times, bed times, 
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and sleep onset latency accurately may be time consuming and difficult for participants, 

especially for those suffering from disturbances in sleep duration111. Age bias has been 

report in the completion of sleep diaries. In 2012, Short et al.112 explored discrepancies in 

sleep duration and sleep maintenance when measured by sleep diaries compared to 

actigraphy in a sample of 385 adolescents (231 males, 154 females), between 13-18 years 

old. The study duration was 8 nights. Examination of mean differences in sleep duration 

and sleep maintenance between the methods found sleep duration measured by 

actigraphy to be 85 minutes less on average compared to sleep diary-reported sleep 

duration (Cohen’s d = -1.21, p < 0.001). Similarly, actigraphy-measured sleep 

maintenance was on average 67 minutes longer than sleep diary-measured sleep 

maintenance (d = 1.89, p < 0.001). These results show the utility of using sleep diaries to 

measure sleep parameters.  

Questionnaires assess quantitative and qualitative sleep parameters of sleep 

duration, sleep onset latency, and sleep maintenance, and assess qualitative sleep 

parameters, such as difficulty concentrating due to poor sleep quality on the prior night. 

The main benefit of using questionnaires to assess sleep parameters includes accurately 

reflecting night-to-night variability in sleep parameters over an extended period while 

being unobtrusive on sleep. An example of a widely used questionnaire to examine sleep 

in all populations is the Pittsburgh Sleep Quality Index (PSQI). Developed by Buysse et 

al.113 in 1988, the PSQI assesses quantitative sleep parameters of sleep duration, sleep 

onset latency, sleep efficiency, and sleep maintenance, and qualitative sleep parameters 

of overall sleep quality, the use of sleep medication, and daytime dysfunction due to 

trouble sleeping over the previous 1-month interval. The PSQI has 19 items for the 
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sleeper to rate quantitative and qualitative sleep parameters. The PSQI item responses are 

categorized to create seven sleep component scores indicating the severity of sleep 

difficulties. Each component score is rated form 0-3 points (0 = no difficulty; 3 = severe 

difficulty). The component scores are summed to create a global sleep score with a range 

of 0-21 (0 = no sleep difficulty; 21 = severe sleep difficulties). In 2002, Backhaus et al.114 

compared the accuracy and test-retest reliability of the PSQI against polysomnography in 

a sample of 80 patients with insomnia (46.3 ± 15 years) and a control group of 45 healthy 

adults (43.3 ± 9.5 years). Correlation analyses showed the PSQI global score as valid 

compared to polysomnography for measuring sleep duration (r = -0.27, p = 0.074), sleep 

onset latency (r = 0.28, p = 0.063), sleep maintenance (r = 0.12, p = 0.427), and sleep 

efficiency (r = -0.32, p = 0.034). The global score also showed high test-retest reliability 

over 45.6 ±18 days (r = 0.87, p < 0.001). The investigators concluded that the PSQI has 

good validity and high test-retest reliability in measuring quantitative and qualitative 

sleep parameters in a clinical population and that it is an acceptable measure of habitual 

sleep parameters.  

Questionnaires also can replace diaries as an unobtrusive measure of quantitative 

sleep parameters. In a study to develop a single-administration tool to replace sleep 

diaries over a 2-week experiment, Monk et al.115 developed the Sleep Timing 

Questionnaire (STQ). The questionnaire requires participants to provide information 

about typical sleep duration, sleep onset latency, and sleep maintenance. To determine 

the accuracy and test-retest reliability of the STQ, Monk et al. compared the STQ to wrist 

actigraphy and a 2-week sleep diary. In a sample of 23 adults, ages 20-89 years, 

correlation analyses demonstrated the STQ was effective in recording bed time (r = 
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0.592, p = 0.003), wake time (r = 0.769, p < 0.001), sleep onset latency (rho = 0.855, p < 

0.001), and sleep maintenance (rho = 0.838, p < 0.001). In the same study, Monk et al.115 

also reported the results of STQ test-retest reliability testing in two samples of adults 

(n=101 and n=93, ages 20-89 years). Correlation analyses demonstrated high test-retest 

reliability for bed time (r = 0.705, p < 0.001) and wake time (r = 0.826, p < 0.001) 

compared to sleep logs completed over two weeks. They concluded that the STQ was 

valid and reliable and could provide a time-efficient method of estimating quantitative 

sleep parameters. 

Comparison of self-report versus objective measures of sleep. 

The benefit of self-report logs and questionnaires as compared with objective 

measures of sleep, such as the Zmachine or accelerometers, is the ease of use in 

determining the subjective quality of a person’s sleep. However, limitations of using 

sleep diaries and questionnaires include the improper estimation of good or poor sleep. 

For example, Carskadon et al.111 reported that individuals may under-estimate sleep 

duration or over-estimate sleep onset latency and sleep maintenance in comparison to 

polysomnography. McCrae et al.116 examined this possibility in detail, demonstrating that 

individuals can self-report sleep complaints and have subjectively and objectively defined 

good or poor sleep parameters. Conversely, individuals can self-report no complaints 

with sleep but have subjectively and objectively defined poor sleep parameters. In a four-

group study (noncomplaining good sleepers, noncomplaining poor sleeper, complaining 

good sleepers, complaining poor sleepers) of 116 adults 60 years and older (average age 

not reported), McCrae et al. monitored sleep for 2-weeks using sleep logs and actigraphy. 

Correlation analyses showed relationships between actigraphy- and sleep log-measured 
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quantitative sleep parameter of sleep duration for noncomplaining good sleepers (r = 

0.84, p < 0.001) and quantitative sleep parameters of sleep duration and sleep onset 

latency for noncomplaining poor sleepers (r = 0.80 and r = 0.81, p < 0.001) but none for 

complaining sleepers. Therefore, individuals can sleep well (measured objectively) and 

report poor sleep, as well as sleep poorly (measured objectively) and report good sleep. 

In summary, various types of methods are available for assessing sleep behaviors. 

The most accurate direct measures of quantitative and qualitative sleep parameters are 

polysomnography and the Zmachine because they can detect brain wave patterns to 

identify wake from sleep. The most accurate indirect measures are accelerometers as they 

analyze movements while in bed. Lesser accurate indirect measures of sleep parameters 

are self-report measures using diaries or questionnaires.  To maximize the benefits and 

mitigate the limitations of each method, a combination of objective monitors (i.e. 

accelerometers) and subjective tools (i.e. diaries and questionnaires) should be used, 

thereby providing the most complete measure of sleep behaviors117. 

Descriptive Epidemiology of Sleep 

Patterns in habitual sleep parameters evolve throughout the lifespan resulting in 

age-related changes in sleep even when excluding conditions such as mental disorders, 

physical illness, drugs/alcohol, sleep apnea, and other sleep disorders9. Four consistent 

age-related changes in quantitative and qualitative sleep parameters include the alteration 

of sleep duration, increased sleep onset latency, decreased sleep maintenance, and 

reduced sleep efficiency. In a detailed meta-analysis of quantitative sleep parameters 

from childhood to old age in health individuals, Ohayon et al.9 studied changes in sleep 
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over the lifespan. They used the Q statistic, a homogeneity test to indicate whether 

variation is greater than expected from sampling error to examine normal changes in 

quantitative and qualitative sleep parameters. Changes in quantitative sleep parameters 

showed, 

• a linear decline in sleep duration of about 10 minutes per decade (Q = 343.63, p < 

0.0001) 

• a gradual increase in sleep onset latency until the age of 65 followed by a larger increase 

(Q = 92.25, p < 0.0001) 

• a worsening of sleep maintenance of 10 minutes per decade with elderly adults reported 

as much as 60 minutes per night (Q = 177.07, p < 0.0001) 

•  a 3% decrease in sleep efficiency with elderly adults reporting sleep efficiency of less 

than 80% per night (Q = 372.28, p < 0.0001).  

Changes in qualitative sleep parameters showed, 

• a decrease in overall sleep quality demonstrated by more time spent in light sleep stages 

(stage 1: Q = 179.2, p < 0.0001; stage 2: Q = 310.53, p < 0.0001),  

• less time spent in deep sleep stages (Q = 406.03, p < 0.0001).  

Other studies have reported additional changes in self-reported qualitative sleep 

parameters, such as an increase in daytime sleepiness, irritability due to trouble sleeping, 

and an increase of 7% in the use of sleeping aids118,119. 

Altered sleep patterns characterized by poor and highly variable sleep parameters 

can result in insomnia, a term widely used to characterize the disturbance of sleep. 

Investigators and clinicians describe insomnia as having poor quantitative or qualitative 
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sleep parameters either acutely or persisting for longer periods (e.g., ≥ six months). 

Insomnia sleep parameters include extended time to fall asleep initially (sleep onset 

latency, > 30 minutes), extended time spent awake after initially falling asleep (sleep 

maintenance > 30 minutes), or extended time spent awake in bed while attempting to 

sleep (sleep onset latency + sleep maintenance > 30 minutes). Clinicians confirm the 

presence of acute and chronic insomnia based on the self-report or the measurement of 

these sleep parameters. If poor sleep parameters persist for three or more nights per week 

continuously for six months or longer one is clinically diagnosed with insomnia54,120.  

A 2005 poll conducted by the National Sleep Foundation revealed that 54% of 

surveyed respondents have experienced at least one symptom of insomnia at least a few 

nights a week over the past year6. Studies are few, but in adult populations (18 years and 

older) the indicate that insomnia has an annual incidence rate between 31% and 37%, 

with the latter being the most recent report by Ellis et al. in 2012 (n = 1095, 75% females, 

32.7±13.8)121,122 . In addition to the high reporting of insomnia, insomnia symptoms tend 

to persist for at least a year. Morphy et al.123 the persistence of insomnia in a sample of 

men (n = 1175) and women (n = 1487) 18 years old and older (51.7 ±17.5 years). Self-

reported quantitative sleep parameters at baseline and 1-year follow-up indicated that of 

participants reporting symptoms of insomnia at baseline, 69% (95% CI = 65.0-73.3) 

continued to report insomnia symptoms. Population-based studies124,125 and a National 

Sleep Foundation6 poll have shown the prevalence of insomnia in all-age adults to range 

between 10-40% with one in three adults reporting at least one insomnia symptom. Age 

and gender are the primary demographic differentiators of insomnia prevalence. The 

prevalence of insomnia is lower between the ages of 15 and 44 years (3%), begins 



42 

increasing at 45 years (20%), and reaches its peak prevalence in adults 65 years and older 

(65%)126. Insomnia is more prevalent in women (39-60%) than in men (10-13%)7,127. A 

meta-analysis with 1,265,015 persons (56.8% female, ages 15 to ≥65 years) by Zhang 

and Wing128 showed that women were at greater risk for insomnia (RR = 1.41, 95% CI = 

1.28-1.55, p < 0.001) than were men (reference group). Other studies also have shown 

that insomnia increases with age in women (≥ 65 years: RR = 1.73, 95% CI = 1.65-1.83, 

p < 0.001; 31-64 years: RR = 1.46, 95% CI = 1.29-1.63, p < 0.001; 15-30 years: RR = 

1.28, 95% CI = 1.13-1.43, p < 0.001) compared to men (referent group). This change 

often is attributed primarily due to the physiological effects of menopause. Age-related 

increases in insomnia in men may be related to lifestyle factors such as physical 

inactivity, obesity, or psychiatric disorders124,127,128.  

Factors other than age are associated with an increased prevalence of insomnia.  

Insomnia is increased in those with comorbid conditions such as heart disease (44%), 

cancer (41%), high blood pressure (44%), breathing problems (60%), urinary problems 

(42%), chronic pain (49%), gastrointestinal problems (55%),  and psychiatric disorders 

(40%) and in those working in occupations requiring abnormal or rotating shifts129–131. 

Socio-demographic and economic factors related to insomnia include marital status (10-

15% higher in separated/divorced and widowed females), education level (7-10% higher 

in those who have not completed high school), and occupational status (10% higher for 

unemployed)125,132.  

In summary, changes in sleep parameters that result from increased age include 

decreased sleep duration, increased sleep onset latency, decreased sleep maintenance, and 
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reduced sleep efficiency. Insomnia is a sleep disorder characterized by the poor sleep 

parameters of sleep onset latency and sleep maintenance which can occur acutely or 

persist over long periods of time. Insomnia awareness is increased among national 

organizations as incidence rates are not marginal and once reported are likely to persist. 

In addition, insomnia increases in prevalence with age which is associated with increases 

in other comorbid conditions. 

Health Effects of Insomnia 

Insomnia is a contributor to premature morbidity and mortality58,133. Two 

important effects of insomnia include cardiovascular disease (CVD) and type 2 diabetes 

(T2D). Cardiovascular disease is a collective term that includes stroke, coronary heart 

disease, peripheral vascular disease, and other forms of vascular problems. Type 2 

diabetes is a condition in which poor handling of ingested glucose results in 

hyperglycemia. Studies examining the health effects of insomnia have focused on CVD 

and T2D. This section reviews six of the notable studies relating insomnia to CVD and 

T2D.  

To examine the relationship between insomnia and cardiovascular events, Hsu et 

al.134 compared a sample of 22,040 adults (9,456 males, 47.7 ± 15.7 years) diagnosed 

with insomnia with 22,040 age-, sex-, and comorbidity-matched controls. Physician-

diagnosed insomniacs and the matched control group were followed until they presented 

with a heart attack, stroke, or the study end date. Those diagnosed with insomnia had 

more than double the incidence (IR = 2.25 versus 1.08 per 1,000 person-years) of acute 

myocardial infarction per 1000-person years. Cox proportional hazard regression 
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analyses revealed an association between insomnia and a higher risk of acute myocardial 

infarction (HR = 1.68, 95% CI = 1.31-2.16, p < 0.01). Thus, insomnia is associated with 

an increased risk for future cardiovascular events. 

The quantitative sleep parameter of sleep duration is an important predictor of 

cardiovascular disease. In a sample of 30,397 adults (58.9% female) aged 18 years and 

older (average age not reported) from the National Health and Nutrition Examination 

Survey, Sabanayagam and Shankar135 compared sleep duration with CVD, defined as 

having a physician-diagnosed heart attack, angina, or stroke. Adults were categorized 

based on self-reported sleep duration into ≤ 5 hours (mean age 48.3 ± 17.0 years, 58.9% 

female), 6 hours (mean age 46.5 ± 16.5 years, 55.2% female), 7 hours (mean age 46.0 ± 

16.6 years, 53.8% female), 8 hours (mean age 48.1 ± 18.3, 56.4% female), and ≥ 9 hours 

(mean age 53.1 ± 21.6 years, 58.4% female) of sleep per night. Seven hours sleep per 

night group was the referent category. Multivariate logistic regression showed those 

sleeping ≤ 5 hours per night (OR = 2.20, 95% CI 1.78-2.71), 6 hours per night (OR = 

1.33, 95% CI 1.13-2.57), 8 hours per night (OR = 1.23, 95% CI 1.06-1.41) or ≥ 9 

hours/night (OR = 1.57, 95% CI 1.31-1.89) were at increased odds for any cardiovascular 

disease. This population-based study provides evidence of a positive (U-shaped) 

relationship between both short and long sleep duration and CVD, indicating that too 

little or too much sleep relates to poor health. 

Poor self-reported sleep quality and the qualitative sleep parameter of short time 

spent in slow wave sleep increases the risks for cardiovascular disease risk factors. 

Cooper et al.136 studied the relationship between flow-mediated dilation, a clinical 
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indicator of cardiovascular disease, and either PSQI-measured sleep quality or 

polysomnography-measured sleep stages in a sample of 100 adults, aged 35.7±9.54 years. 

Regression analysis showed that a lower PSQI global score (βSE = -0.164, 0.07, p < 0.05) 

was related to better flow-mediated dilation. This inverse relationship reflects a direct 

association between better sleep quality and reduced risks for cardiovascular disease. 

To examine the relationship between insomnia and type 2 diabetes, Vgontzas et 

al.137 reported sleep laboratory data from 1,741 adults, 20 years and older. Self-reported 

insomnia for more than one year was significantly associated with a higher risk for type 2 

diabetes (OR = 1.84, 95% CI 1.05-3.20, p < 0.05). Meta-analyses have been conducted to 

examine the consistency of relationship between insomnia and diabetes. Anothaisintawee 

et al.138 published a meta-analysis describing the association between insomnia sleep 

parameters (poor sleep onset latency and poor sleep maintenance) and incident diabetes 

compiling 36 studies. In a pooled sample of 40,649 participants over six studies, poor 

sleep onset latency (RR = 1.55, 95% CI 1.23-1.95) and poor sleep maintenance (RR = 

1.72, 95% CI 1.45-2.05) were associated with increased risks for developing type 2 

diabetes.  

Specifically, the quantitative sleep parameters of sleep onset latency and sleep 

maintenance are consistently associated with increased risks for type 2 diabetes. 

Cappuccio et al.139 confirmed these results in a meta-analysis of 10 studies. Results 

showed similar relative risks to the previously reported meta-analysis138, as poor sleep 

onset latency (RR = 1.57, 95% CI 1.25-1.97) and poor sleep maintenance (RR = 1.84, 
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95% CI 1.39-2.43) were significantly associated with increased risk of type 2 diabetes in 

107,756 adults (no age range reported). 

Overall, poor quantitative and qualitative sleep parameters are associated with 

increased morbidity and mortality. Sleep deficiency is observed as poor quantitative and 

qualitative sleep parameters. This can result in physiological dysfunction which increases 

risk for developing  cardiovascular and metabolic disorders140. 

Endogenous Factors Affecting Sleep Parameters  

 There are many factors that influence sleep duration, sleep onset latency, sleep 

maintenance and sleep quality. Physiological factors (also called endogenous factors) that 

interact to influence sleep quantity and quality include fluctuations of hormones, blood 

pressure, and core body temperature. Environmental or behavioral factors (also called 

zeitgebers) interact to influence the sleep circadian rhythm include light and physical 

activity. This section discusses the endogenous factors and the zeitgebers of physical 

activity affecting quantitative and qualitative sleep parameters. 

Obtaining optimal sleep involves the interaction of several physiological rhythms. 

Biological processes that cycle over a 24-hour period are termed circadian rhythms. 

Circadian rhythms are studied in relation to sleep include endogenous factors of 

hormones, such as melatonin, core body temperature, and blood pressure. These circadian 

rhythms are symbiotic and fluctuate resulting in optimal sleep times dependent on the 

interdependent rhythms 141. This process is depicted in Figure 1 by Lack et al.142 showing 

fluctuations in melatonin, core body temperature, and desire to sleep (termed sleep 

propensity) over a 24-hour day. 
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Figure 1. Endogenous Rhythms of Core Body Temperature, Desire to Sleep, and 
Melatonin Levels Compared to the Sleep Period.  
 

The figure further shows that sleep propensity coincides to a decline in core body 

temperature and increase in melatonin release approximately two hours prior to sleep. 

The figure also shows that sleep propensity reaches its peak in the early morning hours 

(3:00-5:00am), coinciding with peak melatonin release and lowest core body temperature. 

When altered, these circadian rhythms can improve or worsen quantitative and qualitative 

sleep parameters. The following section provides a description of and a comparison 

between the circadian rhythms of melatonin, core body temperature, and blood pressure 

and their altering effects on the worsening of sleep parameters. 

Melatonin Circadian Rhythm 

The pineal gland releases melatonin approximately two hours prior to natural 

sleep. Peaking in the middle of the night, melatonin results in the vasodilation of 
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peripheral blood vessels resulting in a drop in core body temperature and is responsible 

for maintenance of a lower core body temperature during sleep. In a study to determine 

the circadian rhythm of melatonin release in young adults, Sletten et al.143 examined the 

timing of melatonin release in men (n=14) and women (n=14) of average age 22.2±2.6 

years. Melatonin release was examined after three weeks of maintaining either an early 

evening (10:30pm-6:30am, 1.85±0.50 hours) or late evening (12:30am-8:30am, 

1.98±1.25 hours) sleep schedules. Regression analysis showed that the time of melatonin 

release was significantly related to habitual bed and wake times (R = 0.48, R = 0.39, p < 

0.05). With results indicating melatonin release precedes sleep by about 2 hours, the 

timing of melatonin release is important for optimal sleep onset latency.  

Individuals with poor quantitative sleep parameters may have a disconnect or 

faltering in the timing of melatonin release in relation to bedtime. This faltering can 

worsen with increasing age. To examine the timing and magnitude of melatonin release 

in relation to the quantitative sleep parameter of sleep onset latency, Olbrich and 

Dittmar144 compared 11 older women with poor sleep patterns (ages 62-72 years), 9 older 

women with good sleep patterns (ages 60-82 years), and 10 younger women with good 

sleep patterns (ages 23-28 years). The objective of the study was to determine if the 

magnitude and timing of melatonin release differed by age and, if so, if the differences 

had an effect on PSQI-measured sleep. Analysis of variance tests revealed that older 

women with poor sleep patterns had the lowest mean increase in melatonin of the three 

groups (older women with poor sleep = 7.0±9.63 pg/m; older women with good sleep = 

15.6±24.1 pg/m; younger women with good sleep were not reported, p < 0.05). Melatonin 

increase also was delayed by approximately 50 minutes in older women with poor sleep 
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patterns as compared to the women with good sleep patterns (older women = 7:57pm; 

younger women = 8:10pm). In addition, the PSQI score was significantly higher in older 

women with poor sleep patterns (9.7±2.2, F = 45.79, p < 0.001) as compared to older 

women with good sleep patterns (3.4±1.2) and younger women with good sleep patterns 

(3.9±1.1). Because older women with good sleep patterns had a similar magnitude of 

melatonin release as younger women, the delayed and limited melatonin release from the 

pineal gland in older women with poor sleep patterns may have resulted in their poorer 

sleep. 

Melatonin release prior to sleep has an effect on other biological systems with 

circadian rhythms. In 2016, Gubin et al.145 investigated the effects of melatonin 

administration on the circadian rhythm of blood pressure in 97 elderly men and women 

enrolled in a crossover study. Throughout the 3-week trial, 63 participants received either 

1.5 mg melatonin (79% female, 80.7±6.3 years) or a placebo (n = 34, 61% female, 

78.7±6.5 years) once a day at 10:30pm. Systolic blood pressure was measured five times 

per day. Interpretation of the circadian rhythm of blood pressure was biphasic as expected 

and it showed peaks (8:00am and 5:00pm) and troughs (11:00am-2:00pm and 3:00am) in 

all participants. A cosinor analysis to examine rhythm differences revealed a more 

pronounced biphasic rhythm in both systolic (5.6±0.3 mmHg, p < 0.05) and diastolic 

(4.1±0.3 mmHg, p < 0.05) blood pressures during the melatonin treatment. In addition, 

analysis of variance tests showed that melatonin administration improved systolic (F = 

27.32, p < 0.0005) and diastolic (F = 33.64, p < 0.0005) blood pressures compared to the 

control week without melatonin. These analyses demonstrate the hypotensive effect of 
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melatonin resulting lower blood pressures in the middle of evening sleep, thus enhancing 

the circadian rhythm of blood pressure and enabling better sleep. 

In summary, melatonin release results in vasodilation coinciding with increased 

skin temperature, decreased core temperature, and reduced blood pressure. Melatonin 

release ideally occurs two hours prior to bed time and when blunted or delayed, worsens 

sleep parameters. 

Core Temperature Circadian Rhythm 

The human body maintains its core temperature within a specific range for the 

optimal functioning of body cells at a temperature near 37° C or 98.6° F. Temperature 

regulation is accomplished when heat uptake and production are balanced by heat loss 

through the skin. Heat loss occurs due to vasodilated arteries that redirect blood flow 

from the muscles to the cutaneous vascular beds. The augmented skin blood flow 

facilitates core temperature cooling and is considered the primary site of heat loss146. 

Within 75 minutes of sleep, a reduction in core body temperature is facilitated by an 

increase in heat loss from the skin. This heat loss is considered a predictor of optimal 

sleep parameters. In a comprehensive review of sleep regulation, Lack et al.142 described 

the relationship between body temperature and insomnia. He concluded that poor sleep 

onset latency may be related to delayed temperature rhythms and that poor sleep 

maintenance is likely associated with nocturnally elevated core body temperature. 

A seminal study examining changes in core body temperature as a mechanism for 

improving sleep was conducted by Horne and Staff33 in 1983. A sample of 8 adults (mean 

age 25.4±4.4 years, 25% women) performed two vigorous-intensity running sessions of 
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40 minutes separated by a 30-minute rest, two light-intensity running sessions of 80 

minutes separated by 15 minutes, and a control condition consisting of passive body 

heating by sitting in warm water. Visual inspection of core temperature showed all 

exercise conditions resulted in a reduction of core temperatures as compared with the 

control condition. T-tests compared the exercise conditions and passive heating control 

condition on polysomnography-measured sleep parameters. Compared to baseline, the 

light-intensity exercise condition increased sleep duration (484.4±20.9 minutes vs. 

464.5±20.5 minutes, p < 0.05) and the high-intensity exercise condition increased time 

spent in slow wave sleep (88.9±22.0 minutes vs. 75.6±17.4 minutes, p < 0.05). Passive 

heating also improved time spent in slow wave sleep compared to baseline (93.6±16.0 

minutes vs. 75.6±17.4 minutes, p < 0.01). The authors concluded that regardless of the 

source, body heating improved both quantitative and qualitative sleep parameters. This 

provided an exercise and a non-exercise method to improve poor sleep. 

In 1994, Campbell and Broughton34 further investigated the relationship between 

body temperature and sleep. In a sample of six men and four women (average age 69.1, 

SD or range of age not reported), Campbell and Broughton examined the association of 

core body temperature, measured with a rectal thermistor, and sleep parameters measured 

with polysomnography. The steepest rate of decline in core temperature occurred at 75 

minutes (SD = 81.6, range 0.3-217 minutes) prior to one’s self-selected bedtime. 

Polynomial regression analysis showed the timing of the maximal rate of core body 

temperature relative to bed time was positively related to the amount of wakefulness 

within the first hour after bed time (r = 0.40, p < 0.04). Therefore, to reduce the sleep 



52 

parameter of sleep onset latency, the maximal rate of core body temperature decline 

should be closest to bedtime.  

To examine core body temperature in relation to poor sleep maintenance, 

Lushington et al.147 tested nighttime temperatures with quantitative sleep parameters in 

elderly adults. Core body temperature measured with rectal probes and 

polysomnography-measured sleep parameters were conducted for four nights in a sample 

of 16 participants (11 women, 5 men; mean age 65.4±7.4 years) with good sleep patterns 

and 16 participants (11 women, 5 men; mean age 64.3±7.2 years) classified as 

insomniacs. Inspection of the rhythm of the core body temperature in the good sleepers 

and the insomniacs showed no differences in core body temperatures prior to sleep. 

However, the insomniacs had a blunted reduction in core temperature within 2-4 hours 

after the initiation of sleep. Independent sample t-tests showed that the good sleepers 

spent less time awake after initially falling asleep as compared to the insomniacs (40±3 

minutes vs. 144±21 minutes, p < 0.0005). In addition, the good sleepers experienced a 

lower mean core temperature from the onset of sleep to 6.5 hours after the onset sleep as 

compared to the insomniacs (36.51±0.06° C vs. 36.80±0.06° C, p < 0.005). Based on the 

results, the elevation in core body temperature influenced poor sleep maintenance 

resulting in excessive wake time during the sleep period. This finding supports the 

hypothesis that an elevated core body temperature as a potential mechanism for insomnia. 

In summary, decreases in core body temperature are due to increased skin 

vasodilation which in turn creates an optimal internal human body temperature resulting 

in improved sleep parameters. As decreases in core body temperature occur about 75 
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minutes prior to sleep, sleep parameters worsen when the time between the maximal rate 

of decline in one’s core body temperature and bed time are lengthened and when the core 

body temperature does not reach an optimal temperature. 

Blood Pressure Circadian Rhythm 

Blood pressure maintains a circadian rhythm characterized by a 10% reduction 

from day to night, termed “dipping”. Dipping in blood pressure circadian rhythm are 

induced from external factors, such as posture, and endogenous factors such as melatonin 

release 148. A failure to experience a “non-dipping” of nocturnal blood pressure has been 

linked to risks for cardiovascular disease149.  Recent research also indicates that non-

dipping nocturnal blood pressure also may be associated with poor sleep 

parameters150,151. In 2009, Lanfranchi et al.151 examined if insomniacs have elevated 

blood pressure and if a reduction in blood pressure fluctuations from day to night are 

related to poor sleep. A sample of 9 insomniac women (42.0±7.0 years) were compared 

to a control group of 13 age- and sex-matched good sleepers. All subjects underwent 

polysomnographic recordings to examine possible effects of blood pressure fluctuations 

on qualitative sleep parameters. Interpretation of the 24-hour circadian rhythm of blood 

pressure revealed insomniacs experienced a blunting of blood pressure dipping during 

sleep as compared to controls. Paired sample t-tests revealed insomniacs had higher night 

systolic blood pressure values compared to good sleepers (111±15 mmHg vs. 102±12 

mmHg, p < 0.05) and the percent change in systolic blood pressure from day to night was 

significantly smaller in insomniacs compared to the control group with good sleeping 

patterns (-8±6 mmHg vs. -15±5 mmHg, p < 0.05). Comparisons between groups also 

revealed that insomniacs spent less sleep time in restorative REM sleep as compared to 
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the control group (20±5% vs. 25±4%). The authors concluded that blunting of nocturnal 

blood pressure was related to impaired sleep in insomniacs which supports the 

relationship between insomnia and poor health parameters, such as cardiovascular 

disease. 

 In summary, blood pressure values that dip during sleep coincide with optimal 

sleep maintenance and insomniacs often experience a blunting of blood pressure dipping. 

Non-dipping blood pressure is predictive of cardiovascular disease. Therefore, the 

encouragement of blood pressure to dip during sleep could improve sleep parameters in 

insomniacs. 

PA and Movement Effects on Sleep Parameters 

Physical activity is a significant zeitgeber that influences endogenous rhythms and 

improve sleep. Accordingly, physical activity has gained attention as an important 

treatment for poor sleep parameters and insomnia. This section describes the mechanisms 

by which physical activity improves sleep parameters, results from meta-analyses or 

systematic reviews that have summarized the effects of physical activity on sleep 

parameters, provides comparisons of physical activity dose on sleep parameters, and it 

presents recent research examining the bidirectional relationship between physical 

activity and sleep. 

Mechanisms    

Two main mechanisms through which increasing physical activity can improve 

sleep are endogenous circadian rhythms and energy expenditure. This section describes 
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the physical activity mechanisms to alter endogenous rhythms and the elicitation of 

energy expenditure to alter sleep. 

Endogenous Rhythms 

Release of melatonin occurs approximately 2 hours prior to sleep. The timing and 

magnitude of melatonin release has some influence on quantitative sleep parameters of 

sleep onset latency and sleep maintenance. To examine the effects of physical activity on 

melatonin release and timing, Buxton et al.152 employed a crossover design to compare 

high-intensity exercise sessions in the morning (approximately 11:00am), afternoon 

(approximately 1:00pm), evening (approximately 8:00pm), and night (approximately 

1:00am) to a no-exercise control condition in a sample of 38 men (24.0±3.3 years). A 

two-way analysis of variance showed that 10-minutes of moderate-intensity exercise 

sessions resulted in a larger increase in melatonin release compared to the no-exercise 

control (20.3±12.1 pg/mL vs. 5.7±10.6 pg/mL, p = 0.02). A factorial analysis of variance 

revealed a significant improvement in the timing of melatonin release following the 

evening exercise (30±15 minutes sooner) compared to the no-exercise control (25±14 

minutes later, p < 0.05). Therefore, physical activity altered the melatonin circadian 

rhythm by advancing its release, increasing its magnitude in the evening, and possibly 

improving sleep parameters. In a more recent study conducted by Cai et al.153 , melatonin 

release and PSQI-measured sleep quality were compared between a group performing 

moderate-intensity step aerobics for 45 minutes, three times per week for 10 weeks (n = 

10, 57.6±0.69 years) with a no-exercise control (n = 9, 59.33±1.13 years). Wilcoxon’s 

rank-sum test determined that within-group mean differences in evening melatonin 

improved in the exercise group from baseline to follow-up (32.34 ng/mL, 95% CI 12.45-



56 

52.23, p < 0.05) while the control group showed no change (-6.31 ng/mL, 95% CI -12.87-

0.25, p > 0.05). Mann-Whitney U-test showed significant between-group differences in 

melatonin release (38.65 ng/mL, 95% CI 18.23-59.07, p < 0.05). The PSQI score, an 

indicator of poor sleep based on self-reported quantitative and qualitative sleep 

parameters, was significantly improved from baseline to post-training in the exercise 

group (-2.00, 95% CI = 0.65-3.35, p < 0.05). The authors concluded that regular physical 

activity may improve sleep parameters by increasing the magnitude of melatonin release. 

The circadian rhythm of core body temperature also is influenced by physical 

activity and sleep. A recent study by Yamanka et al. (2015) thoroughly examined the 

effects of physical activity on the core body temperature and sleep parameters. A sample 

of 22 male adults (mean age 22.0±1.8 years) either performed two hours of interval 

cycling exercise in the morning (two hours after wake time), two hours of interval 

cycling exercise in the evening (10 hours after wake time), or participated in waking rest 

on the 6th day of a baseline recording period. Core body temperature was measured by a 

thermistor probe. Sleep parameters of sleep onset latency, sleep efficiency and total sleep 

time were measured by polysomnography. Heart rate variability, a measure of 

parasympathetic nervous system activity required for optimal sleep, was measured using 

a heart rate monitor during sleep. Core body temperature, expressed as an 8-hour area 

under the curve (AUC) was analyzed using a one-way repeated-measures ANOVA to 

compare the baseline period to each of the three conditions. Results showed a significant 

increase by 9.2±10.7°C throughout the evening exercise condition. The morning exercise 

condition resulted in a significant increase in sleep quality (10.5±9.7%, p < 0.05) and 

greater improvement in high frequency heart rate variability (300 msec2, p < 0.01), a 
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marker of parasympathetic nervous system activity required for optimal sleep, between 

the exercise and baseline measurements. The authors concluded that while the time-of-

day needed to be further studied, physical activity had an effect on core body temperature 

in addition to sleep parameters after following a strict baseline entrainment protocol.  

Physical activity also has an effect on the circadian rhythm of blood pressure to 

improve sleep parameters. In a 2014 cross-sectional study, García-Ortiz et al.154 

examined the relationship between physical activity and the circadian rhythm of blood 

pressure in a sample of 1,345 adults (mean age 55±14 years, 59.3% women). They used 

accelerometry to measure physical activity. The ratio of sleep to awake systolic blood 

pressure values identified dipping or non-dipping blood pressure rhythm phases. Logistic 

regression analysis indicated that participants obtaining the highest tertile of 

accelerometer counts per minute (upper third of activity) had increased odds of having a 

dipping blood pressure as compared to having a non-dipping blood pressure (OR = 1.79, 

95% CI 1.35-2.38). The authors concluded that an inverse relationship exists between 

physical activity and nocturnal blood pressure that may interrelate to influence evening 

sleep. 

Energy Expenditure 

The other mechanism by which physical activity improves sleep parameters is by 

eliciting energy expenditure that results in increased need for restorative sleep. 

Introduced in 1981, Shapiro et al.155 described that an increase in energy expenditure 

triggers a need for the body to recover thereby increasing time in restorative sleep. This 

concept was tested by Shapiro et al.155 in a sample of adults (n=6, mean age 21.7 years, 
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gender not reported).  Energy expenditure was created by running a 92-kilometer 

marathon. Sleep parameters were measured with polysomnography before- and up to four 

nights after the 92-kilometer marathon. Analysis of variance tests indicated that a higher 

percentage of sleep was spent in deep, slow wave sleep stages for two nights after the 

marathon compared to pre-race measurements (F4,20 = 44.0, p < 0.001). The percentage of 

time in slow wave sleep returned to baseline by the third night. The authors concluded 

that increasing energy expenditure increased qualitative sleep when the body needs a 

recovery period due to daily activity. Even though the duration of the exercise treatment 

was extreme, these results demonstrated that a high dose of physical activity improved 

sleep. 

In 2012, Kline et al.156 expanded on the Shapiro et al. study by investigating 

whether different doses of physical activity that elicited different amounts of energy 

expenditures would improve sleep parameters. A sample of 437 (57.3±6.5 years) post-

menopausal women completed a no-exercise control condition and light-intensity 

physical activity conditions consisting of energy expenditures equal to four kilocalories 

per kilogram body weight per week (KKW), 8 KKW, and 12 KKW. All conditions lasted 

six months with the physical activity sessions performed four times per week. 

Participants self-reported the Medical Outcomes Study Sleep Scale (MOS) to determine 

typical sleep onset latency, sleep maintenance, and daytime drowsiness at baseline and 

after each condition. Analysis of covariance determined whether sleep quality changed 

between the groups. Logistic regression examined the odds of having poor quantitative or 

qualitative sleep parameters after the intervention. Results showed a between-group 

treatment effect for physical activity on the MOS score (F8,428 = 17.35, p < 0.001); only 
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the 12 KKW group improved significantly compared to the control group (6±2.1-unit 

improvement vs. 2±2.1-unit improvement, p < 0.05). Odds ratios for a MOS score above 

25 points post-intervention (indicating significant disturbances in sleep parameters) 

showed all energy expenditure conditions had lower odds of poor sleep as compared to 

the control group (12 KKW, OR = 0.34, 95% CI 0.16-0.72; 8 KKW, OR = 0.36, 95% CI 

0.17-0.77; 4 KKW, OR = 0.37, 95% CI =0.19-0.73. The authors concluded that 

increasing energy expenditure through structured physical activity improved quantitative 

and qualitative sleep parameters and reduced the odds of having poor sleep. The 

mechanism cited was a possible need for the body’s recovery after the exercise. 

In summary, increase in energy expenditure, either through structured events or 

habitual physical activity results in an improvement in sleep. Physical activity improves 

sleep through mechanisms that include optimal timing and improved rhythms of 

melatonin release, core body temperature shifts, and blood pressure fluctuations. 

Therefore, physical activity has gained attention as a treatment to enhance poor sleep 

parameters.  

Relationships between physical activity and insomnia-related sleep parameters 

Most studies consistently show that physical activity has a positive association 

with sleep parameters. Some research suggests that physical activity may interfere with 

normal sleep. This section briefly reviews several studies showing a negative effect of 

physical activity on sleep parameters. For a detailed review of this topic, additional 

studies are highlighted by Youngstedt and Kline157. 
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In 1996, Baekeland and Lasky158 examined the relationship between physical 

activity and sleep parameters. In 10 male college athletes (ages not reported) the study 

showed a positive relationship between afternoon and evening exercise and sleep quality 

on days when the men were active but the beneficial effects of exercise on sleep did not 

exist on non-active days. In more recent research conducted in 1998, Sherrill et al.48 

examined associations between self-reported physical activity and self-reported sleep 

maintenance using logistic regression in middle-aged to older men (n = 319; 54.1±2.3 

years) and women (n = 403; 59.9±14.4 years). They found that participating in an 

exercise program reduced odds of having problems with sleep maintenance by 48%. In 

addition, walking greater than six blocks per day at less than 3.0 mph or walking greater 

than six blocks per day at 3.0-4.0 mph reduced odds of having problems with sleep 

maintenance by 33% and 50%, respectively. 

The Cardiovascular Health Study, a cross-sectional examination of over 5,200 

adults (mean age 72.8±5.6 years, age range 65-100 years), assessed leisure-time physical 

activity energy expenditure with the Taylor Questionnaire and measured sleep 

disturbances with self-report questionnaires. Using two-sample t tests, the authors 

determined that energy expenditure was negatively associated with sleep onset latency 

(men, p < 0.001; women, p < 0.05; no other statistic reported) and sleep maintenance 

(men, p < 0.05; women, p ≤ 0.001; no other statistic reported)159. Therefore, increased 

physical activity was related to better sleep parameters. Kline et al.43, using a subsample 

of The Study of Women’s Health Across the Nation (SWAN) Sleep Study, and Soltani et 

al.160 showed similar results.  
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In 2013, Kline et al.43 determined the influence of physical activity domains and 

physical activity levels on sleep outcomes and insomnia using a cross-sectional analysis 

of 339 women (mean age = 52.2±2.2 years). The Kaiser Physical Activity Survey 

assessed activity levels in domains of active living, household/caregiving, and 

sports/exercise. Each respondent was classified as a consistently high, consistently low, 

or inconsistent/moderate participator of physical activity in each domain. Sleep quality 

and sleep efficiency were examined by the Pittsburgh Sleep Quality Index survey. 

Insomnia was assessed with the Insomnia Severity Index. Analysis of covariance 

determined a significant relationship between greater exercise activity and self-reported 

sleep quality (F2,317 = 4.17, p = 0.02) and sleep efficiency (F2,316 = 5.25, p < 0.01). 

Logistic regression results indicated that those reporting consistently high sports/exercise 

activity had lower odds of insomnia diagnosis (OR = 0.26, 95% CI 0.08, 0.81, p = 0.02) 

relative to those reporting consistently low sports/exercise activity. Similarly, Soltani et 

al.160 examined associations between sociodemographic and lifestyle factors and sleep 

quality. They conducted a cross-sectional analysis of a sample of 3,655 women (mean 

age 46.6±5.1 years, age range 34.3-67.4 years) to examine the relationship between 

physical activity and the sleep outcome of sleep quality. Women were categorized as 

non-exercisers, moderate exercisers, or vigorous exercisers based on two questions 

asking the frequency of engaging in 20 minutes or more or less than 20 minutes of 

vigorous exercise. Women rated their sleep quality using the Pittsburgh Sleep Quality 

Index and were classified as having normal sleep quality (PSQI global score = 0-5), 

moderately poor sleep quality (6-10), and very poor sleep quality (11-21). Logistic 

regression analysis indicated that, compared to non-exercisers, vigorous exercisers had 
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lower odds of having moderately poor sleep quality (OR = 0.75, 95% CI 0.59-0.94, p < 

0.05) and very poor sleep quality (OR = 0.69, 95% CI 0.49-0.98, p < 0.05). Also, 

moderate exercisers, compared to non-exercisers, had lower odds of having very poor 

sleep quality (OR = 0.64, 95% CI 0.45-0.92, p < 0.05). These two studies show the 

relationship between physical activity and sleep quality and demonstrate that consistently 

high levels of exercise reduces odds of having insomnia symptoms by 74% and reduces 

odds of having poor sleep quality by up to 36%, respectively, compared to non-

exercisers.  

 In 2001, Ohida et al.161 surveyed 31,260 adults (52% women) from ages 20 years 

and older (mean age not reported) on general health, including physical activity, and 

sleep status. To assess self-reported physical activity, participants were asked if they 

regularly exercised. Participants responded “always”, “sometimes”, or “never”. To assess 

sleep quality participants were asked “Do you always get sufficient sleep that you need?” 

Responses ranged from very sufficient to uncertain on a 5-point scale, with 5 being the 

highest score. Logistic regression results indicated that participants who reported that 

they never habitually exercised were 32% more likely to self-report sleeping problems 

due to insufficient sleep (OR = 1.32, 95% CI 1.19-1.47, p < 0.01) as compared to those 

who reported they always exercised. Higher levels of exercise were not associated with 

sleep problems (p > 0.05). The authors concluded that participants who reported regular 

physical activity believed they had sufficient sleep. 

 In  2013, Inoue et al.162 examined physical activity in relation to insomnia in a 

sample of 10,211 adults (mean age 73.9±5.4 years; 49.2% women). Data were obtained 
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from a self-reported questionnaire. Walking and exercise activities were categorized as 1-

2, 3-4, or 5 or more days per week. Sleep was expressed as sleep onset latency and sleep 

maintenance. The odds of poor sleep parameters by days of walking or exercise was 

computed using logistic regression. Results indicated that exercising or walking five or 

more days per week resulted in decreased odds for difficulties with sleep onset latency 

(OR = 0.86, 95% CI 0.76-0.98; OR = 0.75, 95% CI 0.66-0.85, respectively) and sleep 

maintenance (OR = 0.72, 95% CI 0.64-0.81; OR = 0.89, 95% CI 0.79-1.00, respectively) 

as compared to those with no physical activity. In addition, a trend analysis was 

significant (p < 0.05) indicating that increased frequency of walking or exercise resulted 

in decreased odds for sleep onset latency and sleep maintenance problems. The authors 

concluded that increasing the frequency of walking or exercising may help reduce 

symptoms of insomnia, especially sleep onset latency and sleep maintenance, 

demonstrating that physical activity may be an effective treatment for poor sleep. 

 The benefits of physical activity on sleep parameters are consistent in other 

populations. In 2013, Kline et al.43 examined the relationship between habitual physical 

activity and sleep parameters in a sample of 339 women (52.1±2.1 years). Physical 

activity included active living, household and caregiving, or sports and exercise and was 

measured with the Kaiser Physical Activity Survey. Sleep parameters were measured 

with self-report logs, questionnaires, and polysomnography. Linear regression analysis 

showed a significant association with sports/exercise domain and self-reported sleep 

efficiency (β=0.74, p < 0.05) and with restorative sleep stages (β=0.12, p < 0.05). 

Participants who engaged in sports and exercise had reduced odds for insomnia diagnosis 

based on the collected sleep parameters (OR = 0.68, 95% CI 0.47-0.99, p < 0.05). No 
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associations were observed for participation in other physical activities and sleep 

parameters. Kline et al. concluded that regular, habitual activity of beyond that of 

common household tasks or active travel is required to improved sleep parameters in 

middle-aged women. 

 Overall, studies have consistently shown that regular physical activity or exercise 

is positively associated with better sleep. From these results, interventions have been 

conducted to examine the effects of physical activity on sleep parameters using 

longitudinal study designs. The next section describes several formative studies testing 

these effects. 

Interventions 

Few interventions were conducted to examine the effects of physical activity on 

sleep parameters prior to the 21st century. In 1997, King et al.163 conducted a seminal 

study examining physical activity effects on sleep. The exercise group included 43 adults 

(8 men, mean age 62.3±8.4 years; 35 women, mean age 62.4±6.4 years). The comparison 

group was a wait-listed control group with six men (mean age, 58.8±5.6 years) and 17 

women (mean age, 61.2±7.5).  Sleep parameters were measured using the PSQI. The 

experimental group exercised regularly for 16 weeks in addition to their normal routine. 

The exercise condition consisted of moderate-intensity exercise for four days per week (2 

x 40 minutes at home, 2 x 60 minutes at group exercise class). Analysis of variance of 

within-group differences revealed the PSQI score significantly improved in the exercise 

group (women, -3.0±2.4; men, 8.5±2.3; p < 0.001) after the 16-week trial while the 

control participants did not show no changes in their PSQI score. Improvements in sleep 
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parameters were observed following the 16-week trial: sleep onset latency (women, -

15.2±12.3 minutes; men, 13.7±13.0 minutes; p < 0.05), sleep duration (women, +0.7±1.1 

minutes; men +1.2±1.4 minutes; p < 0.05), sleep efficiency (women, +9.0±12.9%; men, 

+8.8±12.9%; p < 0.05), and subjective sleep quality (women, +0.6±0.7 units; men 

+0.3±0.5 units; p < 0.05). Analysis of covariance of between-group differences revealed 

that the PSQI score was improved in the exercise group compared to the control group 

(F4,38= 12.86, p < 0.001). In addition, the exercise group showed within-group 

improvements in sleep onset latency (F4,38= 7.94, p < 0.05), sleep duration (F4,38= 4.20, p 

< 0.05), and subjective sleep quality (F4,38= 5.09, p < 0.05). The authors concluded that a 

long-term moderate-intensity exercise program may be an effective treatment for poor 

sleep. 

In 2008, King et al.37 conducted a randomized controlled trial to examine the 

effects of a 12-month exercise program on sleep parameters in 36 adults (mean age 

61.9±6.3 years; 67% female) compared to a control group of 30 adults engaged in a 

health education program (mean age 60.9±7.2 years, 67% female). The exercise group 

participated in two 60-minute, moderate-intensity exercise classes per week and 

performed three additional 30-minute moderate-intensity exercise sessions on their own. 

Sleep parameters were measured with in-home polysomnography at baseline, six, and 12 

months and with the PSQI at baseline and 12 months. Analysis of covariance determined 

within-group differences at baseline and 12 months. Results showed the exercise group 

had improved sleep onset latency (38.44±23.32 minutes to 26.02±18.5 minutes) as 

compared to the control group (23.08±19.01 minutes to 28.02±21.04 minutes, p < 0.01). 

The exercise group also showed improved sleep in the light-sleep stage from baseline to 
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12 months (9.13±3.96 minutes to 7.88±3.77 minutes) as compared to the control group 

(8.24±3.51 minutes to 9.37±5.85 minutes, p < 0.01). Analysis of variance examining 

between-group differences showed the exercise group had better sleep maintenance 

during the first one-third of nightly sleep duration as compared to the control group 

(F1,65= 3.5, p < 0.05). The authors concluded that 12 months of moderate-intensity 

exercise at the dose of 150 minutes per week recommended by the Physical Activity 

Guidelines for Americans42 was beneficial at improving sleep as compared to a control 

group undergoing health education classes. The results from both trials conducted by 

King et al. are consistent with other more recent findings in middle-aged to older 

women164–166. 

The benefits of exercise on sleep parameters have been reported in young adult 

males. In 2012, Flausino et al.167 examined whether exercise prior to bedtime influenced 

sleep parameters in 18 healthy men with good sleep habits (27.2±3.6 years). Sleep 

parameters were assessed with polysomnography after exercise of varying intensities and 

durations on five different occasions. Analysis of variance and Wilcoxon tests showed 

that each of the five training sessions resulted in improved sleep maintenance (p < 0.05, 

other statistics not reported), improved sleep efficiency (p < 0.05, other statistics not 

reported), and improved sleep in light sleep stages (p < 0.05, other statistics not reported). 

The authors concluded that exercise improves sleep parameters in young men with good 

sleep habits. 

Modes of physical activity other than traditional running or cycling also have 

shown improvements on sleep parameters. In a randomized controlled trial conducted in 
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2004 by Li et al.168, 118 elderly adults performed 24 weeks of tai chi (n = 62, mean age 

75.3±7.8 years; 84% women) or a low-impact physical activity program (n = 56, mean 

age 75.45±7.8 years; 79% women) to examine beneficial effects on PSQI-measured sleep 

parameters. The tai chi group exercised for 60 minutes, three times per week. The low-

impact exercise group practiced seated exercises with controlled breathing, stretching, 

and relaxation techniques for 60 minutes, three times per week. Analysis of variance tests 

revealed better sleep parameters measured by the PSQI in the tai chi group as compared 

to the low-impact exercise group. Variables that improved were sleep onset latency 

(23.44±29.21 minutes vs. -5.55±29.75 minutes, p < 0.001), sleep efficiency 

(+14.07±22.46% vs. +1.72±21.13%, p < 0.05), and overall PSQI sleep score (-2.06±2.40 

vs. -0.61±2.68, p < 0.001). The authors concluded that various types of physical activity, 

such as tai chi or yoga, might be effective at improving sleep parameters in elderly 

populations. 

In summary, various types of regular physical activity have beneficial effects on 

sleep parameters in young and old populations. Several syntheses of the literature have 

examined the effects of a single bout and regular participation in structured and in 

lifestyle modes of physical activity, on sleep parameters. The next section presents results 

from these syntheses on the effect of varying durations and modes of physical activity to 

improve sleep parameters. 

Overall effect of physical activity on sleep parameters 

A landmark synthesis of physical activity effects on sleep parameters was 

conducted in 1997 by Youngstedt169. Thirty-eight studies totaling 401 participants were 
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examined to show the effects of exercise compared to no-exercise control conditions on a 

subsequent night’s sleep. The time exercise was performed in relation to sleep, less than 

four hours, 4-8 hours, or greater than 8 hours prior to sleep, also was examined as a 

moderator for exercise’s effect on a subsequent night’s sleep. Sleep parameters included 

sleep onset latency, time spent in slow wave sleep, sleep duration, and sleep maintenance. 

Exercise had a positive effect on slow wave sleep time (Hedges and Olkin’s g = 0.19, p < 

0.01) compared to no-exercise control conditions. Moderator effects for time-of-day of 

exercise were significant for sleep onset latency (F1,21= 6.61, p < 0.05) and sleep 

maintenance (F1,11= 7.55, p < 0.05). When performed 4-8 hours prior to bed time, 

exercise improved sleep onset latency (g = -0.27, 95% CI -0.49 to -0.06), sleep 

maintenance (g = -0.36, 95% CI -0.71-0.00) and increased time spent sleeping in slow 

wave sleep (g = 0.24, 95% CI 0.07-0.42). While the synthesis showed that exercise had a 

positive effect on sleep, the results may have underestimated of the true effect of 

exercise’s effect on sleep due to the inclusion of good sleepers in most of the studies 

reviewed. 

In 2015, Lang et al.170 compiled a meta-analysis to examine the overall effect of 

physical activity on sleep parameters in 16,549 adolescents and younger adults (mean age 

17.8 years, age range 14-24 years, 52% women). Physical activity was measured using 

self-report questionnaires, pedometers, and accelerometers. Sleep was measured using 

sleep diaries, actigraphy, polysomnography, and EEG machines, and sleep diaries. The 

12 studies revealed a significant overall effect size (d = 0.894, z = 4.272, p < 0.001, 95% 

CI 0.484-1.305, l2 = 66.44%) for the effects of physical activity on monitored sleep 

parameters. The largest effect was found between objectively-monitored physical activity 
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and polysomnography- or actigraphy-measured sleep parameters (d = 1.021, z = 1.680, p 

= 0.091, 95% CI 0.163-2.204). The smallest effect was found between objectively-

monitored physical activity and self-reported sleep parameters (d = 0.541, z = 1.291, p = 

0.197, 95% CI -0.281-1.364). The overall conclusion of this thorough meta-analysis was 

that adolescents with higher self-reported and objectively-monitored physical activity 

were more likely to experience good sleep. 

In 2015, Kredlow et al.171 published a summary of the effects of a single-day or 

regular physical activity on sleep parameters. Sixty-six studies were identified including 

2,863 participants (45±38.4% women) ages 18.3-88.5 years (mean 42.0±20.4 years, 

gender-specific values not reported). Eligible studies administered physical activity as the 

independent variable for interventions. Sleep was measured using sleep diaries, self-

report questionnaires, sleep-EEG machines, and polysomnography. Cohen’s d 

determined effect sizes and Cochrane’s Q test of heterogeneity examined differences 

between the moderator variable levels. Results showed a single day of physical activity 

had beneficial effects on sleep duration (d = 0.22, 95% CI 0.10-0.34, p < 0.01), sleep 

onset latency (d = 0.17, 95% CI -0.02-0.32, p < 0.05), sleep efficiency (d = 0.25, 95% CI 

0.12-0.39, p < 0.001), sleep maintenance (d = 0.38, 95% CI 0.21-0.55, p < 0.001), and 

slow wave sleep (d = 0.19, 95% CI 0.02-0.35, p < 0.05). In addition, regular physical 

activity had beneficial effects on sleep duration (d = 0.25, 95% CI 0.07-0.43), sleep onset 

latency (d = 0.35, 95% CI 0.00-0.70, p < 0.05), sleep efficiency (d = 0.30, 95% CI 0.06-

0.55), and overall self-reported sleep quality (d = 0.74, 95% CI 0.48-1.00, p < 0.001). 

Cochrane’s Q test of heterogeneity revealed that the time of day of physical activity was 

performed was a significant beneficial moderator on sleep maintenance (Q = 8.47, df = 1, 
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p < 0.005). Sleep maintenance was significantly improved when physical activity was 

performed less than three hours before bedtime while physical activity performed 3-8 

hours before bedtime showed no effects on sleep maintenance (no statistics reported) in 

single-day studies only. There were insufficient data to examine time of day as a 

moderator from studies applying regular physical activity as the independent variable. 

Meta-regression analyses showed that the duration of physical activity significantly 

moderated the effects of physical activity on sleep duration (β = 0.005±0.00, p < 0.05), 

sleep onset latency (β = 0.009±0.00, p < 0.05), and slow wave sleep (β = 0.011±0.00, p < 

0.01) in single-day studies only. From studies utilizing regular physical activity, physical 

activity duration significantly moderated the effect of physical activity on sleep onset 

latency (β = 0.037±0.02, p < 0.05) but had no other moderator effects on sleep parameters 

(p > 0.05). The frequency in days per week participants performed physical activity was 

not a significant moderator on any sleep parameters (p > 0.05). The intensity of physical 

activity performed was not examined as a moderator. The authors concluded that there 

was a beneficial effect of physical activity on sleep parameters when performed on a 

single occasion or when performed regularly. The time-of-day and the amount of activity 

performed were possible moderators of the effect of physical activity on sleep 

parameters, such that longer bouts of physical activity and physical activity performed 3-

8 hours prior to beneficial were most beneficial. 

Overall, summaries conducted consistently show that physical activity has a 

moderate-to-large effect on sleep172–174. Positive effects of physical activity on sleep are 

seen in all age groups and in people with good and poor sleep habits. The largest 

beneficial effect of physical activity on sleep parameters is found after performing 
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physical activity approximately four hours prior to bed time, in older adults, and in 

people with poor sleep habits17.  

The next section will review studies investigating the moderators of time-of-day, 

duration, and intensity of physical activity on sleep parameters. 

Moderators of physical activity effects on sleep 

As previously described, the effect of physical activity on improvements in sleep 

parameters may be modified by the time-of-day and the dose of physical activity 

performed. This section reviews studies examining time-of-day effects and dose of 

physical activity on sleep parameters. 

Time-of-day 

Since the meta-analysis by Youngstedt169 in 1997, few studies have compared 

differences in the time-of-day of physical activity on sleep parameters. In 2011, Passos et 

al.29 examined these differences in a sample of 10 adults (mean age 42.3±2.6 years, 80% 

women) performing a structured, moderate-intensity physical activity session in the 

morning (10:00am±1 hour) and 9 adults (mean age 48.0±2.5 years, 78% women) 

performing a structured, moderate physical activity session in the evening (6:00pm±1 

hour). Sleep parameters was measured using polysomnography. Data were analyzed with 

Cohen’s effect size calculation and repeated measures ANOVA to determine the effect of 

moderate-intensity training sessions performed in the morning or the late afternoon on 

sleep parameters. Results showed overall significant effects for performing exercise on 

sleep onset latency (d = -0.96, p < 0.01) and sleep maintenance (d = -1.66, p < 0.05). 

Comparisons between late-afternoon and morning exercise showed large effects on sleep 



72 

onset latency (d = -2.46 vs. -1.67, p < 0.05), sleep maintenance (d = -1.82, vs. -1.45, p < 

0.05), and sleep efficiency (d = -2.16 vs. 1.68, p < 0.05). ANOVA analyses showed no 

significant results for differences in the time-of-day when exercises were performed. 

These results are similar to other studies as described in the meta-analysis by Kredlow et 

al.171, indicating that the time of the day when physical activity is performed is an 

inconsistent predictor of improved sleep.  

 Aldemir et al.175 compared the response mechanism of increased core, sternum, 

and skin temperatures after evening physical activity as compared to morning physical 

activity. The sample included 12 male adults (age range 25-30 years, mean age not 

reported). Exercise consisted of 30 minutes of moderate-intensity exercise performed in 

the morning (8:00am) or evening (6:00pm). Skin and core temperatures measured by 

thermistors were examined. Blood flow was measured by laser Doppler flowmetry. Data 

were analyzed using ANOVA to compare the effects of moderate-intensity exercise in the 

morning or evening on core and skin temperatures. Analysis of variance showed that the 

evening exercise group experienced a more rapid rise in peripheral skin blood flow (mean 

value 74 mL/min vs. 48 mL/min). In addition, core body temperature and sternum 

temperature were elevated in the evening exercise group compared to the morning 

exercise group (37.15±0.06 °C vs. 36.77±0.06 °C; 33.60±0.29 °C vs. 32.70±0.38 °C, p < 

0.05). Based on studies showing that an increase in skin temperature is the main predictor 

of shorter sleep onset latency, physical activity administered at the appropriate time in the 

late afternoon or early evening may improve sleep more than physical activity in the 

morning. 
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Overall, results remain inconclusive regarding the effects of performing physical 

activity during different times of day on sleep parameters. While meta-analyses 

consistently show that time-of-day is a moderator for the beneficial effects of physical 

activity on sleep parameters, inconsistencies remain on when physical activity is 

performed relative to bedtime (e.g., less than one hour prior, 3-8 hours prior, greater than 

8 hours prior). A lack of well-controlled or long-term studies often are cited as rationale 

for more studies.  

In addition to the timing of day for physical activity, the dose of physical activity 

administered may result in differing effects of physical activity on sleep. The next section 

reviews studies examining the dose of physical activity on sleep parameters. 

Dose 

The duration and intensity of physical activity are cited as moderators for the 

effect of physical activity on sleep parameters. The product of duration and intensity is  

physical activity volume52. The duration and intensity often are inversely related when 

performing exercise (i.e., lower intensity and longer duration; higher intensity and shorter 

duration). The question arises regarding which aspect elicits the greatest improvement in 

sleep: duration, intensity, or volume? While studies have examined differences between 

moderate- and vigorous-intensity physical activities on sleep parameters, physical activity 

volume rarely is examined in relation to sleep parameters. In 2008, Dworak et al.176 

compared moderate- and vigorous-intensity physical activity on sleep parameters in 11 

children (mean age 12.6±0.8 years). A 30-minute cycling session at either 65-70% of 

maximum heart rate or 85-90% maximum heart rate were examined to determine effects 
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of intensity on sleep parameters, measured with polysomnography. As compared to 

baseline, analysis of variance tests showed vigorous-intensity physical activity 

significantly improved sleep-onset latency (22.27±16.26 minutes vs. 6.64±4.88 minutes, 

p < 0.05), sleep efficiency (93.14±5.09 % vs. 97.54±0.82 %, p < 0.05) and slow wave 

sleep (18.58±3.94 % of time asleep vs. 21.48±4.51 % of time asleep, p < 0.05). There 

were no differences in groups for moderate-intensity physical activity compared to 

baseline for all measures (sleep-onset latency = 9.27±13.57 minutes, sleep efficiency = 

96.93±2.88%, slow wave sleep = 13.35±3.92%). Vigorous-intensity physical activity 

improved sleep parameters in a population of healthy children, confirming that more 

intense physical activity may be better than less intense physical activity at improving 

sleep. 

A detailed study conducted by Myllymaki et al.177 in 2012 compared both 

physical activity intensity and physical activity duration on actigraphy-measured and self-

reported sleep parameters. A sample of 14 males (35±4.3 years) performed running 

activities for 30 minutes at 45%, 60%, and 75% of VO2max to examine physical activity 

intensity needed to improve sleep parameters. Running activities also were performed for 

60 and 90 minutes at 60% of VO2max to examine physical activity duration needed to 

improve sleep parameters in comparison to a controlled rest day. Using mixed-model 

variance component models, no significant differences (p > 0.05) were found between 

conditions of 30 minutes of 45%, 60%, and 75% of VO2max and the control condition. 

However, sleep maintenance was better after the vigorous-intensity condition as 

compared to the moderate-intensity condition (23.6±9.5 minutes vs. 26.2±7.6 minutes, 

ns). In addition, no significant differences (p > 0.05) were found between conditions of 
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physical activity performed for 30 minutes, 60 minutes, or 90 minutes at 60% VO2max.  

Limitations noted for this study included missing data due to exclusion criteria after 

enrollment, small sample size, a lack of control for time of day the exercise was 

performed, and a lack of control of the physical activity environment for exercise since 

the participant was responsible for exercising at home. 

In the previously mentioned study by Kline et al.156, investigators designed a 

randomized controlled trial to investigate duration of physical activity needed to improve 

sleep parameters in 437 women (mean age 57.3±6.5 years). Compared to a no-exercise 

control, moderate-intensity (50% VO2max) cycling sessions of varying durations (exact 

duration not provided) were prescribed to elicit four kilocalories per kilogram body 

weight per week (KKW), 8 KKW, and 12 KKW. Training sessions were conducted four 

times per week for six months. Sleep parameters were measured using the Medical 

Outcomes Study Sleep scale. Analysis of covariance showed a treatment effect for the 12 

KKW condition compared to the control condition for self-reported sleep (F8,428 = 17.35, 

p < 0.001). Logistic regression revealed the 12 KKW condition had the lowest odds of 

reporting sleep disturbances (OR = 0.34, 95% CI 0.16-0.72) as compared to the control 

condition (8 KKW, OR = 0.36, 95% CI 0.17-0.77; 4 KKW, OR = 0.37, 95% CI =0.19-

0.73). The authors concluded that longer durations of moderate-intensity physical activity 

improved self-reported sleep quality and reduced the odds of experiencing poor sleep. 

The only study to investigate physical activity volume associated with improved 

sleep parameters was conducted by Taylor et al.178 in 1997. In a sample of seven female 

athletes (mean age 19±2 years), the effect of training volume on polysomnography-
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measured sleep parameters was determined by comparing sleep at different phases of the 

athletes’ season. Over a 6-month period, athletes were examined at the start of the season 

when training volume was mild (e.g., moderate-intensity, cardiorespiratory exercise), at 

the 3-month interval when training volume was high (e.g., vigorous-intensity 

cardiorespiratory exercises combined with maximal resistance training), and at the end 

when the training volume was low and athletes were tapering (e.g., brief vigorous-

intensity exercise). Analysis of variance tests showed significantly improved slow wave 

sleep percentage in the high volume phase (29.4±3.2 % time asleep) and in the mild 

volume phase (28.7±5.1 % time asleep) as compared to the tapering group (18.4±4.3 % 

time asleep; p < 0.05). The authors concluded that there is a decreased need for 

restorative sleep during the low-volume training phase resulting in less time spent in slow 

wave sleep. 

In summary, there is a beneficial effect of physical activity on sleep, however the 

benefits of a single intensity of physical activity on sleep remains unclear as most studies 

show that both moderate- and vigorous-intensity physical activity result in improved 

sleep parameters in children, adults, and the elderly. 

The literature shows a consistent positive relationship between physical activity 

and sleep. Studies comparing moderators for the time-of-day and the ideal physical 

activity dose are equivocal. Moderators of the relationship may depend on the individual, 

their need for sleep improvements, the quality of sleep obtained the previous night, and 

their ability to tolerate physical activity17.  
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Research within the past three years has emphasized on these individual 

differences by examining a person’s daily routine and the bidirectional relationship 

between physical activity and sleep. The next section reviews studies discussing these 

relationships. 

Bidirectional relationship between physical activity and sleep 

Single-day and regular physical activity consistently are associated with 

improvements in sleep parameters. Too little sleep, however, may adversely affect 

physical activity performances. Based on studies describing the effects of sleep 

deprivation on a subsequent days’ mental and physical performance, recent studies have 

focused on the possibility that poor sleep may result in lower physical activity levels in 

general41,179. In 2014, Holfeld et al.180 examined the bidirectional relationship between 

physical activity and sleep in 426 elderly adults (mean age 72.0±7.5 years, range 61-100 

years) over two years. Physical activity was measured by self -report with an ordinal 

scale of extremely inactive to extremely active. Sleep was measured by self-report with 

an ordinal scale of fair/poor sleep to excellent sleep. A cross-lagged panel analysis using 

multiple regression steps and analysis of covariance examined the causal relationship 

between physical activity and sleep parameters. Results showed that the quality of the 

prior night’s sleep significantly predicted subsequent physical activity (β = 0.10, p = 

0.02). Adding the prior period sleep quality to the physical activity prediction model 

significantly increased the amount of variance explained in physical activity (r2 = 0.37-

0.38, p < 0.001). In the second regression analysis performed, adding the prior night’s 

sleep to the model resulted in a significant model improvement (F1,395= 6.00, p < 0.05). 

These results were not replicated (p > 0.05) when predicting sleep quality scores from 
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physical activity scores. The authors concluded that better sleep quality predicted higher 

levels of physical activity beyond the effects of prior physical activity levels. 

Another example of the examination of physical activity as a determinant of sleep 

quality is the 2014 study conducted by Dzierzewski et al.181. The authors conducted a 

secondary analysis of a randomized controlled trial of a sample that included 79 older 

adults (mean age 63.58±8.66 years, 83.5% women). Physical activity and self-report 

measured sleep were obtained from self-report. Data were analyzed using a multi-level 

model approach similar to multiple regression to determine if exercise behavior predicted 

sleep quality and if prior-day exercise affected subsequent night’s sleep quality. Within-

person (individual daily variation) in sleep quality significantly predicted physical 

activity (β = 0.04±0.01, t53.75= 3.40, p = 0.01) and within-person physical activity 

significantly predicted sleep quality (β = 0.06±0.03, t35.01= 2.04, p = 0.05). These results 

indicate that an improvement in self-reported sleep resulted in increased following-day 

physical activity and that increased physical activity resulted in improved self-reported 

sleep. Similar results have been found in the few studies that examined the effects of poor 

sleep parameters, such as sleep onset latency or sleep duration, on subsequent day 

physical activity. In 2013, Baron et al.182 evaluated sleep-onset latency, sleep 

maintenance, and sleep efficiency in association with following day’s sleep in a sample 

of 11 women (61.27±4.15 years) with insomnia. The Pittsburgh Sleep Quality Index was 

used to evaluate sleep-onset latency. Self-report exercise logs were used to determine 

exercise the following day. Results from hierarchical linear modeling showed that sleep-

onset latency was negatively associated with next day exercise (β = -2.30, SE = 0.90, p = 
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0.029). The authors concluded that poor sleep has a negative influence on next-day 

exercise and that better sleep may encourage next-day exercise. 

When examining bidirectional relationships between physical activity and sleep, 

investigators should consider the moderating effects on physical activity and sleep such 

as the time of day, eating meals, engaging in regular social interactions, and other types 

of activity that constitute one’s regular daily routine. Having regularity in one’s schedule 

is purported to promote better sleep. In 2015, Moss et al.183 examined the regularity of 

daily activities on sleep in 33 insomniacs (mean age 47±12 years, 76% women) as 

compared to 36 controls with good sleep habits (mean age 32±13 years, 73% women). To 

determine the regular routine, participants completed the Social Rhythm Metric184, a 

survey consisting of 17 daily activities such as out-of-bed time, first contact with person, 

and time work started. Regularity of the activities over the 2-week study resulted in a 

computed score from 0 = no regularity to 7 = regular. Sleep parameters were determined 

from a sleep record kept daily to measure sleep parameters. Participants were classified 

as normal sleepers or having an insomnia disorder based on the Research Diagnostic 

Criteria. Data were analyzed using a multivariate analysis of covariance Analysis of 

covariance (ANCOVA) determined group differences between normal sleepers and those 

having an insomnia disorder on the Social Rhythm Metric score. Cohens d determined 

the effect of the Social Rhythm Metric between groups. ANCOVA revealed a significant 

effect between the insomniacs and the control group on regularity of daily activities with 

those having an insomnia disorder having lower a total Social Rhythm Metric score for 

compared to the control group (F1,67= 9.12, p < 0.005). There was a large effect between 

groups (d = 0.74) for the Social Rhythm Metric score. The authors concluded that the 
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insomnia group experienced higher variability in their daily activities compared to the 

good sleeping control group. 

These results provide information on the bi-directional relationship between 

physical activity and sleep and continue to show inconsistent   Results such as these 

provide rationale for measuring the entire 24-hour day to assess relationships between 

daily health behaviors, such as physical activity, and nightly behaviors (i.e. sleep 

parameters)185.  

Summary 

 A review of literature clearly shows that physical activity positively related 

positively to optimal sleep in men and women from adolescence to old age. Relationships 

that examine the physical activity dose required and the optimal time of day performed to 

maximize benefits on sleep can be strengthened with the development of validated 

measures that can determine such relationships. Further, the bidirectional relationship 

between physical activity and sleep warrants additional study as these behaviors likely 

influence adverse health outcomes such as cardiovascular disease and type 2 diabetes.  
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CHAPTER 3 

METHODS 

Sample Recruitment 

A convenience sample of 35-60 year-old male and female volunteers were 

recruited using mass communication methods, including flyers (see Appendix A), emails, 

and word-of-mouth. Interested volunteers completed an online screening survey that 

included contact information collection. Internet surveys delivered by the Quatrics survey 

software (Provo, UT) were collected for all screening information. 

Sample size needed to determine the effects of moderate-intensity conditioning 

(MIC) and high-intensity training (HIT) on sleep-onset latency was based on the effects 

of exercise on sleep-onset latency. Vigorous exercise has previously resulted in a large 

effect size for sleep-onset latency (d = 0.67)177, but a more modest, conservative effect 

size was used (d = 0.40) for the power analysis in this study. Based on this effect size and 

a correlation between repeated measures of r = 0.517, G*Power (v3.1.3) calculated that 19 

subjects would be needed to complete the study. 

Inclusion Criteria 

Volunteers were screened for age, sleeping problems, typical bed times, and 

physical activity levels. The person was included if he/she was between the ages of 35 

and 60, classified as having subclinical insomnia using the Insomnia Severity Index (ISI) 

or if they were classified as participating in light-intensity physical activity or inactive 

using the Stanford Brief Activity Survey (SBAS).  
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Exclusion Criteria 

Volunteers completed the American College of Sports Medicine (ACSM) Health 

History Questionnaire186 to determine any metabolic, neurological, or disorder other than 

insomnia known to disrupt sleep. If the person indicated any disorder or were at risk for 

obstructive sleep apnea measured by the STOP-BANG questionnaire they were excluded 

from the study. The ACSM Health History Questionnaire also screened for and excluded 

those taking any medications (e.g., beta-blockers, vasodilators, or hypnotics) or 

supplements (e.g., vitamin C or melatonin) known to affect sleep or were undergoing 

hormone replacement therapy. Volunteers also were excluded if they indicated any 

contraindications to performing moderate- or vigorous-intensity physical activity as 

defined by the Physical Activity Readiness-Questionnaire (PAR-Q) or were classified as 

high risk based on signs or symptoms suggestive of cardiovascular, pulmonary, or 

metabolic disease by the ACSM Guidelines for Exercise Testing186. The person also was 

excluded if they had recently (within seven days) returned from travelling across three or 

more time zones, were currently working a 2nd or 3rd shift occupation, or self-reported 

1:00am or later as their typical bedtime. All screening surveys are described further in the 

Instruments and Measures section. 

The primary investigator contacted volunteers who met the eligibility criteria to 

schedule a visit to the Exercise Physiology Laboratory at Arizona State University on the 

Downtown Campus. 
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Study Design 

A baseline measure of sleep preceded a 3-week counter-balanced crossover trial 

to compare the effects of high-intensity interval exercise (HIT), moderate-intensity 

continuous exercise (MIC), and a no-exercise control (NEC) on sleep outcomes. Figure 2 

shows the study outline. 

 
Figure 2. Study Timeline. 

The study required eight visits to the Arizona State University Exercise 

Physiology Laboratory (referred to as the Exercise Physiology Laboratory). The 

participant performed all study procedures at the same time of day to minimize circadian 

variation. The study took six calendar weeks to complete following the pre-screening 

visit. The study included 1-week washout periods, a period between conditions, to allow 
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participants to recover from any physical fatigue and control for any carry-over that may 

result from training. At the first visit, participants completed pre-study activities and were 

given a sleep watch they wore for the next 6 weeks. After a 1-week washout period, 

participants were randomly assigned to a 3-condition sequence consisting of a no-

exercise control, moderate-intensity treadmill walking (MIC), or high-intensity treadmill 

walking (HIT) delivered in a random, counter-balanced sequence with 1-week washouts. 

Each condition consisted of two visits completed 3-4 hours prior to typical bedtime on 

consecutive days. During the last visit, the sleep watch was collected and participants too 

post-study tests. Details of the activities performed at each visit are described below. 

Visit 1: Preliminary Exercise Measurements 

During Visit 1, participants read and signed an informed consent form (see 

Appendix B), completed a demographic data questionnaire, and completed pre-study 

questionnaires to identify the presence of depression status (revised Center for 

Epidemiologic Studies Depression Scale, CES-R) and subjective sleep quality (Pittsburgh 

Sleep Quality Index, PSQI). The Instruments and Measures section describes these 

measures. The researcher measured the participant’s height in inches and weight in 

pounds using a stadiometer and laboratory scale. The participant performed a maximal 

treadmill graded exercise test to determine the prescribed exercise heart rate, and 

received an accelerometer to wear for the duration of the study to monitor their sleep 

status. Participants refrained from starting an exercise program, consuming caffeine after 

12:00pm, or taking any sleep medications on any day throughout the study. At the end of 

Visit 1, participants scheduled the remaining seven visits with the researcher. 
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Treadmill Test 

A modified Balke maximal treadmill graded exercise test was used to determine 

the heart rate associated with high- and moderate-intensity workloads needed to prescribe 

the exercise intensity during the treatment sessions. Participants performed a 5-minute 

warm-up of treadmill walking at 1.5-2 mph before the exercise test. 

The modified Balke treadmill test involved a constant walking speed of 3.0 mph 

with increases in grade of 1% every one minute. A 12-lead electrocardiogram (EKG) 

monitor was used to measure the heart rate and rhythm at rest, during, and immediately 

after the maximal graded exercise test. Participants rated their level of exertion (RPE) 

with the 15-point Borg scale187 the end of each stage and walked on the treadmill until 

volitional fatigue. The researcher recorded heart rate and RPE at the end of each stage 

(see Appendix C). The treadmill test stopped if the participant requested to stop for any 

reason, maximal exercise tolerance was reached, or test-termination criteria appeared as 

described by the American College of Sports Medicine’s Guidelines for Exercise 

Testing186. The American College of Sports Medicine’s Guidelines for Exercise Testing 

test-termination criteria include: onset of angina-like symptoms, drop in systolic blood 

pressure of > 10 mm Hg from rest despite an increase in workload, excessive rise in 

blood pressure (systolic pressure > 250 mm Hg or diastolic pressure > 115 mm Hg), 

shortness of breath, wheezing, leg cramps, claudication, signs of poor perfusion, failure 

of heart rate to increase with increased exercise intensity, noticeable change in heart 

rhythm, or physical or verbal manifestations of severe fatigue. 
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Immediately following completion of the treadmill test, participants walked 

slowly at a self-determined pace ≤ 2 mph until their heart rate returned to pre-exercise 

levels. An Advanced Cardiac Life Support Certified Exercise Physiologist monitored the 

participant’s EKG throughout the test. 

Accelerometer Distribution 

Following the graded exercise test, the researcher provided each participant with a 

GENEAsleep (Activinsights, UK) accelerometer with instructions to wear the monitor for 

24 hours per day continuously for two weeks, including during sleep, and to take off the 

device only if it could be exposed to water (e.g., bathing). The researcher provided a 

charged device after two weeks. Wearing an accelerometer continuously for four weeks 

has been deemed feasible in adult women109. While wearing the device, participants 

recorded bed times, wake times, and times/duration during which they remove the device 

in a personal log (see Appendix D).  

Visits 2-7: Randomly Assigned Treatment Conditions 

For all conditions, on the first of the consecutive-day visits each participant 

completed survey assessments of depression status (CES-R), sleep quality (PSQI), and 

physical activity (Behavioral Risk Factor Surveillance Survey Physical Activity Module; 

B-PA) during the previous week. For all conditions, on the second of the consecutive-day 

visits participants completed the treatment only (HIT, MIC, or NEC). At the beginning of 

each visit a Polar (Kempele, Finland) heart rate monitor was attached around the 

participant’s chest prior to exercise or the sedentary activity to monitor target heart rate. 

Each morning, after HIT or MIC treatment visits only, participants completed a measure 
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of their exercise enjoyment (PAES) to assess their enjoyment of the previous days’ 

exercise session. All condition visits occurred 4-6 hours prior to the participant’s self-

reported typical bedtime obtained from the screening survey. 

High-intensity Exercise (HIT) Condition – Independent Variable 

The HIT exercise treatments consisted of one 20-minute session of 10 x 1-minute 

treadmill walking periods at a speed and grade to elicit 90-95% of the participant’s 

maximum heart rate (HRmax) achieved during the maximal exercise test. Each HIT 

walking period was separated by a 1-minute low-intensity active recovery-walking period 

(~50% HRmax). A 10-minute warm-up of treadmill walking at 50% HRmax preceded the 

exercise session and a 5-minute cool-down of treadmill walking at < 2.0 mph followed 

the exercise session. The researcher recorded the exercise heart rate every minute.  

Moderate-intensity Continuous Exercise (MIC) Condition – Independent Variable 

The MIC exercise condition consisted of approximately 30 minutes of continuous 

treadmill walking at an intensity of 65-70% of HRmax achieved during the maximal 

treadmill test. A 5-minute warm-up of treadmill walking at 50% HRmax preceded each 

MIC exercise condition. A 5-minute cool down of treadmill walking at < 2.0 mph 

followed each MIC exercise condition. The researcher recorded heart rate every two 

minutes. 

No-exercise Control (NEC) Condition – Independent Variable 

The NEC treatment required the participant to sit quietly and do a sedentary 

activity that excluded eating or the use of electronic equipment. Suitable activities 
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included reading a book or completing crossword or Sudoku puzzles for 45 minutes. The 

researcher recorded heart rate every five minutes. 

Visit 8: Final Study Visit 

Upon completion of the last visit of the final condition, the participant scheduled a 

final visit to return the accelerometer and turn in the sleep log. In addition, participants 

completed assessments of sleep quality (PSQI) during the past week and their overall 

preference of exercise intensity (PRETIE). 

Description of Instruments and Measures 

Survey Instruments – Screening 

The screening survey instruments determined age, sleeping problems, typical 

bedtimes, physical activity levels, and contraindications for performing a maximal graded 

exercise test. The screening survey instruments included two questionnaires to assess the 

participant’s ability to complete moderate-to-high intensity physical activity (PAR-Q), 

and a medication/health history to screen for conditions contraindicative to exercise and 

medications that may have an impact on sleep. Three questionnaires were used to classify 

the participant’s insomnia status (the Insomnia Severity Index, ISI), habitual physical 

activity level (Stanford Brief Activity Survey, SBAS), and risk for obstructive sleep 

apnea (STOP-BANG survey). Participants completed all screening instruments prior to 

the first visit to the Exercise Physiology Laboratory. The next section describes details on 

the less commonly known ISI, SBAS, and STOP-BANG surveys. 
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Insomnia Severity Index 

The Insomnia Severity Index (ISI) is a 7-item questionnaire used to identify 

subclinical to severe insomnia. This questionnaire consisted of questions asking the 

participant’s difficulty with falling asleep, staying asleep, and awaking earlier than 

preferred. The ISI also asked participants to report current satisfaction with sleep, if 

sleeping problems interfered with their daily functioning, and how worried they were 

about their sleeping pattern. ISI responses contain a 5-point scale coded such that higher 

scores indicated worse sleep. The sum of responses indicated if the participant had no 

clinically significant insomnia (0-7 points), had sub-threshold insomnia (8-14 points), had 

clinical insomnia of moderate severity (15-21 points), or had severe clinical insomnia 

(>21 points). Participants classified as having, at minimum, subthreshold insomnia were 

eligible for the study. The ISI has good internal consistency (r = 0.74) and adequate 

concurrent validity compared to sleep diary data (r = 0.65)188. 

Stanford Brief Activity Survey 

Physical activity status was assessed using the Stanford Brief Activity Survey 

(SBAS) of occupational activity and leisure-time activity. The SBAS is a valid, brief tool 

that provides an assessment of the usual amount and intensity of physical activity189. The 

survey provides the participant five choices that describe physical activities respective to 

the occupation and leisure domains. Each choice represents different activity intensity 

levels that the participant likely accumulates during the week. Participants select which 

description best matches their habitual activities during the week. Participants were 

eligible to enroll in the study if they identified as inactive or accruing light-intensity 

activity either at work (occupation domain) or during leisure time (leisure domain). To be 
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identified as physically inactive or accruing light-intensity physical activity in the 

occupation and leisure domains, participants identified as spending most of the day 

sitting or standing (e.g. writing, typing, talking on the telephone, assembling small parts) 

while at work and mostly watching television, reading, playing cards, or doing light 

chores or light exercise during leisure times. Validity of the SBAS was been determined 

by accurately classifying the association between physical activity levels and coronary 

heart disease risk factors and with total daily energy expenditure derived from the 

Stanford Seven-Day Physical Activity Recall in older adults (60-69 years)189. Reliability 

for adults ages 60-70 years is r = 0.62190. 

STOP-BANG Survey 

To screen out participants at risk for obstructive sleep apnea, participants  

completed the STOP-BANG questionnaire as part of initial screening191. The name of the 

instrument is created from the first letter for the domains measured (Snoring, Tired, 

Obstruction, blood Pressure, Body mass index, Age, Neck circumference, and Gender). 

The questionnaire includes 8 items regarding snoring, being tired during the day, 

cessation of breathing during sleep due to an obstruction, taking medication to control 

high blood pressure, body mass index > 28, age ≥ 50, male with neck circumference > 17 

inches or female with neck circumference > 16 inches, and male gender formatted so 

responses are yes/no. Used as a screening instrument, participants were eligible for the 

study if the sum of ‘yes’ responses totaled ≤ 3 for all questions. The STOP-BANG 

questionnaire is valid in detecting obstructive sleep apnea from monitored 

polysomnography in a clinically obese population. The total score of 3 has high 

sensitivity (90%) and high positive predictive value (85%) for obstructive sleep apnea191.  
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Survey Instruments - Demographics 

 The Qualtrics survey software administered all demographic survey instruments 

to the participant on a laptop computer during the Exercise Physiology Laboratory visits. 

The survey instruments included the demographic information module, the Pittsburgh 

Sleep Quality Index (PSQI) for determining self-reported sleep parameters, the Physical 

Activity Enjoyment Scale (PAES) to determine satisfaction of exercise sessions, and the 

Preference for Exercise Intensity (PRETIE) survey to determine overall preference of 

intensity at which to perform physical activity. 

Participants provided demographic information from the demographics module of 

the 2011 Behavioral Risk Factor Surveillance system (www.cdsc.gov/brfss, BRFSS). The 

participant reported age in years, race/ethnicity, marital status, education level, 

occupation status, and income, which have been associated with sleep 

quality10,192,193,194,195,196. Data analysis models controlled for all demographic variables. 

Survey Instruments - Covariates 

The Qualtrics survey software administered all survey instruments to the 

participant on a laptop computer during the Exercise Physiology Laboratory visits. The 

covariate survey instruments included the SF-12 to determine self-rated health status of 

the participant, the physical activity module from the 2001 Behavioral Risk Factor 

Surveillance System to assess weekly physical activity levels (BRFSS-PA), and the 

Center for Epidemiologic Depression Scale (CESD-1) for assessing depression status. 

Data analysis models controlled for all covariates. 
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Physical Activity   

The participant indicated self-reported leisure-time physical activity prior to 

exercise on Visit 2, Visit 4, and Visit 6 by completing the 2001 BRFSS Physical Activity 

Module (BRFSS-PA). Regular physical activity is related to sleep quality48. The BRFSS-

PA is a 6-item questionnaire designed to assess leisure-time, household, and 

transportation activities the participant performed during a usual week. Items asked if the 

participant performed moderate or vigorous activities for recreation, exercise, to get to 

and from places or for any other reason for at least 10 minutes over a usual week and to 

indicate how many days (1-7) and how much total time (hours and minutes per day) was 

spent active. These questions are fair at estimating moderate (κ = 0.31) and vigorous (κ = 

0.17) intensity physical activity compared to accelerometers with good test-retest 

reliability in estimating moderate- (κ = 0.53) and vigorous- (κ = 0.86) intensity 

activity197. The summary score includes three categories: inactive, insufficiently active, 

meets recommendations. 

Depression 

The participant indicated depression status on Visit 2, Visit 4, and Visit 6 with a 

short form of the Centers for Epidemiologic Studies Depression Scale-Revised (CESD-

R). The CESD-R is a 20-item survey asking participants to list how they felt or behaved 

over the previous week, such as feeling depressed, feeling happy, feeling lonely, enjoying 

life, feeling sad, and having restless sleep198. Dichotomous responses are assigned 

numeric values (yes = 1, no = 0) and coded so that smaller values reflect a more positive 

profile. The total score was calculated as a sum of responses to all questions. The 20-item 

survey is valid compared to the Diagnostic and Statistical Manual of Mental Disorders at 
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identifying depression in adults age 60 and older. A cut-off score of four or greater has 

sensitivity and specificity values of 100% and 92%199. Reliability of the 20-item survey is 

also good (α = 0.80)200.  The summary score is expressed as a number from 0-20 with 

smaller values indicating a lack of depression symptoms. 

Survey Instruments – Dependent Variables 

Pittsburgh Sleep Quality Index 

The Pittsburgh Sleep Quality Index (PSQI) assessed participant’s subjective sleep 

for the previous week at Visit 1 and Visit 5 prior to exercise and at Visit 8. The PSQI 

measures subjective sleep habits over the previous month with scores computed for sleep-

onset latency, sleep disturbances (sleep maintenance), sleep efficiency, sleep quality, and 

a global sleep score. The participant completed a modified version to indicate sleep over 

the previous week. The modified instrument (assessment of previous week) is a valid 

measure compared to the 28-day instrument (previous month)201. Clinical psychologists 

have found the modified version useful in assessing subjective sleep complaints. The 

PSQI is a valid 10-item questionnaire asking the participant to report information 

regarding bed time (Q1), time is takes to fall asleep (Q2), sleep time (Q3 and Q4), trouble 

sleeping (Q5a-Q5j), overall sleep quality (Q6), use of sleeping medication (Q7), and 

daytime dysfunction due to sleepiness (Q8 and Q9) 114. If a range was provided for time, 

such as 30 to 60 minutes, the difference was recorded as the mid-point time. Questions 

5a-5j and Question 7 assess frequency of occurrences using a 4-point scale ranging from 

“Not during the past month” to “Three or more times a week” coded as 0-3 respectively. 

To score overall sleep quality Q6-responses were coded 0-3. All scored categorical 
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responses were set 0-3 with minimum score reflecting better sleep. To score sleep 

latency, Q2-responses were recoded from ≤ 15 minutes, 16-30 minutes, 31-60 minutes, 

and > 60 minutes to 0-3 respectively. The recoded Q2-responses were added to the coded 

Q5a response. The resultant value was recoded from 0, 1-2, 3-4, and 5-6 points to 0-3, 

respectively. To score sleep duration, Q4-responses of greater than seven hours, 6-7 

hours, 5-6 hours, and greater than five hours were coded as 0-3, respectively. To score 

sleep efficiency, Q4 was divided by the difference in time between Q1 and Q3 and 

multiplied by 100. The resultant value was recoded from ≥ 85%, 75-84%, 65-74%, and < 

65% to 0-3 points respectively. To score sleep disturbances, the sum of Q5b-Q5j 

responses was recoded from 0, 1-9, 10-18, and 19-27 to 0-3 respectively. To score 

daytime dysfunction, the sum of Q8 and Q9 was recoded from 0, 1-2, 3-4, and 5-6 to 0-3 

respectively. The global PSQI score is the sum of each component score. The original 

PSQI has test-retest reliabilities of r = 0.87 for the overall score, r = 0.79 for sleep-onset 

latency, r = 0.81 for sleep efficiency, and r = 0.69 for sleep disturbances in a population 

of diagnosed insomniacs. A global sleep quality score > 5 points has a sensitivity of 

98.7% and specificity of 84.4% as a marker for sleep disturbances in primary 

insomniacs114. The component scores are expressed as integers with values closer to 0 

indicating better sleep outcomes. 

Physical Activity Enjoyment Scale 

The participant completed the Physical Activity Enjoyment Scale (PAES), an 18-

item questionnaire, the morning after each exercise session.  The participant responded to 

a 7-point bipolar rating scale to rate how they felt now about their past physical activity. 

The survey required the participant to report feelings of pleasure, fun, pleasantness, 
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invigoration, gratification, exhilaration, stimulation, and refreshment directed toward the 

physical activity most recently performed. A higher PAES score reflects greater levels of 

enjoyment. The PAES has demonstrated excellent structural validity (Comparative Fit 

Index = 0.99; Root Mean Squared Error of Approximation = 0.04) and good internal 

reliability (r = 0.93) in older adults (66.4 years). The instrument is not subject to 

longitudinal invariance (i.e. does not lose structural validity when taken more than 

once)202. The summary score was expressed as the median of the 18 item responses 

across the 18 items. 

Preference for the Intensity of Exercise Questionnaire 

The Preference for Intensity of Exercise Questionnaire (PRETIE) is an 16-item 

measure of individual preference for intensity of exercise and the tolerance of exercise202. 

The preference scale of the instrument has eight items that identify one’s preference for 

high intensity/short duration and eight items that identify one’s preference for low 

intensity/longer duration. Item-responses range from totally disagree (1) to totally agree 

(5) and was recoded so minimum numbers reflect preference for lighter intensity 

exercise. The summary score was expressed as the median of the 16 items. The 

Preference scale and Tolerance scale have internal consistency (r = 0.89 and r = 0.86) 

and structurally valid (Comparative Fit Index = 0.97; Root Mean Squared Error of 

Approximation = 0.04) in college females203. 
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GENEAsleep Measurements – Dependent Variables 

Sleep Outcomes 

The GENEAsleep measured the dependent variables of sleep-onset latency (time 

spent from getting into bed to sleep-onset), sleep maintenance (time spent awake between 

sleep-onset and last awakening), and sleep efficiency (ratio of time spent asleep to time 

spent in bed; expressed as a percentage) for Aim 1A. The GENEAsleep monitor 

(Activinsights, UK), an objective measure of sleep, reflected sleep quantity and sleep 

quality. The GENEAsleep is a +/- 8g wrist-worn, splash-proof accelerometer. It is a valid 

measure of physical activity compared to the ActiGraph accelerometer (r = 0.92)204, and 

sleep outcomes compared to the Actiwatch accelerometer using Bland-Altman plot 

inspections205. The instrument is a thin profile device, similar in shape to a commonly 

worn wristwatch. The GENEAsleep has a rechargeable lithium polymer battery and a 0.5 

GB memory capable of logging various frequencies (10-100Hz) or movement. The 

frequency for measuring movement was 40 Hz. The researcher downloaded 

GENEAsleep data and saved it using the GENEAsleep software, a free download from 

the website (www.geneactive.co.uk). Each file consisted of approximately 1-2 weeks of 

data saved in .csv format. Data were imported to SAS (SAS Institute, Cary, NC) for data 

processing and scoring. 

The researcher developed a SAS program macro that read in each file, 

reformatted the timestamped accelerometer data, read in the sleep log bed and wake times 

for all participants, and output a data set consisting of nightly sleep periods, termed sleep 

windows, for each participant. To score the dependent variables of nightly sleep-onset 

latency, sleep maintenance, and sleep efficiency, the researcher developed an 
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independent SAS program macro (see Appendix E) based on a combination of previously 

tested equations supplied by the Activinsights Ltd. manufacturer and previously 

conducted studies using wrist-worn accelerometers76,205. Utilizing the non-filtered, z-axis 

(palmar-dorsal) data collected at the original epoch (40 times per second), movement 

between epochs was the premises for the calculations. For example, each 40th of a second 

z-axis value was assigned a positive or negative integer between 0 and 128, termed bin, 

such that a bin value of ±25 represented ±1 g. The largest absolute bin value (value 

furthest from zero) was retained within each second and the standard deviation of bin 

values within a 15-second epoch, representing the extent of movement from one second 

to the next, was calculated. The standard deviation of 15-second epoch bin values, termed 

count, was used to determine movement versus sleep within the sleep window of each 

night for each participant. These calculations were created from a movement-based 

perspective using the assumption that lying in bed attempting to fall asleep initially (sleep 

onset latency) involves different movement patterns compared to waking in the middle of 

the night (sleep maintenance). 

The dependent variable of sleep-onset latency time was calculated by comparing 

the time the person reported going to bed (first epoch of each night) to the first 15-second 

epoch value at which the proceeding 20 epochs (5 minutes) were < 0.5 counts. 

The dependent variable of sleep maintenance was calculated by summing the 15-

second epoch values that were assigned as wake. Wake was assigned, using a 1-minute 

moving window, if the two epochs prior (30 seconds) and two epochs after (30 seconds) 

were all > 1 count.  
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The dependent variable of sleep efficiency, expressed as a percentage, was 

calculated by dividing the number of minutes asleep by the number of minutes spent in 

bed, multiplied by 100. The newer algorithms for determining sleep onset latency and 

wakefulness after sleep onset resulted in similar results for sleep onset latency, sleep 

maintenance, and sleep efficiency compared to previously conducted methods76. 

The dependent variable of total sleep time was calculated from the sum of non-

wake epochs between the sleep onset latency epoch and the final sleep maintenance 

epoch. Time spent in bed was calculated from the first epoch and last epoch of each 

night. Sleep outcome variables sleep-onset latency, sleep efficiency, sleep maintenance, 

and total sleep time for each participant per night were output to a final sleep metrics data 

set organized by participant ID and date. 

Body Temperature 

Peripheral body temperature during sleep measured by the GENEAsleep is a 

dependent variable for Aim 2A. The stainless steel temperature plate backing on the 

GENEAsleep is capable of measuring peripheral heat loss within normal body ranges (0° 

to 60° C) with +/- 1° C accuracy. The GENEAsleep recorded temperature every 30 

seconds with a resolution of 0.25° C. Device specifications indicate it is capable of 

measuring the rate of decline in peripheral skin temperature within expected 

physiological values. Participants took the device off during showers and water-based 

activities but wore the device at all other times throughout the four-week study. 

The researcher downloaded body temperature from the GENEAsleep monitor as 

previously described. The researcher developed a SAS program code to aggregate the 
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time-stamped temperature measurements. The SAS code retained the maximum 

temperature collected per second and calculated the average temperature over the 1-

minute epoch. The algorithm compared each epoch’s temperature value to the value 10 

minutes in advance and calculated the difference between the two, expressed as percent 

change. The SAS code retained the largest percent change in temperature over a 10-

minute epoch in the span of one evening along with the time at which the 10-minute 

epoch begin. 

Data Management 

The researcher created an information form for each participant that included 

participant ID, laboratory visit date, laboratory visit start time and end time, indication of 

exercise protocol sequence (ABC, ACB, BAC, BCA, CAB, or CBA), indication of 

exercise protocol (HIT=1; MIC=2; NEC=3), exercise session number (1 or 2), and HR 

during exercise (see Appendix F). Each participant’s ID matched the exercise information 

sheet to all Qualtrics administered surveys and the GENEAsleep data. The researcher 

input the laboratory information sheet containing the treadmill test results and condition 

results into an Excel file organized by participant ID and date of the Exercise Physiology 

Laboratory visit. 

The researcher downloaded and input results of each Qualtrics survey into 

different worksheets in the same Excel file, organized by participant ID and date the 

survey was completed. The researcher scored survey responses using Microsoft Excel 

software individually using the scoring methods described previously. The researcher 

input the sleep log information for each participant of each date of the study into a 
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separate worksheet in the same Excel file, with missing bed times and wake times left 

blank. The researcher imported each Excel worksheet containing all Exercise Laboratory 

visit results, online survey results, and sleep log results into the data analysis software 

and match-merged by ID and date. 

The final data set used for data analysis was created by match-merging the sleep 

metrics data set and the body temperature data set with the condition and survey data set 

by participant ID and date. This resulted in a time-series data set organized by calendar 

date for the whole sample.  

Data Analysis 

 Data were analyzed using descriptive measures for mean, standard deviation, 

range, and percent values to characterize the sample. Mixed effects models (SAS, Proc 

Mixed) tested each alternate hypothesis with the intercept as the random effect and the 

covariates, independent variables, and interaction terms as the fixed effects. All models 

used restricted maximum likelihood to determine estimates, the Satterthwaite method to 

determine degrees of freedom, and a power spatial covariance structure to account for 

within-subject correlated time points with the p-value set at 0.05. 

Hypothesis 1A 

For hypothesis 1A, a multi-level mixed effects repeated measures model tested 

the alternate hypothesis that high-intensity interval training would result in superior sleep 

outcomes of actigraphy-measured sleep-onset latency, sleep maintenance, and sleep 

efficiency compared to a continuous moderate-intensity training or a no-exercise control. 

The dependent variables included GENEAsleep-measured sleep variables of sleep-onset 
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latency, sleep maintenance, and sleep efficiency. The fixed effects included condition 

(high-intensity interval training, continuous moderate-intensity condition, or a no-

exercise control), night, and covariates of age, body mass index (BMI), the number of 

children in the household, education, occupation status, income, marital status, race, 

depression, and physical activity level. The interaction terms included condition by night. 

The intercept was used as the random effect. 

Hypothesis 1B 

For hypothesis 1B, a multi-level mixed effects model tested the alternate 

hypothesis that high-intensity interval training would result in superior sleep outcomes of 

PSQI-measured sleep outcomes compared to a continuous moderate-intensity training or 

a no-exercise control. The dependent variables included PSQI-measured sleep-onset 

latency, sleep disturbances (i.e., sleep maintenance), sleep efficiency, sleep duration, 

sleep quality, and the global PSQI score. The fixed effects included condition (high-

intensity interval training, continuous moderate-intensity condition, or a no-exercise 

control), and covariates of age, body mass index (BMI), the number of children in the 

household, education, occupation status, income, marital status, race, depression, and 

physical activity level. The intercept was used as the random effect. 

Hypothesis 2 

For hypothesis 2, a mixed effects model tested the alternate hypothesis that the 

high-intensity interval condition would result in a greater change in peripheral distal body 

temperature compared to MIC and a NEC, thereby predicting improved actigraphy-

measured sleep-onset latency. The dependent variable included actigraphy-measured 
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sleep-onset latency. The fixed effects included condition, the maximum change in 

GENEAsleep-measured distal skin temperature prior to bed time, and covariates of age, 

BMI, number of children in the household, education, occupation status, income, marital 

status, race, depression, and physical activity level. The intercept was used as the random 

effect. 

Hypothesis 3 

For hypothesis 3, a mixed effects repeated measures model tested the alternate 

hypothesis that participants would prefer the high-intensity interval training over the 

continuous moderate-intensity training as a method of improving sleep outcomes. The 

dependent variable was the score on the self-reported Physical Activity Enjoyment Scale. 

The fixed effects included condition, condition number (e.g. first visit, second visit), and 

covariates of age, BMI, number of children in the household, education, occupation 

status, income, marital status, race, depression, and physical activity level. The 

interaction effects included condition-by-condition number. The intercept was used as a 

random effect. To investigate individual preferences for high-intensity interval training or 

continuous moderate-intensity training, measures of central tendency of the 16-item 

Preference for Exercise Intensity (PRETIE) questionnaire were examined. The median 

value from the Likert-type 1-5 scale of each of the 16 items represented each participant’s 

training intensity preference such that a higher score indicates preference for more 

intense training.  
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CHAPTER 4 

RESULTS 

The primary purpose of this research was to compare the effects of two 

consecutive days of moderate-intensity continuous exercise and high-intensity interval 

training with a no-exercise control group on actigraphy-measured sleep outcomes in 

inactive adults with self-reported sleep problems. The secondary purpose of this research 

was to examine changes in thermoregulation following moderate- and high-intensity 

exercise sessions as a mechanism of improving the sleep outcome of sleep-onset latency. 

The tertiary purpose of this research was to examine the participant’s subjective 

preference of an exercise intensity in improving sleep.  

Sample descriptive information is available in Table 1. Three hundred eight-five 

volunteers completed the screening surveys. Twelve adults met the inclusion criteria. Of 

those who failed to meeting the inclusion criteria, 86 were outside the age range, 101 did 

not meet the criteria for subclinical insomnia, 118 indicated they obtained moderate-

intensity activity during work or exercised regularly, 22 indicated a bedtime after 

11:00pm, 7 indicated they recently returned from travel across three or more time zones, 

seven worked 2nd or 3rd shift occupations, and 32 that indicated contraindications to 

exercise testing. Those who met the inclusion criteria were invited to the facility for 

graded maximal exercise test. The supervising exercise physiologist excluded one person 

due to contraindications to performing maximal exercise. The lead researcher enrolled 

eleven adults in the study (see Appendix G) whom were provided a GENEAsleep 

monitor and sleep log.  
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All enrolled participants were female with average age of 46.9±7.0 years (range 

35-58 years) and a BMI of 29.2±6.0 (range 24.1-40.1). One participant was of African-

American race and all others were Caucasian. All participants had a household income of 

greater than $25,000. All were employed for wages except one, who was a homemaker. 

Table 1. Descriptive and Demographic Data on Study Participants (n = 11). 

Demographic Characteristic 
Descriptive Data 

N (%) or mean ± SD (range) 

Gender 
Female 
 

11 (100%) 

Age 
 

46.9 ± 7.0 years  
(35 – 58) 

 
Body Mass Index 

 

 
29.2 ± 6.0 

Self-Reported Race 
White 
Black or African American 
 

10 (91%) 
1 (9%) 

Marital Status 
Married 
Single/Divorced 

 
7 (64%) 
4 (36%) 

  

Number of children 
None 
One or more child 
 

6 (54.5%) 
5 (45.5%) 

Education 
High school 
Some college 
College graduate 
 

1 (9%) 
3 (27%) 
7 (64%) 

Employment 
Employed for wages 
Homemaker 
 

10 (91%) 
1 (9%) 

Income 
Median annual salary 
 

 
$50,000 - $75,00 USD 
($25.000-$35,000 – $85,000 or more) 

 
Maximal Oxygen Uptake 

 

 
21.7 ± 3.1 ml·kg-1·min-1 

 



105 

Figure 3 displays the night-to-night and condition mean estimates in the 

actigraphy-measured sleep outcome of sleep-onset latency. Results showed no significant 

effect in night-to-night actigraphy measured sleep-onset latency for the HIT condition 

(F3, 66.4 = 0.61, p > 0.05), the MIC condition (F3, 66.4 = 1.84, p > 0.05), and the NEC 

condition (F3, 69 = 0.31, p > 0.05). The interaction term of night-to-night sleep-onset 

latency between the three conditions was not significant (F6, 68.4 = 0.83, p > 0.05). 

 
Figure 3. Mean Sleep-onset Latency with 95% Confidence Intervals for High-intensity 
(HIT), Moderate-intensity (MIC) and Non-exercise Control (NEC) Conditions. Values 
closer to 0 minutes indicates less time spent in bed prior to sleep onset. Values further 
from 0 minutes indicate more time spent in bed prior to sleep onset. 
 

Figure 4 displays the night-to-night and condition mean estimates in the 

actigraphy-measured sleep outcome of sleep maintenance. Results showed no significant 

effect in night-to-night actigraphy measured sleep maintenance for the HIT condition (F3, 

72 = 0.02, p > 0.05), the MIC condition (F3, 71.6 = 0.91, p > 0.05) and the NEC condition 
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(F3, 72.2 = 0.07, p > 0.05). The interaction term of night-to-night sleep maintenance 

between the three conditions was not significant (F6, 72.3 = 0.26, p < 0.05). 

 
Figure 4. Mean Sleep Maintenance with 95% Confidence Intervals for High-intensity 
(HIT), Moderate-intensity (MIC) and Non-exercise Control (NEC) Conditions. 
 

Figure 5 displays the night-to-night and condition mean estimates in the 

actigraphy-measured sleep outcome of sleep efficiency. Results showed no significant 

effect in night-to-night actigraphy measured sleep efficiency for the HIT condition (F3, 

65.1 = 0.35, p > 0.05), the MIC condition (F3, 65 = 0.40, p > 0.05) and the NEC condition 

(F3, 66.4 = 0.21, p > 0.05). The interaction of night-to-night sleep efficiency between the 

three conditions was not statistically significant (F6, 66.3 = 0.25, p > 0.05). 
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Figure 5. Mean Sleep Efficiency with 95% Confidence Intervals for High-intensity 
(HIT), Moderate-intensity (MIC) and Non-exercise Control (NEC) Conditions. 
 

Figure 6 displays the night-to-night and condition mean estimates in actigraphy-

measured total sleep time. Results showed a significant effect in night-to-night actigraphy 

measured total sleep time for the HIT condition (F3, 61.2 = 3.08, p < 0.05). No significant 

changes in night-to-night actigraphy measured total sleep time for the MIC condition (F3, 

61.2 = 0.76, p > 0.05) and the NEC condition (F3, 65.5 = 0.78, p > 0.05) were found. The 

interaction of night-to-night sleep efficiency between the three conditions was not 

statistically significant (F6, 64.4 = 1.47, p > 0.05). 
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Figure 6. Mean Total Sleep Time in Minutes with 95% Confidence Intervals for High-
intensity (HIT), Moderate-intensity (MIC) and Non-exercise Control (NEC) Conditions. 

 

Table 2 displays differences between conditions for the PSQI-measured sleep 

outcomes and PAES-measured enjoyment of the condition. Results showed no significant 

differences between conditions for PSQI-measured sleep-onset latency, sleep 

disturbances, sleep efficiency, sleep quality, or the global PSQI sleep score (p > 0.05).  

Table 2. Comparisons of Subjectively-Measured Sleep Measures (n = 11) 
 Baseline HIT MIC NEC P-value 

PSQI      

Sleep-onset 

Latency 
1.77 1.50 1.70 1.66 0.89 

Sleep 

Disturbances 
1.76 1.66 1.60 1.35 0.65 

Sleep Efficiency 0.77 1.18 0.64 0.99 0.39 

Sleep Quality 1.34 1.38 0.92 1.28 0.18 
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Global Sleep 

Score 
7.43 7.22 6.12 6.67 0.80 

PAES N/A 5.74 5.50 N/A 0.49 

PSQI = Pittsburgh Sleep Quality Index. Sleep parameter scores range from 0-3 with a 
score closer to 0 indicating a better outcome. The Global Sleep Score ranges from 0-21 
with a score ≤ 5 indicating good sleep quality and a score > 5 indicating poor sleep 
quality; PAES = Physical Activity Enjoyment Survey 
 

 Temperature change was not a significant predictor of sleep-onset latency (p > 

0.05). Table 3 shows the mean percent temperature change prior to sleep onset for the 

HIT, MIC, and NEC conditions only on nights following laboratory visits. No differences 

existed between conditions (p > 0.05). 

Table 3. Percent Increase in Peripheral Skin Temperature in Celsius between Conditions 
(n = 11) 

 HIT MIC NEC P-value 

Temperature Change 
19.8%°C 

(15.5-24.2) 
17.2%°C 

(12.9-21.4) 
17.5%°C 

(12.4-22.5) 
0.65 

Mean percent increase in peripheral skin temperature prior to sleep onset with 95% 
confidence intervals for the high-intensity interval (HIT), continuous moderate-intensity 
(MIC), and no-exercise control (NEC) conditions. 

 

Figure 7 shows results of the Preference for Exercise Intensity survey rescaled so 

that a score of 3 (on a scale of 1-5) was a reference value set to 0. One participant 

responded with a median score of 1, indicating a preference for more intense exercise. 

This was the only responder reporting a median score greater than 0. Three participants 

reported a median score less than 0 and five participants reported a median score of 0. 

The median score of all responses for all completed surveys was 0. 
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Figure 7. Self-reported Preference for Exercise Intensity. Higher numbers indicate a 
preference for higher-intensity exercise. Values that are above the reference median score 
(0.0) reflect a typical response that was a certain number of units above the reference 
median value; suggesting participants preferred higher intensity exercise. Values that are 
below the median reference score reflect a typical response that was a certain number of 
units below the reference median value; suggesting participants preferred lower or more 
moderate intensity exercise. 
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CHAPTER 5 

DISCUSSION 

The purpose of this research was to examine the relationship between physical 

activity intensity on changes in sleep-onset latency, sleep maintenance, and sleep 

efficiency. Secondary and tertiary aims included determining if temperature rate-of-

change predicted sleep-onset latency and determining the preferred intensity of physical 

activity to improve sleep outcomes in sedentary adults with subclinical insomnia. In a 

sample of sedentary women self-reporting problems with sleep, the high-intensity 

interval training condition had a significant effect on actigraphy-measured total sleep 

time resulting in an increase in total sleep time on the fourth night of the condition; it had 

no effect on the other actigraphy-measured sleep parameters measured. The moderate-

intensity condition had no significant effect on actigraphy-measured sleep-onset latency, 

sleep maintenance, sleep efficiency, or total sleep time, but did result in a 30-minute 

sleep onset delay on the third and fourth nights compared to the first night of the 

moderate-intensity condition. The no-exercise control had no effect on actigraphy-

measured sleep-onset latency, sleep maintenance, sleep efficiency, and total sleep time 

and no significant differences were found between nights. The high-intensity, moderate-

intensity, and no-exercise control conditions had no effect on any of the self-reported 

sleep parameters. The rate-of-change in body temperature had no effect on sleep-onset 

latency and the maximum body temperature increase post-exercise was similar between 

the three conditions. Last, most women preferred moderate-intensity physical activity 

compared to high-intensity training as a means of improving sleep.  
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The alternate hypothesis of Aim 1A was that two consecutive nights of high-

intensity interval training or two consecutive nights of continuous moderate-intensity 

training sessions would result in superior sleep outcomes of actigraphy-measured sleep-

onset latency, sleep maintenance, and sleep efficiency, compared to two consecutive 

nights of a no-exercise control. The null hypothesis that no differences would exist 

between the high-intensity exercise, moderate-intensity exercise, and no-exercise control 

conditions was not rejected for the dependent variables of actigraphy-measured sleep-

onset latency, sleep maintenance, sleep efficiency. One factor that may have resulted in 

failing to reject the null hypothesis for the actigraphy-measured dependent variables of 

sleep-onset latency, sleep maintenance, and sleep efficiency may have been the mode of 

physical activity eliciting energy expenditure to affect sleep. While not performed in this 

study, using a greater volume of resistance training with intermediate-level weights at 

lower intensities can improve metabolic conditioning and may result in increased 

metabolic costs of activity, an increase in muscle fatigue, increase in core body 

temperature, and a smaller increase in cytokines, thereby preparing the body for an 

improved sleep drive. Resistance training has shown promise to improve other sleep 

disorders, such as restless leg syndrome. In a cross-sectional analysis of a population-

representative sample, Loprinzi et al.206 reported that those participating in muscular 

strengthening activities had 19% increased odds of meeting the sleep duration guidelines 

of 7-8 hours per night. In 2015, Alley et al.207 confirmed these results in an experiment 

testing the effects of resistance exercise (9 exercises performed to a 10 repetition 

maximum) and timing of resistance exercise on sleep disturbances. Results showed that 

resistance exercise resulted in fewer sleep disturbances compared to a no-exercise control 
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and that resistance exercise performed in the evening resulted in improved sleep 

disturbances compared to training at mid-day or in the morning. 

Night-by-night comparisons of sleep onset latency represented in Figure 3 show a 

worsening of sleep onset latency by 30 minutes on the third and fourth nights compared 

to the first night of the moderate-intensity condition. One factor that may have influenced 

the worsening of sleep onset latency was a physiological excitement reaction to the 

activity. Physical activity results in increased heart rate and increased release of 

cytokines, possibly exacerbating sleep problems in sedentary, poor sleepers resulting in 

the worsening of sleep outcomes. The high-intensity condition resulted in statistically 

similar sleep onset latency each night, however the changes in night-to-night sleep-onset 

latency show a visually similar pattern over the four post-exercise nights to that of the 

moderate-intensity condition. In 2014, Oda and Shirakawa208 demonstrated that physical 

activity, particularly high-intensity physical activity, performed in the evening resulted in 

an elevated heart rate at bed time and an increased sleep-onset latency in comparison to a 

no-exercise control. In 2007, Santos et al.209 described a positive dose response 

relationship between physical activity intensity and the release of cytokines interleukin-1, 

interleukin-6, and tumor necrosis factor-alpha. The increase in cytokines may result in 

decreased sleepiness. In addition, drowsiness may be a result of decreased levels of these 

cytokines. Because these cytokines typically require several hours to return to normal 

post-exercise, the authors recommended performing physical activity in the morning. 

Additionally, performing physical activity in the morning may improve sleep due to the 

body’s increased demand for sleep from additional energy expenditure while allowing 

sufficient recovery post-training210. 



114 

The night-to-night comparisons of total sleep time in Figure 6 indicate the fourth 

night of the high-intensity condition resulted in improved total sleep time by 91 minutes, 

a 25% increase compared to the first night of the high-intensity condition. The 25% 

improvement in total sleep time on the fourth night may be explained by a possible 

combined effect from the release of exercise-related hormones followed by muscular 

relaxation from accumulated evening exercise. No research has reported this type of 

theoretical combined effect from evening exercise. However, previous research described 

by Santos et al.209 demonstrated the exercise-induced hormone release and resultant 

decrease in sleepiness. In addition, in 2012, Morris et al.211 reported that the muscular 

relaxation response following high-intensity exercise was greater compared to low-

intensity exercise. Also, the recovery profile of the high-intensity exercise was delayed 

despite the same total work accumulated compared to the low-intensity training. These 

reports indicate the possibility that sleep may be unimproved on the night immediately 

following an evening exercise session, but may result in a delayed muscular relaxation 

response on the second night following evening exercise, thereby ultimately improving 

sleep. 

The alternate hypothesis of aim 1B was that two consecutive nights of high-

intensity interval training sessions or two consecutive nights of continuous moderate-

intensity training sessions would result in superior self-reported sleep-onset latency, sleep 

maintenance, sleep efficiency, sleep quality, and the PSQI global sleep score as compared 

to a no-exercise control condition. The null hypothesis was not rejected as no differences 

were observed between the three conditions for any of the self-reported dependent 

variables. 
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One factor that may have resulted in failing to reject the null hypothesis for aim 

1B was that the physical activity volume prescribed to increase energy expenditure was 

not high enough to result in an increased desire to sleep. Thus, the improvement in sleep 

quality within each condition was too similar between conditions to result in differences 

between conditions. Sleep is a period of rest during which the body recuperates from 

daily physical exertion212. It makes sense that additional physical activity should facilitate 

better sleep, particularly in those who subjectively rate their sleep as non-restorative and 

often wake not feeling rested213,214.  In an exercise study completed in 2011, Myllymaki 

et al.215 also found no differences in subjectively rated sleep quality after moderate- and 

vigorous-intensity early-evening physical activity. However, the moderate-intensity 

physical activity was performed at 60% of maximal oxygen uptake for 30 minutes and 

the high-intensity physical activity was performed at 75% maximal oxygen consumption 

for 30 minutes. These conditions have lower intensities than the similarly named 

conditions in the current study. Other studies failing to find significant differences 

between high-intensity training and sleep outcomes required exercise until volitional 

fatigue or less intense continuous bouts30,177,216. Thus, the alternate hypothesis that high-

intensity interval training would result in superior sleep outcomes compared to a no-

exercise control was based on increasing the intensity of physical activity to near 

maximal and including intervals of light activity for the accumulation of more high-

intensity exercise. Unfortunately, this effect did not occur in the present study. 

The alternate hypothesis of aim 2 was that two consecutive nights of high-

intensity interval training or two consecutive nights of continuous moderate-intensity 

training would result in a greater change in peripheral distal body temperature predicting 
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improved sleep-onset latency compared to a no-exercise control. There was insufficient 

evidence to reject null hypothesis that distal skin temperature rate-of-change would 

predict improved sleep-onset latency. The percent increase in peripheral skin temperature 

after the HIT and MIC conditions was similar to the percent increase after the NEC 

condition. The high-intensity exercise resulted in nearly a 20% increase in wrist skin 

temperature. The moderate-intensity and no-exercise control resulted in nearly a 18% 

increase in peripheral skin temperature. The percent increase in peripheral skin 

temperature was greater than that found in previous studies. In 2008, Sarabia et al.217 

showed an increase in peripheral skin temperature of approximately 10% preceding sleep 

onset. In 2014, Rubio-Sastre et al.218 examined wrist skin temperature in adult women 

after 45 minutes of morning or evening running and found an approximate 10% increase 

in temperature prior to sleep. The evening after morning running elicited the greatest 

increase in wrist skin temperature (12%) in addition to more exaggerated temperature 

change. 

One factor that possibly influenced the results for aim 2 was habitual diet. 

Participants were instructed to continue with their regular daily habits outside of the 

study visits. However, food and energy intake was not recorded or controlled for in this 

study. Driver et al.219 found evening meals with greater energy content increased body 

temperature, but had no effect on sleep outcomes. Food intake and the timing of the 

evening meal may have influenced body temperature differently each night. However, 

this is speculation since dietary intake was not measured in the study. 
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It also is speculated that failing to reject the null hypothesis for aim 2 may have 

been due to women being in different phases of their menstrual cycle while performing 

each exercise condition. Menstrual cycle phase is typically not measured unless 

examining the relationship between physical activity and state anxiety220. The random 

assignment of training condition order possibly controlled for any effects that menstrual 

cycle phase may have had on the relationship between physical activity and temperature 

shift. Parry et al.221 reported that women experiencing moderate-to-severe premenstrual 

symptoms experienced no differences in temperature reduction or timing in relation to 

sleep throughout their menstrual cycle compared to age-matched controls. However, the 

phase of a woman’s menstrual cycle also has resulted in alterations in body temperature 

regulation222 and blood flow223 and therefore could affect the physical activity-

temperature shift relationship. Menstrual cycle phase may have influenced the 

relationship between physical activity and peripheral temperature shift as skin blood flow 

is affected by menstrual cycle phase during physical activity. Hayashi et al.224 found the 

menstrual luteal phase to be associated with higher mean body temperature threshold for 

cutaneous vasodilatory response than the follicular phase of the menstrual cycle during 1-

hour of moderate-intensity exercise. However, there was no difference in the peak value 

of body temperature threshold in the current study. Since menstrual cycle was not 

measured in this study, it is impossible to determine possible effects of menstrual cycle 

variation on the study outcomes. 

A final factor that possibly many have influenced failing to reject the null 

hypothesis for aim 2 was ambient room or seasonal temperature variations. The current 

study required all participants to complete the study physical activity conditions in a 
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temperature-controlled environment. However, the time lapse between the enrollment of 

the first participant and the completion of the final participant was 17 months that 

resulted in wide variations in ambient temperatures. In 2007, Buguet225 summarized how 

excessively hot external temperatures result in sleep disturbances and reduces sleep 

quality indicating this is commonly found in laboratory-based studies. They also 

indicated that sleep improved during extended exposure to a hot external environment 

followed by sleep in a controlled, cooler environment. These researchers demonstrated 

that performing physical activity adds to the heat load on the body resulting in differing 

effects between training and sleep at during different seasons226. 

The alternate hypothesis of aim 3 was that the high-intensity interval training 

condition would be the preferred mode of physical activity to improve sleep outcomes 

compared to the continuous moderate-intensity condition. The null hypothesis was that 

no differences would exist between the two training conditions. The study results failed 

to reject the null hypothesis as no differences were observed between the Physical 

Activity Enjoyment Scale scores after each condition and the sample median score for the 

Preference for Exercise Intensity survey, indicating no preference for either lower 

intensity or higher intensity of exercise. 

One possible factor that may have resulted in failing to reject the null hypothesis 

for aim 3 was the inclusion criteria requiring participants to be sedentary. This may have 

resulted in a sample of participants not having ample time to acclimate to the intensity. 

These results are in contrast to results of other studies. In 2015, Hartescu et al. 227 found 

that moderate-to-vigorous physical activity improved insomnia symptoms, anxiety, and 
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depression in a sample of sedentary insomniacs after 6 months. It is possible that the brief 

experience with high-intensity interval training in the current study did not allow 

participants to become acclimated to the physical activity intensity. 

Limitations 

This study has several limitations that should be noted. First, the decisions to fail 

to reject the null hypotheses for the study aims were based on overlapping standard errors 

of the dependent variables, thus indicating more variability and lack of differences in 

these dependent variables. The lack of differences between the values may have been due 

to the study’s small sample size, resulting in low power228 and risk of type II error. Power 

calculations indicated 19 participants would be needed for vigorous physical activity to 

have an effect of Cohen’s d = 0.40 on sleep-onset latency. Only eleven women, 

comprising 58% of the desired sample, completed the study. A post-hoc analysis to 

compute the achieved power indicated 1-β=0.69. Therefore, a larger sample size was 

needed to reduce probability type II error229. 

Another factor that may have influenced results was the algorithms used to 

calculate actigraphy-measured dependent variables. The algorithms were based on other 

valid and reliable data reduction methods developed by other researchers204,205,230. 

However, they have not been validated on the current sample of participants and, 

accordingly, may have been too sensitive in detecting actigraphy-measured sleep 

parameters. Further, while the GENEActive temperature sensor may be useful in 

accurately capturing actigraphic movement231, it has not been used previously to measure 

skin temperature in relation to sleep-onset latency. 
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Last, a limitation that may have influenced results was insufficient volume of 

physical activity to elicit the energy expenditure desired to improve sleep. Physical 

activity-focused guidelines recommend that adults accrue 150 minutes per week of 

moderate-intensity physical activity or 75 minutes of vigorous-intensity physical 

activity37 or expend 8 kilocalories per kilogram body weight per week232. In the current 

study, the moderate-intensity and vigorous-intensity conditions were prescribed a total of 

60 minutes and 20 minutes, respectively. Kline et al.156 demonstrated that expending 

more energy throughout the week improves sleep in sedentary women. Passos et al.30 also 

found improvements in sleep outcomes after 50 minutes of moderate-intensity physical 

activity. In the current study, the high-intensity interval condition consisted of 10 x 1-

minute bouts of high-intensity walking with 1-min bouts of active recovery. Due to the 

brief minute of activity followed by the active recovering, the participant did not reach 

the target heart rate of 90% of maximum heart rate until over halfway through the 

training session. This shorter exercise time resulted in reduced volume spent at the target 

heart rate. This study used interval training to increase high-intensity exercise time. 

However, sleep improvements may depend on greater daily energy expenditure than 

expended in the current study. Studies utilizing high-intensity interval training to improve 

other health outcomes have found a session of four rounds of 4-minute exercise bouts 

followed by 4-minute active recovery bouts to be beneficial. This would result in 

increased volume and more total time spent walking at higher intensities. 

Conclusion 

This study examined the relationship between physical activity intensity, 

objectively measured and subjectively measured sleep outcomes. In addition, the body 
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temperature rate-of-change was examined as a predictor of sleep-onset latency, as was 

the participant’s preference of physical activity intensity. Following high-intensity 

physical activity, objectively measured total sleep time was significantly better following 

the fourth night of the condition, but sleep onset latency, sleep maintenance, and sleep 

efficiency were unaltered. Also, following moderate-intensity physical activity, 

objectively measured sleep-onset latency, sleep maintenance, and sleep efficiency were 

unaltered. No significant differences were found between moderate- or high-intensity 

physical activity and subjective sleep outcomes as compared to a no-exercise control. 

Temperature rate-of-change also was not significantly associated with sleep-onset 

latency. There was no significant difference in physical activity enjoyment between the 

three experimental conditions. However, the single rating of physical activity intensity 

preference indicated most participants preferred moderate-intensity physical activity as 

compared with high-intensity physical activity.  

The recommended dose and mode of physical activity to optimize sleep outcomes 

remains to be determined. Future studies should examine physical activity conditions that 

may affect sleep. These include investigating different intensities of physical activity 

associated with improved sleep, comparing physical activity levels performed at different 

times of day, such as comparing morning and early evening activity, and comparing the 

effects of different modes of physical activity, such as resistance training, on sleep. 



122 

REFERENCES 

1.  Haskell WL, Lee I-M, Pate RR, et al. Physical activity and public health: updated 
recommendation for adults from the American College of Sports Medicine and the 
American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423-1434. 
doi:10.1249/mss.0b013e3180616b27. 

2.  CDC - Facts - Data - Physical Activity - DNPAO. 
http://www.cdc.gov/physicalactivity/data/facts.htm. Accessed February 14, 2016. 

3.  Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical 
activity in the United States measured by accelerometer. Med Sci Sports Exerc. 
2008;40(1):181-188. doi:10.1249/mss.0b013e31815a51b3. 

4.  Chapman DP, Wheaton AG, Perry GS, Sturgis SL, Strine TW, Croft JB. 
Household demographics and perceived insufficient sleep among US adults. J 

Community Health. 2012;37(2):344-349. doi:10.1007/s10900-011-9451-x. 

5.  Colten HRHR, Altevogt BMBM, eds. Sleep Disorders and Sleep Deprivation: An 

Unmet Public Health Problem. Washington (DC): National Academies Press (US); 
2006. 

6.  sleepfoundations.org. http://ww1.sleepfoundations.org/. Accessed October 22, 
2015. 

7.  Hall MH, Kline CE, Nowakowski S. Insomnia and sleep apnea in midlife women: 
prevalence and consequences to health and functioning. F1000Prime Rep. 2015;7. 
doi:10.12703/P7-63. 

8.  Garbarino S, Lanteri P, Durando P, Magnavita N, Sannita WG. Co-Morbidity, 
Mortality, Quality of Life and the Healthcare/Welfare/Social Costs of Disordered 
Sleep: A Rapid Review. Int J Environ Res Public Health. 2016;13(8). 
doi:10.3390/ijerph13080831. 

9.  Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of 
quantitative sleep parameters from childhood to old age in healthy individuals: 
developing normative sleep values across the human lifespan. Sleep. 
2004;27(7):1255-1273. 

10.  Cooke JR, Ancoli-Israel S. Normal and abnormal sleep in the elderly. Handb Clin 

Neurol. 2011;98:653-665. doi:10.1016/B978-0-444-52006-7.00041-1. 

11.  Ancoli-Israel S. Sleep problems in older adults: putting myths to bed. Geriatrics. 
1997;52(1):20-30. 



123 

12.  Short Sleep Duration Among Workers — United States, 2010. 
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6116a2.htm. Accessed 
February 14, 2016. 

13.  Roth T, Coulouvrat C, Hajak G, et al. Prevalence and perceived health associated 
with insomnia based on DSM-IV-TR; International Statistical Classification of 
Diseases and Related Health Problems, Tenth Revision; and Research Diagnostic 
Criteria/International Classification of Sleep Disorders, Second Edition criteria: 
results from the America Insomnia Survey. Biol Psychiatry. 2011;69(6):592-600. 
doi:10.1016/j.biopsych.2010.10.023. 

14.  Stone KL, Ewing SK, Lui L-Y, et al. Self-reported sleep and nap habits and risk of 
falls and fractures in older women: the study of osteoporotic fractures. J Am 

Geriatr Soc. 2006;54(8):1177-1183. doi:10.1111/j.1532-5415.2006.00818.x. 

15.  McCrae CS, Rowe MA, Tierney CG, Dautovich ND, Definis AL, McNamara JPH. 
Sleep complaints, subjective and objective sleep patterns, health, psychological 
adjustment, and daytime functioning in community-dwelling older adults. J 

Gerontol B Psychol Sci Soc Sci. 2005;60(4):P182-189. 

16.  Buman MP, King AC. Exercise as a Treatment to Enhance Sleep. Am J Lifestyle 

Med. 2010;4(6):500-514. doi:10.1177/1559827610375532. 

17.  Youngstedt SD. Ceiling and floor effects in sleep research. Sleep Med Rev. 
2003;7(4):351-365. 

18.  Youngstedt SD. Effects of exercise on sleep. Clin Sports Med. 2005;24(2):355-
365, xi. doi:10.1016/j.csm.2004.12.003. 

19.  Baehr EK, Eastman CI, Revelle W, Olson SHL, Wolfe LF, Zee PC. Circadian 
phase-shifting effects of nocturnal exercise in older compared with young adults. 
Am J Physiol Regul Integr Comp Physiol. 2003;284(6):R1542-1550. 
doi:10.1152/ajpregu.00761.2002. 

20.  Yang P-Y, Ho K-H, Chen H-C, Chien M-Y. Exercise training improves sleep 
quality in middle-aged and older adults with sleep problems: a systematic review. J 

Physiother. 2012;58(3):157-163. doi:10.1016/S1836-9553(12)70106-6. 

21.  Dunn AL, Trivedi MH, O’Neal HA. Physical activity dose-response effects on 
outcomes of depression and anxiety. Med Sci Sports Exerc. 2001;33(6 
Suppl):S587-597-610. 

22.  Pasco JA, Williams LJ, Jacka FN, et al. Habitual physical activity and the risk for 
depressive and anxiety disorders among older men and women. Int Psychogeriatr 

IPA. 2011;23(2):292-298. doi:10.1017/S1041610210001833. 



124 

23.  Fagard R. Habitual physical activity, training, and blood pressure in normo- and 
hypertension. Int J Sports Med. 1985;6(2):57-67. doi:10.1055/s-2008-1025814. 

24.  Weinert D, Waterhouse J. The circadian rhythm of core temperature: effects of 
physical activity and aging. Physiol Behav. 2007;90(2-3):246-256. 
doi:10.1016/j.physbeh.2006.09.003. 

25.  Barger LK, Wright KP Jr, Hughes RJ, Czeisler CA. Daily exercise facilitates phase 
delays of circadian melatonin rhythm in very dim light. Am J Physiol Regul Integr 

Comp Physiol. 2004;286(6):R1077-1084. doi:10.1152/ajpregu.00397.2003. 

26.  Leblanc J. Thermogenesis with relation to exercise and exercise-training. Acta Med 

Scand Suppl. 1986;711:75-81. 

27.  Paxton SJ, Trinder J, Montgomery I. Does Aerobic Fitness Affect Sleep? 
Psychophysiology. 1983;20(3):320-324. doi:10.1111/j.1469-8986.1983.tb02162.x. 

28.  Elavsky S, McAuley E. Lack of perceived sleep improvement after 4-month 
structured exercise programs. Menopause N Y N. 2007;14(3 Pt 1):535-540. 
doi:10.1097/01.gme.0000243568.70946.d4. 

29.  Passos GS, Poyares D, Santana MG, et al. Effects of moderate aerobic exercise 
training on chronic primary insomnia. Sleep Med. 2011;12(10):1018-1027. 
doi:10.1016/j.sleep.2011.02.007. 

30.  Passos GS, Poyares D, Santana MG, Garbuio SA, Tufik S, Mello MT. Effect of 
acute physical exercise on patients with chronic primary insomnia. J Clin Sleep 

Med JCSM Off Publ Am Acad Sleep Med. 2010;6(3):270-275. 

31.  Gibala MJ. High-intensity interval training: a time-efficient strategy for health 
promotion? Curr Sports Med Rep. 2007;6(4):211-213. 

32.  Little JP, Gillen JB, Percival ME, et al. Low-volume high-intensity interval 
training reduces hyperglycemia and increases muscle mitochondrial capacity in 
patients with type 2 diabetes. J Appl Physiol Bethesda Md 1985. 
2011;111(6):1554-1560. doi:10.1152/japplphysiol.00921.2011. 

33.  Horne JA, Staff LH. Exercise and sleep: body-heating effects. Sleep. 1983;6(1):36-
46. 

34.  Campbell SS, Broughton RJ. Rapid decline in body temperature before sleep: 
fluffing the physiological pillow? Chronobiol Int. 1994;11(2):126-131. 

35.  Driver HS, Rogers GG, Mitchell D, et al. Prolonged endurance exercise and sleep 
disruption. Med Sci Sports Exerc. 1994;26(7):903-907. 



125 

36.  Rognmo Ø, Moholdt T, Bakken H, et al. Cardiovascular risk of high- versus 
moderate-intensity aerobic exercise in coronary heart disease patients. Circulation. 
2012;126(12):1436-1440. doi:10.1161/CIRCULATIONAHA.112.123117. 

37.  King AC, Pruitt LA, Woo S, et al. Effects of moderate-intensity exercise on 
polysomnographic and subjective sleep quality in older adults with mild to 
moderate sleep complaints. J Gerontol A Biol Sci Med Sci. 2008;63(9):997-1004. 

38.  Dworak M, Wiater A, Alfer D, Stephan E, Hollmann W, Strüder HK. Increased 
slow wave sleep and reduced stage 2 sleep in children depending on exercise 
intensity. Sleep Med. 2008;9(3):266-272. doi:10.1016/j.sleep.2007.04.017. 

39.  Sleep Hygiene. https://sleepfoundation.org/ask-the-expert/sleep-hygiene. Accessed 
February 14, 2016. 

40.  Asnis GM, Thomas M, Henderson MA. Pharmacotherapy Treatment Options for 
Insomnia: A Primer for Clinicians. Int J Mol Sci. 2016;17(1). 
doi:10.3390/ijms17010050. 

41.  Kline CE. The bidirectional relationship between exercise and sleep: Implications 
for exercise adherence and sleep improvement. Am J Lifestyle Med. 2014;8(6):375-
379. doi:10.1177/1559827614544437. 

42.  Physical Activity Guidelines for Americans. 2008. 
http://www.health.gov/paguidelines/pdf/paguide.pdf. 

43.  Kline CE, Irish LA, Krafty RT, et al. Consistently High Sports/Exercise Activity Is 
Associated with Better Sleep Quality, Continuity and Depth in Midlife Women: 
The SWAN Sleep Study. Sleep. 2013;36(9):1279-1288. doi:10.5665/sleep.2946. 

44.  McCrae CS, Rowe MA, Tierney CG, Dautovich ND, Definis AL, McNamara JPH. 
Sleep complaints, subjective and objective sleep patterns, health, psychological 
adjustment, and daytime functioning in community-dwelling older adults. J 

Gerontol B Psychol Sci Soc Sci. 2005;60(4):P182-189. 

45.  Seib C, Anderson D, Lee K. Prevalence and Correlates of Sleep Disturbance in 
Postmenopausal Australian Women: The Healthy Aging of Women (HOW) Study. 
J Womens Health 2002. November 2013. doi:10.1089/jwh.2013.4472. 

46.  Buman MP, Kline CE, Youngstedt SD, Phillips B, Tulio de Mello M, Hirshkowitz 
M. Sitting and television viewing: novel risk factors for sleep disturbance and 
apnea risk? results from the 2013 National Sleep Foundation Sleep in America 
Poll. Chest. 2015;147(3):728-734. doi:10.1378/chest.14-1187. 

47.  de Castro Toledo Guimaraes LH, de Carvalho LBC, Yanaguibashi G, do Prado 
GF. Physically active elderly women sleep more and better than sedentary women. 
Sleep Med. 2008;9(5):488-493. doi:10.1016/j.sleep.2007.06.009. 



126 

48.  Sherrill DL, Kotchou K, Quan SF. Association of physical activity and human 
sleep disorders. Arch Intern Med. 1998;158(17):1894-1898. 

49.  Gerber M, Brand S, Herrmann C, Colledge F, Holsboer-Trachsler E, Pühse U. 
Increased objectively assessed vigorous-intensity exercise is associated with 
reduced stress, increased mental health and good objective and subjective sleep in 
young adults. Physiol Behav. 2014;135C:17-24. 
doi:10.1016/j.physbeh.2014.05.047. 

50.  McCrae CS, Dzierzewski JM, Kay D. Treatment of Late-life Insomnia. Sleep Med 

Clin. 2009;4(4):593-604. doi:10.1016/j.jsmc.2009.07.006. 

51.  Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and 
physical fitness: definitions and distinctions for health-related research. Public 

Health Rep Wash DC 1974. 1985;100(2):126-131. 

52.  Pescatello LS, American College of Sports Medicine, eds. ACSM’s Guidelines for 

Exercise Testing and Prescription. 9th ed. Philadelphia: Wolters 
Kluwer/Lippincott Williams & Wilkins Health; 2014. 

53.  Buysse DJ, Ancoli-Israel S, Edinger JD, Lichstein KL, Morin CM. 
Recommendations for a standard research assessment of insomnia. Sleep. 
2006;29(9):1155-1173. 

54.  Lichstein KL, Durrence HH, Taylor DJ, Bush AJ, Riedel BW. Quantitative criteria 
for insomnia. Behav Res Ther. 2003;41(4):427-445. 

55.  Lamonte MJ, Ainsworth BE. Quantifying energy expenditure and physical activity 
in the context of dose response. Med Sci Sports Exerc. 2001;33(6 Suppl):S370-
378-420. 

56.  Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological 
approach to creating active living communities. Annu Rev Public Health. 
2006;27:297-322. doi:10.1146/annurev.publhealth.27.021405.102100. 

57.  Booth FW, Roberts CK, Laye MJ. Lack of Exercise Is a Major Cause of Chronic 
Diseases. In: Terjung R, ed. Comprehensive Physiology. Hoboken, NJ, USA: John 
Wiley & Sons, Inc.; 2012. http://doi.wiley.com/10.1002/cphy.c110025. Accessed 
December 26, 2012. 

58.  Sofi F, Cesari F, Casini A, Macchi C, Abbate R, Gensini GF. Insomnia and risk of 
cardiovascular disease: a meta-analysis. Eur J Prev Cardiol. 2014;21(1):57-64. 
doi:10.1177/2047487312460020. 

59.  Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and 
endocrine function. Lancet. 1999;354(9188):1435-1439. doi:10.1016/S0140-
6736(99)01376-8. 



127 

60.  Paffenbarger RS Jr, Lee IM. A natural history of athleticism, health and longevity. 
J Sports Sci. 1998;16 Suppl:S31-45. doi:10.1080/026404198366957. 

61.  Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease 
and physical activity of work. Lancet Lond Engl. 1953;265(6795):1053-1057; 
contd. 

62.  Paffenbarger RS, Wing AL, Hyde RT. Physical activity as an index of heart attack 
risk in college alumni. Am J Epidemiol. 1978;108(3):161-175. 

63.  Statement on exercise. A position statement for health professionals by the 
Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical 
Cardiology, American Heart Association. Circulation. 1990;81(1):396-398. 

64.  Fletcher GF, Blair SN, Blumenthal J, et al. Statement on exercise. Benefits and 
recommendations for physical activity programs for all Americans. A statement for 
health professionals by the Committee on Exercise and Cardiac Rehabilitation of 
the Council on Clinical Cardiology, American Heart association. Circulation. 
1992;86(1):340-344. 

65.  Pate RR, Pratt M, Blair SN, et al. Physical activity and public health. A 
recommendation from the Centers for Disease Control and Prevention and the 
American College of Sports Medicine. JAMA J Am Med Assoc. 1995;273(5):402-
407. 

66.  McKenzie TL, Marshall SJ, Sallis JF, Conway TL. Leisure-time physical activity 
in school environments: an observational study using SOPLAY. Prev Med. 
2000;30(1):70-77. doi:10.1006/pmed.1999.0591. 

67.  Honas JJ, Washburn RA, Smith BK, Greene JL, Cook-Wiens G, Donnelly JE. The 
System for Observing Fitness Instruction Time (SOFIT) as a Measure of Energy 
Expenditure During Classroom-Based Physical Activity. Pediatr Exerc Sci. 
2008;20(4):439. 

68.  Adams MA, Hovell MF, Irvin V, Sallis JF, Coleman KJ, Liles S. Promoting stair 
use by modeling: an experimental application of the Behavioral Ecological Model. 
Am J Health Promot AJHP. 2006;21(2):101-109. 

69.  Rowlands AV, Yates T, Olds TS, Davies M, Khunti K, Edwardson CL. Sedentary 
Sphere: Wrist-Worn Accelerometer-Brand Independent Posture Classification. 
Med Sci Sports Exerc. November 2015. doi:10.1249/MSS.0000000000000813. 

70.  Lyden K, Keadle SK, Staudenmayer J, Freedson PS. A method to estimate free-
living active and sedentary behavior from an accelerometer. Med Sci Sports Exerc. 
2014;46(2):386-397. doi:10.1249/MSS.0b013e3182a42a2d. 



128 

71.  Ainsworth B, Cahalin L, Buman M, Ross R. The current state of physical activity 
assessment tools. Prog Cardiovasc Dis. 2015;57(4):387-395. 
doi:10.1016/j.pcad.2014.10.005. 

72.  Staudenmayer J, He S, Hickey A, Sasaki J, Freedson P. Methods to estimate 
aspects of physical activity and sedentary behavior from high-frequency wrist 
accelerometer measurements. J Appl Physiol Bethesda Md 1985. 2015;119(4):396-
403. doi:10.1152/japplphysiol.00026.2015. 

73.  Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and 
Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777-781. 

74.  Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two 
objective measures of physical activity for children. J Sports Sci. 
2008;26(14):1557-1565. doi:10.1080/02640410802334196. 

75.  Pate RR, Stevens J, Webber LS, et al. Age-related change in physical activity in 
adolescent girls. J Adolesc Health Off Publ Soc Adolesc Med. 2009;44(3):275-282. 
doi:10.1016/j.jadohealth.2008.07.003. 

76.  Huberty J, Ehlers DK, Kurka J, Ainsworth B, Buman M. Feasibility of three 
wearable sensors for 24 hour monitoring in middle-aged women. BMC Womens 

Health. 2015;15:55. doi:10.1186/s12905-015-0212-3. 

77.  Swartz AM, Rote AE, Cho YI, Welch WA, Strath SJ. Responsiveness of motion 
sensors to detect change in sedentary and physical activity behaviour. Br J Sports 

Med. 2014;48(13):1043-1047. doi:10.1136/bjsports-2014-093520. 

78.  Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity 
monitor in the measurement of posture and motion during everyday activities. Br J 

Sports Med. 2006;40(12):992-997. doi:10.1136/bjsm.2006.030262. 

79.  Edwardson CL, Rowlands AV, Bunnewell S, et al. Accuracy of Posture Allocation 
Algorithms for Thigh- and Waist-Worn Accelerometers. Med Sci Sports Exerc. 
January 2016. doi:10.1249/MSS.0000000000000865. 

80.  Crouter SE, Schneider PL, Karabulut M, Bassett DR. Validity of 10 electronic 
pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 
2003;35(8):1455-1460. doi:10.1249/01.MSS.0000078932.61440.A2. 

81.  Schneider PL, Crouter SE, Bassett DR. Pedometer measures of free-living physical 
activity: comparison of 13 models. Med Sci Sports Exerc. 2004;36(2):331-335. 
doi:10.1249/01.MSS.0000113486.60548.E9. 

82.  Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary 
pedometer indices for public health. Sports Med Auckl NZ. 2004;34(1):1-8. 



129 

83.  Pillay JD, Kolbe-Alexander TL, Proper KI, van Mechelen W, Lambert EV. Steps 
that count: physical activity recommendations, brisk walking, and steps per 
minute--how do they relate? J Phys Act Health. 2014;11(3):502-508. 
doi:10.1123/jpah.2012-0210. 

84.  Butte NF, Ekelund U, Westerterp KR. Assessing physical activity using wearable 
monitors: measures of physical activity. Med Sci Sports Exerc. 2012;44(1 Suppl 
1):S5-12. doi:10.1249/MSS.0b013e3182399c0e. 

85.  Jakicic JM, Marcus M, Gallagher KI, et al. Evaluation of the SenseWear Pro 
Armband to assess energy expenditure during exercise. Med Sci Sports Exerc. 
2004;36(5):897-904. 

86.  van Hoye K, Mortelmans P, Lefevre J. Validation of the SenseWear Pro3 
Armband using an incremental exercise test. J Strength Cond Res Natl Strength 

Cond Assoc. 2014;28(10):2806-2814. doi:10.1519/JSC.0b013e3182a1f836. 

87.  Kim J-H, Roberge R, Powell JB, Shafer AB, Jon Williams W. Measurement 
Accuracy of Heart Rate and Respiratory Rate during Graded Exercise and 
Sustained Exercise in the Heat Using the Zephyr BioHarnessTM. Int J Sports Med. 
November 2012. doi:10.1055/s-0032-1327661. 

88.  Jovanov E, Milosevic M, Milenković A. A mobile system for assessment of 
physiological response to posture transitions. Conf Proc Annu Int Conf IEEE Eng 

Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2013;2013:7205-7208. 
doi:10.1109/EMBC.2013.6611220. 

89.  Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using 
physical activity monitors in population-based research. Med Sci Sports Exerc. 
2012;44(1 Suppl 1):S68-76. doi:10.1249/MSS.0b013e3182399e5b. 

90.  Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A 
comparison of direct versus self-report measures for assessing physical activity in 
adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. 
doi:10.1186/1479-5868-5-56. 

91.  CDC - BRFSS. http://www.cdc.gov/brfss/. Accessed January 17, 2016. 

92.  Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G. A 
questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 
1978;31(12):741-755. 

93.  Dunton GF, Liao Y, Intille S, Wolch J, Pentz MA. Physical and social contextual 
influences on children’s leisure-time physical activity: an ecological momentary 
assessment study. J Phys Act Health. 2011;8 Suppl 1:S103-108. 



130 

94.  Conway JM, Seale JL, Jacobs DR, Irwin ML, Ainsworth BE. Comparison of 
energy expenditure estimates from doubly labeled water, a physical activity 
questionnaire, and physical activity records. Am J Clin Nutr. 2002;75(3):519-525. 

95.  Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Thériault G. A method 
to assess energy expenditure in children and adults. Am J Clin Nutr. 
1983;37(3):461-467. 

96.  The International Classification of Sleep Disorders. Diagnostic and Coding 

Manual. 2nd ed. Westchester, IL: American Academy of Sleep Medicine; 2005. 

97.  Chesson A Jr, Hartse K, Anderson WM, et al. Practice parameters for the 
evaluation of chronic insomnia. An American Academy of Sleep Medicine report. 
Standards of Practice Committee of the American Academy of Sleep Medicine. 
Sleep. 2000;23(2):237-241. 

98.  Agnew HW, Webb WB, Williams RL. The first night effect: an EEG study of 
sleep. Psychophysiology. 1966;2(3):263-266. 

99.  Hutchison KN, Song Y, Wang L, Malow BA. Analysis of sleep parameters in 
patients with obstructive sleep apnea studied in a hospital vs. a hotel-based sleep 
center. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2008;4(2):119-122. 

100.  Kaplan RF, Wang Y, Loparo KA, Kelly MR, Bootzin RR. Performance evaluation 
of an automated single-channel sleep–wake detection algorithm. Nat Sci Sleep. 
2014;6:113-122. doi:10.2147/NSS.S71159. 

101.  Wang Y, Loparo KA, Kelly MR, Kaplan RF. Evaluation of an automated single-
channel sleep staging algorithm. Nat Sci Sleep. 2015;7:101-111. 
doi:10.2147/NSS.S77888. 

102.  Rosenberger ME, Buman MP, Haskell WL, McConnell MV, Carstensen LL. 24 
Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable 
Devices. Med Sci Sports Exerc. October 2015. 
doi:10.1249/MSS.0000000000000778. 

103.  Sadeh A, Hauri PJ, Kripke DF, Lavie P. The role of actigraphy in the evaluation of 
sleep disorders. Sleep. 1995;18(4):288-302. 

104.  Brown AC, Smolensky MH, D’Alonzo GE, Redman DP. Actigraphy: a means of 
assessing circadian patterns in human activity. Chronobiol Int. 1990;7(2):125-133. 

105.  Hauri PJ, Wisbey J. Wrist actigraphy in insomnia. Sleep. 1992;15(4):293-301. 

106.  Kushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC. 
Comparison of actigraphic, polysomnographic, and subjective assessment of sleep 
parameters in sleep-disordered patients. Sleep Med. 2001;2(5):389-396. 



131 

107.  van Hilten JJ, Braat EA, van der Velde EA, Middelkoop HA, Kerkhof GA, 
Kamphuisen HA. Ambulatory activity monitoring during sleep: an evaluation of 
internight and intrasubject variability in healthy persons aged 50-98 years. Sleep. 
1993;16(2):146-150. 

108.  Zheng H, Sowers M, Buysse DJ, et al. Sources of variability in epidemiological 
studies of sleep using repeated nights of in-home polysomnography: SWAN Sleep 
Study. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 2012;8(1):87-96. 
doi:10.5664/jcsm.1670. 

109.  Rowe M, McCrae C, Campbell J, et al. Actigraphy in older adults: comparison of 
means and variability of three different aggregates of measurement. Behav Sleep 

Med. 2008;6(2):127-145. doi:10.1080/15402000801952872. 

110.  Usui A, Ishizuka Y, Obinata I, Okado T, Fukuzawa H, Kanba S. Validity of sleep 
log compared with actigraphic sleep-wake state. Psychiatry Clin Neurosci. 
1998;52(2):161-163. doi:10.1111/j.1440-1819.1998.tb01006.x. 

111.  Carskadon MA, Dement WC, Mitler MM, Guilleminault C, Zarcone VP, Spiegel 
R. Self-reports versus sleep laboratory findings in 122 drug-free subjects with 
complaints of chronic insomnia. Am J Psychiatry. 1976;133(12):1382-1388. 
doi:10.1176/ajp.133.12.1382. 

112.  Short MA, Gradisar M, Lack LC, Wright H, Carskadon MA. The discrepancy 
between actigraphic and sleep diary measures of sleep in adolescents. Sleep Med. 
2012;13(4):378-384. doi:10.1016/j.sleep.2011.11.005. 

113.  Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh 
Sleep Quality Index: a new instrument for psychiatric practice and research. 
Psychiatry Res. 1989;28(2):193-213. 

114.  Backhaus J, Junghanns K, Broocks A, Riemann D, Hohagen F. Test-retest 
reliability and validity of the Pittsburgh Sleep Quality Index in primary insomnia. J 

Psychosom Res. 2002;53(3):737-740. 

115.  Monk TH, Buysse DJ, Kennedy KS, Pods JM, DeGrazia JM, Miewald JM. 
Measuring sleep habits without using a diary: the sleep timing questionnaire. 
Sleep. 2003;26(2):208-212. 

116.  Trajanovic NN, Radivojevic V, Kaushansky Y, Shapiro CM. Positive sleep state 
misperception - a new concept of sleep misperception. Sleep Med. 2007;8(2):111-
118. doi:10.1016/j.sleep.2006.08.013. 

117.  Roth T, Drake C. Defining insomnia: the role of quantitative criteria. Sleep. 
2006;29(4):424-425. 



132 

118.  Bertisch SM, Herzig SJ, Winkelman JW, Buettner C. National Use of Prescription 
Medications for Insomnia: NHANES 1999-2010. Sleep. 2014;37(2):343-349. 
doi:10.5665/sleep.3410. 

119.  Chong Y, Fryar C, Gu Q. Prescription Sleep Aid Use among Adults: United States, 

2005-2010. Hyattsville, MD: National Center for Health Statistics; 2013. 

120.  Bradbury JB. The Croonian Lectures on some Points Connected with Sleep, 
Sleeplessness, and Hypnotics: Delivered before the Royal College of Physicians of 
London. Br Med J. 1899;2(2011):134-138. 

121.  LeBlanc M, Mérette C, Savard J, Ivers H, Baillargeon L, Morin CM. Incidence and 
risk factors of insomnia in a population-based sample. Sleep. 2009;32(8):1027-
1037. 

122.  Ellis JG, Perlis ML, Neale LF, Espie CA, Bastien CH. The natural history of 
insomnia: focus on prevalence and incidence of acute insomnia. J Psychiatr Res. 
2012;46(10):1278-1285. doi:10.1016/j.jpsychires.2012.07.001. 

123.  Morphy H, Dunn KM, Lewis M, Boardman HF, Croft PR. Epidemiology of 
insomnia: a longitudinal study in a UK population. Sleep. 2007;30(3):274-280. 

124.  Roth T. Insomnia: Definition, Prevalence, Etiology, and Consequences. J Clin 

Sleep Med JCSM Off Publ Am Acad Sleep Med. 2007;3(5 Suppl):S7-S10. 

125.  Michał Skalski. The Diagnosis and Treatment of Insomnia. INTECH Open Access 
Publisher; 2012. 

126.  Ohayon MM. Epidemiology of insomnia: what we know and what we still need to 
learn. Sleep Med Rev. 2002;6(2):97-111. 

127.  Janson C, Lindberg E, Gislason T, Elmasry A, Boman G. Insomnia in men-a 10-
year prospective population based study. Sleep. 2001;24(4):425-430. 

128.  Zhang B, Wing Y-K. Sex differences in insomnia: a meta-analysis. Sleep. 
2006;29(1):85-93. 

129.  Mai E, Buysse DJ. Insomnia: Prevalence, Impact, Pathogenesis, Differential 
Diagnosis, and Evaluation. Sleep Med Clin. 2008;3(2):167-174. 
doi:10.1016/j.jsmc.2008.02.001. 

130.  Taylor DJ, Mallory LJ, Lichstein KL, Durrence HH, Riedel BW, Bush AJ. 
Comorbidity of chronic insomnia with medical problems. Sleep. 2007;30(2):213-
218. 

131.  Roth T, Roehrs T. Insomnia: epidemiology, characteristics, and consequences. Clin 

Cornerstone. 2003;5(3):5-15. 



133 

132.  Li RHY, Wing YK, Ho SC, Fong SYY. Gender differences in insomnia--a study in 
the Hong Kong Chinese population. J Psychosom Res. 2002;53(1):601-609. 

133.  Parthasarathy S, Vasquez MM, Halonen M, et al. Persistent insomnia is associated 
with mortality risk. Am J Med. 2015;128(3):268-275.e2. 
doi:10.1016/j.amjmed.2014.10.015. 

134.  Hsu C-Y, Chen Y-T, Chen M-H, et al. The Association Between Insomnia and 
Increased Future Cardiovascular Events: A Nationwide Population-Based Study. 
Psychosom Med. 2015;77(7):743-751. doi:10.1097/PSY.0000000000000199. 

135.  Sabanayagam C, Shankar A. Sleep duration and cardiovascular disease: results 
from the National Health Interview Survey. Sleep. 2010;33(8):1037-1042. 

136.  Cooper DC, Ziegler MG, Milic MS, et al. Endothelial function and sleep: 
associations of flow-mediated dilation with perceived sleep quality and rapid eye 
movement (REM) sleep. J Sleep Res. 2014;23(1):84-93. doi:10.1111/jsr.12083. 

137.  Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, Bixler EO. Insomnia 
With Objective Short Sleep Duration Is Associated With Type 2 Diabetes: A 
population-based study. Diabetes Care. 2009;32(11):1980-1985. 
doi:10.2337/dc09-0284. 

138.  Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep 
disturbances compared to traditional risk factors for diabetes development: 
Systematic review and meta-analysis. Sleep Med Rev. 2015;30:11-24. 
doi:10.1016/j.smrv.2015.10.002. 

139.  Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep 
and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes 

Care. 2010;33(2):414-420. doi:10.2337/dc09-1124. 

140.  Depner CM, Stothard ER, Wright KP. Metabolic consequences of sleep and 
circadian disorders. Curr Diab Rep. 2014;14(7):507. doi:10.1007/s11892-014-
0507-z. 

141.  Duffy JF, Dijk DJ, Hall EF, Czeisler CA. Relationship of endogenous circadian 
melatonin and temperature rhythms to self-reported preference for morning or 
evening activity in young and older people. J Investig Med Off Publ Am Fed Clin 

Res. 1999;47(3):141-150. 

142.  Lack LC, Gradisar M, Van Someren EJW, Wright HR, Lushington K. The 
relationship between insomnia and body temperatures. Sleep Med Rev. 
2008;12(4):307-317. doi:10.1016/j.smrv.2008.02.003. 



134 

143.  Sletten TL, Vincenzi S, Redman JR, Lockley SW, Rajaratnam SMW. Timing of 
sleep and its relationship with the endogenous melatonin rhythm. Front Neurol. 
2010;1:137. doi:10.3389/fneur.2010.00137. 

144.  Olbrich D, Dittmar M. Older poor-sleeping women display a smaller evening 
increase in melatonin secretion and lower values of melatonin and core body 
temperature than good sleepers. Chronobiol Int. 2011;28(8):681-689. 
doi:10.3109/07420528.2011.599904. 

145.  Gubin DG, Gubin GD, Gapon LI, Weinert D. Daily Melatonin Administration 
Attenuates Age-Dependent Disturbances of Cardiovascular Rhythms. Curr Aging 

Sci. 2016;9(1):5-13. 

146.  Gilbert SS, van den Heuvel CJ, Ferguson SA, Dawson D. Thermoregulation as a 
sleep signalling system. Sleep Med Rev. 2004;8(2):81-93. doi:10.1016/S1087-
0792(03)00023-6. 

147.  Lushington K, Dawson D, Lack L. Core body temperature is elevated during 
constant wakefulness in elderly poor sleepers. Sleep. 2000;23(4):504-510. 

148.  Smolensky MH, Haus E. Circadian rhythms and clinical medicine with 
applications to hypertension. Am J Hypertens. 2001;14(9 Pt 2):280S-290S. 

149.  O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet. 
1988;2(8607):397. 

150.  Mansoor GA. Sleep actigraphy in hypertensive patients with the “non-dipper” 
blood pressure profile. J Hum Hypertens. 2002;16(4):237-242. 
doi:10.1038/sj.jhh.1001383. 

151.  Lanfranchi PA, Pennestri M-H, Fradette L, Dumont M, Morin CM, Montplaisir J. 
Nighttime blood pressure in normotensive subjects with chronic insomnia: 
implications for cardiovascular risk. Sleep. 2009;32(6):760-766. 

152.  Buxton OM, Lee CW, L’Hermite-Baleriaux M, Turek FW, Van Cauter E. Exercise 
elicits phase shifts and acute alterations of melatonin that vary with circadian 
phase. Am J Physiol Regul Integr Comp Physiol. 2003;284(3):R714-724. 
doi:10.1152/ajpregu.00355.2002. 

153.  Cai Z-Y, Wen-Chyuan Chen K, Wen H-J. EFFECTS OF A GROUP-BASED 
STEP AEROBICS TRAINING ON SLEEP QUALITY AND MELATONIN 
LEVELS IN SLEEP-IMPAIRED POSTMENOPAUSAL WOMEN. J Strength 

Cond Res Natl Strength Cond Assoc. February 2014. 
doi:10.1519/JSC.0000000000000428. 

154.  García-Ortiz L, Recio-Rodríguez JI, Puig-Ribera A, et al. Blood Pressure 
Circadian Pattern and Physical Exercise Assessment by Accelerometer and 7-Day 



135 

Physical Activity Recall Scale. Am J Hypertens. August 2013. 
doi:10.1093/ajh/hpt159. 

155.  Shapiro CM, Bortz R, Mitchell D, Bartel P, Jooste P. Slow-wave sleep: a recovery 
period after exercise. Science. 1981;214(4526):1253-1254. 

156.  Kline CE, Sui X, Hall MH, et al. Dose-response effects of exercise training on the 
subjective sleep quality of postmenopausal women: exploratory analyses of a 
randomised controlled trial. BMJ Open. 2012;2(4). doi:10.1136/bmjopen-2012-
001044. 

157.  Youngstedt SD, Kline CE. Epidemiology of exercise and sleep. Sleep Biol 

Rhythms. 2006;4(3):215-221. doi:10.1111/j.1479-8425.2006.00235.x. 

158.  Baekeland F, Lasky R. Exercise and sleep patterns in college athletes. Percept Mot 

Skills. 1966;23(3):1203-1207. 

159.  Newman AB, Enright PL, Manolio TA, Haponik EF, Wahl PW. Sleep disturbance, 
psychosocial correlates, and cardiovascular disease in 5201 older adults: the 
Cardiovascular Health Study. J Am Geriatr Soc. 1997;45(1):1-7. 

160.  Soltani M, Haytabakhsh MR, Najman JM, et al. Sleepless nights: the effect of 
socioeconomic status, physical activity, and lifestyle factors on sleep quality in a 
large cohort of Australian women. Arch Womens Ment Health. 2012;15(4):237-
247. doi:10.1007/s00737-012-0281-3. 

161.  Ohida T, Kamal AM, Uchiyama M, et al. The influence of lifestyle and health 
status factors on sleep loss among the Japanese general population. Sleep. 
2001;24(3):333-338. 

162.  Inoue S, Yorifuji T, Sugiyama M, Ohta T, Ishikawa-Takata K, Doi H. Does 
habitual physical activity prevent insomnia? A cross-sectional and longitudinal 
study of elderly Japanese. J Aging Phys Act. 2013;21(2):119-139. 

163.  King AC, Oman RF, Brassington GS, Bliwise DL, Haskell WL. Moderate-
intensity exercise and self-rated quality of sleep in older adults. A randomized 
controlled trial. JAMA J Am Med Assoc. 1997;277(1):32-37. 

164.  Reid KJ, Baron KG, Lu B, Naylor E, Wolfe L, Zee PC. Aerobic exercise improves 
self-reported sleep and quality of life in older adults with insomnia. Sleep Med. 
2010;11(9):934-940. doi:10.1016/j.sleep.2010.04.014. 

165.  Lira FS, Pimentel GD, Santos RV, et al. Exercise training improves sleep pattern 
and metabolic profile in elderly people in a time-dependent manner. Lipids Health 

Dis. 2011;10:1-6. doi:10.1186/1476-511X-10-113. 



136 

166.  Naylor E, Penev PD, Orbeta L, et al. Daily social and physical activity increases 
slow-wave sleep and daytime neuropsychological performance in the elderly. 
Sleep. 2000;23(1):87-95. 

167.  Flausino NH, Da Silva Prado JM, de Queiroz SS, Tufik S, de Mello MT. Physical 
exercise performed before bedtime improves the sleep pattern of healthy young 
good sleepers. Psychophysiology. 2012;49(2):186-192. doi:10.1111/j.1469-
8986.2011.01300.x. 

168.  Li F, Fisher KJ, Harmer P, Irbe D, Tearse RG, Weimer C. Tai chi and self-rated 
quality of sleep and daytime sleepiness in older adults: a randomized controlled 
trial. J Am Geriatr Soc. 2004;52(6). doi:10.1111/j.1532-5415.2004.52255.x. 

169.  Youngstedt SD, O’Connor PJ, Dishman RK. The effects of acute exercise on 
sleep: a quantitative synthesis. Sleep. 1997;20(3):203-214. 

170.  Lang C, Kalak N, Brand S, Holsboer-Trachsler E, Pühse U, Gerber M. The 
relationship between physical activity and sleep from mid adolescence to early 
adulthood. A systematic review of methodological approaches and meta-analysis. 
Sleep Med Rev. 2015;28:28-41. doi:10.1016/j.smrv.2015.07.004. 

171.  Kredlow MA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW. The effects of 
physical activity on sleep: a meta-analytic review. J Behav Med. 2015;38(3):427-
449. doi:10.1007/s10865-015-9617-6. 

172.  Du S, Dong J, Zhang H, et al. Taichi exercise for self-rated sleep quality in older 
people: A systematic review and meta-analysis. Int J Nurs Stud. May 2014. 
doi:10.1016/j.ijnurstu.2014.05.009. 

173.  Wu W-W, Kwong E, Lan X-Y, Jiang X-Y. The Effect of a Meditative Movement 
Intervention on Quality of Sleep in the Elderly: A Systematic Review and Meta-
Analysis. J Altern Complement Med N Y N. 2015;21(9):509-519. 
doi:10.1089/acm.2014.0251. 

174.  Yang C-Y, Chiou A-F. Predictors of sleep quality in community-dwelling older 
adults in northern taiwan. J Nurs Res JNR. 2012;20(4):249-260. 
doi:10.1097/jnr.0b013e3182736461. 

175.  Aldemir H, Atkinson G, Cable T, Edwards B, Waterhouse J, Reilly T. A 
comparison of the immediate effects of moderate exercise in the late morning and 
late afternoon on core temperature and cutaneous thermoregulatory mechanisms. 
Chronobiol Int. 2000;17(2):197-207. 

176.  Dworak M, Wiater A, Alfer D, Stephan E, Hollmann W, Struder HK. Increased 
slow wave sleep and reduced stage 2 sleep in children depending on exercise 
intensity. Sleep Med. 2008;9(3):266-272. doi:10.1016/j.sleep.2007.04.017. 



137 

177.  Myllymäki T, Kyröläinen H, Savolainen K, et al. Effects of vigorous late-night 
exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20(1 Pt 
2):146-153. doi:10.1111/j.1365-2869.2010.00874.x. 

178.  Taylor SR, Rogers GG, Driver HS. Effects of training volume on sleep, 
psychological, and selected physiological profiles of elite female swimmers. Med 

Sci Sports Exerc. 1997;29(5):688-693. 

179.  Chennaoui M, Arnal PJ, Sauvet F, Léger D. Sleep and exercise: a reciprocal issue? 
Sleep Med Rev. 2015;20:59-72. doi:10.1016/j.smrv.2014.06.008. 

180.  Holfeld B, Ruthig JC. A longitudinal examination of sleep quality and physical 
activity in older adults. J Appl Gerontol Off J South Gerontol Soc. 2014;33(7):791-
807. doi:10.1177/0733464812455097. 

181.  Dzierzewski JM, Buman MP, Giacobbi PR Jr, et al. Exercise and sleep in 
community-dwelling older adults: evidence for a reciprocal relationship. J Sleep 

Res. August 2013. doi:10.1111/jsr.12078. 

182.  Baron KG, Reid KJ, Zee PC. Exercise to improve sleep in insomnia: exploration of 
the bidirectional effects. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med. 
2013;9(8):819-824. doi:10.5664/jcsm.2930. 

183.  Moss TG, Carney CE, Haynes P, Harris AL. Is daily routine important for sleep? 
An investigation of social rhythms in a clinical insomnia population. Chronobiol 

Int. 2015;32(1):92-102. doi:10.3109/07420528.2014.956361. 

184.  Monk TH, Flaherty JF, Frank E, Hoskinson K, Kupfer DJ. The Social Rhythm 
Metric. An instrument to quantify the daily rhythms of life. J Nerv Ment Dis. 
1990;178(2):120-126. 

185.  Irish LA, Kline CE, Rothenberger SD, et al. A 24-hour Approach to the Study of 
Health Behaviors: Temporal Relationships Between Waking Health Behaviors and 
Sleep. Ann Behav Med Publ Soc Behav Med. September 2013. 
doi:10.1007/s12160-013-9533-3. 

186.  American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing 

and Prescription. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2010. 

187.  Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of 
perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci. 
2002;20(11):873-899. doi:10.1080/026404102320761787. 

188.  Bastien CH, Vallières A, Morin CM. Validation of the Insomnia Severity Index as 
an outcome measure for insomnia research. Sleep Med. 2001;2(4):297-307. 
doi:10.1016/S1389-9457(00)00065-4. 



138 

189.  Taylor-Piliae RE, Norton LC, Haskell WL, et al. Validation of a new brief physical 
activity survey among men and women aged 60-69 years. Am J Epidemiol. 
2006;164(6):598-606. doi:10.1093/aje/kwj248. 

190.  Taylor-Piliae RE, Fair JM, Haskell WL, et al. Validation of the Stanford Brief 
Activity Survey: examining psychological factors and physical activity levels in 
older adults. J Phys Act Health. 2010;7(1):87-94. 

191.  Chung F, Yang Y, Liao P. Predictive performance of the STOP-Bang score for 
identifying obstructive sleep apnea in obese patients. Obes Surg. 
2013;23(12):2050-2057. doi:10.1007/s11695-013-1006-z. 

192.  Kravitz HM, Ganz PA, Bromberger J, Powell LH, Sutton-Tyrrell K, Meyer PM. 
Sleep difficulty in women at midlife: a community survey of sleep and the 
menopausal transition. Menopause N Y N. 2003;10(1):19-28. 

193.  Strawbridge WJ, Shema SJ, Roberts RE. Impact of spouses’ sleep problems on 
partners. Sleep. 2004;27(3):527-531. 

194.  Moore PJ, Adler NE, Williams DR, Jackson JS. Socioeconomic status and health: 
the role of sleep. Psychosom Med. 2002;64(2):337-344. 

195.  Friedman EM, Love GD, Rosenkranz MA, et al. Socioeconomic status predicts 
objective and subjective sleep quality in aging women. Psychosom Med. 
2007;69(7):682-691. doi:10.1097/PSY.0b013e31814ceada. 

196.  Geroldi C, Frisoni GB, Rozzini R, De Leo D, Trabucchi M. Principal lifetime 
occupation and sleep quality in the elderly. Gerontology. 1996;42(3):163-169. 

197.  Yore MM, Ham SA, Ainsworth BE, et al. Reliability and validity of the instrument 
used in BRFSS to assess physical activity. Med Sci Sports Exerc. 2007;39(8):1267-
1274. doi:10.1249/mss.0b013e3180618bbe. 

198.  Andresen EM, Malmgren JA, Carter WB, Patrick DL. Screening for depression in 
well older adults: evaluation of a short form of the CES-D (Center for 
Epidemiologic Studies Depression Scale). Am J Prev Med. 1994;10(2):77-84. 

199.  Irwin M, Artin KH, Oxman MN. Screening for depression in the older adult: 
criterion validity of the 10-item Center for Epidemiological Studies Depression 
Scale (CES-D). Arch Intern Med. 1999;159(15):1701-1704. 

200.  Kohout FJ, Berkman LF, Evans DA, Cornoni-Huntley J. Two shorter forms of the 
CES-D (Center for Epidemiological Studies Depression) depression symptoms 
index. J Aging Health. 1993;5(2):179-193. 



139 

201.  Broderick JE, Junghaenel DU, Schneider S, Pilosi JJ, Stone AA. Pittsburgh and 
Epworth sleep scale items: accuracy of ratings across different reporting periods. 
Behav Sleep Med. 2013;11(3):173-188. doi:10.1080/15402002.2012.654549. 

202.  Mullen SP, Olson EA, Phillips SM, et al. Measuring enjoyment of physical activity 
in older adults: invariance of the physical activity enjoyment scale (paces) across 
groups and time. Int J Behav Nutr Phys Act. 2011;8:103. doi:10.1186/1479-5868-
8-103. 

203.  Ekkekakis P, Thome J, Petruzzello SJ, Hall EE. The Preference for and Tolerance 
of the Intensity of Exercise Questionnaire: a psychometric evaluation among 
college women. J Sports Sci. 2008;26(5):499-510. 
doi:10.1080/02640410701624523. 

204.  Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of 
the GENEA Accelerometer. Med Sci Sports Exerc. 2011;43(6):1085-1093. 
doi:10.1249/MSS.0b013e31820513be. 

205.  te Lindert BHW, Van Someren EJW. Sleep estimates using 
microelectromechanical systems (MEMS). Sleep. 2013;36(5):781-789. 
doi:10.5665/sleep.2648. 

206.  Loprinzi PD, Loenneke JP. Engagement in muscular strengthening activities is 
associated with better sleep. Prev Med Rep. 2015;2:927-929. 
doi:10.1016/j.pmedr.2015.10.013. 

207.  Alley JR, Mazzochi JW, Smith CJ, Morris DM, Collier SR. Effects of resistance 
exercise timing on sleep architecture and nocturnal blood pressure. J Strength 

Cond Res Natl Strength Cond Assoc. 2015;29(5):1378-1385. 
doi:10.1519/JSC.0000000000000750. 

208.  Oda S, Shirakawa K. Sleep onset is disrupted following pre-sleep exercise that 
causes large physiological excitement at bedtime. Eur J Appl Physiol. May 2014. 
doi:10.1007/s00421-014-2873-2. 

209.  Santos RVT, Tufik S, De Mello MT. Exercise, sleep and cytokines: is there a 
relation? Sleep Med Rev. 2007;11(3):231-239. doi:10.1016/j.smrv.2007.03.003. 

210.  de Vries HE, Blom-Roosemalen MC, van Oosten M, et al. The influence of 
cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 
1996;64(1):37-43. 

211.  Morris MG, Dawes H, Howells K, Scott OM, Cramp M, Izadi H. Alterations in 
peripheral muscle contractile characteristics following high and low intensity bouts 
of exercise. Eur J Appl Physiol. 2012;112(1):337-343. doi:10.1007/s00421-011-
1970-8. 



140 

212.  Shapiro CM, Griesel RD, Bartel PR, Jooste PL. Sleep patterns afted graded 
exercise. J Appl Physiol. 1975;39(2):187-190. 

213.  Morin CM, Mimeault V, Gagné A. Nonpharmacological treatment of late-life 
insomnia. J Psychosom Res. 1999;46(2):103-116. 

214.  Driver HS, Taylor SR. Exercise and sleep. Sleep Med Rev. 2000;4(4). 
doi:10.1053/smrv.2000.0110. 

215.  Myllymäki T, Rusko H, Syväoja H, Juuti T, Kinnunen M-L, Kyröläinen H. Effects 
of exercise intensity and duration on nocturnal heart rate variability and sleep 
quality. Eur J Appl Physiol. 2012;112(3):801-809. doi:10.1007/s00421-011-2034-
9. 

216.  Guilleminault C, Clerk A, Black J, Labanowski M, Pelayo R, Claman D. Nondrug 
treatment trials in psychophysiologic insomnia. Arch Intern Med. 
1995;155(8):838-844. 

217.  Sarabia JA, Rol MA, Mendiola P, Madrid JA. Circadian rhythm of wrist 
temperature in normal-living subjects A candidate of new index of the circadian 
system. Physiol Behav. 2008;95(4):570-580. doi:10.1016/j.physbeh.2008.08.005. 

218.  Rubio-Sastre P, Gómez-Abellán P, Martinez-Nicolas A, Ordovás JM, Madrid JA, 
Garaulet M. Evening physical activity alters wrist temperature circadian 
rhythmicity. Chronobiol Int. 2014;31(2):276-282. 
doi:10.3109/07420528.2013.833215. 

219.  Driver HS, Shulman I, Baker FC, Buffenstein R. Energy content of the evening 
meal alters nocturnal body temperature but not sleep. Physiol Behav. 1999;68(1-
2):17-23. 

220.  Cox RH, Thomas TR, Hinton PS, Donahue OM. Effects of acute 60 and 80% 
VO2max bouts of aerobic exercise on state anxiety of women of different age 
groups across time. Res Q Exerc Sport. 2004;75(2):165-175. 
doi:10.1080/02701367.2004.10609148. 

221.  Parry BL, Mendelson WB, Duncan WC, Sack DA, Wehr TA. Longitudinal sleep 
EEG, temperature, and activity measurements across the menstrual cycle in 
patients with premenstrual depression and in age-matched controls. Psychiatry 

Res. 1989;30(3). 

222.  Nagashima K. Thermoregulation and menstrual cycle. Temp Austin Tex. 
2015;2(3):320-321. doi:10.1080/23328940.2015.1066926. 

223.  Bartelink ML, Wollersheim H, Theeuwes A, van Duren D, Thien T. Changes in 
skin blood flow during the menstrual cycle: the influence of the menstrual cycle on 



141 

the peripheral circulation in healthy female volunteers. Clin Sci Lond Engl 1979. 
1990;78(5):527-532. 

224.  Hayashi K, Kawashima T, Suzuki Y. Effect of menstrual cycle phase on the 
ventilatory response to rising body temperature during exercise. J Appl Physiol 

Bethesda Md 1985. 2012;113(2):237-245. doi:10.1152/japplphysiol.01199.2011. 

225.  Buguet A. Sleep under extreme environments: effects of heat and cold exposure, 
altitude, hyperbaric pressure and microgravity in space. J Neurol Sci. 2007;262(1-
2):145-152. doi:10.1016/j.jns.2007.06.040. 

226.  Montmayeur A, Buguet A, Sollin H, Lacour JR. Exercise and sleep in four African 
sportsmen living in the Sahel. A pilot study. Int J Sports Med. 1994;15(1):42-45. 
doi:10.1055/s-2007-1021018. 

227.  Hartescu I, Morgan K, Stevinson CD. Increased physical activity improves sleep 
and mood outcomes in inactive people with insomnia: a randomized controlled 
trial. J Sleep Res. 2015;24(5):526-534. doi:10.1111/jsr.12297. 

228.  Petrie A. Statistical power in testing a hypothesis. J Bone Joint Surg Br. 
2010;92(9):1192-1194. doi:10.1302/0301-620X.92B9.25069. 

229.  Cunningham JB, McCrum-Gardner E. Power, effect and sample size using 
GPower: Practical issues for researchers and members of research ethics 
committees. ResearchGate. 2007;5(4):132-136. 

230.  Patel SR, Weng J, Rueschman M, et al. Reproducibility of a Standardized 
Actigraphy Scoring Algorithm for Sleep in a US Hispanic/Latino Population. 
SLEEP. September 2015. doi:10.5665/sleep.4998. 

231.  van Hees VT, Fang Z, Langford J, et al. Autocalibration of accelerometer data for 
free-living physical activity assessment using local gravity and temperature: an 
evaluation on four continents. J Appl Physiol Bethesda Md 1985. 2014;117(7):738-
744. doi:10.1152/japplphysiol.00421.2014. 

232.  Physical activity and cardiovascular health. NIH Consensus Development Panel on 
Physical Activity and Cardiovascular Health. JAMA J Am Med Assoc. 
1996;276(3):241-246. 

  



142 

APPENDIX A 

RECRUITMENT FORMS 

  



143 



144 

 



145 

 



146 

 

  



147 

APPENDIX B 

CONSENT FORM 

  



148 

CONSENT TO PARTICIPATE IN RESEARCH 
 
 
Introduction 

 
The purpose of this form is to provide you (as a prospective research study participant) 
information that may affect your decision to participate in this research project and to 
record your consent to be involved in the study. The researchers will explain this study to 
you. Your participation is voluntary 
 
Researchers 

 
Jonathan Kurka (Doctoral Candidate) and Dr. Barbara Ainsworth, Professor (Mentor) 
have invited your participation in a research study at the ASU School of Nutrition and 
Health Promotion’s Healthy Lifestyles Research Center. 
 
Why is this study being done? 

 
Some scientists believe that exercise is helpful for sleep; others believe that it has little 
effect on sleep; and others think that it can impair sleep; particularly if it is performed a 
few hours before bedtime. Likewise, some scientists think that quiet activity close to 
bedtime is helpful for sleep, whereas others think that it has little effect on sleep; and 
others think that it is harmful for sleep. 
 
The purpose of this study is to examine the effects of different exercise sessions and quiet 
rest on sleep and body temperature. We will ask which of the exercise or quiet rest 
conditions you prefer. 
 
How long will this research last? 
  
Participation in this research study will last at least approximately 6 weeks. You will be 
asked to report to the Research Center on one occasion for to determine your eligibility, 
six separate occasions for treatment, and one final occasion to complete the study. 
 
How many people will be studied? 

 
 We expect about 20 people to participate in this research study. 
 
What happens if I say yes, I want to be in this research? 
 
If you decide to participate, you will join a study that will require you to report to the 
Healthy Lifestyles Research Center (Research Center) in the 1st floor of the Arizona 
Biomedical Collaborative building on eight total occasions approximately 3-4 hours prior 
to your usual bedtime over a period of five weeks. You will be asked to wear a watch-like 
device on your non-dominant wrist throughout the four week study. 
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Exercise Test (duration of visit: 1 hour) 
 
On the first visit (today) you will undergo: 
Demographic information survey 
Survey to identify your depression status 
Survey to identify your sleep quality 
Height and weight measurement 
Maximal exertion graded exercise test 
GENEActiv Sleep  (watch-like device) fitting and initialization 
 
Visit Details 

The maximal exertion graded exercise test under the supervision of an Exercise 
Physiologist. This exercise test requires that you wear a blood pressure cuff and EKG 
monitors to monitor you before, during, and after exercise. The goal of this test is to walk 
on a treadmill at the highest heart rate you can achieve. We will record the speed and 
grade of the treadmill at which you achieved this heart rate. There will be a 5-minute 
warm up period and 5-min cool down period.  
At the conclusion of the session you will schedule the next six visits. 
 
 
Treatments- Visits 2-7 (duration of visits: 45 minutes each) 

 
You will be asked to schedule 6 more visits to this lab for a treatment that will improve, 
impair, or have no effect on your sleep. Each visit needs to take place 3-4 hours before 
your normal bed time.  
 
On these visits, we will undergo: 
Surveys to identify regular physical activity and depression status 
Exercise or Quiet session 
 
Visit Details 

It is recommended that you not eat or drink anything other than water for the 2 hours 
leading up to any of the exercise sessions to avoid illness due to exercise. 
The exercise sessions require you to wear a heart rate monitor. The goal of these exercise 
sessions if for you to walk on a treadmill at either 90-95% of your maximum heart rate 
for 1-minute intervals separated by 1-minute light walking intervals for a total of 20 
minutes or to exercise at 65-70% of your maximum heart rate for a period of 30 
continuous minutes. All exercise sessions will be preceded by a 5-minute warm up and a 
5-minute cool down. 
The quiet sessions require you to sit with the option of reading, or completing cross-
words or puzzles. 
At the conclusion of the final treatment you will schedule the final visit. 
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The morning after each exercise or quiet session, you will be asked to complete a survey 
to determine your enjoyment of the exercise or quiet rest session that took place the night 
before. 
 
 
Exit Meeting (duration of visit: 15 minutes) 

 
On the final visit, you will undergo: 
Return the GENEAsleep device 
Complete a survey to identify your sleep quality 
Complete a survey to assess your preference of the exercise or quiet rest session 
 
Visit Details: 

You will complete the surveys and return the device. You will receive the monetary 
incentive on this visit if you have completed all previous visits. 
 
 
What happens if I say yes, but change my mind later? 
 
 You can leave the research at any time and it will not be held against you. If you 
decide to leave the research, contact the lead investigator so the investigator can remove 
you from the study schedule. Your relationship with Arizona State University will not be 
affected now or later. 
 
What are the possible risks or discomforts if I participate? 
 
If you decide to participate in this study, then you may face physical risk of injury or 
illness associated with all exercise sessions. These risks are the same as those 
encountered with any vigorous training session. It is possible there may be side effects 
that no one knows about yet. The researchers will let you know if they learn anything that 
might make you change your mind about participating in the study. 
 
Maximal Exertion Treadmill Test 

There are risks of walking briskly such as a pulled or torn muscle or tendonitis (pain in 
the tendon). However, these symptoms subside after adequate rest. It is very unlikely that 
this will occur, but if it does, you will be attended to and provided first-aid treatment and 
referral of treatment if necessary. High intensity walking can cause high or low blood 
pressure, fainting, irregular heart rhythm, chest pain, heavy fatigue, cramping, and very 
rarely, heart attack, stroke, cardiac arrest, or death. You will be monitored for heart 
rhythm abnormalities with a 12-lead electrocardiogram (ECG) during the maximal 
exercise test to ensure that no complications due to exercise are present. An Advanced 
Cardiac Life Support Certified physiologist will monitor your ECG during the test to 
ensure safety.  
 
These risks are no greater than when you perform high intensity exercise on your own. 
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Exercise Sessions 
 With any exercise, there is a risk of muscle strain and tendonitis (pain in the 
tendon). 
However, these symptoms subside after adequate rest. There is a risk of high or low 
blood pressure, fainting, irregular heart rhythm, chest pain, and very rarely, heart attack, 
stroke, cardiac arrest, or death. You will be monitored during your exercise session for 
any unusual symptoms such as excessive shortness of breath, dizziness, and chest 
discomfort. 
 
These risks are no greater than when you perform high intensity exercise on your own. 
 
GENEAsleep Sleep Monitor 
 There is a slight risk of developing skin irritation due to wearing the device on 
your wrist. This risk is no greater than when you wear a common wrist watch. 
 
Survey Questions 
 Some survey questions ask you to divulge personal information such as 
race/ethnicity, income, education level, and feelings regarding depression. While this 
information is important to the study, you do not have to answer any questions you do not 
feel comfortable answering and will not be excluded for refusing to respond. Exclusion 
from the study will be based solely on your compliance with the study procedures 
described above. 
 
What are the possible benefits if I participate? 

 
There is no direct benefit from participating in the study. 
 
What happens to the information collected for the research? 
 
All information obtained in this study is strictly confidential unless disclosure is required 
by law. The results of this research study may be used in reports, presentations, and 
publications, but the researchers will not identify you. Efforts will be made to limit the 
use and disclosure of your personal information to people who have a need to review this 
information. You will be provided a unique identification number that will link all of 
your demographic information to your exercise and sleep results. A list linking your 
identifiable information and your ID number will be kept separate from the research data. 
Your personal contact information will be kept in a locked file cabinet and will not be 
shared with those outside the research project without your permission. If the researchers 
find new information during the study that would reasonably change your decision about 
participating, then they will provide this information to you. In the future, data collected 
for this study may be shared with other researchers for other studies that are unknown at 
this time. Any data shared with other researchers will not include your name or other 
personal identifying information. 
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What choices do I have if I do not want to participate? 
 
It is ok for you to say no. Even if you say yes now, your participation is voluntary and 
you are free to withdraw from the study at any time. 
 
Will I be paid for my participation? 
 
You will be compensated up to $100 and a Fitbit for your participation. You will receive 
compensation in the following order: 
$10 after completing the 1st office visit 
$15 after completing the 2nd office visit 
$25 after completing the 5th office visit 
$50 and a Fitbit activity/sleep monitor on the final visit when you return the device 
  
What happens if I believe I am injured because I took part in this study? 
 
If you agree to participate in the study, then your consent does not waive any of your 
legal rights. It is important that you promptly tell the researchers if you believe that you 
have been injured because of taking part in this study. You can tell the researcher in 
person or call him/her at the number listed above. However, no funds have been set aside 
to compensate you in the event of injury. 
 
Who can I talk to? 

 
Any questions you have concerning the research study or your participation in the study, 
before or after your consent, will be answered by the study staff, Jonathan Kurka at 309-
657-3538 or Dr. Barbara Ainsworth at 480-208-5877. 
 
If you have questions about your rights as a subject/participant in this research, or if you 
feel you have been placed at risk, you can contact the Chair of the Human Subjects 
Institutional Review Board, through the ASU Research Compliance Office, at 480-965-
6788.   
 
How do I indicate my agreement to participate? 
 
This form explains the nature, demands, benefits and any risk of the project. By signing 
this form you agree knowingly to assume any risks involved.  Remember, your 
participation is voluntary. You may choose not to participate or to withdraw your consent 
and discontinue participation at any time without penalty or loss of benefit. In signing 
this consent form, you are not waiving any legal claims, rights, or remedies. A copy of 
this consent form will be given (offered) to you.   
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Your signature documents your permission to take part in this research study. 
 
 
________________________     ______________ 
Signature of participant      Date 
 
 
________________________ 
Printed name of participant 
 
 
INVESTIGATOR’S STATEMENT 
"I certify that I have explained to the above individual the nature and purpose, the 
potential benefits and possible risks associated with participation in this research study, 
have answered any questions that have been raised, and have witnessed the above 
signature. These elements of Informed Consent conform to the Assurance given by 
Arizona State University to the Office for Human Research Protections to protect the 
rights of human subjects. I have provided (offered) the subject/participant a copy of this 
signed consent document." 
 
 
________________________     _____________ 
Signature of Investigator       Date 
 
________________________ 
Printed name of Investigator 
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APPENDIX C 

MAXIMAL GRADED EXERCISE TEST RECORDING FORM 
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APPENDIX D 

SLEEP LOG 
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APPENDIX E 

SAS DATA PROCESSING 
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/*- Scoring Sleep -*; 
%macro GAscoring (id,run); 
*- Indicate device data collection parameters ; 
%let hz = 40 ;   * # of sampling rate (per second, hz) 
; 
%let epoch = 15 ;  * # of seconds per epoch (put 60  for 
1-min epochs) ; 
 
*- input values for detecting movement or non-movem ent as needed 
* based on teLindert and Huberty papers ; 
%let still_sense = 0.5 ; *Indicate sensitivity for detecting 
non-movement - StD above this value is considered b eing awake ; 
%let still_epochs = 20 ; *Indicate length of time s tillness is 
required to be considered sleep ; 
%let move_sense = 1 ;  *Indicate sensitivity for de tecting 
movement during sleep - StD below this value is con sidered sleep 
; 
%let move_epochs = 5 ;  *Indicate length of time 
movement is found to be considered awake between sl eep periods ; 
 
 *- create bin then find max bin within each second  ; 
DATA SLEEP_work1 ; 
 set data_fin.SLEEP_&id ; 
 by id ; 
 if z > 5 then z = 5 ; 
 if z < -5 then z = -5 ; 
 bin= floor(z/(5/128))+ 1 ; 
 datetimestamp = floor(datetimestamp) ; 
RUN; 
PROC SUMMARY data= SLEEP_work1 ; 
 by id datetimestamp ; 
 var temp ; 
 output out=SLEEP_work2 (drop= _type_ _freq_) 
 std=temp 
 idgroup (max(bin) min(bin) out(id datetimestamp sl eep_h lux 
temp )= ) 
   max(bin)=bin_max min(bin)=bin_min ; 
RUN ; 
 *- calculating epochs and nights ; 
DATA SLEEP_epochs1 ; 
 set SLEEP_work2 ; 
 by id ; 
 epoch + mod(_n_,&epoch) eq 1 ; 
 if first.id OR (dif(datetimestamp) > 60) then nigh t + 1 ;  
retain night ; 
 if abs(bin_min) > abs(bin_max) then bin = bin_min ; else 
bin = bin_max ; 
RUN ; 
 *- summary values for temp, bin, and lux for each epoch ; 
PROC SUMMARY data= SLEEP_epochs1; 



162 

 by id epoch ; 
 var temp bin lux ; 
 output out=SLEEP_epochs2 (drop= _type_ _freq_) 
 sum(temp)=temp std(bin)=bin_std max(lux)=lux 
 idgroup (min(datetimestamp) out(id datetimestamp s leep_h 
lux temp bin night)= ); 
RUN ; 
 *- determining movement vs. still ; 
DATA is_sleep1 ; 
 set SLEEP_epochs2 ; 
 by id night ; 
 if bin_std >= &still_sense then isstill = 0; 
  else isstill = 1 ; 
 if bin_std <= &move_sense then isasleep = 1; 
  else isasleep = 0 ; 
proc expand out=is_sleep2 (drop= time); 
 by id night ; 
 convert isstill = still_cnt / transformout= ( reve rse 
movsum &still_epochs reverse ) ; 
 convert isasleep = sleep_cnt / transformout= ( cmo vsum 
&move_epochs ) ; 
RUN ; 
 *- determining sleep vs. wake ; 
DATA is_sleep3 ; 
 set is_sleep2 ; 
 by id night ; 
 if still_cnt >= &still_epochs then sol_time = date timestamp  
; 
 if sleep_cnt >= &move_epochs then not_waso = datet imestamp 
; else not_waso = . ; 
  format sol_time not_waso datetime21.3 ; 
RUN ; 
 *- summarizing sleep ; 
PROC SQL ; 
 CREATE TABLE is_sleep4 as select 
 id, night, temp, lux, bin_std, sleep_h, 
 datetimestamp, round(min(datetimestamp),'0:01:00't ) as 
beddatetime format= datetime21.3, not_waso, 
 min(sol_time) as sol_time format= datetime21.3, 
 max(not_waso) as snooze_time format= datetime21.3,  
 intck('minutes', min(datetimestamp), max(datetimes tamp)) as 
tib, 
 intck('minutes', min(datetimestamp),min(sol_time))  as sol, 
 intck('minutes', max(not_waso),max(datetimestamp))  as 
snooze 
 from is_sleep3 GROUP by id, night ORDER by id, nig ht, 
datetimestamp; 
 
 CREATE TABLE is_sleep5 as select 
 id, night, temp, lux, bin_std, sleep_h, 
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 datetimestamp, sol_time, snooze_time, beddatetime,  
 sol, not_waso, snooze, tib, 
 nmiss(not_waso)/4 as waso, 
 count(not_waso)/4 as tst  
 from is_sleep4 WHERE datetimestamp between sol_tim e and 
snooze_time 
 GROUP by id, night ORDER by id, night, datetimesta mp; 
 
 CREATE TABLE SLEEP_METRICS as select 
 id, night, beddatetime, 
 TIB, TST, SOL, WASO, SNOOZE, round((tst/tib*100),0 .01) as 
SE  
 from is_sleep5  
 GROUP by id, night ORDER by id, night ; 
QUIT; 
PROC SUMMARY data= sleep_metrics; 
 by id night ; 
 output out= metrics_master_&id 
 (drop= _type_ _freq_) 
 idgroup (out(id--se)= ); 
RUN; 
 
%if 1 = &run  %then %do; 
DATA METRICS_MASTER ; 
 set metrics_master_&id ; 
RUN ; 
%end; 
 
%if 1 ne &run %then %do; 
PROC APPEND base= METRICS_MASTER data= metrics_mast er_&id; 
RUN ; 
%end; 
DATA METRICS_MASTER ; 
 set metrics_master; 
RUN ; 
%mend ; 
%GAscoring (id=se02, run=1); 
%GAscoring (id=se03, run=2); 
%GAscoring (id=se04, run=2); 
%GAscoring (id=se05, run=2); 
%GAscoring (id=se06, run=2); 
%GAscoring (id=se07, run=2); 
%GAscoring (id=se08, run=2); 
%GAscoring (id=se09, run=2); 
%GAscoring (id=se10, run=2); 
%GAscoring (id=se11, run=2); 
%GAscoring (id=se12, run=2); 
 
*- Creating Master Dataset - Merging Metrics with S urveydata ; 
PROC SQL ; 
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 CREATE TABLE data_fin.GRADUATE1 (rename=(night=nig ht1)) 
  as select *, day+1 as night 
 from data_fin.surveydata t1 
 LEFT JOIN METRICS_MASTER t2 
  on (t1.id = t2.id) and (t1.beddatetime = 
t2.beddatetime) 
 ORDER by id, date; 
QUIT ; 
*/  
/*- Calculating temperature changes -*; 
%macro GAtemp (id,run); 
 *- Indicate summarizing parameters ; 
%let epoch = 60 ;  * # of seconds per epoch (put 60  for 
1-min epochs) ; 
%let perc_epoch = 30 ; * # of epochs to calculate %  change 
over ; 
 
 *- aggregating timestamp into seconds then summari zing 
alternate variables ; 
DATA ALT_work1 ; 
 set data_fin.ALT_&id; 
 by id ; 
 datetimestamp = floor(datetimestamp) ; 
proc summary ; 
 by id datetimestamp ; 
 output out=ALT_work2 (drop= _type_ _freq_) 
 idgroup (max(temp) out(id datetimestamp sleep_h lu x temp )= 
); 
RUN ; 
 *- calculating epochs, days ; 
DATA ALT_epochs1 ; 
 set ALT_work2 ; 
 by id ; 
 epoch + mod(_n_,&epoch) eq 1 ; 
 if first.id OR (dif(datetimestamp) > 60) then day + 1 ;  
retain day ; 
 *- summary values for temp and lux for each epoch ; 
proc summary; 
 by id epoch ; 
 var temp lux ; 
 output out=ALT_epochs2 (drop= _type_ _freq_) 
 mean(temp)=temp max(lux)=lux 
 idgroup (min(datetimestamp) out(id datetimestamp s leep_h 
lux temp day)= ); 
RUN ; 
 *- calculating temperature change over time ; 
PROC EXPAND data= ALT_epochs2 out= ALT_tempchange ( drop=time) ; 
 by id day ; 
 convert temp = temp_change / transformout= ( pctdi f 10 ) ; 
RUN ; 
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PROC SUMMARY data= ALT_tempchange ; 
 by id day ; 
 var temp ; 
 output out= ALT_tempchange2 (drop= _type_ _freq_) 
 max(datetimestamp)=beddatetime 
 idgroup (max(temp_change) out(id--sleep_h)= ) ; 
RUN; 
 *- summarizing temperature ; 
PROC SQL ; 
 CREATE TABLE ALT_temp1 as select 
 id, day, temp, lux, temp_change, sleep_h, 
 datepart(beddatetime) as beddate format=date9.2, 
datetimestamp as temptime 
 from ALT_tempchange2 GROUP by id, day ORDER by id,  day; 
QUIT ; 
DATA ALT_temp2 ; 
 merge ALT_temp1 
   ALT_temp1 (firstobs=2 keep=beddate 
rename=(beddate=lead_beddate)); 
RUN ; 
DATA ALT_temp_&id (drop= lead_beddate); 
 set ALT_temp2 ; 
 if beddate = lead_beddate then beddate = 
intnx('day',beddate,-1); 
RUN; 
%if 1 = &run  %then %do; 
DATA ALT_MASTER ; 
 set ALT_temp_&id ; 
RUN ; 
%end; 
%if 1 ne &run %then %do; 
PROC APPEND base= ALT_MASTER data= ALT_temp_&id ; 
RUN ; 
%end; 
 
%mend ; 
%GAtemp (id=se02, run=1); 
%GAtemp (id=se03, run=2); 
%GAtemp (id=se04, run=2); 
%GAtemp (id=se05, run=2); 
%GAtemp (id=se06, run=2); 
%GAtemp (id=se07, run=2); 
%GAtemp (id=se08, run=2); 
%GAtemp (id=se09, run=2); 
%GAtemp (id=se10, run=2); 
%GAtemp (id=se11, run=2); 
%GAtemp (id=se12, run=2); 
 
*- Creating Master Dataset - Merging Temperature wi th Master ; 
PROC SQL ; 
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 CREATE TABLE GRADUATE2 (rename=(night1=night)) 
  as select * 
 from data_fin.GRADUATE1 t1 
 LEFT JOIN ALT_MASTER t2 
  on (t1.id = t2.id) and (t1.date = t2.beddate) 
 ORDER by id, date; 
QUIT ; RUN ; 
 
PROC SQL; 
   CREATE TABLE sleep_vs_hit AS  
   SELECT  id, date, day, night, wakedatetime, bedd atetime, 
      sleep_h, tst as tst_ga, sol as sol_ga, waso a s 
waso_ga, snooze as snooze_ga, SE as se_ga, temp_cha nge, temptime, 
lux, 
   psqi_global, psqi_meds, psqi_qual, psqi_se, 
psqi_days, psqi_sol, psqi_dist, psqi_dur, TIB as TI B_psqi,  
    cond_time, cond, cond_num, seq, mph, grade, 
ave_hr,  
          paes_date, paes_q1,  paes_q2,  paes_q3,  paes_q4,  
paes_q5,  paes_q6,  paes_q7,  paes_q8, paes_q9, pae s_q10, 
        paes_q11, paes_q12, paes_q13, 
paes_q14, paes_q15, paes_q16, paes_q17, paes_q18,  
           pretie_q1,  pretie_q2,  pretie_q3,  pret ie_q4,  
pretie_q5,  pretie_q6, pretie_q7, pretie_q8, pretie _q9, 
pretie_q10,  
            pretie_q11, pretie_q12, pretie_q13, pre tie_q14, 
pretie_q15, pretie_q16,  
          csd_tot, 
   pa_1, pa_2, pa_3, pa_4, pa_5, pa_6, pa_7,  
         sf_score, sf_q1, sf_q2, sf_q3, sf_q4, sf_q 5, sf_q6, 
sf_q7, sf_q8, sf_q9, sf_q10, sf_q11, sf_q12,  
 
   base_time, 
   age, wt_lbs, ht_in, isfemale, 
   ishispanic, race, marital, num_chld, educ, empl,  
income,  
            ap_hrmax, hr_max, mph_max, grade_max, r pe_max, 
vo2max,  
            hr_90, mph_90, grade_90, rpe_90, hr_65,  mph_65, 
grade_65, rpe_65  
 FROM WORK.GRADUATE2 
 ORDER BY id, date ; 
QUIT; RUN ;   
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APPENDIX F 

PARTICIPANT VISIT RECORDING FORM 
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APPENDIX G 

RECRUITMENT FLOW CHART AND ELIGIBILITY 
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APPENDIX H 

IRB APPROVAL 
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