
FPGA Accelerator Architecture for Q-learning and its Applications in Space Exploration

Rovers

by

Pranay Reddy Gankidi

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2016 by the

Graduate Supervisory Committee:

Jekanthan Thangavelautham, Chair

Fengbo Ren

Jae-sun Seo

ARIZONA STATE UNIVERSITY

December 2016

 i

ABSTRACT

Achieving human level intelligence is a long-term goal for many Artificial

Intelligence (AI) researchers. Recent developments in combining deep learning and

reinforcement learning helped us to move a step forward in achieving this goal.

Reinforcement learning using a delayed reward mechanism is an approach to machine

intelligence which studies decision making with control and how a decision making agent

can learn to act optimally in an environment-unaware conditions.

 Q-learning is one of the model-free reinforcement directed learning strategies

which uses temporal differences to estimate the performances of state-action pairs called

Q values. A simple implementation of Q-learning algorithm can be done using a Q table

memory to store and update the Q values. However, with an increase in state space data

due to a complex environment, and with an increase in possible number of actions an agent

can perform, Q table reaches its space limit and would be difficult to scale well. Q-learning

with neural networks eliminates the use of Q table by approximating the Q function using

neural networks.

Autonomous agents need to develop cognitive properties and become self-adaptive

to be deployable in any environment. Reinforcement learning with Q-learning have been

very efficient in solving such problems. However, embedded systems like space rovers and

autonomous robots rarely implement such techniques due to the constraints faced like

processing power, chip area, convergence rate and cost of the chip. These problems present

a need for a portable, low power, area efficient hardware accelerator to accelerate the

process of such learning.

 ii

This problem is targeted by implementing a hardware schematic architecture for Q-

learning using Artificial Neural networks. This architecture exploits the massive

parallelism provided by neural network with a dedicated fine grain parallelism provided by

a Field Programmable Gate Array (FPGA) thereby processing the Q values at a high

throughput. Mars exploration rovers currently use Xilinx-Space-grade FPGA devices for

image processing, pyrotechnic operation control and obstacle avoidance. The hardware

resource consumption for the architecture has been synthesized considering Xilinx Virtex7

FPGA as the target device.

 iii

ACKNOWLEDGMENTS

I would like to express my profound gratitude to my Chair and Mentor Dr. Jekan

Thanga for presenting me with such an opportunity, for his guidance, support and

motivation. I would like to specially thank him for introducing me to the field of Artificial

Intelligence.

I would like to express my sincere gratitude to Dr. Fengbo Ren and Dr. Jae-sun

Seo, for taking their valuable time out and agreeing to be part of my defense committee.

Also, I would like to thank Dr. Fengbo Ren for providing me with an access and license to

Simulation tools.

I appreciate the support of my colleagues at SpaceTREx Lab, and would like to

thank graduate advisors Lynn Pratte, Toni Mengret and Sno Kleespies for their timely help.

Finally, I would like to thank my family for their immense support and

encouragement throughout my master’s studies at ASU.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION 1

1.1 Background .. 1

1.2 Problem Statement ... 4

1.3 Objective .. 5

1.4 Thesis Structure .. 5

2 LITERATURE REVIEW 6

2.1 Machine Learning Algorithms .. 6

 2.1.1 Reinforcement Learning Algorithm…………………………7

 2.1.1.1 Q-learning Algorithm ……….……….….................10

2.1.1.2 SARSA Algorithm ……….….……….….................14

2.2 Artificial Neural Networks16

 2.2.1 Perceptron …………………………………………….…...16

 2.2.2 Multi-Layer Perceptron ……………....……….….................18

 2.2.3 Types of Parallelism in Neural Networks…..…......................19

2.3 Q-learning using Artificial Neural Networks 20

2.4 Hardware Accelerators .. 21

2.4.1 Artificial Intelligence Accelerators.………………………...22

2.4.2 Field Programmable Gate Array Overview.…………........22

 v

CHAPTER Page

3 METHODOLOGY .. 25

3.1 Design Goals .. 25

3.2 System Description and Execution .. 25

 3.2.1 Geometric Description…………………………..…….…...26

 3.2.2 State Space…………..………………………………….….27

 3.2.3 Action Space…………………….………………..………..28

 3.2.4 Reward Mechanism…..……….………………..………….29

 3.2.5 Pseudo Code for Q-learning using Q-table………………...30

3.2.6 Pseudo Code for Q-learning using Neural Networks …...…31

3.3 Hardware Accelerator Architecture ... 35

3.3.1 Perceptron Q-learning Architecture……….………………35

3.3.1.1 Fixed Point Perceptron Q-learning Architecture……44

3.3.1.2 Floating Point Perceptron Q-learning Architecture…48

3.3.2 Multi-Layer Perceptron Q-learning Architecture………….52

3.3.2.1 Fixed Point MLP Q-learning Architecture……….…54

3.3.2.2 Floating Point MLP Q-learning Architecture…….…59

4 RESULTS AND DISCUSSION .. 64

4.1 MobotSim Simulations .. 64

4.2 Synphony Model Compiler Simulations ... 66

5 CONCLUSION AND FUTURE WORK .. 71

REFERENCES....... .. 73

 vi

LIST OF TABLES

Table Page

1. Sample Q Table Implementation ... 13

2. Platform and Wheel Parameters for the Simulated Bot 26

3. Sensor Parameters for the Simulated Bot .. 26

4. State Action Space for the Rover ... 29

5. Reward Mechanism Simulated .. 30

6. Peek of ROM with 10,000 Sigmoid Values .. 38

7. Clocks for Fixed Point Blocks ... 45

8. Fixed Point clocks per Single Q value update in Perceptron Q-learning 47

9. Clocks for each of the Floating Point blocks ... 49

10. Clocks per Q value update in Floating Point .. 51

11. Clocks for updating single Q value in a Fixed Point Q-learning MLP 59

12. Total cycles per single Q value update using Floating Point Q-learning MLP ... 63

13. Q-learning algorithm constants .. 64

14. Parameters used in Xilinx Power Estimator Tool ... 69

 vii

LIST OF FIGURES

Figure Page

1. Target Selection and Pointing Based on Navcam Imagery on MSL Rover 1

2. Deep Reinforcement Controller for Terrain Adaptation .. 3

3. Timeline of FPGA Based Neural Networks as of 2015 ... 4

4. Reinforcement Learning Demonstration with Reward Depicted in Gray 8

5. Discounting Rewards Along the Path of the Robot .. 9

6. Pseudo Code for Q-learning Algorithm ... 12

7. Storing Q values for Each State Action Pair .. 14

8. Pseudo Code for SARSA Learning Algorithm ... 15

. 9. Performace Comparison of Reinforcement Learnig Algorithm

 On the Maze Problem…………………………………………15

10. Schematic of a Perceptron .. 16

11. Power Efficiency Comparisons for Convolution Neural Networks 22

12. Reconfigurable Devices on a Xilinx FPGA .. 23

13. Schematic of FPGA Configurable Logic Block ... 24

14. Simulalted Bot with Temperature Cone and Geometric Parameters 27

15. One of the Environment Simulations ... 28

16. Pseudo Code for Q-learning Using Store Memory ... 31

17. Single Neuron Implementation for Q-learning .. 32

18. Multi-Layer Perceptron Implementation for Q-learning 33

19. Pseudo Code for Q-learning using Neural Networks .. 35

20. Implemented Perceptron Architecture Schematic for Supervised Learning 37

 viii

Figure Page

21. RAM based Architecture for Perceptron Q-learning .. 39

22. Action Sized FIFO based Architecture for Perceptron Q-learning 40

23. Control and Datapath Respresentation for Perceptron Q-learning 41

24. Stage 1 Execution for FIFO Based Q-learning Architecture 42

25. Stage 3 Execution for FIFO Based Q-learning Architecture 43

26. Error Calculation and Propagation Stage for Q-learning 44

27. Clocks per Action in Stage 1 for Fixed Point Perceptron Q-learning 45

28. Fixed Point Clocks for Learning Stage in Perceptron Q-learning 46

29. ROM Access Value Differences Between Floating and Fixed Point 48

30. Floating Point Clock Cycles for Stage 1 in Perceptron Q-learning 50

31. Error Generation, Propagation Stage for Floating point Perceptron Q-learning . 51

32. Control and Data Path for Q-learning Multi-Layer Perceptron Architecture 53

 33. Clocks per Action in Stage 1 for Fixed Point

 Q-learning Multi-Layer Perceptron…………………………………………55

 34. Clocks per Action in Stage 1 of Fixed Point

Q-learning Multi-Layer Perceptron…………………………… 56

35. Fixed Point Error Generation in Q-learning Multi-Layer Perceptron 57

36. Fixed Point Backpropagation for Q-learning Multi-Layer Perceptron 58

 37. Clocks per Action for Stage 1 in a Floating Point

 Q-learning Multi-Layer Perceptron .. 60

38. Clocks per Action in Stage 3 in a Floating Point Multi-Layer Perceptron 60

 ix

Figure Page

 39. Error Generation Step in Stage 4 of Floating Point

 Q-learning Multi-Layer Perceptron .. 61

 40. Error Generation and Propagation Representation for

 Q-learning MLP Floating point .. 62

41. MobotSim Simulation Results for Q-learning Algorithms 65

42. Bot Traversals for Various Q-learning Algorithms ... 66

43. Performance Values for Varying Environments in Q-learning Architectures 67

44. Utilization Values for Perceptron Q-learning in Simple Environment 68

45. Quick Estimate Tool using Utilization Values ... 68

 46. Power Estimator Tool Displaying Power Values for

 Floating Point MLP Q-learning ... 70

47. Total On-Chip Power Comsumption for Various Architecutres 70

48. Weight Level Pipelining Implementation for Q-learning 72

 1

CHAPTER 1

INTRODUCTION

1.1 Background

Space missions are often extremely challenging with long communication latencies

and operate in a complex environment compelling a need for implementing autonomous

and Artificial Intelligence (AI) algorithms on board. Typically, human level artificial

intelligent algorithms are computationally intensive and require huge processing power,

making it a concern for running such algorithms on space rovers [2]. The current maximum

utilization of AI present in the Mars Science Laboratory (MSL) rover is the AEGIS

(Autonomous Exploration for Gathering Increased Science) software, which helps the

rover to autonomously choose targets for the laser [3], as shown in figure 1.

Figure 1. Target selection and Pointing Based on Navcam Imagery on MSL Rover [3].

Reinforcement learning [4], is one of the potential learning algorithms concerned

on how an agent in a random un-modelled environment ought to take actions to maximize

 2

the cumulative future reward. Through trial-and-error interactions with its environment,

RL aids a robot to autonomously discover an optimal behavior. In RL, the human

interaction with the robot is confined to providing feedback in terms of an objective

function that measures the one-step performance of the robot rather than detailing

generalized close-form solution [5]. This is one of the key advantages of RL because in

real-world applications there is seldom any chance of finding a closed form solution to the

problem. The objective in RL is specified by the reward function, which either acts as

reinforcement or punishment conditioned on the performance of the autonomous agent

with respect to the desired goal.

Reinforcement learning has been in existence for 30 years, however the most recent

innovations in combining reinforcement learning with deep neural networks [6][7][8][17]

has paved a strong way for achieving human level intelligence. The system with such

approach has proven to beat humans in various video games by only using the pixels of

frames and game scores [7]. Some of the examples in robotic applications include, robots

learning how to perform complicated manipulation tasks, like the terrain adaptation of

locomotion skills using deep reinforcement leaning [8] shown in figure 2, and Berkley

robot, stacking Legos [9]. Robotic platforms running such algorithms have huge

computational demand with often unrealistic execution times and huge processing power

when implemented using traditional Micro controllers or CPU’s [10]. This requirement

paved way for development of accelerators which in theory can speed up the computations

at low-power. These accelerators consist of either Graphic Processing Units (GPU’s),

Application Specific Integrated Circuits (ASIC’s) or FPGA’s for delivering such a huge

performance requirement.

 3

Figure 2. Deep Reinforcement Controller for Terrain Adaptation [8].

Over past few years there had been a major prevalence in cloud based computations

which use deep learning algorithms on a cluster of high processing compute units. Recently

google developed an artificial brain which learns to find cat videos, using a neural network

that is built on 16,000 compute processors with more than one billion connections [11].

Such huge servers often consume a lot of power, for example one large, 50,000 square feet

data center consumes around 5MW of power which is enough to provide electricity for

5,000 houses [12]. Power and radiation is a major concern for space exploration rovers.

The curiosity rover’s processor RAD750, a radiation-hardened with a PowerPC

architecture running at 133MHZ having a throughput of 240MIPS, consumes a power of

 4

5W, while the Nvidia Tegra K1 mobile processors specifically designed for low power

computing with 192 Nvidia CUDA Cores consumes 12 W of power.

FPGA’s are starting to emerge as a reasonable competition for GPU’s in

implementing deep learning algorithms [13][14][15]. A timeline of FPGA development

and its applications in neural networks is shown in figure 3. Microsoft’s research paper on

accelerating deep convolution neural networks using specialized hardware demonstrates

its 2x performance improvements in accelerating Bing ranking [16]. Due to its prevalence

and existing wonders of combining deep neural networks with Q-learning, an accelerator

architecture for Q-learning using neural networks is implemented to thoroughly exploit its

performance.

Figure 3. Timeline of FPGA Based Neural Networks as of 2015 [21].

1.2 Problem Statement

Q-learning algorithm using neural networks tend to converge slower and therefore

have a slower completion time when compared against traditional supervised learning

approach. The reason can be attributed to the need for an exhaustive exploration of the

environment. Autonomous robotic systems running such algorithms tend to be slow in

performance and energy inefficient when implemented on a traditional microcontroller. An

 5

FPGA based fine grained parallel architecture of the algorithm exploits the parallelism in

a neural network, thereby processing Q values with higher throughput. This approach

reduces the learning time for Q value.

1.3 Objective

The objective of this thesis is to come up with an implementation of a hardware

accelerator architecture for Q-learning using perceptron and extend it to an architecture

design for Q-learning using Multilayer Perceptron. The work includes demonstration of

throughput calculation for floating point and fixed point architectural implementation when

executed on a simple and complex environment. The performance is compared against

CPU based implementation of the algorithm. Total on chip power consumption based on

the hardware resource utilization is also demonstrated for each of the architectures.

1.4 Thesis Structure

The structure of thesis is as follows, In Chapter 2 the concepts of Reinforcement

learning, Q-learning and Artificial intelligence accelerators have been discussed. Chapter

3 demonstrates the state space description and working of a Q-learning simulated system

on a CPU followed by the accelerator architecture for the Q-learning using a single

perceptron and Multilayer perceptron. Chapter 4 discusses on the results obtained and

Chapter 5 draws conclusions and presents a discussion about the future work.

 6

CHAPTER 2

LITERATURE REVIEW

2.1 Machine Learning Algorithms

Machine learning algorithms aim to solve the learning problem for an Artificial

intelligent system, by making a machine perform a function without explicitly mentioning

what the function is. It is a field of research, aiming to design machines that improve their

performance by adapting with the environment. Machine learning algorithms are broadly

classified into 3 types based on the type of problem a machine deals with and how a

machine interacts with its environment or experiences. Following are the 3 major types of

machine learning algorithms.

1. Supervised Learning Algorithm

2. Reinforcement Learning Algorithm

3. Unsupervised Learning Algorithm.

Using supervised learning algorithm, a machine models itself based on the

predefined training set. The training set includes the input data and the expected data also

called as a labelled data. The performance of the supervised learning algorithm is based on

how well is the training set designed, and how efficiently does the error help in learning

process.

Reinforcement learning algorithm is one step ahead of supervised learning which

uses a real-time reinforcement mechanism instead of training targets to model the system.

For every decision the machine takes, rewards are obtained and are applied as a feedback

to the machine. The aim of the machine is to maximize the total sum of rewards over the

course of its actions.

 7

Unsupervised learning algorithm, uses unstructured data with no labels. The goal

of the machine running an unsupervised learning algorithm is to describe a structure of data

based on how the data is organized. Complex input data is converted into clusters of

organized and simple structures.

Reinforcement learning and one of its variants Q-learning is discussed in detail, in

the following sections.

2.1.1 Reinforcement Learning Algorithm

 Reinforcement learning, is a powerful machine learning algorithm that combines

the concepts of dynamic programming [20] with supervised learning trying to solve human

level problems. The algorithm is concerned on how an agent in a random un-modelled

environment, ought to take actions so as to maximize the cumulative reward.

The traditional way of formalizing a reinforcement learning algorithm is to

represent it as a Markov Decision Process(MDP), in which transition from one state to

another state is only dependent on the current state and the action the agent takes. The

decision is independent of the future states. Following are the simple sequence of steps an

agent running reinforcement learning algorithms takes into consideration.

1. At each single step, an agent executes an action from a set of possible actions based

on a policy which is called as an action selection policy.

2. The environment detects the action performed by the agent and emits an

observation forcing the agent to move to a new state. In general, for robotic

environments the state movement is stochastic.

 8

3. The agent then eventually maps the observation with its reward function and

generates a reward signal which acts as reinforcements. The reinforcements can

either be positive or negative.

4. Based on the reward generated and the state action pair, the agent makes

modifications in the utilities of selecting an action when present in a state and also

updates its action selection policy.

Figure 4. Reinforcement Learning Demonstration with Reward Depicted in Gray [22].

The concept of exploration and exploitation plays a major role in Reinforcement

learning algorithm. With an exploitation policy, an agent only tries to perform those actions

which result in maximum immediate rewards, not taking into account the future rewards.

However, by an exploration algorithm, the agent does not consider the immediate rewards,

but always try to look for the future rewards increasing the time for convergence.

Discounting future rewards, provides an intermittent solution for the exploration

and exploitation problem. According to discount future reward policy, the total reward

 9

obtained in any state is a combination of immediate reward and the discount factor of future

rewards. Assuming that the Markov Decision Process has n states, where by the end of nth

state, the agent has successfully performed all of its optimal actions. At any point ‘τ’ the

total future reward ‘Rτ’ is equal to the sum of immediate reward rτ and the discounting

factor (γ) times the total future reward Rτ+1. Figure 5 demonstrates the concept of

discounting future reward for a robot traversal. The total reward at a time step τ, Rτ can be

expressed as in equation (1), where Rτ+1 is the overall future rewards.

𝑅𝜏 = 𝑟𝜏 + 𝛾𝑅𝜏+1 (1)

Figure 5. Discounting Rewards Along the Path of the Robot [22].

Reinforcement learning agents are classified into 2 types: Utility learning agents

and Q-learning agents. Utility learning agent learns the utility function and selects action

which maximizes the expected utility, while the Q-learning agent learns the action-utility

function, that is the expected utility of taking an action ‘a’ in a state ‘s’. The utility learning

 10

needs to know the model of the environment beforehand so as to determine the utilities.

These utilizes are determined only by knowing the state to which performing an action

leads to. However, Q-learning doesn’t need to know the model of the environment as it has

a capability of comparing utilities of its choices of actions without having the knowledge

of the upcoming state. Q-learning in more detail is discussed in the next section followed

by the introduction of another similar learning algorithm called State-Action-Reward-

State-Action (SARSA) Algorithm.

2.1.1.1 Q-learning Algorithm

Q-learning is one of the reinforcement learning techniques which finds and selects

an optimal action based on an action selection function also called as a Q function [1]. The

Q function helps in providing the utility of selecting an action, which takes into fact that

optimal action ‘a’ selected in a state ‘s’ leads to a maximum discounted future reward Rt+1

as in equation (1), however only if we continue to select optimal actions from that point

on. The Q function can be represented as follows.

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑅𝑡+1) (2)

The future rewards are obtained through constant iterations selecting one of the

actions based on existing Q values, performing an action in the future and updating the Q

function in current state. Assuming that an optimal action in future based on the maximum

Q value has been picked (However, picking an action based on maximum Q value might

not always be the case). The equation (3) demonstrates the action policy selected based on

the arguments of the maximum Q value. More details on action selection policy is

discussed later in this section.

 11

π(𝑠) = 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑄𝑡(𝑠, 𝑎)) (3)

After selecting an optimal action, the agent moves to new state, obtaining rewards

during this process. Assuming the new state to be st+1, the optimal value for next state is

found out by iterating through all the Q values in next state for various actions a’ and

finding an action a’t+1 which produces an optimal Q value in that state.

 𝑄𝑜(𝑡 + 1) = 𝑚𝑎𝑥𝑎′ 𝑄(𝑠𝑡+1, 𝑎′
𝑡+1) (4)

Based on the optimal Q value of future state, the Q value for the present state is

updated using equation (5).

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)+ ∝ [𝑟 + 𝛾. 𝑄𝑜(𝑡 + 1) − 𝑄(𝑠, 𝑎)] (5)

The equation (5) is the basis of Q-learning algorithm, described in [1]. The constant

parameters of the equation are ∝ and 𝜸. ∝ is the learning rate or learning factor with a

value between 0 and 1, the learning factor determines how much a Q error update

influences the current Q values. Large learning factor overshoots the local minimum of the

Q function. With learning rate equal to 1, the Q values cancel out, resulting in equation (6).

This represents a direct update of Q value with its target value. And with learning rate equal

to 0, the value of Q never updates and remains same as before thereby stopping learning

from happening.

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾. 𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑡 + 1) (6)

Another constant, 𝜸 is the discounting factor also set between 0 and 1. The

discounting factor takes into fact, what percentage of future rewards has to be taken into

consideration relative to the immediate reward. At discounting factor equals to 0, the agent

only takes immediate rewards into its consideration not considering the future rewards.

 12

This leads to the concept of exploration and exploitation tradeoff as discussed before.

Pseudo code for Q-learning is shown in figure 6.

Figure 6. Pseudo Code of Q-learning Algorithm

The above discussions, considers choosing an action greedily, that is choose an

action with its maximum Q value in the next state. However, there are other action selection

policies which are implemented in real-time.

a. Random action selection policy: An action is chosen at random irrespective of the

Q value, such selection policy can be useful for an agent that is present in a complex

environment trying to initially understand the environment.

b. Greedy Action policy: This action selection policy is used to select an action

greedily, which in the case of Q-learning, is to select an action with maximum Q

value.

c. ε- greedy Action policy: The action selection policy is used to select a greedy action

with a probability of ε.

d. Boltzmann Action policy: This is the most common selection policy, which chooses

the estimated best with a probability proportional to 𝑒𝑄(𝑥,𝑎)/𝑇.

 13

There are many implementations of Q-learning algorithm in real-time systems

[33][6][34]. Most of the them are based on 2 types of approaches: Q-learning using Q table

and Q-learning using neural networks. Q-learning using Q table, stores the Q values in

runtime in a 2D storage space. Table1, demonstrates how a Q table looks like, the Q values

for each of the state-action pair are stored in the Q table.

The Q table updates the Q values using equation (5). The size of Q table is equal to

the number of actions multiplied by the number of states, which acts as a bottleneck for an

environment with a complex state space and with multiple number of possible actions.

Q- Table Actions[1] Actions[i][j] Actions[n]

State[1] Q[1][1] Q[1][j] Q[1][n]

State[i] Q[i][1] Q[i][j] Q[i][n]

State[n] Q[n][1] Q[n][j] Q[n][n]

Table 1. Sample Q Table Implementation

Q-learning with neural networks, eliminates the usage of Q table with neural

network acting as a Q function solver. Instead of storing all the possible Q values, they are

estimated based on the output of a neural network. The neural network is trained with Q

value errors obtained from equation (5).

The next section discusses about the SARSA algorithm and is followed by artificial

neural networks, and equations pertaining to the training of neural networks. These

equations are the basis for the neural network architecture design of the hardware

accelerator.

 14

Figure 7. Storing Q values for each State Action Pair [22]

2.1.1.2 State-Action-Reward-State-Action (SARSA) Algorithm

 State-Action-Reward-State-Action (SARSA) algorithm is another form of

reinforcement learning algorithm which takes into consideration, the usage of control

policy to update the action selection pair. The algorithm differs from Q-learning in fact

that, Q-learning is considered to be an on-policy learning algorithm while SARSA is

considered to be an off-policy learning algorithm. The SARSA learning algorithm is shown

in figure 8.

 Q-learning provides a better set of Q-values in a frequently changing policy when

compared with SARSA due to the fact that Q-learning looks into the future while SARSA

updates its Q-values only with immediate rewards. SARSA algorithm is used to learn a

non-optimal but safe policy which avoids the negative or low reinforcements not

considering if the path is optimal. Performance comparison of SARSA and Q-learning

algorithm for a maze problem is presented in figure 9.

 15

Figure 8. Pseudo code for SARSA Learning algorithm [35]

Figure 9. Performance comparison of reinforcement learning algorithms on the maze

problem [36]

 16

2.2 Artificial Neural Networks

Artificial neural networks (ANN), is a field of machine learning inspired by

biological neurons. A neural network is made up of simple but many nerve cells also called

as processing elements. Multivariable dependency problems cannot be formulated using

an algorithm. There is need for a learning based approach for solving such problems.

Neural networks with the capability of learning as its most significant aspect is used for

such learning process. Classical network structures like the perceptron and multilayer

perceptron with their learning procedures are demonstrated in further sections.

2.2.1 Perceptron

Perceptron (modelled as a biological neuron) is as a single layer neural network,

with multi-dimensional inputs and a single output. A perceptron constitutes weights for

each of the inputs and a single bias, as shown in figure 10. The output of a perceptron is

calculated using equations (7-8). The equations (7-17) are derived from [19].

Figure 10. Schematic of a Perceptron [19]

 17

The weighted sum of all the inputs ‘net’ is calculated using the equation (7) where

N is the number of inputs to the perceptron. The summation of weighted inputs is termed

as Multiplier and accumulator (MAC) which would be frequently used in the design for

hardware schematic.

𝑛𝑒𝑡 = (∑ 𝑥𝑖 ∗ 𝑤𝑖)𝑖∈𝑁 (7)

The output of a perceptron, also called as the firing rate, is calculated using equation

(8), where f is the activation function. There are many activation functions implemented

from which sigmoid function has been chosen due its bounding, easy differentiability and

monotonic property [23] which eases the training process in a simple network.

 𝑂 = 𝑓(𝑛𝑒𝑡) =
1

1+𝑒−𝑛𝑒𝑡 (8)

Equations (7-8) constitute the feed forward algorithm for single perceptron.

Backpropagation algorithm is used to update the weights (wi) of neural network. The error

that needs to be back propagated is calculated based on the expected output, which in case

of supervised learning agent is obtained as an input from the user during training process.

The RL algorithm obtains the expected output using equation (5). The error value is

calculated using equation (9), where 𝑓′(𝑛𝑒𝑡) is the derivative of activation function.

𝛿 = 𝑓′(𝑛𝑒𝑡) ∗ (𝑇 − 𝑂) (9)

The error thus obtained is propagated backwards and weights are updated using

equations (10-11), where C is the learning factor.

∆𝑊 = (𝐶 ∗ 𝑂 ∗ 𝛿) (10)

 𝑊𝑛𝑒𝑤 = 𝑊𝑝𝑟𝑒𝑣 + ∆𝑊 (11)

An extension to the perceptron, Multilayer perceptron learning is discussed in next

section.

 18

2.2.2 Multi-Layer Perceptron

Multilayer perceptron (MLP) is a neural network model with more than one layer

of neurons or processing elements. The output of a multilayer perceptron is the function of

outputs of each of the individual processing node and the weights of links between each of

the nodes. The weighted sum of the MLP is calculated using equation (12).

𝑛𝑒𝑡𝑖 = (∑ 𝑂𝑗 ∗ 𝑊𝑗𝑖)𝑗 ∈𝐴 ∀𝑖 , 𝑖 ∈ 𝐵 (12)

B and A in equation (12) represents current and previous layer neurons. The output

of the MLP is calculated using equation (13), where f is the activation function.

 𝑂𝑖 = 𝑓(𝑛𝑒𝑡𝑖) =
1

1+𝑒−𝑛𝑒𝑡𝑖
 (13)

Error value for the MLP is calculated using equation (14). The error value is based

on overall firing rate of MLP which is extracted from the last layer of neural network. C in

the equation (14) denotes the last layer neurons and f’(net) is the derivative of sigmoid

function.

𝛿𝑖 = 𝑓′(𝑛𝑒𝑡𝑖)(𝑇𝑖 − 𝑂𝑖) ∀ 𝑖 , 𝑖 ∈ 𝐶 (14)

The error 𝛿𝑖, from the output layer is propagated to the hidden and input layers

using equation (15), D and E in equation (15) represents non output layer and output layer

neurons respectively.

 𝛿𝑖 = 𝑓′(𝑛𝑒𝑡𝑖) ∗ (∑ 𝛿𝑗 ∗ 𝑊𝑖𝑗)𝑗 ∈𝐸 ∀ 𝑖 , 𝑖 ∈ 𝐷 (15)

The change in weights are calculated and updated using equations (16-17)

respectively, in which C is the learning rate, while A and B represents current and next

layer neurons.

∆𝑊𝑖𝑗 = (𝐶 ∗ 𝑂𝑖 ∗ 𝛿𝑗) ∀𝑖, 𝑗 ; 𝑖 ∈ 𝐴 ; 𝑗 ∈ 𝐵 (16)

 19

 𝑊𝑖𝑗 = 𝑊𝑖𝑗(𝑝𝑟𝑒𝑣) + ∆𝑊𝑖𝑗 (17)

Multilayer perceptron is one of the variants of Deep Neural Networks. Any ANN

with more than one hidden layer is termed as a deep neural network. One of the problems

faced by a multilayer perceptron with more than one hidden layer is the vanishing gradients

problem [24]. The error while propagating backwards as represented by equation (15), gets

smaller and eventually vanishes. A solution presented for such a problem in a deep

multilayer perceptron neural network is to use a single layer auto encoder to determine the

parameters initially for each of the layers [25]. The main advantage of the deep learning is

the usage of a large amount of data to initially craft the features in an unsupervised manner.

In the next section the types of parallelism neural network presents are exploited.

2.2.3 Types of Parallelism in Neural Networks

 Neural networks have an advantage in terms of exhibiting various levels of

parallelism. The types of parallelism [19] in neural networks are as follows.

1. Node Parallelism: Each individual neuron can be implemented with individual

resources for each of the neuron. This type of parallelism can typically be

implemented on a Field Programmable Gate Array (FPGA), due to the potential

existence of large number of FPGA cells.

2. Layer Parallelism: Multilayer perceptron architecture presented in section 2.2.2

consists of more than one layer which can be parallelized with each of the layer

having resources of its own.

 20

3. Weight Parallelism: A single neuron as mentioned in section 2.2.1 consists of

blocks of multiple multipliers and an accumulator, which can be parallelized with

individual combination of weights and inputs having their own computational units.

The following section demonstrates the concept of implementing the Q-learning

algorithm with neural network.

2.3 Q-learning using Artificial Neural Networks

At the end of section 2.1.1.1 the problem faced by the Q table approach has been

discussed, and also the advantages of using neural networks for Q-learning has been

mentioned. Section 2.2.1 and Section 2.2.2 discussed supervised learning using neural

networks in which the Target (T) values are predefined and are given as an input to the

system as a part of the training process, however the Q-learning and other reinforcement

learning techniques rather than using the predefined target values, use the estimate of errors

based on the future values to perform the learning process.

In a neural network, Q values for a given state-action pair is stored in the form of

weighs and biases. To find the Q value for a given state and action, a feed forward step is

performed with inputs as the state and action vector and executing a feed forward algorithm

using either of equations (12-13) or equations (7-8).

The learning process happens by performing the backpropagation algorithm.

During the learning process, Q values for all possible actions in a state are calculated by

executing the feed forward algorithm for multiple number of actions. An action is chosen

by using one of the action selection policy, thereby a new state is determined based on the

action chosen. Q values for each of the new state are calculated for all possible future

 21

actions. This is followed by the error generation step which uses equation (6) to calculate

the error values. The weights are updated based on the error calculated using equations (9-

11) or equations (14-17).

2.4 Hardware Accelerators

Hardware accelerators are the functional blocks which are optimized and are

designed to offload computationally intensive tasks from the CPU or in fact any

microcontroller. These accelerators work alongside CPU’s in-order to increase the

performance of the system and improve the energy efficiency of the system. System

scheduler inside a CPU can be used to schedule different applications among different

accelerators present in a heterogeneous system. There are many forms of hardware

accelerators like Graphic Processing Units (GPU), Digital Signal Processors (DSP),

Application specific integrated circuits (ASIC), and Field Programmable gate arrays

(FPGA’s). GPU’s generally compute applications with a high throughput, however they

consume a huge amount of power. Nvidia’s Tesla K-40 consumes as much as 235W of

power when running double precision matrix-matrix multiplication (DGEMM) [26].

FPGA’s offer a compelling choice with a high throughput per power when compared with

GPU’s (Figure. 11) and short development and low cost overhead when compared with

ASIC’s.

 22

Figure 11. Power Efficiency Comparisons for Convolution Neural Networks [22]

2.4.1 Artificial Intelligence Accelerators

In past couple of years, we see an emerging class of microprocessor design like the

Vision Processing Units [27], Tensor Processing Units [28], Nvidia DGX-1 [29], Zeroth

Neural Processing Unit (NPU) [30], etc. which are specifically designed to offload Artifical

Intelligence applications like the computer vision, deep learning, and other data intensive

algorithms. These accelerators have their applications in robotics, self-driving cars, speech

recognition, search engines, voice control, etc. ASIC, General Purpose Graphic Processing

Units (GPGPU’S) and FPGA’S are the widely used AI accelerators.

2.4.2 Field Programmable Gate Array Overview

For past 20 years, there has been a consistent effort to introduce a greater

programmability into digital devices. Considering the perspectives in hardware domain,

there is always a drive to design devices with low cost, low power, smaller size and with

 23

high performance which presents a need to design a custom integrated circuits also called

as Application Specific Integrated Circuits (ASIC). However, for large productive runs,

the custom design based approach is not cost efficient. On the end of a software engineer

perspective, software applications can be developed onto standard processor architecture

like PowerPC, ARM, Intel, etc. Though such implementations are faster and have a very

low cost overhead, the non-existing direct relationship between hardware and software

creates a performance drop. Hence to solve such a problem, Field Programmable Gate

Arrays (FPGA’s) have been developed.

Figure 12. Reconfigurable Devices on a Xilinx FPGA [31]

Field Programmable Gate Array (FPGA) got its name because of the very less

overhead time required to program it on field. FPGA’s are made up of reconfigurable set

of resources, which are configured based on the type of function being implemented on it.

They are made up resources like Configurable Logic Blocks (CLB), Block Random Access

Memories (BRAM), Digital Clock Managers (DCM), Digital Signal Processors (DSP) and

Input-output blocks (IOB) as shown in figure 12. Pipeline stages, memory hierarchy,

 24

operators in data path and interconnects are customized for specific application running on

the FPGA.

CLB’s are the building blocks of FPGA which perform user-specified logic

functions. The array of CLB’s in FPGA are arranged in columns and rows, with routing

channels acting as an interconnect between them. The structure of a FPGA CLB is shown

in figure 13.

Figure 13. Schematic of FPGA Configurable Logic Block [32]

 25

CHAPTER 3

METHODOLOGY

This chapter presents the implementation methodology of the Q-learning algorithm.

A real-time implementation of the algorithm has been simulated on a small state space

rover. It is followed with demonstrations of hardware accelerator architecture

implementation for Q-learning.

3.1 Design Goals

For demonstrating Q-learning algorithm on real-time rover, 4 main factors are to

be taken into consideration.

1. The goal of the rover, indicating the variable the rover aims to maximize.

2. The number of sensors and their degrees of freedom, so has to clearly estimate the

state-space of the rover.

3. The possible actions a rover can perform, which gives the estimation of the size of

the action space.

4. The reward mechanism, indicating the value of rewards the rover acquires during

its process of learning.

3.2 System Description and Execution

Q-learning algorithm is simulated on the CPU with the help of Mobile robot

simulator which features a graphical interface, for simulating robots and objects. The

movement of the robot is configured with a BASIC editor. The rover is simulated with 2

wheels, 2 proximity sensors and 2 temperature sensors. The aim of the rover is to reach the

point of high temperature, while avoiding obstacles. The rover is simulated for multiple

start positions.

 26

3.2.1 Geometric Description

The bot has been configured with the platform and wheel parameters as in table 2.

The parameters have been chosen in a way so as to reduce the complexity of sharp turns

and to create a satisfactory temperature difference between 2 sensors.

D Platform Diameter 0.5 m

d Distance between wheels 0.35 m

Dw Wheel Diameter 0.2 m

Ww Wheels Width 0.04 m

Table 2. Platform and Wheel Parameters for the Simulated Bot

The temperature sensor cone of 400
 has been chosen as shown in figure 14, to cover

the complete forward path not leaving any undetected holes in front of the rover. Proximity

sensors with a range of 0.3m – 2m has been considered based on the platform diameter

value. The value is in between a range of 1 to 4 times the platform diameter.

Sensor cone 40 o

Proximity sensors 0.3 – 2 m

Percentage of misreading 0.2 %

Table 3. Sensor Parameters for the Simulated Bot

 27

Figure 14. Simulated Bot with Temperature Cone and Geometric Parameters

3.2.2 State Space

The state space of the bot is formulated based on the sensor readings, which are

dependent on the environment the bot is currently in. The environment is modelled in the

simulator as shown in figure 15. Let the value on the left sensor be LT, right RT, Front FP

and back Bp. The possible states for the 2 temperature sensors are 3 in total, when left

temperature sensor value greater than right (LT > RT), when right sensor value is greater

than left (LT < RT) and if both are equal (LT == RT). There are 2 additional states for

temperature sensors, to make sure that the bot does not stop pursuing its goal which is

determined based on change in temperature for 3 consecutive iterations. This is indicated

by GT and GF representing when there is a change, and when this no change respectively.

Similarly, there are 2 states for front proximity sensor indicating if there is an obstacle in

 28

front (FPT) or not (FPF) and 2 states for proximity sensor at the back indicating if there is an

obstacle in back (BPT) or not (BPF).

Figure 15. One of the Environment Simulations

The total possible states come out to be 24 in total. However, the realistic state

space when considering image pixels as the input would be exponentially large when

compared to our simulated state space. For example, for the implementation of Q-learning

in ATARI, the number of states are 1067970.

3.2.3 Action Space

 Possible actions a rover can take in this situation are to either move front, back, left,

right or stay at the same place. This has been modelled by the movement of individual

wheels. Each wheel can have 3 possible actions, stop (0), move forward (1), or move

 29

backward (-1). Combining actions for both the wheels, the action space has a size of 9(3*3)

possible actions (A0-A8). Combining state space and action space, the Q table looks in the

format as shown in table 4.

 A0 A1 A2 A3 A4 A5 A6 A7 A8

State 0 Q00 Q01

Q values

Q08

State 1 Q10 Q11 Q18

State 2 Q20 Q21 Q28

……………………………

.

…………

State 22 Q220 Q221 Q228

State 23 Q230 Q00 Q232 Q233 Q234 Q235 Q236 Q237 Q238

Table 4. State Action Space for the Rover

3.2.4 Reward Mechanism

Rewards play a major role in the learning of bot. Reward mechanism has been

chosen in a way as to avoid collisions and force the rover to reach its goal. Maximum

reward is presented to the bot, when the bot reaches its goal, that is when a high temperature

value is reached. Approaching a high temperature value is also a desired situation for which

a sufficient positive reward is allotted. If there is no change in temperature values with its

previous iteration, no rewards are allotted. A collision is to be highly avoided for which a

negative reward is allotted if in case such a situation occurs. No prolong change in

temperature is also undesired, hence a negative reward is allotted if the rover doesn’t

 30

change its state continuously for 3 cycles. Approaching or not approaching goal is

determined based on the changes of temperature values, if the change is positive, it

indicates the rover is approaching its goal else, the rover is not approaching.

State Reward

Reached goal 10

Approaching goal 5

Not Approaching goal -5

No change in readings 0

Collision -10

Prolong no change -10

Table 5. Reward Mechanism Simulated

3.2.5 Pseudo Code for Q-learning using Q table.

Q table representation of Q-learning algorithm consists of Q values stored in the

form of Q table. Each table entry represents the Q value associated with the state-action

pair. The size of the Q table depends on number of possible states an agent can be in and

number of possible actions a rover can perform.

Q table is represented by a 2D array data structure, the array is indexed with state

and action values. The sax basic language provides access to various inbuilt functions

which are used to get the position of the bot, move the bot, set the direction and also set

the speed for the bot.

 31

Figure 16. Pseudo code for Q-learning using Store Memory

3.2.6 Pseudo code for Q-learning using Artificial Neural Networks

Q-learning using Neural networks omits the usage of Q table, thereby reducing the

space requirements for Q table storage. Initially a single perceptron with 6 inputs and one

output, has been implemented to calculate the Q value. Each of the 6 inputs are associated

with 6 weights, and an additional bias. Figure 17 shows the perceptron implementation;

The target Q values are calculated according to equations (7-8) and the weights of the

perceptron are updated using equations (10-11). The error generation process is not as

direct as that of the supervised learning, there is need for more than one feed forward step

to generate the error.

 32

Figure 17. Single Neuron Implementation for Q-learning

Single Perceptron based design is extended to design a Multi-layer perceptron for

calculating the target Q values. For this implementation a neural network with 6 input

neurons, 4 hidden layers and 1 output layer is implemented. Each of the 6 input neurons

are connected to either the state or action. Figure 18 presents the MLP architecture for the

implemented algorithm.

 33

Figure 18. Multi-Layer Perceptron Implementation for Q-learning

The target Q values are calculated based on equations (12-13), with input as vector

containing state and action pair. The error is propagated according to equations (14-17).

The propagated error is used to update the weight and bias values. The target Q value for

propagating error is determined by equation (5). To obtain the target Q value, or the Q error

to be back propagated, the feed forward step that constitutes equations (12-13) is run for

twice the number of possible actions in a state. Once for calculating Q values for current

state and next time to calculate the Q values for future state.

 34

Figure 19. Pseudo Code for Q-learning using Neural Networks.

The pseudo code for Q-learning using neural networks is demonstrated in figure

19. The environment sensing, rewards, action selection and performing an action is same

as that of Q table implementation. However, the major difference is the usage of Neural

networks for generating and updating the Q values.

 35

3.3. Hardware Accelerator Architecture

Following section demonstrates the architectural implementation of the hardware

accelerator for Q-learning algorithm. The flow of demonstration is as follows.

1. Single Neuron Architecture implementation: Starts with a single neuron

architectural implementation for supervised learning and using some of the

implemented features, move on to implement reinforcement learning (Q-learning

Algorithm). Implementation for fixed and floating point is demonstrated with

throughput calculations.

2. Multilayer Perceptron Architectural implementation: Starts with the architectural

implementation for supervised learning, and proceed with an implementation for

reinforcement learning (Q-learning) carrying forward the features of supervised

learning. Floating point and Fixed point throughput calculations will be

demonstrated.

The above implementations are demonstrated using a node level, layer level and

weight level parallel architecture, which does not scale well for a very large deep neural

network with more than billion state-space mappings or with a very large number of

neurons. Hence a pipelined approach is needed. The architectures are designed from a

block level perspective using Synphony Model Compiler toolset, Xilinx System Generator

and MATLAB.

3.3.1 Perceptron Q-learning Architecture

As seen in figure 10, a neuron constitutes weights, bias and an activation function.

The equation (7) clearly presents a requirement for usage of multiplier and accumulator

 36

(MAC) for calculating the value of net. The ‘net’ value of the neuron is progressed through

the activation function to calculate the output or the firing rate of the neuron as in equation

(8).

The weights and biases are the parameters of a neuron. Weights are read during the

feedforward path to calculate the output of a neuron, and are updated after the

backpropagation path. For a fine weight level parallel architecture, a First In First Out

memory architecture (FIFO) for each individual inputs has been implemented to store and

update the weights in parallel. There are many types of hardware schematic

implementations for activation functions [18] [19], out of which Coordinate Rotation

Digital Computer (CORDIC) based approach and Look Up Table (LUT) based approach

have been considered.

The LUT is implemented using a Read Only Memory (ROM). ROM consists of pre

calculated sigmoid values for each of the inputs, and the address for the ROM is generated

using the Address Translation block (AT). The size of ROM plays a role in the accuracy

of the sigmoid value; an increase in the size of ROM, indicates the increase in the

sensitivity range of the input, thereby estimating output with greater accuracy. A more

accurate and complex approach can be implemented using a CORDIC block. However,

increase in complexity of feedforward path with additional cycles leading to an increase in

complexity for synchronization and a reduction of throughput made it advantageous to use

ROM over CORDIC. With an increase in number of neurons, ROM size reaches its limit

which creates a requirement to use a CORDIC based approach sacrificing the throughput

for a greater accuracy. Other approaches like piece wise linear interpolation algorithm [13]

can also be implemented to calculate the sigmoid value.

 37

The designed architecture for a single perceptron supervised learning is shown in

figure 20, the variables are obtained from equations (7-11). Q-learning in a neural network

differs from supervised learning in a fact that the training output values are not correct

exemplars, but estimates.

Figure 20. Implemented Perceptron Architecture Schematic for Supervised Learning

The implemented architecture is weight level parallelized. For one pass during

feedforward step the output is calculated for all weights and inputs (similar to the state-

action space in Q-learning). There are ‘w’ number of multipliers for each of the input-

weight pair. Adder or group of adders (in case of floating point) in feed forward path is

used to calculate the value of ‘net’ as in equation (7). Two ROM’s as in figure 20 are used

 38

one for the sigmoid calculation in feed forward path and other for derivative of sigmoid

calculation in backpropagation path as in equation (9).

Table 6 gives a peek of the ROM values for sigmoid calculation. An address

translation block is used to translate the output net to appropriate ROM address. The output

of ROM is an approximated sigmoid of net function approximated accurately by 4 decimal

places.

Net ROM Address ROM Data

0 0 0.5000

0.0001 1 0.5000

0.0002 2 0.5000

0.00023 2 0.5000

0.5627 5627 0.6371

0.9999 9999 0.7310

Table 6. Peek of ROM with 10,000 Sigmoid Values

 Before moving to Q-learning Architecture, an intermittent architecture is presented

replacing the fixed target output by a Q table. The architecture in figure 21 demonstrates

the use of RAM for storing the Q values. Error is determined by the Q-learning equation

(5), with rewards, learning factor and discounting factor provided in the design.

Considering the fact that all the Q values are stored in a Q table, the use of such architecture

introduces a challenge of using a large size RAM for storing Q table, which was the main

reason for using a neural network in first place.

 39

Figure 21. RAM based Architecture for Perceptron Q-learning

In the final architecture presented in figure 22, RAM (that stores entire Q table) is

replaced with 2 FIFOs of sizes equal to the number of possible actions in a state. The FIFOs

are used to store the Q value for all actions in the current state, and Q values of all actions

in the future state respectively. In general, the number of possible actions in a state are very

less when compared to the number of total states in a system, hence replacing an action-

space sized RAM with an action sized FIFO sounds to be an efficient solution. Calculation

of Q values per each action is done using a feed forward pass through the neural network.

 40

Figure 22. Action Sized FIFO-based Architecture for Perceptron Q-learning

The execution of algorithm is divided into 5 major stages. Transition to one stage

from other stage is done through a control bus from a controller. Following are the 5

stages of the algorithm:

1. Calculate the Q values for all actions in a state by executing the feed forward

algorithm for A times, where A is the number of possible actions in a state.

2. Select an action at, using one of the action selection policies mentioned in section

2.1.1.1, and move to a new state st+1.

3. Calculate the Q values for all actions in the future state st+1 by executing the feed

forward algorithm for A number of times, where A is the number of possible actions

in next state.

 41

4. Set the error signal using equation (5) from section 2.1.1.1.

5. Using this error signal, the neural network is trained by propagating error

backwards based on equations (9-11).

Control path and data path for the architecture is shown in figure 23. Feed forward

stage is enabled for calculating the Q values for each of the 2 stages, i.e. stage 1 and stage

3. Error propagation and backpropagation are enabled after 2 feed forward states for

updating the weights and biases.

Figure 23. Control and Data Path Representation of the Perceptron Q-learning

Architecture

The blocks enabled during stage 1 are shown in figure 24. Two FIFOs are used to

store the Q values for current and next state. During stage 1, current state FIFO is enabled

 42

storing the Q values for each of the possible actions. The FIFO for future state is not read

or written and is in disabled state, same is the case for blocks in backpropagation.

Figure 24. Stage 1 Execution for FIFO based Q-learning Architecture

The stage 3 for the learning architecture as shown in figure 25, is similar to stage

1, the only difference being the usage of different FIFOs based on whether the forward

pass calculates Q values of current state or Q values of next state.

The stage 2 is an action selection policy implemented as a MATLAB function,

which in real-time scenario would be implemented by a CPU. An action is chosen based

on the Q values in the current state. As mentioned in Section 2.2.1, an action policy can be

 43

completely greedy by selecting an action with maximum Q value or 90% greedy, during

which an action is selected 90% of its time based on the maximum Q value.

Figure 25. Stage 3 Execution for FIFO based Q-learning Architecture

The error generation is processed during stage 4 and propagated during stage 5 of

the algorithm. The error generation step uses equation (5) for calculating error values. Each

of the Q values from the future FIFO is read and an optimal (maximum value) is

determined, by comparing those values. During stage 5 process, the error calculated using

equation (5) is back propagated using equations (9-11). The complete schematic flow for

stage 4 and stage 5 is demonstrated in figure 26.

 44

Figure 26. Error Calculation and Propagation Stage for Q-learning

3.3.1.1 Fixed Point Perceptron Q-learning Architecture

Fixed and floating point represent the storage format for numerical data, fixed point

implies the presence of fixed number of digits before or after the decimal point. Fixed point

parameters in a Synphony Model Compiler (SMC) tool has word length and fraction length

as its input parameters. The accuracy and power (resource utilization) tradeoff is done

modifying the lengths of word size and fraction size. The number of clock cycles required

for each of the fixed point hardware blocks in SMC is presented in table 7.

 45

Hardware Clocks

FIFO (push,pop), ROM, RAM 1

Input port (read) 1

Multiplier, Adder, Comparator 1

Translation 1

Table 7. Clocks for Fixed Point Blocks

Assuming there are A actions per state and S states in total, according to figure 27,

The stage 1 for Q-learning consumes 3 clock cycles for calculating each Q value and

storing in FIFO. Therefore, for a single execution of stage 1, the total number of clocks

required is equal to 3A.

Figure 27. Clocks per action in stage 1 for Fixed Point Perceptron Q-learning

Stage 2 comprises of action selection (state modification) policy. The state

modification policy has to be determined real-time and cannot be calculated based on the

 46

existing values. A block with 0 clock cycles delay has been modelled for the action

selection policy. Stage 3 and Stage 1 have similar execution strategies. Stage 3 and Stage

1 consume same number of clock cycles and the only variant between two stages is the

state-action vector inputs. Therefore, the number of clock cycles for calculating the Q

values for the future state is 3A.

Figure 28. Fixed Point Clocks for Learning Stage in Perceptron Q-learning

The last two stages are combined in a single block diagram shown in figure 28. The

error propagation includes calculating the future optimal Q value (based on Qt+1 values in

its FIFO), multiplying with the discounting factor and adding the reward value. The error

is propagated to update the weights and biases of the neuron, which implies updating the

FIFO values. The total number of clocks for updating the FIFO values is the combination

 47

of ‘3A - 2’ cycles for FIFO read, maximum calculation (includes secondary FIFO

read/write with comparator) and 1 cycle for updating weights in parallel, totaling to 3A -1

cycles.

Stages Clocks

Stage 1 3A

Stage 2 0

Stage 3 3A

Stage 4+5 3A-1

Total Cycles/ Q value 9A - 1

Table 8. Fixed Point Clocks per single Q value update in Perceptron Q-learning

The total number of clocks for updating a single Q value is 8A, as in table 8. The

throughput calculation as shown in the table 8 is independent of the number of states,

however it is dependent on the number of actions per state due to the fact that all possible

actions in a state are to be considered for updating a single Q value.

The ROM used in the architecture for calculating the output Q value is preceded by

an address translation block and a MAC block, the translation block and MAC block

outputs value based on the type of numerical representation of the blocks. For example,

figure 29 shows the difference in calculated ROM output for same set of inputs and same

ROM data. The reason is tied to the fact that, one of the representation is of floating point

and the other is a fixed point implementation. Floating point implementation of the

architecture is demonstrated in section 3.3.1.2

 48

Figure 29. ROM Access Value Differences Between Floating and Fixed Point

3.3.1.2 Floating Point Perceptron Q-learning Architecture

Floating point numbers follow a number representation in the form of 𝑚 ∗ 2𝑒,

where m is the mantissa and e is the exponent. While in fixed point, the gaps between 2

adjacent numbers is always 1, in floating point the gaps between 2 adjacent numbers is not

uniformly placed.

The floating point blocks in SMC tool have its clocks dependent on the amount of

pipelining involved and the dynamic range of the number. Table 9 shows the number of

clock cycles for each of the used blocks

 49

Hardware Clocks

Input port (read) 3

Multiplier 3

Adder 9

Translation 3

Fixed to Floating 2

Floating to Fixed 3

Table 9. Clocks for Each of the Floating Point Blocks

Throughput calculation for floating point computation differs from fixed point in a

fact that the throughput is dependent on the size of the state vector which is not desirable.

The reason for the dependence is because of the weight level parallelism implementation

of the architecture. However, the state vector and state size are different from each other;

the latter (state size) is obtained from the former (state vector size). For example, the

implemented rover consists of 24 states, however the size of state vector is equal to 4.

Similarly, the number of possible actions is 9, however the size of action vector is equal to

2. Hence, throughput dependence on the size of action and state vector would not affect

the performance of implemented architecture.

The number of clock cycles for stage 1 is demonstrated in figure 30. For a single

pass, one Q value is calculated and thus for completing the entire stage 1, ‘A’ number of

forward passes need to be executed, thus obtaining total number of clocks as

‘A(14+9(s+a))’, where s and a are size of state and action vector

 50

Figure 30. Floating Point Clocks for Stage 1 in Perceptron Q-learning

The step 2 is the action selection policy which is modelled in MALTAB with a zero

block delay similar to that of fixed point. An action is selected and performed in stage 2

leading to a stage st+1. The Q values for the next state is calculated in stage 3, Figure 30

also demonstrates the number of clock cycles utilized for calculating Q values per each

action in the future state. The total number of clock cycles in stage 3 is equal to the total

number of clock cycles in stage 1.

The final state for learning algorithm is generating error and back propagating it.

Each of the Q values in the next FIFO state is compared with each other to find the

maximum Q value thereby generating the error according to equation (5). The error is back

propagated to update each of the weights in parallel which happens in a single cycle. The

total number of cycles required for updating each of the existing weights and biases is equal

to ‘3A + 40’ cycles. An observation that can be made here is, that the number of cycles in

backpropagation is independent on the number of weights or the input vector size.

 51

Figure 31. Error Generation and Propagation Stage for Floating Point Perceptron Q-

learning

The total number of clock cycles for updating one Q value is obtained from the sum

of total clock cycles for stage 1, stage 2, stage 3 and stage 4. The total number of clocks is

shown in table 10.

Stages Clocks

Stage 1 A*(14 +9*(s+a))

Stage 2 0

Stage 3 A*(14 +9*(s+a))

Stage 4+5 3A + 40

Total Cycles/ Q value update 31A + 18A*(s+a) + 39

Table 10. Clocks for Q Value Update in Floating Point

 52

3.3.2 Multi-Layer Perceptron Q-learning Architecture.

Multilayer perceptron is a combination of one or more neurons arranged in layers,

with each layer comprising of neurons with same feature as that of a perceptron. The error

generated is back propagated to each of the previous layers, updating the weights and biases

of the neurons as in equations (12-17).

MLP for Q-learning algorithm consists of an input layer with number of neurons

equal to the size of state plus action vector, with one output layer and one or many deep

layers. However, for the current accelerator implementation, only one hidden layer is

considered. MLP accelerator implementation comprises of each of the neuron designed

with the same architecture implementation as that of previous sections. There are few

additional blocks named backpropagation included which works quite differently from that

of backpropagation algorithm in a single perceptron. Node level, Layer Level and Weight

level parallelism is exploited as described in section 2.2.3. This implementation provides

the maximum possible throughput an architecture for Q-learning can achieve, due to the

exploitation of all types of parallelism. However, such implementation is not suggested for

a very large neural network or for a complex environment, for which resource utilization

is more of an importance.

The control and data path flow for the MLP Q-learning architecture is demonstrated

in high level in figure 31. The data flow process in the above architecture comprises of feed

forward step in layer 1, layer 2, layer3, updating the FIFO values for current state and next

state, finally error generation and backpropagation through layer 3, layer 2 and layer 1.

 53

Figure 32. Control and Data path for Q-learning Multi-Layer Perceptron Architecture

The execution of the algorithm is divided into 5 major stages controlled by the control

signal generator as shown in figure 32. The 5 stages are as follows.

1. Calculate the Q values for all actions in a state by executing the feed forward

algorithm in layer 1 followed by layer 2 followed by layer 3 for ‘A’ number of

times, where ‘A’ is the possible number of actions per state.

2. Select an action at using a 90% greedy policy in MATLAB, and move to a new

state st+1.

3. Calculate Q values for all actions in next state st+1 by executing the feed forward

algorithm in layer 1 followed by layer 2 followed by layer3 for ‘A’ number of times,

where ‘A’ is the possible number of actions per state.

4. Set the error signal as in equation (5) from section 2.1.1.1.

 54

5. Use this error signal to train the neural network by propagating backwards updating

weights and biases of each of the input layer as in equations (14-17) from section

2.2.2.

3.3.2.1 Fixed Point MLP Q-learning Architecture

Fixed point implementation of MLP algorithm constitutes same blocks as that of

single neuron, however the MLP is not a linearized version of single neuron. The reason is

due to the fact that the backpropagation algorithm is different in both the implementations.

Three FIFO’s from each of the single neuron in layer 1, layer 2 and layer 3 have been

eliminated, however the MLP constitutes 3 FIFO’s independent of the number of neurons.

Stage 1 for the algorithm is demonstrated in figure 33. The number of clocks for a single

action is calculated to be 7 clocks in which 2 clocks are for hidden and output layer. This

is obtained due to the fact that each of the neurons in hidden and output layer consists of

its respective FIFO for storing and updating weights and biases. Stage 1 performs a feed

forward computation for ‘A’ number of times, where A is the number of possible actions

in a state. This results in 7A clocks for completing the computations in stage 1.

 55

Figure 33. Clocks per Action in stage 1 for Fixed Point Q-learning Multi-Layer

Perceptron

Stage 3 is similar to Stage 1, only differing in the fact that a new state also called

as the future state is selected as the state vector and Q values of all possible actions in the

future state is computed and stored in a secondary FIFO. Figure 34 demonstrates the clocks

for stage 3. It takes 7 clocks per action to compute Q values, and 7A clocks to complete

the execution of stage 3

 56

Figure 34. Clocks per Action in stage 3 for Fixed Point Q-learning Multi-Layer

Perceptron

Backpropagation and error generation is more complicated in a MLP when

compared with backpropagation of the perceptron. Backpropagation comprises of blocks

for δ generation and ΔW generation as in equations (14-17). In case of fixed point, for

calculating the throughput of fine grained parallel architecture, only the blocks with at least

1 cycle delay like the ROM, FIFO, etc. are considered while the blocks with no cycle delay,

like the multipliers and adders are ignored.

Backpropagation begins after calculating Q values for current state and next state

for all possible actions. As demonstrated in figure 35, the Q values from next state and Q

values from current state, along with the discounting factor and reward function, is used

to calculate the error value.

 57

Figure 35. Fixed Point Error generation in Q-learning Multi-Layer Perceptron

The backpropagation in the MLP is sequential in nature. Errors for each of the

neuron in a layer is computed, then the error computation is done in parallel by duplicating

multiple resources, however the propagation of error is done sequentially, layer by layer.

The output error for each of the neuron in a layer is calculated in parallel as shown in figure

36. The weights of each of the neuron is updated using the error values (using existing

weights) propagated backwards as in equations (16-17).

 58

Figure 36. Fixed Point Backpropagation for Q-learning Multi-Layer Perceptron

The δ computation block for hidden and input layers consists of MAC and a ROM

consisting of derivative of sigmoid values. There number of blocks for computing δ is equal

to the number of neuron-neuron mappings, hence all the δ values are computed parallel

using equation (15) for each layer. The total number of clocks for computing δ is 1, and

the total clocks for reading and writing weights is also equal to 1. The total number of

clocks to complete the stage 5 is calculated to be 4 clocks.

The total number of clock cycles to update the weights of all neurons in the MLP

is equal to sum of clock cycles in stage 1, clock cycles in stage 3, stage 4 and stage 5. The

total number of clocks is presented in the table 11.

 59

Stages Clocks

Stage 1 5A

Stage 2 0

Stage 3 5A

Stage 4 3A – 2

Stage 5 4

Total Cycles/ Q value 13A + 2

Table 11. Clocks for Updating Single Q value in a Fixed Point Q-learning Multi-Layer

Perceptron

3.3.2.2 Floating point MLP Q-learning Architecture

Floating point design has slightly more complexity involved when compared to

fixed point design. The throughput calculation for a fine grained parallel implementation

of the algorithm constitutes the presence of H factor, where H is the number of hidden layer

neurons. This is undesirable, however, layer level pipelining implementation of such

architecture eliminates the presence of ‘H’ in throughput calculation.

Figure 37, demonstrates the clock cycles for a feed forward computation in stage 1.

Q values for each of the actions in a state space is computed by running the feedforward

algorithm for ‘A’ times changing the action vector for each run. The total number of clocks

per action for stage 1 is computed to be 28+9*(s+a+H), and thus the total number of clocks

per completing stage 1 is A*(28+9*(s+a+H). The total number of clocks for stage 3 is

demonstrated in figure 38. The only difference we observe from stage 1 and stage 3 is the

usage of different A sized FIFO’s.

 60

Figure 37. Clocks per Action for Stage 1 in a Floating Point Q-learning Multi-Layer

Perceptron

Figure 38. Clocks per Action for stage 3 in a Floating Point Q-learning Multi-Layer

Perceptron

 61

The error generation and propagation is more complex in a floating point

architecture. The error generation constitutes the maximum Q value calculation in next

state, reward calculation and using equations (14-15) to calculate the error value.

Figure 39. Error generation step in Stage 4 of Floating Point Q-learning Multi-Layer

Perceptron

The backpropagation algorithm is implemented using multiple blocks generating δ

values and ΔW values of equations (16-17). Figure 40 demonstrates the block level outline

for the error propagation step. The block δ generator, uses the equation (13-14) and Δ

generator uses the equation (15) for updating the weight values for each of the output,

hidden and input layer neurons.

Table12, demonstrates the total cycles in updating the Q value for the

implemented floating point architecture. Note that the cycles are dependent on the size of

state vector, size of action vector, number of actions, and the number of hidden layer

neurons.

 62

Figure 40. Error Generation and Propagation Representation for Q-learning MLP

Floating Point

 63

Stages Clocks

Stage 1 28A*(9+s+a+H)

Stage 3 28A*(9+s+a+H)

Stage 4 21 + 3A

Stage 5 9H + 43 + sync

Total Cycles/ Q value 507A+64+56A(s+a+H)+9H+sync

Table 12. Total Cycles per Single Q Value update using Floating Point Q-learning MLP

Fine grained parallel architecture with node level, layer level and weight level

parallelism has been discussed in this chapter. The architectures have a very high

throughput due to the utilization of multiple resources in parallel. A need for a pipelined

implementation and plan of implementation is discussed in conclusion and future work

chapter.

This section is followed by the Results and Discussions, demonstrating the mobile

robot simulator simulation results, FPGA Synphony model compiler simulations and

power consumption for various Q learning architectures discussed.

 64

CHAPTER 4

RESULTS AND DISCUSSION

This chapter presents the CPU simulation results of the proposed rover, followed

by the results of hardware accelerator implementations. The CPU simulations of the rover

movement are performed using Mobile Robot Simulator Tool and visual basic script, with

multiple start points of a rover in an environment. The temperature sensors are simulated

using a target evaluation process, with position of the rover and position of the target mark

as its input parameters.

FPGA simulations are performed using Xilinx System Generator and Synphony

Model compiler and utilization results are collected using Synplify pro. The Q value

generation and update are simulated in the same CPU, on which the Mobile Robot

Simulator simulations are performed.

4.1 Mobile Robot Simulator Simulation.

Q-learning using Q table, single perceptron and Multilayer perceptron is simulated

using Mobile Robot Simulator. Number of collisions before reaching a target has been

chosen as a performance metric for comparing each of the algorithms. Table 13 presents

the constant values considered for the learning algorithm. Figure 41 shows the results for

each of the Q-learning implementations.

Discounting factor 0.6

Learning factor 0.8

Neural network learning factor 0.9

Table 13. Q-learning Algorithm Constants

 65

Figure 41. MobotSim Simulation Results for Various Q-learning Algorithms

We observe that the simulation using Q table is performing well compared to

simulations using neural network, the reasons can be attributed to the fact that the rover

has been simulated only in a simple environment, and with a very low number of possible

actions. Q table is of size 216 Q values, for the simulated environment. However, this

would not be the case for a rover in realistic complex environment with a very large number

of Q values. Moreover, as mentioned, size of Q table grows exponentially with increase in

state and action vector size, which acts as a bottleneck for complex simulations. Figure 42,

shows the path traversals for each of the Q learning algorithms. The path tracings have

been enabled from 400-450 Epochs.

 66

Figure 42. Bot traversals for various Q-learning algorithms

4.2 Synphony Model Compiler Simulations

Each of the presented architectures are simulated using Xilinx Tools on Vertex 7

FPGA. The following combinations of architecture and environment that have been

considered.

1. Single Neuron in a simple environment

2. MLP in a simple environment

3. Single Neuron in a complex Environment

4. MLP in a complex environment

Simple and complex environment varies by the fact that the simple environment

has a small size of state, action vector and number of possible actions per state. In our case

 67

the size is equal to 6 with size of state vector equal to 4 and size of action vector equal to

2. The complex environment is modelled with combined size of state and action vector

equal to 20, possible number of actions per state as 40, and the state space size as 1800.

The neural network architecture for MLP consists of 11 neurons in simple environment

and 25 neurons in complex environment with 4 hidden layer neurons.

Figure 43. Performance Values for Varying Environments in Q-learning Architectures

Figure 43 presents the performance results for each of the architecture

implementations. The Fixed point parallel architecture seems to have a very high

performance related to the time to update each of the possible Q value, However, the Mean

Square error shows otherwise. The fixed point word length and fraction length plays a

major role in trading off accuracy with the utilization (power consumption). Based on this

fact, a fixed point architecture can be implemented with a high accuracy, same throughput

or performance metric as that of figure 43, while having an increased power consumption.

 68

Power consumption is calculated based on the utilization percentage (one of which is

shown in figure 44) of each of the individual resources using Xilinx power estimator tool

(figure 45 and figure 46).

Figure 44. Utilization values for Perceptron Q learning in Simple Environment

Figure 45. Quick Estimate tool using utilization values

The presence of FIFO to buffer the storage of weights, biases and Q values enables

the usage of Block Ram (BRAM). The total on chip power values for each of the

implemented architecture is presented in the figure 47, the total on chip power is the

 69

combination of core dynamic power, Input Output (I/O) power, transceiver power and

static power of the device. We observe in figure 47, that the peak power consumption is

high for floating point architecture running in a complex environment at 50 MHz

frequency. Though power estimation is an important factor for consideration, however the

energy values is what that is most useful for comparisons, since Q values change over time

with improving accuracy, the total time taken to calculate the optimal Q values vary for

each of the architectures. The total time taken for finding the optimal Q values can only be

obtained, when the learning algorithm is implemented in an actual rover and is exposed to

simple and complex environment.

Logic Clock 50 MHz

BRAM Clock 50 MHz

Memory 36 width DDR3 at 1333 Mb/s

Temperature 25C

Environment Still Air

Table 14. Parameters used in Xilinx Power Estimator Tool

 70

Figure 46. Power estimator tool estimating power value for Floating point MLP Q

learning

Figure 47. Total on chip Power Consumption for Various Architectures

0 1 2 3

Floating Point

Fixed Point

1.995

1.916

2.122

1.992

2.024

1.931

2.482

2.155

POWER (W)

V
A

R
IO

U
S

 Q
 L

E
A

R
N

IN
G

A
R

C
H

IT
E

C
T

U
R

E
S

Total On-Chip Power (50MHz)

MLP Q learning Complex

Environment

Perceptron Q learning

Complex Environment

MLP Q learning Simple

Environment

Perceptron Q learning

Simple Environment

 71

CHAPTER 5

CONCLUSION AND FUTURE WORK

Reinforcement algorithms, like Q-learning are emerging due to the benefits they

provide when combined with deep neural networks. These developments pose a need for

accelerating such algorithms and considering the usage of such implementations in robotic

applications, the accelerators need be energy efficient. Node Level and parallel hardware

architecture for Q-learning using Multilayer perceptron and single perceptron has been

demonstrated. An improving performance benefits have been observed with an increase

in the complexity of the environment when compared against an out of order CPU. The

total on chip power consumption for each of the implemented architectures are calculated

using the Xilinx Power estimator tool using the synthesized resource utilization values

obtained for Virtex 7 FPGA. The high power consumption is due to the fact that node level,

weight level and layer level parallelism has been exploited in combination.

As a part of my future work, I would work on the following aspects

1. Implementing pipelining for each of the architectures.

2. Implementing a piece wise linear interpolation function [13] instead of ROM for

calculating the activation function,

3. Introducing the concept of action-replay mechanism in deep neural networks [6].

Pipeline implementation, reduces the resource utilization when compared to the

fine grained parallel implantation of the architectures. A combination of pipelining and

parallelism like, node level parallelism with weight level pipelining, layer level parallelism

with weight level pipelining, and node level pipelining with layer level parallelism are

 72

some of the potential implementations, which can be implemented. Implementation

strategy for weight level pipelining is shown in figure 48.

Figure 48. Weight Level Pipelining Implementation for Q-learning

A small sized ROM usage reduces the accuracy of the activation function

calculation, instead piece wise linear activation function as demonstrated in [13] can be

implemented for calculating various type of activation outputs. Action replay mechanism

as demonstrated in [6] stores the experiences which are the states, actions and the utilities

the agent has exploited. These experiences can be stored in a buffer memory which can

further improve the process of training.

 73

REFERENCES

[1] Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3;3-4;),

279-292. doi:10.1023/A:1022676722315;10.1007/BF00992698;

[2] McGovern, A., & Wagstaff, K. L. (2011). Machine learning in space: Extending our

reach. Machine Learning, 84(3), 335-340. doi:10.1007/s10994-011-5249-4

[3] Estlin, T. A., Bornstein, B. J., Gaines, D. M., Anderson, R. C., Thompson, D. R., Burl,

M., . . . Judd, M. (2012). AEGIS automated science targeting for the MER opportunity

rover. ACM Transactions on Intelligent Systems and Technology, 3(3)

doi:10.1145/2168752.2168764

[4] Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.

Cambridge, Mass: MIT Press.

[5] Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A

survey. The International Journal of Robotics Research, 32(11), 1238-1274.

doi:10.1177/0278364913495721

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &

Riedmiller, M. (2013). Playing atari with deep reinforcement learning.

[7] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building

machines that learn and think like people.

[8] X. Peng, G. Berseth and M. van de Panne. Terrain-adaptive locomotion skills using

deep reinforcement learning. ACM Transactions on Graphics (TOG) 35(4), pp. 1-12. 2016.

. DOI: 10.1145/2897824.2925881.

[9] Levine, S., Wagener, N., & Abbeel, P. (2015). Learning contact-rich manipulation skills

with guided policy search.

[10] Chen, X., & Lin, X. (2014). Big data deep learning: Challenges and perspectives.

IEEE Access, 2, 514-525. doi:10.1109/ACCESS.2014.2325029

[11] Le, Q. V. (2013). Building high-level features using large scale unsupervised learning.

Paper presented at the 8595-8598. doi:10.1109/ICASSP.2013.6639343

[12] Koomey, J. G. (2008). Worldwide electricity used in data centers. Environmental

Research Letters, 3(3), 034008. doi:10.1088/1748-9326/3/3/034008

[13] Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., & Zhou, X. (2016). DLAU: A scalable

deep learning accelerator unit on FPGA. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, , 1-1. doi:10.1109/TCAD.2016.2587683

 74

[14] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. (2015). Optimizing FPGA-

based accelerator design for deep convolutional neural networks. Paper presented at the

161-170. doi:10.1145/2684746.2689060

[15] Liu, L., Luo, J., Deng, X., & Li, S. (2015). FPGA-based acceleration of deep neural

networks using high level method. Paper presented at the 824-827.

doi:10.1109/3PGCIC.2015.103

[16] Large-scale reconfigurable computing in a microsoft datacenter. (2014). Paper

presented at the 1-38. doi:10.1109/HOTCHIPS.2014.7478819

[17] Tang, L., & Liu, Y. (2014;2013;). Adaptive neural network control of robot

manipulator using reinforcement learning. Journal of Vibration and Control, 20(14), 2162-

2171. doi:10.1177/1077546313482171

[18] Jeyanthi, S., & Subadra, M. (2014). Implementation of single neuron using various

activation functions with FPGA. Paper presented at the 1126-1131.

doi:10.1109/ICACCCT.2014.7019273

[19] Ormondi, A. R., Rajapakse, J. C., SpringerLink (Online service), & MyiLibrary.

(2006). FPGA implementations of neural networks. Dordrecht, The Netherlands: Springer.

doi:10.1007/0-387-28487-7

[20] Busoniu, L., & MyiLibrary. (2010). Reinforcement learning and dynamic

programming using function approximators. Boca Raton, FL: CRC Press.

[21] Lacey, G., Taylor, G. W., & Areibi, S. (2016). Deep learning on FPGAs: Past, present,

and future.

[22] Schwartz, H. M., & ebrary., I. (2014). Multi-agent machine learning: A reinforcement

approach (1st ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.

[23] Murugadoss, R., & Ramakrishnan, M. (2014). An effective performance of sigmoidal

activation function in neural network architecture. International Journal of Applied

Engineering Research, 9(22), 12097-12108.

[24] Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. Journal of Machine Learning Research, 9, 249-256.

[25] Wang, Y., Yao, H., & Zhao, S. (2016;2015;). Auto-encoder based dimensionality

reduction. Neurocomputing, 184, 232-242. doi:10.1016/j.neucom.2015.08.104

[26] Gysel, P., Motamedi, M., & Ghiasi, S. (2016). Hardware-oriented approximation of

convolutional neural networks.

 75

[27] Barry, B., Brick, C., Connor, F., Donohoe, D., Moloney, D., Richmond, R., . . . Toma,

V. (2015). Always-on vision processing unit for mobile applications. IEEE Micro, 35(2),

56-66. doi:10.1109/MM.2015.10

[28] McMillan, R. (2016, May 19). WSJ.D technology: Google builds own high-speed chip

--- tensor processing unit is 10 times faster than alternatives; the tech company says. Wall

Street Journal

[29] Goldberg, L. (2016, April 7). 5 jaw-dropping things to catch at nvidia's GPU tech

conference. Product Design & Development

[30] Hruska, J. (2015, March 2). Qualcomm's cognitive compute processors are coming to

snapdragon 820. ExtremeTech.Com

[31] Vanderbauwhede, W., & Benkrid, K. (2014). High-performance computing using

FPGAs. () doi:10.1007/978-1-4614-1791-0

[32] Wilson, P. (2011). Design recipes for FPGAs: Using verilog and VHDL. Burlington:

Newnes.

[33] Maei, H. R., Szepesvari, C., Bhatnagar, S., & Sutton, R. S. (2010). Toward off-policy

learning control with function approximation. Paper presented at the 719-726.

[34] Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L. (2006). PAC model-

free reinforcement learning. Proceedings of the 23rd International Conference on Machine

Learning - ICML '06. doi:10.1145/1143844.1143955.

[35] Altuntas, N., Imal, E., Emanet, N., & Ozturk, C. (2016). Reinforcement learning-based

mobile robot navigation. Turkish Journal of Electrical Engineering and Computer

Sciences, 24(3), 1747-1767. doi:10.3906/elk-1311-129

[36] Van Seijen, H., Van Hasselt, H., Whiteson, S., & Wiering, M. (2009). A Theoretical

and Empirical Analysis of Expected SARSA. Paper presented at the 177-184.

doi:10.1109/ADPRL.2009.4927542

