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ABSTRACT 

 

Cyber systems, including IoT (Internet of Things), are increasingly being used 

ubiquitously to vastly improve the efficiency and reduce the cost of critical application 

areas, such as finance, transportation, defense, and healthcare. Over the past two decades, 

computing efficiency and hardware cost have dramatically been improved. These 

improvements have made cyber systems omnipotent, and control many aspects of human 

lives. Emerging trends in successful cyber system breaches have shown increasing 

sophistication in attacks and that attackers are no longer limited by resources, including 

human and computing power. Most existing cyber defense systems for IoT systems have 

two major issues: (1) they do not incorporate human user behavior(s) and preferences in 

their approaches, and (2) they do not continuously learn from dynamic environment and 

effectively adapt to thwart sophisticated cyber-attacks. Consequently, the security 

solutions generated may not be usable or implementable by the user(s) thereby drastically 

reducing the effectiveness of these security solutions.  

In order to address these major issues, a comprehensive approach to securing 

ubiquitous smart devices in IoT environment by incorporating probabilistic human user 

behavioral inputs is presented. The approach will include techniques to (1) protect the 

controller device(s) [smart phone or tablet] by continuously learning and authenticating 

the legitimate user based on the touch screen finger gestures in the background, without 

requiring users’ to provide their finger gesture inputs intentionally for training purposes, 

and (2) efficiently configure IoT devices through controller device(s), in conformance 

with the probabilistic human user behavior(s) and preferences, to effectively adapt IoT 
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devices to the changing environment. The effectiveness of the approach will be 

demonstrated with experiments that are based on collected user behavioral data and 

simulations. 

 

Index terms- pro-active protection, predictive defense, probabilistic reasoning, continuous 

authentication, dynamic IoT environment assessment and probabilistic human behaviors
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Chapter 1 

 

INTRODUCTION 

 

1.1 Overview 

 

Ubiquitous cyber systems, including Internet of Things (IoT) systems are being 

increasingly used to vastly improve efficiencies and reduce costs in areas such as finance, 

health care, power management, transportation, and defense. Over the past twenty years 

computing efficiency and hardware costs have dramatically improved, these have made 

the cyber and IoT systems omnipotent, and touch all aspects of human lives. Recent 

surveys have shown that the growth of the ubiquitous smart devices will accelerate in the 

near future [1, 2]. Past trends have shown that any widely used entity becomes a target 

for attacks since potential system breaches offer huge incentives to attackers. Extensive 

research has been done in developing cyber defense systems that provide necessary 

defensive and offensive measures to mitigate the effects of the attacks [3, 4]. But recent 

security breaches in cyber systems used in finance, defense and even nuclear plants have 

shown that current cyber defense mechanisms are unable to cope with these new breed of 

attacks [5]. The integrity and security of these cyber systems are not only vital to those 

respective areas but also have a vast impact on the safety of humans.   

One of the major deficiencies in developing comprehensive adaptive cyber defense 

systems, including ones for IoT, is that most of the solutions do not include human 

behavior and preferences in cyber defense approaches [3, 6]. Here, the human can be 

either the person monitoring the cyber defense system or the attacker launching the 
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attacks. The two main reasons for the need to include the human behavior(s) in securing 

ubiquitous smart devices in IoT environment are (1) to effectively adapt smart devices in 

accordance with the user(s) behavior and preferences, and (2) to improve the usability of 

the cyber defense solutions. 

A few of the most commonly used devices to control the other devices in an IoT 

application environment are the smart devices such as smart phone, tablet. These smart 

devices are traditionally protected through PIN, pass phrase, pattern, face recognition and 

recently fingerprint authentication [7]. One of the major weaknesses of these 

authentication factors is that they do not continuously authenticate users after the initial 

authentication [8]. Hence, if the smart device is physically compromised (such as being 

stolen) after the authentication has been performed, then the attacker can keep the 

authenticated session open and extract the confidential data before the session times out, 

or the user shuts down the device through other means. The small size of smart devices 

makes them particularly vulnerable for theft. Hence it is necessary to develop an 

approach to continuously authenticating the legitimate user on the smart devices without 

requiring frequent cognizable inputs. 

Some of the approaches use techniques such as game theory to develop pro-active 

cyber defense techniques [9, 10], but they have major limitations due to the assumptions 

used in these approaches, such as the rationality and Nash equilibrium, which may not be 

valid and/or feasible for current and emerging cyber infrastructure. As a consequence of 

not including human behavior, the cyber defense systems, including those for IoT 

applications, are either not dynamic enough to thwart sophisticated cyber-attacks [11] or 
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the restrictive/intrusive nature of cyber defense system will make it very difficult to 

effectively use them in real world applications. Given the circumstances of increasing 

sophistication of cyber-attacks there is an urgent need to develop a user centric approach 

to securing IoT through probabilistic human behavior prediction. 

In order to address these security concerns we develop a comprehensive user-centric 

approach to securing IoT systems by predicting user behavior(s). In this dissertation work 

we will be focusing on two of the following major components of our comprehensive 

approach: (1) protecting the controller device through a continuous authentication 

approach to continuously authenticate the legitimate user usage session based on the 

legitimate user touch screen finger gestures, (2) planning various device actions through a 

controller device [smart phone (or) tablet] to satisfy user requirements securely and 

efficiently in IoT applications by predicting the human behavior. We will be using 

existing approaches to configuring IoT application devices, which is the third component 

of our overall approach. The overall theme of this dissertation work will be to incorporate 

human behavioral traits into security solutions to enable effective adaptation to the 

dynamically changing users’ environment.  

First, we develop an adaptive approach for continuously authenticating legitimate 

user on a touch screen based smart device (or controller device). The specific goals of our 

approach [12] are: (1) continuously authenticate user on a touch based smart device 

without requiring frequent cognizable user input, (2) adapt the authentication algorithm 

efficiently based on the changing legitimate user behavior with minimal resources, and 

(3) leverage the probabilistic nature of user behavior to improve the efficiency of the 
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continuous authentication. Our approach includes the following algorithms: 1) an 

algorithm to estimate the context of smart device usage, 2) an algorithm to estimate 

degree of importance of each cell/state on the user’s smart device touch screen, and 3) a 

technique that uses Markov Decision Process (MDP) algorithm to continuously 

authenticate users’ with computed user gesture model.  Each of the above items will be 

discussed in detail in the Chapter 4. 

Second, we develop an effective approach for intelligent planning of device action in 

IoT applications. Our approach [13] is designed to work for both individual user and 

users as a group. The specific goals of our approach are: (1) assist the user(s) of the IoT 

application to efficiently secure their environments, (2) observe and monitor user(s) 

behavior to plan device actions that complement the user behavior and preferences, and 

(3) ensure that the user requirements are satisfied with minimal resources. Our approach 

includes the following algorithms: 1) a state analysis technique for the service provider, 

2) learning algorithm for dynamic IoT application assessment, and 3) a technique that 

uses MDP (Markov Decision Process) planning to generate efficient IoT device action 

plans.  Each of the above items will be discussed in detail in the Chapter 5. 

 

1.2  Organization of Dissertation 

 

The dissertation work is organized as follows: the current state of the art related to my 

research will be presented in Chapter 2. Overall approach to dynamically secure 

ubiquitous devices with probabilistic human behavior modelling will be presented in 

Chapter 3. A reinforcement learning based approach to continuously authenticate users’ 
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finger gestures using touch-based smart phone without requiring users’ to provide 

intentional finger gestures for training purposes, including the experimental results, will 

be presented in Chapter 4. An approach to adaptively reconfigure the smart devices in an 

IoT environment based on users’ behavioral preferences and requirements, including the 

simulation results, will be presented in Chapter 5. The conclusion of this dissertation 

work and future research directions will be presented in Chapter 6. 
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Chapter 2 

 

CURRENT STATE OF ART 

  

In this chapter, the background information and existing research efforts related to the 

intelligent planning in IoT applications and continuous user authentication are discussed. 

Most of the cyber defense approaches [6, 14] do not include human behavior because it 

introduces a lot of uncertainties, which increases the complexity of the approaches. 

Intrinsically it is very hard to incorporate the human behavior into computing cyber 

defense paradigm because major human behavioral features are (1) probabilistic in 

nature, (2) depends on the context of the environment, and (3) continuously changes with 

the passage of time. In the absence of effective framework or techniques, each of these 

above features add a large overhead for including these features as a part of a cyber-

defense system.  

A few of the current approaches [14-17] to secure the ubiquitous smart devices in the 

IoT environment include the human behavior(s), but they make the assumption that the 

human behavior(s) to be deterministic. The deterministic assumption vastly limits the 

feasibility of their approached since they do not accurately capture the human behavior in 

the real world as they are probabilistic in nature. In the below subsection we will discuss 

the current state of the art in the specific application area.   

  

2.1  Continuous User Authentication 

 

Most of the current smart devices use the authentication factors to authenticate the 
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legitimate user of a smart device, and these authentication factors have been generally 

classified into three categories: what you know, what you have and what you are [7]. The 

authentication factors belonging to the categories of what you know and what you have 

are not suitable for continuous user authentication of smart devices because the user 

needs to frequently provide conscious inputs for continuous authentication, which will 

likely cause undesirable user experience. This leaves us with only the category of what 

you are. Even in this category, some factors, such as fingerprints, iris and face 

recognition, are inherently infeasible due to the requirements of additional hardware in 

low-cost touch-screen smart devices, and frequent conscious user interactions. 

Furthermore, existing approaches [18-23] to continuous user authentication use 

centralized architecture, where a server collects specific user data for a specific time 

interval in the training phase, generates the authentication model from the user data, and 

uses an authentication model to authenticate the user during subsequent usage. If the user 

behavior changes, then the user needs to undergo the training phase again so that the 

authentication model for the user is updated with the latest information of the user’s 

behavior. Hence, this process has inherent security, privacy, overhead and scalability 

problems  

Password authentication schemes fall into the what you know category, and the 

hardware dongles, like RSA SecurId, fall into the what you have category. Biometric 

authentication schemes, such as fingerprint, iris and facepattern recognition, fall into the 

what you are category. The recent trend of authentication systems involves two-factor 

authentications, in which the password is usually accompanied by a one-time sign in code 
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sent to the smart device. This trend combines the two authentication factors, what you 

know (password) and what you have (mobile device), to provide a slightly better 

authentication. The inherent problem with this two-factor authentication system is that in 

each of these two factors, sensitive information is lost in the event of theft of the smart 

device or attacker(s) breaking the two-factor authentication scheme. Continuous user 

authentication schemes using the authentication factor “What you are” can be broadly 

categorized into two groups: using touch gestures [20, 21] or multi-modality 

classification focusing on the data from a variety of sensors to model the user behavior 

[22, 23]. Most of the continuous authentication techniques in both categories involve an 

enrollment (training) phase and an authentication phase. The system learns the necessary 

patterns from the user’s related biological and/or sensory data, and stores them in the 

enrollment phase. In the authentication phase, the system compares the observed user 

related biological and/or sensory data against the patterns stored during the enrollment 

phase to re-authenticate a user. 

Niu and Hao [18] conducted continuous user authentication experiments on iPad 

using user behavioral features in multitouch operations, involving 34 volunteers. Their 

experiments showed Equal Error Rates (EERs) of 7%-15% for one mode of multi-touch 

and EERs of 2.6%-3.9% if two multi-touch modes are combined. Frank, et al, [19] 

presented an approach to continuous user authentication based on their touch gestures 

with EERs in the range up to 4% using a kNearest Neighbors (k-NN) classifier and a 

Support Vector Machine (SVM) classifier. They demonstrated this approach to extract 30 

features from a dataset of 41 users based on users’ swipe/scroll gestures. Later, Li, et al, 
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[20] presented a touch-based authentication technique on Motorola Droid phones running 

Android 2.2. This approach leverages the device files being used by Linux Multi touch 

protocol to monitor all the touch gestures of the user on the smart phone. This method 

was evaluated using SVM on 75 users who were allowed to use the smart phones freely, 

and showed the average classification accuracies of 95%. 

For the approaches combining multiple biometric inputs to produce aggregated user 

identification results, Muncaster and Turk [21] presented an approach to performing 

continuous, score-level multi-modal authentication based on a weighted sum of scores 

from each modality. A continuous multi-modal biometrics system using a hidden Markov 

model (HMM) was developed by Sim, et al, [22]. It includes integration of the results 

from a fingerprint biometric classifier with a face classifier to improve the accuracy of 

continuous user authentication. Shi, at el, [23] used multimodal inputs, such as voice, 

location, multi-touch and motion, to perform continuous user authentication. Using Naïve 

Bayes classifiers on the features of multi-modal inputs, they showed average accuracy of 

over 95%.  

All the above techniques are based on the assumption of zero-effort threats, where the 

adversary is assumed to be incapable of pulling off advanced forgery attacks [11] on the 

system, which are based on the characteristics of the user behavioral biometric patterns 

exhibiting large intra-user variation and overlap across a large population. The attackers 

leverage these characteristics to extract users’ statistics from a large population database 

and perform advanced forgery attacks which can defeat these authentication techniques. 

The attack technique using robotic arm [11] increases the EERs in the continuous 
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authentication techniques. In order to thwart these kinds of attacks, it is required to 

capture more unique characteristics of the user’s finger gestures for differentiating the 

legitimate user from others. This increases the effort required on the part of the attackers 

to learn the user’s behavior from a large population database, which may act as an 

effective deterrence.  

Based on the above discussion, the existing continuous user authentication techniques 

fail to capture the nuances of the user’s gestures, and they can only capture the user’s 

gestures during the training phase. This will lead the continuous authentication 

techniques to miss some important strains of the user’s behavior exhibited outside the 

training phase. This is particularly dangerous because, if the user model does not capture 

the unique characteristics of the user gestures, an attacker with access to a large set of 

normal user data might be able to construct a model conforming to the characteristics of 

the majority of the features exhibited by the population. This will enable the attacker to 

break the continuous authentication techniques. In order to capture a majority of unique 

characteristics of the user’s gestures on a smart device, the technique needs to incorporate 

continuous learning of the user’s gestures. In our approach, we will use a continuous 

authentication technique, which can continuously update the user’s finger gesture model 

to effectively authenticate the legitimate user 

 

2.2  Intelligent Device Adaptation in IoT Environments 

 

In developing an intelligent mobile IoT application, it is important to understand that 

almost all u-things have serious limitations on processing power, and any additional 
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computational load above and beyond their functional requirements, such as situation 

awareness, active interactions among other u-things in their environments, will cause 

serious degradation of the performance of the u-things which will likely lead to users’ 

dissatisfaction. 

In [24-26], the approaches to developing smart environments (same as mobile 

intelligent IoT application environments) assume that each u-thing has situation-aware 

capability to generate decisions specific to that autonomous u-thing based on its 

environmental situation. But, these approaches may lead to severe performance 

degradation of most of the u-things because not all u-things are designed and/or have the 

capability to handle such computationally very expensive operations. 

In [27], a 3-layer architecture for developing smart environments was presented. In 

this approach, there is no information on how situational context models of the users’ 

environments are generated. In [28], an approach was presented to developing smart 

environments, where the users need to setup and store their personal preferences on an 

NFC (Near Field Communication) enabled smart phone. Based on the preferences, the 

NFC enabled smart phone will control the other u-things to achieve the goals of the 

users’ applications. However, this approach is unrealistic because the users are expected 

to know best possible modes of operation for all the devices’ in the application 

environment. 

In [29], an ontology-based activity recognition and scalable hierarchical planning 

technique is presented to maximize the energy efficiency in a smart office building. But, 

even if it is possible to generate “ontological model activities” for all possible user 
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activities, it is not feasible to perform comparative selection of the ontological model 

activities for recognizing the user activities in real time which are essential inputs for 

planning algorithms. In [30], a decentralized control and decision system was presented 

for smart buildings, but there is no adequate explanation on how the decision making 

manager is trained and/or equipped to make smart decisions on the actions needed to be 

taken to improve the energy efficiency of the user environment. 

Most of these above approaches [24-27] were under the implicit assumption that all 

the devices in an environment are smart devices and can communicate with other smart 

devices with ease. This assumption may not valid since not all the devices in an 

intelligent mobile IoT application environment can communicate on a peer-to-peer 

network architecture. Hence we developed our approach such that a u-thing needs to have 

communication link with only one of the control modules (CMs) of its application 

environment and the u-things is not required to do expensive computations as most of it 

is done either on one of CMs or mobile cloud 
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Chapter 3 

 

OVERALL APPROACH TO SECURING UBIQUITOUS DEVICES 

  

The primary focus of our approach is to developing a comprehensive user centric 

approach for securing ubiquitous devices in Internet of Things (IoT) environment through 

Probabilistic Human Behavior Prediction. In our approach we define human behavior(s) 

as a structured sequence of context-sensitive decisions [31]. In our approach we make 

three basic assumptions, which are, (1) human behavior(s) are intrinsically probabilistic 

in nature, (2) human behavior(s) follow the Markovian property, and (3) human 

behavior(s) is dynamic and evolves with the passage of time. We will, in this section, 

justify the feasibility of our assumptions. 

Several researches [32, 33] in the human behavior(s) analysis have shown that human 

behavior(s) can be best modelled with the semi-deterministic systems using probabilities. 

This is because the semi-deterministic decision making system generate the decisions 

based on the various contextual parameters and forcing parameters, which can include 

environmental factors and historical behavioral preferences. The human behavioral 

decision making systems also follow similar decision making process [34 - 36], thus 

semi-deterministic decision making system ideal to model the human decision making 

systems.  

For single agent decision systems, Markovian property [37] states that any decision 

taken by the agent is only dependent on the parameter of the current state and is 

independent of parameters of all its previous states. We in our approach assume that the 
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human decision making generally conform to the Markovian property. This is because 

majority of the human behavior(s) generally tend to be highly contextual in nature, 

meaning they are heavily dependent on the current state or context [31]. Note that we do 

not claim that all the human behavior(s) conform to Markovian property. But we do 

assume that the human behavior(s) we consider in our approach, specifically human 

finger gestures on smart device touch screens and contextual human behavior(s), which 

are highly contextual in nature, to conform the Markovian property.  

Human behavior(s) generally tend to be dynamic in nature since the parameters of the 

environment and the forcing functions tend to be dynamic in nature. Since most of the 

human decision making is highly contextual the human behavior(s) also tend to be 

dynamic in nature. Hence our third assumption is valid and feasible.   

The primary goal of our approach is to develop a mathematical framework for 

efficiently incorporating the three major human behavioral characteristics, which are: (1) 

human behavior is probabilistic in nature, (2) human behavior depends on the context of 

the surrounding environment, and (3) human behavior continuously changes with the 

passage of time. Our user centric approach to securing ubiquitous devices has three major 

components as shown in Figure 1. The first component continuously learns and 

authenticates the legitimate user. The second component describes the intelligent 

adaptation of IoT device states. The IoT device states’ adaptation is complex since it is 

dynamic and dependent on many environmental variables. Hence our approach also takes 

into to account the users’ environment requirements, dynamic IoT environment and 

users’ usage patterns and preferences to effectively adapt the IoT device states.  
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Figure 1: System Diagram of Our Overall Approach to Securing Ubiquitous Devices in 

IoT Environment 

 

The following are the steps of our overall approach, 

Step 1) Continuously authenticate the legitimate user through an adaptive continuous 

authentication on controller device [smart phone (or) tablet]. This is essential 

since the controller is in direct contact with the user(s) and has the ability to 

manipulate the device actions. More details will be presented in Chapter 4.  

Step 2) Intelligent adaptation of various devices through a controller device [smart 

phone (or) tablet] to satisfy user requirements securely and efficiently in IoT 
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applications. More details about intelligent planning are presented in Chapter 

5.  

Step 3) Based on the plans generated in Step 2) the individual devices in the IoT 

application environment can be configured and secured through the 

controller device. We will use the existing approaches to efficiently actuate 

the device configuration updates. 

  

In order to predict the human behavior(s) we need to develop an approach that 

accurately models the human decision making process. This requires a detailed 

understanding on the operational aspects of the human decision making system. Based on 

the extensive research in human psychology and economics it has been established that 

the human brain uses dual decision system to process information [38] and generate 

decisions in the real world. The human dual decision system is temporal in nature and has 

two decision generation techniques, (1) short horizon decisions, for quicker decision 

making, and (2) long horizon decisions, for slower decision making. The dual decision 

system provides a promising blueprint for developing an effective approach for 

accurately capturing human behavior(s). Most of the human decisions are short horizon 

decisions. It is estimated that humans make tens of thousands of short horizon decisions 

every day [38]. On the other hand the long horizon decisions are used fewer times 

comparatively.  

In short horizon, the time window is a few seconds and is similar to the fast decision 

making or “intuitive” human thinking. In long horizon, the time window is a few 

hours/days and is similar to slow decision making or “reasoning” based human thinking 



17 
 

[38]. It is also worth noting that the long horizon decision making also involves planning 

and simulation since it requires anticipation of the actions of various actors in the 

environment. The short and the long horizon dual decision system is extremely important 

to the effectively securing smart devices since this enables us to flexibly apply 

discriminatory and as well as reason based decision making depending on the dynamic 

IoT environment. 

In addition, extensive research in human psychology has shown that humans have 

around hundreds of cognitive biases [39]. These cognitive biases have varying degree of 

influence over the dual decision making system. Since the short horizon decision making 

is quick the cognitive biases tend to affect the short horizon decision making than the 

long horizon decision making process. The long horizon decision making process usually 

involves simulation and planning of the future set of actions, hence the influence of the 

cognitive biases may be reduced due to the increased exercise of cognitive thinking.     

Our approach is designed to emulate and accommodate the human dual decision 

making process and probabilistic characteristics of human behaviors. Our approach will 

include the mixture model containing the semi-supervised learners and the MDP 

networks that will generate “reasoning” based decisions for long horizon scenarios and 

the semi-supervised learners will generate “intuitive” decisions for short horizon 

scenarios. The rationale behind the utilization of the semi-supervised learners is to reduce 

the usage of the domain experts. Traditional supervised based learners rely on labeled 

training data, which is generated by domain experts manually, in order to effectively train 

the model for the assessment algorithms. The broader idea in our approach is to 
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incorporate human-like adaptive intelligence into the systems to enable them take both 

quick decisions and reasoned decisions, as required, at the same time reducing the 

resource utilization. 
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Chapter 4 

 

CONTINOUS USER AUTHENTICAITON IN TOUCH SCREEN SMART      

DEVICES 

 

Smart devices are experiencing explosive growth in terms of the number in use as 

well as the services offered by vendors. According to a recent report [1, 2] by Gartner, 

vendors shipped about 2.5 billion touch-screen smart devices in 2014 and shipments are 

projected to reach 3 billion by the end of 2017. The information available in personal 

smart devices, such as smartphones and tablets, includes more detailed and precise 

information on their users’ personal attributes than the information in other computing 

devices since personal smart devices are rarely shared among different users. 

Proliferation of applications across various domains, such as banking, shopping, and 

healthcare, requires smart devices to store even more sensitive user data. Furthermore, 

the rising BYOD (Bring Your Own Device) trend is leading to storage of enterprise data 

on personal smart devices [40]. The increasing number of sensors in smart devices makes 

them sources of rich personal data of the users, like frequently visited locations. All these 

trends make personal smart devices more attractive targets for malicious activities, 

ranging from physically stolen devices to infected smart devices by malware. 

Smart devices are traditionally protected by authentication methods using PIN, 

passphrase, pattern, face recognition and fingerprint [7]. One of the major weaknesses of 

these authentication methods is that they do not continuously authenticate users after the 

initial authentication. Hence, if a smart device is physically compromised (including 
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being stolen) after the authentication has been performed, the attacker can keep the 

authenticated session open and extract the confidential data before the session times out 

or the user shuts down the device.  Smart devices are usually small and make them 

particularly vulnerable for theft. Although there are various ways to remotely locate, 

erase and lock a smart device in case of theft, all of these mechanisms can be 

circumvented by methods, like removing the SIM card and disconnecting access to 

internet. Smartphones pose additional challenges to the existing authentication 

mechanisms, such as having small screen size and computational resources.  Small screen 

size prevents users from using “strong” passwords because it normally requires a mixture 

of letters, numbers and symbols which are not present in existing smart device lock 

screen.  

Recent successful breaches into the smart devices have shown that the existing 

numerical or pattern based authentication systems are not adequate. Existing software, 

such as ElcomSoft, can be used to copy the encrypted filesystem and perform brute force 

attacks. Additionally, the numerical authentication pins are insufficient as 4-digit and 8-

digit PINs have been shown to be broken within 40 minutes and 4months respectively 

[8]. Furthermore, current state of the art fingerprint based authentication systems are even 

more dangerous as the user don’t even have to be conscious to authenticate the usage 

session.     

To address these issues, a mechanism, that authenticates the user continuously 

through the entire usage session which is unobservable to the user, is needed. In this 

chapter, we will present an approach using Markov decision process (MDP) and touch 
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gestures of the user to continuously authenticate the user on a touch-screen smart device. 

This approach will include algorithms to estimate the degree of importance of each cell 

on the touch screen of the user’s smart device for continuous authentication, and to 

identify the usage context of the smart device. This approach has two major advantages.  

One is that this approach is more efficient by adaptively updating the authentication 

model with evolving user’s finger gestures. The other major advantage is to have better 

authentication accuracy by treating uninterrupted user finger gestures over a short time 

interval as a single gesture for continuous user authentication. 

The organization of this chapter is as follows: After discussing the overall approach 

in Section 4.1, the features used for continuously authenticating a smart device’s user will 

be presented in Section 4.2. A method of estimating the degree of importance of each cell 

on the touch screen of the user’s smart device to continuous user authentication will be 

presented in Section 4.3. The estimation of usage context of the smart device based on 

user’s touch gestures will be presented in Section 4.4. In Section 4.5, we will present a 

technique using the MDP for continuous user authentication. An example to illustrate a 

part of our approach will be given in Section 4.6, and conclusions and future research 

will be discussed in Section 4.7. 

The research tasks proposed in this section includes developing approach that uses 

MDP for performing adaptive continuous authentication of legitimate users on touch 

based smart devices. The specific goals of our approach are (1) continuously authenticate 

user on a touch based smart device without requiring frequent cognizable user input, (2) 

adapt the authentication algorithm efficiently based on the changing legitimate user 
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behavior with minimal resources, and (3) leverage the probabilistic nature of user 

behavior to improve the efficiency of the continuous authentication.  

 

4.1  Approach 

 

In this section we will present our approach algorithm to continuously authenticate 

the user on a touch-based smart device. This approach will include an algorithm to 

estimate the degree of importance of each cell/state on the user’s smart device touch 

screen, estimate the context in which the smart device is being used by the user, and a 

technique that uses the Markov decision process (MDP) to continuously authenticate 

legitimate user. In our approach, we assume that all the states of the smart device are 

known and observable. This is a valid assumption since in our approach the observable 

smart device screen is divided into smaller cells and each cell represents a state in the 

MDP state graph. A sequence of states represents a user gesture.  Since all the cells are 

known and the structure of the grid is well defined, the MDP can be applied to our 

problem. Our approach has the following features:  backward compatible with older 

versions of smart devices, lightweight, and easy to use.  In our approach we assume that 

an adversary has the following capabilities: (1) able to observe the behavior of the user 

on the smart device (shoulder surfing), (2) able to physically steal user’s smart device, 

and (3) knowledgeable of the user’s smart device authentication pin. 
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Figure 2: System Diagram for Our Approach for Continuous User Authentication 

 

In our approach, as shown in Figure 2, we will define two different kinds of user 

gestures; one is micro-gesture which is defined as uninterrupted user finger movement on 

the smart device screen, and the other is the macro-gesture which is defined is as 

collection of micro-gestures over a preset period of time. This preset period also will 

define the frequency of the continuous authentication of the user.  We will use a data 

acquisition procedure for generating the grid value which is the estimated degree of 

importance of each cell/state on the user’s smart device touch screen. 
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Our overall approach [12] is shown in Figure 2, and its major steps are designated by 

the numbers in the figure, 

Step 1) Continuously collect the sensory data from the user’s smart device when the 

user is using the smart device. Since most of the features we require are 

similar to those used in [41], we use the same procedure in [41] to extract the 

data from the mobile device.  

Step 2) Analyze the sensory data flows collected during the user’s usage session of the 

smart device in Step 1 to extract the necessary information to construct the 

required features. The output of this step is the features which are used for 

grid value generation (GVG) process. 

Step 3) Using the features constructed in Step 2 to run the GVG algorithm on user’s 

smart device for continuously updating the MDP state graph during the user’s 

smart device usage session. The inputs for the GVG algorithm include the 

attributes of user gestures on the smart device screen, such as pressure, speed 

and usage frequency.  

Step 4) Identify the context in which the touch screen of the smart device is being used 

by the legitimate user using the primary and secondary features.   

Step 5) Generate the plans which are the sequences of cells/states in the MDP state 

graph representing the user’s gestures, along with the plans’ respective 

cumulative reward value.  These plans are generated using our technique that 

uses the MDP algorithm.  

Step 6) The cumulative reward values of the plans are then used as benchmark data to 
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continuously authenticate the legitimate user of the smart device. The 

cumulative reward values of the plans are compared with the cumulative 

reward value for user’s touch gesture for effective authentication. 

Our continuous authentication approach is flexible to the selection of number of cells 

and can be selected based on factors, such as type of user’s smart device, screen size, 

degree of uniqueness of user gestures to be captured. It is also important to note that 

increasing the number of cells also increases the operational complexity. So an optimal 

trade-off is needed to be achieved based on the application specification, since the 

accuracy of the continuous authentication depends on the number of cells on touch screen 

of the smart device accurately. The details of the grid representation in the MDP will be 

explained in Section 4.3. 

 

4.2  Representation of user finger gestures 

  

In our approach, we use two kinds of user gestures; one is micro-gesture which is 

uninterrupted user’s finger movement on the smart device screen, and the other is the 

macro-gesture which is a collection of micro-gestures over a preset time interval. We will 

use the data acquisition procedure [41] for extracting raw user’s finger gesture data from 

the touch screen of the smart device. 

In order to efficiently represent the user’s finger gestures on the touch screen of the 

smart device, the set of features needs to be simple, and yet can represent the various 

finger gestures reflecting the user’s unique usage characteristics of the smart device. This 

will ensure that the collected information from the touch screen of the smart device is 



26 
 

sufficient to distinguish the legitimate user of a smart device from other users, including 

malicious users. In our approach, we select dynamic and unique parameters, such as 

user’s finger touch pressure and speed of user’s finger gestures. We set two levels of 

features, called primarily and secondary, from the features used in the smart device 

authentication techniques [41] to ensure the efficient representation of user’s finger 

gestures and accurate continuous authentication of the legitimate user. Our illustration in 

Section 4.7 shows that these features are reasonably good and sufficient for continuous 

user authentication. 

1)     Primary features: 

a) First touch (FT) of a cell, represents the cumulative total number of times the 

user’s micro-gesture started on the cell of the smart device. 

b) Duration of touch (DT) of a cell, represents the duration of all the user’s touch 

micro-gestures on a particular cell of a smart device touch screen. 

c) Pressure of touch (PT) of a cell, represents the pressure of all the user’s touch 

micro-gestures on a particular cell of a smart device touch screen 

d) Frequency of usage (FU) of a cell, represents the cumulative total of particular 

cell accessed in a user’s macro-gesture on the smart device touch screen. 

e) Last touch (LT) of a cell, represents the cumulative total number of times the 

user’s micro-gesture ended on the cell of the smart device 

2)     Secondary features: 

a) Average touch pressure (APT) of a cell, represents the cumulative average 

touch pressure on a particular cell in a user’s macro-gesture on the smart 
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device touch screen. This feature is derived from the PT. 

b) Average Duration of Touch (ADT) of a cell, represents the cumulative 

average touch duration on a particular cell in a user’s macro-gesture on the 

smart device touch screen. This feature is derived from the DT. 

c) Speed of user gestures (SG), represents the average speed of the user’s micro-

gestures in a particular macro-gesture on the smart device touch screen. This 

feature is derived from the DT. 

 

4.3   Capturing User’s Finger Gestures 

 

In this section, we will present the algorithm used in our approach to generate the 

reward value 𝑅𝐶𝑖
 of each cell of touch screen of the smart device. The 𝑅𝐶𝑖

 represents the 

importance of cell and is estimated using the primary and secondary features of the touch 

screen of a smart device. Each cell of touch screen of the smart device is a state in the 

state graph of MDP [42, 43]. The MDP can be represented by a 4-tuple: 

 

< S, A, T, R, γ >, 

 

where S represents a finite set of cells on the user’s smart device touch screen, A 

represents a finite set of actions, which represent the user’s finger gestures, possible 

from every cell on touch screen of the smart device. T represents the set of 

probabilities 𝑃𝑅𝐶𝑖

𝐸𝑗
 for the occurrence of every action 𝐸𝑗 from each cell 𝐶𝑖. R 

represents the reward value 𝑅𝐶𝑖
 of 𝐶𝑖, which is derived from the features of the 



28 
 

legitimate user’s finger gestures on the smart device’s touch screen as described in 

(5). The 𝑅𝐶𝑖
 is used as a metric for estimating the degree of importance of each cell on 

the user’s smart device’s touch screen. γ is the discount factor used for controlling the 

rate at which the MDP learns the user’s finger gestures. 

 

The collection of all the cells of a smart device’s touch screen in a time period 𝑇𝑥, is 

denoted by 𝑆𝑇𝑥
, can be represented as follows:   

 

𝑆𝑇𝑥
= < 𝐶1, 𝐶2, … , 𝐶𝑖 >                        (1) 

 

where 𝐶𝑖 is a cell of the touch screen of the smart device, where i = 1, 2, …, n, 

and n is the number of cells on the smart device’s  touch screen, and 𝐶𝑖 is a 4-tuple      

 

𝐶𝑖 = < 𝐹𝑇𝑖, 𝐴𝐷𝑇𝑖 , 𝐴𝑃𝑇𝑖 , 𝐹𝑈𝑖 , 𝐿𝑇𝑖 >                 (2) 

 

where 𝐹𝑇𝑖 , 𝐴𝐷𝑇𝑖, 𝐴𝑃𝑇𝑖, 𝑎𝑛𝑑 𝐹𝑈𝑖 represent the features first touch, average touch 

duration, average touch pressure, and frequency of usage of 𝐶𝑖 respectively.  

 

𝐷(𝐶𝑖 , 𝐶𝑋𝑇𝑥
) =  

 𝐴𝐷𝑇𝑖× 𝐴𝑃𝑇𝑖×𝐹𝑈𝑖 × 𝐿𝑇𝑖

𝐶𝑋𝑇𝑥

       (3) 

 

S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
) =  

𝑒 × 𝐶𝑋𝑇𝑥

𝑇𝑥
                        (4) 
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The 𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥
) and  S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥

), given in (3) and (4), are used for measuring the 

importance of the cell and the importance of usage context to continuous user 

authentication, respectively. The 𝐶𝑋𝑇𝑥
will be defined and calculated using (6) in Section 

4.4. The larger value of 𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥
) indicates that the specific 𝐶𝑖 is more important in 

terms of user’s touch pattern. The larger S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
)  indicates that the user’s finger 

gestures can provide more robust continuous authentication. 𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥
) and 

S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
) are then used for calculating 𝑅𝐶𝑖

.  

 

The 𝑅𝐶𝑖
 of the 𝐶𝑖 of the smart device’s screen are calculated as follows: 

 

𝑅𝐶𝑖
= 𝑎𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥

)+ bS(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
)              (5) 

 

where a, b and e are the weighting factors initialized during the application 

installation based on the type, the screen size, location, usage context, computational and 

space constraints of the smart device. 

(5) is derived from our objective trade-off function (OTF) [44] for quantitatively 

measuring and incorporating performance and security in service-based systems. Since 

security configuration and traffic frequency vectors used in OTF are very similar to our 

primary and secondary features, we adapt the OTF to estimate the values of the cells 

based on the user’s performance and security metrics requirement.  
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𝑃𝑅𝐶𝑖

𝐸𝑗
is the probability metric for every edge 𝐸𝑗 of 𝐶𝑖 and is generated based on the 

user finger gesture movements on the smart device’s touch screen. Here each edge 

represents transition between two states for a specific action. All the secondary features 

will be used for generating the update frequency of the probability and reward metrics in 

the state graph of the MDP because the secondary features are more stable and more 

accurately represent user’s macro figure gestures. A major advantage of our approach is 

that it is flexible and designed to work even if a different technique is used to generate 

the 𝑅𝐶𝑖
  and 𝑃𝑅𝐶𝑖

𝐸𝑗
 depending on the user’s application requirements. 

 

4.4    Usage context identification 

 

In this section, we will present our technique to identify the usage contexts, which 

indicate how the user, in terms of finger gestures, is using the smart device over the time 

period, such as gaming, reading, and streaming videos. The usage context of the smart 

device is very important because it affects the nature of the user gestures. In order to have 

good accuracy for user authentication, it is essential to identify the smart device’s usage 

context. On the other hand, the existence of different usage contexts implies that we need 

to change the MDP models to facilitate continuous authentication for the different usage 

contexts. Hence, it is desirable to have a small number of usage contexts for the user’s 

smart device for quickly authenticating the legitimate user. From authentication point of 

view a larger number of usage contexts may not necessarily improve user authentication 

accuracy. 

In our approach, we classify the user gestures into n usage contexts, where n is a 
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preset number of usage contexts for a specific application. The classification will be done 

based on the primary and the secondary feature inputs. The idea here is to basically 

identify the usage context of the smart device usage. Each usage context has unique 

characteristics such as in gaming mode the user may use the touch screen of a smart 

device more frequently compared to other usage contexts. We try to use the primary and 

secondary features to discriminate the user gestures based on their unique characteristics 

and classify them. The equation for identifying the context is shown in (6), 

 

𝐶𝑋𝑇𝑥
=  𝑒𝑁𝑆(𝐴𝑃𝑇𝑖, 𝐴𝐷𝑇𝑖 , 𝑆𝐺𝑖)                  (6) 

 

where 𝐶𝑋𝑇𝑥
is the usage context of the smart device’s touch screen for a time period 

𝑇𝑥, and 𝐴𝑃𝑇𝑖 , 𝐴𝐷𝑇𝑖 , 𝑆𝐺𝑖 are the secondary features as mentioned in Section 4.2. The 

function NS is a normalized summation function which adds the normalized values of 

𝐴𝑃𝑇𝑖 , 𝐴𝐷𝑇𝑖 𝑎𝑛𝑑 𝑆𝐺𝑖. The major advantage of our approach is that it is flexible and 

designed to work even if a different technique is used to generate the 𝐶𝑋𝑇𝑥
based on the 

application requirement. The value of  𝐶𝑋𝑇𝑥
 is then used to identify the smart device’s 

usage context. 

 

4.5   Continuous user authentication 

 

In this section, we will discuss how to generate the plans [45] used for continuously 

authenticating the user of the smart device. Each plan is a sequence of states in a MDP 

state graph and represents a particular user’s micro-gesture on the touch screen of the 
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smart device. The continuous authentication technique for authenticating the legitimate 

user continuously is performed using the generated plans for all the micro-gestures. The 

cells on the touch screen of the smart device are used to capture the user’s finger 

gestures. The MDP tuples described in Section 4.4 are specifically modeled to meet the 

requirements for our continuous authentication approach. The application provider 

initially sets the probability and reward metric of every edge and cell in the state graph 

respectively, based on the typical user finger gesture information. These parameters are 

then initialized on user’s smart device during application installation or new user 

registration procedure. Based on the user’s smart device usage, the parameters will be 

personalized to the individual user using the equations discussed in Section 4.4. Each 

user’s usage context of the smart device has its respective probability and reward metrics.  

In our approach, we use policy iteration technique [46] and value iteration technique 

[47], each of which is used to generate the plans for all the micro-gestures, because they 

are more efficient, accurate and relevant to perform continuous user authentication in a 

smart device. We have compared the performance of these two techniques using the 

illustrated example in Section 4.7. Other popular MDP techniques, such as modified 

policy iteration technique [48] are not suitable as they need more accurate and stable 

heuristics to use effectively, and generating these accurate and stable heuristics is very 

difficult because of the dynamic nature of the user finger gestures.  
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The following is the MDP policy generation algorithm: 

 1. Given a policy P 

 2. Loop: 

      (a) Evaluate 𝑉𝑃 with (7) 

      (b) For each 𝐶𝑖 in  𝑆
𝑇𝑥

 , set improved policy using (8) 

      (c) Replace P with P’, where P’ is the new policy 

 Until no improving action possible at any state 

        

          (7)   

         

           (8) 

  

where 𝑉𝑃 is the value function of a policy P for a current cell i, 𝑅𝐶𝑖
 is the reward 

metric for the cell i, β is the discount factor which is used to control the 

importance of future reward, i’ represents a new cell neighboring to cell i 

 

Policy generated by the MDP provides the optimal actions from each cell of the grid 

in probabilistic environment. Using the optimal policy and the first and last touch of a 

macro-gesture an optimal path is generated. The cumulative reward value for the optimal 

path and the cumulative reward value for the actual macro-gesture is compared to 

continuously authenticating the legitimate user. These optimal policies can be computed 

offline if needed 
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The value iteration technique [47] enables the MDP to constantly perform backward 

induction using the Bellman backup equation to generate the plans. In the value iteration 

technique, there is no initial plan and the plan is generated and then updated when the 

reward values of the cells are updated. The reward values for all the cells are initialized 

using (5) based on the degree of importance the typical user finger gestures, and is then 

adjusted continuously based on the legitimate user’s finger gestures. The value iteration 

technique will generate plans that maximize the cumulative reward values of the plans in 

a probabilistic environment. The cumulative reward value of a plan is the summation of 

the reward value of all cells in a plan. The value iteration technique, after generating the 

plan, will keep updating the reward values of the cells till the plans stabilize. This is done 

to dynamically update the degree of importance of all the cells based on their neighboring 

cell reward values. This enables the system to be more accommodating to legitimate 

user’s errors, thus reducing the false negative rates.  

The policy iteration technique [48] works similarly to value iteration technique, but 

the difference is mainly that in policy iteration technique we initialize the technique with 

pre-selected plans and then use the backward induction to update the plan. The output of 

the policy iteration technique is a set of plans along with their respective cumulative 

reward values. The major advantage of the policy iteration technique with respect to the 

user continuous authentication is that unlike the value iteration technique, the policy 

iteration technique has prior knowledge on the plans, and hence converges quickly. 

Policy iteration technique is more likely to achieve plan convergence faster than the value 

iteration because the policy iteration technique iterates over the plans instead of the 
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individual reward values of state as in the case of the value iteration technique. But, if the 

initial plan assignment is random or incorrect, then the policy iteration technique may 

take longer to converge or generate suboptimal plans, either of which will affect the 

continuous user authentication. 

In summary, each of the value iteration technique and the policy iteration technique 

will generate a set of plans along with their cumulative reward values. These plans will 

then be ranked based on their cumulative reward value, importance to the observed user’s 

micro-gestures and the smart device usage context. The cumulative reward values of the 

ranked plans are then used as benchmark data for continuously authenticating the user’s 

macro-gestures on the touch screen of the smart device. The dynamic nature of the MDP 

enables the reward metrics and the probabilities to keep changing continuously along 

with the user’s evolving gestures. This is unlike the supervised learning techniques, 

where the learned pattern does not change with the evolving user finger gesture. 

The applicability of each of these two techniques depends on the user’s application 

requirements. In some cases, one technique is better than the other and vice versa. Since 

the policy iteration technique has the prior typical user finger gesture information, the 

technique can perform continuous user authentication faster, but with relatively 

acceptable error rates which may be suitable for normal user authentication. However in 

highly critical applications, more robust continuous user authentication is needed. In such 

applications, the value iteration technique will be more suitable because it has no biases 

on user finger gestures and hence can achieve more accurate continuous user 

authentication. 
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4.6  Evaluation 

 

In order to evaluate our approach we collected the actual user usage data and partly 

used the dataset used in [41]. The unified dataset consists a total of 20 graduate students 

at ASU in the age group of 21 to 29. There were no restrictions placed on the users, they 

were instructed to use their smart phones as they would do so normally. The users can 

browse web pages, including news, online forums, social network websites, etc., or use 

the installed apps, such as twitter, facebook, browsers, etc. Users were not required to 

continuously use the smartphone. 

The evaluation of our approach was done for a grid size of 8X6, which provides us 48 

cells. The purpose for choosing the 8X6 grid is to provide us adequate fidelity of finger 

gesture information. Additional constraint on the grid size is also computation overhead, 

as larger grid size has higher overhead. The 8X6 grid is shown in Figure 3. For the 

purposes of visualization we constructed Figure 3, which shows the distribution of the 

reward values across the various cells of the grid for a sample legitimate user.  The scale 

for Figure 3 is as follows, colors in the green spectrum indicate high cell usage and the 

colors in the red spectrum range indicate low cell usage. The magnitude of the usage is 

illustrated by the brightness of the colors, darker colors representing higher magnitude 

and lighter colors representing the lower magnitude. As shown in the Figure3, each of the 

cell in the grid is named as Cx, where x ranges from 1 to 48.  
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Figure 3: Sample Finger Gesture Usage Pattern of Legitimate User 

 

Figure 3 was generated from a selected user usage data of the touch based smart 

phone. We can infer from the diagram that the user is most likely a right hand user as 

there is a heavy usage of the bottom left corner of the touch screen which is typical 

pattern observed in the right hand users. The color and brightness distribution also shows 

a significant vertical and horizontal scroll gestures, which is consistent with the general 

usage pattern of the smart phone where scroll gestures contributing significantly larger 

proportion of the finger gestures [41]. 
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Figure 4: Sample State Graph for Finger Gesture Usage Pattern of Legitimate User 

 

Figure 4 illustrates the actions and its effect on the state transitions. As mentioned in 

our overall approach in Section 4.1, we consider two kinds of gestures micro-gestures 

which is relates to action A1 and macro-gestures which is relates to action A2.  Each of 

the rectangular box shown in Figure 4 is a specific cell on the touch screen of the smart 

device. We can observe from Figure 4 that actions in A1 category resulting in 

neighborhood state transitions, meaning the next state will be a neighboring state to the 

current state. Actions that relate to A2 result in state transitions to non-neighboring states. 

Note that each state transition is probabilistic in nature and hence has a probability value 
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assigned to it. For example the transitions among the C46, C47, C40 and C46 with only 

A1 actions represents the user is exhibiting a uninterrupted touch gesture on the touch 

screen of the smart device. Similarly, transitions among the C25, C43, C46 and C43 with 

only A2 actions represents the user is exhibiting a skip touch gesture on the touch screen 

of the smart device. 

The application was designed to monitor and record the users’ finger movements on 

the touch screen of the smart device. For this experiment we fixed the number of states 

for MDP to be 48, to make it robust and to ensure cross-device functionality. The 

application automatically populates the MDP probability, reward and transition values 

required for the user authentication based on the observed user finger movement data. For 

the experimental purpose, the application was designed to passively authenticate the 

users, meaning that the results of this authentication process were not shown to the test 

users but were stored for later analysis. The data from all the devices were retrieved and 

the initial analyses have shown promising results. 

Our overall evaluation followed the below steps of our approach is shown in Figure 3, 

Step 1) Continuously collect the sensory data from the selected users’ smart device 

during their using of the smart device. Follow the technique presented in [41] 

to extract the data from the mobile device.  

Step 2) Analyze the sensory data flows collected during the user’s usage session of the 

smart device in Step 1 to extract the necessary information to construct the 

required features. The output of this step is the features which are used for 

grid value generation (GVG) process. 

Step 3) Using the features constructed in Step 2 to run the GVG algorithm on user’s 
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smart device for continuously updating the MDP state graph during the user’s 

smart device usage session. The inputs for the GVG algorithm include the 

attributes of user gestures on the smart device screen, such as pressure, speed 

and usage frequency.  

Step 4) Identify the context in which the touch screen of the smart device is being used 

by the legitimate user using the primary and secondary features.   

Step 5) Generate the plans which are the sequences of cells/states in the MDP state 

graph representing the user’s gestures, along with the plans’ respective 

cumulative reward value.  These plans are generated using our technique that 

uses the MDP algorithm.  

Step 6) The cumulative reward values of the plans are then used as benchmark data to 

continuously authenticate the legitimate user of the smart device based on the 

cumulative reward  

 

As mentioned earlier each of the legitimate user usage data was collected for a week. 

The usage data of the individual legitimate user was then used to personalize the MDP 

state graph to reflect their respective usage pattern.  Each of the 20 participant data was 

used in our evaluation. In order to make our evaluation realistic we generated the 

negative list of the figure gesture data of potential malicious user by randomly selecting 

the finger gesture data from non-legitimate users. The process of random selection was 

used in order to reduce the selection biases during the negative list generation process. 

The error rates for the various observation windows for different contexts are shown in 

Figures 5 and 6. Figure 5 shows the False Acceptance Rate (FAR) spread across 
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observation windows. The FAR metric measures the acceptance of the non-legitimate 

user as a legitimate user by the authentication algorithm. The FAR is considered as one of 

the most important metric as it measures the security performance. The average FAR for 

our continuous authentication algorithm ranges from 8%, for shorter observation window, 

to as high as 24%, for longer observation windows. 

 

 

 Figure 5: Spread of Average False Acceptance Rates of Our Continuous 

Authentication Approach for Various Contexts  

 

As we can observe from Figure 5, the medium activity context has comparatively 

lower FAR than the high activity and the low activity contexts. Intuitively we should 

expect lower FAR for high activity context than the medium activity context, since input 
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figure gesture frequency is higher. Generally more information means lower FAR, but we 

did not observe this except for one observation window of 10. We suspect that that the 

higher FAR of high activity context is due to high finger gesture information noise. The 

continuous authentication algorithm may be unable to accurately discriminate against 

non-legitimate users in low activity context due to the fact that there is insufficient finger 

gesture information. 

 

 

Figure 6: Spread of Average True Positive Rates of Our Continuous Authentication 

Approach for Various Contexts 

 

As we can observe from Figure 6, the medium activity context has comparatively 

higher TPR than the high activity and the low activity contexts. Similar to the FAR 
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figure, intuitively we should expect higher TPR for high activity context than the medium 

activity context, since input figure gesture frequency is higher. But, as in the case with 

FAR figure, we did not observe this for any of the observation windows. We suspect that 

that the lower TPR of high activity context is due to high finger gesture information 

noise. The continuous authentication algorithm may be unable to accurately discriminate 

against non-legitimate users in low activity context due to the fact that there is 

insufficient finger gesture information.  

 

 

Figure 7: Spread of Average Accuracy of Our Continuous Authentication Approach for 

Various Contexts 

 

Figure 7 shows the average accuracy rate of our continuous authentication algorithm. 

The observations among the high activity, medium activity and the low activity levels are 
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very similar to the TPR graph as expected. Based on the observed FAR, TPR and average 

accuracy metrics we conclude that our approach to continuously authenticate legitimate 

user performs relatively well. We also recommend the observation windows for the high 

activity, medium activity and low activity levels to be 10, 20 and 30 seconds respectively. 

In order to effectively secure the touch based smart device during the observation 

windows we recommend restricting the access to the critical applications of the smart 

device till the user is authenticated.   

In addition we benchmarked our continuous authentication approach with the existing 

techniques to both authenticate and re-authenticate the legitimate user of the smart 

device. The major categories of the benchmarks that we chose were usability, 

deployability and security. The rationale behind choosing these categories was that they 

were some of the most important metrics for evaluation of authentication approaches. 

The sub-categories for each of the major categories, as shown in Table 1, were chosen to 

effectively discriminate and compare the various authentication and re-authentication 

techniques. 
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Table 1: Comparative Evaluation of Various User Authentication Schemes 
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Usability Deploya-

bility 

Security 

 

(Incumbent) 
Digit/Pattern 

Password 
[8]  

  

Biometric 

FingerPrint 

Iris 

Voice 

Camera 

Gyroscope 

[8] 

 

[21] 

 

[21] 

 

[22] 

 

[23] 

 

  

Cognitive 

Unob-Auth 

Rhy-Auth 

Multi-Touch 

[20] 

 

[62] 

 

[18] 

 
  

Adaptive 

Cognitive 
Contin-Auth [12]  

  

 = offers the benefit,   = almost offers the benefit, no circle = does not offer benefit 

Green outline = better than incumbent passwords, Red outline = worse than 

incumbent passwords  
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Note that both the accuracy, FAR and TPR were based on the user usage data for one 

week. Our algorithm is reinforcement based, hence it tends to get better with higher 

usage. We expect the FAR and TPR metrics to improve significantly as the algorithm 

gets used continuously by the legitimate user for longer periods of time. 

 

 

Figure 8: Comparison of Error Rates for Value Iteration and Policy Iteration Techniques 

of MDP 

 

Additionally we did a comparative study between two variations of MDP 

implementation which yielded graph as shown in Figure 8. Policy iteration (PI) 

technique, shown as red line in Figure 7, performs faster continuous user authentication 

and has higher error rates since it is biased with the prior typical user finger gesture 
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information. Value iteration (VI), shown as blue line in Figure 7, is more robust and 

hence is applicable for highly critical applications and has a slower convergence rate. It 

also has no biases on user finger gestures and hence can achieve more accurate 

continuous user authentication. 

 

4.7  Further Improvements 

 

In this chapter, we have presented an approach that uses MDP and touch gestures of 

the user to continuously authenticate the user on a touch-screen smart device. This 

approach incorporates continuously learning, adaptation and validation of the user’s 

finger gestures, and also estimation the usage context of the smart device. The major 

advantage of this approach is that it does not require the user to consciously provide 

inputs for training purposes and does the learning, adaptation and validation of the user’s 

finger gestures in the background, invisible to the user. By continuously learning the user 

gestures, our system will be able to capture important unique user characteristics and also 

adapt to evolving user’s finger gestures. This enables our system to build an accurate 

adaptive user gesture pattern that is very effective and efficient for continuous user 

authentication. Another major advantage of our approach is to have better authentication 

accuracy by treating uninterrupted user finger gestures over a short time interval as a 

single gesture for continuous user authentication 

We need to conduct experiments to determine suitable weighting factor values for our 

approach. In addition, we plan to further reduce the memory and computational resources 

required for our approach by factorizing the cell attributes in MDP. We plan to integrate 

this approach with the development of smart IoT environment [13, 49].  The size of the 



48 
 

grid and the shape of the individual cell also play a vital role in determining the 

authentication accuracies, and hence we plan to conduct further research in this direction. 

We also plan to extend this approach to include the use of user-specific information, such 

as device type, user age, gender, geographic location, operating system to better 

incorporate user’s characteristics. 
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Chapter 5 

 

INTELLIGENT ADAPTATION OF DEVICE STATES IN IoT ENVIRONMENT 

 

 U-things (smart devices) are being used everywhere now-a-days, more and more 

smart devices, such as smart phones, central air conditioners, TVs, and smart ovens, are 

coming into workplaces and homes. Recent surveys [1, 2] have shown that this trend will 

increase rapidly in the future. U-things are physical things with attached, embedded or 

blended computers, networks, and/or some other devices, such as sensors, actors, and e-

tags [50]. Although most of these devices are designed to interact with each other, they 

are mostly used with few interactions with their surroundings. In order to fully realize the 

potential of u-things to satisfy a broad range of requirements of many users efficiently, 

such as satisfying various QoS as well as functional requirements, it is necessary to have 

intelligent mobile IoT applications incorporating interactions of u-things as well as non-

u-things with other smart devices in their environments. A non-u-thing is a physical thing 

without network communication interface to interact with its environment, such as food 

heaters, monitors.  

Current approaches to developing intelligent mobile IoT applications use only many-

to-many communication among u-things with minimal automation, which often results in 

large communication overhead and may require complicated handshake protocols. In this 

chapter, we will present an intelligent planning approach to developing cloud-based 

mobile IoT applications with reduced communication overhead by using only one-to-one 

communication between a u-thing and one of the control modules of its application 
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environment. We consider a mobile IoT application as a physical space consisting of u-

things, non-u-things and users, in which these devices and users operate. Developing an 

intelligent mobile IoT application includes enabling the interactions of the u-things, non-

u- things and users with their surroundings.  

In the past, the number of the u-things in a users’ environment has been relatively 

small, and they were easy to operate.  In such an environment, users can set and/or select 

devices’ modes of operation. But, now the number of u-things in user’s applications is 

rapidly increasing, and many u-things have more modes of operation. Users are usually 

not expected to set and/or select their smart devices’ modes of operation due to the 

increasing complexity involved in the causal relationship the devices has on their 

environments. However, each device’s mode of operation has to be set so that the goals 

of the intelligent mobile IoT application, such as maximizing performance, security, and 

energy efficiency, can be achieved. It is important to include both u-things and non-u-

things in our approach because non-u-things may be needed to achieve the users’ goals.  

The main contribution of this chapter is to present an approach to intelligently planning 

the device actions required to achieve the users’ mobile IoT application requirements 

efficiently. Our approach also includes a technique for service providers to assess the 

states of all the devices in IoT applications. The intelligent planning will be performed 

based on the dynamic assessment in a mobile IoT application environment, which is 

accomplished by using learning and planning algorithms through mobile cloud 

technologies. A plan is nothing but a sequence of device actions to be executed by the 

devices/things in the mobile IoT application.  
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In this chapter, Section 5.1 contains our overall approach. In Section 5.2, we will 

discuss how the service providers for an intelligent mobile IoT application will analyze 

device states. In Section 5.3, we will discuss our approach to automatically label the IoT 

devise states. In Section 5.4, we will discuss our approach to dynamic assessment of the 

performance of the devices. In Section 5.5, we will discuss our planning technique for 

developing an intelligent mobile IoT application. In Section 5.6, we will present an 

example to illustrate our approach, and in Section 5.7 we will present some simulation 

results to show the effectiveness of our approach. In Section 5.8, we will discuss 

conclusions and future work. 

 

5.1  Approach 

 

The research tasks proposed in this section includes developing approach that uses 

regularized least square and Markov Decision Process for intelligent planning of device 

actions in IoT application environments. The specific goals of our approach are: (1) assist 

the user(s) of the IoT application in securing their environments, (2) observe and monitor 

user(s) behavior to plan device actions that complement user behavior and preferences, 

and (3) ensure that the user requirements are satisfied with minimal resources. Each of 

the above items will be discussed in detail in the Section 5.1. 

In our approach, we consider three types of entities in an intelligent IoT application 

environment: users, manufacturers and smart environment service providers SESP. The 

primary functions of these entities include the following, (1) The users provide the SESP 

with the functional and quality requirements, and application environment, (2) The 
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manufacturers provide the state information and device specification manuals of the u-

things and non u-things requested by the SESP, and (3) The SESP will analyze the above 

requirements, obtain the list of u-things and non u-things, and develop machine learning 

algorithm to assess the devices in the application environment. 

We define intelligent environment tiers IET to indicate how well a device’s state 

conforms to the users’ specified application, such as satisfactory, marginal, and 

unsatisfactory. The number of IET required for a IoT application will be determined by 

the SESP after analyzing the users’ application specification. An intelligent IoT 

application will consist of u-things, non u-things and users, whose actions and/or 

performance collectively will satisfy the users’ IoT application requirements. In our 

approach, we will use a low-cost device authentication mechanism [3] to authenticate all 

the u-things. We will use our prior results to ensure the trust management and 

confidentiality protection requirements in cloud environment are efficiently handled [49, 

51, 52]. Data reported from those u-things which fail the authentication will not be 

accepted.  
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Figure 9: System Diagram for Our Approach to Intelligent Adaptation of Device States in 

IoT Environment 

 

Our overall approach [13] is depicted in Figure 9, including various entities and their 

interactions. Our approach involves the following steps,  

 

Steps on SESP side: 

Step 1) A user provides the functional and quality factors that are required by SESP 

for enhancing the security of the IoT application environment. 
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Step 2) The SESP identifies the list of u-things and non u-things, and their state 

information from the registry of Things, which is initially generated with the 

information provided by the manufacturers of u-things and non u-things.   

Step 3) The SESP analyzes the state information of each u-thing and non u-thing based 

on the ranking of importance of all the states with respect to the users’ IoT 

application specifications to assign value to the state of the device. 

The SESP also assigns an impact index IM for u-things and non u-things, 

which reflects the impact the devices, has on certain quality factors of the IoT 

application.  

 Step 4) The SESP uses ALA our technique to automatically assign the IET labels for 

selected Domain State DSs. More details on our ALA algorithm will be 

presented in Section 5.3. DSs are the combinations of observed u-things and 

non u-things states at any particular time in the IoT application environment. 

Step 5) The SESP uses the labeled DSs in Step 4) as the training data to generate the 

trained machine learning algorithm using supervised learning techniques.   

Step 6) SESP uses our technique that uses markov decision process MDP planner on 

its cloud servers for action formulation and the resultant domain state obtained 

from executing formulated actions of application domain is validated by the 

trained machine learning algorithm to check for plan’s effectiveness with 

respect to the user requirements.  

Steps on user intelligent application: 

Step 7) The SESP provides/installs a controller device (CD), which includes trained 
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machine learning algorithm in users’ IoT application to monitor all u-things 

states. The CD can be installed in a smart phone/tablet which is designed to 

access cloud through the network.  

Step 8) The trained machine learning algorithm uses all the u-things’ states and the 

given state of non u-things of a particular time instant to categorize the DS. 

The states are collected by the CD using communication systems such as 

bluetooth, zigbee, wi-fi. 

Step 9) CM then transmits the data to cloud servers where Step 6) is performed to 

formulate the device actions to adjust the necessary u-things action/operations 

in real time to reach the users’ expected goal through CD. Since CD cannot 

control non u-things, the CD only provides recommendation on the required 

actions of non u-things to the users. 

 

5.2  Dynamic IoT State Assessment 

 

In this section we will primarily discuss the development and deployment of the 

learning algorithms, namely RLS (regularized least squares) and ALA (Automatic 

Labeling Algorithm), for the dynamic assessment of the IoT environment. The SESP will 

primarily use the ALA to automatically label the training dataset with minimal utilization 

of the domain experts, and use RLS algorithm for the dynamic IoT assessment. The 

rationale for developing two algorithms, RLS and ALA, for IoT environment assessment 

is for accommodating the real-world problem of availability/feasibility of extensively 

using domain experts. Any restriction on the availability of domain experts will have 
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major impact on labeling the training data. In such cases, we propose the ALA algorithm 

which is an unsupervised learning algorithm. The RLS algorithm is a supervised learning 

algorithm hence it requires labeled training dataset. The ALA is designed to organize the 

dataset based on the similarity of their individual data points to one another. A few of the 

data points are randomly selected and manually labeled by the domain experts and the 

rest of the data points are automatically labeled by the ALA. The details of the ALA and 

RLS algorithms will be discussed in Section 5.3 and 5.4 respectively. 

The primary responsibility of the SESP is to assign device values for each device and 

train the machine learning algorithm, which will be discussed in Section 5.3. The SESP 

obtains the state information and device specifications manual from manufacturers. 

Attribute of device state is defined as a feature of a device which affects the mobile IoT 

application, and can be controlled by a user or control units. Examples for attributes of an 

air conditioner are blower, temperature, and time. SESP performs detailed analysis on the 

state information and attributes of the state, if needed the SESP may perform device 

testing to gather required information for state analysis. After the SESP gathers the 

necessary information, it performs state importance analysis using the domain experts, 

where it looks at the ranking of importance of the device states with respect to the mobile 

IoT application and assigns UV.  The state of the mobile IoT application, called the 

domain state DS, consists of the total states of the individual devices.  The DS at time t, 

𝐷𝑆𝑡, is represented as follows:   
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𝐷𝑆𝑡 = < 𝐷1, 𝐷2, … , 𝐷𝑖 , … >                         (1) 

 

where 𝐷𝑖 is the total state of the device i, i = 1, 2, …, which is a 4-tuple   

 

𝐷𝑖 = < 𝑁𝑖, 𝐿𝑖 , 𝑆𝑖
𝑡 , 𝐶𝑖, 𝐸𝑛 >,                          (2) 

 

where 𝑁𝑖 ,  𝐿𝑖,  𝑆𝑖
𝑡 and 𝐶𝑖 represent the name, location, state and context of device i, 

respectively. The UV and IM of the devices in a mobile IoT application are 

calculated by the SESP using our objective tradeoff function [44] as shown in (3) 

and (4). 𝐸𝑛 represent the possible events that can occur from current state  𝑆𝑖
𝑡. 𝐸𝑛 

contains state changes such as on, off, sleep 

 

𝑈𝑉𝑆𝑖
𝑡 = 𝐹(𝑁𝑖, 𝑆𝑖

𝑡, 𝐴𝐷)                    (3) 

 

where 𝑈𝑉𝑆𝑖
𝑡  is the value of the state of the device i at time t, and AD is the 

application domain preference set by the user. 

 

𝐼𝑀𝑖 = 𝐹(𝑁𝑖, 𝐿𝑖, 𝐶𝑖)            (4) 

 

where 𝐼𝑀𝑖  is the impact factor for each of device i.   
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In the IoT environment, when the number of total states and the devices space are 

very large, the SESP can establish a subset of benchmark states and assess the similarity 

of the states of each device to the benchmark data, and then assign a UV for the state of a 

device [53, 54]. This method has little overhead because the attributes of the state have to 

be defined in such a way that the similarity algorithm can compare the attributes of a 

devices’ state with the benchmark data. The alternative to this method is ranking the 

importance of attributes of all states. The SESP then can select a set of highest and/or 

lowest ranked attributes, whose occurrence will trigger a large change in the UV 

assignment of a state of a device. 

 

𝐿𝑉𝐷𝑆𝑡
=  

1

µ𝑁𝐷𝑆𝑡

 (∑(𝛼𝐼𝑀𝑖 ∗  𝛽𝑈𝑉𝑆𝑖
𝑡))        (5) 

 

where 𝐿𝑉𝐷𝑆𝑡
 is the label value for each domain state at time t, 𝑁𝐷𝑆𝑡

is the number 

of the devices in a given domain state at t, and µ, β and α are the variables that 

can be used to assign weight for each parameter based on users’ application 

specification.  

 

The SESP generates the DS that are representative of the users’ application 

requirements. A small subset DS’ is randomly selected from the overall DS. Equation (5) 

is used for calculating the 𝐿𝑉𝐷𝑆𝑡
 for each data instance in DS’. Note that the equation (5) 

is only used to calculate LV of DS’ to be used as a part of the training data. Each of the 

DS’ is assigned to one of the IET classes by the domain experts based on their LVs 

generated using equation (5).  
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5.3  Automated Labelling 

 

The primary objective of the ALA learning algorithm will be to minimize the use of 

domain expert inputs and at the same time provide relatively accurate assessment on the 

IoT environment. One of ways of minimizing the utilization of the domain experts is to 

minimize the practice of manual labelling, which is one of the most time consuming 

process. Towards achieving this objective we propose a technique to exploit the property 

of similarity to organize the whole training dataset and heuristically assign labels to 

unlabeled data instances. The ALA is derived from our prior work [55]. We will present 

more details in the below subsections.  

The ALA will use the modified k-means clustering technique with Mahalanobis 

distance as the distance metric to measure the similarity among the data instances in the 

dataset. The primary rationale for using Mahalanobis distance metric is to accommodate 

the variance within the cluster. The traditional implementation of the k-means clustering 

technique with Euclidean has major limitations. One of the major limitations is that it 

assumes every cluster to be spherical in shape. When the data instances distribution of the 

dataset does not conform to the spherical cluster shape then the accuracy of the clustering 

reduces significantly. This problem is especially acute in the IoT environments which are 

dynamic in nature. In order to accommodate the non-spherical cluster shapes and 

variances even within the classes we will use the Mahalanobis distance metric for 

clustering purpose. The covariance matrix required for generating the initial shape of the 

cluster will be calculated from the data instances in the DS’. 
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The individual devices states’ composing the DSs form the feature set and the number 

of IET classes correspond to the number of the clusters. The k-means clustering 

algorithm is an unsupervised learning algorithm hence it does not need labeled dataset. 

Since the ALA is required to assign IET classes to each of the data instance in the overall 

DS, the clusters generated by the modified k-means algorithm needs to be correspond to 

the IET classes. In order to associate the cluster to the IET class, we follow the “first-

past-the-post voting” principle. A cluster may be composed of data instances having 

multiple IET labels, and a cluster with highest count of IET labels will be assigned the 

respective IET class. 

 

The following steps illustrate the ALA, 

Step 5.3.1) Generate a subset DS’ from the overall DS through a process of random 

selection.  

Step 5.3.2) Calculate the covariance matrix using the data instances in DS’. 

Step 5.3.3) Use the modified K-means algorithm to generate and update the clusters 

by organizing the data instances in DS. 

Step 5.3.4) Use the voting technique to assign the IET class to the generated clusters 

with the IET classes assigned in DS’ 

Step 5.3.5) Assign the IET label corresponding to the cluster to all the data instances 

within the cluster. 

Step 5.3.6) Repeat Steps 5.3.3) to 5.3.5) until an accurate ALA is generated for 

automated IET label assignment. 
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The accuracy of the ALA depends on both the labelling accuracy DS’ which is 

performed by the domain experts, and the generation of the overall DS dataset which 

needs to be representative of the users’ application requirements. The SESP uses the input 

from the CM in the user’s mobile IoT application to maintain the logs of DS occurrences 

in the environment. The SESP uses these logs to generate the probability metrics for the 

occurrences of the devices’ states in the user’s mobile IoT application. Then the SESP 

can generate a list of frequently occurring states and a subset of DSs for the training data. 

Then the SESP can ensure that the mobile IoT application is adequately represented in the 

training data that is generated. The labelled data instances of the overall DS dataset will 

be used by the RLS algorithm to generate the model for assessing the dynamic IoT 

environment. 

 

5.4  RLS Learning Algorithm 

 

The objective function in the least square regression algorithm [56] is generally prone 

to overfitting and the dynamic nature of the IoT environment will likely make the 

overfitting problem much worse. This is due to the fact that dynamic environments 

generally require priors to generate accurate models, and hence in our approach we 

penalize the least square algorithm by adding a regularization variable. The regularization 

of the least square objective function can be either the 𝑙1 or the 𝑙2 norm depending on the 

users’ requirements on the adaptiveness of the learning algorithm.    

As mentioned in the above section, the ALA automatically labels the individual data 

instances of the DS dataset. The DS dataset is now used as the training data for training 
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the RLS algorithm. The preparation of the dataset will include k-fold cross-validation, 

where the k is 10. More on development and usage of the RLS algorithm will be 

discussed in this section. 

In our approach, we use the regularized least square RLS algorithm for two purposes, 

one is to dynamically assess the domain state of the mobile IoT application for its 

conformance with user requirements, and the other is to validate the resultant domain 

state obtained by executing formulated device actions. The SESP specifies the IET for the 

QoS assessment of the intelligent application with respect to the users’ specification, and 

hence SESP knows the number (n) of the classes IET needed to be classified. We choose 

to use N binary classifiers to predict datasets relating to each IET class, where N is the 

number of classes needed to be classified. Our approach only requires O(n) classifiers to 

determine IET classes [57]. We will use RLS algorithm as our learning algorithm to 

determine IET classes because the RLS algorithm is simple and requires only relatively 

small computational power compared to other learning algorithms, such as Random 

Forest.  
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Figure 10: A Technique for Training the RLS Algorithm for Assessing Dynamic 

IoT Environment 

 

The following steps illustrate the training phase of the assessment algorithm, 

Step 5.4.1) Obtain the DSs and their respective LVs generated in Step 4) of our overall 

approach. 

Step 5.4.2) Categorize the DSs using their respective LVs for each IET.  Select DSs 

belonging to one IET class as a positive class and randomly select an equal 

number of DSs belonging to other IET classes as a negative class. In this 
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case, the trained RLS algorithm will predict the IET of the positive class in 

the subsequent steps. 

Step 5.4.3) Perform a random split of the categorized DSs, and use 80% of split as 

training data and remaining 20% as the test data. 

Step 5.4.4) Perform cross validations on the training data and iterate the RLS algorithm 

to generate the trained RLS algorithms 

Step 5.4.5) Use the generated trained RLS algorithms to assess the 20% test data to 

predict the IET classes for test DSs, which are used to assess the accuracy of 

the obtained trained RLS algorithms by comparing with known test LVs. 

Step 5.4.6) The accuracy values are reported to the DS categorization module.  For 

trained RLS algorithms having unsatisfactory accuracy values, the DSs will 

be re-categorized and randomly split to improve the accuracy. 

Step 5.4.7) Repeat Steps 5.1) to 5.6) until an accurate trained RLS algorithm is 

generated for classifying DSs for each of the IET classes. 

 

The trained RLS algorithm will be used for assessing the dynamic IoT environment. 

The IET classes indicate the conformance of the IoT environment to the users’ IoT 

requirements. In our approach the regularization term that we find more appropriate for 

the least squared objective function is the 𝑙2 norm. The reason for that being that the 𝑙2 

norm forces the coefficients of the least relevant variables in the overall objective 

function to be very small value, instead of forcing it to zero. In dynamic environments 

this is very important as some of the least relevant variable may be necessary for adapting 

the model more effectively in dynamic environments, such as in IoT environments.  
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5.5  Device State Adaptation and Validation 

 

In this section we will discuss how to formulate the device actions and validate them 

in a mobile IoT application to achieve user requirements in an efficient manner. The 

MDP planner is located at the SESP mobile cloud platform. When the user wants to 

perform the action formulation and validation, the current DS is sent to the mobile cloud 

for processing. The planner after processing the data sends back the recommended DS 

information after validation along with the action to be executed by the CM. We choose 

the MDP planner in our approach because it is probabilistic and reflects the users’ 

behavior more accurately. Since the CM is most likely to be installed in a smart phone or 

other devices with limited computational capacity the planning algorithm has to be 

executed remotely in SESP mobile cloud. This allows us to predict with greater accuracy 

the target DS and actions that reflects user behavior. Light weight non-probabilistic and 

strictly deterministic planners cannot reflect user behavior and requires continuous re-

planning since most of plans may not be liked or followed upon by the user. Factored 

MDP representations can be used to reduce the state space significantly but this also 

reduces the degree of freedom of value functions and will increase the SESPs cost of 

finding the optimal solution. Hence these kinds of planning techniques are not suitable 

for our approach. 
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The representational model for our MDP planner has 4-tuples which can be 

represented as shown in (7), 

 

< 𝐷𝑆𝑡, 𝑆𝑇, 𝐴𝑡 ,  𝐿𝑉𝐷𝑆𝑡
>         (7) 

 

where 𝐷𝑆𝑡 is the domain state  at time t, ST is the state transition model as shown 

in Figure 2, A is the action set and 𝐿𝑉𝐷𝑆𝑡
 is the cost/reward metric respectively. 

The cost/reward metric is nothing but the LV for each Domain state, which we 

had already computed. 

 

𝐴𝑡 = < 𝑁𝑂𝐶, 𝑆𝑊𝑇𝐻 >                   (8) 

 

where 𝐴𝑡 is the device actions possible from current domain state at t. The IoT 

adaptation system has two fundamental actions, NOC (no operation) and SWTH 

(switch). When NOC action is chosen the IoT domain state remains relatively 

same and when SWTH action is chosen the domain state of the IoT is changed. 

 

The resultant state of the either of the actions are governed by the state transition 

probabilities which are generated from the user behavior and preferences. The state 

transition probabilities is initially assigned by the SESP and later updated based on the 

observed changes in user behavior(s) and preferences.    
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Figure 11: State Transition Model for Action Generation in IoT Application 

 

The state transition diagram, as shown in Figure 11, will be generated by the SESP. 

The edges of the state transition diagram have weights which are probabilistic that 

represent the likelihood of the user to do a particular action. The initial probabilistic 

values are assigned using the global user action likelihood metrics, but later they are 

updated using a gradient descent approach based on SESP observation of the users’ 

behavior. In the SESP mobile cloud servers a dedicated cache is maintained where a state 

model with frequently used and most efficient domain states are stored. The edges of the 

state model are pruned based on their importance using stochastic shielding 

approximation [58] technique. The threshold value which decides the extent of edge 

pruning is tuned by the SESP based on mobile IoT application. The idea is to reduce the 



68 
 

complexity of the planning process by reducing the size of the state model. The state 

model is dynamic in the sense domain states and edges are brought in and out of the 

cache copy based on user behavior and probabilistic value ranking. 

In our approach we use the mobile IoT application specification provided by the user 

to formulate the state model. Once state model is generated we initialize the algorithm 

with random policy (set of actions in a user environment) and then use the backward 

induction to assess the policy P. The algorithm constantly does a backward induction 

using a bellman equation [59] and this technique is called Bellman Backup. The policy 

iteration for an infinite horizon is described using (10), which we use to planning the 

device actions of a mobile IoT application   
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where 𝑉𝑃 is the value function of a policy P for a current domain state t, LV is the 

label values as we had defined before in section 5.3, β is the discount factor which 

is used to control the learning metric, t’ is used to indicate a new domain state 

neighboring to domain state t. 
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The brief description on working of the algorithm is as follows,  

1. Given a policy P 

2. Loop: 

    (a) Evaluate 𝑉𝑃 using (10)  

(b) For each 𝐷𝑖 in 𝐷𝑆𝑡, set improved policy using (10) 

(c) Replace P with P’, where P’ is the new policy 

Until no improving action possible at any state 

 

The result of this algorithm is an optimal policy which specifies what device actions 

need to be initiated in an IoT application to achieve user requirements. Since we do not 

have maximization function in (9) we vastly reduce the complexity of the algorithm. 

Once we get the optimal set of action, the resultant DS is sent to the CM where our 

trained RLS algorithm will assess the DS for its effectiveness. Upon validation by trained 

RLS algorithm the actions are executed. 

 

5.6  Evaluation 

 

In this section, we will present an example to illustrate our approach to intelligently 

adapt device states for an IoT mobile cloud application. Consider the mobile IoT 

application in a smart car, where the user wants to achieve maximum security and energy 

efficiency with comfortable environmental circumstances. The security goals include 

preventing the user impersonation and intrusion attacks. This is possible because in our 

approach we create the user’s profile, which can be used to detect hackers. Let us assume 
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that the user has the following u-things and non u-things in the mobile IoT application of 

his smart car: smart air-conditioning system (AC), smart infotainment systems (IT), smart 

window (SW), smart speed controller (SC), smart refrigerators (RF), food heaters (non u-

thing) (FH), vipers (non u-thing), smart phones (SP), computers (CM) and tablets (TB). 

 

Step 1) The user provides the SESP the functional and quality requirements of the 

smart car mobile IoT application, including “Energy Savings” and 

“security”. 

Step 2) The SESP identifies the list of u-things, non u-things and the state 

information for each of the above devices from the device registry which is 

available from the manufacturers of the devices. 

Step 3) The SESP analyzes the attributes of the states of the devices to generate UV 

and IM. For example, in the smart air conditioning system, SESP can derive 

the ranking of importance of the device’s states by analyzing the attributes, 

such as, blower, time and temperature. As discussed in Section 5.3 based on 

the ranking of device’s states, the SESP can generate the UV. Table 1 shows 

the UV and IM values of the u-things and non u-things of the mobile IoT 

application.  

The impact factor of each device in the smart car mobile IoT application is 

determined by the SESP based on the effect each device has on the intelligent 

application. 
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Table 2: UV and IM Values for IoT devices 

 State 

1 

State 

2 

State 

3 

State 

4 

State 

5 

IM 

AC -3.5 -1.5 -0.2 1.5 4.5 9 

IT -4.5 -3 0.5 4 4.5 4 

SW -4.2 -2 4 0 0 5 

SC -4 4.9 4.9 0 0 8 

RF -3.5 -1.5 3.5 4 4 6 

SP -4 -2.5 1 2 4 2 

CM -2.5 0.1 2 4 0 6 

TB -2.5 -1 3 4 4.9 3 

FH -1 5.5 

VP -2 4 

 

In Table 2, the lightings has higher than normal impact factor even though it has 

relatively small power consumption because of the fact that it also radiates heat to the 

environment which has a direct impact on the environment temperature. 

 

Step 4) The SESP calculates the LV using equation (5) for the DSs to be used as 

training data. Table 2 shows the LV for some of the DSs, 
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Table 3: The LV of device state combinations of devices in IoT application 

No DS LV 

1 𝐴𝐶𝑆3
,  𝐼𝑇𝑆2

, 𝑆𝑊𝑆1
, 𝑆𝐶𝑆2

, 𝑅𝐹𝑆1
, 𝐹𝐻𝐷𝑆, 

𝑉𝑃𝐷𝑆, 𝑆𝑃𝑆2
, 𝐶𝑀𝑆1

, 𝑇𝐵𝑆3
 -4.11 

2 𝐴𝐶𝑆4
,  𝐼𝑇𝑆2

, 𝑆𝑊𝑆3
, 𝑆𝐶𝑆2

, 𝑅𝐹𝑆2
, 𝐹𝐻𝐷𝑆, 

𝑉𝑃𝐷𝑆, 𝑆𝑃𝑆2
, 𝐶𝑀𝑆1

, 𝑇𝐵𝑆3
 2.72 

3 𝐴𝐶𝑆3
,  𝐼𝑇𝑆3

, 𝑆𝑊𝑆3
, 𝑆𝐶𝑆2

, 𝑅𝐹𝑆2
, 𝐹𝐻𝐷𝑆, 

𝑉𝑃, 𝑆𝑃𝑆3
, 𝐶𝑀𝑆2

, 𝑇𝐵𝑆3
 5.39 

4 𝐴𝐶𝑆4
,  𝐼𝑇𝑆3

, 𝑆𝑊𝑆3
, 𝑆𝐶𝑆3

, 𝑅𝐹𝑆3
, 𝐹𝐻𝐷𝑆, 

𝑉𝑃𝐷𝑆, 𝑆𝑃𝑆4
, 𝐶𝑀𝑆4

, 𝑇𝐵𝑆4
 12.22 

5 𝐴𝐶1,  𝐼𝑇𝑆2
, 𝑆𝑊𝑆1

, 𝑆𝐶𝑆1
, 𝑅𝐹𝑆4

, 𝐹𝐻𝐷𝑆, 

𝑉𝑃, 𝑆𝑃𝑆1
, 𝐶𝑀𝑆3

, 𝑇𝐵𝑆1
 -8.95 

 

In this example, based on the energy savings and security of the users’ smart car mobile 

IoT application, the SESP identifies the following three IET classes,  

1. Marginal class, indicate that the devices in this class satisfy certain user 

specifications, but may need correction to satisfy all the user’s application 

specifications.  

2. Satisfactory class, indicate that the devices in this class satisfy all the user’s 

application specifications 

3. Unsatisfactory class, indicate that the devices in this class do not satisfy the 

user’s application specifications. 
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Based on Table 3, the SESP can classify the DSs as follows:  #2 belongs to Marginal 

Class, #3 and #4 belong to Satisfactory Class and #1 and #5 belongs to Unsatisfactory 

Class according to the values in the LV column. 

Step 5) The SESP uses the categorized DSs in Step 4) as the training data to generate 

the trained RLS algorithms using our approach discussed in Section 5. 

Step 6) The mdp planner on the SESP is used for action formulation and trained RLS 

algorithm is used for action validation before actions are sent to mobile IoT 

application. 

The following steps occur in the users’ intelligent IoT application: 

Step 7) The SESP provides/installs a controller module (CM) in the user’s smart car 

mobile IoT application to monitor all u-things states. At each preset interval, the 

u-things send their state information to the CM, which in turn will form the DSs 

and provide them to the trained RLS algorithm.  

Step 8) The trained RLS algorithm uses each of DS at every time interval to generate 

IET classes. 

Step 9) The SESP incorporates adaptive mechanisms where CM sends state information 

to SESP through mobile cloud infrastructure for action formulation used for 

adjusting the necessary u-things actions to achieve the user’s expected 

environment based on the IET classes from Step 7). Since the CM does not need 

to control the FH and the lights due to the non u-things characteristics specified 

by the SESP, the CM only provides the recommendation on the required actions 

of the non-thing devices to user. 
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In our approach, the most uncertain and difficult part is the training of the RLS 

algorithm. In this section, we will present the simulation results of our assessment 

technique using trained RLS algorithms because the assessment of the devices in the 

mobile IoT application is recurring and has a major impact on the effectiveness of our 

approach.  

 

Figure 12: Comparison of accuracies of RLS algorithm for different IET classes 

 

We used the MATLAB to run our simulation of the assessment of the devices in a 

mobile IoT application using trained RLS algorithms.  The application consists of 10 

devices, with each device having 3 to 5 states. Figure 12 compares the accuracy of the 



75 
 

trained RLS algorithm in our assessment technique for different IET classes. We 

generated a total of 148 DSs and used (5) to calculate their respective LVs, some of which 

are shown in Table 2. We classified the 148 DSs into three IET tiers based on their LVs, 

and used 80% of the randomly selected data from these DSs as the training data and the 

rest as the test data. 

We further partitioned the training data into 10 data sets, and randomly selected a 

combination for each iteration of RLS algorithm run from all possible 𝐶8
10 combinations, 

and then run the RLS algorithm with initialized parameters. Based on the initial 

performance of a RLS algorithm, the parameters are tuned and the RLS algorithm is run 

with a different combination of datasets. This process continued until such a set of 

parameters that generated the highly accurate trained RLS algorithm was found. The 

resultant trained RLS algorithm was tested with the original test data, which yielded an 

average trained RLS algorithm accuracy rating of 92% with an average precision of the 

accuracy rating 89%. Figure 3 shows how the accuracy for each IET classification 

changes with various DSs. We observe that for the dataset of the 148 DSs, the average 

accuracy ratings of the trained RLS algorithm become stabilized as they approach 75 DSs, 

which indicates that the trained RLS algorithm is ready for deployment in the user’s 

mobile IoT application. 

 

5.6 Further Improvements 

 

In this chapter, we have presented an intelligent planning approach to developing 

cloud-based mobile IoT applications using the RLS learning algorithm and MDP planner, 
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with only one-to-one interaction between each u-thing and one of the controller modules. 

Our simulation results showed that the accuracy and precision metrics are relatively high 

for our assessment technique. We plan to extend our approach to dynamically update the 

trained RLS algorithm for better adapting the users’ intelligent IoT applications in real 

world environments. In addition, we also plan to explore the possibility of using 

customized factored MDP planners to reduce the computational requirements while 

maintaining high plan optimality rate. Usage of factored MDP will also enable us to 

move the planning to user mobile IoT applications which will reduce transmission 

overlays, and thus improve our approach 
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Chapter 6 

 

CONCLUSION AND FUTURE WORK 

 

In this dissertation work we have presented our comprehensive approach to securing 

ubiquitous smart devices in IoT environment with probabilistic user behavior(s) 

prediction. My work in this dissertation mainly focused addressing two research 

problems: (1) how to continuously learn and authenticate legitimate user(s) only using the 

finger gestures on their touch-based smart device in the background without requiring the 

legitimate user(s) to provide their finger gesture data intentionally, and (2) how to 

efficiently configure IoT devices through controller device(s), in conformance with the 

probabilistic human user behavior(s) and preferences, to effectively adapt IoT devices to 

the changing environment. Both of our above research works were evaluated with 

simulated and real-world data, and the results have shown that our approaches were able 

to effectively address the research problems. 

 

6.1  Summary of contributions  

 

In Chapter 4, we presented an adaptive approach for continuously authenticating 

legitimate user on a touch screen based smart device (or controller device). Specific 

contributions of our approach include the following algorithms: 1) an algorithm to 

estimate the context of smart device usage, 2) an algorithm to estimate degree of 

importance of each cell/state on the user’s smart device touch screen, and 3) a technique 

that uses Markov Decision Process (MDP) algorithm to continuously authenticate users’ 
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with computed user gesture model. The evaluation results for our continuous user 

authentication approach showed that our approach was able to accurately continuously 

authenticate legitimate user(s) with acceptable error rates. In Chapter 5, we presented an 

effective approach for intelligent planning of device action in IoT applications. Our 

approach is designed to work for both individual user and users as a group. Specific 

contributions of our approach include the following algorithms: 1) a state analysis 

technique for the service provider, 2) learning algorithm for dynamic IoT application 

assessment, and 3) a technique that uses MDP (Markov Decision Process) planning to 

generate efficient IoT device action plans.  Our simulation results showed that the 

accuracy and precision metrics are relatively high for our dynamic assessment technique. 

 

6.2  Future research directions 

 

Effective automation of decision making in complex systems require significant 

relaxation of the traditional and unsustainable assumptions such as complete state 

observability and simplistic contextual inputs. Such relaxations should reflect the real 

world situations such as partial observability and detailed contextual inputs. Much 

research has been done in this area of partial observability and detailed contextual inputs. 

Current techniques that handle such complex decision making systems function under 

unsustainable assumptions, such as complete state observability and simplistic contextual 

inputs, which were made to make such systems practical by reducing computation 

complexity. Furthermore, many existing techniques for partially observable environments 

such as partially observable markov decision process (POMDPs) have serious limitations. 
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Such systems use system snapshots to estimate the current system state with simplistic 

contextual inputs, which limits the effectiveness since system snapshots of partially 

observable environment do not contain adequate information to accurately estimate 

current system state. In order to greatly improve the estimation accuracy of the current 

system states and improve automation of complex decision making systems in partially 

observable environments, including ones for security systems, I intend to perform further 

research to modify and apply recurrent neural networks (RNNs) [60, 61] with Hessian-

free optimization.  
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