An Analysis of the Memory Bottleneck and Cache Performance of Most Apparent
Distortion Image Quality Assessment Algorithm on
GPU
by

Vignesh Kannan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved November 2016 by the
Graduate Supervisory Committee:

Sohum Sohoni, Chair

Fengbo Ren
Mohamed Sayeed

ARIZONA STATE UNIVERSITY

December 2016

ABSTRACT

As digital images are transmitted over the network or stored on a disk, image
processing is done as part of the standard for efficient storage and bandwidth. This causes
some amount of distortion or artifacts in the image which demands the need for quality
assessment. Subjective image quality assessment is expensive, time consuming and
influenced by the subject's perception. Hence, there is a need for developing mathematical
models that are capable of predicting the quality evaluation. With the advent of the
information era and an exponential growth in image /video generation and consumption, the
requirement for automated quality assessment has become mandatory to assess the
degradation. The last few decades have seen research on automated image quality assessment
(IQA) algorithms gaining prominence. However, the focus has been on achieving better
predication accuracy, and not on improving computational performance. As a result, existing
serial implementations require a lot of time in processing a single frame. In the last 5 years,
research on general-purpose graphic processing unit (GPGPU) based image quality
assessment (IQA) algorithm implementation has shown promising results for single images.
Still, the implementations are not efficient enough for deployment in real wotld applications,
especially forlive videos at high resolution. Hence, in this thesis, it is proposed that
microarchitecture-conscious coding on a graphics processing unit (GPU) combined with
detailed understanding of the image quality assessment (IQA) algorithm can result in non-
trivial speedups without compromising quality prediction accuracy. This document focusses
on the microarchitectural analysis of the most apparent distortion (MAD) algorithm. The
results are analyzed in-depth and one of the major bottlenecks is identified. With the
knowledge of underlying microarchitecture, the implementation is restructured thereby

resolving the bottleneck and improving the performance.
i

DEDICATION
I would like to dedicate this thesis to the beginning — Mom. You deserve a Nobel Prize for
bringing me up. Thank you dad for letting me pursue my dreams and my sister Aishu for
being a good sparring partner. Akkshaya, I cannot thank you enough for generously offering

me free food. I am grateful to many persons who shared their memories and experiences.

11

ACKNOWLEDGMENTS
I would like to thank the amazingly talented professors I have worked with on the project
that resulted in the work presented in this thesis. First and foremost, I would like to thank
Dr Sohum Sohoni for giving me this opportunity to work on this project. He taught me a
very important lesson - feeling of appreciation. I need not launch a rocket to feel
accomplished, even a small skill can be reassuring. His technical advice was essential to the
completion of this research and has taught me valuable lessons and insights on the workings
of academic research in general. My thanks and appreciation to Josh for persevering with me
as my mentor throughout the time it took me to complete this research and write the
dissertation. I will never forget the all-nighter before my defense. The members of my
dissertation committee, Dr Fengo Ren and Dr Mohamed Sayeed, have generously given their
expertise to better my work. I thank them for their contribution and their good-natured
support. I must acknowledge all my colleagues, students, and teachers who assisted, advised,

and supported my research and writing efforts over the years.

111

TABLE OF CONTENTS

Page

LIST OF TABLES ..o v

LIST OF FIGURES ..ot vi

CHAPTER

1 INTRODUCTION ...oooiiiiis ittt 1

Background on Image/Video Quality Assessment Algotithms 4

General Purpose GPU Computing OVervIEwWcovvviiiiiiiiiiiiiiiieiiieens 3

Related WOrK....ooooiiiiiiiiiiiiiiicicccc e 21

2 ALGORITHM AND ANALYSIS ..o 24

Methodology.......cciiiiiiiiiiiiiiiiiiii 24

Most Apparent Distortion Algotithmcccceeviiiiiiiiiiiiiiiiiiiiiicniccnn, 28

Microarchitectural Analysis of Current MAD Implementation ona GPU31

3 PERFORMANCE IMPROVEMENTcccccciiiiiiiiiiiiiiiiiiiccce 49

Global Memory Access Patternl.covuiieriiiiiniiiiiniiiiiiiiciiiccieceec e 49

RESULLS it 56

4 CONCLUSION ...ooiiiiiiies ittt 59

REFERENCES....... oottt 61
APPENDIX

A KERNEL A5- ORIGINAL IMPLEMENTATIONcccooiiiiiiiiiiiiiiiiiccs 67

B CURRENT IMPLEMENTATION - MEAN COMPUTATION..........cccoovevinnins 70

C SHARED MEMORY IMPLEMENTATION - MEAN COMPUTATION.......... 73

v

Table

LIST OF TABLES

Page
Test System Configurationoceiviiiiiiiiiiiiiii i 25
Cache Description on Xeon E5-1620cccccoviviiiiiiiiiiiiiiiiiiiiiie, 26
Tesla K40 GPU DeSCHiptioncccccciiiiiiiiiiiiiiiiiiiiiiicciccee e 26
Global Memory Stride in Original Implementationccceevvevceieiiennienienncens 37
Global Memory Stride in Original Implementation and Mean Calculation............ 39
An Instance of Global Memory Stride in O1iginal Implementationc.......... 49
Manual Loop Unroll for Mean Computationccceeveuiiiiiiiiiininiiniiieiieenn. 51
Shared Memory Banks Visualizationc.ccceccveiivieiiiiiiiniiiiieieiie e 53
RESULLS . ettt 57

Figure

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

LIST OF FIGURES

Page
Overview of CUDA Program Executionccccovviiiiiiiiiiiiiiiiniiiiic 10
NVIDIA Kepler GK110 Internal.......cccooiiiiiiiiiiiiiiiiiiiiiiccieceeceeeceee, 13
GPU Die-Diagram of Tesla K40........ccccooiviiiiiiiiiiiiiiiiii 14
Kepler Memory Hierarchy........ccocoooiiiiiiiiiiiiiiiiii 16
Streaming Multiprocessor Internal in GKI10..........cocoiviiiiiiiiii 18
CUDA Compilation PIOCESSeevuviiiieiiiiiieiie et 20
MAD OVEIVIEW ¢ ettttteeeiiiiee ettt e ittt s ettt e ettt e e et e e e s ettt e e ssabaeeeeearaees 29
CUDA MAD ApPpPearance Stage.........ceevveruierieiiuienieerieneesneesieesneesieesneesieeens 29
Rank Based Kernels Arfangement.........coccuiiiiiiiiiiiiiiiiiiiiin e 32
Achieved Occupancy of the A5 Kernel in Current Implementation...................... 33
Occupancy Table of A5 Kernel.......occoviiiiiiiiiiiiiiiii, 34
[A5 Kernel] Memory Statistics - Global..........cccoviviiiiiiiiiiiiiiiiiiiiicc 37
[A5 Kernel] Memory Statistics - Local......ccceeeviiiiiiiiiiiieiiiiiiiicniiciecceceee, 39
[A5 Kernel] Memory Statistics - Cache........oooviiiiiiiiiiiiiiiiiiiiiiiciccccccce 40
[A5 Kernel] Memory Statistics - Buffers........ooocviiniiiiiiiiiiiiiniiiiccce, 42
[A5 Kernel] Branch DIVergence......ovevviiiiieiiiiiiiiiiiiiciie e 43
[A5 Kernel] Throughput..........ccccuiiiiiiiiiiiiiiiiiiiii e 44
[A5 Kernel] Warps Per SM......ooiiiiiiiiiiiiiiiieciieic e 45
[A5 Kernel] Compute Units' UHZation........cccoeeuiiiiiiiiiiiiiiiiiiiiciiiccecc 46
[A5 Kernel] Stall REasOnsccvvveiriiiiniiieiieeiiecciteceieeeee e 47
[A5 Kernel] Memory Stride VisSualiZation.........c.eeevveeviiiieniiiieniiieeniieeniicciee e 48
[A5 Kernel With Shared Memory] Me'rnory Stride Visualization.........ccceevveeuneens 50

Vi

Figure

23.

24.

25.

26.

27.

Shared Memory Bank Conflict.......c.cooviiviiiiiiiiiiiiiiiiiieicciceecce e 54
Threads Launch Order Withina Warp.......ccccooviiiiiiiiiiiiiiiis 55
[A5 Kernel With Shared Memory] Memory Statistics - Shared Memory................ 56
[A5 Kernel With Shared Memory| Memory Statistics - Global..............cccocciiiins 56

[A5 Kernel With Shared Memory] Memory Statistics — Shared Memory Bank Conflict

RESOIVEA e e 57

vii

CHAPTER 1

INTRODUCTION
Image quality is a subjective measure of how precise an image of a subject represents that
subject. It is usually inferred by the preference of one image over another (Silverstein, D. A.,
& Farrell, J. E., 20006). Digital images are rapidly becoming part of our daily lives in the form
of photos and videos of different resolution (Mohammadi, P., Ebrahimi-Moghadam, A., &
Shirani, S., 2014). These images are often subjected to several processing stages such as
acquisition, compression, and transmission before they reach their end-users. The images
can suffer from different types of distortions through each of the above-mentioned stages,
which degrade their quality (Pitas, I, 2014).
In image compression stage, it is not always possible to use lossless compression, as it
cannot guarantee compression for all input datasets (Said, A., & Pearlman, W. A.; 1996),
lossy compression schemes introduce blurring and ringing effects, leading in quality
degradation (Mohammadi, P et al., 2014). In order to maintain, control, and enhance the
quality of images, it is essential for image acquisition and processing systems to assess the
quality of images at each stage. Unless lossless compression is used, compressing and
decompressing the image results in data loss, which affects the image quality factors such as
sharpness, color accuracy, and contrast (Goldmark, P. C., & Dyer, J. N., 1940). Hence, itis
critical to analyze the impact of the effects caused by distortion on image’s visual quality.
In applications where the end-users are humans, the default method of quantifying image
quality is through evaluation by the subject, which is usually expensive, inconvenient,
subject-biased, and time-consuming (Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E.
P.,2004). Hence, there is a need for automated quality prediction. In order to fulfil this

requirement, objective image quality assessment (IQA) was introduced to develop methods
1

that can predict perceived image quality automatically. As highlighted in this survey
(Chandler, D. M., 2013), a better human visual system (HVS) modelling can lead to
development of IQA algorithms with higher quality prediction accuracy and greater
robustness for changing visual signals.

Historically, IQA algorithms have been used in areas such as bio-medical (Barrett, H. H.,
1990), remote sensing (Buiten, H. J., & Van Putten, B., 1997), and social media (Bauer, M.
W., & Gaskell, G., 2000). In case of distortions like noise, it is assumed that there is a direct
relationship between the noise detectability and the perceived image quality. This assumption
makes it possible to apply human contrast detection models to perform predictions about
image quality (Silverstein, D. A., & Farrell, J. E., 1996).

With the advent of information era in the late 1970s, image quality assessment algorithms
have recently found a place in calculating the visual quality index, ranging from applications
such as standard image compression (Zhang, L., Zhang, L., Mou, X., & Zhang, D., 2011) to
areas like Computer vision (Brosnan, T., & Sun, D. W., 2004), Visual psychophysics (Wang,
Z.,Lu, L., & Bovik, A. C., 2004), and Machine learning (Suresh, S., Babu, R. V., & Kim, H.
J., 2009).

There are 2 classes of objective quality algorithms (Pappas, T. N., Safranek, R. J., & Chen,]J.,
2000; Kunt, M., & van den Branden Lambrecht, C., 1998); one involves mathematically
defined measures such as signal-to-noise ratio (SNR), mean absolute error (MAE), root
mean squared error (RMSE), and mean squared error (MSE) whereas the other method
takes human visual system (HVS) properties into consideration to integrate perceptual
quality measures. Initial research on IQA algorithms focused only on prediction fidelity with
less importance to algorithmic, run-time and microarchitectural complexity (Chandler, D.

M.,2013; Phan, T. D., Shah, S. K., Chandler, D. M., & Sohoni, S., 2014; Moorthy, A. K., &
2

Bovik, A. C.,2011). When IQA algorithms march into production scenarios, the runtime
performance and related computational considerations become as important as the

prediction accuracy.

Section 1: Background on Image/Video Quality Assessment Algorithms
Image quality assessment algorithms evaluate the visual quality of an image subject to be
viewed by humans. Employing human observers to evaluate the image quality is time
consuming and less economic compared to automatic evaluation using IQA algorithms. In
addition, this is a subjective topic, as different individuals can perceive the same image
differently. Hence automatic image quality assessment algorithms has gained prominence.
Image quality assessment algorithms are classified into three categories based on the
availability of the ideal reference image (Lundstrém, C., 2006): Full-reference, No-reference
and Reduced-reference.
IQA algorithms normally include a two stage structure. The first stage involves local quality
measurement through frequency based decomposition of the images (George, A., &
Livingston, S. J., 2013) (i.e.) performing a color space transformation to obtain de-correlated
color coordinates, decomposing these new coordinates into perceptual channels (Charrier,
C., Knoblauch, K., Moorthy, A. K., Bovik, A. C., & Maloney, L. T., 2010). The second stage
involves calculating the quality value through statistical computations. (i.e.) an error is
estimated for each of the channels from step 1 and final quality scores are obtained by
pooling these etrors in the spatial and/or frequency domain (George, A., & Livingston, S. J.,
2013; Charrier, Cet al., 2010).
Full-reference image quality assessment technique compares an undistorted reference and a
distorted/test image whose quality needs to be determined, and predicts the quality of the
testimage as a scalar value. The quality is usually measured as the impairment from the ideal
(Lundstrém, C., 2000). The reference image usually requires more resources than the

distorted image and hence FR-IQA is used to design algorithms for in-lab testing. Typical

application areas include image compression (Charrier, C et al., 2010), watermarking (Huang,
J., & Shi, Y. Q., 1998), image acquisition (infrared) (Lee, Y. H., Khalil-Hani, M., Bakhteri, R.,
& Nambiar, V. P., 2016), and others such as television (Lundstrém, C., 2000).

In case of photography, there is no reference image (Lundstrom, C., 20006) and so, a no-
reference IQA algorithm is needed where blind image quality prediction will be carried out
(Kamble, V., & Bhurchandi, K. M., 2015). No-reference quality assessment models that can
operate without knowledge of distortion types, reference image, and human opinion scores
are of great interest recently (Mittal, A., Soundararajan, R., Muralidhar, G. S., Bovik, A. C., &
Ghosh, J., 2013).

A third alternative is one in which only a part of the reference image is available in the form
of a set of extracted features (Lundstrom, C., 2006). This is widely used in satellite (Nickolls,

J., 2007) and remote sensing (Buiten, H. J., & Van Putten, B., 1997).

Runtime Performance of IQA Algorithms:

The capabilities of handheld devices have increased from simple telephony to smartphones
or tablets capable of capturing, storing, sending and displaying photos. In addition to that,
smartphones can support video streaming services like Netflix and YouTube. With the surge
in image consumption, there is a need to evaluate and improve the runtime performance of
IQA algorithms to be used in real-time. As an example, an IQA algorithm with high
predictive performance, requires an execution time of order of seconds for a single image
(Phan, T., Sohoni, S., Chandler, D. M., & Larson, E. C., 2012).

In order to improve the runtime performance, understanding where the bottlenecks are
through performance analysis (Jain, R. K., 1990; Zhao, L., Iyer, R., Makineni, S., & Bhuyan,

L., 2005) is important. Phan et al (Phan, T. D etal., 2014) performed microarchitectural
5

hotspot analysis of image quality assessment algorithms on CPU, which showed most of the
algorithms, have bottleneck related to memory hierarchy and execution/computation and so,
the authors proposed microarchitecture conscious coding techniques for optimization.

In general, two methods are common for improving the computational complexity:
Algorithm based techniques and underlying hardware based techniques.
Software/algorithmic techniques such as, accelerating discrete cosine transform (DCT),
which forms the essence of most of the IQA algorithms by using variations of Fast Fourier
transform (FFT) is is one example (Chen, W. H., Smith, C. H., & Fralick, S. C., 1977).
Hardware based acceleration techniques based on (graphic processing units) GPU (Okarma,
K., & Mazurek, P., 2011) and field programmable gate array (FPGA) implementations
(Alam, S. R etal., 2007) have also yielded notable speedups as described below. GPUs can
accelerate quality assessment algorithms because their algorithmic models attempt to imitate
a collection of visual neurons, which operate in a massively independent and parallel fashion
yielding data-level parallelism.

A naive implementation would map each pixel of the image to a thread running on the GPU
(Holloway, J., Kannan, V., Chandler, D. M., & Sohoni, 2016). General purpose GPU
(GPGPU) techniques for speeding up structural similarity (SSIM) (Wang, Z. et al., 2004),
multiscale-structural similarity (MS-SSIM) (Wang, Z., Simoncelli, E. P., & Bovik, A. C.,
2003), and combined video quality metric (CVQM) are described in (Okarma, K., &
Mazurek, P., 2011). The authors used NVIDIA’s CUDA programming language, which
accelerates the computation by distributing the workload overits massive GPU cores. Their
corresponding GPU implementation yielded 150X and 35X speedups for SSIM and MS-SIM

respectively.

Holloway et al discussed (Holloway, J et al., 2016) a GPU based acceleration for most
apparent distortion (MAD) (Larson, E. C., & Chandler, D. M., 2010) exploiting massive
parallelism of the GPU. Each pixel is mapped to a single GPU core. GPU implementation
showed 24x speedup and multi-GPU implementation (a single instance of the algorithm
executing on multiple GPUs at the same time) yielded 33x speedup over the baseline CPU
implementation.

Thus, a new research area where the microarchitectural analysis of image quality assessment
algorithms on a GPU is introduced in this thesis. This analysis will ensure that IQA
algorithm designers keep parallelism in mind while creating new IQA algorithms. They are

not limited by serial instruction execution anymore.

Section 2: General Purpose GPU Computing Overview
Historically, increasing the frequency, because of transistor shrinking was prominent in
increasing the performance of processors (Moore, G. E., 2006). However, this trend ended a
decade ago due to memory wall. Also, power wall (the chip’s overall temperature and power
consumption), forced the semiconductor industry to stop pushing clock frequencies much
further (Hennessy, J. L., & Patterson, D. A.; 2011). As Moote's law prevailed, but frequency
scaling reached its physical limits, there was a major shift in the microprocessor industry
towards multicore processors and parallel computing (Gepner, P., & Kowalik, M. F., 20006).
Graphic processors are a special case of multi-core processors. In reality, a GPU is an army
of cores used for graphics rendering and shading, as these functions are commonly used,
very specific and compute-intensive, and too expensive for the (central processing unit).
Furthermore, the tasks of rendering and shading are extremely data-parallel, which the CPU
was not designed to exploit well.
GPUs excel at fine-grained data-parallel tasks comprising of thousands of independent
threads executing graphic operations like vertex, geometry and pixel shader programs
continuously (Nickolls, J., Buck, I., Garland, M., & Skadron, K., 2008). NVIDIA introduced
the GeForce 8800 GPU that replaced the traditional dedicated hardware per processing stage
(Vertex, Triangle, Pixel, Raster Operation and Memory) with a unified shader processor
(Nickolls, J., 2007). However, with the massive parallelism that GPUs provide, researchers
have moved from 3D graphics towards general-purpose computation (GPGPU) such as
encryption/dectyption (Manavski, S. A., 2007; Gatland, M., 2008). Though using GPUs for
non-graphical computations yielded impressive results (Nickolls, J et al., 2008), the many
limitations of doing GPGPU computation through graphics APIs are well-known (T.

Dokken, T.R. Hagen, and J.M. Hjelmervik., 2005). Before the introduction of general-
8

purpose languages for GPU computing, OpenGL and DirectX were used to program the
GPU. The syntax and the need to program in terms of graphics API's made them difficult
for programmers (Hill, ., & Kelley, S., 2007).

NVIDIA introduced CUDA (Nvidia, C. U. D. A., 2011) which allowed programmers to
perform general-purpose computation on GPUs. Although GPUs provides massive
parallelism with its hardware resources, the onus is on the programmer to map the code
effectively for optimal performance. Since its inception, GPGPU has found a prominent
spot in applications such as DNA sequencing (Trapnell, C., & Schatz, M. C., 2009), weather
prediction (Michalakes, J., & Vachharajani, M., 2008), cryptography (Manavski, S. A., 2007),

and databases (Rui, R., Li, H., & Tu, Y. C., 2015).

a) Overview of CUDA Programming structure:

This subsection gives a brief overview of NVIDIA’s CUDA programming language and
discusses the key components (Nvidia, C. U. D. A.,2014). A CUDA program comprises of
host CPU code and device GPU code. Device GPU code is launched as kernels by CPU.
Host code locally runs on the CPU. The functions that execute on the GPU are called
kernels and a kernel is launched with a configuration of grid blocks (number of blocks in the
grid) and thread blocks (number of threads ina block). When a kernel function is
encountered during program execution, CPU sends appropriate commands to invoke a
kernel on the GPU. GPU kernels can execute independently of CPU execution. The GPU
executes one grid at a time, which results in execution of many threads. The host can

continue its execution without waiting for the completion of the device kernel.

CUDA program execution

-

]

i

]

i

: CUDA GRID

. - = Block(Q0D)= = =, = = Bock(0p1,0) = = =

' |HOST CPU Function : o o :

: i Tharasad i CL0UG Tharand i1 005 i i Tt L0 T {01 003 i

i i I 1

i I Trowsed i o Thrwse 4.4, I L Thrused 4.4, I

1 (R [1 D I

, IR

i 3 I Bileck({1fo,0) : I Block(],1,0) :

. ~ II Tharaasad i 000G Traraased 04 4] i II Thrarased { (L0 Tharassed 04 4] [

i Device kernel ol i G)

>

: launch __,.-—"" I Thwd (1,03 Thwd (1,100 : | Thwd (1,03 Thwed (1,101 :
o L - L

: ! F = Bock(200)= = = = =Block(Z1.0) = = -,

. s

. \:w,{.r‘dd II Tharasad i CL0UG Tharand i1 005 |I II Tharasad i CLOUG T {01 003 ll

| i 1 i 1

! Conﬁnuing HOST U Thewsd i Thrasd 4,400 I U Trowssd it o Thrwsed 4.4, I

: CPU Function [R R e —— ;

i

i

=

Figure 1. Overview of CUDA Program Execution

Kernel:
e A kernel code is executable only on a device
e It can be called either by device (dynamic parallelism (Jones, S., 2012)or host)

e Itis defined by __global__ qualifier and does not return any value.

Host:
Host code (Nvidia, C. U. D. A., 2011) does the following operations (pertaining to this

research)
e Selecta device if there are many GPUs connected to the system.
e Initialize the GPU
e Allocate memory on the GPU (cudaMalloc)
e Transfer data from host to device (cudaMemcpy)

e Start profiler

10

e Invoke a GPU kernel

e Stop profiler

e Transfer data from device to host as needed
e Deallocate the GPU memory

e Reset the device.

When a kernel is launched, every thread within the grid configuration executes an instance of
the kernel. This inherently provides the scalability needed for the application. CUDA does
not guarantee an order of execution of the launched kernels (Nickolls, J et al., 2008).
However, CUDA guarantees that all the threads within a thread block are executed at once
on the same streaming multiprocessor (SM). For instance, a kernel launched as below
guarantees that, a block of (16x16) threads will execute on the same SM, but the order of
blocks within 32x32 grid is random.
Kernel <<< (32,32, 1), (16, 16, 1) >>> (argument);
Multiple thread blocks can reside in an SM, however a single thread block cannot be shared
across SMs. Thread blocks can

e Share memory

e Synchronize

e Communicate (co-operate)
CUDA provides block level and thread level data parallelism (different blocks/threads can
act on different data). Threads within a block are launched in-group of 32 threads called
wartps, which the multiprocessor uses for scheduling (Nickolls, J et al., 2008). Threads in the

same warp share the program counter (Fung, W. W., & Aamodt, T. M., 2011). This

11

programming model is different from (SIMD) manner because, every thread (not data) is
mapped to the processor and executed in SIMD style and hence single instruction multiple
thread (SIMT). Every thread executes same instruction, and possibly on different data.
Within a thread block, all threads have the same life cycle. Warps are initiated, dispatched,
swapped out/in from/to an SM at the same time. Context of all the running threads are
stored in warp pools at the respective SMs. At every cycle, the hardware warp scheduler
selects a warp that does not stall due to factors such as cache misses, global memory request
or pipeline hazard from the pool for execution. Whenever a warp stalls, GPUs are quickly
able to context-switch in order to hide the execution latency with minimal penalty.

On a kernel launch, the driver notifies the GPU’s work distributor of the kernels’ starting
program counter and its grid configuration. As soon as an SM has sufficient resources, the
scheduler randomly assigns a new thread block and the SM’s controller initializes the state
for all threads in that thread block.

Loops and conditional statements are allowed in kernel code, but if different threads in the
same warp follow different branches (warp divergence), then the SM will automatically
serialize or stall execution until the threads resynchronize thus reducing effective parallelism.
Each multiprocessor has a fixed number of registers for each core so the number of threads
running simultaneously depends on the number of registers. In addition to that, processor
occupancy (Nvidia, C. U. D. A., 2014), maximum number of concurrent warps, maximum

number of concurrent thread blocks all depend on this count.

b) Overview of Kepler GPU Architecture:

12

This subsection gives a brief overview of NVIDIA TESLA K40 GPU accelerator (Nvidia,

C.,2012), which is the main component in this study. The K in K40 stands for Kepler which

is the codename for a GPU microarchitecture developed by Nvidia.

The GPU is connected to the host through a PCI-Express bus in current high performance

systems. Data is transferred from the GPU to CPU and vice versa either through DMA or

by unified-memory programming which is available with restrictions (NVidia, C. U. D. A.,

2014). Data is transferred across the PCI-Express bus at the rate of 32GB/s. The K40X

GPU (NVidia, C., 2012) consists of a GK110b processor equipped with 12 GB of GDDR5

memory, 15 streaming multiprocessors (SM) (Wittenbrink, C. M., Kilgariff, E., & Prabhu, A.,

2011), each of the SM’s consists of 192 CUDA cores clocked at 745 MHz, achieving 5.12

TFLOPS in single-precision peak performance.

Mamory Controller Mamory Controllar Mamory Controller

2
=
E
g
=
=
=1
&
=
L
o
&

Mamory Controllar Mamary Controllar Mamory Contraller

13

Figure 2. NVIDIA Kepler GK110 Internal. Adapted from NVIDIA-Kepler-GK110-
Architecture-Whitepaper (NVidia, C., 2012)

Every SM has an on-chip memory area of 64 KB that can be configured as shared memory
or as L1 cache. It also has 65536 32-bit registers per SM (Wittenbrink, C. M et al., 2011). In
addition, the GK110b processor is equipped with a read-only cache of 48 KB per SM, which
can double as texture cache. To sample or filter image data, the GPU’s Texture units are
ideal. Every SM has 16 Tex units. Furthermore, all 15SMs share the 1.5 MB L2 cache. On
Kepler device, the configuration of on-chip memory canbe 16KB L.1/48KB shared or

32KB1.1/32KB shared or 48KB 1.1 /16KB shared memorty.

Mamory Intarface #0
G eoepaiu] owayy

]
1
4
|
4
1

i SoRpaU) Ascwapy

Memary Interface #1

Memary Interface #2 Memary Interface #3

Figure 3. GPU Die-Diagram of Tesla K40. Adapted from

(“http: //www.guru3d.com/articles-pages /geforce-gtx-780-ti-review,3.html”, n.d.).

Shared memory is faster than global and local memory because it is on-chip. Shared memory

latency is roughly 100x lower than uncached global memory latency (Harris, M.,

14

http://www.guru3d.com/articles-pages/geforce-gtx-780-ti-review,3.html

2007). Usually, Shared memory is allocated per thread block (it is common to all the threads
executing in an SM), so all threads in the block have access to the same-shared memory. This
can be viewed as interaction among the threads in the same block as threads can access data
in the configured shared memory loaded by other threads from global memory within the
same thread block. The programmer must provide necessary synchronization before
exploiting this functionality; otherwise, it may lead to race conditions. This user-managed
memory can be used in high-performance cooperative parallel algorithms such as mean
reduction, and to enable global memory coalescing (Hong, S., & Kim, H., 2009) in cases
where it would otherwise be prohibitive.

Tesla K40 (GK 110b) is capable of routing read-only data through the same cache used by
texture pipeline. If the incoming data from global memory is read-only, this cache is
initialized automatically and used (Nvidia, C. U. D. A., 2014). Data loaded through the read-
only cache can be accessed in a non-uniform pattern as well. Programmatically, const and
__restriet__qualifiers ensures the data is read-only when used while declaring a variable in
CUDA program. __ldg() intrinsic can also be employed to ensure this operation if more
explicit control is desired.

Constant memory can be used if the data is to be broadcasted over to all the threadsin a
wartp. It can be accessed through 8KB cache on each SM backed by 64KB partition of the
global memory. If all the threads in the warp request the same value, that value is
broadcasted to all threads in a single cycle otherwise, if the threads in a warp request M

different values, the requests are serialized and take M clock cycles.

15

pe========ca== T ——— i ——— |
. Kepler Memory hierarchy .
[I
: | System Memory (DDR3) :
[I
[I
[I
[I
[I
i i
i i
i i
i i
i i
] ‘ Global Memory GDDR5]
[I
Il DRAM DRAM DRAM Off-chip f
[I
[I
[I
[I
1 [
i i
i i
i ¥ 4 i
: Secondary Cache :
[i i I
. Unified L2 Cache Off_chip '
[I
[I
[I
[I
[I
i i
i i
. Shared L1 : Read only .
[are - [
i Memory Cache Constant data Siiuary Catke [
] cache Cache/Texture On-chip]
! {_Constant_) Cacheian: !
: rectrict) :
4 Registers k¢ I J i i L
P I* p, Streaming Multiprocessor P
[I
L N I N T N N N I I R L L L L L a

Figure 4. Kepler Memory Hierarchy

The off-chip GDDR5 memory handles each memory request to CUDA global memory.
Kepler (Datta, K., Murphy et al., 2008) follows the same coalescing rule (Davidson, J. W., &
Jinturkar, S., 1994) as Fermi. However, a significant change from Fermi is that, L1 cache in
Kepleris used for stack data and register spilling only and so, global memory loads and
stores are not cached in the L1 cache by default (Nsight, N. V. 1. D. I. A., & Edition, V. S.,
2013; Nvidia, C. U. D. A., 2007), whereas on Fermi load accesses are cached by default
(Nvidia, C. U. D. A., 2014). This can be attributed to the fact that, Kepler GPUs are most
suited for general purpose scientific computing and the GPU designers expect the
programmers to hack into the GPU — the programmers should be capable of

exploiting/utilizing the microatrchitectural features provided effectively. On the other hand,
16

Fermi architecture is most suited for graphics processing where the programmers are not
expected to know the underlying microarchitectural features and thus the GPU should be
capable of utilizing its resources optimally. Access to global memory in Kepler has very high
latency (200-400 cycles), but GPUs hide this latency by switching between warps as they stall
(Nvidia, C. U.D. A., 2011).

Applications that do not automatically employ shared memory benefit from the L1 cache,
improving the performance with minimum effort (Glaskowsky, P. N., 2009). On Kepler
however, the same implementation, would not perform as efficiently since global memory
loads are not cached. Both shared and read-only cache can be utilized on Kepler only after

explicit code modifications.

17

Instruction Cache
Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch
4 4 4

Register File (65,536 x 32-bit)
-4 4+ 4+ 4+ 4+ 3 3

Warp Scheduler
Dispatch

Warp Scheduler

Dispatch Dispatch Dispatch Dizpatch
4 A 4

4 &+ 3+ 3 3+ 3

Core LOVST

Core - LEVST
Cors - LIVMST
Core - LIWST
Core - LIWST
Core - LOVST
co
oo B

e O
Core - LOVET
Core - LEWST
o
Corm - LwST
o [
o -

Core - LOIVET

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Core

Core

Core

Corg

Core

Core

Core Core

Core

Core

Core

Core

Corg

Core

Core

Core LEVST

Caore - LEGET
Core - LDGET
Cora - LDMST
Core - LOEST
Core - LOVST
Core - LDVET
Core - LDST
Core - LOST
Core - LOVST
Core - LOESET
Core - LOVST
Corn - LIVST
Core - LIVET
Cora - LOVST

SFU

48 KB Read-Only Data Cache

Tex Tex

Tex Tex

Figure 5. Streaming Multiprocessor Internal in GK110. Adapted from

(“http: //www.guru3d.com/articles-pages/geforce-gtx-780-ti-review,3.html,” n.d.).

Each streaming multiprocessor contains four warp schedulers with two instruction dispatch
units each, allowing concurrent operation/execution of four warps. These four warp

schedulers select two independent instructions per warp to dispatch each cycle. A warp

18

http://www.guru3d.com/articles-pages/geforce-gtx-780-ti-review,3.html

making a global memory access is stalled and GPUs are able to hide the stall latency by
context switching (Jog, A. et al., 2013) to execute instructions from another warp for better
resource utilization. Every SM also contains (special functional units) SFU units for fast
approximate transcendental operations such as sine, cos, exp. The Cores, Load/Store units
and Special Function Units (SFU) are pipelined units. They maintain - in various stages of
completion, the results of many computations/operations at the same time. Hence, in one
cycle they can accept a new operation and yield the results of another operation that was
initiated several cycles ago. Latency is the number of clock cycles a warp takes to be ready to
execute its next instruction, and warp schedulers makes sure they have some instruction to

issue at every clock cycle to hide the latency (Nvidia, C. U. D. A., 2011).

c) Overview of Program Compilation:
Our project consists of two source files kernel.cu and main.cpp. When compilation is
triggered, the header files (#include) are expanded. Primarily, the .cu file gets processed
using cudafe and nvopencc (open source compiler provided by NVIDIA based on open64)
(Bakhoda, A etal., 2009; Developers, O., 2001) into intermediate .ptx pseudo-assembly
(Nvidia, C. U. D. A., 2014). The ptx assembler (ptxas) assembles the ptx file into native

CUDA binary (cubin.bin).

19

CUDA Compilation process

CUDA Project - MAD implementation

main.cpp Kernel.cu header.h

! !

| NVIDIA Toolkit |

:

Host C code

!

as

libcuda.a
cubin.bin

MSVC++ compiler

Y

NVIDA TESLA K40 «————» Executable

Figure 6. CUDA Compilation Process

The cubin binary is then merged with the host C++ code and compiled into a single
executable file to be linked with the CUDA Runtime (application programming interface)
API library (libcuda.a). Finally, the executable then calls the CUDA Runtime API in order to

initialize and invoke compute kernels onto the GPU through NVIDIA CUDA driver.

20

Section 3: Related Work
In this section, we talk about the achievements made in recent years to exploit the underlying
microarchitecture of the GPU. Shared memory computation on a GPU has been one of the
extensively studied types of computations because of shared memory reuse and bandwidth.
It is crucial to have knowledge of the underlying GPU hardware for efficient programming,.
Programmers canimprove the efficiency by tailoring their algorithm specifically for parallel
execution. Che et al. (Che, S et al., 2008) explored the GPU bottlenecks on different
applications in terms of memory overhead, shared memory bank conflict and control flow
overhead setting the stage for further research on GPUs bottleneck. The authors brought
about the need to find efficient mappings of their applications’ data structure to CUDA’s
domain based model for better efficiency which forms motivation for this thesis.
Harris (Harris, M., 2007) has exhibited the efficiency in using shared memory for
computation. The paper discusses different strategies for doing parallel reduction such as
intetleaved addressing with divergent branches, interleaved addressing with bank conflicts,
sequential addressing and optimal method of doing computation while loading the data from
global memory. This paper proposes the idea of using a sliding window across the shared
memory as well as the need to avoid bank conflicts. Overall, the paper displays a speedup of
30X over the naive implementation. This thesis takes inspiration from the shared memory
implementation (Harris, M., 2007) to resolve the memory bottleneck as described in Chapter
3.
Tuning strategies to improve performance, such as coalescing, prefetching, unrolling, and
occupancy maximization are introduced in classical CUDA textbooks (Kitk, D. B., & Wen-
mei, W. H., 2012). In (Ryoo, S. et al., 2008) the authors not only discuss the different tuning

strategies, but also show how optimum usage of hardware resources is critical for occupancy
21

and performance. However, the entire study has been focused on a pre-Fermi architecture.
An analytical performance model (Hong, S., & Kim, H., 2009) provides details of the
number of parallel memory requests by using details about currently running threads and
memory bandwidth consumption. Performance analysis via profiling can yield invaluable
information in understanding the behavior of GPUs (Rui, R., etal., 2015), which is the
model adopted in this thesis.
It is common to observe irregular memory accesses on the GPU. Wu, B.etal (Wu, B.etal.,
2013) discuss reorganizing data to minimize non-coalesced memory access. Brodtkorb et al
(Brodtkorb, A. R., Hagen, T. R., Schulz, C., & Hasle, G., 2013) give a detailed picture on
profile driven development, stressing the importance on iterative programming and
optimization. The authors go into detail about using the NVIDIA profiler to profile the
implementation and by using the data, improving a local search. Micikevicius, (Micikevicius,
P.,2010) has discussed profiler driven analysis and optimization. The author has asserted the
importance of Memory bandwidth, optimum utilization of compute resources, instruction,
and memory latency and provides a note on the essential profiling parameters to consider
and possible conclusions to be drawn from the data. The microarchitectural analysis
performed in this thesis as mentioned in Chapter 2 profiles the most problematic kernel with
respect to all the parameters mentioned above.
In a paper (Xu, C., Kirk, S. R., & Jenkins, S., 2009) by Xu, Chang et al, both thread level and
block level tiling are noted and goes in detail about using tiles of specific size. There are
many other research papers about microarchitectural analysis of parallel implementations in
areas like

a) Cryptography (Manavski, S. A., 2007) where how optimizing the number of thread

blocks, constant memory, and shared memory accelerates the application.
22

b) Matrix multiplication (Ryoo, S et al., 2008) by increasing the number of warps,
redistributing work across threads and thread blocks and inter thread parallelism.
However, there is 70 prior research on microarchitectural analysis of image quality assessment
algorithms on a GPU and this document provides first of its kind microarchitectural analysis
of a GPGPU implementation of an image quality assessment algorithm, specifically the most
apparent distortion (MAD) algorithm. While this analysis is specific toa CUDA
implementation of MAD, it can provide insight into other related algorithms, which can

reuse the concepts discussed in this document.

23

CHAPTER 2
ALGORITHM AND ANALYSIS

Section 1: Methodology
Application domain:
The current CUDA MAD implementation reads both reference and distorted test images
from file, and processes the images on the GPU. To avoid frequent data transfer across the
PCI bus, both the images are copied from CPU to the GPU before launching the kernel so
that subsequent kernel operations process the images from the global memory. For analysis
purpose, the kernel with most runtime and less achieved occupancy will be selected and
microarchitectural analysis will be performed. At the end of the analysis, a major bottleneck
that is resulting in the poor performance of the kernel will be dealt with thus improving the
runtime and providing insight into the behavior of the GPU.
The GPU version of MAD was developed using NVIDIA’s CUDA API and the CPU
portion of the code uses C++. A GPU Profiling of the implementation is performed using
NVIDIA Nsight profiler, NVIDIA Visual Profiler. Given the same input dataset, times are
measured right after initial setup (e.g., after file I/O) and includes the time tequired to
transfer data between the disjoint CPU and GPU memory spaces.
The experiment:
The experiment involves two phases. Phase 1 performs microarchitectural analysis of the
current MAD implementation and phase 2 resolves the bottleneck observed in phasel.
1) NVIDIA NVVP ranks the kernels based on their execution time and achieved
occupancy; Occupancy is the ratio of available active warps per cycle to the

maximum number of warps that can be executed on a processor. Therefore, the first

24

section performs microarchitectural analysis of the kernel, which lists the bottlenecks
hindering the performance.

2) From the microarchitectural analysis of the kernel listed in the above section, details
on the bottlenecks are derived. From that analysis data, the lines of code that are
causing the issue are identified and the possible workarounds specified in the
literature are applied. The impact of these modifications is measured to test the

effectiveness of the changes in the context of MAD.

Experimental Setup:
The details of the overall test system are shown in Table 1.
Table 1

Test System Configuration

Test system

CPU Intel® Xeon® Processor E5-1620 @ 3.70 GHz

Cores: 4 cores (8 threads)

RAM RAM: 24GB DDR3@1866 MHz(dual channel)
OS Windows 7 64-bit
Compiler Visual Studio 2013 64-bit;
GPU1 NVIDIA Tesla K40(PCle 3.0)
GPU2 NVIDIA NVS 310 (PCle 3.0)

The experiment was conducted on a system setup with an Intel CPU and an NVIDIA GPU:
a single-socket machine with 24GB of main memory and a hyper threaded Intel Xeon quad-
core processot, running at 3.70 GHz with cache configuration in Table 2.

Table 2

25

Cache Description on Xeon E5-1620

Cache description Size

L1 D-Cache 32KBx 4
L1 I-Cache 32KBx 4
L2 Cache 256KBx 4
L3 Cache 10 MB

Description

8-way set associative, 64-
byte line size

8-way set associative, 64-
byte line size

8-way set associative, 64-
byte line size

20-way set associative, 64-

byte line size

An NVIDIA Tesla K40 GPU with NVIDIA driver version 10.18.13.5390 and CUDA

version 7.5 is used for the experiment. Table 3 gives information on the GPU.

Table 3

Tesla K40 GPU Description

Total amount of global memory

11520 MBytes (12079398912 bytes)

(15) Streaming Multiprocessors, (192)
CUDA Cores/MP

2880 CUDA Cortes

GPU Max Clock rate

745 MHz (0.75 GHz)

Memory Clock rate

3004 MHz

Memory Bus Width

384-bit (6 x 64 bit memory controller)

1.2 Cache Size

1572864 bytes

Total amount of constant memory 655306 bytes
Total amount of shared memory per block | 49152 bytes
Total number of registers available per 65536
block

Warp size 32

26

Maximum number of threads per 2048
multiprocessor

Maximum number of threads per block 1024
Base Core Clock-Rate 889 MHz

Computational Throughput

5121 GFLOPS Single Precision
1707 GFLOPS Double Precision

27

Section 2: Most Apparent Distortion Algorithm
Most apparent distortion IQA algorithm is selected because it is currently the best predictive
performance IQA algorithm. However, MAD employs relatively extensive perceptual
modeling, which imposes a large runtime that prohibits its widespread adoption into real-
time applications. MAD takes as input a distorted image and a reference version of the same
image. There are two different stages in the algorithm, called the detection stage and the
appearance stage, which are independent of each other until the final calculation of the
quality score which is done on the CPU after both stages are complete. The detection stage
analyzes high quality images with near-threshold distortions; the appearance stage analyzes
low quality images with supra-threshold distortions.
The detection stage, represented in the top portion of Figure 7, first performs a series of
preprocessing steps on both images. The images are converted to perceived luminance and
then each filtered with a contrast sensitivity function (CSF) filter kernel. After filtering the
images, the rms contrast images are fed through other stages to extract local statistics and
compared to create a visibility difference map between the two processed images. In the
appearance stage, represented in the lower portion of the Figure 7, each image is first
spectrally decomposed into 20 log-Gabor sub bands (5 scales and 4 orientations) via a filter
bank. The local statistics (standard deviation, skewness and kurtosis) are then extracted from
each individual sub band. The detection and appearance difference maps are each collapsed
into a scalar quantity with a Euclidean 2-norm. The two resulting scalar values are then

combined into a final quality score via a weighted geometric mean.

28

oo Detection-Based QA Stage oo

Convert t Compute
A Lot ? | CSF Filer » Block-Based
A ghiness Contrast \ Generate Map of Local
/ Contrast-Masking-
/ . iy
/ S ¥ Compute / Weighted MSE
Reference Convert to / i?;};;:: > CSF Filter >+ Block-Based v
—> 58 z !
image Grayscale Contrast - X
NS T T Weighted Quality
Appearance-Based OA Stage Geometric [—® Degradation
TTTTTTTTTTTTrTmmn w‘ ----------------------------- s ~ S e
Distorted Ll Convert to Mean core
image Grayscale Log-Gabor N Compute Per-Subband 4
Filterbank Block-Based Statistics)
Generate Map of Local
Statistical-Difference-Based
Appe e Degradati
Log-Gabor | | Compute Per-Subband / ppearance Degradation
Filterbank Block-Based Statistics

Figure 7. MAD Overview. Adapted from (Holloway, J etal., 2016).

A GPU implementation of the MAD algorithm as discussed on the paper (Holloway, J etal.,

2010) is shown in Figure 8. The appearance stage as below.

r b |
||]
[} Log-Gabor Compute Per-Subband |1
N B EE i
]]

Filterbank Block-Based Stafistics
Lee—m———— m——————————_]
Frequency Domain 2D IFFT of N Compute Block-Based
Filtering (Subband 1) Spectrum Statistics of Subband
e === — === - =========u=ux,
M Grgp OF IM G5 H 2D FFT n| Frequency Domain 2D IFFT of L » Compute Block-Based |1
(from CPU) of Image Filtering (Subband 2) Statistics of Subband :\
L= — e |
f _’ Frequency Domain p 1D IFFT of N Compute Block-Based
/ Filtering (Subband 20) Spectrum Statistics of Subband
CUDA Implementation of Log-Gabor Filtering for a Single Subband
Kernel AD Kernel Al Kernel A2 Kernel A3 Kernel A4 Kernel A5
2D FFT of Build Log- Multiply 2D IFFT of | | Magnitude of Compute
Image Gabor Eitter [Spectra Spectrum i Subband | Block Based
= (Fraq. Fasponss) i3 P Statistics
v
To Kernel A6

(map generation)

Figure 8. CUDA MAD Appearance stage. Adapted from (Holloway,] et al., 2010).

e Kernel Al builds the frequency response of the log-Gabor filter.

29

Kernel A2 shifts the filter to accommodate for the DC component lying on the edge
of each quadrant.

Kernel A3 pointwise multiplies the filter's and image's spectra

Kernel A4 performs aninverse FFT on the filtered image.

Kernel A5 takes the magnitude of each complex valued entry in the filtered image
array removing the imaginary component from FFT.

Kernel A6 extracts three statistical matrices from each sub band, corresponding to
the standard deviation, kurtosis, and skewness of each 16x16 sub-block, each with
four pixels of overlap between neighboring blocks, in each sub band.

The detection stage from the algorithm is not of interest in this research.

30

Section 3: Microarchitectural Analysis of Current MAD Implementation on a GPU

Profiling Strategy:

NVIDIA Visual Profiler allows the programmer to visualize and optimize the performance
of the application. The profiling tool provides a graphical view of the timeline of the
application’s activity on both the GPU and the CPU. The visual profiler can also detect
potential performance limiters and provides a list of the kernels, which are ordered by
optimization importance, based on execution time and achieved occupancy.

A warp gets active between the time of starting of its execution in an SM and the time where
the kernel leaves the SM finishing its last execution. In the Tesla K40 device, every SM can
keep at-most 64 warps active at a time and each warp can have 32 threads. Occupancy can
vary as warps begin and terminate, and can be different for each SM. Low occupancy affects
instruction issue efficiency because, GPUs can context switch warps to hide latency caused
by cache miss. If occupancy is low, GPUs do not have enough warps to context switch,
thereby unable to hide the latency. In addition, occupancy can be seen as a two-pronged
sword: when there are enough warps to hide latency, increasing the warps affects resources
per thread.

Based on identifying the primary performance limiter, overall application optimization
strategy is decided. Application analysisis performed on NVVP profiler, which provides
insights into the microarchitectural bottlenecks, which can be seen as optimization
opportunities. Hence, first step is determined from the profiler is shown as Figure 9. As
soon as the application is loaded into the profiler, it runs multiple times to sample the data

and displays the kernels based on performance limiters.

31

Rank Description

[40 kernel instances] A5(float*, float*, float*, float*)

[20 kernel instances] Al_ptl(float*, int, int)

[1 kernel instances] D9(float*, float*)

[40 kernel instances] Ad(float2*, float*)

[42 kernel instances] void spRadix0016A:kernel1Tex<unsigned int, float, fftDirection_t=1, unsigned int=128, unsign
[1 kernel instances] D7_ptl(float*, float*, float*, float®, float*, float®, float*, float*)
[20 kernel instances] Al_pt2(float*)

[40 kernel instances] A2(float2*, float*, float2*)

[1 kernel instances] DO_ptl(float*)

[1 kernel instances | DO_pt2(float*)

[20 kernel instances] Ab(float*, float*, float®, float®, float*, float*, float, float®)

8

e
o W

NN W R A WUV

Figure 9. Rank Based Kernels Arrangement

The A5 kernel, which does fastlo stats thus calculating mean, skewness, kurtosis and
standard deviation, is selected as the kernel, which has the most bottlenecks. It should also
be noted that, the kernel runs a sliding window of size 16 x16 on the image.

Description of A5 Kernel:

1. Every thread declares a 1D array of 256 elements.

2. Every thread gathers 16x16 data from the global memory and stores onto its local
memory.

3. Sum of all the elements is collected through a 1D traversal and with that data, mean
is calculated.

4. Using the mean value, standard deviation, skewness and kurtosis are calculated.

5. The calculated values are scattered across the corresponding memory locations in

global memory.

A5 kernel code is given in Appendix A.

32

Achieved Occupancy

100%

75% -

50% -|

Occupancy

25% -

Figure 10. Achieved Occupancy of the A5 Kernel in Current Implementation

From the above image, it is observed that the Kernel A5 canachieve only 51.36 %
occupancy. In K40 hardware,
Active warps/SM = (Number of warps/ Block) * (Number of Active blocks/SM)

=8*8

= 64 active warps /SM
Hence, a kernel capable of spanning 64 active warps at any point in execution will give a
theoretical occupancy of 100%. However, the statistics for A5 given by Nsight provides only
half the number of active warps, 32 as opposed to 64. This can be attributed to kernel launch
parameters.
A5 is launched with Grid configuration of (8, 8, 1) and Block configuration of (16, 16, 1).
Hence the total number of threads =8 * 8 * 16* 16 = 16384.
Number of warps = Total number of threads/ Number of threads in a warp

=16384/32=512.
Total number of active warps supported = 64 * Number of SM on the GPU
=064*15=960

33

Theoretical value of Achieved occupancy = 512 / 960 = 53.33 %.

Practical value of Achieved occupancy = 51.36 %.

Variable Achieved Theoretical

~ Occupancy Per SM

Active Blocks 8
Active Warps 32.87 64
Active Threads 2048
Occupancy 51.36 % 100.00 %
» Warps
Threads/Block 256
Warps/EBlock 8
Block Limit 8

Figure 17. Occupancy Table of A5 Kernel

Device Limit

16

64

2048

100.00 %

1024

32

16

I
0 5 10 15
=
0 20 40 60
0 1000 2000
=
0% 50% 100 5%
—
0 500 1000
L |
0 10 20 30
—

15

The 2% difference in practical and theoretical achieved occupancy can be attributed to the

factors listed below (Nsight, N. V. L. D. 1. A.,; & Edition, V. S. (2013)).

e Unbalanced workload within blocks

o If not all the warps within a block execute at the same point, the workload is

unbalanced.

e Unbalanced workload across blocks

o The workload is unbalanced if blocks within a grid do not all execute for the

same amount of time.

e Too few blockslaunched

34

o Abislaunched only with 512 warps whereas the Tesla K40 GPU is capable

of handling 960 warps ata time.

In addition to these, the kernel is executing for 1.047ms.

In order to evaluate the development process guided by the profiler, in this study, the
current MAD implementation is profiled in terms of

1. Memory Bandwidth

2. Compute Resources

3. Instruction and Memory latency

Memory Bandwidth:

Memory Bandwidth is the rate at which data is read or written from the memory. On
a GPU, bandwidth depends on efficient usage of memory subsystem, which involves
L1/shared memory, L2 cache, Device memory and System memory (via PCle).
Since there are many components in the memory subsystem, separate profiling is done to

collect data from the corresponding subsystem. Memoty statistics are collected from

e Global: Performs profiling on memory operations to the global memory. Specifically
focuses on the communication between SMs and L.2 cache.
e Local: Performs profiling on memory operations to the local memory. Specifically

focuses on the communication between the SMs and the 1.1 cache.

e Cache: Performs profiling on the communication between L1 cache and texture
cache with the .2 cache for all executed memory operations.

o Buffers: Performs profiling on the communication between the L2 cache with the

device memory and system memory.

35

In addition to these, Memory statistics on atomics, texture and shared memory are not

collected because the current implementation does not exploit any of those features.

Memory Statistics — Global:

Global device memory can be accessed in two different data paths; Data traffic can go either
through (.2 and/or L1), read only global memorty access can alternatively go through the
read-only data cache/texture cache. NVCC compiler has control over the behavior of caches
by setting appropriate compilation flag. In this experiment, no explicit setting has been
provided. From the statistic given in Figure 12, cached loads uses the L1 cache or texture
cache as well as L2 whereas uncached loads uses only the L2 cache.

On Tesla K40, L1 cache line size is 128-bytes, memory accesses that are cached in both IL1
and L2 are serviced with 128-byte cache line size. Memory accesses that are cached only in
12 are serviced with 32-byte cache line size. This is to reduce over-fetch for instance, in case
of scatter memory operations.

A warp in execution accessing device memory (LD or ST assembly instructions), coalesces
the memory accesses of all the threads (32 threads share a program counter) in a warp into
one or more of these memory transactions depending on the size of the word accessed by
each thread as well as the distribution of the memory addresses across the threads. It can be
observed that if all the threads within a warp performs random stride, coalescing gets

disturbed resulting in 32 different accesses in a warp.

36

Texture Cache

Size: 0.00 B
BW: DLDO Bfs

Global Read Only

Size: OO0 B
BV 000 By's

e |
E & D00

Size: 275.39 MB
BW: 256.52 GB/s

Cached Loads

= L1 Trans: 0
Size: 0.00 B
BW: 0.00 Bys

Transactions Per Regquest

Loads
Req 129,024

L1 Trans: 23,625
Size: 288 ME
BWW: 2.69 GB/s

Figure 12. [A5 Kernel] Memory Statistics - Global

The figure above shows the average number of .1 and L2 transactions required per executed
global memory instruction, separately forload and store operations. Lower numbers are
better; It is better to have 1 transaction for a 4byte access (32 threads * 4 byte = 128 byte
cache line), 2 transactions for a 8byte access (32 threads * 8 byte = 256 byte; 2 cache lines)

aCCesSS.

The code in Table 4 accesses the global memory.

Table 4

Global Memory Stride in Original Implementation

for(ib = 1;ib <i+ 16;iB++)

{
for(jb = j;jb < j + 16;iB++)

xVal_local[idx] = xVal[iB *512 + jBJ;
id++;

37

}

In current A5 kernel, 129,024 requests are made resultingin 2,256,000 transactions. Each of

the requests are 4-byte requests (float). Hence,

Transactions for load = 2256000/129024 = 17.485

Transactions for store = 23625/1512 = 15.625

A memory "request" is an instruction, which accesses memory, and a "transaction" is the
movement of a unit of data between two regions of memory. From the profiler, it is seen
that 129024 requests have caused 3008000 transactions causing 23.3 L2 transactions per

request.

Memory Statistics— Local:

Local memory resides in device memory, so, access to local memory takes the same latency
as global memory access. Arrays that are declared in the kernel are automatically saved in
global memory. In addition, if there are not enough registers to accommodate the entire

auto, variables (register spilling); the variables are saved in local memory.

38

Transactions Per Request
Loads
Req: 258,048
Loads
Trans: 258,048
Size: 31.50 ME s
BW: 29.34 GB/s ache
Stores
Req: 129,024
Stores
Trans: 129,024
| 100 100 L { size:1s7sme
Load Store BW: 14.67 GB/s

Figure 13. [A5 Kernel] Memory Statistics - Local

Table 5 is responsible for the transactions

Table 5

Global Memory Stride in Original Implementation and Mean Calculation

for(ib = i;ib < i+ 16;iB++)
{

for(jb = j;jb <j+ 16;jB++)

xVal_local[idx] = xVal[iB * 512 + jB];
id++;

for(idx = 0 ; idx < 256; idx++)
mean += xVal_local[idx];

39

Every thread can use maximum of 32 registers (Nvidia, C. U. D. A.,; 2014). If a kernel uses
more than 32 registers, then the data gets spilled over to the local memory. Every thread

executing the kernel A5 declares a local storage of 256 elements. The launch configuration of

the kernel has 256 threads per block.

Total local memory needed by a block = 256 threads * 256 elements per thread * 4-byte each

= 262144 bytes

= 256KB

The on-chip memory of an SM in Tesla K40 is of size 48KB. Hence, the register spill gets
carried over to the global memory resulting in bad performance as global memory incurs
200-400 cyclelatency. Even though load requests made by the kernel and load transactions

are linear, local memory access makes the transactions expensive.

Memory Statistics — Caches:

L1 Cache L2 Cache

Loads

L2 Trans: 4,039,772 Size: 123,28 MB BW: 114.84 GB/s
Stores

L2 Tramns: 535,633 Size: 16.35 MB BW: 15.23 GB/s
Atomic Loads

L2 Trans: 0 Size: 0.00 B BW: 0.00 Bfs
Atomic Stores

L2 Tranms: 0 Size: 0.00 B BW: 0.00 Bfs
Loads

L2 Trams: 0 Size: 00O B BW: 0.00 Bfs

Texture Cache

Stores

L2 Trans: 0 Size: 0.00 B EW: 0.00 Bfs

40

Figure 14. [A5 Kernel] Memory Statistics - Cache

There are 3 data caches: L1, 1.2 and texture/Read-only. If the data is present in both L1 and
L2, 128-byte cache line transactions are done otherwise 32-byte transaction. If the data block
is cached in both I.2 and .1, and if every thread in a warp accesses a 4-byte value from
random sparse locations which miss in L1 cache, each thread will cause one 128-byte L1
transaction and four 32-byte I.2 transactions. This will cause the load instruction to reissue

32 times more had the values were adjacent and cache-aligned.

Here, the cache hit rate is very low because by default on Tesla K40 device, L1 is not used

for load/store purpose.

Memory statistics — Buffer:

Buffers are memory locations either in system or as device memory. Latency of access to
buffer is higher than shared/L1/1.2. Hence it is better to have the data stored in one of the
memory subsystem rather than accessing from buffer. Also, itis better to avoid re-accessing
the same buffer data multiple times; its better to have them stored in memory subsytem. An
initial access to bufferis mandatory, howeverit’s the programmers responsibility to store

them on-chip.

From the chart Figure 15, it can be seen that, GPUs do not access the system memroy
directly (unified memory addressing). It can also be seen that Tesla K40 is capable of
providing 288GB/s bandwidth. However, small sparse transfers as opposed to making larger

transfer is causing the reduction in bandwidth.

41

Loads System Memory
Size: 000 B
BW: 0.00 B/s

Size: 3200 B Rate: 29.81 kB/fs Utilization: 0.00 %

Size: 32008
BW. 29.81 kByfs

L2 Cache

Device Memory

Loads 2 52T ME 4918 GB/s Utilization: 17.88 9%
Size: 35,43 MB e 52,79 MB Rate: 4918 Ws Utihization: 17.88 %
BW: 33.00 GB/s

[49.18 GB/s

stores
Size: 17.37 MB
BW: 16.18 GB/s

Figure 15. [A5 Kernel] Memory Statistics - Buffers

Hence, from the above memory statistics, it can be observed that each kernel is performing

256 global memory access even though there is an overlap between the data used by threads

seems to be an issue causing bottleneck.

Compute Resources:

The factors that affect the compute resources are

1. Divergent branches
2. Low warp execution efficiency

3. Oversubscribed funcitonal units.

Since all the threads within a warp share the program counter, flow control can have serious
impact on the efficiency of kernel execution. If there are lot of divergent branches through
the kernel code, then the time taken by kernel execution takes longer resulting in imbalance.

When a flow control instruction is executed, threads are diverged such that different threads

42

take different execution paths. In this case, all the paths must be serialized because all the

threads share the program counter hence increasing the number of instrucitons in this warp.

When all the different paths have executed, the threads converge back into the same
execution path. Branch efficiency is the ratio of executed flow control decisions to all the
executed conditionals. On the other hand, Control flow efficiency depends on how many

threads are not predicated off.

* Divergent Branches Divergence = 12.5% |

i

Branch Condition & .
4096 intj = 4 * (threadldx y * blockldx.y * blockDim.y); ‘

MnotTaken [oiverged [l Taken

[| SAA if (i o AQTY
) Inactive threads (red) = 2% [2158 inactive threads out of 81408 1otal threads] [
‘ Predicated off threads (blue) = 19% | 15625 predicated off threads out of 81408 total threads | J

/{ 256 itteratios -> log2{256)=8 itterations

Branches

1,251,480

Figure 16. |[A5 Kernel] Branch Divergence

The chart above shows the distribution of executed branches that causes divergence. The

percentage of divergent branches seems less.

Inactive threads: One of the reasons where a thread within a warp can be disabled. A) If the
block size is not a multiple of warp size, then the last warp in the block will have inactive
threads. B) When some threads ina warp finish execution and exit the warp whereas the
other threads still continue their execution. The 2% inactive threads are due to the fact that

only 1/4® of threads launched can execute.

43

Predicated off threads: When a flow control instruction is encountered, divergent branches

can occur because a set of threads take a path whereas the other set of threads take another

path.

Floating Point Operations per Second

52 7

39 -

26

GFLOP/second

13 4

0, b

2
&
g

Figure 17. [A5 Ketnel] Throughput

Theoretically, Tesla K40 is capable of achieving 5.12TFLOPS. In the above chart, the blue
bar indicates Single ADD and blue bar indicates single MUL. The chart displays the
weighted sum of all executed single precision operations per second. It can be seen that A5
has achieved 42.16 GFLOPS. The reduction in the FLOPS achieved can be tied back to the
reduction in achieved occupancy, as the compute units are prone to lay idle when there is a

memory dependency.

Warp-issue efficiency:

This experiment deals with the device’s ability to issue instructions. Active warp is the
p

number of warps that can be active at any cycle. It is also possible that the warps get context

44

switched when waiting on a resource (global memory access, barrier synchronization). In this

case, the warps can become stalled.

Active warp = stalled warp + eligible warp.

Warps per SM is shown in Figure 18.

Warps Per SM
I Active .Eligible == Qccupancy
theoretical:64.00

Figure 18. [A5 Kernel] Warps Per SM

Active warps are active from the time they are brought in for execution, until the time they
terminate. Each warp scheduler maintains a warp pool of active warps. Warps are eligible if

they are able to issue next instruction.

Less active threads are attributed to less occupancy, unbalanced workloads, and execution

dependencies.

Over-subscribed functional units:

45

The TeslaK40 GPU is capable of performing 192 32-bit floating point add, multiply and
multiply-add instructions every cycle. However, the achieved throughput depends on the

application usage of these units.

Figure 19 shows the distribution of Load/Store, Arithmetic and Control-Flow operations on

the system.
High
@
=
o
-
=
2 Med
(]
M
E
2
Low

Load/Stare Arithmetic Control-Flow Texture

Figure 19. |[A5 Kernel] Compute Units' Utilization

This not-so-optimum utilization can be attributed to stalls or the workload is not enough to

saturate the compute units.

46

Latency limited:

Latency is influenced by occupancy and instruction stalls. Occupancy has been covered
earlier. Low occupancy causes low instruction issue efficiency because, there are not many
warps to hide the latency.

Instruction stalls:

Typically, when a memory (LD/ST) instruction is issued by a warp and if the requests are
coalesced, then a thread requesting 4-bytes data will fetch 128-byte chunk enough to supply
to all the threads in the warp. However, if the memory request is non-coalesced, then the
warp scheduler needs to reissue the instructions for all the 32 threads in a warp causing
significant overhead.

Thread divergence and bank conflicts on shared memory canalso cause instruction replay.

Each replay hinders the progress of the warp scheduler being able to issue further

instructions.
Stall Reasons
execution
dependency
memaory
dependency
instruction
fetch
not
texture selected
synchranization

other

pipe
busy memory
constant throttle

Figure 20. [A5 Kernel] Stall Reasons

47

The above chart shows most of the kernel depends on the memory operations from global
memory. A load/store cannot be made because too many requests of given type are
outstanding. In this case, over-dependent on global memory access by every thread. This fact
is further bolstered by memory throttle which indicates a large number of pending memory
operations that prevent forward progress. Execution dependency occurs when an input
required by the instruction is not yet available. Since the calculation of higher statistics
depend on mean, execution dependency is observed.

From the above microarchitectural analysis, it can be concluded that

1. The kernel is memory bandwidth limited. Every single thread within a warp is
making a 128-byte request from global memory thus aggravating the global memory
access. By analyzing the global memory stride and by utilizing the unused shared
memoty, it is possible to improve the performance.

2. A5 Kernel has very low occupancy because the number of launched warps are not
enough to hide the latency. It is possible to increase the occupancy by launching a
thread for each individual pixel of the input image.

3. About 2% of the launched threads are inactive as a result of branch divergence. This

can be resolved by efficiently restructuring the code.

As part of this thesis, the first two performance limiters mentioned above will be
analyzed in detail and resolved because, 2% thread divergence does not hurt the
performance as much as memory bandwidth as well as occupancy. Also, in the shared
memory implementation discussed in Chapter 3, this divergence is automatically resolved

since there will be a thread launched for every single pixel of the input image.

48

CHAPTER 3

PERFORMANCE IMPROVEMENT

In this chapter, proposed changes from the last section will be taken into consideration. The

current A5 kernel will be modified accordingly to reduce global memory access and the

results will be compared.

Section 1: Global memory access pattetn

In short, kernel A5 performs the following

1.

Every thread gathers data from global memory and stores onto its local memory
using nested for loops.

Iterate over the local memory and sum all the elements.

Using the sum, calculate mean.

Using the mean value, calculate standard deviation, kurtosis and skewness.

Store the calculated values onto appropriate locations in global memory.

Analysis of the memory access pattern of the gather operation:

From the code presented in Appendix A, the gather operation is shown in Table 6.

1.

Given a thread block of 256 threads, every thread gathers 256 elements from global
memory corresponding to its global thread index.
Table 6

An Instance of Global Memory Stride in Original Implementation

int x_index = 4 * (threadldx.x + blockIdx.x * blockDim.x);
int y_index = 4 * (threadldx.y + blockldx.y * blockDim.y);
xVal_local[0] = xVal[x_index * 512 + y_index];

49

EYIERE IMTZZ THTZRE OMTERE STIENT GETZGE

TEITRT OLITAE SIITRE GEITRT LIITRT TITAE
LBEZT FRZIT GREIT BGEZT CeZT ZElT
SLLTT BLLTT BLLTT ELLTT TLLTT OLLTT
ERZTT IBZIT THINT ORETT &EZTT GeITT
THLOT OSLOT SRLOT GRLOT LMLOT SRLOT
SCZOT GBZOT LEZOT BEEOT GBZOT BEZOT
Lo E141) SEL8 SEL8 (241} b7 B
G128 BTZ6 eTZE I TIZ4 OTZ6
BOLE ZOLE TOLE OOLE G5B RERG
I8 08TE SETE BETE TP @eTe
L11]3 L (13 13 {1513 {7113 Wil
WL MWL Bl WML Bl DU
S99 MR G EERR ISR 0699
MR ZMIE TMTR OMTR SET TR
T O GIIR GERE LI B
SITE GII6 LITE TTE SITE 0 MINE
Loey 038 L) L1 EORY ey
§60% BS0F EEOM ZEOY TEOY 060V
LI Zast oEke BLST Wuse
Toz oot G902 (e0f @a0C
B§6Z GSSC LEST EET §96T MSRT
LYOZ BMOE SROZ BROZ EMOZ EROZ
SEET BEET RERT ZERT IT ONST
EIOT 20T TEOT OEOT STOT &TOT

s 153 606 W05 Lo§ 305

IR
ENITHZ

T0eTT
L1141
LLcot
s920T

271
{14
L1
(4]
S0l
eI
T
81
e
Lt
1]
TZn
soat
802
se52
114
Wi
5401

T
mme

00411
(11441
FLLOT
¥t
L8
oszs
L]
L]
BOLL
5L
0§
Ll
Lo
L]
f 1]
ozty
WORE
#40¢
L4
1204
03§t
w0t
F3]

114

37141
™

85LTT
(11411
SLcot
{11414
68
sees
(A4}
il
eoLL
i
L5
(Ll
§595
(134}
i
(134
Lot
500
11134
Tz
L
Lyot
§t§
{1

EITHE
134474

#5LTT
E1441
bLLot
11404

WAL
L1441

(L1344
L441
bicot
Tzt
L17E]
Lezs
SELE
[111]
T0LL
BITL
LLay
5313
[
™
Li<1]
an
S0t
ea0t
Tase
6302
LAST
40T
[i3]
1

0TI SMTIZ EMITSL LWITIE MITHI WIS MOTIE DML IWISZ THITIL OMDIL SIITHI ANITSL LOVTSE MBILI SEVISI MSTII LLVLIL IDOTSI LSLIL OL9TSZ
BETEAL LETESZ SETTSL GETTRL METTSL GOTIRZ ZETIOL TAUERC OCTISZ SETTE GZTENE LEUIGD BETTRL GZTIOL MIUMIE EZTISI EZTTRC TZEENE OZTIRD SRTIIE GTIIRC
BALTT GSLTT WLTD BSLTT ZELTT GELTT OSLET SOLTT WRLTT LGATT BELET GGLTT WELTE BWLTT ZLTT TRLTT ORLET BLLET GLLTT LLLTE BALTD
WRETT ERETT EGETT TEEEE OGETT BLZTT GLENT LLENT GLETT GAETT MLZTE BLETT ELETE TLEED OLETT GZTT GBETT LOETT SGETT GBENT wBENT
ZLOT TLOT OLLOT 8BLOT GBLOT LBLOT 99LOT SRLOT MRLOT ERLOT ZBLOT TOLOT ORLOT SRLOT GECOT LGLOT BSLOT GRLOT MGLOT BSLOT ZSLOT
OREOT SRZOT GSZOT LSZOT 9SEOT GEZOT WGZOD WGEDT PRZOV_ TSZO OSZOT SEOT GDZOL DZOD SWEDT BMZOT WRZDD EMEOU EWEOT THZOL OBEOT
§HLE LBLB MLE SRLE BMLS _luﬂal Tl T TS Tobls™ Bels T GEE TLEleT T9els T Gt T eELs tels | Ze.s tels uels | seus o eciel
sees seze e eses t44:1 Teze (1] sezs {1421 Lz Jeze seze 1144 ez zeee TzZ2e ozze [141] 28 Lrze s1z8)
veeo eewe omeae teee omee e emae nes eT4 TR MR ETAR P TRAE DD SOLE MDD LOLY BOLY SOLE sy
L I L G PO O DO o OPR O SO0 o DOP R T SOOE o BT T I RETE, SH OF R L
ool sERL esSL L69L 9ERL g BEBL WSBL BEBL ZSBL TSSL OS9L SGRL BWBL Bl BERL GBL WL B@RL ZeL TWRL QWAL
WL LOTL 9OTL GORL WL BT BORL BERL OO BT mRL Lk wn e wme wn unl own owm s o
WSS WB e | wn ows om o wn wn o CTTE TR sBoowm o un)
R B BB BW 0D | 8 60 6D 6B WD KD 6D L0 T LT W M WD
masl TERE o eMIR G . WG MG SR WHBE DM DR TN CUTI TR stos wes ees oewsl
ovtsp sens eene Leve sene osens wene men T Tene oene enms P O wnoome o wno o)
ae Ly smm o sty e | e oz ume omh o T aT LT FE TR T TR O 0B GO
onuv_ 111¢d L1134 (1113 14123 b13¢] [134] L1143 Lia¢d Loty 30T s0T% L1143 Loty 1018 8804 asoy L80n 950H!
WOl EGRE ZOBT TGFE OOBE | SEGE GEGE LBGE BSGE GESE MEEL EeGe Er 08Ee sest st gwse sese vase)
wory 0T osor sior gaoe | e seor sese wor oeesr oseor meoe BLOC GLOT LLOE BLOE bLOT ELOE TLOE
GG BLSE ST LLGE BGT | SAST WGE BLEE ELGT TAGE OLGE 69E R BEr DRI THL O9sE
worl w0z ssor smer oz DeTTHr AT GHT s0r WOZ LT S0 SIZ MEZEOE wor osoz e ahael
PEET| GEET MEST BEET 264V 5T ToTtT BN T T TT BN T T ST BR T T ST HRm T ST Lh T Ry
WO KT BT TOD oMt | sy seor uor stor seor seor eeor zeor 0T OGOT 20T GOR) LEOF AEOT seOn)
s s oes 6% GE§ | BEE EE M B EEG T oZ eI @m LI B e v e /o
oel_ st _ oW _ur_ I S | R s [L 3 % sl] ol
N eWI Z1GXZLG

| m,mm.,ﬂ.mu m.m.w £52 TSC 0SZ 60T BFC LPB. 99C S¥T PPE EWC THC 1RC OFC

667 BEC-LEZ 987, SE7 VEZ EEC ZEB, TEC BET 622 8T LIT 927 SIT VX

€72 20T 10C904¢ 612 812 L1T 912 317 #IB E1Z 21Z 11Z 0TZ 607 80T

L0Z 902 50¢ qom‘.mo.m.‘wo.m 102 002 mm?,mmﬁ T 96T S6T ¥6T E6T Z6T

16T 06T 68T 88T LOT '981-G8T ¥8T €8T CAT T8% 0BT 6LT 8LT LLT 9LI

GLT WLT ELT ZLT TLT OLT mm..mh,mmH L9T mmﬂ,,m,w.ﬁ T €91 79T 191 091

65T 86T LST 95T §9T PST EST Nmm,.q.,.ﬁmﬂ 0ST 6RT BFY LFT 90T SPI B¥I

£0T Z9T TFT 07T 6ET BET LET 9ET SEI-FET €ETGET NET OET 621 81

LZT 9TT S2T 2T €21 221 TZT 02T 61T m,ﬂfhﬁﬁ wﬂ,w.m PIT EIT 211

1T 01T 60T 80T LOT 90T SOT ¥OT €0T 20T T0T-001 66 \86 L6 96

56 b6 £6 6 Te 06 68 BB LB 98 m.w....qm, mws 18 08

6L BL LL 9L SL WL EL TL TL OL 69 BA. (9 M4 NG9 ¥

€979 T9 09 6S 95 LS 26 S5 PG €5 26 1§ 05 B, 9K

Ly 9b SP B EV Z¥ T OF BE BE LE 9E SE “RE EE ..Nm

IE 0€ 62 82 LZ 92 S ¥C EC ¢¢ IZ 02 61 BT _w_”,b,rmM_-

Iv8T BT ET 2T TII O1 6 B8 L 9% S ¥ E O _ﬁL 1y

Spe31Y} 91 X 91 10 32014 3ibus v

SR

1zation

Fignre 21. [A5 Kernel] Memory Stride Visual

50

From the image above, there is overlap among the elements gathered from global memory
by the threads. Also, every thread fetches 128 bytes of data in a single requesti.e. when
thread O requests data, 128-bytes are provided to the thread (coalesced memory access).
However, the requester thread utilizes only 4-byte, other threads in the half-warp utilizing
only 60 bytes data and thus discarding the rest of fetched in data. Hence, fora 16 * 16
iteration, 32 * 32 4-byte data are fetched. For the performance analysis, only the mean
computation of A5 is taken into account as described in Appendix B and Appendix C. Only
the mean computationin A5 kernel takes 1.000.512 ms.
Proposed changes in shared memory implementation:
1. In order to improve occupancy, grid size of shared memory implementation is
changed to (32,32, 1). Block size remains the same as original implementation (10,
16,1).
2. Unlike the original implementation, there is loop involved in fetching the data from
global to shared memory. Instead, every thread will access a memory location based

on its global thread id. It can be calculated as

Table 7

Mannal Ioop Unroll for Mean Computation

int global_idx = (threadldx.x + blockIdx.x * blockDim.x);
int global_idy = (threadldx.y + blockIdx.y * blockDim.y);

xVal_smem|threadldx.x][threadldx.y] = xVal[global_idx* N + global_idy];

51

ion.

lementat

imp

llustration of the shared memory

isani

Figure 22

e il

HATIL SN T

ot

hiiid
L3
LB I

L
[Loicla b

e

ot

B
Tromme

Ll
il

T
wm
LI

i
I

e
oK

Bl
L4
T4
]
(1
L]

it

e

IR
L4
LT
s
L]
no
ML
o
Wil
L1118
L]
Wit

o
i
L]
Hit

s
o
#ist
L

-

LeH) M IR INTID THTE
e DITIIE RETTIE OMITED GETOSE
L LI BT Gt
L1414 wm ' e
Tt W s it
L et

e s T

L[]
171

. h—
752 €52 752 192 0S3.5ONIVT L¥T i

652
GET BET LET 9ET SET WET Wmm

£20 220 122 022 612 BIZ L12]
£0Z 307 502 k02 £OZ 207 102 00Z, 6!
161 061 681
SET LT ELT
651 851 (51
ERT THT THT

\

841 161 98T ST 46T Q1
ZLT TLT OLT 897 241
99T 96T BST EST 28T T
OFT 6ET BET LET 9E1
LZT 921 SZT FET €21 22T 121 OZT
TIT 01T 60T 80T LOT 30T 50T WOT
G6 #6 t6 76 Te 06
6LOBL LL 3L 5L M
E9 79 T3 09 05 65
(b9 Sh B b Th TH OF 6C 86 L€
16 0f 62 60 L 9 S2 ¥2 €2 ¢ 12
ST BT ET 21 T1OT 6 B L % 6§ ¥

Speailf 9} X g} 4o o0 AUS Y

T 1610

BIT 811
£0T 701
69 88 LB %8 S8
ELTL TL OL €9
L5 95 55 §5 ES

LT

ot

12 $12610\212 112 017 602 802
T 86T LGT 96T 56T ¥ET €61 261
6LT 8LT LLT 9LT
187490y, 537 \§AT\£OT 70T TAT (AT
9T 3T 99T SHT BHT

STINIT €11 211/
101 DL\ g6

L1
ane

e L
e

SHT M

a4¢ 13

Ly
am

et

i/

/

0ET 67T 821

I BT Onl

i

]
i
Ly

Li

[T A
e men
T st
L
sus KM
fi N
504 WU

1zation

de Visual

1i

52

[A5 Kernel With Shared Memory] Memory St

Figure 22.

As soon as all the threads bring in the data, (explicit barrier synchronization is done using
__syncthreads), a 2D sliding window of 16 * 16 size is iterated over the shared memory to
calculate the mean.
Optimization:
The nested loop for calculating the sumis very inefficient with the implementation taking
1.6ms. Hence, instead of nested loop to calculate the sum of the sliding window, the inner
loop is unrolled manually as shown in Table 8. This is done by exploiting the fact that the
window comprises of 16 x 16 elements.

Table 8

Shared Memory Banks Visualization

for (int x = threadldx.x; x < WIN_SIZE + threadldx.x; x++)
{

mean += (xVal_smem|[x|[y] + xVal_smem[x][y + 1]+ xVal_smem[x][y+2]
+ xVal_smem[x][y+3] + xVal_smeml[x][y+4] + xVal_smem[x][y+5]+
xVal_smeml|x|[y+6]+ xVal_smem[x][y+7] + xVal_smem[x][y+8] +
xVal_smem(x][y+9]+ xVal_smem[x][y+10]+ xVal_smem][x]|[y+11] +
xVal_smeml|x|[y+12] + xVal_smem][x][y+13]+ xVal_smem[x][y+14]|+

xVal_smem|x][y+15]);

53

Bank conflict:

In order to achieve high memory bandwidth on concurrent accesses to the shared memory,
the on-chip memory is partitioned into equal sized memory modules called banks which can
be accessed concurrently at the same time. However, if multiple threads access the same
bank, the requests get serialized decreasing the memory bandwidth. There are 32 banks in
Tesla K40. The bandwidth of shared memory is 32 bits per clock cycle per bank. Ideally,

only one bank should be accessed by a threads from a warp per cycle.

Threads

- <>
e Y

CSOSISOSOSISZS
III I e A

23|24 26| 27| 28] |29]]30

NN SIS

Ilil iiii”i
Shared Memory Banks

Figure 23. Shared Memory Bank Conflict. Adapted from

“http:/ /www.3dgep.com/optimizing-cuda-applications”, n.d..

Threads within a block are numbered in the equivalent of column major order. Hence using
smem|threadld.x][threadld.y] causes threads ina warp reading from the same column which
means they are reading from the same memory bank resulting in bank conflicts. Figure 24

image provides the order of threads executed within a warp.

54

0 0
1 0
2 0
0 1
1 1
2 1
0 2
1 2
2 2

Figure 24. Threads Launch Order Withina Warp

Typically, bank conflict is resolved by using Smem|threadld.y|[threadld.x] instead of
Smeml|threadld.x][threadld.y].

Shared memory bank conflict can be seen from the profiler in Figure 25.

55

Transactions Per Request

Loads iz
Req: 1,046.576

24 -
Trang: 4 194 304
Size: 1.0D GB
15 BW: 615.99 GB/s Shared Memory
Req: 32768 ank Conflcl
. 8.00
4.00 Stores
I Sow 640 B
o+ | Size: 6400 ME

B 38.50 GB/s

Load Store

Figure 25. [A5 Kernel With Shared Memory|] Memory Statistics - Shared Memory
After resolving the bank conflicts, the run time is improved and it is reduced to 757.984 us.
25 % improvement over the original implementation.

Section 2: Results
The following microarchitectural analysis is for the shared memory implementation, without
nested-for loops and bank conflict resolved.

Memory statistics: Global:

Sizes 000 B Texture Cache
BV 0,00 B/s Beank Conflict
Uncached Loads

Size: 000 B

BW: 0,00 BYs

L1 Trans: 555,360
iz BOL00 M
BYWW: 103.07 GB/s

Cached Loads

24 - L1 Trans: 0

Stores 16.00 Size: 000 B
Req: 12036 16 1 1217
H -
T 1
Load

BWE 000 B/
Figure 26. [A5 Kernel With Shared Memory| Memory Statistics - Global

Transactions Per Request

L1 Trans: 146,443
Size: 17.68 M2
BW: 23.03 Ga/fs

56

It can be observed that the number of requests to global memory has reduced drastically

(40,960 vs 129,024) improving the runtime.

Memory statistics: Shared:

Transactions Per Request
Loads
Req: 1,048,576

Loads

Trans: 1,048 576
Ak L LT T

16 =

BW: 329.82 GB/s Shared Memory

Stores
Req: 32,768

Stores

Trans: 32,768
Size: 8.00 MB
BW: 10.31 GBys

Figure 27. |[A5 Kernel With Shared Memory] Memory Statistics - Shared Memory Bank
Contflict Resolved

1. No bank conflict

2. Effective use of shared memory showing 1 to 1 correspondence between load and

store.

Table 9
Results

Original implementation 1.000512ms
Shared memory implementation with 1.623392ms

nested for loop for mean calculation

57

Shared memory implementation without 0.928031ms

nested for loop

Shared memory implementation without 0.757984ms

nested for loop, bank conflict resolved.

58

CHAPTER 4

CONCLUSION
General purpose GPU based solution to accelerate the algorithm is a niche area of research
and development with respect to IQA algorithms. Still, they do not provide enough speedup
to use the algorithms in real-time environment. That is why, it is essential to understand the
underlying microarchitecture to map complex algorithms effectively onto the GPU. In this
thesis, the microarchitectural analysis of an implementation of the most apparent distortion
(MAD) image quality assessment (IQA) algorithm is done, a bottleneck is strategically
analyzed, and a solution is offered. Microarchitectural profiling of MAD implementation has
showed that A5 kernel which performs local statistics computation as the most problematic
kernel. Further analysis of A5 kernel has shown that the kernel is memory bandwidth limited
with very less occupancy. Hence, in order to improve memory bandwidth, frequent access to
the global memory had to be reduced by exploiting the on-chip memory which offers low
latency access.
So, the A5 kernel was restructured to bring in the data from global memory and store itin
on-chip shared memory and then perform the mean calculation. Initially, a nested for loop
to sum all the elements in the shared memory was implemented. But, the nested for loop
worsened the runtime of the kernel. Hence a manual loop unroll along with resolving bank
conflict reduced the runtime of the kernel. The conclusion is, by increasing the amount of
data reuse by the threads and by reducing high latency memory access to global memory,
performance can be improved. We have demonstrated a promising shared memory
implementation of the most problematic kernel with 25% improvement in the runtime.

Individual kernel execution showed 1.33x speedup over the original implementation and

59

since the kernel is called 40 times as part of the local statistics computation makes the
speedup prominent thus improving the overall algorithmic runtime.

The application that is demonstrated does not involve any communication among the
threads. If data must be communicated between the threads, necessary care must be taken to
ensure race conditions do not occur. In this document, only the mean calculation is taken
into account and the performance is improved. It can be extended to kurtosis, standard
deviation and skewness. As an extension to this thesis work, the higher order statistics can
be optimized by resolving the bottleneck limiting its performance. It is expected to lead to
much higher performance gains. In addition to that, only the memory hierarchy has been
dealt in detail and efficient shared memory implementation has been provided. Other
performance limiters like compute resources, latency can be explored in detail not only for
A5 but also with other kernels in the CUDA MAD implementation. The Tesla K40 GPU
offers fast accessibility to read-only data cache, architecture specific instructions (shuffle),
and ptx-optimization which offers ultimate control over the hardware than high level
language. It is also possible that, by merging smaller kernels together, performance can be

improved.

60

REFERENCES

"In-Depth Comparison of NVIDIA Tesla “Kepler” GPU Accelerators," Retrieved from
https: //www.microway.com/knowledge-center-articles /in-depth-comparison-of-nvidia-
tesla-kepler-gpu-accelerators

Adapted by author from “Lossless_compression,” Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, Inc., 27 Sept. 2016. Web. 07 Oct. 2016.

Alam, S. R., Agarwal, P. K., Smith, M. C., Vetter,]. S., & Caliga, D. (2007). Using FPGA
devices to accelerate biomolecular simulations. Computer, 40(3), 66-73.

Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., & Aamodt, T. M. (2009, April).
Analyzing CUDA workloads using a detailed GPU simulator. InPerformance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on (pp. 163-
174). IEEE.

Barrett, H. H. (1990). Objective assessment of image quality: effects of quantum noise and
object variability. JOSA A, 7(7),1266-1278.

Bauer, M. W., & Gaskell, G. (Eds.). (2000). Qualitative researching with text, image and sound: A
practical handbook for social researh. Sage.

Brodtkorb, A. R., Hagen, T. R., Schulz, C., & Hasle, G. (2013). GPU computing in discrete
optimization. Part I: Introduction to the GPU. EURO journal on transportation and
logistics, 2(1-2),129-157.

Brosnan, T., & Sun, D. W. (2004). Improving quality inspection of food products by
computer vision—a review. Journal of Food Engineering, 61(1), 3-16.

Buiten, H. J., & Van Putten, B. (1997). Quality assessment of remote sensing image
registration—analysis and testing of control point residuals.ISPRS journal of
photogrammetry and remote sensing, 52(2), 57-73.

Chandler, D. M. (2013). Seven challenges in image quality assessment: past, present, and
future research. ISRN Signal Processing, 2013.

Charrier, C., Knoblauch, K., Moorthy, A. K., Bovik, A. C., & Maloney, L. T. (2010, January).
Compatison of image quality assessment algorithms on compressed images. In IS&T/SPIE
Electronic Imaging (pp. 75290B-75290B). International Society for Optics and Photonics.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., & Skadron, K. (2008). A
performance study of general-purpose applications on graphics processors using CUDA.
Journal of parallel and distributed computing,68(10), 1370-1380.

Chen, W. H., Smith, C. H., & Fralick, S. C. (1977). A fast computational algorithm for the
discrete cosine transform. IEEE Transactions on communications, 25(9), 1004-1009.
61

https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla-kepler-gpu-accelerators/
https://www.microway.com/knowledge-center-articles/in-depth-comparison-of-nvidia-tesla-kepler-gpu-accelerators/

CUDA toolkit documentation. Parallel thread execution ISA Version 5.0. Retrieved from
http://docs.nvidia.com/cuda/parallel-thread-execution

Cuda Toolkit documentation."LL1 cache". Retrieved from
http://docs.nvidia.com/cuda/kepler-tuning-guide /index.html

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., ... & Yelick, K. (2008,
November). Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectutes. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing (p.
4). IEEE Press.

Davidson, J. W., & Jinturkar, S. (1994, August). Memory access coalescing: a technique for
eliminating redundant memory accesses. In ACM SIGPLAN Notices (Vol. 29, No. 6, pp.
186-195). ACM.

Fung, W. W., & Aamodt, T. M. (2011, February). Thread block compaction for efficient
SIMT control flow. In 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (pp. 25-36). IEEE.

Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., ... & Volkov,
V. (2008). Parallel computing experiences with CUDA. Miero, IEEE, 28(4), 13-27.

George, A., & Livingston, S. J. (2013). A survey on full reference image quality assessment
algorithms. International Journal of Research in Engineering and Technology, 2(12), 303-
307.

Gepner, P., & Kowalik, M. F. (20006, September). Multi-core processors: New way to achieve
high system performance. In International Symposium on Parallel Computing in Electrical
Engineering (PARELEC'06) (pp. 9-13). IEEE.

Glaskowsky, P. N. (2009). NVIDIA’s Fermi: the first complete GPU computing
architecture. White paper, 18.

Goldmark, P. C.; & Dyer, J. N. (1940). Quality in television pictures. Journal of the Society
of Motion Picture Engineers, 35(9),234-253.

Hill, F., & Kelley, S. (2007). Computer graphics using OpenGL, 3/ E. Peatrson.

Holloway, J., Kannan, V., Chandler, D. M., & Sohoni, S. ON THE COMPUTATIONAL
PERFORMANCE OF SINGLE-GPU AND MULTI-GPU CUDA
IMPLEMENTATIONS OF THE MAD IQA ALGORITHM.

Hong, S., & Kim, H. (2009, June). An analytical model fora GPU architecture with memory-
level and thread-level parallelism awareness. InACM SIGARCH Computer Architecture
News (Vol. 37, No. 3, pp. 152-163). ACM.

62

http://docs.nvidia.com/cuda/parallel-thread-execution/
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html

Huang, J., & Shi, Y. Q. (1998). Adaptive image watermarking scheme based on visual
masking. Electronics letters, 34(8), 748-749.

Iwai, K., Kurokawa, T., & Nisikawa, N. (2010, November). AES encryption implementation
on CUDA GPU and its analysis. In Networking and Computing (ICNC), 2010 First
International Conference on (pp. 209-214). IEEE.

Jain, R. (1990). The art of computer systems performance analysis: techniques for experimental design,

measurement, simulation, and modeling. John Wiley & Sons.

Jog, A., Kayiran, O., Mishra, A. K., Kandemir, M. T., Mutlu, O., Iyer, R., & Das, C. R. (2013,
June). Orchestrated scheduling and prefetching for GPGPUs. In ACM SIGARCH
Computer Architecture News (Vol. 41, No. 3, pp. 332-343). ACM.

Jones, S. (2012, May). Introduction to dynamic parallelism. In GPU Technology Conference
Presentation S (Vol. 338, p. 2012).

Kamble, V., & Bhurchandi, K. M. (2015). No-reference image quality assessment algorithms:
A survey. Optik-International Journal for Light and Electron Optics, 126(11),1090-1097.
Kirk, D. B., & Wen-mei, W. H. (2012). Programming massively parallel processors: a hands-
on approach. Newnes.

Kunt, M., & van den Branden Lambrecht, C. (1998). Specialissue on image and video
quality metrics. Signal Processing, 70(3).

Larson, E. C., & Chandler, D. M. (2010). Most apparent distortion: full-reference image
quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1),011006-011006.

Lee, Y. H., Khalil-Hani, M., Bakhteri, R., & Nambiar, V. P. (2016). A real-time near infrared
image acquisition system based on image quality assessment.Journal of Real-Time Image
Processing, 1-18.

Li, C., Wu, H., Chen, S., Li, X., & Guo, D. (2009, August). Efficient implementation for
MD5-RC4 encryption using GPU with CUDA. In 2009 31d International Conference on
Anti-counterfeiting, Security, and Identification in Communication (pp. 167-170). IEEE.
Lundstrom, C. (2006). Technical report: Measuring digital image quality.

Manavski, S. A. (2007, November). CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography. In Signal Processing and Communications, 2007. ICSPC
2007. IEEE International Conference on (pp. 65-68). IEEE.

Manavski, S. A. (2007, November). CUDA compatible GPU as an efficient hardware

accelerator for AES cryptography. In Signal Processing and Communications, 2007. ICSPC
2007. IEEE International Conference on (pp. 65-68). IEEE.

63

Moore, G. E. (2006). Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. IEEE Solid-State Circuits
Newsletter, 3(20), 33-35.

Harris, M. (2007). Optimizing parallel reduction in CUDA. N1'IDLA Developer
Technology, 2(4).

Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a guantitative approach.
Elsevier.

Manavski, S. A. (2007, November). CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography. In Signal Processing and Communications, 2007. ICSPC 2007.
IEEE International Conference on (pp. 65-68). IEEE.

Michalakes, J., & Vachharajani, M. (2008). GPU acceleration of numerical weather
prediction. Parallel Processing Letters, 18(04), 531-548.

Micikevicius, P. (2010). Analysis-driven optimization. In GPU technology conference (pp. 1-
55).

Mittal, A., Soundararajan, R., Muralidhar, G. S., Bovik, A. C., & Ghosh, J. (2013, March).
Blind image quality assessment without training on human opinion scotes. In IS&T/SPIE
Electronic Imaging (pp. 86510T-86510T). International Society for Optics and Photonics.

Mohammadi, P., Ebrahimi-Moghadam, A., & Shirani, S. (2014). Subjective and objective
quality assessment of image: A survey. arXiv preprint arXiv:1406.7799.

Moorthy, A. K., & Bovik, A. C. (2011). Visual quality assessment algorithms: what does the
future hold?. Multimedia Tools and Applications, 51(2), 675-696.

Nickolls, J. (2007). Nvidia GPU parallel computing architecture. IEEE Hot Chips, 19.

Nickolls, J., Buck, L., Garland, M., & Skadron, K. (2008). Scalable parallel programming with
CUDA. Queue, 6(2), 40-53.

Nsight, N. V. L. D. I. A., & Edition, V. S. (2013). 3.0 User Guide. NVIDIA Corporation.

Nvidia, C. (2012). NVIDLAs next generation CUD.A compute architecture: Kepler GK110.
Technical report, Technical report, 2012.

Nvidia, C. (2007). NVIDIA CUDA programming guide (version 1.0). NVIDIA: Santa Clara,
CA.

Nvidia, C. U. D. A. (2007). Compute unified device architecture programming guide.

Nvidia, C. U. D. A. (2011). Nvidia cuda ¢ programming guide. Nvidia Corporation, 120(18),
8.

64

NVidia, F. (2009). Nvidia’s next generation cuda compute architecture.NVidia, Santa Clara,
Calif, USA.

Okarma, K., & Mazurek, P. (2011). GPGPU based estimation of the combined video quality
metric. In Image Processing and Communications Challenges 3 (pp. 285-292). Springer
Berlin Heidelberg.

Developers, O. (2001). Open64 compiler and tools

Pappas, T. N., Safranek, R. J., & Chen, J. (2000). Perceptual criteria for image quality
evaluation. Handbook of image and video processing, 669-684.

Phan, T. D., Shah, S. K., Chandler, D. M., & Sohoni, S. (2014). Microarchitectural analysis of
image quality assessment algorithms. Journal of Electronic Imaging, 23(1), 013030-013030.

Phan, T, Sohoni, S., Chandler, D. M., & Larson, E. C. (2012, April). Performance-analysis-
based acceleration of image quality assessment. InImage Analysis and Interpretation (SSIAI),
2012 IEEE Southwest Symposium on (pp. 81-84). IEEE.

Pitas, I. (2000). Digital image processing algorithms and applications. John Wiley & Sons.

Rui, R., Li, H., & Tu, Y. C. (2015, October). Join algorithms on GPUs: A revisit after seven
years. In Big Data (Big Data), 2015 IEEE International Conference on (pp. 2541-2550).
IEEE.

Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., & Hwu, W. M. W.
(2008, February). Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming (pp. 73-82). ACM.

Ryoo, S., Rodrigues, C. 1., Stone, S. S., Baghsorkhi, S. S.; Ueng, S. Z., Stratton, J. A., & Hwu,
W. M. W. (2008, April). Program optimization space pruning for a multithreaded gpu. In
Proceedings of the 6th annual IEEE /ACM international symposium on Code generation
and optimization (pp. 195-204). ACM.

Said, A., & Pearlman, W. A. (1996). An image multiresolution representation for lossless and
lossy compression. IEEE Transactions on image processing, 5(9), 1303-1310.

Silverstein, D. A., & Farrell, J. E. (1996, September). The relationship between image fidelity
and image quality. In Image Processing, 1996. Proceedings., International Conference on
(Vol. 1, pp. 881-884). IEEE.

Suresh, S., Babu, R. V., & Kim, H. J. (2009). No-reference image quality assessment using
modified extreme learning machine classifier. Applied Soft Computing, 9(2), 541-552.

65

T. Dokken, T.R. Hagen, and J.M. Hjelmervik. The GPU as a high performance
computational resource. In Proceedings of Spring Conference on Computer Graphics 2005,
pages 21-26, 2005

Trapnell, C., & Schatz, M. C. (2009). Optimizing data intensive GPGPU computations for
DNA sequence alignment. Parallel computing, 35(8), 429-440.

Wang, Z., & Bovik, A. C. (2006). Modern image quality assessment.Synthesis Lectures on
Image, Video, and Multimedia Processing, 2(1), 1-156.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4),
600-612.

Wang, Z., Lu, L., & Bovik, A. C. (2004). Video quality assessment based on structural
distortion measurement. Signal processing: Image communication,19(2),121-132.

Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003, November). Multiscale structural
similarity for image quality assessment. In Signals, Systems and Computers, 2004. Conference Record
of the Thirty-Seventh Astlomar Conference on (N ol. 2, pp. 1398-1402). Ieee.

Winkler, S. Image quality in the era of personal and social media. In Proc. of the 5th
International Workshop on Image Media Quality and its Applications(pp. 1-2).

Wittenbrink, C. M., Kilgariff, E., & Prabhu, A. (2011). Fermi GF100 GPU architecture.
IEEE Micro, 31(2), 50-59.

Wu, B., Zhao, Z., Zhang, E. Z., Jiang, Y., & Shen, X. (2013, February). Complexity analysis
and algorithm design for reorganizing data to minimize non-coalesced memory accesses on
GPU. In ACM SIGPLAN Notices (Vol. 48, No. 8, pp. 57-68). ACM.

Xu, C., Kirk, S. R., & Jenkins, S. (2009, December). Tiling for performance tuning on
different models of gpus. In 2009 Second International Symposium on Information Science
and Engineering (pp. 500-504). IEEE.

Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: a feature similarity index for
image quality assessment. IEEE transactions on Image Processing, 20(8), 2378-2386.

Zhao, L., Iyer, R., Makineni, S., & Bhuyan, L. (2005, March). Anatomy and performance of

SSL processing. In IEEE International Symposium on Performance Analysis of Systems and Software,
2005. ISPASS 2005. (pp. 197-206). IEEE.

66

APPENDIX A

KERNEL A5- ORIGINAL IMPLEMENTATION

67

__global__void A5(float* xVal, float* outStd, float* outSkw, float* outKrt)
{

//Declarations

//__shared__ float xVal_Shm[256];

float xVal_local[250];

float mean, stdev, skw, krt, stmp;
int iB, jB;

//for 1= 0;i<512-15;i+=4)

inti= 4* (threadldx.x + blockldx.x * blockDim.x);

if 1<497)//512-15=497

{
//for (j=0;j<512-15;j+=4)
int j = 4 * (threadldx.y + blockldx.y * blockDim.y);
if (j < 497)

// THE FOLLOWING SET OF RUNNING SUMS
CAN BE A set of PARALLEL REDUCTION:S (in shared memory?)
// 256 itteratios -> log2(256)=8 itterations

// Stote block into registers (256 x 4Bytes = 1kB)
int idx = 0;
for (iIB=1;iB <i+16;iB++)
{
for jB=1j;jB<j+16;iB++)
{
xVal_local[idx] = xVal[iB * 512 + iB];
idx++;

68

/[Mraverse through and get mean
float mean = 0;
for (idx = 0; idx < 256; idx++)
mean +=xVal_local[idx];
//this can be a simple reduction in shared memory
mean = mean / 256.0f;

//Traverse through and get stdev, skew and kurtosis

stdev = 0;
skw = 0;
krt = 0;

float xV_mean = 0;
for (idx = 0;idx < 256; idx++)
{
// Place this commonly re-used value into a register to
preserve temporal localitiy
xV_mean = xVal_local[idx] - mean;
stdev += xV_mean*xV_mean;
skw += xV_mean*xV_mean*xV_mean;
krt +=xV_mean*xV_mean*xV_mean*xV_mean;

stmp = sqrt(stdev / 256.01);
stdev = sqrt(stdev / 255.0f);//MATLAB's std is a bit different

if (stmp 1= 0){
skw = (skw / 256.01) / ((stmp)*(stmp)*(stmp));
krt = (krt / 256.01) / ((stmp)*(stmp)* (stmp)*(stmp));

H
else{
skw = 0;
ket = 0;
H

// Only this final output should be written to global memory:
outStd[(i/ 4 * P) +j / 4] = stdev;

outSkw[(i /4 * P) + i / 4] = skw;

outKet[(i/ 4 * P) + / 4] = ket;

69

APPENDIX B

CURRENT IMPLEMENTATION - MEAN COMPUTATION

70

__global__ void A5_fast_lo_stats_kernel(float* xVal, float* out)
{
//Declarations
float xVal_local[WIN_SIZE * WIN_SIZE];
float mean = 0, stdev = 0, skw = 0, krt = 0, stmp = 0;
int iB, B;
int blockId = blockldx.x + blockIdx.y * gridDim.x;
int threadld = blockId * (blockDim.x * blockDim.y) + (threadldx.y *
blockDim.x) + threadldx.x;
inti= 4* (threadldx.x + blockldx.x * blockDim.x);
int j = 4 * (threadldx.y + blockIdx.y * blockDim.y);
int global_idx = (threadldx.x + blockldx.x * blockDim.x);
int global_idy = (threadldx.y + blockldx.y * blockDim.y);
if (A< N -WIN_SIZE) && (j <N - WIN_SIZE))//512-15=497
{
//for (j=0;j<512-15;j+=4)
// THE FOLLOWING SET OF RUNNING SUMS CAN BE A
set of PARALLEL REDUCTIONS (in shared memory?)
// 2506 itteratios -> log2(256)=8 itterations
// Stote block into registers (256 x 4Bytes = 1kB)
int idx = 0;
for (iB = i;iB < i + WIN_SIZE; iB++)

{

71

for (B =j;jB < + WIN_SIZE; jB++)

{

xVal_local[idx++] = xVal[iB * N + jB];

}

// //Traverse through and get mean
float mean = 0;
for (idx = 0; idx < WIN_SIZE * WIN_SIZE; idx++)
mean += xVal_local[idx];
//this can be a simple reduction in shared memory

mean = mean / 256.0f;

// printf("%d %d %d %d\n", threadldx.x, threadldx.y,
blocklIdx.x, blockldx.y, global_idx*N + global_idy);
out[global_idx* N + global_idy] = mean;

//

else
out[global_idx* N + global_idy] = xVal|global_idx * N +

global_idy];
k

72

APPENDIX C

SHARED MEMORY IMPLEMENTATION - MEAN COMPUTATION

73

__global__void A5_low_stats_kernel(float* xVal, float* out)
{
//Declarations
//__shared__ float xVal_Shm[256];
__shared__ float xVal_smem|[WIN_SIZE + WIN_SIZE][WIN_SIZE +
WIN_SIZE]; //threadDim.x, threadDim.y size
float mean = 0, stdev = 0, skw = 0, krt = 0, stmp = 0;
floatiB, jB;
//https://cs.calvin.edu/courses/cs/374/CUDA /CUDA-Thread-

Indexing-Cheatsheet.pdf

//Used in code

int global_idx = (threadldx.x + blockIdx.x * blockDim.x);

int global_idy = (threadldx.y + blockldx.y * blockDim.y);

int global_idx1 = 4 * (threadldx.x + blockldx.x * blockDim.x);
int global_idyl = 4 * (threadldx.y + blockldx.y * blockDim.y);

out[global_idx*N + global_idy] = xVal[global_idx* N + global_idy];

xVal_smem|threadldx.y][threadldx.x] = xVal[global_idx* N + global_idy];
xVal_smem|threadldx.y + WIN_SIZE][threadldx.x] = xVal[global_idx* N

+ global_idy + WIN_SIZE];

74

xVal_smem|threadldx.y][threadldx.x + WIN_SIZE] = xVal|(global_idx +
WIN_SIZE)* N + global_idy];

xVal_smem|threadldx.y + WIN_SIZE][threadldx.x + WIN_SIZE]| =
xVal[(global_idx + WIN_SIZE)* N + global_idy + WIN_SIZE];

__syncthreads();

if ((threadldx.x % 4 == 0 && threadldx.y % 4 == 0))
{
int y = threadldx.y;
for (int x = threadldx.x; x < WIN_SIZE + threadldx.x; x++)
{
mean += (xVal_smeml[y][x] + xVal_smem[y+1][x]
+ xVal_smem[y+2][x] + xVal_smemly+3][x]
+
xVal_smeml[y+4][x] + xVal_smemly+5][x]+ xVal_smem[y+6][x]+ xVal_smem[y+7][x]
+
xVal_smemly+8][x] + xVal_smemly+9][x]+ xVal_smeml[y+10][x]+ xVal_smem[y+11][x]
+
xVal_smem[y+12][x] + xVal_smem[y+13][x]+ xVal_smem[y+14][x]+

xVal_smem[y+15][x]);

mean = mean / 256.0f;

75

int x = blockldx.x;
y = blockldx.y;
/ Jout[global_idx*N + global_idy] = xVal[global_idx*N +
global_idy];
if (blockIdx.x |= 31 && blockldx.y 1= 31)
{
out[((x * 4) + threadldx.x / 4) * N + (y * 4) + threadldx.y

/ 4] = mean;

76

