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ABSTRACT 

For this dissertation, three separate papers explore the study areas of the western Grand 

Canyon, the Grand Staircase (as related to Grand Canyon) and Desolation Canyon on the Green 

River in Utah. 

In western Grand Canyon, I use comparative geomorphology between the Grand Canyon 

and the Grand Wash Cliffs (GWC). We propose the onset of erosion of the GWC is caused by 

slip on the Grand Wash Fault that formed between 18 and 12 million years ago. Hillslope angle 

and channel steepness are higher in Grand Canyon than along the Grand Wash Cliffs despite 

similar rock types, climate and base level fall magnitude. These experimental controls allow 

inference that the Grand Canyon is younger and eroding at a faster rate than the Grand Wash 

Cliffs. 

The Grand Staircase is the headwaters of some of the streams that flow into Grand 

Canyon. A space-for-time substitution of erosion rates, supported by landscape simulations, 

implies that the Grand Canyon is the result of an increase in base level fall rate, with the older, 

slower base level fall rate preserved in the Grand Staircase. Our data and analyses also support 

a younger, ~6-million-year estimate of the age of Grand Canyon that is likely related to the 

integration of the Colorado River from the Colorado Plateau to the Basin and Range. Complicated 

cliff-band erosion and its effect on cosmogenic erosion rates are also explored, guiding 

interpretation of isotopic data in landscapes with stratigraphic variation in quartz and rock 

strength. 

Several hypotheses for the erosion of Desolation Canyon are tested and refuted, leaving 

one plausible conclusion. I infer that the Uinta Basin north of Desolation Canyon is eroding slowly 

and that its form represents a slow, stable base level fall rate. Downstream of Desolation Canyon, 

the Colorado River is inferred to have established itself in the exhumed region of Canyonlands 

and to have incised to near modern depths prior to the integration of the Green River and the 

production of relief in Desolation Canyon. Analysis of incision and erosion rates in the region 

suggests integration is relatively recent.  
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PREFACE 

“You cannot see the Grand Canyon in one view, 

as if it were a changeless spectacle from which a curtain might be lifted, 

but to see it, you have to toil from month to month through its labyrinths.” 

 

John Wesley Powell
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 INTRODUCTION 

Motivation  

The Colorado Plateau presents a landscape of diverse and fantastic topographic features 

that have developed primarily since the Miocene (Figure 1.1). The Colorado River system is the 

greatest driving force of erosion across the landscape, providing the means for gravitational 

potential energy to be unleashed in the numerous relatively steep sections of the river. This river 

and its canyons provide the boundary conditions and base level for eroding the hillslopes, cliffs 

and plateaus between rivers. John Wesley Powell and his expedition explored the deep canyons 

of the river system in 1869. Powell penned notes with (some) ideas that are still valid 

scientifically. Upon descending into the depths of the Inner Gorge of Grand Canyon, Powell 

lamented the black rocks of schist and granite and their tendency to host the worst rapids of the 

river. As will be explored in detail, the strength of rock is a measure for the resistance of rock to 

erosion that influences channel geometry (e.g. Grams and Schmidt, 1999; Pederson and 

Tressler, 2012; Bursztyn et al., 2015). As Powell pondered the river’s irreverence for mountains, 

cutting through them instead of flowing around them, he questioned whether the rivers are 

antecedent to the geologic structures or that the rivers are superimposed on those structures. A 

century of research has expanded datasets and improved their logic, mostly disagreeing with 

Powell’s antecedent interpretation for most of the canyons (Davis, 1901; Blackwelder, 1934; 

Longwell, 1946; Lucchitta, 1972; Young and Brennan, 1974), but the effects of tectonic activity on 

the Colorado Plateau are still relevant to the river system (Roy et al., 2004; Darling et al., 2012; 

Karlstrom et al., 2012; Crow et al., 2014; Darling and Whipple, 2015).  

The earliest known major river system flowing west from the Colorado Rockies flowed 

west toward the Utah-Colorado border about 11 million years ago (11 Ma), but with no known 

path across the plateau (Aslan et al., 2010). Where did this river go? What has happened to the 

fluvial system as the landscape evolved?  In order to grasp these questions, it is necessary to 

appreciate the scale and complexity of the Colorado Plateau itself, which is the result of 

protracted deposition and faulting in several non-discrete phases, resulting in a complex set of 
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rocks to erode. Fluvial evidence of the ancestral Colorado River is rare given the systematic 

removal of material since periods of deposition dominated through the Tertiary. The landscape 

that remains today is the integrated result of the geologic features and the erosional processes 

that have sculpted it. Through the history of the Colorado River, some 300,000 km3 of rock have 

been transported from the plateau to the Gulf of California (Dorsey, 2010). Thus the erosional 

activity across this landscape is a complex smoke-screen that temporarily buries and 

permanently removes geologic features. Inherited geologic features, such as varied lithology or 

inactive faults, can have a strong control on the topographic expression of erosion. In undertaking 

the exploration of the canyons of the plateau, to explore the pace and pattern of erosion and try to 

reconstruct the history of landscape evolution, I have published one paper and prepared two 

more for submission to peer-reviewed journals, to comprise Chapters 2, 3, and 4. A fifth synthesis 

chapter highlights progress made here and future goals. The background material and citations 

are sometimes redundant, on account of preparation for publication as independent journal 

articles. 

Brief Geologic Background of the Colorado Plateau  

Cenozoic Tectonic Setting 

A history of the tectonic and erosive modification of the Colorado Plateau logically begins 

at the last point this continental interior was under shallow seas: during the Late Cretaceous 

eustatic high-stand (Hancock and Kauffman, 1979). The Late Cretaceous seaway of the interior 

western US divided two sub-areal regions of North America, the craton to the east and the Sevier 

Orogenic belt to the west (Armstrong, 1968; Heller et al., 1986; Taylor et al., 2000). 

Sedimentation through the Cretaceous deposited kilometers of shale and sandstone. The sea 

eventually regressed, propagating terrestrial river deposits across the K/Pg boundary. 

Compression and faulting of the then nascent Laramide Orogeny apparently recorded an inboard 

transfer of deformation from the coastal margin of the Sevier fold-and-thrust belt and entrained 

the region of the seaway into continent-scale compression, which led to the central basement-

cored block uplifts of the Rocky Mountains. Fault activity ranged from 75 - 35  Ma (Bird, 1998). 
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Several closed-interior basins between these block ranges record local depo-centers of 

Paleogene detritus eroded from these uplifted terrains (Figure 1.2, Dickinson et al., 1988).  

Deformation after the Laramide Orogeny is considerably lower magnitude, in terms relief 

production and slip on faults through the Cenozoic, particularly within the Colorado Plateau 

proper. Younger faulting in the western interior US typically consists of  extensional normal 

faulting after forces at the plate margin changed, likely related to the transition of motion along the 

sea-board from a convergent subduction zone to the strike-slip San Andreas fault system (e.g. 

Atwater and Stock, 1998). Structural features on the Colorado Plateau are limited such that the 

stratigraphy of the Colorado Plateau is often described as relatively simple, “layer-cake” 

stratigraphy. However, the geomorphic response to eroding variable rock types is not simple and 

requires an appreciation of the rock position, geometry, composition and strength, as will be 

explored in subsequent chapters on the Colorado River System.  

Tertiary Rivers and Basins  

The presumed source of fluvial sediment into Colorado Plateau Laramide basins was 

from nearby ranges (Figure 1.2, Dickinson, 1976); however, recent detrital zircon analysis 

enables more robust provenance studies to distinguish sediment sources (Gehrels et al., 2006). 

For instance, the zircon populations of the Uinta Basin of northern Utah are statistically 

indistinguishable from those of the McCoy Basin of Southern Arizona (Figure 1.2), which is used 

to infer a ~1000 km-scale drainage network sourced in southern California and Arizona, rather 

than in more proximal uplifts in Utah and Colorado (Figure 1.2, Davis et al., 2010; Dickinson et 

al., 2012). This deposition, ca. 50 Ma, is approximately coeval with the fluvial system of paleo-

canyons of western Grand Canyon (Young and McKee, 1978; Young and Hartman, 2014) and 

the Rim Gravels of eastern Arizona (Potochnik, 1989; Dickinson et al., 2012). The Hualapai 

Plateau paleo-canyons contain up to several hundred meters of detritus from rock sources not 

present on the Colorado Plateau interior. Paleo-flow indicators reveal northeastward flow in the 

coarse conglomerate, which corroborates the possibility that these canyons are the conduit which 

brought some of the sediment of the Uinta Basin to Utah from Arizona and California during the 
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Eocene. Nearby basins show a range of potential Sevier volcanic arc input in detrital zircons, 

suggesting that the fluvial system extending from California and southern Arizona to Utah did not 

affect all basins (Dickinson et al., 2012).  

Laramide tectonism in the Hualapai Plateau of the western Grand Canyon (Figure 1.2) 

produced compressional monoclines, which likely cut off the river system, leading to substantial 

shifts in drainage patterns (Young, 1979; Young and Crow, 2014). Young (1979) reports the 

presence of limestone on top of coarse gravel proximal to monoclines, inferred to represent 

abrupt ponding of once faster-moving water. Subsequent deposition is much younger (ca. 24 

Ma,Young and Crow, 2014); indicating a hiatus in significant fluvial activity on the Hualapai 

Plateau. Post 24 Ma, relatively thin deposits of basalt and Peach Springs Tuff (18–19 Ma) are 

interbedded with locally sourced fluvial detritus and alluvial fanglomerate (Young and Brennan, 

1974; Nielson et al., 1990; Wenrich et al., 1995), indicating that there were no large rivers in the 

area of the western Grand Canyon for tens of millions of years (Young and Crow, 2014; Darling 

and Whipple, 2015). 

The generally termed Rim Gravels are deposits of coarse sediment that vary in age and 

occur along the Mogollon Rim. On the Hualapai Plateau, these gravels are named the Music 

Mountain Formation and occur in paleo-canyons mentioned previously (Late Cretaceous to 

middle Eocene, Young and Hartman, 2014). In central Arizona, the Mogollon Rim Formation (“rim 

gravels” as well) exhibits north-northeast flowing paleo-currents and source rocks from southern 

Arizona (Potochnik, 1989; Potochnik and Faulds, 1998). The 37-33 Ma deposits (Potochnik and 

Faulds, 1998) rest on an Eocene erosion surface that was tilted and down-dropped in the 

Neogene, but which preserves extensive planation across Paleozoic and Proterozoic rock types, 

indicating relatively little base level change in the area for an extended period of time (Potochnik, 

1989). Eolianite rock of the Chuska Erg inter-fingers with and overlies Mogollon Rim Formation 

gravel, marking the boundary of an erg that may have extended to the Rio Grande Rift of New 

Mexico and far afield from the type section in the Chuska Mountains (Defiance Uplift, Figure 1.2, 

Cather et al., 2008). The Chuska Erg marks a significant milestone in Colorado Plateau geologic 

history as a well-dated (33.5-25 Ma) maximum extent of Paleogene deposition (Cather et al., 
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2008). After this depositional period, the transition to an erosive regime has been spatially 

complex and episodic. 

Sedimentation to Erosion, Transition through the Neogene 

The transition from significant depositional facies such as the Chuska Erg, “rim gravels” 

and other early to mid-Cenozoic deposits is not uniform in time or space across the region, and 

the rocks of this time period are partly disrupted by gaps in the geologic record. However, it is 

clear that significant erosion of the Chuska Erg began soon after deposition (terminating 25 Ma), 

but was largely removed by the time of Lake Bidahochi (16 Ma) in the Little Colorado River Basin. 

Lake Bidahochi records a local, small-scale depositional basin with frequent volcanic eruptions in 

and around the lake until ~ 6 Ma (Dallegge et al., 2003). The timing of the end of deposition and 

the position of the lake upstream of Grand Canyon were used to support the hypothesis that Lake 

Bidahochi was a terminus of a proto-Colorado River, leading to a lake-spillover event posited to 

have begun the initial incision of Grand Canyon. This hypothesis has been refuted (Dallegge et 

al., 2003; Dickinson, 2013) on account of the shallow water depths suggested by depositional 

character and small volume of the sediment, which are inconsistent with a plausible proto-

Colorado River or a filling and over-topping of a drainage divide posed to exist across the Kaibab 

uplift as a paleo-valley (Karlstrom et al., 2014). As explored in Chapter 4, it is possible that the 

proto-Colorado River potentially relevant to Lake Bidahochi was less than half its current size. 

This hypothetical, smaller, proto Colorado River would likely still be ruled out by the same 

argument as immediately above. The sink of the Colorado River prior to 6 Ma and its integration 

history both before and after this time are still an open question. 

The earliest record of the Colorado River is a basaltic flow that filled a paleo-valley in 

western Colorado, preserving ca. 11 Ma gravel, hence providing datable material preserved by a 

resistant capstone (Aslan et al., 2010). Neogene to recent evidence for the pace and pattern of 

Colorado River activity is the result of numerous processes that provide an increasing amount of 

evidence more recent in time. 
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The erosive geomorphic processes on the Colorado Plateau include eolian (Reynolds et 

al., 2001) and fluvial systems (Howard and Dolan, 1981), which are punctuated by mass wasting 

(Huntoon, 1975; Huntoon, 1988).Volcanism (Wenrich et al., 1995; Crow et al., 2008) and 

travertine deposition at springs and paleo-springs (Crossey et al., 2009; Pederson et al., 2013a; 

Crow et al., 2014) preserve geologic evidence of fluvial systems. Process interactions have led to 

rich datasets for Quaternary fluvial incision, as the Colorado River erodes bedrock and leaves 

behind deposits that are sometimes covered with basaltic lava flows, which can be used to infer 

incision rates (Karlstrom et al., 2007). Travertine and landslide deposits periodically have 

preserved Colorado River-related deposits throughout the plateau (Pederson et al., 2013a; Crow 

et al., 2014). Isotopic dating of travertine deposits and cosmogenically derived isotopes in 

sediment further provide dates and rates for calibrating erosion processes and patterns 

(Wolkowinsky and Granger, 2004; Darling et al., 2012). 

Climate Interactions with Erosion 

Key aspects of Colorado Plateau erosion are driven by climate fluctuations in the region. 

The Rocky Mountains provide a primary high-elevation water source that has experienced 

repeated glaciation (Benedict, 1973; Chadwick et al., 1997). Geomorphic response downstream 

of the glacial outlets is a complex response between local base level, typically the Colorado River 

system, and local climate fluctuations that in turn influence vegetation, soil, sediment flux, and 

discharge. Sediment flux and discharge through the major rivers are in part controlled by the 

headwaters as well as local availability of sediment and runoff. Significant geomorphic response 

is expected as fluvial terraces form and become incised, including variations in channel slope due 

to variations in sediment flux and grain size (Bull, 1991). It has been axiomatic that climate 

variation leads to vegetation changes, which influence the ways sediment is produced on 

hillslopes and fed to streams. However, atmospheric circulation patterns, and storm tracks in 

particular may actually be more important than vegetation in controlling sediment flux to rivers 

(Antinao and McDonald, 2013a, b; Cyr et al., 2015). These key details add complexity to 

theoretical predictions that aggradation cycles do not match climate variations precisely due to 
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variations in tendency toward lateral or vertical erosion, driven by sediment flux and discharge 

variations (Hancock and Anderson, 2002). In other landscapes, it has been shown that climate 

variations have had far less impact on erosion rate than ecosystem transitions (Ivory et al., 2014), 

suggesting that proxies of sediment flux variation, like timing of terrace deposition, may not 

directly reflect glacial cycles from global proxies. The aforementioned studies focus on the 

Holocene transition in the southwestern United States and have broad implications for how 

climate cycles are expressed in the geomorphic record of the Colorado Plateau. While the data 

expressed in this dissertation do not directly address climate variations and landscape response, 

it is important to keep these ideas in mind. 

Conceptual Framework of Canyon Incision 

The fundamental concepts needed to think about canyon formation begin with the key 

terms of base level, incision and erosion, and the visual imagery, outlined in Figure 1.3, that 

relate these concepts to canyon formation. Base level refers to the lowest point which a river is 

flowing to. Typically, the ultimate base level of a river is the ocean, admitting that channels can 

erode slightly below the surface of the ocean. Streams typically follow a path to their base level 

that is steeper near the headwaters than at the terminus. Rivers that traverse this change in slope 

gradually, without any abrupt changes in slope, are termed “graded streams” as their longitudinal 

profiles are relatively smooth and concave up. For canyon cutting, the removal of bedrock below 

the channel, especially during high flow events that remove sediment, exposing the bed to attack 

by transported sediment, is referred to as incision. Incision produces a commensurate increase in 

potential energy as the channel bottom down-cuts and the surrounding hillsides are exposed to 

increasing relief and potential or failure. Weathering and hillslope erosion processes ranging from 

diffusive creep and dry ravel to mass rock failure are then able to attack the rocks along the walls 

of a canyon, widening it.  

Incision of canyons drives erosion responses in the surrounding landscape. While 

incision deepens it, other erosive processes widen the canyon as discussed above. For 

landscapes as large as Grand Canyon, tributary stream networks expand the incision signal up 
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each channel (Figure 1.3), and more broadly control hillslope erosion beyond the primary incision 

by a trunk stream. Tributaries are more directly and fundamentally responsible for bedrock mass 

removal for large canyons, as tributaries number in the thousands for Grand Canyon and range 

many kilometers beyond the Colorado River corridor.  

Some of the tributaries that broaden erosion of the landscapes are not entirely within a 

given canyon themselves, instead flowing from surrounding plateaus and mountains (Figures 1.2 

and 1.3). On the Colorado Plateau and other regions, such tributaries often contain knickpoints 

that contribute to a definable boundary of canyon extent: the area above the knickpoints is 

outside the canyon, and below the knickpoints is within the canyon (Figures 1.2 and 1.3).  

The accurate visualization of ongoing topographic change, as well as relative rates of 

that change described above, are key to understanding the progressive change from a low relief 

landscape to an incised canyon. Perhaps the most overlooked aspect of this erosion pattern is to 

discount or forget that the plateau and rim country are also eroding (Figure 1.3). As will be argued 

in each chapter, the spatial patterns of erosion, i.e., the comparison of rates within a canyon to 

outside a canyon, are important to the prior history of erosion of a landscape, and provides key 

clues as to the history of landscape evolution. 

 
Outline of Chapters 2-5 

The following chapters are focused on the study areas of western Grand Canyon 

(Chapter 2, published in Geosphere, 2015), the Grand Staircase (Chapter 3) and Desolation 

Canyon (Chapter 4), with all relevant figures and tables cited therein organized as self-contained 

papers. Citation of any part of this dissertation should be reserved for the pending publications 

and the existing published version of Chapter 2 (see below).  

Chapter 2 Outline 

Topographic analysis of the western Grand Canyon provides insights on the evolution of 

the landscape. The study was motivated by the publication of recent papers that variously cited 

evidence that the canyon may have been incised to near modern depths by 70 Ma (Wernicke, 

2011; Flowers and Farley, 2012), or that incision began about 17 Ma (Polyak et al., 2008), or that 
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incision began only within the last 5 or 6 million years (e.g. Longwell, 1946; Lucchitta, 1972; 

Karlstrom et al., 2008; Karlstrom et al., 2014). This disparate range of potential ages seems too 

wide-ranging for all to be plausible hypotheses with regard to geomorphic processes that 

constantly sculpt and change the landscape.  This research project began in order to understand 

fundamental erosion parameters and the history of incision events of the canyon. The key 

argument of this chapter is that the Grand Wash cliffs are an appropriate place to compare 

relative base level fall between a base level fall of known age (the Grand Wash fault was active 

18-12 million years ago) and the incision of Grand Canyon. The streams in each area have 

primarily responded to their respective base level, so the resulting landscape is a response to 

local climate, rock types and the time since that incision began. The climate of the western Grand 

Canyon varies little over the few tens of kilometers considered and the headwaters of all 

catchments form at nearly the same elevation (that of the top of the Shivwits Plateau). The Grand 

Wash Cliffs and western Grand Canyon have been formed in the same Paleozoic strata. The 

magnitude of the base level fall change in both the Grand Wash Cliffs and the Grand Canyon is a 

net change of about 1 km, leaving the time from which erosion began (and rate of erosion) as the 

key remaining variables. 

The Grand Wash Cliffs display lower hillslope angles and channel steepness than the 

Grand Canyon. Both hillslopes and channels are steep in proportion with erosion rate. Because 

the natural experimental setting controlled for independent factors, the most plausible conclusion 

is that the Grand Canyon is steeper than the Grand Wash Cliffs because it is eroding faster, 

indicating that its base level changed more recently than the slip along the Grand Wash Fault. 

The comparative analysis alone indicates that the canyon is likely younger than 12 Ma. The 

chapter outlines several other lines of discussion to support the inference that the geomorphology 

of the western Grand Canyon does not support the hypothesis that the canyon was incised in the 

Cretaceous Period, and our interpretation of evidence favors a ~6-Ma age over a 17-Ma age.  

This chapter is published in the journal Geosphere with the following citation: 

Darling, A., and Whipple, K., 2015, Geomorphic constraints on the age of the western Grand 

Canyon: Geosphere, v. 11, no. 4, p. 958-976. 
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Chapter 3 Outline 

 Analyses of topography, rock strength, and erosion rates in the Grand Staircase and 

Grand Canyon provide data that are compared to numerical simulations of similar landscapes. 

Scenarios where rock strength varies in horizontal strata provide distinctive differences in 

response of erosion rates to base level fall. Four scenarios are discussed in which base level rate 

is either constant or increases once stepwise. The primary control on erosion in these cases is 

the distribution of rock strength, which is modeled as strong over weak rock, weak over strong 

rock, or several couplets of weak and strong rock. The diagnostic power of the numerical 

simulations elaborated on in the chapter support the conclusion that Grand Staircase erosion 

rates are greater than rates of local base level fall. In this case, the resistant Claron Formation is 

undermined by weaker underlying Cretaceous rock units creating local high rates in the 

catchments that were sampled. For comparison of the Grand Staircase incision rates vs Grand 

Canyon incision rates, it is reasonable to think of the Grand Canyon as a whole (not just western 

Grand Canyon, as in Chapter 2) as the product of a relatively youthful increase in base level fall 

rate as inferred from incision rates and erosion rates from within Grand Canyon and on the Grand 

Staircase. This conclusion is based on the expected spatial erosion rate patterns predicted by the 

weak-over-strong model scenario.  

 Analysis of actual detrital cosmogenic sediment and simulated 10Be sediment 

concentrations offer a framework for when and where cosmogenic estimates of erosion are 

expected to match real spatially averaged erosion rate, and where cosmogenic erosion rates 

should match base level fall rate despite possible high variation in quartz concentration and rock 

strength. Further, we show cases where cosmogenic erosion rates should not correspond to local 

base level fall rates. Each of these scenarios depends on the distribution of rock strength, and 

landscapes need to be considered on a case by case basis to determine if cosmogenic methods 

are appropriate and how such data can be interpreted. Our analyses provide a framework for 

discussing these complexities in other landscapes where rock and minerals vary significantly.  

This chapter is intended with pending revision for submission to Earth Surface Processes 

and Landforms. 
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Chapter 4 Outline 

Desolation Canyon on the Green River in Utah is an unusual landscape that is unlike the 

surrounding topographic features. The topographic analysis of the canyon indicates that channel 

steepness here exceeds that of nearby regions. This observation is set against four potential 

hypotheses that may have formed the canyon and the knickpoint that resides on the Green River 

therein. The most supported argument is that the canyon is the result of a top-down integration of 

the Green River through a gap in the Tavaputs Plateau that was exploited in the last few million 

years. This canyon is likely a more recent erosional feature than the Grand Canyon, indicating the 

Green River probably did not contribute to flow and sediment to the initial incision of the Grand 

Canyon. 

To support this interpretation, we conducted seismic surveys of the two key rock units of 

the plateau, obtained cosmogenic erosion rates and evaluate existing incision rates in the 

literature. Our analysis indicates the two rock units are both weak, and show little apparent 

variation in channel steepness or erosion rate patterns that could affect a variation in rock 

strength. The cosmogenic erosion rate data show the erosion rate above the knickpoints of side-

streams and the Green River itself is low, 41 +/- 7 (n=12) and the erosion rates within the canyon 

are high (220 +/- 26 m/Ma). This supports the interpretation that the canyon is a transient feature 

that is dynamically readjusting to a change in base level for the Green River. recent integration 

hypothesis generated from the topographic analysis.  

This chapter is a possible candidate for submission to Geology. 

Chapter 5 Outline 

The final chapter is a synthesis of data and ideas explored in the previous chapters, 

highlighting key relationships to external studies and possible ways in which future research may 

be directed for both the Colorado Plateau and for geomorphology of complex-substrate 

landscapes in general. The mysteries of the Colorado River will provide extensive future debate 

and new methods will be applied, some of which will likely build from my work here. 
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Figure 1.1 Digital Elevation model and hill-shade with the major tributaries of the Colorado River 
with field areas for each  subsequent chapter. Western Grand Canyon (Ch. 2), Grand Staircase 
and Grand Canyon (Ch. 3) and Desolation Canyon (Ch. 4). 
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Figure 1.2 Map of regional uplifts and basins during the Paleogene. Inferred channels 
(red dash line) connecting sediment sources from the Mogollon Rim, thorugh Western 
Grand Canyon and to the Uinta Basin. From North to South, abbreviations are: Owl 
Creek Uplift (OCU), Wind River Basin (WRB), Wind River Uplift (WRU), Granite 
Mountain Uplift (GU), Green River Basin (GRB), Uinta Uplift (UU), Uinta Basin (UB), 
White River Uplift (WHU), Piceance Basin (PB), San Rafael Swell (SRS), 
Uncompahgre Uplift (UNU), Claron Basin (CB), Monument Upward (MU), Kaibab 
Plateau (KU), San Juan Basin (SJB), Hualapai Plateau (HP), Defiance Uplift (DU), Zuni 
Uplift (ZU), Baca-Eager Basin (BEB), McCoy Basin (MB), Bisbee Basin (BB). 
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 GEOMORPHIC CONSTRAINTS ON THE AGE OF WESTERN GRAND CANYON 

Abstract 

 Hypotheses for the age of western Grand Canyon (WGC) range from less than 6 Ma to 

more than 70 Ma. We study the relationships among topography, geology, and available erosion 

rates in space and time to place constraints on plausible canyon incision histories. Evidence 

suggests lateral retreat of the Shivwitz Plateau escarpment left a lithologically controlled bench on 

the Sanup Plateau, but the Hualapai Plateau is beveled indiscriminately across rock types of the 

Paleozoic stratigraphic section. A period of accelerated base level fall in the Tertiary is implicated 

by the canyon incised into the beveled Hualapai Plateau surface, consistent with higher erosion 

rates observed in canyons than on the surrounding plateau. Streams draining the Hualapai 

Plateau preserve relict headwater segments that were equilibrated with a slower base level-fall 

rate before canyon incision. These relict segments are now separated from Grand Canyon by 

knickpoints indicative of a transient landscape. Relief production since the beveling of the 

Hualapai Plateau is greater than 1 kilometer in WGC. Comparison of hillslope angle and channel 

steepness between the Grand Wash Cliffs and WGC provide a test to distinguish hypothesized 

ages of canyon incision. The data strongly suggest that carving of WGC is younger than relief 

production due to slip along the Grand Wash Fault since ~18-12 Ma. Thus the geomorphic data 

are only consistent with the late Tertiary, transient incision model of canyon incision beginning at 

integration <6 Ma. 

Introduction 

Motivation 

 The age of the Colorado River drainage system and timing of Grand Canyon incision have 

been debated since the pioneering studies of John Wesley Powell (1875). Although Powell 

interpreted the Colorado River as antecedent to Laramide structures and the uplift of the 

Colorado Plateau, since the turn of the 20th century most geologists have interpreted a mid-to 



 

21 
 

late-Tertiary age of integration of the superimposed Colorado River and carving of the Grand 

Canyon (Davis, 1901; Blackwelder, 1934; Longwell, 1946; Lucchitta, 1972; Young and Brennan, 

1974), with much evidence pointing to a ~6 Ma river integration event (House et al., 2008), 

contemporaneous with a significant fraction of canyon incision (Pederson et al., 2002a; Pederson 

et al., 2006; Karlstrom et al., 2007; Karlstrom et al., 2008).  Some recent evidence, however, has 

been suggested to support the carving of western Grand Canyon (WGC) by 70 Ma (Wernicke, 

2011; Flowers and Farley, 2012), or perhaps since ~17 Ma (Polyak et al., 2008; Young, 2008) 

reinvigorating the debate over estimates of the canyon’s age. Even the hypothesized 17 Ma 

precursor western Grand Canyon (WGC) cut by a moderate-sized pre-Colorado River drainage 

(Polyak et al., 2008; Young, 2008) is disputed (Karlstrom et al., 2008; Pearthree et al., 2008; 

Pederson et al., 2008) and the idea of WGC formation by 70 Ma is even more controversial. 

Wernicke (2011) and Flowers and Farley, (2012) argued on the basis of thermochronologic data 

that WGC had been cut to within a few hundred meters of its current depth by 70 Ma and 

maintained at the surface (not buried) since then. The interpretation of the thermochronologic 

data is not simple, however, and has been challenged (Fox and Shuster, 2014; Karlstrom et al., 

2014). In addition, Young and Crow (2014) have re-iterated, clarified, and augmented geologic 

and qualitative geomorphic evidence of the Tertiary cutting and infilling of smaller paleo-canyons, 

that is incompatible with the formation and maintenance of a deep canyon in the WGC area prior 

to ~19 Ma. Further, the Muddy Creek Formation of the Grand Wash Trough has long been 

interpreted to prohibit the existence of a large river at the terminus of WGC (Longwell, 1946; 

Lucchitta, 1966; Pederson, 2008; Ingersoll et al., 2013). Beyond sorting out the local geologic 

history, resolving this debate presents an opportunity for refining our understanding of both 

thermochronologic and geomorphic records of river incision and relief production. In this paper, 

we analyze constraints on the timing of the incision of WGC from landscape morphology and 

existing incision-rate estimates.  

 Classic interpretation of a young WGC is consistent with the steep-walled, narrow, high-

relief inner gorge morphology, which is immediately apparent on topographic maps and photos 

(Figs. 2.1 and 2.2). The range of circumstances that could produce and maintain such a 
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landscape, however, has not been thoroughly explored. Moreover, given the broad attention this 

controversy has garnered, and given the apparent challenge of the “old canyon” evidence to this 

classical interpretation of a “youthful” landscape” (e.g., Davis, 1901), an independent, quantitative 

assessment of the geomorphic constraints on the antiquity of the WGC is needed. Three main 

hypotheses for the age of WGC (> 70Ma, <17Ma, and largely < 6 Ma) are the focus of debate, 

and each must be consistent with the known paleo-canyons preserved on the Hualapai Plateau 

(Young, 1979; Young, 2008; Young and Crow, 2014). Each hypothesis constitutes a set of 

testable predictions for both landscape morphology and the spatio-temporal pattern of erosion. 

We analyze details of landscape morphology and available constraints on erosion rates to test 

the viability of each hypothesis on geomorphic grounds. 

 Landscape morphology alone is not diagnostic of the cause (or mode) of canyon 

formation. Narrow, steep-walled canyons incised into low-relief plateau surfaces can form in 

response to either (1) an acceleration in mainstem river incision (as implied in the 17 Ma and 6 

Ma models) or (2) ~steady incision into a sub-horizontal stratigraphic succession with weak, 

easily eroded rocks or sediments overlying a notably stronger, erosionally resistant package of 

rocks (which could be consistent with the 70 Ma model). In the latter case, the low-relief erosion 

surface surrounding the canyon forms as weak rocks are eroded along the basal contact between 

weak and with underlying strong rocks (the surrounding bench post-dates rather than pre-dates 

canyon incision) and canyon formation need not reflect an increase in the rate of relative base 

level fall (Fig. 2.3). Both scenarios involve relief production resulting from more rapid erosion 

within the canyon than on the surrounding low-relief bench: in one case the erosion rate within 

the canyon increases in response to base level fall; in the other case the erosion rate in the 

surrounding landscape decreases in response to the formation of a lithologically controlled 

erosional bench. Consequently, the cause and timing of canyon formation must be considered 

separately. Fortunately, for either mode of canyon formation (accelerated incision vs. incision into 

stronger rocks), there are clear differences in the expected evolution of both canyon side walls 

and tributary valley profiles that will be diagnostic of whether incision of the main-stem valley has 
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persisted to recent times, or whether the landscape has experienced a significant period of 

reduced rate of base level fall after canyon formation (as required by the 70 Ma hypothesis). 

Approach and Scope 

 We do not address the incision history of all of Grand Canyon but rather focus on Western 

Grand Canyon (WGC), west of the Hurricane fault (Fig. 2.1). In our study area we determine (1) if 

WGC is more consistent with an increase in incision rate or simply a lithologic control on 

landscape morphology, (2) how much relief production is recorded by landscape morphology; (3) 

the range of plausible incision ages.  The first two goals encompass determining the cause of 

canyon formation and the amount of relief production involved. Both are accomplished through an 

analysis of 2-D landform morphology (topographic cross sections, analysis of modern tributary 

river profiles, and reconstruction of pre-incision river profiles) and a qualitative evaluation of the 

correlation between rock strength and landscape morphology.  As shown below, details of 

tributary canyon morphology can be used to differentiate between models allowing sustained river 

incision to present (e.g., the 17 Ma and 6 Ma models) and models requiring negligible incision 

following initial canyon cutting (the 70 Ma model). Constraining the age of the canyon is 

independently accomplished through (a) a quantitative comparison between canyon walls in the 

WGC and the escarpment along the Grand Wash Fault (GWF, most active 18-12 Ma), and (b) a 

compilation of incision rates over a range of timescales in tributaries and on the surrounding 

plateau. Given the common climate, lithology, and base level, our comparative morphological 

analysis can readily gauge the relative timing of incision of WGC and its tributaries and relief 

production related to slip on the Grand Wash Fault (GWF).  

Background and Methods of River Profile Analysis 

We employ river profile analysis and evaluate the relations between landscape 

morphology and geology to achieve our goals. USGS 30 m resolution digital elevation models 

(DEMs) are used for all topographic analyses. Pioneered and advanced by Hack (1957, 1975), 

analysis of river profiles can provide significant insight into the history of relative base level fall in 

a region. As the methods and foundational conceptual background are not as well-known as 
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more standard analyses of river incision rates from dated terraces, mean catchment hillslope 

gradients or topographic relief, we include here a brief primer tailored to aspects of river profile 

evolution that have diagnostic power for the questions outlined above. More detailed reviews of 

river profile evolution patterns and methods of profile analysis have been published recently by 

Wobus et al. (2006), Kirby and Whipple, (2012), Whittaker (2012), and Lague (2014). 

River channels tend toward smooth concave-up river profiles that are well described by 

Flint’s Law (Hack, 1957; Flint, 1974): 

𝑆𝑆 =  𝑘𝑘𝑠𝑠𝐴𝐴−𝜃𝜃,   (1) 

where S is local channel gradient, A is upstream area (a proxy for water and sediment discharge), 

ks is the channel steepness index, and θ is the concavity index (usually between 0.4 and 0.6) 

(Tucker and Whipple, 2002). The most common deviations from this expected equilibrium form 

are either (1) channels broken into segments marked by slope-break knickpoints that separate 

reaches of distinct steepness but similar concavity, or (2) channels with smooth profiles but 

generally high concavity (θ  > 0.6). Segmented channel profiles marked by slope-break 

knickpoints are expected to form in response to temporal changes in river incision rate or spatial 

patterns in rock uplift rate, substrate properties, or climatic conditions (e.g., Kirby and Whipple, 

2012; Whittaker, 2012; Lague, 2013). Since the concavity index of discrete segments varies little, 

and because channel steepness and concavity determined from river profiles are strongly 

correlated, a normalized channel steepness index, ksn, is used to quantify the relative steepness 

of channels (e.g. Wobus et al., 2006): 

𝑆𝑆 =  𝑘𝑘𝑠𝑠𝑠𝑠𝐴𝐴−𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟,   (2) 

where θref  is a reference concavity often assumed to be around 0.5 (here we use 0.45 for 

computing regional maps of ksn patterns, in keeping with most published estimates of ksn). 

Typically, as here, the assigned θref represents local determinations of the concavity of well-

adjusted channel segments. High values of ksn are associated with rapid incision rates, hard 

rocks, low erosivity climates (few large floods), and coarse bed material (e.g., Kirby and Whipple, 

2012). Convex-up knickpoints are thus associated with either a temporal increase in the rate of 
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relative base level fall or a downstream increase in rock strength as might be caused by incision 

into sub-horizontal stratigraphy with higher average strength in lower rock layers. 

 We include a complementary analysis useful for visualizing perturbations to the long 

profile known as the integral method (Fig. 2.4C, Harkins et al., 2007; Perron and Royden, 2013). 

The integration of equation two yields elevation (z) as a function of distance along profile (x), 

                                              𝑧𝑧(𝑥𝑥) = 𝑘𝑘s∫ 𝐴𝐴(𝑥𝑥′)−𝜃𝜃𝑑𝑑𝑥𝑥′ ≡ 𝑘𝑘s𝜒𝜒(𝑥𝑥)𝑥𝑥
0 ,               (3)                                

where χ(x) is determined directly from numerical integration of drainage area data. Any segments 

along the channel profile that are well described by theta_ref will be straight lines on a chi plot 

(Fig. 2.4C), with slope equal to ksn.  

Figure 2.5 illustrates how canyon side walls and tributary channel profiles can be 

expected to evolve as a function of different base level histories following the onset of canyon 

incision, assuming for simplicity no strong lithologic control on channel steepness below the 

canyon rim (the canyon rim itself may be either lithologically controlled or reflect an acceleration 

in mainstem incision rate in either case (Fig. 2.3) – as noted above, canyon morphology is not 

diagnostic of the underlying cause of canyon formation): (1) on-going, roughly steady incision 

(plausibly consistent with both 17 and 6 Ma models), and (2) early incision followed by a 

substantial reduction or even cessation of incision (consistent with the 70 Ma model). On-going 

incision (scenario 1) maintains steep hillslopes and channels, with morphology set by incision 

rate, climate, and rock strength. Lithologic effects could be over-printed on this pattern, potentially 

inducing segmented profiles below the canyon rim with higher ksn through stronger rock layers. 

Substantial reduction or cessation of incision (scenario 2) triggers a progressive relaxation of 

initially steep canyon walls and tributaries even as slope-break knickpoints defining the canyon 

rim continue to migrate upstream. A sustained period of post-incision base level stability (or 

significantly reduced base level fall rate) is expected to manifest in tributary channel profiles as a 

distinct flattening of downstream reaches that can be anticipated to be most pronounced in larger 

tributaries (see Gasparini and Whipple, 2014), to be mimicked in the morphology of surrounding 

hillslopes, and to not coincide with lithologic layering. Thus scenarios involving recently active, 

quasi-steady incision can be readily distinguished from those with base level stability over 106-108 
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year timescales after canyon formation (e.g., the 70 Ma model) even in the presence of variable 

rock strength. 

Figure 2.5 also illustrates how reconstruction of pre-incision river profiles (profiles prior to 

either mainstem incision into harder rocks or at an accelerated rate) can be used to quantify the 

amount of relief production, and, if erosional lowering of the surrounding landscape can be 

quantified, the total amount of main-stem river incision during the period of relief production. The 

method involved has been used successfully by Schoenbohm et al., (2004) Harkins et al., (2007), 

and DiBiase et al., (2014) and is illustrated in Figure 2.4 for the example of Jeff Canyon on the 

South Rim of WGC (Fig. 2.1). In our analysis, profile reconstruction and projection differ by an 

estimate of erosional lowering of the channel profile upstream of the slope-break knickpoint over 

the period of interest (Fig. 2.4). Projection begins with locating the major slope-break 

knickpoint(s) on the long-profile. Upstream of many knickpoints, subtly over-steepened zones 

truncate well-graded upstream stretches and are readily recognized on profiles and slope-area 

diagrams (Fig.2.4). Such oversteepened reaches are thought to result from stream flow 

acceleration and increased erosion rate that propagates upstream, sometimes 10’s km’s, over 

time (e.g. Haviv et al., 2006) and are not representative of pre-incision river profiles. The 

upstream limit of these oversteepened reaches is selected as the anchor point for profile 

projections. The average channel-steepness and concavity of well-graded sections upstream of 

the anchor point are found by regression following the methods outlined in Wobus et al., (2006) 

and Kirby and Whipple (2012). Slope-area data are smoothed using a 250 m window along the 

profile and a 40’ contour interval consistent with USGS elevation source data. Assuming that 

drainage area and channel network geometry have remained invariant over the time period of 

interest, and that upstream reaches are reflective of channel form prior to canyon formation, the 

best-fit channel steepness and concavity upstream of anchor points are used in equation (1) to 

model the existing upstream profile and project the downstream profile as a function of drainage 

area. The projection from modern stream data is used as a baseline to which incision estimates 

can be added, allow reconstruction the paleo-stream profile (Fig. 2.4). 
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Uncertainty in the profile reconstruction includes restoration of the profile based on 

incision rate estimates and the projection uncertainty.  Projection uncertainties are: (1) any 

unrecognized modification of channel slope above the knickpoint such that the upper channel 

segment is not reflective of pre-incision conditions, (2) possible changes in drainage area or 

network geometry, (3) uncertainty in the channel concavity, and (4) uncertainty in the channel 

steepness index. Error sources (1) and (2) cannot be accurately quantified and may be 

responsible for outliers. Error sources (3) and (4) are constrained by regression analyses and 

used to represent the range of uncertainties in profile reconstructions (Fig. 2.4).  Anchor points 

are at the downstream end of the slope-area data used in the regression. Projection uncertainty is 

quantified by fixing  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 to the regional mean and using the associated channel steepness 

uncertainty. Particular streams require slightly different concavity index (either 0.4, 0.45, or 0.5), 

determined by comparing the projection and actual profile upstream of the anchor point. If the 

projection does not bracket the headwater, a different θref and Ksn may be used (see Table 2 for 

θref and ksn of each projection). The projection is calculated from the mean and 2-sigma standard 

deviation (95% confidence interval) of the regressed, channel steepness index, ksn. The 

projection and reconstruction terminate at the confluence with the Colorado River. The difference 

in elevation between the Colorado River at this point and the projected elevation is reported as 

the height of the projection, an estimate of relief production. The associated reconstructed height 

above the river is the projected height plus the restored incision of the upper tributary segment 

since initiation of canyon cutting (Fig. 2.4). Without the reconstruction, incision estimates from the 

projection are minimum estimates. We use pre-dam Colorado River surface elevations (USGS 

1:24,000 scale maps) when calculating heights for tributaries that enter the Lake Mead reservoir.  

River Canyon Formation: Lithology or Base level 

 Western Grand Canyon is a deep, narrow, steep-walled gorge inset into a broad low relief 

plateau with tributaries that head on the low-relief surface but are deeply incised below abrupt 

slope-break knickpoints near the main canyon (Figs. 2.1-2. 6). This morphology implies 3 

possibilities: (1) recent acceleration of incision, (2) re-entrenchment of a previously buried, 
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ancient canyon, or (3) stripping of weak rocks to form a low relief surface cut on a hard, 

lithologically controlled bench surrounding the canyon.  The first two scenarios could produce 

identical morphologies and would have to be distinguished based on geologic evidence for base 

level rise and regional aggradation. As neither the geology nor the thermochronology support (2) 

for WGC, we do not consider this scenario further except in discussion of the partially re-

exhumed Laramide-age paleo-canyons on the eastern Hualapai Plateau (Young and Brennan, 

1974; Young and McKee, 1978; Elston and Young, 1991b; Young and Crow, 2014). The third 

scenario has been discussed in terms of the evolution of Grand Canyon and river knickpoints 

(Cook et al., 2009; Pederson and Tressler, 2012) and can produce identical landforms as the 

other scenarios, though cases with steadily falling versus stable base level conditions following 

initial canyon cutting would have different expressions in tributary channel profiles and spatial 

incision rate patterns (Figs. 2.3 and 2.5). 

 Hillslope profiles in the Grand Canyon and surrounding Colorado Plateau are replete with 

classic examples of lithologic control on landform morphology with alternating strong cliff-forming 

and weak slope-forming rock layers (Selby, 1993). Indeed, the topographic expression of different 

rock layers is a great aid in geologic mapping in the region. These familiar hillslope expressions 

of variable rock strength have been recently corroborated with direct laboratory measurement of 

rock tensile and compressive strength and associated with variations in river slope and channel 

width (Pederson and Tressler, 2012). Ironically, the simple geology of only moderately deformed 

sub-horizontal sedimentary rocks greatly complicates the geomorphology, making it difficult in 

much of the Grand Canyon to differentiate between lithologic and base level controls on canyon 

morphology. Indeed, in WGC, the Sanup Plateau north of the Colorado River is often informally 

referred to as part of the “Esplanade surface” as it coincides with the top of the resistant 

Esplanade sandstone (Fig. 2.7). The Sanup Plateau appears to be a lithologically controlled 

bench associated with the erosional retreat of the Shivwitz escarpment along the contact between 

the easily eroded Hermit Shale and the resistant Esplanade Sandstone (Figure 2.7, Lucchitta, 

1966; Young and Crow, 2014). This configuration and the prevalence of cliff-forming limestones 

of the Redwall, Temple Butte, and Muav Formations and Proterozoic basement exposed in 
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canyon walls is suggestive of, but not diagnostic of, lithologic control of the narrow, steep-walled 

WGC. It remains plausible that the morphology of WGC records accelerated river incision rate 

that is coincidental with incision below the level of the Esplanade Sandstone on the Sanup 

Plateau. Fortunately, Laramide-age deformation in the area of WGC created a setting that allows 

us to resolve this conundrum. 

 From geology, geomorphology, and Cenozoic stratigraphy of the Haulapai Plateau on the 

south side of the Colorado River (Figs. 2.1 and 2.7), inspection reveals that it is not a lithologically 

controlled bench but rather a product of a long period of erosion under a relatively stable base 

level.  The critical observation is that the Hualapai Plateau is beveled indiscriminately across rock 

types ranging from Supai Group shales to Muav Fm. limestones, consistent with arguments put 

forward previously by Young (1999; 2001) and Young and Crow (2014) that this is an ancient and 

long-lived low-relief surface (Figs. 2.7 and 2.8). Importantly, the Haulapai Plateau is a low-relief 

erosional surface beveled to the same elevation as the Sanup Plateau – the two plateaus are part 

of a common surface incised by the Colorado and its tributaries, suggesting a common paleo-

base level control overprinted by lithologically controlled retreat of the Shivwitz Plateau 

escarpment to the north. Thus, we infer that the morphology of WGC reflects a period of 

accelerated incision into a pre-existing low-relief landscape as outlined in more detail below.  

 First, tributary channel profiles have all the hallmarks of a disequilibrium landscape: deeply 

incised, steep-walled canyons in the vicinity of the main-stem that are marked by significant 

slope-break knickpoints where they cross the canyon rim (Figs. 2.1, 2.5, 2.6, and 2.7). Of course 

either an acceleration of incision rate or a lithologically induced pattern of differential erosion 

could be the driver behind the transient evolution of landscape morphology implied by this 

topography (Fig. 2.3). Downstream of major knickpoints some tributaries show strong lithologic 

control of channel steepness while others do not (Fig. 2.6). Smaller tributaries and those lacking a 

significant source of gravel in headwater reaches appear detachment-limited (e.g. Johnson et al., 

2009) and have segmented channel profiles with ksn >400 m0.9 through the Paleozoic limestones 

(Redwall, Temple Butte and Muav Formations), moderate ksn (~160 m0.9) through the Bright 

Angel Shale, steepening somewhat where cutting through basement rocks. Larger tributaries and 
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those with significant headwater gravel sources (such as most of the streams draining the 

Shivwitz and Sanup plateaus) appear transport-limited, showing no lithologic control on channel 

profiles (e.g. Johnson et al., 2009) that have the same steepness as segments in the Bright Angel 

Shale on both sides of the canyon (Fig. 2.6). Additional complexities reflect young travertine 

dams in some tributaries (e.g., near the outlet of Jeff and Quartermaster canyons, and at 800m 

elevation in Meriwhitica, Figs. 2.4 and 2.6). Variable elevation ranges of the prominent high ksn 

segments well expressed on Figure 2.6 are inconsistent with temporal changes in the rate of 

base level fall following the initiation of canyon cutting (e.g., Wobus et al., 2006; Kirby and 

Whipple, 2012) and in fact coincide with outcrop patterns of the sequence of Paleozoic 

limestones.  However, the lack of similar lithologic control on profiles of channels draining the 

Shivwitz and Sanup Plateaus suggests canyon formation and the prominent slope-break 

knickpoints that define the canyon rim cannot be attributed to lithology.  Indeed, the surrounding 

low-relief surface (Hualapai and Sanup Plateaus) extends from the “Esplanade” surface (atop this 

sandstone) to cut across the limestones of the Muav, Temple Butte, and Redwall Formations, and 

the shales and sandstones of the Lower Supai Group and Esplanade Sandstone (Figs. 2.7 and 

2.8). Far from forming lithologically controlled benches, the resistant Paleozoic limestones are 

beveled to the same level as the much weaker units of the lower Supai Group. Long-term stability 

of erosional base level at the elevation of the Hualapai Plateau (ca. 1400 m elevation at present) 

is required for such effective erosional beveling of erosionally resistant cliff-forming limestones 

(e.g. Baldwin et al., 2003). These morphological observations are consistent with interpretation of 

landscape evolution based on the nature, distribution, provenance, and paleo-flow directions of 

Tertiary sediments preserved on the Hualapai Plateau (e.g. Young and Brennan, 1974; Young 

and McKee, 1978; Elston and Young, 1991b; Young and Crow, 2014). The morphological 

observations summarized above, however, speak only to the cause of canyon formation 

(accelerated incision dominating over lithologic controls), not to its timing.   

Amount of River Incision and Relief Production 

 The amount of river incision is the relative change in elevation of the main-stem river. Relief 
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production associated with canyon cutting differs from total river incision: it is the difference 

between river incision above a knickpoint and river incision below that knickpoint (Fig. 2.5). Relief 

production can be measured as the difference in elevation of a projected stream and the modern 

stream (the projected stream height, Table 2). A simple measure of the vertical drop from canyon 

rim to river level will over-estimate relief production because the rim is higher elevation than the 

upper streams incised into the low-relief plateau. Determining the paleo-elevation of the main-

stem river involves two steps. First, relief production is measured from the elevation projected 

from relict upper channel segments above oversteepened zones down to the tributary confluence 

with the main-stem river (Fig. 2.5).  Second, estimates of the lowering rate of the surrounding low-

relief landscape can be multiplied by proposed or dated surface age to restore the lowering of 

relict channels over the time period of interest (Figs. 2.4 and 2.5). The sum of these provides an 

estimate of total river incision, such as might be recorded by thermochronometers.  

 Figure 2.9 summarizes the results of the profile projections, i.e. relief production. Thirty-

eight streams were analyzed to determine if projections to paleo-base level could be made. We 

attempt profile projections only where we have grounds to believe the headwater reach of the 

profile reflects pre-incision channel morphology plausibly graded to paleo-base level. Thus 

channels that clearly express lithologic controls above the slope-break knickpoints that define the 

canyon rim are excluded. Conversely, streams that flow on the Tertiary angular unconformity 

and/or Tertiary sedimentary deposits are ideal (Figs. 2.6 and 2.7).  Moreover, if these headwater 

stream segments preserve relict conditions they should all have similar slope-area relationships. 

We identify 12 streams most suitable for analysis. In Table 1, these 12 representative streams 

(red circles, Fig.2. 1) have a mean concavity of 0.44 +/- 0.02 and mean channel steepness of 

27.5 +/-9.6, a narrow range of channel profile morphology. Our analysis of surrounding streams 

yielded 1 stream, “Bat Cave”, which matches slope-area metrics and may represent the same 

paleo-surface but is not associated with independent geologic evidence of a stable base level.  

These 13 projectable streams yielded an estimate of relief production in WGC of 1047 +/-25 m. 

As expected, this is a minimum relative to the simple estimate of the elevation difference between 

the Colorado River (~350m) and the lip of the Hualapai Plateau (>1400m). 
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 Of the 26 other streams (Table 2), headwater reaches of 10 were too short to allow reliable 

projection.  The remaining 16 either showed evidence of lithologic complications (13 of 16) or 

were associated with drainages that traverse the modern Grand Wash Trough, a now sub-areal 

region that was paleo-lake Hualapai up until ~6 million years ago (Lucchitta, 1979; Faulds et al., 

2001) and given the certainty of drainage network disruptions could not be projected with 

confidence. 

 The lithologic complications above partly reflect the retreating Shivwitz Plateau escarpment 

(Fig. 2.8) which significantly complicates interpretation of longitudinal profiles of drainages on the 

north side of the Colorado River. The hard (Kaibab and Toroweap) over soft (Hermit) lithology of 

the Shivwitz escarpment implies that pre-incision channel profiles likely had lithologically 

controlled knickpoints perched above the base level of the Sanup and Haulapai Plateaus the 

streams were graded to. Indeed, projection of the thirteen streams thought to represent the pre-

incision topography is contingent on the assumption that the Shivwits escarpment was already 

north of these streams when their headwater reaches equilibrated to their current form. The 

Tertiary sediments and beveled unconformity on the Hualapai Plateau support this assumption 

directly in the immediate area of most of these streams. However, those streams that now exist in 

the area between the modern Shivwitz escarpment and the Tertiary sediments on the south rim 

are likely to have evolved from steep reaches draining off the retreating Shivwits escarpment. 

Such streams would experience a complex history not conducive to simple profile projection and 

reconstruction.  

 In summary, although only 13 streams could be reliably projected and all but one rise on the 

Hualapai Plateau, this drainage-projection analysis makes it clear that carving of the WGC into 

the preserved older, low relief landscape of the Haulapai and Sanup plateaus involved ~1000 m 

of relief production since incision rate increased during formation of western Grand Canyon. We 

infer >700m of incision from elevation of the base of the Tertiary sediments (~1120m). 

Considering the ~400 m thickness of the Tertiary sediments (Young and Crow, 2014) gives about 

1100 m, compared to our 1050 m for total relief production. Flowers and Farley (2012) and 

Wernicke (2011) interpret low-temperature thermochronometric data from river-level samples as 
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requiring “70-80% of canyon  incision” since 70Ma. Although not more than 70 m of incision is 

recorded directly by the interaction of the river and basaltic lava flows in the last 0.625 Myr 

(Karlstrom et al., 2007) and less than 300m is inferred from ground water table elevation inferred 

from speleothems since 3.87 Ma (Polyak et al., 2008), our result of ~1000m of relief production in 

the late Tertiary suggests the understanding and interpretation of thermochronometric data in 

(Flowers and Farley, 2012) is incomplete, as recently independently suggested by Fox and 

Shuster (2014) on the basis of models of thermal evolution and kinetics of damage annealing and 

helium diffusion. 

Plateau Lowering Rate 

 We derive estimates of the lowering rate of the plateau from volcanic deposits  (Young and 

Brennan, 1974; Wenrich et al., 1995) with incision amounts estimated as the relief between tops 

of hills capped by dated basalts to closest channel bottoms. Height measured from the tops of 

flows to channel bottoms results in rates that are local maxima. Ages range from 15 to 19 Ma, 

yielding a minimum lowering rate on the low-relief surface of 2-11 m/Ma, with a mean of ~6 m/Ma 

(Table 3). The amount that incision estimates differ from relief production requires an estimate of 

the time of incision onset. 

Incision magnitude vs relief production  

 The three competing hypotheses for the incision of western Grand Canyon suggest incision 

starting at ~6 Ma or ~17 Ma, or virtually complete by 70 Ma. A succession of sedimentary 

deposits from early Tertiary until ~19 Ma records net moderate aggradation (up to ~400m in 

infilled paleo-canyons) on the Hualapai Plateau over that interval (Young and Brennan, 1974; 

Young and McKee, 1978; Young, 1979; Elston and Young, 1991a; Young and Spamer, 2001; 

Young, 2008; Young and Crow, 2014).  The plateau lowering rate estimate (~6 m/Ma) is a 

measure of the average rate of lowering since the ~19 Ma cessation of aggradation. It is 

important to acknowledge that slow headwaters erosion is not zero so total incision during canyon 

cutting will exceed the relief production estimates presented above. In addition, the background 

erosion rate of the plateau surface is the only direct constraint on the paleo, pre-canyon erosion 
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rates in the region. At 6 m/Ma, total Colorado River incision would be 36 m greater than relief 

production if canyon incision began 6 Ma, and 100 m greater if canyon incision began 17 Ma. The 

latter estimate is a maximum given the record of aggradation on the plateau prior to ~19 Ma. 

Thus our estimate of total incision since the onset of canyon formation ranges between 1000 and 

1200 meters. 

Age of Canyon Incision 

Here we develop geomorphologic constraints on the timescale over which incision of the 

Colorado River and its tributaries into the low relief surface defined by the Hualapai and Sanup 

Plateaus in Western Grand Canyon occurred. We take two approaches to this analysis. The first 

is based on a comparative analysis of landscape morphology in the WGC and nearby Grand 

Wash Trough (GWT). The second is based on measurements and estimates of erosion rates 

over a range of timescales within and around the WGC.  

Morphological Analysis 

As discussed earlier, details of tributary river profile forms can be diagnostic – at least in 

general terms – of the history of base level fall. Similar examples of this type of analysis are 

discussed in Whittaker (2012), Kirby and Whipple (Kirby and Whipple, 2012), Gallen et al. (2013).   

Comparison of all tributaries to WGC (Figs. 2.4-2.7; Appendix A), with expectation from theory, 

strongly suggest that there is no indication of the morphology expected to result from a stable 

base level maintained for millions to 10s of millions of years after canyon incision (see Fig. 2.5B). 

Tributary profiles are rather suggestive of relatively steady incision over the duration of canyon 

formation and persisting to present (Fig. 2.5A), with variable degrees of lithologic control on 

below-rim channel steepness (Fig. 2.6), as recorded by lava flow remnants (Crow et al., 2008) 

and speleothems (Polyak et al., 2008).  

The above interpretation of WGC tributary profile morphology is powerfully re-enforced by 

a morphological comparison of the WGC landscape with the landscape of the Grand Wash Cliffs. 

The history of the Grand Wash Fault (GWF) provides a well-known timing of relief production in a 

setting where both climate and rock strength are nearly identical to the WGC. Slip along the GWF 
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is well documented to begin about 18 Ma, with most of its 5.5 km of offset accumulated by 12 Ma 

(Lucchitta, 1966; Lucchitta, 1972; Lucchitta, 1979; Bohannon, 1984; Bohannon et al., 1993; 

Karlstrom et al., 2010; Quigley et al., 2010; Umhoefer et al., 2010). Ensuing slip along the GWF is 

dramatically less, ca. 300 m, from 12 Ma to 6 Ma. It is possible there has been limited post-6 Ma 

slip on the GWF. While the history of the GWF is not fully known and is itself complicated, relief 

production is no older than 18 Ma and both hillslope and channel morphologies may reflect 

rejuvenation by younger episodes of slip and by base level fall associated with the ~6 Ma 

breaching of Lake Hualapai and the subsequent incision though the Hualapai Limestone and 

associated basin fill sediments.  

We use topographic metrics to determine directly whether incision in the WGC is older, 

younger, or similar in age to incision of the tributaries of the GWT in response to faulting on the 

GWF and base level fall associated with post ~6 Ma incision. Tributaries to the GWT exhibit 

subtle knickpoints at the edge of the Sanup Plateau, suggesting a period of slow incision or stable 

base level but have nearly identical channel steepness and concavity to north-side tributaries in 

the WGC (Figs. 2.7 and 2.8). The ~160 m0.9 mean steepness index is identical to channel 

segments not exhibiting lithologic control and strong over-steepening where cut on resistant 

Paleozoic limestones or basement rocks, suggesting a very similar timing and rate of base level 

fall, but under transport-limited conditions (e.g. Johnson et al., 2009). Like channel steepness, 

hillslope gradients are a function of erosion rate, rock strength, and climate. Figure 2.11 shows a 

composite hill-shade and slope map of the GWT and WGC. In the WGC, hillslopes are clearly 

steep all the way from the rim of the Hualapai and Sanup Plateaus down to the Colorado River, 

particularly where Paleozoic limestones and basement rocks crop out (Fig. 2.7). Canyon walls 

have not retreated laterally from river’s edge. The escarpment of the GWC on the other hand has 

in places retreated 2-3 kilometers from the trace of the GWF and is less steep and more 

subdued. Topographic profile (Fig. 2.12) emphasize this difference.  Average slopes of inter-

fluvial ridges near 270-mile, Quartermaster and Horse Flat canyons are 0.76, 0.44 0.49, 

respectively. Similar ridges along Pearce, Pigeon and Squaw canyons of the GWT, show average 

hillslope gradients of 0.14, 0.21 and 0.17, respectively. The topographic comparisons of WGC to 
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the GWC show that the two regions have had significantly different base level fall histories. 

Twelve million years of minimal fault activity has resulted in several kilometers of retreat of the 

Grand Wash Cliffs and considerable relaxation of hillslope gradients. Morphologic analysis 

strongly suggests relief production in WGC is younger than along the GWC where the bulk of 

relief production occurred from 18-12 Ma. The hypothesis that the narrow, steep-walled WGC is 

≥70 Myr old is quite simply untenable.  

Erosion Rate Constraints 

 The hypotheses about the timing of WGC incision require different rates of tributary incision 

and cliff retreat in order to produce and maintain the observed landscape morphology for the 

duration of the different hypothesized incision histories. We use several methods to determine 

average incision rates on the Colorado River in WGC. Separation Hill basalt (1500m high and 19 

Ma, Wenrich et al., 1995) yields an average incision rate of 60 m/Ma over the last 19 million 

years. Quaternary basalt flows along the Colorado River overlie river gravel yielding similar rates 

on the order of 70 m/Ma (Karlstrom et al., 2008) over the last 0.625 Myr. Recently determined 

cosmogenic erosion rates in WGC yield rates of 61 +/- 18 m/Ma (Nichols et al., 2011) averaged 

over the last ~10 k years. Given the broad range of timescales of these data, it is possible 

significant rate fluctuations exist between data points but the available evidence implies that the 

incision rate since ~0.7 Ma is roughly equal to the average incision rate since 19 Ma.  

 The old canyon model suggests 70-80% of Colorado River incision in 70 million years 

(Flowers and Farley, 2012). Using our estimate of incision magnitude of 1100 m, then the 70 Ma 

model suggests at most 400 m of incision since 70 Ma. Basalt flows in WGC are up to ~70 m 

above the COR, so the remaining 330 m of “allowable” incision in the model imply an average 

incision rate of 4 m/Ma prior to the time of WGC basaltic volcanism in the gorge to be consistent 

with the 70 Ma hypothesis. This rate is consistent with erosion on the flat plateau, but all 

independent measures of canyon incision rate are consistently and substantially higher than rates 

determined from the hypothesis that a canyon of near-modern depth existed by 70 Ma.  

 The 17-Ma-canyon hypothesis implies that average incision has occurred at ~60 m/Ma 
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(1000 m/17 Ma), implying incision slightly slower on average than estimates in the last 0.7 Myr.  

The 6-Ma-canyon hypothesis, on the other hand, implies that 1000 m of incision has occurred at 

an average rate of 167 m/Ma (~200 with correct significant figures) over the last 6 Myr.  Although 

this appears to be a mis-match with independent constraints (faster than both the average since 

~17 Ma and rates recorded in the last 0.7 Myr and 0.01 Myr), the difference is consistent with 

expected evolution of WGC following initiation of incision. Integration of the Colorado River 

across the GWC would trigger a period of rapid incision that would decrease with time as a 

knickpoint swept upstream (Pederson et al., 2002a; Cook et al., 2009). Available constraints on 

incision rate history allows a few million years over which incision may have been faster than 

~160 m/Ma and then slowed to ~70 m/Myr. Alternatively, this difference in rates could indicate 

that part of the incision of WGC occurred between ~17 and ~6 Ma by a moderate sized local 

stream in response to slip on the GWF (Polyak et al., 2008; Young, 2008; Young and Crow, 

2014) followed by a further acceleration of incision in response to integration of the Colorado 

River across the Grand Wash Cliffs at ~6 Ma. 

Conclusions 

The first order observation that the Hualapai Plateau cuts a surface across numerous 

rock types is a strong indication that it is a long-timescale erosional bench regardless of 

contrasting lithologic strength. Paleo-base level of the region is therefore directly associated with 

this preserved landscape. Regional erosion reached the level of the Hualapai Plateau  >60 Ma 

from regional thermochronology (Flowers et al., 2008). This is likely the time that setup the major 

landscape features of a paleo-Shivwits Plateau that extended further south than today and the 

Hualapai Plateau. Minor incision of paleo-canyons and the beveling of the drainage divides and 

local planation  with broad local sedimentation was ongoing between >50 and 18 Ma, (Young and 

Brennan, 1974; Young and McKee, 1978; Young, 1979; Elston and Young, 1991a; Wenrich et al., 

1995; Young and Spamer, 2001; Young, 2008; Young and Crow, 2014). The fluvial geomorphic 

data from headwater portions of Hualapai Plateau streams is interpreted to be consistent with 

preservation of a stable base level prior to incision. Channel projections throughout the Hualapai 
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and Sanup plateaus yield estimates of relief production magnitude near 1000 meters throughout 

western Grand Canyon. 

Our data are most consistent with the 6 Ma model for the timing of canyon cutting. The 

70 Ma model requires erosion at an improbably low ~4 m/Ma for tens of millions of years while 

supporting significant amounts of relief. The 17 Ma model is plausible based on existing incision 

rates and is compatible with Tertiary deposits on the Hualapai Plateau. However, landscape 

morphology indicates the erosion of the walls of the WGC started considerably more recently 

than the erosion of the Grand Wash Cliffs 18-12 million years ago.  Therefore, the 

geomorphology and incision rates are consistent with a transient increase in incision rate directly 

after integration of the Colorado River around 6 million years ago and slowing down to match a 

longer-term average rate by the Quaternary. 
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Figures 

Figure 2.1. Western Grand Canyon study area, defined by the area downstream of 
Hurricane fault and upstream of Grand Wash Trough. Elevation colored over hill-shade 
with analyzed tributary rivers shown in blue. Major faults, major tributary knickpoints, early 
Tertiary paleo-channels, and topographic section lines are indicated. Box shows extent of 
Fig. 2.11. 
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Figure 2.2. Photographs taken from Twin Point overlook. A) View to the southeast, showing the 
Shivwitz Plateau escarpment above the Sanup Plateau (Photo credit: Rich Rudow). B) View to 
the south, showing the Sanup Plateau in the foreground and the Hualapai Plateau 
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  Figure 2.3. Illustration of canyon formation (local-relief increase Dz) associated with exposure of a 
sub-horizontal layer of stronger rock (grey) under both (A) steady mainstem incision (100 m/Ma) and 
(B) following an increase in mainstem incision (stream power model simulation: blue – initial profile 
for steady state incision in weak rocks; green – intermediate time steps; magenta – final time step of 
simulation). Model illustrates tributary response to incision of mainstem (right edge). In both cases 
relief is set by the difference between erosion rate in the canyon (Ec) and on the surrounding 
lithologically controlled bench (Eb), times the time since exposure of the harder rock layer or 
acceleration of incision (Dt). (C) and (D) show that the most easily measured diagnostic difference is 
the relation between Ec and the erosion rate in headwater catchments (Eh) still incising the 
overlying weaker rock and largely insulated from changes downstream (see text). Note that the 
slight steepening just above the main knickpoint in (B) and associated spike in erosion rate in (D) 
reflects the fact that in the simulation the acceleration of incision precedes exposure of the stronger 
rock -- the main knickpoint is lithologic in nature in both cases. 
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Figure 2.4. River profile reconstruction method illustrated for Jeff Canyon (see Fig. 2.1 for 
location). Panel A shows channel profile and reconstructed pre-incision channel profile 
projections, with uncertainty bounds. Note that Theta_ref is 0.4, 0.45 or 0.5. Panel B shows log 
slope-log area diagram illustrating the dramatic slope-break knickpoint and the regression used 
to characterize the relict upstream channel segment. Note the single slope-break knickpoint and 
that the channel remains steep all the way to the confluence. Panel C shows elevation vs chi. 
Slope of the line is ksn. Highest ksn is closely associated with thick limestone packages. 
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Figure 2.5. Schematic illustration of landscape evolution associated with canyon 
formation. Upper panel (scenario 1) shows landform evolution during active (assumed 
steady for simplicity) incision.  Lower panel (scenario 2) shows evolution after 
cessation of incision. River profiles are in black, canyon side walls and interfluves are 
in grey. Later time steps shown in thicker lines (each panel shows 4 time steps). Initial 
condition shown as dashed grey line (interfluve) and dotted black line (channel). First 
time-step in lower panel is the final time-step from the upper panel. For clarity only 
initial and final time-steps are shown for the interfluve, channel, and reconstructed 
channel projection associated with the low relief erosion surface. Arrows show net 
observed relief production. Total incision is larger as this includes the slow lowering of 
the surrounding low relief landscape (distance between final dashed channel 
reconstruction and the initial channel profile shown as a dotted line). 
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Figure 2.6. Chi vs elevation determined from drainage area data for a) exemplary 
channels and the representative sample of most streams b). All streams analyzed are 
included in Appendix A. Linear sections are associated with regions well represented by 
theta_ref and the slope of the line is ksn. All streams show 2 dominant regions of ksn, 
one within the canyon (at low elevations) and one above the canyon. Streams 234L and 
Jeff canyons contain upward perturbations, reflecting anomalously high ksn that are 
associated with thick sections of erosion-resistant limestone bedrock below the rim of the 
canyon. 
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 Figure 2.7. Geologic map of Hualapai Plateau and surrounding area. Cross-
section lines for Fig. 2.8 shown.  Map units: (Ct – Tapeats Fm, Cba – Bright 
Angel Fm, Cm – Muav Fm, Dtb – Temple Butte Fm, Mr – Redwall Ls, IPMs – 
lower Supai group, Pep – Esplanade Ss, Ph – Hermit Fm, Pt – Toroweap Fm, 
Pc – Coconino Fm, Pk – Kaibab Fm, Ts1 – tertiary sediments, i.e. Music 
Mountain Fm., Buck and Doe Cong., Tsb – Tertiary basalt, QTg – 
Quaternary/Tertiary local gravel). 



 

50 
 

 

Figure 2.8. Geologic cross-section is modified from section B-B’ in Billingsley et al. (2006) 
USGS SIM 2900 map, used and modified by permission. Modifications relate to projecting 
nearby outcrops of late Tertiary sediments and volcanics into the section and illustrating 
the location, incision depth, and depth of fill associated with the Hindu paleo channel. Red 
dots are knickpoints as in Figs. 2.1 and 2.9. (Ct – Tapeats Fm, Cba – Bright Angel Fm, 
Cm – Muav Fm, Dtb – Temple Butte Fm, Mr – Redwall Ls, IPMs – lower Supai group, Pep 
– Esplanade Ss, Ph – Hermit Fm, Pt – Toroweap Fm, Pc – Coconino Fm, Pk – Kaibab 
Fm, Ts1 – tertiary sediments, i.e. Music Mountain Fm., Buck and Doe Cong., Tsb – 
Tertiary basalt, QTg – Quaternary/Tertiary local gravel).  
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Figure 2.9. Reconstruction of the height of the pre-incision surface above the Colorado 
River from downstream projections of relict channel profiles upstream of abrupt slope-
break knickpoints that surround WGC, following the method illustrated in Fig. 2.5 and 
showing uncertainties associated with characterization of upstream channel form 
(concavity and steepness indices).  Outliers are discussed in the text.   
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Figure 2.10. Normalized channel steepness index over greyscale elevation map with 
hillshading. Profile projection anchor points marked as red dots. Major slope-break 
knickpoints (defined as largest visual topographic expression) on tributary rivers indicated 
by cool to warm color transitions in channel steepness data. Tributaries to WGC show 
similar mean channel steepness indices and exhibit the profile geometries illustrated in 
Figs. 2.4 and 2.5. Streams draining the Grand Wash Cliffs show more subdued knickpoints 
and generally lower channel steepness, but with a tendency to towards increased ksn in 
their lower reaches  
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Figure 2.11. Slope map of WGC and GWC areas (30m resolution, location shown on Fig. 
2.1). Although incised through the same rocks and experiencing the same climate, the 
topographic expression of the GWCs and associated tributary canyons and side slopes is 
far more subdued than that of the WGC, indicating either notably slower erosion rates, a 
longer period of topographic relaxation since relief production (known to date to 18-12 Ma 
for the GWC), or both.  
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Figure 2.12. Comparative inter-fluvial topographic profiles in WGC and along the GWC. 
Topographic section line locations are shown in figures 2.1 and 2.10. Profiles in the WGC are 
shown in reds and oranges and those along the GWC in blues. Profiles are represented at actual 
elevations, but only shown above the COR in WGC or above the GWF along the GWC. 
Interfluves in the WGC show no indication of significant retreat or relaxation from threshold slopes 
since canyon formation. Interfluves along the GWC document both significant retreat and 
significant relaxation since relief production associated with normal faulting along the GWF. 
Profiles named after nearby canyons: QM – Quartermaster, HF – Horse Flat, Pe -Pearce Canyon, 
Sq – Squaw, Pi Pigeon Canyon   
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Tables 

Table 2.1. Summary of Topographic Analysis of western Grand Canyon Tributary Streams 
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Table 2.2. Summary of Tributary Projections, Western Grand Canyon 
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Table 2.3. Erosion Rates Summary for the Hualapai Plateau Surface 
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  EFFECTS OF STRATIGRAPHIC VARIATION IN ROCK STRENGTH ON 

EROSION RATE PATTERNS: LANDSCAPE EVOLUTION IN THE GRAND CANYON AND 

GRAND STAIRCASE 

Andy Darling, Kelin Whipple, Brian Clarke, Adam Forte, Paul Bierman 

Abstract 

Rock strength variation is known to affect the topographic expression of erosion. On the 

Colorado Plateau, canyons incised by the Colorado River system often encounter stronger rocks 

at greater depths, potentially complicating interpretation of base level history normally studied in 

landscapes with more uniform rock strength. Using numerical models to predict erosion rate 

patterns, we determine the diagnostic differences in erosion rate between scenarios of weak-

over-strong rock with steady base level and with increased base level fall. As the river encounters 

the strong underlying layer, knickpoints are produced that move upstream as a kinematic wave 

that moves (horizontally) more slowly than the kinematic wave of erosion in the headwaters. This 

produces erosion rates in the canyon that depend on the canyon base level fall rate and 

headwaters that are still responding to boundary conditions imposed before the rock strength 

contrast or base level rate increase occurred, preserving a relict landscape. In the opposite 

scenario, strong-over-weak rock yields localized high erosion rates along the contact caused by 

competing long profile adjustment to different erosional efficiencies, leading to erosion of the 

weak rock that undermines the strong rock and produces locally high erosion rates. Incision and 

cosmogenic erosion rates in the Grand Canyon (~150 m/Ma) are higher than incision rates in the 

Grand Staircase (~75 m/Ma). Cosmogenic erosion rates in the Grand Staircase, on the other 

hand, are higher than either (200+ m/Ma) and are likely the combined effect of enhanced real 

erosion by undermining of strong rock by the erosion of underlying weak rock and enhanced 10Be 

erosion rate attributable to localized quartz sourcing from the rapidly eroding cliffs. Further, 

erosion rates determined in simulated scenarios like the Grand Canyon typically do not deviate 

from base level fall significantly when several rock layers are supplying the sampled stream. The 

Grand Canyon and Grand Staircase are therefore interpreted as co-evolved landscapes that 
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result from an increase in base level fall rate in the last few million years that is acting on strata of 

varied rock strength, providing complex but predictable erosion rate patterns and cosmogenic 

inventories. 

Introduction and Motivation 

Recent studies in canyons on the Colorado Plateau have raised important questions 

about the incision history of the Colorado River and its tributaries; an abundance of new data has 

driven conflicting interpretations about temporal evolution of topography (Wolkowinsky and 

Granger, 2004; Flowers et al., 2008; Polyak et al., 2008; Cook et al., 2009; Darling et al., 2012; 

Flowers and Farley, 2012; Karlstrom et al., 2012; Marchetti et al., 2012; Pederson and Tressler, 

2012; Donahue et al., 2013; Pederson et al., 2013a; Pederson et al., 2013b; Aslan et al., 2014; 

Crow et al., 2014; Karlstrom et al., 2014; Bursztyn et al., 2015; Crossey et al., 2015; Darling and 

Whipple, 2015). The Colorado River system drains the western slope of the Rocky Mountains and 

has removed on the order of 300,000 km3 of rock (Dorsey, 2010) since its integration beginning in 

the Miocene (Figure 3.1). Evolving hypotheses about the river system’s development over the last 

11 million years (Aslan et al., 2010) address evolution of the Colorado River System into a well-

connected and highly erosive river system deeply incised into predominantly flat-lying 

sedimentary strata. Incision history is interpreted directly and indirectly via geochronometers (e.g. 

Darling et al., 2012; Crow et al., 2014) and thermochronometers (e.g. Flowers and Farley, 2012; 

Karlstrom et al., 2014).  Despite the abundance of new data from a decade of intense study, no 

consensus has emerged for key questions about the antiquity of the topographic features like 

Grand Canyon (Polyak et al., 2008; Flowers and Farley, 2012; Karlstrom et al., 2014; Darling and 

Whipple, 2015) and the relative importance of tectonic uplift and isostatic rebound (Roy et al., 

2004; Roy et al., 2009; Darling et al., 2012; Karlstrom et al., 2012; Pederson et al., 2013b; Crow 

et al., 2014). A critical unanswered question that complicates interpretations is how strongly the 

variation in rock strength exposed along the Colorado River and its tributaries has influenced the 

spatio-temporal patterns of river incision, the resulting landforms, and our ability to accurately 
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determine river incision history (Grams and Schmidt, 1999; Pederson and Tressler, 2012; 

Pederson et al., 2013b; Bursztyn et al., 2015; Darling and Whipple, 2015). 

Landscape evolution reflects the competition between the uplift of rock relative to base 

level and climatically and lithologically mediated erosion that is expressed in fluvial networks 

(Ahnert, 1970; Whipple et al., 1999a; Kirby and Whipple, 2012). Where rock strength does not 

vary significantly in a study area, a record of tectonic or climatic conditions can be extracted from 

topography (e.g. Whittaker et al., 2007; DiBiase et al., 2010; Rossi, 2014; Rossi et al., In Review). 

In most landscapes, however, the erodibility of bedrock varies both spatially and temporally as 

patterns and depths of rock exposure evolve. On the Colorado Plateau, relatively simple 

stratigraphy produces significant variation in erosion process in the landscape as cliffs form and 

scarps retreat, contributing to spatial variation in erosion rate and topographic form (Koons, 1955; 

Ward et al., 2011). The pace and pattern of erosion in variable rock type is key to understanding 

how base level history, climate, and tectonics are recorded in landscapes that do not host uniform 

rock types. This study analyzes how changes in rock strength affect erosion rate patterns and 

how erosion rate patterns impact techniques for determining erosion rates from detrital 

cosmogenic nuclides and incision rates from dated surficial markers like river terraces. Exploring 

relationships among rock strength, topography, and erosion rates yields implications for base 

level fall history of the Colorado River related to the topographic characteristics of several 

national parks and monuments. 

Approach 

 In order to develop an understanding of the history of base level on the Colorado Plateau, 

evaluation of the effects of rock strength patterns on topography is needed (Dietrich and Smith, 

1983; Grams and Schmidt, 1999; Roberson and Pederson, 2001; Pederson and Tressler, 2012; 

Bursztyn et al., 2015). Numerical simulation of erosion through horizontally bedded strata with 

contrasts in rock strength produces significant variation in topography and erosion rate as erosion 

progresses (Forte et al., 2016). To improve understanding of the incision and erosion rate 

patterns of the Colorado River System we compare new and existing erosion-rate data to the 
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theoretical framework surrounding landscape evolution (e.g. Whipple and Tucker, 1999; Whipple, 

2001a; Tucker and Whipple, 2002) with explicit discussion of rock strength in flat-lying 

stratigraphy and its effect on erosion rate patterns (cf. Darling and Whipple, 2015; Forte et al., 

2016). This study builds on key research incorporating rock strength into fluvial incision studies in 

other landscapes (Stock and Montgomery, 1999; Duvall et al., 2004; Korup and Schlunegger, 

2009) by advancing landcape evolution simulations and empirical measures of rock strength 

using seismic methods (e.g. Clarke and Burbank, 2010, 2011). This research attempts to answer 

the question: what effects does variation in lithologic strength have on erosion rate patterns in 

landscape evolution? Theoretical and empirical development from the Grand Staircase (GSc) of 

southern Utah and Grand Canyon (GC) in Arizona will allow better interpretation of the effects of 

lithologic strength on erosion patterns, further yielding when and how canyons have formed in the 

Colorado Plateau and provide a helpful framework for landscapes with similar substrate patterns. 

The stratigraphy of the GSc and the GC can be simplified to a weak rock package over a 

strong rock package (discussed in detail below). Each of these two generalized rock packages, 

however, contains significant variation in rock strength among individual stratigraphic units. For 

instance, the stepped pattern of the GSc represents the interaction between weak and strong 

layers, where the stronger layer forms a cliff and the weaker layer forms a broad slope. It is worth 

noting that the topographic expression of alternating strong and weak rock units is much more 

strongly developed in the GSc with very wide topographic benches separated by short, steep cliff 

bands, than in the GC, suggesting that erosion rate patterns may likewise be more exaggerate in 

the GSc. To evaluate erosion patterns (topography and rate) and their relationship to base level 

fall rates and rock strength variation, we develop predictions from one-dimensional numerical 

simulations that show river longitudinal profiles through two-layer stacks of rock (Figure 3.2 and 

3.3). Each scenario produces knickpoints in the channel, but the erosion rate patterns are 

diagnostically different. In panel 2a weak rock overlies strong rock and base level fall is constant 

(3.2a) or increases shortly before exposure of the stronger rock (3.2b; (cf. Darling and Whipple, 

2015). Diagnostic differences in erosion rate are produced, allowing distinction between canyons 

that form purely as a result of lithologic strength contrast (3.2c) or as a result of increased base 
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level fall rate with a strength contrast (Darling and Whipple, 2015). In Figure 3.3, constant base 

level fall rate is imposed and the incising base level drives erosion into the strong rock, the 

channel steepens and produces an upstream-migrating kinematic wave (Rosenbloom and 

Anderson, 1994; Whipple and Tucker, 1999). Local erosion rate is reduced at the top of the 

strong rock as the profile above the knickpoint continues eroding, eventually producing a flat, low-

erosion-rate bench (pink curve). The kinematic wave of erosion through the upper, weaker rock is 

faster than that through the lower, harder rock. The erosion waves separate, creating a bench 

where erosion rate is low. This is often referred to as “stripping off” the weak, overlying rock. In 

panel 3.3b, strong rock above a weaker rock unit also produces two competing channel 

geometries. The shallow gradient stream in the weak rock produces a kinematic wave of erosion 

that migrates upstream faster than the horizontal kinematic wave of the upper section, the 

opposite pattern seen in 3.2. This wave-speed difference inherently undermines the upper, 

stronger, rock layer. This produces an upstream-migrating knickpoint that is only due to the 

change in rock strength: an autogenic response. Further, the erosion rate within the zone of 

knickpoint retreat is systematically much higher than base level fall rates. For discussions in this 

paper, note that the relevant implications of the model can be expressed at a variety of scales: 

the same patterns should result from the interactions of erosion on two different rock beds that 

are a few tens of meters thick to units (or unit packages) that are kilometers thick. 

We address three aspects of the influence of rock strength on erosion: (1) empirical 

confirmation of these simulated patterns requires techniques that can determine long-term base 

level fall rates as well as the spatial distribution of erosion rates; (2) inference of relative rock 

strength from seismic surveys of outcrops throughout the stratigraphic column is needed to justify 

simulated stratigraphy and inferences about erosion patterns; and (3) for erosion rates 

determined by detrital samples of in-situ cosmogenic radionuclides (CRNs), the relative 

contribution of quartz derived from weak and hard layers within the watershed plays a crucial role, 

especially if they bias erosion rate estimates toward the erosion rate of the cliffs. The variation of 

quartz concentration in bedrock stratigraphy of the Colorado Plateau is large and complex, 

requiring detailed exploration and simulations of relative sources of quartz input to sediment 
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samples that are derived from particular sequences of rock units.  Where quartz is uniformly 

distributed in a landscape, erosion rates calculated from 10Be concentrations in sediment 

represent spatially averaged erosion rates (Bierman and Steig, 1996; Granger et al., 1996). For 

complex erosion rate patterns (e.g. Figures 3.2 and 3.3), the presence of non-uniform 

distributions of quartz present a more complicated meaning for the measured concentrations of 

CRNs in sediment that are modeled here using a combination of Channel-Hillslope Integrated 

Landscape Development (CHILD) and Cosmic-Ray-Produced Nuclide Systematics (CRONUS) 

production rate numerical simulations (Tucker et al., 2001; Balco et al., 2008).   

This paper examines the interaction among rate of base-level fall, CRN-derived erosion 

rate, and rock strength, in the context of landscape evolution of the Colorado Plateau. The data 

sets are intended to help answer five driving questions, listed with increasing scope:  

(1) What is the erosion rate of catchments within the GSc and how does it relate to the 

rate of base level fall?  

(2) What effect does the stratigraphic variation in rock strength have on erosion rates in 

the GC and GSc?  

(3) What is the relationship between the rate of erosion of the GC and that of the GSc?  

(4) What is the effect of stratigraphic variation in rock strength and quartz yield on 

measurements of 10Be concentrations in fluvial sediment?  

(5) What expectations about variation in rock type can be applied to erosion-rate patterns 

in the Colorado Plateau and other landscapes with similar structure and stratigraphy?  

Study Area 

Two physiographic regions are the focus of this study: the GSc and GC (Figure 3.4). 

Black Mesa, in northern Arizona, is also considered as an analogous landscape to the GSc, 

eroding upland Mesozoic rocks with the Little Colorado River as the local base level (Figs 3.1 and 

3.3). Erosion rates on the Colorado Plateau have been suggested to represent transient incision 

due to increased incision rates of the Colorado River (Cook et al., 2009; Darling et al., 2012; 

Darling and Whipple, 2015), or isostatic rebound of the crust by erosional unloading (Pederson et 
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al., 2002b; Roy et al., 2004; Lazear et al., 2013); and may reflect modifications due to mantle 

dynamics (Roy et al., 2009; Crow et al., 2014).  

The GSc is aptly named for its display of rows of cliffs supported by relatively strong 

bands of rocks mixed with packages of weak predominantly shale units (Figures 3.5 and 3.6). 

The Cenozoic and Mesozoic cliff bands tend to be developed in fluvial or eolian sandstone-rich 

units, which sometimes contain higher quartz concentrations than weaker shale units. Sporadic 

Paleogene volcanic activity across the landscape has emplaced lava flows that serve as incision 

rate markers.   

Relief of the GSc landscape is characterized by gentler slopes and lower overall relief 

than that of the GC (Figure 3.1). The GC displays a suite of variably weak and strong strata but 

most are generally stronger than strata in the GSc (e.g. Pederson and Tressler, 2012; Bursztyn et 

al., 2015). Erosion of the GC has been documented using incision-rate and thermochronometric 

studies (Pederson et al., 2002a; Karlstrom et al., 2007; Polyak et al., 2008; Darling et al., 2012; 

Flowers and Farley, 2012; Crow et al., 2014; Karlstrom et al., 2014), most of which agree that the 

majority of incision began 5 to 6 million years ago. The Paleozoic and Proterozoic rock layers of 

the GC are composed of shales, sandstones, and limestone that are each relatively thin 

compared to the depth of the canyon (Figures 3.7 and 3.8). 

The Colorado Plateau also provides an interesting setting for studies of landscape 

evolution with renewed debate over the timing and nature of incision of the GC. De-convolving 

the effects of rock strength on erosion rates helps to clarify the relationships between incision rate 

of the main-stem Colorado River and will illuminate aspects of the evolutionary progression of the 

Grand Canyon and its many tributaries. 

Methods 

Numerical Modeling 

We use the CHILD model (Tucker et al., 2001) for quantitative analysis of erosion rate 

patterns instigated by rock strength variability. In order to implement the CHILD code with 

variable rock strength for more than two layers, modifications were made to the code, which we 
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refer to as LithoCHILD (c.f. Forte et al., 2016). The erosion-rate patterns determined from these 

simulations are used to guide interpretation of spatial patterns of erosion rates in our study areas.  

Two 2-dimensional simulations are presented here. First, a simple strong-over-weak 

scenario is modeled to explore the spatial distribution of erosion rates like figure 3.3 (Figure 3.9 

and 3.10). This simple strong-over-weak pattern is similar to that of the highest step of the GSc, 

where limestone and sandy-silty and local conglomerate beds of the Eocene Claron Formation 

overly more erodible Cretaceous sandstone and shale units (Figure 3.4, Weimer, 1960; Anderson 

and Rowley, 1975). The second model simulation groups several relatively thin units (Figure 3.11 

and 3.12) to determine relative input of eroded sediment from a catchment that has several weak 

and several strong units that represent the Paleozoic rocks of the GC. 

In addition, MATLAB code developed for CRONUS (Balco et al., 2008) was modified to 

calculate synthetic 10Be catchment averaged erosion rates directly from CHILD topographic 

output data using assumed metrics for comparison within model simulations. The simulations are 

not meant to represent the field areas precisely; rather, they are used to develop quantitative 

expectations of relationships between erosion rate and rock strength as landscapes erode. 

Topographic Analysis 

We analyze river profiles in relation to lithology to reach the goals of this study. United 

States Geological Survey (USGS) 30-m resolution digital elevation models (DEMs) are used for 

the analyses. River profiles can provide insight into base-level fall history of a river system and 

can also reveal the relative importance of controls such as rock strength, tectonic uplift and 

climate (Hack, 1957; Wobus et al., 2006; Kirby and Whipple, 2012; Whittaker, 2012; Lague, 

2014). 

Flint’s Law is an empirical relation between local river gradient (S) and upstream 

contributing drainage area (A) that reflects the tendency of a river to develop smooth concave-up 

profiles (Hack, 1957; Flint, 1974): 

                                                       𝑆𝑆 =  𝑘𝑘𝑠𝑠𝐴𝐴−𝜃𝜃 .                                                  (1) 
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In this relation, ks is the channel steepness index, and 𝜃𝜃 is the concavity index (ranging from 0.4 

and 0.6; Tucker and Whipple, 2002). In order to compare streams with different drainage areas, it 

is necessary to assume a reference concavity (𝜃𝜃 ref), usually 0.45, and use the integral method to 

calculate a channel steepness index from the integration of cumulative drainage area (Harkins et 

al., 2007). The variable ksn, relates to slope and area such that:  

                                           𝑆𝑆 =  𝑘𝑘𝑠𝑠𝑠𝑠𝐴𝐴−𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟,                                           (2) 

Maps and single profile regressions of channel steepness index (ksn) can be made from DEMs 

using the Profiler Toolbar in ArcMap and MATLAB (www.geomorphtools.org) or in-house Matlab 

scripts to harness functionality in TopoToolbox MATLAB (Schwanghart and Scherler, 2014). For 

a given catchment, the normalized channel steepness index, ksn, can be calculated for all 

segments of all streams over a user-specified stream length (usually 0.5 – 2 km). 

In landscape evolution theory, topography is a direct result of erosional processes driven 

by climate and tectonics and modulated by rock strength (Whipple and Tucker, 1999). Our 

numerical simulations are based on the well-known stream power river incision model:  

                                                                  𝐸𝐸 =  𝐾𝐾𝐴𝐴𝑚𝑚𝑆𝑆𝑠𝑠,                                                              (3) 

where A is contributing area, S is channel gradient, m and n are exponents related to erosion 

process, and the proportionality constant, K, is referred to as erosional efficiency. In addition, we 

follow recent studies that have explored the relationship between topography and erosion rate 

using channel steepness with a power function (Lague et al., 2005; DiBiase and Whipple, 2011), 

such that: 

                                                                   𝑘𝑘𝑠𝑠𝑠𝑠 = 𝐾𝐾′𝐸𝐸𝑎𝑎 ,                                                                (4) 

where the exponent a, (0<a<1), is set by runoff variability and K’ is erosional efficiency of the 

landscape, set by climate and rock properties. Note that K and K’ are not the same variable.  

Incision Rate Determination 

The base-level fall rate of a river averaged over time is determined by dividing the height 

of a fluvial deposit by a numerical estimate of age to determine an incision rate (e.g. Wolkowinsky 

and Granger, 2004; Pederson et al., 2006; Karlstrom et al., 2007; Darling et al., 2012). For this 

http://www.geomorphtools.org/
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study, incision rate is determined from basalt flows that cap river deposits elevated above the 

modern East Fork of the Virgin River. Two basalt samples astride the Sevier Fault were obtained 

for 40Ar/39Ar dating by Schiefelbein (2002), an additional previously dated flow (40Ar/39Ar) north of 

Grand Staircase (Biek et al., 2012). Several independent studies constrain incision rates in the 

Grand Canyon (Karlstrom et al., 2007; Karlstrom et al., 2008; Crow et al., 2014). Field surveys 

using a laser range-finder were conducted to measure the height of the base of the basalt flows 

and the height of the base of underlying fluvial gravel, both of which were measured relative to 

the modern stream channel (Table 3.1). From prior research, long term (105-106 year) records of 

relative base level fall on the Colorado Plateau were obtained from numerous incision rate 

studies (e.g. Repka et al., 1997; Pederson et al., 2002a; Schiefelbein, 2002; Wolkowinsky and 

Granger, 2004; Pederson et al., 2006; Karlstrom et al., 2007; Darling et al., 2012; Karlstrom et al., 

2012; Marchetti et al., 2012; Pederson et al., 2013a; Crow et al., 2014; Nelson and Rittenour, 

2014). 

Erosion Rates from Cosmogenic Isotopes 

 Concentrations of cosmogenically produced 10Be are routinely measured to determine 

basin-averaged erosion rates from analysis of modern stream sediment (Bierman and Steig, 

1996; Granger et al., 1996; DiBiase et al., 2010; Portenga and Bierman, 2011; Granger et al., 

2013; Willenbring et al., 2013). Physical separation of detrital cosmogenic erosion rate samples 

took place at Arizona State University Wombat Laboratory, and chemical analysis of detrital 

samples was carried out at the University of Vermont Cosmogenic Nuclide Laboratory using 

optimized methods described by Corbett et al. (2016). Targets were processed at SUERC and 

PRIME labs. Grain sizes from 0.5 to 1.0 mm were extracted to avoid likely Quaternary-age eolian 

grain (which is usually <0.5mm) inclusion before further sample processing. Most samples 

yielded small fractions of viable quartz, requiring sample volumes of two or three one-gallon 

containers in order to yield approximately 20-100 grams of clean quartz for dissolution.  

The erosion rate is inversely proportional to measured concentration of 10Be in the 

sediment. We calculate erosion rates using standard values for production rates in the on-line tool 
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CRONUS (Balco et al., 2008). Traditionally studies of 10Be have focused on simple catchments 

that have relatively little chance of landslide (Niemi et al., 2005), uniform quartz distribution, and 

uniform erosion rate inferred from topography within a catchment. Quantification of non-uniform 

quartz concentration in calculations has yielded differences that are equal to or less than the 

analytical uncertainty (~10%, e.g. Safran et al., 2005), and we use this observation compared 

with synthetic 10Be inventories to discuss reliability of catchment average erosion rate calculations 

(see the Discussion and Numerical Modeling Methods sections below). It is important to note that 

if the quartz distribution is not uniform, then the erosion rate of the dominant quartz source will 

bias the CRN rate and it will differ from the actual mean erosion rate. Extensive discussion of this 

problem, our simulations, and field evidence together provide a framework for working in 

environments where typical production rate assumptions are not ideal. 

Seismic Velocity Measurements 

Analysis of the landscape evolution simulations and empirical erosion rate data requires 

constraints on proxies for relative rock strength in the GSc and GC. Here we utilize seismic 

refraction surveys to measure P-wave velocities (Vp) through bedrock as a proxy for rock-mass 

strength and erodibility (Suzuki, 1982; Hack, 2000; Clarke and Burbank, 2010, 2011). Seismic 

velocities reflect the elastic moduli and material properties of the rock mass and are influenced by 

the mineralogy, density, and porosity of the rock, as well as by the degree of degradation of the 

rock-mass by fractures and weathering, which are the same factors believed to influence rock-

mass strength (Sjøgren et al., 1979; El-Naqa, 1996; Barton, 2007; Cha et al., 2009; Jaeger et al., 

2009). The relationship between impedance (product of Vp and density)) and hillslope gradient 

shows ability to discriminate slope and cliff formers, showing that Vp variation with strength is 

greater than the effect of density (Stafleu et al., 1996). Engineering studies of “rippability” (e.g., 

bulldozer operations as a proxy for erosion), show that rock removal efficiency by excavation 

increases rapidly as Vp decreases for Vp <3 km/s (MacGregor et al., 1994).   

We acquired seismic refraction data and Vp values along seismic surveys spanning 12-

100 m in length using two 24-channel Geometrics Geode seismographs and 12-24 4.5 Hz vertical 
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component geophones spaced 2-5 m apart. The seismic source signal was generated using a 

sledgehammer and steel plate. Shot points (source locations) were spaced 2-5 m along the 

survey line.  

Seismic velocities were determined based on first-arrival times from the source to each 

geophone and inversions of the seismic data using standard seismic refraction techniques and 

SeisImager software (Sheriff and Geldart, 1995; Mussett and Khan, 2000; Forbriger, 2003a, b). 

We produced 2-D seismic refraction tomography to image spatial Vp variations of subsurface 

bedrock. The initial velocity model was produced by a simple time-term 2-3 layered inversion, to 

roughly differentiate bedrock from colluvial cover. This layered model was then used for the 

tomographic inversion using the shortest ray-path method from each shot (Moser, 1991). The 

result is a 2D image of the subsurface velocity structure enabling identification of horizontal and 

vertical variations in Vp and boundaries between colluvium and bedrock. The Vp values used 

here, as a proxy for rock-mass strength, represent the range of maximum velocities along the 

survey from the deepest ray-path, which for all surveys is either a distinct colluvium-bedrock 

boundary or a direct ray along the surface. 

Results 

Landscape Evolution Simulations 

As expected from 1-D river profile evolution theory (Figure 3.2), simulations of landscape 

evolution in the presence of gently dipping layers with strong rock overlying a weak rock unit 

produce a migrating scarp where erosion rates are at a maximum along the contact between the 

two rock units (Figure 3.9 and Appendix B).   

The two-dimensional simulation uses parameters similar to empirical constraints on the 

GSc for comparison to and interpretation of cosmogenic erosion rates and incision rates. The 

simulation domain is bounded by a base-level fall rate of 90 m/Ma on the south edge and 40 

m/Ma on the north edge. The important part of these variables isn’t their magnitude, but that the 

two sides of the ridge have different base-level level histories to produces the erosional bench. 

The entire model space is uplifting at 90 m/Ma. The model begins with a uniform low-relief, 
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randomly generated surface, and then erosion progresses through time as the model is run. The 

key observation occurs when the model has developed to the point where the underlying weak 

rock is exposed and a scarp of high erosion rate develops (Figures 3.9 and 3.10).  

Incision rates on Grand Staircase and in Grand Canyon 

 For the GSc, several basalt flows provide possible chronologic constraints, but few have 

been dated with 40Ar/39Ar methods. At present, the most applicable basalt flows for incision rate 

study are along the East Fork of the Virgin (EFV) River (Figs. 3.13 and 3.14). Schiefelbein (2001; 

2002) dated the Spencer Bench/Black Mountain flows (Figure 3.14) with two samples yielding a 

weighted mean date of 0.57 +/-0.02 Ma. Field surveys of exposed outcrops along US Highway 89 

(Table 3.2, Figures 3.13 and 3.14) yield minimum height of ~60 m of incision between the base of 

the basalt flows and the current level of the Virgin River. River gravel underlies the lowest basalt, 

and is largely obscured by vegetation (Figure 3.13 a-d). One road cut exposes the unconformity 

between this gravel and bedrock (Figure 3.13a). The basal gravel at this point is ~30 m above the 

modern EFV. The contact between the Spencer Bench basalt and gravel yields a maximum 

incision rate (height of basalt base) of 100 m/Ma (60 m/0.57 Ma). The lower elevation strath 

height and the assumption that the basalt flow closely marks gravel deposition on this strath yield 

a minimum incision rate of ca. 50 m/Ma (30 m/0.57 Ma). These rates are both maxima for the 

respective measures because the lowest actual elevation of each contact may be below the 

observed basal contact. For a long-term bedrock incision rate, the rate of 50 m/Ma rate is 

preferred the methodology for choosing that value is consistent with recent incision studies 

elsewhere on the Colorado Plateau (e.g. Karlstrom et al., 2007; Darling et al., 2012; Crow et al., 

2014). However, we consider the range 50-100 m/Ma (or 75 +/- 25 m/Ma) to be more robust due 

to uncertainty in the relationship between the base of the gravel strath and the overlying basalt. 

 We analyze the profile of the EFV and distinguish the gradient of three reaches based on 

regressed channel steepness values (Figure 3.14). Upstream of the EFV knickpoint, the relatively 

shallow gradient stream (ksn = 28 +/-1 m0.9) is consistent with the slowly eroding, low-relief 

landscape surrounding the headwaters of the EFV (Figure 3.1). Along the EFV, at the knickpoint, 
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the maximum height of the top of the basalts is approximately 25 m above the current river level 

(black dots, Figure 3.14). We reconstruct the plausible paleo-profile of the river before incision 

through the basalt flow (purple dashed line, Figure 3.14). This projected profile represents the 

channel of the EFV before the increase in base-level fall rate, carved the current knickzone.  

Downstream of the EFV knickpoint, we regressed channel steepness along the steepest 

portion of the channel (ksn = 101 +/- 4 m0.9, Figure 3.14). Downstream of the remnant basalt flows, 

a longer, less steep (ksn = 74 +/- 2 m0.9) section occurs. Comparison of projected profiles (based 

on modern drainage area) to paleo-profiles preserved by the basalt matches the relatively low 

(74) ksn value well. An inferred paleo-profile from the single gravel point and upstream extent of 

the knickzone (furthest upstream basalt) matches the slightly greater channel steepness gradient. 

The observed profile of the basalt flow (orange line, Figure 3.14) is more robust than the profile 

inferred from two data points (blue line, Figure 3.14). Further, the section with higher steepness 

(ksn = 101 +/-4 m0.9) may be a local perturbation expressed by the passing knickpoint (Whipple, 

2004; Haviv et al., 2010), and could be over-steepened relative to the equilibrium profile given the 

more recent, higher erosion rate boundary condition (50-100 m/Ma).  

 Few regional incision rates have been determined in the vicinity of the GSc, although 

several lava flows exist. Two recently dated basalt flows along Kanab Creek rest on the modern 

strath and about 30 m above the strath, and are inferred to be Quaternary in age because they 

rest within canyons that contain Pleistocene-Holocene arroyo deposits (Nelson and Rittenour, 

2014). The face-value dates of these two flows are <211 ka and <276 ka respectively. However, 

both samples exhibited characteristics of excess argon during step-heating and are considered 

maximum ages (Nelson and Rittenour, 2014). Because of this analytical uncertainty, we do not 

rely on these basalts for incision rate estimates, but a loosely constrained incision rate of 75 +/- 

25 m/Ma from the higher flow is consistent with relatively slowly eroding channels similar to the 

nearby EFV. Indeed, the lower flow -implies very slow erosion. The scarp of the next nearest 

incision point on the plateau north of the GSc, 35 km north of Spencer Bench on the upper Sevier 

R, yields a net incision rate since 5.45 Ma of <2 m/Ma at Rock Canyon along US Highway 89 

(Figs. 1, 8f, age from Biek et al., 2012). This very low incision rate of the plateau is inferred from 
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topography and used to justify a low base level fall rate in the simulation of GSc, which has a low 

erosion rate on the northern boundary of the simulation (Figure 3.9). 

 In the GC, incision rate decreases from ~175 m/Ma in the eastern canyon to ~90 m/Ma in 

the central canyon (Crow et al., 2014). To simplify, we use an approximate average value of 150 

m/Ma for the eastern GC for comparison. We take this incision rate range to be representative of 

the majority of the GC downstream of the GSc. Lower apparent incision rates in the western GC  

have been affected by local normal faulting and hanging-wall anticlines (Karlstrom et al., 2007; 

Crow et al., 2014), and so we focus on the eastern GC as a proxy of base level fall relevant to the 

relationship between GSc and GC. The best general estimate of incision rates from the GSc and 

GC landscapes are about 75 +/- 25 m/Ma and about 150 +/- 25 m/Ma, respectively. Approximate 

uncertainties given are representative of the range of data.   

Spatially-averaged Erosion Rates and Topography 

 Topographic metrics in the study areas are quantified to evaluate the relationships 

between rock strength and erosion rates. The values of channel steepness (ksn) averaged across 

individual catchments on the GSc are typically 20-60 m0.9, and in the GC ksn values typically 

range from 80-120 m0.9. 

 Cosmogenic erosion rates from the GSc, GC (including data from Nichols et al., in 

review), and Black Mesa east of GC show a wide range (18-1261 m/Ma) of measured rates 

(Table 3.2, Figure 3.15). The apparent erosion rates of the GSc are higher (177-1261 m/Ma) than 

those of the GC (18-267 m/Ma).  This is opposite to constraints from longer term incision rate 

data (~75 m/Ma in the GSc vs ~150 m/Ma in the GC). Note that the CRN samples in the GSc 

primarily tap catchments eroding from the upper ‘step’ of the Staircase, the Pink Cliffs (Figure 

3.5), which are formed of the Eocene Claron Formation atop weaker Upper Cretaceous beds. 

These contrast to GC samples that tap catchments eroding from numerous units in the Paleozoic 

and Proterozoic strata (Figures 3.7 and 3.8), which include several quartz-bearing units and 

several cliff-slope alternations, (that are much more closely spaced horizontally than GSc) in the 

canyon. 
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Simulated Erosion and Simulated CRN Determination of Erosion Rate 

 Simulated landscapes were sampled with modified CRONUS scripts to extract the 

expected 10Be erosion rate (Table 3.3).  In this analysis three key rates are compared: the 

imposed base-level fall rate that drives erosion, the catchment-averaged erosion rate, and the 

estimate of catchment-averaged erosion rate obtained from 10Be measurements. The simulated 

landscape has similar boundary conditions to the Pink Cliffs of the GSc (Figures 3.5 and 3.9), and 

produces “real” catchment-averaged erosion rates calculated directly from the model that are 

greater than base-level fall rate in any catchment sampling the scarp (Figures 3.10). For most 

cases tested, the 10Be measured estimate closely matches the calculated average erosion rate, 

supporting the well-established idea that detrital 10Be concentrations provide a good measure of 

catchment mean erosion rate despite expected spatial complexity in erosion rate (Bierman and 

Steig, 1996; Granger et al., 1996).  

A critical question for our analysis is whether or not the catchment mean rate measured 

by detrital 10Be concentrations reflect long-term base-level fall rate. As illustrated in Figure 3.3d, 

where erosion of weak rocks undermines stronger rock units to form retreating cliff bands, local 

and even spatially averaged erosion rates can significantly exceed the rate of base-level fall. The 

degree to which real catchment average erosion rate exceeds base-level fall rate is proportional 

to the distance from the rapidly eroding scarp (Figure 3.10).  Preliminary analyses indicate that 

variable quartz fertility within the rock layers (Figure 3.10) typically does not cause real and 10Be 

rates to differ until quartz fertility ratios approach 50 to 100 times greater concentration in one unit 

than another. The simulation with stratigraphy like that of the GC (Figures 3.7, 3.8, 3.11 and 3.12) 

yields real catchment averaged erosion rates (calculated directly from adjacent time-steps) that 

typically do not differ greatly from 10Be averaged rates or imposed base-level fall rate (Figure 

3.12). The relationships between modeled catchment averaged erosion rates, modeled 10Be 

estimates of that erosion rate and base level suggest particular scenarios for which 10Be data will 

not match base-level fall rates given wide ranges of rock strength and quartz distribution, which 

are needed for direct assessment of the validity of erosion rate estimates in landscapes affected 

by quartz disparity and horizontal strata. For instance, the substantial difference between base 
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level fall rate and cosmogenic erosion rates in the Grand Staircase is likely a result of 

undermining the cliff bands, which can be viewed as a means of increasing efficiency or as 

skewing data from expected ksn vs E relationships. 

Seismic Velocity Measurements 

Seismic-refraction tomography reveals Vp through the near-surface bedrock that can be 

used as a proxy for rock-mass strength (Sjøgren et al., 1979; El-Naqa, 1996; Barton, 2007; Cha 

et al., 2009; Jaeger et al., 2009) over geomorphically relevant scales. The bedrock in GC shows 

generally faster Vp values than those in the GSc (Figs. 3.7 and 3.8). The fastest Vp values, 

ranging from 4 to 6 km/s, are in un-weathered limestones, granites, and schists exposed within 

the Paleozoic and Proterozoic rocks of GC. The slowest Vp values are found within the shale 

units from both regions, ranging from 0.5 to 1.3 km/s, and appear invariant with age. In both 

regions, the stronger cliff-forming units reveal Vp values greater than 2.7 km/s, whereas the 

weaker, slope forming, units show consistently slower Vp values around 1 km/s. In a limited 

number of surveys over shale units, Vp values, unsurprisingly, reflect an unusually strong (fast Vp) 

bed within a generally weaker shale unit, which we interpret as not representative of the velocity 

structure or strength of the rock unit as a whole.  

The minimum two- to three-fold contrast in Vp values between strong and weak units 

supports the simulated stratigraphic columns for the models that loosely represent the GC and 

GSc (Figs. 3.9 and 3.11). However, the measured Vp values are not directly used to calibrate the 

erosional efficiency of simulated stratigraphy – an important future step that is beyond the scope 

of this paper. Rather, the data support the classification as groups of ‘strong’ versus ‘weak’ rock 

units for simplicity, and the models use a factor of 2 difference in rock strength. Further evaluation 

of the relationships between Vp, measures of intrinsic rock strength, and erosional efficiency are 

appropriate for a more detailed study of rock strength. 

Discussion 

Modeled Spatial Patterns of Erosion vs Empirical Erosion Rates 
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CRN-derived erosion rates in the GC approximately match incision rates within the GC 

(Nichols et al., 2011; Nichols et al., In Review). Comparing the weak over hard scenario (Figure 

3.2) to the GSc (overall weak rock) vs the GC (overall harder rock), long-term incision rates 

suggest that the morphology of the GC reflects an increase in incision rate. Increased incision 

rate was perhaps caused by integration of the Colorado River, an idea consistent with recent 

studies and early thinking (Davis, 1901; Blackwelder, 1934; Longwell, 1946; Karlstrom et al., 

2008; Karlstrom et al., 2014; Darling and Whipple, 2015). 

However, CRN-derived erosion rates do not match incision rates in the GSc, and indeed 

significantly exceed local long-term incision rates. This mis-match between short-term, CRN-

derived, erosion rate estimates and longer-term incision rates in the Grand Staircase likely 

reflects two end member possibilities or a combination: 1) the interaction of base-level fall and 

erosion into the stack of strong-over-weak rocks at the scale of the catchments (Figures 3.3 and 

3.9) and 2) potential biasing of our CRN-derived erosion rates toward erosion rate of the cliff-

bands rather than true catchment average rates. Calculated erosion rates extracted from our 

landscape evolution simulations (Figure 3.9) suggest that catchment-averaged cosmogenic 

samples will mimic real catchment-averaged erosion rate even when quartz distribution is not 

uniform. However, the more important distinction is whether 10Be derived rates will match base 

level fall rate. Field evidence and numerical simulations both strongly suggest erosion rates will 

be derived primarily from the cliff band itself (Figure 3.13e) and will record high erosion rates that 

exceed base level fall rate (Figures 3.9, 3.10). 

 In the upper portion of the GSc, the source-rock of the sampled catchments is primarily 

the relatively strong Claron Fm. (Vp = 2-2.5 km/s), a mixture of fluvial and lacustrine sediments 

above weaker Cretaceous shale (Vp ~ 1-1.5 km/s) and sandstone layers (Sable and Hereford, 

2004). Consistent with Figure 3.3, a hard-over-soft rock geometry will produce a rapidly eroding 

scarp that will generate the majority of the sediment delivered to the stream channel, which is 

supported by field observations of Claron-sourced sediment filling a channel despite flowing 

through Cretaceous shale units (catchment of Muddy Creek, sample AD12-MuC, Figure 3.13e). 
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Average erosion rate in this scenario is expected to exceed the rate of base level fall due to cliff 

undermining (Forte et al., 2016). 

Fluvial erosion is affected by rock strength in how the channel form attempts to reach 

equilibrium, and so erosion rate is not in direct correlation with rock strength. The pace and 

pattern of erosion can be tested by evaluating the degree to which measured erosion rates are 

correlated with the proportion of the contributing area that is steep, less vegetated and underlain 

by Claron Formation. In Figure 3.16, an example from Main Canyon, a headwater of the 

Escalante River, uses the overlap of previous geologic mapping of the Claron Formation (panel 

A), high hillslope angle (B) and un-vegetated Claron outcrop (C) to estimate spatial area of 

probable sources of rapidly eroding sediment (D). For all catchments in which we measured 10Be 

concentrations in sediment within the Pink Cliffs, the fractional area of Steep Claron outcrop is 

strongly correlated with the estimated erosion rate (Figure 3.17, Table 3.4). If quartz in these two 

units is uniform, then the measured CRN erosion rate will be the average erosion rate of the 

catchment that includes the localized high rates (Bierman and Steig, 1996; Granger et al., 1996). 

If the quartz distribution is not uniform, then the erosion rate of the dominant quartz source will 

bias the CRN rate and it will differ from the actual mean erosion rate.  The correlation of Claron 

source data with CRN erosion rates is consistent with the Claron Formation as the dominant 

quartz source and the undermining of this rock unit as a significant control on CRN-derived 

erosion rate magnitude. If the simulated effect of quartz distribution is an indication, it is likely that 

the apparent high and highly variable cosmogenic erosion-rate data would exist regardless of the 

quartz distribution, because of high and highly variable erosion rates in the catchments that are 

due to the undermining of the harder rock layer by competing kinematic erosion velocity (Figure 

3.2 and 3.7). As a consequence, in this and similar landscapes, 10Be-derived erosion rate 

estimates are not reflective of the rate of base-level fall, potentially ranging from much higher to 

much lower depending on where samples are taken. 

Channel Steepness as a Function of Erosion Rate 
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Landscape evolution is driven by base-level fall rate but can be modulated by spatial 

variability in substrate properties that produce local erosion rate anomalies (Figs. 3.2 and 3.7). In 

Figure 3.18, channel steepness index averaged throughout a catchment is plotted vs erosion rate 

and incision rate data from the GC, western GC, Black Mesa and the GSc (8). The solid yellow, 

curve is calculated following DiBiase and Whipple (2011) with a bedrock erodibility parameter (ke) 

adjusted to 1.0x10-12 to achieve a reasonable fit to the GC data. A higher erodibility parameter, 

consistent with the arbitrary blue dashed curve, represents a landscape with weaker rock,as 

shown by slow Vp measurements in the shales and weak sandstones, and the relatively low 

gradient reaches . The data appear to be strongly skewed to rates higher than the independent 

base-level fall rate estimates (e.g., the Spencer Bench incision rate in Figure 3.14). 

 Given that numerical simulations show local erosion rates can be strongly altered by 

rock strength differences, the apparent increase in scatter relative to cosmogenic rate data from 

other studies (e.g. Ouimet et al., 2009; Cyr et al., 2010; DiBiase et al., 2010; Siame et al., 2011; 

Kirby and Whipple, 2012; Balco et al., 2013; Godard et al., 2014; Lague, 2014; Scherler et al., 

2014; Roux‐Mallouf et al., 2015; Adams et al., 2016), and the disagreement between long-term 

incision rates and the cosmogenic rates in this study, it is probable that the cosmogenic erosion 

rates of the Grand Staircase simply do not reflect longer term base level fall rates in that area. 

However, within the GC, incision-rate data broadly match erosion-rate data. Simulations suggest 

numerous variations in bed strength dilute the response of erosion rates to rock strength 

differences, mixing sediment eroded at higher and lower rates than base level fall, which allows 

erosion rates to better track base level fall rate (Figures 11 and 12). Therefore, complex quartz 

and erosion rate distributions in landscapes like the Grand Canyon and Grand Staircase can be 

interpreted, with caveats, using numerical models and field data on sediment sourcing. 

Conclusion 

Rock strength significantly alters how base-level fall rate is transmitted upstream, which 

in turn affects patterns in erosion rates throughout a landscape. Using numerical simulations of 

landscape evolution to understand the influence of rock strength variation on erosion rate 
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patterns (Figure 3.2), we improve on frameworks for interpreting previously elusive topographic 

patterns like steep-walled canyons cut into relatively hard bedrock. We show that careful 

consideration of rock strength patterns, base level fall rate and catchment erosion rate patterns 

can distinguish base level control and autogenic rock-strength-controlled rate patterns that drive 

landscape change. 

Two main conclusions about the topography of the Colorado Plateau can be made: the 

relatively low incision rate of the Grand Staircase relative to the Grand Canyon suggests that 

incision of the Grand Canyon is likely a result of increased base level fall rate acting on a 

landscape where rock strength systematically changes in cross section (Figure 3.2). The 

apparent result that increased incision rate helped form the canyon topography we see today is 

consistent with relatively young estimates for the age of the incision of the Grand Canyon 

(Karlstrom et al., 2008; Karlstrom et al., 2014; Darling and Whipple, 2015).  

The discrepancy between longer-term incision rates and shorter-term detrital erosion 

rates in the Grand Staircase can be explained by the rock strength contrasts within the exposed 

section. The cosmogenic rates are likely reasonable estimates of real erosion rate within the 

undermining scarps, but this expected (from simulations) erosion-rate pattern may be further 

enhanced by significant variations in quartz yield if catchments actually produce quartz at 

magnitudes that differ by 1-2 orders of magnitude or more. In either case, the scarp of the Grand 

Staircase is rapidly eroding relative to the base level of the streams of the Grand Staircase. In the 

Grand Canyon, the relief spans many rocks layers, and so long as quartz is spread across 

several units ranging from top to bottom, the 10Be are not expected to deviate from base level fall 

rate when several weak/hard units are sampled, as suggested by simulations and supported by 

average incision rate (~150 m/Ma). Although our imposed erosional efficiency (K, here) varies by 

a factor of 2 in both simulations, it is plausible that greater or lesser ratios of strength may 

influence the erosion rate anomaly caused by rock strength contrast.   

The topography of the Grand Canyon is more than the result of increased rock strength 

with stratigraphic depth. The combined erosion rate and rock strength data and their relative 

patterns described here suggest the steep-walled Grand Canyon cut into the Colorado Plateau is 
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explained by an increase in base-level fall rate in the last few million years that is superimposed 

on varied rock strength in the stratigraphy. Particular causes for this base-level fall rate increase 

may be enhanced erosive capacity as the river system integrated from separate drainage 

systems and may be modified by tectonic forces and isostatic rebound.  
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Figures 

 
 
 

Figure 3.1. Colorado River watershed on DEM over hill-shade showing 
relationship between Colorado River System and the Grand Staircase 
and Grand Canyon with insets of map (Figure 3). Colorado River basin 
outlined in Blue. Abbreviated labels: EFV - East Fork Virgin River; SR - 
Sevier River, SB – Spencer Bench; RC – Rock Canyon. 
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Figure 3.2. Numerical model outputs MATLABfor detachment limited stream power model. In 
each case, base level fall is input to a predefined stratigraphy. In a), the lithologic sequence is 
identical (both weak over hard) but a) is constant base level fall rate while b) has an imposed 
increase in base level fall rate with resulting erosion rate patterns (c) and d), after Darling and 
Whipple, 2015). 
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Figure 3.3. Monotonic base level fall rate is imposed on weak-over-hard rock a) and hard-over-
weak rock b). Rock strength ratio is 2x, and hard rock is equal in value for both cases in fig. 3. 
The over-steepened prediction is a result of competing kinematic waves of erosion that 
undermine the upper layer in the simulation which results in different erosion rate patterns (c 
and d). See discussion in text. 
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Figure 3.4. Grand Canyon and Grand Staircase sampled catchments on Digital Elevation Model 
over hillshade. Catchments outlined are from this study and Nichols et al., (In Review). 
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Figure 3.5. a) Geologic -cross section from Kanab 30’ x 60’ geologic map by Doelling (2008). The 
sampled catchments are eroding from the Pink Cliffs erosional scarp. Bedrock in the catchments 
consists of the relatively strong Claron Formation overlying weaker Kaiparowits and Wahweap 
Formations. b) Stratigraphy of numerical simulation of an eroding scarp. Geologic Units on Cross 
Section: Tcp - Tertiary Claron Fm., Pink Cliffs Member; Kk - Cretaceous Kaiparowits Fm.; Kw - 
Cretaceous Wahweap Fm.;  Ksu - Straight Cliffs, upper member, Ksl - Straight Cliffs, lower 
member; Kt - Tropic Shale; Kdcm - Dakota and Cedar Mountain Fm.; Jc – Jurassic Carmel Fm.; 
Jt – Jurassic Temple Cap Sandstone;  Jn – Navajo Sandstone; Jk – Kayenta Fm. 
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Figure 3.6. Slope map of Grand Staircase over shaded relief and DEM. Cross section line of 
figure 3.5 is drawn as A-A’. 
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Figure 3.7. Grand Canyon geologic map of two representative catchments (sample numbers on 
map) that primarily drain Paleozoic stratigraphic units. Xv – Vishnu schist; Xgr – granite; Xbr – 
Brahma Schist; Xg - , Ct – Tapeats Ss.; Cba – Bright Angel; Cm – Muav Ls., Dtb – Temple Butte; 
Mr – Redwall Ls.; MPu; Supai Group; Pe – Esplanade Ss.; Pc – Coconino Ss.; Pt – Toroweap 
Fm.; Pk; Kaibab Fm. Map data from Billingsley (2000). 
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Figure 3.8. Stratigraphic column of Grand Canyon (USGS) and simulated model stratigraphy 
(this paper) used for second CHILD model. Particular units vary in thickness and facies through 
the canyon; East to west, most units thicken, Temple Butte is only thin channel beds in eastern 
canyon. Rock types vary from limestone to shale sandstone and conglomerate. Primary quartz 
bearing units are near the top (Coconino Ss.), near the middle, middle (Esplanade, Supai) and 
bottom (Tapeats, Bright Angel) of the section. 
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Figure 3.9. Model output from LithoCHILD showing patterns of erosion rate and 
lithologic strength in strong-over-weak scenario. Parameters for model run are: 
differential base level fall rate: 40m/Ma along model-“North” edge only, the rest of 
the model area has uniform steady rock uplift with base level fall rate along the 
“south” edge set to  90 m/Ma. Strong rock has erodibility of 1e-6 m0.1*10-6 yr and 
weak rock is 2x higher erodibility. Pixel size is 50 m and the upper hard unit is 800 m 
thick at simulation start.  
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Figure 3.10. Numerically sampling the simulation output (a-d), for erosion rate from the model vs 
simulated CRN sampling of the synthetic landscape (b), erosion rate as a function of distance 
from scarp (c) and ratio of 10Be and calculated erosion rates as a function of quartz 
concentration in the multi-layer simulation (d). Note base level fall rate does not overlap with 
calculated or 10Be-estimated erosion rates. See also Appendix B. 
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Figure 3.11. Model output from LithoCHILD showing patterns of erosion rate and lithologic 
strength with several alternating weak-strong rock layers. Uplift is uniform across model area and 
streams flow out of the southern edge. Strong rock has erodibility of 1e-6 m0.1*10-6 yr and weak 
rock layers are twice as erodible. Base level fall rate is 170 m/Ma and unit thicknesses are given 
in Figure 3.8. 
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Figure 3.12. Numerically sampling the simulation output (a-d), for erosion rate from the model vs 
simulated CRN sampling of the synthetic landscape (b), erosion rate as a function of distance 
from scarp (c) and erosion rate as a function of quartz concentration in the 2-layer simulation (d). 
See also Appendix 3.6-3.10. 
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Figure 3.13. A) Road cut along US highway 89 (Photo-survey Site (pss) 8, Figure 3.7) exposing 
Cretaceous bedrock and Quaternary gravel that underlies Spencer Bench basalt flow.  Strath is 
~30 m above modern East Fork of Virgin River, Photo: Nari Miller. B) Photo looking 
approximately west, indurated gravel outcrop along US 89. Photo: Darling, (pss 12) C) North end 
of Spencer Bench basalt flow (pss 1). D) Basalt flow (Qb) on top of indurated gravels (Qa), over 
undifferentiated Cretaceous bedrock (Ku). Basalt base height ~104 m, Photo-survey site 11. E) 
Photo of hillslope sediment (gray) derived from Cretaceous units (Ku) and channel sediments 
apparently derived from the Claron Fm. (Tcp, pinkish-orange sediment). F) Rock Canyon basalt 
flow along Sevier River (~35 km North of Spencer Bench), basalt date ~5.45 Ma (see text). 
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Figure 3.14. A) Long profile, surficial cross-section and geologic map from Sable and Hereford 
(2004). Spencer basalt flows are along East Fork of the Virgin River, Utah, parallel to US 89. 
Downstream of Stout canyon, quaternary alluvium is under basalt. Near site 1, coarse gravel 
alluvium is also present on top of basalt Red dots show position where photos were taken of 
basalt flows and range finder measurements were taken (Table 3.1). Basalt mapping is modified 
based on field checking: Qb near photo site 1 is added, noted by different shade of purple. The 
basalt flow here is partly covered by river gravel (See DR). The previously mapped flow just north 
of Glendale, Utah does not exist and the geologic map of Sable and Hereford (2004) correctly 
maps the lack of basalt on this hillside. Lydia’s and Stout canyons are streams where cosmogenic 
erosion rate samples were collected. Geologic Units: Qb – Quaternary basalt flow, Tcp – Tertiary 
Claron Fm. Pink Member, Kk – Cretaceous Kaiparowits Fm. Kw – Cretaceous Wahweap Fm., 
Ksu Cretaceous Straight Cliffs Fm., Kt – Tropic Shale, Kdcm – Cretaceous Dakota/Cedar 
Mountain Fms., Jc(x) – Jurassic Carmel Fm., several members. 
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Figure 3.15. Watershed colored as erosion rates mapped on DEM/hill-shade base-map of Grand 
Canyon and Grand Staircase. Inset B) is Black Mesa, physically located east of Grand Canyon 
(see Figure 3.3). Tributaries on Black Mesa flow into Little Colorado River before flowing into the 
Grand Canyon (Figure 3.1). 
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Figure 3.16. Example of determination of the map area of steep-walled, Claron Formation from 
Grand Staircase catchments. A) Geologic map (Sable and Hereford, 2004), B) slope map created 
in ArcGIS C) air photo NAIP, D), clipped polygons used to calculate contributing area of predicted 
dominant 10-Be signal source.   
 

  



 

103 
 

 
 

 

 

 

Figure 3.17. Erosion rate vs % of Claron Formation that is exposed in the catchment. 
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Figure 3.18. Channel steepness plotted as a function of erosion rate data a) colors indicate 
general source rock age, and incision rates from independent separate regions as in key. Note 
that data from Hualapai Plateau are incision rates reported in Darling and Whipple, 2015. 
Uncertainty in erosion rate is the 1-standard deviation analytical uncertainty and the uncertainty in 
channel steepness is one standard error of catchment average. In upper panel, the curves are 
theoretical curves (see DiBiase and Whipple, 2011) applicable to these datasets, where the main 
difference between Desolation and Grand Canyon data is local rock strength. The red dots from 
Grand Staircase appear skewed to extraordinarily high values by cliff erosion processes, as 
indicated by the red arrow. 
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Tables 

Table 3.1. Spencer bench latitude, longitude of photo vantage point and height above river of 
apparent base of basalt flows. 

 
Figure in Paper Latitude Longitude Height Target 

1 7c 37.39483 112.55779 3 Basalt 

2 
 

37.38303 112.57711 97 Basalt 

3 
 

37.38104 112.57940 77 Basalt 

4 
 

37.38058 112.57977 59 Basalt 

5 
 

37.37351 112.59343 84 Basalt 

6 
 

37.37280 112.59481 85 Basalt 

7 
 

37.37056 112.59500 87 Basalt 

8 7a 37.36729 112.59386 30 Gravel/Ku strath 

9 
 

37.36312 112.59370 100 Basalt 

10 
 

37.36034 112.59818 110 Basalt 

11 7d 37.35619 112.59942 104 Basalt 

12 7b 37.35265 112.59774 n/a 
 

13 
 

37.30938 112.59821 116 Basalt 
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Table 3.2. Table of channel steepness and 10Be isotope data. 

   

Sample 
Name 

Mean 
Elev. 
(m) 

Ksn 
Mean 
θ=0.45 

std 
err 

Conc. 
(atm/g) 

Unc. 
(atm/g) 10Be Std 

Erosion 
rate 

(m/Ma) 
error 
(m/Ma) Latitude Longitude 

AD14-BM1 2147.9 24.03 0.5 557483.77 8256.70 NIST_27900 25.2 2 36.405 -110.254 
AD14-BM2 2037.8 16.67 2.2 53278.17 1610.97 NIST_27900 261.01 20.77 36.250 -110.298 
AD14-BM3 2009.8 18.6 1.4 116019.22 2936.00 NIST_27900 115.87 9.08 36.190 -110.225 
AD14-BM4 2158.9 27.17 0.6 100335.35 2468.05 NIST_27900 146.62 11.52 36.344 -110.071 

AD12-MePE 2294.7 47.4 1.3 44784.31 1469.63 NIST_27900 358.91 29.3 37.348 -112.221 
AD12-MePE 

2 2294.7 47.4 1.3 40982.93 1354.60 NIST_27900 383.01 31.2 37.348 -112.221 
AD12-MuC 2108.2 52.5 1.1 34427.26 1201.39 NIST_27900 410.31 33.35 37.282 -112.691 
AD12-PdC 2212.1 42.7 1.1 36498.35 1383.81 NIST_27900 408.89 33.99 37.366 -112.189 
AD12-StC 2263.6 50.7 1.3 12251.51 842.05 NIST_27900 1261.6 127.65 37.379 -112.592 
AD12-ThC 2121.3 39.0 1.1 32901.29 1258.41 NIST_27900 430.16 35.61 37.280 -112.346 

AD12-
UpperParia 1921.2 30.4 0.3 26818.82 1388.93 NIST_27900 472.19 42.01 37.108 -111.907 
AD12-Wic 2269.3 48.0 1.1 17860.14 1101.70 NIST_27900 863.16 83.29 37.485 -112.100 

KN GCPR-0 1874.8 29.9 0.4 46807.33 1123.63 07KNSTD 177.3 12.56 36.867 -111.593 
AD13-

Fishtail 1357.2 87.7 4.2 62830.89 1798.33 NIST_27900 143.72 10.81 36.403 -112.554 
AD13-Cove 1505.2 147.0 10.1 226650.55 3886.90 NIST_27900 42.85 3.22 36.240 -113.015 

AD13-
Fernglen 1499.8 105.0 7.3 178223.54 3840.97 NIST_27900 54.77 4.14 36.260 -112.919 

AD12-
Tuckup 1596.3 89.5 3.9 318860.28 6091.63 NIST_27900 31.24 2.4 36.281 -112.875 

KN GCRC-76 1495.6 127.9 8.0 41642.86 1282.61 07KNSTD 236.27 18.04 36.044 -111.921 
KN GCTR-68 1196.1 73.2 8.2 61888.82 1675.01 07KNSTD 131.87 9.71 36.098 -111.829 
KN GCHC-78 1695.3 124.7 7.9 114129.81 2660.23 07KNSTD 95.1 7.22 36.045 -111.952 
KN GCTC-68 1575.0 106.0 5.9 56691.66 1504.59 07KNSTD 184.27 13.95 36.100 -111.830 
KN GCTL-68 1604.0 110.2 6.3 54388.52 1215.66 07KNSTD 191.73 14.23 36.098 -111.829 
KN GCBC-69 1391.3 76.7 2.8 103959.02 2907.13 07KNSTD 87.34 6.63 36.099 -111.844 
KN GCCC-67 1370.5 93.5 7.8 34114.93 3571.25 KNSTD 267.76 122.68 36.115 -111.822 
KN GCEC-75 1271.7 76.0 5.8 135241.95 4173.71 KNSTD 61.92 4.77 36.057 -111.895 
KN GCL-75 1515.7 124.4 6.7 58736.91 2200.54 KNSTD 168.24 13.42 36.053 -111.900 

KN GCUC-72 1585.5 104.0 4.5 82230.68 2491.26 KNSTD 124.56 9.64 36.077 -111.877 
AD13-Vishnu 

1 1531.4 97.7 2.7 95373.61 2551.21 NIST_27900 103.62 7.87 36.057 -111.995 
KN GCMC-93 1418.0 139 14.6 50203.01 1089.21 07KNSTD 186.34 13.57 36.097 -112.184 
KN GCR-75 1173.9 111.8 8.8 75568.18 3096.42 07KNSTD 106.14 8.5 36.059 -111.898 

KN GCCC-99 1960.3 116.0 3.6 76039.79 1775.79 07KNSTD 168.04 12.89 36.136 -112.243 
KN GCSC-92 1364.9 117.9 16.0 65069.42 1397.80 07KNSTD 138.8 10.1 36.099 -112.169 
KN GCVC-81 1531.4 97.7 2.7 84031.43 1980.71 07KNSTD 117.81 8.8 36.056 -111.996 
KN GCTC-91 1457.9 104.0 6.5 203483.91 4578.72 07KNSTD 45.56 3.46 36.108 -112.152 

AD13-
Lava/Chuar  1653.3 94.0 4.3 76127.39 2416.61 NIST_27900 143.74 11.28 36.139 -111.818 

AD13-
Nanko5 1765.9 105.7 2.9 72353.84 1923.36 NIST_27900 159.1 12.23 36.304 -111.865 

KN GCLC-65 1653.3 94.0 4.3 88434.23 2743.88 KNSTD 120.35 9.4 36.139 -111.821 
KN GCNC-52 1765.9 105.7 2.9 83689.35 2705.93 KNSTD 136.26 10.78 36.305 -111.862 
AD12-Parash 1651.7 42.1 0.8 554040.92 8340.98 NIST_27900 18.04 1.41 36.097 -113.323 

KN GCSC-
190 1276.7 130.0 8.1 82289.44 1903.84 07KNSTD 103.48 7.57 36.122 -113.201 

KN GCSC-
205 1235.8 119.0 6.3 155553.08 4903.23 07KNSTD 52.47 4.07 36.008 -113.340 
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Table 3.3. Values for quartz sourcing and 10Be simulations for Grand Staircase-like simulated 
landscape. 

  

Table 
3.3A % Area   

Quartz 
Flux %               

Distribution of 
quartz (g/cm3) 

Quartz 
ratio 

Site  
Layer 1 
(strong) 

Layer 2 
(weak) Layer 1 Layer 2 

Erosi
on 

Rate 
(mm/

a) 10Be E 

Erosi
on 
rate 
ratio 

10Be / 
Base 
level 
Fall 
Rate 

Distance 
from 
divide 

BLF 
Rate 
(mm/a) Layer 1 Layer 2 

Layer 1/ 
Layer 2 

1 1.028 98.972 0.030 99.970 0.209 0.215 1.026 2.387 3.000 0.090 0.020 2.000 0.010 

2 56.890 43.100 0.362 99.638 0.146 0.145 0.995 1.609 5.400 0.090 0.020 2.000 0.010 

4 45.856 54.144 0.306 99.694 0.139 0.137 0.983 1.521 6.300 0.090 0.020 2.000 0.010 

5 15.577 84.423 0.167 99.833 0.168 0.163 0.973 1.814 6.300 0.090 0.020 2.000 0.010 

2 61.000 39.000 9.700 90.300 0.145 0.143 0.986 1.589 5.400 0.090 0.020 0.080 0.250 

3 1.160 98.840 2.449 97.551 0.201 0.200 0.995 2.222 3.000 0.090 0.020 0.080 0.250 

1 0.000 
100.00

0   100.00 0.249 0.245 0.984 2.722 1.500 0.090 1.000 1.000 1.000 

2 59.600 40.400 29.000 71.00 0.147 0.144 0.980 1.600 5.400 0.090 1.000 1.000 1.000 

3 4.865 95.135 2.734 97.266 0.201 0.197 0.985 2.193 3.000 0.090 1.000 1.000 1.000 

1 0.000 
100.00

0   100.00 0.251 0.232 0.924 2.578 1.500 0.090 2.000 1.000 2.000 

2 42.000 58.000 57.000 43.000 0.145 0.145 1.000 1.611 5.400 0.090 2.000 1.000 2.000 

2 42.000 58.000 56.000 44.000 0.146 0.146 1.000 1.622 5.400 0.090 0.080 0.020 4.000 

3 2.997 97.003 17.273 82.727 0.200 0.190 0.949 2.112 3.000 0.090 0.080 0.020 4.000 

5 16.419 83.581 63.660 36.339 0.167 0.175 1.044 1.940 6.300 0.090 0.200 0.020 10.000 

1 72.299 27.701 97.003 2.997 0.200 0.181 0.903 2.010 3.000 0.090 0.500 0.010 50.000 

2 62.330 32.330 95.900 4.090 0.145 0.162 1.117 1.797 5.400 0.090 0.500 0.010 50.000 

4 94.823 5.177 49.595 50.405 0.140 0.167 1.193 1.857 6.300 0.090 0.500 0.010 50.000 

5 16.419 83.581 89.754 10.247 0.167 0.180 1.077 2.001 6.300 0.090 0.500 0.010 50.000 

1 0.000 
100.00

0 0.000 100.00 0.229 0.123 0.537 1.367 1.500 0.090 2.000 0.020 100.000 

2 62.335 37.665 97.911 2.009 0.145 0.164 1.129 1.817 5.400 0.090 2.000 0.020 100.000 

3 2.997 97.003 83.923 16.077 0.200 0.180 0.900 2.002 3.000 0.090 2.000 0.020 100.000 

4 48.695 51.305 97.310 2.687 0.140 0.172 1.227 1.910 6.300 0.090 2.000 0.020 100.000 

6 0.000 
100.00

0 0.000 100.00 0.250 0.111 0.444 1.233 1.200 0.090 2.000 0.020 100.000 
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Table 3.4. Values for quartz sourcing and 10Be simulations for Grand Canyon-like simulated 
landscape. 

 
  

Proportion of Catchment (%) Quartz Flux (%)
Quartz 
Ratio

Site Layer 1 Lyr 2 Lyr 3 Lyr 4 Lyr 5 Lyr 1 Lyr 2 Lyr 3 Lyr 4 Lyr 5
E 
(mm/a) 10Be E E ratio 10Be/BL

Baselevel 
Fall Rate 
(mm/a)

Strong 
Layers

Weak 
Layers

Strong/
Weak

1 76.5 23.5 0.0 0.0 0.0 98.9 1.1 0.0 0.0 0.0 0.14 0.14 0.96 0.81 0.17 1.00 0.01 100.00

2 0.7 13.1 39.2 19.2 27.8 2.1 0.1 65.2 0.3 32.2 0.13 0.16 1.16 0.91 0.17 1.00 0.01 100.00

3 0.3 25.2 46.8 15.0 12.7 1.4 0.2 82.7 0.4 15.5 0.13 0.15 1.17 0.90 0.17 1.00 0.01 100.00

4 0.0 3.5 35.2 23.5 37.8 0.0 0.0 58.9 0.7 40.3 0.13 0.15 1.21 0.91 0.17 0.50 0.01 50.00

4 0.0 3.5 35.2 23.5 37.8 0.0 0.0 59.2 0.4 40.5 0.13 0.15 1.22 0.91 0.17 1.00 0.01 100.00

3 0.3 25.2 46.8 15.0 12.8 1.3 0.3 82.2 0.7 15.4 0.13 0.15 1.17 0.90 0.17 0.50 0.01 50.00

1 1.2 69.6 29.1 0.1 0.0 26.7 4.7 68.5 0.2 0.0 0.15 0.15 1.00 0.88 0.17 0.50 0.01 50.00

5 0.0 0.2 29.2 24.4 46.2 0.0 0.0 52.0 0.4 47.7 0.10 0.13 1.31 0.79 0.17 1.00 0.01 100.00

2 0.7 13.1 39.2 19.2 27.8 2.1 0.2 64.9 0.7 32.1 0.13 0.15 1.16 0.91 0.17 0.50 0.01 50.00

3 0.3 25.2 46.8 15.0 12.7 1.2 3.8 73.4 7.8 7.8 0.13 0.15 1.15 0.88 0.17 0.80 0.20 4.00

4 0.0 3.5 35.2 23.5 37.8 0.0 0.2 54.3 8.3 37.2 0.13 0.15 1.19 0.88 0.17 0.80 0.20 4.00

1 1.2 69.6 29.1 0.1 0.0 17.1 37.7 43.8 1.4 0.0 0.15 0.15 1.01 0.88 0.17 0.80 0.20 4.00

2 0.7 13.1 39.2 19.2 27.8 1.9 1.9 59.1 7.9 29.2 0.13 0.15 1.14 0.89 0.17 0.80 0.20 4.00

3 0.3 25.2 46.8 15.0 12.7 0.4 22.3 26.7 45.6 5.0 0.13 0.14 1.06 0.82 0.17 0.20 0.80 0.25

4 0.0 3.5 35.2 23.5 37.8 0.0 1.1 23.9 58.7 16.3 0.13 0.14 1.09 0.81 0.17 0.20 0.80 0.25

1 1.2 69.6 29.1 0.1 0.0 2.5 87.9 6.4 3.3 0.0 0.15 0.16 1.06 0.93 0.17 0.20 0.80 0.25

2 0.7 13.1 39.2 19.2 28.8 0.8 12.4 24.0 51.0 11.9 0.13 0.14 1.05 0.83 0.17 0.20 0.80 0.25

3 0.3 25.2 46.8 15.0 12.7 0.0 31.7 3.0 64.7 0.6 0.13 0.13 1.03 0.79 0.17 0.01 0.50 0.02

4 0.0 3.5 35.2 23.5 37.8 0.0 1.7 3.0 93.2 2.1 0.13 0.13 1.06 0.79 0.17 0.01 0.50 0.02

1 1.2 69.6 29.1 0.1 0.0 0.2 95.7 0.6 3.5 0.0 0.15 0.16 1.09 0.96 0.17 0.01 0.50 0.02

2 0.7 13.1 39.2 19.2 27.8 0.1 18.7 2.9 76.9 1.4 0.13 0.14 1.02 0.80 0.17 0.01 0.50 0.02

3 0.3 25.2 46.8 15.0 12.7 0.0 32.2 1.5 65.9 0.3 0.13 0.13 1.03 0.79 0.17 0.01 1.00 0.01

4 0.0 3.5 35.2 23.5 37.8 0.0 0.2 1.6 95.6 1.0 0.13 0.13 1.05 0.79 0.17 0.01 1.00 0.01

1 1.2 69.6 29.1 0.1 0.0 0.1 96.2 0.3 3.6 0.15 0.16 1.10 0.96 0.17 0.01 1.00 0.01

2 0.7 13.1 39.2 19.2 27.8 0.0 19.1 1.5 78.6 0.7 0.13 0.14 1.01 0.80 0.17 0.01 1.00 0.01

2 0.7 13.1 39.2 19.2 27.8 2.1 0.0 65.4 0.0 32.4 0.13 0.16 1.16 0.91 0.17 1.00 0.00 1000.00

2 0.7 13.1 39.2 19.2 27.8 0.0 19.5 0.2 80.3 0.1 0.13 0.14 1.01 0.80 0.17 0.00 1.00 0.00

3 0.3 25.2 46.8 15.0 12.7 0.0 32.8 0.2 67.0 0.0 0.13 0.13 1.03 0.79 0.17 0.00 1.00 0.00

4 0.0 3.5 35.2 23.5 37.8 0.0 1.8 0.2 97.9 0.1 0.13 0.13 1.05 0.78 0.17 0.00 1.00 0.00

Quartz (g/cm3)
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Table 3.5. Erosion rate and Claron area for figures 3.11 and 3.12.  

Sample Name 
Erosion 
Rate Unc. 

Claron % 
Area 

AD12-LyC 332.39 26.99 5.2 
AD12-MaC 245.09 19.63 2.9 
AD12-MCAF 370.96 29.83 1.5 
AD12-MeM 213.16 16.95 2.8 
AD12-MePE 358.91 29.3 2.8 
AD12-MePE 2 383.01 31.2 2.8 
AD12-MuC 410.31 33.35 1.5 
AD12-PdC 408.89 33.99 6.1 
AD12-StC 1261.61 127.65 60.6 
AD12-ThC 430.16 35.61 1.3 
AD12-Wic 863.16 83.29 19.4 
AD14-MuC1 341.39 32.60 47.2 
AD14-MuC2 102.74 8.46 14.0 
AD14-MuC5 311.02 27.55 0 
AD14-MuC6 130.81 11.09 0 
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 TRANSIENT INCISION DUE TO DRAINAGE INTEGRATION IN DESOLATION 

CANYON, UTAH 

Andrew Darling, Kelin Whipple, Paul Bierman, Brian Clarke  

Abstract 

Desolation Canyon on the Colorado Plateau in Utah connects the Uinta Basin to the 

deeply exhumed central Colorado Plateau. Despite extensive research on the Colorado River 

system, unanswered questions persist about the integration history of the Colorado River, 

including the timing and series of events that led to the Green River’s present form. This study 

uses channel profile analysis, erosion rates, and rock strength measures to evaluate four 

hypotheses for the formation of Desolation Canyon: (1) Steady base-level fall acting on variable 

rock strength, (2) isostatically tilted bedrock creating a base level fall gradient, (3) an increase in 

the rate of base level fall on the Colorado River, and (4) local incision acceleration due to top-

down integration of the Green River across the Tavaputs Plateau. 

High values of channel steepness on the Green River and tributaries are restricted to 

within Desolation canyon, implying that incision of the Canyon has been independent of uplift 

patterns and base level fall history along the Book Cliffs. This finding suggests that regional 

Colorado River base-level fall rate change or isostatic tilting are not major contributors to channel 

form in the canyon. Topography also varies without apparent relationship to rock types or units in 

most of Desolation Canyon. Further, seismic velocity measurements suggest only a factor of ~2 

difference in strength from weakest to strongest rocks. Channel steepness differs by a factor of 5 

between channels within the canyon and channels outside the canyon, suggesting that rock 

strength is not a significant control on topography. Erosion rates within the canyon are 5 times 

higher (220 m/Ma) than erosion rates outside the canyon (40 m/Ma), confirming a local transient 

response to erosion that is likely due to local, rapid increase in incision after integration of the 

Green River across the Tavaputs Plateau. Further, channel steepness patterns imply that the 

Green River integrated across the Tavaputs Plateau after much of the exhumation of 

Canyonlands in eastern Utah and into western Colorado was completed. 
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Introduction 

Topography in eroding landscapes reflects the competition between the supply of rock 

through tectonic uplift and isostatic compensation, and the removal of rock by erosion processes, 

which are mediated by climate and controls on rock strength such as weathering, fracturing and 

intrinsic strength (Ahnert, 1970; Whipple et al., 1999a; Kirby and Whipple, 2012). The topology of 

a landscape, distinct from topography, is the spatial position of channels in a network that can 

change over time as divides migrate (e.g. Willett et al., 2014) and stream capture occurs 

(Hasbargen and Paola, 2000; Darling et al., 2009; Prince et al., 2011; Aslan et al., 2014) creating 

local changes in base-level fall rate and thus erosion rates. In Desolation Canyon on the Green 

River in Utah, USA (Figure 4.1), landscape evolution is influenced by the history of drainage 

network development, extensive exhumation, isostatic and tectonic rock uplift, and variable rock 

strength, complicating interpretation (Pederson and Tressler, 2012; Rosenberg et al., 2014). 

Parsing the effect of each on the topography and geomorphic history on this portion of the 

Colorado River system provides important information on the development of the Colorado River 

system including information about the sequence of integration events. 

The canyons of the Colorado River system encompass diverse topographic expressions 

of landscape evolution through varied stratigraphy. Desolation Canyon in Utah has relatively 

simple stratigraphy, and exhibits a clear topographic expression of canyon erosion driven by base 

level fall of the Green River (Figure 4.1). The Colorado River and the Green River, its largest 

tributary, meet in Canyonlands on the central Colorado Plateau. Smaller tributaries respond to 

base level fall changes of these main-stem rivers, as may be recorded in slope-break knickpoints, 

though clear interpretation is complicated by variations in rock strength (e.g. Cook et al., 2009). 

The tributaries in Desolation Canyon have slope-break knickpoints that are sometimes close to 

unit contacts. The two primary units of interest are the generally slope forming, dominantly shale 

Green River Formation and the older, generally cliff-forming, dominantly sandstone Wasatch 

Formation. Desolation Canyon makes an excellent study area for evaluating the roles of rock 

strength, topographic metrics, and erosion-rate patterns for testing canyon-formation hypotheses 

where landscape evolution may be affected by several possible influences. 
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Detailed analysis of regional topography is used to decipher canyon evolution and relate 

morphometric analyses, erosion rates from cosmogenic methods, and relative rock strength 

inferred from shallow seismic methods. Independent measures of base-level fall rates, such as 

incision rates calculated from dating remnant river deposits at higher elevations than modern 

channels, provide a measure of local base level fall and temporal context to spatial erosion rate 

measurements (e.g. Anders and Pederson, 2002; Darling et al., 2012; Pederson et al., 2013a; 

Darling and Whipple, 2015). 

Motivation 

The canyons of the Colorado River system result from a series of tectonic, climatic and 

drainage reorganization events acting on a regionally varied substrate (Figure 4.2, Pederson et 

al., 2002a; Berlin and Anderson, 2007; Karlstrom et al., 2007; Donahue et al., 2013; Pederson et 

al., 2013a; Pederson et al., 2013b; Aslan et al., 2014; Crow et al., 2014). Contrasting lithologic 

strength is clearly manifest in the landscapes of the Colorado Plateau, where steep channels and 

hillslopes in canyons are commonly associated with strong rock units (e.g. Grams and Schmidt, 

1999; Cook et al., 2009; Johnson et al., 2009; Pederson and Tressler, 2012; Donahue et al., 

2013; Bursztyn et al., 2015).  

Regional erosion has exhumed on the order of 2 km of rock along the Colorado River 

corridor in eastern Utah and western Colorado over the last 11 million years (Kelley and 

Blackwell, 1990; Pederson et al., 2002b; Hoffman, 2009; Aslan et al., 2010; Lazear et al., 2013). 

Recently acquired low-temperature thermochronometric data from the Canyonlands region 

suggest major denudation in Canyonlands <6 million years ago, and, possibly as recently as 2-3 

million years ago, with average denudation rates up to 250-700 m/Ma (Murray et al., 2016). 

Average Colorado River incision in Canyonlands more recently (since 1.5 Ma) is slower (~60 

m/Ma), but apparently accelerates again at about ~300 ka in Glen Canyon (Hanks et al., 2001; 

Garvin et al., 2005; Cook et al., 2009; Darling et al., 2012). Loosely constrained incision pulses 

recorded by thermochronometers may be related to drainage integration through Grand Canyon 

~6 Ma (Karlstrom et al., 2008; Karlstrom et al., 2014; Darling and Whipple, 2015), which may 
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have produced a complex transient wave of incision (Cook et al., 2009; Darling et al., 2012). The 

pulse of incision recorded in the cooling ages on the plateau may be related to base level fall on 

the Green and Colorado rivers, and which could have affected upstream landscapes like 

Desolation Canyon. Incision rates on the Colorado River east of Desolation canyon show several 

consistent measurements of ~150 m/Ma from deposits of Lava Creek B ash (640 ka) and basalt 

flows up to 11 million years old (Willis and Biek, 2001; Darling et al., 2009; Aslan et al., 2010; 

Darling et al., 2012).  The incision rate of the Green River has been estimated in two places near 

Desolation Canyon (Figure 4.2). Above the Desolation Canyon knickpoint, the incision rate is only 

~40 m/Ma since 1.5 Ma (Darling et al., 2012). From below the knickpoint and south of the canyon, 

terraces and travertine cemented river gravel deposits yield age estimates that suggest high rates 

of bedrock incision, ~400 m/Ma over the last ~120 ka, suggesting the canyon may be a transient, 

rapidly evolving landform (Pederson et al., 2013a), but disparate positions of these incision rates 

in time and space complicate interpretation. 

Incision magnitude, incision rate, discharge and topographic metrics like channel 

steepness and relief of the upper Colorado River system in Colorado have been compared to the 

same metrics in the Green River. Higher incision magnitude, incision rate, and discharge of the 

Colorado River is interpreted to suggest that the upper Colorado River and eastern tributaries to 

the Green River (Yampa, White, Little Snake) may be responding to a modest uplift gradient 

increasing toward the central Rocky Mountains due to variation in mantle buoyancy under the two 

regions (e.g. Darling et al., 2012; Karlstrom et al., 2012; Hansen et al., 2013; Rosenberg et al., 

2014).  

The details and significance of Desolation Canyon were not fully resolved in the scope of 

these previous studies. I present a detailed analysis of the canyon here based on the following 

research questions, in order of increasing breadth: (1) What are the erosion rates of tributaries in 

Desolation Canyon and on the surrounding rim? (2) How has rock strength variation in the 

canyon affected topography? (3) Do the knickpoints of Desolation Canyon indicate an increase in 

the rate of incision, and if so, what caused the erosion rate change? (4) When did the Green 
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integrate with the Colorado? (5) What is the relationship among topography, erosion rates, and 

rock strength in Desolation Canyon relative to other studies with similar data?  

Geologic and Geomorphic Setting 

Desolation Canyon is carved in the rocks of the Cretaceous/Paleogene boundary, which 

represent a transition from Cretaceous shallow-marine shales and sandstones to terrestrial fluvial 

sandstone (Wasatch Formation, Figure 4.3), conformably grading to and inter-fingering with 

lacustrine shale and fine sandstone of the Green River Formation (Green River Formation Figure 

4.3). The Paleocene Wasatch (also called Colton Fm., Witkind, 1988) and Eocene Green River 

Fms. filled one of several closed-interior basins between block ranges uplifted in the Laramide 

orogeny (Dickinson et al., 1988) that continued to fill into the Miocene with sediments from the 

southwest Colorado Plateau and more local uplands (Davis et al., 2010; Dickinson et al., 2012).  

Upstream of Desolation Canyon, the Green River system displays exhumation of 500-

1000 meters that began less than 6-9 million years ago, after deposition of the Brown’s Park 

Formation, although significant erosion could be younger (Hansen, 1986; Rosenberg et al., 

2014). Hansen proposed an age of Canyon of Lodore, 130 km upstream of Desolation Canyon, of 

around 5 million years by extrapolating from a Lava Creek B ash bed (~640 ka) in a tributary 

stream terrace to the height of the modern canyon walls (Hansen, 1986). It is possible that 

Lodore and Desolation canyons may have integrated at similar times, but the relationship 

between these canyons is unclear.  

Terraces in upper Desolation Canyon represent a firm geomorphic history but limited 

chronology data are available. Much of the incision of the Uinta basin and uppermost Desolation 

Canyon had to have been accomplished prior to 1.5 Ma, as incision on the Green River in the 

upper reach of Desolation Canyon is limited to 60 meters since then (terrace height, Figure 4.2, 

Darling et al., 2012). Terraces as high as 145 m above the Green River extend this incision 

record (Darling et al., 2012), but no terrace dates exist at present. 

The earliest recognized evidence of a partially connected Colorado River system in 

western Colorado is a gravel deposit under 11 Ma basalt flows on Grand Mesa in western 
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Colorado (Figure 4.1) that is inferred to have flowed westward from the Rocky Mountains due to 

provenance of crystalline basement-derived clasts (Aslan et al., 2010). The destination of this 

river system, however, is not yet known. Thus far, compiled incision rates from typically 

Quaternary-age deposits (Dethier, 2001; Willis and Biek, 2001; Darling et al., 2009; Aslan et al., 

2010; Darling et al., 2012; Aslan et al., 2014), show a gap of nearly 10 million years with data 

paucity between around 11 Ma and early Quaternary time. 

Thermochronologic studies provide additional but less precise estimates of significant 

incision along the Colorado River corridor of eastern Utah and western Colorado in the last few 

million years. Different methods and significant error bounds, in addition to different sample 

locations, constrain accelerated erosion to have begun between 8 and 2 million years ago, which 

may reflect actual spatial and temporal variation in acceleration as much as uncertainties in the 

several applied methods (Kelley and Blackwell, 1990; Hoffman, 2009; Murray et al., 2016). Within 

the loosely constrained time of denudation of this landscape through the Miocene, tectonic 

activity may have local (Pederson et al., 2013a) and regional (Karlstrom et al., 2012), effects that 

also interact with isostatic rebound (Pederson et al., 2002b; Roy et al., 2009; Lazear et al., 2013; 

Pederson et al., 2013b). By working to understand the evolution of the landscape from intrinsic 

erosion controls and erosion rate patterns, the integration of the Green River through Desolation 

Canyon can be incorporated into the landscape evolution history of the Colorado Plateau.  

Methods 

Topographic Analysis 

Channels set the boundary conditions for hillslope and cliff-face erosion, and thus are a 

key aspect of understanding the driving forces of canyon development. We use two different 

topographic datasets. For regional figures and calculations the digital elevation model is the 90 m 

resolution SRTM (Figure 4.4) data retrieved from the United States Geological Survey National 

Geologic Map Database (USGS_NGMD) collected by the Shuttle Radar Topography Mission 

(Farr et al., 2007). For figures and calculations focused on Desolation Canyon tributaries, we use 
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the 10 m USGS DEMs. For more detail than supplied here, see Wobus et al. (2006) on the 

methods of stream profile analysis.  

The gradient of a river decreases downstream as discharge and contributing drainage 

area increase. An empirical relationship between slope (S) and drainage area (A) is commonly a 

power function (Hack, 1957; Flint, 1974) such that: 

                                                                             𝑆𝑆 =  𝑘𝑘𝑠𝑠𝐴𝐴−𝜃𝜃 ,                                                                                   (1) 

where ks and θ are termed channel steepness and concavity. For comparison between streams of 

different sizes, it is necessary to determine a representative θ value for reference, and recalculate 

channel steepness such that: 

                                                                         𝑆𝑆 =  𝑘𝑘𝑠𝑠𝑠𝑠𝐴𝐴−𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ,                                                                              (2) 

where ksn is the normalized channel steepness index and θref is the reference concavity, defined 

in this paper as the typical value of 0.45 (e.g. Kirby and Whipple, 2012). Each of these 

parameters is easily obtained from actual stream profile data using the Profiler Toolbar in ArcMap 

and MATLAB (www.geomorphtools.org) or TopoToolbox in MATLAB (Schwanghart and Scherler, 

2014). Channel steepness, ksn, is a normalized channel gradient that allows comparison of 

different sized catchments. Applying this method to rivers requires using a minimum drainage 

area that is larger than the drainage area at which hillslope processes transition to channel 

processes.  

 For a landscape in steady state, rock upliftrate relative to base level (U) balances 

erosion rate (E) and the well-known stream power model of river incision can be written as:  

                                                                               𝑈𝑈 =  𝐸𝐸 =  𝐾𝐾𝐴𝐴𝑚𝑚𝑆𝑆𝑠𝑠 ,                                                                    (3) 

where m and n are process dependent, but usually satisfy m/n = ~0.5 (Howard, 1994; Whipple 

and Tucker, 1999). Solving (3) for slope at steady state and rearranging leads to an expression of 

slope as a function of drainage area,  rock uplift (U), and K, the erosional efficiency set by climate 

and rock properties: 

                                                                               𝑆𝑆 = (𝑈𝑈/𝐾𝐾)1/𝑠𝑠𝐴𝐴−
𝑚𝑚
𝑠𝑠    .                                                                       (4) 

By inspection of equations (2) and (4),  

http://www.geomorphtools.org/
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                                                                            𝑘𝑘𝑠𝑠𝑠𝑠 = (𝑈𝑈/𝐾𝐾)1/𝑠𝑠 .                                                                            (5) 

In this steady-state formulation, U (rock uplift rate) and E (erosion rate) are 

interchangeable. The proportionality, K, based on the stream-power model, is referred to as 

erosional efficiency and is strongly affected by rock strength. High values of channel steepness 

may reflect either high base level fall rates, high rock uplift rates or a low coefficient of erosion 

(e.g., strong rock or a weakly-erosive climate). The exponent n influences the evolution of the 

shape of knickpoints (Tucker and Whipple, 2002). As illustrated in figure 4.5, high n values lead to 

more abrupt convex-up knickpoints, (panel c) while lower n-values progressively round or 

“diffuse” convex-up knickpoints. The relative smoothness of knickpoints may also be affected by 

the degree to which sediment is important to erosion: in a transport limited setting, periodic 

deposition and armoring of the channel bed can lead to broad, diffuse knickpoints, similar to the n 

> 1 model results (Tucker and Whipple, 2002). 

An increase in the rate of base-level fall on a catchment should produce knickpoints that 

migrate upstream in all tributaries, where the channel segments below the knickpoints have 

higher channel steepness values (e.g., Darling and Whipple, 2015). Important distinctions about 

what has caused changes in a landscape among U, E and/or K in some cases can be inferred 

from the map patterns of channel steepness (e.g., Kirby and Whipple, 2012) to be discussed in 

this chapter. 

In addition, we follow recent studies where channel steepness is related to erosion rate 

via an empirically determined power function (Lague et al., 2005; DiBiase and Whipple, 2011; 

Kirby and Whipple, 2012), such that: 

                                                                            𝑘𝑘𝑠𝑠𝑠𝑠 = 𝐾𝐾′𝐸𝐸𝑎𝑎,                                                                             (6)   

where the exponent, a, (where 0<a<1), is theoretically set by runoff variability (Lague et al., 2005) 

and K’ is related to erosional efficiency of the landscape (set by climate and rock properties, 

similar to K of equation 3, 4 and 5 ) as in equations 3-5. As denoted by 0 < a < 1, plots of ksn vs E 

are typically convex-up curves (Figure 4.6). This comparison provides a direct visualization of 

how much change in topography results from a given change in erosion rate, which varies by how 

efficiently rock can be removed from a landscape (DiBiase and Whipple, 2011). 
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Erosion Rates from Cosmogenic Isotopes 

The cosmogenic radionuclide (CRN) 10Be is routinely measured to determine basin-

averaged erosion rates from samples of modern stream sediment (Bierman and Steig, 1996; 

Granger et al., 1996; DiBiase et al., 2010; Portenga and Bierman, 2011; Granger et al., 2013; 

Willenbring et al., 2013). The erosion rate is inversely proportional to measured concentration that 

accumulates in the upper ~60 cm (determined by an e-folding depth derived from density) of rock 

during transport to the surface through erosion. Traditionally studies of 10Be concentrations in 

detrital sediment have focused on catchments that are not dominated by landslides (Niemi et al., 

2005), have uniform quartz distribution, and inferred, relatively uniform erosion rate. In this study, 

my sampling protocol required minimal mixing of rock units, so each sample is predominantly 

Green River Formation or Wasatch Formation (Figure 4.4). Both sedimentary units contain small 

amounts of quartz, but the Green River Formation typically contains less quartz, especially in the 

coarse grain fractions due to fine texture of lake and shallow stream deposits. Large samples 

were collected (up to ~3 gallons in total) to provide sufficient clean quartz for chemical analysis 

(20-100 grams) after careful processing to maximize clean quartz yield. Sand samples were 

sieved to remove grains <500 microns in diameter to reduce impact of potential eolian input, but 

this may incorporate a bias toward Wasatch Formation derived sediment where the unit is 

present as Wasatch Fm. is typically coarser-grained, making it more likely to yield quartz through 

sample processing. To remove this potential bias, catchments were carefully selected to 

represent only one geologic unit in most cases (Figures 4.4 and 4.3). 

In order to preserve a clear relationship between erosion rate and topography, samples 

were collected in relatively small and relatively well-adjusted equilibrium (uniform ksn) channels. 

This means that samples collected to represent the rim were taken from streams above major 

knickpoints (Figure 4.4). Further, sampled catchments within the canyon were chosen to minimize 

the contributing drainage area above knickpoints and to sample one stratigraphic unit at a time for 

clarity of interpretation (Figure 4.4 and 4.3). 
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Seismic Velocity Measurements 

Empirical rock strength analysis in Desolation Canyon was conducted with geophysical 

techniques for comparison to topographic and erosion rate data. Rock mass strength is thought to 

be primarily controlled by fracture spacing, weathering, elastic moduli, mineralogy, porosity and 

density (Sjøgren et al., 1979; El-Naqa, 1996; Barton, 2007; Cha et al., 2009; Jaeger et al., 2009). 

Determining all of these variables at the field scale is not practical, however seismic refraction 

surveys integrate most of these variables across an outcrop and show value as a proxy for rock-

mass strength and even erodibility (Suzuki, 1982; Stafleu et al., 1996; Hack, 2000; Clarke and 

Burbank, 2010, 2011). The relationship between impedance (Vp*density) and hillslope angle are 

characteristic for slope and cliff formers, where high impedance correlates to high hillslope angles 

(Stafleu et al., 1996). Engineering studies of “rippability”, i.e., bulldozer operation as an erosion  

proxy, show that the excavation rate of rock mass increases rapidly as Vp decreases, particularly 

for rocks with Vp <3 km/s (MacGregor et al., 1994). From our data and supporting data in the 

literature, a quantifiable relationship between rock strength and Vp can be inferred. 

To collect seismic refraction data, seismic source signals were produced by striking a 

metallic plate with a hammer at even (2-5 m) spacing along a string of geophones. Two 24-

channel Geometrics Geode seismographs recorded the signal produced by 12-24 4.5 Hz vertical 

component geophones.   

Seismic velocities were determined based on first-arrival times from the source to each 

geophone and inversions of the seismic data using standard seismic refraction techniques and 

SeisImager software (Sheriff and Geldart, 1995; Mussett and Khan, 2000; Forbriger, 2003a, b). 

We produced 2-D seismic refraction tomography to image spatial Vp variations of subsurface 

bedrock (Figure 4.7). The initial velocity model was produced by a simple time-term 2-3 layered 

inversion, to roughly differentiate bedrock from colluvial cover. This layered model was then used 

for the tomographic inversion using the shortest ray-path method (Moser, 1991) from each shot. 

The result is a 2-D image of the subsurface velocity structure capable of identifying lateral- and 
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depth-dependent variations in Vp and boundaries between colluvium and bedrock. The Vp values 

used here, as a proxy for rock-mass strength, represent the range of maximum velocities along 

the survey from the deepest ray-path, which for all surveys is either a ray through rock below a 

distinct colluvium-bedrock boundary or a direct ray along the surface if no carapace of regolith is 

present.  

Results 

Topographic Metrics 

The gorge of Desolation Canyon is steep, with hillslopes near angle of repose and cliffs 

of sandstone (Figure 4.8). The gorge emerges from the low relief Uinta Basin (Figure 4.1) along 

the Green River and continues deepening towards the south (Figure 4.2, 4.3, 4.9). Near the 

deepest point of the canyon, channel steepness values reach 180 m0.9, but are much lower 

everywhere outside of the canyon. The ksn values of the upland landscape are typically less than 

90 m0.9. Hillslope angles along tributaries on the rims of the canyon (the Tavaputs Plateau) are 

also low (Figure 4.10).  

A transect of mean ksn of tributaries along the Green River yields a gradual increase and 

then a decrease through the knickzone (Figure 4.2, 4.3, 4.9, 4.11) ranging from ~30 to 180 m0.9. 

Channel steepness characteristics of Desolation Canyon are unique in the region (Figure 4.2). 

The rest of the Book Cliffs, the north slope of the Tavaputs Plateau, and the northern portion of 

Canyonlands have channel steepness values (<90 m0.9 , usually <30 m0.9) that are less than 

those in Desolation Canyon (120-180 m0.9).  

Cosmogenic Isotope Data 

Erosion rates determined from cosmogenically produced 10Be, as calculated with 

CRONUS using values in Table 4.1 and 4.2, yield 12 samples from the Tavaputs Plateau and 

upstream of the Green River knickpoint with average rate of 41 +/- 7 m/Ma (n=12, Figure 4.12). 

Within Desolation Canyon, 5 samples yield a mean erosion rate of 220 +/- 26 m/Ma (see also 

Tables 4.1 and 4.2). The 12 samples outside of the canyon yield remarkably similar rates given 

inherent uncertainties in the method. The 5 samples within Desolation Canyon range from 180 to 
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320 m/Ma, showing erosion within the canyon is occurring at a much higher rate than erosion 

outside of the canyon.  

Figure 4.13 compares ksn to E rates from catchments in Desolation Canyon as well as 

Grand Canyon and the Grand Staircase shown previously in this dissertation. As discussed 

below, one of the significant factors regarding the distribution of data on this plot is the inherent 

rock strength and other factors that affect erodibility. 

Rock Strength Data 

The rocks of Desolation Canyon display two primary stratigraphic units. There is a 

conformable inter-fingering transition from the Wasatch Formation to the overlying Green River 

Formation. Both units contain shale and sandstone beds, with Wasatch Formation dominated by 

thick, laterally continuous sandstone beds and Green River Formation is a series of mostly shale 

with thin sandstone beds (e.g. Gualtieri, 1988; Witkind, 1988; Weiss et al., 1990; Sprinkel, 2009). 

The schematic stratigraphic column of Figure 4.14 represents positions of rock layers 

measured relative to their context within the stratigraphy (Figure 4.3). The surveys record ray 

path velocities with depths that are dependent on the length of the survey line (Figure 4.7) and 

yield Vp max measurements that range from 1.0-2.5 km/s in Desolation Canyon (Table 4.3). The 

Green River Formation Vp data range from 1.0 - 2.5 km/s, (n = 5); and the Wasatch Formation 

has Vp range 1.0 - 2.1 km/s, n=3. For both geologic units, relatively high Vp measurements (2.2-

2.5 km/s) are primarily measures of the sandstone in the survey path. The shale layers within 

each unit have low Vp, 1.0-1.2 km/s.  

Discussion 

Topographic metrics, erosion rate, and rock strength together can distinguish among 

causes of transient incision in the history of Desolation Canyon. Channel steepness patterns are 

strong indicators of events in the history of erosion of Desolation Canyon. Cosmogenic erosion 

rates quantify base-level fall rate through mean erosion rate response. As posited for this study, 

the steep topography of the canyon might be the result of 4 testable types of transient landscape 

erosion: (1) erosionally resistant rock requires steeper channels but constant base-level fall rate, 
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(2) rock uplift via isostatic rebound, perhaps due to erosional unloading of the Colorado Plateau 

to the south, (3) base-level fall on the Colorado System driving a kinematic wave of erosion up 

Desolation Canyon, or (4) local increase in erosion rate (and steep channels) from the integration 

of the Green River with the Colorado River. In the absence of tectonic influence within the 

immediate area of the canyon, we turn to the topographic attributes of this unique landscape to 

decipher its erosional history.  

Topographic Analysis 

Hypothesis 1: Rock Strength 

Regional mapping of channel steepness indicates that elevated ksn values are restricted 

to the Green River and its small tributaries in the Desolation Canyon corridor (Figure 4.2). The 

steep-walled inner gorge of Desolation Canyon yields high channel steepness values (up to ~180 

m0.9) that are surrounded by much lower values on the rim and along the Book Cliffs (<50 m0.9, 

Figures 4.2 and 4.3). Considering the proposed hypotheses for development of this canyon and 

the bedrock surrounding it, hypothesis (1) suggests that the strength of the Wasatch Formation is 

sufficient to cause the local steepness in the canyon without a base-level fall rate change. The 

Wasatch Formation extends east and west of Desolation Canyon (Figure 4.3), however, and the 

channels that erode Wasatch Formation are only relatively steep in tributaries that drain directly 

into the Green River within Desolation Canyon. This result implies either that Wasatch Formation 

rocks are much weaker immediately outside Desolation Canyon, or that rock strength is not the 

primary influence on the channel steepness pattern. Lateral facies changes do exist in the 

Wasatch Fm., but channel sands associated with the cliffs in Desolation Canyon persist through 

much of the unit in the Book Cliffs. Thus, we infer that rock strength variations do not offer a 

plausible explanation for the formation of Desolation Canyon.  

Hypothesis 2: (Isostatic) Uplift Gradient 

Regional variation of exhumation supports the possibility of a rock-uplift gradient between 

the Canyonlands region and the Uinta Basin due to significantly greater depths of exhumation in 

the Canyonlands region (Pederson et al., 2002b; Roy et al., 2009; Lazear et al., 2013). Isostatic 
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rebound could provide the rock uplift gradient for hypothesis (2) that may contribute to the gentle 

tilting of the sedimentary layers of the Tavaputs Plateau (Figure 4.3) and to channel steepness 

patterns in the Tavaputs Plateau. The expected channel-steepness gradient in response to this 

uplift gradient would be proportional to uplift and would be imposed on all channels experiencing 

the uplift gradient, not just the tributaries within the canyon itself. The transect of channel 

steepness within Desolation Canyon (Figure 4.11) is not a simple response that a rock uplift 

gradient might predict from erosional isostasy. In addition, streams dissecting the Book Cliffs 

adjacent to Desolation Canyon have uniformly low steepness values ~50 m0.9). Flexural isostasy 

as a control on topographic form broadly influences topography, and would be expressed beyond 

the confines of Desolation Canyon (e.g. Lazear et al., 2013). The channel steepness patterns are 

inconsistent with an ongoing or recent uplift gradient in the immediate area. Thus, isostatic 

response to exhumation is not likely to exert a primary control on Desolation Canyon topography 

and erosion rates. 

Hypothesis 3: Regional Base-level Fall Rate Change 

The Colorado River is the base level for the Green River, and a change in base-level fall 

rate on the Colorado River would propagate upstream in all tributaries, including the Green River 

(Hypothesis 3). If Desolation Canyon and its knickpoint on the Green River are a response to a 

change in base level fall on the Colorado River, all of the surrounding streams connected to the 

Colorado River should have similar channel steepness patterns, albeit modulated by rock 

strength variations. Therefore, we would expect to see high channel steepness values in 

channels throughout the Book Cliffs in response to a recent increase in base level fall rate on the 

Colorado River. In figures 4.2 and 4.3, the relatively uniform, low channel steepness values of 

streams draining the Book Cliffs are not consistent with a changed base-level fall response to 

explain Desolation Canyon.  

Hypothesis 4: Integration Across the Tavaputs Plateau  

The Uinta Basin is low-relief with low channel steepness and rests at about 1400 m 

elevation (Figures 4.1 and 4.2). Downstream of Desolation Canyon, the Canyonlands region has 
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experienced up to ~2 km of erosion in the last ~10 million years (Pederson et al., 2002b; Lazear 

et al., 2013), and rests at approximately 1000 m elevation (Figure 4.15). The modern drop in 

elevation between the Uinta Basin and Canyonlands is a topographic step of around 170 m 

(excluding the elevated Tavaputs Plateau). If the major event driving erosion of Desolation 

Canyon is the connection of stream flow from the Uinta Basin into Canyonlands along the general 

path of Desolation Canyon, then the recent, relatively rapid geomorphic response should be 

localized to the connecting path in the vicinity of the capture or spillover point (Figure 4.15). The 

channel steepness values downstream of and surrounding the canyon are relatively low and 

uniform, indicating they are not responding to an increase in base-level fall rate to the extent that 

Desolation Canyon is. The knickpoints of Desolation Canyon tributaries could be the result of a 

local increase in base-level fall rate that would be expected from an integration event across a 

pre-existing Book Cliffs escarpment, connecting to the Colorado River after it had incised to near 

modern levels (Figure 4.15). 

A knickpoint produced by a new connection from the nascent Green River in the Uinta 

Basin to the Colorado River somewhere around Canyonlands, should have triggered a kinematic 

wave of erosion that migrated upstream and incised a canyon into the upstream basin, with 

erosion focused at the spill point and consuming rock both up and downstream of the resulting 

knickpoint. Because this scenario does not provide a long-term change in overall base-level fall 

rate, the topographic response will change through time and space. In a given place, the local 

base-level fall rate will increase as the kinematic wave passes, and then decrease again. In a 

spatial transect up-canyon, a kinematic wave should be expressed by low, downstream base 

level fall rate and channel steepness values that increase upstream. These quantities should in 

reach a maximum and then decrease again upstream of the kinematic wave, particularly where 

channels are partially transport-limited or the incision process is best described by n less than 

unity in the stream power river incision model (Figure 4.5). In Desolation Canyon, the channel 

steepness values of tributary catchments (Figure 4.11) may be consistent with a snapshot of a 

kinematic wave migrating up Desolation Canyon that we hypothesize began when the Green 

River integrated across the Book Cliffs. 
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Eroding scarps like the Book Cliffs typically retreat fastest near large tributaries (e.g. 

Tucker and Slingerland, 1994; Berlin and Anderson, 2007). The location where Green River cuts 

through the Book Cliffs is only minimally embayed into a larger promontory, suggesting the 

canyon incision began after the Book Cliffs began to erode northward. Topographic analysis 

allows the inference that the Colorado River apparently developed a locally equilibrated network 

in eastern Utah sub-parallel to the portion of the modern Book Cliffs that are east of the Green 

River. Then, the Green River integrated across the Tavaputs Plateau, forming what became 

Desolation Canyon. 

Rosenberg et al. (2014) suggest that the incision and integration of streams of the upper 

Green River system (White, Yampa, Little Snake Rivers) all occurred since about 6-9 Ma. The 

minimum age of integration is not well known, but certainly occurred before ~1.5 Ma as indicated 

by terrace ages in Desolation Canyon (Darling et al., 2012). From thermochronometric evidence it 

may be deduced that exhumation of the Canyonlands began by 6-8 Ma (Hoffman, 2009), and 

possibly as recently as 2-3 Ma (Murray et al., 2016). 

The timing of the Green River integration across the Tavaputs Plateau is not well 

constrained, but inferences can be made from incision and erosion rate data. Previous terrace 

mapping in Desolation Canyon from Darling et al., (2012) reveal coarse, well rounded gravel up 

to 145 m above the Green River The only dated terrace within Desolation canyon is 60 m above 

the river (1.5 Ma; Darling et al., 2012). The apparent incision rate from this terrace (~40 m/Ma) is 

consistent with the CRN erosion rates in the surrounding landscape, showing relatively uniform 

erosion rate above the Desolation knickpoints. This estimate of incision initiation is a minimum 

due to terraces that are older than 1.5 Ma and higher than 60 m (up to 145 m) above the river in 

upper Desolation Canyon that have not been dated (See Figure 9 in Darling et al., 2012). Simple 

extrapolation of 40 m/Ma to 145 m suggests the canyon is ~3.5 million years old, assuming 

constant incision rate upstream of the knickpoint since canyon cutting began.  
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Erosion Rate Analysis 

The comparison of topography (ksn) and base level fall rate (inferred from CRN 

concentrations) in landscapes (Figure 4.13) provides useful contextual information about the 

controls on landscape evolution relative to other landscapes (e.g. DiBiase et al., 2010; Kirby and 

Whipple, 2012; Lague, 2014; Scherler et al., 2014; Roux‐Mallouf et al., 2015; Adams et al., 2016). 

The high erosion rates show that the canyon is in dynamic readjustment, a landscape in 

transience as the knickpoints retreat. The Desolation data (blue dots) suggests erosion is slightly 

more efficient in the Tertiary rocks than the Paleozoic rocks. This is expected, as the Tertiary 

rocks are generally weaker, as seen from seismic surveys and observed in laboratory 

measurements of tensile strength (Bursztyn et al.,(2015). The Grand Staircase data record much 

higher erosion rates for similar mean channel steepness values despite rock properties similar to 

the substrate exposed in Desolation Canyon, suggesting that our detrital 10Be concentrations are 

recording the locally high erosion rates associated with undermining of cliff-bands (Chapter 3) 

rather than the rate of base-level fall that sets mean channel steepness.  

Within the Desolation Canyon data, a significant grouping separates the in-canyon, 

relatively high rates from the lower rate data from the plateau. These two groups approximately 

fall on a similar erosional efficiency line, which suggests the parameters that control the erosional 

efficiency, like rock strength, are not significantly different between the Green River and Wasatch 

Formations to separate significantly theoretical curves that represent the data. However, there is 

some evidence of secondary lithological effects. For example, one sample, AD15 - Deso 8, from 

Wire Fence Canyon, mostly samples a weaker member of the Wasatch Formation that resides 

below the significant cliffs of Wasatch sandstone, yielding lower channel steepness despite 

exhibiting a high erosion rate.  

The Role of Rock Strength 

Seismic surveys from the Colorado Plateau yield Vp ranging from 0.5 to >6.0 km/s 

(Darling et al., Chapter 3 of this dissertation), but rocks in Desolation Canyon all have Vp in the 

narrow range of 1.0 to 2.5 km/s. This small difference is the maximum range of velocities 
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between the most erodible shales to the strongest sandstones in the section. This small 

difference in Vp suggests that the contrast in average rock strength of the Green and Wasatch 

Fms. is likely insufficient to explain up to a factor of ~6 change in channel steepness (~180 vs 

~30). Further evaluation of the relative strength inferred from this velocity contrast requires an 

estimate of the rock strength from independent data. 

Intrinsic rock strength (as tensile strength of cores) and Vp of discs cut from cores are 

used to help interpret field seismic surveys in which bulk Vp is determined over length scales of 

10s of meters and thus incorporates the effects of fractures, joints, bedding, and weathering. 

Field Vp measurements are thus always expected to be somewhat reduced from Vp measured on 

fresh rock cores but to be more reflective of effective rock strength. The relationship between rock 

tensile strength and Vp in cores help inform interpretation of field Vp data in terms of relative rock 

strength. The laboratory data presented below are for a range of rock types that form a 

quantitative relationship between tensile strength and Vp (Figure 4.17), and a measure of 

erodibility, the elastic modulus divided by the square of tensile strength from core data (Table 4.4, 

Sklar and Dietrich, 2001; Sklar, 2004; Johnson, 2007; Johnson et al., 2009). Comparing the 

relationship between elastic modulus, tensile strength and Vp from cores, (Figure 4.18), to the 

field Vp data, leads us to suggest the rock units of Desolation Canyon are both highly erodible, 

though the Wasatch Fm. is somewhat less so. This result is fully compatible with the topographic 

analysis presented above that argued that the steep topography of Desolation Canyon is more 

strongly influenced by erosion rate than by rock strength. 

 Additional rock strength data for Desolation Canyon in particular are available from 

Bursztyn et al., (2015) in the form of tensile strength measurements of hand samples of the 

Green River Formation (13 - 1 MPa, mean=6.72 +/- 1.69 s.d. MPa) and Wasatch Formation 

(9.35-0.75 MPa, mean= 4.85 +/- 1.27 MPa). These rock-strength estimates are from intact 

samples that were cored, which biases the tensile strength measurements from a particular rock 

formation because many weak sandstone and most shale samples within a given formation 

cannot survive collection and coring to be measured in the lab. Direct inference of the Bursztyn et 

al. (2015) data suggest that the rare, thin, sandstone layers within the Green River Formation are 



 

128 
 

stronger than the sandstones that comprise the bulk of the Wasatch Formation, as also indicated 

by our seismic data in Table 4.3. Because the Green River Formation is mostly shale (Figure 

4.10), the measures of tensile strength of the thin sand beds are not representative of the overall 

erodibility, which must be much lower than the average tensile strength of sandstone cores. In 

general, the Green River Fm. is only slightly weaker than the Wasatch , which is consistent with 

the conclusion that rock strength contrast here is not able to influence topography enough to 

generate the form of Desolation Canyon(Pederson et al., 2013a)  

Conclusion 

I have used an evaluation of topography, erosion rates, incision rates and rock strength 

to test hypotheses of formation of Desolation Canyon. The steep inner canyon 180 m0.9 and high 

erosion rates (~220 m/Ma) within indicate the canyon is fundamentally in dynamic adjustment to a 

significant change in local base level. This transient condition of growing relief indicates 

geologically recent change. The mechanism inferred from channel steepness patterns, where the 

canyon itself is adjacent to only lower channel-steepness values, appears best explained by a 

local increase in incision rate as a paleo-drainage divide on the Tavaputs Plateau was breached. 

The timing of this event is plausibly after the majority of the Canyonlands region was exhumed 

and a low, probably slowly eroding base level was established. The upstream migration of the 

Green River knickpoint has not affected the Green River above the Desolation Canyon knickpoint 

significantly, given the low erosion rates above the knickpoint. This work strongly suggests the 

Green River integrated into the Colorado River system after the Colorado River had been 

established in the Canyonlands region. While the timing of this is uncertain, our result that this 

integration event is relatively recent is significant to studies of Colorado River history and 

downstream sedimentation in the Gulf of California that may be affected by large changes in 

contributing drainage area and accompanying water and sediment from approximately half of the 

Colorado River system, as represented by the Green River. 
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Figures  

Figure 4.1. Colorado River watershed outlined on digital elevation model over hill-shade with key 
locations identified. The sub-watershed of tributaries to Desolation Canyon is outlined in blue 
along the Green River. 
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Figure 4.2. Comparison of topography (a) to channel steepness patterns over hill-shade (b) in the 
region of Desolation Canyon. The watershed for tributaries that flow into Desolation Canyon is 
outlined in black in both a) and b). In a), black circles indicate location of incision rate markers 
with rate, date and maximum dated terrace height of the study printed (Darling et al., 2012; 
Pederson et al., 2013a). Channel steepness is calculated based on θref = 0.45 (ksn units = m0.9). 
DEM is SRTM, 90m pixel-size. Note that unnaturally straight, low steepness channels are the 
result of DEM pixel-size in low relief areas. These channels, especially in the low portions of the 
Uinta Basin and below the Book Cliffs, are produced when the TopoToolbox algorithm cannot find 
a channel and draws a straight line across the flat portion of the DEM. These are not directly 
interpretable except that the channels and hillslopes are very low gradient. 
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Figure 4.3. Comparison of geology (Tw = Wasatch Formation; Tg = Green River Formation). (a) 
to channel steepness patterns over hillshade (b) in the region of Desolation Canyon. The 
watershed for tributaries that flow into Desolation Canyon is outlined in black in both a) and b). In 
a), yellow circles indicate location of rock strength measurements with seismic surveys. Channel 
steepness is calculated based on θref = 0.45 (ksn units = m0.9). DEM is SRTM, 90m pixel-size. 
Note that unnaturally straight, low steepness channels are the result of DEM pixel-size in low 
relief areas. These channels, especially in the low portions of the Uinta Basin and below the Book 
Cliffs, are produced when the TopoToolbox algorithm cannot find a channel and draws a straight-
line across the flat portion of the DEM. These are not directly interpretable except that the 
channels and hillslopes are very low gradient. 
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Figure 4.4. Topography of Desolation Canyon in Utah, USA. Survey sites, sample locations and 
knickpoints of assorted tributaries to the Green River are shown. The knickpoints rise in elevation 
to the south, approximately parallel to the plateau surface and lithologic lithologic contact (See 
Figures 4.2 and 4.3). 
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Figure 4.5. Modeled long profiles for given n-values evolving from a vertical step, after 
Tucker and Whipple, (2002). Rivers have different forms because of a variety of 
process or boundary condition controls that are represented by the value of n. Such 
processes could explain why the Green River knickpoint is smooth compared to its 
tributaries’ respective knickpoints. See text for discussion 
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Figure 4.6. Channel steepness and erosion rate theoretical relationship. Colors 
indicate high erodibility (blue) to lower erodibility (red). Green curve is calibrated from 
field and cosmogenic data in the San Gabriel Mountains and additional curves differ 
by up to a factor of 10 change in erodibility (DiBiase et al., 2010). 
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Figure 4.7. Seismic survey tomography for 8 transects through Uinta, Green River and Wasatch 
Formation outcrops in Desolation Canyon collected May 2015. Additional Vp survey supporting 
figures available in Appendix C. 
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Figure 4.8. A) Field photo during collection of survey Green River 5 in the Wasatch Formation. B) 
and C) Wasatch Formation forming a series of cliffs above the river. D) Collection of survey 
Green River 6 (W). Photos Nari Miller. 

  



 

143 
 

 
Figure 4.9. Longitudinal profiles from several tributaries and the mainstem Green River in 
Desolation Canyon with geologic contacts and approximate dip angle. For figure 4.11, channel 
steepness regressions were determined below any knickpoints in these and similar tributaries. 
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Figure 4.10. A) Field photo during collection of survey Green River 4 (Nari Miller 
photo).  B) Field photo during collection of Green River 1 survey (Nari Miller photo). 
C) Field photo during collection of cosmogenic samples on Tavaputs Plateau. 
Panorama views South (left) to North (right side of image). Photo is near sample 
Deso 10, first author photo. 
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Figure 4.11. Channel steepness values calculated from lower portions of tributary streams, below 
knickpoints, from 10 m pixel size DEM using the Profiler toolbar. Reference concavity is 0.45. The 
increase and then decrease of ksn along the profile suggests an ongoing change in base level fall 
rate across the canyon like a kinematic wave of erosion. See Discussion. 
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Figure 4.12. Map of catchment-averaged cosmogenic erosion rates in Desolation Canyon. 
Watersheds are outlined using ArcGIS tools and color coded to match erosion rate value. 
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Figure 4.13. Channel steepness as a function of erosion rate for the three major study areas of 
this dissertation. The curves represent empirical values of K’: that differ in the erodibility value, K’. 
The difference in erosional efficiency is attributed to rock strength differences between Grand 
Canyon and Desolation Canyon. The red arrow indicates the Grand Staircase sediments are 
skewed by local cliff retreat erosion and undermining.  
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Figure 4.14. Schematic stratigraphic column of Desolation Canyon rock units. Relative positions 
of units labeled with rock strength measurements are not to scale. Note certain units in Green 
River Formation are harder than most of the rock in the unit (Figure 10). The Wasatch Formation 
sandstones dominate outcrops and have relatively high Vp (Figure 4.8). 
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Figure 4.15. Schematic cross-section of geology underlying Green River long profile. Special 
care is made to ensure unit contacts are accurate, however dip angles and depths are cartooned. 
Orange arrows represent incision rates from relatively recent deposits and purple arrows are 
incision rates calculated from older deposits. Green arrows are derived from the mean of detrital 
cosmogenic erosion rate measurements. In the case of incision rates, numbers indiciate 
“Rate”/”Age”, from which terrace heights can be calculated.  
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Figure 4.16. Diagram of the hypothesis for integration of Green River through Desolation 
Canyon. T0, Uinta Basin is a closed basin into the Neogene and Canyonlands is apparently 
largely exhumed by ~6 million years ago. T1, whether top-down or bottom-up, integration over a 
topographic step would produce a knickpoints and local fast erosion rates. T2: continued 
migration of the knickpoints leads to topography we see today with Desolation Canyon and a 
knickpoints on the Green River. 
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Figure 4.17. Rock strength metrics determined on rock cores from a variety of samples, see 
Table 4.2 (Johnson, 2007; Johnson et al., 2009; Sklar and Dietrich, 2001) 
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Figure 4.18. Data for Young’s (elastic) modulus, tensile strength and Vp determined from core 
samples by Sklar and Johnson (personal communication). The factor of elastic modulus over 
tensile strength squared is a useful metric of how easily a material is to erode mechanically 
(Sklar, 2004). 
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Table 4.1 Seismic field survey data 

  

Desolation Canyon

UTM E UTM N Elev. Vp min 
(km/s)

Vp Max 
(km/s)

Vp Max 
Range 
(km/s)

Vp 
Survey 
Depth 

(m)

RMSE 
(ms)

Uinta Tu 584450.53 4413763.56 1985.45 0.4 1.4 1.3-1.4 4.8 0.57

Green River1 Tg 592223.41 4409368.04 1608.87 0.3 2.5 2.3-2.5 6.2 0.58
Green River2 Tg 591505.88 4409501.52 1641.40 0.9 2.5 2.2-2.5 4.1 0.44

Green River 3 - Sandstone Tg 588433.76 4411438.86 1620.09 0.3 2.3 2.0-2.3 10.5 0.77
Green River3 - Shale Tg 588433.76 4411438.86 1620.09 0.3 1 0.9-1.1 4.6 0.77

Green River4 Tg 592083.68 4406176.04 1411.03 0.4 1.2 1.1-1.2 9.75 1.52

Green River5 Tw 589117.52 4397949.42 1393.77 0.5 2.1 2.0-2.2 2.8 0.95
Green River6 Tw 586685.37 4390437.53 1411.81 0.5 2.1 2.0-2.2 5.2 1.39
Green River7 Tw 583825.01 4373383.82 1353.37 0.4 1 1 6.75 1.9
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Table 4.2 Core rock strength data from Johnson (2009). 

  

Rock Type

Tensile
Strength
(MPa)

Elastic
Modulus
(GPa) Vp E/τ2

Henry Mtns. Diorite 12.90 54.7 5003 0.328706
Entrada Sandstone 0.68 7.2 1918
Kayenta Sandstone 2.53 19.6 2918 3.062069
Wingate Sandstone 1.85 10.7 2322
Navajo Sandstone 0.25 3.7 58.88
'Wafer' Sandstone (PINK SS) 4.26 26.8 3387 1.476779
1:1 (2005) 3.922481 32.7 4230 2.125329
10:1 (2005, SigmaT 2005) 0.181 9.2 2372 279.3871
10:1 (2005, SigmaT 2007) 0.212962 9.2 2372.0 201.8179
2:1 (2005) 4.16951 34.9 4110.0 2.007499
4:1 (2005) 1.892033 22.9 3639.0 6.397028
6:1 (2005) 0.661905 13.6 2985.0 31.04184
8:1 (2005, SigmaT 2005) 0.211 8.9 2408.0 199.9057
Andesite 24.4 79.5 5923.0 0.133533
Basalt (Oz) 11.6 74.8 3786 0.555886
Eel Sandstone 6.65 37.9 3936 0.85703
Freemont Waterfall 0.82 15.6 2949 23.20048
Granite (Granodiorite?) 7.14 30.6 3625.0 0.60024
Lichen Sandstone 5.01 30.6 3786 1.219119
Taroko Marble 5.41 53.7 4748.0 1.834762
Taroko Quartzite 9.45 58.4 4818 0.653957
Welded Tuff 10.9 59.1 5246 0.497433
Yuba Quartzite 18.95 83.9 5868 0.233638
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 SYNTHESIS 

 This dissertation outlines a conceptual and empirical basis for evaluating the processes 

of landscape evolution that form canyons set into low-relief plateau landscapes in the presence of 

a layered stratigraphy with variable rock strength. The field areas are the Grand Canyon, the 

Grand Staircase north of the Grand Canyon, and the smaller, but no less interesting, Desolation 

Canyon of the Green River in Utah. Empirical analysis from these three study areas is developed 

in each chapter, and each shows how our framework and data can be used together with 

independent datasets to decipher how complex influences on erosion occur, and are expressed 

in the topography of the study areas. The use of numerical models to develop intuition about 

landscapes is helpful in evaluation of the mysteries of the Colorado River systems and its 

canyons. This approach can be applied to other landscapes. Interpretation of erosion-rate data 

from cosmogenic nuclides is enhanced by comparing the data to simulated sediment supply from 

hillslopes that is transported through channels to hypothetical collection points anywhere in the 

simulation space. These simulations test a variety of rock strength and quartz distributions, 

tracking 10Be content through transport. Erosion rates in simulations encompassing varied rock 

strength and quartz concentration may or may not differ from base-level fall even where base-

level fall rate and climate are invariant, as explored primarily in Chapter 3. This work highlights 

how non-uniform quartz and erosion rates can be interpreted, and supports their use in 

landscapes more complex than ideal, so long as care is taken to thoroughly evaluate what the 

measured erosion rates represent relative to base-level fall and what local erosion rate anomalies 

are produced in particular non-equilibrium landscapes. 

 This synthesis highlights advances in each chapter and how they fit into broader contexts 

and suggests future trajectories in fields of Grand Canyon research, numerical simulations of 

variable rock strength landscapes, and cosmogenic-nuclide interpretation. 

Grand Canyon and the Colorado River System 

 The origin of the Grand Canyon has been debated for over 100 years, and recent 

controversial studies have invigorated this debate and helped motivate my research. The 
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geomorphology and calculated erosion rates of the canyon, supported by theoretical modeling, 

strongly favor a geologically young canyon. The comparison of cliffs along the Grand Wash Fault 

to the walls of Grand Canyon provide a powerful natural experiment where rock type and climate 

are negligibly different although the canyon slopes are much steeper than the fault escarpment 

slopes, indicating very different erosion rates and thus age of the respective landscapes (Ch. 1). 

As did other studies before, my study indicates the steep-walled, high-relief landscape of Grand 

Canyon is youthful, and my analysis strongly suggests incision began <12 million years ago. We 

further conclude that canyon morphology is not simply a result of the typically stronger rocks 

found at greater depth in the canyon, which could support steeper slopes and cliffs more easily 

than weaker rocks could. From the point of view of geomorphology, hypotheses that the 

topographic form of Grand Canyon has changed little in several tens of millions of years 

(Wernicke, 2011; Flowers and Farley, 2012) are problematic. Such great antiquity is inconsistent 

with rates and processes of erosion that have been driven by the Colorado River and the 

antecedent drainages of the Colorado Plateau (e.g. Darling and Whipple, 2015). Importantly, 

even in places where the Colorado River is not directly driving erosion, such as the Hualapai 

Plateau headwaters (Ch. 2), the rates of erosion are high enough (~6 m/Ma) to produce 

significant change over tens of millions of years even in areas with low relief, relatively flat 

topography. Cosmogenic data shows that the much steeper portions of the landscape are eroding 

more quickly, as expected. Therefore, the landscape is dynamic, and steep topography is 

unstable. Independent data sources support refinement of this estimate to less than 5 or 6 million 

years ago and is likely closely related to the integration of the Colorado River system (Davis, 

1901; Longwell, 1946; Karlstrom et al., 2008; Spencer et al., 2013; Karlstrom et al., 2014; 

Crossey et al., 2015; Darling and Whipple, 2015). 

 Current estimates of the time that incision began and the time that the Colorado River 

began supplying headwater sediment to the Basin and Range are not precise (Karlstrom et al., 

2008; Polyak et al., 2008; Karlstrom et al., 2014; Darling and Whipple, 2015). We cannot say 

beyond speculation that the connection of the Colorado River system to the Gulf of California 

caused an increase in incision rate. This causal relationship is a hypothesis that is consistent with 
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geomorphic theory and implies a transient landscape (Cook et al., 2009; Darling et al., 2012; 

Darling and Whipple, 2015). Alternatively, Crow et al., (2014) show temporally steady incision of 

the Grand Canyon in the last ~1.5 million years from high terrace deposits in the central Grand 

Canyon, which is inconsistent with a transient incision wave. These concepts may be reconciled 

by the possibility that the posited transient incision wave passed through Grand Canyon prior to 

the relaxation to more steady incision recorded by existing terrace dates. One future research 

trajectory may be to conduct numerical simulations with more detailed datasets of the rock 

structure and strength, which has been attempted once (Pelletier, 2009). Improvements in 

understanding of how the landscape responds to various inputs controlled by possible base-level 

fall changes can improve on the work presented here.  

One common method for exploring river systems is to find old river deposits and 

determine their age. For instance, in the northern end of Desolation Canyon, the terrace that is 60 

m above the river is dated, but there are undated river gravels up to 145 m above the river in this 

area (Chapter 4 and Darling et al., 2012). Sites such as this require improved methods for dating 

river deposits, such as applying stable and radioactive cosmogenic isotopes using the isochron 

burial dating method. This particular variation of isochron dating (Balco and Rovey, 2008; Darling 

et al., 2012) requires evaluation of sources of stable isotopes and may not be applicable to 

deposits that are very thin or do not contain quartz sediment of known provenance. I considered 

using this enhancement of cosmogenic dating for my second project at ASU, and I still like its 

potential in the future.   

 The integration of the Colorado River system appears to be complex. The study of 

Desolation Canyon on the Green River, the Colorado’s biggest tributary, suggests that the Green 

River integrated with the Colorado River relatively recently. Previous work suggested timing of 

this integration at somewhere between 8 and 1.5 million years ago (e.g. Darling et al., 2012; 

Rosenberg et al., 2014), and we can refine that to post-exhumation of the Canyonlands region 

(Ch. 4). Based on thermochronometric data, rapid exhumation in Canyonlands may have begun 

just 2-3 million years ago, though <6 million years ago is a more robust estimate (Murray et al., 

2016). Our analysis does not distinguish the cause of integration, simply that there is a time 
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period between exhumation of the Canyonlands and the connection with the Green River. At least 

two possible scenarios could cause this relationship: head-ward erosion of a stream in the Book 

Cliffs pierced a low point in the Tavaputs Plateau, or infilling of the Uinta Basin allowed a spill-

over and breach of the Tavaputs Plateau at a low point. 

 Ongoing studies of the upper Colorado River system are intended to date more river 

terraces and eroded volcanic flows associated with Cenozoic stratigraphy, and measure 

thermochronometers to study landscape incision and exhumation. The river network is a sensitive 

response system to possible tectonic and isostatic driving forces that may be operating in concert 

with processes like the drainage integration suggested in Desolation Canyon. Detailed study of 

site locations like Desolation Canyon are needed to de-convolve processes that affect broad 

regions from those processes that affect the landscape more narrowly, and to determine the 

order of events and their respective timing, making this analysis of Desolation Canyon useful for 

general research on Colorado Plateau landscape evolution. 

Theoretical Exploration Progress 

 My updates to numerical evaluation of landscape change provide a quantitative 

framework for thinking about landscapes. My progress is through exploring how landscapes 

should respond to perturbations in base-level fall and the inherited geologic materials and 

structures that developed before erosion began and testing those hypotheses with erosion and 

incision rate data (e.g. Cook et al., 2009; Darling and Whipple, 2015). The complex interaction of 

bedrock strength with erosion has long been recognized, but not always well understood. Whipple 

and others developed much of the quantitative framework our models are based on, with the goal 

of looking at topography and using that to understand what has happened in the past (Ahnert, 

1970; Flint, 1974; Kirkby and West, 1979; Whipple et al., 1999b; Whipple and Tucker, 1999; 

Whipple, 2001b; Tucker and Whipple, 2002; Whipple, 2002; Kirby and Whipple, 2012; Gasparini 

and Whipple, 2014; Whipple and Gasparini, 2014). A scenario that has long perturbed 

researchers has been how base-level fall changes would affect a landscape where vertical, 

stepwise changes in rock strength exist; i.e., layer-cake stratigraphy like the Colorado Plateau. 
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How could one tell which of these facets of erosion produced the topographic expression of a 

canyon? From each chapter in this dissertation, I evaluate numerical developments for testing 

how erosion rates are produced from diverse rock types in comparison to independent data.  

One key result is that spatial distributions of erosion rates are diagnostic of landscape 

evolution history if rock-strength patterns are known. For instance, weak over strong rock 

provides an empirically supported prediction that erosion rates in the headwaters are indicative of 

previous (before the base-level change) boundary conditions to erosion in disequilibrium 

landscapes. Canyons will either have higher, lower or the same erosion rates as the headwaters, 

which indicate base-level fall rate increased, decreased or remained the same, respectively. 

While the assumption of constant or only stepwise changes in erosion rate are required to back 

calculate the timing of an event (from the apparent incision magnitude projected from a 

knickpoint), it is possible to constrain major geomorphic events, such as the beginning of the 

carving of Grand Canyon. Independent data that can attest to these inferences are based on 

geochronology of fluvial deposits which can and have been used in concert with geomorphic 

theory and modern erosion rate patterns to interpret landscape evolution in this dissertation.  

 Complex packages of rock produce complex erosion patterns, which I explore with simple 

numerical simulations that rely on simple erosion functions (especially Ch. 3). One aspect of this 

complex erosion that is not addressed directly is the observation that landscapes evolve via 

multiple processes over any given region. For example, in the case of hard rock over strong rock 

used in the Grand Staircase, the real landscape experiences rock fall, and sometimes, landslides. 

The model does not change the way that erosion occurs in the simulation, in which “rock fall” 

does not exist. It is analogous to this process change in that the stochastic, high-erosion-rate 

events at the scarp in the model are similar in effect to mass wasting; the erosion rate, no matter 

how it occurs in detail, is high and random. Further, the cosmogenic signature of the model and 

the real erosion process both provide unusually low doses of cosmic rays by eroding material 

quickly in some locations.  

 This type of exploration of erosion rate patterns with simulations based on variable rock 

strength will be useful in many areas around the world. Further, quartz-bearing rock distribution 
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patterns can be quantified for more precise determination of simulated erosion rates, used 

extensively in Chapter 3. 

Rock Strength Measures 

For many years J. Pederson and his colleagues and students (Grams and Schmidt, 

1999; Roberson and Pederson, 2001; Anders et al., 2005; Pederson and Tressler, 2012; 

Pederson et al., 2013b; Bursztyn et al., 2015) have emphasized the idea that rock strength 

matters to canyon incision on the Colorado Plateau. I concur, and expand on that notion. My 

approach follows the ideas of Clarke and Burbank (2010, 2011) and is conducted in collaboration 

with Clarke. The aim is to collect geomorphically relevant, outcrop-scale data relevant to rock 

strength that can integrate weathering and rock strength across tens of meters into a single 

metric as a proxy for relative rock strength. I use near-surface P-wave velocity as this metric. 

Common measures of and proxies for rock strength sample only intact rock directly (Schmidt 

hammers, Brazilian tensile strength, P-wave and shear velocities in cores) and do not encompass 

the influence of weathering or fracture density, which are known to dominate effective rock 

strength in the field (Selby, 1993). Fracture density especially plays a large role in hillslope and 

channel erosion (e.g. Whipple et al., 2000; Clarke and Burbank, 2010). The role of rock strength 

in erosion is important, but determining a useful field metric of erodibility as defined in geomorphic 

theory (e.g. DiBiase and Whipple, 2011) has been elusive despite decades of research into 

factors affecting rock mass strength (Selby, 1981, 1982a, b; Moon and Selby, 1983; Augustinus, 

1992; Augustinus, 1995; Schmidt and Montgomery, 1995; Schmidt and Montgomery, 1996; 

Weissel and Seidl, 1997; Clarke and Burbank, 2011). I have approached erodibility from two 

directions: simulations of assigned erodibility and field geophysical measurements. Simulating 

landscapes with assigned erodibility values provides an intuition for what the erosion response 

will look like. The measurement of field Vp allows estimates of tensile strength that can be used to 

support inferences of erodibility as defined in simulations. This relationship is further supported by 

rock core data using the ratio of elastic modulus and tensile strength squared as a means for 

assessing how erodible a rock might be. Although more work is still needed to understand the 
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relationship between rock strength and erodibility, effective evaluation of erodibility’s effect on 

landscapes can be accomplished with the methods outlined in this dissertation. 

Future Interdisciplinary Research 

Colorado Plateau Rivers and Canyons 

 Our research provides improvements on understanding how canyons develop in the 

presence of stratigraphic variation in rock strength. This progress fundamentally improves ideas 

and inferences for landscape evolution of the Colorado River system. However, inferences based 

on recent geomorphic change and landscape evolution theory are not direct evidence of the 

history of the Colorado River. The integration of the Colorado River system, from a regional river 

in Colorado 11 million years ago to a continental-scale river by 5 or 6 million years ago and how it 

has changed since, are still fundamentally not well understood. Where did the river flow between 

11 and 6 million years ago? What did intermediate landscapes and canyon systems look like? 

How were the basins of Wyoming, Utah and Northern Colorado connected to form the Green 

River? These and other questions can frame future projects as scientific means of testing ideas 

evolve and intuition for developing testable hypotheses improves. 

 The history of the upper Green River has been of interest to me for several years. The 

chapter on Desolation Canyon will frame my thinking for beginning new research into the river 

history and basin exhumation of this area through whatever means seem useful, including terrace 

dating (and development of chronological methods) and expanding my working knowledge of 

volcanic dating methods, especially 40Ar-39Ar dating. 

 Recent research in thermochronology provides powerful but relatively low precision 

datasets that bear on changes in heat through time and space that are partially controlled by 

landscape evolution (e.g. Flowers et al., 2008; Flowers and Farley, 2012; Fox and Shuster, 2014; 

Karlstrom et al., 2014). Improvements in these techniques will enhance interpretability of 

landscape change. The connections between thermochronology, geology and geomorphology 

can also be leveraged to improve on landscape change interpretations if ideas and testability are 

consistent across techniques. Ultimately, greater potential for improvements in understanding 
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regions like the Colorado Plateau will come from collaborations across disciplines using diverse 

techniques to bring more data to bear on key questions. 
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APPENDIX A 

SLOPE-AREA DATA AS LOG-LOG PLOTS FOR EACH CATCHMENT STUDIED IN CHAPTER 
TWO. 
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Appendix A: Slope-area plots used for stream profile analysis and, if appropriate, regression of 
channel steepness and theta for projection. Criteria for selection include geologic, independent 
observations and a relatively linear section above the knickpoints in these plots. 
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Appendix A: Chi-distance plots of all streams analyzed in western Grand Canyon, grouped by 
relative topographic patterns. Purple is Sanup/Shivwits plateax, green is Grand Wash Cliffs and 
Hualapai Plateau streams are Black and Red. 
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APPENDIX B 

GRAND STAIRCASE-LIKE AND GRAND CANYON-LIKE SIMULATIONS 
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Appendix B.1 Two-dimensional landscape evolution model (CHILD) outputs for a 
Grand Staircase-like simulation. Figures are mapped by rock type in upper panel; 
red is stronger rock and blue is weaker rock. Map color is erosion rate in the lower 
panel. 
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Appendix B.2 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs for a Grand Staircase-like simulation. Figures are mapped by rock type in 
upper panel; red is stronger rock and blue is weaker rock. Map color is erosion rate in the lower 
panel. 
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Appendix B.3 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs for a Grand Staircase-like simulation. Figures are mapped by rock type in 
upper panel; red is stronger rock and blue is weaker rock. Map color is erosion rate in the lower 
panel. 
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Appendix B.4 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs for a Grand Staircase-like simulation. Figures are mapped by rock type in 
upper panel; red is stronger rock and blue is weaker rock. Map color is erosion rate in the lower 
panel. 
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Appendix B.5 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs for a Grand Staircase-like simulation. Figures are mapped by rock type in 
upper panel; red is stronger rock and blue is weaker rock. Map color is erosion rate in the lower 
panel. 
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Appendix B.6 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs at 2 million year time-steps for a Grand Canyon-like simulation. Figures 
are mapped by rock type in upper panel; red is stronger rock and blue is weaker rock. Map color 
is erosion rate in the lower panel. 
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Appendix B.7 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs at 2 million year time-steps for a Grand Canyon-like simulation. Figures 
are mapped by rock type in upper panel; red is stronger rock and blue is weaker rock. Map color 
is erosion rate in the lower panel. 
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Appendix  B.8 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs at 2 million year time-steps for a Grand Canyon-like simulation. Figures 
are mapped by rock type in upper panel; red is stronger rock and blue is weaker rock. Map color 
is erosion rate in the lower panel. 
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Appendix B.9 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs at 2 million year time-steps for a Grand Canyon-like simulation. Figures 
are mapped by rock type in upper panel; red is stronger rock and blue is weaker rock. Map color 
is erosion rate in the lower panel. 
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Appendix  B.10 Two views of the same timestep output. Two-dimensional landscape evolution 
model (CHILD) outputs at 2 million year time-steps for a Grand Canyon-like simulation. Figures 
are mapped by rock type in upper panel; red is stronger rock and blue is weaker rock. Map color 
is erosion rate in the lower panel. 
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APPENDIX C 

SEISMIC SURVEY FIGURES 
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