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ABSTRACT

Na+/H+ antiporters are vital membrane proteins for cell homeostasis, transporting

Na+ ions in exchange for H+ across the lipid bilayer. In humans, dysfunction of

these transporters are implicated in hypertension, heart failure, epilepsy, and autism,

making them well-established drug targets. Although experimental structures for bac-

terial homologs of the human Na+/H+ have been obtained, the detailed mechanism

for ion transport is still not well-understood. The most well-studied of these trans-

porters, Escherichia coli NhaA, known to transport 2 H+ for every Na+ extruded,

was recently shown to bind H+ and Na+ at the same binding site, for which the

two ion species compete. Using molecular dynamics simulations, the work presented

in this dissertation shows that Na+ binding disrupts a previously-unidentified salt

bridge between two conserved residues, suggesting that one of these residues, Lys300,

may participate directly in transport of H+. This work also demonstrates that the

conformational change required for ion translocation in a homolog of NhaA,Thermus

thermophilus NapA, thought by some to involve only small helical movements at the

ion binding site, is a large-scale, rigid-body movement of the core domain relative to

the dimerization domain. This elevator-like transport mechanism translates a bound

Na+ up to 10 Å across the membrane. These findings constitute a major shift in the

prevailing thought on the mechanism of these transporters, and serve as an exciting

launchpad for new developments toward understanding that mechanism in detail.
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Chapter 1

INTRODUCTION

In all cells, active transport of ions against an electrochemical gradient across the

cell membrane is mediated by integral membrane transporter proteins [1–3]. For many

such proteins, we possess knowledge of both the overall function (“what they do”)

and the primary amino acid sequence, but for most we do not know how they are

structured or how they fulfill their function (“how they do it”). That is, we do not

know, thoroughly, the molecular mechanism of transport.

One such family of transporters is the Na+/H+ exchangers, which in mammals

mediate the outward movement of protons (H+) in exchange for sodium (Na+) ions [4].

These transporters are important in regulating intracellular pH, sodium levels, and

cell volume, and they also play roles in control of the cell cycle, cell proliferation, cell

migration and vesicle trafficking [4,5]. In humans, these transporters are also linked

to various diseases, such as hypertension, heart failure, epilepsy, and autism making

them well-established drug targets [4,6,7]. It is understanding the detailed functional

mechanism of these transporters that the work detailed in this dissertation is focused

on.

1.1 The Early History of Na+/H+ Antiporters

The effort to understand the mechanism of Na+/H+ antiporters started over 40

years ago. This history is rich with experimental findings of progressively greater

detail, often tracking with the development of new methods. In 1974, Ian West and

Peter Mitchell discovered that the addition of Na+ to a suspension of Escherichia coli

resulted in a change in pH [8]. They concluded that the membrane of E. coli contained
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antiporter proteins that exchanged H+ for Na+ ions, allowing the cell to maintain its

preferred internal concentration of Na+ [8]. Two years later, the pH range over which

antiport activity in E. coli occurs was observed by Etana Padan and coworkers to

start at pH 6.5, reaching maximum activity at pH 8.5 [9].

In 1987, the gene encoding the transporter in E. coli, nhaA, was isolated [10], and

in the next year the gene was sequenced [11]. Finally, in 1991, the protein encoded

by the gene was successfully purified [12]. This paved the way for detailed studies of

the activity of the transporter under highly controlled conditions in proteoliposomes.

The maximum transport rate of the transporter, now termed NhaA, was found to

be ∼ 1500 s−1 [12]. Its electrogenicity, long unknown and postulated to be electroneu-

tral [8], was also established as 1 Na+ extruded per 2 H+ transferred into the cell [13].

By this time, the ability to produce and purify NhaA mutants from its known

sequence enabled the design and execution of functional studies aimed at identifying

the residues vital for function. In 1995, it was found that three aspartates, highly

conserved across orthologs of NhaA, were vital for activity of the transporter [14].

Additional functional studies suggested the role of many other residues as part of a

“pH sensor,” responsible for regulating the activity of the transporter in response to

low pH conditions [15,16].

1.2 Experimental Structures Offer New Insights Into E. coli NhaA

The first structural data for NhaA, a two-dimensional projection at 4.0 Å reso-

lution, was produced using electron cryomicroscopy in 1999 [17]. The end of the 20th

century was also accompanied by the first three-dimensional structure of NhaA, a

7 Å-resolution map of the transmembrane helices [18]. This gave, for the first time,

a view of the NhaA structural fold, revealing 12 transmembrane helices organized

into two distinct domains (the dimerization interface, and the “core” domain), each
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comprised of 6 helices. The protein was observed to span ∼45 Å, the approximate

thickness of the biological membrane bilayer.

Functional studies continued to shed light on the detailed behavior of NhaA. It was

found that residues on helix IV were important for transport, suggesting a role as part

of the putative “pH sensor” [19]. Another study discovered that cysteine replacements

of certain residues, creating crosslinks within the protein, abolished transport [20].

This suggested that a conformational change was required for transport, a feature

disrupted by the crosslinks. Other cysteine replacement studies revealed new details,

including that a conserved lysine (Lys300) is vital for transport [21].

In 2005, the first atomic-resolution X-ray crystallographic structure of E. coli

NhaA was solved [22]. Obtained at 3.45 Å resolution at pH 4 (below the observed active

pH of the transporter), this structure, shown in Figure 1.1, revealed that the conserved

aspartates 163 and 164 reside near the center of the protein, forming the likely binding

site for H+ and Na+. However, no bound Na+ was resolved in the structure, and this

resolution is insufficient to resolve protonation states of the aspartates. Two half-

helices, crossing over each other at the binding site as disordered loops, together create

a balanced electrostatic environment in the low-dielectric center of the membrane.

These helices, it was postulated, would undergo small rearrangements in the presence

of bound ions, resulting in alternating access of the binding site from one side of the

membrane to the other and facilitating transport [22].

In 2007, the group at D.E. Shaw Research published a molecular dynamics study

of the NhaA structure suggesting a detailed mechanism for ion translocation [23]. In

this study, the behavior of a pre-bound Na+ ion to a protonated Asp164 was found

to be dependent on the protonation state of Asp163. It also suggested that small

movements in the binding site, precipitated by the protonation state of Asp163, were

3



Figure 1.1: The original crystal structure of E. coli NhaA [22]. The structure features twelve transmembrane helices
divided into two domains, the dimerization domain (green) and the core domain (cyan). The conserved aspartates
Asp163 and Asp164 are at the center of core domain.

responsible for ion translocation. A full mechanism of transport for Na+ and H+ was

proposed based on these observations.

By 2009, the prevailing hypothesis was that the two conserved aspartates were

responsible for binding and transporting the two H+ required for the transport cycle,

though it remained unclear where Na+ binds. Additional studies sought to more

finely examine the behavior of the putative “pH sensor”, and determine the precise

mechanism responsible for the pH sensitivity of NhaA [24–26].

1.3 Recent Studies Reveal a Single Binding Site for Na+/Li+ and H+ in NhaA

In 2011, a detailed electrophysiological study showed that the measured activity

of NhaA in the presence of varying pH and Na+ gradients was consistent with com-

petitive binding; that is, both Na+ and H+ bind to the same location in the protein,

competing at all times for the same binding site [27]. It was shown that even in the

presence of a pH as low as 5, previously thought well-below the active cutoff for the

protein, activity could be observed under a symmetric Na+ gradient. This study
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made clear that the concept of a distinct “pH sensor” was not necessary to explain

the pH sensitivity of the protein.

In 2012, an isothermal titration calorimetry study combined with mutational anal-

ysis revealed strong evidence for the binding site residues of Li+ in NhaA [28]. Mu-

tation of the conserved aspartates, Asp163, Asp164, and Asp133, along with the

well-conserved Thr132, were found to greatly disrupt Li+ binding. It was also found

that the conserved lysine, Lys300, was important for pH regulation, as mutation to

arginine alkaline-shifted the pH profile of the transporter.

1.4 Understanding the Molecular Mechanism: Our Work

By 2013, there still remained many unanswered questions about the mechanism

of NhaA, and Na+/H+ antiporters more broadly. The residues binding H+ were

postulated to be Asp163 and Asp164, but there existed no direct evidence for this as-

sertion [29]. The residues coordinating the binding of Na+ were also unknown, though

evidence suggested that Asp163, Asp164, Asp133, and Thr132 were somehow impor-

tant [14,28]. Finally, the conformational change, and how it was coupled to binding,

was still unknown, though many hypothesized that the conformational change was

almost certainly a small rearrangement of the internal half-helices that mediated

alternating-access of the binding site [23,24,30].

It is from this historical context that our work proceeds. In 2013, we published

our first study on a Na+/H+ antiporter: Thermus thermophilus NapA, an archaeal

homolog of NhaA [31] (see Chapter 3). We presented a crystal structure of NapA in an

outward-facing (periplasmic-facing) conformation, which when compared to the exist-

ing inward-facing structure of NhaA [22] suggested that both proteins might undergo

large-scale (∼10 Å) conformational changes as part of their transport cycle. This

was followed in 2014 by our new inward-facing structure of NhaA [32], revealing that
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the conserved lysine (Lys300) actually forms a salt bridge with Asp163, a feature not

present in the original structure (see Chapter 4). Furthermore, molecular dynamics

simulations showed that this salt bridge is broken upon spontaneous binding of Na+

to Asp164, offering new insights into the detailed transport mechanism, and suggest-

ing that Lys300 may directly participate in transport as a H+ carrier. Since then, this

has been further corroborated using constant-pH molecular dynamics simulations [33].

Most recently, in 2016, we obtained a new inward-facing crystal structure of NapA,

showing unambiguously that the transporter undergoes a large (∼10 Å) elevator-like

translocation of its core domain as part of its transport cycle [34] (see Chapter 5). The

simulations performed in this study also gave a detailed view into Na+ coordination

in the binding site.

The work we have done has greatly influenced the current thinking on the mecha-

nism of Na+/H+ antiporters, establishing in particular the likelihood of large, elevator-

like domain movements as an expected feature for these transporters [35–37]. The dis-

covery of the salt-bridge between Asp163 and Lys300 in NhaA has also challenged

the hypothesis that the two aspartates, Asp164 and Asp163, are the proton carriers,

and has shed new light on the role of the lysine, which has long been understood to

be important for transport. We are continuing to build on these results, in partic-

ular working to quantify the strength of binding as a function of conformation and

charge state in NapA, for which we have experimental structures in the inward- and

outward-facing states (see Chapter 6).

1.5 A Note on Content

It is important to mention that the work presented in this dissertation is highly

collaborative, often spanning at least three research groups across two continents.

As computationalists specializing in molecular dynamics simulation, we collaborate
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closely with experimentalists to validate our simulation results against measured

quantities, and likewise this validation helps to corroborate the observations made

in experiment. It would not have been possible to do the work described here with-

out this kind of tight collaboration. To make clear my contributions to the work,

each chapter features an introduction explaining the context and significance of the

results, as well as my role in obtaining them.

A special mention should be given to the last two chapters of this work, Chapters

7 and 8. Often doing novel computational work requires the development of new

tools, and these chapters detail some of the most important results of my efforts in

software engineering. These efforts, too, are highly collaborative, which ensures the

quality and wide applicability of the tools we build.
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Chapter 2

BACKGROUND

Though our work is highly collaborative, our approaches to studying these trans-

porters stand on their own terms as highly valuable instruments of science. The

role we play in comparison to our experimentalist collaborators is close to the tradi-

tional role of the theorist, seeking to understand experimental results in the context

of broader knowledge. However, this role, that of the computationalist, in truth lies

somewhere in between the experimentalist and the theorist. We almost-exclusively

perform calculations from theoretical models, but these calculations produce data,

not clear answers, that must themselves be analyzed as one would do for experimen-

tal results. Sitting at the intersection of experiment and theory, our work functions

as a bridge helping both to progress.

In line with this theme, this chapter details the theoretical model we use to un-

derstand Na+/H+ antiporters in the abstract (Section 2.1), the core computational

method we use in an attempt to probe that model (Section 2.2), and the techniques

we apply (and their limitations) to connect what we observe to experimental results

(Section 2.3). There exists a vast literature on all three of these components indi-

vidually, but we limit our view here to the context required to understand our work

detailed in the chapters that follow.

2.1 Free Energy Transduction in Transporters

To understand fully the molecular mechanism of Na+/H+ antiporters, we must

answer at least three questions:

1. Where and how do Na+ and H+ bind?
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2. What does the transporter conformational transition look like, in detail?

3. How is ion binding (1), coupled to the conformational transition (2)?

These questions can often be studied separately, as they are represented at different

points along the transport cycle (Figure 2.1). Practically all of our efforts are aimed

at more finely defining answers to these questions, and much of the work detailed in

this dissertation has been focused on answering questions (1), Chapters 4 and 6, and

(2), Chapters 3 and 5. We have so far left question (3) largely unaddressed, though

it has been suggested from studies of many other transporters that the disruption of

interdomain salt bridges by binding may be key to this process [37].

Figure 2.1: A cartoon representation of the transport cycle of NhaA/NapA. The states on the right represent the
states during which 2H+ are bound and translocation can occur. The states on the left represent the same for 1Na+.
The states in the middle are binding configurations that should translocate very rarely or not at all. Many of these
states and transitions are relevant for understanding (1) where and how the ions bind, (2) what the conformational
change looks like, and (3) how ion binding is coupled to the conformational change.

A core part of this work, summarized briefly in Section 1.4 and detailed further

in Chapters 4 and 6, is the hypothesis that the conserved lysine in NhaA (Lys300)

and NapA (Lys305) participates directly in the transport cycle as a H+ carrier. The
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larger theoretical context in which we can cast this hypothesis, as well as the three

questions given above, is the mathematical framework for understanding free energy

transduction popularized by Terrell Hill [38]. Given this hypothesis, and the transport

cycle that it proposes (Figure 4.10), we can construct a model of this mechanism as

a kinetic diagram (Figure 2.2).

Figure 2.2: The hypothetical transport cycle in which the conserved lysine is a carrier of H+. Based upon work
presented in subsequent chapters, the hypothesis that the conserved lysine is a carrier of H+ gives this cycle for trans-
port. P is the protein in the inward-facing conformation, while P* is the protein in the outward-facing conformation.
In this cycle, Na binding must occur for the second proton H to be released (from the lysine). Solid lines indicate
rates of transition between states that should occur to a high degree, while transitions with dashed lines should occur
very infrequently or not at all. Each state is labeled with a letter (a)-(h) used for reference in the text.

Compared to the general transport cycle shown in Figure 2.1, Figure 2.2 makes

explicit our hypothesis for the order of events for H+ and Na+ binding in both the

outward- and inward-facing conformations. The solid lines connecting each state

indicate rates of transition between states we expect to observe with appreciable flux,

the precise values of which will depend on the populations observed for each state,

which further depend on the concentrations of H+ and Na+ on the inside and outside

of the membrane and the binding affinity of the transporter for each ion in each

state. The dashed lines, by contrast, indicate transitions that we expect to observe
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rarely or not at all, in this case conformational changes that result in a cycle that

does not preserve the 2H+/1Na+ stoichiometry observed for these transporters, often

amounting to wasteful leaks of the H+ gradient with no net transport of Na+.

The H+ gradient is the driving force for Na+ transport in these antiporters, and

the free energy available from the translocation of H+ across the membrane from the

outside to the inside of the cell can be written in terms of its chemical potential [38,39]:

XH+ = µi,H+ − µo,H+ = kBT ln
[H+]i
[H+]o

+ F∆ψ (2.1)

where F is Faraday’s constant, ∆ψ is the membrane potential (∼ −135 mV in E.

coli [40]), and [H+]i ([H+]o) is the concentration of H+ on the inside (outside) of the

membrane. Likewise, we can write the free energy available from the translocation

of Na+ across the membrane from the outside to the inside, along its physiological

gradient:

XNa+ = µi,Na+ − µo,Na+ = kBT ln
[Na+]i
[Na+]o

+ F∆ψ (2.2)

From these potentials we can calculate the overall driving force for the transport

of 2H+ into the membrane in exchange for the extrusion of 1Na+ outward as:

XC = 2XH+ −XNa+

= kBT ln
[H+]2i [Na+]o
[H+]2o[Na+]i

+ F∆ψ
(2.3)

and we see that even with a pH gradient of 0 ([H+]i = [H+]o), the electrogenicity of

the transport cycle (+1 inward) can still result in a driving force that can overcome

the free energy cost of moving Na+ outward against its own concentration gradient.

Either at equilibrium or at steady state (with a net driving force, XC), each state

is populated by the transporter with some probability, Pstate. The transition rate
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from a state i to j, αij is related to the (net) transition flux between these states, Jij

as [38]:

Jij = αijPi − αjiPj (2.4)

These transition fluxes can be used to calculate the operational flux of each ion across

the membrane [38]. Using the letters (a-h) in Figure 2.2, we see that we obtain for the

inward fluxes:

JH+ = Jha + Jgb + Jfc (2.5)

JNa+ = Jfc + Jed (2.6)

Finally, it is important to note that the state probabilities can be used directly to

calculate the free energy differences between states, moving from state i to j, as:

∆Gij = −kBT ln
Pj
Pi

(2.7)

In particular, we see from Figure 2.2 that the binding free energy of Na+ in the

inward-facing conformation would be calculated as:

∆Gb = −kBT ln
Pd + Pc
Pb + Pa

(2.8)

It is this quantity we seek to calculate for NapA in Chapter 6.

Although experimentally obtaining rates for the operational flux containing the

contributions from all cycles is possible with measurements of transport activity [38],

it can be difficult to experimentally measure individual transition fluxes or free en-

ergy differences between states as arranged in Figure 2.2. However, using simulation

approaches, we can (in principle) probe a transport cycle at any level of detail, with
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the caveat often being whether or not we can sufficiently sample the usually high-

dimensional space to obtain converged results. One of these approaches in particular,

molecular dynamics simulation, allows for atomically-detailed modelling of the dy-

namics of macromolecules such as NapA in a hydrated lipid-membrane environment.

The use of molecular dynamics, and our application of this technique toward quan-

tifying aspects of the transport cycle discussed here, are detailed in Sections 2.2 and

2.3.

2.2 Molecular Dynamics Simulation

Molecular dynamics (MD) simulations of proteins are an attempt to model the

behavior of these macromolecules to atomic detail. Making use of classical dynamics

and empirically-derived forces between all the atoms in the system, an MD simulation

functions as a question, asking, repeatedly: given the position of each atom, where will

each atom be positioned next? When this question is asked many millions, or perhaps

billions of times, we obtain a trajectory from which we can begin to derive statistics.

Using statistics from multiple simulation trajectories, testing different conditions, we

can construct a study. Such studies often form the answers to questions of biological

interest.

This section discusses the algorithmic details of the simulations utilized in the

studies we present in this document. Because our focus is on Na+/H+ antiporters,

the content is restricted somewhat to those details that were important for simulating

these types of systems.

2.2.1 Simulating membrane proteins

Na+/H+ antiporters are integral membrane proteins, embedded in the lipid bilayer

that separates the inside of the cell from its surroundings. A cartoon rendering
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of a Thermus thermophilus NapA dimer in an atomistic membrane, surrounded by

atomistic water and free NaCl is shown in Figure 2.3. This is representative of most

simulation systems employed in the studies detailed in later chapters.

Cl-

Na+

TtNapA core

TtNapA dimerization

POPE

POPG

water

Figure 2.3: The inward-facing NapA dimer in a lipid bilayer composed of ∼4:1 POPE/POPG with free NaCl
concentration of ∼250 mM. Total system size is ∼130,000 atoms.

The plasma membrane of Escherichia coli in which NhaA resides is composed of

∼ 75% 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) and∼ 20% 1-palmitoyl-

2-oleoylphosphatidylglycerol (POPG) [41], and this ∼4:1 ratio of these lipid types is

used for the membranes of all of our simulation systems using the CHARMM36 [42–45]

force field (Chapters 3, 5, and 6). Earlier simulations using the OPLS-AA force

field [46–48] used simpler united-atom (non-atomistic) POPC lipid membranes [49] This

explicit membrane is self-assembled around the protein using a coarse-grained-to-

atomistic approach [50], embedding the protein among the lipids in a relatively unbi-

ased fashion.

Water is modeled explicitly for simulations using the CHARMM36 force field

using the CHARMM TIP3P water model [42], which is required for self-consistency of

the parameters. For OPLS simulations, the TIP4P water model was used [51]. Each
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simulation box featured a free NaCl concentration of ∼250 mM, simulating salt stress

and helping to improve the sampling of spontaneous binding events to the protein.

Protein dimer systems consisted of about 120,000—140,000 atoms in an orthorhombic

simulation cell.

For most simulation systems the starting configuration of the dimer itself is often

taken from an available crystal structure. This ensures that the dynamics simulated

match as closely as possible the dynamics of the real protein, as relaxation of a non-

native protein structure to a native configuration in a simulation may take far longer

than the simulation time itself. Before production MD is performed, all structures are

energy minimized using a steepest-descent algorithm, possibly followed by position-

restrained MD to allow the surroundings to relax around the structure.

All simulations presented in this work were performed using GROMACS, an open-

source molecular dynamics engine [52]. These simulations also employ periodic bound-

ary conditions, in which interactions at one end of the system cross over the boundary

to the other side. This avoids surface boundary effects.

2.2.2 Integrating Newton’s Second Law

Molecular dynamics simulations are classical. Despite simulating atoms, there

are no explicit quantum-mechanical calculations being performed during an MD sim-

ulation. However, the interactions of these atoms with each other are empirically

parameterized from quantum-mechanical calculations, with the core idea being that

the dynamics relevant to the behavior of molecules are encapsulated in these empiri-

cal parameters when integrated with Newton’s Second Law (F = ma). The forms of

these parameters are detailed in Sections 2.2.3 and 2.2.4.
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Integration of Newton’s Second Law is performed numerically using a leap-frog

integrator [53,54], defined as:

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F(t) (2.9)

r(t+ ∆t) = r(t) + ∆tv(t+
1

2
∆t) (2.10)

This integrator uses velocities from the previous half-timestep and the forces of the

current timestep to calculate the velocities of the next half-timestep. It then uses

these, as well as the positions at the current time, r(t), to calculate the new positions

of all atoms at the next timestep. The integrator is time-reversible [53], and with the

use of P-LINCS for constraining bonds to hydrogen atoms [55] (or SETTLE [56] for

water molecules), a timestep of 2 fs is typical.

For simulations performed in Chapter 6 for performing free energy calculations, a

stochastic dynamics (Langevin) integrator [54] was used [57]. This has the form [54]:

v′ = v(t− 1

2
∆t) +

1

m
F(t)∆t (2.11)

∆v = −αv′(t+
1

2
∆t) +

√
kBT

m
(1− α2)rGi (2.12)

r(t+ ∆t) = r(t) +

(
v′ +

1

2
∆v

)
∆t (2.13)

v(t+
1

2
∆t) = v′ + ∆v (2.14)

α = 1− exp−γ∆t (2.15)

where γ is the friction constant for energy dissipation, and rGi is the Gaussian noise

with µ = 0 and σ = 1 used to perturb the dynamics and function as a thermostat.
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2.2.3 Bonded interactions

The forces between atoms that are bonded are represented by three separate

types of interactions: bonds, angles, and dihedrals. The potentials of these forces are

described here.

The bonded interactions between neighboring atoms in the same molecule are

represented by a harmonic potential, with kbij parameterized to match as closely as

possible the force profile between the atoms observed from computational quantum-

mechanical calculations. The form of these interactions between bonded atoms i and

j is [54,58]:

Vb(rij) =
1

2
kbij(rij − bij)2 (2.16)

Similarly, the angle between every triplet of bonded atoms i, j, and k in a molecule

is maintained by a harmonic potential on this angle [54,58]:

Va(θijk) =
1

2
kθijk(θijk − θ0

ijk)
2 (2.17)

Finally, torsions around a bond, defined by four bonded atoms i, j, k, and l, are

modeled with the potential [54,58]:

Vd(ψijkl) =
N∑
n=0

Cn(cos(ψ))n (2.18)

Torsions differ from the other bonded potentials in that they are periodic, expressed

as an expansion of cosines with varying numbers of terms.

2.2.4 Non-bonded interactions

.

17



The forces between atoms that are not bonded are of two varieties: the Van der

Waals interaction and the Coulomb interaction. The Van der Waals interaction is

modeled using a Lennard-Jones [59] potential:

VLJ(rij) = 4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

(2.19)

where σij = 2−1/6rm, with rm is the distance of the minimum of the potential, and

εij determines the depth. For determining σij and εij for each pair of atom types, we

often use Lorentz-Berthelot rules [54,58]:

σij =
1

2
(σii + σjj) (2.20)

εij = (εiiεjj)
1/2 (2.21)

where εii and σii are the established parameters for an atom i with another atom of

the same type. Because this is a short-range interaction that decays as r−6 in large r,

often for efficiency it is not calculated for pairs of atoms that are beyond some cutoff

distance, often 1.2 nm. For this case the force is switched to zero at the cut-off to

avoid artifacts.

The Coulomb interaction between two charged atoms is calculated as:

VC(rij) =
1

4πε0

qiqj
rij

(2.22)

Because this is a long-range interaction that decays as r−1, it is important that the

interaction is calculated for pairs of charged atoms that are far away. For a whole

simulation system, this requires the computation of N(N − 1)/2 interactions, which

at O(N2) scaling comes at incredible cost for large systems. Because our simula-

tion systems use periodic boundary conditions, however, the Coulomb interactions
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are themselves periodic. We avoid explicitly calculating all of these interactions at

long ranges beyond a cutoff using particle-mesh Ewald summation [60,61], which al-

lows for the calculation of long-range contributions to the potential using fast-Fourier

transforms.

2.2.5 Temperature and pressure coupling

To simulate a system in the NPT ensemble, it is necessary to simulate the coupling

of the system to a bath that allows both heat and momentum exchange. There exists

no perfect algorithm for doing this without disturbing the dynamics of the atoms in

a particularly-artificial way, but the algorithms we employ do maintain the proper

ensemble.

For maintaining the temperature of the system (usually T = 310 K), we often

employ a stochastic velocity-rescaling thermostat that functions by modifying the

kinetic energy distribution according to [54,62]:

dK = (K0 −K)
dt

τT
+ 2

√
KK0

Nf

dW
√
τT

(2.23)

where τT is related to the time constant of the temperature coupling, which itself

corresponds to the time between rescalings in the simulation [54]:

τ = 2CV τT/NdfkB (2.24)

where Ndf is the number of degrees of freedom of the system and CV is the system’s

heat capacity.

For the simulations performed in Chapter 6, the stochastic dynamics integrator

(discussed above in Section 2.2.2) functions as a thermostat.
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For maintaining the desired system pressure, we utilize a Parinello-Rahman baro-

stat [63], which includes an equation of motion for the vectors of the simulation box

itself, b, as [54]:

d2b

dt2
= VW−1b′

−1
(P−Pref) (2.25)

where P is the current pressure, Pref is the reference pressure (usually chosen as

1.0 bar), W is the strength of the coupling, and V is the current box volume. This

barostat also changes the equations of motion for the particles by adding an additional

term:

d2ri
dt2

=
Fi

mi

−M
dri
dt

(2.26)

M = b−1

[
b

db′

dt
+

db

dt
b′
]

b′−1 (2.27)

For membrane protein systems, we use a semi-isotropic barostat in which the scaling

in the x and y directions are linked, but the z direction is treated independent of these.

This ensures that the membrane, situated in the xy-plane, is treated isotropically in

these two dimensions.

2.3 Connecting MD to Experiment

It is a fundamental tenet of science that theory, and likewise the results of sim-

ulations built on theory, must be validated against experimental measurements. We

therefore do our best to connect what we observe in simulations of proteins to what has

been measured experimentally for them, as this serves to validate observations made

in simulations that are simply not accessible to experiment. This is often a challenge,

however, due to the difficulty of sampling the timescales on which many proteins

function, which for Na+/H+ antiporters extends from hundreds of microseconds to
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milliseconds. By contrast, state of the art simulation approaches for fully-atomistic

membrane-transporter systems using commodity hardware in large clusters, and even

national high-performance supercomputing resources, can currently achieve sampling

in the tens of microseconds. It is simply not possible, presently, to examine a full

transport cycle such as that in Figure 2.2 directly with brute-force simulations.

However, it is possible to take a targeted approach, performing simulations aimed

at quantifying specific portions of a transport cycle. As an example, we can choose

to focus on the question of Na+ binding, as observed in states (c), (d), (e), and (f) of

Figure 2.2. Performing equilibrium simulations of the NapA dimer in both outward-

and inward-facing conformations, we can directly observe spontaneous binding of Na+

to Asp157 (Figure 2.4). In principle, we could use these binding events to estimate

the rates αbc, αcb and αgf , αfg. But using this brute-force approach, even as focused

as it is on the question of Na+ binding, we still are not able to sufficiently sample

binding and unbinding events to estimate these rates.

Then, what can we do? We can take an even more targeted approach, choosing to

perform simulations meant only to calculate a specific quantity from this cycle instead

of equilibrium simulations that happen to observe some of the events of interest

in small numbers. This is the approach taken in Chapter 6, in which we perform

hundreds of simulations, most of them sampling an unphysical state of the system, to

obtain converged values for the binding free energy, ∆Gb, of Na+ in the states (c), (d),

(e), and (f) in Figure 2.2. These free energies can be used to calculate the apparent

binding affinity, often measured as its inverse, Kd, we would expect to see given the

proposed transport mechanism. These can be compared directly to experimental

results, which validates not only the simulations themselves but also the hypothesis

they were performed to test.
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Figure 2.4: Spontaneous binding behavior of Na+ to NapA for four states of the transport cycle For the states
(c), (d), (e), and (f) in Figure 2.2, we show the binding behavior of Na+ from equilibrium simulations of NapA,
with timeseries showing the distance of the nearest Na+ to the nearest carboxyl oxygen of either D157 or D156
from multiple simulations. Although there appear to be many binding events for each state, there are not enough to
predict well-converged binding rates. The rendered images show how the ion is generally coordinated at the binding
site in simulations of the protonation states for K305 represented here, with the states on the left representing the
deprotonated (uncharged) state, and those on the right representing the protonated (charged) state.
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Chapter 3

A TWO-DOMAIN ELEVATOR MECHANISM FOR SODIUM/PROTON

ANTIPORT

This chapter is a reprint of the journal article, Lee, C., Kang, H.J., von Ballmoos,

C., Newstead, S., Uzdavinys, P., Dotson, D.L., Iwata, S., Beckstein, O., Cameron,

A.D., and Drew, D. (2013). A two-domain elevator mechanism for sodium/proton

antiport. Nature 501, 573-577. This work revealed the first crystal structure for

Thermus thermophilus NapA, a structural homolog of Escherichia coli NhaA, in the

outward-facing conformation. It was in this work that we first proposed a large-scale,

elevator-like mechanism of ion transport for this class of proteins, in which the core

domain translates and rotates by up to 10 Å during the transport cycle to allow

alternating access to the binding site.

My contribution to this work was the performance and analysis of the molecular

dynamics simulations. This work first appeared in Nature, Copyright © 2013 the

Authors.

ABSTRACT

Sodium/proton (Na+/H+1) antiporters, located at the plasma membrane in every

cell, are vital for cell homeostasis [29]. In humans, their dysfunction has been linked to

diseases, such as hypertension, heart failure and epilepsy, and they are well-established

drug targets [4]. The best understood model system for Na+/H+ antiport is NhaA from

Escherichia coli [12,29], for which both electron microscopy and crystal structures are

available [17,18,22]. NhaA is made up of two distinct domains: a core domain and a
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dimerization domain. In the NhaA crystal structure a cavity is located between the

two domains, providing access to the ion-binding site from the inward-facing surface

of the protein [22,29]. Like many Na+/H+ antiporters, the activity of NhaA is regulated

by pH, only becoming active above pH 6.5, at which point a conformational change

is thought to occur [64]. The only reported NhaA crystal structure so far is of the

low pH inactivated form [22]. Here we describe the active-state structure of a Na+/H+

antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals

grown at pH 7.8. In the NapA structure, the core and dimerization domains are in

different positions to those seen in NhaA, and a negatively charged cavity has now

opened to the outside. The extracellular cavity allows access to a strictly conserved

aspartate residue thought to coordinate ion binding [23,28,29] directly, a role supported

here by molecular dynamics simulations. To alternate access to this ion-binding site,

however, requires a surprisingly large rotation of the core domain, some 20◦ against

the dimerization interface. We conclude that despite their fast transport rates of up

to 1,500 ions per second [12], Na+/H+ antiporters operate by a two-domain rocking

bundle model, revealing themes relevant to secondary-active transporters in general.

3.1 Introduction

Na+/H+ antiporters are secondary active transporters that are conserved across

all biological kingdoms to maintain the internal pH, cell volume and sodium concen-

tration of the cell [29], a mechanism first proposed by West and Mitchell [8]. Na+/H+

antiporters are members of the large monovalent cation proton antiporter (CPA)

superfamily that includes, among others, the CPA1 and CPA2 clades [4]. It is gener-

ally thought that Na+/H+ antiporters from the CPA1 clade catalyse electroneutral

sodium-proton exchange (SLC9A1–9 in mammals (also known as NHE1-9)), whereas

CPA2 members are thought to be electrogenic (SLC9B1-2 in mammals (also known
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as NHA1-2)) [4], with stoichiometries of 2H+:1Na+ and 3H+:2Na+ ions reported [13,65].

Like all secondary active transporters, Na+/H+ antiporters are thought to operate

by an alternating access mechanism; however, the different conformational states of

the transport cycle have yet to be determined. The inward-facing structure of the

well-characterized bacterial CPA2 protein E. coli NhaA is the only representative

crystal structure [22].

Using fluorescent-based methods [66,67], we screened members of the CPA2 clade [4]

for their suitability for structural studies. NapA from T. thermophilus, which has 21%

sequence identity to human NHA2, was thus identified (see Methods and Supplemen-

tary Information Figures 3.5a and 3.6). Although the overall sequence homology to

the better characterized E. coli NhaA is low, <15% identity, residues identified to be

important for transport in NhaA and mammalian homologues are nonetheless well

conserved (Figure 3.6). Using isolated inside-out membrane vesicles it was previously

shown that T. thermophilus NapA is active above pH 6, with maximum activity for

sodium at pH 8 [68], similar to E. coli NhaA [69]. To measure activity in an isolated

system, we co-reconstituted purified NapA and E. coli F1F0 ATP synthase into lipo-

somes (see Methods). After establishment of a pH gradient by the addition of ATP,

proton efflux was monitored in response to Na+ or Li+ addition (Figure 3.1a, 3.1b).

In this experimental set-up, the apparent Michaelis constant (Km) values for Na+ or

Li+ were determined to be 4.0± 0.3 (mean ± s.d.) or 0.41± 0.04 mM, respectively,

similar to the affinities from inside-out vesicles [68] (Figure 3.1c). In experiments with

NapA proteoliposomes trapped with a water-soluble pH sensitive dye, dissipation of

the membrane potential (∆ψ) stimulated exchange activity in the presence of a Na+

gradient, confirming the electrogenic nature of NapA (Fig. 3.1d, bottom). Further-

more, in the absence of a H+ or Na+ gradient, NapA transport activity was solely

driven by ∆ψ (Figure 3.1d, top). Taken together, T. thermophilus NapA has a similar
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antiport profile to E. coli NhaA, and consequently functional and structural studies

of the two proteins can complement one another.
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Figure 3.1: NapA Na+/H+ transport activity is electrogenic. a, Experimental setup for determination of
Na+/Li+ affinity and electrogenicity (the most likely stoichiometry is shown). The ATP synthase and NapA are
co-reconstituted in liposomes. Free K1 diffusion by valinomycin suppresses the effect of ∆ψ. ACMA, 9-amino-6-
chloro-2-methoxyacridine. b, Representative ACMA fluorescence traces for Na+/H+ antiporter activity. ATP-driven
H+ pumping establishes a ∆pH (acidic inside) as monitored by quenching of fluorescence. H+ efflux is initiated by
the addition of NaCl/LiCl, and further NH4Cl addition collapses the proton gradient. c, Apparent binding affinity for
Na+ (filled circles) and Li+ (open circles) in NapA (pH 7.5). d, Na+/H+ antiporter activity monitored with liposome
entrapped pH sensitive fluorophore pyranine. The fluorescence was recorded at 510 nm (excitation 406 and 460 nm)
and the ratio of the two values was plotted against time. Na+-gradient-(,120 mV)-driven Na+/H+ exchange was
initiated by the addition of NaCl (red). Addition of valinomycin at 90 s leads to further H+ efflux; this releases the
inhibitory membrane potential established during the first transport phase. No Na+-gradient-driven transport was
observed in liposomes without NapA (black). ∆ψ-driven Na+/H+-exchange transport was initiated by establishing a
K+/valinomycin diffusion potential (green). No activity was observed in liposomes without NapA (data not shown).
ex., excitation; F, fluorescence.

3.2 Results

The structure of NapA at pH 7.8 was solved by multiple isomorphous replacement

with anomalous scattering in combination with multi-crystal averaging. The high-

est resolution data correspond to a triple mutant of NapA, in which three cysteine
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residues, which have no apparent effect on functional activity, were introduced to fa-

cilitate phasing (see Methods, Supplementary Tables 3.1 and 3.2 and Supplementary

Figure 3.5b). The structure was refined at a resolution of 3 Å , Rfactor value of 22.3%

and Rfree value of 24.8% (Supplementary Table 3.1, Supplementary Figure 3.7 and

Methods). Electron density maps at 3.7 Å of wild-type NapA at pH 9.0 show no clear

structural differences between the wild-type and the triple cysteine mutant.

NapA is built from 13 transmembrane (TM) helices with an Nout − Cin topology

(Figure 3.2 and Supplementary Figure 3.8). Relative to NhaA, it has an additional

helix at the amino terminus. To facilitate comparison to NhaA, we refer to the first

helix as TM-1 (Figure 3.2a and Supplementary Figure 3.8). TM-1 to TM5 and TM7

to TM12 are topologically similar but oppositely orientated in the plane of the mem-

brane (Supplementary Figure 3.4). These six-transmembrane-helice topology inverted

repeats intertwine to form a core (ion-translocation) and dimerization (interface) do-

main, and are linked together by TM6 (Figure 3.2b and Supplementary Figure 3.4).

The NapA and NhaA [22] structures are very similar (Figure 3.2b). As there is a

change in the position of the core relative to the dimerization domain, however, the

similarity is best seen when the two domains are superposed separately; root mean

squared deviation (r.m.s.d.) of 1.8 Å for 134 out of 148 pairs of Cα atoms of the core

domain transmembrane helices, and 1.9 Å for 62 out of 88 of the dimerization domain

transmembranes (Supplementary Figure 3.9a, 3.9b). The change in position of the

core relative to the dimerization domain, which may reflect the difference in the pH

at which the transporters were crystallized, gives rise to a large negatively charged

cavity that is now open to the outside in contrast to the inward-facing funnel seen

in NhaA (Figures 3.2b and 3.3b). The interaction between TM2 and TM4 and TM5

tightly closes the cytoplasmic side of the cavity.
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NapA, like other bacterial and mammalian Na+/H+ antiporters [18,70,71] purifies as

a dimer and is clearly dimeric in the structure with an extensive interface burying a

surface area of 1,800 Å
2

(Figure 3.3 and Supplementary Figure 3.5c). In molecular

dynamics simulations, the dimer sits entirely within a model membrane bilayer (Fig-

ure 3.3c). The backbone r.m.s.d. from the starting conformation of each monomer

increased to about 2.0 Å over the time course of the simulation (Supplementary Figure

3.10), indicating a slow relaxation of the crystal structure in the native-like membrane

environment. The dimer has a crystallographic two-fold operator approximately par-

allel to the transmembrane helices, and it is largely made up of tight hydrophobic

helix-helix packing between TM21 on one monomer and TM7 on the other. There

are also contacts between the ends of TM2 and TM9 (Figure 3.3a, 3.3b). NapA

lacks the β-hairpin domain that makes most of the contact between protomers at the

extracellular membrane surface in NhaA [22,24]. The dimer interface in NapA more

closely resembles the dimer interface modelled in the 7 Å electron crystallography

structure of NhaP1 [72], a CPA1 member from Methanocaldococcus jannaschii (for-

merly Methanococcus jannaschii). NhaP1 also has 13 transmembrane helices built

up from two six-transmembrane topology repeat units.

The substrate-binding cavity is open to the extracellular side. The cavity begins

above the dimerization interface and funnels between the dimerization and core do-

mains, ending in the middle of the membrane (Figure 3.3). It is considerably more

open than the inward-facing cavity of NhaA [22] and is negatively charged, being lined

with glutamate residues. Although there is a similar distribution of charged residues

in NhaA and NapA, few, including those that have been predicted to be involved in

pH sensing [29], are conserved between the two proteins (Supplementary Figure 3.11).

Near the base of the cavity are two highly conserved aspartates, Asp 156 and Asp

157, located on TM5 (Supplementary Figures 3.6 and 3.11). The residues equiva-
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lent to these aspartates in NhaA, Asp 163 and Asp 164 (Supplementary Figures 3.6

and 3.11), probably coordinate ion binding based on their position, conservation with

mammalian Na+/H+ antiporters [4], phenotypes of mutants [29,73], isothermal titration

calorimetry (ITC) experiments [28] and molecular dynamics simulations [23]. In NapA,

mutation of either residue to alanine [68] or asparagine abolishes transport activity

completely (Supplementary Figure 3.5d and Supplementary Table 3.2). With NapA

crystals grown at pH 7.8, the aspartate residues are likely to be deprotonated. Con-

sistent with this, Asp 157 is orientated towards the centre of the cavity rather than

hydrogen bonding with the backbone of TM4, as seen for Asp 164 in NhaA, an inter-

action that requires Asp 164 to be protonated (Supplementary Figure 3.9c). Using

solid-state membrane electrophysiology it was previously shown that NhaA trans-

ports cations equally well in either direction and the transport activity profile fits a

simple H+ versus Na+ kinetic binding model to a single common site [27]. To investi-

gate whether Na+ ions would bind as expected, we carried out equilibrium molecular

dynamics simulations of outward-facing NapA in a model membrane bilayer. Simu-

lations were carried out with both Asp 157 and Asp 156 deprotonated, as they are

likely to be in the crystal structure, and also as combinations of their neutral and

charged forms. With both aspartates charged, Na+ ions spontaneously entered the

negatively charged extracellular cavity to bind to Asp 157 (Figure 3.3c and Supple-

mentary Figure 3.12). Na+ ions were concentrated at Asp 157 (Supplementary Figure

3.12) and multiple distinct binding and unbinding events could be observed, which

is qualitatively consistent with weak binding. By contrast, Na+ ion binding was not

observed when Asp 157 was protonated and was markedly reduced when Asp 156 was

neutral (Supplementary Figure 3.12). In molecular dynamics simulations of inward-

facing NhaA, Na+ binds to the equivalent aspartate (Asp 164) [23], which is positioned

at the base of the cytoplasmic cavity.
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Figure 3.2: Outward-facing NapA structure. a, Cartoon representation of NapA as viewed in the plane of the
membrane. Transmembrane helices -1 to 12 have been coloured from red at the amino terminus to blue at the
carboxy terminus, with the position of the membrane depicted in grey. b, Outward-facing NapA structure (left) and
inward-facing NhaA structure (right) as viewed from the extracellular side with the removal of the β-hairpin domain
located between transmembrane helices 1 and 2 from NhaA to facilitate visual comparison. The dimerization and
core domain boundaries are represented by a grey line.

Asp 156 and Asp 157 on TM5 are located next to the point at which the two an-

tiparallel discontinuous helices, TM4a-b and TM11a-b, cross over in the core domain

(Supplementary Figure 3.9c). Although discontinuous helices are a common feature

for ion-binding in transporters [74], the antiparallel crossing over of transmembrane

helices is a unique feature of the NhaA fold [22,75]. It results in the positive dipole

ends of TM4a and TM11a facing one another and likewise the negative dipole ends of

TM4b and TM11b. In NhaA, the dipoles are proposed to be neutralized by the side
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chains of an aspartate (Asp 133; TM4a-b) and a lysine (Lys 300; TM10), respectively

(Supplementary Figure 3.9c). The lysine (Lys 305) is retained in NapA but the aspar-

tate is replaced by a serine, as it is in human NHA2 (Supplementary Figures 3.9c and

3.11). From the structure, however, it appears the side chain of Glu 333 from TM11b

can take a similar position to the carboxylate of Asp 133 (Supplementary Figures

3.9c and 3.11). The positions of these two residues are pseudo-symmetrically related;

the functional significance of this swap is unclear. Although the mutation of Glu 333

to alanine affected the apparent affinity for Li+ only slightly (<3-fold), the affinity

for Na+ was severely decreased (>15-fold), which is in agreement with the results

obtained from an Asp 133 to alanine mutation in the NhaA protein [15] (Supplemen-

tary Table 3.2). By contrast, the mutation of the highly conserved Lys 305 to alanine

severely decreased both Na+ and Li+ affinity (>20-fold; Supplementary Table 3.2).

It was recently speculated that Lys 300 in NhaA could have more than a stabilizing

role and that it could also form part of the pH activation mechanism, as mutation to

arginine changed the pH at which NhaA becomes active [28]. In the NapA structure,

Lys 305 forms a salt bridge with Asp 156 (Supplementary Figures 3.9c and 3.12a).

Notably, we have recently observed a similar interaction in a different crystal form of

NhaA at low pH (O.B. et al., manuscript in preparation). We would expect, however,

that after cation binding to Asp 156 and Asp 157 the salt bridge is disrupted. As

such, the interaction observed here supports the role of lysine in pH activation.

Previously, it was proposed that the exceptionally fast transport of Na+/H+ an-

tiporters would primarily involve local rearrangements of the finely electrostatically

balanced discontinuous helices in the core domain [22,29]. However, the major struc-

tural difference between NapA and NhaA is in the position of the core domain in

relation to the dimerization domain (Supplementary Figures 3.9a, 3.9b). With refer-

ence to the dimerization interface, which seems likely to remain stable during trans-
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oleoylphosphatidylethanolamine; POPG, 1-palmitoyl-2-oleoylphosphatidylglycerol). Sodium ions (magenta spheres)
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port across the membrane [24,76], the core domain in the NhaA structure is rotated

by 21◦ relative to the core of NapA (Figures 3.4a, 3.4b). This large rotation of the

core domain closes the cavity seen on the outside of NapA and opens the cytoplasmic

funnel on the inside, as observed in NhaA (Supplementary Videos 1 and 2). Dur-

ing this process, the two cation binding aspartates, which are in line with the tip of

TM8 in the dimerization domain of the outward-facing NapA structure, are shifted

10 Å towards the cytoplasmic surface of the transporter (Figure 3.4a). This elevator
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movement of a substrate-binding domain, in this case to carry Na+ (Li+) ions from

one side of the membrane to the other in exchange for protons, resembles that of

the transport mechanism seen in the glutamate transporter GltPh [77]. A two-domain

transport mechanism was also recently predicted in NhaA, on the basis of a consider-

ation of the two symmetry-related inverted repeats as well as elastic network models

and biochemical cross-linking [78]. Such a mechanism was also proposed for the bile

acid sodium symporter ASBTNM
[75], which is a structural homologue of NhaA and

NapA.
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3.3. For the sake of clarity, only one molecule is shown. b, Schematic of the proposed transport mechanism that
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3.3 Conclusions

In summary, the structure of NapA is consistent with a single ion-translocation site

mechanism, of which the strictly conserved Asp 157 (Asp 164 in NhaA) is ideally posi-

tioned for binding ions in outward- and inward-facing states (Figure 3.4b). To provide
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alternating access to the aspartate, however, requires a surprisingly large movement

of the core domain that twists around the dimerization interface, in essence creating a

two-domain rocking bundle model. Although further structures are needed to clarify

how ion binding and release is coupled to these global changes, the NapA structure

provides a clear example that the extent of the conformational change may not neces-

sarily correlate with the rate of transport or the size of the substrate transported, as

previously assumed. Thus, the NapA structure also reveals fresh mechanistic insights

relevant to all types of ion-coupled transporters.

3.4 Methods

NapA was cloned into a cleavable green fluorescent protein (GFP)-His8 fusion

vector pWaldoGFPe [66]. The fusion protein was expressed in E. coli, solubilized in 1%

dodecyl-b-D-maltopyranoside (DDM), and purified to homogeneity in either DDM or

1% nonyl-b-D-maltopyranoside. The NapA proteoliposome uptake assay was modified

as previously described [12]. Crystals were grown at either pH 7.8 or 9.0 by the vapour

diffusion method. Data were collected on beamlines I02 and I03 at the Diamond Light

Source or ID 23-1 and 23-2 beamlines at the European Synchrotron Radiation Facility.

The protein was derivatized before crystallization by incubation with 2.5 mM mercury

acetate. The NapA structure was solved by multiple isomorphous replacement with

anomalous scattering in combination with multi-crystal averaging and refined at a

resolution of 3 Å. Molecular dynamics simulations were performed as described in

Section 3.4.7.
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3.4.1 NapA sequence

Thermus thermophilus NapA sequence (Uniprot accession number Q72IM4); residues

progressively substituted to cysteine are underlined, and additional C-terminal residues

retained after TEV cleavage are shown in bold (see next section for cloning details).

MHGAEHLLEIFYLLLAAQVMAFIFKRLNQPVVIGEVLAGVLVGPALLGLVHEGEILEFLA

ELGAVFLLFMVGLETRLKDILAVGKEAFLVAVLGVALPFLGGYLYGLEIGFETLPALFLG

TALVATSVGITARVLQELGVLSRPYSRIILGAAVIDDVLGLIVLAVVNGVAETGQVEVGA

ITRLIVLSVVFVGLAVFLSTLIARLPLERLPVGSPLGFALALGVGMAALAASIGLAPIVG

AFLGGMLLSEVREKYRLEEPIFAIESFLAPIFFAMVGVRLELSALASPVVLVAGTVVTVI

AILGKVLGGFLGALTQGVRSALTVGVGMAPRGEVGLIVAALGLKAGAVNEEEYAIVLFMV

VFTTLFAPFALKPLIAWTERERAAKEGSENLYFQ

3.4.2 Expression screening, mutagenesis, protein purification and characterization

NhaA homologues were cloned as green fluorescent protein (GFP)-His8 fusions

into the vector pWaldoGFPe [66], as fluorescence from the C-terminal GFP fusion

is a reliable reporter of membrane-integrated expression [79]. The monodispersity of

expressed fusions were screened in a number of different detergents by fluorescence-

detection size-exclusion chromatography [80]. NapA from T. thermophilus was selected

as a suitable candidate showing stability in a wide range of detergents including the

harsh detergent N -dodecyl-N,N -dimethylamine-N -oxide [67]. Expression levels of the

protein were initially low in standard culture conditions, but improved significantly

using MemStar, which is a new strategy for boosting expression of membrane proteins

in E. coli (C.L. et al., manuscript in preparation). In brief, Lemo21(DE3) cells [81]

were grown at 37◦C in PASM-5052 media [82], with and without selenomethionine
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incorporation, and induced with 0.4 mM isopropyl-β-D-thiogalactoside (IPTG) at an

absorbance (A600nm) of 0.5 for overnight incubation at 25◦C.

Wild-type NapA and mutants generated by Quickchange protocol (Agilent Tech-

nologies) were purified essentially as previously described [83]. Membranes were iso-

lated from 5-l E. coli cultures and solubilized in 1% dodecyl-β-D-maltopyranoside

(DDM; Generon) for 2 h in buffer containing 1×PBS, 150 mM NaCl and 10 mM

imidazole. The suspension was cleared by ultracentrifugation at 120,000g for 1 h.

The sample was mixed with 1 ml of Ni-NTA Superflow resin (Qiagen) per 1 mg of

GFP-His8 and incubated for 2 h at 4◦C. Slurry was loaded onto a glass Econo-Column

(Bio-Rad) and washed in 1×PBS buffer containing 0.1% DDM, 150 mM NaCl and

20 mM imidazole for 20 column volumes. Bound material was washed for a further

20 column volumes in the same buffer containing 50 mM imidazole. The NapA-

GFP-His8 fusion was eluted in two column volumes of 1×PBS buffer containing 0.6%

nonyl-β-D-maltopyranoside (NM; Generon), 150 mM NaCl and 250 mM imidazole.

The eluted protein was dialysed overnight in the presence of stoichiometric amounts

of His6-tagged tobacco etch virus protease in 1.5 l of buffer containing 20 mM Tris-

HCl, pH 7.5, 150 mM NaCl and 0.5% NM. Dialysed sample was passed through a

5 ml Ni-NTA His-Trap column (GE Healthcare), and the flow-through containing

NapA was collected. Protein was concentrated to 10 mg ml−1 using concentrators

with a relative molecular mass cut-off of 100 kilodaltons (kDa), and was loaded onto

a Superdex 200 10/300 gel filtration column (GE Healthcare) equilibrated in 20 mM

Tris-HCl, pH 7.5, 150 mM NaCl and 0.45% NM (Anatrace). The protein peak was

collected and concentrated to 10 mg ml−1 for crystallization.

Purified NapA was loaded onto a Superdex 200 10/300 size exclusion column

(GE Healthcare) coupled to a Viscotek TDAmax tetra detector array (Malvern) with

GPCmax solvent pump and integrated auto-sampler, using the OmniSEC software
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for data analysis. The SEC-UV/LS/refractive index system was equilibrated in 20

mM Tris-HCl, pH 7.5, 150 mM NaCl and 0.03% DDM at a flow rate of 0.3 ml

min−1. Standard gel filtration molecular weight markers were used for calibration

and all proteins were analysed under the same experimental conditions. Data were

collected from the refractive index, right angle LS (RALS) and UV280nm detectors.

The oligomeric state of NapA from the NapA-detergent micelle was calculated using

methods described previously [84].

3.4.3 NapA transport activity

In this set-up (Figure 3.1a), the described Na+/H+ antiport with inverted mem-

brane vesicles was mimicked [12,68]. For this, we co-reconstituted E. coli F1F0 ATP

synthase and T. thermophilus NapA in the same vesicles. Although ATP synthase

under these conditions has been shown to orient unidirectionally [85], NapA most prob-

ably has a heterogeneous orientation, which might affect apparent Km values. Fur-

thermore, a mixture of liposomes containing none, one or two enzymes is expected.

Only the liposomes containing ATP synthase will lead to initial ACMA quenching,

but only those containing both ATP synthase and NapA will lead to dequenching

after addition of the coupling ion. Furthermore, it is expected that a new equilibrium

is reached after every addition, which might influence the extent of dequenching. This

is demonstrated by the addition of NH4Cl at the end of every measurement, in which

any remaining ∆pH is dissipated. In brief, purified NapA wild-type and mutants

were co-reconstituted with purified ATP synthase from E. coli with an ∼2:1 molar

ratio (NapA:ATP synthase) in MME buffer (10 mM MOPS-NaOH, pH 7.5, 2.5 mM

MgCl2, 100 mM KCl) as described for ATP synthase [85,86]. Typically, 50 µl proteoli-

posomes were diluted into 1.5 ml MME buffer containing 3 nM ACMA and 140 nM

valinomycin. Fluorescence was monitored at 480 nm using an excitation wavelength
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of 410 nm in a fluorescence spectrophotometer (Cary Eclipse, Agilent Technologies).

An outward-directed pH gradient (acidic inside) was established by the addition of 2

mM ATP, as followed by a change in ACMA fluorescence. After ∼2 min equilibration,

the activity of NapA wild-type and mutants thereof was assessed by the dequenching

of ACMA fluorescence after addition of the indicated concentrations of NaCl or LiCl.

Addition of 20 mM NH4Cl leads to near complete dequenching. Each experiment was

performed in triplicate.

3.4.4 Na+/H+ antiport activity by NapA is electrogenic

In this set-up, we followed ∆pNa or ∆ψ driven H+ transport as a consequence of

electrogenic Na+/H+ exchange activity. In this sensitive assay, liposomes containing

the highly soluble and membrane impermeable pH sensitive dye pyranine were used to

follow H+ influx or efflux. A Na+ gradient was established by the addition of NaCl,

whereas an electrical membrane potential was established with a K+/valinomycin

diffusion potential.

Reconstitution of NapA into liposomes containing pyranine was essentially per-

formed as described [87]. In brief, to a 500 µl liposome (40-80 nm) suspension (soy

bean lipids, type II, SIGMA, 20 mg ml−1) in buffer A (10 mM MOPS-PO4, pH 7.5),

45 µml cholate (20% stock solution) and 17 µl NapA (50 µM, purification buffer)

was added and incubated for 30 min at room temperature with occasional mild mix-

ing. The cholate was removed via a PD-10 gel filtration column (GE Healthcare)

equilibrated with buffer A and the proteoliposomes in the void volume were collected

(∼1.2 ml). They were diluted to 8 ml with buffer A, collected via ultracentrifugation

(200,000g, 4◦C, 30 min) and resuspended in 250 ml buffer A. Then, 125 µl of pro-

teoliposomes was mixed with 1 mM pyranine (0.1 M stock solution) and the desired

Na2SO4 and K2SO4 concentrations, frozen in liquid nitrogen, thawed in water and
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briefly sonicated in a bath type sonicator (2 × 5 s). The freeze/sonication procedure

was repeated once. The external pyranine was subsequently removed via a prepacked

G25 gel filtration column (GE Healthcare) and the proteoliposomes, equilibrated in

buffer A, were collected from the void volume of the column.

Pyranine fluorescence measurements monitoring pH changes on the inside of the

proteoliposomes were performed as described [87]. Typically, an amount of 20 ml

liposomes containing the desired Na+ and K+ concentrations was mixed with 2.5 ml

buffer containing the same buffer with the appropriate salt concentrations. After

30 s, exchange activity was either initiated by the addition of 50 mM Na+ to the

outside (0.5 mM Na+ on the inside), establishing an inwardly-directed Na+ gradient

(∼120 mV), and leading to H+ efflux. Accordingly, in a system in the absence of Na+

gradient (50 mM Na+ on both sides), but in the presence of a K+ gradient (100 mM

K+ inside, 1 mM K+ outside liposomes), addition of valinomycin (10 nM) established

a membrane potential of ∼120 mV (inside negative) driving H+ influx (and Na+

efflux).

3.4.5 Crystallization and preliminary screening

Crystals were grown at 20◦C using the hanging drop vapour diffusion method. A

1 µl aliquot of pure protein was mixed 1:1 with reservoir solution containing 0.001

M zinc sulphate, 0.05 M HEPES, pH 7.8 and 22-36% PEG 600 (mutants) or 0.05

M glycine, pH 9.0, 0.05 M magnesium acetate, 26% PEG 400 (wild type). Crystals

appeared overnight and reached maximum size after 3-4 days. For specified crystals,

coverslips were transferred for overnight incubation with reservoir solution containing

2% increments of PEG 400. Dehydrated crystals in 30-36% PEG 400 were finally

soaked with 1 µl reservoir solution containing 1% NM and 40% PEG 400 followed by

flash freezing in liquid nitrogen before data collection.
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Data were collected at the European Synchrotron Radiation Facility and Diamond

Light Source. Most of the crystals were triclinic, however, very occasionally crystals

with different space groups were observed. The highest resolution data were collected

from an orthorhombic crystal of the triple mutant that had been reannealed on the

beamline. This crystal was grown with 0.025% dichloromethane (Hampton Research)

as an additive.

3.4.6 Structure determination

To obtain phases cysteine mutants were introduced into the protein to enable

derivatization with mercury. Three positions were chosen (Met 20, Val 166 and Val

326) and single, double and triple mutants created as described above. Mercury-

derivatized protein was prepared by incubation of the protein at 20◦C for 1 h with

2.5 mM mercury acetate. The structure was solved using MIRAS from four tri-

clinic crystals (native, mercury derivatized and selenomethionine) as shown in Sup-

plementary Table 1. Data were processed using the Xia2 pipeline [88] to XDS [89],

with further processing using the CCP4 suite of programs [90]. Heavy atom sites were

located from anomalous difference Patterson maps of the double mutant using the

program RSPS [91]. Phases were calculated and refined in SHARP [92]. Further mer-

cury and selenomethionine sites were located in residual maps. The crystals contain

four molecules in the asymmetric unit. Non-crystallographic symmetry operators

were determined from the heavy atom positions and averaging was carried out in

DM [93] with a mask calculated in O [94]. This map was then used as a search model

for molecular replacement in Phaser [95] for the P21 and C2221 data sets. On the basis

of the operators obtained, multi-crystal averaging in DMMULTI [93] using the P1 (4

molecules in au), P21 (2 molecules in au) and C2221 (1 molecule in au) data sets was

carried out. This gave maps of sufficient quality to see all 13 helices of the NapA
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subunit. Model building was carried out in O [94] and COOT [96] and was facilitated by

the positions of the mercury and selenomethionine peaks. Refinement of the atomic

coordinates and individual B-factors using the C2221 data at 2.9 Å was carried out

in PHENIX [97]. Secondary structure restraints were applied and refinement was in-

terspersed with rebuilding using O and COOT. Peaks in anomalous difference maps

indicated the presence of two zinc ions bound to the protein on the periplasmic sur-

face to residues at the N terminus of TM-1 and the loop between TM1 and TM2.

The final refinement statistics are shown in Supplementary Table 3.1.

Maps were calculated based on the final refined model for the data from the

wild type selenomethionine derivatized crystals (Supplementary Table 3.1). At 3.7

Å resolution no clear differences were observed and the positions of the peaks in the

anomalous difference maps were consistent with the positions of the methionines in

the structure (data not shown).

Superpositions were carried out in Lsqman [98] such that all matching Cα pairs

were less than 3.8 Å apart after superposition. Figures were drawn using Pymol [99]

except those showing electron density, which were made using CCP4mg [100]. The

inward-facing model of NapA was created by superposing the core and dimerization

domains of NapA onto the corresponding domains of NhaA separately. The only

adjustments that were made to the model were to the polypeptide chain between the

two domains. No modifications were made to alleviate the clashes between the loop

between TM-1 and TM1 and TM4a. The video was made in Lsqman [98] by morphing

between the outward-facing crystal structure and the inward-facing model displayed

using Pymol [98].
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3.4.7 Molecular dynamics simulations

Molecular dynamics simulations of the NapA dimer in a mixed POPE/POPG

bilayer were carried out with the Gromacs simulation package [101], either version

4.5.5 or a development version of 4.6. All simulations employed the CHARMM force

field including CMAP [42,43] with the original TIP3P water model [51] and updated

CHARMM parameters for POPE and POPG lipids (CHARMM) [45], as implemented

in Gromacs [101]. The ratio of POPE to POPG molecules was about 4:1 to approximate

the major components of the E. coli membrane. We used a multi-scale approach to

embed the dimer into the membrane [50]. The protein was first simulated in a coarse

grained representation [102] and the membrane was allowed to self-assemble around the

protein from a random mixture of lipids and water in the simulation box [103]. After 200

ns simulation with an integration time step of 20 fs the bilayer had assembled around

the NapA dimer. In the second step of the multi-scale approach, the system was

converted to the CHARMM atomistic representation with the CG2AT protocol [50]

and the original crystal structure inserted in place of the back-translated protein.

The simulation system consisted of an orthorhombic simulation box of size 114 Å ×

114 Å × 91 Å containing 118,832 atoms in 768 protein residues, 215 POPC and 57

POPG lipids, 180 Na+, 109 Cl− ions and 24,575 water molecules. The free NaCl

concentration was about 250 mM in all simulations to approximate the outward-open

transporter facing an environment of increased salt stress.

Most titratable residues were predicted by PROPKA [104] to be in their default

charge states at pH 7.8 and were simulated as such (including deprotonated Asp 156

and Asp 157, with predicted pKa as 3.2 and 5.7). The pKa of the buried Lys 305 was

predicted to be 9.5, with its charged form partially stabilized by a salt bridge with

the (charged) Asp 156. Therefore, Lys 305 was simulated in its protonated (positively
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charged) form. For a number of residues the predicted value was within 1 unit of the

environmental pH value we wished to simulate and for those residues we rationalized

our choices as follows: The pKa of Glu 333 was predicted as 7.0. Glu 333 might

help to stabilize the helix dipoles of helices TM4a and TM11a (similar to Asp 133

in NhaA) but such a charge-dipole interaction is not encoded in the empirical rules

of the PROPKA algorithm [104]. Furthermore, simulations clearly showed that Glu

333 protrudes into the outward facing cavity and is solvated. We, therefore, adopted

a charged Glu 333. His 6 and His 51, which reside on the surface and do not seem

to have any specific mechanistic role, had predicted pKa of 7.8 and 7.1 and were

modelled in their dissociated (neutral) form.

Equilibrium molecular dynamics simulations were performed with periodic bound-

ary conditions at constant temperature T = 323 K and pressure P = 1×105 Pa using

the velocity rescaling algorithm for the thermostat (time constant 0.1 ps) [62] and

semi-isotropic Parrinello-Rahman barostat (time constant 5.0 ps, compressibility 4.6

× 10−10 Pa−1, coupling every 10 steps) [63]. Long range corrections for energy and

pressure were applied [55]. Lennard-Jones interactions were switched off between 8 Å

and 12 Å, and electrostatic interactions were handled by the SPME method [105] in

which Coulomb interactions were computed in real space up to a cut-off of 12 Å and

long range interactions beyond the cut-off were calculated in reciprocal space with

fast Fourier transforms on a grid with spacing 1.2 Å and fourth order splines for fit-

ting of the charge density. The grid-based neighbour list was updated every five steps

to a distance of 14 Å. Bonds to hydrogen atoms were constrained with the P-LINCS

algorithm [55] or SETTLE (for water molecules) [56]. The classical equations of motions

were integrated with a leap frog integrator and a time step of 2 fs. Conformations

were saved every 1 ps for analysis.
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The simulation protocol included an initial energy minimization of the atomistic

system and a 1 ns equilibrium simulation during which the protein heavy atoms

were restrained with a harmonic force with force constant of 1,000 kJ mol−1 nm−2.

An initial unrestrained simulation of the dimer with Asp 156 and Asp 157 in their

default protonation state was run for 100 ns. Eight additional 100 ns simulations

were performed in three sets (two simulations in set 1, five in set 2, one in set 3). The

starting configuration for each set was generated from the last frame of the initial

simulation by exchanging any sodium ion within 3 Å of Asp 157 or Asp 156 with a

random bulk water molecule. Repeats in each set always differed by the seed of the

random number generator, thus leading to differing initial assignments of velocities

and generation of independent trajectories through the stochastic component of the

velocity rescaling thermostat [62], as seen from the different r.m.s.d. time series in

Supplementary Figure 3.10.

Additional simulations were performed to assess the influence of the protonation

state of the conserved residues Asp 156 and Asp 157 on sodium binding as performed

previously for NhaA [23]. Two independent 100 ns simulations were performed for each

of (1) Asp 156 deprotonated (negatively charged) and Asp 157 protonated (neutral),

(2) Asp 156 protonated and Asp 157 deprotonated, and (3) both Asp 156 and Asp 157

protonated. Charge states were modified with the Gromacs tool pdb2gmx [101]. These

six simulations used the 100 ns frame of the initial simulation (default charge states)

with any sodium ions near the aspartates exchanged with a bulk water molecule

as a well-equilibrated starting conformation. In each case, a 1 ns position restraint

simulation (as above) was followed by a 100 ns production equilibrium simulation.

Simulations were analysed with MDAnalysis [106] and Gromacs tools [101]. To cal-

culate the sodium density, data from all nine simulations with the deprotonated as-

partates were used at 1 ps intervals. Ion binding and unbinding to each protomer
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appeared to be independent so that data for both protomers were combined by su-

perpositioning trajectories of both protomer A and protomer B on the coordinates

of protomer A from the start of the initial simulation. The density was calculated

by histogramming sodium coordinates in cubic volume elements at a resolution of

1 Å in a fixed coordinate system defined by the initial coordinates of protomer A.

The thicknesses of bilayer regions were calculated from the distributions of the head-

group phosphate and acyl chain atoms along the membrane normal, using trajectories

superpositioned on the dimer.

Images showing simulation data were prepared with VMD [107] and the Bendix

plugin for curved helices [108] or UCSF Chimera [109,110].
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Table 3.1: Data Collection, Phasing and Refinement Statistics.
aValues in parentheses refer to data in the highest resolution shell
bCalculated to 3.5 Å;
cBased on 5% of reflections.
dFrom Molprobity [111]
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Figure 3.5: Characteristics of the NapA protein. a, Fluorescence-detection size-exclusion chromatography (FSEC)
traces of LDAO (dotted line) or DDM (solid line) solubilised membranes, which were isolated from cells grown in
MemStar (see Methods). For reference an FSEC trace of DDM solubilised membranes isolated from C43(DE3)
cells grown in LB (red trace) is shown. In-gel fluorescence of NapA-GFP-His8 expression is shown in the inset. b,
Apparent binding affinity for Na+ (closed circles) and Li+ (open circles) in NapA at pH 7.5 for the triple cysteine
mutant (Met20Cys, Val166Cys, Val326Cys) mutant, KM Na+ = 2.55 ± 0.17 mM and Li+ = 0.54 ± 0.04 mM. c,
Static light-scattering of purified NapA in DDM. The molecular weight corresponding to the NapA-detergent complex
(red line) and NapA only (blue line) is as shown (the predicted Mw of NapA is 40.8 kDa (Q72IM4) and the purity of
the protein used for analysis is illustrated by the Coomassie-stained SDS-gel (inset). d, Proteoliposomes containing
D156N (red trace), D157N (green trace) and wild type (black trace). NapA mutants show no transport activity with
the addition of saturating 100 mM Na+ (red and green traces) or 50 mM Li+ (data not shown).
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Figure 3.6: Sequence comparison of NapA to human and bacterial Na+/H+ antiporters. Sequence alignment of Ther-
mus thermophilus NapA (UniProt: Q72IM4) to Oceanithermus profundus NapA (E4U6Q4; 65% sequence identity),
Bacillus cereus NapA (C2MWQ1; 35% sequence identity), Enterococcus hirae NapA (P26235; 30% sequence identity),
Methanococcus jannaschii NhaP1 (Q60362; 23% sequence identity), Homo sapiens Nha2 (SLC9B2; Q86UD5; 21%
sequence identity), Homo sapiens Nhe1 (SLC9A1; P19634; (¡15% sequence identity), and E. coli NhaA (P13738; ¡15%
sequence identity) using ClustalW (www.ebi.ac.uk/clustalw/) and MAFFT in Jalview. Although sequence identity is
calculated using pairwise alignment to full length NapA, for sake of clarity, only TMs corresponding to 4, 5, 10 and
11 in NhaA are shown as these TMs harbor conserved charged residues known to be important for function [29]. Red
squares indicate the predicted aspartate ion-binding residues and the black squares indicate ionisable residues located
between the two charged dipoles at the cross-over of TMs 4 and 11 in NhaA.

Figure 3.7: Typical electron density. The stereo view shows the region around Asp156. The 2mFo-DFc map has
been calculated using phases derived from the final model and contoured at 0.06 e/A3 (0.6σ).
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Figure 3.8: NapA topology. Coloured rods depict TMs -1 to 12 that form two 6-TM topology-inverted repeats, -1 to
5 and 7 to 12, connected together by TM6 (grey). The structural repeats intertwine to form a Dimerisation domain
(pale orange rods) and a Core domain (blue-purple rods).

Table 3.2: Characterisation of NapA mutants. Apparent affinities were calculated from triplicate measurements (see
Methods for details).
*The data were taken from Furrer et. al. [68].
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Figure 3.9: Structural comparison of NapA with NhaA. a, NhaA structure in grey (4AU5, O.B et al. manuscript
in preparation) superimposed onto NapA shown in blue for Core and light orange for Dimerisation domain. TMs -1
and 6 have been omitted for clarity. b, As in a. except with the Dimerisation and Core domains of NhaA super-
imposed separately onto NapA. c, The charged residues discussed in the text (E333/D133, K305/K300, D156/D163,
D157/D164) are shown as colour sticks for NapA and grey sticks for NhaA.
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Figure 3.10: Backbone r.m.s.d. of MD simulations. The root mean square deviation of the backbone atoms from
the starting frame of initial simulation (crystal structure in the membrane after energy minimisation and 1 ns MD
with strong position restraints on all heavy protein atoms) was calculated by superpositioning the whole dimer on the
reference structure at each trajectory frame. The panels show the r.m.s.d. for protomer A (solid line) and protomer
B (dashed line). a. Simulations with Asp156 and Asp157 in their default protonation states (deprotonated, i.e.
negatively charged): initial simulation and the three sets of simulations 1-3 that started from the last frame of the
initial simulation. b. Simulations with alternative protonation states (two repeats each). Asp156 AspH157: charged
Asp156 and protonated i.e. neutral Asp157. AspH156 Asp157: neutral Asp156 and charged Asp157. AspH156
AspH157: both aspartate residues are neutral.
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Figure 3.11: Sequence alignment of NapA to well characterised E. coli NhaA. Sequence alignment of NapA and
NhaA using the PROMALS3D server with the NhaA and NapA structures and manual adjustment in JalView. The
α-helices in NapA are depicted as coloured filled boxes from red to blue as in Figure 3.2. Aspartate residues, D156/157
(NapA) and D163/164 (NhaA), likely to coordinate sodium/lithium are labeled with a red square. Ionisable residues
between discontinuous TM assembly E333/K305 (NapA) and D133/K300 (NhaA) are labeled with a black square
and conserved charged residues E74/E258 (NapA) and E78/E252 (NhaA), thought to be part of pH sensing [29], are
shown with a light green square. Other residues predicted to be involved in pH sensing are not conserved.
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Figure 3.12: MD simulations of Na+ binding to NapA. a-d. View from the extracellular side on a putative sodium
binding site near Asp157, with data from 200 ns of MD for simulations with differing protonation states of Asp156
and Asp157. Although the aspartate sidechains display multiple rotameric states no substantial, larger conforma-
tional changes are observed over the 1.7 µs of aggregated simulation time (see also Supplementary Figure 3.10). Ion
positions (small magenta spheres) were overlaid at 1-ns intervals in the context of a representative conformation of
the protein (ribbons) with specific side chains highlighted as sticks. Data from both protomers were overlaid so that
the images represent 400 ns of sampling of sodium positions. a. With default protonation states (Asp156 and Asp157
deprotonated and hence charged) multiple Na+ binding/dissociation events were observed; see e for discussion of
these events and g showing 0.9 µs of data. b. For protonated Asp156 (neutral) and charged Asp157 only a single,
short binding event of 25 ns duration was observed. c. No binding events were observed for Asp156 charged and
Asp157 neutral. d. Neutral Asp156 and Asp157 also do not show any Na+ binding. e Representative time series of
spontaneous sodium binding and dissociation events and definition of the ion-Asp distance. The distance d between
Na+ ions and the closest Oδ atom in Asp157 on each protomer is shown for protomer A in simulation #3.1 (from set
3). Binding events are indicated by prolonged residence at distances < 2.5 Å. Binding and dissociation of sodium
ions was observed in almost all 100-ns simulations with Asp156 and Asp157 charged: For each simulation # we state
the number of binding/dissociation events for each protomer (A, B): initial 1/1, 2/1; #1.1 1/0, 1/1; #1.2 1/1, 3/2;
#2.1 2/1, 1/1; #2.2 0/0, 2/1; #2.3 2/1, 0/0; #2.4 1/0, 2/2; #2.5 1/0, 1/0; #3.1 3/2 (shown here), 2/2. f and g.
Simulations with Asp156 and Asp157 deprotonated (charged), using data from two protomers over a total of 0.9 µs
of simulated time (equivalent to 1.8 µs of sampling of the density around a single protomer). f. Cut through the
Na+ density in the context of the dimer structure. The approximate position of Glu333 is indicated, together with
Asp157. g. Ion positions are shown as in a but from 900 ns of trajectory data. High sodium density regions near
Asp157 and Glu333 are clearly visible. (Figure f was created in UCSF Chimera while a-d and g were made in VMD
and rendered with Tachyon.)
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Chapter 4

CRYSTAL STRUCTURE OF THE SODIUM-PROTON ANTIPORTER NHAA

DIMER AND NEW MECHANISTIC INSIGHTS

This chapter is a reprint of the journal article, Lee, C., Yashiro, S., Dotson, D.L.,

Uzdavinys, P., Iwata, S., Sansom, M.S.P., Ballmoos, C. von, Beckstein, O., Drew,

D., and Cameron, A.D. (2014). Crystal structure of the sodium-proton antiporter

NhaA dimer and new mechanistic insights. J Gen Physiol 144, 529-544. This work

introduced a new crystal structure of inward-facing Escherichia coli NhaA, obtained

at low-pH but crystallized as a physiological dimer. The new structure reveals a

previously-unidentified salt-bridge between Asp163 and Lys300, two highly-conserved

residues at the putative Na+/H+ binding site. We show that the original structure [22]

incorrectly assigned the placement of Lys300 due to poor electron density in the

vicinity of transmembrane-helix 10, resulting in a register shift that placed the lysine

a full 10 Å from its proper position.

Remarkably, all-atom molecular dynamics simulations show that for this new

structure, spontaneous binding of Na+ to the conserved aspartates, Asp164 and

Asp163, subsequently breaks the salt bridge formed between Asp163 and Lys300. This

information, combined with heuristic pKa estimates [112] of the titrateable residues ob-

tained from simulation frames, suggests that Lys300 may be directly involved in ion

transport as a H+ carrier. Given these observations, we propose a new mechanism of

transport for NhaA and similar transporters.

My contribution to this work was the performance and analysis of the molecular

dynamics simulations, and I am a joint first author on this paper. This work first
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appeared in the Journal of General Physiology, Copyright © 2014 the Authors.

ABSTRACT

Sodium-proton antiporters rapidly exchange protons and sodium ions across the

membrane to regulate intracellular pH, cell volume, and sodium concentration. How

ion binding and release is coupled to the conformational changes associated with

transport is not clear. Here, we report a crystal form of the prototypical sodium-

proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer.

In this new structure, we observe a salt bridge between an essential aspartic acid

(Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in

the homologous transporter NapA, but not in the only other known crystal struc-

ture of NhaA, which provides the foundation of most existing structural models of

electrogenic sodium-proton antiport. Molecular dynamics simulations show that the

stability of the salt bridge is weakened by sodium ions binding to Asp164 and the

neighboring Asp163. This suggests that the transport mechanism involves Asp163

switching between forming a salt bridge with Lys300 and interacting with the sodium

ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when

involved in the salt bridge. As it has been previously suggested that Asp163 is one

of the two residues through which proton transport occurs, these results have clear

implications to the current mechanistic models of sodium-proton antiport in NhaA.

4.1 Introduction

Electrogenic sodium-proton antiporters use the proton gradient to drive sodium

ions out of the cell, usually under conditions of salt stress at alkaline pH [69]. NhaA

from Escherichia coli is the prototypical electrogenic sodium-proton antiporter, with
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two protons transported for every sodium ion [13]. For a transporter, NhaA is ex-

tremely fast, exchanging up to 1,500 ions/s [12]. Its activity is regulated by pH: it is

inactive at acidic pH, partially active between pH 6.0 and 7, and fully active at pH

8.0 [69]. The crystal structure of NhaA was determined at a resolution of 3.45 Å in an

inward-facing conformation at low pH where the protein is inactive [22]. NhaA is made

up of two five-transmembrane (TM) topology-inverted repeats that intertwine to form

two distinct structural domains: a core (translocation) domain and a dimer (inter-

face) domain [22,29] (Figure 4.1). In the crystal structure, a deep cytoplasmic-facing

cavity, containing many negatively charged residues, is located between the core and

dimer domains. The core domain is characterized by two discontinuous helices that

cross over at the center of the protein (Figure 4.1). The two well-conserved aspar-

tates Asp163 and Asp164 are located near the crossover region. Sodium ion binding

to Asp163 and Asp164 at high pH is believed to elicit a switch of the transporter from

the inward- to outward-facing conformation, although the details of the mechanism

are unclear [24,28,29,64].

Recently, the structure of another sodium-proton antiporter (NapA) was solved at

high pH in the outward-facing conformation [113]. In this new structure, the equivalent

residue to Asp164 (Asp157 in NapA) was found to be accessible from a large cavity

to the outside, rather than the inside as seen in NhaA. Furthermore, in the NapA

structure, the equivalent residue to Asp163 in NhaA interacts with a well-conserved

lysine (Lys305 in NapA, Lys300 in NhaA), which is thought to be important in charge

neutralization and pH activation [22,28]. Here, we describe a new crystal form of NhaA

that, like the previous NhaA structure, is in an inward-facing conformation at low

pH, but shows the protein packing as a dimer, which is the physiological oligomeric

state for sodium-proton antiporters in general [72,113–115]. We show that the salt-bridge

interaction observed in the outward-facing structure of NapA is also evident between
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Asp163 and Lys300 residues in the new inward-facing NhaA structure. To probe

this salt-bridge interaction, further molecular dynamics (MD) simulations were per-

formed in a model membrane bilayer, systematically changing the protonation states

of charged residues in the ion-binding site.

Figure 4.1: Schematic diagram of the NhaA structure. The core and dimer domains are illustrated with blue and
beige shadowing, respectively. TM 4 (red) and TM 11 (yellow) are discontinuous and cross over in the center of the
protein. Asp133 and Lys300 have been proposed to neutralize the positively and negatively charged helix dipoles of
the discontinuous helices. Asp163 and Asp164 are thought to interact with the sodium ion. Coordinates are from
Protein Data Bank accession number 1ZCD [22].

4.2 Materials and Methods

4.2.1 Expression, purification, and stabilization of NhaA

NhaA-GFP-His8 was obtained from the previously constructed membrane protein

GFP fusion library [116]. The NhaA-GFP-His8 fusion protein was overexpressed and

purified as described previously [67]. To confirm the sequence assignment of TM 10,

Leu296 was mutated to methionine using the QuickChange II XL Site-Directed Mu-

tagenesis kit (Agilent Technologies) in a variant of NhaA containing two stabilizing
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point mutations (A109T and Q277G) as shown below. The A109T, Q277G construct

is referred to as the “double mutant,” and A109T, Q277G, L296M is referred to as

the “triple mutant.” Expression of the mutants was performed using MemStar [117].

In brief, the E. coli strain pLemo(DE3) was cultured in the auto-induction medium

for selenomethionine labeling (PASM-5052) but also included an IPTG induction

step at mid-log phase. Cultures were harvested after o/n growth at 25◦C and were

supplemented with kanamycin at 50 µg/ml throughout [81,82].

4.2.2 Preparation of stable mutant of NhaA

The L296M mutation was introduced into a variant of NhaA that had been sta-

bilized by the introduction of two mutations. These stabilizing point mutants were

identified by screening ∼100 random mutations of NhaA. Mutations were generated

by error-prone PCR using the GeneMorph II Random Mutagenesis kit (Agilent Tech-

nologies). NhaA mutants were selected based on expression levels (>1 mg/L based on

GFP fluorescence) and those that had >50% extraction efficiency in 2% wt/vol octyl-

β-D-thioylglucoside (OG) from total membranes, at a concentration of 3 mg/ml, after

1-h incubation at 4◦C. This procedure was performed because we observed a correla-

tion between the stability of membrane proteins, as judged by their unfolding rate in

LDAO at 40◦C [67], and their solubilization efficiency in OG.

4.2.3 Functional characterization of the thermostabilized NhaA mutant

NhaA wild-type and the thermostabilized mutant were co-reconstituted with pu-

rified ATP synthase from E. coli with an ∼2:1 molar ratio (NhaA/ATP synthase) in

MME buffer (10 mM MOPS-NaOH, pH 8.5, 2.5 mM MgCl2, and 100 mM KCl) as

described previously [113]. Typically, 50 µl proteoliposomes were diluted into 1.5 ml

MME buffer containing 3 nM 9-aino-6-chloro-2-methoxyacridine (ACMA) and 140 nM
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valinomycin. Fluorescence was monitored at 480 nm using an excitation wavelength

of 410 nm in a fluorescence spectrophotometer (Cary Eclipse; Agilent Technologies).

An outward-directed pH gradient (acidic inside) was established by the addition of 2

mM ATP, as followed by a change in ACMA fluorescence. After an ∼2-min equilibra-

tion, the activity of NhaA wild-type and thermostabilized mutant was assessed by the

dequenching of ACMA fluorescence after the addition of the indicated concentrations

of NaCl or LiCl. The addition of 20 mM NH4Cl leads to near complete dequenching.

By measuring ACMA dequenching by the addition of 10 mM NaCl or LiCl at pH

6.5, 7.0, 7.5, 8.0, 8.5, and 9.0, respectively, the effect of pH to NhaA wild-type and

thermostabilized mutant activity was assessed. Each experiment was performed in

triplicate.

4.2.4 Crystallization

Crystals of wild-type NhaA and the triple mutant were grown by mixing equal

volumes of a protein solution containing 8 mg/ml of pure protein in 20 mM sodium

citrate, pH 3.5, 150 mM NaCl, 0.03% high α-n-dodecyl-β-D-malotoside (α-DDM),

and 1% heptylthiol-β-D-glucoside with reservoir solution containing 0.1 M sodium

citrate, pH 3.5, 0.1 M LiS04, and 26% PEG 400. For the triple mutant, 1% Facade-

EM (Avanti Polar Lipids, Inc.) was included as an additive. The crystals were

dehydrated by transferring the cover slides sequentially to wells with 2% increments

of PEG 400 to a final concentration of 32%. Crystals were soaked with 1 µl of

reservoir solution containing 1% high α-DDM and 40% PEG 400 and flash frozen in

liquid nitrogen before data collection.
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4.2.5 Data collection, processing, and refinement

Wild-type NhaA. Data were collected at Diamond Light Source beamline I24

and were processed and scaled using HKL2000 [118]. Molecular replacement was per-

formed using Phaser [95] as part of the CCP4 package [90], with the previously pub-

lished monomeric structure as the search model (Protein Data Bank accession no.

1ZCD [22]). Inspection of the solution showed two dimers to be present in the asym-

metric unit. Refinement was performed against data extending to 3.7 Å using the

PHENIX package [97] starting from a model in which the β hairpin (Pro45 to Asn58)

and other surface loops were omitted. The maps were improved by averaging the four

molecules of the asymmetric unit using the RAVE package [119] with B-factor sharpen-

ing as described by DeLaBarre and Brunger [120]. Rebuilding was performed in O [94].

The structure was refined with one B factor for each residue TLS [121], grouped into

chains, secondary structure restraints, and noncrystallographic symmetry (NCS) re-

straints between the four molecules of the asymmetric unit. During refinement, the

register of TM 10 was moved by one turn of the helix. This improved the fit of the

helix to the density and the geometry of the residues in this region. To confirm the

assignment, Leu296 on TM 10 was changed to a methionine and data were collected

from selenomethionine derivatized crystals (see next section). As this dataset was

of higher resolution than the wild type, the model was refined first against these

data (see below) before being refined against the wild-type data in a final round of

refinement with dihedral restraints to the higher resolution model.

NhaA triple mutant. Data were collected on beamline I03 at Diamond Light

Source. They were processed with XDS [89] through the xia2 pipeline [88]. Refinement

was performed using the PHENIX package [97] as described above. Refinement was

performed against data extending to a resolution of 3.5 Å as for the wild type, except

61



that F’ and F” were given for the selenium atoms and the refinement was performed

against the anomalous pairs. In the last rounds of refinement, NCS restraints were

only applied over the two dimers. This resulted in slightly better R and R-free.

Coordinates and structure factors have been deposited in the Protein Data Bank

under accession number 4AU5 for the wild- type structure and 4ATV for the triple

mutant.

4.2.6 MD simulations

MD simulations of the NhaA dimer and a monomer in a 1-palmitoyl-2-oleoyl-

phosphatidylcholine (POPC) bilayer were performed with the Gromacs 4.5.3 or 4.6.1

simulation packages [101]. All simulations used the OPLS-AA force field [46–48] with

the TIP4P water model [51] and OPLS-UA parameters for POPC lipids [49] (provided

by M. Ulmschneider and available from the Lipidbook force field repository [122]). A

POPC bilayer was studied as a generic model of a native-like membrane environment

instead of other lipid compositions, as the POPC lipid parameters have been shown

to perform well in very long (≥1-µs) simulations [123,124]. POPC is a reasonable choice

as a model membrane because its membrane thickness is comparable to that of the

POPE-rich membrane [125–127] of E. coli [128,129]. We used a multi-scale approach to

embed the dimer into the membrane [50]. The protein was first simulated in a coarse-

grained representation, and the membrane was allowed to self-assemble around the

protein from a random mixture of lipids and water in the simulation box [103]. In this

way, lipids could accumulate in the dimer interface in an unbiased fashion, only driven

by the thermodynamics of the partitioning of the random mixture into a water phase

and a lipid/membrane phase. After a 200-ns simulation with an integration time

step of 20 fs, the bilayer had assembled around either the NhaA dimer or a monomer

(based on chain A of the crystal structure). In the second step of the multi-scale
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approach, the systems were converted to the OPLS-AA atomistic representation with

the CG2AT protocol [50], and the original crystal structure was inserted in place of the

back-translated protein. The dimer simulation system consisted of an orthorhombic

simulation box of size of 121 × 121 × 93 Å containing 112,700 atoms in 748 protein

residues, 354 lipids, 49 Na+ and 55 Cl− ions, and 27,546 water molecules. The

monomer system measured 75 × 75 × 90 Å and contained 52,332 atoms (374 protein

residues, 135 POPC lipids, 17 Na+ and 20 Cl− ions, and 9,875 water molecules). The

approximate free NaCl concentration was 100 mM in all simulations.

Equilibrium MD simulations were performed with varying protonation states of

Asp133, Asp163, Asp164, and Lys300 (see Table 4.1). The choice of protonation

state for other residues was guided by PROPKA [104] based on their pKa, at pH 7.

Asp133 is believed to stabilize the helix dipoles of TMs 4a and 11a, but such a charge-

dipole interaction is not encoded in the empirical rules of the PROPKA algorithm [104].

Therefore, we disregarded the predicted value of 7.1 and adopted a charged Asp133,

but also performed simulations with Asp133 in its neutral form. Glu82 and Glu252

had predicted pKa values >8, but in the structure and in simulations, they face the

water-filled entrance funnel so the charged default states were selected instead of the

protonated forms.

MD simulations were performed with periodic boundary conditions at constant

temperature T = 310 K and pressure P = 1 bar using the velocity-rescaling algo-

rithm for the thermostat (time constant of 0.1 ps) [62] and semi-isotropic weak coupling

for the barostat (time constant of 1.0 ps; compressibility of 4.6 × 10−5 bar−1) [130].

Long-range corrections for energy and pressure were applied [101]. Lennard-Jones in-

teractions were cut off at 10 Å, whereas electrostatic interactions were handled by

the smooth particle mesh Ewald (SPME) method [105] that computes Coulomb inter-

actions in real space up to a cutoff of 10 Å and long-range interactions beyond the
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cutoff in reciprocal space with fast Fourier transforms on a grid with spacing 1.2 Å and

fourth-order splines for fitting of the charge density. Bonds to hydrogen atoms were

constrained with the P-LINCS algorithm [101] or SETTLE (for water molecules) [56].

The grid-based neighbor list was updated every five steps. The classical equations

of motions were integrated with a leapfrog integrator and a time step of 2 fs. Con-

formations were saved every 1 ps for analysis. The simulation protocol included an

initial energy minimization of the atomistic system and a 3-ns equilibrium simulation

during which the protein heavy atoms were restrained with a harmonic force con-

stant of 1,000 kJ mol−1 nm−2. Simulations were performed as detailed in Table 4.1

with at least three repeats of each main simulation. To change protonation states of

residues, the Gromacs tool pdb2gmx was used [101], which also rebuilds hydrogens as

needed. When a simulation was continued from a previous simulation, another en-

ergy minimization and 3-ns equilibrium MD with positional restraints on the protein

heavy atoms were performed after changing protonation states. These simulations

are marked with an asterisk in Table 4.1. Repeat simulations started from the last

frame of a position restrained simulation were run with different seeds for the random

number generator so that the differing initial velocity distributions and the stochastic

component of the thermostat [62] would generate independent trajectories. In total,

we simulated the dimer system for >10 µs.

4.2.7 Analysis and estimation of pKa values

MD trajectories were analyzed with MDAnalysis [106] and Gromacs tools [101]. The

distance d of the Asp163-Lys300 salt bridge was calculated as the minimum distance

between the two carboxyl Oδ1 and Oδ2 atoms with the amine Nζ at each time step;

similarly, ion-carboxyl group distances were also calculated as the minimum distance

to the two oxygen atoms. After the simulations, the pKa values of titratable residues
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Table 4.1: MD simulations. Asterisks denote simulations that were preceded by energy minimization and a 3-ns
position restraint MD; simulations without an asterisk were repeats starting from the same initial system conformation
as the starred one but with varied initial velocity distribution. The dimer simulation contained 112,700 atoms and
the monomer contained 52,332. All simulations were performed with Gromacs 4.6.1 except simulations S2/1, S2/1.1-
1.5, and S2/2.1-2.2, which were run in Gromacs 4.5.3. Judging from the RMSD and secondary structure analysis
(not depicted), the simulations behaved in the same manner regardless of software version. In total, 10.5 µs of MD
simulations was performed. xtal, crystal structure of wild-type NhaA, which was deposited in the Protein Data Bank
under accession number 4AU5 after minor refinements; 4AU5, wild-type NhaA as deposited in the Protein Data Bank;
S1/1, last frame of simulation S1/1, etc., or frame at 0.1 µs (“@0.1µs”).
aSimulations are identified by the protonation states and resulting charge states of Asp133 (D133), Asp163 (D163),
Asp164 (D164), and Lys300 (K300), using identifiers S1-S8. Repeat simulations are indicated with a serial number
after the identifier.
bStarting structure denotes the source for the initial input structure for the simulation.

were estimated with PROPKA 3.1 [131] using snapshots of the MD simulations that

were sampled every 1 ns. Na+ ions within 6 Å of the protein were taken into account

because preliminary calculations showed that the presence of ions close to titratable

residues can shift the pKa by up to 2 units. Data were typically split according to

(a) the selected protonation states in the simulation and (b) the state of the Asp163-

Lys300 salt bridge. The salt bridge was considered formed if d < 4 Å and broken

if d ≥ 4 Å. This value is consistent with work by Kumar and Nussinov [132,133] who

considered a salt bridge to exist with d < 4 Å between any N-O pair.
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The pKa time series data from the individual protomers A and B in each sim-

ulation of the dimer and from repeats of individual simulations were aggregated.

Distributions of pKa values were modeled with a Gaussian kernel density estima-

tor whereby the kernel width was chosen according to Scott’s criterion [134] as im-

plemented in the scipy.stats.gaussian kde() function from the SciPy package.

Distributions were plotted as violin plots [135] as implemented in the Seaborn pack-

age [136]. To assess the effect of the salt bridge on the pKa values of neighboring

residues, the distribution f(∆pKa) of the difference between pKa from frames with a

broken salt bridge minus pKa from frames with the intact salt bridge was computed:

f(∆pKa) =
∫
dw fbroken

pKa
(w)f intact

pKa
(w − ∆pKa), where the distributions fbroken

pKa
and

f intact
pKa

of the pKa for the intact and broken salt bridge were computed from the data

as Gaussian kernel density estimates as detailed above. The ∆pKa shifts aggregated

over all simulations were used to compare the influence on the calculations of the

inclusion of Na+ ions, the distance defining whether the salt bridge was formed or

broken and the effect of changing the surface dielectric constant εsurface.

Figures were prepared with PyMOL (Schrödinger, Inc.), CCP4mg [100], and VMD [107],

using the Bendix plugin for smoothly bent helices [108]. Superpositions were performed

in Lsqman [98], such that all matching Cα pairs were <3.8 Å apart after superposition.

4.2.8 Online supplemental material

The supplemental Discussion gives a more in-depth analysis of the pKa estima-

tions. Table 4.4 shows the solubilization efficiency of the various NhaA constructs that

were screened in searching for a more stable construct. Table 4.5 shows the root-mean-

square deviation (RMSD) in positions of the Cα atoms among the structures. Figure

4.11 shows an additional diagram illustrating the difference in the position of Lys300

in this structure relative to the previously published structure (Protein Data Bank ac-
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cession no. 1ZCD) and provides a stereo diagram of the electron density in this region,

complementing Figure 4.2. Figure 4.12 presents further analysis of the behavior of the

protein and lipids during simulation S2/1. Figures 4.13-4.17 show the analyses of the

repeated simulations in different protonation states in a similar fashion to the sum-

mary presented in Figure 4.7. Figure 4.18 shows the variation in the distance between

Asp163 and Lys300 plotted over all simulations. The pKa values of Asp163, Asp164,

Lys300, and Asp133 are also plotted as a function of time as each of the simulations

progressed. Figure 4.19 shows a distribution of pKa values for these four residues

when the salt bridge is considered intact and when broken as shown in Figure 4.8,

but each set of simulations is plotted separately. Figure 4.20 shows the shift in pKa of

these residues when the salt bridge breaks. Videos 1 and 2 show the first 250 ns of the

MD simulation S2/1 for protomers A and B, respectively. Online supplemental ma-

terial is available at http://www.jgp.org/cgi/content/full/jgp.201411219/DC1.

4.3 Results

4.3.1 Structure determination of the NhaA dimer

Crystals of wild-type NhaA were obtained at low pH using protein prepared as a

GFP fusion construct [66,67,79]. These crystals contain two dimers in the asymmetric

unit. The structure was solved by molecular replacement and refined at 3.7-Å resolu-

tion with noncrystallographic restraints between the four molecules of the asymmetric

unit (Table 4.2). In the previous crystal structure of NhaA, TM helix 10 (TM 10),

which contains the conserved Lys300, was reported to be difficult to build into the

electron density [74]. During refinement of the NhaA dimer, we observed that the fit

could be improved by adjusting the sequence assignment for TM 10 so that it starts at
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residue 287 and extends to 313, rather than from residue 290 to 316, as was modeled

previously [22] (Figures 4.2 and 4.11).

4.3.2 Verification of sequence assignment in a thermostabilized form of NhaA

After repositioning TM 10, Lys300 is now within hydro- gen-bonding distance

to Asp163 (Figure 4.3). To verify the modified sequence assignment of TM 10,

Leu296 was substituted to methionine and selenomethionine derivatized protein pro-

duced to obtain anomalous difference maps that would show the exact position of

the introduced methionine. However, initial attempts at obtaining well-diffracting

selenomethionine derivatized crystals were unsuccessful. To improve crystal quality,

a thermostabilized NhaA mutant construct was used instead (Figure 4.4). The NhaA

mutant was generated while developing methodology that can rapidly improve the sta-

bilization of membrane proteins by mutagenesis, in particular, when no high affinity

ligands are available. In brief, an error-prone PCR library was generated and NhaA

mutants were screened for those that could be extracted with >50% efficiency in 2%

OG (see section 4.2 and Table 4.4), a benchmark based on our observation that many

of the most detergent-stable membrane proteins [67] had >50% extraction efficiency

in 2% OG. By incorporating the Leu296Met substitution into an NhaA thermostabi-

lized mutant (Ala109Thr, Gln277Gly), data were obtained extending to a resolution

of 3.5 Å after minimal optimization of the crystals (Table 4.2). Importantly, the ther-

mostable mutant has the same pH-dependent profile and similar transport activity

to the wild-type protein (Figure 4.4). Anomalous difference maps for the mutant

showed peaks in the same position as the methionines in the monomeric wild-type

structure [22], consistent with the two proteins having similar conformations. In addi-

tion, there was another peak exactly at the position of the introduced methionine for
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the Leu296Met mutation in the dimer structure (Figure 4.2C). Thus, we were able to

confirm that the reassignment of TM 10 was correct.

Figure 4.2: Electron density. (A) Electron density of TM 10. The 2mFoDFc map shown in blue (contoured at 1.5
σ) was calculated with phases derived from the model before reassigning the sequence of TM 10 (shown) and averaged
over the four molecules of the asymmetric unit. The anomalous difference map shown in red has been calculated from
the selenomethionine-derivatized triple mutant and contoured at 3.6 σ. (B) The same maps as in A but with the
structure of the wild-type protein (refined before the data of the triple mutant were collected). (C) Stereo view of the
superposition of the final refined structure of the triple mutant (green) on that of the published monomeric structure
(gray) [22]. The anomalous difference map is shown as in A. Met296 is in cyan, and Leu296 from the published
structure is in wine red. Overall, there is good correspondence in the position of the helices and methionines between
the two structures, in agreement with the similar activity of the mutant to wild type (Figure 4.4). An enlarged view
of TM 10 is shown in Figure 4.11.

The NhaA mutant structure was refined to an R factor of 28.7% and a correspond-

ing R-free of 31.2% (Table 4.2). In both the wild-type and mutant NhaA structures,

the associated maps are of reasonable quality (Figures 4.2, 4.5, and 4.11), especially

after averaging of the four molecules of the asymmetric unit, although TM 4a, which

is thought to move upon binding sodium ions [24], was difficult to model. Additional

electron density at the dimer interface could not be assigned to protein residues.

We have tentatively modeled this by sulfate ions and the detergent α-DDM. At the

resolution of the data, there are no obvious differences to the wild-type structure,

which was subsequently refined to an R factor of 31.8% and an R-free of 34.2%, with

restraints to the higher resolution mutant structure (Table 4.2).
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Table 4.2: Data collection and refinement statistics. aValues in parentheses refer to data in the highest resolution
shell.
bBased on 5% of the reflections
cFrom MolProbity [111].

Figure 4.3: Position of Lys300 on TM 10. (A) Cartoon representation of the structure viewed from the periplasmic
side of the membrane. The charged residues, Asp133 (TM 4b), Asp163 (TM 5) and Asp164 (TM 5), and Lys300 (TM
10), in the new structure are shown as colored sticks. The position of Lys300 in the previously published structure
(Protein Data Bank accession no. 1ZCD) is shown in gray (red text). The structure has been colored from red at the
N terminus through to blue at the C terminus. Loop regions except for the breaks between the discontinuous helices
have been omitted for clarity. (B) As A, but from the side and zoomed in. The dashed line represents the salt bridge
between Asp163 and Lys300.

4.3.3 The crystal structure of the NhaA dimer

The two dimers of the asymmetric unit are almost identical and superimpose

with an RMSD of 0.3 Å (Table 4.5). The density is well defined for the β sheet,

although some of the side chains on the periplasmic side are less ordered (Figure 4.5A).

The overall structure of each subunit in the dimer is very similar to the published
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monomeric structure with an RMSD of 1 Å for 358 out of 374 Cα atoms (Figure 4.5

and Table 4.5). The largest conformational difference lies in the position of the 14

amino acid β hairpins linking TMs 1 and 2, which protrude out along the membrane

plane and form the predominant dimer interaction. Relative to the monomeric crystal

structure, the hairpins twist by ∼15◦ to form a flat four-stranded antiparallel β sheet

with residues 45-51 involved in hydrogen-bonding interactions between the strands

(Figure 4.5C).

Figure 4.4: Stabilization, characterization, and crystallization of the NhaA mutant. (A) The NhaA double mutant
(A109T and Q277G) and NhaA triple mutant (A109T, Q277G, L296M) are more stable in detergent as shown by
the longer unfolding half-life (t1/2) in LDAO at 40◦C. (B) The ATP synthase and NhaA wild-type and mutants
were co-reconstituted in liposomes. ATP-driven proton pumping establishes a ∆pH (acidic inside) as monitored by
the quenching of 9-amino-6-chloro-2-fluorescence (ACMA). Proton efflux is initiated by the addition of increasing
concentrations of NaCl/LiCl, and apparent ion-binding affinities for NhaA wild type (closed circle) and mutant (open
circle) at pH 8.5 were calculated: KMNa+ wild type (mean ± SD): 1.8 ± 0.2; KMNa+ mutant: 1.6 ± 0.1; KMLi+ wild
type: 4.1 ± 0.5; KMLi+ mutant: 4.1 ± 0.3. (C) pH dependence of NhaA Na+(Li+)-H+ antiporter activity for wild
type (closed circle) and mutant (open circle) were measured in proteoliposomes by the level of ACMA dequenching as
in B at the indicated pH values after the addition of saturating NaCl/LiCl at pH 8.5; all experiments were repeated
in triplicate and representative traces are shown.
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The arrangement of the subunits in the dimer is very similar to the cryo-electron

microscopy (EM) model (Protein Data Bank accession no. 3FI1) [18,24], which, in

turn, is consistent with electron spin resonance [115] and cross-linking distance mea-

surements [137]. The exact conformation of the β strands is, however, different. In the

structure derived from the cryo-EM data, the β sheet is much more curved, with the

tips of the hairpins ∼11 Å above the membrane surface [24], placing them parallel, but

7 Å above the β sheet that we observe in the dimeric crystal structure (Figure 4.5D).

In this bent position, there are fewer hydrogen-bonding interactions between strands

than in the dimer crystal structure.

The interfacial TM preceding the β hairpins and the alternating position of

charged and noncharged residues of the four-stranded antiparallel β sheet creates a

dimer interface that is amphipathic, with polar residues pointing toward the periplasm

and hydrophobic residues toward the protein or the dimer interface (Figure 4.5C).

Lys57, at the C terminus of the β hairpin, is the only residue that breaks this trend by

pointing into the protein where it makes a salt bridge with Asp65. The Lys57-Asp65

pairing has been proposed to be important, as replacement of either Lys57 or Asp65

by cysteine results in a protein with an apparent Km for Na+ that is four- or 10-fold

higher than wild type, respectively [26,137]. These residues are 9 Å apart in the model

derived from cryo-EM maps.

Other than the interaction between the β hairpins, there are few direct contacts

between monomers. Trp258 of TM 9 makes a bridge to TM 7, and Arg204 of TM 7

may interact with the amide oxygen of Val254. It is likely that lipids would fill the

space between the protomers in vivo, and in fact, in the crystal structure a detergent

molecule has been modeled in extra density at this position.
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Figure 4.5: Position of β hairpins in the NhaA dimer. (A) 2mFo-DFc electron density averaged over the four
molecules of the asymmetric unit (contoured at 1.5 σ). The map was calculated directly after molecular replacement
using a search model where the β hairpins and loops had been omitted. (B) Cartoon representation of the NhaA
dimer viewed from the periplasmic-facing side of the membrane, with the two protomers shown in light brown and
green, respectively. (C) The 14-amino acid β hairpins from each promoter, shown in light brown and green, form
a four-stranded antiparallel β sheet, as viewed from the cytoplasmic side of the membrane. The residues facing
the membrane are hydrophobic except for Lys57. (D) Comparison of the positions of the β hairpins in each of the
determined NhaA structures: crystal structure of the dimer (this work; light brown and green), monomeric crystal
structure [22] (pale green), and dimer from cryo-EM [24] (yellow).

4.3.4 MD simulations of the NhaA dimer

To gain further insight into the position of the NhaA dimer in the membrane,

the dimer was simulated in a POPC model membrane for 1 µs. As described in

Section 4.2, a multi-scale approach [50,103] was used that provides sufficient sampling

of lipid-protein interactions in the absence of any knowledge of the location of the

protein in the membrane. The Cα RMSD of each monomer relative to the crystal

structure increased to ∼3.4 Å over the time course of a 1-µs simulation (Figure

4.12A). The RMSD of the TM helices alone stabilized around 2.8-3.0 Å, whereas

mobile loops contributed substantially to the observed differences from the crystal
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structure (Figure 4.12, B and C). Secondary structure elements such as the β sheet

were retained over the whole simulation, although a few regions are less structured:

in particular, TM 4a, which was difficult to build in the crystal structure, and to a

lesser degree 4b; TM 5 near Asp163 and Asp164 (usually when sodium binding was

also observed); and TM 10 near Lys300. NhaA, simulated either as a dimer or as a

monomer, sits entirely within the membrane, including the β hairpins (Figure 4.6).

It does not extend beyond the lipid head groups, as shown by a density profile along

the membrane normal (Figure 4.12D). The periplasmic face of the β sheet was fully

exposed to solvent and confined the periplasmic interfacial lipids.

4.3.5 MD simulations of sodium binding with different protonation states of the

key residues

The roles of the critical charged residues (Asp164, Asp163, Lys300, and Asp133)

have been investigated previously by a combination of biochemical and biophysical

experiments and MD simulations [14,19,21–23,25,28]. As the outcome of the MD simula-

tions are likely to be affected by the proximity of Lys300 to Asp163 (distance of 2.5

Å in this structure compared with 12 Å in the published structure), we sought to use

our new structure in MD simulations to investigate (a) how the protonation states

of these four critical residues affect sodium ion binding, and (b) how the protonation

state and presence of sodium ions affect the salt-bridge interaction. MD simulations

were performed in the presence of sodium ions at a NaCl concentration of ∼100 mM

with the residues in different protonation states (Table 4.1).

First, we examined the most likely situation in the low pH crystal structure, with

Asp164 protonated (neutral) and Asp163 deprotonated (negatively charged) because

it interacts with the positively charged Lys300 (see Section 4.2). In simulations

with these protonation states, no sodium ion binding was observed after 1 µs of
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Figure 4.6: MD simulation of the NhaA dimer in a model membrane bilayer. (A) The NhaA dimer is stable in a
POPC membrane. Snapshots show the structure after an ∼1-µs MD (simulation S2/1). The periplasmic space is at
the top. Protomers are colored wheat and green, and POPC lipids are white. A bound sodium ion is shown as a
cyan sphere. Residues Asp163, Asp164, and Lys300 are partially visible in a stick representation. (B) View from the
periplasm.

sampling (Figure 4.7A). The Asp163-Lys300 salt bridge remained intact with an

average distance of∼2.4 Å (Figure 4.7B). Similar results were obtained in two separate

repeat simulations of 100 ns (Figure 4.13).

Next, we modeled Asp164 in a deprotonated state, as would be expected at high

pH where the protein is active. Three independent simulations of 1 mus of the dimer

and seven shorter simulations of 100 ns of just the monomer were performed (Figures

4.7, 4.14, and 4.15). In all but one protomer of the dimer simulations and one of

the monomer repeat simulations, sodium ions were seen to spontaneously enter the

vestibule and bind to Asp164. In two cases, Asp163 switched from forming a salt-

bridge interaction with Lys300 to interacting with the sodium ion. On the time scales
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simulated here, the salt bridge between Asp163 and Lys300 typically persisted during

the whole length of the simulation, as also observed for the simulations with Asp164

protonated, unless it was destabilized by the presence of a sodium ion (Figures 4.7,

4.14, and 4.15). With both Asp163 and Asp164 modeled in their protonated (neutral)

form, no sodium ion binding was observed during 1 µs of MD and two additional 100-

ns simulations (Figure 4.16).

Figure 4.7: Sodium ion binding and salt-bridge stability in MD simulations with different protonation states of
Asp163, Asp164, and Lys300. (Left column; A and B) Asp163 deprotonated and Asp164 and Lys300 protonated
(simulation S1/1, protomer B). (Middle column; C and D) Asp163 and Asp164 deprotonated and Lys300 protonated
(simulation S2/1, protomer B). (Right column; E and F) Asp163, Asp164, and Lys300 deprotonated (simulation S4/1,
protomer B). (Top row; A, C, and E) Distances between the closest sodium ion and Asp163 or Asp164 are plotted as
a function of time. Spontaneous Na+ binding to Asp164 was observed when both aspartates were deprotonated. (C)
Continuation of the simulation with Lys300 deprotonated (a 3-ns equilibration simulation with position restraints on
all heavy protein atoms is symbolized by dashed lines between panels) leads to a rapid change in the Na+-binding
mode toward closer interaction with Asp163. (Bottom row; B, D, and F) Distance of the closest Asp163 carboxyl group
from the N-amino group of Lys300. Distances <4 Å are indicative of a stable salt-bridge interaction (yellow shaded
area), whereas those ≥4 Å are considered a weak or broken salt bridge. Binding of Na+ to Asp164 destabilizes the salt
bridge. (D) Lines show data averaged over blocks of 10 ns, with fluctuations in the data indicated as shaded regions
encompassing the lower 5 and upper 95% percentile. The snapshots show the Na+ binding event with subsequent
rupture of the salt bridge (cytoplasmic view along the axis of helix TM 5). Videos 1 and 2 show this simulation.
Repeat simulations (see Table 4.1) are shown in Figures 4.13-4.17.

We next investigated the effect of changing Asp133 and Lys300 to their neutral

states. In the above simulations, Asp133 was deprotonated. When it was protonated

(neutral), no spontaneous sodium binding was observed (in one 1.1-µs and two 100-ns

simulations; not depicted), indicating that perhaps Asp133 is important to capture

ions. Lys300 is unlikely to be deprotonated when involved in a salt-bridge interaction.

However, it is possible that disruption of the salt bridge by sodium ion binding enables
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deprotonation of the lysine (see next section). The simulations also suggest that

Lys300 is water accessible, as shown in Figures 4.14 and 4.16. To investigate the

consequences of a neutral Lys300 in this situation, the endpoint of the simulation

shown in Figure 4.7 (C and D) with a bound sodium ion and the salt bridge broken

was continued with Lys300 modeled as depro- tonated (Figure 4.7, E and F). The

sodium ion transferred from being bound by Asp164 to binding to Asp163 while the

distance between Asp163 and Lys300 increased further, a behavior reproduced in two

repeat simulations (Figure 4.17).

4.3.6 Estimations of pKa for the charged residues

To obtain estimates of the pKa of the residues putatively involved in sodium ion

and proton binding, we used the program PROPKA 3.1 [131]. Figure 4.18C shows

the pKa of the residues in the structures along the time course of the simulation

S2/1. While the salt bridge remains intact, the pKa of the four residues remains

fairly constant. Upon breaking, however, the pKa of Lys300 drops markedly and

that of Asp163 increases. As the heuristic methods used in PROPKA can be quite

sensitive to small changes in the environment of the residues, we decided to study the

distributions of pKa values of the residues from structures from all of the simulations

separated into those where the salt bridge was intact and those where it had broken

(Figures 4.8 and 4.19). The largest effect is seen for Lys300, where the pKa of Lys300

is lowered by approximately two to three pH units to pH ∼8.5 (Figures 4.8, 4.19,

and 4.20, and Table 4.3). A detailed assessment of the effect of breaking the salt

bridge together with a sensitivity analysis of the pKa calculations are given in the

supplemental Discussion.
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4.4 Discussion

The crystal structure of the NhaA dimer is consistent with the 7-Å cryo-EM struc-

ture derived from 2-D crystals grown under more native-like conditions, although a

difference in the position of the β sheet is observed. In the crystal structure, the

amphipathic β sheet is flat and sits in the plane of the membrane, with one surface

exposed to solvent and the other shielding lipids (Figures 4.5C and 4.6). In this po-

sition, unlike in the structure from cryo-EM, Lys57 and Asp65 are close enough to

form a salt bridge, an interaction that is reported to be physiologically significant [26].

Biochemical data indicate that the monomer is the functional unit of the protein,

with dimerization probably enhancing its stability in the membrane [70,138]. In agree-

ment with this, we do not observe significant differences within the TM region of the

dimeric structure compared with the previous monomeric structure. The amphipathic

β sheet may help to anchor the dimer domain as the core domain undergoes large

conformational changes during the transition between outward- and inward-facing

states, as suggested by the recent structure of NapA [31].

TM 10 was reportedly difficult to build in determining the original crystal struc-

ture of NhaA [74]. Based on the density observed in the wild-type dimer structure,

we revised the sequence assignment of this helix and subsequently confirmed its reas-

signment using anomalous scattering of a selenomethionine residue that replaced the

naturally occurring Leu296. This process appears to have been greatly facilitated by

the use of a thermostabilized construct of NhaA. In the modified structure, Lys300 is

displaced 10 Å from its previously modeled position to lie within hydrogen-bonding

distance of Asp163, similar to the interaction reported for the active pH NapA struc-

ture [31] (Figure 4.9). Although a water-mediated interaction between Lys300 and
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Table 4.3: Estimated pKa shifts due to breaking of the salt-bridge Lys300-Asp163 aFor simulation names, see Table
4.1. Data were aggregated for all repeats and protomers A and B. Protein conformations were sampled every 1 ns.
Na+ ions were included within 6 Å of the protein, and the salt bridge was considered broken if the distance was >4
Å (except where noted).
bDistributions of pKa and ∆pKa were recomputed from all trajectory frames of all simulations (i.e., simulated with
differing protonation states), assuming that each frame was an independent sample of the protein conformation. This
can lead to distributions that are broader than those for individual simulation sets with means that are not just a
simple average of individual means.
cNa+ ions were not included in the PROPKA 3.1 calculation.
dSalt bridge was considered broken if the distance was ge3.5 Å.
eThe dielectric constant near the protein surface (corresponding to the solvent-exposed residues) is 160 in the standard
PROPKA 3.1 parametrization. A value of 80 was tested, as suggested for calculations on NMR ensembles [131].

Asp163 was predicted for NhaA at high pH [25], a direct interaction observed already

at low pH means we must reconsider the most likely steps of the transport cycle.

In MD simulations, sodium ions bind spontaneously to both Asp164 and Asp163,

consistent with recent biochemical and biophysical experiments suggesting that both

of these residues are likely to coordinate sodium ion binding [28]. During our simula-

tions, the stability of the salt bridge is clearly affected by the interaction of the sodium

ions with the aspartate residues. Asp163 either maintains its interaction with Lys300

or moves toward the positively charged sodium ion, thereby breaking the salt bridge.

This suggests a competition between the lysine and sodium ion to bind to Asp163.

The TM-embedded Lys300 is important for both activity and pH regulation [21]. Of

the various mutations that have been made, replacement with arginine and histidine,

where the positive charge is maintained, causes the least perturbation [28]. Neverthe-

less, even these mutations show a marked drop in activity and a substantial decrease
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Figure 4.8: Effect of breaking the Asp163-Lys300 salt bridge on the pKa of conserved residues. (A) Distributions
of pKa values estimated with PROPKA 3.1 [131] from all MD simulations shown as violin plots. pKa values were
calculated from snapshots extracted at 1-ns intervals, with sodium ions included within 6 Å of the protein. For
reference, a dotted line has been drawn at pH 7.6. The percentiles of the data are shown as broken lines inside the
distributions, which were computed as Gaussian kernel density estimates (see Section 4.2). Data were split depending
on the state of the salt bridge (formed if the distance is <4 Å, and broken if it is ≥4 Å; the salt bridge distance
distribution is also shown in yellow). The multimodal distribution of Asp164 when the salt bridge is formed is a result
of data from simulations S1 (Figure 4.19A) during which its solvent accessibility is much smaller than during other
simulations (see also Figure 4.13, M-O). (B) Distributions of pKa shifts (∆pKa) when the salt bridge is broken (data
aggregated over all MD simulations). The pKa of Lys300 is downshifted by -2.5 ± 1.4, and thus the charged form is
destabilized. Shifts of the other residues are not significantly different from 0 (also see Table 4.3).

in the affinity (KM) for sodium ions (100- and 30-fold for arginine and histidine,

respectively), and lysine at this position is clearly preferred.

NhaA transports two protons into the cytoplasm for every sodium ion exported.

There has been some discussion in the literature about which residues are likely to

form the proton-binding sites. The presence of the Asp163-Lys300 salt bridge nec-

essarily affects this debate. Asp164 is strictly conserved from bacteria to mammals

and seems very likely to bind one of the protons [27,28,31]. The second proton has

been suggested to bind to either Asp133 or Asp163 [23,139]. Of the two, Asp163 seems

the more likely: it is essential for activity [14,28], conserved in the electrogenic trans-

porters, and replaced by asparagine in the electroneutral antiporters [140,141]. Asp133

is not essential for activity [19,28], is generally less well conserved, and is retained in

some electroneutral sodium-proton exchangers [140]. However, the estimation of pKa

by PROPKA 3.1 (Figures 4.8 and 4.19) suggests that Asp163 is unlikely to be proto-

nated when involved in a salt bridge to Lys300. As a salt bridge is observed in both
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Figure 4.9: Comparison of NhaA with NapA and ASBTNM. (A) Structural comparison of NhaA and NapA. Cartoon
representation of TMs 4, 5, 10, and 11 of NhaA superimposed on the same helices of NapA [31]. Residue numbering is
shown for NhaA. K300 in NhaA corresponds to K305 in NapA, and D163 in NhaA corresponds to D156 in NapA. The
helices of the TMs in NhaA have been colored as in Fig. 3, and NapA is colored salmon. (B) Structural comparison
of NhaA and ASBTNM. Cartoon representation of TMs 4, 10, and 11 of NhaA superimposed on TMs 4, 8, and 9 of
ASBTNM [75]. The helices of the TMs in NhaA have been colored as in A, and ASBTNM is colored gray. The sodium
Na2 site in ASBTNM is depicted as a purple sphere, and Lys300 residue in NhaA is shown as a stick model.

the inward-facing NhaA structure and the outward-facing structure of the homolo-

gous NapA, it seems that if Asp163 is involved in the translocation of the proton,

this will only be transiently. Another candidate for proton transport, which has not

been considered up to now, is the lysine. Lysines have been proposed to be involved

in proton translocation in other membrane transporters [142,143]. Without putting too

much emphasis on the absolute values calculated by PROPKA, the analysis of the

pKa of Lys300 would suggest that it would be protonated when the salt bridge was

present but is more likely to lose its proton when disrupted (Figures 4.8 and 4.20,

and Table 4.3; see also supplemental Discussion). In the electroneutral transporters,

the lysine is replaced by an arginine [140,141]; the pKa of arginines is known to be much

less altered by the environment than that of a lysine [144,145]. In our simulations, the

protonation state of Lys300 clearly affects the interaction of the sodium ion with

the protein, whereby a deprotonated Lys300 facilitates association of the two con-

served aspartates with the ion. It is also noteworthy that the amino group of the
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repositioned lysine is located at the same position as one of the sodium ions in the

sodium-dependent bile acid symporter ASBTNM, a structural homologue of NhaA

and NapA [75] (Figure 4.9B). A similar comparison was used to support the role of a

lysine in proton transfer in another family of transporters [142]. Given the delicate po-

sitioning of charged residues at this site, however, detailed biochemical and structural

information needs to be gathered before any firm conclusions can be drawn.

Figure 4.10: Proposed schematic model of NhaA transport. The transport mechanism occurs through a reorientation
of the protein, alternately exposing a cavity containing Asp164 to the intracellular or the periplasmic space. The core
domain is depicted as a blue square, and the panel domain is in beige. (1) The probable situation in the solved NhaA
structure at low pH where the protein will be protonated. One of the protons (in orange) is likely to be bound to
Asp164, and we hypothesize that the second proton (orange hashed) will interact with Lys300. Sodium ions (blue)
will compete with protons for binding to Asp164, causing the Asp163-Lys300 salt bridge to break and possibly Lys300
to lose a proton (2). The sodium ion-bound protein will then switch to the outward-facing state (3). Upon release of
the sodium ion, the protein will be reprotonated and the salt bridge between Lys300 and Asp163 reformed (4). The
protein will then switch back to the inward-facing conformation.

Combining this new structural information on NhaA with the recent structure of

NapA allows us to postulate a mechanism whereby the interaction between Asp163

and Lys300, seen in both inward- and outward-facing states, must be taken into

consideration. At low pH, as seen in the crystal structure of NhaA, Asp164 is likely

to be protonated and Asp163 is involved in a salt-bridging interaction with Lys300

(Figure 4.10, 1). As the pH becomes more alkaline, sodium ions will successfully

compete with protons for binding to Asp164, in line with a recent electrophysiology
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study showing that the pH dependence of NhaA can be explained by the competition

of sodium ions and protons to bind to the same site (Fig. 4.10, 2) [27]. At this point,

as demonstrated by the MD simulations, Asp163 can switch from interacting with

Lys300 to contribute to binding the sodium ion. The substrate-bound form of the

transporter would then switch to the outward-facing conformation where the sodium

ion can be released and the salt bridge can reform, as seen in the structure of NapA [31]

(Figure 4.10; 3 and 4). In the diagram, we also show the possible deprotonation and

protonation of Lys300, as discussed above. Upon proton binding to Asp164, the

transporter would then switch back to the inward-facing conformation.

In summary, the structure of the NhaA dimer here and in particular the reposi-

tioning of TM 10 provides critical new information that must be incorporated into

the mechanism of electrogenic sodium-proton antiport. Clearly, the crystal structure

of the sodium-bound form of NhaA or a homologue, in combination with further

biochemical, biophysical, and MD simulation studies, is required to elucidate how

binding and unbinding of ions is ultimately coupled to the conformational changes

observed during transport.
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4.5 Supplementary Information

4.5.1 Estimates for pKa values

Accurate calculation of pKa values is a computationally very challenging task.

Here we use a fast heuristic scheme as implemented in PROPKA 3.1 [131] to semi-

quantitatively estimate the pKa values of the conserved residues Asp133, Asp163,

Asp164, and Lys300. Although not necessarily exact, the pKa estimates are nev-

ertheless thought to report on the chemical environment around titratable residues,

and in particular, relative changes in the chemical environment will be reflected in

shifts in the pKa that are at least qualitatively indicative of likely protonation-state

changes. pKa values were calculated from frames of all MD trajectories at 1-ns in-

tervals. PROPKA 3.1 can take ligands into account, so any Na+ ion within 6 Å of

the protein was included in the calculation. The resulting time series (Figure 4.18,

B-D) shows fluctuations >2-3 pKa units, which indicates that the pKa is sensitive to

the exact molecular conformation. However, in aggregate, a more consistent picture

emerges, as shown by the distributions of pKa values (Figure 4.19). When the data
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are grouped by the state of the Asp163-Lys300 salt bridge (for distance <4 Å, the

salt bridge is considered formed or intact, whereas at ≥4 Å, it is considered broken;

see Figure 4.18A), the effect of the salt bridge on the pKa becomes apparent. In

general, breakage of the salt bridge reduces the pKa of Lys300 and raises the pKa

of Asp163. These are predicted to be around 10.5 and 4, respectively, when the salt

bridge is intact. The pKa of Asp164 is predicted to be in the range of 6 to 10 (Figure

4.19), with the high values only appearing in simulations S1 (Figure 4.19A), when

the solvent accessibility of Asp164 is decreased compared with the other simulations

(Figure 4.13, M-O). The pKa of Asp133 is typically shifted down, but this is unlikely

to have any substantial effect within the normal operating range of NhaA (pH 6.5-8.5)

because the pKa of Asp133 with the salt bridge intact is already around 5.

These absolute pKa estimates have a high level of uncertainty. Relative changes,

however, might be a better indicator for the effect of changes in the chemical envi-

ronment of a titratable residue. We therefore focus on the shift in pKa when the

salt bridge is broken, ∆pKa. The distribution of ∆pKa is calculated from the pKa

distributions with and without the salt bridge (see Section 4.2 in the main text) and

is shown in Figure 4.20. The means and standard deviations of these distributions

allow for quick comparisons between different states (see Table 4.3 in the main text).

The effect of the salt bridge is clearly strongest for Lys300. The loss of the negatively

charged carboxylate moiety of Asp163 reduces the pKa of Lys300 by around 2 units

(see Table 4.3, in particular simulations S2 and S4). It is the only residue for which

the difference distribution (over all MD simulations) differs from 0 (i.e., no effect) by

more than one standard deviation, indicating a significant stabilizing influence of the

salt bridge on the charge state of Lys300. With a base pKa on the order of 10.5 when

the salt bridge is intact, such a shift brings Lys300 within the operating pH range

of NhaA. Asp163 is shifted upwards but to a lesser degree (around 1.5 units), and
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because its base pKa is low (∼4), such a shift is less likely to result in a protonation-

state change. Repeating the pKa calculations while ignoring all sodium ions in the

calculation showed that Asp163 is the only residue whose charge state appears to be

substantially stabilized by a Na+ ion (by about -0.9) when all data are considered in

aggregate (see Table 4.3 in the main text); for all the other residues, the difference to

the calculation including Na+ was ≤0.3.

4.5.2 Sensitivity of the pKa calculations

The effect of including Na+ ions in the calculation was important, as shown by a

stabilization of Asp163 by ∼0.9; analysis of individual snapshots showed that a Na+

ion could contribute up to 2 pKa units. (Cl− ions were never close to the residues of

interest and could be excluded.) The calculations were insensitive to using a slightly

different criterion for the salt-bridge existence (a cutoff of 3.5 Å instead of 4 Å, as

chosen in Figure 4.18A), which resulted in a difference of 0.1 or less (Table 4.3 in

the main text). Similarly, changing the surface (or solvent) dielectric constant εsurface

from its default value of 160 in the standard PROPKA 3.1 parametrization to a value

of 80 only had a very small effect of ≤0.3, as seen in Table 4.3 in the main text. The

change in the dielectric constant was motivated by the suggestion that ensembles of

structures derived by NMR (and by extension, MD) might show fewer surface salt

bridges, and thus a lower εsurface, more similar to the solvent dielectric constant, might

be appropriate to evaluate the Coulomb contribution to the pKa
[131].

In summary, the calculated distributions of pKa values are robust against rela-

tively drastic parameter changes, as long as ions are explicitly take into account. The

absolute accuracy of these values will be assessed by more sophisticated approaches

in the future.
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4.5.3 Movies from MD simulations

The first 250 ns of the 1-µs MD simulation trajectory S2/1 is shown in Videos

1 and 2. The coordinates were processed with a low-pass filter that removes rapid

motions on the sub-ns timescale using the Gromacs tool g filter. The simulations

were performed with explicit solvent and membrane, but solvent, membrane, and all

ions except for an ion participating in a binding event were omitted for clarity.

Figure 4.11: Sequence assignment of TM 10. (A) Superposition of TM 10 in cyan from the wild-type dimer structure
on that of the same region from the published monomeric structure [22] (gray). The superposition was performed over
all Cα atoms of the protomer. The Cα atom of Lys300 is displaced by one turn of the helix between the two structures.
(B) Stereo diagram showing the 2mFo-DFc density associated with the refined structure of the triple mutant in the
region of TM 10 and the Lys300-Asp163 salt bridge. TM 3 has orange carbon atoms, TM 5 has yellow, and TM 10
has cyan.
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Figure 4.12: Analysis of proteins and lipids in a 1-µs simulation of the dimer (simulation S2/1). (A-C) RMSD of
the NhaA dimer in membrane bilayer simulations. The coordinate root-mean-square distance of protein Cα atoms
from the crystal structure was plotted as a function of time. Light bands indicate fluctuations between the 5th
and 95th percentile around the average. (A) Blue, the dimer was superimposed on the crystal structure, and the
RMSD was calculated for the whole dimer; orange, RMSD for protomer A only (superimposed on protomer A of the
crystal structure); green, protomer B only. (B) RMSD of components of protomer A: blue, the whole protomer; red,
only the TM helices (as defined by Hunte et al. [22]); orange, only the loops between the TM helices for protomer A
superimposed on the TM helices. (C) RMSD of components of protomer B. (D) Lipid-protein density profile from
MD simulation. The whole system was centered on the membrane. The density for components of the system was
computed as averages in the plane of the membrane along the membrane normal z in 100 slices of thickness ∆z = 0.093
nm. The periplasmic leaflet is marked by the peak around z = 3 nm, and the cytosolic leaflet is located at ∼6.5 nm.
The protein is embedded in the membrane with the surfaces of NhaA lying inside the lipid head group region of the
membrane. The graphs for protein and POPC are the totals for each group of molecules. Each POPC lipid molecule
contains polar groups and the hydrocarbon core. Polar groups consist of the head groups (choline, phosphate) and
the backbone (glycerol, carbonyl). Data for S2/1 are typical for other simulations not shown here.

Table 4.4: Solubilization efficiency of NhaA constructs. aExtraction efficiency of wild-type NhaA is between 10 and
20% in 2% OG.
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Figure 4.13: Analysis of simulations S1 (charged Asp163, neutral Asp164, charged Lys300). Results are shown
for each protomer (labeled A and B). (Top; A-L) Distances between sodium ions and aspartate oxygen atoms (no
binding observed in any simulations) and salt bridge distances between Lys300, Asp163, and Asp164. (Bottom; M-
O) Solvent accessibility of Asp163, Asp164, and Lys300, measured as the average number of water molecules as a
function of distance from the aspartate carboxyl oxygens or the lysine amine nitrogen. Cartoon images illustrate the
key characteristics observed in the simulations.

Table 4.5: RMSD in positions of Cα atoms among the structures aPreviously published monomeric x-ray struc-
ture [22].
bModel from Cryo-EM [24].
cNhaA triple mutant.
dn/m: n residues out of m residues matched using the algorithm as described in Section 4.2 in the main text.
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Figure 4.14: Analysis of simulations S2 (charged Asp163, charged Asp164, charged Lys300). Results are shown for
each protomer (labeled A and B). Simulation S2/1 (protomer B) is also described in the main text and repeated here
for convenience. (Top; A-L) Distances between sodium ions and aspartate oxygen atoms and salt-bridge distances
between Lys300, Asp163, and Asp164. (Bottom; M-O) Solvent accessibility of Asp163, Asp164, and Lys300, measured
as the average number of water molecules as a function of distance from the aspartate carboxyl oxygens or the lysine
amine nitrogen. Cartoon images illustrate the key characteristics observed in the simulations.
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Figure 4.15: Monomer repeat simulations S2 (charged Asp163, charged Asp164, charged Lys300). Seven repeat
simulations of the monomer system were analyzed in the same way as the dimer simulation (see Figure 4.14 for
details). Time series data were averaged in windows of length of 1 ns; fluctuations are not shown but are of similar
magnitude as those in Figure 4.14. (Top) Closest distance between a sodium ion and the δ-carboxyl oxygens of
Asp164. A sodium ion binds to Asp164 in six of the repeats. In repeat 1.3, an ion enters the vestibule and stays in the
vicinity of Asp164 but has not bound tightly by the end of the 100-ns simulation. (Middle) Closest distance between
a sodium ion and Asp163. The broken Lys300-Asp163 salt bridge does not reform once a sodium ion is bound to
Asp164 (repeat 1.5) or Asp164 and Asp163 (repeat simulations 1.1 and 1.4). The ion is not seen to bind to both
Asp164 and Asp163 while the salt bridge is intact. (Bottom) Salt-bridge distance Lys300-Asp163. The salt bridge
eventually breaks in three out of seven repeats (1.1, 1.4, and 1.5).
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Figure 4.16: Analysis of simulations S3 (neutral Asp163, neutral Asp164, charged Lys300): Results are shown for
each protomer (labeled A and B). Simulations S3/1 and S3/2 were initialized from configurations in which the salt
bridge in protomer B was already broken (see Table 4.1 in the main text), whereas S3/3 had the salt bridges in
both protomer A and B intact. (Top; A-L) Distances between sodium ions and aspartate oxygen atoms and salt-
bridge distances between Lys300 (K300), Asp163 (D163), and Asp164 (D164). (Bottom; M-O) Solvent accessibility of
Asp163, Asp164, and Lys300, measured as the average number of water molecules as a function of distance from the
aspartate carboxyl oxygens or the lysine amine nitrogen. Cartoon images illustrate the key characteristics observed
in the simulations.
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Figure 4.17: Analysis of simulations S4 (charged Asp163, charged Asp164, neutral Lys300). Results are shown for
each protomer (labeled A and B). (Top; A-L) Distances between sodium ions and aspartate oxygen atoms and salt-
bridge distances between Lys300 (K300), Asp163 (D163), and Asp164 (D164). (Bottom; M-O) Solvent accessibility of
Asp163, Asp164, and Lys300, measured as the average number of water molecules as a function of distance from the
aspartate carboxyl oxygens or the lysine amine nitrogen. Cartoon images illustrate the key characteristics observed
in the simulations.
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Figure 4.18: Raw data for pKa value analysis. (A) Histogram of salt-bridge Asp163-Lys300 distances over all
simulations. (Inset) Cumulative distribution. The salt bridge was considered formed for d < 4 Å and broken at ≥ 4
Å. All further analysis is fairly insensitive to the exact value because changing the cutoff by ±0.5 Å only changes the
number of included snapshots by less than ∼5%, as seen from the cumulative distribution. (See also Table 4.3 in the
main text for supporting results from a sensitivity analysis.) (B) pKa calculated by PROPKA 3.1 for frames sampled
every 1 ns from the S1/1 trajectory, protomer B. No ion binding occurs, and the salt bridge remains intact. (C) S2/1
simulation, protomer B. Ion binding to Asp164 occurs between 20 and 100 ns, and the salt bridge breaks around 200
ns, resulting in a decrease in the pKa of Lys300. (D) S4/1 simulation, protomer B. The salt bridge remains broken
with a Na+ shared between Asp164 and Asp163.
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Figure 4.19: Analysis of pKa values by simulation and salt-bridge state. Distributions of pKa values are shown as
violin plots for the four conserved residues of interest, grouped by (a) simulated protonation states and (b) state of the
salt bridge (formed or broken). Distributions are scaled to have the same maximum width. The 25th, 50th (median),
and 75th percentiles of the data are indicated by dashed lines. The distribution of the salt-bridge distance (yellow) is
also included on the same scale (in Å) and can be seen to be < 4 Å (formed) and ≥4 Å (broken). (A) Simulations S1
(Asp163 deprotonated and Asp164 and Lys300 protonated). (B) Simulations S2 (Asp163 and Asp164 deprotonated
and Lys300 protonated). (C) Simulations S4 (Asp163, Asp164, and Lys300 deprotonated). (D) Simulations S3
(Asp163, Asp164, and Lys300 protonated). (E) Data from all simulations shown in Table 4.1 in the main text were
combined and analyzed in aggregate.
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Figure 4.20: Shift in pKa caused by breaking of the Asp163-Lys300 salt bridge. The distribution of the shift ∆pKa

= pKsalt bridge broken
a - pKsalt bridge intact

a quantifies how the chemical environment around the titratable residues
changes as a consequence of breaking the salt bridge (and concomitant Na+ binding). (A) Simulations S1 (Asp163
deprotonated and Asp164 and Lys300 protonated). (B) Simulations S2 (Asp163 and Asp164 deprotonated and Lys300
protonated). (C) Simulations S4 (Asp163, Asp164, and Lys300 deprotonated). (D) Simulations S3 (Asp163, Asp164,
and Lys300 protonated). (E) All simulations listed in Table 4.1 in the main text analyzed in aggregate.

Figure 4.21: (Video 1) NhaA, protomer A, 0-250 ns from simulation S2/1. Stable salt-bridge network between Lys300
and Asp163/Asp164. The conformation of the network is essentially unchanged over the course of the whole simulation,
and hence only the first 250 ns are shown. Video: http://movie.rupress.org/video/10.1085/jgp.201411219/video-1

Figure 4.22: (Video 2) NhaA, protomer B, 0-250 ns from simulation S2/1. A sodium ion spontaneously binds to
Asp133 and Asp164. Asp133 moves away, leaving the ion with Asp164. The salt bridge Lys300-Asp163 breaks and
Asp163 binds the Na+ ion together with Asp164, preventing the reformation of the salt bridge. These interactions
remain until the end of the 1-µs simulation, even though only the first 250 ns are shown. Video: http://movie.
rupress.org/video/10.1085/jgp.201411219/video-2
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Chapter 5

CRYSTAL STRUCTURES REVEAL THE MOLECULAR BASIS OF ION

TRANSLOCATION IN SODIUM/PROTON ANTIPORTERS

This chapter is a reprint of the journal article, Coincon, M., Uzdavinys, P., Nji,

E., Dotson, D.L., Winkelmann, I., Abdul-Hussein, S., Cameron, A.D., Beckstein,

O., and Drew, D. (2016). Crystal structures reveal the molecular basis of ion translo-

cation in sodium/proton antiporters. Nat Struct Mol Biol 23, 248-255. This work

revealed an inward-facing crystal structure of Thermus thermophilus NapA at 3.7 Å

resolution, obtained through disulfide-locking of cysteine mutants. This structure,

along with a new outward-facing NapA structure obtained from lipidic-cubic phase

(LCP) crystals, clearly show that the core domain of NapA undergoes a large con-

formational change during the transport cycle, displacing the bound Na+ a full 10 Å

between the inward- and outward-facing states. Functional experiments of cysteine

mutants reconstituted in proteoliposomes demonstrate unambiguously that disulfide-

locking abolishes transport, but that transport for cysteine mutants can be restored

with addition of a reducing agent.

Molecular dynamics simulations demonstrate the stability of the inward-facing

structure, both as a disulfide-locked mutant and wild-type, and the outward-facing

LCP structure. We also showed that it is the core domain, as opposed to the dimer-

ization domain, that translocates most relative to the membrane during the transition

between conformation. It was also demonstrated that both structures are accessible

to Na+ for spontaneous binding, but that binding is transient for the outward-facing

structure.
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This work clearly establishes that NapA undergoes a large, not a small, confor-

mational change to transport ions. Although not yet proven, it is believed that a

similar mechanism applies to Escherichia coli NhaA. My contribution to this work

was the performance and analysis of all molecular dynamics simulations. This work

first appeared in Nature Structural and Molecular Biology, Copyright © 2016 the

Authors.

ABSTRACT

To fully understand the transport mechanism of Na+/H+ exchangers, it is neces-

sary to clearly establish the global rearrangements required to facilitate ion translo-

cation. Currently, two different transport models have been proposed. Some reports

have suggested that structural isomerization is achieved through large elevator-like

rearrangements similar to those seen in the structurally unrelated sodium-coupled

glutamate-transporter homolog GltPh. Others have proposed that only small domain

movements are required for ion exchange, and a conventional rocking-bundle model

has been proposed instead. Here, to resolve these differences, we report atomic-

resolution structures of the same Na+/H+ antiporter (NapA from Thermus ther-

mophilus) in both outward- and inward-facing conformations. These data combined

with cross-linking, molecular dynamics simulations and isothermal calorimetry sug-

gest that Na+/H+ antiporters provide alternating access to the ion-binding site by

using elevator-like structural transitions.

5.1 Introduction

Na+/H+ exchangers (NHE1-NHE9 in mammals) mediate the outward movement

of protons (H+) in exchange for sodium (Na+) or lithium (Li+) ions [4,5]. These
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transporters are important in regulating intracellular pH, sodium levels and cell vol-

ume, and have roles in control of the cell cycle, cell proliferation, cell migration and

vesicle trafficking [4,5]. Na+/H+ exchangers belong to the monovalent cation/proton

antiporter superfamily (CPA1 and CPA2) and are important drug targets because

their dysfunction is linked to a variety of diseases, including cancer and cardiovas-

cular pathophysiological disorders [5,146]. The Na+/H+ antiporter from Escherichia

coli (NhaA), a bacterial homolog of the NHEs, was the first crystal structure of a

CPA superfamily member to be determined [22]. The structure revealed that Na+/H+

exchangers are made up of a central dimer domain and a core (ion-translocation)

domain [22,32]. The core domain contains two antiparallel discontinuous helices, trans-

membrane (TM) domains 4 and 11, which cross over near the center of the protein.

The ion-binding aspartate [22,28,31,32,147], a feature ubiquitous among prokaryotic and

eukaryotic Na+/H+ antiporters [4], is located on TM5, near the TM4-TM11 crossover.

In the crystal structure of NhaA [22], a negatively charged cavity is formed at the in-

terface of the two domains and provides access to the ion-binding aspartate from the

cytoplasm. It has been proposed that the two half helices in the core domain may un-

dergo small rearrangements that close access to the inside cavity and open the binding

site to the outside [22,23]. However, recent comparisons to an outward-facing crystal

structure of a homologous Na+/H+ exchanger, NapA from T. thermophilus [31], have

suggested that substrate translocation may instead occur by a large outward move-

ment of the core domain itself. Because the size of the oligomerization surface in

NapA is extensive (∼1,800 Å
2
), the core domain has been modeled to move against

a dimer domain that is fixed, thus yielding elevator-like movements similar to those

seen in the trimeric sodium-coupled glutamate-transporter homolog GltPh [31,77].

Although an elevator-like model has been proposed, a detailed mechanism could

not previously be resolved because NhaA and NapA have relatively low sequence iden-
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tity and show some structural differences [22,31,32], particularly in the dimer domain.

Indeed, these movements have been questioned in a more recent crystallographic study

of the archaeal Na+/H+ antiporter NhaP1 from Methanococcus jannaschii (MjN-

haP1), which has a topology similar to that of NapA [30]. MjNhaP1 has been solved

in an inward-facing conformation by X-ray crystallography, and the structure of the

same protein in an outward-facing state has been revealed through ∼6 Å (in plane)-

and 14 Å (z direction)-resolution EM maps obtained from two-dimensional (2D) crys-

tals [30]. On the basis of a comparison of these two structures, the core domain has

been presumed to undergo much smaller movements, thus ruling out an elevator model

and instead supporting the conceptually different rocking-bundle mechanism [30].

Because NhaA, NapA and NhaP1 proteins share low sequence identity to one

another [31], the extent of rearrangements may differ between these proteins. Even

so, the type of alternating-access model used by these and other Na+/H+ exchangers

should be conserved. It seems that the current ambiguities are likely to be resolvable

only by the determination of equivalent or highly homologous Na+/H+ exchanger

structures at near-atomic resolution in both outward- and inward-facing states. To

confirm the structural basis of ion translocation in Na+/H+ exchangers, we therefore

set out to obtain a crystal structure of NapA in an inward-facing conformation.

5.2 Results

5.2.1 Elevator-like movements of NapA can occur in a lipid bilayer

We hypothesized that if NapA undergoes elevator-like rearrangements, it should

be possible to trap an inward-facing conformation by engineering a disulfide bond

between a residue at position 31 in the dimer domain and a residue at position 130 in

the core domain (Figure 5.1a); in the outward-facing NapA structure, these residues

100



are located ∼10 Å apart. To test this model, we constructed V31C and I130C mu-

tants of wild-type NapA, which is cysteineless, expressed them in E. coli and purified

them at active pH (Methods). Incubation of each of the single V31C and I130C mu-

tants with methoxypolyethylene glycol 5000 maleimide (maleimide-PEG-5k) showed

a clear species with higher electrophoretic mobility, thus indicating that both cys-

teine residues were solvent accessible (Figure 5.1b and Supplementary Data Set 1).

In contrast, incubation of maleimide-PEG-5k with the purified double-cysteine V31C

I130C mutant showed little PEGylated product, thus indicating that the same cys-

teine residues were no longer solvent accessible, presumably because they had formed

a disulfide bond (Figure 5.1b and Supplementary Data Set 1). Consistently with

disulfide-bond formation, reactivity to a sulfhydryl-binding dye was also significantly

decreased in the double-cysteine mutant compared to each of the single-cysteine mu-

tants (Methods, Supplementary Figure 5.7a and Supplementary Data Set 1).

To determine whether V31C and I130C residues are able to form a disulfide bond

in a membrane environment, we co-reconstituted each of the purified cysteine mutants

with E. coli FoF1 ATP synthase into liposomes (Online Methods and Supplementary

Figure 5.7b). After establishing a pH gradient by the addition of ATP, we monitored

proton efflux in response to Na+ or Li+ addition in the presence of valinomycin and

potassium. In the presence of DTT, single- and double-cysteine mutants showed

robust transporter activity with apparent Na+ and Li+ affinities (Km) similar to

that of wild type (Figure 5.1 and Table 5.1). Likewise, after removal of DTT, wild-

type NapA and each of the single-cysteine mutants showed similar antiport activities

(Figure 5.1c,d,g). In contrast, removal of DTT from proteoliposomes containing the

double-cysteine mutant abolished ∼90% of its transport activity (Figure 5.1e,g). Re-

addition of DTT restored antiport activity to starting levels (Fig. 5.1e,g). Thus, a

disulfide bond between V31C in the dimer domain and I130C in the core domain can
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spontaneously form in a membrane environment, in agreement with an elevator-like

transport model [31].

Table 5.1: Biochemical characterization of NapA mutants. The apparent Na+ and Li+ Km affinities were calculated
with a range of ten ion concentrations that were fitted by nonlinear regression with data from two technical repeats
(values reported are the mean ± s.e.m. of the fit). For the double-cysteine mutants, the transport kinetics were
measured in the presence of 5 mM DTT.
aThe apparent affinity K for V31C I130C was also measured for Na+ at pH 8.5.

To provide further support for an elevator model, we further engineered an SDS-

resistant NapA dimer by covalently linking the two protomers together by substituting

I55 with cysteine (Figure 5.1a, Supplementary Figure 5.7c and Supplementary Data

Set 1). Consistently with the dimer domain being fixed during transport, the cova-

lently linked dimer showed wild type-like antiport activity under either nonreducing

or reducing conditions (Figure 5.1g, Table 5.1 and Supplementary Figure 5.7d).

5.2.2 The inward-facing crystal structure of NapA

We obtained crystals of the cross-linked V31C I130C mutant in the absence of any

additional oxidizing reagents and in similar crystallization conditions to those of the

wild-type NapA protein at active pH (Methods). We solved the structure of the cross-

linked V31C I130C mutant by molecular replacement at 3.7-Å resolution (Figure 5.2a,

Table 5.2 and Supplementary Figure 5.8a). The electron density maps revealed that
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Figure 5.1: Disulfide trapping of NapA in an inward-facing conformation. (a) Cartoon representation of the outward-
facing NapA structure (in which one of the protomers is faded). Blue, core (ion-translocation) domain; wheat, dimer
domain; gray, linker helix (TM6). Residues used for cysteine mutagenesis are depicted as sticks and are color-coded
(red, V31; blue, I55; green, I130). (b) The degree of cysteine reactivity of wild-type NapA (WT) and single- and
double-cysteine mutants (open circle) to maleimide-PEG-5k (black circle). MW, molecular weight. (c-e) Typical 9-
aino-6-chloro-2-methoxyacridine (ACMA) fluorescence traces of proteoliposomes containing single- and double-cysteine
NapA mutants in the presence of DTT (reducing, black trace), after the removal of DTT (nonreducing, red trace)
and after the re-addition of DTT (rereducing, blue trace). Each experiment was independently repeated three times;
data from one representative experiment are shown. The ∆pH gradient established between 0 and 3 min is not shown
(Supplementary Figure 5.7b). (f) Apparent Km for Na+ (filled circles) and Li+ (open circles) of the double-cysteine
mutant under reducing conditions. The apparent Na+ and Li+ Km affinities were calculated with a range of ion
concentrations that were fitted by nonlinear regression with data from two technical replicates (bars show the range
of two data points, and the values reported are the mean ± s.e.m. of the fit; additional data in Table 5.1). (g)
Quantification of antiport activity after the addition of LiCl in the presence (reducing) or absence (nonreducing) of
DTT (error bars, s.e.m.; n = 3 experiments).

a disulfide bond forms between residues C31 and C130 (Figure 5.2b). In molecular

dynamics (MD) simulations (Supplementary Table 5.3) the backbone r.m.s. deviation

(r.m.s.d.) increased to less than 3 Å over 1 µs, thus indicating that the disulfide-

trapped structure is stable in a model membrane bilayer (Supplementary Figure 5.9a).

We also observed similar r.m.s.d. values and r.m.s. fluctuations in MD after removing

the disulfide by replacing C31 and C130 with wild-type residues (Supplementary

Figure 5.9a,b). Furthermore, the disulfide-trapped NapA structure superimposed well

onto the inward-facing crystal structure of MjNhaP1 (Supplementary Figure 5.9c);
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Figure 5.2: The disulfide-trapped structure of NapA in an inward-facing conformation. (a) NapA monomer (blue,
core; wheat, dimer) shown in the outward-facing conformation (left, PDB 4BWZ) and inward-facing conformation
(right, V31C I130C). Positions of the V31 and I130 residues substituted with cysteine (left) are shown as red and green
sticks, respectively. The ion-binding aspartate D157 is shown as orange sticks. (b) Simulated-annealing Fo −Fc omit
map at 3.5σ showing the disulfide bond formed between residues C31 and C130 in the inward-facing structure. (c)
Surface representation of the NapA structures clipped through the ion-binding sites in either the outward-facing (left)
or inward-facing (right) conformation. The strictly conserved ion-binding aspartate D157 is shown as orange sticks
and labeled. (d) Representative ITC thermograms from one experiment obtained by successive addition of Li+, K+ or
Na+ to the V31C I130C mutant under nonreducing conditions (Methods). Integrated heats with baseline-subtracted
(red line) inverted power data are shown in top panels. Fit of a single binding site with 1:1 stoichiometry is shown in
bottom panels (black line). Kd values are reported as the mean ± s.e.m. of the fit.

the disulfide bond between residues C31 and C130 appeared to have caused only a

local conformational difference at the end of TM1. Strikingly, the strictly conserved

ion-binding residues in NapA (D157) and MjNhaP1 (D161) were positioned within

only ∼1 Å of one another (Supplementary Figure 5.9c). As expected, the outward-

facing cavity in NapA had closed, and a vestibule had opened to the inside (Figure

5.2c). Highly conserved residues were clearly surface exposed by the opening of the

inward-facing cavity (Supplementary Figure 5.9d).

The above discussion suggests that the introduction of the disulfide bond does not

excessively perturb the NapA structure. To further corroborate this possibility, we
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Table 5.2: Data collection and refinement statistics. aValues in parentheses are for highest-resolution shell.

carried out isothermal titration calorimetry (ITC). The disulfide-locked protein was

able to bind Li+ and Na+ ions with affinities (Kd) in a similar range as their apparent

Km values at pH 8 and 8.5, respectively (Figure 5.2d and Table 5.1). Furthermore,

NapA, as with all Na+/H+ antiporters, shows strict pH-dependent transport activ-

ity [68,69]. Consistently with this, we observed that its ion binding was also highly sen-

sitive to pH (Figure 5.2d). MD simulations of the inward-facing conformation further

demonstrated how bulk Na+ ions are able to access the strictly conserved ion-binding

aspartate D157 from the cytoplasm (Supplementary Figure 5.10a). In the simula-
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tions, D157 typically interacts with Na+ in a bidendate configuration, whereby both

side chain oxygen atoms of the aspartate are within less than 3 Å of the ion (Supple-

mentary Figure 5.10a-e and Supplementary Table 5.4). The manner of coordination

of Na+ was similar to how thallium binds to the equivalent aspartate in the inward-

facing NhaP structure from Pyrococcus abyssi [147]. In MD simulations, we found that

no dimer domain residues interact with the Na+ ion. This result is consistent with the

observation that mutation of the poorly conserved dimer-domain glutamate, which

has unexpectedly been observed to coordinate Tl+ in P. abyssi NhaP, is not essential

for transport [147]. We conclude that the disulfide-trapped structure of NapA is able

to bind substrate and is in an inward-facing conformation similar to that seen in

homologous Na+/H+ antiporter structures [22,30,32,147].

5.2.3 Outward-facing NapA crystal structure in lipidic mesophase

Because the inward-facing crystal structures of NapA and MjNhaP1 are so similar

(Supplementary Figure 5.9c), the different mechanism proposed is probably a result

of the differences observed between the outward-facing crystal structures. Indeed, the

2D structure of MjNhaP1 based on the EM maps has been reported to be less open

to the outside than the outward-facing crystal structure of NapA [30,31]. It is possible

that crystallization of NapA in detergent may have contributed to the conformational

differences observed between these two proteins [31].

To confirm that the outward-facing crystal structure of NapA represents a state

that can also be populated in a lipid-bilayer, we engineered a different set of cysteine

mutants between V71 in the dimer domain and L141 in the core domain; these residues

are located ∼15 Å apart in the inward-facing structure but come within 5 Å of one

another in the outward-facing structure (Supplementary Figure 5.7e). Indeed, in the

absence of DTT, a disulfide bond formed with ∼90% efficiency between C71 and C141
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residues in both detergent solution and proteoliposomes (Supplementary Figure 5.7f,g

and Supplementary Data Set 1). In the presence of DTT, however, the double V71C

L141C mutant showed similar antiport activity to that of wild-type NapA (Table 5.1

and Supplementary Figure 5.7g). Finally, we proceeded to combine 71C and 130C

mutants and, in contrast to the previous pairings, we modeled them to remain at least

∼10 Å apart in the two conformations to prevent them from spontaneously forming a

disulfide bond (Supplementary Figure 5.7e). In proteoliposomes containing the 71C

130C mutant, we observed little change in antiport activity upon the removal of DTT

(Supplementary Figure 5.7h).

To provide additional support for the physiological relevance of the outward-facing

NapA crystal structure, we further sought to obtain a structure of NapA at active pH

by using the lipidic-cubic phase (LCP) method (Figure 5.3 and Table 5.2). Unlike the

NapA crystal structure obtained in detergent, the structure refined at 2.3-Å resolution

in lipids showed bilayer-type crystal packing (Figure 5.3b). Superimposition of the

new outward-facing LCP crystal structure with that obtained in detergent [31] showed

that the core domain nonetheless adopts the same overall conformation (Figure 5.3a).

The main difference between the two outward-facing structures is that the half helices

11b and 4a are tilted ∼6 Å further away from the cavity in the LCP structure, thus

making it more open (Figure 5.3a). This difference might be due to the involvement

of these helices in crystal packing (Figure 5.3b). In MD simulations, half helices 11b

and 4a fluctuated between the positions seen in both outward-facing NapA crystal

structures, thus indicating that they are very mobile (Figure 5.3c). The open vestibule

in the LCP structure provides an open path for Na+ ions to bind to D157 from the

extracellular solvent (Supplementary Figure 5.10f-i). Although binding events were

infrequent and short (Supplementary Figure 5.10j), they nevertheless showed ion-
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Figure 5.3: LCP structure of NapA supports the
physiological positioning of the outward-facing confor-
mation. (a) Electrostatic surface representation of the
NapA protomer from the outward-facing structure ob-
tained by vapor diffusion (left) and LCP (middle), as
viewed from the extracellular side. Cartoon representa-
tion of the NapA outward-facing structure obtained by
vapor diffusion (gray, dimer; blue, core) superimposed
on the outward-facing LCP structure (brown, dimer;
teal, core) (right). The position of the ion-binding site
is circled, and additional and nonprotein density at the
core-dimer domain interface is modeled as the LCP
lipid MAG7.7 (green sticks). (b) Ribbon representa-
tion of the outward- facing NapA structure crystallized
in the lipidic mesophase. One NapA dimer structure is
shown in yellow, and TM11b, which is likely to form
crystal-packing contacts, is shown in red. (c) View on
the extracellular face (top) and intracellular face (bot-
tom) of NapA. Conformations from a 1-µs MD sim-
ulation (cyan) of the LCP structure (yellow) and the
detergent structure (PDB 4BWZ, pink) as described in
Methods. A diverse range of snapshots displaying the
mobility of half helices TM4a and 11b are shown at
varying time points (0 ns to 1,000 ns) and are high-
lighted by a red dotted ellipse.

coordination geometry similar to that observed in the inward-facing conformation

(Supplementary Figure 5.10a-e and Supplementary Table 5.4).

5.2.4 An elevator alternating-access mechanism for Na+/H+ antiport

Because the dimer domain is held in place by its interaction with the other pro-

tomer, it seems reasonable to assume that the core domain moves against the dimer

domain rather than that the dimer moves against the core. To test this assumption,

we performed MD simulations of the outward- and inward-facing NapA crystal struc-

tures in a model membrane bilayer (Supplementary Table 5.3). Whereas the vertical

position (z coordinate) of the dimer domain in the membrane differed by only ∼2

Å between outward- and inward-facing conformation, the core domain moved ∼6 Å

relative to the membrane and ∼7 Å relative to the position of the dimer domain
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(Supplementary Figure 5.11). Thus, the core domain is able to move freely against a

dimer domain that can anchor the position of the transporter in the membrane.

Analysis of a morph between the outward- and inward-facing NapA crystal struc-

tures showed that whereas the dimer domain ‘breathes out’ only sideways, the core

domain undergoes a large rotation and a translation (Methods and Supplementary

Videos 1 and 2). During this rearrangement, the Cα atom of the ion-binding aspar-

tate (D157) is relocated ∼8 Å in the vertical direction (Supplementary Figure 5.8b,c).

The side chain of D157 further rotates some 55◦, which is necessary for the residue

to access the inward-facing vestibule (Figure 5.2c and Supplementary Figure 5.8c).

The distance between the D157 carboxylate groups in the two opposite-facing states

is ∼11 Å (Figure 5.4b and Supplementary Figure 5.2b). This relocation of the ion-

binding site spans a distance roughly equivalent to the thickness of the hydrophobic

dimer-domain interface (Figure 5.4a). The elevator-like movement of the core against

the dimer domain is facilitated by long flexible loops that are located between TMs

9 and 10 on the extracellular side and between TMs 6 and 7 on the intracellular side

(Methods and Supplementary Figure 5.12). These hinge regions contain a number of

glycine residues, G193, G213, G277 and G294, that may facilitate the unwinding of

the helices at their connecting periphery. The hinge regions were clearly highlighted

when the higher-resolution outward-facing (LCP) NapA structure was represented as

temperature factors (Supplementary Figure 5.12b). These hinge regions also showed

high per-residue fluctuations in MD simulations (Supplementary Figure 5.9b).

Between the outward- and inward-facing NapA conformations, there is remarkably

little structural rearrangement within the core and dimer domain themselves, because

separate superimposition of the domains yielded an r.m.s.d. of 0.5 Å for 124 pairs

of Cα atoms in the dimer domain and ∼1.0 Å for 185 pairs of Cα atoms in the core

domain (Figure 5.4c). Within the core domain, residues located on the mobile TM4b
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Figure 5.4: An elevator-like alternating-access mech-
anism for Na+/H+ antiport. (a) The outward-facing
NapA structure was separated into core and dimer do-
mains, and the electrostatic surface of the core (left)
and dimer (middle) domain are rendered. The view
shows the domain surfaces that face one another at the
interface. The electrostatic surface was further ren-
dered for the inward-facing conformation (right) and
is shown on the basis of its relative position to the
dimer domain. The ion-binding aspartate D157 is rep-
resented as a green and yellow sphere for the outward-
facing (left) and inward-facing (right) conformations,
respectively. Dashed lines represent the position of
the aspartate in each of the two conformations (mid-
dle). (b) Cartoon representation highlighting the move-
ment of the core domain (dark blue) between outward-
facing (left) and inward-facing (right) conformations.
The ion-binding aspartate D157 is shown as a sphere
in the outward-facing (green) and inward-facing (yel-
low) conformations. (c) The core and dimer domains
from the different NapA crystal structures are superim-
posed separately onto each other. Left, outward-facing
detergent structure (dark brown, dimer; dark blue,
core) superposed on the outward-facing LCP struc-
ture (gray, dimer; teal, core). Middle, outward-facing
LCP structure (gray, dimer; teal, core) superposed on
the inward-facing NapA structure (light orange, dimer;
light blue, core). Right, outward-facing detergent struc-
ture (dark brown, dimer; dark blue, core) superposed
on the inward-facing NapA structure (light orange,
dimer; light blue, core). The respective Cα r.m.s.d.
of each superimposition is shown.

and TM11b half helices make most of the contacts to the dimer domain; these contacts

are extensive enough to close off the cavity to the outside and inside (Methods and

Figure 5.5a,b). The small size of the occluding interface was clearly observable when

TM4b and TM11b half helices were omitted in a surface representation of NapA

(Figure 5.5a). Positively charged residues K344 in TM11b and R133 in TM4b may

help to stabilize the alternate conformations by interacting with negatively charged

residues in the dimer domain (Figure 5.5b). Indeed, a K344A mutant had a clear

negative effect on transport activity, as did the mutation of the intracellular R133 E35

salt bridge between TM4b and TM1, which was rescued by a charge-swapped mutant

(Figure 5.5c and Table 5.1). As extensively shown in previous studies, ion binding

causes the rearrangement of half helices in the core domain [30,64,148]. It is likely that

in the presence of Na+ (or Li+), the mobile TM4b and TM11b helices move to further
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accommodate the substrate so that they no longer interact with the dimer domain,

thus enabling the core to move in an elevator-like fashion as described. Interestingly,

in the outward-facing LCP structure, a number of acyl chains, modeled as LCP

lipids, are located between the TM4b and TM11b half helices and the dimer domain

(Figure 5.3a and Supplementary Figure 5.13a). It is plausible that in vivo lipids may

facilitate the elevator-like structural transitions of the core domain. Such an idea

has also been proposed to facilitate transport-domain movements in the glutamate-

transporter homolog GltPh [149].

5.3 Discussion

Na+/H+ antiporters have been extensively studied since West and Mitchell showed,

in the 1970s, that H+ and Na+ transport is strictly coupled [8]. With exchange activ-

ity on the milli- to microsecond timescales, Na+/H+ antiporters represent one of the

fastest-acting known classes of secondary active transporters [12,30,147]. At active pH,

biophysical and biochemical data support an antiport mechanism whereby Na+ (or

Li+) ions compete with protons for a single binding site [27,28,150,151], which is made up

of a strictly conserved aspartic acid and several other polar residues [4,5,22,28,31,32,147,151].

The structural basis for the ion-exchange mechanism has been unclear. From a

comparison of the inward-facing structure of NhaA and the outward-facing struc-

ture of NapA, we have suggested that both function through an elevator-like trans-

port mechanism [31]. Elevator mechanisms were first described for the sodium-coupled

glutamate-transporter homolog GltPh [77] and have since been proposed for various

other transporters [152–156] including bacterial sodium-coupled bile acid-transporter ho-

mologs, which have the same fold as the Na+/H+ antiporters [75,157]. The characteristic

of this mechanism is that one domain undergoes a large essentially rigid-body move-

ment against the other to carry the substrate across the membrane. This differentiates
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the mechanism from the rocking-bundle mechanism, wherein the two domains move

around the bound substrate (Figure 5.6). Thus, an elevator-like mechanism requires

a large conformational change and a vertical displacement of the substrate-binding

site.

A comparison of the outward- and inward-facing structures of MjNhaP1 has shown

only a small change [30]. Indeed, when the dimer domains of the two structures are

superimposed, the Cα atom of Asp161 is displaced vertically by only 1.5 Å (Sup-

plementary Figure 5.13b), which is much smaller than the 10 Å predicted from our

previous model [31]. In this study, we trapped NapA in an inward-facing conformation

through the introduction of a disulfide bond and solved a crystal structure similar

to that of inward-facing MjNhaP1 [30]. We further showed that the disulfide-locked

inward-facing NapA mutant is able to bind Na+ and Li+ ions in a pH-specific manner

and measured Kd values similar to the respective apparent Km values. A comparison

of this structure with the outward-facing structure of NapA (determined from crystals

grown in either detergent or lipid) confirmed and refined the large elevator-like struc-

tural transitions. The difference between the two studies lies predominantly in the

conformation of the outward-facing structure: the conformation derived for MjNhaP1

from the low-resolution EM maps is much less open than that of NapA [30]. Because

side chains cannot be modeled at this resolution, it is not possible to ascertain whether

the ion-binding site in MjNhaP1 is accessible to the outside. Further, because this

structure was determined at inactive pH [30], the structure of the ion-binding site and

possibly the conformation of the core domain may have been affected. Indeed, pH-

dependent structural differences have been reported in Na+/H+ antiporters including

MjNhaP1 [64,76,147,158].

It seems likely that the overall rearrangements described here for NapA will be

similar in other Na+/H+ exchangers, because we were able to predict the inward-
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Figure 5.5: The cavity-closing interactions formed between the dimer and core domains. (a) The NapA surface
(blue, core; wheat, dimer) shown in either the inward-facing (left) or outward-facing (right) conformation. Half helices
TM11b (orange) and TM4b (magenta) are further illustrated in cartoon in the left protomer of each dimer. (b) Ribbon
representation of NapA (blue, core; wheat, dimer) in inward-facing (left) or outward-facing (right) conformation. The
alternating ionic interactions between the dimer domain and core helices TM11b (orange) and TM4b (magenta) are
highlighted (green sticks). (c) Kinetic analysis of a salt-bridge swap between residues E35R in TM11b and R133E in
the dimer domain. The apparent (Na+) Km affinities were calculated with a range of ion concentrations that were
fitted by nonlinear regression with data from two technical replicates (error bars show the range of two data points,
and values reported are the mean ± s.e.m. of the fit; additional data in Table 5.1).

facing conformation of NapA with reasonable accuracy by using the inward-facing

NhaA crystal structure [22]. Indeed, the extent of core movement is very similar

to the elevator-like rearrangements described for bacterial sodium-coupled bile acid-

transporter homologs, although they operate at much slower turnover rates [157].

Because a Na+- or Li+-bound structure of a Na+/H+ antiporter remains to be

determined, intermediate and possibly occluded ion-bound states have yet to be ex-

perimentally resolved. It seems likely that additional structural changes not yet seen

in crystal structures or MD simulations are likely to take place. These states will be

important for understanding the coupling between conformational states and trans-

port rates. What is known is that numerous studies including cysteine accessibility

analysis, tryptophan quenching and 2D crystallography support the local movement

of the half helices at active pH and/or upon the addition of substrate [24,148,160]. We

propose that these ion- and/or proton-induced rearrangements will be a prerequisite

for the large structural changes observed here and, as seen in NapA, may further
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Figure 5.6: Schematic illustrating the conceptual differences between rocking-bundle and elevator alternating-access
mechanisms. (a) In the rocking-bundle alternating-access mechanism, the substrate (red circle) binds between two
similarly sized domains (light orange) near the center of the membrane, thereby causing domain rearrangement around
the substrate. (b) In the elevator alternating-access mechanism, the substrate (red circle) binds predominantly
or exclusively to only one of the domains (light orange), which is then carried across the membrane against the
fixed oligomerization domain (dark orange). The vertical displacement of the substrate between the two alternative
conformations (relative to the scaffold domain) is likely to be in the range of ∼10-18 Å, as seen in NapA6 and
GltPh [77,159] structures. For the sake of simplicity, intermediate and occluded states formed between the two major
outward- and inward-facing conformations are not shown.

require the breakage of interdomain salt bridges. It is possible that the core domain

itself does not readily move against the hydrophobic ‘barrier’ of the dimer-domain in-

terface surface in the absence of substrate, because of its ‘nonfilled’ negatively charged

ion-binding surface (Figure 5.4a).

Although more studies are clearly required to elucidate the finer coupling of ion

binding with the global conformational changes described here, we nonetheless uncov-

ered new atomic-level insights into how an ion exchanger can use large, elevator-like

structural transitions to translocate ions across a lipid bilayer.

Accession codes

Coordinates and structure factors for NapA have been deposited in the Protein

Data Bank under accession codes PDB 5BZ2 (inward facing) and PDB 5BZ3 (LCP

outward facing).
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5.4 Methods

5.4.1 NapA sequence

T. thermophilus NapA sequence (UniProt Q72IM4); residues substituted to cys-

teine in the disulfide-trapped inward-facing NapA structure are underlined, and ad-

ditional C-terminal residues retained after TEV cleavage are shown in bold.

MHGAEHLLEIFYLLLAAQVMAFIFKRLNQPVVIGEVLAGVLVGPALLGLVHEGEILEFLA

ELGAVFLLFMVGLETRLKDILAVGKEAFLVAVLGVALPFLGGYLYGLEIGFETLPALFLG

TALVATSVGITARVLQELGVLSRPYSRIILGAAVIDDVLGLIVLAVVNGVAETGQVEVGA

ITRLIVLSVVFVGLAVFLSTLIARLPLERLPVGSPLGFALALGVGMAALAASIGLAPIVG

AFLGGMLLSEVREKYRLEEPIFAIESFLAPIFFAMVGVRLELSALASPVVLVAGTVVTVI

AILGKVLGGFLGALTQGVRSALTVGVGMAPRGEVGLIVAALGLKAGAVNEEEYAIVLFMV

VFTTLFAPFALKPLIAWTERERAAKEGSENLYFQ

5.4.2 Protein expression and purification

Wild-type NapA was previously cloned into the vector pWaldoGFPe, which con-

tains a TEV-cleavable C-terminal GFP-His8 tag, and mutants were generated from

this vector [31] with the QuikChange protocol (Agilent Technologies). Wild-type NapA

and mutants were transformed into the E. coli strain Lemo21(DE3) [81] and overex-

pressed with the MemStar protocol [117].

Membranes containing overexpressed fusions were isolated from 6-l E. coli cul-

tures and solubilized in 1% (w/v) dodecyl-β-D-maltopyranoside (DDM; Generon) for

1 h in buffer containing 1 × PBS and 150 mM NaCl. The suspension was cleared by

ultracentrifugation at 200,000g for 1 h. The cleared supernatant was incubated with

1 ml of Ni-NTA Superflow resin (Qiagen) per 1 mg of GFP-His8 and incubated for

3 h at 4◦C after addition of 10 mM imidazole. Resin slurry was loaded onto a glass
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Econo-Column (Bio-Rad) and washed in 1 × PBS buffer containing 0.1% DDM and

150 mM NaCl for 3 × 10 column volumes at 10, 20 and 45 mM imidazole concen-

trations, respectively. The NapA-GFP-His8 fusion was eluted in two column volumes

of 1 × PBS buffer containing 0.6% nonyl-β-D-maltopyranoside (NM; Generon), 150

mM NaCl and 250 mM imidazole. The eluted protein was dialyzed overnight in the

presence of stoichiometric amounts of His6-tagged TEV protease containing 5 mM

DTT, in 3 l of buffer containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl and 0.5%

NM. Dialyzed samples were passed through a 5-ml Ni-NTA His-Trap column (GE

Healthcare), and the flow through containing NapA was collected. Protein was con-

centrated with concentrators with a relative molecular-mass cutoff of 100 kDa. To

reoxidize all proteins to a similar level for functional studies, the purified proteins were

incubated with 1 mM CuSO4 for 30 min prior to loading onto a Superdex 200 10/300

gel-filtration column (GE Healthcare) equilibrated in buffer containing 20 mM Tris-

HCl, pH 7.5, 150 mM NaCl and 0.03% DDM. For structural investigation, the protein

was not incubated with CuSO4 but was instead loaded directly onto a Superdex 200

10/300 gel-filtration column (GE Healthcare) equilibrated in buffer containing 20 mM

Tris-HCl, pH 7.5, 150 mM NaCl and 0.6% NM.

5.4.3 Na+/H+ cysteine accessibility

To probe for cysteine accessibility, 5 µg of either purified wild-type NapA or

cysteine mutants thereof was incubated with 5 mM maleimide-PEG-5K (methoxy-

polyethylene glycol maleimide; Sigma) at room temperature for 45 min. Incubated

proteins were analyzed for reactivity on the basis of a shift in size after electrophore-

sis on 12% NuPAGE gels (Invitrogen) and staining with Coomassie blue. Cysteine

accessibility was further assessed by incubation of 10 µg of either purified wild-

type NapA or cysteine mutants thereof with 2 µg of CPM (7-diethylamino-3-(4’-
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maleimidylphenyl)-4-methylcoumarin; Life Technologies) dye at 40◦C for 15 min.

Samples were subjected to SDS-PAGE, and in-gel fluorescent-band intensity (blue

light: 480 nm) was used to quantify the level of free sulfhydryl groups. Original

images of gels used in this study can be found in Supplementary Data Set 1.

5.4.4 Na+/H+ antiport activity

Na+/H+ antiport activity in proteoliposomes was carried out as described previ-

ously [31]. In brief, l-α-phosphatidylcholine lipids (Sigma) were diluted to 10 mg/ml

with 10 mM MOPS, pH 6.5, 5 mM MgCl2, and 100 mM KCl (MMK) at pH 6.5

and vortexed until mixtures were uniform. Lipids underwent eight cycles of freeze-

thawing and were stored at 080◦C until use. Prior to reconstitution, liposomes were

extruded through polycarbonate filters (200 nm) and destabilized by the addition

of sodium cholate to a final concentration of 0.65% (v/v). Either 100 µg of puri-

fied NapA or cysteine mutants thereof were co-reconstituted together with 100 µg

of purified E. coli FoF1 ATP synthase in MMK buffer (10 mM MOPS-NaOH, pH

8.0, 5.0 mM MgCl2, and 100 mM KCl) as described previously [31,85,86]. Typically,

50 µL of proteoliposomes was diluted into 1.5 mL MMK buffer containing 2.5 nM

9-aino-6-chloro-2-methoxyacrid- ine (ACMA) and 130 nM valinomycin. Fluorescence

was monitored at 480 nm with an excitation wavelength of 410 nm in a fluorescence

spectrophotometer (Cary Eclipse, Agilent Technologies). An outward-directed pH

gradient (acidic inside) was established by the addition of final 0.2 mM (v/v) ATP, as

monitored on the basis of change in ACMA fluorescence. After ∼3 min equilibration,

the activity of wild-type NapA and mutants thereof was assessed by the dequenching

of ACMA fluorescence after addition of the indicated concentrations of NaCl or LiCl.

Addition of 20 mM NH4Cl led to near-complete dequenching. The apparent affinity

Km for Na+ or Li+ was measured at the indicated concentrations in the presence or
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absence of 5 mM DTT. The data were fitted from duplicate measurements to the

Michaelis-Menten equation by nonlinear regression with GraphPad Prism software.

The Km values reported are the mean ± s.e.m. of the fit.

To assess the propensity for disulfide-bond formation, antiport activity for wild-

type NapA and single- and double-cysteine mutants were first assessed in MMK

buffer containing 5 mM DTT essentially as described above, after the addition of

saturating 10 mM LiCl2. DTT was removed from proteoliposomes containing either

wild-type NapA or cysteine mutants by their passage through two G-25 columns (GE

Healthcare). Antiport activities under these nonreducing conditions were reassessed

by using the equivalent amount of proteoliposomes by the addition of saturating,

10 mM LiCl2 in MMK buffer without DTT. To confirm that the loss of antiport

activity for the double-cysteine mutant was because of disulfide-bond formation rather

than a loss of sample, DTT was further added back to proteoliposomes when it had

been removed. Each experiment was performed three times from three independent

purifications. The data shown represent the mean ± s.e.m. from three technical

replicates from one of three independent experiments.

5.4.5 Isothermal calorimetry

All measurements were made on a Micro-200 ITC (MicroCal, Malvern), with

an experimental setup similar to that previously described for NhaA [28]. 150 µl of

the double-cysteine V31C I130C mutant at 300 µM was diluted to 2 mL in buffer

containing 50 mM Bis-Tris-propane, 150 mM KCl, and 0.03% DDM at the desired

pH, and was concentrated to ∼150 µl with concentrators with a relative molecular-

weight cutoff of 100 kDa. This washing step was repeated a minimum of six times.

The last flow through was used to dilute a 2 M stock solution of LiCl or NaCl and

the protein to the concentrations used for the runs. Disulfide-bond formation was
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confirmed after these steps by the maleimide-PEG shift assay and ACMA transport

assay both before and after the ITC run. Protein at 90-150 muM was loaded into the

sample cell, and 15 mM LiCl or 40 mM NaCl was loaded into the injection syringe.

The system was equilibrated to 20◦C with a stirring speed of 600 r.p.m. Titration

curves were initiated by a 0.5-µl injection and were followed by 2-mul or 2.8-mul

injections every 200 s. Background corrections were obtained by injecting LiCl or

NaCl into buffer and buffer into protein with the same parameters. ORIGIN 7 was

used to integrate, correct and normalize the heat for each injection and fit the data to

a single-site binding isotherm with a fixed protein/ligand stoichiometry of 1, excluding

the peak from the first injection.

5.4.6 Crystallization and diffraction

Crystals of the double-cysteine V31C I130C mutant were grown at 20◦C with the

hanging-drop vapor-diffusion method. 1.2 µl of protein at 15 mg/ml was mixed 1:1

with reservoir solution containing 50 mM glycine, pH 9.5, 0.1 M NaCl, and 34-38%

PEG 300. Crystals were dehydrated in 36-40% PEG 300 (2% increments overnight)

and subsequently flash frozen in liquid nitrogen before data collection.

For crystallization of NapA in lipidic mesophases, the triple-cysteine mutant (M20C

V166C V326C), which has previously been used for determining the outward-facing

structure (PDB 4BWZ) and has further been shown to have wild type-like activ-

ity [31], was purified and concentrated to 30 mg/mL and mixed with 7.7 MAG (lot

141MG(7.7)-15, Avanti) with a coupled syringe-mixing device to form the cubic phase

at a protein solution/lipid ratio of 1:1 (w/w). Crystallization trials were set up by

dispensing 50 nL cubic phase onto a 96-well Laminex glass plate (MD11-50, Molec-

ular Dimensions), which was then covered with 800 nL of precipitant solution 0.1

M MES, pH 6.5, 0.1 M NaSCN, 40% (v/v) PEG 400, with a Mosquito LCP robot
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(TTP Labtech). Plates were sealed with a Laminex glass cover (MD11-52, Molecular

Dimensions) and were stored at 20◦C.

5.4.7 Structure determination

Data were collected at Diamond Light Source. Diffraction data were indexed and

integrated with XDS [89] and scaled with Aimless [161]. Initial phases were obtained

by molecular replacement in Phenix [97] (autoMR) with the dimer domain of NapA

(PDB 4BWZ model) and the core domain as separate search models. Refinement was

carried out in autoBUSTER (http://www.globalphasing.com/buster/)/Phenix [97],

and manual rebuilding was carried out in Coot [96]. One TLS group was used during

the refinement of the inward-facing conformation. The quality of the model was

assessed by MolProbity [162] throughout this process. All residues from final models

were found in allowed region of the Ramachandran plot, and both structures were

ranked in the 100th percentile by the MolProbity server.

5.4.8 Structure analysis

Superimposition, figures and movies were generated with PyMOL (http://www.

pymol.org/). The program O [94] was used to calculate the angle through which the

core domain of the inward-facing structure needed to rotate to be superposed on

the same domain of the inward-facing structure after the respective structures had

been superposed on their dimer domains. For this analysis, the domains were first

superposed in LSQMAN [98], such that all matching Cα pairs were less than 3.8 Å

apart after superposition. To visualize the positional sequence conservation in NapA

outward- and inward-facing structures, the ConSurf server was used with default

settings [163].
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5.4.9 Molecular dynamics simulations

All-atom, explicit solvent MD simulations were performed with Gromacs 4.6.5 [52]

and the CHARMM36 force field for the protein with the CMAP correction [42–44], ions

and lipids [45] together with the CHARMM TIP3P water model [42]. The NapA dimer

was simulated in an ∼4:1 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE)/1-

palmitoyl-2-oleoylphosphatidylglycerol (POPG) bilayer. Simulations of the outward-

facing structure were based on the LCP crystal structure. Simulations were also per-

formed with the inward-facing disulfide-linked V31C I130C structure and an inward-

facing model of the wild-type protein that was obtained by changing C31 back to

V31 and C130 to I130. Simulations were run for 1 µs. Wild-type simulations were

independently repeated twice for 0.3 µs, starting from the same initial system con-

formation but with differing random number seeds. All simulations are summarized

in Supplementary Table 5.3.

Protein structures were embedded into the model membrane with a coarse-grained

self-assembly protocol [103] and subsequent conversion of the lipids to an all-atom rep-

resentation [50], as described for our previous simulations of NapA [31]. The total system

consisted of about 120,000 atoms in an orthorhombic simulation cell with a free NaCl

concentration of ∼250 mM. Most titratable residues were simulated in their default

charge states, as predicted by PROPKA 3.1 [131] for pH 7.8, including charged forms of

residues D156 and K305 near the ion-binding site. The binding-site residue D157 was

simulated in its charged form in the inward-facing and outward-facing conformation,

despite a prediction of a neutral charge state in the outward-facing conformation,

because our previous work had suggested that it would be charged (deprotonated)

when a sodium/proton antiporter binds a Na+ ion [31,32].
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Equilibrium MD simulations were performed after energy minimization and ∼15

ns of equilibration with position restraints (harmonic force constant 1,000 kJ mol−1

nm−2 on all heavy protein atoms). All simulations were carried out under periodic

boundary conditions at constant temperature (T = 310 K) and pressure (P = 1

bar). A velocity rescaling thermostat [62] was used with a time constant of 1 ps, and

three separate temperature-coupling groups were used for protein, lipids and solvent.

A Parrinello-Rahman barostat [63] with time constant 5 ps and compressibility 4.6

× 10−5 bar−1 was used for semi-isotropic pressure coupling. The Verlet neighbor

list with a cutoff of 1.2 nm was updated every 20 steps. Coulomb interactions were

calculated with the smoothed particle mesh Ewald (SPME) method [105] with a real-

space cutoff of 1.2 nm, and interactions beyond the cutoff were calculated in reciprocal

space with a fast Fourier transform on a grid with 0.12-nm spacing and fourth-order

spline interpolation. The Lennard-Jones potential was shifted to zero at a cutoff of 1.2

nm, without applying any dispersion corrections [164]. Bonds to hydrogen atoms were

constrained with the P-LINCS algorithm [55] (with an expansion order of four and two

LINCS iterations) or SETTLE [56] (for water molecules). The classical equations of

motions were integrated with the leapfrog algorithm with a time step of 2 fs.

Nonbonded parameters for lipid simulations can be critical, and artifacts have

been reported with incorrect choices of these parameters [164]. We carefully selected a

set of parameters compatible with the Verlet neighbor-list scheme in Gromacs (which

is required for running on GPUs and for high performance with the CHARMM TIP3P

water model on conventional hardware) while remaining close to the original values of

the CHARMM force field. The simulation parameters were validated with simulations

of pure POPC (used for validation instead of POPG) and POPE bilayers of 288 lipids

and 50 water molecules per lipid for ∼250-ns length, which yielded areas per lipid

within 1 Å
2

(POPC) and 3 Å
2

(POPE) of the original CHARMM36 values [45] (data
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not shown). Furthermore, our values differed from the experimental areas per lipid by

no more than 2 Å
2
, thus indicating that our parameter settings in Gromacs produced

results of similar quality to the native simulations in CHARMM.

5.4.10 Analysis of molecular dynamics simulations

MD simulations were analyzed with code based on MDAnalysis [106] (http://www.

mdanalysis.org/) and MDSynthesis (https://github.com/datreant/MDSynthesis/).

The movement of domains was assessed in the coordinate system associated with the

membrane. In the MD simulations, the average normal of the bilayer was parallel

to the z axis of the fixed simulation coordinate system, and hence we performed all

calculations with the z coordinates of the centers of mass of the core and dimer

domain and the bilayer itself. Probability distributions fZ(z) of a coordinate Z

were calculated as Gaussian kernel density estimates (KDE) from the raw simula-

tion data (obtained at 1-ps intervals). The kernel width of the KDE was chosen

according to Scott’s criterion as implemented in the scipy.stats.gaussian kde()

function from the SciPy package (http://www.scipy.org/). The joint difference dis-

tribution of the random variable ∆Z = ZOF − ZIF was calculated as the convolution

f(∆Z) =
∫
dz fOF

Z (z) f IF
Z (z−∆Z). In order to calculate the z shift of the core domain

relative to the dimer domain between the two crystal structures, it was still necessary

to orient the two structures relative to the membrane. We performed the orientation of

the crystal structures in two different ways. (i) The dimer domain was superimposed

on frames from the MD simulations, and distributions of the z position and the rela-

tive shift were calculated as described, yielding ∆Z = 7.2 ± 1.1 Å (mean ± s.d.). (ii)

The dimer domain was superimposed on the oriented outward-facing NapA structure

(PDB 4BWZ) as provided by the Orientation of Proteins in the Membrane database

(OPM, http://opm.phar.umich.edu/) [165], which uses an electrostatic model and a
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simple low-dielectric model for the membrane. This static picture yielded ∆Z = 7.1

Å, in full agreement with the analysis based on the orientation of the NapA dimer in

the explicit membrane in the MD simulations.

Binding of Na+ ions was assessed with a distance criterion: any Na+ ion within 3 Å

of any carboxyl oxygen atom of either D157 or D156 was considered to be bound; i.e.,

an ion was considered to be bound if it contained one of the aspartate carboxylates

in its first coordination shell. The probability of observing at least one ion within 3

Å of any of the Oδ of D157 or D156, Pbound (shown in Supplementary Figure 5.10

and Supplementary Table 5.4) was calculated as the bound time divided by the total

simulated time. To better estimate Pbound, we independently repeated simulations

an additional two times for 300 ns. However, small but infrequent conformational

changes such as movements of parts of helices 4 and 11 affect binding-site accessibility

and binding (for example, the absence of any binding in protomer B in the inward-

facing conformation in the 1-µs simulation, as shown in Supplementary Table 5.4).

Such infrequent events are not well sampled, even in 1 µs of simulation. We therefore

decided to weigh all simulations equally for the purpose of computing averages of

Pbound over different initial conditions (Supplementary Figure 5.10) and therefore

used only the first 300 ns of the 1-µs simulations together with the full 300 ns of the

two repeats. For the analysis of coordination geometry, all trajectory frames were

used that contained a bound Na+ ion. The ion-oxygen radial distribution function

was computed from all oxygen atoms (protein and water) within 10 Å of the ion.

Per-residue contributions (in which all water molecules count as identical) to the first

coordination-shell number (oxygen atoms within 3 Å of the ion) were computed as

the total residence time of the oxygen in the first solvation shell divided by the total

time that an ion was bound. Images showing simulation data were prepared with

VMD [107] and the Bendix plugin [108].
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5.5 Supplementary Information

Table 5.3: Molecular Dynamics Simulations.

Table 5.4: Observation of bound Na+ from MD simulations in multiple conformations. The probability for observing
at least one ion within 3 Å of any of the Oδ of D157 or D156 (Pbound) was calculated as the fraction of the bound
time relative to the total length of the trajectory. Simulations were started without a Na+ ion within less than 10
Å distance of D157 so all observed binding is spontaneous. K305, D156, and D157 were simulated in their charged
state.
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Figure 5.7: Assessing disulfide-bond formation in NapA cysteine mutants. a. Reactivity of purified wild type NapA
and single, double, and triple cysteine mutants thereof to the N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]-
maleimide (CPM) dye (see Methods). b. Representative ACMA fluorescence traces of NapA wild type antiport
activity in proteoliposomes as outlined in the schematic (insert adapted from Lee et. al., 2013 [31]). The addition of
ATP (0.5-3 min), NaCl/LiCl (3rd min) and NH4Cl (4th min) is indicated by arrows and labeled. Black trace (presence
of DTT; reducing) and the red trace (after DTT removal; non-reducing). c. SDS-PAGE analysis of a triple cysteine
mutant of NapA (used previously for phasing/structure determination, Lee et. al., 2013 [31]) and the dimer domain
mutant I55C in the presence or absence of DTT as labeled. d. Representative Li+ catalysed antiport activity of the
I55C mutant under either reducing (black trace) or non-reducing (red trace) conditions. e. Cartoon representation
of the inward-facing NapA structure showing the positions of V71 (red sticks) in the dimer domain (wheat) and I130
(yellow sticks) and L141 (green sticks) in the core domain (blue). f. Reactivity of purified single and double cysteine
mutants V71C and V71C L141C (open circle) to mPEG-5K (black circle). g-h. Representative ACMA fluorescence
traces for V71C L141C and V71C I130C mutants in the presence of DTT (reducing, black trace), after DTT removal
(non-reducing, red trace) and after re-addition of DTT (reducing, blue trace).
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Figure 5.8: Electron density maps of the disulfide-locked inward-facing NapA structure and TM5 in both confor-
mations. a. Stereoview showing 2FoFc electron density calculated after the final refinement (contoured at 1.5σ level)
with the final inward-facing structure overlaid (purple core; orange dimer) from the extracellular side (top) and from
the side-view (bottom). b. NapA structures in the inward-facing and outward-facing conformation as superimposed
on their respective dimer domains. The ion-binding D157 (orange) displacement between the two states is shown be-
tween the position of their Cα atom or their Cγ atom. c. 2FoFc electron density calculated after the final refinement
(contoured at 1.0σ level) around TM5 in the outward-facing (left panel) and inward-facing (right panel) conformation.
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Figure 5.9: Analysis of the disulfide-trapped structure of NapA in an inward-facing conformation. a. MD simulations
of the disulfide cross-linked crystal structure V31C I130C (red) and the wild-type structure (blue), which was modelled
from the cross-linked structure, were compared for protomer A and B. Cα r.m.s.d as a function of time, after r.m.s.d-
fitting to the crystal structure. Data were averaged over 10-ns windows and bands indicate the 95% quantile of the
data. b. Per-residue root mean square fluctuations (r.m.s.f.), relative to the average of all MD conformations. Dashed
lines indicate the positions of the cross-linking residues C31 and C130. Gray boxes show the locations of helices TM
-1 to 12. Two yellow boxes indicate putative hinge regions between dimer and core domain. Two independent repeat
simulations of the wild type of 300 ns length (not shown) display the same behavior with r.m.s.d values between 2 Å
and 2.5 Å and very similar r.m.s.f. profiles. c. Superimposition of disulfide-trapped NapA (wheat dimer, light-blue
core) and inward-facing MjNhaP1 (grey; PDB 4CZB) structures across both core and dimer domains evenly. Top
inset shows the relative positioning of the ion-binding aspartate residue D157 in NapA (orange stick) and equivalent
aspartate D161 in MjNhaP1 (grey stick). Bottom inset shows the region around the disulfide formed between C130
(green stick) and C31 (red stick) residues in NapA and the equivalent helices in MjNhaP1. d. Cytoplasmic view
showing the highly conserved residues in NapA that becomes accessible upon the cavity opening to the inside in the
inward-facing disulfide-trapped structure (below), as compared to the published outward-facing structure (above).
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Figure 5.10: Ion coordination as seen in MD simulations. a-e: Inward facing conformation. a. Representative
snapshot of a Na+ ion (magenta) in the putative binding site. b. Distribution of Na+-oxygen distances with oxygen
atoms from any protein residues or water molecules; only bound Na+ ions were considered, i.e., ions within 3 Å of
the carboxyl oxygen atoms of D157 or D156. Oxygen atoms within 3 Å radius form the first coordination shell of the
Na+ ion. c. Distribution of observed Na+ coordination numbers n1 (the number of oxygens in the first coordination
shell). d. Average contribution of oxygen ligands to n1 for the most frequently observed coordination numbers. e.
Time series of the distance of any Na+ ion to the closest oxygen atom in the carboxyl moiety of D157 or D156. Data
for protomer A and B from the first 300 ns of three independent simulations were overlaid and shown in different
colors. On average, an ion was bound for 70.8% of the simulation time. f-j: Outward facing conformation. The same
quantities as in a-e are displayed; however, on average an ion was only bound for 4.2% of the simulation time (j).
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Figure 5.11: Positions of the core and dimer domains in MD simulations. a. Data from 1 µs MD simulations of
the outward facing (top) and inward facing (bottom) conformation. Time series and histograms of the z component
of the center of mass of the core (blue) and dimer (orange) domain (left panels) indicate equilibrium fluctuations of
the domains relative to the instantaneous center of mass of the lipid bilayer. Only protomer A is shown; time series
for protomer B are similar. Snapshots from MD simulations show the relative positions of the domains (blue, orange)
relative to the membrane (white POPE and gray POPG lipids). b. The z component of the centre of mass of the
core and dimer domain in equilibrium MD simulations of outward facing (OF) and inward facing (IF) NapA was
used to characterize domain motions. Protomer A (chain A, solid line) and protomer B (chain B, broken line) are
shown separately. Left: distribution of the difference in z coordinate relative to the instantaneous center of mass of
the lipid bilayer between OF and IF simulations. Right: distribution of the difference in z coordinate relative to the
instantaneous center of mass of the dimer domain between OF and IF simulations. The dashed vertical line indicates
the value obtained from comparing the LCP OF structure with the disulfide-linked IF structure. c. Distributions of
domain positions from two additional independent repeat simulations of 300 ns length.
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Figure 5.12: The mobile hinge regions that link the core and dimer domains in NapA. a. Ribbon representation of
outward-facing NapA (dimer light orange; core light-blue). The linking helix TM6 is shown in grey and the mobile
connecting hinge regions shown in pink. The position of flanking hinge glycine residues are labelled and shown as
pink spheres. b. Ribbon representation of the high-resolution outward-facing (LCP) NapA structure rendered by
b-factors scale (rainbow colour scale and tube diameter). The position of flanking hinge glycine residues are labelled
and shown as pink spheres.
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Figure 5.13: Location of bound (LCP) lipid and comparison of the extent of core movements between NapA and
MjNhaP1 structures. a. Outward-facing NapA, as viewed on a right-angle from the membrane plane, is represented
as an electrostatic surface for the dimer domain and as transparent cartoon helices in blue for the core domain. Non-
protein density (2FoFc omit map at 1.5σ level) at core-dimer domain interface was fitted as modified monolein MAG7.7
(green sticks). b. The inward-facing structures of NapA (left: dimer light-orange and core blue) and MjNhaP1 (right:
dimer light-orange and core blue; PDB 4CZB) were superimposed on the dimer domain of their respective outward-
facing structures (shown in white; PDB 4D0A MjNhaP1 and PDB 5BZ3 NapA). The vertical distance between the
respective ion-binding aspartates D157 in NapA and D161 in MjNhaP1 are shown as an inset below.
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Chapter 6

QUANTIFYING THE STRENGTH OF NA+ BINDING BETWEEN

CONFORMATIONS IN NAPA

This chapter details work that is not yet published. It presents a study of the

binding free energy of Na+ to Thermus thermophilus NapA, in both its inward- and

outward-facing conformations [34], for a variety of protonation states of the binding-

site residues. Our intention is to quantify the strength of binding in these states,

with a view toward comparing directly to experimentally-obtained apparent binding

affinities (apparent Ka).

To accomplish this, we perform alchemical binding free energy calculations using

data from hundreds of independent simulations. This effort drove the development of

new software infrastructure, enabling us to perform many simulations at large-scale

throughput across multiple compute resources (see Section 7.4) with relative ease.

We show that binding of Na+ to the outward-facing state of NapA appears sub-

stantially weaker than binding to the inward-facing state, implying that the apparent

binding affinity for Na+ is asymmetric across conformations. This is consistent with

and advantageous for the physiological role of the transporter.

This work was entirely carried out by me, and is considered to be in preparation

for publication.

6.1 Introduction

Transporters such as NhaA and NapA are driven by the electrochemical gradients

of their substrates, in this case Na+ and H+ [69]. Under physiological conditions, it is

the free energy available from the electrochemical gradient of H+ that drives extrusion
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of Na+ against its own gradient [69]. Furthermore, the existing evidence suggests that

both substrates competitively bind to a common site in these transporters [27].

It is now well-established that Na+ binds to D157 in NapA (D164 in NhaA) [22,28,31,32,34,147].

A question that remains unanswered is how strongly, in quantitative terms, Na+ binds

to these transporters, and if the strength of binding varies by conformation and pro-

tonation state of the binding site residues. In light of the hypothetical model of

proton binding in which the conserved lysine, K305 in NapA (K300 in NhaA), partic-

ipates directly as a proton transporter [32,33] (Figure 4.10), it is important that these

configurations can be quantitatively connected to experimental measurements.

Experimentally-obtained binding affinities (Kd = K−1
a ) are of particular inter-

est, since these can be connected directly to binding free energies as ∆G◦bind =

β−1 ln(KdV
◦) [166]. Apparent binding affinities for both Li+ and Na+ have been exper-

imentally measured for cysteine-locked mutants of NapA in the inward-facing confor-

mation [34]. These affinities alone do not say anything about where the protons bind,

but using free energies calculated from simulations, we can test the hypothesis that

the lysine binds protons while also quantifying the strength of sodium binding.

To obtain binding free energies, we employ a so-called alchemical simulation ap-

proach. Because this approach requires many, perhaps hundreds, of expensive simula-

tions, we restricted our focus in this study to NapA, for which we possess experimental

structures of both inward- and outward-facing conformations [31,34].

6.2 Methods

The hypothetical mechanism in which the conserved lysine, K305, serves as a

proton carrier is shown in Figure 4.10. The shorthand charge state names (S1, S2,

and S3) are defined in Table 6.1. Under physiological conditions in the inward-

facing (IF) conformation Na+ binds to the charged aspartate D164 (state IFS2). The
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name charge state

S1 D157(0), D156(−), K305(+)
S2 D157(−), D156(−), K305(+)
S4 D157(−), D156(−), K305(0)

Table 6.1: The charge states of NapA that are represented in the transport mechanism in which K305 transports
H+. We use shorthand names S1, S2, and S4 to refer to these throughout the text.

binding of Na+ reduces the pKa of K305 and it loses its proton, becoming neutral

and disrupting the salt bridge it forms with D156. This state (IFS4) allows the core

domain to move relative the the dimerization domain, and the transporter eventually

switches to the outward-facing (OF) conformation. In this state (OFS4) the bound

Na+ is eventually released, increasing the pKa of K305, resulting in its protonation

(state OFS2). Protonation of D157 (OFS1) allows the core domain to move relative

to the dimerization domain, and the transporter eventually switches back to the

inward-facing (IF) conformation (IFS1). The cycle completes when D157 loses its

proton (state IFS2).

To quantify the strength of ion binding in this cycle, we must compute estimates

of the binding free energy for each of the configurations shown in Figure 4.10. Because

only four of these six states naturally bind Na+ in simulation (S2 and S4, in both

conformations), we began with these. To compute estimates for the S1 states, we will

need to employ a different strategy (see Section 6.4).

6.2.1 The alchemical binding pathway

The free energy difference (∆G) between two states, such as A) a Na+ ion and a

protein, not bound, and B) a Na+ ion and a protein, bound, is independent of the path

taken to go from one to the other. A free energy is a state function, so to calculate

the difference in free energies between two states in a thermodynamic system, one

can take any route, in principle, between them. In practice, it is important to take
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a route that one can obtain converged results from with as little computation as

possible, even if that route is non-physical.

+ + +

+

equivalent

(analytic)

Ion-in-solvent

NapA complex

alchemical binding pathway

a. b. c. d.

e.f.g.

h.

i.

j.

Figure 6.1: The alchemical pathway chosen for calculating the absolute binding free energy of Na+. This pathway
requires simulations performed with the full NapA complex (orange), as well as simulations of only the ion in NaCl
solution (green).

To compute free energies of binding for Na+ to the binding site of NapA, we choose

a non-physical, alchemical pathway for calculating ∆Gb. This pathway is shown in

Figure 6.1. Although the pathway is shown with arrows pointing in the direction

required to calculate the free energy of binding (∆Gb), it is easier to discuss it in the

opposite direction for unbinding (∆Gu = −∆Gb). Starting in the lower-left part of

Figure 6.1, (a) we begin with an Na+ ion naturally bound to NapA at D157, as seen

in equilibrium MD simulations. We then (b) add a restraint to the ion (see Section

6.2.3) to keep it in place once we decouple its interactions with the surroundings later

in the pathway. Next, we (c) add a repulsion on the restrained ion that only acts on

the other Na+ ions in the system (see Section 6.2.2), so that another ion does not bind

to the protein once the restrained ion has been decoupled from everything else; this is

needed to compute a true single-ion free energy. Finally, we (d) remove the Coulomb

interaction from the ion, and then (e) the Van der Waals interaction. At this point

137



the ion is no longer interacting with the protein, and only weakly interacting with

the other Na+ in the system.

The remainder of the cycle is performed with simulations of the ion in water, as

part of an NaCl solution. The decoupled ion with repulsion in (e) is equivalent to

the decoupled ion with repulsion in solution, still spatially-restrained (f). We can

calculate the cost of removing the restraint in the isotropic conditions of the ion in

solution analytically (see Section 6.5.1), resulting in (g) a free ion with a repulsion

toward the other Na+ in the system. We then (h) remove the repulsion to give a

completely decoupled ion. Finally, we (i) add back the ion’s normal Van der Waals

interactions with the rest of the system, and then (j) return its Coulomb interaction

as well. The end points of this cycle give (a) the bound state, and (j) the unbound

state for the system. This “double-annihilation” approach is now well-established

in the field for calculating absolute binding free energies [166,167]. The Na+ repulsion,

however, is a novel feature, and the way it is introduced has a minimal impact on the

resulting free energies (See Sections ?? and 6.3).

Each leg of this pathway features a change in the system Hamiltonian, and over

each leg we can obtain a reasonably-converged ∆Gl. A given leg represents many

simulation windows, each performed with a Hamiltonian at a point along the linear

interpolation between the Hamiltonians on each end of the leg:

Hlλ = (1− λ)Hl0 + λHl1 (6.1)

Note, however, that for switching off the Van der Waals interaction using a soft-

core Lennard-Jones potential [168], which we use in this study, Hlλ is not a simple

linear interpolation as given in Equation 6.1. For each leg enough windows must

be chosen, each with enough simulation sampling, to obtain converged results (see
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Section 6.2.5) for ∆Gl. These can then be combined directly to obtain the total free

energy of binding, ∆Gb:

∆Gb = ∆Gion + ∆Gcomp (6.2)

where we have for ∆Gion, the total free energy difference calculated from the simula-

tion legs featuring the ion in solution:

∆Gion = ∆Gion,coulomb + ∆Gion,vdw + ∆Gion,repulsion + ∆Gion,restraint (6.3)

and for ∆Gcomp, the total free energy difference calculated from the simulation legs

featuring the full complex:

∆Gcomp = ∆Gcomp,vdw + ∆Gcomp,coulomb + ∆Gcomp,repulsion + ∆Gcomp,restraint (6.4)

6.2.2 Choosing the sodium repulsion

The alchemical pathway we chose features a leg in which a repulsion is applied

to the special Na+ ion that affects only the other Na+ ions in the system. This was

necessary to avoid the case in which another Na+ ion binds to the protein when the

interactions of the special Na+ are switched off, since this would be sampling a bound

state once more. This repulsion was chosen to be strong enough to keep the other

Na+ ions in the system as far away from the special Na+ as they would natively be in

equilibrium MD simulations when the special Na+ is fully interacting, but no stronger

so as to minimally impact the behavior of the system and come at little free energy

cost.
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To create this repulsion, we chose a σij = 0.75 nm (see Section 2.2) for the

Lennard-Jones interaction between the special Na+ and the other Na+ ions in the

system. This repulsion allows a closest approach of Na+ to the special Na+ of about

6-7 Å in solution, which is consistent with the ∼5-7 Å closest approach observed for

bound Na+ in IFS2 NapA simulations. For reference, the value of σij for sodium

under the CHARMM36 force field is by default 0.25137 nm.

6.2.3 Choosing sodium restraints

In addition to adding a repulsion to the special Na+, the pathway also requires that

the special Na+ be restrained within the binding site so that it does not drift away as

its interactions with the surroundings are switched off. The choice of such restraints

are important, as they must be simple enough to allow the analytic calculation of the

Gion,restraint cost of their removal [166,167].

To minimize the increase in configuration space sampled by the fully-decoupled

ion, we chose to apply both a distance and angle restraint. We distance restrained

the ion with a harmonic potential (Ud = 1
2
kr(r− r0)2) to a distance r0 = 2.75 Å away

from the Cγ carbon of D157, with force constant kr = 16, 000.0 kJ/nm2. The angle

restraint was applied to the angle formed by (special Na+)-Cγ-Cβ on D157. This was

a harmonic potential (Uθ = 1
2
kθ(θ − θ0)) with neutral angle θ0 = 0.0 rad and force

constant kθ = 23.0 kJ/(mol rad2).

These parameters were chosen to match as closely as possible the behavior of the

ion when fully interacting and bound to D157. Choosing such parameters is not nec-

essary for correct results in the resulting free energy calculation, but they assist in

quicker convergence. The distance parameters were chosen by numerically optimizing

the Bhattacharyya distance [169] between the distribution obtained for a choice of pa-

rameters kr and r0 (P (r)dr ∝ r2e−
βkr
2

(r−r0)2dr) and the distance distribution observed
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for binding to D157 with no restraint. The same approach was used for choosing the

parameters kθ and θ0, using the distribution of θ (P (θ)dθ ∝ sin(θ)e−
βkθ
2

(θ−θ0)2dθ) for

such a potential compared to that observed from simulations. A range of parameter

choices for kr and kθ were then empirically tested with production simulations, with

7 choices for each, giving 7× 7 = 49 simulations.

While ∆Gcomp,restraint, the cost of adding the restraint to the ion while in complex

with the protein, must be calculated from a leg of simulations, the cost of removing

the restraint later in the pathway (∆Gion,restraint) must be removed analytically as it

is generally not possible to obtain a converged value from simulations [166,167]. The

method for calculating ∆Gion,restraint given our chosen restraints is detailed in Section

6.5.1.

6.2.4 Calculating ∆Gl with MBAR

Each leg of the alchemical pathway shown in Figure 6.1 features many simulation

windows (from 3 to 41), the data from which can then be used to calculate a ∆Gl. A

variety of methods are available for doing this [168,170], each varying in the observables

used and the efficiency with which one can expect to obtain converged values [171].

The method we chose was the multistate Bennett acceptance ratio (MBAR) [172], an

unbiased estimator that makes use of the data collected from all windows in a pathway

leg to obtain low-variance estimates of the ∆Gl{m,n} between each pair of windows,

(m,n).

The MBAR estimator is a set of estimating equations for the dimensionless free

energies [172] that must be solved self-consistently for all f̂m in the leg of windows:

f̂m = −kBT ln
K∑
j=1

Nj∑
n=1

exp[−um(xjn)]∑K
k=1Nk exp[f̂k − uk(xjn)]

(6.5)
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where the free energy difference going from window m to n in leg l is obtained with:

∆Gl{m,n} = kBT (f̂n − f̂m) (6.6)

The um(xjn) are the reduced potentials under the Hamiltonian of window m for

each configuration xjn sampled by window j, for which there are Nj. The reduced

potential is defined as [172]:

um(x) ≡ βm[Um(x) + pmV (x)] (6.7)

We utilized the reference implementation of MBAR featured in the pymbar Python

package (https://github.com/choderalab/pymbar). Because MBAR assumes inde-

pendent samples for calculating uncertainties, we analyzed the timeseries of reduced

potentials across all simulations and found that the distribution of statistical ineffi-

ciencies (g ≡ 1+2τ , where τ is the correlation time) from these suggested a sampling

frequency of 20 ps for each trajectory, as well as discarding the first 5 ns of data as

equilibration.

6.2.5 How many simulations of each leg, and for how long?

It was not clear a priori how many windows to perform for each leg of the alchemi-

cal pathway, and how much simulation sampling would be required for each. An initial

run for the IFS2 state was performed in which each leg amounting to a switching of

a particular type of parameter (adding the restraint, adding the repulsion, switch-

ing off the Coulomb interaction, switching off the Van der Waals interaction) was

subdivided into 21 windows, corresponding to a ∆λ between windows of 0.05. This

initial run revealed that obtaining reasonably converged values (within 0.5 kJ/mol)

for adding the restraint could be obtained with only 10 ns of simulation time for each
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window, using only 11 windows (∆λ = 0.1). The initial run also revealed that adding

the repulsion came with a very low free energy cost (∼ 2 × 10−4 kJ/mol), so only 3

windows (∆λ = 0.5) of 10 ns each were performed for each state as a check that this

remained the case.

For the Coulomb and Van der Waals switching legs, it was found that convergence

of ∆Gl to within 1 kJ/mol still was not reached after 50 ns of simulation time using

21 windows per leg. See Section 6.3 for convergence analysis of production runs.

6.2.6 Workflow automation

The production runs of the four complex states (IFS2, IFS4, OFS2, OFS4) and the

ion-in-solvent amounted to 486 independent simulations. Each of these simulations,

in particular those for the complex, required significant compute resources, totalling

nearly 2 million CPU hours. Performing this amount of computation in a reasonable

time using multiple compute resources, spread across so many simulations, would not

have been possible without workflow automation. For this we used Fireworks [173],

and in particular the workflows for performing MD simulations provided by mdworks

(see Section 7.4).

6.2.7 Molecular dynamics parameters

All-atom, explicit solvent MD simulations were performed with Gromacs 5.1.4 [52]

and the CHARMM36 force field for the protein with the CMAP correction [42–44], ions

and lipids [45] together with the CHARMM TIP3P water model [42].

All simulations were carried out under periodic boundary conditions. The Verlet

neighbor list with a cutoff of 1.2 nm was updated every 20 steps. Coulomb interactions

were calculated with the smoothed particle mesh Ewald (SPME) method [105] with a

real-space cutoff of 1.2 nm, and interactions beyond the cutoff were calculated in
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reciprocal space with a fast Fourier transform on a grid with 0.12-nm spacing and

fourth-order spline interpolation. The Lennard-Jones force was switched to zero at a

cutoff of 1.2 nm, without applying any dispersion corrections [164]; these parameters

were previously found to give reasonable behavior for lipids [34] and match closely with

the behavior expected under CHARMM. Bonds to hydrogen atoms were constrained

with the P-LINCS algorithm [55] (with an expansion order of four and two LINCS

iterations) or SETTLE [56] (for water molecules). For alchemical switching of the

Lennard-Jones interactions, a soft-core potential was used with α = 0.5, σ = 0.3, and

a λ power of 1.

The NapA complex

The NapA dimer was simulated in an∼4:1 1-palmitoyl-2-oleoylphosphatidylethanolamine

(POPE)/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) bilayer. Simulations of

the outward-facing structure were based on the LCP crystal structure (PDB 5BZ3),

while the inward-facing structure (PDB 5BZ2) was backmutated from the cysteine-

linked structure by changing C31 back to V31 and C130 to I130 [34]. Both starting

structures were obtained from frames binding Na+ after >500 ns of simulation time.

The total system consisted of about 130,000 atoms in an orthorhombic simula-

tion cell with a free NaCl concentration of ∼250 mM. Most titratable residues were

simulated in their default charge states, as predicted by PROPKA 3.1 [131] for pH

7.8, including the charged form of residue D156 at the ion-binding site. The charge

state of K305 is dependent on the protonation state being sampled (S2: charged; S4:

neutral). Since we only want to sample the binding free energy of a single ion to a

single protomer, one of the NapA protomers was given a protonated D157 to avoid

sampling a bound state. In the other protomer, the binding-site residue D157 was

simulated in its charged form in the inward-facing and outward-facing conformation
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to enable binding of Na+ [31,32,34]. This protomer is the one used for interacting with

the special Na+ ion that is altered along the alchemical pathway.

Each MD simulation was performed after energy minimization and ∼100 ps of

pre-production equilibration with a 0.1 fs time step. Production MD was performed

with a 2 fs time step. A Langevin integrator was used for temperature control at

T = 310 K, with the friction coefficient for each particle computed as mass/0.1 ps [57]

for each of the protein, lipids, and solvent taken as separate temperature-groups. A

Parrinello-Rahman barostat [63] with time constant 5 ps and compressibility 4.6 ×

10−5 bar−1 was used for semi-isotropic pressure coupling.

The ion in solution

The ion in solution system consisted of about 4,900 atoms in a rhombic dodecahedral

simulation cell with 5 pairs of Na+ and Cl− ions, including the special Na+ that is

altered along the alchemical pathway, and 1,630 water molecules, giving a free NaCl

concentration of ∼170 mM.

Each MD simulation was performed after energy minimization and ∼1 ns of pre-

production equilibration with a 0.1 fs time step. Production MD was performed with

a 2 fs time step. All simulations were run for a total of 50 ns. A Langevin integrator

was used for temperature control at T = 310 K, with the friction coefficient for each

particle computed as mass/0.1 ps [57]. A Parrinello-Rahman barostat [63] with time

constant 5 ps and compressibility 4.6 × 10−5 bar−1 was used for isotropic pressure

coupling.

6.3 Results

Calculating the free energies of binding, ∆Gb of Na+, for each of the four states

IFS2, IFS4, OFS2, and OFS4 using an alchemical pathway requires the calculation
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of individual free energies ∆Gl for each leg in that pathway. The particular pathway

we have chosen includes simulations of the whole NapA complex with a bound ion

for some legs, while for other legs we only simulate Na+ in solvent.

In addition to presenting the resulting absolute binding free energies, ∆Gb, for

each state (Section 6.3.3), we also detail here the free energies of each leg, ∆Gl. Of

particular importance are the empirical checks of each ∆Gl for convergence.

6.3.1 Hydration free energy of sodium

The ∆Gl for each of the ion-in-solvent legs of the pathway (Figure 6.1) are given

in Table 6.2. The simulations for all of these legs extended to 50 ns, with each leg

subdivided into 21 windows (∆lambda = 0.05).

leg ∆Gl (kJ/mol)

coulomb 382.7± 0.2
vdw −8.81± 0.05
repulsion 0.258± 0.005
restraint∗ 17.84

sum 392.0± 0.2

Table 6.2: Converged ∆Gl values for each of the ion-in-solvent legs of the alchemical pathway, in the direction of
solvation to vacuum. Uncertainties are the standard deviations of each ∆Gl as reported by MBAR [171], and do not
necessarily imply convergence (see Figure 6.2).
∗The value for the restraint leg has no uncertainty because it was calculated analytically (see Section 6.5.1 and
Equation 6.11).

Each of these values were checked for convergence graphically by using increasing

amounts of simulation data. These convergence checks are shown in Figure 6.2. We

see that for each of these legs, the estimates given in Table 6.2 are well-converged to

within 1 kJ/mol or less.

It should also be noted that the Coulomb and Van der Waals decoupling legs of the

pathway examined here together amount to a calculation of the solvation free energy of

Na+. The value we have obtained (∆Gsolv = −(∆Gion,coulomb + ∆Gion,vdw)), ∆Gsolv =

146



10 20 30 40 50

simulation time used (ns)

382.0

382.5

383.0

383.5

384.0

384.5
Δ
G

(k
J/

m
ol

)

10 20 30 40 50

simulation time used (ns)

−9.10

−9.00

−8.90

−8.80

−8.70

Δ
G

(k
J/

m
ol

)

10 20 30 40 50

simulation time used (ns)

−0.31
−0.30
−0.29
−0.28
−0.27
−0.26
−0.25
−0.24

Δ
G

(k
J/

m
ol

)

coulomb vdw repulsion

Figure 6.2: Convergence of ion-in-solvent legs. For each of the coulomb, vdw, and repulsion legs of the alchemical
pathway, we plot the calculated ∆Gl using increasing amounts of data from each simulation window. The first 5 ns of
all simulations was discarded, in all cases, so e.g. the point at 30 ns uses 25 ns of simulation data from each simulation
in the leg. All simulations were sampled at 20 ps intervals. For each of these legs, we observe convergence in 50 ns of
simulation time to within 1 kJ/mol.

−373.9 ± 0.2 kJ/mol, compares favorably with those observed experimentally [174],

including −365 [175], −371 [176], and −372 [177] kJ/mol.

6.3.2 Binding to the complex

The ∆Gl for each of the complex legs of the pathway(Figure 6.1) for each confor-

mation (IF, OF) and each charge state (S2, S4) are given in Table 6.3. We observe

that across all states, the cost of adding the repulsion to the bound ion is practically

unmeasurable. The next smallest contribution to ∆Gcomp comes from removing the

restraint, which ranges from -2 to -13 kJ/mol. Adding back the Van der Waals in-

teraction to the ion comes at a cost of ∼20 kJ/mol for each state, while the largest

contribution to ∆Gcomp by far comes from switching on the Coulomb interaction,

which is a gain of ∼450 to ∼500 kJ/mol, depending on the state.

Convergence plots for each state are given in Figure 6.3. The repulsion legs con-

sistently show a value of ∼ 0.0 kJ/mol across all sttes, and the convergence plot

serves as a check that this remains true. For the restraint legs, we see variation in

<.5 kJ/mol, suggesting that with only 10 ns of time for each simulation (amounting

to 5 ns per window; see Section 6.2) for each window we can obtain converged results.
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conformation charge state leg ∆Gl (kJ/mol)

IF S2 vdw 20.83± 0.04
coulomb −453.4± 0.1
repulsion 0.014± 0.003
restraint −2.35± 0.03

S4 vdw 17.82± 0.04
coulomb −518.9± 0.1
repulsion −0.0004± 0.0001
restraint −11.79± 0.05

OF S2 vdw 21.93± 0.04
coulomb −445.4± 0.1
repulsion −0.00003± 0.00003
restraint −3.09± 0.06

S4 vdw 23.59± 0.04
coulomb −446.6± 0.1
repulsion 0.0002± 0.0002
restraint −13.0± 0.1

Table 6.3: ∆Gl values for each of the complex legs of the alchemical pathway, in the direction toward the bound
state. Uncertainties are the standard deviations of each ∆Gl as reported by MBAR [171], and do not necessarily imply
convergence (see Figure 6.3).

The picture is more complicated for the Van der Waals and Coulomb legs. We see

variation of ∼1.5 kJ/mol for the Van der Waals legs, with what looks like convergence

to within ∼.5 kJ/mol using 65 ns of data for each simulation (with two independent

repeats for each window, giving 120 ns of total data for ∆Gcomp,vdw calculation). For

the Coulomb legs, it is not clear that our reported values are converged to within 1

kJ/mol, even with 65 ns for each simulation. All simulations are being extended to

80ns to test convergence but even these preliminary results demonstrate what appear

to be nearly converged absolute binding free calculations. It should be noted that

binding free energies accurate to 1 kcal/mol (4.2 kJ/mol) are considered “chemically

accurate” [178].
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Figure 6.3: Convergence of complex legs. For each of the vdw, coulomb, repulsion and restraint legs of the alchemical
pathway, we plot the calculated ∆Gl using increasing amounts of data from each simulation window. The first 5 ns of
all simulations was discarded, in all cases, so e.g. the point at 30 ns uses 25 ns of simulation data from each simulation
in the leg. All simulations were sampled at 20 ps intervals. For each of these legs, except for the coulomb legs, we
observe convergence to within 1 kJ/mol with the simulation time performed.

6.3.3 Absolute binding free energies

From the ∆Gl for each leg, we can calculate the absolute binding free energy of

Na+ for each of the conformations and charge states we examined (Equation 6.2).

These are listed in Table 6.4.

conformation charge state ∆Gbind (kJ/mol)

IF S2 −43.6± 0.3
S4 −122.8± 0.3

OF S2 −35.1± 0.3
S4 −44.4± 0.3

Table 6.4: Free energy of binding of Na+ to NapA from alchemical free energy calculations. Uncertainties are
propagated from the uncertainties given for each ∆Gl as reported by MBAR [171]. These values are not yet corrected
for artifacts due to charged particles under periodic boundary conditions [179].
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We see that between the two conformations, inward-facing (IF) and outward-facing

(OF), there is a clear preference for Na+ binding to the inward-facing state. This is

consistent with the physiological role for this transporter, as it is advantageous for

transport of Na+ out of the cell if the affinity for Na+ is weaker in the OF state [180].

Figure 6.4: Binding site coordination of Na+ (magenta) in equilibrium MD without restraints. The ion is more
tightly coordinated by protein residues in the S4 state than in the S2 state. Tables give the time-averaged contribution
number of coordinating oxygen atoms from each residue, sampled over equilibrium MD.

We also see that the ion is bound much more strongly in the S4 charge state than

in S2, at least for the IF conformation. This is to be expected, since removal of the

charge on K305 frees D156 to interact with the ion, coordinating it more tightly in the

binding site (see Figure 6.4). What remains unclear is why, physically, the binding

free energy for the OFS4 state is comparable to both IFS2 and OFS2. This will need

to be explored in greater detail.

6.4 Discussion

The results of this study so far show that a clear difference exists in the binding

affinity of Na+ between the inward- and outward-facing states of NapA, as well as

the primary importance of the charge state of K305 for this value. Convergence of
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the largest component of the binding free energies, the ∆Gcomp,coulomb contributions

from the Coulomb-switching legs, to within 1 kJ/mol are not yet guaranteed, but the

differences between the states studied are robust against further variations in these

values.

Before further conclusions can be drawn, however, there are a number of additional

considerations. First, to calculate apparent binding affinities (apparent Ka), we must

take into account the S1 charge state, in which D157 is protonated (see Figure 4.10.

Obtaining the binding free energy for this state in the same way as for S2 and S4 is

not possible, as Na+ does not bind on its own. It would thus be difficult, and perhaps

impossible, to obtain converged values for ∆Gcomp,restraint in the way we have done

here, as the window with λ = 0 (no restraint), the ion will leave the binding pocket.

Another approach, such as alchemically changing the protonation state of D157 after

applying the restraint to the ion, is possible, but features other considerations such

as adding and removing whole charges (see below).

Second, once we possess converged ∆Gb values for each of the relevant charge

states, combining these to estimate an apparent Ka requires knowing the relative

probability of each state. In principle these can be obtained to some accuracy using

data from CpHMD simulations [33,181], but these simulations are expensive to perform.

We are exploring how accurately we can expect to obtain relative probabilities using

less expensive methods, such as PROPKA [112].

Third, because we are annihilating a whole non-zero charge in our chosen path-

way (it returns later, but in a different simulation system), we must take into account

finite volume effects due to the way long-range electrostatics interactions are per-

formed using particle-mesh Ewald summation [179]. A correction is needed that at

the very least requires Poisson-Boltzmann calculations for the protein complex. Our
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reported absolute binding free energies in Table 6.4 do not currently include any such

correction, and it is not clear how much of an impact this will have on each.

Finally, it should be noted that presence of the repulsion with respect to other Na+

ions added to the decoupled ion removes the strict equivalence between points (e) and

(f) in Figure 6.1, since the ion is still interacting (weakly) with at least some of the

surrounding system. We are investigating to what degree this interaction affects the

calculated ∆Gb, as well as if a correction can be applied to account for it. Because the

free energy cost of the repulsion in all cases is close to 0.0 kJ/mol, however, the mean

interaction with the other Na+ is negligible; thus, a correction for this interaction is

probably also negligible.

Having examined the binding free energy for Na+ of NapA as a function of confor-

mation and charge state, we intend to perform the same analysis to quantify binding

strength for other proteins for which we have structures, in particular EcNhaA [22,31]

and PaNhaP. With an view toward comparing to experimental binding affinities, we

also plan to do obtain binding free energy of Li+ for these systems, as experimental

results are considerably more precise for this ion.

6.5 Supplemental Information

6.5.1 Analytic cost of removing restraint on ion in solution

We need to calculate the cost of removing the restraint, but it is not possible to

get this from simulation results. We can, however, calculate this analytically. We

need to obtain [167]:

∆Gr = −kT ln
ZPZL
ZCL

(6.8)
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where ZP is the partition function of the protein, which in general we cannot calculate,

ZL is the partition function of the free ligand (noninteracting with the protein or the

rest of the system), and ZCL is the partition function of the protein and restrained

ligand taken together. For ∆Gr to be easily calculable, then ZCL must be separable

as:

ZCL = ZP × Zr × Z̃L (6.9)

where Zr is the partition function of the restraint itself, and Z̃L is the partition

function of the internal degrees of freedom of the ligand. For a point particle, this is

Z̃L = 1. The reason this is Z̃L and not ZL is because external degrees of freedom for

the ligand are accounted for in the protein and the restraint. Also, note then:

ZL = V Z̃L (6.10)

since the partition function for the external degrees of freedom of a noninteracting

point particle is simply the volume of the space it can explore.

So for ∆G we get:

∆Gr = −kT ln
ZPZL

ZPZrZ̃L
= −kT ln

V

Zr
(6.11)

and so we only need Zr, which we can at least express analytically:

Zr =

∫ 2π

0

∫ π

0

∫ ∞
0

dr r dθ r sin(θ) dφ e−β(Uθ(~r)+Ur(~r))

= 2π

∫ π

0

e−βUθ(θ) sin(θ) dθ

∫ ∞
0

r2 e−βUr(r) dr

(6.12)

And where we have for the restraints:
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Uθ(θ) =
1

2
kθ(θ − θ0)2 (6.13)

Ur(r) =
1

2
kr(r − r0)2 (6.14)

Using our chosen restraint parameters, kr = 16,000.0 kJ/(mol nm2), r0 = 0.275

nm, kθ = 23.0 kJ/(mol rad2), θ0 = 0.0 rad, as well as our system temperature T =

310 K and the standard volume 1.6605 nm3, we can directly calculate the free energy

contribution of the restraint as −17.84 kJ/mol. We use the standard volume here

to account for scaling our system to the standard state, so our calculated ∆Gb is a

standard state free energy [167].
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Chapter 7

SOFTWARE

It would have been very difficult, and arguably impossible, to apply the methods

we have used to probe scientific questions without good software tools. In many ways,

software is the great enabler for our science, often making what was once complex,

routine, and allowing us to quickly test multiple hypotheses. Over the course of my

doctoral work, I have spent significant time and effort crafting some of the tools that

are now routinely used in our lab to do interesting science. This work has propelled

not only our work, but continues to ripple outward from our lab into the work of

others in the field. In this way software has a multiplicative effect when done well.

Since software engineering has been such a key part of my doctoral research, it

would be a mistake to not include mention of some of the projects that enabled

it. Some of these are original developments of my own that have blossomed into

collaborative projects used by many others around the world, while others are projects

that already existed but to which I have made both contributions to and extensive

use of.

I would also be remiss if I failed to mention the significant role open source software

in particular has played in my work. Open source software is publicly developed

and freely distributed, making it particularly flexible to the needs of the scientific

community, easily deployable, and transparent in its functionality [182]. During the

course of my work I was fortunate to be in a lab environment that is friendly to this

model of software development, and this is reflected in our choice of tools.

The Python (https://www.python.org/) programming language is at the core of

our research apparatus. The software stack with which we do our science is largely
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written in this language (Figure 7.1), allowing us great flexibility as new tools can be

made to work on top of old ones to address problems of increasing complexity and

scale. In this way, as computing power has increased to allow ever larger amounts of

data to be generated, so too have our tools scaled upward to take advantage of it.

MDAnalysis

datreant

Fireworks

mdworks
alchemlyb

GromacsWrapper

MDPOW

MD data interface
gromacs interface

filesystem interface

workflow automation

MD simulation automation

MDSynthesis
simulation data interface

scalable alchemical free 
energy calculation

solvation free 
energy calculation

pymbar
free energy calculations

with MBAR

dask.distributed
scalable, arbitrary analysis

sc
al

e

small contributions
significant contributions
original developments 

developed by others

Beckstein Lab Python Stack

pandas
tabular data structures

PyTables+h5py
efficient tabular storage

numpy
array data structures

Figure 7.1: Dependency diagram of the scientific Python software stack that our lab operates on. As computing
power has increased, new tools are built on top of existing ones to scale upward with larger data requirements. My
contributions to each package are indicated qualitatively by color.

My contributions to this stack are shown visually in Figure 7.1. As my needs for

managing and analyzing larger and more heterogeneous datasets grew, I designed and

built new tools on top of the existing stack. This stack continues to be refined and it

evolves as we ask new research questions of ever increasing scale.

Some of the projects detailed here (datreant, MDSynthesis, mdworks) were cre-

ated and largely developed by me, often out of some need that was unaddressed by

anything else at the time. datreant and MDSynthesis have been in development for

several years and have an active community of developers working on them. mdworks

is by contrast rather new and unpolished, but is evolving into a standalone package

that is usable by others. Others, such as MDAnalysis, already existed and have an
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active developer community, of which I have been a part. All are publicly developed

and open source.

For each project, I give a brief description here of the scope and purpose. For

some of these I also give a simplified example showing how they are used in practice,

giving a flavor for what they enable us to do. In all cases, I strive to design software

with clean interfaces and clear abstractions, so that all of these pieces can be used in

new ways, often together.

7.1 datreant

Probing scientific questions with simulations is often an organic process, punc-

tuated by structured studies that ask specific scientific questions. In all cases there

are choices made about system composition and size, starting configuration, and sim-

ulation parameters, with many of these often varied to test hypotheses or perform

specific calculations (e.g. alchemical free energies). A consequence of this is that

simulation data isn’t easily shoehorned into common database solutions that would

normally be used to make flexible and scalable analysis more feasible. Instead, raw

simulation trajectories and derived datasets are stored in a variety of fileformats in

the filesystem, often scattered in ways that are historical and idiosyncratic. This

scheme is more flexible for storage than most database solutions, but comes at the

cost of making analysis more tedious and time-consuming. Furthermore, the existing

ecosystem of tools often assumes the data are in fileformats common to the field,

of which there are many, so database solutions would not be usable for all types of

analyses.

This organic and relatively unstructured nature of simulation data, as shown for

example in Figure 7.2, can be a barrier when trying to make sense of it post hoc.

Analysis code ends up being written with fragile, hard-coded paths to trajectory
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Figure 7.2: Scientific research proceeds organically. The filesystem tree in which data is organized reflects this, with
studies on different proteins, different parameter choices, etc. organized by naming convention within the branches of
the tree.

data, and researchers spend significant time moving around the filesystem looking for

what they need. This slows down the act of asking questions of the data, and means

iteration on questions that often don’t bear fruit is slow and painful.

datreant [183] is a Python package that makes it easy to programmatically work

with the contents of the filesystem using idiomatic Python style. In particular it

features Treants: specially marked directories with distinguishing characteristics

that can be discovered, queried, and filtered. Treants can be manipulated individually

and in aggregate, with mechanisms for granular access to the directories and files in

their trees. By way of Treants, datreant adds a lightweight abstraction layer to the

filesystem, allowing researchers to focus more on what is stored and less on where.

This greatly reduces the tedium of storing, retrieving, and operating on datasets of

interest, no matter how they are organized.
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Detailed information on datreant, as well as the hub for its developer and user

community, can be found at http://datreant.org, as well as in Chapter 8. A detailed

example showing how datreant is used in practice is given later in this chapter

(Section 7.3).

7.2 MDAnalysis

MDAnalysis [106,184] is a Python library that serves as an interface to the myriad

fileformats in common use in the molecular dynamics community. It provides an

important abstraction layer, allowing users to write code to analyze molecular dy-

namics trajectories without concern for the details of the underlying file format. This

saves an incredible amount of time, and also makes the entire scientific Python stack

directly usable for working on MD data.

I am a core developer of MDAnalysis, primarily contributing over the past two

years to efforts at making the external behavior of MDAnalysis consistent (i.e., de-

signing a cleaner API). This culminated in my work, alongside fellow core developer

Richard Gowers, to refactor the library’s topology system. We spent several weeks

prototyping and iterating on a new design that featured many performance improve-

ments, both in terms of speed and memory usage, while also improving the internal

consistency of topologies and cleaning up the user-facing API. This was a heavy effort

that is almost complete, and serves as my greatest contribution to the project to date.

More information on MDAnalysis can be found at http://mdanalysis.org, as

well as in (Michaud-Agrawal et al. [106]) and (Richard J. Gowers et al. [184]).

7.3 MDSynthesis

datreant is a general-purpose library, with appeal to researchers in all fields.

MDSynthesis [183] (mdsynthesis.readthedocs.org) expands the repertoire of a Tre-
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ant to include a convenience interface to molecular dynamics data, internally us-

ing MDAnalysis [106,184] for this purpose. In the same way that datreant provides a

Pythonic abstraction layer to the filesystem, MDSynthesis offers an abstraction layer

to simulation data, individually and in aggregate. This abstraction is extremely valu-

able, as it makes it possible to access the data of whole collections of simulations

at any level of detail necessary in programmatic and highly parallelizable ways. In

addition to being useful for interactive work, this abstraction also makes complex

automation (e.g. mdworks, Section 7.4) and sophisticated analysis far easier to build

and execute.

7.3.1 Introspecting individual simulations with Sims

The core data structure in MDSynthesis is the Sim. This is a Treant that repre-

sents the data for a single simulation, which by convention is often all stored in its

own directory in the filesystem. Simulation data is more than just the raw molecular

dynamics trajectory; it is also all the files that encode the parameter choices, the

starting configuration, any pre-production steps that went into creating it, log files

giving runtime details, and more, as shown for example in Figure 7.3.

A Sim offers a Pythonic interface for easily working with any of this data. A

directory containing simulation data (e.g. ’NapA 0’) can be directly manipulated as

a Sim object. In Python, we can do:

>>> import mdsynthesis as mds
>>> napa = mds.Sim('NapA_0/')

And this will create a Sim object for the directory ’NapA 0’ that exists in the filesys-

tem. This object can be used to introspect the directory directly:
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Figure 7.3: An MD simulation is not just the trajectory file(s); it is also the files that encode its parameter choices,
preproduction steps, and more.

>>> napa.draw(depth =1)
NapA_0/
+-- WORK/
+-- setup/
+-- dists/
+-- Treant.f91a79df -c223 -4789-b222 -5744 cf7gjfdk.json
+-- angles/

A Sim is a Treant, and what makes a Treant distinct from a normal directory is its

state file. This file, here Treant.f91a79df-c223-4789-b222-5744cf7gjfdk.json,

serves to mark the directory as a Treant, making it discoverable. It also includes a

unique identifier (uuid) for that Treant, and internally it stores metadata elements

to distinguish it, such as tags and categories. These can be used to filter and group

Treants and Sims when treated in aggregate (see Section 7.3.2).

We can use the Sim object to select out directories in its filesystem tree by name

as Tree objects, and furthermore introspect those:

161



>>> napa['setup '].draw(depth =1)
setup/
+-- preproduction/
+-- build/
+-- emin/

Any file can also be examined. For example, we can work with a Gromacs GRO

structure file as a Leaf object. We can then use this to directly read its contents:

>>> leaf = napa['setup/emin/em.gro']
>>> leaf
<Leaf: 'NapA_0/setup/emin/em.gro'>

>>> print(leaf.read(size =160))
NapA inward -facing
132506

1GLY N 1 5.627 5.740 3.317
1GLY H1 2 5.613 5.806 3.237
1GLY H2 3 5.567 5.769 3.398

In addition to working with its filesystem contents individually, a Sim can be used

to do work on files as collections just as easily. We can, for example, extract files

whose paths match a globbing pattern:

# grab up existing files in the tree matching globbing pattern
>>> napa['setup '].glob('*/*. itp'). relpaths
['NapA_0/setup/build/topol_Protein_chain_A_ion.itp',
'NapA_0/setup/build/topol_Protein_chain_B.itp']

Or extract Leaf objects by name from a number of directories at the same time:

# get Leaf objects "md.gro" for each tree inside "setup"
>>> gros = tree.trees.loc['md.gro']
>>> gros.relpaths
['NapA_0/setup/build/md.gro',
'NapA_0/setup/emin/md.gro',
'NapA_0/setup/preproduction/md.gro']

The ability to work at the level of individual objects such as directories and

files and to just as easily abstract to the level of whole collections is a common

theme in datreant, and by extension MDSynthesis. This is a design pattern that
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makes analyses of all types easier to perform with less time, and often makes parallel

computation with tools such as dask.distributed trivial.

7.3.2 Working with Sims in aggregate for ensemble analytics

Just as one can work on files and directories in an individual Sim as aggregates,

one can work on many, perhaps hundreds of Sims, as aggregates as well. Sims spread

throughout a filesystem tree can be gathered up, and Sim metadata such as tags and

categories can be used to filter and split them into aggregate units of interest. If the

directory ’sims’ contains many Sims, we can gather them all up with:

>>> b = dtr.discover('sims/')
>>> len(b)
49

This gives a Bundle, an ordered set of the Sim objects found within ’sims’. It

provides convenient mechanisms for working with these Sims as a single logical unit.

For example, suppose we want to examine the angle between three atoms with time,

previously collected and stored in CSV files within each Sim’s directory structure:

>>> b[:3]. loc['angles '].draw(depth =1)
angles/
+-- sna_cg_cb/
+-- sna_cg_cb.csv

angles/
+-- sna_cg_cb/
+-- sna_cg_cb.csv

angles/
+-- sna_cg_cb/
+-- sna_cg_cb.csv

These simulations were performed with varying parameters, with these parameters

affecting what is observed for this angle. We can group the Sims by the value of one

of these parameters, kθ (cth), which we stored in each as a category. Among the

simulations we tested 7 different values:
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>>> set(b.categories['cth'])
{9.84841905 ,
13.1312254 ,
16.41403175 ,
19.6968381 ,
22.97964445 ,
26.2624508 ,
27.84115237}

We can easily histogram these angles as a function of this parameter, aggre-

gating the data across simulations with the same parameter value (Figure 7.4).

Bundle.categories.groupby returns key-value pairs giving the parameter values as

keys and a Bundle of Sims with that value as values:

import pandas as pd
import matplotlib.pyplot as plt

fig = plt.figure(figsize =(7, 4))
ax = fig.add_subplot (1,1,1)

groups = b.categories.groupby('cth')

for cth in sorted(groups.keys ()):
s = pd.concat(

[pd.read_csv(csv.relpath , header=None , index_col =0)
for csv in groups[cth].loc['angles/sna_cg_cb.csv']])[1]

s.plot.hist(bins =150, histtype='step', ax=ax, normed=True ,
label="cth: {}".format(cth))

ax.legend(loc='upper left')

With mechanisms like Bundle.categories.groupby, we can operate on simulation

data at a high-level, treating whole sets of simulations as meta-datasets from which

we can quickly extract new insights. By making it relatively easy to work with

what can often be many terabytes of simulation data spread over tens or hundreds

of trajectories, MDSynthesis greatly reduces the time it takes to iterate on new ideas

toward answering real biological questions.
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Figure 7.4: Distribution of atom angles aggregated across groups of simulations according to kθ (cth).

7.3.3 Raw trajectory data access via MDAnalysis

The features of MDSynthesis detailed so far are actually features of datreant,

which MDSynthesis is built around. In addition to these, a Sim offers additional con-

veniences for working with simulation data directly using MDAnalysis as the interface

of choice. In particualar, a Sim can store a Universe definition:

>>> import MDAnalysis as mda
>>> GRO = 'NapA_0/WORK/md.gro'
>>> XTC = 'NapA_0/WORK/md.xtc'

>>> s = mds.Sim('NapA_0 ')
>>> s.universe = mda.Universe(GRO , XTC)
>>> s.universe
<Universe with 132506 atoms >

And once defined, this can be used by the Sim in any other Python process thereafter

through the Sim.universe property. This is useful because for different simulations

the files that compose the trajectory may be organized differently or vary widely in

number. Code that must extract data from many different Sims directly from the

trajectories can be written without having to specify which files to use.
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In a similar vein, a Sim can also store AtomGroup definitions. These are named

grouping of atoms from the Universe, and once defined they can be recalled with

only the name:

>>> s = mds.Sim('NapA_0 ')
>>> s.atomselections.add('water ', 'same residue as name OW')
>>> s.atomselections.create('water ')
<AtomGroup with 76704 atoms >

This introduces an abstraction layer between the definition of the selection, which

may vary depending on the system, and what the selection is, in this case the water

molecules. It makes it possible to write code that does the same thing across many

simulation systems, without having to deal directly with all the variations among the

simulations. This is an important requirement for scaling out analysis quickly.

In this way and others, MDSynthesis provides an extremely powerful abstraction

layer for the large variety and volume of data that we can routinely collect. This tool

is often used directly and interactively in Jupyter notebooks (http://jupyter.org/)

to rapidly explore and make sense of this data, but it can also be used by automated

tools to assist in handling data while it is being generated. We use mdworks to do

exactly this (Section 7.4).

7.4 mdworks

MDSynthesis and datreant serve to make the manipulation of the filesystem easier

and less error-prone with useful abstractions. This makes analysis easier, but the

abstraction of a Sim also gives a convenient unit on which automated workflows can

be designed to operate. Such systems can even be used to execute the simulations

themselves, using the Sim object to manage and process the data as one might do

manually.
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Workflow automation systems are becoming increasingly common in scientific

computing. Whereas some fields, such as bioinformatics [185], have long used such

systems to perform processing on data, the simulation community has been slow to

adopt these approaches for doing simulations. The reasons for this are not explored

here, but to expand the number of simulations we are able to perform with very high

throughput, in particular for doing free energy calculations, we chose to pursue using

Fireworks [173].

7.4.1 A molecular dynamics workflow

Fireworks is a general-purpose framework written in Python for building directed

acyclic graphs (DAGs) that describe a set of tasks that must be performed, and their

dependencies with one another. A graph of this type is a workflow, and each node in

the graph can be executed by a worker process running on local or remote machines,

as needed.

To leverage this system for executing molecular dynamics, I built mdworks for con-

structing self-propagating simulation workflows that can be customized for different

simulation needs. The core function of this library produces such a workflow from a

single Sim object:

import mdsynthesis as mds
from mdworks.general import make_md_workflow

sim = mds.Sim('NapA_0 ')
workflow = make_md_workflow(sim=sim ,

archive=sim['WORK'].abspath ,
stages='/home/david/. fireworks/stages.yaml',
md_category='md',
files=['md.tpr', 'md.cpt'])

The resulting workflow object fully describes the dependency graph (Figure 7.5) of

tasks that must be performed to execute the simulation, either locally or on a remote
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high-performance computing (HPC) resource. All tasks except for the md task are

performed on the archival machine (usually a fileserver or storage server), from which

the necessary files are staged to all compute resources. The remote resources execute

the md task, and once complete the archival machine will pull the data from the

resource it executed on, clean up the files on that resource, and then determine

whether or not the entire run is complete based on the number of simulation steps

desired. If the simulation should continue, an entire new set of tasks with the same

dependency graph is attached, and the process continues.

md

pull cleanup

continue

staging

md

pull cleanup

continue

staging

if yes

if the simulation has not finished by the 
end of this leg...

...a new simulation leg is added to the 
workflow graph

Figure 7.5: The core workflow task graph for molecular dynamics simulation execution under mdworks. This workflow
self-propagates if the simulation has yet to complete.

In addition to generating these basic workflow graphs, mdworks has mechanisms

for grafting additional tasks to certain nodes. The pull task, for example, can be

followed by a post-run postprocessing workflow of arbitrary complexity, allowing each

segment of the simulation to immediately be prepared for analysis. An arbitrary post-

production postprocessing workflow can also be attached to the continue task, to be

executed when the simulation has completed. The workflow can also be attached to

other workflows, for example a pre-production workflow for generating the simulation

system in the first place.
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An example of a workflow we have used in production is shown in Figure 7.6. This

workflow constructs a simulation system from a template in several pre-production

tasks, including an energy minimization of the starting configuration. It then performs

a pre-production step using a self-propagating workflow, which continues extending

the workflow until the pre-production simulation has finished. After this, the pro-

duction simulation is prepared using the end of the pre-production run as a starting

point, and production MD begins thereafter. This production workflow features sev-

eral post-run post-processing steps, producing a trajectory in which the protein is

centered, updating the Sim’s Universe definition, and extracting the reduced poten-

tials needed for MBAR (see Section 6.2.4).

file setup energy minimization preproduction setup

staging md

pull cleanup

continue

production setup

md

pull cleanup

continue

staging

center

update sim

extract u_kn

system setup

self-propagating
pre-production MD

production setup

self-propagating
production MD

completed
running
waitingst

at
us

Figure 7.6: A workflow used for creating a simulation system from a template, executing pre-production and
production molecular dynamics, and performing per-run post-production steps. This is the dynamic workflow used
to perform alchemical binding simulations of the NapA transporter.

The result of casting simulations into workflows, and using MDSynthesis Sims as

the unit on which they operate, is that the act of generating raw simulation data

requires practically no tedious user input. Workflows can be programmatically gen-

erated, and upon being fed to Fireworks, these are then carried out by launcher

processes running on different machines, with some launching to HPC queues. The

labor shifts from the researcher to the machines, allowing for a high volume of data

169



to be collected across multiple compute resources. A researcher must only deal with

task failures, which are far outnumbered by tasks completing without issue.

7.4.2 Scaling out across multiple clusters

The design of the core molecular dynamics workflow (Figure 7.5) of mdworks al-

lows many simulations to be executed across multiple compute resources, with each

segment of any given simulation perhaps running on a different resource. This flexi-

bility allows for an ad hoc dynamic load-balancing of work across these resources. A

compute resource with a saturated queue, not letting many jobs through, means that

those jobs are available to go to the queue of another compute resource. Furthermore,

with simulation segments as short as 4 hours, individual simulations experience high

churn: simulations that ran on a fast resource for one segment may run on a slow

resource next, and vice-versa. Hundreds of simulations are able to make forward

progress each day, and it is no more difficult to manage than running a few of them.

Using four compute resources in this way (Stampede, Saguaro, Hulkster, and our

own workstation queue), we have performed nearly 400 NapA alchemical binding

simulations (see Chapter 6) simultaneously under this scheme, each numbering over

130,000 atoms in system size. Over the course of 15 days, we collected over 13

µs of trajectory data, totalling nearly 6 TB in raw data, performing nearly 20,000

simulation segments and consuming 1.1 million CPU hours. This kind of throughput,

shown graphically in Figure 7.7, would simply be impossible to achieve manually.

Workflow automation of simulation execution under mdworks has allowed us to

perform hundreds of simulations, totalling tens of thousands of simulation segments,

across four independent compute resources, with less time and effort than ever before.

As a Python package, mdworks is still in early development, but already it is showing

itself to be an effective means for doing simulation going forward. Further develop-
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Figure 7.7: Throughput per resource. Simulation throughput (top), measured in nanoseconds per day, and accu-
mulated simulation time (bottom), measured in nanoseconds, over the course of approximately one month and split
by the contribution of each resource.

ment will make it easier to deploy, perhaps making its use the norm for performing

production simulations across the lab and elsewhere.
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Chapter 8

DATREANT: PERSISTENT, PYTHONIC TREES FOR HETEROGENEOUS

DATA

This chapter is a reprint of the conference proceeding, Dotson, D.L., Seyler, S.L.,

Linke, M., Gowers, R.J., and Beckstein, O. (2016). datreant: persistent, Pythonic

trees for heterogeneous data. In Proceedings of the 15th Python in Science Con-

ference, S. Benthall, and S. Rostrup, eds. pp. 51–56. This work showcased the

functionality and applicability of datreant, a Python package that gives a flexible,

Pythonic interface to the filesystem. datreant is a collaborative project with several

core developers, but I am the original creator of the package and lead developer of

the project. The package forms an important core of the computational stack used

in the Beckstein Lab. See Chapter 7 for more information on the role datreant plays

in this scope.

I wrote the manuscript, with some assistance from Sean Seyler and Oliver Beck-

stein. The implementation and design of the package it describes is largely my own,

with influence and contributions from others, in particular Max Linke. This work first

appeared in the Proceedings of the 15th Python in Science Conference, Copyright ©

2016 the Authors.

ABSTRACT

In science the filesystem often serves as a de facto database, with directory trees

being the zeroth-order scientific data structure. But it can be tedious and error prone

to work directly with the filesystem to retrieve and store heterogeneous datasets. da-
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treant makes working with directory structures and files Pythonic with Treants:

specially marked directories with distinguishing characteristics that can be discov-

ered, queried, and filtered. Treants can be manipulated individually and in aggre-

gate, with mechanisms for granular access to the directories and files in their trees.

Disparate datasets stored in any format (CSV, HDF5, NetCDF, Feather, etc.) scat-

tered throughout a filesystem can thus be manipulated as meta-datasets of Treants.

datreant is modular and extensible by design to allow specialized applications to

be built on top of it, with MDSynthesis as an example for working with molecular

dynamics simulation data. http://datreant.org/

8.1 Introduction

In many scientific fields, especially those analyzing experimental or simulation

data, there is an existing ecosystem of specialized tools and file formats which new

tools must work around. Consequently, specialized database systems may be un-

suitable for data management and storage. In these cases the filesystem ends up

serving as a de facto database, with directory trees the zeroth-order data structure

for scientific data. This is particularly true for fields centered around simulation: sim-

ulation systems can vary widely in size, composition, rules, parameters, and starting

conditions. And with ever-increasing computational power, it is often necessary to

store intermediate results from large amounts of simulation data so that they may be

accessed and explored interactively.

These problems make data management difficult, and ultimately serve as a barrier

to answering scientific questions. To address this, we present datreant, a Pythonic

interface to the filesystem. datreant deals primarily in Treants: specially marked

directories with distinguishing characteristics that can be discovered, queried, and

filtered. Treants can be manipulated individually and in aggregate, with mechanisms
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for granular access to the directories and files in their trees. By way of Treants,

datreant adds a lightweight abstraction layer to the filesystem, allowing researchers

to focus more on what is stored and less on where. This greatly reduces the tedium

of storing, retrieving, and operating on datasets of interest, no matter how they are

organized.

8.2 Treants as Filesystem Manipulators

The central object of datreant is the Treant. A Treant is a directory in the

filesystem that has been specially marked with a state file. A Treant is also a

Python object. We can create a Treant with:

>>> import datreant.core as dtr
>>> t = dtr.Treant('maple ')
>>> t
<Treant: 'maple '>

This creates a directory maple/ in the filesystem (if it did not already exist), and

places a special state file inside which stores the Treant’s state. This file also serves

as a flagpost indicating that this is more than just a directory:

> ls maple

Treant.1dcbb3b1-c396-4bc6-975d-3ae1e4c2983a.json

The name of this file includes the type of Treant to which it corresponds, as

well as the uuid of the Treant, its unique identifier. The state file contains all the

information needed to generate an identical instance of this Treant, so that we can

start a separate Python session and immediately use the same Treant there:

# python session 2
>>> import datreant.core as dtr
>>> t = dtr.Treant('maple ')
>>> t
<Treant: 'maple '>
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Making a modification to the Treant in one session is immediately reflected by

the same Treant in any other session. For example, a Treant can store any number

of descriptive tags to differentiate it from others. We can add tags in the first Python

session:

# python session 1
>>> t.tags.add('syrup ', 'plant ')
>>> t.tags
<Tags(['plant ', 'syrup '])>

And in the other Python session, the same Treant with the same tags is visible:

# python session 2
>>> t.tags
<Tags(['plant ', 'syrup '])>

Internally, advisory locking is done to avoid race conditions, making a Treant

multiprocessing-safe. A Treant can also be moved, either locally within the same

filesystem or to a remote filesystem, and it will continue to work as expected.

8.2.1 Introspecting a Treant’s Tree

A Treant can be used to introspect and manipulate its filesystem tree. We can,

for example, work with directory structures rather easily:

>>> data = t['a/place/for/data/']
>>> data
<Tree: 'maple/a/place/for/data/'>

This Tree object points to a path in the Treant’s own tree, but it need not necessarily

exist. We can check this with:

>>> data.exists
False
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This behavior is by design for Tree objects (as well as Leaf objects; see below).

We want to be able to work freely with paths without creating filesystem objects for

each, at least until we are ready.

We can make a Tree exist in the filesystem easily enough:

>>> data.makedirs ()

and if we also make another directory, too:

>>> t['a/place/for/text/']. makedirs ()
<Tree: 'maple/a/place/for/text/'>

we now have:

>>> t.draw()

maple/

+-- Treant.1dcbb3b1-c396-4bc6-975d-3ae1e4c2983a.json

+-- a/

+-- place/

+-- for/

+-- data/

+-- text/

Accessing paths in this way returns Tree and Leaf objects, which refer to direc-

tories and files, respectively. These paths need not point to directories or files that

actually exist, but they can be used to create and work with these filesystem ele-

ments. It should be noted that creating a Tree does not create a Treant. Treants are

considered special enough to warrant having a state file with metadata, and making

every directory a Treant would make them less useful.
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We can, for example, easily store a Pandas [186] DataFrame somewhere in the tree

for reference later:

>>> import pandas as pd
>>> df = pd.DataFrame(pd.np.random.randn(3, 2),

columns =['A', 'B'])
>>> data = t['a/place/for/data/']
>>> data
<Tree: 'maple/a/place/for/data/'>
>>> df.to_csv(data['random_dataframe.csv']. abspath)

# take a look at the contents of `data `
>>> data.draw()
data/
+-- random_dataframe.csv

and we can introspect the file directly:

>>> csv = data['random_dataframe.csv']
>>> csv
<Leaf: 'maple/a/place/for/data/random_dataframe.csv'>

# this should look like a CSV file
>>> print(csv.read ())
,A,B
0 , -0.573730932177663 , -0.08857033924376226
1 ,0.03157276797041359 , -0.10977921690694506
2 , -0.2080757315892524 ,0.6825003213837373

Using Treant, Tree, and Leaf objects, we can work with the filesystem Pythoni-

cally without giving much attention to precisely where these objects live within that

filesystem. This becomes especially powerful when we have many directories/files we

want to work with, possibly in many different places.

8.3 Aggregation and Splitting on Treant Metadata

What makes a Treant distinct from a Tree is its state file. This file stores

metadata that can be used to filter and split Treant objects when treated in aggregate.

It also serves as a flagpost, making Treant directories discoverable.

If we have many more Treants, perhaps scattered about the filesystem:
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>>> for path in ('an/elm/', 'the/oldest/oak',
... 'the/oldest/tallest/sequoia '):
...
... # make a Treant in filesystem at path
... dtr.Treant(path)

we can gather them up with datreant.core.discover:

>>> b = dtr.discover('.')
>>> b
<Bundle([<Treant: 'oak'>, <Treant: 'sequoia '>,

<Treant: 'maple '>, <Treant: 'elm'>])>

A Bundle is an ordered set of Treant objects. This collection gives convenient

mechanisms for working with Treants as a single logical unit. For example, it exposes

a few basic properties for directly accessing its member data:

>>> b.relpaths
['the/oldest/oak/',
'the/oldest/tallest/sequoia/',
'maple/',
'an/elm/']

>>> b.names
['oak', 'sequoia ', 'maple ', 'elm']

A Bundle can be constructed in a variety of ways, most commonly using existing

Treant instances or paths to Treants in the filesystem.

We can use a Bundle to subselect Treants in typical ways, including integer in-

dexing and slicing, fancy indexing, boolean indexing, and indexing by name. But in

addition to these, we can use metadata features such as tags and categories to filter

and group Treants as desired.

8.3.1 Filtering Treants with tags

Tags are individual strings that describe a Treant. Setting the tags for each of

our Treants separately:
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>>> b['maple '].tags = ['syrup ', 'furniture ', 'plant ']
>>> b['sequoia '].tags = ['huge', 'plant ']
>>> b['oak'].tags = ['for building ', 'plant ', 'building ']
>>> b['elm'].tags = ['firewood ', 'shady ', 'paper ',

'plant ', 'building ']

we can now work with these tags in aggregate:

# will only show tags present in *all* members
>>> b.tags
<AggTags (['plant '])>

# will show tags present among *any* member
>>> b.tags.any
{'building ',
'firewood ',
'for building ',
'furniture ',
'huge',
'paper ',
'plant ',
'shady ',
'syrup '}

and we can filter on them. For example, getting all Treants that are good for con-

struction work:

# gives a boolean index for members with this tag
>>> b.tags['building ']
[True , False , False , True]

# we can use this to index the Bundle itself
>>> b[b.tags['building ']]
<Bundle([<Treant: 'oak'>, <Treant: 'elm'>])>

or getting back Treants that are both good for construction and used for making

furniture by giving tags as a list:

# a list of tags serves as an *intersection* query
>>> b[b.tags[['building ', 'furniture ']]]
<Bundle ([])>

which in this case none of them are.
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Other tag expressions can be constructed using tuples (for or/union operations)

and sets (for a negated intersection), and nesting of any of these works as expected:

# we can get a *union* by using a tuple
>>> b[b.tags['building ', 'furniture ']]
<Bundle([<Treant: 'maple '>, <Treant: 'oak'>,

<Treant: 'elm'>])>

# we can get a *negated intersection* by using a set
>>> b[b.tags[{'building ', 'furniture '}]]
<Bundle([<Treant: 'sequoia '>, <Treant: 'maple '>,

<Treant: 'oak'>, <Treant: 'elm'>])>

Using tag expressions, we can filter to Treants of interest from a Bundle counting

many, perhaps hundreds, of Treants as members. A common workflow is to use

datreant.core.discover to gather up many Treants from a section of the filesystem,

then use tags to extract only those Treants one actually needs.

8.3.2 Splitting Treants on categories

Categories are key-value pairs that provide another mechanism for distinguishing

Treants. We can add categories to each Treant:

# add categories to individual members
>>> b['oak']. categories = {'age': 'adult ',

'type': 'deciduous ',
'bark': 'mossy '}

>>> b['elm']. categories = {'age': 'young ',
'type': 'deciduous ',
'bark': 'smooth '}

>>> b['maple ']. categories = {'age': 'young ',
'type': 'deciduous ',
'bark': 'mossy '}

>>> b['sequoia ']. categories = {'age': 'old',
'type': 'evergreen ',
'bark': 'fibrous ',
'home': 'california '}

# add value 'tree' to category 'plant '
# for all members
>>> b.categories.add({'plant ': 'tree'})
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and we can access categories for individual Treants:

>>> seq = b['sequoia '][0]
>>> seq.categories
<Categories ({'home': 'california ',

'age': 'old',
'type': 'evergreen ',
'bark': 'fibrous ',
'plant ': 'tree'})>

The aggregated categories for all members in a Bundle are accessible via Bundle.categories,

which gives a view of the categories with keys common to every member Treant:

>>> b.categories
<AggCategories ({'age': ['adult ', 'young ',

'young ', 'old'],
'type': ['deciduous ', 'deciduous ',

'deciduous ', 'evergreen '],
'bark': ['mossy ', 'smooth ',

'mossy ', 'fibrous '],
'plant ': ['tree', 'tree',

'tree', 'tree']})>

Each element of the list associated with a given key corresponds to the value

for each member, in member order. Using Bundle.categories is equivalent to

Bundle.categories.all; we can also access categories present among any member:

>>> b.categories.any
{'age': ['adult ', 'young ', 'young ', 'old'],
'bark': ['mossy ', 'smooth ', 'mossy ', 'fibrous '],
'home': [None , None , None , 'california '],
'type': ['deciduous ', 'deciduous ',

'deciduous ', 'evergreen ']}

Members that do not have a given key will have None as the corresponding value

in the list. Accessing values for a list of keys:

>>> b.categories [['age', 'home']]
[['adult ', 'young ', 'young ', 'old'],
[None , None , None , 'california ']]

or a set of keys:
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>>> b.categories [{'age', 'home'}]
{'age': ['adult ', 'young ', 'young ', 'old'],
'home': [None , None , None , 'california ']}

returns, respectively, a list or dictionary of lists of values, where the list for a given key

is in member order. Perhaps the most powerful feature of categories is the groupby

method, which, given a key, can be used to group specific members in a Bundle by

their corresponding category values. If we want to group members by their ’bark’,

we can use groupby to obtain a dictionary of members for each value of ’bark’:

>>> b.categories.groupby('bark')
{'fibrous ': <Bundle([<Treant: 'sequoia '>])>,
'mossy ': <Bundle([<Treant: 'oak'>,

<Treant: 'maple '>])>,
'smooth ': <Bundle([<Treant: 'elm' >])>}

Say we would like to get members grouped by both their ’bark’ and ’home’:

>>> b.categories.groupby ({'bark', 'home'})
{('fibrous ', 'california '):

<Bundle([<Treant: 'sequoia ' >])>}

We get only a single member for the pair of keys (’fibrous’, ’california’) since

'sequoia' is the only Treant having the ’home’ category.x Categories are useful as

labels to denote the types of data that a Treant may contain or how the data were

obtained. By leveraging the groupby method, one can extract Treants by selected

categories without having to explicitly access each member. This feature can be

particularly powerful in cases where many Treants have been created and categorized

to handle incoming data over an extended period of time; one can quickly gather any

data needed without having to think about low-level details.
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8.4 Treant Modularity with Attachable Limbs

Treant objects manipulate their tags and categories using Tags and Categories

objects, respectively. These are examples of Limb objects: attachable components

which serve to extend the capabilities of a Treant. While Tags and Categories are

attached by default to all Treant objects, custom Limb subclasses can be defined for

additional functionality.

datreant is a namespace package, with the dependency-light core components

included in datreant.core. The dependencies of datreant.core include backports

of standard library modules such as pathlib and scandir, as well as lightweight

modules such as fuzzywuzzy and asciitree.

datreant.core remains lightweight because other packages in the datreant names-

pace can have any dependencies they require. One such package is datreant.data,

which includes a set of convenience Limb objects for storing and retrieving Pandas

and NumPy [187] datasets in HDF5 using PyTables and h5py internally.

We can attach a Data limb to a Treant with:

>>> import datreant.data
>>> t = dtr.Treant('maple ')
>>> t.attach('data')
>>> t.data
<Data ([])>

and we can immediately start using it to store e.g. a Pandas Series:

>>> import numpy as np
>>> sn = pd.Series(np.sin(
... np.linspace(0, 8*np.pi, num =200)))
>>> t.data['sinusoid '] = sn

and we can get it back just as easily:
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>>> t.data['sinusoid '].head()
0 0.000000
1 0.125960
2 0.249913
3 0.369885
4 0.483966
dtype: float64

Looking at the directory structure of "maple", we see that the data was stored in

an HDF5 file under a directory corresponding to the name we stored it with:

>>> t.draw()
maple/
+-- sinusoid/
| +-- pdData.h5
+-- Treant .1dcbb3b1 -c396 -4bc6 -975d-3 ae1e4c2983a.json

What’s more, datreant.data also includes a corresponding AggLimb for Bundle

objects, allowing for automatic aggregation of datasets by name across all member

Treant objects. If we collect and store similar datasets for each member in our Bundle:

>>> b = dtr.discover('.')
>>> b
<Bundle([<Treant: 'oak'>, <Treant: 'sequoia '>,

<Treant: 'maple '>, <Treant: 'elm'>])>

# we want to make each dataset a bit different
>>> b.categories['frequency '] = [1, 2, 3, 4]
>>> for mem in b:
... freq = mem.categories['frequency ']
... mem.data['sinusoid '] = pd.Series(np.sin(
... freq * np.linspace(0, 8*np.pi, num =200)))

then we can retrieve all of them into a single, multi-index Pandas Series:
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>>> sines = b.data.retrieve('sinusoid ', by='name')
>>> sines.groupby(level =0). head()
sequoia 0 0.000000

1 0.125960
2 0.249913
3 0.369885
4 0.483966

oak 0 0.000000
1 0.369885
2 0.687304
3 0.907232
4 0.998474

maple 0 0.000000
1 0.249913
2 0.483966
3 0.687304
4 0.847024

elm 0 0.000000
1 0.483966
2 0.847024
3 0.998474
4 0.900479

dtype: float64

which we can use for aggregated analysis, or perhaps just pretty plots (Figure 8.1).

>>> for name , group in sines.groupby(level =0):
... s = group.reset_index(level=0, drop=True)
... s.plot(legend=True , label=name)

Figure 8.1: Plot of sinusoidal toy datasets aggregated and plotted by source Treant
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The Data limb stores Pandas and NumPy objects in the HDF5 format within

a Treant’s own tree. It can also store arbitrary (but pickleable) Python objects as

pickles, making it a flexible interface for quick data storage and retrieval. However, it

ultimately serves as an example for how Treant and Bundle objects can be extended

to do complex but convenient things.

8.5 Using Treants as the Basis for Dataset Access and Manipulation with the

PyData Stack

Although it is possible to extend datreant objects with limbs to do complex

operations on a Treant’s tree, it isn’t necessary to build specialized interfaces such as

these to make use of the extensive PyData stack. datreant fundamentally serves as

a Pythonic interface to the filesystem, bringing value to datasets and analysis results

by making them easily accessible now and later. As data structures and file formats

change, datreant objects can always be used in the same way to supplement the way

these tools are used.

Because each Treant is both a Python object and a filesystem object, they work

remarkably well with distributed computation libraries such as dask.distributed [188]

and workflow execution frameworks such as Fireworks [173]. Treant metadata features

such as tags and categories can be used for automated workflows, including back-

ups and remote copies to external compute resources, making work on datasets less

imperative and more declarative when desired.

8.6 Building Domain-Specific Applications on datreant

Built-in datreant.core objects are general-purpose, while packages like datreant.data

provide extensions to these objects that are more specific. But it is possible, and very

useful, for domain-specific applications to define their own domain-specific Treant
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subclasses, with tightly-coupled limbs for domain-specific needs. Not only do objects

such as Bundle work just fine with Treant subclasses and custom Limb classes; they

are designed explicitly with this need in mind.

The first example of a domain-specific package built around datreant is MDSyn-

thesis, a module that enables high-level management and exploration of molecular

dynamics simulation data. MDSynthesis gives a Pythonic interface to molecular dy-

namics trajectories using MDAnalysis [106,184], giving the ability to work with the data

from many simulations scattered throughout the filesystem with ease. This package

makes it possible to write analysis code that can work across many varieties of sim-

ulation, but even more importantly, MDSynthesis allows interactive work with the

results from hundreds of simulations at once without much effort.

8.6.1 Leveraging molecular dynamics data with MDSynthesis

MDSynthesis defines a Treant subclass called a Sim. A Sim features special limbs

for storing an MDAnalysis Universe definition and custom atom selections within its

state file, allowing for painless recall of raw simulation data and groups of atoms of

interest.

As an example of effectively using Sims, say we have 50 biased molecular dynam-

ics simulations that sample the conformational change of the ion transport protein

NhaA [32] from the inward-open to outward-open state (Figure 8.2). Let’s also say

that we are interested in how many hydrogen bonds exist at any given time between

the two domains as they move past each other. These Sim objects already exist in

the filesystem, each having a Universe definition already set to point to its unique

trajectory file(s).
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We can use the MDAnalysis HydrogenBondAnalysis class to collect the data

for each Sim using Bundle.map for process parallelism, storing the results using the

datreant.data limb:

import mdsynthesis as mds
import MDAnalysis.analysis.hbonds as hbonds
import pandas as pd
import seaborn as sns

b = mds.discover('NhaA_i2o_transitions ')

def get_hbonds(sim):
dimerization = sim.atomselections['dimer ']
core = sim.atomselections['core']

hb = hbonds.HydrogenBondAnalysis(
sim.universe , dimerization , core)

hb.run()
hb.generate_table ()

sim.data['hbonds '] = pd.DataFrame(hb.table)

# process parallelism provided internally
# with `multiprocessing `
b.map(get_hbonds , processes =16)

Then we can retrieve the datasets in aggregate using the Bundle datreant.data limb

and visualize the result (Figure 8.3):

df = b.data.retrieve('hbonds ', by='name')

counts = df['distance ']. groupby(df.index).count()
counts.index = pd.MultiIndex.from_tuples(

counts.index)
counts.index = counts.index.droplevel (0)

sns.jointplot(counts.index , counts , kind='hexbin ')

By making it relatively easy to work with what can often be many terabytes of

simulation data spread over tens or hundreds of trajectories, MDSynthesis greatly

reduces the time it takes to iterate on new ideas toward answering real biological

questions.
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Figure 8.2: A cartoon rendering of an outward-open model (top) and an inward-open crystallographic structure
(PDB ID: 4AU5 [32]) (bottom) of Escherichia coli NhaA

8.7 Final Thoughts

datreant is a young project that started as a domain-specific package for working

with molecular dynamics data, but has quickly morphed into a powerful, general-

purpose tool for managing and manipulating filesystems and the data spread about

them. The dependency-light datreant.core package is pure Python, BSD-licensed,

and openly developed, and the datreant namespace is designed to support useful

extensions to the core objects. It is the hope of the authors that datreant continues

to grow in a way that benefits the wider scientific community, smoothing the common

pain point of data glut and filesystem management.

8.8 Acknowledgements

DLD was in part supported by a Molecular Imaging Fellowship from the Depart-

ment of Physics at Arizona State University. SLS was supported in part by a Wally

189



0 100 200 300 400 500

time (ps)

0

1

2

3

4

5

6

#
 o

f 
h

y
d

ro
g

e
n

 b
o

n
d

s

Figure 8.3: The number of hydrogen bonds between the core and dimerization domain during a conformational
transition between the inward-open and outward-open state of EcNhaA

Stoelzel Fellowship from the Department of Physics at Arizona State University. ML

was supported by the Max Planck Society. RG was supported by BBSRC grant

BB/J014478/1. OB was supported in part by grant ACI-1443054 from the National

Science Foundation; computational resources for OB’s work were in part provided

by the Extreme Science and Engineering Discovery Environment (XSEDE), which

is supported by National Science Foundation grant number ACI-1053575 (allocation

MCB130177 to OB).

190



Chapter 9

CONCLUSIONS

Since first being discovered in 1974 by West and Mitchell [8], our knowledge of

Na+/H+ antiporters has come far. After discovery of the nhaA gene [10], subsequent

sequencing [11], and purification of Escherichia coli NhaA [12], functional studies offered

a quantitative view of the pH-dependence of NhaA, as well as its electrogenicity

(1 Na+ / 2 H+). Highly-conserved residues vital for transport, including Asp163,

Asp164, Asp133, Thr132, and Lys300 were identified, but their role in the transport

mechanism remained elusive [14]. The first crystal structure of NhaA [22] revealed, for

the first time, the spatial arrangement of these residues, as well as the organization

of the protein into two distinct domains, a dimerization interface and a core domain

featuring many of the vital residues. This structure paved the way for studies of the

conformational change required for translocation [23,25,26,189], and also gave context

for the many functional studies seeking to determine more clearly the Na+ and H+

binding sites. A detailed electrophysiological study of NhaA showed that the pH-

dependent activity of NhaA could be accounted for by competitive binding between

Na+ and H+, suggesting that Na+ and H+ bind to the same location in the protein [27].

Extending from this context, the work we have detailed in the preceeding chapters

has greatly forwarded our understanding of Na+/H+ antiport. The outward-facing

Thermus thermophilus NapA structure [31] offered the first suggestion that the confor-

mational change required for ion translocation in these transporters was large, a ∼10

Å translation of the entire core domain relative to the dimerization domain (Chapter

3). The new inward-facing NhaA structure [32] revealed a previously-unidentified salt

bridge between the highly-conserved Asp163 and Lys300 residues, and molecular dy-
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namics simulations revealed that spontaneous binding of Na+ to Asp164 breaks the

salt bridge. This, along with the presence of the same salt bridge in the outward-facing

NapA structure [31], suggested a direct role for Lys300 in the transport mechanism

as a H+ carrier (Chapter 4). Since then, this has been further corroborated using

constant-pH molecular dynamics simulations [33]. Our most recent published work,

which presented a new inward-facing NapA structure obtained through disulfide-

locking of a cysteine mutant, established unambiguously that the core domain un-

dergoes a large-scale, elevator-like translocation relative to the dimerization domain

during the transport cycle, as opposed to small movements proposed by others [23,30]

(Chapter 5).

Our published work has greatly influenced the conversation on Na+/H+ antiporters [35–37],

and we continue to work to find answers to remaining questions. Operating under

the hypothesis that the lysine is a proton carrier, becoming deprotonated during the

transport cycle [31,33], we have examined the strength of Na+ binding for NapA as a

function of conformation and charge state using alchemical binding free energy cal-

culations. These have revealed that binding of Na+ is weaker in the outward- than in

the inward-facing state, and that the binding affinity of Na+ is highly dependent on

the charge state of the conserved lysine (Lys305). This asymmetry is physiologically

advantageous for the protein [180], since it must release the Na+ to the outside under

most conditions, but more work needs to be done to extract correct absolute bind-

ing free energies, and ultimately apparent binding affinities, from these calculations

(Chapter 6).

Finally, we have shown that software has not played a small role in our efforts

to understand the molecular mechanism of Na+/H+ antiport. We presented software

packages we have developed to probe questions of ever-increasing scale and complexity

(Chapter 7), and how thoughtful and collaborative design of these tools is key to
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making them usable in new and flexible ways. In particular, we detailed the design and

use of datreant [183], a Python package giving a powerful interface to the filesystem,

that forms an important core of our software stack (Chapter 8).

The work we have done, and the work we continue to do is moving the needle

toward fully understanding the mechanism of Na+/H+ antiport. There remain unan-

swered questions, including how binding of 2H+ or 1Na+ is coupled to the transloca-

tion of the core domain, and questions with answers but incomplete evidence, such as

where the H+ bind. But given the progress over the 40-year effort to understand these

transporters, we are confident that the solutions will come with continued work.
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[127] Kučerka N, Tristram-Nagle S and Nagle J F, 2006 Structure of fully hydrated
fluid phase lipid bilayers with monounsaturated chains. The Journal of Mem-
brane Biology 208 193–202.

[128] Raetz C R, 1986 Molecular genetics of membrane phospholipid synthesis. An-
nual Review of Genetics 20 253–291.

[129] Cronan J E, 2003 Bacterial membrane lipids: where do we stand? Annual
Reviews in Microbiology 57 203–224.

[130] Berendsen H J, Postma J v, van Gunsteren W F, DiNola A and Haak J, 1984
Molecular dynamics with coupling to an external bath. The Journal of Chemical
Physics 81 3684–3690.

204



[131] Søndergaard C R, Olsson M H M, Rostkowski M and Jensen J H, 2011 Improved
Treatment of Ligands and Coupling Effects in Empirical Calculation and Ra-
tionalization of pKa Values. Journal of Chemical Theory and Computation 7
2284–2295.

[132] Kumar S and Nussinov R, 1999 Salt bridge stability in monomeric proteins.
Journal of Molecular Biology 293 1241–1255.

[133] Kumar S and Nussinov R, 2002 Relationship between ion pair geometries and
electrostatic strengths in proteins. Biophysical Journal 83 1595–1612.

[134] Scott D W, 2015 Multivariate density estimation: theory, practice, and visual-
ization (John Wiley & Sons).

[135] Hintze J L and Nelson R D, 1998 Violin plots: a box plot-density trace syner-
gism. The American Statistician 52 181–184.

[136] Waskom M et al., 2014 Seaborn: statistical data visualization .

[137] Herz K, Rimon A, Jeschke G and Padan E, 2009 Beta-Sheet-dependent Dimer-
ization Is Essential for the Stability of NhaA Na+/H+ Antiporter. Journal of
Biological Chemistry 284 6337–6347.

[138] Mager T, Braner M, Kubsch B, Hatahet L, Alkoby D, Rimon A, Padan E and
Fendler K, 2013 Differential Effects of Mutations on the Transport Properties
of the Na+/H+ Antiporter NhaA from Escherichia coli. Journal of Biological
Chemistry 288 24666–24675.

[139] Padan E, Kozachkov L, Herz K and Rimon A, 2009 NhaA crystal structure:
functional-structural insights. Journal of Experimental Biology 212 1593–1603.

[140] Landau M, Herz K, Padan E and Ben-Tal N, 2007 Model Structure of the
Na+/H+ Exchanger 1 (NHE1): Functional and Clinical Implications. Journal
of Biological Chemistry 282 37854–37863.

[141] Schushan M, Xiang M, Bogomiakov P, Padan E, Rao R and Ben-Tal N, 2010
Model-Guided Mutagenesis Drives Functional Studies of Human NHA2, Impli-
cated in Hypertension. Journal of Molecular Biology 396 1181–1196.

[142] Shaffer P L, Goehring A, Shankaranarayanan A and Gouaux E, 2009 Structure
and mechanism of a Na+ independent amino acid transporter. Science 325
1010–1014.

[143] Efremov R G and Sazanov L A, 2011 Structure of the membrane domain of
respiratory complex I. Nature 476 414–420.

205



[144] Harms M J, Schlessman J L, Sue G R and E B G M, 2011 Arginine residues at
internal positions in a protein are always charged. Proceedings of the National
Academy of Sciences 108 18954–18959.
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[155] Bolla J R, Su C C, Delmar J A, Radhakrishnan A, Kumar N, Chou T H,
Long F, Rajashankar K R and Edward W Y, 2015 Crystal structure of the
Alcanivorax borkumensis YdaH transporter reveals an unusual topology. Nature
Communications 6 6874.

206



[156] Su C C, Bolla J R, Kumar N, Radhakrishnan A, Long F, Delmar J A, Chou
T H, Rajashankar K R, Shafer W M and Edward W Y, 2015 Structure and
function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite
efflux pumps. Cell Reports 11 61–70.

[157] Zhou X, Levin E J, Pan Y, McCoy J G, Sharma R, Kloss B, Bruni R, Quick
M and Zhou M, 2014 Structural basis of the alternating-access mechanism in a
bile acid transporter. Nature 505 569–573.
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Ian M. Kenney and Oliver Beckstein, 2016 MDAnalysis: A Python Package
for the Rapid Analysis of Molecular Dynamics Simulations, in Proceedings of
the 15th Python in Science Conference (edited by Sebastian Benthall and Scott
Rostrup), 98 – 105.

[185] Goecks J, Nekrutenko A and Taylor J, 2010 Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research
in the life sciences. Genome Biology 11 R86.

[186] McKinney W, 2010 Data Structures for Statistical Computing in Python , in
Proceedings of the 9th Python in Science Conference (edited by S van der Walt
and J Millman), 51 – 56.

[187] van der Walt S, Colbert S C and Varoquaux G, 2011 The numpy array: A struc-
ture for efficient numerical computation. Computing in Science Engineering 13
22–30.

[188] Matthew Rocklin, 2015 Dask: Parallel Computation with Blocked algorithms
and Task Scheduling, in Proceedings of the 14th Python in Science Conference
(edited by Kathryn Huff and James Bergstra), 130 – 136.

[189] Olkhova E, Padan E and Michel H, 2007 The Influence of Protonation States
on the Dynamics of the NhaA Antiporter from Escherichia coli. Biophysical
Journal 92 3784–3791.

209


	Dedication
	Acknowledgements
	LIST OF TABLES
	LIST OF FIGURES
	
	The Early History of Na+/H+ Antiporters
	Experimental Structures Offer New Insights Into E. coli NhaA
	Recent Studies Reveal a Single Binding Site for Na+/Li+ and H+ in NhaA
	Understanding the Molecular Mechanism: Our Work
	A Note on Content

	
	Free Energy Transduction in Transporters
	Molecular Dynamics Simulation
	Connecting MD to Experiment

	
	Introduction
	Results
	Conclusions
	Methods
	Supplementary Information

	
	Introduction
	Materials and Methods
	Results
	Discussion
	Supplementary Information

	
	Introduction
	Results
	Discussion
	Methods
	Supplementary Information

	
	Introduction
	Methods
	Results
	Discussion
	Supplemental Information

	
	datreant
	MDAnalysis
	MDSynthesis
	mdworks

	
	Introduction
	Treants as Filesystem Manipulators
	Aggregation and Splitting on Treant Metadata
	Treant Modularity with Attachable Limbs
	Using Treants as the Basis for Dataset Access and Manipulation with the PyData Stack
	Building Domain-Specific Applications on datreant
	Final Thoughts
	Acknowledgements

	

	REFERENCES


