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ABSTRACT  

   

Resource allocation in cloud computing determines the allocation of computer 

and network resources of service providers to service requests of cloud users for meeting 

the cloud users' service requirements. The efficient and effective resource allocation 

determines the success of cloud computing. However, it is challenging to satisfy 

objectives of all service providers and all cloud users in an unpredictable environment 

with dynamic workload, large shared resources and complex policies to manage them.  

Many studies propose to use centralized algorithms for achieving optimal 

solutions for resource allocation. However, the centralized algorithms may encounter the 

scalability problem to handle a large number of service requests in a realistically 

satisfactory time. Hence, this dissertation presents two studies. One study develops and 

tests heuristics of centralized resource allocation to produce near-optimal solutions in a 

scalable manner. Another study looks into decentralized methods of performing resource 

allocation.  

The first part of this dissertation defines the resource allocation problem as a 

centralized optimization problem in Mixed Integer Programming (MIP) and obtains the 

optimal solutions for various resource-service problem scenarios. Based on the analysis 

of the optimal solutions, various heuristics are designed for efficient resource allocation. 

Extended experiments are conducted with larger numbers of user requests and service 

providers for performance evaluation of the resource allocation heuristics. Experimental 

results of the resource allocation heuristics show the comparable performance of the 

heuristics to the optimal solutions from solving the optimization problem. Moreover, the 
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resource allocation heuristics demonstrate better computational efficiency and thus 

scalability than solving the optimization problem. 

The second part of this dissertation looks into elements of service provider-user 

coordination first in the formulation of the centralized resource allocation problem in 

MIP and then in the formulation of the optimization problem in a decentralized manner 

for various problem cases. By examining differences between the centralized, optimal 

solutions and the decentralized solutions for those problem cases, the analysis of how the 

decentralized service provider-user coordination breaks down the optimal solutions is 

performed. Based on the analysis, strategies of decentralized service provider-user 

coordination are developed.  
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CHAPTER 1 

INTRODUCTION 

 Many large IT service providers and organizations such as Google, IBM, Amazon, 

Microsoft, Yahoo, and Sun use service clouds for service provision to their users (Zhang 

& Zhang, 2009). Service clouds contain a large number of computer and network servers 

that take dynamic service orders from a large number of users. With the dynamic inflow 

of service orders, IT organizations are also required to keep pace with a high rate of 

changes with regard to user demands, market and techniques. They face rapidly changing 

market conditions, new competitive pressures and threats, and new regulatory flats that 

demand compliance. All of these situations drive the need for the IT infrastructure of an 

organization to respond quickly in support of new business models and requirements 

(Kreger, 2001; Papazoglou, Traverso, Dustdar, & Leymann, 2007).  

 In those environments, cloud computing has gained great attention as the next 

generation of the computing paradigm from the generations of mainframe, personal 

computers, client-server computing and web computing (Rajan & Jairath, 2011). A cloud 

is defined as a virtual pool of resources which are built on distributed infrastructure. 

Cloud computing is a type of parallel and distributed system consisting of collections of 

virtual computing, data and software resources to provide on-demand IT services to users 

in a pay-as-you-go manner and is accessible as a composable service by the network or 

typically by the Internet (Armbrust et al., 2010; Rajan & Jairath, 2011; Zhang, Zhang, & 

Cai, 2007).  

 With cloud computing, it can reduce IT complexity and costs by eliminating 

ownership costs such as investment, upgrade and maintenance costs and, instead, need to 
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pay rental usage of IT resources. Moreover, it can provide a better quality of services to 

wider range of users by having on-demand, highly elastic, portable, agile service delivery 

from service providers at anytime from anywhere (Endo et al., 2011; Foster, Zhao, Raicu, 

& Lu, 2008; Lin & Lu, 2011; Yigitbasi, Iosup, Epema, & Ostermann, 2009; Zhang & 

Zhang, 2009). 

 A major advantage of cloud computing is high scalability to have a large capacity 

of virtual resources by pulling together a large pool of physical resources. The Open 

Cloud Computing Federation involving multiple Cloud Computing Service Providers 

(CCSPs) provides a uniform resource interface for the rapid growth of cloud users. In 

addition to scalable services, on-demand usage and a pay-as-you-go business model, 

other benefits of cloud computing include reliability of services, increased resource 

utilization rather than having additional and expensive resources just for peak service 

periods of a limited user population, and so on (Jamkhedkar, Lamb, & Heileman, 2011). 

 The success of cloud computing mainly depends on the allocation of resource in 

an efficient and effective way (Shyamala & Rani, 2015). Resource management in cloud 

computing is challenging as it has to satisfy objectives of all CCSPs and cloud users in an 

unpredictable environment with fluctuating workload, large shared resources and 

complex policies to manage them. General policies for consideration in cloud resource 

management are as follows. Admission control determines whether a cloud user's service 

request is admitted for service processing in the cloud. Resource distribution provides 

Virtual Machines (VMs) onto physical machines and assigns resources to service 

requests. Energy optimization optimizes the use of energy in cloud data centers. Quality 
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of Service (QoS) guarantees the quality of a cloud user's service request in terms of 

response time, operational cost and system throughput. 

 Resource allocation system aims to ensure that the requested services' 

requirements are facilitated by CCSP's infrastructure. A CCSP offers IT resources as a 

service to the cloud users either through private or public networks. For efficient resource 

allocation in cloud computing with related policies, there is a need to obtain accurate 

information about the global state of the system (Marinescu, 2013). Hence, many studies 

propose to use centralized algorithms from mathematical programming, game modeling 

to heuristics, which require a central entity to be present for either solving the resource 

allocation optimization problem directly or coordinating solutions of the resource 

allocation problem with information of all service requests' requirements and resource 

status of all service providers. However, the centralized methods easily suffer from the 

scalability problem in generating the optimal solutions for increasing problem sizes 

(Selvi, Valliyammai, & Dhatchayani, 2014). 

 Decentralized algorithms solely rely on interactions among service providers or 

interactions between service providers and end users to seek the solution of a resource 

allocation problem, without any central entity to be present. Using such self-management 

principles with the decentralized manner in many studies does not guarantee generating 

optimal or near-optimal solutions in resource allocation. More research for obtaining 

efficient resource allocation solutions in real time is still on-going by examining new 

algorithms, which can guarantee solution optimality as well as scalability. This 

dissertation contributes to identify and establish two efficient resource allocation methods 
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to generate optimal or near-optimal solutions for resource allocation with satisfactory 

scalability.  

 Chapter 2 aims at identifying centralized heuristics to generate optimal or near-

optimal solutions within a short time period. To achieve this research goal, it starts with a 

set of representative problem cases to obtain the centralized, optimal solutions. The 

problem cases involve various types of a service provider's configuration and various 

problem sizes with different numbers of service providers and service requests. By 

investigating the optimal solutions for the problem cases, this research analyzes how the 

centralized, optimal solutions make decisions of which service request is sent to which 

service provider for the service provision while satisfying the service request's 

requirement with accurate resource assignment. As a result, important heuristics are 

suggested for various conditions, which capture the centralized decision making in 

optimal solutions, in generating optimal or near-optimal resource allocation solutions. 

Then, the proposed heuristics are tested in another set of representative problem cases 

with introduction of more problem complexity by increasing the number of service 

providers and the number of service requests to evaluate the performance quality of the 

proposed heuristics in larger problem cases. The experimental results demonstrate how 

competitive the heuristic algorithms are by comparing with the optimal solutions. 

 Chapter 3 aims at identifying elements of service provider-user coordination that 

can lead a scalable, distributed algorithm to the optimal or near-optimal solution. To 

achieve this research goal, it starts with a simple service provider-user coordination 

protocol in a scalable, distributed algorithm. By examining differences between the 

centralized, optimal solutions and the decentralized solutions for various problem cases 
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involving various types of a service provider's configuration and different numbers of 

service requests, this research analyzes how the decentralized service provider-user 

coordination breaks down the centralized, optimal solutions and, as a result, suggests key 

elements of the decentralized service provider-user coordination strategies.  

  



  6 

CHAPTER 2 

THE ANALYSIS OF CENTRALIZED, OPTIMAL SOLUTIONS TO DEVELOP 

HEURISTICS 

 Efficient resource allocation is one of the most important parts in cloud 

computing, which heavily relies on allocation of computer and network resources of 

service providers to requested services of users for satisfying the users' service 

requirements. This study in Chapter 2 first defines the resource allocation problem as an 

optimization problem in MIP and obtains the optimal solutions for various resource-

service problem scenarios. Based on the analysis of the optimal solutions in those 

problem scenarios, important heuristics are designed for efficient resource allocation. 

Then, extended experiments are conducted with larger numbers of user requests and 

service providers for performance evaluation of the resource allocation heuristics. 

Experimental results of the resource allocation heuristics show the comparable 

performance of the heuristics to the optimal solutions from solving the centralized 

optimization problem. Moreover, the resource allocation heuristics demonstrate better 

computational efficiency and thus scalability than solving the centralized optimization 

problem.  

2.1 Literature Review 

 Table 1 shows a summary of comparisons between existing work in resource 

allocation and this study in several aspects. Appendix A shows the description of various 

heuristics for efficient resource allocation used in the existing studies. 
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Table 1  

Analysis of Literatures in Comparison with This Study 

Literatures 

SLA  

(QoS, Resource 

Requirements, etc.) 

Service, 

System 

Models 

Insufficient 

resource 

capacity 

Scalability 

Solution optimality 

(compared by 

optimal solutions) 

This study Yes Yes Yes Yes Yes 

(Messina, 

Pappalardo, & 

Santoro, 2012, 2014; 

Papagianni et al., 

2013) 

Yes No No Yes No 

(Son, Jung, & Jun, 

2013) 
No No No Yes No 

(Kadda, 

Benhammadi, 

Sebbak, & Mataoui, 

2015; Li, Wang, & 

Liu, 2014; Srinivasa 

et al., 2014; Wang & 

Fang, 2014; Zhou, 

Dutkiewicz, Liu, 

Fang, & Liu, 2014) 

No No No No No 

(Zuo, Zhang, & Tan, 

2014) 
Yes No Yes Yes Yes 

(Goudarzi & Pedram, 

2011b) 
Yes No No Yes No 

(Nesmachnow, 

Iturriaga, & 

Dorronsoro, 2015) 

Yes No Yes Yes No 

(Hsu, Chen, & Park, 

2008; Liu, Zhou, Fu, 

& Liu, 2014; Suresh 

& Vijayakarthick, 

2011; Varalakshmi, 

Judgi, & Hafsa, 

2013; Wu, Deng, 

Zhang, Zeng, & 

Zhou, 2013) 

Yes No No No No 

(Sharma, Tantawi, 

Spreitzer, & 

Steinder, 2010; Wei 

& Blake, 2013) 

Yes No No No Yes 

(Dhingra & Paul, 

2014) 
No Yes Yes No No 

(Kumar, Feng, 

Nimmagadda, & Lu, 

2011) 

Yes Yes Yes Yes No 
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 A lot of studies have introduced various algorithms for efficient resource 

allocation to service requests in cloud computing environments as shown in Table 1 and 

Appendix A. This study considers satisfaction of QoS and resource requirements stated in 

Service Level Agreements (SLA) when determining allocation of computer and network 

resources to service requests. Some studies allow SLA violations in generating their 

solutions. Son et al. (2013) proposed to evaluate appropriateness of each data center by 

considering geographical locations of cloud users and CCSPs and resource workload 

through its utility function. However, it resulted in 0.1%~13% of SLA violations and 

placement failures for its solutions even when resource capacity over all servers was 

sufficient to serve all service requests. Dhingra and Paul (2014) focused on total profit 

maximization than SLA satisfaction of service requests such as QoS requirements or 

resource constraints in generating resource allocation solutions. When a violation 

occurred in resource constraints or the QoS requirement of a service request was not 

satisfied, a penalty value was imposed affecting the system profit adversely. Genetic 

algorithm was proposed for QoS-aware service composition (Canfora, Penta, Esposito, & 

Villani, 2005). It had a single-objective fitness function where factors were aggregated 

using a weighted sum, and it allowed violation of constraints with a static penalty value. 

 To ensure satisfaction of requirements for all service requests, this study 

introduces the use of service and system models for precise resource allocation similar to 

our previous work (Ye, Yang, & Aranda, 2013). Only a few studies (Dhingra & Paul, 

2014; Kumar et al., 2011) used such service and system models for resource allocation 

problems. However, the solutions did not get compared with the optimal solutions. In 
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(Kumar et al., 2011), Earliest Deadline First-greedy algorithm was used to allocate tasks 

to available VMs through a lookup table based on computing speeds and costs of VMs. In 

addition, a simple equation was provided to estimate completion time for each task. 

However, the experimental results were evaluated by comparing with other scheduling 

solutions. An optimization technique called Bacterial Foraging used in (Dhingra & Paul, 

2014) tried to optimize resource allocation and thus, improved energy efficiency of the 

data center specifically in power consumption. The power consumption model by CPU 

utilization was defined and used to determine efficient resource allocation solutions. 

However, it only provided analysis of three different heuristic solutions.   

 Proposed heuristics in this study can generate solutions even when overall 

resource capacity is not sufficient for all service requests. Other studies introduce the use 

of external VMs with different pricing schemes or VM migration instead of dropping the 

overloaded requests. As an example, Zuo et al. (2014) proposed the use of self-adaptive 

learning particle swarm optimization to solve the task allocation problem modeled as an 

integer programming. When resources were not sufficient to meet the demand, 

outsourcing tasks to external clouds was proposed rather than generating solutions with 

some tasks dropped under its own resource capacity. Moreover, the performance of our 

proposed heuristics is compared with the optimal solutions, whereas most literatures 

show the quality of their proposed solutions compared with other common heuristics. 

Only a few studies (Sharma et al., 2010; Wei & Blake, 2013; Zuo et al., 2014) analyzed 

their solutions by comparing with the optimal solutions based on the assumptions to 

know estimation of resource and service relationships.  
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 Furthermore, the heuristic solutions in this study are generated with great 

scalability, while some literatures focus on generating good solutions without addressing 

scalability issue. A new task scheduling approach based on adjusting maximum entropy 

method in (Li et al., 2014) considered each scheduler to calculate the best task slicing 

scheme, resulting in minimum task response time. Srinivasa et al. (2014) introduced a 

game modeling between clients with the utility factor, which considered time and budget 

constraints. The request with highest expected utility from the entire set of waiting 

requests was selected for service scheduling. A modified elite chaotic immune clonal 

selection algorithm by (Zhou et al., 2014) was developed to increase overall efficiency of 

system with ranking, evaluation and mutation processes. The algorithms used in those 

studies generated solutions without addressing computational efficiency and were not 

able to compare their solutions with the optimal solutions. 

 From the literatures reviewed above, two methods are found in an approach to 

obtain a resource allocation solution. First, all service requests are sorted by their priority 

values and each requested service is assigned to a CCSP one at a time. In (Kadda et al., 

2015), jobs and tasks in a job were sorted in an ascending order of their Computation 

Time (CT) and assigned to the selected clusters and servers with minimum CT 

respectively. Similarly, in (Wu et al., 2013) task priority was computed by its attributes of 

user privilege, task length or its waiting time in queue, and a sorted task was assigned to a 

server with minimum CT. A self-adaptive learning particle swarm optimization used in 

(Zuo et al., 2014) assigned different priorities to all tasks by four velocity updating 

strategies and allocated tasks to cloud based on the assigned priority. In (Goudarzi & 

Pedram, 2011b), an initial solution obtained by a greedy algorithm determined the order 
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of resource assignment processing for clients. Then, a heuristic of force-directed resource 

assignment was applied to a mixed integer non-linear programming problem by checking 

partial profit gained from allocating each portion of a client's request to a server. 

Heuristics used in (Nesmachnow et al., 2015) assigned different priorities to requests 

with diverse criteria, and reordering local search was applied to improve solution 

accuracy. 

 Second, a group of service requests by various criteria are sent to different servers, 

and each server processes the given requests with a master-slave structure. For linear 

programming problem formulated in (Shi & Hong, 2010), one master node sent tasks to 

sub-nodes for executing the received tasks based on two modes of the system, either 

budget-bound mode or communication-bound mode. An efficient resource allocation 

strategy was proposed in (Hsu et al., 2008) by combination of one resource broker (as the 

master node) and a number of heterogeneous clusters (as slave processors) for 

distributing tasks onto computing nodes with smallest communication ratio. In (Suresh & 

Vijayakarthick, 2011), the metascheduler scheduled all service requests to maximize 

resource utilization by parallel job scheduling strategies, and jobs were executed at the 

cloud cluster by each local scheduler. A MIP problem was formulated in (Papagianni, et 

al., 2013) in a way that requests were mapped to two phases by solving flow allocation 

(as a node mapping) and allocating virtual links to substrate (as a link mapping) as the 

multicommodity flow allocation problem. Urgaonkar, Kozat, Igarashi, and Neely (2010) 

introduced a joint utility function of an average application throughput and energy costs 

of a data center. Jobs were routed to join the shortest queue policy with knowledge of 
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queue backlog information, and with the assigned jobs, the optimal resource allocation at 

each active server was solved. 

 Similar to the first method, in this study, all service requests are randomly ordered 

first and then each requested service is assigned to a CCSP one at a time through the 

proposed heuristics. The detail of the heuristics are described in Chapter 2.5.1. 

2.2 Research Focus 

 Heuristics have been introduced in many researches to get optimal or near-

optimal solutions in resource allocation problem, rather than solving the centralized 

optimization problem directly for resource allocation decisions due to its computation 

complexity. In other words, the solutions of the optimization problem cannot be obtained 

in realistic time except for small problem cases.    

 Centralized heuristics (i.e. heuristics in a centralized form are applied to obtain a 

solution with a much smaller solution space than the centralized algorithm) has not been 

well addressed in existing work for resource allocation in cloud computing environments. 

A major challenge is to produce the heuristic solutions as good as or close to the optimal 

solutions that can be obtained by solving the optimization problem with all information 

available and all decisions made in one place. Another challenge is to produce the 

heuristic solutions with fast convergence rate regardless of problem sizes. Moreover, 

there are few studies to work on task assignment with efficient resource allocation 

simultaneously. To deal with those challenges the current studies have, it is essential to 

investigate and discover heuristics in producing optimal or near-optimal solutions for 

resource allocation with great scalability. 
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 This study in Chapter 2 aims at identifying new heuristics to generate optimal or 

near-optimal resource allocation solutions within a short time period. To achieve this 

research goal, it first formulates the resource allocation optimization problem and obtains 

the optimal solutions for various problem cases. Based on the analysis of optimal 

solutions for the problem cases under different types of service providers' configuration 

and problem sizes with various numbers of service providers and service requests, this 

study proposes heuristics for efficient resource allocation in those problem cases. The 

proposed heuristics are designed especially by capturing the decision making behavior of 

solving the optimization problem to generate the optimal solutions. Then, the heuristics 

are tested in extended problem cases with introduction of more complexity by increasing 

the number of service providers and the number of service requests to evaluate 

performance quality of the proposed heuristics.  

2.3 The Formulation of the Resource Allocation Optimization Problem 

 Resource allocation is often addressed as an optimization problem consisting of 

objectives, decision variables, constraints, and algorithms to solve it. There are mainly 

three types of optimization objectives in resource allocation: 1) resource performance 

objectives such as resource utilization, load balancing, and energy saving by switching on 

and off servers depending on their workload and resource status (Berman, 1999; 

Kuribayashi, 2011; Livny & Raman, 1999; Rezvani, Akbari, & Javadi, 2015; Wuhib, 

Stadler, & Spreitzer, 2010; Yin, Wang, Meng, & Qiu, 2012), 2) system performance 

objectives including system throughput measured by the number of jobs executed by the 

system (Atiewi, Yussof, & Ezanee, 2015; Berman, 1999; Mehdi, Mamat, Ibrahim, & 

Subramaniam, 2011; Shi & Hong, 2010; Urgaonkar et al., 2010; Yang, Qin, Li, & Yang, 
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2013), and 3) application performance objectives of response time (e.g., execution time 

and makespan), QoS (Ardagna, Casolari, & Panicucci, 2011; Berman, 1999; Gong, 

Ramaswamy, Gu, & Ma, 2009; Laili et al., 2013; Sindhu & Mukherjee, 2013; Wang & 

Su, 2015).  

 The optimization problems in resource allocation are subject to various types of 

constraints. Application requirements of resource and QoS are stated in SLA between 

cloud users and CCSPs (Endo et al., 2011; Wuhib et al., 2010) including CPU and 

memory requirements for host machines, bandwidth, delay, and QoS requirements (e.g., 

execution time) of services and applications (Chen, Farley, & Ye, 2004; Hu, Cao, & Gu, 

2008; Lamparter, Ankolekar, & Studer, 2007; Staikopoulos, Cliffe, Popescu, Padget, & 

Clarke, 2010; Tran, Tsuji, & Masuda, 2009; Wang, Vitvar, Kerrigan, & Toma, 2006; 

Zheng, Yang, & Zhao, 2010); capacity limits of resources are given to indicate the 

maximum capacity of each system resource; service and system models are provided to 

describe how services produce resource workloads and thus change the state of system 

resources which in turn affect the performance of services (Yau et al., 2009; Ye et al., 

2010). The accuracy and quality of predicted behavior based on such models are 

fundamental to the effectiveness of precise resource allocation and service scheduling  

(Berman, 1999; Marinescu, 2013). 

 Service requests by cloud users require some resource amount to run them with 

satisfying requirements of the users. Here, service parameter values of service requests 

are assigned to provide the services to users, and the values of service parameters affect 

quality of the services. In the optimization problem for this study, decision variables are 

used to assign requested services of cloud users to CCSPs with specific values of service 
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parameters for the services. In addition, service and system models for each CCSP are 

included in constraints to predict resource workloads and service performance for precise 

resource allocation. This optimization problem addresses resource, system and 

application objectives of resource allocation and is solved for each epoch of dynamic 

resource allocation. The resource allocation optimization problem is formulated as a MIP. 

Note that a service provider may have one or more servers and that a service user may 

generate one or more clients. Each client may request one service. Hence, in the 

following formulation, the terms of server and client are used. Table 2 and Table 3 

indicate variables and indices, and decision variables and given inputs used in the 

formulation respectively. 

Table 2  

Variables and Indices for the Resource Allocation Optimization Formulation 

� A given client, k = 1,…, K 

� A given server, i = 1,…, I 

	� Resource variable w of server i, wi = 1,…, Wi 

s A service type, s = 1,…, S 

�� Service parameter d of service s, ds = 1,…, Ds 

� QoS variable p of service s, ps = 1,…, Ps 

����� The amount of resource variable w of server i taken by client k’s service 

request as a positive real value 

����� The value of QoS variable ps of client k’s service request on server � as a 

positive real value 
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Table 3  

Decision Variables and Given Inputs for the Resource Allocation Optimization 

Formulation 

��� Binary decision variables such that            

           ��� = 1 if client k’s service request is assigned to server i            

           ��� = 0 if client k’s service request is not assigned to server i 

����� Positive integer decision variables,  

Level of service parameter ds for client k’s service request on server i 

��� Given inputs from client k, such that ∑ ���� = 1 for a given k, 

��� = 1 if client k’s service request uses service s 

��� = 0 if client k’s service request does not service s 

��� Given inputs from server i, 

��� = 1 if service s is provided by server i 

��� = 0 if service s is not provided by server i 

������  Given inputs as a positive integer value from client k,  

Limit (i.e. the maximum level) of service parameter ds of client k’s service 

request on server i. 

����
�  Given inputs as a positive real value from server i to indicate the resource 

capacity, 

Limit of resource variable w of server i 

����
�  Given inputs as a positive real value from client k to specify QoS 

requirements, 

Limit of QoS variable ps of client k’s service request 

 

 The formulation of the resource allocation optimization problem is as follows.  

Minimize ∑ ∑ #∑ $%&��� '$%&�
( #

$%&�
( ∗*����                              (1) 

subject to 

∑ ��� ≤ 1        ∀� �                     (2) 

������ ≤ ���      ∀�, �, .                        (3) 

����� ≤ ������     ∀�, �, ��               (4) 
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����� = ���/���0����, … , ��2��3     ∀�, �, 	�            (5) 

����� = ���4���0����, … , ���5�3      ∀�, �, �               (6) 

∑ ������ ≤ ����
�      ∀�, 	�                  (7) 

����� ≤ �������
�  or ����� ≥ �������

�      ∀�, �, �           (8) 

 The objective function in Equation (1) is to make the levels of the QoS variables 

closest to the QoS requirements. The difference between the actual QoS level (�����) and 

the required QoS level (����
� ) for each QoS variable (�) is first normalized by the 

required QoS level, then summed and normalized over the total number of QoS variables, 

finally summed over all clients' service requests. More importantly, this objective 

function ultimately makes as many clients' services to be served as it can since the 

penalty of not serving a client's service request (i.e. 1) is always bigger than a difference 

between any QoS level provided and the required QoS level.  

 As a server-client coordination constraint, Equation (2) guarantees that client k’s 

service request can be assigned to one server i at most. Equation (3), as a service 

constraint, requires if client k’s service request is assigned to server i, the service type s of 

client k’s service request must be provided by server i (i.e. if ��� = 1 and ��� = 1, then 

��� = 1). As another service constraint, Equation (4) enforces that the level of service 

parameter ds of client k’s service request on server i should not exceed the limit (i.e. the 

maximum level). 

 As service-resource-QoS relation constraints, Equation (5) gives relations of 

service parameters with resource usages in function /��� of the assigned level of service 

parameter ds of client k’s service request on the server only if client k’s service request is 
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assigned to the server i. Equation (6) gives relations of resource usages with QoS 

performance in function 4���  of the service’s resource usages on the server only if client 

k’s service request is assigned to the server i. 

 As a resource capacity constraint, Equation (7) enforces that the total resource 

amount on the resource variable w of server i used by all service requests for all clients 

should not exceed the maximum resource capacity for this resource variable. As a QoS 

requirement constraint, Equation (8) ensures that the QoS level of � for the client k’s 

service request at server i is equal to or less than the maximum QoS requirement or equal 

to or greater than the minimum QoS requirement, only if client k’s service request is 

assigned to server i. Appendix B shows one example, which gives realization of the 

resource allocation problem formulation.  

 The MIP problem is implemented in ILOG OPL Development Studio IDE 

Version 6.1. ILOG CPLEX 11.2.0 is used as a solver to the MIP problem. A laptop 

computer used to run the software is a Samsung Q320 with Intel Core 2 Duo T6500 2.1 

GHz processor, 4 GB RAM, and Windows 7. The ILOG OPL and CPLEX are integrated 

into C# code in Microsoft Visual Studio 2010. The C# code first loads all the necessary 

input files of the problem including given inputs as well as service-resource relation 

functions and resource-QoS relation functions for each service type. With the loaded 

input files, the C# code then calls ILOG OPL and CPLEX to run the MIP optimization 

and solve the problem to generate an optimal solution. The computation time of obtaining 

the optimal solution is recorded by the C# code. Note that times required for loading 

input files and generating output files are also included in the computation time of 

obtaining the optimal solution.  
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2.4 Design of Problem Cases for Optimal Solutions 

 In this section, a set of problem cases with different experimental settings are 

designed to analyze the optimal solutions and to identify important heuristics in order to 

generate optimal or near-optimal resource allocation solutions. This study uses two types 

of services: a communication intensive service and a computation intensive service. The 

communication intensive service has one service parameter and one QoS variable with 

QoS levels of Low (L), Medium (M) and High (H). Similarly, the computation intensive 

service has one service parameter and one QoS variable with QoS levels of L, M and H. 

If a provided QoS level of a service request is equal to or greater than a required QoS 

level, then the service request is considered as satisfied in both types of services. In this 

study, three experiments named Step 1, Step 2 and Step 3 are conducted. Table 4 shows 

three levels of QoS variables and limit (i.e. the maximum level) of service parameters for 

the communication intensive service and the computation intensive service used in the 

experiments. 
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Table 4  

QoS Levels and Limit of Service Parameters for Communication Intensive Service and 

Computation Intensive Service in Step 1, Step 2 and Step 3 Experiments 

Experiment 

Communication Intensive Service 

(s = 1) 

Computation Intensive Service  

(s = 2) 

QoS Levels  

(���:
� ) 

Limit of service 

parameter (���:�� ) 

QoS Levels  

(���;
� ) 

Limit of service 

parameter (���;�� ) 

Step 1 

L (5) 

M (15) 

H (25) 

5 

L (6) 

M (17) 

H (30) 

5 

Step 2  

L (8) 

M (15) 

H (21) 

5 

L (7) 

M (14) 

H (25) 

5 

Step 3 

L (4~5) 

M (15~17) 

H (21~23) 

4 

L (3~4) 

M (12~14) 

H (18~19) 

4 

 

 Step 1 experiment lets each client using the communication intensive service set 

the maximum level of service parameter to 5 and set the QoS requirement to one of three 

levels: 5 for L, 15 for M and 25 for H. It also lets each client using the computation 

intensive service set the maximum level of service parameter to 5 and set the QoS 

requirement to one of three levels: 6 for L, 17 for M and 30 for H. Similarly, Step 2 

experiment lets each client using the communication intensive service set the maximum 

level of service parameter to 5 and set the QoS requirement to one of three levels: 8 for L, 

15 for M and 21 for H. It also lets each client using the computation intensive service set 

the maximum level of service parameter to 5 and set the QoS requirement to one of three 

levels: 7 for L, 14 for M and 25 for H.  
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 Different from the experiments of Step 1 and Step 2, Step 3 experiment has a 

range of QoS requirement for each level and thus randomly assigns a specific value of the 

QoS variable given the QoS requirement level from a client. Hence, Step 3 experiment 

lets each client using the communication intensive service set the maximum level of the 

service parameter to 4 and set the QoS requirement to one of three levels of L, M and H, 

and a specific QoS value is randomly selected from 4 to 5 for L, from 15 to 17 for M and 

from 21 to 23 for H. It also lets each client using the computation intensive service set the 

maximum level of the service parameter to 4 and set the QoS requirement to one of three 

levels of L, M and H, and a specific QoS value is randomly selected from 3 to 4 for L, 

from 12 to 14 for M and from 18 to 19 for H. 

 This study uses two types of servers: communication-centered server and 

computation-centered server. Both types of servers have two resource variables of CPU 

resource and bandwidth resource. The communication-centered server has more 

bandwidth resource than CPU resource, and the computation-centered server has more 

CPU resource than bandwidth resource. Table 5 shows capacity limits of two resource 

variables: CPU resource and bandwidth resource for the communication-centered server 

and the computation-centered server, which are used in Equation (7) for the optimization 

problem. The communication-centered server has resource levels of Small (S), Medium 

(M) and Large (L), and the computation-centered server also has resource levels of S, M 

and L. 



  22 

Table 5  

Capacity Limits of Two Resource Variables (<=>? , <=@? ) for Communication-Centered 

Server and Computation-Centered Server and Number of Servers used in Step 1, Step 2 

and Step 3 Experiments 

Experiment Communication-Centered Computation-Centered Number of Servers 

Step 1 

S (30,100) 

M (36,200) 

L (41,350) 

S (116,27) 

M (232,32) 

L (406,35) 

2 

Step 2  

S (45,100) 

M (65,135) 

L (90,245) 

S (105,50) 

M (155,70) 

L (205,80) 

2 

Step 3 

S (24~26, 81~84) 

M (30~33, 93~95) 

L (38~40, 104~107) 

S (78~79, 25~26) 

M (87~89, 29~30) 

L (95~97, 32~33) 

3 

 

 Step 1 experiment lets each communication-centered server set its resource 

capacity limits to one of three levels: 30 as the capacity limit of CPU resource and 100 as 

the capacity limit of bandwidth resource for S, 36 of CPU resource and 200 of bandwidth 

resource for M and 41 of CPU resource and 350 of bandwidth resource for L. It also lets 

each computation-centered server set its resource capacity limits to one of three levels: 

116 of CPU resource and 27 of bandwidth resource for S, 232 of CPU resource and 32 of 

bandwidth resource for M and 406 of CPU resource and 35 of bandwidth resource for L. 

 Similarly, Step 2 experiment lets each communication-centered server set its 

resource capacity limits to one of three levels: 45 as the capacity limit of CPU resource 

and 100 as the capacity limit of bandwidth resource for S, 65 of CPU resource and 135 of 

bandwidth resource for M and 90 of CPU resource and 245 of bandwidth resource for L. 

It also lets each computation-centered server set its resource capacity limits to one of 



  23 

three levels: 105 of CPU resource and 50 of bandwidth resource for S, 155 of CPU 

resource and 70 of bandwidth resource for M and 205 of CPU resource and 80 of 

bandwidth resource for L. 

 Different from the experiments of Step 1 and Step 2, Step 3 experiment has a 

range of capacity limits for two resource variables: CPU resource and bandwidth resource 

with resource levels of S, M and L. Given the resource level from a server, it randomly 

assigns each specific value for CPU resource and bandwidth resource as the capacity 

limits. Hence, Step 3 experiment lets each communication-centered server set its resource 

capacity limits to one of three levels of S, M and L, and a specific resource amount is 

randomly selected from 24 to 26 as the capacity limit of CPU resource and from 81 to 84 

as the capacity limit of bandwidth resource for S, from 30 to 33 of CPU resource and 

from 93 to 95 of bandwidth resource for M and from 38 to 40 of CPU resource and from 

104 to 107 of bandwidth resource for L. It also lets each computation-centered server set 

its resource capacity limits to one of three levels of S, M and L, and a specific resource 

amount is randomly selected from 78 to 79 as the capacity limit of CPU resource and 

from 25 to 26 as the capacity limit of bandwidth resource for S, from 87 to 89 of CPU 

resource and from 29 to 30 of bandwidth resource for M and from 95 to 97 of CPU 

resource and from 32 to 33 of bandwidth resource for L. Note that Step 1 and Step 2 

experiments have two servers in total, and Step 3 experiment has three servers in total. 

 For the two services used in the experiments, two variables of resource usages are 

defined as a key role in determining QoS performance of the services: CPU resource 

(����) and bandwidth resource (����). The communication intensive service requires 

more bandwidth resource than CPU resource, while the computation intensive service 
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requires more CPU resource than bandwidth resource. Such resource and QoS impact 

models of services are needed for Equations (5) and (6) in the optimization formulation, 

and thus simple but general forms of resource and QoS impact models for the 

communication intensive service and the computation intensive service are introduced. 

Table 6 shows resource and QoS impact models of the two services used in the 

experiments of Step 1, Step 2 and Step 3. Tables 7, 8 and 9 give the experimental setups 

of Step 1, Step 2 and Step 3 experiments with different numbers of service requests 

respectively. 

Table 6  

Resource and QoS Impact Models of Communication Intensive Service and Computation 

Intensive Service in Step 1, Step 2 and Step 3 Experiments 

Experiment 
Communication Intensive Service 

(s = 1) 

Computation Intensive Service  

(s = 2) 

Step 1 

���� = 0.1*���:� 
���� = 5.0*���:� 
���:� = 2���� + ���� 

���� = 5.8* ���;� 
���� = 0.3* ���;� 
���;� = ���� + ���� 

Step 2  

���� = 0.3*���:� 
���� = 4.0*���:� 
���:� = 2���� + ���� 

���� = 3.8* ���;� 
���� = 0.5* ���;� 
���;� = ���� + 3���� 

Step 3 

���� = 0.3*���:� 
���� = 5.0*���:� 
���:� = 3���� + ���� 

���� = 4.7* ���;� 
���� = 0.1* ���;� 
���;� = ���� + 2���� 
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Table 7 

Design of Experimental Setup with Different Numbers of Service Requests in Step 1 

Experiment 

                  Service  

                  Requests 

Server  

Configuration 

All communication 

intensive 
All computation intensive Both service types 

All-L 

(1-1) 

All-M 

(1-2) 

All-H 

(1-3) 

Mixed 

(1-4) 

All-L 

(2-1) 

All-M 

(2-2) 

All-H 

(2-3) 

Mixed 

(2-4) 

All-L 

(3-1) 

All-M 

(3-2) 

All-H 

(3-3) 

Mixed 

(3-4) 

1. All 

communication 

centered at S-S 

(1-1) 

A.15 

B.35 

C.50 

A.6 

B.10 

C.15 

A.4 

B.7 

C.10 

A.10 

B.17 

C.25 

A.4 

B.8 

C.13 

A.1 

B.2 

C.3 

A.1 

B.2 

C.3 

A.1 

B.3 

C.5 

A.15 

B.27 

C.38 

A.7 

B.12 

C.18 

A.3 

B.5 

C.8 

A.5 

B.8 

C.13 

2. All 

communication 

centered at M-M 

(1-2) 

A.30 

B. 75 

C.100 

A.12 

B.24 

C.33 

A.8 

B.14 

C.20 

A.20 

B.36 

C.50 

A.5 

B.11 

C.15 

A.2 

B.4 

C.5 

A.1 

B.2 

C.3 

A.2 

B.3 

C.5 

A.18 

B.32 

C.45 

A.6 

B.10 

C.15 

A.8 

B.14 

C.20 

A.8 

B.14 

C.20 

3. All 

communication 

centered at L-L 

(1-3) 

A.60 

B.125 

C.175 

A.20 

B.42 

C.58 

A.10 

B.25 

C.35 

A.23 

B.58 

C.80 

A.5 

B.12 

C.18 

A.2 

B.4 

C.5 

A.1 

B.2 

C.3 

A.3 

B.5 

C.8 

A.11 

B.20 

C.28 

A.19 

B.39 

C.55 

A.11 

B.25 

C.35 

A.17 

B.41 

C.55 

4. All 

communication 

centered at S-M 

(1-4) 

A.15 

B.52 

C.75 

A.5 

B.17 

C.24 

A.3 

B.11 

C.15 

A.8 

B.27 

C.38 

A.4 

B.10 

C.14 

A.1 

B.3 

C.4 

A.1 

B.2 

C.3 

A.1 

B.3 

C.4 

A.13 

B.31 

C.42 

A.4 

B.11 

C.17 

A.2 

B.10 

C.14 

A.4 

B.11 

C.17 

5. All 

communication 

centered at S-L 

(1-5) 

A.15 

B.84 

C.113 

A.5 

B.28 

C.37 

A.3 

B.17 

C.23 

A.8 

B.38 

C.53 

A.4 

B.11 

C.15 

A.1 

B.3 

C.4 

A.1 

B.2 

C.3 

A.1 

B.5 

C.5 

A.8 

B.24 

C.33 

A.6 

B.27 

C.37 

A.2 

B.16 

C.22 

A.5 

B.25 

C.34 

6. All 

communication 

centered at M-L 

(1-6) 

A.30 

B.100 

C.138 

A.12 

B.32 

C.45 

A.8 

B.20 

C.28 

A.16 

B.47 

C.65 

A.5 

B.12 

C.17 

A.2 

B.4 

C.5 

A.1 

B.2 

C.3 

A.2 

B.4 

C.7 

A.8 

B.27 

C.37 

A.5 

B.26 

C.35 

A.7 

B.20 

C.28 

A.7 

B.28 

C.46 

7. All computation 

centered at S-S 

(2-1) 

A.4 

B.9 

C.13 

A.1 

B.2 

C.3 

A.1 

B.2 

C.3 

A.1 

B.3 

C.5 

A.15 

B.35 

C.50 

A.6 

B.11 

C.15 

A.4 

B.7 

C.10 

A.9 

B.18 

C.25 

A.8 

B.20 

C.28 

A.6 

B.12 

C.18 

A.2 

B.4 

C.5 

A.5 

B.7 

C.13 

8. All computation 

centered at M-M  

(2-2) 

A.5 

B.11 

C.15 

A.2 

B.4 

C.5 

A.1 

B.2 

C.3 

A.2 

B.5 

C.8 

A.30 

B.70 

C.100 

A.12 

B.23 

C.33 

A.7 

B.14 

C.20 

A.20 

B.35 

C.75 

A.10 

B.22 

C.36 

A.3 

B.7 

C.10 

A.4 

B.9 

C.13 

A.4 

B.7 

C.14 

9. All computation 

centered at L-L 

(2-3) 

A.5 

B.13 

C.18 

A.2 

B.4 

C.5 

A.1 

B.2 

C.3 

A.3 

B.7 

C.11 

A.60 

B.120 

C.175 

A.20 

B.40 

C.58 

A.12 

B.25 

C.35 

A.25 

B.58 

C.85 

A.15 

B.39 

C.74 

A.6 

B.12 

C.23 

A.5 

B.12 

C.24 

A.8 

B.18 

C.36 

10. All computation 

centered at S-M 

(2-4) 

A.4 

B.10 

C.14 

A.1 

B.3 

C.4 

A.1 

B.2 

C.3 

A.1 

B.4 

C.6 

A.15 

B.55 

C.75 

A.6 

B.18 

C.24 

A.4 

B.11 

C.15 

A.8 

B.27 

C.63 

A.9 

B.22 

C.35 

A.3 

B.10 

C.20 

A.2 

B.7 

C.9 

A.3 

B.7 

C.9 

11. All computation A.4 A.1 A.1 A.1 A.15 A.5 A.3 A.8 A.10 A.6 A.2 A.3 
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centered at S-L 

(2-5) 

B.11 

C.15 

B.3 

C.4 

B.2 

C.3 

B.6 

C.8 

B.84 

C.113 

B.28 

C.37 

B.17 

C.23 

B.39 

C.94 

B.30 

C.48 

B.13 

C.24 

B.9 

C.12 

B.12 

C.17 

12. All computation 

centered at M-L 

(2-6) 

A.5 

B.13 

C.17 

A.2 

B.4 

C.5 

A.1 

B.2 

C.3 

A.2 

B.6 

C.9 

A.30 

B.100 

C.138 

A.12 

B.33 

C.45 

A.7 

B.20 

C.28 

A.16 

B.47 

C.115 

A.10 

B.32 

C.49 

A.3 

B.10 

C.14 

A.4 

B.10 

C.19 

A.4 

B.13 

C.21 

13. Both server types 

(communication, 

computation) at S-S 

(3-1) 

A.4 

B.24 

C.32 

A.1 

B.7 

C.9 

A.1 

B.5 

C.7 

A.4 

B.10 

C.15 

A.4 

B.24 

C.32 

A.1 

B.7 

C.9 

A.1 

B.5 

C.7 

A.1 

B.11 

C.26 

A.8 

B.36 

C.54 

A.2 

B.13 

C.18 

A.2 

B.7 

C.10 

A.2 

B.18 

C.16 

14. Both server types 

(communication, 

computation) at M-

M 

(3-2) 

A.5 

B.45 

C.58 

A.2 

B.15 

C.19 

A.1 

B.9 

C.12 

A.2 

B.22 

C.37 

A.5 

B.45 

C.58 

A.2 

B.15 

C.19 

A.1 

B.9 

C.12 

A.2 

B.22 

C.48 

A.10 

B.27 

C.109 

A.4 

B.24 

C.35 

A.2 

B.14 

C.20 

A.4 

B.37 

C.44 

15. Both server types 

(communication, 

computation) at L-L 

(3-3) 

A.5 

B.76 

C.97 

A.2 

B.25 

C.32 

A.1 

B.15 

C.19 

A.3 

B.35 

C.80 

A.5 

B.76 

C.97 

A.2 

B.25 

C.32 

A.1 

B.15 

C.19 

A.2 

B.37 

C.54 

A.12 

B.130 

C.175 

A.4 

B.42 

C.59 

A.2 

B.26 

C.35 

A.2 

B.63 

C.73 

16. Both server types 

(communication, 

computation) at S-M 

(3-4) 

A.5 

B.25 

C.33 

A.2 

B.8 

C.10 

A.1 

B.5 

C.7 

A.2 

B.12 

C.28 

A.4 

B.44 

C.57 

A.1 

B.14 

C.18 

A.1 

B.9 

C.12 

A.2 

B.21 

C.27 

A.11 

B.56 

C.75 

A.3 

B.18 

C.24 

A.2 

B.11 

C.15 

A.3 

B.28 

C.38 

17. Both server types 

(communication, 

computation) at S-L 

(3-5) 

A.5 

B.26 

C.34 

A.2 

B.8 

C.10 

A.1 

B.5 

C.7 

A.2 

B.13 

C.28 

A.4 

B.74 

C.94 

A.1 

B.24 

C.30 

A.1 

B.15 

C.19 

A.1 

B.35 

C.79 

A.10 

B.84 

C.113 

A.3 

B.27 

C.37 

A.2 

B.16 

C.23 

A.3 

B.40 

C.55 

18. Both server types 

(communication, 

computation) at M-L 

(3-6) 

A.5 

B.46 

C.59 

A.2 

B.15 

C.19 

A.1 

B.9 

C.12 

A.2 

B.23 

C.49 

A.5 

B.75 

C.95 

A.2 

B.25 

C.32 

A.1 

B.15 

C.19 

A.2 

B.36 

C.80 

A.12 

B.103 

C.138 

A.4 

B.34 

C.45 

A.2 

B.20 

C.28 

A.3 

B.50 

C.68 

19. Both server types 

(communication, 

computation) at M-S 

(3-7) 

A.4 

B.44 

C.57 

A.1 

B.14 

C.18 

A.1 

B.9 

C.12 

A.4 

B.21 

C.46 

A.5 

B.25 

C.33 

A.2 

B.8 

C.10 

A.1 

B.5 

C.7 

A.2 

B.12 

C.28 

A.10 

B.55 

C.75 

A.3 

B.18 

C.24 

A.2 

B.11 

C.15 

A.3 

B.27 

C.40 

20. Both server types 

(communication, 

computation) at L-S 

(3-8) 

A.4 

B.74 

C.94 

A.1 

B.24 

C.30 

A.1 

B.15 

C.19 

A.1 

B.33 

C.79 

A.5 

B.26 

C.34 

A.2 

B.8 

C.10 

A.1 

B.5 

C.7 

A.2 

B.13 

C.28 

A.10 

B.84 

C.113 

A.3 

B.26 

C.37 

A.2 

B.17 

C.23 

A.5 

B.38 

C.55 

21. Both server types 

(communication, 

computation) at L-M 

(3-9) 

A.5 

B.75 

C.95 

A.2 

B.25 

C.32 

A.1 

B.15 

C.19 

A.2 

B.34 

C.80 

A.5 

B.46 

C.59 

A.2 

B.15 

C.19 

A.1 

B.9 

C.12 

A.2 

B.23 

C.49 

A.10 

B.104 

C.138 

A.4 

B.33 

C.45 

A.2 

B.20 

C.28 

A.3 

B.48 

C.65 
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Table 8 

Design of Experimental Setup with Different Numbers of Service Requests in Step 2 

Experiment 

                  Service  

                  Requests 

Server  

Configuration 

All communication 

intensive 

All computation 

intensive 
Both service types 

All-L 

(1-1) 

All-M 

(1-2) 

All-H 

(1-3) 

Mixed 

(1-4) 

All-L 

(2-1) 

All-M 

(2-2) 

All-H 

(2-3) 

Mixed 

(2-4) 

All-L 

(3-1) 

All-M 

(3-2) 

All-H 

(3-3) 

Mixed 

(3-4) 

1. All 

communication 

centered at S-S 

(1-1) 

A.8 

B.22 

C.30 

A.5 

B.11 

C.15 

A.3 

B.9 

C.13 

A.7 

B.15 

C.23 

A.4 

B.10 

C.13 

A.2 

B.6 

C.8 

A.2 

B.4 

C.5 

A.3 

B.6 

C.8 

A.14 

B.30 

C.40 

A.7 

B.16 

C.20 

A.5 

B.12 

C.15 

A.8 

B.20 

C.28 

2. All 

communication 

centered at M-M 

(1-2) 

A.15 

B.29 

C.40 

A.7 

B.15 

C.20 

A.4 

B.12 

C.15 

A.9 

B.19 

C.28 

A.6 

B.15 

C.20 

A.4 

B.10 

C.13 

A.2 

B.6 

C.8 

A.5 

B.11 

C.15 

A.20 

B.41 

C.58 

A.9 

B.23 

C.28 

A.6 

B.16 

C.20 

A.11 

B.27 

C.35 

3. All 

communication 

centered at L-L 

(1-3) 

A.20 

B.53 

C.75 

A.12 

B.27 

C.38 

A.10 

B.22 

C.30 

A.16 

B.38 

C.55 

A.8 

B.21 

C.28 

A.6 

B.14 

C.18 

A.3 

B.8 

C.10 

A.8 

B.16 

C.23 

A.18 

B.39 

C.53 

A.12 

B.27 

C.38 

A.11 

B.19 

C.33 

A.14 

B.31 

C.48 

4. All 

communication 

centered at S-M 

(1-4) 

A.10 

B.25 

C.35 

A.5 

B.13 

C.18 

A.4 

B.10 

C.14 

A.6 

B.17 

C.25 

A.4 

B.13 

C.17 

A.3 

B.8 

C.10 

A.2 

B.5 

C.7 

A.3 

B.9 

C.12 

A.11 

B.29 

C.39 

A.7 

B.17 

C.24 

A.5 

B.10 

C.18 

A.9 

B.25 

C.33 

5. All 

communication 

centered at S-L 

(1-5) 

A.10 

B.38 

C.53 

A.5 

B.19 

C.27 

A.4 

B.16 

C.22 

A.7 

B.25 

C.37 

A.3 

B.16 

C.20 

A.3 

B.10 

C.13 

A.2 

B.6 

C.8 

A.3 

B.11 

C.14 

A.13 

B.30 

C.47 

A.7 

B.20 

C.29 

A.5 

B.18 

C.24 

A.9 

B.28 

C.33 

6. All 

communication 

centered at M-L 

(1-6) 

A.15 

B.42 

C.58 

A.7 

B.21 

C.29 

A.5 

B.17 

C.23 

A.9 

B.28 

C.40 

A.6 

B.18 

C.24 

A.4 

B.12 

C.15 

A.2 

B.7 

C.9 

A.5 

B.13 

C.18 

A.13 

B.34 

C.45 

A.10 

B.25 

C.33 

A.7 

B.18 

C.27 

A.10 

B.28 

C.37 

7. All computation 

centered at S-S 

(2-1) 

A.5 

B.11 

C.15 

A.2 

B.6 

C.8 

A.2 

B.4 

C.5 

A.3 

B.7 

C.8 

A.10 

B.24 

C.33 

A.8 

B.16 

C.23 

A.3 

B.10 

C.13 

A.8 

B.18 

C.25 

A.12 

B.28 

C.38 

A.3 

B.18 

C.10 

A.5 

B.11 

C.15 

A.6 

B.20 

C.18 

8. All computation 

centered at M-M  

(2-2) 

A.6 

B.15 

C.20 

A.3 

B.8 

C.10 

A.2 

B.6 

C.8 

A.4 

B.9 

C.13 

A.18 

B.35 

C.50 

A.10 

B.24 

C.33 

A.6 

B.14 

C.20 

A.12 

B.26 

C.38 

A.12 

B.24 

C.35 

A.7 

B.13 

C.20 

A.5 

B.14 

C.18 

A.10 

B.21 

C.30 

9. All computation 

centered at L-L 

(2-3) 

A.8 

B.18 

C.25 

A.4 

B.9 

C.13 

A.3 

B.7 

C.10 

A.5 

B.12 

C.15 

A.20 

B.47 

C.65 

A.15 

B.31 

C.43 

A.8 

B.19 

C.25 

A.15 

B.34 

C.48 

A.14 

B.31 

C.43 

A.11 

B.24 

C.35 

A.7 

B.20 

C.28 

A.12 

B.22 

C.35 

10. All computation 

centered at S-M 

(2-4) 

A.5 

B.13 

C.18 

A.3 

B.7 

C.9 

A.2 

B.5 

C.7 

A.3 

B.8 

C.10 

A.10 

B.30 

C.42 

A.8 

B.20 

C.28 

A.4 

B.12 

C.17 

A.7 

B.22 

C.30 

A.6 

B.20 

C.28 

A.3 

B.12 

C.15 

A.5 

B.13 

C.17 

A.6 

B.17 

C.24 

11. All computation A.5 A.3 A.2 A.3 A.10 A.8 A.4 A.7 A.6 A.3 A.5 A.7 
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centered at S-L 

(2-5) 

B.14 

C.20 

B.7 

C.10 

B.6 

C.8 

B.10 

C.12 

B.35 

C.49 

B.24 

C.33 

B.14 

C.19 

B.27 

C.35 

B.21 

C.32 

B.16 

C.23 

B.10 

C.22 

B.22 

C.27 

12. All computation 

centered at M-L 

(2-6) 

A.7 

B.16 

C.23 

A.3 

B.8 

C.12 

A.3 

B.7 

C.9 

A.4 

B.10 

C.14 

A.18 

B.41 

C.58 

A.10 

B.28 

C.38 

A.7 

B.17 

C.23 

A.12 

B.30 

C.43 

A.12 

B.30 

C.39 

A.6 

B.19 

C.28 

A.4 

B.17 

C.23 

A.10 

B.26 

C.34 

13. Both server types 

(communication, 

computation) at S-S 

(3-1) 

A.5 

B.16 

C.23 

A.3 

B.8 

C.12 

A.2 

B.7 

C.9 

A.3 

B.9 

C.12 

A.4 

B.17 

C.23 

A.3 

B.12 

C.15 

A.2 

B.7 

C.9 

A.3 

B.13 

C.17 

A.6 

B.30 

C.42 

A.3 

B.18 

C.24 

A.4 

B.12 

C.15 

A.6 

B.20 

C.29 

14. Both server types 

(communication, 

computation) at M-

M 

(3-2) 

A.7 

B.22 

C.30 

A.3 

B.11 

C.15 

A.2 

B.9 

C.12 

A.4 

B.15 

C.18 

A.6 

B.25 

C.35 

A.4 

B.17 

C.23 

A.2 

B.10 

C.14 

A.5 

B.18 

C.27 

A.10 

B.44 

C.60 

A.6 

B.26 

C.35 

A.4 

B.18 

C.23 

A.4 

B.30 

C.38 

15. Both server types 

(communication, 

computation) at L-L 

(3-3) 

A.8 

B.36 

C.50 

A.4 

B.18 

C.25 

A.3 

B.15 

C.20 

A.6 

B.18 

C.33 

A.10 

B.34 

C.47 

A.5 

B.23 

C.30 

A.3 

B.14 

C.18 

A.6 

B.25 

C.34 

A.10 

B.63 

C.84 

A.6 

B.37 

C.48 

A.4 

B.24 

C.33 

A.7 

B.44 

C.60 

16. Both server types 

(communication, 

computation) at S-M 

(3-4) 

A.6 

B.19 

C.25 

A.3 

B.9 

C.13 

A.3 

B.8 

C.10 

A.4 

B.14 

C.20 

A.4 

B.23 

C.32 

A.3 

B.16 

C.20 

A.2 

B.10 

C.13 

A.3 

B.17 

C.23 

A.9 

B.38 

C.52 

A.5 

B.22 

C.30 

A.4 

B.15 

C.20 

A.6 

B.26 

C.35 

17. Both server types 

(communication, 

computation) at S-L 

(3-5) 

A.8 

B.20 

C.28 

A.4 

B.10 

C.14 

A.3 

B.8 

C.12 

A.5 

B.14 

C.19 

A.4 

B.30 

C.39 

A.3 

B.20 

C.25 

A.2 

B.12 

C.15 

A.3 

B.20 

C.28 

A.10 

B.44 

C.60 

A.5 

B.26 

C.35 

A.4 

B.17 

C.23 

A.7 

B.30 

C.42 

18. Both server types 

(communication, 

computation) at M-L 

(3-6) 

A.8 

B.23 

C.33 

A.4 

B.12 

C.17 

A.3 

B.10 

C.13 

A.5 

B.16 

C.23 

A.6 

B.31 

C.43 

A.4 

B.21 

C.28 

A.2 

B.13 

C.17 

A.6 

B.22 

C.32 

A.13 

B.49 

C.69 

A.7 

B.30 

C.40 

A.4 

B.20 

C.25 

A.5 

B.35 

C.44 

19. Both server types 

(communication, 

computation) at M-S 

(3-7) 

A.5 

B.20 

C.28 

A.3 

B.10 

C.14 

A.2 

B.8 

C.10 

A.3 

B.11 

C.16 

A.7 

B.20 

C.27 

A.4 

B.13 

C.18 

A.2 

B.8 

C.10 

A.5 

B.14 

C.20 

A.10 

B.36 

C.50 

A.5 

B.21 

C.29 

A.3 

B.14 

C.18 

A.4 

B.26 

C.32 

20. Both server types 

(communication, 

computation) at L-S 

(3-8) 

A.5 

B.33 

C.45 

A.2 

B.17 

C.23 

A.2 

B.14 

C.18 

A.3 

B.23 

C.29 

A.10 

B.22 

C.30 

A.6 

B.15 

C.20 

A.3 

B.9 

C.12 

A.6 

B.17 

C.23 

A.8 

B.50 

C.65 

A.4 

B.28 

C.37 

A.3 

B.20 

C.25 

A.6 

B.35 

C.48 

21. Both server types 

(communication, 

computation) at L-M 

(3-9) 

A.7 

B.35 

C.48 

A.3 

B.18 

C.24 

A.2 

B.14 

C.19 

A.4 

B.18 

C.29 

A.10 

B.28 

C.39 

A.6 

B.19 

C.25 

A.3 

B.12 

C.15 

A.6 

B.21 

C.28 

A.9 

B.57 

C.75 

A.4 

B.33 

C.43 

A.3 

B.23 

C.30 

A.6 

B.40 

C.54 
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Table 9 

Design of Experimental Setup with Different Numbers of Service Requests in Step 3 

Experiment 

                  Service  
                  Requests 

Server  

Configuration 

All communication 

intensive 
All computation intensive Both service types 

All-L 

(1-1) 

All-M 

(1-2) 

All-H 

(1-3) 

Mixed 

(1-4) 

All-L 

(2-1) 

All-M 

(2-2) 

All-H 

(2-3) 

Mixed 

(2-4) 

All-L 

(3-1) 

All-M 

(3-2) 

All-H 

(3-3) 

Mixed 

(3-4) 

1. All communication 

centered at S-S-S 
(1-1) 

A.13 

B.45 
C.60 

A.4 

B.15 
C.19 

A.2 

B.11 
C.15 

A.4 

B.22 
C.23 

A.4 

B.14 
C.19 

A.1 

B.3 
C.4 

A.1 

B.3 
C.4 

A.2 

B.7 
C.8 

A.16 

B.55 
C.75 

A.5 

B.18 
C.23 

A.4 

B.14 
C.19 

A.5 

B.25 
C.27 

2. All communication 

centered at M-M-M 
(1-2) 

A.13 

B.50 
C.68 

A.5 

B.17 
C.23 

A.3 

B.12 
C.15 

A.4 

B.21 
C.27 

A.6 

B.17 
C.23 

A.2 

B.6 
C.8 

A.1 

B.3 
C.4 

A.2 

B.10 
C.12 

A.20 

B.63 
C.87 

A.5 

B.19 
C.27 

A.5 

B.15 
C.19 

A.7 

B.30 
C.34 

3. All communication 
centered at L-L-L 

(1-3) 

A.18 
B.56 

C.75 

A.6 
B.18 

C.23 

A.5 
B.14 

C.19 

A.6 
B.25 

C.27 

A.6 
B.21 

C.30 

A.2 
B.6 

C.8 

A.2 
B.5 

C.8 

A.3 
B.12 

C.12 

A.23 
B.73 

C.98 

A.7 
B.24 

C.30 

A.6 
B.17 

C.23 

A.9 
B.33 

C.42 

4. All communication 

centered at S-M-M 

(1-4) 

A.51 

B.47 

C.65 

A.3 

B.16 

C.22 

A.3 

B.12 

C.15 

A.4 

B.22 

C.25 

A.5 

B.16 

C.22 

A.1 

B.5 

C.7 

A.1 

B.3 

C.4 

A.2 

B.9 

C.10 

A.18 

B.61 

C.83 

A.5 

B.19 

C.25 

A.4 

B.15 

C.19 

A.6 

B.27 

C.32 

5. All communication 

centered at S-L-L 
(1-5) 

A.14 

B.51 
C.70 

A.5 

B.17 
C.22 

A.4 

B.13 
C.18 

A.5 

B.21 
C.25 

A.4 

B.19 
C.27 

A.1 

B.5 
C.7 

A.1 

B.5 
C.7 

A.2 

B.9 
C.10 

A.19 

B.66 
C.90 

A.6 

B.22 
C.28 

A.4 

B.16 
C.22 

A.5 

B.29 
C.37 

6. All communication 
centered at M-L-L 

(1-6) 

A.17 
B.52 

C.73 

A.6 
B.18 

C.23 

A.4 
B.13 

C.18 

A.5 
B.23 

C.27 

A.5 
B.20 

C.28 

A.2 
B.6 

C.8 

A.1 
B.5 

C.7 

A.2 
B.9 

C.12 

A.21 
B.69 

C.94 

A.7 
B.22 

C.29 

A.5 
B.16 

C.22 

A.8 
B.32 

C.39 

7. All computation 

centered at S-S-S 

(2-1) 

A.4 

B.13 

C.19 

A.1 

B.3 

C.4 

A.1 

B.3 

C.4 

A.2 

B.6 

C.8 

A.10 

B.45 

C.60 

A.4 

B.15 

C.19 

A.3 

B.11 

C.15 

A.4 

B.20 

C.23 

A.16 

B.57 

C.75 

A.5 

B.17 

C.23 

A.3 

B.14 

C.19 

A.6 

B.24 

C.30 

8. All computation 

centered at M-M-M 
(2-2) 

A.5 

B.15 
C.19 

A.1 

B.3 
C.5 

A.1 

B.3 
C.4 

A.2 

B.8 
C.8 

A.15 

B.49 
C.68 

A.5 

B.17 
C.23 

A.4 

B.12 
C.15 

A.5 

B.24 
C.23 

A.19 

B.62 
C.87 

A.6 

B.19 
C.27 

A.4 

B.15 
C.19 

A.8 

B.29 
C.38 

9. All computation 
centered at L-L-L  

(2-3) 

A.5 
B.17 

C.23 

A.2 
B.6 

C.8 

A.1 
B.3 

C.4 

A.3 
B.10 

C.12 

A.18 
B.54 

C.75 

A.5 
B.18 

C.23 

A.4 
B.14 

C.19 

A.6 
B.25 

C.27 

A.21 
B.70 

C.94 

A.6 
B.24 

C.30 

A.4 
B.15 

C.19 

A.8 
B.34 

C.38 

10. All computation 

centered at S-M-M  

(2-4) 

A.4 

B.15 

C.19 

A.1 

B.3 

C.5 

A.1 

B.3 

C.4 

A.2 

B.8 

C.8 

A.15 

B.48 

C.65 

A.4 

B.16 

C.22 

A.3 

B.12 

C.15 

A.5 

B.24 

C.23 

A.19 

B.62 

C.83 

A.5 

B.19 

C.25 

A.4 

B.15 

C.19 

A.7 

B.31 

C.35 

11. All computation 

centered at S-L-L  
(2-5) 

A.4 

B.16 
C.22 

A.1 

B.5 
C.7 

A.1 

B.3 
C.4 

A.2 

B.9 
C.10 

A.15 

B.51 
C.70 

A.4 

B.17 
C.22 

A.4 

B.13 
C.18 

A.6 

B.22 
C.25 

A.17 

B.66 
C.88 

A.6 

B.22 
C.28 

A.5 

B.15 
C.19 

A.7 

B.33 
C.35 

12. All computation 
centered at M-L-L 

(2-6) 

A.4 
B.17 

C.22 

A.1 
B.5 

C.7 

A.1 
B.3 

C.4 

A.2 
B.10 

C.10 

A.17 
B.52 

C.73 

A.5 
B.18 

C.23 

A.3 
B.13 

C.18 

A.4 
B.24 

C.25 

A.20 
B.68 

C.92 

A.7 
B.22 

C.29 

A.4 
B.15 

C.19 

A.6 
B.33 

C.38 
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13. Both server types 

(communication, 
computation, 

computation) at S-S-S 
(3-1) 

A.4 
B.24 

C.33 

A.1 
B.7 

C.9 

A.1 
B.6 

C.8 

A.2 
B.12 

C.13 

A.3 
B.35 

C.47 

A.1 
B.11 

C.14 

A.1 
B.9 

C.12 

A.2 
B.16 

C.18 

A.6 
B.57 

C.75 

A.2 
B.18 

C.23 

A.2 
B.14 

C.19 

A.4 
B.28 

C.29 

14. Both server types 

(communication, 
computation, 

computation) at M-M-
M 

(3-2) 

A.5 
B.27 

C.35 

A.1 
B.8 

C.11 

A.1 
B.6 

C.8 

A.2 
B.15 

C.15 

A.5 
B.39 

C.53 

A.2 
B.13 

C.18 

A.1 
B.9 

C.12 

A.2 
B.20 

C.19 

A.8 
B.64 

C.87 

A.2 
B.21 

C.27 

A.2 
B.15 

C.19 

A.4 
B.31 

C.53 

15. Both server types 

(communication, 

computation, 
computation) at L-L-

L 

(3-3) 

A.5 

B.30 

C.40 

A.2 

B.10 

C.13 

A.1 

B.7 

C.9 

A.3 

B.16 

C.17 

A.7 

B.45 

C.60 

A.2 

B.14 

C.18 

A.2 

B.11 

C.15 

A.3 

B.20 

C.22 

A.10 

B.71 

C.95 

A.3 

B.24 

C.30 

A.2 

B.16 

C.20 

A.6 

B.33 

C.40 

16. Both server types 

(communication, 
computation, 

computation) at S-M-
M 

(3-4) 

A.4 

B.24 
C.33 

A.1 

B.7 
C.9 

A.1 

B.6 
C.8 

A.2 

B.13 
C.13 

A.4 

B.38 
C.52 

A.1 

B.13 
C.17 

A.1 

B.9 
C.12 

A.2 

B.16 
C.18 

A.8 

B.60 
C.83 

A.2 

B.19 
C.25 

A.2 

B.15 
C.19 

A.4 

B.28 
C.36 

17. Both server types 
(communication, 

computation, 
computation) at S-L-L 

(3-5) 

A.5 

B.26 
C.35 

A.2 

B.9 
C.12 

A.1 

B.6 
C.8 

A.3 

B.14 
C.16 

A.4 

B.40 
C.57 

A.1 

B.13 
C.17 

A.1 

B.10 
C.14 

A.2 

B.18 
C.20 

A.9 

B.65 
C.88 

A.3 

B.22 
C.28 

A.2 

B.15 
C.19 

A.4 

B.32 
C.34 

18. Both server types 

(communication, 

computation, 
computation) at M-L-

L 

(3-6) 

A.5 

B.28 

C.38 

A.2 

B.10 

C.13 

A.1 

B.6 

C.8 

A.2 

B.12 

C.17 

A.5 

B.42 

C.58 

A.2 

B.14 

C.18 

A.1 

B.11 

C.14 

A.3 

B.19 

C.22 

A.10 

B.69 

C.92 

A.2 

B.22 

C.29 

A.2 

B.15 

C.19 

A.5 

B.31 

C.37 

19. Both server types 

(communication, 
computation, 

computation) at M-S-
S 

(3-7) 

A.4 
B.26 

C.35 

A.1 
B.8 

C.10 

A.1 
B.6 

C.8 

A.2 
B.12 

C.14 

A.5 
B.36 

C.48 

A.2 
B.12 

C.15 

A.1 
B.9 

C.12 

A.3 
B.15 

C.19 

A.8 
B.59 

C.79 

A.2 
B.19 

C.24 

A.2 
B.15 

C.19 

A.4 
B.28 

C.32 

20. Both server types 

(communication, 

computation, 
computation) at L-S-S 

(3-8) 

A.4 

B.28 
C.38 

A.1 

B.8 
C.10 

A.1 

B.7 
C.9 

A.2 

B.12 
C.14 

A.7 

B.37 
C.50 

A.2 

B.12 
C.15 

A.2 

B.9 
C.13 

A.3 

B.18 
C.19 

A.8 

B.62 
C.83 

A.3 

B.20 
C.25 

A.2 

B.16 
C.20 

A.5 

B.29 
C.34 

21. Both server types 

(communication, 

computation, 
computation) at L-M-

M 
(3-9) 

A.5 

B.29 

C.38 

A.1 

B.8 

C.12 

A.1 

B.7 

C.9 

A.2 

B.15 

C.14 

A.7 

B.42 

C.55 

A.2 

B.14 

C.18 

A.2 

B.10 

C.13 

A.3 

B.18 

C.19 

A.10 

B.68 

C.90 

A.3 

B.22 

C.28 

A.2 

B.16 

C.20 

A.4 

B.30 

C.39 
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 As shown in Table 7, this study introduces twenty one server configurations 

which are determined by two factors: server type and resource level of a server. With two 

server types of the communication-centered server and the computation-centered server, 

there are three combinations of server types for servers designed:  

• All servers are communication-centered servers (Server configurations 1~6 in 

Table 7). 

• All servers are computation-centered servers (Server configurations 7~12 in Table 

7). 

• Some servers are communication-centered servers, and the others are 

computation-centered servers (Server configurations 13~21 in Table 7).  

 Since there are three resource levels (S, M and L) available to indicate a server's 

resource capacity, six combinations of resource levels for servers are constructed when 

all servers are either communication-centered servers or computation-centered servers:  

• All servers of same server type have one resource level of S (Server 

configurations 1 and 7 in Table 7). 

• All servers of same server type have one resource level of M (Server 

configurations 2 and 8 in Table 7). 

• All servers of same server type have one resource level of L (Server 

configurations 3 and 9 in Table 7). 

• Servers of same server type have mixed resource levels of S and M (Server 

configurations 4 and 10 in Table 7). 
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• Servers of same server type have mixed resource levels of S and L (Server 

configurations 5 and 11 in Table 7). 

• Servers of same server type have mixed resource levels of M and L (Server 

configurations 6 and 12 in Table 7). 

 With servers of both resource types, there are nine combinations of resource 

levels for servers:  

• Servers of both server types have one resource level of S (Server configuration 13 

in Table 7). 

• Servers of both server types have one resource level of M (Server configuration 

14 in Table 7). 

• Servers of both server types have one resource level of L (Server configuration 15 

in Table 7). 

• Some servers are communication-centered servers with the resource level of S, 

and the others are computation-centered servers with the resource level of M 

(Server configuration 16 in Table 7). 

• Some servers are communication-centered servers with the resource level of S, 

and the others are computation-centered servers with the resource level of L 

(Server configuration 17 in Table 7). 

• Some servers are communication-centered servers with the resource level of M, 

and the others are computation-centered servers with the resource level of L 

(Server configuration 18 in Table 7). 
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• Some servers are communication-centered servers with the resource level of M, 

and the others are computation-centered servers with the resource level of S 

(Server configuration 19 in Table 7). 

• Some servers are communication-centered servers with the resource level of L, 

and the others are computation-centered servers with the resource level of S 

(Server configuration 20 in Table 7). 

• Some servers are communication-centered servers with the resource level of L, 

and the others are computation-centered servers with the resource level of M 

(Server configuration 21 in Table 7). 

 This study also introduces twelve service request combinations which are 

determined by two factors: service type and QoS level of a service request. With two 

service types of the communication intensive service and the computation intensive 

service, three combinations of service types for service requests are designed: 

• All service requests are communication intensive services (First column in Table 

7). 

• All service requests are computation intensive services (Second column in Table 

7).  

• Some service requests are communication intensive services, and the others are 

computation intensive services (Third column in Table 7).  

 Since there are three QoS levels (L, M and H) available to present a service 

request's QoS requirement, four combinations of QoS levels for service requests are 

constructed: 

• All service requests have one QoS level of L (All-L in Table 7).  
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• All service requests have one QoS level of M (All-M in Table 7). 

• All service requests have one QoS level of H (All-H in Table 7). 

• Service requests have mixed QoS levels of L, M and H (Mixed in Table 7).   

 From twenty one server configurations and twelve service request combinations, 

252 problem cases are designed for an experiment. Tables 7, 8 and 9 have rows labeled as 

1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-

8, 3-9, and columns labeled as 1-1, 1-2, 1-3, 1-4, 2-1, 2-2, 2-3, 2-4, 3-1, 3-2, 3-3, 3-4. In 

each problem case, three sub-cases (referred as Case A, Case B and Case C throughout 

the dissertation) are also designed with different numbers of service requests in order to 

cover the following three conditions of resource capacity:  

A. Each server has a sufficient resource capacity to satisfy all service requests of all 

clients,  

B. Each server does not have a sufficient resource capacity to satisfy all service 

requests of all clients, but the total resource capacity of all servers is sufficient to 

satisfy all service requests of all clients,  

C. Neither each server nor all servers together have a sufficient resource capacity to 

satisfy all service requests of all clients.  

 For each problem case, different numbers of service requests are set up to 

maintain three conditions of resource capacity in the sub-cases of Case A, Case B and 

Case C. The specific number of service requests is determined by looking into resource 

usages based on F functions of service-resource relations and the corresponding QoS 

values based on G functions of resource-QoS relations (as shown in Table 6) to meet the 

QoS requirements of all the service requests (as shown in Table 4) under the given 
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resource capacity (as shown in Table 5). For example, in the problem case with server 

configuration 1 of Step 1 experiment, two servers are communication-centered servers 

with one resource level of S, which is 30 as the capacity limit of CPU resource and 100 

as the capacity limit of bandwidth resource. If all service requests are communication 

intensive services with one QoS level of L, fifteen service requests are designed for Case 

A in order that each server has a sufficient resource capacity to meet the QoS 

requirements of all the fifteen service requests. For Case B, where overall resource 

capacity is sufficient to serve all service requests with the same capacity limits of 30 for 

CPU resource and 100 for bandwidth resource on two servers, the number of service 

requests is increased to thirty five. Similarly for Case C, where overall resource capacity 

is not sufficient to serve all service requests with the same resource capacity limits, a total 

of fifty service requests is designed.  

 Each experiment has a total of 756 problem cases, which consist of 252 problem 

cases for Case A, 252 problem cases for Case B and 252 problem cases for Case C. The 

Step 1 and Step 2 experiments have an even number of servers (i.e. two servers), while 

Step 3 experiment has an odd number of servers (i.e. three servers). Hence, for the 

problem cases with server configurations 13 through 21 involving two server types, the 

first server is the communication-centered server and the second server is the 

computation-centered server in Step 1 and Step 2 experiments, while the first server is the 

communication-centered server and the other two are the computation-centered servers in 

Step 3 experiment. Note that, in all the experiments, each server provides both service 

types of the communication intensive service and the computation intensive service.  
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2.5 Research Methodology 

 2.5.1 The analysis of optimal solutions to develop heuristics. The optimal 

solution to each problem in Step 1, Step 2 and Step 3 experiments in Chapter 2.4 is 

analyzed to gain insights into the resource allocation decision made in the optimal 

solution. Based on the analysis and insights gained from the optimal solutions, important 

heuristics are developed for Case A, B and C of resource-service conditions and 

described in this section. 

 For all problems of Case A where each server has the sufficient resource capacity 

to satisfy all service requests of all clients, the optimal solutions assign most service 

requests to one server (i.e., the first server with i = 1 in the problem formulation). Hence, 

the following heuristic is identified for Case A as shown in Table 10. The probability 

value in Table 10 is arbitrarily chosen to obtain heuristic solutions, and Table 14 

summarizes two different sets of probability parameters used for extended experiments in 

Chapter 2.6. Figure 1 shows the coverage of Case A problems by heuristic A-1. To 

implement and test this heuristic in the experiments described in Chapter 2.6, the server 

with i = 1 is designated as the dominant server. 

Table 10  

The Heuristics for Case A Problems 

Heuristic Description 

A-1 

Designate one server as the dominant server, and select the dominant server to 

serve a service request with the probability of α and other server(s) to serve 

the service request with the probability of (1-α).  The parameter, α, takes a 

value in (0, 1] and is closer to 1 than 0 (e.g., 0.9). 
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Figure 1. The Coverage of Case A Problems by Heuristic A-1. 

 The optimal solutions to the problems of Case B, where each server does not have 

the sufficient resource capacity to satisfy all service requests but the total resource 

capacity of all servers is sufficient to satisfy all service requests, reveal five different 

heuristics as shown in Table 11. Probability values in Table 11 are arbitrarily chosen to 

obtain heuristic solutions, and Table 14 summarizes two different sets of probability 

parameters used for extended experiments in Chapter 2.6.  
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Table 11  

The Heuristics for Case B Problems 

Heuristic Description 

B-1(a) Select a server randomly to serve a service request. 

B-1(b) 

Designate a server as the dominant server (i.e., the server with i = 1), and 

select the dominant server to serve a service request with the probability of β 

and another server to serve the service request with the probability of (1- β).  

The parameter, β, takes a value in (0, 1] and is closer to 1.  This heuristic is 

same as A-1 applying to B cases. 

B-2(a) 

Select a server of one server type (e.g., communication-centered server) 

randomly to serve a service request of the same type (e.g., communication 

intensive service) with the probability of γ and a server of a different server 

type (e.g., computation-centered server) randomly to serve the service request 

with the probability of (1- γ).  The parameter, γ, takes a value in (0, 1] and is 

closer to 1. 

B-2(b) 

Designate a server of each server type as the dominant server of the server 

type, select the dominant server of one server type to serve a service request of 

the same type with the probability of γ, and the dominant server of a different 

server type to serve the service request with the probability of (1- γ).  The 

parameter, γ, takes a value in (0, 1] and is closer to 1. 

B-3 

Select a server of one server type (e.g., communication-centered server) 

randomly to serve a service request of the same type (e.g., communication 

intensive service) with a given QoS level of L, M or H with the corresponding 

probability of δ�, δ� or δE, respectively, and a server of a different server type 

(e.g., computation-centered server) to serve the service request with the given 

QoS level of L, M or H with the probability of (1 − δ�), (1 − δ�) or (1 − δE), 

respectively.  Each parameter, δ�, δ� or δE, takes a value in (0, 1], and H� ≤ 

H� ≤ HE. 

 

 Heuristic B-2(a) has a server of one server type (e.g., communication-centered 

server) serve more service requests of the same service type (e.g., communication 

intensive service) and less service requests of a different service type (e.g., computation 

intensive service). Heuristic B-2(a) is employed under only one condition when the total 

resource requirements from all service requests takes at least 70% of the total resource 
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capacity of all servers, that is, when the total resource capacity is tight to serve the service 

requests. Hence, Figure 2 has Part (a) and Part (b) since Heuristic B-2(a) is employed 

only under this condition.  

 Figure 2 shows the coverage of Case B problems by the heuristics as follows.  

• If all servers are either communication-centered servers or computation-centered 

servers, apply Heuristic B-1(a) and Heuristic B-1(b) (see rows 1-1 to 1-6 and 2-1 

to 2-6). 

• If some servers are communication-centered servers and others are computation-

centered servers, and all service requests have the same QoS level of L, M or H, 

apply Heuristic B-2(a) and Heuristic B-2(b) under the condition of the tight 

resource capacity but apply Heuristic B-1(a) and Heuristic B-2(b) not under the 

condition of the tight resource capacity (see rows 3-1 to 3-9 and columns 1-1 to 1-

3, 2-1 to 2-3 and 3-1 to 3-3). 

• If some servers are communication-centered servers and others are computation-

centered servers, and service requests have the mixed QoS levels of L, M and H, 

apply Heuristic B-3 (see rows 3-1 to 3-9 and columns 1-4, 2-4 and 3-4).  
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(a) Under the Condition of Heuristic B-2(a) 

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4
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(b) Not Under the Condition of Heuristic B-2(a) 

Figure 2. The Coverage of Case B Problems by the Heuristics. 

 For all problem scenarios in Case B, server types and service types need to be 

carefully looked into and compared with each other in finding important heuristics from 

the optimal solutions. Table 12 shows and examines service decisions in the optimal 

solutions from Step 1 experiment for two problem cases with server configuration 13 and 

with seven clients and ten clients respectively.   
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Table 12  

Service Decisions made in the Optimal Solutions for Two Problem Cases in Case B 

Problem  

Case 
Client Service 

QoS  

Requirement (����
� ) 

Server 
Service parameter (�����) 
and QoS provision (�����) 

server  

conf. 13 

k = 1 comm. intensive 

service 

M (15) comm. centered 

server 
��,�,�: 3 

��,�,�: 15.60 

k = 2 comm. intensive 

service 

M (15) comm. centered 

server 
��,�,�: 3 

��,�,�: 15.60 

k = 3 comm. intensive 

service 

M (15) comp. centered 

server 
�E,�,�: 3 

�E,�,�: 15.60 

k = 4 comm. intensive 

service 

M (15) comm. centered 

server 
�I,�,�: 3 

�I,�,�: 15.60 

k = 5 comm. intensive 

service 

M (15) comm. centered 

server 
�J,�,�: 3 

�J,�,�: 15.60 

k = 6 comm. intensive 

service 

M (15) comm. centered 

server 
�K,�,�: 3 

�K,�,�: 15.60 

k = 7 comm. intensive 

service 

M (15) comm. centered 

server 
�L,�,�: 3 

�L,�,�: 15.60 

server  

conf. 13 

k = 1 comm. intensive 

service 

M (15) comm. centered 

server 
��,�,�: 3 

��,�,�: 15.60 

k = 2 comm. intensive 

service 

L (5) comp. centered 

server 
��,�,�: 1 

��,�,�: 5.20 

k = 3 comm. intensive 

service 

M (15) comp. centered 

server 
�E,�,�: 3 

�E,�,�: 15.60 

k = 4 comm. intensive 

service 

M (15) comm. centered 

server 
�I,�,�: 3 

�I,�,�: 15.60 

k = 5 comm. intensive 

service 

L (5) comm. centered 

server 
�J,�,�: 1 

�J,�,�: 5.20 

k = 6 comm. intensive 

service 

H (25) comm. centered 

server 
�K,�,�: 5 

�K,�,�: 26.00 

k = 7 comm. intensive 

service 

L (5) comp. centered 

server 
�L,�,�: 1 

�L,�,�: 5.20 

k = 8 comm. intensive 

service 

L (5) comm. centered 

server 
�M,�,�: 1 

�M,�,�: 5.20 

k = 9 comm. intensive 

service 

L (5) comm. centered 

server 
�N,�,�: 1 

�N,�,�: 5.20 

k = 10 comm. intensive 

service 

H (25) comm. centered 

server 
��O,�,�: 5 

��O,�,�: 26.00 
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 Server configuration 13 has two servers: the first server is the communication-

centered server with the resource level of S, and the second server is the computation-

centered server with the resource level of S. For the problem case with seven clients in 

Table 12, all service requests are communication intensive services with one QoS level of 

M. The optimal solution shows that the communication-centered server as the first server 

selects to serve six service requests of the communication intensive service (client k = 1, 

2, 4 through 7), while the computation-centered server as the second server selects to 

serve one service request of the communication intensive service (client k = 3). It can be 

generalized to Heuristic B-2(b) such that a server of one server type (e.g., 

communication-centered server) serves a service request of the same type (e.g., 

communication intensive service) with a higher probability than the probability a server 

of a different server type (e.g., computation-centered server) has. 

 For another problem case with ten clients in Table 12, all service requests are 

communication intensive services with mixed QoS levels of L, M and H. The optimal 

solution shows that the communication-centered server as the first server selects to serve 

three out of five service requests of the communication intensive service with the QoS 

level of L (client k = 5, 8 and 9), two out of three service requests of the communication 

intensive service with the QoS level of M (client k = 1 and 4) and all two service requests 

of the communication intensive service with the QoS level of H (client k = 6 and 10), 

while the computation-centered server as the second server selects to serve two out of 

five service requests of the communication intensive service with the QoS level of L 

(client k = 2 and 7) and one out of three service requests of the communication intensive 

service with the QoS level of M (client k = 3). Hence, it can be generalized to Heuristic 
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B-3 such that a server of one server type (e.g., communication-centered server) serves a 

service request of the same type (e.g., communication intensive service) with a given 

QoS level of L, M or H with the corresponding probability of H�, H� or HE respectively, 

and a server of a different server type (e.g., computation-centered server) serves the 

service request with the given QoS level of L, M or H with the probability of (1 − H�), 

(1 − H�) or (1 − HE) respectively, taking a value in (0, 1], and H� ≤ H� ≤ HE. 

 For Case C problems, not only each server but all servers together do not have the 

sufficient resource capacity to satisfy all service requests, Table 13 gives the heuristics 

for Case C problems based on the analysis of their optimal solutions to these problems. 

Probability values mentioned in Table 13 are arbitrarily chosen to obtain heuristic 

solutions, and Table 14 summarizes two different sets of probability parameters used for 

extended experiments in Chapter 2.6. Figure 3 shows the coverage of Case C problems 

by these heuristics.  

  



  45 

Table 13  

The Heuristics for Case C Problems 

Heuristic Description 

C-1 

Select a server randomly to serve a service request.  If the selected server is 

full, then a service request is randomly assigned to another server.  Drop a 

service request if its QoS requirement cannot be satisfied by the available 

resource capacity.  This heuristic is same as B-1(a) with the addition of 

dropping a service request due to the insufficient capacity.  

C-2 

Select a server of one server type (e.g., communication-centered server) 

randomly to serve a service request of the same type (e.g., communication 

intensive service) with the probability of γ and a server of a different server 

type (e.g., computation-centered server) to serve the service request with the 

probability of (1- γ).  Drop a service request if its QoS requirement cannot be 

satisfied by the available resource capacity.  The parameter, γ, takes a value in 

(0, 1] and is closer to 1.  This heuristic is same as B-2(a) with the addition of 

dropping a service request due to the insufficient capacity. 

C-3 

Select a server of one server type (e.g., communication-centered server) 

randomly to serve a service request of the same service type (e.g., 

communication intensive service) with a given QoS level of L, M or H at the 

corresponding probability of H�, H� or HE, respectively, and a server of a 

different server type (e.g., computation-centered server) to serve the service 

request with the given QoS level of L, M or H with the probability of (1 − H�), 

(1 − H�) or (1 − HE), respectively.  Drop a service request if its QoS 

requirement cannot be satisfied by the available resource capacity.  Each 

parameter, H�, H� or HE, takes a value in (0, 1], and H� ≤ H� ≤ HE.  This heuristic 

is same as B-3 with the addition of dropping a service request due to the 

insufficient capacity. 

 



  46 

 

Figure 3. The Coverage of Case C Problems by the Heuristics. 

 Figure 3 shows the coverage of Case C problems by the heuristics as follows.  

• If all servers are either communication-centered servers or computation-centered 

servers, apply Heuristic C-1 (see rows 1-1 to 1-6 and rows 2-1 to 2-6). 

• If some servers are communication-centered servers and the others are 

computation-centered servers, and all service requests have the same QoS level of 

L, M or H, apply Heuristic C-2 (see rows 3-1 to 3-9 and columns 1-1 to 1-3, 2-1 

to 2-3 and 3-1 to 3-3). 

• If some servers are communication-centered servers and the others are 

computation-centered servers, and all service requests have the mixed QoS levels 

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4
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of L, M and H, apply Heuristic C-3 (see rows 3-1 to 3-9 and columns 1-4, 2-4 and 

3-4). 

Table 14  

Two Sets of Probability Parameters used for Obtaining Heuristic Solutions 

Parameter α β γ H� H� HE 

Set 1 0.90 0.80 0.85 0.75 0.80 0.85 

Set 2 0.98 0.90 0.80 0.70 0.80 0.90 

 

 For all problem scenarios in Case C, server types and service types need to be 

carefully looked into and compared with each other in finding important heuristics from 

the optimal solutions. Table 15 shows and examines service decisions in the optimal 

solutions from Step 1 experiment for two problem cases with server configuration 16 and 

seven clients and with server configuration 13 and sixteen clients.  
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Table 15  

Service Decisions made in the Optimal Solutions for Two Problem Cases in Case C 

Problem  

Case 
Client Service 

QoS  

Requirement 

(����
� ) 

Server 
Service parameter (�����) 
and QoS provision (�����) 

Estimated 

objective value  

server  

conf. 16 

k = 1 comm. intensive 

service 

H (25) comm. centered 

server 
��,�,�: 5 

��,�,�: 26.00 

0.04 

k = 2 comm. intensive 

service 

H (25) comm. centered 

server 
��,�,�: 5 

��,�,�: 26.00 

0.04 

k = 3 comm. intensive 

service 

H (25) comm. centered 

server 
�E,�,�: 5 

�E,�,�: 26.00 

0.04 

k = 4 comm. intensive 

service 

H (25) comm. centered 

server 
�I,�,�: 5 

�I,�,�: 26.00 

0.04 

k = 5 comm. intensive 

service 

H (25) comp. centered 

server 
�J,�,�: 5 

�J,�,�: 26.00 

0.04 

k = 6 comm. intensive 

service 

H (25) none none 0.04 

 k = 7 comm. intensive 

service 

H (25) none none 0.04 

server  

conf. 13 

k = 1 comm. intensive 

service 

M (15) comm. centered 

server 
��,�,�: 3 

��,�,�: 15.60 

0.04 

k = 2 comm. intensive 

service 

M (15) comm. centered 

server 
��,�,�: 3 

��,�,�: 15.60 

0.04 

k = 3 comm. intensive 

service 

H (25) none none 0.04 

k = 4 comm. intensive 

service 

H (25) comm. centered 

server 
�I,�,�: 5 

�I,�,�: 26.00 

0.04 

k = 5 comp. intensive 

service 

L (6) comm. centered 

server 
�J,�,�: 1 

�J,�,�: 6.10 

0.02 

k = 6 comm. intensive 

service 

H (25) comm. centered 

server 
�K,�,�: 5 

�K,�,�: 26.00 

0.04 

k = 7 comp. intensive 

service 

M (17) none none 0.07 

k = 8 comm. intensive 

service 

L (5) comm. centered 

server 
�M,�,�: 1 

�M,�,�: 5.20 

0.04 

k = 9 comp. intensive 

service 

H (30) comp. centered 

server 
�N,�,�: 5 

�N,�,�: 30.50 

0.02 

k = 10 comp. intensive 

service 

L (6) comm. centered 

server 
��O,�,�: 1 

��O,�,�: 6.10 

0.02 

k = 11 comp. intensive 

service 

H (30) comp. centered 

server 
���,�,�: 5 

���,�,�: 30.50 

0.02 

k = 12 comp. intensive 

service 

H (30) comp. centered 

server 
���,�,�: 5 

���,�,�: 30.50 

0.02 

k = 13 comp. intensive 

service 

H (30) comp. centered 

server 
��E,�,�: 5 

��E,�,�: 30.50 

0.02 

k = 14 comm. intensive 

service 

L (5) comm. centered 

server 
��I,�,�: 1 

��I,�,�: 5.20 

0.04 

k = 15 comm. intensive 

service 

L (5) comm. centered 

server 
��J,�,�: 1 

��J,�,�: 5.20 

0.04 

k = 16 comm. intensive 

service 

H (25) none none 0.04 
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 For the problem case with server configuration 16 and seven clients in Table 15, 

there are two servers used: the first server is the communication-centered server with the 

resource level of S, and the second server is the computation-centered server with the 

resource level of M, and all service requests of seven clients are communication intensive 

services with one QoS level of H. The optimal solution shows that the communication-

centered server as the first server selects to serve four service requests of the 

communication intensive service (client k =1 through 4), while the computation-centered 

server as the second server selects to serve one service request of the communication 

intensive service (client k = 5). It can be generalized to Heuristic C-2 such that a server of 

one server type (e.g., a communication-centered server) serves a service request of the 

same type (e.g., a communication intensive service) with higher probability than the 

probability that a server of a different server type (e.g., computation-centered server) has. 

 For the problem case with server configuration 13 and sixteen clients in Table 15, 

there are two servers: the first server is the communication-centered server with the 

resource level of S and the second server is the computation-centered server with the 

resource level of S, and sixteen clients' service requests: some service requests are 

communication intensive services with mixed QoS levels of L, M and H and the others 

are computation intensive services with mixed QoS levels of L, M and H. The optimal 

solution shows that the communication-centered server as the first server selects to serve 

three service requests of the communication intensive service with the QoS level of L 

(client k =8, 14 and 15), two service requests of the communication intensive service with 

the QoS level of M (client k = 1 and 2), two service requests of the communication 
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intensive service with the QoS level of H (client k = 4 and 6) and two service requests of 

the computation intensive service with the QoS level of L (client k = 5 and 10), while the 

computation-centered server as the second server selects to serve four service requests of 

the computation intensive service with the QoS level of H (client k = 9, 11 through 13). It 

can be generalized to Heuristic C-3 such that a server of one server type (e.g., 

communication-centered server) serves a service request of the same type (e.g., 

communication intensive service) with a given QoS level of L, M or H with the 

corresponding probability of H�, H� or HE respectively, and a server of a different server 

type (e.g., computation-centered server) to serve the service request with the given QoS 

level of L, M or H with the probability of (1 − H�), (1 − H�) or (1 − HE) respectively, 

taking a value in (0, 1] and H� ≤ H� ≤ HE. 

 2.5.2 Statistical data supporting the heuristics. Statistics of the experimental 

results from Step 1, Step 2 and Step 3 show the support of the heuristics defined in Tables 

10, 11 and 13. Nineteen variables shown in Table 17 are collected to obtain the statistics 

that address two questions for each heuristic: 1) what statistics (what variables with what 

values) support the heuristic, and 2) those types of statistics do not show up under other 

heuristics. Tables 18, 19 and 20 show the collection of all variables in Step 1, Step 2 and 

Step 3 experiment respectively. Var2 through Var19 show an average in the first row and 

the standard deviation in the second row in Tables 18, 19 and 20. 

 In Tables 18, 19 and 20, compartment numbers correspond to those defined in 

Figures 1, 2(a), 2(b) and 3. Each compartment may contain more than one sub-

compartment depending on different types of servers and service requests. Compartment 

I has three sub-compartments, I-1, I-2 and I-3, with all comm. intensive services, all 
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comp. intensive services and both comm. and comp. intensive services, respectively. 

Compartment II has three sub-compartments, II-1, II-2 and II-3, with all comm. intensive 

services, all comp. intensive services and both comm. and comp. intensive services 

respectively. Compartment III has two sub-compartments, III-1 and III-2, with all comm. 

intensive services and all comp. intensive services respectively. Compartment IV has one 

sub-compartment. Compartment V has three sub-compartments, V-1, V-2 and V-3, with 

all comm. intensive services, all comp. intensive services and both comm. and comp. 

intensive services respectively. 

 For each sub-compartment, the statistics obtained from Case A, Case B under 

tight resource capacity, Case B not under tight resource capacity and Case C problems 

are shown with each related heuristic. Table 16 shows the design of experimental setup 

for Case B problems not under tight resource capacity used in Step 1, Step 2 and Step 3 

experiments. Design of experimental setups for the other problem cases used in Step 1, 

Step 2 and Step 3 experiments are shown in Tables 7, 8 and 9, respectively. 
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Table 16 

Design of Experimental Setup not under Tight Resource Capacity Condition for Case B 

in Step 1, Step 2 and Step 3 Experiments 

                  Service  

                  Requests 

Server  

Configuration 

All communication 

intensive 
All computation intensive Both service types 

All-L 

(1-1) 

All-M 

(1-2) 

All-H 

(1-3) 

Mixed 

(1-4) 

All-L 

(2-1) 

All-M 

(2-2) 

All-H 

(2-3) 

Mixed 

(2-4) 

All-L 

(3-1) 

All-M 

(3-2) 

All-H 

(3-3) 

Mixed 

(3-4) 

1. All 

communication 

centered at S-S 

(1-1) 

21 

13 

18 

7 

7 

7 

5 

6 

6 

11 

10 

8 

6 

6 

7 

2 

4 

2 

2 

3 

2 

2 

5 

3 

17 

17 

22 

8 

9 

8 

4 

7 

7 

6 

14 

9 

2. All 

communication 

centered at M-M 

(1-2) 

41 

17 

20 

14 

9 

8 

9 

7 

6 

21 

14 

9 

7 

9 

8 

3 

6 

4 

2 

4 

2 

3 

6 

4 

20 

24 

25 

8 

12 

9 

10 

9 

7 

10 

19 

11 

3. All 

communication 

centered at L-L 

(1-3) 

72 

31 

22 

24 

16 

8 

15 

13 

7 

34 

26 

9 

8 

12 

10 

3 

8 

3 

2 

5 

3 

4 

9 

4 

13 

22 

28 

24 

16 

10 

16 

14 

8 

25 

32 

13 

4. All 

communication 

centered at S-M 

(1-4) 

41 

17 

20 

14 

9 

8 

9 

7 

6 

21 

13 

9 

7 

9 

8 

3 

6 

3 

2 

4 

2 

3 

6 

5 

21 

16 

25 

7 

12 

9 

9 

9 

6 

10 

17 

11 

5. All 

communication 

centered at S-L 

(1-5) 

71 

31 

23 

24 

16 

8 

15 

13 

6 

34 

22 

10 

8 

12 

10 

3 

8 

3 

2 

5 

3 

4 

7 

4 

12 

22 

29 

24 

16 

10 

15 

14 

7 

24 

16 

13 

6. All 

communication 

centered at M-L 

(1-6) 

72 

31 

23 

24 

16 

8 

15 

13 

6 

34 

22 

10 

8 

12 

10 

3 

8 

3 

2 

5 

3 

4 

7 

4 

13 

22 

29 

24 

16 

10 

15 

14 

7 

24 

16 

14 

7. All computation 

centered at S-S 

(2-1) 

6 

7 

7 

2 

4 

2 

2 

3 

2 

2 

4 

3 

21 

14 

18 

7 

10 

6 

5 

6 

5 

11 

9 

8 

13 

16 

22 

8 

5 

7 

3 

7 

6 

4 

8 

9 

8. All computation 

centered at M-M  

(2-2) 

7 

9 

7 

3 

5 

2 

2 

4 

2 

3 

6 

4 

41 

21 

20 

14 

14 

7 

9 

9 

5 

21 

11 

8 

14 

15 

25 

5 

9 

8 

6 

8 

6 

6 

13 

12 

9. All computation 

centered at L-L 

(2-3) 

8 

11 

8 

3 

6 

3 

2 

5 

2 

4 

7 

4 

72 

27 

22 

24 

18 

8 

15 

11 

6 

35 

16 

9 

24 

18 

27 

8 

15 

10 

8 

12 

7 

12 

15 

12 

10. All computation 

centered at S-M 

(2-4) 

7 

9 

7 

3 

5 

2 

2 

4 

2 

3 

6 

4 

41 

21 

20 

14 

14 

7 

9 

9 

5 

21 

16 

8 

14 

15 

25 

6 

9 

8 

6 

8 

6 

5 

13 

12 

11. All computation 8 3 2 4 71 24 15 35 24 8 8 11 
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centered at S-L 

(2-5) 

11 

8 

6 

3 

5 

2 

7 

5 

27 

22 

18 

8 

11 

6 

20 

9 

18 

27 

15 

9 

12 

7 

15 

13 

12. All computation 

centered at M-L 

(2-6) 

8 

11 

8 

3 

6 

3 

2 

5 

2 

4 

7 

3 

71 

27 

22 

24 

18 

8 

15 

11 

6 

35 

20 

9 

24 

18 

27 

8 

15 

9 

8 

12 

7 

12 

16 

12 

13. Both server types 

(communication, 

computation) at S-S 

(3-1) 

21 

13 

18 

7 

7 

6 

5 

6 

5 

11 

10 

7 

21 

14 

18 

7 

10 

6 

5 

6 

5 

11 

11 

8 

16 

16 

12 

4 

9 

4 

3 

7 

4 

4 

11 

5 

14. Both server types 

(communication, 

computation) at M-

M 

(3-2) 

41 

17 

20 

14 

9 

7 

9 

7 

5 

21 

11 

10 

41 

21 

20 

14 

14 

7 

9 

9 

5 

21 

16 

8 

14 

20 

14 

6 

14 

6 

4 

10 

4 

14 

11 

6 

15. Both server types 

(communication, 

computation) at L-L 

(3-3) 

71 

31 

22 

24 

16 

8 

15 

13 

6 

34 

21 

10 

71 

27 

22 

24 

18 

8 

15 

11 

6 

35 

20 

9 

14 

24 

17 

6 

18 

6 

4 

9 

5 

6 

19 

7 

16. Both server types 

(communication, 

computation) at S-M 

(3-4) 

21 

13 

18 

7 

7 

6 

5 

6 

5 

11 

9 

8 

41 

21 

20 

14 

14 

7 

9 

9 

5 

21 

16 

8 

14 

15 

14 

6 

9 

5 

4 

7 

4 

12 

10 

5 

17. Both server types 

(communication, 

computation) at S-L 

(3-5) 

21 

13 

18 

7 

7 

6 

5 

6 

5 

11 

10 

7 

71 

27 

21 

24 

18 

7 

15 

11 

6 

35 

20 

8 

14 

16 

14 

5 

9 

5 

4 

7 

4 

14 

11 

6 

18. Both server types 

(communication, 

computation) at M-L 

(3-6) 

41 

17 

20 

14 

9 

7 

9 

7 

5 

21 

13 

9 

71 

27 

22 

24 

18 

7 

15 

11 

6 

35 

20 

8 

14 

18 

15 

6 

11 

6 

4 

8 

4 

12 

12 

6 

19. Both server types 

(communication, 

computation) at M-S 

(3-7) 

41 

17 

20 

14 

9 

7 

9 

7 

5 

21 

13 

9 

21 

14 

18 

7 

10 

6 

5 

6 

5 

11 

11 

8 

14 

15 

13 

5 

9 

5 

3 

7 

4 

14 

9 

6 

20. Both server types 

(communication, 

computation) at L-S 

(3-8) 

71 

31 

22 

24 

16 

8 

15 

13 

6 

33 

24 

9 

21 

14 

18 

7 

10 

6 

5 

6 

5 

11 

11 

8 

14 

25 

15 

6 

14 

5 

3 

7 

5 

5 

12 

7 

21. Both server types 

(communication, 

computation) at L-M 

(3-9) 

71 

31 

22 

24 

16 

8 

15 

13 

6 

33 

25 

9 

41 

21 

20 

14 

14 

7 

9 

9 

5 

21 

15 

8 

14 

26 

16 

5 

12 

6 

4 

8 

4 

6 

14 

8 
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Table 17 

Definition of Variables for the Supporting Statistics 

Variable Description 

Var1 

Proportion of problem cases where the first server serves equal or higher 

number of service requests than the other server(s) 

(= Problem cases where the first server serves at least the same number of 

service requests as the other server(s) / All problem cases) 

Var2 

Proportion of comm. intensive services (L) served by the first server  

 (= The number of comm. intensive services (L) served by the first server / 

Total number of comm. intensive services (L) served by all servers) 

Var3 

Proportion of comm. intensive services (L) served by the second server  

 (= The number of comm. intensive services (L) served by the second server / 

Total number of comm. intensive services (L) served by all servers) 

Var4 

Proportion of comm. intensive services (L) served by the third server if exist 

 (= The number of comm. intensive services (L) served by the third server / 

Total number of comm. intensive services (L) served by all servers) 

Var5 

Proportion of comm. intensive services (M) served by the first server  

 (= The number of comm. intensive services (M) served by the first server / 

Total number of comm. intensive services (M) served by all servers) 

Var6 

Proportion of comm. intensive services (M) served by the second server  

 (= The number of comm. intensive services (M) served by the second server / 

Total number of comm. intensive services (M) served by all servers) 

Var7 

Proportion of comm. intensive services (M) served by the third server if exist 

 (= The number of comm. intensive services (M) served by the third server / 

Total number of comm. intensive services (M) served by all servers) 

Var8 

Proportion of comm. intensive services (H) served by the first server  

 (= The number of comm. intensive services (H) served by the first server / 

Total number of comm. intensive services (H) served by all servers) 

Var9 

Proportion of comm. intensive services (H) served by the second server  

 (= The number of comm. intensive services (H) served by the second server / 

Total number of comm. intensive services (H) served by all servers) 

Var10 

Proportion of comm. intensive services (H) served by the third server if exist 

(= The number of comm. intensive services (H) served by the third server / 

Total number of comm. intensive services (H) served by all servers) 

Var11 

Proportion of comp. intensive services (L) served by the first server  

(= The number of comp. intensive services (L) served by the first server /  

Total number of comp. intensive services (L) served by all servers) 
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Var12 

Proportion of comp. intensive services (L) served by the second server  

(= The number of comp. intensive services (L) served by the second server / 

Total number of comp. intensive services (L) served by all servers) 

Var13 

Proportion of comp. intensive services (L) served by the third server if exist 

(= The number of comp. intensive services (L) served by the third server / 

Total number of comp. intensive services (L) served by all servers) 

Var14 

Proportion of comp. intensive services (M) served by the first server  

(= The number of comp. intensive services (M) served by the first server / 

Total number of comp. intensive services (M) served by all servers) 

Var15 

Proportion of comp. intensive services (M) served by the second server  

(= The number of comp. intensive services (M) served by the second server / 

Total number of comp. intensive services (M) served by all servers) 

Var16 

Proportion of comp. intensive services (M) served by the third server if exist 

(= The number of comp. intensive services (M) served by the third server / 

Total number of comp. intensive services (M) served by all servers) 

Var17 

Proportion of comp. intensive services (H) served by the first server  

(= The number of comp. intensive services (H) served by the first server / 

Total number of comp. intensive services (H) served by all servers) 

Var18 

Proportion of comp. intensive services (H) served by the second server  

(= The number of comp. intensive services (H) served by the 2nd server / 

Total number of comp. intensive services (H) served by all servers) 

Var19 

Proportion of comp. intensive services (H) served by the third server if exist 

(= The number of comp. intensive services (H) served by the third server / 

Total number of comp. intensive services (H) served by all servers) 
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Table 18 

Statistics for Step 1 Experimental Result 
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 The statistics in Table 18 are summarized below. Heuristics A-1 and B-1(b) state 

that a server as the dominant server (i.e., the server with i = 1) serves a service request 

with higher probability than the other server(s). The support of Heuristics A-1 and B-1(b) 

is shown through Var1 as follows.  

• Var1 values are greater than 0.50 in 10 out of 12 problem cases, equal to 0.50 in 1 

out of 12 cases and less than 0.50 in 1 out of 12 cases for Heuristic A-1. Similarly, 

Var1 values are greater than 0.50 in 5 out of 6 problem cases and equal to 0.50 in 

1 out of 6 cases for Heuristic B-1(b). In other words, Var1 values are greater than 

0.50 in 83% of all problem cases under Heuristics A-1 and B-1(b), indicating that 
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the first server as the dominant server serves at least same or higher number of 

service requests than the other server(s) in most problem cases.  

• Under other heuristics, Var1 values do not show a consistent pattern indicating no 

dominant server for service provision.  

o For Heuristics B-1(a) and C-1, Var1 values are greater than 0.50 in 3 out of 7 

problem cases (43%) and in 4 out of 6 problem cases (67%), respectively, 

which are smaller than 83% under Heuristics A-1 and B-1(b). 

o For Heuristic B-2(a), Var1 value is greater than 0.50 in one problem case 

(100%). However, this problem case involves both server types. Since its 

solutions are significantly affected by both server types and service types, it 

cannot be compared to the problem cases involving with one server type under 

Heuristics A-1 and B-1(b). For Heuristic C-2, Var1 values are greater than 

0.50 in 2 out of 3 problem cases (67%), which is smaller than 83% under 

Heuristics A-1 and B-1(b). 

o For Heuristic B-2(b), Var1 values are greater than 0.50 in 2 out of 4 problem 

cases (50%), which is smaller than 83% under Heuristics A-1 and B-1(b). 

o For Heuristics B-3 and C-3, Var1 values are greater than 0.50 in 3 out of 6 

problem cases (50%) and in 2 out of 3 problem cases (67%), respectively, 

which are smaller than 83% under Heuristics A-1 and B-1(b). 

 Heuristics B-1(a) and C-1 state that a server randomly serves a service request. 

The support of Heuristics B-1(a) and C-1 is shown through Var1 to Var19 as follows. 

• For Heuristic B-1(a), Var1 values are greater than 0.50 in 3 out of 7 problem 

cases, equal to 0.50 in 1 out of 7 cases and less than 0.50 in 3 out of 7 cases. In 
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addition, Var2 through Var19 values show that the first server is selected with 

higher probability than the second server to serve more number of service 

requests in 3 out of 7 problem cases, with same probability as the second server in 

1 out of 7 cases and with lower probability than the second server in 3 out of 7 

cases. Those statistics support the random selection of a server for service 

provision under Heuristic B-1(a). For Heuristic C-1, Var1 values are greater than 

0.50 in 4 out of 6 problem cases, equal to 0.50 in 1 out of 6 cases and less than 

0.50 in 1 out of 6 cases. Var2 through Var19 values show that the first server is 

selected with higher probability than the second server to serve more number of 

service requests in 5 out of 6 problem cases and with same probability as the 

second server in 1 out of 6 cases. Since the problem cases under Heuristic C-1 

have insufficient resource capacity to satisfy all service requests and have the 

second server with at least same resource capacity as the first server, the random 

server selection for service provision would result in selecting the second server 

with higher probability than the first server to serve more number of service 

requests due to its larger resource capacity. Therefore, Var1 through Var19 values 

support the random selection of a server for service provision under Heuristic C-1.  

• Under other heuristics, those values do not show a consistent pattern, indicating 

there exists a dominant server for service provision. 

o For Heuristics A-1 and B-1(b), Var1 values are greater than 0.50 in 10 out of 

12 cases (83%) and in 5 out of 6 cases (83%), respectively, which are greater 

than 43% and 67% under Heuristics B-1(a) and C-1. Similarly, Var2 through 

Var19 values show that the first server is selected with higher probability than 
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the second server in 8 out of 12 cases (67%) and in 3 out of 6 cases (50%) 

under Heuristics A-1 and B-1(b), respectively, which are greater than 43% 

under Heuristics B-1(a). 

o Problem cases in Heuristics B-2(a), B-2(b), B-3, C-2 and C-3 involve both 

types of servers. Since their solutions are significantly affected by both server 

types and service types, they cannot be compared to the problem cases 

involving with one server type under Heuristics B-1(a) and C-1. 

 Heuristics B-2(a) and C-2 state that a server of one server type randomly serves a 

service request of the same type with higher probability than the other server(s) of a 

different type. The support of Heuristics B-2(a) and C-2 is shown through Var2 to Var19 

as follows. 

• The values show a consistent pattern in all 1 problem case (100%) for Heuristic 

B-2(a) and in all 3 cases (100%) for Heuristic C-2, as stated in these heuristics. 

Note that Heuristics B-2(a) and B-2(b) are same with two servers as in Step 1 and 

Step 2 experiments. 

• Under other heuristics, those values do not show a consistent pattern, indicating 

that a server serves a service request regardless of its type.  

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem 

cases (33%), which is much smaller than 100% under Heuristics B-2(a) and 

C-2.  

o For Heuristic B-1(a), each server is almost equally likely to be selected for 

service provision regardless of a service type in one problem case.  
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o For Heuristics B-3 and C-3, the values show the same pattern in 5 out of 6 

cases (83%) and 3 out of 3 cases (100%). However, problem cases under 

those heuristics involve both types of servers and service requests with mixed 

QoS levels. Since their solutions are significantly affected by serving different 

QoS levels of service requests as well as matching server types and service 

types, they cannot be compared to the problem cases involving with service 

requests of one QoS level under Heuristics B-2(a) and C-2. Similarly, 

Heuristics B-1(b) and C-1 cannot be compared since they do not have both 

server types.  

 Heuristic B-2(b) states that a server of each server type as the dominant one 

serves a service request of the same type with higher probability than the dominant server 

of a different type. The support of Heuristic B-2(b) is shown through Var2 to Var19 as 

follows. 

• The values show a consistent pattern in all 4 problem cases (100%), as stated in 

Heuristic B-2(b). Note that Heuristics B-2(a) and B-2(b) are same with two 

servers as in Step 1 and Step 2 experiments. Thus, Heuristic C-2 also shows this 

consistent pattern as Heuristic B-2(b) in Step 1 and Step 2 experiments. 

• Under other heuristics, those values do not show a consistent pattern indicating 

that a server serves a service request regardless of its type.  

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem 

cases (33%), which is much smaller than 100% under Heuristic B-2(b).  

o For Heuristic B-1(a), each server is almost equally likely to be selected for 

service provision regardless of a service type in one problem case.  
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o For Heuristics B-3 and C-3, the values show the same pattern in 5 out of 6 

cases (83%) and 3 out of 3 cases (100%). However, problem cases under 

those heuristics involve both types of servers and service requests with mixed 

QoS levels. Since their solutions are significantly affected by serving different 

QoS levels of service requests as well as matching server types and service 

types, they cannot be compared to the problem cases involving with service 

requests of one QoS level under Heuristic B-2(b). Similarly, Heuristics B-1(b) 

and C-1 cannot be compared since they do not have both server types.  

 Heuristics B-3 and C-3 state that a server of one server type randomly serves a 

service request of the same type with a given QoS level of L, M or H at the 

corresponding probability of δ�, δ� or δE, respectively, and a server of a different server 

type to serve the service request with the given QoS level of L, M or H with the 

probability of (1 − H�), (1 − H�) or (1 − HE), respectively. Each parameter, H�, H� or HE, 

takes a value in (0, 1], and H� ≤ H� ≤ HE. The support of Heuristics B-3 and C-3 is shown 

through Var2 to Var19 as follows. 

• The values show a consistent pattern in all 6 cases (100%) for Heuristic B-3 and 

in all 3 cases (100%) for Heuristic C-3, as stated in these heuristics.  

• Under other heuristics, those values do not show a consistent pattern, indicating 

that a server of one server type serves a service request of the same type with a 

given QoS level of L, M or H at the corresponding probability of δ�, δ� or δE, but 

each parameter does not follow H� ≤ H� ≤ HE. 

o For Heuristic A-1, the values show the same pattern in 2 out of 3 problem 

cases (67%), which is smaller than 100% under Heuristics B-3 and C-3.  
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o All the other heuristics cannot be compared since they do not have mixed 

levels of service requests.  
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Table 19 

Statistics for Step 2 Experimental Result 
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 The statistics in Table 19 are summarized below. Heuristics A-1 and B-1(b) state 

that a server as the dominant server (i.e., the server with i = 1) serves a service request 

with higher probability than the other server(s). The support of Heuristics A-1 and B-1(b) 

is shown through Var1 as follows. 

• Var1 values are greater than 0.50 in 11 out of 12 problem cases and less than 0.50 

in 1 out of 12 cases for Heuristic A-1. Similarly, Var1 values are greater than 0.50 

in 4 out of 6 problem cases and less than 0.50 in 2 out of 6 cases for Heuristic B-

1(b). In other words, Var1 values are greater than 0.50 in 92% and 67% of all 

problem cases under Heuristics A-1 and B-1(b), indicating that the first server as 
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the dominant server serves at least same or higher number of service requests than 

the other server(s) in many problem cases. 

• Under other heuristics, Var1 values do not show a consistent pattern indicating no 

dominant server for service provision.  

o For Heuristics B-1(a) and C-1, Var1 values are greater than 0.50 in 3 out of 7 

problem cases (43%) and in 3 out of 6 problem cases (50%), respectively, 

which are smaller than 92% and 67% under Heuristics A-1 and B-1(b). 

o For Heuristics B-2(a) and C-2, Var1 values are greater than 0.50 in 0 out of 1 

problem case (0%) and in 1 out of 3 problem cases (33%), respectively, which 

are smaller than 92% and 67% under Heuristics A-1 and B-1(b). 

o For Heuristic B-2(b), Var1 values are greater than 0.50 in 2 out of 4 problem 

cases (50%), which is smaller than 92% and 67% under Heuristics A-1 and B-

1(b). 

o For Heuristics B-3 and C-3, Var1 values are greater than 0.50 in 3 out of 6 

problem cases (50%) and in 1 out of 3 problem cases (33%), respectively, 

which are smaller than 92% and 67% under Heuristics A-1 and B-1(b). 

 Heuristics B-1(a) and C-1 state that a server randomly serves a service request. 

The support of Heuristics B-1(a) and C-1 is shown through Var1 to Var19 as follows. 

• For Heuristic B-1(a), Var1 values are greater than 0.50 in 3 out of 7 problem 

cases, equal to 0.50 in 1 out of 7 cases and less than 0.50 in 3 out of 7 cases. In 

addition, Var2 through Var19 values show that the first server is selected with 

higher probability than the second server to serve more number of service 

requests in 3 out of 7 problem cases, with same probability as the second server in 
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1 out of 7 cases and with lower probability than the second server in 3 out of 7 

cases. Those statistics support the random selection of a server for service 

provision under Heuristic B-1(a). For Heuristic C-1, Var1 values are greater than 

0.50 in 3 out of 6 problem cases, equal to 0.50 in 2 out of 6 cases and less than 

0.50 in 1 out of 6 cases. Var2 through Var19 values show that the first server is 

selected with higher probability than the second server to serve more number of 

service requests in all 6 problem cases. Since the problem cases under Heuristic 

C-1 have insufficient resource capacity to satisfy all service requests and have the 

second server with at least same resource capacity as the first server, the random 

server selection for service provision would result in selecting the second server 

with higher probability than the first server to serve more number of service 

requests due to its larger resource capacity. Therefore, Var1 through Var19 values 

support the random selection of a server for service provision under Heuristic C-1.  

• Under other heuristics, those values do not show a consistent pattern, indicating 

there exists a dominant server for service provision.  

o For Heuristics A-1 and B-1(b), Var1 values are greater than 0.50 in 11 out of 

12 cases (83%) and in 4 out of 6 cases (67%), respectively, which are greater 

than 43% and 50% under Heuristics B-1(a) and C-1. Similarly, Var2 through 

Var19 values show that the first server is selected with higher probability than 

the second server in 11 out of 12 cases (83%) and in 3 out of 6 cases (50%) 

under Heuristics A-1 and B-1(b), respectively, which are greater than 43% 

under Heuristics B-1(a). 
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o Problem cases in Heuristics B-2(a), B-2(b), B-3, C-2 and C-3 involve both 

types of servers. Since their solutions are significantly affected by both server 

types and service types, they cannot be compared to the problem cases 

involving with one server type under Heuristics B-1(a) and C-1. 

 Heuristics B-2(a) and C-2 state that a server of one server type randomly serves a 

service request of the same type with higher probability than the other server(s) of a 

different type. The support of Heuristics B-2(a) and C-2 is shown through Var2 to Var19 

as follows. 

• The values show a consistent pattern in all 1 problem case (100%) for Heuristic 

B-2(a) and in all 3 cases (100%) for Heuristic C-2, as stated in these heuristics. 

Note that Heuristics B-2(a) and B-2(b) are same with two servers as in Step 1 and 

Step 2 experiments. 

• Under other heuristics, those values do not show a consistent pattern, indicating 

that a server serves a service request regardless of its type.  

o For Heuristic A-1, the values show the same pattern in 3 out of 6 problem 

cases (50%), which is smaller than 100% under Heuristics B-2(a) and C-2.  

o For Heuristic B-1(a), each server is almost equally likely to be selected for 

service provision regardless of a service type in one problem case.  

o For Heuristics B-3 and C-3, the values show the same pattern in 4 out of 6 

cases (67%) and 3 out of 3 cases (100%). However, problem cases under 

those heuristics involve both types of servers and service requests with mixed 

QoS levels. Since their solutions are significantly affected by serving different 

QoS levels of service requests as well as matching server types and service 
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types, they cannot be compared to the problem cases involving with service 

requests of one QoS level under Heuristics B-2(a) and C-2. Similarly, 

Heuristics B-1(b) and C-1 cannot be compared since they do not have both 

server types.  

 Heuristic B-2(b) states that a server of each server type as the dominant one 

serves a service request of the same type with higher probability than the dominant server 

of a different type. The support of Heuristic B-2(b) is shown through Var2 to Var19 as 

follows. 

• The values show a consistent pattern in all 4 problem cases (100%), as stated in 

Heuristic B-2(b). Note that Heuristics B-2(a) and B-2(b) are same with two 

servers as in Step 1 and Step 2 experiments. Thus, Heuristic C-2 also shows this 

consistent pattern as Heuristic B-2(b) in Step 1 and Step 2 experiments. 

• Under other heuristics, those values do not show a consistent pattern indicating 

that a server serves a service request regardless of its type.  

o For Heuristic A-1, the values show the same pattern in 3 out of 6 problem 

cases (50%), which is smaller than 100% under Heuristic B-2(b).  

o For Heuristic B-1(a), each server is almost equally likely to be selected for 

service provision regardless of a service type in one problem case.  

o For Heuristics B-3 and C-3, the values show the same pattern in 4 out of 6 

cases (67%) and 3 out of 3 cases (100%). However, problem cases under 

those heuristics involve both types of servers and service requests with mixed 

QoS levels. Since their solutions are significantly affected by serving different 

QoS levels of service requests as well as matching server types and service 
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types, they cannot be compared to the problem cases involving with service 

requests of one QoS level under Heuristic B-2(b). Similarly, Heuristics B-1(b) 

and C-1 cannot be compared since they do not have both server types. 

 Heuristics B-3 and C-3 state that a server of one server type randomly serves a 

service request of the same type with a given QoS level of L, M or H at the 

corresponding probability of δ�, δ� or δE, respectively, and a server of a different server 

type to serve the service request with the given QoS level of L, M or H with the 

probability of (1 − H�), (1 − H�) or (1 − HE), respectively. Each parameter, H�, H� or HE, 

takes a value in (0, 1], and H� ≤ H� ≤ HE. The support of Heuristics B-3 and C-3 is shown 

through Var2 to Var19 as follows.  

• The values show a consistent pattern in all 6 cases (100%) for Heuristic B-3 and 

in all 3 cases (100%) for Heuristic C-3, as stated in these heuristics.   

• Under other heuristics, those values do not show a consistent pattern, indicating 

that a server of one server type serves a service request of the same type with a 

given QoS level of L, M or H at the corresponding probability of δ�, δ� or δE, but 

each parameter does not follow H� ≤ H� ≤ HE.  

o For Heuristic A-1, the values show the same pattern in 1 out of 3 problem 

cases (33%), which is much smaller than 100% under Heuristics B-3 and C-3.  

o All the other heuristics cannot be compared since they do not have mixed 

levels of service requests. 
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Table 20 

Statistics for Step 3 Experimental Result 
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 The statistics in Table 20 are summarized below. Heuristics A-1 and B-1(b) state 

that a server as the dominant server (i.e., the server with i = 1) serves a service request 

with higher probability than the other servers. The support of Heuristics A-1 and B-1(b) 

is shown through Var1 as follows.  

• Var1 values are greater than 0.50 in all 12 problem cases for Heuristic A-1. 

Similarly, Var1 values are greater than 0.50 in 5 out of 6 problem cases and less 

than 0.50 in 1 out of 6 cases for Heuristic B-1(b). In other words, Var1 values are 

greater than 0.50 in 100% and 83% of all problem cases under Heuristics A-1 and 
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B-1(b), indicating that the first server as the dominant server serves at least same 

or higher number of service requests than the other servers in most problem cases. 

• Under other heuristics, Var1 values do not show a consistent pattern indicating no 

dominant server for service provision.  

o For Heuristics B-1(a) and C-1, Var1 values are greater than 0.50 in 4 out of 7 

problem cases (57%) and in 3 out of 6 problem cases (50%), respectively, 

which are smaller than 100% and 83% under Heuristics A-1 and B-1(b). 

o For Heuristic B-2(a), Var1 value is greater than 0.50 in one problem case 

(100%). However, this problem case involves both server types. Since its 

solutions are significantly affected by both server types and service types, it 

cannot be compared to the problem cases involving with one server type under 

Heuristics A-1 and B-1(b). For Heuristic C-2, Var1 values are greater than 

0.50 in 2 out of 3 problem cases (67%), which is smaller than 100% and 83% 

under Heuristics A-1 and B-1(b). 

o For Heuristic B-2(b), Var1 values are greater than 0.50 in 2 out of 4 problem 

cases (50%), which is smaller than 100% and 83% under Heuristics A-1 and 

B-1(b). 

o For Heuristics B-3 and C-3, Var1 values are greater than 0.50 in 2 out of 6 

problem cases (33%) and in 1 out of 3 problem cases (33%), respectively, 

which are smaller than 100% and 83% under Heuristics A-1 and B-1(b). 

 Heuristics B-1(a) and C-1 state that a server randomly serves a service request. 

The support of Heuristics B-1(a) and C-1 is shown through Var1 to Var19 as follows. 
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• For Heuristic B-1(a), Var1 values are greater than 0.50 in 4 out of 7 problem 

cases and less than 0.50 in 3 out of 7 cases. In addition, Var2 through Var19 

values show that each server is selected for service provision with almost same 

probability in all 7 problem cases. Those statistics support the random selection of 

a server for service provision under Heuristic B-1(a). For Heuristic C-1, Var1 

values are greater than 0.50 in 3 out of 6 problem cases and less than 0.50 in 3 out 

of 6 cases. Var2 through Var19 values show that the servers with larger resource 

capacity are selected with higher probability than the other server(s) to serve more 

number of service requests in 4 out of 6 problem cases, and each server is selected 

with almost same probability for service provision in 2 out of 6 cases. Since the 

problem cases under Heuristic C-1 have insufficient resource capacity to satisfy 

all service requests and have some servers with at least same resource capacity as 

the other servers, the random server selection for service provision would result in 

selecting the servers with larger resource capacity with higher probability than the 

other(s) to serve more number of service requests due to their larger resource 

capacity. Therefore, Var1 through Var19 values support the random selection of a 

server for service provision under Heuristic C-1. 

• Under other heuristics, those values do not show a consistent pattern, indicating 

there exists a dominant server for service provision.  

o For Heuristics A-1 and B-1(b), Var1 values are greater than 0.50 in all 12 

cases (100%) and in 5 out of 6 cases (83%), respectively, which are greater 

than 57% and 50% under Heuristics B-1(a) and C-1. Similarly, Var2 through 

Var19 values show that the first server as the dominant server is selected with 
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higher probability than the other servers for service provision in 11 out of 12 

cases (83%) and 3 out of 6 cases (50%) under Heuristics A-1 and B-1(b), 

respectively, whereas there is no dominant server for service provision under 

Heuristics B-1(a) and C-1. 

o Problem cases in Heuristics B-2(a), B-2(b), B-3, C-2 and C-3 involve both 

types of servers. Since their solutions are significantly affected by both server 

types and service types, they cannot be compared to the problem cases 

involving with one server type under Heuristics B-1(a) and C-1. 

 Heuristics B-2(a) and C-2 state that a server of one server type randomly serves a 

service request of the same type with higher probability than the other server(s) of a 

different type. The support of Heuristics B-2(a) and C-2 is shown through Var2 to Var19 

as follows. 

• The values show a consistent pattern in all 1 problem case (100%) for Heuristic 

B-2(a) and in all 3 cases (100%) for Heuristic C-2, as stated in these heuristics.  

• Under other heuristics, those values do not show a consistent pattern, indicating 

that a server serves a service request regardless of its type or by different patterns.  

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem 

cases (33%), which is much smaller than 100% under Heuristics B-2(a) and 

C-2.  

o For Heuristic B-1(a), each server is equally likely to be selected for service 

provision regardless of a service type in one problem case.  

o For Heuristic B-2(b), the values show the same pattern in 3 out of 4 problem 

cases (75%), which is smaller than 100% under Heuristics B-2(a) and C-2. 
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o For Heuristics B-3 and C-3, the values show the same pattern in 3 out of 6 

cases (50%) and 2 out of 3 cases (67%), which are smaller than 100% under 

Heuristics B-2(a) and C-2. 

o Heuristics B-1(b) and C-1 cannot be compared since they do not have both 

server types.  

 Heuristic B-2(b) states that a server of each server type as the dominant one 

serves a service request of the same type with higher probability than the dominant server 

of a different type. The support of Heuristic B-2(b) is shown through Var2 to Var19 as 

follows. 

• The values show a consistent pattern in 3 out of 4 cases (75%), as stated in 

Heuristic B-2(b).   

• Under other heuristics, those values do not show a consistent pattern, indicating 

that a server serves a service request regardless of its type or by different patterns.  

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem 

cases (33%), which is much smaller than 75% under Heuristic B-2(b).  

o For Heuristic B-1(a), each server is equally likely to be selected for service 

provision regardless of a service type in one problem case.  

o For Heuristics B-2(a) and C-2, the values show the same pattern in 0 out of 1 

problem case (0%) and in 2 out of 3 problem cases (67%), respectively, which 

are smaller than 75% under Heuristic B-2(b). 

o For Heuristics B-3 and C-3, the values show the same pattern in 1 out of 6 

cases (17%) and 1 out of 3 cases (33%), respectively, which are smaller than 

75% under Heuristic B-2(b).  
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o Heuristics B-1(b) and C-1 cannot be compared since they do not have both 

server types. 

 Heuristics B-3 and C-3 state that a server of one server type randomly serves a 

service request of the same type with a given QoS level of L, M or H at the 

corresponding probability of δ�, δ� or δE, respectively, and a server of a different server 

type to serve the service request with the given QoS level of L, M or H with the 

probability of (1 − H�), (1 − H�) or (1 − HE), respectively. Each parameter, H�, H� or HE, 

takes a value in (0, 1], and H� ≤ H� ≤ HE. The support of Heuristics B-3 and C-3 is shown 

through Var2 to Var19 as follows. 

• The values show a consistent pattern in 5 out of 6 cases (83%) for Heuristic B-3 

and in all 3 cases (100%) for Heuristic C-3, as stated in these heuristics.  

• Under other heuristics, those values do not show a consistent pattern, indicating 

that a server of one server type serves a service request of the same type with a 

given QoS level of L, M or H at the corresponding probability of δ�, δ� or δE, but 

each parameter does not follow H� ≤ H� ≤ HE.  

o For Heuristic A-1, the values show the same pattern in 1 out of 3 problem 

cases (33%), which is much smaller than 83% and 100% under Heuristics B-3 

and C-3.  

o All the other heuristics cannot be compared since they do not have mixed 

levels of service requests. 

 2.5.3 The systematic flow of the heuristic algorithm. In this section, a 

systematic flow of resource allocation heuristics is described as follows. In this heuristic 

algorithm, all service requests of all clients are randomly ordered first, and then each 
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problem case is determined to be one of three cases: Case A, Case B or Case C depending 

on different conditions of resource capacity with information including QoS requirements 

for all service requests of all clients and resource availability and workload of all servers.  

 For a problem case determined as Case A, client k's service request is assigned to 

a server following Heuristic A-1 until all service requests of all clients are successfully 

assigned. For a problem case determined as Case B, it first checks one condition for 

Heuristic B-2(a) if overall resource requirement for all the service requests takes at least  

70% of the total available resource capacity over all servers. For each client k's service 

request, all the related heuristic Bs depending on its conditions are applied in obtaining 

its resource allocation solutions until all service requests of all clients are successfully 

assigned. For a problem case determined as Case C, client k's service request is assigned 

to a server by applying all the related heuristic Cs depending on its conditions. Since all 

service requests of all clients cannot be served due to limited overall resource capacity, 

experimental results are averaged for 100 runs. Note that all service requests of all clients 

are randomly ordered at each iteration for the problem case in Case C.  

 In order to obtain efficient resource allocation solutions using the proposed 

heuristics, the objective function and the constraints expressed as Equations (1) through 

(8) in Chapter 2.3 are considered as follows:  

• Equation (1) as the objective function needs to be considered in such ways that all 

servers try to serve as many service requests as they can and simultaneously they 

seek for obtaining the best objective value by providing QoS closer to QoS 

requirement. It could be achieved by applying the resource allocation heuristics. 
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• Equation (2) of guaranteeing one server assignment for a service request is 

satisfied since a client's service request is assigned to one server at most.  

• Equation (3) of requiring the selected server's service provision for a service 

request is not considered since all servers provide both service types of the 

communication intensive service and the computation intensive service.  

• Equations (4) through (8) are especially considered in selecting a server for a 

client's service request. 

o Equation (8) ensures satisfaction of the QoS requirement for the client's 

service request when assigning a level of service parameter for the service 

request. Note that Equation (8) is implemented as ����� ≥ �������
�  for both 

service types in this study. 

o Equation (4) makes sure if the assigned level of service parameter for the 

service request does not exceed the maximum level of the service parameter. 

o The assigned level of service parameter for the service request can determine 

the requirement of resource amount, and the resource amount can determine 

the QoS value as shown in Equations (5) and (6) as resource and QoS impact 

models. 

o Equation (7) checks if the required resource amount is acceptable with 

resource capacity limits of the selected server. 

 Note that, as same as a centralized algorithm, this heuristic algorithm has a central 

authority to collect important information of all service requests' QoS requirements and 

resource status of all service providers. Using the updated information at each decision 

epoch, the heuristic algorithm generates resource allocation solutions. However, this 
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heuristic algorithm is different from the centralized algorithm such that it does not need 

to search for all the solution space to produce optimal resource allocation decisions. 

Instead, the proposed heuristics directly guide the solution path of how to allocate 

resources of which server to which service request, resulting in a much smaller solution 

space than the solution space of the centralized algorithm.   

2.6 Description of Extended Problem Cases for Performance Comparison 

 In this section, various problem cases are designed to evaluate performance of the 

proposed heuristics in Case A, Case B and Case C by comparing the heuristic solutions 

with the optimal solutions. For the performance evaluation of the heuristic solutions, a 

total of four experiments are conducted, including the Step 1 and Step 3 experiments 

described in Chapter 2.4 and additional experiments of Step 4 and Step 5 described as 

follows. Table 21 shows three levels of QoS variables and the maximum level of service 

parameters for the communication intensive service and the computation intensive 

service used in Step 4 and Step 5 experiments. 
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Table 21  

QoS Levels and Limit of Service Parameters for Communication Intensive Service and 

Computation Intensive Service in Step 4 and Step 5 Experiments 

Experiment 

Communication Intensive Service 

(s = 1) 

Computation Intensive Service  

(s = 2) 

QoS Levels  

(���:
� ) 

Limit of service 

parameter (���:�� ) 

QoS Levels  

(���:
� ) 

Limit of service 

parameter (���:�� ) 

Step 4 

L (6~7) 

M (13~14) 

H (20~21) 

3 

L (6~7) 

M (14~15) 

H (22~23) 

3 

Step 5 

L (5~6) 

M (12~13) 

H (18~19) 

3 

L (5~6) 

M (11~12) 

H (17~18) 

3 

 

 As shown in Table 21, Step 4 experiment has a range of QoS requirement for each 

level and thus randomly assigns a specific value of the QoS variable given the QoS 

requirement level from a client. Hence, Step 4 experiment lets each client using the 

communication intensive service set the maximum level of the service parameter to 3 and 

set the QoS requirement to one of three levels of L, M and H, and a specific QoS value is 

randomly selected from 6 to 7 for L, from 13 to 14 for M and from 20 to 21 for H. It also 

lets each client using the computation intensive service set the maximum level of the 

service parameter to 3 and set the QoS requirement to one of three levels of L, M and H, 

and a specific QoS value is randomly selected from 6 to 7 for L, from 14 to 15 for M and 

from 22 to 23 for H. 

  Similarly, Step 5 experiment lets each client using the communication intensive 

service set the maximum level of the service parameter to 3 and set the QoS requirement 

to one of three levels of L, M and H, and a specific QoS value is randomly selected from 
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5 to 6 for L, from 12 to 13 for M and from 18 to 19 for H. It also lets each client using the 

computation intensive service set the maximum level of the service parameter to 3 and set 

the QoS requirement to one of three levels of L, M and H, and a specific QoS value is 

randomly selected from 5 to 6 for L, from 11 to 12 for M and from 17 to 18 for H. 

 Table 22 shows capacity limits of two resource variables: CPU resource and 

bandwidth resource for the communication-centered server and the computation-centered 

server.  

Table 22 

Capacity Limits of Two Resource Variables (<=>? , <=@? ) for Communication-Centered 

Server and Computation-Centered Server and Number of Servers used in Step 4 and Step 

5 Experiments 

Experiment Communication-Centered Computation-Centered Number of Servers 

Step 4 

S (23~24, 104~105) 

M (31~32, 166~167) 

L (39~40, 208~209) 

S (115~116, 21~22) 

M (183~184, 28~29) 

L (229~230, 35~36) 

10 

Step 5 

S (19~20, 95~96) 

M (25~26, 139~140) 

L (31~32, 177~178) 

S (91~92, 19~20) 

M (133~134, 26~27) 

L (169~170, 32~33) 

20 

 

 As shown in Table 22, Step 4 experiment has a range of capacity limits for two 

resource variables: CPU resource and bandwidth resource with resource levels of S, M 

and L. Given the resource level from a server, it randomly assigns each specific value for 

CPU resource and bandwidth resource as the capacity limits. Hence, Step 4 experiment 

lets each communication-centered server set its resource capacity limits to one of three 

levels of S, M and L, and a specific resource amount is randomly selected from 23 to 24 

as the capacity limits of CPU resource and from 104 to 105 as the capacity limits of 
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bandwidth resource for S, from 31 to 32 of CPU resource and from 166 to 167 of 

bandwidth resource for M and from 39 to 40 of CPU resource and from 208 to 209 of 

bandwidth resource for L. It also lets each computation-centered server set its resource 

capacity limits to one of three levels of S, M and L, and a specific resource amount is 

randomly selected from 115 to 116 as the capacity limits of CPU resource and from 21 to 

22 as the capacity limits of bandwidth resource for S, from 183 to 184 of CPU resource 

and from 28 to 29 of bandwidth resource for M and from 229 to 230 of CPU resource and 

from 35 to 36 of bandwidth resource for L.  

 Similarly, Step 5 experiment lets each communication-centered server set its 

resource capacity limits to one of three levels of S, M and L, and a specific resource 

amount is randomly selected from 19 to 20 as the capacity limits of CPU resource and 

from 95 to 96 as the capacity limits of bandwidth resource for S, from 25 to 26 of CPU 

resource and from 139 to 140 of bandwidth resource for M and from 31 to 32 of CPU 

resource and from 177 to 178 of bandwidth resource for L. It also lets each computation-

centered server set its resource capacity limits to one of three levels of S, M and L, and a 

specific resource amount is randomly selected from 91 to 92 as the capacity limits of 

CPU resource and from 19 to 20 as the capacity limits of bandwidth resource for S, from 

133 to 134 of CPU resource and from 26 to 27 of bandwidth resource for M and from 169 

to 170 of CPU resource and from 32 to 33 of bandwidth resource for L. Note that Step 4 

experiment has ten servers in total, and Step 5 experiment has twenty servers in total. 

 Table 23 shows the resource and QoS impact models of the communication 

intensive service and the computation intensive service used in Step 4 and Step 5 

experiments. Table 24 and Table 25 describe the design of experimental setup with 
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different numbers of service requests used in Step 4 and Step 5 experiments. In the first 

column of Tables 24 and 25, the server configuration is indicated by #X-#Y with #X for 

the configuration of the first half of servers and #Y for the second half of servers, where # 

representing the number of servers and X or Y representing the resource capacity level. 

For example, in Table 24 for Step 4 experiments with ten servers, 5S-5S for the server 

configuration 1 represents that the resource capacity of the first 5 servers is set to the S 

level and the resource capacity of the other 5 servers is set to the S level. Note that each 

experiment has a total of 756 problem cases, which consist of 252 problem cases for Case 

A, 252 problem cases for Case B and 252 problem cases for Case C, and all servers 

provide both service types of the communication intensive service and the computation 

intensive service in each experiment. 

Table 23  

Resource and QoS Impact Models of Communication Intensive Service and Computation 

Intensive Service in Step 4 and Step 5 Experiments 

Experiment 
Communication Intensive Service 

(s = 1) 

Computation Intensive Service  

(s = 2) 

Step 4 

���� = 0.2*���:� 
���� = 6.9*���:� 
���:� = 2���� + ���� 

���� = 7.6*���;� 
���� = 0.1*���;� 
���;� = ���� + 3���� 

Step 5 

���� = 0.1*���:� 
���� = 6.3*���:� 
���:� = 3���� + ���� 

���� = 6.0*���;� 
���� = 0.1*���;� 
���;� = ���� + 2���� 
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Table 24 

Design of Experimental Setup with Different Numbers of Service Requests in Step 4 

Experiment 

               Service 

Request 

Server  

Configuration 

Communication intensive 

service 

Computation intensive 

service 

Both types of services 

(Communication, 

Computation) 

All-L All-M All-H Mixed All-L All-M All-H Mixed All-L All-M All-H Mixed 

1. All 

communication 

centered at 5S-5S 

(1-1) 

A.13 

B.137 

C.188 

A.5 

B.65 

C.87 

A.3 

B.46 

C.63 

A.6 

B.64 

C.88 

A.2 

B.28 

C.38 

A.1 

B.8 

C.13 

A.1 

B.9 

C.13 

A.2 

B.17 

C.25 

A.14 

B.154 

C.213 

A.7 

B.74 

C.100 

A.4 

B.40 

C.63 

A.2 

B.18 

C.25 

2. All 

communication 

centered at 5M-5M 

(1-2) 

A.21 

B.220 

C.300 

A.10 

B.110 

C.150 

A.7 

B.75 

C.100 

A.11 

B.110 

C.150 

A.4 

B.37 

C.50 

A.2 

B.19 

C.25 

A.1 

B.9 

C.13 

A.2 

B.19 

C.25 

A.25 

B.247 

C.338 

A.11 

B.120 

C.163 

A.8 

B.84 

C.113 

A.4 

B.35 

C.49 

3. All 

communication 

centered at 5L-5L  

(1-3) 

A.28 

B.275 

C.375 

A.14 

B.140 

C.188 

A.9 

B.95 

C.125 

A.12 

B.136 

C.188 

A.4 

B.46 

C.63 

A.2 

B.19 

C.25 

A.1 

B.9 

C.13 

A.3 

B.28 

C.38 

A.32 

B.312 

C.425 

A.15 

B.159 

C.213 

A.10 

B.104 

C.138 

A.5 

B.58 

C.75 

4. All 

communication 

centered at 5S-5M 

(1-4) 

A.14 

B.185 

C.244 

A.5 

B.90 

C.119 

A.4 

B.62 

C.82 

A.6 

B.89 

C.119 

A.3 

B.33 

C.44 

A.1 

B.14 

C.19 

A.1 

B.9 

C.13 

A.2 

B.19 

C.25 

A.4 

B.203 

C.275 

A.7 

B.104 

C.132 

A.5 

B.66 

C.88 

A.2 

B.28 

C.38 

5. All 

communication 

centered at 5S-5L 

(1-5) 

A.15 

B.215 

C.282 

A.6 

B.105 

C.138 

A.4 

B.73 

C.94 

A.7 

B.106 

C.138 

A.2 

B.38 

C.50 

A.1 

B.14 

C.19 

A.1 

B.9 

C.13 

A.2 

B.24 

C.32 

A.15 

B.240 

C.319 

A.7 

B.119 

C.157 

A.4 

B.76 

C.100 

A.2 

B.40 

C.50 

6. All 

communication 

centered at 5M-5L 

(1-6) 

A.23 

B.250 

C.338 

A.10 

B.125 

C.169 

A.7 

B.85 

C.113 

A.10 

B.127 

C.169 

A.3 

B.42 

C.57 

A.2 

B.19 

C.25 

A.1 

B.9 

C.13 

A.2 

B.24 

C.32 

A.25 

B.283 

C.382 

A.12 

B.139 

C.188 

A.9 

B.94 

C.125 

A.3 

B.49 

C.63 

7. All computation 

centered at 5S-5S 

(2-1) 

A.2 

B.28 

C.38 

A.1 

B.9 

C.13 

A.1 

B.9 

C.13 

A.2 

B.18 

C.25 

A.13 

B.140 

C.188 

A.6 

B.65 

C.88 

A.4 

B.46 

C.63 

A.6 

B.66 

C.88 

A.15 

B.154 

C.213 

A.6 

B.75 

C.100 

A.4 

B.46 

C.63 

A.3 

B.28 

C.38 

8. All computation 

centered at 5M-5M 

(2-2) 

A.3 

B.38 

C.50 

A.2 

B.19 

C.25 

A.1 

B.9 

C.13 

A.2 

B.19 

C.25 

A.22 

B.220 

C.300 

A.10 

B.110 

C.150 

A.7 

B.75 

C.100 

A.10 

B.111 

C.150 

A.23 

B.248 

C.338 

A.11 

B.120 

C.163 

A.9 

B.82 

C.113 

A.4 

B.38 

C.50 

9. All computation 

centered at 5L-5L 

(2-3) 

A.4 

B.46 

C.63 

A.2 

B.18 

C.25 

A.1 

B.9 

C.13 

A.3 

B.28 

C.38 

A.26 

B.275 

C.375 

A.14 

B.140 

C.188 

A.9 

B.92 

C.125 

A.13 

B.138 

C.188 

A.32 

B.310 

C.425 

A.16 

B.168 

C.213 

A.10 

B.109 

C.138 

A.5 

B.58 

C.75 

10. All computation 

centered at 5S-5M 

(2-4) 

A.2 

B.33 

C.44 

A.1 

B.14 

C.19 

A.1 

B.9 

C.13 

A.2 

B.19 

C.25 

A.14 

B.185 

C.244 

A.6 

B.90 

C.119 

A.5 

B.61 

C.82 

A.6 

B.89 

C.119 

A.16 

B.205 

C.275 

A.6 

B.98 

C.132 

A.3 

B.66 

C.88 

A.2 

B.34 

C.44 

11. All computation 

centered at 5S-5L 

(2-5) 

A.3 

B.38 

C.50 

A.1 

B.14 

C.19 

A.1 

B.9 

C.13 

A.2 

B.24 

C.32 

A.15 

B.215 

C.282 

A.7 

B.105 

C.138 

A.4 

B.71 

C.94 

A.5 

B.104 

C.138 

A.15 

B.240 

C.319 

A.7 

B.124 

C.157 

A.4 

B.77 

C.100 

A.2 

B.44 

C.57 

12. All computation 

centered at 5M-5L 

A.4 

B.42 

A.2 

B.18 

A.1 

B.9 

A.2 

B.24 

A.20 

B.250 

A.11 

B.125 

A.7 

B.85 

A.11 

B.124 

A.23 

B.281 

A.12 

B.138 

A.8 

B.92 

A.4 

B.48 
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(2-6) C.57 C.25 C.13 C.32 C.338 C.169 C.113 C.169 C.382 C.188 C.125 C.63 

13. Both server types 

(communication, 

computation) at 5S-

5S 

(3-1) 

A.2 

B.88 

C.113 

A.1 

B.39 

C.50 

A.1 

B.29 

C.38 

A.2 

B.44 

C.57 

A.3 

B.87 

C.113 

A.1 

B.39 

C.50 

A.1 

B.29 

C.38 

A.2 

B.43 

C.57 

A.4 

B.168 

C.213 

A.2 

B.70 

C.100 

A.1 

B.48 

C.63 

A.2 

B.24 

C.88 

14. Both server types 

(communication, 

computation) at 5M-

5M 

(3-2) 

A.3 

B.137 

C.175 

A.2 

B.68 

C.88 

A.1 

B.44 

C.57 

A.2 

B.69 

C.88 

A.4 

B.138 

C.175 

A.2 

B.68 

C.88 

A.1 

B.44 

C.57 

A.2 

B.68 

C.88 

A.5 

B.265 

C.338 

A.2 

B.128 

C.163 

A.2 

B.89 

C.113 

A.3 

B.38 

C.138 

15. Both server types 

(communication, 

computation) at 5L-

5L 

(3-3) 

A.4 

B.171 

C.219 

A.2 

B.84 

C.107 

A.1 

B.54 

C.69 

A.3 

B.87 

C.113 

A.3 

B.171 

C.219 

A.2 

B.83 

C.107 

A.1 

B.54 

C.69 

A.2 

B.88 

C.113 

A.6 

B.336 

C.425 

A.3 

B.168 

C.213 

A.2 

B.108 

C.138 

A.5 

B.58 

C.163 

16. Both server types 

(communication, 

computation) at 5M-

5M 

(3-4) 

A.2 

B.92 

C.119 

A.2 

B.43 

C.57 

A.1 

B.29 

C.38 

A.2 

B.44 

C.57 

A.3 

B.133 

C.169 

A.1 

B.64 

C.82 

A.1 

B.44 

C.57 

A.2 

B.68 

C.88 

A.4 

B.218 

C.275 

A.2 

B.103 

C.132 

A.1 

B.69 

C.88 

A.2 

B.28 

C.107 

17. Both server types 

(communication, 

computation) at 5S-

5L 

(3-5) 

A.4 

B.96 

C.125 

A.2 

B.43 

C.57 

A.1 

B.29 

C.38 

A.3 

B.48 

C.63 

A.3 

B.163 

C.207 

A.1 

B.79 

C.100 

A.1 

B.54 

C.69 

A.2 

B.83 

C.107 

A.5 

B.250 

C.319 

A.3 

B.123 

C.157 

A.1 

B.79 

C.100 

A.2 

B.39 

C.113 

18. Both server types 

(communication, 

computation) at 5M-

5L 

(3-6) 

A.4 

B.142 

C.182 

A.2 

B.68 

C.88 

A.1 

B.44 

C.57 

A.3 

B.73 

C.94 

A.4 

B.166 

C.213 

A.2 

B.83 

C.107 

A.1 

B.54 

C.69 

A.2 

B.84 

C.107 

A.6 

B.299 

C.382 

A.3 

B.148 

C.188 

A.2 

B.99 

C.125 

A.3 

B.47 

C.150 

19. Both server types 

(communication, 

computation) at 5M-

5S 

(3-7) 

A.3 

B.134 

C.169 

A.1 

B.64 

C.82 

A.1 

B.44 

C.57 

A.2 

B.68 

C.88 

A.3 

B.91 

C.119 

A.2 

B.43 

C.57 

A.1 

B.29 

C.38 

A.2 

B.44 

C.57 

A.5 

B.215 

C.275 

A.2 

B.103 

C.132 

A.2 

B.53 

C.69 

A.3 

B.38 

C.119 

20. Both server types 

(communication, 

computation) at 5L-

5S 

(3-8) 

A.2 

B.162 

C.207 

A.1 

B.79 

C.100 

A.1 

B.54 

C.69 

A.2 

B.83 

C.107 

A.4 

B.95 

C.125 

A.2 

B.43 

C.57 

A.1 

B.29 

C.38 

A.3 

B.48 

C.63 

A.6 

B.249 

C.319 

A.3 

B.122 

C.157 

A.2 

B.63 

C.82 

A.2 

B.48 

C.125 

21. Both server types 

(communication, 

computation) at 5L-

5M 

(3-9) 

A.4 

B.166 

C.213 

A.2 

B.83 

C.107 

A.1 

B.54 

C.69 

A.2 

B.83 

C.107 

A.5 

B.140 

C.182 

A.2 

B.68 

C.88 

A.1 

B.44 

C.57 

A.3 

B.72 

C.94 

A.6 

B.298 

C.382 

A.2 

B.147 

C.188 

A.2 

B.98 

C.125 

A.4 

B.45 

C.157 
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Table 25 

Design of Experimental Setup with Different Numbers of Service Requests in Step 5 

Experiment 

               Service 

Request 

Server  

Configuration 

Communication intensive 

service 

Computation intensive 

service 

Both types of services 

(Communication, 

Computation) 

All-L All-M All-H Mixed All-L All-M All-H Mixed All-L All-M All-H Mixed 

1. All 

communication 

centered at 10S-10S 

(1-1) 

A.13 

B.290 

C.375 

A.5 

B.135 

C.175 

A.4 

B.96 

C.125 

A.5 

B.136 

C.175 

A.2 

B.58 

C.75 

A.1 

B.19 

C.25 

A.1 

B.20 

C.25 

A.2 

B.38 

C.50 

A.16 

B.328 

C.425 

A.7 

B.155 

C.200 

A.3 

B.78 

C.125 

A.6 

B.136 

C.176 

2. All 

communication 

centered at 10M-

10M 

(1-2) 

A.20 

B.420 

C.550 

A.10 

B.210 

C.275 

A.5 

B.135 

C.175 

A.9 

B.211 

C.275 

A.3 

B.78 

C.100 

A.2 

B.39 

C.50 

A.1 

B.19 

C.25 

A.2 

B.38 

C.50 

A.23 

B.478 

C.625 

A.11 

B.230 

C.300 

A.7 

B.154 

C.200 

A.6 

B.134 

C.175 

3. All 

communication 

centered at 10L-10L 

(1-3) 

A.25 

B.540 

C.700 

A.13 

B.270 

C.350 

A.7 

B.175 

C.225 

A.13 

B.268 

C.350 

A.4 

B.96 

C.125 

A.2 

B.39 

C.50 

A.1 

B.20 

C.25 

A.3 

B.58 

C.75 

A.29 

B.613 

C.800 

A.14 

B.308 

C.400 

A.9 

B.194 

C.250 

A.7 

B.154 

C.200 

4. All 

communication 

centered at 10S-10M 

(1-4) 

A.14 

B.360 

C.463 

A.6 

B.175 

C.225 

A.4 

B.116 

C.150 

A.6 

B.175 

C.225 

A.3 

B.68 

C.88 

A.1 

B.29 

C.38 

A.1 

B.19 

C.25 

A.2 

B.39 

C.50 

A.16 

B.404 

C.525 

A.8 

B.194 

C.250 

A.3 

B.125 

C.163 

A.5 

B.134 

C.175 

5. All 

communication 

centered at 10S-10L 

(1-5) 

A.13 

B.420 

C.538 

A.5 

B.205 

C.263 

A.5 

B.136 

C.175 

A.6 

B.205 

C.263 

A.3 

B.77 

C.100 

A.1 

B.29 

C.38 

A.1 

B.19 

C.25 

A.2 

B.48 

C.63 

A.16 

B.474 

C.613 

A.8 

B.234 

C.300 

A.4 

B.145 

C.188 

A.5 

B.144 

C.188 

6. All 

communication 

centered at 10M-10L 

(1-6) 

A.20 

B.480 

C.625 

A.10 

B.240 

C.313 

A.6 

B.155 

C.200 

A.10 

B.241 

C.313 

A.3 

B.87 

C.113 

A.2 

B.39 

C.50 

A.1 

B.20 

C.25 

A.2 

B.49 

C.63 

A.22 

B.547 

C.713 

A.11 

B.269 

C.350 

A.7 

B.174 

C.225 

A.7 

B.145 

C.188 

7. All computation 

centered at 10S-10S 

(2-1) 

A.3 

B.57 

C.75 

A.1 

B.19 

C.25 

A.1 

B.20 

C.25 

A.2 

B.37 

C.50 

A.15 

B.290 

C.375 

A.6 

B.135 

C.175 

A.4 

B.96 

C.125 

A.5 

B.135 

C.175 

A.14 

B.328 

C.425 

A.7 

B.154 

C.200 

A.4 

B.91 

C.125 

A.2 

B.59 

C.72 

8. All computation 

centered at 10M-

10M 

(2-2) 

A.4 

B.77 

C.100 

A.2 

B.38 

C.50 

A.1 

B.19 

C.25 

A.2 

B.38 

C.50 

A.20 

B.420 

C.550 

A.10 

B.210 

C.275 

A.6 

B.135 

C.175 

A.9 

B.213 

C.275 

A.22 

B.478 

C.625 

A.11 

B.229 

C.300 

A.7 

B.155 

C.200 

A.5 

B.115 

C.150 

9. All computation 

centered at 10L-10L 

(2-3) 

A.5 

B.97 

C.125 

A.2 

B.39 

C.50 

A.1 

B.19 

C.25 

A.3 

B.57 

C.75 

A.25 

B.540 

C.700 

A.13 

B.270 

C.350 

A.8 

B.175 

C.225 

A.13 

B.269 

C.350 

A.28 

B.608 

C.800 

A.14 

B.305 

C.400 

A.9 

B.191 

C.250 

A.5 

B.114 

C.150 

10. All computation 

entered at 10S-10M 

(2-4) 

A.3 

B.68 

C.88 

A.1 

B.29 

C.38 

A.1 

B.20 

C.25 

A.2 

B.38 

C.50 

A.14 

B.356 

C.463 

A.7 

B.175 

C.225 

A.5 

B.115 

C.150 

A.5 

B.174 

C.225 

A.15 

B.405 

C.525 

A.6 

B.193 

C.250 

A.3 

B.125 

C.163 

A.2 

B.88 

C.113 

11. All computation 

entered at 10S-10L 

(2-5) 

A.2 

B.78 

C.100 

A.1 

B.30 

C.38 

A.1 

B.19 

C.25 

A.2 

B.49 

C.63 

A.15 

B.420 

C.538 

A.6 

B.205 

C.263 

A.4 

B.137 

C.175 

A.6 

B.204 

C.263 

A.16 

B.475 

C.613 

A.6 

B.234 

C.300 

A.4 

B.146 

C.188 

A.2 

B.88 

C.114 

12. All computation A.3 A.2 A.1 A.2 A.21 A.10 A.7 A.10 A.24 A.11 A.8 A.4 



  88 

centered at 10M-10L 

(2-6) 

B.87 

C.113 

B.39 

C.50 

B.20 

C.25 

B.49 

C.63 

B.480 

C.625 

B.240 

C.313 

B.155 

C.200 

B.240 

C.313 

B.546 

C.713 

B.269 

C.350 

B.173 

C.225 

B.117 

C.150 

13. Both server types 

(communication, 

computation) at 10S-

10S 

(3-1) 

A.2 

B.178 

C.225 

A.1 

B.79 

C.100 

A.1 

B.60 

C.75 

A.2 

B.88 

C.113 

A.3 

B.179 

C.225 

A.1 

B.79 

C.100 

A.1 

B.59 

C.75 

A.2 

B.88 

C.113 

A.4 

B.336 

C.425 

A.2 

B.158 

C.200 

A.1 

B.98 

C.125 

A.3 

B.99 

C.175 

14. Both server types 

(communication, 

computation) at 

10M-10M 

(3-2) 

A.4 

B.257 

C.325 

A.2 

B.128 

C.163 

A.1 

B.79 

C.100 

A.2 

B.128 

C.163 

A.4 

B.257 

C.325 

A.2 

B.130 

C.163 

A.1 

B.79 

C.100 

A.2 

B.128 

C.163 

A.5 

B.497 

C.625 

A.2 

B.238 

C.300 

A.2 

B.159 

C.200 

A.4 

B.127 

C.275 

15. Both server types 

(communication, 

computation) at 10L-

10L 

(3-3) 

A.4 

B.326 

C.413 

A.2 

B.159 

C.200 

A.1 

B.99 

C.125 

A.2 

B.167 

C.213 

A.5 

B.326 

C.413 

A.2 

B.159 

C.200 

A.1 

B.100 

C.125 

A.3 

B.167 

C.213 

A.6 

B.632 

C.800 

A.4 

B.316 

C.400 

A.2 

B.198 

C.250 

A.5 

B.136 

C.350 

16. Both server types 

(communication, 

computation) at 10S-

10M 

(3-4) 

A.3 

B.186 

C.238 

A.2 

B.90 

C.113 

A.1 

B.59 

C.75 

A.2 

B.88 

C.113 

A.3 

B.248 

C.313 

A.1 

B.120 

C.150 

A.1 

B.80 

C.100 

A.2 

B.128 

C.163 

A.4 

B.417 

C.525 

A.2 

B.199 

C.250 

A.2 

B.129 

C.163 

A.3 

B.128 

C.225 

17. Both server types 

(communication, 

computation) at 10S-

10L 

(3-5) 

A.4 

B.196 

C.250 

A.2 

B.89 

C.113 

A.1 

B.60 

C.75 

A.3 

B.97 

C.125 

A.2 

B.308 

C.388 

A.1 

B.150 

C.188 

A.1 

B.99 

C.125 

A.2 

B.158 

C.200 

A.5 

B.486 

C.613 

A.3 

B.239 

C.300 

A.2 

B.149 

C.188 

A.4 

B.126 

C.263 

18. Both server types 

(communication, 

computation) at 

10M-10L 

(3-6) 

A.5 

B.266 

C.338 

A.2 

B.129 

C.163 

A.1 

B.79 

C.100 

A.2 

B.138 

C.157 

A.3 

B.317 

C.400 

A.2 

B.159 

C.200 

A.1 

B.100 

C.125 

A.2 

B.158 

C.200 

A.6 

B.565 

C.713 

A.3 

B.279 

C.350 

A.2 

B.179 

C.225 

A.5 

B.127 

C.300 

19. Both server types 

(communication, 

computation) at 

10M-10S 

(3-7) 

A.2 

B.248 

C.313 

A.1 

B.119 

C.150 

A.1 

B.80 

C.100 

A.2 

B.128 

C.163 

A.3 

B.187 

C.238 

A.2 

B.89 

C.113 

A.1 

B.60 

C.75 

A.2 

B.89 

C.113 

A.4 

B.417 

C.525 

A.2 

B.199 

C.250 

A.1 

B.129 

C.163 

A.3 

B.98 

C.213 

20. Both server types 

(communication, 

computation) at 10L-

10S 

(3-8) 

A.3 

B.308 

C.388 

A.1 

B.149 

C.188 

A.1 

B.99 

C.125 

A.2 

B.158 

C.200 

A.4 

B.196 

C.250 

A.2 

B.90 

C.113 

A.1 

B.59 

C.75 

A.3 

B.97 

C.125 

A.5 

B.486 

C.613 

A.3 

B.239 

C.300 

A.1 

B.149 

C.188 

A.3 

B.106 

C.263 

21. Both server types 

(communication, 

computation) at 10L-

10M 

A.3 

B.317 

C.400 

A.2 

B.159 

C.200 

A.1 

B.100 

C.125 

A.2 

B.158 

C.200 

A.4 

B.266 

C.338 

A.2 

B.129 

C.163 

A.1 

B.79 

C.100 

A.3 

B.137 

C.175 

A.7 

B.565 

C.713 

A.3 

B.278 

C.350 

A.2 

B.178 

C.225 

A.4 

B.137 

C.313 
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2.7. Results and Discussions 

 This section first defines key measures for performance comparison in terms of 

solution optimality between the optimal solutions and the heuristic solutions for various 

problem cases designed in Chapter 2.6. Then, it provides the computation times of 

obtaining the optimal solutions and the heuristic solutions to examine the scalability of 

those methods. 

  Regarding the solution optimality, two measures are introduced: the number of 

dropped service requests and the average ratio of QoS values assigned for all served 

service requests. Equation (8) as shown below is the objective function of the 

optimization problem in Chapter 2.3, which consists of two parts as indicated in 

Equations (9) and (10).  

Minimize ∑ ∑ #∑ $%&��� '$%&�
( #

$%&�
( ∗*����                                 (8) 

If ∑ ����� <  ����
�� , then Equation (8) can be written as Equation (9). 

∑ ∑ Q �
*�

− ∑ $%&���
$%&�

( ∗*�
R���                              (9) 

If ∑ QTUVW ≥  QTUV
XW , then Equation (8) can be written as Equation (10). 

 ∑ ∑ Q∑ $%&���
$%&�

( ∗*�
− �

*�
R��T                (10) 

 As mentioned earlier in Chapter 2.5.3, all experiments in this study consider two 

services providing QoS at least a service request's minimum QoS requirement for all the 

served service requests. Thus, if a service request is served by a server, then ∑ ����� ≥�

 ����
� . If a service request is not served by any server, then ∑ ����� = 0� . Note that this 
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study considers one QoS variable (ps =1) for each service type, Equations (9) and (10) 

can be transformed as shown below in Equations (11) and (12). 

 If client k’s service request is not served by any server (i.e. ∑ ����� = 0 � and 

∑ ����� <  ����
�� ), then Equation (9) becomes Equation (11) indicating the total number 

of dropped service requests as the first measure. 

∑ 1�   for dropped service requests k                       (11)  

 If client k’s service request is served by a server (i.e. ∑ QTUVW ≥  QTUV
XW ), then 

Equation (10) becomes Equation (12). 

 ∑ Q∑ $%:��
$%:( − 1R�                           (12) 

From Equation (12), the second key measure of Service AVerage ratio (SAV ratio) 

is drawn for the comparison in solution optimality as shown below in Equation (13).  

∑ Q∑ $%:��
$%:( R� ∑ kZ                               (13) 

Equation (12) considers ratio of the difference between the provided QoS and the 

required QoS to the required QoS, and then each ratio is summed over all served service 

requests. Equation (13), as the second measure of performance comparison, considers the 

average ratio of the provided QoS to the required QoS for all served service requests.  

 To analyze performance of the resource allocation heuristics in solution 

optimality, two key measures are introduced: the number of dropped service requests in 

Equation (11) and the SAV ratio in Equation (13). In addition, the percentage of having 

the same service decisions as in the optimal solutions and the percentage of having 

different service decisions from the optimal solutions are provided for the comparison in 

solution optimality. To analyze scalability of the resource allocation heuristics, the 
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computation times of obtaining the optimal solutions and the heuristic solutions are 

compared in Chapter 2.7.2.  

 2.7.1 Solution optimality. Table 26 shows the comparisons between the optimal 

solutions and the heuristic solutions from the experiments of Step 1, Step 3, Step 4 and 

Step 5 by using the first set of probability parameters indicated in Table 14.   
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Table 26  

Comparisons between the Optimal Solutions and the Heuristic Solutions with Parameter 

Set 1 

Experiment  Case 
Same  

Decision 

Different 

Decision 

Difference in Dropped 

Requests, (heuristic 

solution - optimal 

solution) in number (%) 

SAV ratio  

Step 1  

A 
44.44%  

(112/252) 

55.56% 

(140/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.04 

1.02 ~ 1.08 

0.02 

Optimal 

Solutions 
Same above 

B 
58.33%  

(147/252) 

41.67%  

(105/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.04 

1.02 ~ 1.08 

0.02 

Optimal 

Solutions 
Same above 

C 
52.78%  

(133/252) 

47.22%  

(119/252) 

Avg. 

Range 

St.dev 

2.25 (4.39%) 

0.00 ~25.58 

4.61 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.04 

1.02 ~ 1.08 

0.02 

Optimal 

Solutions 
Same above 

Step 3  

A 
37.70% 

(95/252) 

62.30% 

(157/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.20 

1.03 ~ 1.63 

0.14 

Optimal 

Solutions 
Same above 

B 
53.57% 

(135/252) 

46.43% 

(117/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.21 

1.05 ~ 1.51 

0.13 

Optimal 

Solutions 
Same above 

C 
61.90% 

(156/252) 

38.10% 

(96/252) 

Avg. 

Range 

St.dev 

0.62 (1.45%) 

-0.92 ~10.87 

1.62 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.19 

1.04 ~ 1.49 

0.12 

Optimal 

Solutions 

Avg. 

Range 

St.dev 

1.17 

1.03 ~ 1.45 

0.11 
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Step 4 

A 
43.25% 

(109/252) 

56.75% 

(143/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.03 ~ 1.32 

0.06 

Optimal 

Solutions 
Same above 

B 
17.06% 

(43/252) 

82.94% 

(209/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.05 ~ 1.24 

0.05 

Optimal 

Solutions 
Same above 

C 
57.94% 

(146/252) 

42.06% 

(106/252) 

Avg. 

Range 

St.dev 

5.19 (2.82%) 

0.00 ~79.92 

12.71 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.04 ~ 1.24 

0.05 

Optimal 

Solutions 

Avg. 

Range 

St.dev 

1.10 

1.04 ~ 1.22 

0.05 

Step 5 

A 
38.89% 

(98/252) 

61.11% 

(154/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.02 ~ 1.32 

0.06 

Optimal 

Solutions 
Same above 

B 
20.24% 

(51/252) 

79.76% 

(201/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.05 ~ 1.23 

0.05 

Optimal 

Solutions 
Same above 

C 
58.33% 

(147/252) 

41.67% 

(105/252) 

Avg. 

Range 

St.dev 

9.62 (2.69%) 

0.00 ~168.85 

24.74 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.10 

1.05 ~ 1.23 

0. 05 

Optimal 

Solutions 

Avg. 

Range 

St.dev 

1.09 

1.04 ~ 1.20 

0.04 

   



  94 

 As shown in Table 26, the heuristic solutions using the first set of probability 

parameters are compared with the optimal solutions in the following four aspects: 1) the 

percentage of the same service decisions as the optimal solutions, 2) the percentage of 

different service decisions from the optimal solutions, 3) the difference in dropped 

service requests of the heuristic solutions compared with the optimal solutions and 4) the 

SAV ratio of the heuristic solutions and the optimal solutions.  

 For Case A in Step 1 experiment, about 44.44% of 252 problem cases show that 

the heuristic solutions have same service decisions as the optimal solutions, while about 

55.56% of the problem cases show different service decisions from the optimal solutions. 

The heuristic solutions do not drop any service request as same as the optimal solutions 

due to a sufficient resource capacity at a server to satisfy all service requests of all clients 

in Case A. Moreover, the heuristic solutions serve all service requests of all clients with 

the same QoS values as the optimal solutions and thus have the same SAV ratio of 1.04 in 

average of all problem cases with the range of 1.02 to 1.08 and the standard deviation of 

0.02. Here, the SAV ratio is an average ratio value of the provided QoS to the required 

QoS for all served service requests as indicated in Equation (13). If a service request 

selects to be served, then a server provides at least its QoS requirement, and as a result, 

the SAV ratio is at least 1 for any served service request. The SAV ratio of 1.04 in average 

means that, for all the served service requests, the provided QoS in average is 1.04 times 

to the QoS requirement. 

 For Case B in Step 1 experiment, about 58.33% of 252 problem cases show that 

the heuristic solutions have same service decisions as the optimal solutions, while about 

41.67% of the problem cases show different service decisions from the optimal solutions. 
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The heuristic solutions do not drop any service request as same as the optimal solutions 

due to a sufficient resource capacity over all servers to satisfy all service requests of all 

clients in Case B. Moreover, the heuristic solutions serve all service requests of all clients 

with the same QoS values as the optimal solutions and thus have the same SAV ratio of 

1.04 in average of all problem cases with the range of 1.02 to 1.08 and the standard 

deviation of 0.02, which implies that the provided QoS in average is 1.04 times to the 

QoS requirement for all served service requests.  

 For Case C Step 1 experiment, about 52.78% of 252 problem cases show that the 

heuristic solutions have same service decisions as the optimal solutions, while about 

47.22% of the problem cases show different service decisions from the optimal solutions. 

Since neither each server nor all server together have a sufficient resource capacity to 

satisfy all service requests of all clients in Case C, both of the optimal solutions and the 

heuristic solutions have some service requests to be dropped. However, the heuristic 

solutions drop about two more service requests in average (i.e. it takes about 4.39% of all 

service requests) than the optimal solutions, and the difference range is 0.00 to 25.58 with 

the standard deviation of 4.61. The heuristic solutions have the same SAV ratio of 1.04 in 

average with the range of 1.02 to 1.08 and the standard deviation of 0.02 as the optimal 

solutions. It implies that the heuristic solutions serve three less service requests than the 

optimal solutions in average but provide the same QoS values as the optimal solutions for 

all the served service requests with the QoS provision of 1.04 times to the QoS 

requirement. 

 Table 15 from Chapter 2.5.1 shows service decisions of which service requests to 

be dropped in the optimal solutions for two problem cases in Case C. In one problem case 
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with server configuration 16 and seven clients, two service requests of the 

communication intensive service (client k = 6 and 7) are dropped. All the seven clients' 

service requests have one service type with one QoS level, and thus it implies that 

random service requests are dropped when overall resource capacity is not sufficient to 

serve all service requests of all clients.  

 In another problem case with server configuration 13 and sixteen clients as shown 

in Table 15, two service requests of the communication intensive service with the QoS 

level of H (client k = 3 and 16) and one service request of the computation intensive 

service with the QoS level of M (client k = 8) are dropped for Case C. The two dropped 

service requests of the communication intensive service (client k = 3 and 16) have the 

QoS level of H, which requires the largest resource consumption among the nine service 

requests of the communication intensive service. The resource requirement can be 

calculated by resource and QoS impact models in Table 6, and due to its linear 

relationship between service parameters and resource consumption, service requests with 

higher QoS levels need higher service parameters to meet their QoS requirements and 

thus larger resource consumption than the service requests with lower QoS levels. The 

other dropped service request of the computation intensive service (client k = 8) with the 

QoS level of M has the highest estimated objective value of 0.07 among all the sixteen 

service requests. With the objective function in Equation (1), the optimization problem in 

Chapter 2.3 tries to minimize the overall objective value, and as a result, the service 

request with the highest estimated objective value is dropped. It implies that a service 

request requiring the largest resource consumption and/or resulting in the worst estimated 
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objective value is dropped when overall resource capacity is not sufficient to serve all 

service requests of all clients.  

 Figure 4 shows the observation of dropping service requests for Case C, where 

overall resource is not sufficient to serve all service requests of all clients. If all service 

requests are either communication intensive services or computation intensive services 

with one QoS level of L, M or H, then a random service request is dropped. For the other 

cases, a service request requiring the largest resource consumption and/or resulting in the 

worst estimated objective value is dropped.  

 

Figure 4. Observation of Dropping Service Requests for Case C. 
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 For Case A and Case B in Step 3 experiment, about 37.70% and 53.57% of 252 

problem cases show that the heuristic solutions have same service decisions as the 

optimal solutions, while about 62.30% and 46.43% of the problem cases show different 

service decisions from the optimal solutions respectively. The heuristic solutions do not 

drop any service request as same as the optimal solutions due to a sufficient resource 

capacity at a server (in Case A) or over all servers (in Case B) to satisfy all service 

requests of all clients. Moreover, the heuristic solutions serve all service requests of all 

clients with the same QoS values as the optimal solutions and thus have the same SAV 

ratio of 1.20 in average with the range of 1.03 to 1.63 and the standard deviation of 0.14 

in Case A and the same SAV ratio of 1.21 in average with the range of 1.05 to 1.51 and 

the standard deviation of 0.13 in Case B. It implies that the provided QoS in average is 

1.20 times and 1.21 times to the QoS requirement for all served service requests in both 

optimal and heuristic solutions for Case A and Case B, respectively. 

 For Case C in Step 3 experiment, about 61.90% of 252 problem cases show that 

the heuristic solutions have same service decisions as the optimal solutions, while about 

38.10% of the problem cases show different service decisions from the optimal solutions. 

Since neither each server nor all server together have a sufficient resource capacity to 

satisfy all service requests of all clients in Case C, both of the optimal solutions and the 

heuristic solutions have some service requests to be dropped. However, the heuristic 

solutions drop about one more service request in average (i.e. it takes about 1.45% of all 

service requests) than the optimal solutions, and the difference range is -0.92 to 10.87 

with the standard deviation of 1.62. Moreover, the heuristic solutions have the SAV ratio 

of 1.19 in average with the range of 1.04 to 1.49 and the standard deviation of 0.12, while 
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the optimal solutions have the SAV ratio of 1.17 in average with the range of 1.03 to 1.45 

and the standard deviation of 0.11. It implies that the heuristic solutions serve one less 

service request than the optimal solutions in average but provide higher QoS values with 

the QoS provision of 1.19 times to the QoS requirement for all served service requests 

than the QoS provision of 1.17 times to the QoS requirement for all served service 

requests in the optimal solutions. 

 One unusual problem case shows a negative value of -0.92 in the difference of the 

dropped service requests, implying that the heuristic solution serves about one more 

service request than the optimal solution. Table 27 shows and examines service decisions 

made in the optimal solution and the heuristic solution at iteration 100 for the problem 

case. Different decisions made in the heuristic solution from the optimal solution are 

marked by "*" in Table 27.  



  100 

Table 27  

Service Decisions made in the Optimal Solution and the Heuristic Solution at Iteration 

100 

Client Service 

QoS  

Requirement 

(����
� ) 

Estimated 

Objective 

Value 

Optimal Solution Heuristic Solution 

Server 

Service  

parameter (�����) 
and  

QoS level(�����) 
Server 

Service  

parameter (�����) 
and  

QoS level(�����) 
k = 1 comp. 

intensive  

service 

L (4) 0.23 comm. 

centered 

server 

��,�,�: 1 

��,�,�: 4.90 

comm. 

centered 

server 

��,�,E: 1 

��,�,E: 4.90 

k = 2 comp. 

intensive  

service 

L (4) 0.23 comm. 

centered 

server 

��,�,�: 1 

��,�,�: 4.90 

comm. 

centered 

server 

��,�,�: 1 

��,�,�: 4.90 

k = 3 comp. 

intensive  

service 

L (3) 0.63 none none comm. 

centered 

server* 

�E,�,�: 1* 

�E,�,�: 4.90* 

k = 4 comp. 

intensive  

service 

H (18) 0.09 none none comm. 

centered 

server* 

�I,�,E: 4* 

�I,�,E: 19.60* 

k = 5 comp. 

intensive  

service 

L (3) 0.63 none none comm. 

centered 

server* 

�J,�,E: 1* 

�J,�,E: 4.90* 

k = 6 comp. 

intensive  

service 

M (14) 0.05 comm. 

centered 

server 

�K,�,E: 3 

�K,�,E: 14.70 

none* none* 

k = 7 comp. 

intensive  

service 

H (19) 0.03 comm. 

centered 

server 

�L,�,�: 4 

�L,�,�: 19.60 

none* none* 

k = 8 comp. 

intensive  

service 

H (19) 0.03 comm. 

centered 

server 

�M,�,�: 4 

�M,�,�: 19.60 

comm. 

centered 

server 

�M,�,�: 4 

�M,�,�: 19.60 

k = 9 comp. 

intensive  

service 

H (19) 0.03 comm. 

centered 

server 

�N,�,E: 4 

�N,�,E: 19.60 

comm. 

centered 

server 

�N,�,�: 4 

�N,�,�: 19.60 

k = 10 comp. 

intensive  

service 

H (18) 0.09 none none none none 

k = 11 comp. 

intensive  

service 

L (4) 0.23 comm. 

centered 

server 

���,�,�: 1 

���,�,�: 4.90 

comm. 

centered 

server 

���,�,�: 1 

���,�,�: 4.90 

k = 12 comp. 

intensive  

service 

L (3) 0.63 comm. 

centered 

server 

���,�,�: 1 

���,�,�: 4.90 

comm. 

centered 

server 

���,�,�: 1 

���,�,�: 4.90 
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 The problem case in Table 27 has that all servers are the communication-centered 

servers with the resource level of S (i.e. server configuration 2) and all service requests 

are computation intensive services with mixed QoS levels of L, M and H. The optimal 

solution drops a total of four service requests: two computation intensive service with the 

QoS level of H (client k = 4 and 10) and two computation intensive services with the QoS 

level of L (client k = 3 and 5) due to insufficient resource capacity to satisfy all service 

requests of all clients. The two dropped computation intensive service (client k = 4 and 10) 

has the QoS level of H, which requires the largest resource consumption, and the other 

two dropped computation intensive services (client k = 3 and 5) with the QoS level of L 

have the highest estimated objective value of 0.63 among twelve service requests of the 

computation intensive service. In general, the optimal solution selects to serve service 

requests of smaller resource requirement and, instead, drop service requests of larger 

resource requirement in order to serve as many clients' service requests as it can. 

However, in a few cases, the optimal solution selects to serve service requests of larger 

resource requirement but with lower objective value and, instead, drop service requests of 

smaller resource requirement but with higher objective value in order to minimize the 

overall objective value for all service requests of all clients as shown in Equation (1). On 

the other hand, the heuristic solution drops two service requests of the computation 

intensive service with the QoS level of H (client k = 7 and 10) requiring the largest 

resource consumption and one service request of the computation intensive service with 

the QoS level of M (client k = 6) requiring the second largest resource consumption 

among twelve service requests of the computation intensive service. Instead, the heuristic 
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solution selects to serve two more service requests of the computation intensive service 

(client k = 3 and 5) with the QoS level of L, which require smaller resource consumption. 

Using the heuristics do not consider an impact of serving a service request on the overall 

objective value for all service requests of all clients, and thus the heuristic solution selects 

to serve more number of service requests than the optimal solution but results in the 

worse objective value for a few cases.  

 For Case A and Case B in Step 4 experiment, about 43.25% and 17.06% of 252 

problem cases show that the heuristic solutions have same service decisions as the 

optimal solutions, while about 56.75% and 82.94% of the problem cases show different 

service decisions from the optimal solutions respectively. The heuristic solutions do not 

drop any service request as same as the optimal solutions due to a sufficient resource 

capacity at a server (in Case A) or over all servers (in Case B) to satisfy all service 

requests of all clients. Moreover, the heuristic solutions serve all service requests of all 

clients with the same QoS values as the optimal solutions and thus have the same SAV 

ratio of 1.11 in average with the range of 1.03 to 1.32 and the standard deviation of 0.06 

in Case A and with the range of 1.05 to 1.24 and the standard deviation of 0.05 in Case B. 

It implies that the provided QoS in average is 1.11 times to the QoS requirement for all 

served service requests in both optimal and heuristic solutions for Case A and Case B. 

  For Case C in Step 4 experiment, about 57.94% of 252 problem cases show that 

the heuristic solutions have same service decisions as the optimal solutions, while about 

42.06% of the problem cases show different service decisions from the optimal solutions. 

Since neither each server nor all server together have a sufficient resource capacity to 

satisfy all service requests of all clients in Case C, both of the optimal solutions and the 
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heuristic solutions have some service requests to be dropped. However, the heuristic 

solutions drop about five more service requests in average (i.e. it takes about 2.82% of all 

service requests) than the optimal solutions, and the difference range is 0.00 to 79.92 with 

the standard deviation of 12.71. Moreover, the heuristic solutions have the SAV ratio of 

1.11 in average with the range of 1.04 to 1.24 and the standard deviation of 0.05, while 

the optimal solutions have the SAV ratio of 1.10 in average with the range of 1.04 to 1.22 

and the standard deviation of 0.05. It implies that the heuristic solutions serve five less 

service requests than the optimal solutions in average but provide higher QoS values with 

the QoS provision of 1.11 times to the QoS requirement for all served service requests 

than the QoS provision of 1.10 times to the QoS requirement for all served service 

requests in the optimal solutions. 

 For Case A and Case B in Step 5 experiment, about 38.89% and 20.24% of 252 

problem cases show that the heuristic solutions have same service decisions as the 

optimal solutions, while about 61.11% and 79.76% of the problem cases show different 

service decisions from the optimal solutions respectively. The heuristic solutions do not 

drop any service request as same as the optimal solutions due to a sufficient resource 

capacity at a server (in Case A) or over all servers (in Case B) to satisfy all service 

requests of all clients. Moreover, the heuristic solutions serve all service requests of all 

clients with the same QoS values as the optimal solutions and thus have the same SAV 

ratio of 1.11 in average with the range of 1.02 to 1.32 and the standard deviation of 0.06 

in Case A and with the range of 1.05 to 1.23 and the standard deviation of 0.05 in Case B. 

It implies that the provided QoS in average is 1.11 times to the QoS requirement for all 

served service requests in both optimal and heuristic solutions for Case A and Case B. 
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 For Case C in Step 5 experiment, about 58.33% of 252 problem cases show that 

the heuristic solutions have same service decisions as the optimal solutions, while about 

41.67% of the problem cases show different service decisions from the optimal solutions. 

Since neither each server nor all server together have a sufficient resource capacity to 

satisfy all service requests of all clients in Case C, both of the optimal solutions and the 

heuristic solutions have some service requests to be dropped. However, the heuristic 

solutions drop about ten more service requests in average (i.e. it takes about 2.69% of all 

service requests) than the optimal solutions, and the difference range is 0.00 to 168.85 

with the standard deviation of 24.74. Moreover, the heuristic solutions have the SAV ratio 

of 1.10 in average with the range of 1.05 to 1.23 and the standard deviation of 0.05, while 

the optimal solutions have the SAV ratio of 1.09 in average with the range of 1.04 to 1.20 

and the standard deviation of 0.04. It implies that the heuristic solutions serve ten less 

service requests than the optimal solutions in average but provide higher QoS values with 

the QoS provision of 1.10 times to the QoS requirement for all served service requests 

than the QoS provision of 1.09 times to the QoS requirement for all served service 

requests in the optimal solutions. 

  Table 28 shows the comparisons between the optimal solutions and the heuristic 

solutions in the experiments of Step 1, Step 3, Step 4 and Step 5 by using the second set 

of probability parameters for obtaining the heuristic solutions.  
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Table 28  

Comparisons between the Optimal Solutions and the Heuristic Solutions with Parameter 

Set 2 

Experiment  Case 
Same  

Decision 

Different 

Decision 

Difference in Dropped 

Requests, (heuristic 

solution - optimal 

solution) in number (%) 

SAV ratio  

Step 1  

A 
50.00%  

(126/252) 

50.00% 

(126/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.04 

1.02 ~ 1.08 

0.02 

Optimal 

Solutions 
Same above 

B 
63.10%  

(159/252) 

36.90%  

(93/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.04 

1.02 ~ 1.08 

0.02 

Optimal 

Solutions 
Same above 

C 
55.16%  

(139/252) 

44.84%  

(113/252) 

Avg. 

Range 

St.dev 

2.23 (4.35%) 

0.00 ~26.46 

4.62 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.04 

1.02 ~ 1.08 

0.02 

Optimal 

Solutions 
Same above 

Step 3  

A 
42.46% 

(107/252) 

57.54% 

(145/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.20 

1.03 ~ 1.59 

0.14 

Optimal 

Solutions 
Same above 

B 
51.98% 

(131/252) 

48.02% 

(121/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.20 

1.03 ~ 1.47 

0.13 

Optimal 

Solutions 
Same above 

C 
61.51% 

(155/252) 

38.49% 

(97/252) 

Avg. 

Range 

St.dev 

0.77 (1.73%) 

-0.84 ~14.19 

2.04 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.20 

1.04 ~ 1.51 

0.12 

Optimal 

Solutions 

Avg. 

Range 

St.dev 

1.18 

1.03 ~ 1.47 

0.11 



  106 

Step 4 

A 
57.54% 

(145/252) 

42.46% 

(107/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.03 ~ 1.32 

0.06 

Optimal 

Solutions 
Same above 

B 
19.84% 

(50/252) 

80.16% 

(202/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.04 ~ 1.24 

0.05 

Optimal 

Solutions 
Same above 

C 
57.94% 

(146/252) 

42.06% 

(106/252) 

Avg. 

Range 

St.dev 

6.02 (3.09%) 

0.00 ~116.38 

15.66 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.04 ~ 1.24 

0.05 

Optimal 

Solutions 

Avg. 

Range 

St.dev 

1.10 

1.04 ~ 1.22 

0.04 

Step 5 

A 
37.70% 

(95/252) 

62.30% 

(157/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.10 

1.02 ~ 1.32 

0.06 

Optimal 

Solutions 
Same above 

B 
22.22% 

(56/252) 

77.78% 

(196/252) 
0 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.11 

1.05 ~ 1.23 

0.05 

Optimal 

Solutions 
Same above 

C 
58.33% 

(147/252) 

41.67% 

(105/252) 

Avg. 

Range 

St.dev 

10.46 (2.82%) 

0.00 ~183.52 

27.70 

Heuristic 

Solutions 

Avg. 

Range 

St.dev 

1.10 

1.05 ~ 1.22 

0. 05 

Optimal 

Solutions 

Avg. 

Range 

St.dev 

1.09 

1.04 ~ 1.20 

0.04 
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 The experimental results with the second set of parameters are similar to the ones 

with the first set of parameters in terms of solution optimality. Hence, it concludes that 

the heuristic solutions are as good as or close to the optimal solutions. In Case A, where 

each server has a sufficient resource capacity and in Case B, where all the servers 

together have a sufficient resource capacity for all service requests of all clients, the 

heuristic solutions do not drop any service request as same as the optimal solutions. For 

Case A and Case B, the heuristic solutions have as same SAV ratios as the optimal 

solutions, implying that using the heuristics serves all the service requests with the same 

QoS values as in the optimal solutions. For Case C, where all the servers together do not 

have sufficient resource capacity for all service requests of all clients, the heuristic 

solutions drop more service requests of about 1% ~ 4% of all service requests than the 

optimal solutions. However, the heuristic solutions provide at least the same level of QoS 

to all served service requests as the optimal solutions with the same or higher SAV ratios.   

 2.7.2 Scalability. Table 29 and Figure 5 show computation times (in seconds) of 

obtaining the optimal and heuristic solutions in the four experiments using the first set of 

probability parameters. As Figure 5 illustrates, the average computation times of 

obtaining both the optimal and the heuristic solutions are increased as a problem case 

becomes more complicated with increasing numbers of service requests and limited 

resource capacity from Case A, Case B to Case C. The ranges of the computation times 

for obtaining the optimal and the heuristic solutions also become larger with higher 

values of the standard deviation from Case A, Case B to Case C. However, the rate of 

increase in the average computation times with the increasing problem complexity is 

much larger for the optimal solutions than the heuristic solutions. 
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 Similarly, the average computation times of obtaining the optimal solutions and 

the heuristic solutions are increased with increasing numbers of servers (from two servers 

in Step 1 experiment to twenty servers in Step 5 experiment). The ranges of the 

computation times for obtaining both the optimal and the heuristic solutions also become 

larger with higher values of the standard deviation from Step 1 experiment to Step 5 

experiment. However, the rate of increase in the average computation times with 

increasing numbers of servers is much larger for the optimal solutions than the heuristic 

solutions. Hence, using the heuristics demonstrate better computational efficiency and 

thus scalability than solving the optimization problem. 

 Note that, as shown in Table 29, the heuristic solutions for Case B have larger 

ranges of the computation times with higher values of the standard deviation than the 

ones for Case C in all experiments. The heuristic algorithm for Case B counts all 

computation times consumed until it generates the final heuristic solution for satisfying 

all service requests of all clients. On the other hand, for Case C the heuristic algorithm 

averages the computation times consumed to obtain the heuristic solution for each 

iteration.  
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Table 29  

Computation Times (in seconds) of Obtaining the Optimal Solutions and the Heuristic 

Solutions with Parameter Set 1 

  
Step 1 Step 3 Step 4 Step 5 

Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev 

Optimal 

Solutions 

 

Case A 0.12 
0.02 - 

0.60 
0.11 0.06 

0.02 - 

0.30 
0.05 0.07 

0.03 - 

0.39 
0.05 0.10 

0.03 - 

0.48 
0.08 

Case B 0.20 
0.03 - 

0.82 
0.13 0.09 

0.03 - 

0.37 
0.06 0.87 

0.05 - 

4.19 
0.85 3.43 

0.00 - 

17.68 
3.37 

Case C 0.41 
0.03 - 

3.31 
0.45 1.50 

0.00 - 

64.88 
6.14 32.83 

0.07 - 

138.54 
50.33 59.20 

0.23 - 

170.60 
65.05 

Heuristic 

Solutions 

Case A 0.00 
0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.00 
0.00 

Case B 0.00 
0.00 - 

0.08 
0.01 0.00 

0.00 - 

0.11 
0.01 0.01 

0.00 - 

0.56 
0.05 0.03 

0.00 - 

1.77 
0.16 

Case C 0.00 
0.00 - 

0.01 
0.00 0.00 

0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.02 
0.00 0.01 

0.00 - 

0.07 
0.01 

 

 

Figure 5. Computation Times (in seconds) of Obtaining the Optimal and Heuristic 

Solutions. 
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 Table 30 shows computation times (in seconds) of obtaining the optimal and 

heuristic solutions in the four experiments using the second set of probability parameters. 

The experimental results using the second set of parameters are similar to the ones with 

the first set of parameters. Thus it has the same conclusion such that using the heuristics 

is much more scalable than running the optimization problem. 

Table 30  

Computation Times (in seconds) of Obtaining the Optimal and Heuristic Solutions with 

Parameter Set 2 

  
Step 1 Step 3 Step 4 Step 5 

Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev 

Optimal 

Solutions 

 

Case A 0.09 
0.02 - 

0.42 
0.08 0.04 

0.02 - 

0.20 
0.03 0.06 

0.02 - 

0.48 
0.04 0.09 

0.03 - 

1.41 
0.12 

Case B 0.16 
0.03 - 

0.69 
0.12 0.08 

0.02 - 

0.36 
0.05 0.74 

0.05 - 

4.56 
0.76 3.10 

0.01 - 

16.73 
3.27 

Case C 0.85 
0.03 - 

85.33 
6.49 2.58 

0.03 - 

118.72 
13.05 27.23 

0.06 - 

127.22 
42.86 56.41 

0.19 - 

161.76 
61.56 

Heuristic 

Solutions 

Case A 0.00 
0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.00 
0.00 

Case B 0.00 
0.00 - 

0.17 
0.01 0.00 

0.00 - 

0.14 
0.01 0.00 

0.00 - 

0.22 
0.02 0.04 

0.01 - 

2.82 
0.24 

Case C 0.00 
0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.00 
0.00 0.00 

0.00 - 

0.02 
0.00 0.01 

0.00 - 

0.06 
0.01 

 

2.8 Conclusions 

 Many heuristics are introduced for efficient resource allocation in cloud 

computing from the existing work, but more extensive research is required to develop 

effective heuristics that can achieve optimal or near-optimal solutions with great 

computational efficiency. This study in Chapter 2 starts with the analysis of the optimal 

solutions in resource allocation for a set of problem cases and thus proposes heuristics, 
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which can capture the decision making process from the optimal solutions for the various 

problem cases. Then the proposed heuristics are further tested for the extended problem 

cases with larger numbers of user requests and service providers for performance 

evaluation of the resource allocation heuristics. The heuristic solutions are compared with 

the optimal solutions in terms of solution optimality and scalability. Here, two key 

measures of the total number of dropped service requests and the SAV ratio for all served 

service requests are introduced in evaluating the solution optimality.  

 Experimental results show that the resource allocation decisions from the heuristic 

solutions are similar to the ones from the optimal solutions. In Case A, where each server 

has a sufficient resource capacity and in Case B, where all the servers together have a 

sufficient resource capacity for all service requests of all clients, the heuristic solutions do 

not drop any service request as same as the optimal solutions. For Case A and Case B, the 

heuristic solutions have as same SAV ratios as the optimal solutions, implying that the 

heuristic solutions select to serve all the service requests with the same QoS values as in 

the optimal solutions. For Case C, where all the servers together do not have a sufficient 

resource capacity for all service requests of all clients, the heuristic solutions drop more 

service requests of about 1% ~ 4% of all service requests than the optimal solutions. 

However, the heuristic solutions provide at least the same level of QoS to all served 

service requests as the optimal solutions with the same or higher SAV ratios.  

 The average computation times of obtaining the optimal solutions and the 

heuristic solutions are increased as a problem case becomes more complicated by larger 

numbers of service requests and service providers and having limited resource capacity to 

serve all service requests of all clients. The ranges of the computation times for obtaining 
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both the optimal and the heuristic solutions also become larger with higher values of the 

standard deviation. However, the rate of increase in the computation times with 

increasing problem complexity is much larger for solving the optimization problem than 

using the heuristics, especially for Case B and Case C with insufficient resource capacity 

on each server or all servers together to serve all service requests of all clients and for the 

problem cases with ten and twenty servers resulting in a larger solution space than the 

other problem cases. Hence, using the heuristics is much more scalable than solving the 

resource allocation optimization problem. 
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CHAPTER 3 

THE ANALYSIS OF SERVICE PROVIDER-USER COORDINATION FROM 

CENTRALIZED ALGORITHM TO DEVELOP A DECENTRALIZED METHOD 

 A distributed cloud computing environment for IT services requires resource 

allocation in a decentralized manner through the coordination of service providers and 

service users. Achieving the optimal solution of resource allocation through the 

decentralized service provider-user coordination remains as a challenge. This study in 

Chapter 3 looks into elements of service provider-user coordination first in the 

formulation of the resource allocation problem in a centralized manner and then in the 

formulation of the problem in a decentralized manner for various problem cases. By 

examining differences between the centralized, optimal solutions and the decentralized 

solutions for those problem cases, the analysis of how the decentralized service provider-

user coordination breaks down the optimal solutions is performed. Based on the analysis, 

strategies of decentralized service provider-user coordination are developed. 

3.1 Literature Review 

 A lot of research work addressing the resource allocation problems in cloud 

computing generally fall into two types. The first type includes centralized algorithms, 

which assume to know important information such as requirements of all service requests 

of all clients and resource status of all service providers (e.g. resource availability, a 

current workload, etc.). With these information, centralized algorithms solve the 

optimization problem directly or reach to an optimal solution by coordinating the 

solutions of the problems. The second type includes decentralized algorithms, which try 
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to obtain near-optimal solutions by sharing information among service providers or 

between service providers and users without any global governance.  

 Many algorithms from linear programming to more complex ones such as 

Lyapunov optimization are centralized algorithms (Aoun, Doumith, & Gagnaire, 2010; 

Casati & Shan, 2001; Wang et al., 2006; Zeng et al., 2004). Some studies allow the 

centralized algorithms to have some levels of relaxations in the optimization problems so 

that using the algorithms enables to generate solutions in polynomial time. One study 

proposed to use utility-based service scheduling algorithms (Liu, Quan, & Ren, 2010). 

However, it resulted in violations of service users' requirements, imposing a penalty 

value. Ardagna and Pernici (2005, 2007) proposed to formulate the optimization problem 

in mixed integer linear programming with global constraints, which are obtained by 

running the local optimization first.  

 Other studies use the centralized algorithms, which have a central entity to collect 

all information about requirements of all service requests and resource status of all 

service providers. With the updated information, an optimal solution is achieved through 

communication or coordination among different agents. In (Haresh, Kalady, & Govindan, 

2011), an agent based resource allocation method was proposed with involvement of 

three types of agents: Consumer Agent, Resource Brokering Agent and Resource 

Provider Agent. After obtaining a service request by the Consumer Agent, the Broker 

Agent assigned a grade to service providers based on the feedback from the consumers. 

Resource allocation decisions were made by the negotiation between the Broker Agent 

and the Resource Provider Agent. Similarly, the adaptive resource allocation model with 

different agents proposed in (Jung & Sim, 2011) discovered a proper data center based on 
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two evaluations: the geographical distance between a consumer and data centers and the 

workload of each data center. 

 Different types of modeling are proposed in many studies for resource allocation 

problems. An efficient bidding algorithm in combinatorial auction mechanisms used a 

service user’s valuation function for VM instances within the user’s budgets (Zaman & 

Grosu, 2011). Resource scheduling based on Pareto optimality theory was proposed to 

achieve equilibrium between maximizing service providers' profits and minimizing 

service users' payments (Li & Li, 2011). Yet, the performance of this algorithm was only 

proved mathematically. The cooperative resource allocation game in (Hassan, Song, & 

Huh, 2011) was based on game theory to determine the contribution of service providers 

to VM resources and used global objective functions to maximize social welfare or total 

utility of all service providers. Although the centralized algorithms enable to produce 

optimal solutions in resource allocation, it is difficult to handle real-time service requests 

due to much larger problem sizes. Moreover, it is not desirable to have a central authority 

to collect all the information in cloud computing environments where resources are 

physically distributed. 

 Hence, numerous studies have proposed to use decentralized algorithms for 

resource allocation problems. Various decentralized algorithms in several studies include 

integer linear programming modeling (Rezvani et al., 2015), construction of a 

hierarchical well-separated tree for matching critical events to available resources (Gao, 

Guibas, Milosavljevic, & Zhou, 2009), vector packing approaches on heterogeneous 

distributed platforms (Stillwell, Vivien, & Casanova, 2012), market-based approaches by 

setting prices for shared resources with market demand (Ercetin & Tassiulas, 2003; Wang 
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& Li, 2005) and utility-based price proportion methods for profit maximization of every 

cloud users and the cloud provider through competition among the cloud users (Mao, 

Shang, Liu, & Chen, 2013).  

 In some studies using decentralized algorithms, decomposition techniques are 

applied to the optimization problems in order to achieve near-optimal solutions with 

improvements in computation times of obtaining the solutions. For example, two studies 

(Alrifai & Risse, 2009; Alrifai, Skoutas, & Risse, 2010) used a MIP problem to find 

optimal decomposition of global QoS constraints into local constraints for local service 

selections in a distributed algorithm. Similarly, optimization decomposition methods 

were applied to divide global problems into less coupled subproblems (Heo, 

Jayachandran, Shin, Wang, & Abdelzaher, 2009; Smith, Chong, Maciejewski, & Siegel, 

2012; Wendell, Jiang, Rexford, & Freedman, 2009). 

 Many literatures suggest information sharing among different agents for 

decentralized algorithms. Some work had local decisions, local data exchange (to share 

state information) and local interactions between a service entity and its neighbors 

(Manzalini & Moiso, 2011; Wuhib et al., 2010). However, it assumed that the maximum 

distance between two agents for direct communication was small compared with the size 

of the entire system. This assumption was a key factor to guarantee scalability of the 

proposed algorithms. Shiang and van der Schaar (2009) utilized network nodes to 

exchange information and further considered delays and cost of exchanging the network 

information. Other work proposes to use feedbacks from cloud users so as to help 

resource allocation decisions to service requests. Schlegel, Kowalczyk, and Vo (2008) 

selected a provider for job execution using feedbacks of previous job allocations. If the 
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feedback from the previous resource allocation decisions was positive, jobs were 

allocated to resources used before for similar jobs. If not, jobs were allocated to resources 

with the highest margin of free expected capacity over all required resource types. 

Similarly, Varalakshmi et al. (2013) suggested to evaluate trustworthiness when 

scheduling a job by monitoring resource and reputation. The trust computation was based 

on the feedbacks collected from users. Heo, Henriksson, Liu, and Abdelzaher (2007) 

presented a methodology to compose multiple performance management modules in 

order to reduce possible negative interactions and achieve good aggregate behavior. Rao, 

Bu, Xu, and Wang (2011) also proposed to evaluate requests submitted by individual VM 

providers and provide feedbacks. However, the solutions were affected by initial 

performance considerably.   

 From the literature reviews using decentralized algorithms, one common method 

is found for approaching to the efficient resource allocation solutions. Agents from 

different management levels seek for their own profits in generating resource allocation 

solutions, trying to achieve global optimality through communication among the agents. 

The agent-based decentralized algorithm was proposed with coordination among three 

levels of service management, workflow management and cloud management agents 

(Wei & Blake, 2013). A similar work was done in (Wei, Blake, & Saleh, 2013) by 

making resource allocation decisions based on predictive workload with coordination 

among different management agents. In (Wang & Fang, 2014), a distributed task 

scheduling model was constructed based on multi-agent coordination and interaction. The 

fuzzy pattern recognition method in (Wang & Su, 2015) was used to assign tasks to 

different levels according to their resource requirements, and each node determined the 
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corresponding task level according to its idle ability. With an arrival of a new task, only 

the nodes corresponding to the task level joined in the bid, and a successful node for a 

task was selected through the bidding scheme.  

 In a similar manner, the decentralized algorithm in Chapter 3 assumes to have two 

management levels of CCSPs and cloud users. Each service provider makes local 

resource allocation decisions for the given service requests of cloud users, while each 

cloud user ensures if the user's workflow of services is satisfied. The detail of which 

information is shared between service providers and cloud users and the formulation of a 

service provider's local optimization problem are described in Chapter 3.3.2. 

3.2 Research Focus 

 In a distributed cloud environment involving multiple CCSPs, no one is in control 

of all physical resources. Hence, there is not a central authority (e.g., agent or broker) that 

has information of all CCSPs and makes decisions for all of them. Each CCSP may have 

its own objectives concerning its resource utilization, system performance, and user 

service satisfaction. CCSPs do not necessarily want to share information about its own 

objectives along with system resource state (e.g., failure and availability) that changes 

dynamically.  

 Without expecting the coordination among CCSPs and among cloud users, it is 

desirable to develop service provider-user coordination strategies for allocating resources 

of CCSPs to meet service requests of cloud users in a decentralized manner and achieve 

the service performance and satisfaction on the side of cloud users and the resource and 

system performance on the side of CCSPs. The service provider-user coordination does 

not mean the involvement of CCSPs and cloud users in the coordination. The service 
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provider-user coordination can be implemented through cloud service provider-user 

protocols in the cloud computing architecture with software agents for CCSPs and cloud 

users. 

 The decentralized resource allocation algorithms through service provider-user 

coordination have not been well addressed in existing work on cloud computing and 

traditional distributed computing infrastructures. A major challenge is to produce the 

decentralized solution as good as or close to the optimal solution that is obtained by 

solving the centralized problem with all information available and all decisions made in 

one place. Therefore, it is essential to investigate and identify what elements are 

necessary in a scalable, distributed algorithm to produce optimal or near-optimal 

solutions for a set of representative problem cases. This study in Chapter 3 aims at 

identifying elements of service provider-user coordination that can lead a scalable, 

distributed algorithm to the optimal or near-optimal solution.  

 To achieve this research goal, it starts with a simple service provider-user 

coordination protocol in a scalable, distributed algorithm. By examining differences 

between the centralized, optimal solutions and the decentralized solutions for various 

problem cases involving various types of a service provider's configuration and different 

numbers of service requests, this study analyzes how the decentralized service provider-

user coordination breaks down the optimal solutions and, as a result, suggests key 

elements of the decentralized service provider-user coordination strategies. 

3.3 Research Methodology 

 In this section, the modified formulation of the centralized optimization problem 

and a decentralized service provider-user coordination strategy are presented to use for 
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obtaining resource allocation solutions at cloud computing environments. The resource 

allocation problem in this study handles different workflows of services, both functional 

(e.g., service type) and non-functional (e.g., QoS) service requirements, and resource and 

QoS impact models of services. Note that two methods in Chapter 3 consider only one 

service or sequential processing of a service workflow. One example using the sequential 

workflow is an encrypted voice data service. First, a voice communication service is used 

to obtain voice data, and then a data encryption service is used to encrypt the voice data. 

The encrypted voice data service has such workflow constraints that the throughput of 

voice communication should not exceed the limit on the input throughput for data 

encryption.  

 3.3.1 The modified formulation of the centralized resource allocation 

problem. The resource allocation optimization problem expressed as a MIP in Chapter 

2.3 is modified with an introduction of a workflow of services in this study. The 

optimization problem is solved for each epoch of dynamic resource allocation. Note that 

a service provider may have one or more servers and that a service user may generate one 

or more clients. Each client may request one service or a workflow of services. Hence, in 

the following formulation of the centralized resource allocation problem, the terms of 

server and client are used. Table 31 and Table 32 indicate variables and indices, and 

decision variables and given inputs used in the formulation respectively.   
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Table 31  

Variables and Indices used in the Modified Formulation of the Centralized Resource 

Allocation Problem 

� A given client, k = 1,…, K 

 [� jth service of client k, jk = 1,…, Jk 

� A given server, i = 1,…, I 

	� Resource variable w of server i, wi = 1,…, Wi 

s A service type, s = 1,…, S 

�� Service parameter d of service s, ds = 1,…, Ds 

� QoS variable p of service s, ps = 1,…, Ps 

��\%��� The amount of resource variable w of server i taken by client k’s jk
th service 

as a positive real value 

��\%��� The value of QoS variable ps of client k’s jk
th service on server � as a positive 

real value 
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Table 32  

Decision Variables and Given Inputs used in the Modified Formulation of the Centralized 

Resource Allocation Problem 

��\%� Binary decision variables such that 

           ��\%� = 1 if client k’s jk
th service in the workflow is assigned to server i 

           ��\%� = 0 if client k’s jk
th service in the workflow is not assigned to 

server i 

��\%��� Positive integer decision variables,  

Level of service parameter ds for client k’s jk
th service on server i 

��\%� Given inputs from client k, such that ∑ ��\%�] = 1 for a given k and a given jk. 

��\%� = 1 if client k’s jk
th service in the workflow uses service s 

��\%� = 0 if client k’s jk
th service in the workflow does not service s 

��� Given inputs from server i, 

��� = 1 if service s is provided by server i 

��� = 0 if service s is not provided by server i 

��\%����  Given inputs as a positive integer value from client k,  

Limit (i.e. the maximum level) of service parameter ds of client k’s jk
th service 

on server i 

����
�  Given inputs as a positive real value from server i to indicate the resource 

capacity, 

Limit of resource variable w of server i (this limit is set for only some wi’s) 

��\%��
�  Given inputs as a positive real value from client k to specify QoS 

requirements, 

Limit of QoS variable ps of client k’s jk
th service 

 

 The modified formulation of the centralized resource allocation problem is as 

follows.  

Maximize ` ∑ ∑ ∑ a%b%��b%
c%� − ∑ ∑ ∑ #∑ $%b%&��� '$%b%&�

( #
$%b%&�

( ∗*���\%�                     (14) 

subject to 

∑ ��\%� ≤ 1�  ∀ �, [�             (15) 
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0∑ ∑ ��\%� − 1�\% 3 d∑ ��\%�� − ∑ ��\%e �� f = 0  ∀ �,  [� ≠ [�h           (16) 

��\%���\%� ≤ ��� ∀ �, [�, �, .             (17) 

��\%��� ≤ ��\%����  ∀ �, �, [�, ��           (18) 

��\%��� = ��\%�/���0��\%��, … , ��\%2��3 ∀ �, �, [�, 	�        (19) 

��\%��� = ��\%�4���0��\%��, … , ��\%�5�3 ∀ �, �, [�, �        (20) 

∑ ∑ ��\%���\%� ≤ ����
�   ∀ �, 	�                      (21) 

��\%�����\%� ≤ ��\%��
�  or ��\%��� ≥ ��\%���\%��

�  ∀ �, �, [�, �       (22)  

 The first term of the objective function in Equation (14) represents the percentage 

of satisfied services over all clients’ workflows. The second term of the objective 

function is to make the levels of the QoS variables closest to the QoS requirements. In the 

second term, the difference between the actual QoS level (��\%���) and the required QoS 

level (��\%��
� ) for each QoS variable (�) is first normalized by the required QoS level, 

then summed and normalized over the total number of QoS variables, finally summed 

over all services and all clients. The normalization in the second term makes all QoS 

variables to be treated equally. For example, if a motion detection service has two QoS 

variables, both QoS variables in total are treated equally to only one QoS variable of 

another service. Here M is a positive value to give a tradeoff between two objectives 

defined by the first and second terms of the objective function.  

 As server-client coordination constraints, Equation (15) guarantees that client k’s 

jk
th service can be assigned to one server i at most, and Equation (16) ensures if client k 

has more than one service in the workflow, client k’s different services jk, jk’ must be 
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either all served or all not served. As service constraints, Equation (17) requires if client 

k’s jk
th service is assigned to server i, client k’s jk

th service’s service type s must be 

provided by server i (i.e. if ��\%� = 1 and ��\%� = 1, then ��� = 1). Equation (18) 

enforces that the level of service parameter ds of client k’s jk
th service on server i should 

not exceed the limit (i.e. the maximum level). 

 As service-resource-QoS relation constraints, Equation (19) gives relations of 

service parameters with resource usages in function /��� of the assigned level of service 

parameter ds of client k’s jk
th service on the server only if client k’s jk

th service is assigned 

to the server i. Equation (20) gives the relation of resource usages with QoS performance 

in function 4���  of the service’s resource usages on the server only if client k’s jk
th service 

is assigned to the server i. 

 As a resource capacity constraint, Equation (21) enforces that the total resource 

usages on the resource variable w of server i by all clients’ all services should not exceed 

the maximum resource capacity for this resource variable. As a QoS requirement 

constraint, Equation (22) ensures that the QoS level of � for the client k’s jk
th service at 

server i is equal to or less than the maximum QoS requirement or equal to or greater than 

the minimum QoS requirement, only if client k’s jk
th service is assigned to server i. 

 Workflow constraints of applications that describe the dependency among 

services in each application should be satisfied (Berman, 1999; Yau et al., 2009; Ye et al., 

2010). For example, Berman (1999) described program models by a weighted data-flow-

style program graph or by a set of program characteristics which may or may not include 

a structural task dependency graph. Lin and Lu (2011) also represented a workflow using 

a weighted directed acyclic graph. In the graph, vertices represented a set of tasks, and 
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edges represented a set of data dependencies. The weight of an edge denoted the 

communication cost, and the weight of a vertex denoted the task computation cost. For 

workflow constraints considered in this study, specific forms depend on specific services 

in a workflow and thus are not given here in a general form. 

 The MIP problem is implemented in ILOG OPL Development Studio IDE 

Version 6.1. ILOG CPLEX 11.2.0 is used as a solver to the MIP problem. A laptop 

computer used to run the software is a Samsung Q320 with Intel Core 2 Duo T6500 2.1 

GHz processor, 4 GB RAM, and Windows 7. The ILOG OPL and CPLEX are integrated 

into C# code in Microsoft Visual Studio 2010. The C# code first loads all the necessary 

input files of the problem including given inputs as well as service-resource relation 

functions and resource-QoS relation functions for each service type. With the loaded 

input files, the C# code then calls ILOG OPL and CPLEX to run the MIP optimization 

and solve the problem to generate an optimal solution. The computation time of obtaining 

the optimal solution is recorded by the C# code. Note that times required for loading 

input files and generating output files are also included in the computation time of 

obtaining the optimal solution. 

 3.3.2 A decentralized strategy of service provider-user coordination. In this 

section, a decentralized strategy of service provider-user coordination is constructed. 

Considering again that a service provider may have one or more servers and a service 

user may have one or more clients, the terms of server and client are used in the 

following description of the service provider-user coordination strategy. In this strategy, 

each client sends the request for each unsatisfied service in the workflow to all servers 

that provide the service. Each server makes local resource allocation decisions, and 
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clients coordinate with servers in one or more iterations to obtain a resource allocation 

solution. The service provider-user coordination strategy consists of the following steps 

for client k, k = 1,…, K.  

1) If client k’s workflow of services is not satisfied, the client sends the request 

for each service in the workflow to all servers which provide the service. If 

any service of the client k’s workflow is satisfied, the client k sends the input 

of ��\%� = 1 for the satisfied service in the workflow to the server that 

provides the service so that resources on the server are reserved for the 

service. 

2) Each server i solves a local optimization problem and sends the solution, i.e., 

decisions about ��\%� and ��\%��� along with ��\%��� to client k. 

3) When client k receives the information of ��\%�, ��\%��� and ��\%��� from all 

servers i = 1,…, I, the client checks the satisfaction of each service in the 

workflow and workflow constraints. If more than one server selects to satisfy 

a service, the client picks the server that gives the QoS levels closest to the 

QoS requirements. If there are unsatisfied services in the workflow or 

unsatisfied workflow constraints, the client marks the workflow of services as 

unsatisfied and goes back to Step 1 for another iteration; otherwise, the client 

obtains a complete solution satisfying its workflow of services.         

 Each server i, i = 1,…, I, solves the following local optimization problem.  

Maximize ` ∑ ∑ a%b%�b%
∑ ∑ i%b%�j���b%

� − ∑ ∑ ∑ #$%b%&��'$%b%&�
( #

$%b%&�
( ∗*���\%�          (23) 

subject to 
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��\%� = 1 for satisfied services                                                    (24) 

��\%���\%� ≤ ��� ∀ �, [�, .                                                                  (25) 

��\%��� ≤ ��\%����  ∀ �, [�, ��                                                                  (26) 

��\%��� = ��\%�/���0��\%��, … , ��\%2��3 ∀ �, [�, 	�                              (27) 

��\%��� = ��\%�4���0��\%��, … , ��\%�5�3 ∀ �, [�, �                              (28) 

∑ ∑ ��\%���\%� ≤ ����
�   ∀ 	�                                                       (29) 

��\%�����\%� ≤ ��\%��
�  or ��\%��� ≥ ��\%���\%��

�  ∀ �, [�, �                  (30) 

 The objective function in Equation (23) maximizes the percentage of provided 

services requested and satisfied for clients on server i in the first term and makes the QoS 

levels of each service for each client closest to the required QoS levels in the second 

term. The two server-client coordination constraints in Equations (15) and (16) of the 

centralized formation in Chapter 3.3.1 no longer exist in this local optimization problem 

solved by each server because each individual server cannot take care of the server-client 

coordination constraints that require information of all servers and all clients. Instead, the 

constraint in Equation (24) is included to carry the partial solution(s) of satisfying 

services of some but not all clients from previous iteration(s) to the current iteration 

because the decentralized strategy may need several iterations to produce a complete 

solution of resource allocation for all clients. The constraints in Equations (25) through 

(30) also exist in the centralized formulation. 

 The C# code is implemented to execute the decentralized strategy of service 

provider-user coordination. ILOG OPL and CPLEX are used to solve the local 

optimization problem at each server with the loaded input files. The solution process is 
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stopped when workflows of all clients are satisfied or the solution from the current 

iteration is the same as that from the previous iteration. The computation time of 

obtaining the optimal solution at each server in each iteration is recorded by the C# code. 

The computation time of obtaining a decentralized solution is computed as the sum of 

computation times for all solution iterations. The computation time for each iteration is 

the maximum of computation times used by individual servers to obtain their solutions. It 

is assumed that each client takes no time to make decisions after receiving solutions from 

servers. Note that times required for loading input files and generating output files are 

also included in the computation time of obtaining a solution. 

3.4 Description of Experimental Scenarios 

 Resource and QoS impact models of various services including voice 

communication, data encryption and motion detection are investigated and established in 

(Yau et al., 2009; Ye et al., 2010). In a voice communication service, a client requests 

and receives voice data from a server. The data encryption service encrypts data using an 

encryption algorithm. In a motion detection service, video data is analyzed to detect 

motion. Since such resource and QoS impact models of services are needed for Equations 

(19) and (20) in the centralized method and Equations (27) and (28) in the decentralized 

algorithm, this study in Chapter 3 uses those three services, and the resource and QoS 

impact models of the three services are used in Equations (19), (20), (27) and (28). 

 The voice communication service has two service parameters: sampling rate and 

buffer size. The sampling rate is the rate of sampling voice data and determines the 

quality of the sampled voice data. The sampling rate can take one of the five levels: 1 for 

44,100 Hz, 2 for 88,200 Hz, 3 for 132,300 Hz, 4 for 176,400 Hz, and 5 for 220,500 Hz. 
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The buffer size is the size of the buffer holding the sampled voice data at a server before 

transmission. The buffer size can take one of the five levels: 1 for 16,384 Bytes, 2 for 

24,576 Bytes, 3 for 32,768 Bytes, 4 for 40,960 Bytes, and 5 for 49,152 Bytes. This study 

lets each client using the voice communication service set the maximum level 

(��\%���� ) of the sampling rate to 5 and the maximum level of the buffer size to 5. 

 The data encryption service has two service parameters: key length and 

encryption percentage. The key length is the size of the key used for encryption. The key 

length can take one of the three levels: 1 for 128 bits, 2 for 196 bits, and 3 for 256 bits. 

The encryption percentage is the percentage of data for encryption. The encryption 

percentage can take one of the two levels: 1 for 50%, and 2 for 100%. A larger key length 

and a larger encryption percentage ensure a better security of protecting data 

confidentiality. This study lets each client using the data encryption service set the 

maximum level of the key length to 3 and the maximum level of the buffer size to 2. 

 The motion detection has one service parameter: video resolution. More motions 

can be detected from a video frame with a higher resolution, resulting in a higher motion 

level of detection but more computational resources used for detecting motions. The 

video resolution can take one of the three levels: 1 for 22*18 pixels, 2 for 44*36 pixels, 

and 3 for 88*72 pixels. This study lets each client using the motion detection service set 

the maximum level of the video resolution to 3. Table 33 summarizes levels of service 

parameters for voice communication, data encryption and motion detection services. 
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Table 33  

Levels of Service Parameters for Voice Communication, Data Encryption and Motion 

Detection Services 

Service Type Service Parameters Level 1 Level 2 Level 3 Level 4 Level 5 

Voice 

Communication  

Sampling rate (Hz) 44,100 88,200 132,300 176,400 220,500 

Buffer size (Bytes) 16,384 24,576 32,768 40,960 49,152 

Data Encryption  

Key Length (bits) 128 192 256   

Encryption 

Percentage (%) 
50 100    

Motion 

Detection  

Video resolution 

(pixels) 
22*18 44*36 88*72   

 

 In this study, there is one QoS variable considered for the voice communication 

service: throughput in unit of packets/second; one QoS variable for the data encryption 

service: average delay in unit of milliseconds; and two QoS variables for the motion 

detection service: average motion level in terms of the percentage of pixels in a video 

frame that have detected changes, and average delay in unit of milliseconds. 

 For the three services used in this study, the following variables of resource 

usages identified in (Yau et al., 2009; Ye et al., 2010) play a key role in determining the 

QoS performance of the services: 

1) Processor time in percentage 

2) Committed memory in megabytes (MB),  

3) Thread count,  

4) IO other operations/sec,  

5) IO read operations/sec,  
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6) IO write operations/sec,  

7) File write operations/sec,  

8) File control operations/sec,  

9) System calls/sec. 

 The specific F functions of relations between service parameters and resource 

variables are used in Equations (19) and (27), and the specific G functions of relations 

between resource variables and QoS variables are used in Equations (20) and (28) for 

each of the three services. For example of a voice communication service, Equations (31) 

through (34) show the specific F functions for the resource variables of processor time in 

percentage, committed memory in MB, thread count and IO other operations/sec 

respectively. Equation (35) shows the specific G function for the QoS variable of the 

throughput. 

����� =  ���� kO.MLNI∙∑ ∑ i%b%:b%% n�.OE∙o:::�'O.EEM∙o::;�
∑ ∑ i%b%:b%%

p         (31) 

����� =  ���� kI�N.ONn�J.�NOL∙∑ ∑ i%b%:b%% n��.LIL∙o:::�nO.I�K�∙o::;�
∑ ∑ i%b%:b%%

p       (32) 

����E =  ���� k�I.LNnI.��∙∑ ∑ i%b%:b%% nO.MIK∙o:::�'O.����∙o::;�
∑ ∑ i%b%:b%%

p        (33) 

����I =  ���� k'�N.MnEL.I∙∑ ∑ i%b%:b%% nEL.K∙o:::�'EO.N∙o::;�
∑ ∑ i%b%:b%%

p        (34) 

����� = ���� k− LJII.KJ
∑ ∑ i%b%:b%%

+ 174.76 ∗ ����� + 16.6 ∗ ����� − 7.86 ∗ ����E −

0.06 ∗ ����Ip              (35) 

 Three services are used in two types of service workflow. In type 1 of service 

workflow, a client requests and receives encrypted voice data by using first a voice 
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communication service to obtain voice data and then a data encryption service to encrypt 

the voice data. Hence, type 1 of service workflow involves two services in order of voice 

communication first and data encryption second. Workflow constraints specify that, for a 

given client, the throughput of voice communication should not exceed the limit on the 

input throughput for data encryption. Type 2 of service workflow involves only one 

service of motion detection.     

 This study introduces six types of server configurations which are determined by 

two factors: resource capacity and service provision. There are three types of resource 

capacity: 

• Each server has a sufficient resource capacity to satisfy all service requests of 

all clients, 

• Each server does not have a sufficient resource capacity to satisfy all service 

requests of all clients, but the total resource capacity of all servers is sufficient 

to satisfy all service requests of all clients, 

• Neither each server nor all servers together have a sufficient resource capacity 

to satisfy all service requests of all clients.  

 This study uses two servers with two types of service provision: 

• Each server provides all three services of voice communication, data 

encryption, and motion detection. 

• Server 1 provides two services of voice communication and motion detection, 

and server 2 provides two services of data encryption and motion detection. 

The same set of F and G functions are used on each server.  
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 This study introduces various numbers of clients to give various problem sizes in 

order to examine how the computation times of obtaining the centralized solution and the 

decentralized solution change with problem sizes, specifically the number of clients. 

There are three levels of clients used in this study: four clients, fifty clients and one 

hundred clients. For four clients, there are two clients that use type 1 of service workflow 

with the voice communication and data encryption services, while the other two clients 

use type 2 of service workflow with the motion detection service. For fifty clients, twenty 

five clients use type 1 of service workflow and the other twenty five clients use type 2 of 

service workflow. For one hundred clients, fifty clients use type 1 of service workflow, 

and the other fifty clients use type 2 of service workflow. 

 Among the nine resource variables, the first two resource variables, processor 

time in percentage and committed memory in MB have a capacity limit which is used in 

Equations (21) and (29). Values of capacity limits for each problem case are set up to 

maintain the type of server configuration for that problem case by looking into resource 

usages of clients under various values of service parameters based on the F functions of 

service-resource relations. Table 34 shows the resource capacity limits used in various 

problem cases.  

  



  134 

Table 34  

Capacity Limits of Two Resource Variables: Processor Time (%) and Committed 

Memory (MB) 

Server Configuration Server 
Number of Clients 

4 50 100 

1. Type 1 of Resource Capacity 

    Type 1 of Service Provision 

Server 1 

Server 2 

65, 750 

65, 750 

470 , 1350 

470 , 1350 

855, 2010 

855, 2010 

2. Type 1 of Resource Capacity 

    Type 2 of Service Provision 

Server 1 

Server 2 

6, 520 

47, 210 

375, 1350 

40, 100 

400, 1650 

430, 1650 

3. Type 2 of Resource Capacity 

    Type 1 of Service Provision 

Server 1 

Server 2 

31, 400 

35, 400 

30, 900 

405, 500 

125, 1210  

720, 810 

4. Type 2 of Resource Capacity 

    Type 2 of Service Provision 

Server 1 

Server 2 

6, 520 

47, 210 

375, 1350 

40, 100 

400, 1650 

430, 450 

5. Type 3 of Resource Capacity 

    Type 1 of Service Provision 

Server 1 

Server 2 

20, 400 

30, 350 

61, 825 

190, 260 

120, 1210 

360, 420 

6. Type 3 of Resource Capacity 

    Type 2 of Service Provision 

Server 1 

Server 2 

32, 470 

10, 100 

210, 1090 

40, 100 

45, 1205 

430, 405 

 

 For example, in the problem case with type 1 of resource capacity, type 1 of 

service provision and four clients in Table 34, server 1 has 65% as the capacity limit of 

processor time and 750 MB of committed memory. When the number of clients increases 

to fifty, capacity limits are set to 470% of processor time and 1350 MB of committed 

memory. Considering that the maximum capacity of processor time is 100% in the real-

world situation, it may not seem reasonable to set 470% of processor time. This value is 

set so that the problem case can still maintain type 1 of resource capacity in which each 

server has a sufficient resource capacity to satisfy service requests of all fifty clients. 

Hence, although 470% for processor time in Table 34 is unrealistic, mathematically the 
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value allows to examine the problem of the same nature but with a different size for 

testing how computation times change with the problem sizes.  

 QoS requirements (��\%��
� ) for each problem case are set up to ensure that an 

optimal solution for the centralized formulation exists to meet both the resource capacity 

constraints in Table 34 and QoS requirements of clients by looking into resource usages 

of clients and QoS performance levels under various values of service parameters based 

on the F functions of service-resource relations and the G function of resource-QoS 

relations. Table 35 shows QoS requirements of problem cases with totally four, fifty and 

one hundred clients.  

Table 35  

QoS Requirements of Various Problem Cases 

 

 For the problem cases with totally four clients in Table 35, there are two clients 

using type 1 of service workflow and the other two clients using type 2 of service 

workflow. For one of the two clients using type 1 of service workflow, the minimum 

requirement of the QoS variable for the throughput of the voice communication service is 

Total 

Number  

of Clients 

Type 1 of Service Workflow Type 2 of Service Workflow 

Number 

of 

Clients 

Voice 

Communication, 

Throughput 

(packets/second) 

Data 

Encryption, 

Average Delay 

(milliseconds) 

Number 

of 

Clients 

Motion Detection, 

Average 

Motion Level 

(percentages) 

Average  

Delay 

(milliseconds) 

4 
1 850 20 1 0.2 150 

1 950 35 1 0.15 90 

50 
12 200 10 12 0.01 450 

13 250 15 13 0.03 500 

100 
25 200 10 25 0.01 450 

25 250 15 25 0.03 500 
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set to 850 packets/second, and the maximum limit of the QoS variable for the average 

delay of the data encryption service is set to 20 milliseconds. For another of the two 

clients using type 1 of service workflow, the minimum limit of the QoS variable for the 

throughput of the voice communication service is set to 950 packets/second, and the 

maximum limit of the QoS variable for the average delay of the data encryption service is 

set to 35 milliseconds. For one of the two clients using type 2 of service workflow, the 

minimum limit of the QoS variable for the average motion level of the motion detection 

service is set to 0.2%, and the maximum limit of the QoS variable for the average delay 

of the motion detection service is set to 150 milliseconds. For another of the two clients 

using type 2 of service workflow, the minimum limit of the QoS variable for the average 

motion level of the motion detection service is set to 0.15%, and the maximum limit of 

the QoS variable for the average delay of the motion detection service is set to 90 

milliseconds.  

 For the problem cases with totally fifty clients in Table 35, twenty five clients use 

type 1 of service workflow, and the other twenty five clients use type 2 of service 

workflow. For twenty five clients with type 1 of service workflow, there are twelve 

clients that have the minimum throughput requirement of 200 packets/second and the 

maximum delay requirement of 10 milliseconds, and there are the other thirteen clients 

that have the minimum throughput requirement of 250 packets/second and the maximum 

delay requirement of 15 milliseconds. For twenty five clients with type 2 of service 

workflow, there are twelve clients that have the minimum motion level requirement of 

0.01% and the maximum delay requirement of 450 milliseconds, and there are the other 
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thirteen clients that have the minimum motion level requirement of 0.03% and the 

maximum delay requirement of 500 milliseconds.   

 For the problem cases with totally one hundred clients in Table 35, fifty clients 

use type 1 of service workflow, and the other fifty clients use type 2 of service workflow. 

For fifty clients with type 1 of service workflow, there are twenty five clients that have 

the minimum throughput requirement of 200 packets/second and the maximum delay 

requirement of 10 milliseconds, and there are the other twenty five clients that have the 

minimum throughput requirement of 250 packets/second and the maximum delay 

requirement of 15 milliseconds. For fifty clients with type 2 of service workflow, there 

are twenty five clients that have the minimum motion level requirement of 0.01% and the 

maximum delay requirement of 450 milliseconds, and there are the other twenty five 

clients that have the minimum motion level requirement of 0.03% and the maximum 

delay requirement of 500 milliseconds. 

 The objective functions in Equations (14) and (23) have two terms, the first term 

to maximize the percentage of clients’ services satisfied, and the second term to minimize 

the difference between the provided QoS levels and the QoS requirements for the 

satisfaction of the QoS requirements. The M value of 10 is used in the objective functions 

for all problem cases in this study. The specific value of M is set up in order to give more 

importance in providing satisfied services for all clients’ requests first before considering 

how close the actual QoS is to the required QoS. The normalized differences between the 

actual QoS level and the required QoS level in the second term of the objective functions 

depend on the specific service-resource-QoS relation models of a given service in 

Equations (19), (20), (27) and (28) since the actual QoS level is determined by those 
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models. Based on the service-resource-QoS models of the three services used in this 

study, the ranges of the normalized differences between possible QoS levels and required 

QoS levels are from 0 to 9.6. Hence, M is set to 10, which is higher than 9.6 so as to give 

a higher priority to the first term in the objective functions. 

3.5 Results and Discussions 

 This section first gives and compares the centralized solutions and the 

decentralized solutions for various problem cases to examine the solution optimality of 

the decentralized solutions and discusses elements of service provider-user coordination 

based on the comparison results. Then it provides the computation times of obtaining the 

centralized and decentralized solutions to examine the scalability of the centralized and 

the decentralized methods. 

 3.5.1 Solution optimality. The objective functions as shown in Equations (14) 

and (23) in the resource allocation problem formulations have two terms, the first term to 

maximize the percentage of clients’ services satisfied, and the second term to minimize 

the difference between the provided QoS levels and the QoS requirements for the 

satisfaction of the QoS requirements. Table 36 gives the number of clients satisfied in the 

centralized solutions and the decentralized solutions. Table 37 gives the values of the 

objective function in the centralized solutions and the decentralized solutions.  
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Table 36  

Number of Clients Satisfied in the Centralized and Decentralized Solutions 

Server 

Configuration 

4 Clients 50 Clients 100 Clients 

Centralized Decentralized Centralized Decentralized Centralized Decentralized 

1 4 4 50 50 100 100 

2 4 4 50 50 100 100 

3 4 4 50 50 100 100 

4 4 4 50 50 100 100 

5 3 3 38 38 75 75 

6 3 3 38 38 75 75 

 

 For the number of clients satisfied, the decentralized solutions are as good as the 

optimal solutions from the centralized problem formulation as shown in Table 36. For the 

values of the objective function that need to be maximized, the decentralized solutions 

are close to the centralized solutions with slightly different values in some cases as 

marked by “*” in Table 37, including two out of the six problem cases for four clients, 

one out of six problem cases for fifty clients and two out of the six problem cases for one 

hundred clients.  

Table 37  

Values of the Objective Function in the Centralized and Decentralized Solutions 

Server 

Configuration 

4 Clients 50 Clients 100 Clients 

Centralized Decentralized Centralized Decentralized Centralized Decentralized 

1 39.10 39.10 447.86 447.86 900.76 900.76 

2 38.57 38.57 447.67 447.67 900.22 900.22 

3 39.10 38.61* 447.86 447.86 900.62 900.42* 

4 38.57 38.57 447.67 447.67 900.22 900.22 

5 28.48 27.14* 341.11 340.92* 674.16 674.04* 

6 27.15 27.15 340.93 340.93 673.97 673.97 
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 To look into causes for the differences of the decentralized solutions from the 

centralized solutions, Table 38 shows service decisions made in the centralized and 

decentralized solutions for two problem cases (server configurations 3 and 5) with four 

clients. Server configuration 3 has type 2 of resource capacity and type 1 of service 

provision. That is, there is not a sufficient resource capacity in one server but there is a 

sufficient resource capacity on all the servers together to satisfy all service requests of all 

clients, and all three services of voice communication, data encryption and motion 

detection are provided on each server. Server configuration 5 has type 3 of resource 

capacity and type 1 of service provision. That is, neither each server nor all the servers 

have enough resource capacity to satisfy all service requests of all clients, and all three 

services of voice communication, data encryption and motion detection are provided on 

each server. Different decisions made in the decentralized solutions from those in the 

centralized solutions are marked by “*” in Table 38. 
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Table 38  

Service Decisions made in the Centralized and Decentralized Solutions for Two Problem 

Cases  

Problem 

Case 
Client Service 

QoS 

Requirement 

Centralized Solution Decentralized Solution 

Server 
Service Parameter 

and QoS Level 
Server 

Service Parameter 

and QoS Level 

server  

conf. 3 

k = 1 

voice 

com. 

throughput:  

850 
server 2 

sam. rate: 5 

buf. size: 5 

throughput: 894.38 

server 2 

sam. rate: 5 

buf. size: 5 

throughput: 894.38 

data 

enc. 
delay: 20 server 1 

key len.: 3 

enc. per.: 1 

delay: 16 

server 1 

key len.: 3 

enc. per.: 1 

delay: 16 

k = 2 

voice 

com. 

throughput:  

950 
server 1 

sam. rate: 5 

buf. size: 2 

throughput: 968.16 

server 1 

sam. rate: 5 

buf. size: 2 

throughput: 968.16 

data 

enc.  
delay: 35 server 2 

key len.: 3 

enc. per.: 2 

delay: 33.87 

server 2 

key len.: 2* 

enc. per.: 1* 

delay: 16.72* 

k = 3 
motion 

det. 

mot. lev.: 

0.2% 

delay: 150 

server 1 

vid. res.: 3 

mot. lev.: 0.34% 

delay: 134.08 

server 2* 

vid. res.: 3 

mot. lev.: 0.34% 

delay: 134.08 

k = 4 
motion 

det. 

mot. lev.:  

0.15% 

delay: 90 

server 2 

vid. res.: 2 

mot. lev.: 0.19% 

delay: 78.87 

server 1* 

vid. res.: 2 

mot. lev.: 0.19% 

delay: 78.87 

server 

conf. 5 

k = 1 

voice 

com. 

throughput:  

850 
server 2 

sam. rate: 5 

buf. size: 5 

throughput: 894.38 

server 1* 

sam. rate: 5 

buf. size: 5 

throughput: 894.38 

data 

enc.  
delay: 20 server 2 

key len.: 2 

enc. per.: 1 

delay: 15.75 

server 2 

key len.: 2 

enc. per.: 1 

delay: 15.75 

k = 2 

voice 

com. 

throughput:  

950 
server 1 

sam. rate: 5 

buf. size: 2 

throughput: 968.16 

none* none* 

data 

enc. 
delay: 35 server 2 

key len.: 1 

enc. per.: 2 

delay: 33.29 

none* none* 

k = 3 
motion 

det. 

mot. lev.:  

0.2% 

delay: 150 

none none server 1* 

vid. res.: 3* 

mot. lev.: 0.34%* 

delay: 134.08* 

k = 4 
motion 

det. 

mot. lev.:  

0.15% 

delay: 90 

server 1 

vid. res.: 2 

mot. lev.: 0.19% 

delay: 78.87 

server 2* 

vid. res.: 2 

mot. lev.: 0.19% 

delay: 78.87 
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 For the problem case with server configuration 3 in Table 38, the decentralized 

solution differs from the centralized solution in the levels of the service parameters for 

the data encryption service of client k = 2 in that the decentralized solution selects a lower 

level of the key length at level 2 and the encryption percentage at level 1 instead of the 

key length at level 3 and the encryption percentage at level 2 in the centralized solution. 

The decentralized algorithm produces this solution after two iterations. Table 39 shows 

service decisions made at two iterations in the decentralized solution for the problem case 

with server configuration 3. The selected services of clients at each iteration are marked 

by "*" in Table 39. 
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Table 39  

Service Decisions made at Two Iterations in the Decentralized Solution for One Problem 

Case with Server Configuration 3 

Client Service 
QoS 

Requirement 

Iteration 1 Iteration 2 

Server 1 Server 2 Server 1 Server 2 

k = 1 

voice 

com. 

throughput: 

850 
   

sam. rate: 5* 

buf. size: 5* 

throughput: 

894.38* 

data 

enc. 
delay: 20 

key len.: 3 

enc. per.: 1 

delay: 16 

key len.: 3 

enc. per.: 1 

delay: 16 

key len.: 3* 

enc. per.: 1* 

delay: 16* 

 

k = 2 

voice 

com. 

throughput: 

950 

sam. rate: 5* 

buf. size: 2* 

throughput: 

968.16* 

sam. rate: 5 

buf. size: 2 

throughput: 

968.16 

  

data 

enc.  
delay: 35  

key len.: 2* 

enc. per.: 1* 

delay: 

16.72* 

  

k = 3 
motion 

det. 

mot. lev.: 

0.2% 

delay: 150 

   

vid. res.: 3* 

mot. lev.: 

0.34%* 

delay: 134.08* 

k = 4 
motion 

det. 

mot. lev.: 

0.15% 

delay: 90 

vid. res.: 2* 

mot. lev.: 

0.19%* 

delay: 78.87* 

vid. res.: 2 

mot. lev.: 

0.19% 

delay: 78.87 

  

 

 At iteration 1, server 1 selects to serve client 1's data encryption service at the key 

length of level 3 and the encryption percentage of level 1, and the delay of 16 

milliseconds, client 2's voice communication service at the sampling rate of level 5 and 

the buffer size of level 2, and the throughput of 968.16 packets/second, and client 4's 
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motion detection service at the video resolution of level 2, and the motion level of 0.19% 

and the delay of 78.87 milliseconds. Server 2 selects to serve client 1's data encryption 

service at the key length of level 3, the encryption percentage of level 1, and the delay of 

16 milliseconds, client 2's voice communication service at the sampling rate of level 5, 

the buffer size of level 2, the throughput of 968.16 packets/second and data encryption 

service at the key length of level 2, the encryption percentage of level 1, and the delay of 

16.72 milliseconds, and client 4's motion detection service at the video resolution of level 

2, the motion level of 0.19%, and the delay of 78.87 milliseconds.  

 With these server solutions, each client makes the decisions as follows. Client 1 

marks the workflow including the voice communication service and the data encryption 

service as unsatisfied since the voice communication service is not selected by either 

server 1 or server 2. Both server 1 and server 2 select to serve the data encryption service 

only. Client 2 selects server 1 for the voice communication service and server 2 for the 

data encryption service. Both server 1 and server 2 select and satisfy the voice 

communication service at the same levels of service parameters and QoS. The client 2 

selects server 1 for the voice communication service arbitrarily. Client 3 marks the 

workflow including the motion detection service as unsatisfied since neither server 1 nor 

server 2 selects client 3 and its service. Client 4 selects server 1 for the motion detection 

service. Both server 1 and server 2 select and satisfy the motion detection service at the 

same levels of service parameters and QoS. The client 4 selects server 1 for the motion 

detection service arbitrarily. Hence, after iteration 1, client 2 and client 4 have their 

service workflow satisfied. Client 1 and client 3 request services of their workflows again 

in iteration 2.  



  145 

 At iteration 2, server 1 selects to serve client 1's data encryption service at the key 

length of level 3 and the encryption percentage of level 1, and the delay of 16 

milliseconds. Server 2 selects to serve client 1's voice communication service at the 

sampling rate of level 5, the buffer size of level 5, and the throughput of 894.38 

packets/second and client 3's motion detection service at the video resolution of level 3, 

the motion level of 0.34%, and the delay of 134.08 milliseconds. With these server 

solutions, clients 1 and 3 make the following decisions: client 1 selects server 1 for the 

data encryption service and server 2 for the voice communication service, and client 3 

selects server 2 for the motion detection service. Hence, after iteration 2, all the four 

clients are satisfied. 

 From two iterations of the decentralized solution described above as in Table 39, 

client 2 is satisfied after iteration 1. The satisfaction of the data encryption service of 

client 2 at a lower level of service parameters and QoS in the decentralized solution than 

that in the centralized solution is a result of server 2’s solution at iteration 1. In server 

configuration 3, all the services of voice communication, data encryption, and motion 

detection are provided on each server. That is, server 2 provides all the three services. In 

order to maximize the percentage of provided services requested and satisfied for clients 

as stated in the objective function, server 2 selects four services (client 1’s data 

encryption service, client 2’s voice communication and data encryption services, and 

client 4’s motion detection service) to satisfy. In contrast, in the centralized solution only 

three services (client 1’s voice communication service, client 2’s data encryption service 

and client 4’s motion detection service) are selected by server 2 at higher levels of service 

parameters and QoS for voice communication and data encryption services than those in 
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the decentralized solution from iteration 1. Server 2’s selection of three services in the 

centralized solution at higher service levels is ensured by the server-client coordination 

constraints in Equations (15) and (16) which are not included in the local optimization 

problem of an individual server in the decentralized method. Without the server-client 

coordination constraints, each server tries to serve as many services as possible, which 

can lead to an overlap of the service provision by servers. For example, client 2’s voice 

communication service is selected by both server 2 and server 1. As server 2 tries to 

maximize the percentage of satisfied services, the service levels of these satisfied services 

are lowered in order to meet the resource capacity constraints since in server 

configuration 3 each server does not have a sufficient resource capacity to satisfy all the 

services of all the clients.  

 Therefore, the cause for the difference between the centralized solution and the 

decentralized solution in the problem case with server configuration 3 and four clients is 

the lack of server-client coordination constraints, more specifically the isolated work of 

each server to maximize satisfied services at lower service levels without knowing an 

overlap of the service provision by servers. In contrast, the centralized method uses the 

server-client coordination constraints to pull all resources of all the servers together 

optimally to satisfy all services of all clients at higher service levels. To address this 

cause for the difference of the decentralized solution from the centralized solution, the 

service provider-user coordination strategy can be revised to distribute requests for 

services of the workflow to servers in a selective manner without the same service 

request going to multiple servers to avoid an overlap of service provision among servers, 

rather than sending requests for services to all servers that provide services.  
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 For the problem case with server configuration 5 in Table 38, both the centralized 

solution and the decentralized solution serve client 1 and client 4 at the same levels of 

service parameters and QoS. In server configuration 5, neither each server nor all the 

servers together have a sufficient resource capacity to satisfy all services of all clients. 

The centralized solution selects to serve client 2 with two services of voice 

communication and data encryption and not to serve client 3 with only one service of 

motion detection. In contrast, the decentralized solution selects to serve client 3 and not 

to serve client 2. This difference in service decisions between the centralized solution and 

the decentralized solution yields the better value of the objective function from the 

centralized solution than that from the decentralized solution as seen in Table 37. The 

decentralized strategy produces its solution after three iterations. Table 40 shows service 

decisions made at three iterations in the decentralized solution for the problem case with 

server configuration 5 with four clients. The selected services of clients at each iteration 

are marked by "*" in Table 40. 
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Table 40  

Service Decisions made at Three Iterations in the Decentralized Solution for One 

Problem Case with Server Configuration 5 

ClientService 
QoS 

Requirement 

Iteration 1 Iteration 2 Iteration 3 

Server 1 Server 2 Server 1 Server 2 Server 1 Server 2 

k = 1 

voice 

com. 

throughput:  

850 

sam. rate: 5* 
buf. size: 5* 

throughput: 

894.38* 

     

data  
enc. 

delay: 20 

key len.: 1 

enc. per.: 1 

delay: 15 

key len.: 2* 

enc. per.: 1* 

delay: 15.75* 

    

k = 2 

voice 
com. 

throughput:  
950 

      

data  

enc.  
delay: 35 

key len.: 1 
enc. per.: 1 

delay: 16.43 

key len.: 1 
enc. per.: 1 

delay: 16.43 

 key len.: 1 
enc. per.: 1 

delay: 16.43

 key len.: 1  
enc. per.: 1 

delay: 16.43 

k = 3 
motion 

det. 

mot. lev.:  

0.2% 
delay: 150 

  vid. res.: 3* 
mot. lev.: 

0.34%* 
delay: 134.08* 

   

k = 4 
motion 
det. 

mot. lev.: 
0.15% 

delay: 90 

 vid. res.: 2* 

mot. lev.: 
0.19%* 

delay: 78.87* 

    

 

 At iteration 1, server 1 selects to serve client 1's voice communication service at 

the sampling rate of level 5, the buffer size of level 5, and the throughput of 894.38 and 

data encryption service at the key length of level 1 and the encryption percentage of level 

1, and the delay of 15 milliseconds, and client 2's data encryption service at the key 

length of level 1 and the encryption percentage of level 1, and the delay of 16.43 

milliseconds. Server 2 selects to serve client 1's data encryption service at the key length 
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of level 2, the encryption percentage of level 1, and the delay of 15.75 milliseconds, 

client 2's data encryption service at the key length of level 1, the encryption percentage of 

level 1, and the delay of 16.43 milliseconds, and client 4's motion detection service at the 

video resolution of level 2, the motion level of 0.19%, and the delay of 78.87 

milliseconds.  

 With these server solutions, each client makes the decisions as follows. Client 1 

selects server 1 for the voice communication service and sever 2 for the data encryption 

service. Both server 1 and server 2 select to serve the data encryption server. However, 

the QoS level of the data encryption service from server 2 is closest to the QoS 

requirement. Hence, server 2 is selected for the data encryption service. Client 2 marks 

the workflow including the voice communication service and the data encryption service 

unsatisfied since neither server 1 nor server 2 selects to serve the voice communication 

service. Client 3 marks the workflow including the motion detection service as 

unsatisfied since neither server 1 nor server 2 selects client 3 and its service. Client 4 

selects server 2 for the motion detection service. Hence, after iteration 1, client 1 and 

client 4 have their service workflow satisfied. Client 2 and client 3 request services of 

their workflows again in iteration 2.  

 At iteration 2, server 1 selects to serve client 3's motion detection service at the 

video resolution of level 3, the motion level of 0.34%, and the delay of 134.08 

milliseconds. Server 2 selects to serve client 2's data encryption service at the key length 

of level 1, the encryption percentage of level 1, and the delay of 16.43 milliseconds. With 

these server solutions, clients 2 and 3 make the following decisions: client 2 marks the 

workflow including the voice communication service and the data encryption service 
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unsatisfied since neither server 1 nor server 2 selects to serve the voice communication 

service, and client 3 selects server 1 for the motion detection service. Hence, after 

iteration 2, client 3 has its service workflow satisfied, in addition to clients 1 and 4 

satisfied after iteration 1. Client 2 request services of its workflow again in iteration 3.  

 At iteration 3, server 1 cannot serve any of client 2’s two services due to the 

insufficient resource capacity. Server 2 serves client 2's data encryption service at the key 

length of level 1, the encryption percentage of level 1, and the delay of 16.43 

milliseconds as same as the server's decision from iteration 2. With these server solutions, 

client 2 still does not have its service workflow satisfied because neither server 1 nor 

server 2 selects to serve the voice communication service. The decentralized algorithm 

stops after iteration 3.  

 By examining the three iterations of the decentralized method, the difference 

between the service decision of the centralized solution in serving client 2 but dropping 

client 3 and the service decision of the decentralized solution in serving client 3 but 

dropping client 2 starts at iteration 1. At iteration 1, server 1 selects to serve three 

services (client 1's voice communication and data encryption services, and client 2's data 

encryption service) in the decentralized solution, whereas server 1 selects to serve two 

services (client 2's voice communication service and client 4's motion detection service) 

in the centralized solution. Moreover, in the decentralized solution, both server 1 and 

server 2 select to serve client 1’s data encryption service and client 2’s data encryption 

service. Hence, the same cause of lacking server-client coordination and the isolated 

work of each server to maximize satisfied services without knowing an overlap of the 
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service provision by servers is observed as in the problem case with server configuration 

3.  

 This cause along with the insufficient resource capacity on each server and all the 

servers together makes the decentralized strategy produce a different service decision 

(i.e., server 1 serving client 1’s voice communication service and server 2 serving client 

4’s motion detection service) from the centralized solution (i.e., server 2 serving client 1’ 

voice communication service and server 1 serving client 4’s motion detection service) 

right after iteration 1. The service decision of the decentralized method after iteration 1 

leads the solution path of the decentralized method to the eventually suboptimal solution. 

As discussed previously, the service provider-user coordination strategy needs to be 

revised to distribute requests for services of workflow to servers in a selective manner to 

avoid an overlap of same service provision among multiple servers.  

 Based on the analysis results above, the following directions of developing 

service provider-user coordination strategies are suggested. In the decentralized resource 

allocation problem, each client has choices of either submitting the request for each 

service of the client to more than one server that provides the service, or going for servers 

one after another. Letting each client submit the request for each service to more than one 

server may result in the same problem of the overlap of service provision by multiple 

servers as seen previously, because the local resource allocation problem of each server 

does not have the server-client coordination constraint in Equation (15). It may also result 

in having only some but not all services of a client selected by the server—the failure of 

covering all services of the client, because the local resource allocation problem of each 

server does not have the service-client coordination constraint in Equation (16). To 
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overcome these problems caused by removing the server-client coordination constraints 

in Equations (15) and (16) in the local resource allocation problems of the servers, each 

client is suggested to take all of its services to one server and send remaining unsatisfied 

services to another server, that is, going for servers one after another until all services of 

the client are satisfied. 

 Considering each server does not want to share its resource state and resource 

allocation objectives with clients, the order of server selection for clients to send their 

services of the workflow can be based on different criteria. A random selection of servers 

can be one criteria, which may lead to the emergence of evenly distributed workloads on 

all servers over time. Using the past history of server utilization (e.g., frequency of using 

each server, and satisfaction with each server in terms of how many clients have been 

satisfied and how well the delivered QoS performance levels are close to the QoS 

requirements) may result in the emergence of desirable outcomes of match-making 

between servers and clients through the collective behavior of servers and clients over 

time without a central match-maker.  

 3.5.2 Scalability. Table 41 and Figure 6 show computation times of obtaining a 

centralized solution and a decentralized solution for the problem cases. As Figure 6 

illustrates, the computation times of obtaining both the centralized and the decentralized 

solution increase with the number of clients. However, the rate of increase in the 

computation times with the number of clients is much larger for the centralized method 

than the decentralized algorithm, especially for two problem cases with server 

configuration 3 and server configuration 5, respectively. Due to insufficient resource 

capacity on each server (in server configuration 3) or all servers together (in server 
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configuration 5) and the provision of all three services on each server, these two problem 

cases are much harder to solve with a larger solution space than the problem cases with 

the other four server configurations. Hence, the decentralized algorithm is much more 

scalable than the centralized method. 

Table 41  

Computation Times (in seconds) of Obtaining the Centralized and Decentralized 

Solutions 

Server 

Configuration 

4 Clients 50 Clients 100 Clients 

Centralized Decentralized Centralized Decentralized Centralized Decentralized 

1 0.03 0.03 0.41 0.22 1.39 0.81 

2 0.05 0.03 0.41 0.24 1.83 1.43 

3 0.06 0.07 1.13 0.23 4.39 1.84 

4 0.05 0.03 0.41 0.24 1.83 1.43 

5 0.06 0.09 7.74 2.13 9.98 2.41 

6 0.05 0.06 1.62 0.52 2.29 1.60 
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Figure 6. Computation Times (in seconds) of Obtaining the Centralized and 

Decentralized Solutions.  

3.6 Conclusions 

 Although decentralized methods of resource allocation are highly desirable for 

scalability and real-world applicability, more research is required to develop service 

provider-user coordination strategies that can achieve the solution optimality through 

decentralized resource allocation algorithms. This study in Chapter 3 starts with a server-

client coordination strategy for decentralized resource allocation algorithm and compares 

the decentralized solutions on various problem cases with the optimal solutions from the 

formulation of the centralized resource allocation problem in terms of solution optimality 

and scalability.  

 For one optimization objective of maximizing the number of clients satisfied, the 

decentralized solutions are as good as the centralized solutions. For another optimization 
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objective of producing the QoS levels as closest to the QoS requirements, the 

decentralized solutions are close to the centralized solutions with slightly worse values in 

two out of the six problem cases for four clients, one out of the six problem cases for fifty 

clients and two out of the six problem cases for one hundred clients. 

 The computation times of obtaining both a centralized solution and a 

decentralized solution increase with the number of clients. However, the rate of increase 

in the computation times with the number of clients is much larger for the centralized 

method than the decentralized method, especially for two harder problem cases with a 

larger solution space due to insufficient resource capacity on each server or all servers 

together and the provision of all three services on each server. Hence, the decentralized 

method is much more scalable than the centralized method. 

 By analyzing some decentralized solutions for small problem cases with four 

clients in comparison with the centralized solutions, it identifies the lack of server-client 

coordination as the major cause for differences of the decentralized solutions from the 

centralized solutions. Specifically, the decentralized method does not have the server-

client coordination constraints that are included in the formulation of the centralized 

resource allocation problem. The lack of these server-client coordination constraints 

results in the isolated work of each server to maximize satisfied services without knowing 

an overlap of the service provision by servers. Thus, it is strongly suggested for each 

client to take its services to one server and send remaining unsatisfied services to another 

server, that is, to go for servers one after another until all services of the client are 

satisfied. Furthermore, different criteria of selecting which server to go for first and then 

next needs to be explored and examined. The criteria can be based on a random selection 
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or the past history of using the servers (e.g., frequency of using each server, and 

satisfaction with each server in terms of how many clients have been satisfied and how 

well the delivered QoS performance levels are close to the QoS requirements).  
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 CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 Efficient resource allocation is the most important part in cloud computing, which 

determines the allocation of computer and network resources of service providers to 

service requests of cloud users for satisfying the users' service requirements. However, 

the resource allocation problem have been known to be challenging since it requires to 

consider all the objectives of service providers and cloud users in an unpredictable 

environment with dynamic workload, large shared resources and complex policies to 

manage them. Many research have introduced various centralized algorithms or 

decentralized algorithms with information sharing through communication protocols. 

However, achieving both solution optimality and scalability still remains as a major issue 

among the existing algorithms for efficient resource allocation.  

 Therefore, this dissertation contributes to propose two efficient resource 

allocation methods to generate optimal or near-optimal solutions, which can be obtained 

from solving the centralized optimization problem. The resource allocation methods 

proposed in this dissertation can be applied for resource allocation decisions with great 

scalability. 

 Chapter 2 first introduces a formulation of the resource allocation optimization 

problem in MIP and then designs a set of representative problem cases to analyze the 

optimal solutions to identify important heuristics for efficient resource allocation 

decisions. The proposed heuristics, which capture the centralized decision making 

behavior in generating the optimal solutions, are capable of making resource allocation 

decisions as good as or close to the optimal solutions without solving the optimization 
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problem directly. The resource allocation heuristics are tested in another set of problem 

cases with the introduction of more complexity by increasing the number of service 

providers and the total number of service requests, and the heuristic solutions 

successfully demonstrate the performance quality. 

 The experimental results show that the resource allocation decisions from the 

heuristic solutions are close to the ones obtained from the optimal solutions. In Case A, 

where each server has a sufficient resource capacity and in Case B, where all the servers 

together have a sufficient resource capacity for all service requests of all clients, the 

heuristic solutions do not drop any service request as same as the optimal solutions. For 

Case A and Case B, the heuristic solutions have the same SAV ratios as the optimal 

solutions, implying that the heuristic solutions serve all the service requests with the same 

quality of QoS values as in the optimal solutions. For Case C, where all the servers 

together do not have a sufficient resource capacity for all service requests of all clients, 

the heuristic solutions drop more service requests of about 1% ~ 4% of all service 

requests in average than the optimal solutions. However, the heuristic solutions provide at 

least the same levels of QoS to all served service requests as the optimal solutions with 

the same or higher SAV ratios.  

 The average computation times of obtaining the optimal solutions and the 

heuristic solutions are increased as problem cases become more complicated by 

increasing numbers of service requests, increasing numbers of servers and having limited 

resource capacity to serve all service requests of all clients. The ranges of the 

computation times for obtaining both the optimal and heuristic solutions also become 

larger with higher values of the standard deviation. However, the rate of increase in the 
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computation times with increasing problem complexity is much larger for the optimal 

solutions than the heuristic solutions, especially for Case B and Case C with insufficient 

resource capacity on each server or all the servers together and for the problem cases with 

ten and twenty servers resulting in a larger solution space than the other problem cases. 

Hence, using the resource allocation heuristics is much more scalable than solving the 

optimization problem directly. 

 Chapter 3 provides the modified formulation of the centralized resource allocation 

problem and the decentralized service provider-user coordination strategy in cloud 

computing. It specifically looks into elements of service provider-user coordination from 

the centralized formulation, and the differences between the centralized solutions and the 

decentralized solutions for various problem cases are analyzed to recognize the key 

elements of the decentralized service provider-user coordination strategy, which can lead 

to get optimal or near-optimal solutions.  

 The experimental results confirm that the decentralized solutions are as good as 

the centralized solutions in terms of maximizing the number of clients satisfied as one of 

the objective functions in the optimization problem. For another objective of producing 

the QoS levels as closest to the QoS requirements, the decentralized solutions are close to 

the centralized solutions with slightly worse values in two out of the six problem cases 

for four clients, one out of the six problem cases for fifty clients and two out of the six 

problem cases for one hundred clients. The computation times of obtaining the 

centralized solution and the decentralized solution increase with the number of clients. 

However, the rate of increase in the computation times with the number of clients is 

much larger for the centralized method than the decentralized method, especially for two 



  160 

harder problem cases with a larger solution space due to insufficient resource capacity on 

each server or all the servers together and the provision of all three services on each 

server. Hence, the decentralized method is much more scalable than the centralized 

method. 

 By analyzing some decentralized solutions for small problem cases with four 

clients in comparison with the centralized solutions, it identifies the lack of server-client 

coordination as the major cause for differences of the decentralized solutions from the 

centralized solutions. Specifically, the decentralized method does not have the server-

client coordination constraints that are included in the formulation of the centralized 

resource allocation problem. The lack of these server-client coordination constraints 

results in the isolated work of each server to maximize satisfied services without knowing 

an overlap of the service provision by servers. Thus, it is strongly suggested for each 

client to take its services to one server and send remaining unsatisfied services to another 

server, that is, to go for servers one after another until all services of the client are 

satisfied. Furthermore, different criteria of selecting which server to go for first and then 

next need to be explored and examined. The criteria can be based on a random selection 

or the past history of using the servers (e.g., frequency of using each server, and 

satisfaction with each server in terms of how many clients have been satisfied and how 

well the delivered QoS performance levels are close to QoS requirements).  

 Two proposed methods in this dissertation show comparable performance to the 

optimal solutions for resource allocation with respect to solution optimality and 

scalability. All the experiments, however, are limited to have relatively a small number of 

servers with simple structures of service provision on servers using up to three different 
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types of services. Therefore, future work may include expanding problem sizes of the 

resource allocation optimization by increasing the total number of servers, using various 

types of workflow such as parallel processing with involvement of several different types 

of services. Moreover, different service provisions on servers may also be introduced 

with some degree of overlapping services such that servers provide all the same services, 

servers provide services partially overlapped and servers provide different services with 

no overlap. In addition to various changes in the total number of servers, workflow 

structure and service provision on servers, future work may want to explore other 

heuristics for further improvements in performance quality of the resource allocation 

methods.  
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Literatures Heuristics 

(Atiewi, 

Yussof, & 

Ezanee, 2015) 

Three task scheduling algorithms are used: 

• Random resource selection - Assign the preferred task in a 

random manner to the available VM regardless of its workload 

status of either heavy or light 

• Round Robin (RR) - Assign the selected tasks over the 

available VMs in a round-robin order, where each task is 

equally administered 

• Green scheduler - Use alternative server and stay away from 

the congested routes by tracking buffer occupancy on the path 

(Dhingra & 

Paul, 2014) 

VMs are migrated from one host to another according to three 

heuristics: 

• Maximum Utilization - Migrate a VM from the overloaded 

hosts with the maximum CPU utilization 

• Minimum utilization - Migrate a VM from the overloaded 

hosts with the minimum CPU utilization 

• Random choice - Migrate a VM, which is selected on the basis 

of a uniformly distributed discrete random variable 

(Goudarzi & 

Pedram, 

2011a) 

As the first step of the heuristic, a good initial solution is obtained by 

processing clients sequentially and assigning to the best cluster on that 

time. This greedy algorithm is repeated for a number of times and the 

best initial solution is selected. Then a local search is used to improve 

the quality of the initial solution. 

(Goudarzi & 

Pedram, 

2011b) 

A heuristic inspired by the force-directed scheduling is used as a 

search technique for a solution space. It is based on defined forces 

between servers and clients, and a force is calculated based on the 

partial profit gained from allocation each portion of a client's request 

to a server. A client with highest force difference toward a new server 

is picked and if the required server is available, the load replacement 

is done. Forces are updated and new maximum force differential 

client-to-server assignment is made. It continues until there is no 

positive force differentials for any client. 

(Kadda, 

Benhammadi, 

Sebbak, & 

Mataoui, 2015) 

A new task scheduling heuristic is proposed with a matrix of the 

expected execution time for each job on a cluster. As the first step of 

this heuristic algorithm, a good initial solution is applied to find two 

first clusters with minimum Completion Time where jobs are assigned 

sequentially to the cluster using the Min-min algorithm. Then, to 

improve the quality of the initial solution, a local assigning in each 

cluster is applied to allocate the tasks on the different available 

servers. 
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(Messina, 

Pappalardo, & 

Santoro, 2012, 

2014) 

A service request can flow on the overlay network, and the heuristic 

strategies introduced in this study help to guide the traveling of the 

network. Allocation heuristic specifies how to make a node choice 

when more nodes are valid candidates, and "First Fit" (i.e. random 

selection) is applied for the allocation heuristic. If the node is not 

appropriate, six forward heuristics are executed to find candidate 

nodes with different criteria as follows: 

• Best Fit - Select the node with minimal distance from target 

point   

• Worst Fit - Select the node with highest amount of available 

resources and thus the further node with regard to the 

Euclidean distance 

• Mass Center - Select the node among wider view of neighbors 

at 2-hops 

• Best Fit/Mass Center - Best fit strategy is kept if the request is 

approaching the admissible region. Otherwise Mass Center 

strategy is used. 

• Max Connection - Select the node with highest number of 

connections/links 

• First Fit - Select a random neighbor 

(Nesmachnow, 

Iturriaga, & 

Dorronsoro, 

2015) 

Seven heuristics are proposed to assign priorities to requests with 

diverse criteria as follows: 

• MaxMaxProfit - Assign a request to a VM with the global 

profit  

• MaxPMinT - Select a VM to serve a request the soonest and 

then select the pair (request, VM) with best profit 

• MinTMaxP - Build a set of (request, VM) pairs with the 

maximum profit and then select the pair with minimum 

execution time  

• MaxQTMaxP - Search for a request with the maximum overall 

profit and then select the pair with maximum waiting time 

• MinQTMaxP - Search for a request with the maximum overall 

profit and then select the pair with minimum waiting time  

• MinGAPMaxP - Search for a request with maximum overall 

profit and then select the pair with minimum deadline GAP  

• MinDMaxP - Search for a request with maximum overall 

profit and then select the pair with minimum deadline  

Then, reordering local search is used to improve the solution quality 

by performing a set of reordering movements on the schedule and 

executing in a reduced time. 

(Yang, Qin, Li, 

& Yang, 2013) 

Particle Swarm Optimization based fitness function scheduling 

heuristic is to assign each subtask to an appropriate resource (routing 

problem) and to sequence the subtasks on the resources (sequencing 

problem). 
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APPENDIX B  

AN EXAMPLE OF THE RESOURCE ALLOCATION PROBLEM FORMULATION 
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 The following example gives realization of the resource allocation problem 

formulation for a problem case with two servers and four clients. It supposes that the first 

server is the communication-centered server with resource capacity limits of 36 for CPU 

resource and 200 for bandwidth resource, and the second server is a computation-

centered server with resource capacity limits of 232 for CPU resource and 32 for 

bandwidth resource. It also supposes that clients 1 and 4 request computation intensive 

services with minimum QoS requirements of 6 and 30, and clients 2 and 3 request 

communication intensive services with minimum QoS requirements of 25 and 5. This 

problem case assumes that each server has a sufficient resource capacity to satisfy all four 

clients’ service requests, and all two services of communication intensive service and 

computation intensive service are provided by each server. 

• Variables and indices 

k: a given client, k = 1, 2 

i: a given server, i = 1, 2 

wi: resource variable w of server i, wi = 1, 2, and wi = 1 for CPU resource, wi = 2 

for bandwidth resource 

s: service (type), s = 1, 2, and s = 1 for a communication intensive service, s = 2 

for a computation intensive service 

ds: service parameter d of service s, ds = 1, …, Ds, and D1 = 1, d1 = 1 for one 

service parameter of the communication intensive service, D2 = 1, d2 = 1 for 

one service parameter of the computation intensive service 

ps: QoS variable p of service s, ps = 1, …, Ps, and P1 = 1, p1 = 1 for one QoS 

variable of the communication intensive service, P2 = 1, p2 = 1 for one QoS 

variable of the computation intensive service 

�����: amount of resource variable w of server i taken by client k’s service request, 

�����is a positive real value 

�����: value of QoS variable ps of client k’s service request on server i, ����� is a 

positive real value 

 

• Decision variables 
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��� = 1 if client k’s service request is assigned to server  

             0 if client k’s service request is not assigned to server i  

 

�����: level of service parameter ds for client k’s service request on server i  

   ����= 1, 2, 3, 4, or 5 

   ����= 1, 2, 3, 4, or 5 

   �E��= 1, 2, 3, 4, or 5 

   �I��= 1, 2, 3, 4, or 5 

 

• Given inputs 

��� = 1 if client k’s service request uses service s 

            0 if client k’s service request does not use service s 

  ��� = 0, ��� = 1 (client 1's service request uses the computation intensive 

service) 

  ��� = 1, ��� = 0 (client 2's service request uses the communication 

intensive service) 

  �E� = 1, �E� = 0 (client 3's service request uses the communication 

intensive service) 

  �I� = 0, �I� = 1 (client 4's service request uses the computation intensive 

service) 

 

��� = 1 if service s is provided by server i 

   0 if service s is not provided by server i 

  ��� = 1 (server 1 provides the communication intensive service) 

  ��� = 1 (server 1 provides the computation intensive service) 

  ��� = 1 (server 2 provides the communication intensive service) 

  ��� = 1 (server 2 provides the computation intensive service) 

 

������ : limit (i.e. the maximum level) of service parameter ds of client k’s service 

request on server i 

 ����� = 5 

 ����� = 5 

 �E��� = 5 
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 �I��� = 5 

 

����
� : limit of resource variable w of server i 

 ���� = 36 (server 1's CPU resource capacity) 

 ���� = 200 (server 1's bandwidth resource capacity) 

 ���� = 232 (server 2's CPU resource capacity) 

 ���� = 32 (server 2's bandwidth resource capacity) 

 

����
� : limit of QoS variable ps of client k’s service request 

 ���� = 6 

 ���� = 25 

 �E�� = 5 

 �I�� = 30 

 

• Objective function 

Minimize ∑ ∑ #∑ vwxVyy 'vwxV
z #

vwxV
z ∗{VUVT                               (1) 

  
|v:::nv::;'K|

K + |v;::nv;:;'�J|
�J + |v}::nv}:;'J|

J + |v~::nv~:;'EO|
EO  

 

• Server-client coordination constraints 

∑ ��� ≤ 1        ∀� �                                  (2) 

 ��� + ���  ≤ 1 

 ��� + ���  ≤ 1 

 �E� + �E�  ≤ 1 

 �I� + �I�  ≤ 1 

 

• Service constraints 

XTWUT] ≤ VW]      ∀k, i, s                        (3) 

  X��U�� ≤ V�� 

  X��U�� ≤ V�� 

  X��U�� ≤ V�� 
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  X��U�� ≤ V�� 

  XE�UE� ≤ V�� 

  XE�UE� ≤ V�� 

  XI�UI� ≤ V�� 

  XI�UI� ≤ V�� 

 

AT�VW ≤ AT�VWX     ∀i, k, d]                          (4) 

  A��W ≤ 5  

  A��W ≤ 5 

  AE�W ≤ 5 

  AI�W ≤ 5 

 

• Service-resource-QoS relation constraints 

RTW�y = XTWFW�y0AT�W, … , AT�VW3     ∀i, k, wW                                 (5) 

  R�W� = X�W ∗ (5.8 ∗ A��W),  R�W� = X�W ∗ (0.3 ∗ A��W)   
  R�W� = X�W ∗ (0.1 ∗ A��W),  R�W� = X�W ∗ (5.0 ∗ A��W)   
  REW� = XEW ∗ (0.1 ∗ AE�W),  REW� = XEW ∗ (5.0 ∗ AE�W)   
  RIW� = XIW ∗ (5.8 ∗ AI�W),  RIW� = XIW ∗ (0.3 ∗ AI�W)   
 

QTUVW = XTWGWUV0RTW�, … , RTW�y3      ∀i, k, p]                                (6) 

  Q��W = X�W ∗ (R�W� + R�W�) 

  Q��W = X�W ∗ (2R�W� + R�W�) 

  QE�W = XEW ∗ (2REW� + REW�) 

  QI�W = XIW ∗ (RIW� + RIW�) 

 

• Resource capacity constraints 

∑ RTW�yT ≤ RW�y
X      ∀i, wW                                  (7) 

  R��� + R��� + RE�� + RI�� ≤ 36 

  R��� + R��� + RE�� + RI�� ≤ 200 

  R��� + R��� + RE�� + RI�� ≤ 232 

  R��� + R��� + RE�� + RI�� ≤ 32 



  178 

 

• QoS requirement constraints 

QTUVWXTW ≤ QTUV
X  or QTUVW ≥ XTWQTUV

X      ∀i, k, p]              (8) 

  Q��W ≥ 6 ∗ X�W 
  Q��W ≥ 25 ∗ X�W 
  QE�W ≥ 5 ∗ XEW 
  QI�W ≥ 30 ∗ XIW 
 

 

 


