
An Adaptive Approach to Securing Ubiquitous Smart Devices in

IoT Environment with Probabilistic User Behavior Prediction

by

Arun Balaji Buduru

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved November 2016 by the

Graduate Supervisory Committee:

Sik-Sang Yau, Chair

Gail-Joon Ahn

Hasan Davulcu

Yanchao Zhang

ARIZONA STATE UNIVERSITY

December 2016

i

ABSTRACT

Cyber systems, including IoT (Internet of Things), are increasingly being used

ubiquitously to vastly improve the efficiency and reduce the cost of critical application

areas, such as finance, transportation, defense, and healthcare. Over the past two decades,

computing efficiency and hardware cost have dramatically been improved. These

improvements have made cyber systems omnipotent, and control many aspects of human

lives. Emerging trends in successful cyber system breaches have shown increasing

sophistication in attacks and that attackers are no longer limited by resources, including

human and computing power. Most existing cyber defense systems for IoT systems have

two major issues: (1) they do not incorporate human user behavior(s) and preferences in

their approaches, and (2) they do not continuously learn from dynamic environment and

effectively adapt to thwart sophisticated cyber-attacks. Consequently, the security

solutions generated may not be usable or implementable by the user(s) thereby drastically

reducing the effectiveness of these security solutions.

In order to address these major issues, a comprehensive approach to securing

ubiquitous smart devices in IoT environment by incorporating probabilistic human user

behavioral inputs is presented. The approach will include techniques to (1) protect the

controller device(s) [smart phone or tablet] by continuously learning and authenticating

the legitimate user based on the touch screen finger gestures in the background, without

requiring users’ to provide their finger gesture inputs intentionally for training purposes,

and (2) efficiently configure IoT devices through controller device(s), in conformance

with the probabilistic human user behavior(s) and preferences, to effectively adapt IoT

ii

devices to the changing environment. The effectiveness of the approach will be

demonstrated with experiments that are based on collected user behavioral data and

simulations.

Index terms- pro-active protection, predictive defense, probabilistic reasoning, continuous

authentication, dynamic IoT environment assessment and probabilistic human behaviors

iii

ACKNOWLEDGMENTS

Being a PhD student in the Computer Science Program in the School of Computing,

Informatics and Decision Systems Engineering, and in the Information Assurance Center

at Arizona State University was lots of fun. Joining it was one of the best decisions that I

have ever made. I want to thank my adviser, Stephen S. Yau. He is an excellent mentor

who gave me the freedom and the encouragement to explore interdisciplinary research

ideas. I am grateful for having been his student. He is a source of inspiration to all

students. I would also like to thank my committee members Gail-Joon Ahn, Hasan

Davulcu and Yanchao Zhang for their helpful suggestions and insightful comments.

Special thanks to Yaozhong Song, Vinjith Nagaraja, Sayantan Guha, David Lucero,

Jeremy Wright, Vishnu Teja Kilari, Jiayu Zhou, Raymond Tu, Scott Menor and other

members at Arizona State University for their invaluable inputs and fiery discussions. I

would also like to thank Michael Freed of Cisco’s IoT Architecture research lab and

members of Qualcomm research lab for their mentorship and support.

But most of all, I want to express the deepest gratitude to my parents, Divakar Buduru

and Suganya Pappian, for their unwavering confidence and support. Special thanks to my

brother Praveen Balaji Buduru. I dedicate this dissertation work to my parents.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES .. . vii

CHAPTER

 1 INTRODUCTION. 1

1.1 Overview1

1.2 Organization of Dissertation. 4

2 CURRENT STATE OF ART 6

2.1 Continuous User Authentication . 6

 2.2 Intelligent Device Adaptation in IoT Environment. 10

3 OVERALL APPROACH TO SECURING UBIQUITOUS DEVICES13

4 CONTINOUS USER AUTHENTICAITON IN TOUCH SCREEN SMART

DEVICES19

 4.1 Approach . 22

 4.2 Representation of User Finger Gestures . 25

 4.3 Capturing User’s Finger Gestures. 27

 4.4 Usage Context Identification .30

 4.5 Continuous User Authentication . 31

 4.6 Evaluation .36

4.7 Further Improvements .47

5 INTELLIGENT ADAPTATION OF DEVICE STATES IN IoT

 ENVIRONMENT . 49

 5.1 Approach . 51

v

CHAPTER Page

 5.2 Dynamic IoT Environment Assessment . 55

5.3 Automated Labelling . 59

5.4 RLS Learning Algorithms . 61

5.5 Device State Adaptation and Validation . 65

5.6 Evaluation . 69

5.7 Further Improvements .75

 6 CONCLUSION. 77

6.1 Summary of Contributions. .77

6.2 Future Research Directions .78

REFERENCES . 80

BIOGRAPHICAL SKETCH . 86

vi

LIST OF TABLES

Table Page

1 Comparative Evaluation of Various User Authentication Schemes45

2 UV and IM Values for IoT devices . 71

3 The LV of Device State Combinations of Devices in IoT Application 72

vii

LIST OF FIGURES

Figure Page

1 System Diagram of Our Overall Approach to Securing Ubiquitous Devices

in IoT Environment . 15

 2 System Diagram for Our Approach for Continuous User Authentication. 23

 3 Sample Finger Gesture Usage Pattern of Legitimate User 37

 4 Sample State Graph for Finger Gesture Usage Pattern of Legitimate User38

 5 Spread of Average False Acceptance Rates of Our Continuous Authentication

Approach for Various Contexts 41

 6 Spread of Average True Positive Rates of Our Continuous Authentication Approach

for Various Contexts . 42

 7 Spread of Average Accuracy of Our Continuous Authentication Approach for

Various Contexts . 43

 8 Comparison of Error Rates for Value Iteration and Policy Iteration Techniques of

MDP . 46

 9 System Diagram for Our Approach to Intelligent Adaptation of Device States in IoT

Environment53

 10 A Technique for Training the RLS Algorithm for Assessing Dynamic IoT

Environment . 63

 11 State Transition Model for Action Generation in IoT Application 67

 12 Comparison of Accuracies of RLS Algorithm for Different IET Classes74

1

Chapter 1

INTRODUCTION

1.1 Overview

Ubiquitous cyber systems, including Internet of Things (IoT) systems are being

increasingly used to vastly improve efficiencies and reduce costs in areas such as finance,

health care, power management, transportation, and defense. Over the past twenty years

computing efficiency and hardware costs have dramatically improved, these have made

the cyber and IoT systems omnipotent, and touch all aspects of human lives. Recent

surveys have shown that the growth of the ubiquitous smart devices will accelerate in the

near future [1, 2]. Past trends have shown that any widely used entity becomes a target

for attacks since potential system breaches offer huge incentives to attackers. Extensive

research has been done in developing cyber defense systems that provide necessary

defensive and offensive measures to mitigate the effects of the attacks [3, 4]. But recent

security breaches in cyber systems used in finance, defense and even nuclear plants have

shown that current cyber defense mechanisms are unable to cope with these new breed of

attacks [5]. The integrity and security of these cyber systems are not only vital to those

respective areas but also have a vast impact on the safety of humans.

One of the major deficiencies in developing comprehensive adaptive cyber defense

systems, including ones for IoT, is that most of the solutions do not include human

behavior and preferences in cyber defense approaches [3, 6]. Here, the human can be

either the person monitoring the cyber defense system or the attacker launching the

2

attacks. The two main reasons for the need to include the human behavior(s) in securing

ubiquitous smart devices in IoT environment are (1) to effectively adapt smart devices in

accordance with the user(s) behavior and preferences, and (2) to improve the usability of

the cyber defense solutions.

A few of the most commonly used devices to control the other devices in an IoT

application environment are the smart devices such as smart phone, tablet. These smart

devices are traditionally protected through PIN, pass phrase, pattern, face recognition and

recently fingerprint authentication [7]. One of the major weaknesses of these

authentication factors is that they do not continuously authenticate users after the initial

authentication [8]. Hence, if the smart device is physically compromised (such as being

stolen) after the authentication has been performed, then the attacker can keep the

authenticated session open and extract the confidential data before the session times out,

or the user shuts down the device through other means. The small size of smart devices

makes them particularly vulnerable for theft. Hence it is necessary to develop an

approach to continuously authenticating the legitimate user on the smart devices without

requiring frequent cognizable inputs.

Some of the approaches use techniques such as game theory to develop pro-active

cyber defense techniques [9, 10], but they have major limitations due to the assumptions

used in these approaches, such as the rationality and Nash equilibrium, which may not be

valid and/or feasible for current and emerging cyber infrastructure. As a consequence of

not including human behavior, the cyber defense systems, including those for IoT

applications, are either not dynamic enough to thwart sophisticated cyber-attacks [11] or

3

the restrictive/intrusive nature of cyber defense system will make it very difficult to

effectively use them in real world applications. Given the circumstances of increasing

sophistication of cyber-attacks there is an urgent need to develop a user centric approach

to securing IoT through probabilistic human behavior prediction.

In order to address these security concerns we develop a comprehensive user-centric

approach to securing IoT systems by predicting user behavior(s). In this dissertation work

we will be focusing on two of the following major components of our comprehensive

approach: (1) protecting the controller device through a continuous authentication

approach to continuously authenticate the legitimate user usage session based on the

legitimate user touch screen finger gestures, (2) planning various device actions through a

controller device [smart phone (or) tablet] to satisfy user requirements securely and

efficiently in IoT applications by predicting the human behavior. We will be using

existing approaches to configuring IoT application devices, which is the third component

of our overall approach. The overall theme of this dissertation work will be to incorporate

human behavioral traits into security solutions to enable effective adaptation to the

dynamically changing users’ environment.

First, we develop an adaptive approach for continuously authenticating legitimate

user on a touch screen based smart device (or controller device). The specific goals of our

approach [12] are: (1) continuously authenticate user on a touch based smart device

without requiring frequent cognizable user input, (2) adapt the authentication algorithm

efficiently based on the changing legitimate user behavior with minimal resources, and

(3) leverage the probabilistic nature of user behavior to improve the efficiency of the

4

continuous authentication. Our approach includes the following algorithms: 1) an

algorithm to estimate the context of smart device usage, 2) an algorithm to estimate

degree of importance of each cell/state on the user’s smart device touch screen, and 3) a

technique that uses Markov Decision Process (MDP) algorithm to continuously

authenticate users’ with computed user gesture model. Each of the above items will be

discussed in detail in the Chapter 4.

Second, we develop an effective approach for intelligent planning of device action in

IoT applications. Our approach [13] is designed to work for both individual user and

users as a group. The specific goals of our approach are: (1) assist the user(s) of the IoT

application to efficiently secure their environments, (2) observe and monitor user(s)

behavior to plan device actions that complement the user behavior and preferences, and

(3) ensure that the user requirements are satisfied with minimal resources. Our approach

includes the following algorithms: 1) a state analysis technique for the service provider,

2) learning algorithm for dynamic IoT application assessment, and 3) a technique that

uses MDP (Markov Decision Process) planning to generate efficient IoT device action

plans. Each of the above items will be discussed in detail in the Chapter 5.

1.2 Organization of Dissertation

The dissertation work is organized as follows: the current state of the art related to my

research will be presented in Chapter 2. Overall approach to dynamically secure

ubiquitous devices with probabilistic human behavior modelling will be presented in

Chapter 3. A reinforcement learning based approach to continuously authenticate users’

5

finger gestures using touch-based smart phone without requiring users’ to provide

intentional finger gestures for training purposes, including the experimental results, will

be presented in Chapter 4. An approach to adaptively reconfigure the smart devices in an

IoT environment based on users’ behavioral preferences and requirements, including the

simulation results, will be presented in Chapter 5. The conclusion of this dissertation

work and future research directions will be presented in Chapter 6.

6

Chapter 2

CURRENT STATE OF ART

In this chapter, the background information and existing research efforts related to the

intelligent planning in IoT applications and continuous user authentication are discussed.

Most of the cyber defense approaches [6, 14] do not include human behavior because it

introduces a lot of uncertainties, which increases the complexity of the approaches.

Intrinsically it is very hard to incorporate the human behavior into computing cyber

defense paradigm because major human behavioral features are (1) probabilistic in

nature, (2) depends on the context of the environment, and (3) continuously changes with

the passage of time. In the absence of effective framework or techniques, each of these

above features add a large overhead for including these features as a part of a cyber-

defense system.

A few of the current approaches [14-17] to secure the ubiquitous smart devices in the

IoT environment include the human behavior(s), but they make the assumption that the

human behavior(s) to be deterministic. The deterministic assumption vastly limits the

feasibility of their approached since they do not accurately capture the human behavior in

the real world as they are probabilistic in nature. In the below subsection we will discuss

the current state of the art in the specific application area.

2.1 Continuous User Authentication

Most of the current smart devices use the authentication factors to authenticate the

7

legitimate user of a smart device, and these authentication factors have been generally

classified into three categories: what you know, what you have and what you are [7]. The

authentication factors belonging to the categories of what you know and what you have

are not suitable for continuous user authentication of smart devices because the user

needs to frequently provide conscious inputs for continuous authentication, which will

likely cause undesirable user experience. This leaves us with only the category of what

you are. Even in this category, some factors, such as fingerprints, iris and face

recognition, are inherently infeasible due to the requirements of additional hardware in

low-cost touch-screen smart devices, and frequent conscious user interactions.

Furthermore, existing approaches [18-23] to continuous user authentication use

centralized architecture, where a server collects specific user data for a specific time

interval in the training phase, generates the authentication model from the user data, and

uses an authentication model to authenticate the user during subsequent usage. If the user

behavior changes, then the user needs to undergo the training phase again so that the

authentication model for the user is updated with the latest information of the user’s

behavior. Hence, this process has inherent security, privacy, overhead and scalability

problems

Password authentication schemes fall into the what you know category, and the

hardware dongles, like RSA SecurId, fall into the what you have category. Biometric

authentication schemes, such as fingerprint, iris and facepattern recognition, fall into the

what you are category. The recent trend of authentication systems involves two-factor

authentications, in which the password is usually accompanied by a one-time sign in code

8

sent to the smart device. This trend combines the two authentication factors, what you

know (password) and what you have (mobile device), to provide a slightly better

authentication. The inherent problem with this two-factor authentication system is that in

each of these two factors, sensitive information is lost in the event of theft of the smart

device or attacker(s) breaking the two-factor authentication scheme. Continuous user

authentication schemes using the authentication factor “What you are” can be broadly

categorized into two groups: using touch gestures [20, 21] or multi-modality

classification focusing on the data from a variety of sensors to model the user behavior

[22, 23]. Most of the continuous authentication techniques in both categories involve an

enrollment (training) phase and an authentication phase. The system learns the necessary

patterns from the user’s related biological and/or sensory data, and stores them in the

enrollment phase. In the authentication phase, the system compares the observed user

related biological and/or sensory data against the patterns stored during the enrollment

phase to re-authenticate a user.

Niu and Hao [18] conducted continuous user authentication experiments on iPad

using user behavioral features in multitouch operations, involving 34 volunteers. Their

experiments showed Equal Error Rates (EERs) of 7%-15% for one mode of multi-touch

and EERs of 2.6%-3.9% if two multi-touch modes are combined. Frank, et al, [19]

presented an approach to continuous user authentication based on their touch gestures

with EERs in the range up to 4% using a kNearest Neighbors (k-NN) classifier and a

Support Vector Machine (SVM) classifier. They demonstrated this approach to extract 30

features from a dataset of 41 users based on users’ swipe/scroll gestures. Later, Li, et al,

9

[20] presented a touch-based authentication technique on Motorola Droid phones running

Android 2.2. This approach leverages the device files being used by Linux Multi touch

protocol to monitor all the touch gestures of the user on the smart phone. This method

was evaluated using SVM on 75 users who were allowed to use the smart phones freely,

and showed the average classification accuracies of 95%.

For the approaches combining multiple biometric inputs to produce aggregated user

identification results, Muncaster and Turk [21] presented an approach to performing

continuous, score-level multi-modal authentication based on a weighted sum of scores

from each modality. A continuous multi-modal biometrics system using a hidden Markov

model (HMM) was developed by Sim, et al, [22]. It includes integration of the results

from a fingerprint biometric classifier with a face classifier to improve the accuracy of

continuous user authentication. Shi, at el, [23] used multimodal inputs, such as voice,

location, multi-touch and motion, to perform continuous user authentication. Using Naïve

Bayes classifiers on the features of multi-modal inputs, they showed average accuracy of

over 95%.

All the above techniques are based on the assumption of zero-effort threats, where the

adversary is assumed to be incapable of pulling off advanced forgery attacks [11] on the

system, which are based on the characteristics of the user behavioral biometric patterns

exhibiting large intra-user variation and overlap across a large population. The attackers

leverage these characteristics to extract users’ statistics from a large population database

and perform advanced forgery attacks which can defeat these authentication techniques.

The attack technique using robotic arm [11] increases the EERs in the continuous

10

authentication techniques. In order to thwart these kinds of attacks, it is required to

capture more unique characteristics of the user’s finger gestures for differentiating the

legitimate user from others. This increases the effort required on the part of the attackers

to learn the user’s behavior from a large population database, which may act as an

effective deterrence.

Based on the above discussion, the existing continuous user authentication techniques

fail to capture the nuances of the user’s gestures, and they can only capture the user’s

gestures during the training phase. This will lead the continuous authentication

techniques to miss some important strains of the user’s behavior exhibited outside the

training phase. This is particularly dangerous because, if the user model does not capture

the unique characteristics of the user gestures, an attacker with access to a large set of

normal user data might be able to construct a model conforming to the characteristics of

the majority of the features exhibited by the population. This will enable the attacker to

break the continuous authentication techniques. In order to capture a majority of unique

characteristics of the user’s gestures on a smart device, the technique needs to incorporate

continuous learning of the user’s gestures. In our approach, we will use a continuous

authentication technique, which can continuously update the user’s finger gesture model

to effectively authenticate the legitimate user

2.2 Intelligent Device Adaptation in IoT Environments

In developing an intelligent mobile IoT application, it is important to understand that

almost all u-things have serious limitations on processing power, and any additional

11

computational load above and beyond their functional requirements, such as situation

awareness, active interactions among other u-things in their environments, will cause

serious degradation of the performance of the u-things which will likely lead to users’

dissatisfaction.

In [24-26], the approaches to developing smart environments (same as mobile

intelligent IoT application environments) assume that each u-thing has situation-aware

capability to generate decisions specific to that autonomous u-thing based on its

environmental situation. But, these approaches may lead to severe performance

degradation of most of the u-things because not all u-things are designed and/or have the

capability to handle such computationally very expensive operations.

In [27], a 3-layer architecture for developing smart environments was presented. In

this approach, there is no information on how situational context models of the users’

environments are generated. In [28], an approach was presented to developing smart

environments, where the users need to setup and store their personal preferences on an

NFC (Near Field Communication) enabled smart phone. Based on the preferences, the

NFC enabled smart phone will control the other u-things to achieve the goals of the

users’ applications. However, this approach is unrealistic because the users are expected

to know best possible modes of operation for all the devices’ in the application

environment.

In [29], an ontology-based activity recognition and scalable hierarchical planning

technique is presented to maximize the energy efficiency in a smart office building. But,

even if it is possible to generate “ontological model activities” for all possible user

12

activities, it is not feasible to perform comparative selection of the ontological model

activities for recognizing the user activities in real time which are essential inputs for

planning algorithms. In [30], a decentralized control and decision system was presented

for smart buildings, but there is no adequate explanation on how the decision making

manager is trained and/or equipped to make smart decisions on the actions needed to be

taken to improve the energy efficiency of the user environment.

Most of these above approaches [24-27] were under the implicit assumption that all

the devices in an environment are smart devices and can communicate with other smart

devices with ease. This assumption may not valid since not all the devices in an

intelligent mobile IoT application environment can communicate on a peer-to-peer

network architecture. Hence we developed our approach such that a u-thing needs to have

communication link with only one of the control modules (CMs) of its application

environment and the u-things is not required to do expensive computations as most of it

is done either on one of CMs or mobile cloud

13

Chapter 3

OVERALL APPROACH TO SECURING UBIQUITOUS DEVICES

The primary focus of our approach is to developing a comprehensive user centric

approach for securing ubiquitous devices in Internet of Things (IoT) environment through

Probabilistic Human Behavior Prediction. In our approach we define human behavior(s)

as a structured sequence of context-sensitive decisions [31]. In our approach we make

three basic assumptions, which are, (1) human behavior(s) are intrinsically probabilistic

in nature, (2) human behavior(s) follow the Markovian property, and (3) human

behavior(s) is dynamic and evolves with the passage of time. We will, in this section,

justify the feasibility of our assumptions.

Several researches [32, 33] in the human behavior(s) analysis have shown that human

behavior(s) can be best modelled with the semi-deterministic systems using probabilities.

This is because the semi-deterministic decision making system generate the decisions

based on the various contextual parameters and forcing parameters, which can include

environmental factors and historical behavioral preferences. The human behavioral

decision making systems also follow similar decision making process [34 - 36], thus

semi-deterministic decision making system ideal to model the human decision making

systems.

For single agent decision systems, Markovian property [37] states that any decision

taken by the agent is only dependent on the parameter of the current state and is

independent of parameters of all its previous states. We in our approach assume that the

14

human decision making generally conform to the Markovian property. This is because

majority of the human behavior(s) generally tend to be highly contextual in nature,

meaning they are heavily dependent on the current state or context [31]. Note that we do

not claim that all the human behavior(s) conform to Markovian property. But we do

assume that the human behavior(s) we consider in our approach, specifically human

finger gestures on smart device touch screens and contextual human behavior(s), which

are highly contextual in nature, to conform the Markovian property.

Human behavior(s) generally tend to be dynamic in nature since the parameters of the

environment and the forcing functions tend to be dynamic in nature. Since most of the

human decision making is highly contextual the human behavior(s) also tend to be

dynamic in nature. Hence our third assumption is valid and feasible.

The primary goal of our approach is to develop a mathematical framework for

efficiently incorporating the three major human behavioral characteristics, which are: (1)

human behavior is probabilistic in nature, (2) human behavior depends on the context of

the surrounding environment, and (3) human behavior continuously changes with the

passage of time. Our user centric approach to securing ubiquitous devices has three major

components as shown in Figure 1. The first component continuously learns and

authenticates the legitimate user. The second component describes the intelligent

adaptation of IoT device states. The IoT device states’ adaptation is complex since it is

dynamic and dependent on many environmental variables. Hence our approach also takes

into to account the users’ environment requirements, dynamic IoT environment and

users’ usage patterns and preferences to effectively adapt the IoT device states.

15

Figure 1: System Diagram of Our Overall Approach to Securing Ubiquitous Devices in

IoT Environment

The following are the steps of our overall approach,

Step 1) Continuously authenticate the legitimate user through an adaptive continuous

authentication on controller device [smart phone (or) tablet]. This is essential

since the controller is in direct contact with the user(s) and has the ability to

manipulate the device actions. More details will be presented in Chapter 4.

Step 2) Intelligent adaptation of various devices through a controller device [smart

phone (or) tablet] to satisfy user requirements securely and efficiently in IoT

16

applications. More details about intelligent planning are presented in Chapter

5.

Step 3) Based on the plans generated in Step 2) the individual devices in the IoT

application environment can be configured and secured through the

controller device. We will use the existing approaches to efficiently actuate

the device configuration updates.

In order to predict the human behavior(s) we need to develop an approach that

accurately models the human decision making process. This requires a detailed

understanding on the operational aspects of the human decision making system. Based on

the extensive research in human psychology and economics it has been established that

the human brain uses dual decision system to process information [38] and generate

decisions in the real world. The human dual decision system is temporal in nature and has

two decision generation techniques, (1) short horizon decisions, for quicker decision

making, and (2) long horizon decisions, for slower decision making. The dual decision

system provides a promising blueprint for developing an effective approach for

accurately capturing human behavior(s). Most of the human decisions are short horizon

decisions. It is estimated that humans make tens of thousands of short horizon decisions

every day [38]. On the other hand the long horizon decisions are used fewer times

comparatively.

In short horizon, the time window is a few seconds and is similar to the fast decision

making or “intuitive” human thinking. In long horizon, the time window is a few

hours/days and is similar to slow decision making or “reasoning” based human thinking

17

[38]. It is also worth noting that the long horizon decision making also involves planning

and simulation since it requires anticipation of the actions of various actors in the

environment. The short and the long horizon dual decision system is extremely important

to the effectively securing smart devices since this enables us to flexibly apply

discriminatory and as well as reason based decision making depending on the dynamic

IoT environment.

In addition, extensive research in human psychology has shown that humans have

around hundreds of cognitive biases [39]. These cognitive biases have varying degree of

influence over the dual decision making system. Since the short horizon decision making

is quick the cognitive biases tend to affect the short horizon decision making than the

long horizon decision making process. The long horizon decision making process usually

involves simulation and planning of the future set of actions, hence the influence of the

cognitive biases may be reduced due to the increased exercise of cognitive thinking.

Our approach is designed to emulate and accommodate the human dual decision

making process and probabilistic characteristics of human behaviors. Our approach will

include the mixture model containing the semi-supervised learners and the MDP

networks that will generate “reasoning” based decisions for long horizon scenarios and

the semi-supervised learners will generate “intuitive” decisions for short horizon

scenarios. The rationale behind the utilization of the semi-supervised learners is to reduce

the usage of the domain experts. Traditional supervised based learners rely on labeled

training data, which is generated by domain experts manually, in order to effectively train

the model for the assessment algorithms. The broader idea in our approach is to

18

incorporate human-like adaptive intelligence into the systems to enable them take both

quick decisions and reasoned decisions, as required, at the same time reducing the

resource utilization.

19

Chapter 4

CONTINOUS USER AUTHENTICAITON IN TOUCH SCREEN SMART

DEVICES

Smart devices are experiencing explosive growth in terms of the number in use as

well as the services offered by vendors. According to a recent report [1, 2] by Gartner,

vendors shipped about 2.5 billion touch-screen smart devices in 2014 and shipments are

projected to reach 3 billion by the end of 2017. The information available in personal

smart devices, such as smartphones and tablets, includes more detailed and precise

information on their users’ personal attributes than the information in other computing

devices since personal smart devices are rarely shared among different users.

Proliferation of applications across various domains, such as banking, shopping, and

healthcare, requires smart devices to store even more sensitive user data. Furthermore,

the rising BYOD (Bring Your Own Device) trend is leading to storage of enterprise data

on personal smart devices [40]. The increasing number of sensors in smart devices makes

them sources of rich personal data of the users, like frequently visited locations. All these

trends make personal smart devices more attractive targets for malicious activities,

ranging from physically stolen devices to infected smart devices by malware.

Smart devices are traditionally protected by authentication methods using PIN,

passphrase, pattern, face recognition and fingerprint [7]. One of the major weaknesses of

these authentication methods is that they do not continuously authenticate users after the

initial authentication. Hence, if a smart device is physically compromised (including

20

being stolen) after the authentication has been performed, the attacker can keep the

authenticated session open and extract the confidential data before the session times out

or the user shuts down the device. Smart devices are usually small and make them

particularly vulnerable for theft. Although there are various ways to remotely locate,

erase and lock a smart device in case of theft, all of these mechanisms can be

circumvented by methods, like removing the SIM card and disconnecting access to

internet. Smartphones pose additional challenges to the existing authentication

mechanisms, such as having small screen size and computational resources. Small screen

size prevents users from using “strong” passwords because it normally requires a mixture

of letters, numbers and symbols which are not present in existing smart device lock

screen.

Recent successful breaches into the smart devices have shown that the existing

numerical or pattern based authentication systems are not adequate. Existing software,

such as ElcomSoft, can be used to copy the encrypted filesystem and perform brute force

attacks. Additionally, the numerical authentication pins are insufficient as 4-digit and 8-

digit PINs have been shown to be broken within 40 minutes and 4months respectively

[8]. Furthermore, current state of the art fingerprint based authentication systems are even

more dangerous as the user don’t even have to be conscious to authenticate the usage

session.

To address these issues, a mechanism, that authenticates the user continuously

through the entire usage session which is unobservable to the user, is needed. In this

chapter, we will present an approach using Markov decision process (MDP) and touch

21

gestures of the user to continuously authenticate the user on a touch-screen smart device.

This approach will include algorithms to estimate the degree of importance of each cell

on the touch screen of the user’s smart device for continuous authentication, and to

identify the usage context of the smart device. This approach has two major advantages.

One is that this approach is more efficient by adaptively updating the authentication

model with evolving user’s finger gestures. The other major advantage is to have better

authentication accuracy by treating uninterrupted user finger gestures over a short time

interval as a single gesture for continuous user authentication.

The organization of this chapter is as follows: After discussing the overall approach

in Section 4.1, the features used for continuously authenticating a smart device’s user will

be presented in Section 4.2. A method of estimating the degree of importance of each cell

on the touch screen of the user’s smart device to continuous user authentication will be

presented in Section 4.3. The estimation of usage context of the smart device based on

user’s touch gestures will be presented in Section 4.4. In Section 4.5, we will present a

technique using the MDP for continuous user authentication. An example to illustrate a

part of our approach will be given in Section 4.6, and conclusions and future research

will be discussed in Section 4.7.

The research tasks proposed in this section includes developing approach that uses

MDP for performing adaptive continuous authentication of legitimate users on touch

based smart devices. The specific goals of our approach are (1) continuously authenticate

user on a touch based smart device without requiring frequent cognizable user input, (2)

adapt the authentication algorithm efficiently based on the changing legitimate user

22

behavior with minimal resources, and (3) leverage the probabilistic nature of user

behavior to improve the efficiency of the continuous authentication.

4.1 Approach

In this section we will present our approach algorithm to continuously authenticate

the user on a touch-based smart device. This approach will include an algorithm to

estimate the degree of importance of each cell/state on the user’s smart device touch

screen, estimate the context in which the smart device is being used by the user, and a

technique that uses the Markov decision process (MDP) to continuously authenticate

legitimate user. In our approach, we assume that all the states of the smart device are

known and observable. This is a valid assumption since in our approach the observable

smart device screen is divided into smaller cells and each cell represents a state in the

MDP state graph. A sequence of states represents a user gesture. Since all the cells are

known and the structure of the grid is well defined, the MDP can be applied to our

problem. Our approach has the following features: backward compatible with older

versions of smart devices, lightweight, and easy to use. In our approach we assume that

an adversary has the following capabilities: (1) able to observe the behavior of the user

on the smart device (shoulder surfing), (2) able to physically steal user’s smart device,

and (3) knowledgeable of the user’s smart device authentication pin.

23

Figure 2: System Diagram for Our Approach for Continuous User Authentication

In our approach, as shown in Figure 2, we will define two different kinds of user

gestures; one is micro-gesture which is defined as uninterrupted user finger movement on

the smart device screen, and the other is the macro-gesture which is defined is as

collection of micro-gestures over a preset period of time. This preset period also will

define the frequency of the continuous authentication of the user. We will use a data

acquisition procedure for generating the grid value which is the estimated degree of

importance of each cell/state on the user’s smart device touch screen.

24

Our overall approach [12] is shown in Figure 2, and its major steps are designated by

the numbers in the figure,

Step 1) Continuously collect the sensory data from the user’s smart device when the

user is using the smart device. Since most of the features we require are

similar to those used in [41], we use the same procedure in [41] to extract the

data from the mobile device.

Step 2) Analyze the sensory data flows collected during the user’s usage session of the

smart device in Step 1 to extract the necessary information to construct the

required features. The output of this step is the features which are used for

grid value generation (GVG) process.

Step 3) Using the features constructed in Step 2 to run the GVG algorithm on user’s

smart device for continuously updating the MDP state graph during the user’s

smart device usage session. The inputs for the GVG algorithm include the

attributes of user gestures on the smart device screen, such as pressure, speed

and usage frequency.

Step 4) Identify the context in which the touch screen of the smart device is being used

by the legitimate user using the primary and secondary features.

Step 5) Generate the plans which are the sequences of cells/states in the MDP state

graph representing the user’s gestures, along with the plans’ respective

cumulative reward value. These plans are generated using our technique that

uses the MDP algorithm.

Step 6) The cumulative reward values of the plans are then used as benchmark data to

25

continuously authenticate the legitimate user of the smart device. The

cumulative reward values of the plans are compared with the cumulative

reward value for user’s touch gesture for effective authentication.

Our continuous authentication approach is flexible to the selection of number of cells

and can be selected based on factors, such as type of user’s smart device, screen size,

degree of uniqueness of user gestures to be captured. It is also important to note that

increasing the number of cells also increases the operational complexity. So an optimal

trade-off is needed to be achieved based on the application specification, since the

accuracy of the continuous authentication depends on the number of cells on touch screen

of the smart device accurately. The details of the grid representation in the MDP will be

explained in Section 4.3.

4.2 Representation of user finger gestures

In our approach, we use two kinds of user gestures; one is micro-gesture which is

uninterrupted user’s finger movement on the smart device screen, and the other is the

macro-gesture which is a collection of micro-gestures over a preset time interval. We will

use the data acquisition procedure [41] for extracting raw user’s finger gesture data from

the touch screen of the smart device.

In order to efficiently represent the user’s finger gestures on the touch screen of the

smart device, the set of features needs to be simple, and yet can represent the various

finger gestures reflecting the user’s unique usage characteristics of the smart device. This

will ensure that the collected information from the touch screen of the smart device is

26

sufficient to distinguish the legitimate user of a smart device from other users, including

malicious users. In our approach, we select dynamic and unique parameters, such as

user’s finger touch pressure and speed of user’s finger gestures. We set two levels of

features, called primarily and secondary, from the features used in the smart device

authentication techniques [41] to ensure the efficient representation of user’s finger

gestures and accurate continuous authentication of the legitimate user. Our illustration in

Section 4.7 shows that these features are reasonably good and sufficient for continuous

user authentication.

1) Primary features:

a) First touch (FT) of a cell, represents the cumulative total number of times the

user’s micro-gesture started on the cell of the smart device.

b) Duration of touch (DT) of a cell, represents the duration of all the user’s touch

micro-gestures on a particular cell of a smart device touch screen.

c) Pressure of touch (PT) of a cell, represents the pressure of all the user’s touch

micro-gestures on a particular cell of a smart device touch screen

d) Frequency of usage (FU) of a cell, represents the cumulative total of particular

cell accessed in a user’s macro-gesture on the smart device touch screen.

e) Last touch (LT) of a cell, represents the cumulative total number of times the

user’s micro-gesture ended on the cell of the smart device

2) Secondary features:

a) Average touch pressure (APT) of a cell, represents the cumulative average

touch pressure on a particular cell in a user’s macro-gesture on the smart

27

device touch screen. This feature is derived from the PT.

b) Average Duration of Touch (ADT) of a cell, represents the cumulative

average touch duration on a particular cell in a user’s macro-gesture on the

smart device touch screen. This feature is derived from the DT.

c) Speed of user gestures (SG), represents the average speed of the user’s micro-

gestures in a particular macro-gesture on the smart device touch screen. This

feature is derived from the DT.

4.3 Capturing User’s Finger Gestures

In this section, we will present the algorithm used in our approach to generate the

reward value 𝑅𝐶𝑖
 of each cell of touch screen of the smart device. The 𝑅𝐶𝑖

 represents the

importance of cell and is estimated using the primary and secondary features of the touch

screen of a smart device. Each cell of touch screen of the smart device is a state in the

state graph of MDP [42, 43]. The MDP can be represented by a 4-tuple:

< S, A, T, R, γ >,

where S represents a finite set of cells on the user’s smart device touch screen, A

represents a finite set of actions, which represent the user’s finger gestures, possible

from every cell on touch screen of the smart device. T represents the set of

probabilities 𝑃𝑅𝐶𝑖

𝐸𝑗
 for the occurrence of every action 𝐸𝑗 from each cell 𝐶𝑖. R

represents the reward value 𝑅𝐶𝑖
 of 𝐶𝑖, which is derived from the features of the

28

legitimate user’s finger gestures on the smart device’s touch screen as described in

(5). The 𝑅𝐶𝑖
 is used as a metric for estimating the degree of importance of each cell on

the user’s smart device’s touch screen. γ is the discount factor used for controlling the

rate at which the MDP learns the user’s finger gestures.

The collection of all the cells of a smart device’s touch screen in a time period 𝑇𝑥, is

denoted by 𝑆𝑇𝑥
, can be represented as follows:

𝑆𝑇𝑥
= < 𝐶1, 𝐶2, … , 𝐶𝑖 > (1)

where 𝐶𝑖 is a cell of the touch screen of the smart device, where i = 1, 2, …, n,

and n is the number of cells on the smart device’s touch screen, and 𝐶𝑖 is a 4-tuple

𝐶𝑖 = < 𝐹𝑇𝑖, 𝐴𝐷𝑇𝑖 , 𝐴𝑃𝑇𝑖 , 𝐹𝑈𝑖 , 𝐿𝑇𝑖 > (2)

where 𝐹𝑇𝑖 , 𝐴𝐷𝑇𝑖, 𝐴𝑃𝑇𝑖, 𝑎𝑛𝑑 𝐹𝑈𝑖 represent the features first touch, average touch

duration, average touch pressure, and frequency of usage of 𝐶𝑖 respectively.

𝐷(𝐶𝑖 , 𝐶𝑋𝑇𝑥
) =

 𝐴𝐷𝑇𝑖× 𝐴𝑃𝑇𝑖×𝐹𝑈𝑖 × 𝐿𝑇𝑖

𝐶𝑋𝑇𝑥

 (3)

S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
) =

𝑒 × 𝐶𝑋𝑇𝑥

𝑇𝑥
 (4)

29

The 𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥
) and S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥

), given in (3) and (4), are used for measuring the

importance of the cell and the importance of usage context to continuous user

authentication, respectively. The 𝐶𝑋𝑇𝑥
will be defined and calculated using (6) in Section

4.4. The larger value of 𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥
) indicates that the specific 𝐶𝑖 is more important in

terms of user’s touch pattern. The larger S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
) indicates that the user’s finger

gestures can provide more robust continuous authentication. 𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥
) and

S(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
) are then used for calculating 𝑅𝐶𝑖

.

The 𝑅𝐶𝑖
 of the 𝐶𝑖 of the smart device’s screen are calculated as follows:

𝑅𝐶𝑖
= 𝑎𝐷(𝐶𝑖, 𝐶𝑋𝑇𝑥

)+ bS(𝑒, 𝑇𝑥, 𝐶𝑋𝑇𝑥
) (5)

where a, b and e are the weighting factors initialized during the application

installation based on the type, the screen size, location, usage context, computational and

space constraints of the smart device.

(5) is derived from our objective trade-off function (OTF) [44] for quantitatively

measuring and incorporating performance and security in service-based systems. Since

security configuration and traffic frequency vectors used in OTF are very similar to our

primary and secondary features, we adapt the OTF to estimate the values of the cells

based on the user’s performance and security metrics requirement.

30

𝑃𝑅𝐶𝑖

𝐸𝑗
is the probability metric for every edge 𝐸𝑗 of 𝐶𝑖 and is generated based on the

user finger gesture movements on the smart device’s touch screen. Here each edge

represents transition between two states for a specific action. All the secondary features

will be used for generating the update frequency of the probability and reward metrics in

the state graph of the MDP because the secondary features are more stable and more

accurately represent user’s macro figure gestures. A major advantage of our approach is

that it is flexible and designed to work even if a different technique is used to generate

the 𝑅𝐶𝑖
 and 𝑃𝑅𝐶𝑖

𝐸𝑗
 depending on the user’s application requirements.

4.4 Usage context identification

In this section, we will present our technique to identify the usage contexts, which

indicate how the user, in terms of finger gestures, is using the smart device over the time

period, such as gaming, reading, and streaming videos. The usage context of the smart

device is very important because it affects the nature of the user gestures. In order to have

good accuracy for user authentication, it is essential to identify the smart device’s usage

context. On the other hand, the existence of different usage contexts implies that we need

to change the MDP models to facilitate continuous authentication for the different usage

contexts. Hence, it is desirable to have a small number of usage contexts for the user’s

smart device for quickly authenticating the legitimate user. From authentication point of

view a larger number of usage contexts may not necessarily improve user authentication

accuracy.

In our approach, we classify the user gestures into n usage contexts, where n is a

31

preset number of usage contexts for a specific application. The classification will be done

based on the primary and the secondary feature inputs. The idea here is to basically

identify the usage context of the smart device usage. Each usage context has unique

characteristics such as in gaming mode the user may use the touch screen of a smart

device more frequently compared to other usage contexts. We try to use the primary and

secondary features to discriminate the user gestures based on their unique characteristics

and classify them. The equation for identifying the context is shown in (6),

𝐶𝑋𝑇𝑥
= 𝑒𝑁𝑆(𝐴𝑃𝑇𝑖, 𝐴𝐷𝑇𝑖 , 𝑆𝐺𝑖) (6)

where 𝐶𝑋𝑇𝑥
is the usage context of the smart device’s touch screen for a time period

𝑇𝑥, and 𝐴𝑃𝑇𝑖 , 𝐴𝐷𝑇𝑖 , 𝑆𝐺𝑖 are the secondary features as mentioned in Section 4.2. The

function NS is a normalized summation function which adds the normalized values of

𝐴𝑃𝑇𝑖 , 𝐴𝐷𝑇𝑖 𝑎𝑛𝑑 𝑆𝐺𝑖. The major advantage of our approach is that it is flexible and

designed to work even if a different technique is used to generate the 𝐶𝑋𝑇𝑥
based on the

application requirement. The value of 𝐶𝑋𝑇𝑥
 is then used to identify the smart device’s

usage context.

4.5 Continuous user authentication

In this section, we will discuss how to generate the plans [45] used for continuously

authenticating the user of the smart device. Each plan is a sequence of states in a MDP

state graph and represents a particular user’s micro-gesture on the touch screen of the

32

smart device. The continuous authentication technique for authenticating the legitimate

user continuously is performed using the generated plans for all the micro-gestures. The

cells on the touch screen of the smart device are used to capture the user’s finger

gestures. The MDP tuples described in Section 4.4 are specifically modeled to meet the

requirements for our continuous authentication approach. The application provider

initially sets the probability and reward metric of every edge and cell in the state graph

respectively, based on the typical user finger gesture information. These parameters are

then initialized on user’s smart device during application installation or new user

registration procedure. Based on the user’s smart device usage, the parameters will be

personalized to the individual user using the equations discussed in Section 4.4. Each

user’s usage context of the smart device has its respective probability and reward metrics.

In our approach, we use policy iteration technique [46] and value iteration technique

[47], each of which is used to generate the plans for all the micro-gestures, because they

are more efficient, accurate and relevant to perform continuous user authentication in a

smart device. We have compared the performance of these two techniques using the

illustrated example in Section 4.7. Other popular MDP techniques, such as modified

policy iteration technique [48] are not suitable as they need more accurate and stable

heuristics to use effectively, and generating these accurate and stable heuristics is very

difficult because of the dynamic nature of the user finger gestures.

33

The following is the MDP policy generation algorithm:

 1. Given a policy P

 2. Loop:

 (a) Evaluate 𝑉𝑃 with (7)

 (b) For each 𝐶𝑖 in 𝑆
𝑇𝑥

 , set improved policy using (8)

 (c) Replace P with P’, where P’ is the new policy

 Until no improving action possible at any state

 (7)

 (8)

where 𝑉𝑃 is the value function of a policy P for a current cell i, 𝑅𝐶𝑖
 is the reward

metric for the cell i, β is the discount factor which is used to control the

importance of future reward, i’ represents a new cell neighboring to cell i

Policy generated by the MDP provides the optimal actions from each cell of the grid

in probabilistic environment. Using the optimal policy and the first and last touch of a

macro-gesture an optimal path is generated. The cumulative reward value for the optimal

path and the cumulative reward value for the actual macro-gesture is compared to

continuously authenticating the legitimate user. These optimal policies can be computed

offline if needed

)'(
'

)'),,(,(β)(CiCi P
VCihCiPCiTRCii

C
P

V  

)(
'

)',,(maxarg)(' 'CCi
VCiCTCiP ii P

A
A

 

34

The value iteration technique [47] enables the MDP to constantly perform backward

induction using the Bellman backup equation to generate the plans. In the value iteration

technique, there is no initial plan and the plan is generated and then updated when the

reward values of the cells are updated. The reward values for all the cells are initialized

using (5) based on the degree of importance the typical user finger gestures, and is then

adjusted continuously based on the legitimate user’s finger gestures. The value iteration

technique will generate plans that maximize the cumulative reward values of the plans in

a probabilistic environment. The cumulative reward value of a plan is the summation of

the reward value of all cells in a plan. The value iteration technique, after generating the

plan, will keep updating the reward values of the cells till the plans stabilize. This is done

to dynamically update the degree of importance of all the cells based on their neighboring

cell reward values. This enables the system to be more accommodating to legitimate

user’s errors, thus reducing the false negative rates.

The policy iteration technique [48] works similarly to value iteration technique, but

the difference is mainly that in policy iteration technique we initialize the technique with

pre-selected plans and then use the backward induction to update the plan. The output of

the policy iteration technique is a set of plans along with their respective cumulative

reward values. The major advantage of the policy iteration technique with respect to the

user continuous authentication is that unlike the value iteration technique, the policy

iteration technique has prior knowledge on the plans, and hence converges quickly.

Policy iteration technique is more likely to achieve plan convergence faster than the value

iteration because the policy iteration technique iterates over the plans instead of the

35

individual reward values of state as in the case of the value iteration technique. But, if the

initial plan assignment is random or incorrect, then the policy iteration technique may

take longer to converge or generate suboptimal plans, either of which will affect the

continuous user authentication.

In summary, each of the value iteration technique and the policy iteration technique

will generate a set of plans along with their cumulative reward values. These plans will

then be ranked based on their cumulative reward value, importance to the observed user’s

micro-gestures and the smart device usage context. The cumulative reward values of the

ranked plans are then used as benchmark data for continuously authenticating the user’s

macro-gestures on the touch screen of the smart device. The dynamic nature of the MDP

enables the reward metrics and the probabilities to keep changing continuously along

with the user’s evolving gestures. This is unlike the supervised learning techniques,

where the learned pattern does not change with the evolving user finger gesture.

The applicability of each of these two techniques depends on the user’s application

requirements. In some cases, one technique is better than the other and vice versa. Since

the policy iteration technique has the prior typical user finger gesture information, the

technique can perform continuous user authentication faster, but with relatively

acceptable error rates which may be suitable for normal user authentication. However in

highly critical applications, more robust continuous user authentication is needed. In such

applications, the value iteration technique will be more suitable because it has no biases

on user finger gestures and hence can achieve more accurate continuous user

authentication.

36

4.6 Evaluation

In order to evaluate our approach we collected the actual user usage data and partly

used the dataset used in [41]. The unified dataset consists a total of 20 graduate students

at ASU in the age group of 21 to 29. There were no restrictions placed on the users, they

were instructed to use their smart phones as they would do so normally. The users can

browse web pages, including news, online forums, social network websites, etc., or use

the installed apps, such as twitter, facebook, browsers, etc. Users were not required to

continuously use the smartphone.

The evaluation of our approach was done for a grid size of 8X6, which provides us 48

cells. The purpose for choosing the 8X6 grid is to provide us adequate fidelity of finger

gesture information. Additional constraint on the grid size is also computation overhead,

as larger grid size has higher overhead. The 8X6 grid is shown in Figure 3. For the

purposes of visualization we constructed Figure 3, which shows the distribution of the

reward values across the various cells of the grid for a sample legitimate user. The scale

for Figure 3 is as follows, colors in the green spectrum indicate high cell usage and the

colors in the red spectrum range indicate low cell usage. The magnitude of the usage is

illustrated by the brightness of the colors, darker colors representing higher magnitude

and lighter colors representing the lower magnitude. As shown in the Figure3, each of the

cell in the grid is named as Cx, where x ranges from 1 to 48.

37

Figure 3: Sample Finger Gesture Usage Pattern of Legitimate User

Figure 3 was generated from a selected user usage data of the touch based smart

phone. We can infer from the diagram that the user is most likely a right hand user as

there is a heavy usage of the bottom left corner of the touch screen which is typical

pattern observed in the right hand users. The color and brightness distribution also shows

a significant vertical and horizontal scroll gestures, which is consistent with the general

usage pattern of the smart phone where scroll gestures contributing significantly larger

proportion of the finger gestures [41].

38

Figure 4: Sample State Graph for Finger Gesture Usage Pattern of Legitimate User

Figure 4 illustrates the actions and its effect on the state transitions. As mentioned in

our overall approach in Section 4.1, we consider two kinds of gestures micro-gestures

which is relates to action A1 and macro-gestures which is relates to action A2. Each of

the rectangular box shown in Figure 4 is a specific cell on the touch screen of the smart

device. We can observe from Figure 4 that actions in A1 category resulting in

neighborhood state transitions, meaning the next state will be a neighboring state to the

current state. Actions that relate to A2 result in state transitions to non-neighboring states.

Note that each state transition is probabilistic in nature and hence has a probability value

39

assigned to it. For example the transitions among the C46, C47, C40 and C46 with only

A1 actions represents the user is exhibiting a uninterrupted touch gesture on the touch

screen of the smart device. Similarly, transitions among the C25, C43, C46 and C43 with

only A2 actions represents the user is exhibiting a skip touch gesture on the touch screen

of the smart device.

The application was designed to monitor and record the users’ finger movements on

the touch screen of the smart device. For this experiment we fixed the number of states

for MDP to be 48, to make it robust and to ensure cross-device functionality. The

application automatically populates the MDP probability, reward and transition values

required for the user authentication based on the observed user finger movement data. For

the experimental purpose, the application was designed to passively authenticate the

users, meaning that the results of this authentication process were not shown to the test

users but were stored for later analysis. The data from all the devices were retrieved and

the initial analyses have shown promising results.

Our overall evaluation followed the below steps of our approach is shown in Figure 3,

Step 1) Continuously collect the sensory data from the selected users’ smart device

during their using of the smart device. Follow the technique presented in [41]

to extract the data from the mobile device.

Step 2) Analyze the sensory data flows collected during the user’s usage session of the

smart device in Step 1 to extract the necessary information to construct the

required features. The output of this step is the features which are used for

grid value generation (GVG) process.

Step 3) Using the features constructed in Step 2 to run the GVG algorithm on user’s

40

smart device for continuously updating the MDP state graph during the user’s

smart device usage session. The inputs for the GVG algorithm include the

attributes of user gestures on the smart device screen, such as pressure, speed

and usage frequency.

Step 4) Identify the context in which the touch screen of the smart device is being used

by the legitimate user using the primary and secondary features.

Step 5) Generate the plans which are the sequences of cells/states in the MDP state

graph representing the user’s gestures, along with the plans’ respective

cumulative reward value. These plans are generated using our technique that

uses the MDP algorithm.

Step 6) The cumulative reward values of the plans are then used as benchmark data to

continuously authenticate the legitimate user of the smart device based on the

cumulative reward

As mentioned earlier each of the legitimate user usage data was collected for a week.

The usage data of the individual legitimate user was then used to personalize the MDP

state graph to reflect their respective usage pattern. Each of the 20 participant data was

used in our evaluation. In order to make our evaluation realistic we generated the

negative list of the figure gesture data of potential malicious user by randomly selecting

the finger gesture data from non-legitimate users. The process of random selection was

used in order to reduce the selection biases during the negative list generation process.

The error rates for the various observation windows for different contexts are shown in

Figures 5 and 6. Figure 5 shows the False Acceptance Rate (FAR) spread across

41

observation windows. The FAR metric measures the acceptance of the non-legitimate

user as a legitimate user by the authentication algorithm. The FAR is considered as one of

the most important metric as it measures the security performance. The average FAR for

our continuous authentication algorithm ranges from 8%, for shorter observation window,

to as high as 24%, for longer observation windows.

 Figure 5: Spread of Average False Acceptance Rates of Our Continuous

Authentication Approach for Various Contexts

As we can observe from Figure 5, the medium activity context has comparatively

lower FAR than the high activity and the low activity contexts. Intuitively we should

expect lower FAR for high activity context than the medium activity context, since input

42

figure gesture frequency is higher. Generally more information means lower FAR, but we

did not observe this except for one observation window of 10. We suspect that that the

higher FAR of high activity context is due to high finger gesture information noise. The

continuous authentication algorithm may be unable to accurately discriminate against

non-legitimate users in low activity context due to the fact that there is insufficient finger

gesture information.

Figure 6: Spread of Average True Positive Rates of Our Continuous Authentication

Approach for Various Contexts

As we can observe from Figure 6, the medium activity context has comparatively

higher TPR than the high activity and the low activity contexts. Similar to the FAR

70

72

74

76

78

80

82

84

86

88

90

0 10 20 30 40 50

A
ve

ra
ge

 T
P

R

in
 P

e
rc

e
n

ta
ge

Observation window in Seconds

High Activity

Medium Activity

Low Activity

43

figure, intuitively we should expect higher TPR for high activity context than the medium

activity context, since input figure gesture frequency is higher. But, as in the case with

FAR figure, we did not observe this for any of the observation windows. We suspect that

that the lower TPR of high activity context is due to high finger gesture information

noise. The continuous authentication algorithm may be unable to accurately discriminate

against non-legitimate users in low activity context due to the fact that there is

insufficient finger gesture information.

Figure 7: Spread of Average Accuracy of Our Continuous Authentication Approach for

Various Contexts

Figure 7 shows the average accuracy rate of our continuous authentication algorithm.

The observations among the high activity, medium activity and the low activity levels are

44

very similar to the TPR graph as expected. Based on the observed FAR, TPR and average

accuracy metrics we conclude that our approach to continuously authenticate legitimate

user performs relatively well. We also recommend the observation windows for the high

activity, medium activity and low activity levels to be 10, 20 and 30 seconds respectively.

In order to effectively secure the touch based smart device during the observation

windows we recommend restricting the access to the critical applications of the smart

device till the user is authenticated.

In addition we benchmarked our continuous authentication approach with the existing

techniques to both authenticate and re-authenticate the legitimate user of the smart

device. The major categories of the benchmarks that we chose were usability,

deployability and security. The rationale behind choosing these categories was that they

were some of the most important metrics for evaluation of authentication approaches.

The sub-categories for each of the major categories, as shown in Table 1, were chosen to

effectively discriminate and compare the various authentication and re-authentication

techniques.

45

Table 1: Comparative Evaluation of Various User Authentication Schemes

Category

Scheme

Usability Deploya-

bility

Security

(Incumbent)
Digit/Pattern

Password
[8]

Biometric

FingerPrint

Iris

Voice

Camera

Gyroscope

[8]

[21]

[21]

[22]

[23]

Cognitive

Unob-Auth

Rhy-Auth

Multi-Touch

[20]

[62]

[18]

Adaptive

Cognitive
Contin-Auth [12]

 = offers the benefit, = almost offers the benefit, no circle = does not offer benefit

Green outline = better than incumbent passwords, Red outline = worse than

incumbent passwords

S
ca

la
b
le

-f
o

r-
U

se
rs

R
ef

er
en

ce

M
em

o
ry

w
is

e-
E

ff
o
rt

le
ss

N

o
th

in
g
-t

o
-C

ar
ry

In

fr
eq

u
en

t-
E

rr
o

rs

P
h

y
si

ca
ll

y
-E

ff
o
rt

le
ss

E

ff
ic

ie
n
t-

to
-U

se

E
as

e-
o
f-

D
ep

lo
y
ab

il
it

y

E
as

e-
o
f-

P
er

so
n

al
iz

at
io

n

E
as

e-
o
f-

A
d
ap

ta
ti

o
n

R

o
b
u
st

n
es

s

R
es

il
ie

n
t-

to
-P

h
y
si

ca
l-

O
b

se
rv

at
io

n

R
es

il
ie

n
t-

to
-T

ar
g
et

ed
-i

m
p
er

so
n
at

io
n

R

es
il

ie
n
t-

to
-T

h
ro

tt
le

d
-G

u
es

si
n
g

R
es

il
ie

n
t-

to
-o

th
er

-V
er

if
ie

rs
-L

ea
k

s
R

es
il

ie
n
t-

to
-P

h
is

h
in

g

R
es

il
ie

n
t-

to
-T

h
ef

t
N

o
-T

ru
st

ed
-T

h
ir

d
-P

ar
ty

C
o
n
sc

io
u
s

 C
o
n
ti

n
u
o
u
s

A
u
th

en
ti

ca
ti

o
n

46

Note that both the accuracy, FAR and TPR were based on the user usage data for one

week. Our algorithm is reinforcement based, hence it tends to get better with higher

usage. We expect the FAR and TPR metrics to improve significantly as the algorithm

gets used continuously by the legitimate user for longer periods of time.

Figure 8: Comparison of Error Rates for Value Iteration and Policy Iteration Techniques

of MDP

Additionally we did a comparative study between two variations of MDP

implementation which yielded graph as shown in Figure 8. Policy iteration (PI)

technique, shown as red line in Figure 7, performs faster continuous user authentication

and has higher error rates since it is biased with the prior typical user finger gesture

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600

Er
ro

r
R

at
e

Number of Iterations

VI

PI

47

information. Value iteration (VI), shown as blue line in Figure 7, is more robust and

hence is applicable for highly critical applications and has a slower convergence rate. It

also has no biases on user finger gestures and hence can achieve more accurate

continuous user authentication.

4.7 Further Improvements

In this chapter, we have presented an approach that uses MDP and touch gestures of

the user to continuously authenticate the user on a touch-screen smart device. This

approach incorporates continuously learning, adaptation and validation of the user’s

finger gestures, and also estimation the usage context of the smart device. The major

advantage of this approach is that it does not require the user to consciously provide

inputs for training purposes and does the learning, adaptation and validation of the user’s

finger gestures in the background, invisible to the user. By continuously learning the user

gestures, our system will be able to capture important unique user characteristics and also

adapt to evolving user’s finger gestures. This enables our system to build an accurate

adaptive user gesture pattern that is very effective and efficient for continuous user

authentication. Another major advantage of our approach is to have better authentication

accuracy by treating uninterrupted user finger gestures over a short time interval as a

single gesture for continuous user authentication

We need to conduct experiments to determine suitable weighting factor values for our

approach. In addition, we plan to further reduce the memory and computational resources

required for our approach by factorizing the cell attributes in MDP. We plan to integrate

this approach with the development of smart IoT environment [13, 49]. The size of the

48

grid and the shape of the individual cell also play a vital role in determining the

authentication accuracies, and hence we plan to conduct further research in this direction.

We also plan to extend this approach to include the use of user-specific information, such

as device type, user age, gender, geographic location, operating system to better

incorporate user’s characteristics.

49

Chapter 5

INTELLIGENT ADAPTATION OF DEVICE STATES IN IoT ENVIRONMENT

 U-things (smart devices) are being used everywhere now-a-days, more and more

smart devices, such as smart phones, central air conditioners, TVs, and smart ovens, are

coming into workplaces and homes. Recent surveys [1, 2] have shown that this trend will

increase rapidly in the future. U-things are physical things with attached, embedded or

blended computers, networks, and/or some other devices, such as sensors, actors, and e-

tags [50]. Although most of these devices are designed to interact with each other, they

are mostly used with few interactions with their surroundings. In order to fully realize the

potential of u-things to satisfy a broad range of requirements of many users efficiently,

such as satisfying various QoS as well as functional requirements, it is necessary to have

intelligent mobile IoT applications incorporating interactions of u-things as well as non-

u-things with other smart devices in their environments. A non-u-thing is a physical thing

without network communication interface to interact with its environment, such as food

heaters, monitors.

Current approaches to developing intelligent mobile IoT applications use only many-

to-many communication among u-things with minimal automation, which often results in

large communication overhead and may require complicated handshake protocols. In this

chapter, we will present an intelligent planning approach to developing cloud-based

mobile IoT applications with reduced communication overhead by using only one-to-one

communication between a u-thing and one of the control modules of its application

50

environment. We consider a mobile IoT application as a physical space consisting of u-

things, non-u-things and users, in which these devices and users operate. Developing an

intelligent mobile IoT application includes enabling the interactions of the u-things, non-

u- things and users with their surroundings.

In the past, the number of the u-things in a users’ environment has been relatively

small, and they were easy to operate. In such an environment, users can set and/or select

devices’ modes of operation. But, now the number of u-things in user’s applications is

rapidly increasing, and many u-things have more modes of operation. Users are usually

not expected to set and/or select their smart devices’ modes of operation due to the

increasing complexity involved in the causal relationship the devices has on their

environments. However, each device’s mode of operation has to be set so that the goals

of the intelligent mobile IoT application, such as maximizing performance, security, and

energy efficiency, can be achieved. It is important to include both u-things and non-u-

things in our approach because non-u-things may be needed to achieve the users’ goals.

The main contribution of this chapter is to present an approach to intelligently planning

the device actions required to achieve the users’ mobile IoT application requirements

efficiently. Our approach also includes a technique for service providers to assess the

states of all the devices in IoT applications. The intelligent planning will be performed

based on the dynamic assessment in a mobile IoT application environment, which is

accomplished by using learning and planning algorithms through mobile cloud

technologies. A plan is nothing but a sequence of device actions to be executed by the

devices/things in the mobile IoT application.

51

In this chapter, Section 5.1 contains our overall approach. In Section 5.2, we will

discuss how the service providers for an intelligent mobile IoT application will analyze

device states. In Section 5.3, we will discuss our approach to automatically label the IoT

devise states. In Section 5.4, we will discuss our approach to dynamic assessment of the

performance of the devices. In Section 5.5, we will discuss our planning technique for

developing an intelligent mobile IoT application. In Section 5.6, we will present an

example to illustrate our approach, and in Section 5.7 we will present some simulation

results to show the effectiveness of our approach. In Section 5.8, we will discuss

conclusions and future work.

5.1 Approach

The research tasks proposed in this section includes developing approach that uses

regularized least square and Markov Decision Process for intelligent planning of device

actions in IoT application environments. The specific goals of our approach are: (1) assist

the user(s) of the IoT application in securing their environments, (2) observe and monitor

user(s) behavior to plan device actions that complement user behavior and preferences,

and (3) ensure that the user requirements are satisfied with minimal resources. Each of

the above items will be discussed in detail in the Section 5.1.

In our approach, we consider three types of entities in an intelligent IoT application

environment: users, manufacturers and smart environment service providers SESP. The

primary functions of these entities include the following, (1) The users provide the SESP

with the functional and quality requirements, and application environment, (2) The

52

manufacturers provide the state information and device specification manuals of the u-

things and non u-things requested by the SESP, and (3) The SESP will analyze the above

requirements, obtain the list of u-things and non u-things, and develop machine learning

algorithm to assess the devices in the application environment.

We define intelligent environment tiers IET to indicate how well a device’s state

conforms to the users’ specified application, such as satisfactory, marginal, and

unsatisfactory. The number of IET required for a IoT application will be determined by

the SESP after analyzing the users’ application specification. An intelligent IoT

application will consist of u-things, non u-things and users, whose actions and/or

performance collectively will satisfy the users’ IoT application requirements. In our

approach, we will use a low-cost device authentication mechanism [3] to authenticate all

the u-things. We will use our prior results to ensure the trust management and

confidentiality protection requirements in cloud environment are efficiently handled [49,

51, 52]. Data reported from those u-things which fail the authentication will not be

accepted.

53

Figure 9: System Diagram for Our Approach to Intelligent Adaptation of Device States in

IoT Environment

Our overall approach [13] is depicted in Figure 9, including various entities and their

interactions. Our approach involves the following steps,

Steps on SESP side:

Step 1) A user provides the functional and quality factors that are required by SESP

for enhancing the security of the IoT application environment.

54

Step 2) The SESP identifies the list of u-things and non u-things, and their state

information from the registry of Things, which is initially generated with the

information provided by the manufacturers of u-things and non u-things.

Step 3) The SESP analyzes the state information of each u-thing and non u-thing based

on the ranking of importance of all the states with respect to the users’ IoT

application specifications to assign value to the state of the device.

The SESP also assigns an impact index IM for u-things and non u-things,

which reflects the impact the devices, has on certain quality factors of the IoT

application.

 Step 4) The SESP uses ALA our technique to automatically assign the IET labels for

selected Domain State DSs. More details on our ALA algorithm will be

presented in Section 5.3. DSs are the combinations of observed u-things and

non u-things states at any particular time in the IoT application environment.

Step 5) The SESP uses the labeled DSs in Step 4) as the training data to generate the

trained machine learning algorithm using supervised learning techniques.

Step 6) SESP uses our technique that uses markov decision process MDP planner on

its cloud servers for action formulation and the resultant domain state obtained

from executing formulated actions of application domain is validated by the

trained machine learning algorithm to check for plan’s effectiveness with

respect to the user requirements.

Steps on user intelligent application:

Step 7) The SESP provides/installs a controller device (CD), which includes trained

55

machine learning algorithm in users’ IoT application to monitor all u-things

states. The CD can be installed in a smart phone/tablet which is designed to

access cloud through the network.

Step 8) The trained machine learning algorithm uses all the u-things’ states and the

given state of non u-things of a particular time instant to categorize the DS.

The states are collected by the CD using communication systems such as

bluetooth, zigbee, wi-fi.

Step 9) CM then transmits the data to cloud servers where Step 6) is performed to

formulate the device actions to adjust the necessary u-things action/operations

in real time to reach the users’ expected goal through CD. Since CD cannot

control non u-things, the CD only provides recommendation on the required

actions of non u-things to the users.

5.2 Dynamic IoT State Assessment

In this section we will primarily discuss the development and deployment of the

learning algorithms, namely RLS (regularized least squares) and ALA (Automatic

Labeling Algorithm), for the dynamic assessment of the IoT environment. The SESP will

primarily use the ALA to automatically label the training dataset with minimal utilization

of the domain experts, and use RLS algorithm for the dynamic IoT assessment. The

rationale for developing two algorithms, RLS and ALA, for IoT environment assessment

is for accommodating the real-world problem of availability/feasibility of extensively

using domain experts. Any restriction on the availability of domain experts will have

56

major impact on labeling the training data. In such cases, we propose the ALA algorithm

which is an unsupervised learning algorithm. The RLS algorithm is a supervised learning

algorithm hence it requires labeled training dataset. The ALA is designed to organize the

dataset based on the similarity of their individual data points to one another. A few of the

data points are randomly selected and manually labeled by the domain experts and the

rest of the data points are automatically labeled by the ALA. The details of the ALA and

RLS algorithms will be discussed in Section 5.3 and 5.4 respectively.

The primary responsibility of the SESP is to assign device values for each device and

train the machine learning algorithm, which will be discussed in Section 5.3. The SESP

obtains the state information and device specifications manual from manufacturers.

Attribute of device state is defined as a feature of a device which affects the mobile IoT

application, and can be controlled by a user or control units. Examples for attributes of an

air conditioner are blower, temperature, and time. SESP performs detailed analysis on the

state information and attributes of the state, if needed the SESP may perform device

testing to gather required information for state analysis. After the SESP gathers the

necessary information, it performs state importance analysis using the domain experts,

where it looks at the ranking of importance of the device states with respect to the mobile

IoT application and assigns UV. The state of the mobile IoT application, called the

domain state DS, consists of the total states of the individual devices. The DS at time t,

𝐷𝑆𝑡, is represented as follows:

57

𝐷𝑆𝑡 = < 𝐷1, 𝐷2, … , 𝐷𝑖 , … > (1)

where 𝐷𝑖 is the total state of the device i, i = 1, 2, …, which is a 4-tuple

𝐷𝑖 = < 𝑁𝑖, 𝐿𝑖 , 𝑆𝑖
𝑡 , 𝐶𝑖, 𝐸𝑛 >, (2)

where 𝑁𝑖 , 𝐿𝑖, 𝑆𝑖
𝑡 and 𝐶𝑖 represent the name, location, state and context of device i,

respectively. The UV and IM of the devices in a mobile IoT application are

calculated by the SESP using our objective tradeoff function [44] as shown in (3)

and (4). 𝐸𝑛 represent the possible events that can occur from current state 𝑆𝑖
𝑡. 𝐸𝑛

contains state changes such as on, off, sleep

𝑈𝑉𝑆𝑖
𝑡 = 𝐹(𝑁𝑖, 𝑆𝑖

𝑡, 𝐴𝐷) (3)

where 𝑈𝑉𝑆𝑖
𝑡 is the value of the state of the device i at time t, and AD is the

application domain preference set by the user.

𝐼𝑀𝑖 = 𝐹(𝑁𝑖, 𝐿𝑖, 𝐶𝑖) (4)

where 𝐼𝑀𝑖 is the impact factor for each of device i.

58

In the IoT environment, when the number of total states and the devices space are

very large, the SESP can establish a subset of benchmark states and assess the similarity

of the states of each device to the benchmark data, and then assign a UV for the state of a

device [53, 54]. This method has little overhead because the attributes of the state have to

be defined in such a way that the similarity algorithm can compare the attributes of a

devices’ state with the benchmark data. The alternative to this method is ranking the

importance of attributes of all states. The SESP then can select a set of highest and/or

lowest ranked attributes, whose occurrence will trigger a large change in the UV

assignment of a state of a device.

𝐿𝑉𝐷𝑆𝑡
=

1

µ𝑁𝐷𝑆𝑡

 (∑(𝛼𝐼𝑀𝑖 ∗ 𝛽𝑈𝑉𝑆𝑖
𝑡)) (5)

where 𝐿𝑉𝐷𝑆𝑡
 is the label value for each domain state at time t, 𝑁𝐷𝑆𝑡

is the number

of the devices in a given domain state at t, and µ, β and α are the variables that

can be used to assign weight for each parameter based on users’ application

specification.

The SESP generates the DS that are representative of the users’ application

requirements. A small subset DS’ is randomly selected from the overall DS. Equation (5)

is used for calculating the 𝐿𝑉𝐷𝑆𝑡
 for each data instance in DS’. Note that the equation (5)

is only used to calculate LV of DS’ to be used as a part of the training data. Each of the

DS’ is assigned to one of the IET classes by the domain experts based on their LVs

generated using equation (5).

59

5.3 Automated Labelling

The primary objective of the ALA learning algorithm will be to minimize the use of

domain expert inputs and at the same time provide relatively accurate assessment on the

IoT environment. One of ways of minimizing the utilization of the domain experts is to

minimize the practice of manual labelling, which is one of the most time consuming

process. Towards achieving this objective we propose a technique to exploit the property

of similarity to organize the whole training dataset and heuristically assign labels to

unlabeled data instances. The ALA is derived from our prior work [55]. We will present

more details in the below subsections.

The ALA will use the modified k-means clustering technique with Mahalanobis

distance as the distance metric to measure the similarity among the data instances in the

dataset. The primary rationale for using Mahalanobis distance metric is to accommodate

the variance within the cluster. The traditional implementation of the k-means clustering

technique with Euclidean has major limitations. One of the major limitations is that it

assumes every cluster to be spherical in shape. When the data instances distribution of the

dataset does not conform to the spherical cluster shape then the accuracy of the clustering

reduces significantly. This problem is especially acute in the IoT environments which are

dynamic in nature. In order to accommodate the non-spherical cluster shapes and

variances even within the classes we will use the Mahalanobis distance metric for

clustering purpose. The covariance matrix required for generating the initial shape of the

cluster will be calculated from the data instances in the DS’.

60

The individual devices states’ composing the DSs form the feature set and the number

of IET classes correspond to the number of the clusters. The k-means clustering

algorithm is an unsupervised learning algorithm hence it does not need labeled dataset.

Since the ALA is required to assign IET classes to each of the data instance in the overall

DS, the clusters generated by the modified k-means algorithm needs to be correspond to

the IET classes. In order to associate the cluster to the IET class, we follow the “first-

past-the-post voting” principle. A cluster may be composed of data instances having

multiple IET labels, and a cluster with highest count of IET labels will be assigned the

respective IET class.

The following steps illustrate the ALA,

Step 5.3.1) Generate a subset DS’ from the overall DS through a process of random

selection.

Step 5.3.2) Calculate the covariance matrix using the data instances in DS’.

Step 5.3.3) Use the modified K-means algorithm to generate and update the clusters

by organizing the data instances in DS.

Step 5.3.4) Use the voting technique to assign the IET class to the generated clusters

with the IET classes assigned in DS’

Step 5.3.5) Assign the IET label corresponding to the cluster to all the data instances

within the cluster.

Step 5.3.6) Repeat Steps 5.3.3) to 5.3.5) until an accurate ALA is generated for

automated IET label assignment.

61

The accuracy of the ALA depends on both the labelling accuracy DS’ which is

performed by the domain experts, and the generation of the overall DS dataset which

needs to be representative of the users’ application requirements. The SESP uses the input

from the CM in the user’s mobile IoT application to maintain the logs of DS occurrences

in the environment. The SESP uses these logs to generate the probability metrics for the

occurrences of the devices’ states in the user’s mobile IoT application. Then the SESP

can generate a list of frequently occurring states and a subset of DSs for the training data.

Then the SESP can ensure that the mobile IoT application is adequately represented in the

training data that is generated. The labelled data instances of the overall DS dataset will

be used by the RLS algorithm to generate the model for assessing the dynamic IoT

environment.

5.4 RLS Learning Algorithm

The objective function in the least square regression algorithm [56] is generally prone

to overfitting and the dynamic nature of the IoT environment will likely make the

overfitting problem much worse. This is due to the fact that dynamic environments

generally require priors to generate accurate models, and hence in our approach we

penalize the least square algorithm by adding a regularization variable. The regularization

of the least square objective function can be either the 𝑙1 or the 𝑙2 norm depending on the

users’ requirements on the adaptiveness of the learning algorithm.

As mentioned in the above section, the ALA automatically labels the individual data

instances of the DS dataset. The DS dataset is now used as the training data for training

62

the RLS algorithm. The preparation of the dataset will include k-fold cross-validation,

where the k is 10. More on development and usage of the RLS algorithm will be

discussed in this section.

In our approach, we use the regularized least square RLS algorithm for two purposes,

one is to dynamically assess the domain state of the mobile IoT application for its

conformance with user requirements, and the other is to validate the resultant domain

state obtained by executing formulated device actions. The SESP specifies the IET for the

QoS assessment of the intelligent application with respect to the users’ specification, and

hence SESP knows the number (n) of the classes IET needed to be classified. We choose

to use N binary classifiers to predict datasets relating to each IET class, where N is the

number of classes needed to be classified. Our approach only requires O(n) classifiers to

determine IET classes [57]. We will use RLS algorithm as our learning algorithm to

determine IET classes because the RLS algorithm is simple and requires only relatively

small computational power compared to other learning algorithms, such as Random

Forest.

63

Figure 10: A Technique for Training the RLS Algorithm for Assessing Dynamic

IoT Environment

The following steps illustrate the training phase of the assessment algorithm,

Step 5.4.1) Obtain the DSs and their respective LVs generated in Step 4) of our overall

approach.

Step 5.4.2) Categorize the DSs using their respective LVs for each IET. Select DSs

belonging to one IET class as a positive class and randomly select an equal

number of DSs belonging to other IET classes as a negative class. In this

64

case, the trained RLS algorithm will predict the IET of the positive class in

the subsequent steps.

Step 5.4.3) Perform a random split of the categorized DSs, and use 80% of split as

training data and remaining 20% as the test data.

Step 5.4.4) Perform cross validations on the training data and iterate the RLS algorithm

to generate the trained RLS algorithms

Step 5.4.5) Use the generated trained RLS algorithms to assess the 20% test data to

predict the IET classes for test DSs, which are used to assess the accuracy of

the obtained trained RLS algorithms by comparing with known test LVs.

Step 5.4.6) The accuracy values are reported to the DS categorization module. For

trained RLS algorithms having unsatisfactory accuracy values, the DSs will

be re-categorized and randomly split to improve the accuracy.

Step 5.4.7) Repeat Steps 5.1) to 5.6) until an accurate trained RLS algorithm is

generated for classifying DSs for each of the IET classes.

The trained RLS algorithm will be used for assessing the dynamic IoT environment.

The IET classes indicate the conformance of the IoT environment to the users’ IoT

requirements. In our approach the regularization term that we find more appropriate for

the least squared objective function is the 𝑙2 norm. The reason for that being that the 𝑙2

norm forces the coefficients of the least relevant variables in the overall objective

function to be very small value, instead of forcing it to zero. In dynamic environments

this is very important as some of the least relevant variable may be necessary for adapting

the model more effectively in dynamic environments, such as in IoT environments.

65

5.5 Device State Adaptation and Validation

In this section we will discuss how to formulate the device actions and validate them

in a mobile IoT application to achieve user requirements in an efficient manner. The

MDP planner is located at the SESP mobile cloud platform. When the user wants to

perform the action formulation and validation, the current DS is sent to the mobile cloud

for processing. The planner after processing the data sends back the recommended DS

information after validation along with the action to be executed by the CM. We choose

the MDP planner in our approach because it is probabilistic and reflects the users’

behavior more accurately. Since the CM is most likely to be installed in a smart phone or

other devices with limited computational capacity the planning algorithm has to be

executed remotely in SESP mobile cloud. This allows us to predict with greater accuracy

the target DS and actions that reflects user behavior. Light weight non-probabilistic and

strictly deterministic planners cannot reflect user behavior and requires continuous re-

planning since most of plans may not be liked or followed upon by the user. Factored

MDP representations can be used to reduce the state space significantly but this also

reduces the degree of freedom of value functions and will increase the SESPs cost of

finding the optimal solution. Hence these kinds of planning techniques are not suitable

for our approach.

66

The representational model for our MDP planner has 4-tuples which can be

represented as shown in (7),

< 𝐷𝑆𝑡, 𝑆𝑇, 𝐴𝑡 , 𝐿𝑉𝐷𝑆𝑡
> (7)

where 𝐷𝑆𝑡 is the domain state at time t, ST is the state transition model as shown

in Figure 2, A is the action set and 𝐿𝑉𝐷𝑆𝑡
 is the cost/reward metric respectively.

The cost/reward metric is nothing but the LV for each Domain state, which we

had already computed.

𝐴𝑡 = < 𝑁𝑂𝐶, 𝑆𝑊𝑇𝐻 > (8)

where 𝐴𝑡 is the device actions possible from current domain state at t. The IoT

adaptation system has two fundamental actions, NOC (no operation) and SWTH

(switch). When NOC action is chosen the IoT domain state remains relatively

same and when SWTH action is chosen the domain state of the IoT is changed.

The resultant state of the either of the actions are governed by the state transition

probabilities which are generated from the user behavior and preferences. The state

transition probabilities is initially assigned by the SESP and later updated based on the

observed changes in user behavior(s) and preferences.

67

LV: 2.39

Pr: .75

Pr: .25

Pr: .60

Pr: .25

Pr: .20

Pr: .35
Pr: .85

Pr: .85
Pr: .45

LV: 5.11

LV: -3.12

LV: -1.52

LV: .81

LV: -4.32

LV: 8.91

LV: -1.3

LV: -3.63

LV: 1.92 LV: .99 LV: 2.01

Pr: .27

Pr: .55

Figure 11: State Transition Model for Action Generation in IoT Application

The state transition diagram, as shown in Figure 11, will be generated by the SESP.

The edges of the state transition diagram have weights which are probabilistic that

represent the likelihood of the user to do a particular action. The initial probabilistic

values are assigned using the global user action likelihood metrics, but later they are

updated using a gradient descent approach based on SESP observation of the users’

behavior. In the SESP mobile cloud servers a dedicated cache is maintained where a state

model with frequently used and most efficient domain states are stored. The edges of the

state model are pruned based on their importance using stochastic shielding

approximation [58] technique. The threshold value which decides the extent of edge

pruning is tuned by the SESP based on mobile IoT application. The idea is to reduce the

68

complexity of the planning process by reducing the size of the state model. The state

model is dynamic in the sense domain states and edges are brought in and out of the

cache copy based on user behavior and probabilistic value ranking.

In our approach we use the mobile IoT application specification provided by the user

to formulate the state model. Once state model is generated we initialize the algorithm

with random policy (set of actions in a user environment) and then use the backward

induction to assess the policy P. The algorithm constantly does a backward induction

using a bellman equation [59] and this technique is called Bellman Backup. The policy

iteration for an infinite horizon is described using (10), which we use to planning the

device actions of a mobile IoT application

)'(
'

)'),(,(β)(DStDSt P
VDStDStPDStSTLV DStt

DS
P

V  
(9)

)(
'

)',,(maxarg)(' 'DSDSt
VDStDSSTDStP tt Pt

A

t
A

 

(10)

where 𝑉𝑃 is the value function of a policy P for a current domain state t, LV is the

label values as we had defined before in section 5.3, β is the discount factor which

is used to control the learning metric, t’ is used to indicate a new domain state

neighboring to domain state t.

69

The brief description on working of the algorithm is as follows,

1. Given a policy P

2. Loop:

 (a) Evaluate 𝑉𝑃 using (10)

(b) For each 𝐷𝑖 in 𝐷𝑆𝑡, set improved policy using (10)

(c) Replace P with P’, where P’ is the new policy

Until no improving action possible at any state

The result of this algorithm is an optimal policy which specifies what device actions

need to be initiated in an IoT application to achieve user requirements. Since we do not

have maximization function in (9) we vastly reduce the complexity of the algorithm.

Once we get the optimal set of action, the resultant DS is sent to the CM where our

trained RLS algorithm will assess the DS for its effectiveness. Upon validation by trained

RLS algorithm the actions are executed.

5.6 Evaluation

In this section, we will present an example to illustrate our approach to intelligently

adapt device states for an IoT mobile cloud application. Consider the mobile IoT

application in a smart car, where the user wants to achieve maximum security and energy

efficiency with comfortable environmental circumstances. The security goals include

preventing the user impersonation and intrusion attacks. This is possible because in our

approach we create the user’s profile, which can be used to detect hackers. Let us assume

70

that the user has the following u-things and non u-things in the mobile IoT application of

his smart car: smart air-conditioning system (AC), smart infotainment systems (IT), smart

window (SW), smart speed controller (SC), smart refrigerators (RF), food heaters (non u-

thing) (FH), vipers (non u-thing), smart phones (SP), computers (CM) and tablets (TB).

Step 1) The user provides the SESP the functional and quality requirements of the

smart car mobile IoT application, including “Energy Savings” and

“security”.

Step 2) The SESP identifies the list of u-things, non u-things and the state

information for each of the above devices from the device registry which is

available from the manufacturers of the devices.

Step 3) The SESP analyzes the attributes of the states of the devices to generate UV

and IM. For example, in the smart air conditioning system, SESP can derive

the ranking of importance of the device’s states by analyzing the attributes,

such as, blower, time and temperature. As discussed in Section 5.3 based on

the ranking of device’s states, the SESP can generate the UV. Table 1 shows

the UV and IM values of the u-things and non u-things of the mobile IoT

application.

The impact factor of each device in the smart car mobile IoT application is

determined by the SESP based on the effect each device has on the intelligent

application.

71

Table 2: UV and IM Values for IoT devices

 State

1

State

2

State

3

State

4

State

5

IM

AC -3.5 -1.5 -0.2 1.5 4.5 9

IT -4.5 -3 0.5 4 4.5 4

SW -4.2 -2 4 0 0 5

SC -4 4.9 4.9 0 0 8

RF -3.5 -1.5 3.5 4 4 6

SP -4 -2.5 1 2 4 2

CM -2.5 0.1 2 4 0 6

TB -2.5 -1 3 4 4.9 3

FH -1 5.5

VP -2 4

In Table 2, the lightings has higher than normal impact factor even though it has

relatively small power consumption because of the fact that it also radiates heat to the

environment which has a direct impact on the environment temperature.

Step 4) The SESP calculates the LV using equation (5) for the DSs to be used as

training data. Table 2 shows the LV for some of the DSs,

72

Table 3: The LV of device state combinations of devices in IoT application

No DS LV

1 𝐴𝐶𝑆3
, 𝐼𝑇𝑆2

, 𝑆𝑊𝑆1
, 𝑆𝐶𝑆2

, 𝑅𝐹𝑆1
, 𝐹𝐻𝐷𝑆,

𝑉𝑃𝐷𝑆, 𝑆𝑃𝑆2
, 𝐶𝑀𝑆1

, 𝑇𝐵𝑆3
 -4.11

2 𝐴𝐶𝑆4
, 𝐼𝑇𝑆2

, 𝑆𝑊𝑆3
, 𝑆𝐶𝑆2

, 𝑅𝐹𝑆2
, 𝐹𝐻𝐷𝑆,

𝑉𝑃𝐷𝑆, 𝑆𝑃𝑆2
, 𝐶𝑀𝑆1

, 𝑇𝐵𝑆3
 2.72

3 𝐴𝐶𝑆3
, 𝐼𝑇𝑆3

, 𝑆𝑊𝑆3
, 𝑆𝐶𝑆2

, 𝑅𝐹𝑆2
, 𝐹𝐻𝐷𝑆,

𝑉𝑃, 𝑆𝑃𝑆3
, 𝐶𝑀𝑆2

, 𝑇𝐵𝑆3
 5.39

4 𝐴𝐶𝑆4
, 𝐼𝑇𝑆3

, 𝑆𝑊𝑆3
, 𝑆𝐶𝑆3

, 𝑅𝐹𝑆3
, 𝐹𝐻𝐷𝑆,

𝑉𝑃𝐷𝑆, 𝑆𝑃𝑆4
, 𝐶𝑀𝑆4

, 𝑇𝐵𝑆4
 12.22

5 𝐴𝐶1, 𝐼𝑇𝑆2
, 𝑆𝑊𝑆1

, 𝑆𝐶𝑆1
, 𝑅𝐹𝑆4

, 𝐹𝐻𝐷𝑆,

𝑉𝑃, 𝑆𝑃𝑆1
, 𝐶𝑀𝑆3

, 𝑇𝐵𝑆1
 -8.95

In this example, based on the energy savings and security of the users’ smart car mobile

IoT application, the SESP identifies the following three IET classes,

1. Marginal class, indicate that the devices in this class satisfy certain user

specifications, but may need correction to satisfy all the user’s application

specifications.

2. Satisfactory class, indicate that the devices in this class satisfy all the user’s

application specifications

3. Unsatisfactory class, indicate that the devices in this class do not satisfy the

user’s application specifications.

73

Based on Table 3, the SESP can classify the DSs as follows: #2 belongs to Marginal

Class, #3 and #4 belong to Satisfactory Class and #1 and #5 belongs to Unsatisfactory

Class according to the values in the LV column.

Step 5) The SESP uses the categorized DSs in Step 4) as the training data to generate

the trained RLS algorithms using our approach discussed in Section 5.

Step 6) The mdp planner on the SESP is used for action formulation and trained RLS

algorithm is used for action validation before actions are sent to mobile IoT

application.

The following steps occur in the users’ intelligent IoT application:

Step 7) The SESP provides/installs a controller module (CM) in the user’s smart car

mobile IoT application to monitor all u-things states. At each preset interval, the

u-things send their state information to the CM, which in turn will form the DSs

and provide them to the trained RLS algorithm.

Step 8) The trained RLS algorithm uses each of DS at every time interval to generate

IET classes.

Step 9) The SESP incorporates adaptive mechanisms where CM sends state information

to SESP through mobile cloud infrastructure for action formulation used for

adjusting the necessary u-things actions to achieve the user’s expected

environment based on the IET classes from Step 7). Since the CM does not need

to control the FH and the lights due to the non u-things characteristics specified

by the SESP, the CM only provides the recommendation on the required actions

of the non-thing devices to user.

74

In our approach, the most uncertain and difficult part is the training of the RLS

algorithm. In this section, we will present the simulation results of our assessment

technique using trained RLS algorithms because the assessment of the devices in the

mobile IoT application is recurring and has a major impact on the effectiveness of our

approach.

Figure 12: Comparison of accuracies of RLS algorithm for different IET classes

We used the MATLAB to run our simulation of the assessment of the devices in a

mobile IoT application using trained RLS algorithms. The application consists of 10

devices, with each device having 3 to 5 states. Figure 12 compares the accuracy of the

75

trained RLS algorithm in our assessment technique for different IET classes. We

generated a total of 148 DSs and used (5) to calculate their respective LVs, some of which

are shown in Table 2. We classified the 148 DSs into three IET tiers based on their LVs,

and used 80% of the randomly selected data from these DSs as the training data and the

rest as the test data.

We further partitioned the training data into 10 data sets, and randomly selected a

combination for each iteration of RLS algorithm run from all possible 𝐶8
10 combinations,

and then run the RLS algorithm with initialized parameters. Based on the initial

performance of a RLS algorithm, the parameters are tuned and the RLS algorithm is run

with a different combination of datasets. This process continued until such a set of

parameters that generated the highly accurate trained RLS algorithm was found. The

resultant trained RLS algorithm was tested with the original test data, which yielded an

average trained RLS algorithm accuracy rating of 92% with an average precision of the

accuracy rating 89%. Figure 3 shows how the accuracy for each IET classification

changes with various DSs. We observe that for the dataset of the 148 DSs, the average

accuracy ratings of the trained RLS algorithm become stabilized as they approach 75 DSs,

which indicates that the trained RLS algorithm is ready for deployment in the user’s

mobile IoT application.

5.6 Further Improvements

In this chapter, we have presented an intelligent planning approach to developing

cloud-based mobile IoT applications using the RLS learning algorithm and MDP planner,

76

with only one-to-one interaction between each u-thing and one of the controller modules.

Our simulation results showed that the accuracy and precision metrics are relatively high

for our assessment technique. We plan to extend our approach to dynamically update the

trained RLS algorithm for better adapting the users’ intelligent IoT applications in real

world environments. In addition, we also plan to explore the possibility of using

customized factored MDP planners to reduce the computational requirements while

maintaining high plan optimality rate. Usage of factored MDP will also enable us to

move the planning to user mobile IoT applications which will reduce transmission

overlays, and thus improve our approach

77

Chapter 6

CONCLUSION AND FUTURE WORK

In this dissertation work we have presented our comprehensive approach to securing

ubiquitous smart devices in IoT environment with probabilistic user behavior(s)

prediction. My work in this dissertation mainly focused addressing two research

problems: (1) how to continuously learn and authenticate legitimate user(s) only using the

finger gestures on their touch-based smart device in the background without requiring the

legitimate user(s) to provide their finger gesture data intentionally, and (2) how to

efficiently configure IoT devices through controller device(s), in conformance with the

probabilistic human user behavior(s) and preferences, to effectively adapt IoT devices to

the changing environment. Both of our above research works were evaluated with

simulated and real-world data, and the results have shown that our approaches were able

to effectively address the research problems.

6.1 Summary of contributions

In Chapter 4, we presented an adaptive approach for continuously authenticating

legitimate user on a touch screen based smart device (or controller device). Specific

contributions of our approach include the following algorithms: 1) an algorithm to

estimate the context of smart device usage, 2) an algorithm to estimate degree of

importance of each cell/state on the user’s smart device touch screen, and 3) a technique

that uses Markov Decision Process (MDP) algorithm to continuously authenticate users’

78

with computed user gesture model. The evaluation results for our continuous user

authentication approach showed that our approach was able to accurately continuously

authenticate legitimate user(s) with acceptable error rates. In Chapter 5, we presented an

effective approach for intelligent planning of device action in IoT applications. Our

approach is designed to work for both individual user and users as a group. Specific

contributions of our approach include the following algorithms: 1) a state analysis

technique for the service provider, 2) learning algorithm for dynamic IoT application

assessment, and 3) a technique that uses MDP (Markov Decision Process) planning to

generate efficient IoT device action plans. Our simulation results showed that the

accuracy and precision metrics are relatively high for our dynamic assessment technique.

6.2 Future research directions

Effective automation of decision making in complex systems require significant

relaxation of the traditional and unsustainable assumptions such as complete state

observability and simplistic contextual inputs. Such relaxations should reflect the real

world situations such as partial observability and detailed contextual inputs. Much

research has been done in this area of partial observability and detailed contextual inputs.

Current techniques that handle such complex decision making systems function under

unsustainable assumptions, such as complete state observability and simplistic contextual

inputs, which were made to make such systems practical by reducing computation

complexity. Furthermore, many existing techniques for partially observable environments

such as partially observable markov decision process (POMDPs) have serious limitations.

79

Such systems use system snapshots to estimate the current system state with simplistic

contextual inputs, which limits the effectiveness since system snapshots of partially

observable environment do not contain adequate information to accurately estimate

current system state. In order to greatly improve the estimation accuracy of the current

system states and improve automation of complex decision making systems in partially

observable environments, including ones for security systems, I intend to perform further

research to modify and apply recurrent neural networks (RNNs) [60, 61] with Hessian-

free optimization.

80

REFERENCES

[1] Gartner smart devices forecast on future growth (2014).

http://www.gartner.com/newsroom/id/2839717. Accessed on 15th August 2016.

[2] Survey on the smart device shipment, “http://techcrunch.com/2013/04/04/gartner-

2012-2017-devices-forecast/”, Accessed on May 15, 2016

[3] Erman Ayday and Sridhar Rajagopal, “Secure, Intuitive and Low-Cost Device

Authentication for Smart Grid Networks”, (2011) The 8th Annual IEEE

Consumer Communications and Networking Conference - Special Session on

Smart Grids – Emerging Services and Networks, pp: 1161- 1165.

[4] R. S. Gutzwiller, S. M. Hunt and D. S. Lange, "A task analysis toward

characterizing cyber-cognitive situation awareness (CCSA) in cyber defense

analysts" 2016 IEEE International Multi-Disciplinary Conference on Cognitive

Methods in Situation Awareness and Decision Support (CogSIMA), San Diego,

CA, 2016, pp. 14-20.

[5] New York Times report on recent cyberattacks on big businesses (2015).

http://www.nytimes.com/interactive/2015/02/05/technology/recent-

cyberattacks.html?_r=0. Accessed on 15th August 2016.

[6] Healthcare’s Model Approach to Critical Infrastructure Cybersecurity. (2014).

https://hitrustalliance.net. Accessed on 15th August 2016.

[7] Wikipedia source on multi-factor authentication. (2016).

“http://en.wikipedia.org/wiki/Multi-factor_authentication”, Accessed on May 15,

2016

[8] How Secure are Numeric Passwords. (2015).

“http://blogs.cisco.com/security/how-secure-are-numeric-passwords”, Accessed

on May 15, 2016

[9] Milind Tambe, Manish Jain, James Adam Pita, and Albert Xin Jiang. "Game

theory for security: Key algorithmic principles, deployed systems, lessons

learned." Proceedings of Communication, Control, and Computing (Allerton),

2012 50th Annual Allerton Conference on, pp. 1822-1829. IEEE Press, 2012.

[10] Alecsandru PĂTRAŞCU, and Emil Simion. "Game theory in cybersecurity

defence." Proceedings of Electronics, Computers and Artificial Intelligence

(ECAI), 2013 International Conference on, pp. 1-6. IEEE Press, 2013.

[11] A. Serwadda, and V. V. Phoha. "When kids' toys breach mobile phone security."

Proc. ACM SIGSAC conference on Computer & communications security,

(2013), pp. 599-610.

http://www.nytimes.com/interactive/2015/02/05/technology/recent-cyberattacks.html?_r=0
http://www.nytimes.com/interactive/2015/02/05/technology/recent-cyberattacks.html?_r=0
https://hitrustalliance.net/

81

[12] A. Buduru and S. Yau, "An Effective Approach to Continuous User

Authentication for Touch Screen Smart Devices", Proceedings of IEEE

International Conference on Quality, Reliability and Security (QRS), Vancouver,

Canada, Pages: 219-226, August 2015

[13] S. Yau and A. Buduru, “Intelligent Planning for Developing Mobile IoT

Applications Using Cloud Systems”, Proceedings of IEEE 3rd International

Conference on Mobile Services, Anchorage, Alaska, Pages: 55-62, June 2014

[14] Jianhua Ma, Laurence T. Yang, Bernady O. Apduhan, Runhe Huang, Leonard

Barolli, Makoto Takizawa and Timothy K. Shih, “A Walkthrough from Smart

Spaces to Smart Hyperspaces towards a Smart World with Ubiquitous

Intelligence”, Proceedings of the (2005) 11th International Conference on Parallel

and Distributed Systems. Pp: 370 -376, Vol. 1, DOI: 10.1109/ICPADS.2005.60

[15] J. R. Wallrabenstein, "Practical and Secure IoT Device Authentication Using

Physical Unclonable Functions," 2016 IEEE 4th International Conference on

Future Internet of Things and Cloud (FiCloud), Vienna, 2016, pp. 99-106.

[16] S. Chakrabarty and D. W. Engels, "A secure IoT architecture for Smart Cities,"

2016 13th IEEE Annual Consumer Communications & Networking Conference

(CCNC), Las Vegas, NV, 2016, pp. 812-813.

[17] J. L. Espinosa-Aranda, N. Vallez, C. Sanchez-Bueno, D. Aguado-Araujo, G.

Bueno and O. Deniz, "Pulga, a tiny open-source MQTT broker for flexible and

secure IoT deployments," Proceedings of 2015 IEEE Conference on

Communications and Network Security (CNS), Florence, 2015, pp. 690-694.

[18] Y. Niu, and C. Hao "Gesture authentication with touch input for mobile devices"

Security and Privacy in Mobile Information and Communication Systems,

Springer, Berlin Heidelberg, 2012, pp. 13-24.

[19] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, "Touchalytics: On the

applicability of touchscreen input as a behavioral biometric for continuous

authentication", IEEE Trans. Information Forensics and Security, (2013), Vol:

8(1), pp.136-148.

[20] L. Li, X. Zhao, and G. Xue. “Unobservable reauthentication for smart phones”,

Proc. the 20th Network and Distributed System Security Symposium, (2013),

Internet Society.

[21] J. Muncaster, and M. Turk. "Continuous multimodal authentication using

dynamic Bayesian networks", Proceedings of 2
nd

 Workshop Multimodal User

Authentication, (2006).

82

[22] T. Sim, S. Zhang, R. Janakiraman, and S. Kumar. "Continuous verification using

multimodal biometrics" IEEE Trans. 29
th

 Pattern Analysis and Machine

Intelligence, Vol: 4, (2007), pp: 687-700.

[23] W. Shi, J. Yang, Y. Jiang, F. Yang, and Y. Xiong. "Senguard: Passive user

identification on smartphones using multiple sensors", Proc. IEEE 7th

International Conference on In Wireless and Mobile Computing (WiMob),

(2011), pp. 141-148.

[24] Dan Xie Roderic A. Grupen Allen Hanson, “Context-Aware Search using

Cooperative Agents in a Smart Environment”, Workshop on Applications of

Computer Vision (WACV), 2009 , pp: 1 – 6,

[25] Lei Tangab, Xingshe Zhoub, Christian Beckerc, Zhiwen Yub, Gregor Schielec,

“Situation-based Design: a Rapid Approach for Pervasive Application

Development”, (2012) 9th International Conference on Ubiquitous Intelligence

and Computing and 9th International Conference on Autonomic and Trusted

Computing, pp 128-135,

[26] W. P. Liao, Y. Z. Ou, Chu, E. T. H., C. S. Shih, J. W. S. Liu, “Ubiquitous Smart

Devices and Applications for Disaster Preparedness”, (2012) 9th International

Conference on Ubiquitous Intelligence and Computing and 9th International

Conference on Autonomic and Trusted Computing, pp 764- 770

[27] Grzegorz Lehmann, Andreas Rieger, Marco Blumendorf, Sahin Albayrak, “A 3-

Layer Architecture for Smart Environment Models”, Pervasive Computing and

Communications Workshops (PERCOM Workshops), (2010) 8th IEEE

International Conference on , pp: 636 – 641

[28] Yue-Shan Chang, Yung-Shuan Hung, Ching-Lung Chang, Tong-Ying Juang,

“Toward a NFC phone-Driven Context Awareness Smart Environment”,

Ubiquitous, Autonomic and Trusted Computing, (2009). UIC-ATC '09. Symposia

and Workshops on , pp: 298 – 303

[29] Ilche Georgievski, Tuan Anh Nguyen and Marco Aiello, “Combining Activity

Recognition and AI Planning for Energy-Saving Offices”, (2013) IEEE 10th

International Conference on Ubiquitous Intelligence, pp: 238-245.

[30] Claudio Faris, Luci Pirmez, Falvia C. Delicato, Henrique Soares, Igor L. dos

Santos, Luiz F. R. C. Carmo, “A control and decision system for smart buildings”,

(2013) IEEE 10th International Conference on Ubiquitous Intelligence, pp: 256-

261.

[31] Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey, “Human

Behavior Modeling with Maximum Entropy Inverse Optimal Control”, (2009),

Proceedings of AAAI Spring Symposium on Human Behavior Modeling, 92-97.

83

[32] W.C. Moody, Hongxin Hu, A. Apon, "Defensive maneuver cyber platform

modeling with Stochastic Petri Nets,", Proceedings of 10th International

Conference on Collaborative Computing (CollaborateCom 2014), October 22-25,

2014.

[33] Alex Pentland, Andrew Liu, “Modeling and Prediction of Human Behavior”,

Neural Computation 11, pp: 229–242 (1999)

[34] Green, Leonard, and Joel Myerson. "A discounting framework for choice with

delayed and probabilistic rewards." Psychological bulletin 130, no. 5 (2004): 769

[35] Pomerol, Jean-Charles. "Artificial intelligence and human decision making."

European Journal of Operational Research 99, no. 1 (1997): 3-25.

[36] Claudine Conrado and Patrick de Oude, "Scenario-based reasoning and

probabilistic models for decision support.", Proceedings of 17th IEEE Information

Fusion (FUSION), July, 2014, pp. 1-9.

[37] Markovian Property. (2016). https://en.wikipedia.org/wiki/Markov_property.

Accessed on 15th August 2016.

[38] Daniel Kahneman, “Thinking, Fast and Slow”, Macmillan Publishing, 2011.

[39] De Martino, Benedetto, Dharshan Kumaran, Ben Seymour, and Raymond J.

Dolan. "Frames, biases, and rational decision-making in the human brain."

Science 313, no. 5787 (2006): 684-687

[40] Framework for securing BYOD, (2012), “http://www.forescout.com/idc-fs-byod-

strategy-white-paper/”, Accessed on May 15, 2016.

[41] L. Li, X. Zhao, and G. Xue. “Unobservable reauthentication for smart phones”,

Proceedings of 20th Network and Distributed System Security Symposium,

(2013), Internet Society.

[42] Y. Chen, and N. D. Thomas, "Active Learning of Markov Decision Processes for

System Verification.", Proceedings of 11th IEEE Conference on Machine

Learning and Applications (ICMLA), 2012, vol. 2, pp. 289-294.

[43] K. Hamahata, T. Tadahiro, S. Kazutoshi, N. Ikuko, T. Kazuma, and S. Tetsuo,

"Effective integration of imitation learning and reinforcement learning by

generating internal reward.", Proceedings of 8th International Conference on In

Intelligent Systems Design and Applications, 2008, vol. 3, pp. 121-126.

[44] S. S. Yau, Y. Yin, and H. G. An, “An Adaptive Approach to Optimizing Tradeoff

between Service Performance and Security in Service-based Systems”,

International Journal of Web Services Research, Vol. 8(2), 2011, pp. 74-91.

84

[45] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach”, 3rd

edition, Patience Hall (2009).

[46] R. A. Howard, “Dynamic Programming and Markov Processes”, MIT Press,

Cambridge, Massachusetts, 1960.

[47] R. Bellman, “Dynamic Programming”, Princeton University Press, 1957.

[48] M. L. Puterman, “Markov decision processes: Discrete stochastic dynamic

programming”, John Wiley & Sons, 1994.

[49] S. I. Ahamed, I. Addo, S. S. Yau, A. Buduru, "A Reference Architecture for

Improving Security and Privacy in Internet of Things Applications", Proceedings

of 3rd IEEE International Conference on Mobile Services (MS), June 2014, pp.

108-115

[50] Jianhua Ma, “Active Media Technology”, Proceedings of 6th International

Conference AMT 2010, volume 6335, pp: 5-5.

[51] S. Yau, Y. Yao, A. Buduru, “An Adaptable Distributed Trust Management

Framework for Large-Scale Secure Service-based Systems”, Springer Computing

Journal, v(96-10), Pages: 925-949, 2014.

[52] S. Yau, H. An, A. Buduru, “An Approach to Data Confidentiality Protection in

Cloud Environments”, International Journal of Web Services Research, v(9-3),

Pages: 67- 83, 2013.

[53] Liviu P. Dinu and Radu-Tudor Ionescu, “A Rank-based Approach of Cosine

Similarity with Applications in Automatic Classification”, (2012) 14th

International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing, pp 260-264.

[54] Anna Huang, “Similarity Measures for Text Document Clustering”, Proceedings

of NZCSRSC 2008, April 2008, Christchurch, New Zealand

[55] S. Guha, S. Yau, and A. Buduru, “Attack Detection in Cloud Infrastructures

Using Artificial Neural Network with Genetic Feature Selection”, Proceedings of

14
th

 IEEE International Conference on Dependable, Autonomic and Secure

Computing (DASC), Auckland, New Zealand, Pages: 414 – 419, August 2016.

[56] Stigler, Stephen M. (1981). "Gauss and the Invention of Least Squares". Ann.

Stat. 9 (3): 465–474.

[57] Ryan Rifkin and Aldebaro Klautau, “In Defense of One-Vs-All Classification”,

(2004) Journal of Machine Learning Research, Vol 5, pp 101-141.

85

[58] Deena R Schmidt, Peter J Thomas, “Measuring edge importance: a quantitative

analysis of the stochastic shielding approximation for random processes on

graphs”, (2014), The Journal of Mathematical Neuroscience, Vol. 4:6, pp:1-52.

[59] Daphne Koller and Ronald Parr, “Policy Iteration for Factored MDPs”, (2000)

Proceedings of the 16
th

 International Conference on uncertainty in artificial

intelligence, pp 326-334.

[60] Vu Pham, Theodore Bluche, Christopher Kermorvant, and Jer´ ome Louradour,

“Dropout improves Recurrent Neural Networks for Handwriting Recognition”,

(2014), Proceedings of 14th International Conference on Frontiers in Handwriting

Recognition, pp: 285-290.

[61] Ilya Sutskever, “Training Deep and Recurrent Networks with Hessian-Free

Optimization”, 2012, Ph.D Thesis, Univ Toronto

[62] Yimin Chen, Jingchao Sun, Rui Zhang, and Yanchao Zhang, “Your song your

way: Rhythm-based two-factor authentication for multi-touch mobile devices,”

IEEE International Conference on Computer Communications (INFOCOM’15),

Hong Kong, China, April 2015. pp: 2686-2694

86

BIOGRAPHICAL SKETCH

Arun Balaji Buduru is a Ph.D. candidate in Computer Science specializing in Information

Assurance at Arizona State University, and a member of the ASU Information Assurance

Center. He received his B.E. degree in Computer Science in 2011 from Anna University

at Chennai, India. His research interests include reinforcement learning, cyber security

and stochastic planning. He has worked as a research intern as part of Cisco’s IoT

Architecture Group. His current research focuses on adaptive user re-authentication on

touch-based devices, predicting security breaches in critical cyber infrastructures, and

user behavior based adaptive IoT device reconfiguration. His research work has been

published in top-tier conferences including CLOUD, QRS, MS. He also served as

volunteer and reviewer for multiple conferences and journals including IEEE CLOUD,

ACM CCS, Transactions on Services Computing.

