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ABSTRACT

Compressed sensing (CS) is a novel approach to collecting and analyzing data of

all types. By exploiting prior knowledge of the compressibility of many naturally-

occurring signals, specially designed sensors can dramatically undersample the data

of interest and still achieve high performance. However, the generated data are pseu-

dorandomly mixed and must be processed before use. In this work, a model of a

single-pixel compressive video camera is used to explore the problems of performing

inference based on these undersampled measurements. Three broad types of inference

from CS measurements are considered: recovery of video frames, target tracking, and

object classification/detection. Potential applications include automated surveillance,

autonomous navigation, and medical imaging and diagnosis.

Recovery of CS video frames is far more complex than still images, which are

known to be (approximately) sparse in a linear basis such as the discrete cosine

transform. By combining sparsity of individual frames with an optical flow-based

model of inter-frame dependence, the perceptual quality and peak signal to noise

ratio (PSNR) of reconstructed frames is improved. The efficacy of this approach is

demonstrated for the cases of a priori known image motion and unknown but constant

image-wide motion.

Although video sequences can be reconstructed from CS measurements, the pro-

cess is computationally costly. In autonomous systems, this reconstruction step is

unnecessary if higher-level conclusions can be drawn directly from the CS data. A

tracking algorithm is described and evaluated which can hold target vehicles at very

high levels of compression where reconstruction of video frames fails. The algorithm

performs tracking by detection using a particle filter with likelihood given by a max-

imum average correlation height (MACH) target template model.
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Motivated by possible improvements over the MACH filter-based likelihood esti-

mation of the tracking algorithm, the application of deep learning models to detection

and classification of compressively sensed images is explored. In tests, a Deep Boltz-

mann Machine trained on CS measurements outperforms a naive reconstruct-first

approach.

Taken together, progress in these three areas of CS inference has the potential to

lower system cost and improve performance, opening up new applications of CS video

cameras.
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Chapter 1

INTRODUCTION

In this dissertation, I present work at the intersection of compressed sensing (CS),

image processing, and computer vision. Using the single-pixel camera [1] as a model,

I develop and improve inference algorithms for CS data. Three broad categories of

inference problems are considered: reconstruction of video sequences, video-based

target tracking, and image-based detection/classification. I improve both the accu-

racy and precision of the inferred quantities and the computational cost of making

the inference.

CS is a relatively new paradigm in sensor and signal processing which combines

specially-designed sensors with a priori knowledge of a signal’s compressibility. By

exploiting this knowledge, a signal of interest can be recovered from an extremely

underdetermined set of measurements [2]. The potential benefits are clear: compres-

sive sensing technology, once commercialized, is likely to result in lower data rate

requirements and less costly sensing hardware. However, these advantages come at

the cost of higher computational requirements, as measurements from CS sensors

must be processed to reconstruct the signal of interest.

This work focuses on the single-pixel camera as a specific case of CS. The single-

pixel camera, in its simplest embodiment, displays a pseudo-random measurement

pattern on a digital micromirror device. The image to be sensed is projected on

this micromirror and the reflected light is captured by a photodiode, resulting in an

analog implementation of the inner, or“dot”, product operation. By rapidly switching

through a known set of measurement patterns, a vector of these inner products with

the image is assembled.
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From a set of CS measurements, a reconstruction algorithm must be used to es-

timate the image. Natural images are known to be compressible - for instance using

the discrete cosine or wavelet transforms. The transformed images contain most of

the signal energy in a very small fraction of the components, with most of the com-

ponents having near zero magnitude. The CS reconstruction procedure identifies and

estimates these large components, allowing the image to be recovered from the single-

pixel’s camera’s measurements. Several variations on this theme exist, but all rely on

exploiting prior knowledge of a signal’s sparsity in a transformed domain. The number

of measurements required to accurately reconstruct the signal is larger than the num-

ber of nonzero components of the transformed signal; additional measurements are

required to identify which indices are non-zero. The total number of measurements,

though, is far less than the total length of the signal to be reconstructed.

1.1 Targeted Applications

This work targets automated systems which may benefit from the use of CS imag-

ing. The problem of infrared is specifically targeted. Surveillance is one such appli-

cation: by adopting computationally simple object recognition algorithms, the cost

of IR video monitoring can be reduced. This reduction comes partially through lower

computational demands, but also allows data transmission to be dramatically re-

duced. If the relevance of data can be determined at the sensor, only relevant data

must be transmitted to a central location.

Another application is autonomous vehicles, especially unmanned aerial vehicles

(UAVs). More effective video reconstruction algorithms for UAV applications al-

low higher performance or lower sensor cost. By reducing the computational, and

therefore monetary, cost of a UAV’s situational awareness, new applications for au-

tomomous UAVs become feasible.
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1.2 Problem Statement

CS reconstruction of video sequences is less straightforward than for still im-

ages. Individual frames are compressible in a linear basis, but statistical dependence

between frames is not as easily described. Even an relatively simple model of inter-

frame image motion is bilinear rather than linear in the image intensity estimated

motion vectors [3]. Non-CS video compression algorithms divide video sequences into

Intra-coded I frames and predicted P frames, but extending this approach to CS is

non-trivial since we have no access to the images from which predicted motion is

estimated. Exploiting the dependence between frames improves video reconstruction

performance, but finding the best possible method remains an active area of research.

Recovery of signals from CS measurements is computationally demanding. How-

ever, in some cases, such as automated surveillance or navigation, a system may not

require a human to observe a video at all. In these cases it may be possible to per-

form target recognition and other computer vision tasks directly on the compressively

sensed data, without reconstructing video frames. This is a hard problem, since the

mixing effect of the compressed sensing operation forces the researcher to abandon

principles, such as shift invariance, on which conventional algorithms rely heavily.

Consider the problem of tracking an object in a video sequence. This is already

a difficult computer vision task without the addition of CS. Targets change scale as

they get closer and further from the sensor. Light conditions change as they move

in and out of shadows; reflections and glare cause sudden changes in the perceived

color of the target’s surface. Non-rigid objects change not just their projection into

the image plane, but their three dimensional shape as well. None of these effects can

be fully predicted from a single image of the target.
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CS-based tracking adds to these difficulties, leaving a smaller set of tools. In-

plane translation and rotation, normally relatively easily modeled, become much more

difficult. Given a CS measurement vector of an image containing an object, we cannot

even predict how the measurements would change if the object moves one pixel to

the left. Doing so would require reconstructing the image, defeating our purpose of

speeding up computation by avoiding reconstruction. A region of interest cannot be

easily cropped out of an image either; every CS measurement encodes information

about the whole image. On the other hand, some operations are still available for

use. Vector lengths, Euclidean distances, and inner products are all preserved under

the compressed sensing operation, albeit with increased noise. A reconstruction-free

computer vision algorithm must use this reduced set of tools.

1.3 Contributions of This Work

This work focuses on the problems of reconstruction of CS video, reconstruction-

free object tracking, and reconstruction-free image classification and detection. In

video reconstruction, a method for incorporating frame-to-frame translational mo-

tion into reconstruction algorithms is studied. Moving to the tracking problem, an

algorithm is developed and evaluated to track vehicles in surveillance video. This

tracking algorithm depends heavily on a target likelihood estimation step, leading to

the study of alternative approaches to classification and detection.

In cases where CS reconstruction must be performed, the problem of fully ex-

ploiting knowledge of signal statistics remains open. CS theory gives a method for

reconstruction when the signal of interest has a sparse representation in some known

linear basis, but video does not naturally fit this model. In Chapter 4, I examine the

feasibility of an optical flow-based approach to multi-frame video reconstruction. A

method for incorporating known frame-to-frame motion into a joint two-frame recon-

4



Figure 1.1: Reconstruction Algorithm Incorporating Optical Flow.

struction is proposed and evaluated on the Middlebury optical flow dataset [4]. This

model is then extended to unknown but constant motion and evaluated on synthetic

data from the PETS2000 dataset [5]. In both cases, the proposed method outperforms

independent reconstruction of individual frames.

The reconstruction-free tracking algorithm of Chapter 5 [6] is based on a particle

filter [7, 8] which maintains an estimate of the target’s state and updates it with

every frame of video as new measurements become available. This update is per-

formed using a likelihood estimation step given by estimated cross-correlation using

a maximum average correlation height (MACH) filter [9]. Correlation estimates are

performed using the fast smashed filter approach [10], which allows cross-correlation

to be estimated efficiently from CS measurements using the FFT [6]. Figure 1.2 gives

a block diagram representation of this system. The algorithm is tested on moving

vehicles from the PETS2000 and CDNET 2012 [11] datasets, and testing results are

presented. When MACH filters with high peak height are possible, the algorithm can

outperform a reconstruct-first approach at high levels of compression.

The tracking algorithm, although successful, relies on a very simple linear cor-

relation filter for target detection. A more sophisticated approach taking cues from

modern machine vision may be able to significantly outperform it. In Chapter 6 I
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Figure 1.2: High-Level Block Diagram of Compressive Tracker

present one such case, a deep Boltzmann machine (DBM) algorithm. The DBM is a

deep neural network architecture which attempts to model the probability distribu-

tion of a training dataset and use that model to classify new data. By training a base

network on non-CS data and then fine-tuning it using compressive measurements of

the same data, a network is developed which performs classification on CS measure-

ments at computational cost similar to conventional image data. The performance

of this CS-DBM network on the MNIST handwritten digit dataset is evaluated un-

der varying levels of compression. Classification error rate increases with increasing

compression, but the CS-DBM outperforms a procedure which reconstructs images

before classification.

1.4 Organization

The thesis is organized as follows. First, Chapter 2 presents an overview of CS

terminology and some important results on the accuracy of reconstruction algorithms.

Hardware implementations of CS imaging sensors are also described, including the

single-pixel camera considered in this work. An overview of several CS reconstruc-

tion algorithms is given, and their performance is compared. Challenges specific to

video reconstruction are identified and works which attempt to address them are
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discussed. Chapter 3 discusses existing work in image and video processing and com-

puter vision. Compression by transforms and motion estimation and optical flow

are described. Several computer vision algorithms for detection and classification of

images are discussed. The problem of visual object tracking is described and some

algorithms for tracking and state estimation are presented.

Chapters 4, 5, and 6 detail original contributions of this dissertation. Chapter

4 covers the video reconstruction algorithm. The optimization problem of video

reconstruction incorporating optical flow is described. A diamond search procedure

for estimating image motion from CS measurements is detailed. The algorithms

are tested on the Middlebury and PETS2000 datasets. In Chapter 5 the tracking

algorithm is discussed. Chapter 6 describes the CS-DBM classifier. Finally, the

significance of the results is discussed in Chapter 7.
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Chapter 2

BACKGROUND AND LITERATURE REVIEW OF COMPRESSED SENSING

The work presented in this thesis lies at the intersection of compressed sensing and

computer vision. I attempt to separate these two areas by devoting this chapter

to CS theory and literature and Chapter 3 to related work in image processing and

computer vision. I begin by introducing the CS sensing matrix, `1 reconstruction, and

other fundamental background information in Section 2.1. Next, Section 2.4 discusses

existing CS imaging hardware in order to provide real-life motivation for the work.

CS reconstruction algorithms are then discussed in Section 2.5 and bounds on CS

sensing performance are covered in Section 2.7.

2.1 Foundations of Compressed Sensing

In this section, the background theory of compressive sensing is described. Termi-

nology and symbols used throughout the work are introduced and their significance

is explained. In essence, compressive sensing is the use of prior knowledge of a sig-

nal’s statistics to reduce the number of measurements required to recover the signal.

The use of this prior knowledge allows the Nyquist limit to be effectively “broken”.

CS reconstruction is concerned with the recovery of a compressible signal of interest

x ∈ RN×1 from a related measurement vector y ∈ RM×1. x and y are related by a

linear transformation

y = Φx.+ w. (2.1)

where w ∈ RM×1 is a noise vector and Φ ∈ RM×N is known as the sensing matrix.
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If M < N (i.e. y is shorter than x), the system in (2.1) is under-determined

and x cannot be recovered with certainty from y even in the noiseless (w = 0) case.

However, let x be k-sparse (at most k non-zero components) with respect to some

known basis with inverse transform matrix Ψ. That is,

y = Φx + w = ΦΨθ + w, (2.2)

‖θ‖0 ≤ k. (2.3)

where θ is the transformed representation of x. Here the `0 norm denotes the

number of non-zero elements. Strictly speaking, this is not a norm as it breaks the

triangle inequality. However, this mild abuse of notation is common in the literature

and will be used in the remainder of this document. The basis matrix Ψ should

have full row rank (rank(Φ) = N), but need not be square. Overcomplete bases are

commonly used in several applications [12, 13]. Let A = ΦΨ be the combined sensing

operator; this notation is used to simplify equations in which the two appear together.

If the conditions in (2.2) and (2.3) are met, CS theory dictates that it can be

recovered with high probability as long as

(1− δk)‖θ‖2 ≤ ‖Aθ‖2 ≤ (1 + δk)‖θ‖2 (2.4)

for all k-sparse x, with sufficiently small δk. (2.4) is known as the restricted isometry

property (RIP) [14].

Several pseudorandom sensing matrices satisfy the RIP with high probability,

including an i.i.d. Gaussian matrix [15]. Other matrices which satisfy the RIP include

the Fourier and Hadamard ensemble [16] and the random orthoprojector [10]. The

random orthoprojector is noteworthy as finding its pseudoinverse is computationally

trivial (Φ† = ΦT (ΦΦT )−1 = ΦT ), a desirable property for some algorithms. In [17] an

attempt is made to develop a deterministic sensing matrix, but the given approach

does not fully satisfy the RIP.
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Few naturally occurring signals are perfectly sparse, but many are known to be

compressible; I here focus on natural images and video sequences. The JPEG image

compression algorithm relies on the observation that the discrete cosine transform

(DCT) of a natural image results in a transform-domain signal whose coefficients

follow a power law distribution, with signal energy concentrated in a small number

of components and the remainder near zero. The JPEG2000 standard similarly relies

on the discrete wavelet transform for compression. In [18], discussed in Section 2.3.2,

a bound is given for reconstruction of signals which are not perfectly sparse.

If the RIP is satisfied, θ, and therefore x, can be recovered in the noiseless case

from y by solving the `0 optimization problem

minimize
θ

‖θ‖o (2.5)

subject to y − Aθ = 0.

Unfortunately this optimization is nonconvex and cannot be solved in polynomial

time. However, the convex relaxation of this problem is much more easily solved. It

is given by

minimize
θ

‖θ‖1 (2.6)

subject to y − Aθ = 0.

(2.6) replaces the `0 norm with the `1 norm. This problem is known as basis

pursuit (BP). It is convex and can be solved with conventional convex optimization

techniques.

2.2 Related Problems

The basis pursuit reconstruction problem described in Section 2.1 is only the

simplest of many related problems. In this section extensions and related problems are
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described. Several other convex optimizations exist; a selection of these are covered

in Section 2.3. Model-based CS, discussed in Section 2.3.2, improves performance by

taking advantage of additional information not captured by a sparse prior. Blind CS,

discussed in Section 2.3.3, treats the case where the sensing matrix is unknown or

incompletely known.

2.3 Convex Optimizations

BP is valid in the noiseless case when y = ΦΨθ must be satisfied exactly. Other

related convex algorithms for noisy data include basis pursuit denoising (BPDN) and

lasso. BPDN relaxes the equality constraint in (2.6), replacing it with an `2 term in

the optimization which penalizes deviation from y = ΦΨθ. The BPDN problem is

given by

minimize
θ

‖y − Aθ‖2 + τ ‖θ‖1 (2.7)

where τ is a tuning parameter reflecting the trade-off between encouraging sparsity

and promoting a close match between the estimate and measured data. Intuitively,

if measurements are noisy or there is a strong prior knowledge of sparsity of θ, a

larger τ will be chosen. Conversely, if measurement noise is small or θ is not known

to be highly sparse, a smaller τ will be chosen. In an AWGN with known signal and

noise power, τ may be optimized as in (2.17), discussed in Section 2.3.1. In practice,

however, the solution is not highly sensitive to the choice of τ .

In the lasso algorithm, the objective function and constraint are reversed relative

to BP. Where the BP algorithm seeks the sparsest possible θ given the data, lasso

seeks the closest possible match with the data subject to a sparsity constraint. Lasso
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solves the optimization problem

minimize
θ

‖y − Aθ‖2 (2.8)

subject to ‖θ‖1 ≤ ε1

where ε1 is a tuning parameter controlling the trade-off between sparsity of θ and a

close match to measurements y.

With the appropriate choice of tuning parameters, all three problems become

equivalent. In the limit of (2.7) as τ → 0, the solution of (2.6) is recovered and

BPDN and BP are equivalent. Likewise, for every τ in (2.7), some ε1 exists which

results in the same solution to (2.8).

2.3.1 CS Reconstruction as Bayesian Inference

In Section 2.1, convex reconstruction based on the `1 norm was presented as a

relaxation of a non-convex `0 problem. An alternative view of the problem [19] as

maximum a posteriori (MAP) estimation under a Laplace prior is described here.

This formulation will be useful in discussion of graphical reconstruction methods in

Section 2.5.2. Let θ be distributed i.i.d. Laplace with zero mean and scale parameter

b. Its PDF is given as

p(θ) =
N∏
n=1

1

2b
exp

(
−|θn|

2b

)
=

(
1

2b

)N
exp

(
−‖θ‖1

2b

)
. (2.9)

The choice of a Laplace distribution for p(θ) is motivated by its history as a sparseness-

inducing prior [20]; it is clearly a more informative prior than the Gaussian used in

least squares.

y is then modeled as in (2.2) as a multiplication with the sensing matrix plus

additive i.i.d. Gaussian noise of variance σ2
w. The conditional PDF of y is given as

p(y|θ) =
1

(2πσ2
w)

M
2

exp

(
− 1

2σ2
w

‖y − ΦΨθ‖2

)
. (2.10)
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The posterior PDF is then derived using Bayes’ rule as follows:

p(θ|y) =
p(y|θ)p(θ)

p(y)
(2.11)

=
1

p(y)

(
1

2b

)N
1

(2πσ2
w)

M
2

exp

(
− 1

2σ2
w

‖y − ΦΨθ‖2 −
‖θ‖1

2b

)
. (2.12)

From this posterior PDF we derive an expression for the MAP estimate:

θ̂ = arg max
θ

p(θ|y) (2.13)

= arg max
θ

log (p(θ|y)) (2.14)

= arg min
θ

(
1

2σ2
w

‖y − ΦΨθ‖2 +
‖θ‖1

2b

)
(2.15)

= arg min
θ

(
‖y − ΦΨθ‖2 +

σ2
w

b
‖θ‖1

)
. (2.16)

Setting τ as

τ =
σ2
w

b
, (2.17)

this is equal to the BPDN optimization problem of (2.7). This Bayesian interpretation

of CS is heavily used in discussion of message passing algorithms, discussed in Section

2.5.2.

2.3.2 Model-based Compressed Sensing

In model-based CS, the constraint on number of non-zero components k = ‖θ‖0

is replaced by a more sophisticated model [18]. The most notable models are block-

sparse and tree-sparse signals. A bound on the performance of `1 BP in reconstruction

of approximately sparse data, distributed according to a power law, is also given.

The traditional CS approach constrains the set of possible signals, but still allows

the signal θ to lie on any of the

N
k

 possible k-sparse subspaces, with equal like-

lihood. For natural signals where this is too broad, Model-based CS further restricts
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the allowed subspaces, allowing reconstruction from fewer measurements (i.e. smaller

N). The RIP is replaced with a model-based RIP which defines isometry only for the

allowed supports.

2.3.3 Blind Compressed Sensing

Blind CS [21] considers the case where both the (transformed) signal of interest θ

and sparsity basis Ψ are unknown. At first glance, this may seem an impossible task,

and in fact in general it is. In spite of this, the sparse prior on θ can be combined with

additional constraints on Ψ to allow recovery of the signal x from an underdetermined

set of measurements. This requires collecting multiple signals which are sparse under

the same sparsity basis Ψ and jointly determining the basis for all of them. While

blind CS achieves correct reconstructions with high probability, it requires higher

sensing rates than the non-blind case.

Three constraints on the basis are considered in [21]. In the first, Ψ is known

to be one of a finite and known set of commonly occurring bases, for instance one

of several possible wavelet transforms. This case can be treated as a series of CS

problems. In the second case, the rows of the basis are known to be a subset of

a much larger dictionary matrix. This problem can be solved using standard CS

methods, treating the larger dictionary as an overcomplete sparse basis. In the final

case, Ψ is block-diagonal and the problem is solved by reformulating it as a dictionary

learning problem.

2.4 Sensors for Compressive Image and Video Capture

This section describes two notable hardware implementations for capture of images

and image-like data: the single-pixel camera and magnetic resonance imaging.
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2.4.1 Single-pixel camera

Researchers at Rice University have developed a prototype single-pixel camera [1,

22] and complementary algorithms for processing of its output. The camera replaces

the focal plane array of a conventional camera with a digital micromirror device

(DMD) and a single light detector. The DMD displays a series of pseudorandom

masks corresponding to the rows of the measurement matrix Φ, effectively performing

a series of inner products on the incoming frame. The modulated light is then focused

on a photodiode, which measures the magnitude of this inner product.

The single-pixel camera concept described above is being commercialized by In-

View corporation. InView’s short-wave infrared (SWIR) cameras are capable of op-

erating in a high-resolution/low-framerate and low-resolution/high-framerate mode.

InView’s products are not truly single-pixel: multiple measurements are sensed in

parallel, reducing the time to acquire a single image [23].

2.4.2 Medical Imaging and MRI

Some of the most valuable contributions of CS are in the field of medical imaging,

and especially in magnetic resonance imaging (MRI) [24]. Other applications include

computed tomography (CT), positron emission tomography (PET), and Ultrasound

imaging. The application of CS theory to MRI is briefly described in this section.

MRI exploits magnetic resonance, a process by which atoms in a magnetic field

absorb and re-emit RF energy at a specific resonance frequency. In a typical MRI

scanner, a very strong (typically 1-10 T) magnetic field is established in the scanner

with a superconducting electromagnetic coil. Additional coils establish gradients

in magnetic field strength over the field of view. A sequence of RF pulses is then

15



transmitted into the field of view and the response of the object to be imaged is

recorded.

MRI is naturally amenable to CS techniques; the time and monetary cost per

sample is high, creating an immediate need for techniques which reduce the number

of samples needed. Sensing is also performed in k-space (i.e. Fourier domain) so

reconstruction must be done whether or not CS is used. A conventional 3D MRI

performs Cartesian sampling and outputs a ”data cube” of samples evenly spaced on

the three axes of k-space. An FFT is then needed to recover the 3-dimensional image

for viewing. In parallel imaging implementations, more sophisticated reconstruction

techniques are required to process the data from multiple receiver coils (sensors).

Designing the sensing matrix of an MRI is non-trivial. Sampling is limited by

the maximum slew rate of the equipment used; successive samples must be near each

other in k-space [25, 26]. In [27], the Cartesian data cube is simply undersampled. In

[28, 29, 30, 31], a radial trajectory was used, and in [32, 33] a spiral trajectory was

used. [34] advocates a pseudorandom poisson-disc sampling approach; this method

generates good incoherence between the sparse basis and the samples, while main-

taining relatively even coverage of k-space.

With the imaging speedup available from CS, applications such as 4D MRI, which

adds video to the 3D MRI image, become feasible. In [35], a radial sensing trajectory

was used to reconstruct a 4D MRI of the lungs during forced expiration. Acquisition

time for each 3D frame was under 150 ms. ”Bookend” image acquisition phases at the

beginning and end of the expiration were used in which the patient is instructed to

hold his or her breath while additional measurements are taken. The reconstruction

algorithm minimizes spatial and temporal total variation and allows each frame to be

expressed as a sum of the two bookend frames. This allows the full 4D signal to be

reconstructed with only 3 measurements per 2D MRI ”slice”.
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2.5 Reconstruction Algorithms

Many solvers have been developed for compressive reconstruction. I here discuss

convex solvers, greedy solvers, and belief propagation approaches to the problem.

Convex algorithms attempt to solve the (2.6) or a related problem more quickly than

general interior-point methods. These algorithms include GPSR [36] and SPGL1 [37].

Although they are many times faster than general convex solvers, these algorithms

typically are more computationally expensive than greedy and belief propagation

based approaches, discussed in the following sections.

2.5.1 Greedy Solvers

The greedy algorithms follow an iterative procedure in which the signal support

is iteratively built up. On each iteration, the elements of θ which most improve the

reconstruction are added to the support. Optionally, the least helpful components

may also be dropped from the signal support. Three greedy algorithms are described

here, although more exist.

Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) and its related family of algorithms [38, 39,

40, 41] approximately solve (2.5) in a greedy manner. OMP runs in O(MNk) time

and is in practice much faster than convex solvers. This speedup is achieved using an

iterative greedy procedure in which the support of the estimated solution θ̂ is steadily

increased until a k-sparse θ̂ is achieved. At each iteration, the residual r = y−Aθ̂ is

calculated. The column A:,j of A which maximizes 〈A:,j, r〉 is added to the support

of θ̂. θ̂ is then recalculated over the newly increased support. When ‖θ‖0 = k, the

algorithm is halted and the current θ̂ is output as the solution.
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A theoretical guarantee exists for reconstruction by OMP, although it is weakened

relative to the convex solvers. Specifically, for δ ∈ (0, 0.36) andM ≥ 4kln(N/δ), OMP

will identify the correct x with probability greater than 1 − 2δ [39]. Note that this

result is for the noiseless case (w = 0).

CoSAMP

The CoSAMP reconstruction algorithm [42] is similar to OMP but adds the ability to

discard unneeded elements from the support of x̂. On each iteration, some number of

components are added to the support and least squares estimation is performed. The

smallest components of the least-squares estimate are then discarded to maintain the

desired sparsity level ‖x̂‖0 = k.

AdMIRA

The atomic decomposition for minimum rank approximation (ADMiRA) algorithm

[43] applies an approach generalizing CoSAMP to the problem of reconstructing low-

rank matrices rather than sparse vectors. This is useful for processing of video with

lighting changes but no motion, since if each frame is assigned to a single column of

a matrix, the resulting matrix will be low-rank.

2.5.2 Graphical Methods

The compressed sensing architecture can be represented as a Bayesian Network. θ

is drawn from a sparse prior distribution, and x and y are then calculated based on θ.

The problem can thus be represented as a cyclic causal model and solved accordingly.

Generalized approximate message passing (GAMP) [44] is an algorithm based on a

quadratic approximation of a loopy belief propagation (BP) algorithm. In loopy BP,

the measured vector y passes messages to the elements of x consisting of the condi-
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tional probability of each possible value. Similarly, the sparse prior passes messages

down to θ. GAMP may be viewed as a version of this message-passing algorithm

in which only the means and variances of the messages are passed. In this section,

the concept of Bayesian networks is first introduced. The belief propagation (BP)

algorithm is described, followed by a review of its many extensions, generalizations,

and approximations.

Bayesian Networks

A Bayesian network, or Bayes net, consists of a directed acyclic graph (DAG) in

which nodes represent random variables and edges represent dependencies between

nodes. Any node is conditionally independent from its non-neighboring nodes given

its upstream and downstream neighbors. Although no directed cycles are allowed,

undirected loops may be present. This constraint defines a clear path from causes (e.g.

differing hypotheses) to effects (e.g. experimental measurements). Figure 2.1 shows

a simple Bayesian network. In this example X5 is conditionally independent from all

other nodes given X3. The goal of inference is to determine p(Xi|E), the distribution

of each unknown variable given a set of known evidence variables. Evidence may

appear at any node in a network, but most typically is measured at the furthest

downstream leaf nodes. Note also that the graph in Figure 2.1 has an undirected

loop, shown in bold.

Performing inference on a Bayesian Network consists of estimating the marginal

conditional probability distribution of a node or nodes (the unknowns), given values

of a different set of nodes (the evidence). Performing exact inference on Bayesian net-

works has been shown to be in general NP-hard [45]. However, constrained versions of

the problem have been solved exactly and good approximate solutions exist for many

other cases. Belief propagation (BP), discussed below, generates exact solutions for
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X4X3

X7X6X5

Figure 2.1: A Simple Bayesian Network.

tree and polytree graphs and leads to good approximations for many other problems.

Further modifications of BP offer advantages in computational burden or stability.

Belief Propagation for Trees

Pearl’s belief propagation (BP) algorithm [46] is a method for performing inference

on Bayesian networks, Markov random fields, and factor graphs. In this section its

operation on polytree-structured Bayesian networks is described. In graphs which are

trees or polytrees, BP produces exact results. However, no such guarantee exists for

graphs containing undirected loops.

Consider the fragment of a Bayesian network shown in Figure 2.2. This network

consists of a node X whose value is to be estimated based on a set of downstream

(“child”) nodes {Y1, Y2, ...} and upstream (“parent”) nodes {U1, U2, ...}. The condi-

tional probability distributions are known, and the upstream and downstream nodes

are conditionally independent given X. The PDF of X can then be written in terms
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X

Y2Y1 Y3

Figure 2.2: A Fragment of a Bayesian Network.

of the PDFs of its upstream and downstream neighbors as

p(x|u1, u2, ..., y1, y2, ...) =
1

Z
∏
i

p(yi|x)

∫
u1,u2,...

p(x|u1, u2, ...)
∏
j

p(uj) du1du2...

(2.18)

where Z is a normalizing constant.

In BP, each node passes messages to its upstream and downstream neighbors.

Each message is a measure but is not a probability distribution; it does not in general

integrate to one. In the upstream direction, each node Yi sends a message λYiX(x)to

node X. Likewise, each upstream node Ui sends a message πUiX(x). These λ and

π messages take the place of the conditional probabilities in (2.18) to form a new

expression for our belief about pX(x). Specifically,

BELX(x) = p(x|u1, u2, ..., y1, y2, ...) =
1

Z
λX(x)πX(x) (2.19)

λX(x) =
∏
i

λYiX(x) (2.20)

πX(x) =

∫
u1,u2,...

p(x|u1, u2, ...)
∏
j

πUjX(x)du1du2... (2.21)
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In contrast to (2.18), πUjX(x) and λYiX(x) are not known exactly, but are based

on the messages received at Uj and Yi respectively. Note that λYiX(x) denotes a

measure passed as an upstream message from child to parent, while λX(x) refers to a

measure calculated at node X from received λ messages. Similarly, πX(x) is calculated

from received πUiX(x) messages. The subscript X will be dropped for brevity in the

following discussion unless it is needed to avoid ambiguity. Normalization of beliefs is

not necessary but may improve numerical stability and prevent underflow problems.

In a tree or polytree network, the assumption of conditional independence above

is satisfied and (2.18) holds. Inference then proceeds as follows. Evidence nodes (i.e.

nodes whose values have been measured) are initialized. That is, for each evidence

node Ei with known value ei,

λEi(x) = δ(x− ei) (2.22)

πEi = δ(x− ei) (2.23)

BELEi(x) = δ(x− ei). (2.24)

Non-evidence nodes Xi with no parents are initialized using their Bayesian prior, as

follows:

πXi(x) = pXi(x). (2.25)

The downstream evidence λ(x) of nodes with no children is initialized to 1. All other

messages are unavailable at the start of the algorithm.

Once initialized, belief updates proceed by iterating the following steps until con-

vergence:

• If all upstream messages λYiX(x) are available at a node X, calculate λX(x).

• If all downstream messages πUi(x) are available at a node X, calculate πX(x).
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• If all messages except πUiX(x) are available at node X, calculate λXUi(x) and

send to node Ui.

• If all messages except πYiX(x) are available at node X, calculate πXYi(x) and

send to node Yi.

Stated more simply, each π and λ message is calculated as soon as the information

on which it depends is available. This procedure results in messages first propagating

inward from leaf nodes (and non-leaf evidence nodes), and then outward from the

last node to be reached. Each message is calculated only once and retains its value

until the end of the algorithm.

Approximate Loopy Belief Propagation

Many Bayesian inference problems are expressed in terms of graphs with loops or in-

volve the computation of intractable integrals. This section covers several noteworthy

approaches to applying BP when computing exact marginals is not possible.

Unlike tree-structured graphs, BP does not produce exact results on networks

containing undirected loops. Intuitively speaking, evidence is passed around a loop,

mistaken for new evidence, and “double-counted” [47]. In fact, nodes may not even

converge toward a single value. Despite this disadvantage, “loopy BP” algorithms can

perform very well. For instance, low-density parity check (LDPC) and turbo codes

can achieve the maximum capacity of a channel using a decoding procedure which

implements BP [48, 49].

In [49] an attempt is made to empirically study the limits of BP. This is done by

running BP on several previously developed Bayesian networks containing multiple

loops. BP is adapted to loopy graphs by simply updating every node in parallel on ev-

ery iteration of the algorithm. The BP result is compared against that obtained by an
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importance sampling algorithm. Four networks are used: PYRAMID, a hierarchical

network of binary nodes; toyQMR, a simulated medical diagnosis predictor initialized

with random probabilities; ALARM, a network for detecting emergencies in intensive

care patients, and QMR-DT, a binary network mapping 600 diseases to 4000 findings

(i.e. symptoms). In the cases of PYRAMID, toyQMR, and ALARM, BP converges

to near the correct marginal probability. In the case of QMR-DT, however, BP does

not converge and instead oscillates between two very different states. The authors

are able to induce oscillation in the much smaller toyQMR network by making the

prior probabilities of different diseases much lower, e.g. by choosing from the interval

[0, 0.1] rather than [0, 1]. Stability in the larger QMR-DT network can be induced by

replacing the actual prior probabilities of disease by uniform random values on the

interval [0, 1]. Adding a momentum term to the update reduces oscillation but does

not necessarily improve the accuracy of the estimates for QMR-DT.

The success of turbo codes has prompted further analysis of BP, leading to addi-

tional performance guarantees. In [47] a belief revision procedure is described which

partially corrects for the double-counting effect in networks consisting of a single loop

of unknown nodes, each connected to a single evidence node. Under a set of easily

satisfied restrictions, the belief revision procedure generates the correct maximum a

posteriori (MAP) estimate. However, the distribution over the non-evidence nodes is

not exact; double-counting of evidence leads to overconfident estimates.

In addition to loops, the problem of estimating marginal probability distributions

is often intractable, or at least very computationally expensive. Approximate message

passing algorithms attempt to solve this problem by instead estimating the distribu-

tion. Applied to CS, these algorithms are referred to as approximate message passing

(AMP). Similar methods are known in other applications as “approximate BP” [50]

or “relaxed BP” [51, 52]. In [53, 54] an i.i.d. Laplace (double-sided exponential) prior
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is placed on x, and messages are approximated as Gaussian distributions. Under this

assumption only a mean and variance must be passed, rather than a measure on the

real line. The authors argue that the central limit theorem causes messages to con-

verge toward Gaussian distributions as the problem size becomes large. Furthermore,

the variances of all the messages are approximately identical. Expressions are derived

for the large-system limit of the means µπYX and µλ and variance σ2
λ of the messages.

In vector notation, these are given as

µt+1
πxy

= η(A∗µt
λyx

+ µt
πxy

;σ2
λ
t
), (2.26)

µt
λyx

= y − Aµt
πxy

+
1

δ
µt−1

λyx

〈
η′(A∗µt−1

λyx
+ µt−1

πxy
;σ2

λ
t−1

)
〉

(2.27)

σ2
λ
t

=
σ2
λ
t−1

δ

〈
η′(A∗µt−1

λyx
+ µt

πxy
;σ2

λ
t−1

)
〉

(2.28)

where 〈·〉 denotes the average of a vector. η(x; b) and η′(x; b) are the soft threshold

function and its derivative, given as

η(x; b) = sign(x)(|x| − b)+ (2.29)

η′(x; b) =
∂2

∂x∂b
(η(x; b)) (2.30)

Since the variance σ2
λ is identical for all π and all σ messages, it is not passed; only

one scalar, representing the mean, is passed in each direction along the graph edges.

This algorithm displays comparable performance to Basis Pursuit (Section 2.1) at

much lower complexity. A similar algorithm for Basis Pursuit Denoising in AWGN

as in (2.2) is also derived.

The work of [53] is extended and generalized in [44]. Arbitrary prior distributions

p(x) are allowed, instead of a Laplace distribution. Arbitrary measurement noise

models are also considered, instead of a noiseless (BP) or AWGN (BPDN) distribution

on p(y|x). Finally, message updates for a nonlinear sensing operator A are allowed

by the algorithm, although little analysis is given for the nonlinear case.
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Figure 2.3: The GAMP System Model.

The measurement operation is divided into two separable but nonlinear

measurement channels joined by a linear mixing operation.

Figure 2.3 shows a block diagram of the system model for GAMP. An unknown

input vector x ∈ RN is generated based on a known q ∈ QN . x is passed through

a linear mixing channel with mixing operator A, generating the “noiseless” measure-

ment matrix z. Finally, z passes through an output channel, generating measurement

vector y. The input and output channels are separable, with mixing occuring only

between x and z. The conditional probability distributions are given by

p(x|q) =
N∏
n=1

p(xn|qn) (2.31)

p(z|x) = δ(z− Ax) (2.32)

p(y|z) =
M∏
m=1

p(ym|zm). (2.33)

q→ x→ z→ y forms a Markov chain.

The procedure for state updates in GAMP is given in Algorithm 1, while Figure 2.4

gives a graphical representation of the dependencies between the different variables.

x̂ and ẑ are, as one would expect, the estimates of x and z at iteration t of the

algorithm. The semantic meaning of the other variables, however, is less obvious. r̂

and ŝ can be viewed as passing information “upstream”, while p̂ passes it downstream.

In MMSE GAMP, discussed below, the τ variables may be interpreted as variances

of the corresponding variables.
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Algorithm 1 GAMP Algorithm.

Given A ∈ RM×N , y ∈ RM×1, qinRN×1 and functions gin(r, q, τ (r)) and

gout(p, y, τ
(p)), produce a series of estimates x̂(t) and ẑ(t).

Set t = 0, ŝ(−1) = 0

Set x̂(0) and τ (x)(0) to initial values

repeat

for all m ∈ [1,M ] do

τ
(p)
m (t) =

N∑
n=1

|amn|2 τ (x)
n (t)

p̂m(t) =
N∑
n=1

amnx̂n(t)− τ (p)
m (t)ŝm(t− 1)

ẑm(t) =
N∑
n=1

amnx̂m(t)

ŝm(t) = gout(p̂m(t), ym, τ
(p)
m (t))

τ
(s)
m = − ∂

∂p̂
gout(p̂m(t), ym, τ

(p)
m (t))

end for

for all n ∈ [1, N ] do

τ
(r)
n (t) = 1/

M∑
m=1

|amn|2 τ (s)
m (t)

r̂n(t) = x̂n(t) + τ
(r)
j (t)

M∑
m=1

amnŝm(t)

x̂n(t+ 1) = gin(r̂n(t), qn, τ
(r)
n )

τ
(x)
n (t+ 1) = τ

(r)
n (t) ∂

∂r̂
gin(r̂n(t), qn, τ

(r)
n )

end for

t = t+ 1

until t reaches the maximum number of iterations
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Figure 2.4: Dependencies of Messages in the GAMP Algorithm.

Arrows entering a node indicate variables on which that node depends.

The estimator functions gin and gout must also be chosen. [44] gives two methods

for selecting these functions, based on MAP and minimum mean square error (MMSE)

estimation. For MMSE estimation, the estimators are given by

gin(r̂, q, τr) = E
(
x̂|r̂, q, τ (r)

)
. (2.34)

gout(p̂, y, τ
(p)) =

1

τ (p)

(
E
(
z|p̂, y, τ (p)

)
− p̂
)
. (2.35)

In the EMBGAMP algorithm [55], a Bernoulli-Gaussian prior is used, with prior

PDF given by

p(θ) =
N∏
i=1

(
qδ(θi) + (1− q) 1√

2πσ2
θ

exp

(
θ2
i

2σ2
θ

))
. (2.36)

. That is, elements of θ are assumed to take non-zero values with probability 1− q.

The non-zero elements are then normally distributed with mean zero and variance σ2
θ .

α and σ2
θ unknown and are updated using expectation maximization on each iteration

of the algorithm over the graph. In this way, the EMBGAMP algorithm is self-tuning

and does not require the user to select any parameters to optimize its performance.

It also is noteworthy in that it can outperform `1 basis pursuit for the noiseless case,

discussed in Section 2.7.
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In [56] the GAMP algorithm is extended to bilinear models, allowing the use of

message passing as a solver for problems such as matrix completion, robust PCA,

and dictionary learning. Under the bilinear model, both A ∈ RM×N and X ∈ RN×L

are unknown and drawn independently from from their respective prior distributions.

Note that X and Y are here allowed to be a matrix rather than a vector. The posterior

PDF is given by

p(X,A, |Y) = p(Y|X,A)p(X)p(A) (2.37)

= p(Y| AX ) p(X)p(A). (2.38)

An optional expectation maximization step may be also be included as in EMBGAMP

[55], leading to the EM-BiG-AMP algorithm. In Monte Carlo trials the EM-BiG-

AMP algorithm shows performance near theoretical maximum for matrix completion

problems.

2.6 Video Reconstruction Algorithms

Reconstruction of CS images is relatively straightforward, if computationally de-

manding. It is well-known that natural images exhibit excellent energy compaction

under the 2-dimensional discrete cosine transform (DCT) or any of several discrete

wavelet transforms (DWT); this compressibility is exploited by the JPEG and JPEG2000

standards, respectively. Video compression algorithms, however, exploit both com-

pressibility of individual frames and correlations between nearby frames. There are

several examples in the literature of video reconstruction algorithms which incorpo-

rate this inter-frame information.
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Figure 2.5: Conceptual Block Diagram of the SpaRCS Algorithm.

2.6.1 SPArse and low Rank decomposition via Compressive Sensing (SPArCS)

In [57], a quasi-static background with small moving targets is assumed. This as-

sumption allows a video sequence to be represented as the sum of a low rank matrix,

representing the background, and a sparse matrix, representing moving objects in

the foreground. The SpaRCS algorithm, a greedy pursuit derived from the CoSAMP

and ADMiRA algorithms [42], is then used to recover the video sequence. Figure 2.5

shows a conceptual block diagram of SpaRCS: On each iteration, CoSaMP and AD-

MiRA each attempt to solve for the other algorithm’s residual. Although the SpaRCS

algorithm performs well when the assumptions of static background and small motion

are satisfied, it quickly fails when the background is not static or when targets are

large. In addition, a relatively large number of frames (typically hundreds) are needed

to accurately estimate the background. This is most likely a consequence of the al-

gorithm’s failure to take advantage of the known compressibility of the background

image when performing reconstruction.

2.6.2 CS MUltiscale VIdeo recovery (CS-MUVI)

The CS-MUVI algorithm [58] most nearly achieves the goal of fully utilizing known

information, including both optical flow and compressibility of individual frames. In
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this algorithm, a special sensing matrix Φ is used which creates a well-conditioned

matrix when combined with an upsampling operator U. The combined matrix ΦU

is then used to reconstruct a low-resolution version of the video using least-squares

estimation. Optical flow is then estimated using this low-resolution video and the

resulting optical flow is used to improve reconstruction of the compressively sensed

high-resolution video. This method, while highly effective, fails to reconstruct small

objects since these objects are not visible in the low-resolution version of the video.

2.6.3 Background Subtraction

In [59] a static background with small targets is again assumed. In this case,

however, the difference between two images is reconstructed. This is possible because

as long as targets are small, the difference image is known to be spatially sparse. This

algorithm achieves good results as long as all assumptions are met.

2.6.4 Other methods

In [60], global optical flow is estimated from compressive measurements of two

video frames and then used to reconstruct both frames. While useful, this method

requires the two input frames to be pure translations of one another. When optical

flow is not constant across the entire image or is large (on the order of several pixels),

the algorithm fails. This method also requires the use of a highly unorthodox sensing

scheme in which compressively sensed pixels are compactly supported on the image.

A sensing matrix of this type is likely to have undesirable properties.

In [61], dense optical flow is estimated from compressive measurements without

performing any reconstruction. When the measurement rate is high, good estimates of

optical flow are produced. However, an unconventional sensing scheme is again used,

in which each measurement is compactly supported in one of the image’s spatial
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Table 2.1: Runtimes Required for Phase Transition Plot.

Algorithm L1EQ SPGL1 OMP CoSaMP GAMP EMBGAMP

Runtime (hours) 51.5 9.0* 18.7 24.8 1.7* 2.2*

*SPGL1, GAMP, and EMBGAMP are partially or fully compiled C code. Others are interpreted

MATLAB.

dimensions. In fact, each compressive measurement is restricted to a single row of

the uncompressed scene.

Although not strictly a CS reconstruction algorithm, the work of [62] deserves

mention. The authors solve an `1 problem similar to (2.6) to estimate the optical flow

field between stereoscopic images. Sparsity in the derivative of the optical flow field

is promoted; this assumption holds true when motion is caused by a small number of

rigid objects undergoing translational motion. This work is discussed in more detail

in Section 3.1.2.

2.7 Performance of CS reconstruction

Several approaches to the problem of CS reconstruction were presented above in

Section 2.5. Applicable guarantees and bounds on the performance of these algorithms

are discussed here, as well as a comparison of the computational cost of the different

algorithms.

2.7.1 Computation Speed

Table 2.1 shows the time required to run each of the simulations in Figure 2.6.

The comparison is imperfect, since the different algorithms are optimized to varying

degrees, but trends are clear. Convex solvers are far more computationally demanding

than greedy or message-passing algorithms.
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2.7.2 Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) is arguably the most well known bound

on estimation problems. It is included here for completeness, though it is not very

informative for the problem of CS. The CRLB gives a minimum bound on the variance

of any unbiased estimator θ̂ of the vector θ given measurements y. It is defined in

terms of the Fisher information matrix J(θ)by the expression

var θ̂ ≥ J(θ)−1 (2.39)

Jij(θ) = −E
x

[
∂2

∂θi∂θj
log(p(x|θ))

]
. (2.40)

2.40) holds only under certain easily satisfied regularity conditions and is not

the most universal definition of Fisher information. (2.39) holds only for unbiased

estimators, and biased estimators may achieve lower variance. ( It also does not take

the prior distribution of θ into account, since J(θ) depends only on p(y|θ). Allowing

bias in estimation and defining a prior distribution p(θ) on the parameters to be

estimated yields the Bayesian CRLB (BCRB), defined as [63]

E((θ − θ̂)(θ − θ̂)T ) ≥ J−1
B . (2.41)

JB is the Bayesian Fisher information matrix and is expressed in terms of the standard

Fisher information matrix J and an additional term reflecting the prior:

Jij = E
y,θ

[
−∂

2 log p(y,θ)

∂θi∂θj

]
(2.42)

= E
θ
(Jij) + E

θ

[
− ∂2

∂θi∂θj
log p(θ)

]
(2.43)

= JD + JP (2.44)
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where JD and Jp are defined as

JD = E
θ
(Jij) (2.45)

JP = E
θ

[
− ∂2

∂θi∂θj
log p(θ)

]
(2.46)

The BCRB for CS reconstruction problems is derived in [64] for a typical Bayesian

CS problem. The measurement matrix Φ is selected with zero-mean i.i.d. elements

of variance σ2
Φ. Noise is AWGN with variance σ2

w. θ is distributed i.i.d. Bernoulli-

Gaussian, with parameters q and σ2
θ and PDF p(θi) = qδ(θi)+(1−q) 1√

2πσ2
θ

exp
(
θ2i

2σ2
θ

)
.

Under these assumptions, the BCRB is calculated as

JD = M
σ2

Φ

σ2
w

ΨTΨ (2.47)

JP =
1− q
σ2
θ

I (2.48)

JB = JD + JP = M
σ2

Φ

σ2
w

ΨTΨ +
1− q
σ2
θ

I. (2.49)

Several problems with the bound in (2.49) are immediately evident. There is no

choice of parameter values which creates a separation between regions where estima-

tion is feasible or infeasible. Error actually increases as q increases (i.e. as the signal

becomes more sparse). This is an artifact of the parametrization of p(θ), which leads

to increasing signal energy as more non-zero components are added to the signal. The

largest problem, though, is that there is no dependence on the number of parameters

N , only on the number of measurements M . In the large system limit the JD term

dominates and drives the minimum error to zero. Likewise, in the noiseless (σ2
w = 0 )

case, the JD term is infinite. The BCRB therefore reduces to the trivial lower bound

of E[(θ − θ̂)T (θ − θ̂)] ≥ 0 for both the noiseless case and the large-system limit.
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2.7.3 Phase Transition

A more productive alternative to the BCRB of Section 2.7.2 is clearly needed.

One way to characterize the limits on reconstruction performance is to examine an

algorithm’s phase transition, loosely defined as the dividing line between regions where

reconstruction is good versus poor. In this section, theoretical and empirical results

on the phase transition regions of several CS reconstruction algorithms are presented

and discussed.

Donoho and Tanner [65, 66] give a limit on the feasible region for `1 basis pursuit.

The case of a random Gaussian measurement matrix A ∈ RM×N is considered. As

the problem size approaches infinity, `1 basis pursuit generates a correct solution with

probability approaching 1 as long as the condition

k < M (2e log(N/M))−1 (2.50)

is met. As usual, k = ‖θ‖0 is the sparsity level of the signal to be reconstructed.

Empirical evidence also indicates that this limit holds for finite problems of reasonable

size. Figure 2.6b shows the average reconstruction success rate over 10 trials, for a

range of sparsity levels and sensing rates. Number of measurements M = 1024 was

held constant and N and k were varied to achieve the desired ratios. Success rate is

defined here as the percentage of trials with
∥∥∥θ − θ̂

∥∥∥
∞
< 10−3. Although the phase

transition of (2.50) is derived for i.i.d. Gaussian A, in [66] it is shown that many other

choices of A show an identical phase transition, including Bernoulli, random Fourier,

and random Hadamard matrices.

Additional refinements have been made to the Donoho-Tanner phase transition.

It is known [67] that for exactly known sparsity level ‖θ‖0 = k, the maximum k

grows proportionally to sensing rate r rather than (1/r log(1/r))−1 as in (2.50). In

[67], however, (2.50) is shown to be tight for the `1 problem, in agreement with [65].
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Figure 2.6: Phase Transition Regions for Different Reconstruction Algorithms.

For each algorithm, success rate is plotted as a function of sparsity ratio k/M and

sensing rate r. Algorithms shown are (a) convex `1 BP using the l1-magic library’s

l1eq command, (b) `1 BP using SPGL1 , (c) OMP, (d) CoSaMP, (e) GAMP with q,

σ2
θ known, and (e) EMBGAMP.
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This indicates a hard limit for the `1 basis pursuit problem; any improvements must

come from other methods.

Different reconstruction algorithms may be compared by evaluating their phase

transition region, as well as execution speed and error rates on finite-length data.

Figure 2.6 shows empirically estimated phase transitions for two convex solvers, L1EQ

from the l1-magic library [68] and SPGL1 [37]; two greedy algorithms, OMP [38] and

CoSaMP [42]; and two message passing algorithms, GAMP[44] and EMBGAMP [55].

L1EQ, when run with the default parameters, showed very poor performance; this

demonstrates the need for appropriate algorithm tuning. SPGL1, which nominally

solves an equivalent problem, showed much better performance. OMP and CoSaMP

show comparable performance to convex solvers at low sensing rates. The chosen

CoSaMP implementation, though, requires k < M/3 for the successful solution of

an internal least-squares problem. This leads to suboptimal performance at higher

sensing rates. The message-passing algorithms both perform extremely well, with

EMBGAMP slightly outperforming GAMP at low sensing rates but suffering from

stability problems as more measurements are taken.

2.7.4 Sparse Recovery in Noise

All the phase transitions discussed above are for the case of noiseless measurement

and perfectly sparse θ. A natural question is whether CS reconstruction algorithms

are robust. How much noise can be added before the support of θ can no longer be

reliably determined? For the question of noisy CS reconstruction, [69] introduces the

concept of the noise-sensitivity phase transition.

The noise-sensitivity phase transition is defined as follows. Let y be determined

as in (2.2), as usual, under AWGN with w ∼ N (0, σ2
wI). Let MSE = ‖θ̂ − θ‖2

2/N

be the mean squared reconstruction error. The ratio MSE/σ2
w is defined as the
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noise sensitivity. The authors then define a worst-case noise sensitivity for BPDN

reconstruction as a function of sensing rate r and sparsity ratio k/M . This worst-

case noise sensitivity is bounded over exactly the same region as the phase transition

originally given in (2.50). This implies that BPDN is robust to noise and shows

graceful degradation as noise increases.

2.8 Recovery of Compressible Signals

Naturally-occurring signals are generally compressible but not perfectly sparse.

For θ following a power law (for instance), how well must energy be concentrated

before data can be approximated as sparse? In this section, simulations are performed

to characterize reconstruction for varying levels of signal compressibility, and the

results are discussed. Approaches from the literature are described and another bound

is put forward based on the noise sensitivity phase transition of [69].

In order to explore the phase transition for power law distributed data, θ was

drawn as a symmetric α-stable distribution with stability parameter αθ, scale pa-

rameter γθ = 1, and center parameter µθ = 0. The PDF of θ is not analytically

expressible, but its characteristic function φθ(t) is given by

φθ(t) = exp (jtµ− |γθt|αθ) . (2.51)

The stability parameter αθ ∈ (0, 2] controls the tail behavior, and therefore the com-

pressibility, of the signal. αθ = 2 corresponds to the Gaussian distribution, while

αθ = 1 is the Cauchy distribution. Except for the Gaussian (αθ = 2 ) case, all α-

stable distributions have power-law tails with PDF proportional to |x|−(1+α) for large

|x|. θ has infinite variance, but was normalized in simulations so that ‖θ‖2 = 1 to

avoid numerical overflow problems at small α.
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Figure 2.7: Phase Transitions for Symmetric Stable Distributed θ.

Sparsity is controlled by stability parameter α.

Figure 2.7 explores the phase transition for power-law distributed θ. Unlike the k-

sparse case, the phase transition region does not show a sharp boundary between suc-

cessful and unsuccessful reconstructions. There also appears to be much less benefit

from increased sensing rates. Instead, a steady decrease in success rate for increasing

α is observed.

A natural question arises: what is occurring in the region of perfect (or near-

perfect) success rates? Is this a true phase transition or does it instead depend on

the error tolerance, set somewhat arbitrarily at 10−3? To answer this question, the

Modulation error ratio (MER) of each method is displayed in Figure 2.8. MER is the
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ratio of signal energy to error energy and is defined as

MER =
‖θ‖2

2∥∥∥θ − θ̂
∥∥∥2

2

. (2.52)

Examining the MER, there is again find no clear line between success and failure of

the reconstruction; instead there is a steady decrease in MER as α is increased (i.e.

as the signal becomes less sparse). In order to compare the performance of different

algorithms, Figure 2.9 shows the difference in MER between EMBGAMP and SPGL1.

The plotted quantity is MER under EMBGAMP minus MER under SPGL1. A large

(> 25dB) advantage for EMBGAMP is seen for small α (very sparse θ). SPGL1,

on the other hand, outperforms EMBGAMP for cases of larger α and higher sensing

rates.

The disappearance of the phase transition in power-law data is worrying. If guar-

antees of reconstruction performance only apply to perfectly sparse data, they are

of little use in most potential applications. Fortunately, there are bounds on recon-

struction of imperfectly sparse data. The first approach is to treat all but the k

largest components of θ as noise; Using this approach, bounds have been derived for

`1 reconstruction [14] and CoSaMP [42].

Let θ be the (not necessarily sparse) signal to be reconstructed, and let θk be the

vector consisting of the k largest entries of θ, with zeros elsewhere. In [14] it is shown

that the `1 BP solution θ̂ satisfies∥∥∥θ̂ − θ
∥∥∥

1
≤ C0 ‖θ − θs‖1 (2.53)

as long as the restricted isometry property of (2.4) is satisfied with isometry constant

δ2k <
√

2− 1. C0 is a constant, given explicitly in [14].

Another possible approach is inspired by the noise-sensitivity phase transition

[69]. Assume that there exists some function g(r, ρ) which bounds the MSE of a
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Figure 2.8: Modulation Error Ratio for Symmetric Stable Distributed θ.

Sparsity is controlled by stability parameter α (plotted on y-axis).
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Figure 2.9: Comparison of MER of EMBGAMP versus SPGL1.
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reconstruction on sparse data. That is,∥∥∥θ − θ̂
∥∥∥2

2

N
≤ σ2

wg(r, ρ), , ‖θ‖0 ≤ k (2.54)

in the large-system limit as M → ∞, M/N → r, and k/M → ρ. [69] gives strong

evidence that such a g(r, ρ) exists, and that it is finite over the same region as the

Donoho-Tanner phase transition. Now, let θ be non-sparse, but instead distributed

i.i.d. symmetric, and centered on 0, with PDF pθ(θ) and CDF Fθ(θ).

Proceed by dividing θ into a “signal” component θs, which can be recovered with

bounded error, and a “noise” component θn, which we abandon hope of recovering.

Setting the threshold of signal and noise at F−1
θ (ρr/2), we have

θn,i =


θi, |θi| ≤ −F−1

θ (ρr/2)

0, otherwise

(2.55)

θs = θ − θn. (2.56)

That is, θn contains all of the signal components with whose magnitude is less than

the top ρr quantile, with zeros elsewhere. Likewise, θs contains all signal components

with magnitude in at least the top ρr quantile. We can now write the CS sensing

model as

y = Aθ = Aθs + Aθn = Aθs + w̃. (2.57)

In the above, w̃ = Aθn represents the effect of θn on the measurement. By the central

limit theorem,

w̃ ∼ N
(
0, σ2

θnAAT
)
, (2.58)

where

σθn(r, ρ) =

∫ −F−1
θ (ρr/2)

F−1
θ (ρr/2)

θ2pθ(θ)dθ (2.59)
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is the variance of each element of θn. Most commonly used sensing matrices, includ-

ing deterministic and random orthoprojectors and i.i.d. Gaussian matrices, satisfy

AAT → I in the large-system limit. In this case, the assumption of AWGN holds. We

can now bound the MSE as ∥∥∥θ̂ − θs

∥∥∥2

2

N
≤ σ2

θn(r, ρ)g(r, ρ). (2.60)

Thus, the theory of compressed sensing is not only useful for perfectly sparse sig-

nals. It also bounds the error of CS reconstruction algorithms when operating on

compressible signals which more closely model those found in nature.

2.9 Summay

In this chapter, the theory of compressed sensing was introduced and elaborated

on. Two hardware implementations of CS sensors, the single-pixel camera and mag-

netic resonance imaging, were introduced. The convex, greedy, and message-passing

reconstruction algorithm families were introduced, and several specific examples were

elaborated on. Specialized reconstruction algorithms for image and video data were

reviewed. Finally, the performance of CS signal recovery algorithms was discussed

through both Monte Carlo simulations and analytically derived bounds.
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Chapter 3

BACKGROUND AND LITERATURE REVIEW OF COMPUTER VISION AND

IMAGE PROCESSING

My research depends heavily on existing work in the fields of traditional image and

video processing, and on recent advances in machine learning and computer vision.

In this chapter, I first discuss relevant work from image and video compression, en-

hancement, denoising and super-resolution imaging. I focus on the wavelet transform

as an image compression method and optical flow in video compression. Next, several

well-established problems in computer vision are presented and noteworthy solutions

are described, with a focus on graph-based machine learning methods such as convo-

lutional neural networks and deep Boltzmann machines.

3.1 Image Processing algorithms

Relevant work in image processing is covered in this section. The wavelet trans-

form, a highly effective basis for compression of natural images, is first discussed.

Next, algorithms for image motion estimation are described.

3.1.1 2-D Wavelet Transform

The two-dimensional wavelet transform is a highly efficient basis for compression

of natural images. It achieves greater energy compaction than the discrete cosine

transform (DCT) used in the JPEG image compression algorithm. Unlike the Fourier

transform and DCT, the wavelet basis is inherently local in both time and frequency;

it shares this property with the human visual system. A review of the discrete wavelet
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Figure 3.1: Block Diagram Representation of Wavelet Transform.

transform follows, beginning with the one dimensional algorithm and extending to two

dimensions.

The discrete wavelet transform consists of a cascade of quadrature mirror filters

(QMFs). [70], shown in Figure 3.1. At each stage, the original signal is split into

approximation (lowpass) and detail (highpass) signals, each half the length of the

original signal. In order to enable exact reconstruction of the signal, the lowpass

filter H0(z) and highpass filter H1(z) must obey the constraints H1(z) = H0(−z).

Within these constraints, many different choices are possible. The Daubechies family

of wavelets [71, 72] is the most well-known and commonly used. Unless otherwise

specified, the Daubechies-4 (db4) wavelet will be used in the remainder of this work.

Extending the wavelet transform to two dimensions is straightforward. at each stage,

both dimensions of the signal are separated into approximation and detail coefficients,

splitting the signal into four parts, each with half the resolution in each dimension.

As before, the number of elements in the signal is unchanged.
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3.1.2 Optical Flow and Image Registration

Modern video coding standards exploit optical flow to increase the efficiency of

video compression algorithms. Stated simply, optical flow is the apparent motion of

pixels in an image from one frame to the next. In video compression this enables a

frame to be coded as a function of one or more nearby frames. In a visual tracking

problem knowledge of optical flow can be used to estimate target motion. A related

problem is image registration, in which two images or image patches are to be aligned

with one another.

The image registration problem is formulated as follows. Given two image patches

xt−1 and xt we wish to determine a parameter vector ut which gives the horizontal

and vertical displacement from frame t− 1 to t. As usual, 2-dimensional images are

represented as one-dimensional column vectors, with columns of pixels “stacked” and

vertically concatenated. The two video frames are related by the expression

xt = Futxt−1 + η (3.1)

where Fut is a matrix implementing the interpolation operation mapping pixels in

xt−1 onto xt. η is an error vector expressing details which are not captured by this

matrix multiplication. These include unmodeled effects, for instance rotation, scaling,

and warping in a translation-based optical flow model. η also encodes details of frame

t which are out of frame, occluded, or otherwise not visible in frame t− 1. The goal

of optical flow estimation is to minimize some measure of the difference between xt−1

and Futxt.

Lucas-Kanade Image Registration

The Lucas-Kanade algorithm [3] is arguably the most influential method for image

registration and optical flow estimation. It relies on the assumption that images
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are locally linear and that optical flow is locally constant among neighboring pixels.

If the assumption of local linearity is not met, the input image can be smoothed

with a low-pass filter before image registration is performed. The algorithm was

developed to estimate translations but can be generalized to include other affine

transformations[73]. This section briefly describes the procedure.

Assume a constant translational optical flow vector h = [h1 h2]T , giving the

horizontal and vertical displacement from frame t to t − 1. We wish to find the h

which minimizes the cost function

‖η‖2
2 = ‖Futxt−1 − xt‖2

2 (3.2)

Let f(u, t), be the 3D continuous function from which the discrete images xt and xt−1

are sampled, where u = [u1 u − 2]T gives spatial coordinates. From the assumption

of local linearity it follows that, for small h,

f(u + h, t) ≈ f(w, h, t) + hT
∂

∂h
f(u, t). (3.3)

where ∂
∂h
f(u, t) is the spatial gradient. By iteratively solving (3.3) for u and lineariz-

ing around the new solution, the Lucas-Kanade algorithm converges to a solution for

u.

Block Matching

In video coding algorithms, the optical flow vectors of individual pixels are not calcu-

lated. Instead, the image is divided into rectangular blocks with constant flow vectors

assigned to each block. Even with this simplification, an exhaustive search of all pos-

sible vectors impractical. Instead, search algorithms [74, 75, 76, 77, 78, 79] are used

to efficiently estimate optical flow. Zhu and Ma’s diamond search algorithm [79] is

one such approach. In diamond search, two search steps, the large (LDSP) and small
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(SDSP) diamond search patterns, are used. LDSP tests the current best estimate and

all pixels with an `1 distance of exactly 2 from it. The LDSP step requires testing 9

possible optical flow vectors: the original guess and the eight neighbors of distance

2. The guess with the lowest MSE becomes the central point for the next iteration.

LDSP steps are repeated until there is no change from the previous iteration; at this

point a single SDSP step tests the 4 neighbors of distance 1, which have been previ-

ously untested. Diamond search may be viewed as a form of steepest descent, with a

fixed `1 step size.

Sparsity-Exploiting Methods for Optical Flow Estimation

Sparse reconstruction methods may be used to estimate optical flow [62, 80]. In [62],

a linear approximation is again used as with the Lucas-Kanade algorithm [3]. An `1

optimization problem resembling BP is solved, which enforces sparsity in both the

registration residual η and in a transformed representation of the optical flow vectors.

Let dx, dy, and dt be the partial derivatives of xt with respect to the horizontal,

vertical, and time parameters, respectively. From a linear approximation, we have for

each pixel xn with optical flow vector [un vn]T ,

dx,nun + dy,nvn + dt,n ≈ 0. (3.4)

Combining the optical flow for each pixel gives the underdetermined system of equa-

tions

−dt ≈
[
dTx dTy

]u
v

 (3.5)

The underdetermined nature of this problem is traditionally solved by the block

matching approach, which divides the image into regions of locally constant optical

flow, thereby reducing the number of unknown variables. Shen and Wu replace this
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ad-hoc approach with the observation that u and v both form compressible images

with respect to a basis Ψ, such that

−dt ≈
[
dTx dTy

]Ψ 0

0 Ψ


θu
θv

 (3.6)

with θu and θv sparse. Several closely related approaches to this optimization are

presented. The best performance is given by a BPDN-like procedure which simulta-

neously minimizes the `2 prediction error and promotes sparsity in both the Wavelet

transform and gradient of u and v. Let Dx and Dy be linear operators implement-

ing first-order differentiation in the horizontal and vertical directions, respectively.

To clarify the relationship with BPDN, temporarily let y = −dt, Φ =

[
dTx dTy

]
,

B =

Ψ 0

0 Ψ

, and D =

[
Dx Dy

]
. The optimization problem is then given as

θ̂ = argmin
θ
‖y − ΦBθ‖2 + λ1 ‖θ‖1 (3.7)

ĝ = argmin
g

∥∥y − ΦD†g
∥∥

2
+ λ2 ‖g‖1 (3.8)

f̂ = argmin
f

∥∥∥f − Bθ̂
∥∥∥

2
+ λ3

∥∥f −D†ĝ
∥∥

2
. (3.9)

λ1, λ2, and λ3 are tuning parameters. This estimate is further refined by using the

RANSAC robust estimation procedure [81] to eliminate outliers.

A very similar method is proposed in [80]. The optimization problem to be solved

is given as

ĝ = argmin
g

∥∥y − ΦD†g
∥∥

1
+ λ4 ‖g‖1 (3.10)

Only sparsity in the gradient of optical flow is promoted, encouraging a piecewise-

constant optical flow field. Notably, `1 prediction error is minimized, effectively en-

couraging sparsity in η.
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In [80] both Shen and Wu’s method [62] and Han’s method [80] are tested on the

Middlebury optical flow dataset [4]. The average angular error (AAE) and endpoint

error (EPE) are evaluated for four different stereo image pairs; it is found that Han’s

method results in lower errors for all images. The RANSAC algorithm which forms

the final step of Shen and Wu’s method is not used in this comparison; it is uncertain

which algorithm would produce lower error if all steps were performed.

3.2 Classification & Detection Algorithms

Classifying the content of images is a classic problem in computer vision and

forms an essential part of many other problems. My primary interest is in the two-

class problem of target detection and its application to tracking algorithms. This

section covers a selection of classification algorithms, approximately ordered from the

simplest and earliest to most recent and most complex.

3.2.1 MACH Filter

The maximum average correlation height (MACH) filter is a well-known approach

to offline training of a correlation-based filter to optimally detect a single object in

video[82, 83]. A MACH filter is trained using examples from the positive (target)

and negative (noise or background) classes. In its most basic form the MACH filter

is defined (in the frequency domain) by:

H = (Dy + Sx)
−1 µx (3.11)

where Dy is the power spectral density of the noise examples and Sx is the simi-

larity matrix of the true examples. Sx and Dy are diagonal matrices. µx is the mean

of the target examples. Choosing a filter h as in (3.11) maximizes the average corre-

lation height of the detection peaks while minimizing the average similarity measure
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Figure 3.2: Deep Boltzmann Machine with Two Hidden Layers.

(ASM) between the targets and noise [84]. Several modifications and variations on

the MACH filter exist, including, the optimal trade-off MACH (OT-MACH) filter

[85, 86], which also optimizes output noise variance and average correlation energy.

3.2.2 Deep Boltzmann Machines

The deep Boltzmann machine (DBM) is a network-based bio-inspired computa-

tional model. Unlike traditional neural networks, Boltzmann machines are undirected

networks and can be run in reverse to generate example data. They are also stochas-

tic: a node’s inputs do not define its output but rather a probability distribution

over its possible outputs. The DBM expands on the Boltzmann machine concept by

adding an arbitrarily large number of layers to the network and defining an unsu-

pervised layer-by-layer pre-training step. Figure 3.2 gives a visual representation of

a DBM. A brief sketch of DBM evaluation and training is given here; I follow the

conventions and definitions of [87] and invite readers to explore this work for a more

complete treatment of the subject.

A standard single-layer restricted Boltzmann machine (RBM) consists of a visible

layer v ∈ {0, 1}D×1 and a hidden layer h ∈ {0, 1}P×1 of nodes. The values of the

nodes in each layer are conditionally independent given the value of the other layer,
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with conditional probabilities given by

p(hj = 1|v,h−j) = σ

(
D∑
i

wijvi

)
(3.12)

p(vi = 1|v,h−i) = σ

(
P∑
j

wijhj

)
. (3.13)

where σ(x) = 1/(1 + e−x) is the logistic function. This conditional independence

makes evaluation of the RBM computationally tractable. The RBM seeks to model

a probability distribution over v using the weights W and the values of the hidden

layers h.

Exact maximum likelihood training of the RBM is not feasible, but contrastive

divergence (CD) learning builds a model of the training dataset by minimizing the

difference between a training sample vi and its reconstruction ṽi [88].

The RBM concept above is extended to multiple layers by greedy layer-by-layer

pretraining. The first layer weight matrix W(1) is trained using CD. Then, the hidden-

layer h1 corresponding to the first layer of the network is used as training input to

determine the second-layer weights W(2). This may be continued for an arbitrary

number of hidden layers. After the pre-training, backpropagation algorithms may be

used to fine-tune the network weights.

3.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) have risen to prominence in computer

vision after showing competitive or best-in-class performance on a wide variety of dif-

ficult problems. The CNN may be viewed as a feedforward neural network which uses

several tricks to exploit prior knowledge of the behavior of many naturally occurring

signals, including digital images. In this section, a basic overview of the structure of

CNNs is given and their training is discussed.
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Figure 3.3: Convolutional Neural Network Architecture.

CNNs mitigate the problem of overfitting by weight-sharing and max-pooling,

both of which reduce the number of parameters in the computational model while

still modeling complex input-output relationships. Figure 3.3 gives a one-dimensional

example of a small linear convolutional layer. Each hidden-layer neuron is connected

to only a small neighborhood of the input layer, in this case 3 samples wide. Al-

ready, the number of weights has been reduced from DP1 to 3P1. The weights are

further shared between neurons, so that every node performs the same inner product

on its neighborhood; this weight sharing is shown in Figure 3.3 by the colors of the

arrows. The number of model parameters is now only 3. In addition to the massive

reduction in model parameters, the P1 inner products, each requiring D multiplica-

tions, are replaced by a single convolution operation. With the use of the FFT, the

complexity of this operation has been reduced to D logD. Convolution is, of course,

a linear operation; nonlinearity must be added to the network. In a typical CNN

this is accomplished via max-pooling, again shown in Figure 3.3. In max-pooling, an

input image’s pixels are simply binned into a grid, and the maximum of each bin is
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passed to the next layer. In this way, max-pooling functions as a sort of nonlinear

downsampling.

3.2.4 Deep Learning for Compressed Sensing Reconstruction

Machine learning, and particularly deep learning, may be used to reconstruct

compressively sensed images with high performance. In [89], a restricted Boltzmann

machine is used as a prior for CS reconstruction. The case of sparse x (i.e. Ψ = I)

is considered, but results can easily be extended to the case of dense x and sparse θ.

This reconstruction method is tested on the MNIST digit data and shows performance

near that of a “support oracle” algorithm which is given the support of the signal.

This is possible because the RBM is generative and attempts to learn the probability

distribution of the training data. A 2-layer RBM consisting of binary nodes is joined

to a Bernoulli-Gaussian prior on x, which is then reconstructed with AMP. In this

way, the algorithm can be viewed as a more sophisticated form of re-weighted CS

reconstruction algorithms [90] or model-based CS [18].

The system model consists of a Markov chain h → v → x → y with conditional

probabilities given as

h|v ∼ Bern
(
σ
(

W(1)Tv
))

(3.14)

v|h ∼ Bern
(
σ
(
W(1)h

))
(3.15)

p(xi|vi) =


δ(xi), vi = 0

1√
2πσ2

x

exp
[
x2i

2σ2
x

]
, vi = 1

(3.16)

y|x ∼ N
(
Φx, σ2

wI
)
. (3.17)

That is, the hidden layer h and visible layer v are related as in the binary RBM

described by (3.12), while the unknown data vector x and measurement vector y are
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related by the standard CS sensing operation in AWGN. x is independently but not

identically distributed according to a BG prior, taking non-zero values with element-

wise probability given by Pr(xi 6= 0) = Pr(vi = 1).

3.2.5 Previous Work in Reconstruction-Free Classification

Relatively little work exists in the field of direct CS inference; most effort is concen-

trated on reconstruction algorithms. Researchers at Rice University have developed

a correlation-based technique which takes advantage of preservation of inner prod-

ucts under the RIP [10]. This approach, known as the smashed filter, is analogous

to the non-compressive matched filter technique. I show in Section 5.1.1 that in a

visual tracking scenario, the 2-D cross correlations used by the smashed filter can be

performed efficiently using the FFT [6]. I call this approach the fast smashed filter, a

name which highlights its compressive nature, computational efficiency, and close re-

lationship to the matched filter. Using maximum average correlation height (MACH)

filters trained on multiple targets, the algorithm is able to track vehicles in stationary

surveillance video. In [91], a spatio-temporal MACH-based smashed filter is used for

reconstruction-free activity recognition. In [92], another template learning approach,

the Maximum Margin Correlation Filter, is used to perform face recognition tasks.

This approach outperforms a reconstruct-first paradigm at low sensing rates, where

reconstruction algorithms fail.

In [93] a sensing matrix Φ is chosen using secant projections of training data. This

ensures that isometry is preserved on a training dataset, rather than on the set of

all k-sparse vectors. The secant projections approach outperforms the smashed filter

with random Φ when noise is present.

Much of the most relevant published research comes from the closely related field of

random projections. In [94], It is shown that random projections outperform principal
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component analysis (PCA) in preserving Euclidean distances between 50× 50 image

patches. Distances are well-preserved at only 10 random projections, equivalent to a

sensing rate of 0.4%. This result is attributed to the Johnson-Lindenstrauss lemma,

which is closely related to the RIP given in (2.4). In [95], random projections are

used to perform dimensionality reduction before data are input to an artificial neural

network. This system is used for malware detection rather than image classification

and shows a minimum two-class error rate at a sensing rate of 2.2%. These results

are encouraging and help to motivate our approach. My application differs in that

random projections are assumed to be performed directly by a compressive camera.

That is, I target applications in which the algorithm only has access to y, with x

available only through a computationally expensive reconstruction step.

The approach of classification by sparse representation also deserves mention [96,

97, 98, 13]. All of these algorithms classify a measurement by expressing it as a

combination of training vectors. In this way, the training dataset forms a (possibly

over- or undercomplete) basis for the vector space in which the measurement lies.

Classification can then be performed based on this new representation. Although

it is mathematically related to CS, classification by sparse representations requires

access to the uncompressed representation of a signal to be classified.

3.3 Tracking Algorithms

The problem of detecting and tracking known objects in images and video is a

classic and well-studied problem in computer vision. However, adapting state-of-the-

art techniques to the CS domain is non-trivial and may not be feasible for many

techniques. This section focuses on tracking work which is most readily adaptable to

the CS domain.
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A typical visual tracking system follows a pattern in which input video frames are

first preprocessed to increase image quality or enhance characteristics of the target.

The image, or one or more regions of interest within the image, are then processed

by a feature extraction algorithm, which converts the image into a lower-dimensional

feature vector. This feature vector forms the input for the detection stage, which

outputs an estimate of the confidence that a target is present at a certain location

within the image. Finally, likelihood estimates across frames are fused, forming an

overall estimate of the location of the target. The direct CS tracking paradigm covered

in Chapter 5 presents problems mainly in the preprocessing and feature extraction

stages, since unless reconstruction is performed, access to individual pixels is lost.

Once features are extracted, tracking is able to proceed normally.

Several approaches in the literature apply sparsity or `1 based methods to the

visual tracking problem. In [99] an OMP algorithm is used to extract sparse repre-

sentations for visual tracking. In [100] a sparse sensing matrix is used to extract fea-

tures from image regions in an approach similar to the famous Viola-Jones paradigm

[101]. However, neither of these approaches operates on compressive data. Rather,

they start from conventional images and apply compressive techniques for feature

extraction.

3.3.1 State-Space Model of the Tracking Problem

This section introduces the system model used to describe the Kalman and particle

filter algorithms. A system’s time-varying state vector qt is estimated from a set of

measurements yt. q typically contains an estimate of target location and may also

track parameters such as target speed, acceleration, scale, or pose. Optionally, the

model may include a system input ut. In a tracking setting, this input vector could,

for instance, account for known sensor platform motion. The state evolves according
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to the hidden Markov model (HMM)

qt ∼ pqt|qt−1,ut(qt|qt−1,ut) (3.18)

yt ∼ pyt|qt(yt|qt). (3.19)

where ppi|pi−1
and pyi|pi are the probability density functions of the state and observed

measurements, respectively. The goal of the tracking algorithm is to estimate a

sequence of states q0,q1, ... as a function of the corresponding measurements y1,y2, ....

Because of the structure of the HMM, the conditional probability of states given

measurements at time t is given by the recursive relation

p(q1, ...,qt|y1, ...,yt) =
p(qt|qt−1)p(yt|qt)
p(yn|y1, ...,yt−1)

p(q1, ...,qt−1|y1, ...,yt−1) (3.20)

∝ p(qt|qt−1)p(yt|qt)p(q1, ...,qt−1|y1, ...,yt−1). (3.21)

In (3.20), p(·) denotes the probability density function; subscripts have been omitted

for clarity and concision. This structure separates the estimate of current state qt

from all past measurements. Only the current measurement y and statistics of qt−1

are needed to calculate it.

3.3.2 Kalman Filter

The Kalman filter [102] gives an optimal estimate of p(q0,q1, ...|y1,y2, ...) for the

specific case of linear state updates and measurements in additive Gaussian noise.

The general state update equation of (3.18) can be simplified to a matrix form given

by

qt = Fqt−1 + But + wt (3.22)

yt = Hqt + vt (3.23)

w ∼ N (0,Σw) (3.24)

v ∼ N (0,Σv). (3.25)
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Under these conditions, the a priori state estimate p(qk|qk−1) and the posterior prob-

ability p(qk|qk−1,yk−1) are also Gaussian. The prior mean and covariance are given

by

q̂t|t−1 = Fq̂t−1|t−1 + But (3.26)

Σqt|t−1
= FtΣqt−1|t−1

FTt + Σw. (3.27)

From these quantities and the new measurement yt the posterior mean and covariance

are calculated. This is given in terms of the measurement residual ỹt = yt − Hqt|t−1

and Kalman gain K as

q̂t|t = q̂t|t−1 + Kỹt (3.28)

Σqt|t = (I−KH) Σqt|t−1
. (3.29)

The Kalman gain is chosen to minimize the mean square error of q̂t|t; (3.29) is valid

only for this optimal K. The optimal Kalman gain is given by

K = Σqt|t−1
HTΣ−1

ỹk
(3.30)

where Σỹk = HΣqt|t−1
HT + Σv is the covariance matrix of the measurement residual

ỹ.

All discussion above has assumed time-invariance of the system. The algorithm

may be extended by simply replacing F, B, H, Σw, and Σv by their values at time t.

The Kalman filter can be used even in non-Gaussian noise. However, in this case it

will not produce exact marginal probabilities.

3.3.3 Particle Filter

Particle filters are a family of algorithms for estimation of posterior probability

densities. Unlike the Kalman filter and related algorithms, the particle filter is a
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Monte Carlo method and is able to handle arbitrary distributions. This section

describes the basic vocabulary of a particle filter and details its use in visual tracking.

The particle filter estimates a time-varying state p given noisy measurements

y. The state p evolves according to the Markov model given in (3.18). When these

PDFs are non-Gaussian or state transition equations are nonlinear, there is in general

no closed-form solution for the posterior distribution of p. However, the particle

filter gives a method to sample from the distribution. q particles are generated i.i.d

according to an initial density pp0(p). At each time step, a new set of states is

predicted from the previous frame, the measurement yi is observed and each particle

pj is assigned a weight wj,i based on the particle’s likelihood,

wj,i = p(yi|xi)wj,i−1. (3.31)

In this way, a particle’s weight grows (relative to its neighbors) during frames when

its likelihood is large and shrinks during frames when its likelihood is small.

Optionally, particles may be resampled during some or all frames. This is ac-

complished by normalizing all the weights so that they sum to one, and forming a

categorical distribution over the current particles based on these weights. A new set

of particles is then drawn from this categorical distribution. Resampling is a strategy

to avoid degeneracy in the particle filter, where the weights of most particles quickly

approach 0 and contribute nothing to the estimation. On the other hand, when noise

is small, resampling too often can lead to the estimation being dominated by one or

a small number of possible states.

3.4 Summary

This chapter covered several relevant problems and solutions from the image pro-

cessing and computer vision literature. Compression of images, through the wavelet
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transform, and video, through motion estimation, was discussed. Approaches to de-

tection and classification of images were then covered, from relatively simple template

models to more sophisticated deep learning algorithms. Finally, the video tracking

problem was introduced, and a selection of tracking algorithms was presented. These

algorithms are a starting point for approaches to higher-level inference from CS im-

ages.
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Chapter 4

COMPRESSIVE VIDEO RECONSTRUCTION INCORPORATING

INTER-FRAME CORRELATIONS

Reconstruction of compressively sensed video remains an open problem. Progress has

been made in reconstruction of static images [22], but to my knowledge no currently

published algorithm fully utilizes prior knowledge of frame-to-frame correlations and

compressibility to improve reconstruction. Previous efforts have made restrictive

assumptions such as a static background [57, 59] or constant optical flow across the

entire image [60]. Clearly, a reconstruction algorithm which fully utilizes dense optical

flow information to perform multi-frame video reconstruction would be a valuable tool

and would bring compressive sensing video hardware closer to commercialization.

In this section, a method of reconstructing compressively sensed video frames

in the presence of known optical flow is presented in Section 4.1 and applied to an

existing dataset in Section 4.3.1. This approach is extended to the case of unknown

but constant motion in Section 4.2, with results presented in Section 4.3.2. In both

cases, significant performance improvements are achieved by incorporating optical

flow information in reconstruction. It is hoped that this work represents a step toward

fast and reliable estimation of dense optical flow and wide adoption of compressive

sensing video technology.

Two image vectors, x1 and x2, are known to be compressible. These images are

measured with sensing matrix Φ, resulting in measurements y1 and y2. That is,

y1 = Φx1 = ΦΨθ1 (4.1)

y2 = Φx2 = ΦΨθ2, (4.2)
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where θ1 and θ2 are k-sparse vectors forming compressed representations of x1 and

x2, respectively.

In the case of compressively sensed video, it is also known that adjacent frames

x1 and x2 are related by some linear optical flow operator Fu,v, where u and v are

optical flow vectors in the x- and y-directions, respectively. That is,

x2 = Fu,vx1 + η, (4.3)

where η is an error term representing the part of x2 which is independent of x1. In

natural images, η is sparse, a fact which is exploited by modern video codecs.

4.1 Reconstruction with Known Optical Flow

In the special case where optical flow vectors u and v are known a priori, recon-

struction is relatively straightforward and the benefits of incorporating optical flow

in a reconstruction algorithm are clear. The case of reconstruction from two frames

using forward prediction is presented here, although this method is easily extended

to include larger numbers of frames and backward prediction. In this case, the un-

derdetermined system to be solved may be jointly given in matrix form by combining

(4.1), (4.2), and (4.3), and is described by

 y1

y2

 =

 ΦΨ 0

ΦFu,vΨ Φ


 θ

η

 . (4.4)

θ1 can then be recovered from y1, y2, u, and v by solving the convex optimization

problem
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minimize
θ,η

∥∥∥∥∥∥∥
 ΦΨ 0

ΦFu,vΨ Φ


 θ

η

−
 y1

y2


∥∥∥∥∥∥∥

2

(4.5)

+ τ

∥∥∥∥∥∥∥
 θ

η


∥∥∥∥∥∥∥

1

.

Equation (4.5) differs from the optimization problem used in [58] in several important

ways. First, optical flow appears as part of the objective function rather than as a

constraint, allowing only θ1 to be estimated and reducing the size of the estimation

problem. Second, the inclusion of ‖η‖1 in the objective function creates sparsity in

the optical flow error η. This should allow the more accurate reconstruction of small

objects and edges in the final image. The algorithm also differs from that of [60] in

that no additional special properties of the sensing matrix are required to perform

motion estimation.

The case of η ≈ 0 will also be examined; this is a reasonable assumption for

several useful applications of compressive sensing. If η ≈ 0, (4.5) becomes

minimize
θ

∥∥∥∥∥∥∥
 ΦΨ

ΦFu,vΨ

θ −

 y1

y2


∥∥∥∥∥∥∥

2

+ τ ‖θ‖1 . (4.6)

4.2 Reconstruction with Constant but Unknown Optical Flow

An interesting special case arises when optical flow is known to be constant across

an entire image; that is, when u and v are constant vectors. This is generally the

case for aerial surveillance video, an important potential application of compressive

sensing video technology. In this case, only a single frame must be reconstructed in

order to estimate flow. This is possible because of the ability to perform correlations

in the compressive domain [103].
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Let x̂1 be an estimate of x1 acquired by solving (2.6). u = u1 and v = v1 may

then be estimated maximizing the estimated correlation with a matched filter:

maximize
u,v

y>2
(
ΦΦ>

)−1
ΨFu1,v1x̂1. (4.7)

Once u and v have been determined, two-frame reconstruction may be carried out as

in (4.6) or (4.5). Although (4.7) appears straightforward, several practical consider-

ations arise when attempting to apply it. Equation (4.7) is, in general, a non-convex

problem and is relatively expensive to compute. However, if u and v are quantized,

an exhaustive search is often feasible, for instance if the image size is small or the

motion vector magnitude ‖[u, v]‖2 is bounded. Several efficient search algorithms also

exist to approximately determine optical flow; Zhu and Ma’s diamond search algo-

rithm [79] is used in this work . The correlation is also heavily affected by the way

the flow operator handles the edges of the image. In order to avoid this concern, x̂1

is first windowed before applying the optical flow transform. It was also empirically

determined that reconstruction was superior when optical flow was non-zero, even if

the ground truth optical flow was zero. Because of this, u and v are forced to take

non-zero values: if a zero value is found to be optimal, the next-best value is chosen

instead.

4.3 Results

4.3.1 Known Optical Flow

The algorithm in Section 4.1 was tested using the Middlebury optical flow dataset’s

“Venus” image, a stereo image for which known ground truth motion vectors are

provided [4]. The image was preprocessed by shrinking by a factor of 2 and cropping

to size 128 × 128. Sensing was performed using an IID Gaussian sensing matrix
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using n = 4915 measurements, for a sensing rate of 0.3. Figure 4.1 shows the results

of reconstruction of a single frame, along with simultaneous reconstruction of both

frames using known optical flow information. The PSNR was increased from 21.12

dB to 23.80 dB by the use of optical flow information. An improvement in the

perceptual quality of the reconstruction is also visible. Figure 4.2 shows PSNR vs.

number of sensors for single-frame and 2-frame reconstruction. The benefits are clear,

particularly at low sensing rates.

(a) ground truth (b) single-frame (c) two-frame

Figure 4.1: Reconstruction with Known Optical Flow for 128×128 Image with Sensing

Rate r = 0.212.
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Figure 4.2: PSNR of Reconstructed Signal as a Function of Sensing Rate.
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(a) ground truth (b) single-frame (c) two-frame

Figure 4.3: Comparison of Single-Frame and Two-Frame Reconstruction for Constant

Optical Flow.

4.3.2 Constant Optical Flow

The problem of reconstruction under constant but unknown optical flow was eval-

uated using the PETS2000 dataset. A segment of the video with no activity was

selected and used to generate a pair of 128 × 128 test frames, represented in vector

form as x1 and x2, in which x2 experienced a small shift relative to x1. y1 and y2

were generated using n = 4915 sensors, and the algorithm described in Section 4.2

was used to reconstruct the image. Figure 4.3 compares single-frame and two-frame

optical flow based reconstruction algorithms. The two-frame reconstruction is clearly

perceptually superior and has a PSNR of 27.21 dB, a 2.81 dB improvement over the

single-frame reconstruction. Reconstruction was performed both with a term η for

imperfect optical flow (Equation 4.5) and without it (Equation 4.6). The η term was

found to be necessary in order to achieve improved PSNR relative to the single-frame

method; only results from this method are presented.
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4.4 Significance of results

Optical flow is a key element of modern video codecs, but has not been fully

used in reconstruction algorithms for compressively sensed video sequences. This is

mainly due to the difficulty of estimating optical flow without an existing high-quality

reconstruction of the image. However, once optical flow is known, clear benefits are

available from utilizing optical flow information. This was shown in Section 4.3.1,

where the problem of reconstruction under known optical flow was presented as a

convex optimization.

A potential work-around to the problem of optical flow estimation without a high-

quality image was described in Section 4.2. In the special case considered, optical flow

is known to be constant across the entire image.This allows optical flow in subsequent

frames to be estimated without reconstruction from a single reconstructed frame. I

believe that this method is likely to be applicable to the case of small moving targets in

a moving frame, as the optical flow error parameter η should be able to accommodate

them. However, this claim is speculative.

It is hoped that this work will serve to advance the development of compressive

sensing video cameras by integrating existing ideas of optical flow based reconstruc-

tion from conventional video codecs. A robust reconstruction algorithm with high

performance could dramatically reduce the cost and data rate requirements of video

sensing systems at a wide range of light wavelengths.
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Chapter 5

RECONSTRUCTION-FREE TRACKING FROM CS IMAGERS

The advantages of compressive sensing come at the cost of higher computational

requirements at the receiver, where compressively sensed video data must be mathe-

matically reconstructed in order to display video sequences in a human-readable form.

However, in some cases, such as automated surveillance or navigation, a system may

not require a human to observe a video at all. In these cases it may be possible to

perform target recognition and other computer vision tasks directly on the compres-

sively sensed data, without reconstructing video frames. In this section, a method

for target detection and tracking without reconstruction is presented. The algorithm

is tested on moving vehicles from the PETS2000 and CDNET 2012 datasets, and

testing results are presented.

Section 5.1 gives a detailed description of the direct tracking algorithm. In Section

5.2 the algorithm is tested on the PETS2000 and CDNET 2012 datasets and testing

results and tracker performance are described. Finally, Section 5.3 discusses the

significance of the results.

5.1 Tracking Algorithm

The prototype compressive tracker is a particle filter with importance sampling

updates handled by correlations with a MACH filter. Figure 5.1 shows a high-level

block diagram showing the key components of the system and their interaction. The

algorithm implements tracking-by-detection using by using a particle filter to main-

tain an estimate of both the target’s likelihood and location, based only on data from

a compressive sensing camera. Correlations are estimated directly from the measured
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Figure 5.1: High-Level Block Diagram of Compressive Tracker

frame data yi using a fast smashed filter, discussed in Section 5.1.1. The smashed

filter produces noisy correlation estimates, reducing the effective Signal-to-noise ra-

tio (SNR) of the detector. In order to mitigate these effects, the track-before-detect

paradigm is implemented in the particle filter; the details of this approach are covered

in Section 5.1.2.

5.1.1 Compressive-Domain filtering: The Fast Smashed Filter

The smashed filter [10] is the compressive-domain analog of the well-known matched

filter. Like the matched filter, it is the maximum likelihood classifier for the case when

the observed data for each class come from a known manifold (e.g. shifted versions

of a template for the case of the matched filter).

Target classification is to be performed based on compressive measurements y =

Φ(x + w) of the spatial domain image x. Let each element of target class Cj lie on a

manifold defined by the function fj and parametrized by ρ:

x = fj(ρj). (5.1)
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This leads to the following formulation of the Generalized Maximum Likelihood Clas-

sifier (GMLC):

ĵ = argmax
j

p(y|θ̂j,Hi) (5.2)

Where ρ̂ is the maximum likelihood estimate of the parameter vector ρ under hy-

pothesis Hj:

ρ̂j = argmin
ρ
‖y − Φfj(ρ)‖2

2 (5.3)

Next, consider a simplistic description of the problem of visual classification. Im-

ages to be classified are shifted noisy versions of some template sj, and the compressive

measurement y is given by

y = Φ(x + w) = Φ(sj,u,v + w) (5.4)

where u and v are the x- and y-locations of the target, respectively.

When the fj(θj) are shifted versions of each other as above, the smashed filter

reduces to the following simple test statistic:

t = yTΦ†sj,u,v = yT
(
ΦΦT

)−1
Φsj,u,v (5.5)

The smashed filter is typically viewed as projecting the template into the com-

pressed domain and then performing an inner product with the signal to be classified.

Indeed, when many images are to be processed with the same set of templates, this

approach will typically be fastest since the compressed representation of each filter

can be precomputed and stored. However, (5.5) may just as easily be interpreted as

bringing the compressive measurement y into the spatial domain using least-squares

estimation and then performing the same inner product. When sj,u,v are shifted ver-

sions of each other, these inner products are a cross-correlation with the template, and

computation may be dramatically sped up using the FFT. I refer to this formulation

as the “fast smashed filter” to emphasize this fact.
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As intuition would suggest, the correlation estimates provided by the fast smashed

filter are noisy relative to those produced by the matched filter on the original im-

age. They are also severely degraded relative to the matched filter operating on a

reconstructed image. This performance degradation is quantified in Section 5.2.1.

5.1.2 Track-Before-Detect Particle Filter

After particles are resampled, the state of each particle is updated before the next

time step in accordance with the chosen Markov model of state evolution. Figure 2

gives a high-level pseudocode description of the algorithm.

State evolution and likelihood model

I have described the general operation of a particle filter; In this section I will discuss

the state evolution and likelihood update steps used for implementation of the tracker.

In this implementation, a first-order 2-dimensional motion model with scaling is used.

This is defined by a linear update step with additive noise, given as

pi = Api−1 + wi (5.6)

The state vector p is given by

p = [x ẋ y ẏ c]T (5.7)

where (x, y) is the target location, (ẋ, ẏ) is the target velocity, and c is the logarithm

of the target’s scale. The update matrix A is given by
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Algorithm 2 Particle Filter State Update Procedure.

Input: compressively sensed frames y1, ...,yN , initial target state p0 =

[x0 y0 ẋ0ẏ0]T

Output: Estimated states p
(j)
i , i ∈ [1, N ], j ∈ [1, q]

Initialize particle state p
(1)
1 ...p

(q)
1 ∼ p(p|p0)

Load target template s0,0

for i = 1 to N {for each frame} do

calculate smashed filter cross-correlation estimate C :=

IFFT2

(
FFT2

(
Φ†yi

)
FFT∗2 (s0,0)

)
for j = 1 to q {for each particle} do

Calculate likelihood lj := |Cyj ,xj |

end for

Resample to draw new particles p
(1)
i+1...p

(q)
i+1 ∼ Pr(p

(j)
i+1 = p

(k)
i ) = lk∑

m
lm

for each particle p
(j)
i do

Update state for next frame p
(j)
i+1 = Ap

(j)
i+1 + w

end for

end for
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A =



1 1 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1


. (5.8)

Likelihood updates are accomplished by cross-correlation with a template s, es-

timated using the fast smashed filter described in Section 5.1.1. Let sx,y denote the

image consisting of the template inserted at location (x, y), with zeros elsewhere.

Likelihood is then modeled by

p(p|y) ∝
∣∣yTΦ†sx,y

∣∣ . (5.9)

Note that this is something of an abuse of the term “likelihood,” since (5.9) does not

correspond to any probability distribution on y. This approach, however, is common

in the visual tracking community.

Track-before-detect Implementation

Track-before-detect is a paradigm in detection wherein estimates of target state and

presence/absence are maintained concurrently. This contrasts with the conventional

tracking paradigm, in which a detection is declared at the same time as a target

location estimate is first given. Track-before-detect may be viewed as a soft deci-

sion based approach to this problem. In this work, I adapt the track-before-detect

approach given in [7].

In the particle filter, track-before-detect is implemented as follows. State is defined

using a first-order motion model as in (5.7), with the addition of a binary “alive” state

a. The state vector and update model then proceeds as follows.
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p = [pT0 a]T (5.10)

A =

A0 0

0 1

 (5.11)

pi+1 =

 Api + w , ai = 1

[U(0, [w h]) N (0, σ2
vI) ai+1]

T
, ai = 0

(5.12)

ai+1 =

 Bern(Pb) , ai = 0

Bern(1− Pd) , ai = 1,
(5.13)

where p0 and A0 are the state vector and update matrix given in (5.7) and (5.8),

respectively. In other words, when a = 1 the particle is alive (i.e. target is present)

and updates proceed as in (5.6); when a = 0, the particle is dead and updates sample

the space of possible states. x- and y- positions are uniformly distributed over the

entire input image, and velocities are normally distributed with variance σ2
v . a follows

a Markov model in which a dead particle is “born” with probability Pb and a living

particle “dies” with probability Pd.

Likelihood estimation is also defined piecewise, based on whether a particle is alive

or dead. The likelihood is given by

p(y|p) =


∣∣yTΦ†sx,y

∣∣ , a = 1

γ , a = 0
(5.14)

Likelihood is calculated as normal for living particles and assigned a constant value γ

for dead particles. γ is selected to be less than the correlation peak height for a true

detection but greater than the peak height for a false detection; changing γ allows

some control over the trade-off between detection rate and false alarm rate.
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5.2 Experimental Results

The algorithm described in Section 5.1 was tested using simulations on several

relatively simple visual datasets. Datasets were deliberately chosen for high MACH

filter peak heights using a small number of filters; this allows the effect of direct

CS domain processing to be separated from the merits of the MACH/Particle filter

tracking approach. Two natural video sequences from the literature were chosen

for testing; the PETS2000 [5] and CDNET 2012 “Highway” [11] sequences. Both

video clips show vehicles moving against a static background under relatively constant

lighting conditions, allowing the use of frame differencing. The choice of vehicles as a

target also minimizes the number of templates needed, since vehicles are very nearly

rigid objects.

5.2.1 Quantifying the Performance of the Smashed Filter

As mentioned in Section 5.1.1, the smashed filter suffers from increased noise

relative to its non-compressive equivalent. For a given sensing rate r, SNR will be

reduced by a factor of
√
r [10], i.e. a 10 dB/decade SNR penalty is imposed due to

compression. In this section, I briefly compare this theoretical prediction with results

from a dataset of natural images.

In order to quantify the increased noise in the smashed filter test statistic, I use

the CIFAR-100 image training database, which consists of 50,000 32x32 RGB images.

Each image was converted to grayscale and normalized so that its mean was zero and

its `2 norm was equal to 1. Each normalized frame xi was then sensed using a

pseudo-random orthonormal sensing matrix Φ, generating compressive measurement

t = yi = Φxi. The estimated inner product yTi Φ†xi was then calculated, as used
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Figure 5.2: Average SNR of Smashed Filter for Varying Sensing Rate, CIFAR-100

Dataset

in the fast smashed filter test statistic. This was repeated for 10 different random

drawings of Φ, and the variance over all images and all trials was calculated.

Fig. 5.2 shows the effect of sensing rate r on the effective SNR of the test statistic

tsmash, defined as

SNR =
E2 [tsmash]

E [t2smash]
. (5.15)

As expected, noise variance increases as sensing rate decreases, with a 10-fold increase

in sensing rate r leading to a 10 dB improvement in SNR. Note that at high sensing

rates, the simulated results appear to outperform the analysis in [10]. I believe this

is because the xi are merely compressible and not perfectly sparse. As a result,

they contain a non-sparse component which appears as noise at low sensing rates

but is more accurately represented at high sensing rates. Work is underway to more

accurately quantify the noise characteristics of the smashed filter for compressible

signals.

5.2.2 PETS2000

The algorithm was first tested on the PETS2000 surveillance video dataset[5].

The purpose of this test was to bring the detection and tracking system to the proof
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Figure 5.3: PETS2000 Dataset. (a) Example Frame and (b) Difference Frame.

Figure 5.4: Trained MACH Filter for PETS2000 Dataset.

Figure 5.5: Increased Noise in Cross-Correlation Output due to Smashed Filter.

Note that no peak from the target is visible.
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Figure 5.6: Sample Frames from PETS2000 Dataset.

of concept stage of development by achieving detection and tracking at sensing rates

comparable to those required to reconstruct an image at reasonable perceptual quality.

This was accomplished, with the algorithm detecting the target at a 0.3 sensing rate.

The PETS2000 dataset was developed as a benchmark for outdoor person and

vehicle tracking. In the dataset, several different cars and pedestrians cross a parking

lot located in the camera’s field of view. Because it includes a static background, it

is a reasonable candidate for testing our algorithm. Vehicles are also seen only from

a few limited angles and scales, making the detection problem more tractable. To

further simplify matters, the same 201 video frames (frames 2700-2900 of the training

sequence) were used for filter training and determining detector performance. I argue

that reducing mismatch between the filter and the target in this way is valid, since our

goal is to study the effect of the smashed filter relative to equivalent non-compressive

tracker.

A single 128 × 128 pixel MACH filter was used to estimate target likelihood for

the particle filter importance sampling step. The MACH filter was trained as follows:

frames 2700-2900 of the differenced video sequence were cropped to a 64 × 64 pixel

window containing only the target, centered as well as possible by hand. These

cropped target regions were then zero-padded to 128× 128 pixels and used as input

to the MACH filter generator described in (3.11). Fig. 5.4 shows the spatial domain
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representation of the trained MACH filter, which is identifiable as the outline of a

vehicle.

Simulations were run on this dataset using the track-before-detect particle filter

implementation described in Section 5.1.2.

The tracker successfully detected the target at a sensing rate of 0.3 (4915 compres-

sive measurements for 16384 pixels). Figure 5.7 shows the tracker’s RMSE over time

for several different sensing rates. While the tracker was able to run on the PETS2000

dataset, the nature of the video sequence also served to highlight some limitations of

the algorithm. Most importantly, the limitations of the MACH filter are evident, as

it is only possible to cover a small range of the target’s rotation with a single filter.

Because of this, peak heights, and therefore SNR, for the detector are quite low, even

in the non-compressive domain. One possible approach to mitigating this effect is to

employ multiple filters, each covering a small range of target rotations. This leads to

a trade-off in the number of filters, as increased performance in individual filters is

balanced against increased false alarm rate across all filters.

Another limitation of the algorithm is its reliance on frame differencing. This

limits the tracker to detecting only moving targets, as is evident in Figure 5.7. When

the target vehicle stops and reverses direction, the tracker temporarily loses it and

begins to “wander” over the image until the vehicle begins moving again. One possible

approach to mitigating this effect is to maintain an estimate of the background and

subtract this rather than subtracting the previous frame. This approach is currently

being considered.

5.2.3 CDNET 2012 “Highway” Sequence

The CDNET 2012 dataset [11] is a benchmark dataset for testing motion detection

and tracking algorithms. It consists of several short video sequences including both
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Figure 5.7: Tracker root mean square error on PETS2000 dataset.

Figure 5.8: Sample frames from CDNET 2012 highway video sequence

indoor and outdoor scenes, but I will concentrate on a single sequence, “Highway”,

for tracker testing. The highway sequence (Fig. 5.8) consists of two lanes of cars

approaching the camera on a highway. 1700 RGB frames, each of size 320 × 240

pixels, are available; pixel-level annotations are provided for frames 470-1700. This

sequence was chosen because it allows the use of a single MACH filter with excellent

peak height; this presents a best-case scenario for tracking with a single template.

Because the video sequence contains multiple vehicle targets in most frames, no

attempt was made to perform detection. Multi-target detection and tracking is an

active area of research in and of itself and I expect multi-target tracking to be adapt-

able to the compressive domain with few modifications. Although detection was not

formally tested, it was observed that once a target moved out of frame, the tracker

quickly converged to a different target and began tracking it instead. This obser-
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Figure 5.9: (a) MACH Filter and (b) SVM Filter Trained for CDNET 2012 Highway

Dataset.

Figure 5.10: CDNET 2012 Highway Examples. (a) Example Frame, (b), Pixel-Level

Ground Truth Annotation, (c) Difference Frame with Positive and Negative Windows

Selected for Training.

vation, although not conclusive, is encouraging for the potential performance of a

detection algorithm on this dataset.

Two different methods, MACH and linear SVM, were used to train a filter for

cross-correlation. In both cases, frames 471-1700 of the video sequence were used

for template training and frames 1-470 were used for testing. The CDNET 2012

dataset labels targets at the pixel level; targets were identified using blob analysis

on the supplied annotation. A true example was generated by padding the target’s

bounding box by a factor of 1.5, cropping the resulting window, and resizing to 64×64

pixels. A false example of the same size was then generated by uniformly sampling

the image windows which did not contain any pixels belonging to any target. This

process is illustrated in Fig. 5.10.

Process noise w was normally distributed with covariance matrix

Σw = diag ([5 5 1 1 .05]) . (5.16)
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Table 5.1: Reconstruction Parameters for GAMP Algorithm.

Output probability N
(
y, σ2

yI
)

Output Variance σ2
y 13.01

Input probability Bernoulli-Gaussian

Input Bernoulli probability 0.005

Input Gaussian variance 500520

The CS tracker described above was compared with two other algorithms. First, a

baseline non-compressive tracker was used. This approach applied the same tracking

system directly to spatial domain image data, allowing virtually perfect and noise-

free reconstructions relative to the compressive methods. The baseline method is

thus a best-case scenario for the templates and tracking system used. Second, the

reconstruct-then-track approach was examined. This method first reconstructed dif-

ference frames using the generalized approximate message passing (GAMP) algorithm

[44] before performing cross-correlation with the template. Table 5.1 gives the pa-

rameters used for the GAMP reconstruction.

Figure 5.11 shows the target’s ground truth path, a sample path from the tracker

operating at r = 0.1 sensing rate, and the range of variation in 10 trials of the

algorithm. Figure 5.12 shows tracker mean absolute error on the CDNET 2012 dataset

as a function of sensing rate, and compares this against the baseline and GAMP

reconstruction approaches. The GAMP tracker breaks down suddenly at a sensing

rate of r = 0.01, while the smashed filter tracker with MACH filter shows much more

graceful degradation. The smashed filter tracker with SVM filter underperforms the

MACH tracker. Likewise, the Hadamard sensing matrix underperforms the Gaussian

case. The state-of-the-art STRUCK tracker [104] achieves an MAE of 3.6 pixels
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operating on non-compressive data. It slightly outperforms our algorithm, which

achieves an MAE of 4.6 pixels at a sensing rate r = 0.2 and 6.2 pixels at r = 0.005.

Another metric for the perfomance of a tracker is the success rate. Success rate

Rs, defined in [100], is the percentage of frames with overlap o > 0.5 between the

ground truth and estimated bounding boxes. Overlap is in turn defined as the ratio

of the intersection and the union between the ground truth and estimated bounding

boxes:

o =
area(B ∩ B̂)

area(B ∪ B̂)
. (5.17)

Success rate is chosen as a metric because it has the effect of normalizing over changes

in scale while remaining simple to compute. Figure 5.13 shows the success rate of

the three tracking algorithms (baseline/non-compressive, GAMP reconstruct-then-

track, smashed filter) as a function of sensing rate. Again, the GAMP tracker no

longer holds the target at sensing rates r ≤ 0.01 while the smashed filter tracker

continues functioning with success rate Rs > 0.9 at sensing rates as low as r = 0.005.

Once again, the linear SVM underperforms the MACH filter based tracker. Because

STRUCK tracks a constant-sized window, the success rate metric vastly understates

its performance under scale changes and is omitted from the plot.

The tracking algorithm’s runtime was compared with that of the GAMP reconstruct-

then-track approach. Table 5.2 summarizes the speed results for these simulations.

At a sensing rate of 0.01, frame rate is increased by a factor of 10 when employing

the smashed filter rather than the GAMP solver.

5.3 Conclusion

I have described an algorithm for visual tracking in the compressive domain which

does not require a computationally costly image reconstruction step. The algorithm is
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Figure 5.11: Tracker Paths and Ground Truth for CDNET Data, r = 0.1.
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Figure 5.12: Mean Absolute Tracker Error for Highway Dataset, Frames 80-135.
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Table 5.2: Comparison of Algorithm Framerates.

Algorithm Framerate (frames/s)

Baseline 1.18

GAMP 0.112

Smashed 1.12

able to successfully track moving vehicles in grayscale videos from stationary cameras.

I believe this algorithm represents a promising approach to the problem of detection

and tracking from compressed sensing cameras in a resource-constrained setting.

Beyond the clear computational advantages, the fast smashed filter + MACH

approach described here shows graceful degradation. When the sensing rate crosses

the phase transition point for the GAMP algorithm, the reconstruct-then-track ap-

proach abruptly fails along with the reconstruction algorithm - between a 0.01 and

0.02 sensing rate, in this case. The smashed filter tracker continues to function at

lower sensing rates, albeit with increased tracker error.
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Chapter 6

RECONSTRUCTION-FREE CS IMAGE CLASSIFICATION

In this section I present an alternate approach to direct inference, adapting the ex-

isting Deep Boltzmann Machine (DBM) method to compressive data. A DBM is

first pre-trained on non-compressive data and then adapted to CS data. Section 6.1

details modifications to the DBM training procedure to adapt it for use on CS data.

Results for the MNIST handwritten digit classification task are given in Section 6.2

and the significance of the results is discussed in Section 6.3.

6.1 Training Approach

A simple two-stage approach is used to adapt the DBM for use on CS data. The

DBM is first trained on non-compressive data x ∈ RN×1 to generate initial network

weights W0. This is done in order to most effectively learn the structure of the training

data, before it has been obfuscated by the compressive sensing operation. Next, a

sensing matrix Φ with orthonormal rows is chosen. An initial guess for layer-1 weights

W
(1)
CS is chosen according to the expression

W
(1)
CS = ΦW(1) (6.1)

where W(1) ∈ RN×P1 is the weight matrix containing the first-layer weights w
(1)
ij . This

provides an initial guess for a network which performs the same classification task

given the M × 1 input vector. The RIP implies preservation of inner products [10],

making this a plausible approach. However, this guess does not perform significantly

better than chance, and further training is needed. This stage 2 training is accom-

plished by running a backpropagation algorithm on a compressively sensed version of
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the same training dataset. Backpropagation has little effect on the weights of inner

layers but these weights have already been optimized by the stage 1 training.

6.2 Simulations

The training and classification approach described above was tested on the MNIST

handwritten digit dataset. The dataset consists of 28x28 grayscale images of the digits

0-9. These digits are divided into a training set of 50,000 images and a testing set of

10,000 images. MNIST was chosen as an initial dataset for testing because it presents

a well-defined problem with adequate training data, and a DBM-based system has

already shown high performance on this classification task [87]. This allows the effects

of adding compressive sensing to the system to be isolated.

The initial training used a DBM with 2 hidden layers (4 layers total). The number

of nodes was chosen as in [87] (Figure 3.2) with D = 784, P1 = 500, P2 = 1000, and

Pl = 10. A sensing matrix Φ was generated as a random orthoprojector and a DBM

was trained as described in 6.1. This was repeated with r swept from 0.01 to 0.4.

Figure 6.1 shows the progress of stage 2 training, in which backpropagation is used

to learn a set of weights specific to the chosen sensing matrix. The confusion matrix

for r = 0.4 is given in Table 6.1.

Figure 6.2 shows the results of this simulation. The network achieves a 1.21%

error rate at a sensing rate r = 0.4. As expected, reduced sensing rates lead to higher

error rates. In addition, the error appears to vary linearly with the compression ratio

N/M .

The algorithm can be compared against a naive reconstruct-first approach, again

shown in Figure 6.2. In this approach, the EMBGAMP algorithm [55] with a 2-level

Daubechies-4 wavelet basis was used to reconstruct the characters. EMBGAMP was

chosen because it achieves good reconstruction performance and does not require the
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Figure 6.1: Compressive DBM Error During Training, for Sensing Rate r = 0.4.

The CS-DBM achieves a 1.21% error rate. This is in contrast to the 0.99% error rate

of the standard non-compressive DBM, shown for comparison.

user to set any parameters before use. The reconstructions were then classified by

the standard (uncompressed) DBM. The algorithm performed poorly; I believe this

is because the DBM did not encounter any CS reconstruction errors during training

and therefore did not learn to account for them.

6.3 Discussion of Results

The training method and simulations described above show that the DBM ap-

proach can be used to perform classification directly on CS data. The MNIST hand-

written digit dataset was used as a test case, and showed steadily increasing error as

measurements were further compressed. This is in contrast to reconstruction algo-
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Table 6.1: Compressive DBM Confusion Matrix, r = 0.4

Predicted Digit (%)
T
ru

e
D
ig
it

0 1 2 3 4 5 6 7 8 9

0 99.6 0 0.1 0 0 0 0.2 0.1 0 0

1 0.1 99.7 0.1 0.1 0 0 0 0 0.1 0

2 0 0.4 98.9 0 0 0 0.1 0.5 0.1 0

3 0 0 0.1 99.1 0 0.3 0 0.1 0.3 0.1

4 0 0 0.1 0 98.8 0 0.4 0 0.1 0.6

5 0 0 0 0.6 0 99.1 0.3 0 0 0

6 0.3 0.2 0 0 0.1 0.4 98.6 0 0.3 0

7 0 0.2 0.6 0 0 0 0 98.9 0 0.3

8 0.3 0 0.2 0.2 0.1 0.2 0.1 0.2 98.4 0.3

9 0.2 0 0 0 0.6 0.3 0 0.5 0.4 98.0

rithms, which perform well up to a certain ”phase transition” point and then break

down. The behavior also differs from that observed in [95], where a minimum in

neural network error rate was observed, giving an optimal level of dimensionality

reduction. This is not surprising. The dataset (MNIST) and classification method

(DBM) were well suited to each other and showed good performance. With no need

to mitigate over-fitting, the dimensionality reduction process could only hurt. De-

spite this, the reconstruction-free algorithm outperformed the naive reconstruct-first

approach at all sensing rates.

The approach described in this section kept the number of hidden-layer nodes con-

stant as the sensing rate was reduced. I conjecture that an approach which instead

maintains a constant number of weights may show improved performance. If correct,
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Error rate steadily increases as the number of measurements is reduced. However,

there is no ”breakdown” point at which detection abruptly fails. The EMBGAMP

reconstruct-first approach is shown for comparison. It is not robust to CS reconstruc-

tion errors and shows poor performance, eventually reaching an error rate comparable

to random chance at low sensing rates.

there is an opportunity to improve error rate in the above-breakdown region of the

phase transition map. In the region where reconstruction fails, I believe misclassifica-

tion to be related to more fundamental limits on data compression and do not expect

large improvements from optimizing network parameters.

It was hoped that the initial weights given in (6.1) would show good performance

without additional training. This proved not to be the case; results were approxi-

mately equal to chance. Since the RIP guarantees the preservation of inner products,
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this failure must be explained. I believe the observed performance is caused by the

influence of noise, since compressive sensing will reduce SNR of the inner products

by a factor of
√
r [10].

Work is currently underway to move toward a network which does not need to

be trained for use with a specific Φ. I hope to accomplish this by training a larger

network on many randomized sensing matrices. In this way, I hope that the network

will learn to be robust to the increased noise of CS-based inner products.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this work I have explored several aspects of performing inference on compressively

sensed data. My aim has been two-fold: first to improve the accuracy of these in-

ferences, and second to reduce the computational burden of making them. I have

focused on the problem of a sensor similar to the single-pixel camera [1], with the

goal of targeting applications in short-wave infrared. Despite this focus, this work

should apply to a variety of imaging modalities, including magnetic resonance and

hyperspectral imaging.

In Chapter 4, I worked to improve reconstruction accuracy in CS videos without

regard for computational cost. My approach was to exploit statistical dependence

between adjacent video frames, in a paradigm that mirrors the block matching al-

gorithms employed by video codecs. I formulated the problem of reconstructing two

frames of CS video as an `1 basis pursuit problem. A sequence of two frames was

modeled as a single frame (the I frame), a displacement field predicting the second

frame (the P frame), and a residual encoding changes which cannot be modeled by

a translation-based prediction algorithm. Wavelet sparsity in both the I frame and

spatial sparsity in the prediction residual was promoted through the convex optimiza-

tion’s `1 term.

In simulations of multi-frame reconstruction, two cases were considered. In the

first case, optical flow was assumed already known; the Middlebury dataset includes

ground truth optical flow and was used for these simulations. As expected, the two-

frame optimization outperformed its single-frame equivalent, as measured by PSNR.

In the second case, a constant, but unknown, translation was assumed over the entire
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image. To generate two frames meeting this assumption, the PETS2000 dataset was

used. An arbitrary frame was chosen as the I frame, and the P frame was synthesized

as a function of the I frame and a randomly generated displacement vector. The

reconstruction algorithm estimated the motion vector using a diamond search and

performed reconstruction as described above. Again, PSNR of the reconstructed

frames was improved.

This algorithm and the associated simulations show the importance of exploit-

ing temporal dependence in CS video reconstruction algorithms. The importance of

explicitly modeling the distribution of prediction residuals is also shown. In some

simulations, the prediction residual was constrained to 0. Without sparsity in the

prediction residual, the reconstruction algorithm showed reduced performance, and

even showed decreasing PSNR as sensing rates increased. As with conventional video

coding, motion estimation alone is not enough.

Although Chapter 4 targeted CS video applications, it is relevant to still imaging

as well. The single-pixel camera architecture is not compressive in time and suffers

from effects analogous to motion blur in a conventional camera. At a measurement

rate of 32 kHz, a single-pixel camera still requires 7.4 seconds to acquire a 1024x768

pixel XGA image at a sensing rate of 0.3. InView Corporation mitigates this problem

by collecting multiple measurements in parallel–a low-pixel rather than single-pixel

approach. By applying motion estimation algorithms, the effective shutter speed of

CS cameras could be dramatically increased. Magnetic resonance imaging also suffers

from motion artifacts, with patients required to stay still over long scan times. Motion

estimation and correction in MRI is an active area of research and the nature of

MRI sensing presents the same chicken-and-egg problem as the single-pixel camera.

A solution to one problem is likely to be useful in the other. Another potential

application lies in “rolling shutter” correction for conventional CMOS cameras.
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In Chapter 5, I describe an automated vehicle tracking algorithm which follows

targets in CS video at computational speeds comparable to an equivalent non-CS algo-

rithm. This algorithm successfully holds targets at sensing rates below that required

for successful single-frame image reconstruction. The tracker operates in the tracking

by detection paradigm and employs a particle filter to maintain and update estimates

of target state. In each frame, detection is performed with the fast smashed filter,

which generates noisy estimates of image correlation with a target template. By per-

forming background subtraction and training templates based on difference frames,

clutter was dramatically reduced, at the cost of limiting the algorithm’s application

to moving targets with stationary backgrounds.

The tracking algorithm was tested on the CDNET2012 “highway” video sequence.

Two-dimensional target position and velocity were tracked, as well as target scale. In

tests, the tracker successfully held a target vehicle with 93% success rate at a sensing

rate of r = 0.005. In contrast, an equivalent reconstruct-first tracker achieved 79%

success at r = 0.005 and required a rate of r ≥ 0.01 to achieve success rates over 90%.

The tracker was also used as a detector in the PETS200 dataset. By introducing

a binary alive/dead variable to the particle filter’s state model, the algorithm con-

currently estimated target location and presence/absence. Starting from a uniform

prior distribution on target location, the algorithm was able to correctly identify and

track the target at a sensing rate of 0.3. However, a single target template was not

able to accurately track all target poses seen in the video well enough to outperform

a reconstruct-first tracker. Achieving this goal would require either a prohibitively

large number of filters, or a more sophisticated detection approach than the MACH

filter.

Chapter 6 considers deep Boltzmann machines as one possible way to translate

sophisticated machine learning algorithms to the reconstruction-free CS classification
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and detection problem. A DBM model was trained on non-compressive data, and its

network weights were projected to an equivalent CS model. This equivalent model

was then fine-tuned by further training on compressively sensed versions of the same

training data, generating a CS-DBM network trained specifically for a single sensing

matrix. This fine-tuning step was found to greatly reduce classification error.

The CS-DBM network was tested on the MNIST handwritten digit dataset. As

expected, error rate increased with decreasing sensing rate. In this case, error rate

was approximately proportional to 1/r. At a sensing rate of r = 0.4, a 1.21% error

rate was observed, compared with 0.99% for a non-compressive DBM. A conventional

DBM operating on CS data reconstructed using EMBGAMP, however, only achieved

a 1.27% error rate at r = 0.4, with much worse performance as sensing rate increased.

These results clearly demonstrate the inadequacy of the naive reconstruct-first ap-

proach to classification and the necessity of training networks specifically for use with

CS data.

7.1 Future work

Several open-ended questions remain in CS video reconstruction. First, there is

the relatively simple and mechanical work of extending the algorithm to more than

two video frames and quantifying the trade-offs involved. There is also the possibility

of placing more sophisticated priors on the prediction residual than simple spatial

sparsity. Beyond this, the reconstruction algorithm of Chapter 4 does not completely

solve the CS reconstruction problem for dense optical flow - the “chicken and egg”

problem of estimating movement without a fully reconstructed image remains. A nat-

ural first step is to alternate stages of motion estimation with image reconstruction.

However, the ideal system would maintain and concurrently update estimates of both

the reconstructed images and the corresponding optical flow fields. It would optimize
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an objective function that simultaneously sought compressibility of all video frames,

the optical flow fields between them, and the residual from the optical flow prediction.

The highly general graphical models of the message passing algorithms provide a po-

tential solution. In particular, both optical flow estimation [62] and CS reconstruction

have been formulated as `1 problems. The BiGAMP algorithm provides a potential

method for combining the two estimation problems in a single bilinear model.

The tracking algorithm of Chapter 5 also shows clear opportunities for improve-

ment. The particle filtering paradigm provides a powerful and modular framework for

continued improvement and optimization. Many improvements to the state evolution

model are possible; the track-before-detect particle filter used on the PETS2000 data

is one example. The addition of target scaling required for reliable tracking of CD-

NET2012 data is another. I believe, however, that the most important improvements

will come through new methods of estimating target likelihood. The current likeli-

hood model relies on estimates of correlation with a template image (the smashed

filter approach). It further improves performance by performing background subtrac-

tion and using a filter trained on difference images of the target. This approach is

powerful and allows tracking at very low sensing rates, but is only capable of identify-

ing moving targets in video sequences with stationary backgrounds. In the “Tracking

by detection” paradigm implied by the use of the particle filter, more sophisticated

classifiers and detectors are the drivers of tracking performance.

The DBM-based CS classifier of Chapter 6 represents an attempt to move beyond

correlation with a target template and apply recent developments in machine learning

to CS problems. While we consider a standard classification problem, the goal of this

research is to develop a fast and highly accurate likelihood estimation method for use

in tracking algorithms. We demonstrate the inadequacy of the naive reconstruct-first
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approach to classification, but the networks trained in Chapter 6 are only one of many

possible approaches to the problem.

A best-case reconstruct-first network must be developed for comparison with

reconstruction-free methods. This tracker must be as robust as possible to recon-

struction error. An obvious first step is to train the network on CS reconstructions

of training data, but there are unanswered questions. We can generate an arbitrarily

large volume of training data by sensing and then reconstructing the same sample

with different sensing matrices. How much must the training data be expanded in

this way for the network to learn invariance to noise? Does the number of nodes need

to be increased, and if so by how much?

Work must also be done to optimize the direct classification network’s size. The

CS-DBM must, in a sense, perform both reconstruction and tracking, a fact that

would suggest a larger network is necessary. In simulations, however, larger networks

suffered from overfitting and showed reduced performance, even when training data

were expanded by using multiple sensing matrices.

The CS-DBM was evaluated using Monte Carlo methods, specifically a variation

on Gibbs sampling. Applying belief propagation to the evaluation of DBMs is a

natural fit, and was partially attempted in [89]. Stability and convergence guarantees

for such a method could also be developed.

Beyond the DBM, other neural network architectures should be examined, most

notably convolutional neural networks. The DBM was selected because it is a gen-

erative model and it was hoped that it would learn a strong prior distribution for

the training dataset, but it is not the only possible choice of generative model. For

instance, the deep dream network achieved popular notoriety by employing a CNN

in a generative way.
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7.2 Final Remarks

This work is an attempt to broaden the applications of compressed sensing, par-

ticularly in areas where computational power is limited. Applications in video-based

surveillance and autonomous navigation were targeted. A form of model-based CS

is also discussed: videos have a compressible structure which does not translate into

sparsity in a straightforward way. By formulating a reconstruction problem based

on optical flow, CS sensing performance is improved. By developing algorithms that

perform inference on CS data at computational costs comparable to computer vision

algorithms operating on non-CS, new applications of CS sensors become feasible.

My hope is that this work leads to the widespread adoption of cost-effective high-

performance compressed sensing systems in a diverse range of imaging applications.
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NOTES ON NOMENCLATURE
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Vectors, Scalars, and Matrices

Scalars and scalar-valued functions will be italicized (e.g. x, y, α). Vectors will be

written in bold, (e.g. x, y, θ). Individual elements of a vector will be denoted with

a subscript, as in the example x = [x1 x2 x3 ]T . Unless otherwise specified, column

vectors are used. Matrices are neither bold or italic (e.g. A, Φ). Where possible,

matrices are denoted by capital letters.

Random Variables

When possible, random variables are denoted by capital letters (e.g. X) and specific

realizations of that variable are lowercase (e.g. x). Probability density functions

(PDFs) are denoted by the letter p, with subscripts to distinguish the densities of

different variables (e.g. pX(x)). The subscript is omitted when it is clear from context.

Estimates of a random variable or unknown value are denoted with a circumflex, or

“hat” (e.g. x̂).

Complex numbers

The symbol i is reserved for the imaginary unit. R, I, and C are the sets of real,

imaginary, and complex numbers, respectively.

Iteration

When convenient, j, k, and l are used as indices for iterative operations. Other

symbols may be used when they are more meaningful. For instance m will typically

denote iteration over elements of the measurement vector y ∈ RM×1. The letter t is

used to refer to both continuous and discrete time.
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