
Centralized and Decentralized Methods of Efficient Resource Allocation in Cloud

Computing

by

Su Seon Yang

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved April 2016 by the

Graduate Supervisory Committee:

Nong Ye, Chair

Teresa Wu

Rong Pan

Sik-Sang Yau

ARIZONA STATE UNIVERSITY

December 2016

 i

ABSTRACT

Resource allocation in cloud computing determines the allocation of computer

and network resources of service providers to service requests of cloud users for meeting

the cloud users' service requirements. The efficient and effective resource allocation

determines the success of cloud computing. However, it is challenging to satisfy

objectives of all service providers and all cloud users in an unpredictable environment

with dynamic workload, large shared resources and complex policies to manage them.

Many studies propose to use centralized algorithms for achieving optimal

solutions for resource allocation. However, the centralized algorithms may encounter the

scalability problem to handle a large number of service requests in a realistically

satisfactory time. Hence, this dissertation presents two studies. One study develops and

tests heuristics of centralized resource allocation to produce near-optimal solutions in a

scalable manner. Another study looks into decentralized methods of performing resource

allocation.

The first part of this dissertation defines the resource allocation problem as a

centralized optimization problem in Mixed Integer Programming (MIP) and obtains the

optimal solutions for various resource-service problem scenarios. Based on the analysis

of the optimal solutions, various heuristics are designed for efficient resource allocation.

Extended experiments are conducted with larger numbers of user requests and service

providers for performance evaluation of the resource allocation heuristics. Experimental

results of the resource allocation heuristics show the comparable performance of the

heuristics to the optimal solutions from solving the optimization problem. Moreover, the

 ii

resource allocation heuristics demonstrate better computational efficiency and thus

scalability than solving the optimization problem.

The second part of this dissertation looks into elements of service provider-user

coordination first in the formulation of the centralized resource allocation problem in

MIP and then in the formulation of the optimization problem in a decentralized manner

for various problem cases. By examining differences between the centralized, optimal

solutions and the decentralized solutions for those problem cases, the analysis of how the

decentralized service provider-user coordination breaks down the optimal solutions is

performed. Based on the analysis, strategies of decentralized service provider-user

coordination are developed.

 iii

ACKNOWLEDGMENTS

First of all, I am very thankful to God for His grace and blessings. This journey from start

to finish has done with His continuous help and love.

 I would like to express my sincere thanks to all of my committee members, my

family members and friends, and CIDSE staffs at ASU for their big support, help and

great encouragement during my Ph.D. study.

 First, I would like to gratefully acknowledge my wonderful committee whose

support and inspiration enabled me to achieve the goal of completing this research.

 I would like to thank my academic advisor, Dr. Nong Ye for being a great mentor

with big support and guidance. I have learned not only knowledge but also strong mind

and passion, dedication to professional career, research and life. I really appreciate her for

giving me a great motivation continuously by her wholehearted support.

 I would also like to thank Dr. Teresa Wu, Dr. Rong Pan and Dr. Sik-Sang Yau for

having served on my dissertation committee. I greatly appreciate their time, support and

valuable insights. I also want to thank Dr. Muhong Zhang for her constructive comments.

 Thanks also go to my fellow colleagues for making my time in the Ph.D. program

more enjoyable, especially thank to Zhuoyang Zhou who was very kind and supportive.

 My special thanks go to all of my family members in God for their love and

prayers at Irvine World Vision Church in California, Bupyeong Methodist Church in

South Korea and The Lord's Church of Praise in Arizona. I would like to thank Rev.

Chan Hong Kim and Young Mi Kim to support me with God's words and prayers in AZ.

 Lastly, I would like to express my deep appreciation to my beloved parents, Han

Seob Yang and Soon Ok Hwang and my beloved parents-in-law, Eun Pa Hong and Mi

 iv

Young Kim for their unconditional love, support and encouragement. Many thanks to my

beloved husband, Shinil Hong, who made this long journey much more pleasant with his

love and prayers.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vii

LIST OF FIGURES ... xi

CHAPTER

1 INTRODUCTION ...1

2 THE ANALYSIS OF CENTRALIZED, OPTIMAL SOLUTIONS TO DEVELOP

HEURISTICS ..6

2.1 Literature Review ...6

2.2 Research Focus ...12

2.3 The Formulation of the Resource Allocation Optimization Problem13

2.4 Design of Problem Cases for Optimal Solutions19

2.5 Research Methodology ...36

2.5.1 The Analysis of Optimal Solutions to Develop Heuristics36

2.5.2 Statistical Data Supporting the Heuristics50

2.5.3 The Systematic Flow of the Heuristic Algorithm77

2.6 Description of Extended Problem Cases for Performance Comparison 80

2.7 Results and Discussions ...89

2.7.1 Solution Optimality ..91

2.7.2 Scalability ...107

2.8 Conclusions ..110

 vi

CHAPTER Page

3 THE ANALYSIS OF SERVICE PROVIDER-USER COORDINATION FROM

CENTRALIZED ALGORITHM TO DEVELOP A DECENTRALIZED

METHOD ..113

3.1 Literature Review ...113

3.2 Research Focus ...118

3.3 Research Methodology ...119

3.3.1 The Modified Formulation of the Centralized Resource

Allocation Problem ...120

3.3.2 A Decentralized Strategy of Service Provider-User

Coordination ...125

3.4 Description of Experimental Scenarios ..128

3.5 Results and Discussions ...138

3.5.1 Solution Optimality ..138

3.5.2 Scalability ...152

3.6 Conclusions ..154

4 CONCLUSIONS AND FUTURE WORK ..157

REFERENCES.. 162

APPENDIX

A DESCRIPTION OF VARIOUS HEURISTICS IN EXISTING STUDIES170

B AN EXAMPLE OF THE RESOURCE ALLOCATION PROBLEM

FORMULATION ..173

 vii

LIST OF TABLES

Table Page

1. Analysis of Literatures in Comparison with This Study7

2. Variables and Indices for the Resource Allocation Optimization Formulation .15

3. Decision Variables and Given Inputs for the Resource Allocation Optimization

Formulation ..16

4. QoS Levels and Limit of Service Parameters for Communication Intensive

Service and Computation Intensive Service in Step 1, Step 2 and Step 3

Experiments ..20

5. Capacity Limits of Two Resource Variables (���� , ����) for Communication-

Centered Server and Computation-Centered Server and Number of Servers used

in Step 1, Step 2 and Step 3 Experiments ..22

6. Resource and QoS Impact Models of Communication Intensive Service and

Computation Intensive Service in Step 1, Step 2 and Step 3 Experiments24

7. Design of Experimental Setup with Different Numbers of Service Requests in

Step 1 Experiment ..25

8. Design of Experimental Setup with Different Numbers of Service Requests in

Step 2 Experiment ..27

9. Design of Experimental Setup with Different Numbers of Service Requests in

Step 3 Experiment ..29

10. The Heuristics for Case A Problems ..36

11. The Heuristics for Case B Problems ..38

 viii

Table Page

12. Service Decisions made in the Optimal Solutions for Two Problem Cases in

Case B ..42

13. The Heuristics for Case C Problems ..45

14. Two Sets of Probability Parameters used for Obtaining Heuristic Solutions47

15. Service Decisions made in the Optimal Solutions for Two Problem Cases in

Case C ..48

16. Design of Experimental Setup not under Tight Resource Capacity Condition for

Case B in Step 1, Step 2 and Step 3 Experiments ..52

17. Definition of Variables for the Supporting Statistics ...54

18. Statistics for Step 1 Experimental Result ...56

19. Statistics for Step 2 Experimental Result ...64

20. Statistics for Step 3 Experimental Result ...71

21. QoS Levels and Limit of Service Parameters for Communication Intensive

Service and Computation Intensive Service in Step 4 and Step 5 Experiments 81

22. Capacity Limits of Two Resource Variables (���� , ����) for Communication-

Centered Server and Computation-Centered Server and Number of Servers used

in Step 4 and Step 5 Experiments ...82

23. Resource and QoS Impact Models of Communication Intensive Service and

Computation Intensive Service in Step 4 and Step 5 Experiments84

24. Design of Experimental Setup with Different Numbers of Service Requests in

Step 4 Experiment ..85

 ix

Table Page

25. Design of Experimental Setup with Different Numbers of Service Requests in

Step 5 Experiment ..87

26. Comparisons between the Optimal Solutions and the Heuristic Solutions with

Parameter Set 1 ...92

27. Service Decisions made in the Optimal Solution and the Heuristic Solution at

Iteration 100 ...100

28. Comparisons between the Optimal Solutions and the Heuristic Solutions with

Parameter Set 2 ...105

29. Computation Times (in seconds) of Obtaining the Optimal Solutions and the

Heuristic Solutions with Parameter Set 1 ...109

30. Computation Times (in seconds) of Obtaining the Optimal Solutions and the

Heuristic Solutions with Parameter Set 2 ...110

31. Variables and Indices used in the Modified Formulation of the Centralized

Resource Allocation Problem ...121

32. Decision Variables and Given Inputs used in the Modified Formulation of the

Centralized Resource Allocation Problem ...122

33. Levels of Service Parameters for Voice Communication, Data Encryption and

Motion Detection Services ...130

34. Capacity Limits of Two Resource Variables: Processor Time (%) and

Committed Memory (MB) ...134

35. QoS Requirements of Various Problem Cases ...135

36. Number of Clients Satisfied in the Centralized and Decentralized Solutions ..139

 x

Table Page

37. Values of the Objective Function in the Centralized and Decentralized

Solutions ...139

38. Service Decisions made in the Centralized and Decentralized Solutions for Two

Problem Cases ..141

39. Service Decisions made at Two Iterations in the Decentralized Solution for One

Problem Case with Server Configuration 3 ..143

40. Service Decisions made at Three Iterations in the Decentralized Solution for

One Problem Case with Server Configuration 5 ..148

41. Computation Times (in seconds) of Obtaining the Centralized and

Decentralized Solutions ..153

 xi

LIST OF FIGURES

Figure Page

1. The Coverage of Case A Problems by Heuristic A-1 ..37

2. The Coverage of Case B Problems by the Heuristics ..41

3. The Coverage of Case C Problems by the Heuristics ..46

4. Observation of Dropping Service Requests for Case C97

5. Computation Times (in seconds) of Obtaining the Optimal and Heuristic

Solutions ...109

6. Computation Times (in seconds) of Obtaining the Centralized and

Decentralized Solutions ..154

 1

CHAPTER 1

INTRODUCTION

 Many large IT service providers and organizations such as Google, IBM, Amazon,

Microsoft, Yahoo, and Sun use service clouds for service provision to their users (Zhang

& Zhang, 2009). Service clouds contain a large number of computer and network servers

that take dynamic service orders from a large number of users. With the dynamic inflow

of service orders, IT organizations are also required to keep pace with a high rate of

changes with regard to user demands, market and techniques. They face rapidly changing

market conditions, new competitive pressures and threats, and new regulatory flats that

demand compliance. All of these situations drive the need for the IT infrastructure of an

organization to respond quickly in support of new business models and requirements

(Kreger, 2001; Papazoglou, Traverso, Dustdar, & Leymann, 2007).

 In those environments, cloud computing has gained great attention as the next

generation of the computing paradigm from the generations of mainframe, personal

computers, client-server computing and web computing (Rajan & Jairath, 2011). A cloud

is defined as a virtual pool of resources which are built on distributed infrastructure.

Cloud computing is a type of parallel and distributed system consisting of collections of

virtual computing, data and software resources to provide on-demand IT services to users

in a pay-as-you-go manner and is accessible as a composable service by the network or

typically by the Internet (Armbrust et al., 2010; Rajan & Jairath, 2011; Zhang, Zhang, &

Cai, 2007).

 With cloud computing, it can reduce IT complexity and costs by eliminating

ownership costs such as investment, upgrade and maintenance costs and, instead, need to

 2

pay rental usage of IT resources. Moreover, it can provide a better quality of services to

wider range of users by having on-demand, highly elastic, portable, agile service delivery

from service providers at anytime from anywhere (Endo et al., 2011; Foster, Zhao, Raicu,

& Lu, 2008; Lin & Lu, 2011; Yigitbasi, Iosup, Epema, & Ostermann, 2009; Zhang &

Zhang, 2009).

 A major advantage of cloud computing is high scalability to have a large capacity

of virtual resources by pulling together a large pool of physical resources. The Open

Cloud Computing Federation involving multiple Cloud Computing Service Providers

(CCSPs) provides a uniform resource interface for the rapid growth of cloud users. In

addition to scalable services, on-demand usage and a pay-as-you-go business model,

other benefits of cloud computing include reliability of services, increased resource

utilization rather than having additional and expensive resources just for peak service

periods of a limited user population, and so on (Jamkhedkar, Lamb, & Heileman, 2011).

 The success of cloud computing mainly depends on the allocation of resource in

an efficient and effective way (Shyamala & Rani, 2015). Resource management in cloud

computing is challenging as it has to satisfy objectives of all CCSPs and cloud users in an

unpredictable environment with fluctuating workload, large shared resources and

complex policies to manage them. General policies for consideration in cloud resource

management are as follows. Admission control determines whether a cloud user's service

request is admitted for service processing in the cloud. Resource distribution provides

Virtual Machines (VMs) onto physical machines and assigns resources to service

requests. Energy optimization optimizes the use of energy in cloud data centers. Quality

 3

of Service (QoS) guarantees the quality of a cloud user's service request in terms of

response time, operational cost and system throughput.

 Resource allocation system aims to ensure that the requested services'

requirements are facilitated by CCSP's infrastructure. A CCSP offers IT resources as a

service to the cloud users either through private or public networks. For efficient resource

allocation in cloud computing with related policies, there is a need to obtain accurate

information about the global state of the system (Marinescu, 2013). Hence, many studies

propose to use centralized algorithms from mathematical programming, game modeling

to heuristics, which require a central entity to be present for either solving the resource

allocation optimization problem directly or coordinating solutions of the resource

allocation problem with information of all service requests' requirements and resource

status of all service providers. However, the centralized methods easily suffer from the

scalability problem in generating the optimal solutions for increasing problem sizes

(Selvi, Valliyammai, & Dhatchayani, 2014).

 Decentralized algorithms solely rely on interactions among service providers or

interactions between service providers and end users to seek the solution of a resource

allocation problem, without any central entity to be present. Using such self-management

principles with the decentralized manner in many studies does not guarantee generating

optimal or near-optimal solutions in resource allocation. More research for obtaining

efficient resource allocation solutions in real time is still on-going by examining new

algorithms, which can guarantee solution optimality as well as scalability. This

dissertation contributes to identify and establish two efficient resource allocation methods

 4

to generate optimal or near-optimal solutions for resource allocation with satisfactory

scalability.

 Chapter 2 aims at identifying centralized heuristics to generate optimal or near-

optimal solutions within a short time period. To achieve this research goal, it starts with a

set of representative problem cases to obtain the centralized, optimal solutions. The

problem cases involve various types of a service provider's configuration and various

problem sizes with different numbers of service providers and service requests. By

investigating the optimal solutions for the problem cases, this research analyzes how the

centralized, optimal solutions make decisions of which service request is sent to which

service provider for the service provision while satisfying the service request's

requirement with accurate resource assignment. As a result, important heuristics are

suggested for various conditions, which capture the centralized decision making in

optimal solutions, in generating optimal or near-optimal resource allocation solutions.

Then, the proposed heuristics are tested in another set of representative problem cases

with introduction of more problem complexity by increasing the number of service

providers and the number of service requests to evaluate the performance quality of the

proposed heuristics in larger problem cases. The experimental results demonstrate how

competitive the heuristic algorithms are by comparing with the optimal solutions.

 Chapter 3 aims at identifying elements of service provider-user coordination that

can lead a scalable, distributed algorithm to the optimal or near-optimal solution. To

achieve this research goal, it starts with a simple service provider-user coordination

protocol in a scalable, distributed algorithm. By examining differences between the

centralized, optimal solutions and the decentralized solutions for various problem cases

 5

involving various types of a service provider's configuration and different numbers of

service requests, this research analyzes how the decentralized service provider-user

coordination breaks down the centralized, optimal solutions and, as a result, suggests key

elements of the decentralized service provider-user coordination strategies.

 6

CHAPTER 2

THE ANALYSIS OF CENTRALIZED, OPTIMAL SOLUTIONS TO DEVELOP

HEURISTICS

 Efficient resource allocation is one of the most important parts in cloud

computing, which heavily relies on allocation of computer and network resources of

service providers to requested services of users for satisfying the users' service

requirements. This study in Chapter 2 first defines the resource allocation problem as an

optimization problem in MIP and obtains the optimal solutions for various resource-

service problem scenarios. Based on the analysis of the optimal solutions in those

problem scenarios, important heuristics are designed for efficient resource allocation.

Then, extended experiments are conducted with larger numbers of user requests and

service providers for performance evaluation of the resource allocation heuristics.

Experimental results of the resource allocation heuristics show the comparable

performance of the heuristics to the optimal solutions from solving the centralized

optimization problem. Moreover, the resource allocation heuristics demonstrate better

computational efficiency and thus scalability than solving the centralized optimization

problem.

2.1 Literature Review

 Table 1 shows a summary of comparisons between existing work in resource

allocation and this study in several aspects. Appendix A shows the description of various

heuristics for efficient resource allocation used in the existing studies.

 7

Table 1

Analysis of Literatures in Comparison with This Study

Literatures

SLA

(QoS, Resource

Requirements, etc.)

Service,

System

Models

Insufficient

resource

capacity

Scalability

Solution optimality

(compared by

optimal solutions)

This study Yes Yes Yes Yes Yes

(Messina,

Pappalardo, &

Santoro, 2012, 2014;

Papagianni et al.,

2013)

Yes No No Yes No

(Son, Jung, & Jun,

2013)
No No No Yes No

(Kadda,

Benhammadi,

Sebbak, & Mataoui,

2015; Li, Wang, &

Liu, 2014; Srinivasa

et al., 2014; Wang &

Fang, 2014; Zhou,

Dutkiewicz, Liu,

Fang, & Liu, 2014)

No No No No No

(Zuo, Zhang, & Tan,

2014)
Yes No Yes Yes Yes

(Goudarzi & Pedram,

2011b)
Yes No No Yes No

(Nesmachnow,

Iturriaga, &

Dorronsoro, 2015)

Yes No Yes Yes No

(Hsu, Chen, & Park,

2008; Liu, Zhou, Fu,

& Liu, 2014; Suresh

& Vijayakarthick,

2011; Varalakshmi,

Judgi, & Hafsa,

2013; Wu, Deng,

Zhang, Zeng, &

Zhou, 2013)

Yes No No No No

(Sharma, Tantawi,

Spreitzer, &

Steinder, 2010; Wei

& Blake, 2013)

Yes No No No Yes

(Dhingra & Paul,

2014)
No Yes Yes No No

(Kumar, Feng,

Nimmagadda, & Lu,

2011)

Yes Yes Yes Yes No

 8

 A lot of studies have introduced various algorithms for efficient resource

allocation to service requests in cloud computing environments as shown in Table 1 and

Appendix A. This study considers satisfaction of QoS and resource requirements stated in

Service Level Agreements (SLA) when determining allocation of computer and network

resources to service requests. Some studies allow SLA violations in generating their

solutions. Son et al. (2013) proposed to evaluate appropriateness of each data center by

considering geographical locations of cloud users and CCSPs and resource workload

through its utility function. However, it resulted in 0.1%~13% of SLA violations and

placement failures for its solutions even when resource capacity over all servers was

sufficient to serve all service requests. Dhingra and Paul (2014) focused on total profit

maximization than SLA satisfaction of service requests such as QoS requirements or

resource constraints in generating resource allocation solutions. When a violation

occurred in resource constraints or the QoS requirement of a service request was not

satisfied, a penalty value was imposed affecting the system profit adversely. Genetic

algorithm was proposed for QoS-aware service composition (Canfora, Penta, Esposito, &

Villani, 2005). It had a single-objective fitness function where factors were aggregated

using a weighted sum, and it allowed violation of constraints with a static penalty value.

 To ensure satisfaction of requirements for all service requests, this study

introduces the use of service and system models for precise resource allocation similar to

our previous work (Ye, Yang, & Aranda, 2013). Only a few studies (Dhingra & Paul,

2014; Kumar et al., 2011) used such service and system models for resource allocation

problems. However, the solutions did not get compared with the optimal solutions. In

 9

(Kumar et al., 2011), Earliest Deadline First-greedy algorithm was used to allocate tasks

to available VMs through a lookup table based on computing speeds and costs of VMs. In

addition, a simple equation was provided to estimate completion time for each task.

However, the experimental results were evaluated by comparing with other scheduling

solutions. An optimization technique called Bacterial Foraging used in (Dhingra & Paul,

2014) tried to optimize resource allocation and thus, improved energy efficiency of the

data center specifically in power consumption. The power consumption model by CPU

utilization was defined and used to determine efficient resource allocation solutions.

However, it only provided analysis of three different heuristic solutions.

 Proposed heuristics in this study can generate solutions even when overall

resource capacity is not sufficient for all service requests. Other studies introduce the use

of external VMs with different pricing schemes or VM migration instead of dropping the

overloaded requests. As an example, Zuo et al. (2014) proposed the use of self-adaptive

learning particle swarm optimization to solve the task allocation problem modeled as an

integer programming. When resources were not sufficient to meet the demand,

outsourcing tasks to external clouds was proposed rather than generating solutions with

some tasks dropped under its own resource capacity. Moreover, the performance of our

proposed heuristics is compared with the optimal solutions, whereas most literatures

show the quality of their proposed solutions compared with other common heuristics.

Only a few studies (Sharma et al., 2010; Wei & Blake, 2013; Zuo et al., 2014) analyzed

their solutions by comparing with the optimal solutions based on the assumptions to

know estimation of resource and service relationships.

 10

 Furthermore, the heuristic solutions in this study are generated with great

scalability, while some literatures focus on generating good solutions without addressing

scalability issue. A new task scheduling approach based on adjusting maximum entropy

method in (Li et al., 2014) considered each scheduler to calculate the best task slicing

scheme, resulting in minimum task response time. Srinivasa et al. (2014) introduced a

game modeling between clients with the utility factor, which considered time and budget

constraints. The request with highest expected utility from the entire set of waiting

requests was selected for service scheduling. A modified elite chaotic immune clonal

selection algorithm by (Zhou et al., 2014) was developed to increase overall efficiency of

system with ranking, evaluation and mutation processes. The algorithms used in those

studies generated solutions without addressing computational efficiency and were not

able to compare their solutions with the optimal solutions.

 From the literatures reviewed above, two methods are found in an approach to

obtain a resource allocation solution. First, all service requests are sorted by their priority

values and each requested service is assigned to a CCSP one at a time. In (Kadda et al.,

2015), jobs and tasks in a job were sorted in an ascending order of their Computation

Time (CT) and assigned to the selected clusters and servers with minimum CT

respectively. Similarly, in (Wu et al., 2013) task priority was computed by its attributes of

user privilege, task length or its waiting time in queue, and a sorted task was assigned to a

server with minimum CT. A self-adaptive learning particle swarm optimization used in

(Zuo et al., 2014) assigned different priorities to all tasks by four velocity updating

strategies and allocated tasks to cloud based on the assigned priority. In (Goudarzi &

Pedram, 2011b), an initial solution obtained by a greedy algorithm determined the order

 11

of resource assignment processing for clients. Then, a heuristic of force-directed resource

assignment was applied to a mixed integer non-linear programming problem by checking

partial profit gained from allocating each portion of a client's request to a server.

Heuristics used in (Nesmachnow et al., 2015) assigned different priorities to requests

with diverse criteria, and reordering local search was applied to improve solution

accuracy.

 Second, a group of service requests by various criteria are sent to different servers,

and each server processes the given requests with a master-slave structure. For linear

programming problem formulated in (Shi & Hong, 2010), one master node sent tasks to

sub-nodes for executing the received tasks based on two modes of the system, either

budget-bound mode or communication-bound mode. An efficient resource allocation

strategy was proposed in (Hsu et al., 2008) by combination of one resource broker (as the

master node) and a number of heterogeneous clusters (as slave processors) for

distributing tasks onto computing nodes with smallest communication ratio. In (Suresh &

Vijayakarthick, 2011), the metascheduler scheduled all service requests to maximize

resource utilization by parallel job scheduling strategies, and jobs were executed at the

cloud cluster by each local scheduler. A MIP problem was formulated in (Papagianni, et

al., 2013) in a way that requests were mapped to two phases by solving flow allocation

(as a node mapping) and allocating virtual links to substrate (as a link mapping) as the

multicommodity flow allocation problem. Urgaonkar, Kozat, Igarashi, and Neely (2010)

introduced a joint utility function of an average application throughput and energy costs

of a data center. Jobs were routed to join the shortest queue policy with knowledge of

 12

queue backlog information, and with the assigned jobs, the optimal resource allocation at

each active server was solved.

 Similar to the first method, in this study, all service requests are randomly ordered

first and then each requested service is assigned to a CCSP one at a time through the

proposed heuristics. The detail of the heuristics are described in Chapter 2.5.1.

2.2 Research Focus

 Heuristics have been introduced in many researches to get optimal or near-

optimal solutions in resource allocation problem, rather than solving the centralized

optimization problem directly for resource allocation decisions due to its computation

complexity. In other words, the solutions of the optimization problem cannot be obtained

in realistic time except for small problem cases.

 Centralized heuristics (i.e. heuristics in a centralized form are applied to obtain a

solution with a much smaller solution space than the centralized algorithm) has not been

well addressed in existing work for resource allocation in cloud computing environments.

A major challenge is to produce the heuristic solutions as good as or close to the optimal

solutions that can be obtained by solving the optimization problem with all information

available and all decisions made in one place. Another challenge is to produce the

heuristic solutions with fast convergence rate regardless of problem sizes. Moreover,

there are few studies to work on task assignment with efficient resource allocation

simultaneously. To deal with those challenges the current studies have, it is essential to

investigate and discover heuristics in producing optimal or near-optimal solutions for

resource allocation with great scalability.

 13

 This study in Chapter 2 aims at identifying new heuristics to generate optimal or

near-optimal resource allocation solutions within a short time period. To achieve this

research goal, it first formulates the resource allocation optimization problem and obtains

the optimal solutions for various problem cases. Based on the analysis of optimal

solutions for the problem cases under different types of service providers' configuration

and problem sizes with various numbers of service providers and service requests, this

study proposes heuristics for efficient resource allocation in those problem cases. The

proposed heuristics are designed especially by capturing the decision making behavior of

solving the optimization problem to generate the optimal solutions. Then, the heuristics

are tested in extended problem cases with introduction of more complexity by increasing

the number of service providers and the number of service requests to evaluate

performance quality of the proposed heuristics.

2.3 The Formulation of the Resource Allocation Optimization Problem

 Resource allocation is often addressed as an optimization problem consisting of

objectives, decision variables, constraints, and algorithms to solve it. There are mainly

three types of optimization objectives in resource allocation: 1) resource performance

objectives such as resource utilization, load balancing, and energy saving by switching on

and off servers depending on their workload and resource status (Berman, 1999;

Kuribayashi, 2011; Livny & Raman, 1999; Rezvani, Akbari, & Javadi, 2015; Wuhib,

Stadler, & Spreitzer, 2010; Yin, Wang, Meng, & Qiu, 2012), 2) system performance

objectives including system throughput measured by the number of jobs executed by the

system (Atiewi, Yussof, & Ezanee, 2015; Berman, 1999; Mehdi, Mamat, Ibrahim, &

Subramaniam, 2011; Shi & Hong, 2010; Urgaonkar et al., 2010; Yang, Qin, Li, & Yang,

 14

2013), and 3) application performance objectives of response time (e.g., execution time

and makespan), QoS (Ardagna, Casolari, & Panicucci, 2011; Berman, 1999; Gong,

Ramaswamy, Gu, & Ma, 2009; Laili et al., 2013; Sindhu & Mukherjee, 2013; Wang &

Su, 2015).

 The optimization problems in resource allocation are subject to various types of

constraints. Application requirements of resource and QoS are stated in SLA between

cloud users and CCSPs (Endo et al., 2011; Wuhib et al., 2010) including CPU and

memory requirements for host machines, bandwidth, delay, and QoS requirements (e.g.,

execution time) of services and applications (Chen, Farley, & Ye, 2004; Hu, Cao, & Gu,

2008; Lamparter, Ankolekar, & Studer, 2007; Staikopoulos, Cliffe, Popescu, Padget, &

Clarke, 2010; Tran, Tsuji, & Masuda, 2009; Wang, Vitvar, Kerrigan, & Toma, 2006;

Zheng, Yang, & Zhao, 2010); capacity limits of resources are given to indicate the

maximum capacity of each system resource; service and system models are provided to

describe how services produce resource workloads and thus change the state of system

resources which in turn affect the performance of services (Yau et al., 2009; Ye et al.,

2010). The accuracy and quality of predicted behavior based on such models are

fundamental to the effectiveness of precise resource allocation and service scheduling

(Berman, 1999; Marinescu, 2013).

 Service requests by cloud users require some resource amount to run them with

satisfying requirements of the users. Here, service parameter values of service requests

are assigned to provide the services to users, and the values of service parameters affect

quality of the services. In the optimization problem for this study, decision variables are

used to assign requested services of cloud users to CCSPs with specific values of service

 15

parameters for the services. In addition, service and system models for each CCSP are

included in constraints to predict resource workloads and service performance for precise

resource allocation. This optimization problem addresses resource, system and

application objectives of resource allocation and is solved for each epoch of dynamic

resource allocation. The resource allocation optimization problem is formulated as a MIP.

Note that a service provider may have one or more servers and that a service user may

generate one or more clients. Each client may request one service. Hence, in the

following formulation, the terms of server and client are used. Table 2 and Table 3

indicate variables and indices, and decision variables and given inputs used in the

formulation respectively.

Table 2

Variables and Indices for the Resource Allocation Optimization Formulation

� A given client, k = 1,…, K

� A given server, i = 1,…, I

	� Resource variable w of server i, wi = 1,…, Wi

s A service type, s = 1,…, S

�� Service parameter d of service s, ds = 1,…, Ds

� QoS variable p of service s, ps = 1,…, Ps

����� The amount of resource variable w of server i taken by client k’s service

request as a positive real value

����� The value of QoS variable ps of client k’s service request on server � as a

positive real value

 16

Table 3

Decision Variables and Given Inputs for the Resource Allocation Optimization

Formulation

��� Binary decision variables such that

 ��� = 1 if client k’s service request is assigned to server i

 ��� = 0 if client k’s service request is not assigned to server i

����� Positive integer decision variables,

Level of service parameter ds for client k’s service request on server i

��� Given inputs from client k, such that ∑ ���� = 1 for a given k,

��� = 1 if client k’s service request uses service s

��� = 0 if client k’s service request does not service s

��� Given inputs from server i,

��� = 1 if service s is provided by server i

��� = 0 if service s is not provided by server i

������ Given inputs as a positive integer value from client k,

Limit (i.e. the maximum level) of service parameter ds of client k’s service

request on server i.

����
� Given inputs as a positive real value from server i to indicate the resource

capacity,

Limit of resource variable w of server i

����
� Given inputs as a positive real value from client k to specify QoS

requirements,

Limit of QoS variable ps of client k’s service request

 The formulation of the resource allocation optimization problem is as follows.

Minimize ∑ ∑ #∑ $%&��� '$%&�
(#

$%&�
(∗*���� (1)

subject to

∑ ��� ≤ 1 ∀� � (2)

������ ≤ ��� ∀�, �, . (3)

����� ≤ ������ ∀�, �, �� (4)

 17

����� = ���/���0����, … , ��2��3 ∀�, �, 	� (5)

����� = ���4���0����, … , ���5�3 ∀�, �, � (6)

∑ ������ ≤ ����
� ∀�, 	� (7)

����� ≤ �������
� or ����� ≥ �������

� ∀�, �, � (8)

 The objective function in Equation (1) is to make the levels of the QoS variables

closest to the QoS requirements. The difference between the actual QoS level (�����) and

the required QoS level (����
�) for each QoS variable (�) is first normalized by the

required QoS level, then summed and normalized over the total number of QoS variables,

finally summed over all clients' service requests. More importantly, this objective

function ultimately makes as many clients' services to be served as it can since the

penalty of not serving a client's service request (i.e. 1) is always bigger than a difference

between any QoS level provided and the required QoS level.

 As a server-client coordination constraint, Equation (2) guarantees that client k’s

service request can be assigned to one server i at most. Equation (3), as a service

constraint, requires if client k’s service request is assigned to server i, the service type s of

client k’s service request must be provided by server i (i.e. if ��� = 1 and ��� = 1, then

��� = 1). As another service constraint, Equation (4) enforces that the level of service

parameter ds of client k’s service request on server i should not exceed the limit (i.e. the

maximum level).

 As service-resource-QoS relation constraints, Equation (5) gives relations of

service parameters with resource usages in function /��� of the assigned level of service

parameter ds of client k’s service request on the server only if client k’s service request is

 18

assigned to the server i. Equation (6) gives relations of resource usages with QoS

performance in function 4��� of the service’s resource usages on the server only if client

k’s service request is assigned to the server i.

 As a resource capacity constraint, Equation (7) enforces that the total resource

amount on the resource variable w of server i used by all service requests for all clients

should not exceed the maximum resource capacity for this resource variable. As a QoS

requirement constraint, Equation (8) ensures that the QoS level of � for the client k’s

service request at server i is equal to or less than the maximum QoS requirement or equal

to or greater than the minimum QoS requirement, only if client k’s service request is

assigned to server i. Appendix B shows one example, which gives realization of the

resource allocation problem formulation.

 The MIP problem is implemented in ILOG OPL Development Studio IDE

Version 6.1. ILOG CPLEX 11.2.0 is used as a solver to the MIP problem. A laptop

computer used to run the software is a Samsung Q320 with Intel Core 2 Duo T6500 2.1

GHz processor, 4 GB RAM, and Windows 7. The ILOG OPL and CPLEX are integrated

into C# code in Microsoft Visual Studio 2010. The C# code first loads all the necessary

input files of the problem including given inputs as well as service-resource relation

functions and resource-QoS relation functions for each service type. With the loaded

input files, the C# code then calls ILOG OPL and CPLEX to run the MIP optimization

and solve the problem to generate an optimal solution. The computation time of obtaining

the optimal solution is recorded by the C# code. Note that times required for loading

input files and generating output files are also included in the computation time of

obtaining the optimal solution.

 19

2.4 Design of Problem Cases for Optimal Solutions

 In this section, a set of problem cases with different experimental settings are

designed to analyze the optimal solutions and to identify important heuristics in order to

generate optimal or near-optimal resource allocation solutions. This study uses two types

of services: a communication intensive service and a computation intensive service. The

communication intensive service has one service parameter and one QoS variable with

QoS levels of Low (L), Medium (M) and High (H). Similarly, the computation intensive

service has one service parameter and one QoS variable with QoS levels of L, M and H.

If a provided QoS level of a service request is equal to or greater than a required QoS

level, then the service request is considered as satisfied in both types of services. In this

study, three experiments named Step 1, Step 2 and Step 3 are conducted. Table 4 shows

three levels of QoS variables and limit (i.e. the maximum level) of service parameters for

the communication intensive service and the computation intensive service used in the

experiments.

 20

Table 4

QoS Levels and Limit of Service Parameters for Communication Intensive Service and

Computation Intensive Service in Step 1, Step 2 and Step 3 Experiments

Experiment

Communication Intensive Service

(s = 1)

Computation Intensive Service

(s = 2)

QoS Levels

(���:
�)

Limit of service

parameter (���:��)

QoS Levels

(���;
�)

Limit of service

parameter (���;��)

Step 1

L (5)

M (15)

H (25)

5

L (6)

M (17)

H (30)

5

Step 2

L (8)

M (15)

H (21)

5

L (7)

M (14)

H (25)

5

Step 3

L (4~5)

M (15~17)

H (21~23)

4

L (3~4)

M (12~14)

H (18~19)

4

 Step 1 experiment lets each client using the communication intensive service set

the maximum level of service parameter to 5 and set the QoS requirement to one of three

levels: 5 for L, 15 for M and 25 for H. It also lets each client using the computation

intensive service set the maximum level of service parameter to 5 and set the QoS

requirement to one of three levels: 6 for L, 17 for M and 30 for H. Similarly, Step 2

experiment lets each client using the communication intensive service set the maximum

level of service parameter to 5 and set the QoS requirement to one of three levels: 8 for L,

15 for M and 21 for H. It also lets each client using the computation intensive service set

the maximum level of service parameter to 5 and set the QoS requirement to one of three

levels: 7 for L, 14 for M and 25 for H.

 21

 Different from the experiments of Step 1 and Step 2, Step 3 experiment has a

range of QoS requirement for each level and thus randomly assigns a specific value of the

QoS variable given the QoS requirement level from a client. Hence, Step 3 experiment

lets each client using the communication intensive service set the maximum level of the

service parameter to 4 and set the QoS requirement to one of three levels of L, M and H,

and a specific QoS value is randomly selected from 4 to 5 for L, from 15 to 17 for M and

from 21 to 23 for H. It also lets each client using the computation intensive service set the

maximum level of the service parameter to 4 and set the QoS requirement to one of three

levels of L, M and H, and a specific QoS value is randomly selected from 3 to 4 for L,

from 12 to 14 for M and from 18 to 19 for H.

 This study uses two types of servers: communication-centered server and

computation-centered server. Both types of servers have two resource variables of CPU

resource and bandwidth resource. The communication-centered server has more

bandwidth resource than CPU resource, and the computation-centered server has more

CPU resource than bandwidth resource. Table 5 shows capacity limits of two resource

variables: CPU resource and bandwidth resource for the communication-centered server

and the computation-centered server, which are used in Equation (7) for the optimization

problem. The communication-centered server has resource levels of Small (S), Medium

(M) and Large (L), and the computation-centered server also has resource levels of S, M

and L.

 22

Table 5

Capacity Limits of Two Resource Variables (<=>? , <=@?) for Communication-Centered

Server and Computation-Centered Server and Number of Servers used in Step 1, Step 2

and Step 3 Experiments

Experiment Communication-Centered Computation-Centered Number of Servers

Step 1

S (30,100)

M (36,200)

L (41,350)

S (116,27)

M (232,32)

L (406,35)

2

Step 2

S (45,100)

M (65,135)

L (90,245)

S (105,50)

M (155,70)

L (205,80)

2

Step 3

S (24~26, 81~84)

M (30~33, 93~95)

L (38~40, 104~107)

S (78~79, 25~26)

M (87~89, 29~30)

L (95~97, 32~33)

3

 Step 1 experiment lets each communication-centered server set its resource

capacity limits to one of three levels: 30 as the capacity limit of CPU resource and 100 as

the capacity limit of bandwidth resource for S, 36 of CPU resource and 200 of bandwidth

resource for M and 41 of CPU resource and 350 of bandwidth resource for L. It also lets

each computation-centered server set its resource capacity limits to one of three levels:

116 of CPU resource and 27 of bandwidth resource for S, 232 of CPU resource and 32 of

bandwidth resource for M and 406 of CPU resource and 35 of bandwidth resource for L.

 Similarly, Step 2 experiment lets each communication-centered server set its

resource capacity limits to one of three levels: 45 as the capacity limit of CPU resource

and 100 as the capacity limit of bandwidth resource for S, 65 of CPU resource and 135 of

bandwidth resource for M and 90 of CPU resource and 245 of bandwidth resource for L.

It also lets each computation-centered server set its resource capacity limits to one of

 23

three levels: 105 of CPU resource and 50 of bandwidth resource for S, 155 of CPU

resource and 70 of bandwidth resource for M and 205 of CPU resource and 80 of

bandwidth resource for L.

 Different from the experiments of Step 1 and Step 2, Step 3 experiment has a

range of capacity limits for two resource variables: CPU resource and bandwidth resource

with resource levels of S, M and L. Given the resource level from a server, it randomly

assigns each specific value for CPU resource and bandwidth resource as the capacity

limits. Hence, Step 3 experiment lets each communication-centered server set its resource

capacity limits to one of three levels of S, M and L, and a specific resource amount is

randomly selected from 24 to 26 as the capacity limit of CPU resource and from 81 to 84

as the capacity limit of bandwidth resource for S, from 30 to 33 of CPU resource and

from 93 to 95 of bandwidth resource for M and from 38 to 40 of CPU resource and from

104 to 107 of bandwidth resource for L. It also lets each computation-centered server set

its resource capacity limits to one of three levels of S, M and L, and a specific resource

amount is randomly selected from 78 to 79 as the capacity limit of CPU resource and

from 25 to 26 as the capacity limit of bandwidth resource for S, from 87 to 89 of CPU

resource and from 29 to 30 of bandwidth resource for M and from 95 to 97 of CPU

resource and from 32 to 33 of bandwidth resource for L. Note that Step 1 and Step 2

experiments have two servers in total, and Step 3 experiment has three servers in total.

 For the two services used in the experiments, two variables of resource usages are

defined as a key role in determining QoS performance of the services: CPU resource

(����) and bandwidth resource (����). The communication intensive service requires

more bandwidth resource than CPU resource, while the computation intensive service

 24

requires more CPU resource than bandwidth resource. Such resource and QoS impact

models of services are needed for Equations (5) and (6) in the optimization formulation,

and thus simple but general forms of resource and QoS impact models for the

communication intensive service and the computation intensive service are introduced.

Table 6 shows resource and QoS impact models of the two services used in the

experiments of Step 1, Step 2 and Step 3. Tables 7, 8 and 9 give the experimental setups

of Step 1, Step 2 and Step 3 experiments with different numbers of service requests

respectively.

Table 6

Resource and QoS Impact Models of Communication Intensive Service and Computation

Intensive Service in Step 1, Step 2 and Step 3 Experiments

Experiment
Communication Intensive Service

(s = 1)

Computation Intensive Service

(s = 2)

Step 1

���� = 0.1*���:�
���� = 5.0*���:�
���:� = 2���� + ����

���� = 5.8* ���;�
���� = 0.3* ���;�
���;� = ���� + ����

Step 2

���� = 0.3*���:�
���� = 4.0*���:�
���:� = 2���� + ����

���� = 3.8* ���;�
���� = 0.5* ���;�
���;� = ���� + 3����

Step 3

���� = 0.3*���:�
���� = 5.0*���:�
���:� = 3���� + ����

���� = 4.7* ���;�
���� = 0.1* ���;�
���;� = ���� + 2����

 25

Table 7

Design of Experimental Setup with Different Numbers of Service Requests in Step 1

Experiment

 Service

 Requests

Server

Configuration

All communication

intensive
All computation intensive Both service types

All-L

(1-1)

All-M

(1-2)

All-H

(1-3)

Mixed

(1-4)

All-L

(2-1)

All-M

(2-2)

All-H

(2-3)

Mixed

(2-4)

All-L

(3-1)

All-M

(3-2)

All-H

(3-3)

Mixed

(3-4)

1. All

communication

centered at S-S

(1-1)

A.15

B.35

C.50

A.6

B.10

C.15

A.4

B.7

C.10

A.10

B.17

C.25

A.4

B.8

C.13

A.1

B.2

C.3

A.1

B.2

C.3

A.1

B.3

C.5

A.15

B.27

C.38

A.7

B.12

C.18

A.3

B.5

C.8

A.5

B.8

C.13

2. All

communication

centered at M-M

(1-2)

A.30

B. 75

C.100

A.12

B.24

C.33

A.8

B.14

C.20

A.20

B.36

C.50

A.5

B.11

C.15

A.2

B.4

C.5

A.1

B.2

C.3

A.2

B.3

C.5

A.18

B.32

C.45

A.6

B.10

C.15

A.8

B.14

C.20

A.8

B.14

C.20

3. All

communication

centered at L-L

(1-3)

A.60

B.125

C.175

A.20

B.42

C.58

A.10

B.25

C.35

A.23

B.58

C.80

A.5

B.12

C.18

A.2

B.4

C.5

A.1

B.2

C.3

A.3

B.5

C.8

A.11

B.20

C.28

A.19

B.39

C.55

A.11

B.25

C.35

A.17

B.41

C.55

4. All

communication

centered at S-M

(1-4)

A.15

B.52

C.75

A.5

B.17

C.24

A.3

B.11

C.15

A.8

B.27

C.38

A.4

B.10

C.14

A.1

B.3

C.4

A.1

B.2

C.3

A.1

B.3

C.4

A.13

B.31

C.42

A.4

B.11

C.17

A.2

B.10

C.14

A.4

B.11

C.17

5. All

communication

centered at S-L

(1-5)

A.15

B.84

C.113

A.5

B.28

C.37

A.3

B.17

C.23

A.8

B.38

C.53

A.4

B.11

C.15

A.1

B.3

C.4

A.1

B.2

C.3

A.1

B.5

C.5

A.8

B.24

C.33

A.6

B.27

C.37

A.2

B.16

C.22

A.5

B.25

C.34

6. All

communication

centered at M-L

(1-6)

A.30

B.100

C.138

A.12

B.32

C.45

A.8

B.20

C.28

A.16

B.47

C.65

A.5

B.12

C.17

A.2

B.4

C.5

A.1

B.2

C.3

A.2

B.4

C.7

A.8

B.27

C.37

A.5

B.26

C.35

A.7

B.20

C.28

A.7

B.28

C.46

7. All computation

centered at S-S

(2-1)

A.4

B.9

C.13

A.1

B.2

C.3

A.1

B.2

C.3

A.1

B.3

C.5

A.15

B.35

C.50

A.6

B.11

C.15

A.4

B.7

C.10

A.9

B.18

C.25

A.8

B.20

C.28

A.6

B.12

C.18

A.2

B.4

C.5

A.5

B.7

C.13

8. All computation

centered at M-M

(2-2)

A.5

B.11

C.15

A.2

B.4

C.5

A.1

B.2

C.3

A.2

B.5

C.8

A.30

B.70

C.100

A.12

B.23

C.33

A.7

B.14

C.20

A.20

B.35

C.75

A.10

B.22

C.36

A.3

B.7

C.10

A.4

B.9

C.13

A.4

B.7

C.14

9. All computation

centered at L-L

(2-3)

A.5

B.13

C.18

A.2

B.4

C.5

A.1

B.2

C.3

A.3

B.7

C.11

A.60

B.120

C.175

A.20

B.40

C.58

A.12

B.25

C.35

A.25

B.58

C.85

A.15

B.39

C.74

A.6

B.12

C.23

A.5

B.12

C.24

A.8

B.18

C.36

10. All computation

centered at S-M

(2-4)

A.4

B.10

C.14

A.1

B.3

C.4

A.1

B.2

C.3

A.1

B.4

C.6

A.15

B.55

C.75

A.6

B.18

C.24

A.4

B.11

C.15

A.8

B.27

C.63

A.9

B.22

C.35

A.3

B.10

C.20

A.2

B.7

C.9

A.3

B.7

C.9

11. All computation A.4 A.1 A.1 A.1 A.15 A.5 A.3 A.8 A.10 A.6 A.2 A.3

 26

centered at S-L

(2-5)

B.11

C.15

B.3

C.4

B.2

C.3

B.6

C.8

B.84

C.113

B.28

C.37

B.17

C.23

B.39

C.94

B.30

C.48

B.13

C.24

B.9

C.12

B.12

C.17

12. All computation

centered at M-L

(2-6)

A.5

B.13

C.17

A.2

B.4

C.5

A.1

B.2

C.3

A.2

B.6

C.9

A.30

B.100

C.138

A.12

B.33

C.45

A.7

B.20

C.28

A.16

B.47

C.115

A.10

B.32

C.49

A.3

B.10

C.14

A.4

B.10

C.19

A.4

B.13

C.21

13. Both server types

(communication,

computation) at S-S

(3-1)

A.4

B.24

C.32

A.1

B.7

C.9

A.1

B.5

C.7

A.4

B.10

C.15

A.4

B.24

C.32

A.1

B.7

C.9

A.1

B.5

C.7

A.1

B.11

C.26

A.8

B.36

C.54

A.2

B.13

C.18

A.2

B.7

C.10

A.2

B.18

C.16

14. Both server types

(communication,

computation) at M-

M

(3-2)

A.5

B.45

C.58

A.2

B.15

C.19

A.1

B.9

C.12

A.2

B.22

C.37

A.5

B.45

C.58

A.2

B.15

C.19

A.1

B.9

C.12

A.2

B.22

C.48

A.10

B.27

C.109

A.4

B.24

C.35

A.2

B.14

C.20

A.4

B.37

C.44

15. Both server types

(communication,

computation) at L-L

(3-3)

A.5

B.76

C.97

A.2

B.25

C.32

A.1

B.15

C.19

A.3

B.35

C.80

A.5

B.76

C.97

A.2

B.25

C.32

A.1

B.15

C.19

A.2

B.37

C.54

A.12

B.130

C.175

A.4

B.42

C.59

A.2

B.26

C.35

A.2

B.63

C.73

16. Both server types

(communication,

computation) at S-M

(3-4)

A.5

B.25

C.33

A.2

B.8

C.10

A.1

B.5

C.7

A.2

B.12

C.28

A.4

B.44

C.57

A.1

B.14

C.18

A.1

B.9

C.12

A.2

B.21

C.27

A.11

B.56

C.75

A.3

B.18

C.24

A.2

B.11

C.15

A.3

B.28

C.38

17. Both server types

(communication,

computation) at S-L

(3-5)

A.5

B.26

C.34

A.2

B.8

C.10

A.1

B.5

C.7

A.2

B.13

C.28

A.4

B.74

C.94

A.1

B.24

C.30

A.1

B.15

C.19

A.1

B.35

C.79

A.10

B.84

C.113

A.3

B.27

C.37

A.2

B.16

C.23

A.3

B.40

C.55

18. Both server types

(communication,

computation) at M-L

(3-6)

A.5

B.46

C.59

A.2

B.15

C.19

A.1

B.9

C.12

A.2

B.23

C.49

A.5

B.75

C.95

A.2

B.25

C.32

A.1

B.15

C.19

A.2

B.36

C.80

A.12

B.103

C.138

A.4

B.34

C.45

A.2

B.20

C.28

A.3

B.50

C.68

19. Both server types

(communication,

computation) at M-S

(3-7)

A.4

B.44

C.57

A.1

B.14

C.18

A.1

B.9

C.12

A.4

B.21

C.46

A.5

B.25

C.33

A.2

B.8

C.10

A.1

B.5

C.7

A.2

B.12

C.28

A.10

B.55

C.75

A.3

B.18

C.24

A.2

B.11

C.15

A.3

B.27

C.40

20. Both server types

(communication,

computation) at L-S

(3-8)

A.4

B.74

C.94

A.1

B.24

C.30

A.1

B.15

C.19

A.1

B.33

C.79

A.5

B.26

C.34

A.2

B.8

C.10

A.1

B.5

C.7

A.2

B.13

C.28

A.10

B.84

C.113

A.3

B.26

C.37

A.2

B.17

C.23

A.5

B.38

C.55

21. Both server types

(communication,

computation) at L-M

(3-9)

A.5

B.75

C.95

A.2

B.25

C.32

A.1

B.15

C.19

A.2

B.34

C.80

A.5

B.46

C.59

A.2

B.15

C.19

A.1

B.9

C.12

A.2

B.23

C.49

A.10

B.104

C.138

A.4

B.33

C.45

A.2

B.20

C.28

A.3

B.48

C.65

 27

Table 8

Design of Experimental Setup with Different Numbers of Service Requests in Step 2

Experiment

 Service

 Requests

Server

Configuration

All communication

intensive

All computation

intensive
Both service types

All-L

(1-1)

All-M

(1-2)

All-H

(1-3)

Mixed

(1-4)

All-L

(2-1)

All-M

(2-2)

All-H

(2-3)

Mixed

(2-4)

All-L

(3-1)

All-M

(3-2)

All-H

(3-3)

Mixed

(3-4)

1. All

communication

centered at S-S

(1-1)

A.8

B.22

C.30

A.5

B.11

C.15

A.3

B.9

C.13

A.7

B.15

C.23

A.4

B.10

C.13

A.2

B.6

C.8

A.2

B.4

C.5

A.3

B.6

C.8

A.14

B.30

C.40

A.7

B.16

C.20

A.5

B.12

C.15

A.8

B.20

C.28

2. All

communication

centered at M-M

(1-2)

A.15

B.29

C.40

A.7

B.15

C.20

A.4

B.12

C.15

A.9

B.19

C.28

A.6

B.15

C.20

A.4

B.10

C.13

A.2

B.6

C.8

A.5

B.11

C.15

A.20

B.41

C.58

A.9

B.23

C.28

A.6

B.16

C.20

A.11

B.27

C.35

3. All

communication

centered at L-L

(1-3)

A.20

B.53

C.75

A.12

B.27

C.38

A.10

B.22

C.30

A.16

B.38

C.55

A.8

B.21

C.28

A.6

B.14

C.18

A.3

B.8

C.10

A.8

B.16

C.23

A.18

B.39

C.53

A.12

B.27

C.38

A.11

B.19

C.33

A.14

B.31

C.48

4. All

communication

centered at S-M

(1-4)

A.10

B.25

C.35

A.5

B.13

C.18

A.4

B.10

C.14

A.6

B.17

C.25

A.4

B.13

C.17

A.3

B.8

C.10

A.2

B.5

C.7

A.3

B.9

C.12

A.11

B.29

C.39

A.7

B.17

C.24

A.5

B.10

C.18

A.9

B.25

C.33

5. All

communication

centered at S-L

(1-5)

A.10

B.38

C.53

A.5

B.19

C.27

A.4

B.16

C.22

A.7

B.25

C.37

A.3

B.16

C.20

A.3

B.10

C.13

A.2

B.6

C.8

A.3

B.11

C.14

A.13

B.30

C.47

A.7

B.20

C.29

A.5

B.18

C.24

A.9

B.28

C.33

6. All

communication

centered at M-L

(1-6)

A.15

B.42

C.58

A.7

B.21

C.29

A.5

B.17

C.23

A.9

B.28

C.40

A.6

B.18

C.24

A.4

B.12

C.15

A.2

B.7

C.9

A.5

B.13

C.18

A.13

B.34

C.45

A.10

B.25

C.33

A.7

B.18

C.27

A.10

B.28

C.37

7. All computation

centered at S-S

(2-1)

A.5

B.11

C.15

A.2

B.6

C.8

A.2

B.4

C.5

A.3

B.7

C.8

A.10

B.24

C.33

A.8

B.16

C.23

A.3

B.10

C.13

A.8

B.18

C.25

A.12

B.28

C.38

A.3

B.18

C.10

A.5

B.11

C.15

A.6

B.20

C.18

8. All computation

centered at M-M

(2-2)

A.6

B.15

C.20

A.3

B.8

C.10

A.2

B.6

C.8

A.4

B.9

C.13

A.18

B.35

C.50

A.10

B.24

C.33

A.6

B.14

C.20

A.12

B.26

C.38

A.12

B.24

C.35

A.7

B.13

C.20

A.5

B.14

C.18

A.10

B.21

C.30

9. All computation

centered at L-L

(2-3)

A.8

B.18

C.25

A.4

B.9

C.13

A.3

B.7

C.10

A.5

B.12

C.15

A.20

B.47

C.65

A.15

B.31

C.43

A.8

B.19

C.25

A.15

B.34

C.48

A.14

B.31

C.43

A.11

B.24

C.35

A.7

B.20

C.28

A.12

B.22

C.35

10. All computation

centered at S-M

(2-4)

A.5

B.13

C.18

A.3

B.7

C.9

A.2

B.5

C.7

A.3

B.8

C.10

A.10

B.30

C.42

A.8

B.20

C.28

A.4

B.12

C.17

A.7

B.22

C.30

A.6

B.20

C.28

A.3

B.12

C.15

A.5

B.13

C.17

A.6

B.17

C.24

11. All computation A.5 A.3 A.2 A.3 A.10 A.8 A.4 A.7 A.6 A.3 A.5 A.7

 28

centered at S-L

(2-5)

B.14

C.20

B.7

C.10

B.6

C.8

B.10

C.12

B.35

C.49

B.24

C.33

B.14

C.19

B.27

C.35

B.21

C.32

B.16

C.23

B.10

C.22

B.22

C.27

12. All computation

centered at M-L

(2-6)

A.7

B.16

C.23

A.3

B.8

C.12

A.3

B.7

C.9

A.4

B.10

C.14

A.18

B.41

C.58

A.10

B.28

C.38

A.7

B.17

C.23

A.12

B.30

C.43

A.12

B.30

C.39

A.6

B.19

C.28

A.4

B.17

C.23

A.10

B.26

C.34

13. Both server types

(communication,

computation) at S-S

(3-1)

A.5

B.16

C.23

A.3

B.8

C.12

A.2

B.7

C.9

A.3

B.9

C.12

A.4

B.17

C.23

A.3

B.12

C.15

A.2

B.7

C.9

A.3

B.13

C.17

A.6

B.30

C.42

A.3

B.18

C.24

A.4

B.12

C.15

A.6

B.20

C.29

14. Both server types

(communication,

computation) at M-

M

(3-2)

A.7

B.22

C.30

A.3

B.11

C.15

A.2

B.9

C.12

A.4

B.15

C.18

A.6

B.25

C.35

A.4

B.17

C.23

A.2

B.10

C.14

A.5

B.18

C.27

A.10

B.44

C.60

A.6

B.26

C.35

A.4

B.18

C.23

A.4

B.30

C.38

15. Both server types

(communication,

computation) at L-L

(3-3)

A.8

B.36

C.50

A.4

B.18

C.25

A.3

B.15

C.20

A.6

B.18

C.33

A.10

B.34

C.47

A.5

B.23

C.30

A.3

B.14

C.18

A.6

B.25

C.34

A.10

B.63

C.84

A.6

B.37

C.48

A.4

B.24

C.33

A.7

B.44

C.60

16. Both server types

(communication,

computation) at S-M

(3-4)

A.6

B.19

C.25

A.3

B.9

C.13

A.3

B.8

C.10

A.4

B.14

C.20

A.4

B.23

C.32

A.3

B.16

C.20

A.2

B.10

C.13

A.3

B.17

C.23

A.9

B.38

C.52

A.5

B.22

C.30

A.4

B.15

C.20

A.6

B.26

C.35

17. Both server types

(communication,

computation) at S-L

(3-5)

A.8

B.20

C.28

A.4

B.10

C.14

A.3

B.8

C.12

A.5

B.14

C.19

A.4

B.30

C.39

A.3

B.20

C.25

A.2

B.12

C.15

A.3

B.20

C.28

A.10

B.44

C.60

A.5

B.26

C.35

A.4

B.17

C.23

A.7

B.30

C.42

18. Both server types

(communication,

computation) at M-L

(3-6)

A.8

B.23

C.33

A.4

B.12

C.17

A.3

B.10

C.13

A.5

B.16

C.23

A.6

B.31

C.43

A.4

B.21

C.28

A.2

B.13

C.17

A.6

B.22

C.32

A.13

B.49

C.69

A.7

B.30

C.40

A.4

B.20

C.25

A.5

B.35

C.44

19. Both server types

(communication,

computation) at M-S

(3-7)

A.5

B.20

C.28

A.3

B.10

C.14

A.2

B.8

C.10

A.3

B.11

C.16

A.7

B.20

C.27

A.4

B.13

C.18

A.2

B.8

C.10

A.5

B.14

C.20

A.10

B.36

C.50

A.5

B.21

C.29

A.3

B.14

C.18

A.4

B.26

C.32

20. Both server types

(communication,

computation) at L-S

(3-8)

A.5

B.33

C.45

A.2

B.17

C.23

A.2

B.14

C.18

A.3

B.23

C.29

A.10

B.22

C.30

A.6

B.15

C.20

A.3

B.9

C.12

A.6

B.17

C.23

A.8

B.50

C.65

A.4

B.28

C.37

A.3

B.20

C.25

A.6

B.35

C.48

21. Both server types

(communication,

computation) at L-M

(3-9)

A.7

B.35

C.48

A.3

B.18

C.24

A.2

B.14

C.19

A.4

B.18

C.29

A.10

B.28

C.39

A.6

B.19

C.25

A.3

B.12

C.15

A.6

B.21

C.28

A.9

B.57

C.75

A.4

B.33

C.43

A.3

B.23

C.30

A.6

B.40

C.54

 29

Table 9

Design of Experimental Setup with Different Numbers of Service Requests in Step 3

Experiment

 Service
 Requests

Server

Configuration

All communication

intensive
All computation intensive Both service types

All-L

(1-1)

All-M

(1-2)

All-H

(1-3)

Mixed

(1-4)

All-L

(2-1)

All-M

(2-2)

All-H

(2-3)

Mixed

(2-4)

All-L

(3-1)

All-M

(3-2)

All-H

(3-3)

Mixed

(3-4)

1. All communication

centered at S-S-S
(1-1)

A.13

B.45
C.60

A.4

B.15
C.19

A.2

B.11
C.15

A.4

B.22
C.23

A.4

B.14
C.19

A.1

B.3
C.4

A.1

B.3
C.4

A.2

B.7
C.8

A.16

B.55
C.75

A.5

B.18
C.23

A.4

B.14
C.19

A.5

B.25
C.27

2. All communication

centered at M-M-M
(1-2)

A.13

B.50
C.68

A.5

B.17
C.23

A.3

B.12
C.15

A.4

B.21
C.27

A.6

B.17
C.23

A.2

B.6
C.8

A.1

B.3
C.4

A.2

B.10
C.12

A.20

B.63
C.87

A.5

B.19
C.27

A.5

B.15
C.19

A.7

B.30
C.34

3. All communication
centered at L-L-L

(1-3)

A.18
B.56

C.75

A.6
B.18

C.23

A.5
B.14

C.19

A.6
B.25

C.27

A.6
B.21

C.30

A.2
B.6

C.8

A.2
B.5

C.8

A.3
B.12

C.12

A.23
B.73

C.98

A.7
B.24

C.30

A.6
B.17

C.23

A.9
B.33

C.42

4. All communication

centered at S-M-M

(1-4)

A.51

B.47

C.65

A.3

B.16

C.22

A.3

B.12

C.15

A.4

B.22

C.25

A.5

B.16

C.22

A.1

B.5

C.7

A.1

B.3

C.4

A.2

B.9

C.10

A.18

B.61

C.83

A.5

B.19

C.25

A.4

B.15

C.19

A.6

B.27

C.32

5. All communication

centered at S-L-L
(1-5)

A.14

B.51
C.70

A.5

B.17
C.22

A.4

B.13
C.18

A.5

B.21
C.25

A.4

B.19
C.27

A.1

B.5
C.7

A.1

B.5
C.7

A.2

B.9
C.10

A.19

B.66
C.90

A.6

B.22
C.28

A.4

B.16
C.22

A.5

B.29
C.37

6. All communication
centered at M-L-L

(1-6)

A.17
B.52

C.73

A.6
B.18

C.23

A.4
B.13

C.18

A.5
B.23

C.27

A.5
B.20

C.28

A.2
B.6

C.8

A.1
B.5

C.7

A.2
B.9

C.12

A.21
B.69

C.94

A.7
B.22

C.29

A.5
B.16

C.22

A.8
B.32

C.39

7. All computation

centered at S-S-S

(2-1)

A.4

B.13

C.19

A.1

B.3

C.4

A.1

B.3

C.4

A.2

B.6

C.8

A.10

B.45

C.60

A.4

B.15

C.19

A.3

B.11

C.15

A.4

B.20

C.23

A.16

B.57

C.75

A.5

B.17

C.23

A.3

B.14

C.19

A.6

B.24

C.30

8. All computation

centered at M-M-M
(2-2)

A.5

B.15
C.19

A.1

B.3
C.5

A.1

B.3
C.4

A.2

B.8
C.8

A.15

B.49
C.68

A.5

B.17
C.23

A.4

B.12
C.15

A.5

B.24
C.23

A.19

B.62
C.87

A.6

B.19
C.27

A.4

B.15
C.19

A.8

B.29
C.38

9. All computation
centered at L-L-L

(2-3)

A.5
B.17

C.23

A.2
B.6

C.8

A.1
B.3

C.4

A.3
B.10

C.12

A.18
B.54

C.75

A.5
B.18

C.23

A.4
B.14

C.19

A.6
B.25

C.27

A.21
B.70

C.94

A.6
B.24

C.30

A.4
B.15

C.19

A.8
B.34

C.38

10. All computation

centered at S-M-M

(2-4)

A.4

B.15

C.19

A.1

B.3

C.5

A.1

B.3

C.4

A.2

B.8

C.8

A.15

B.48

C.65

A.4

B.16

C.22

A.3

B.12

C.15

A.5

B.24

C.23

A.19

B.62

C.83

A.5

B.19

C.25

A.4

B.15

C.19

A.7

B.31

C.35

11. All computation

centered at S-L-L
(2-5)

A.4

B.16
C.22

A.1

B.5
C.7

A.1

B.3
C.4

A.2

B.9
C.10

A.15

B.51
C.70

A.4

B.17
C.22

A.4

B.13
C.18

A.6

B.22
C.25

A.17

B.66
C.88

A.6

B.22
C.28

A.5

B.15
C.19

A.7

B.33
C.35

12. All computation
centered at M-L-L

(2-6)

A.4
B.17

C.22

A.1
B.5

C.7

A.1
B.3

C.4

A.2
B.10

C.10

A.17
B.52

C.73

A.5
B.18

C.23

A.3
B.13

C.18

A.4
B.24

C.25

A.20
B.68

C.92

A.7
B.22

C.29

A.4
B.15

C.19

A.6
B.33

C.38

 30

13. Both server types

(communication,
computation,

computation) at S-S-S
(3-1)

A.4
B.24

C.33

A.1
B.7

C.9

A.1
B.6

C.8

A.2
B.12

C.13

A.3
B.35

C.47

A.1
B.11

C.14

A.1
B.9

C.12

A.2
B.16

C.18

A.6
B.57

C.75

A.2
B.18

C.23

A.2
B.14

C.19

A.4
B.28

C.29

14. Both server types

(communication,
computation,

computation) at M-M-
M

(3-2)

A.5
B.27

C.35

A.1
B.8

C.11

A.1
B.6

C.8

A.2
B.15

C.15

A.5
B.39

C.53

A.2
B.13

C.18

A.1
B.9

C.12

A.2
B.20

C.19

A.8
B.64

C.87

A.2
B.21

C.27

A.2
B.15

C.19

A.4
B.31

C.53

15. Both server types

(communication,

computation,
computation) at L-L-

L

(3-3)

A.5

B.30

C.40

A.2

B.10

C.13

A.1

B.7

C.9

A.3

B.16

C.17

A.7

B.45

C.60

A.2

B.14

C.18

A.2

B.11

C.15

A.3

B.20

C.22

A.10

B.71

C.95

A.3

B.24

C.30

A.2

B.16

C.20

A.6

B.33

C.40

16. Both server types

(communication,
computation,

computation) at S-M-
M

(3-4)

A.4

B.24
C.33

A.1

B.7
C.9

A.1

B.6
C.8

A.2

B.13
C.13

A.4

B.38
C.52

A.1

B.13
C.17

A.1

B.9
C.12

A.2

B.16
C.18

A.8

B.60
C.83

A.2

B.19
C.25

A.2

B.15
C.19

A.4

B.28
C.36

17. Both server types
(communication,

computation,
computation) at S-L-L

(3-5)

A.5

B.26
C.35

A.2

B.9
C.12

A.1

B.6
C.8

A.3

B.14
C.16

A.4

B.40
C.57

A.1

B.13
C.17

A.1

B.10
C.14

A.2

B.18
C.20

A.9

B.65
C.88

A.3

B.22
C.28

A.2

B.15
C.19

A.4

B.32
C.34

18. Both server types

(communication,

computation,
computation) at M-L-

L

(3-6)

A.5

B.28

C.38

A.2

B.10

C.13

A.1

B.6

C.8

A.2

B.12

C.17

A.5

B.42

C.58

A.2

B.14

C.18

A.1

B.11

C.14

A.3

B.19

C.22

A.10

B.69

C.92

A.2

B.22

C.29

A.2

B.15

C.19

A.5

B.31

C.37

19. Both server types

(communication,
computation,

computation) at M-S-
S

(3-7)

A.4
B.26

C.35

A.1
B.8

C.10

A.1
B.6

C.8

A.2
B.12

C.14

A.5
B.36

C.48

A.2
B.12

C.15

A.1
B.9

C.12

A.3
B.15

C.19

A.8
B.59

C.79

A.2
B.19

C.24

A.2
B.15

C.19

A.4
B.28

C.32

20. Both server types

(communication,

computation,
computation) at L-S-S

(3-8)

A.4

B.28
C.38

A.1

B.8
C.10

A.1

B.7
C.9

A.2

B.12
C.14

A.7

B.37
C.50

A.2

B.12
C.15

A.2

B.9
C.13

A.3

B.18
C.19

A.8

B.62
C.83

A.3

B.20
C.25

A.2

B.16
C.20

A.5

B.29
C.34

21. Both server types

(communication,

computation,
computation) at L-M-

M
(3-9)

A.5

B.29

C.38

A.1

B.8

C.12

A.1

B.7

C.9

A.2

B.15

C.14

A.7

B.42

C.55

A.2

B.14

C.18

A.2

B.10

C.13

A.3

B.18

C.19

A.10

B.68

C.90

A.3

B.22

C.28

A.2

B.16

C.20

A.4

B.30

C.39

 31

 As shown in Table 7, this study introduces twenty one server configurations

which are determined by two factors: server type and resource level of a server. With two

server types of the communication-centered server and the computation-centered server,

there are three combinations of server types for servers designed:

• All servers are communication-centered servers (Server configurations 1~6 in

Table 7).

• All servers are computation-centered servers (Server configurations 7~12 in Table

7).

• Some servers are communication-centered servers, and the others are

computation-centered servers (Server configurations 13~21 in Table 7).

 Since there are three resource levels (S, M and L) available to indicate a server's

resource capacity, six combinations of resource levels for servers are constructed when

all servers are either communication-centered servers or computation-centered servers:

• All servers of same server type have one resource level of S (Server

configurations 1 and 7 in Table 7).

• All servers of same server type have one resource level of M (Server

configurations 2 and 8 in Table 7).

• All servers of same server type have one resource level of L (Server

configurations 3 and 9 in Table 7).

• Servers of same server type have mixed resource levels of S and M (Server

configurations 4 and 10 in Table 7).

 32

• Servers of same server type have mixed resource levels of S and L (Server

configurations 5 and 11 in Table 7).

• Servers of same server type have mixed resource levels of M and L (Server

configurations 6 and 12 in Table 7).

 With servers of both resource types, there are nine combinations of resource

levels for servers:

• Servers of both server types have one resource level of S (Server configuration 13

in Table 7).

• Servers of both server types have one resource level of M (Server configuration

14 in Table 7).

• Servers of both server types have one resource level of L (Server configuration 15

in Table 7).

• Some servers are communication-centered servers with the resource level of S,

and the others are computation-centered servers with the resource level of M

(Server configuration 16 in Table 7).

• Some servers are communication-centered servers with the resource level of S,

and the others are computation-centered servers with the resource level of L

(Server configuration 17 in Table 7).

• Some servers are communication-centered servers with the resource level of M,

and the others are computation-centered servers with the resource level of L

(Server configuration 18 in Table 7).

 33

• Some servers are communication-centered servers with the resource level of M,

and the others are computation-centered servers with the resource level of S

(Server configuration 19 in Table 7).

• Some servers are communication-centered servers with the resource level of L,

and the others are computation-centered servers with the resource level of S

(Server configuration 20 in Table 7).

• Some servers are communication-centered servers with the resource level of L,

and the others are computation-centered servers with the resource level of M

(Server configuration 21 in Table 7).

 This study also introduces twelve service request combinations which are

determined by two factors: service type and QoS level of a service request. With two

service types of the communication intensive service and the computation intensive

service, three combinations of service types for service requests are designed:

• All service requests are communication intensive services (First column in Table

7).

• All service requests are computation intensive services (Second column in Table

7).

• Some service requests are communication intensive services, and the others are

computation intensive services (Third column in Table 7).

 Since there are three QoS levels (L, M and H) available to present a service

request's QoS requirement, four combinations of QoS levels for service requests are

constructed:

• All service requests have one QoS level of L (All-L in Table 7).

 34

• All service requests have one QoS level of M (All-M in Table 7).

• All service requests have one QoS level of H (All-H in Table 7).

• Service requests have mixed QoS levels of L, M and H (Mixed in Table 7).

 From twenty one server configurations and twelve service request combinations,

252 problem cases are designed for an experiment. Tables 7, 8 and 9 have rows labeled as

1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-

8, 3-9, and columns labeled as 1-1, 1-2, 1-3, 1-4, 2-1, 2-2, 2-3, 2-4, 3-1, 3-2, 3-3, 3-4. In

each problem case, three sub-cases (referred as Case A, Case B and Case C throughout

the dissertation) are also designed with different numbers of service requests in order to

cover the following three conditions of resource capacity:

A. Each server has a sufficient resource capacity to satisfy all service requests of all

clients,

B. Each server does not have a sufficient resource capacity to satisfy all service

requests of all clients, but the total resource capacity of all servers is sufficient to

satisfy all service requests of all clients,

C. Neither each server nor all servers together have a sufficient resource capacity to

satisfy all service requests of all clients.

 For each problem case, different numbers of service requests are set up to

maintain three conditions of resource capacity in the sub-cases of Case A, Case B and

Case C. The specific number of service requests is determined by looking into resource

usages based on F functions of service-resource relations and the corresponding QoS

values based on G functions of resource-QoS relations (as shown in Table 6) to meet the

QoS requirements of all the service requests (as shown in Table 4) under the given

 35

resource capacity (as shown in Table 5). For example, in the problem case with server

configuration 1 of Step 1 experiment, two servers are communication-centered servers

with one resource level of S, which is 30 as the capacity limit of CPU resource and 100

as the capacity limit of bandwidth resource. If all service requests are communication

intensive services with one QoS level of L, fifteen service requests are designed for Case

A in order that each server has a sufficient resource capacity to meet the QoS

requirements of all the fifteen service requests. For Case B, where overall resource

capacity is sufficient to serve all service requests with the same capacity limits of 30 for

CPU resource and 100 for bandwidth resource on two servers, the number of service

requests is increased to thirty five. Similarly for Case C, where overall resource capacity

is not sufficient to serve all service requests with the same resource capacity limits, a total

of fifty service requests is designed.

 Each experiment has a total of 756 problem cases, which consist of 252 problem

cases for Case A, 252 problem cases for Case B and 252 problem cases for Case C. The

Step 1 and Step 2 experiments have an even number of servers (i.e. two servers), while

Step 3 experiment has an odd number of servers (i.e. three servers). Hence, for the

problem cases with server configurations 13 through 21 involving two server types, the

first server is the communication-centered server and the second server is the

computation-centered server in Step 1 and Step 2 experiments, while the first server is the

communication-centered server and the other two are the computation-centered servers in

Step 3 experiment. Note that, in all the experiments, each server provides both service

types of the communication intensive service and the computation intensive service.

 36

2.5 Research Methodology

 2.5.1 The analysis of optimal solutions to develop heuristics. The optimal

solution to each problem in Step 1, Step 2 and Step 3 experiments in Chapter 2.4 is

analyzed to gain insights into the resource allocation decision made in the optimal

solution. Based on the analysis and insights gained from the optimal solutions, important

heuristics are developed for Case A, B and C of resource-service conditions and

described in this section.

 For all problems of Case A where each server has the sufficient resource capacity

to satisfy all service requests of all clients, the optimal solutions assign most service

requests to one server (i.e., the first server with i = 1 in the problem formulation). Hence,

the following heuristic is identified for Case A as shown in Table 10. The probability

value in Table 10 is arbitrarily chosen to obtain heuristic solutions, and Table 14

summarizes two different sets of probability parameters used for extended experiments in

Chapter 2.6. Figure 1 shows the coverage of Case A problems by heuristic A-1. To

implement and test this heuristic in the experiments described in Chapter 2.6, the server

with i = 1 is designated as the dominant server.

Table 10

The Heuristics for Case A Problems

Heuristic Description

A-1

Designate one server as the dominant server, and select the dominant server to

serve a service request with the probability of α and other server(s) to serve

the service request with the probability of (1-α). The parameter, α, takes a

value in (0, 1] and is closer to 1 than 0 (e.g., 0.9).

 37

Figure 1. The Coverage of Case A Problems by Heuristic A-1.

 The optimal solutions to the problems of Case B, where each server does not have

the sufficient resource capacity to satisfy all service requests but the total resource

capacity of all servers is sufficient to satisfy all service requests, reveal five different

heuristics as shown in Table 11. Probability values in Table 11 are arbitrarily chosen to

obtain heuristic solutions, and Table 14 summarizes two different sets of probability

parameters used for extended experiments in Chapter 2.6.

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

1-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

A-1

 38

Table 11

The Heuristics for Case B Problems

Heuristic Description

B-1(a) Select a server randomly to serve a service request.

B-1(b)

Designate a server as the dominant server (i.e., the server with i = 1), and

select the dominant server to serve a service request with the probability of β

and another server to serve the service request with the probability of (1- β).

The parameter, β, takes a value in (0, 1] and is closer to 1. This heuristic is

same as A-1 applying to B cases.

B-2(a)

Select a server of one server type (e.g., communication-centered server)

randomly to serve a service request of the same type (e.g., communication

intensive service) with the probability of γ and a server of a different server

type (e.g., computation-centered server) randomly to serve the service request

with the probability of (1- γ). The parameter, γ, takes a value in (0, 1] and is

closer to 1.

B-2(b)

Designate a server of each server type as the dominant server of the server

type, select the dominant server of one server type to serve a service request of

the same type with the probability of γ, and the dominant server of a different

server type to serve the service request with the probability of (1- γ). The

parameter, γ, takes a value in (0, 1] and is closer to 1.

B-3

Select a server of one server type (e.g., communication-centered server)

randomly to serve a service request of the same type (e.g., communication

intensive service) with a given QoS level of L, M or H with the corresponding

probability of δ�, δ� or δE, respectively, and a server of a different server type

(e.g., computation-centered server) to serve the service request with the given

QoS level of L, M or H with the probability of (1 − δ�), (1 − δ�) or (1 − δE),

respectively. Each parameter, δ�, δ� or δE, takes a value in (0, 1], and H� ≤

H� ≤ HE.

 Heuristic B-2(a) has a server of one server type (e.g., communication-centered

server) serve more service requests of the same service type (e.g., communication

intensive service) and less service requests of a different service type (e.g., computation

intensive service). Heuristic B-2(a) is employed under only one condition when the total

resource requirements from all service requests takes at least 70% of the total resource

 39

capacity of all servers, that is, when the total resource capacity is tight to serve the service

requests. Hence, Figure 2 has Part (a) and Part (b) since Heuristic B-2(a) is employed

only under this condition.

 Figure 2 shows the coverage of Case B problems by the heuristics as follows.

• If all servers are either communication-centered servers or computation-centered

servers, apply Heuristic B-1(a) and Heuristic B-1(b) (see rows 1-1 to 1-6 and 2-1

to 2-6).

• If some servers are communication-centered servers and others are computation-

centered servers, and all service requests have the same QoS level of L, M or H,

apply Heuristic B-2(a) and Heuristic B-2(b) under the condition of the tight

resource capacity but apply Heuristic B-1(a) and Heuristic B-2(b) not under the

condition of the tight resource capacity (see rows 3-1 to 3-9 and columns 1-1 to 1-

3, 2-1 to 2-3 and 3-1 to 3-3).

• If some servers are communication-centered servers and others are computation-

centered servers, and service requests have the mixed QoS levels of L, M and H,

apply Heuristic B-3 (see rows 3-1 to 3-9 and columns 1-4, 2-4 and 3-4).

 40

(a) Under the Condition of Heuristic B-2(a)

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

1-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

B-2(b) B-3B-3 B-3 B-2(a)

B-1(a)B-1(b)

 41

(b) Not Under the Condition of Heuristic B-2(a)

Figure 2. The Coverage of Case B Problems by the Heuristics.

 For all problem scenarios in Case B, server types and service types need to be

carefully looked into and compared with each other in finding important heuristics from

the optimal solutions. Table 12 shows and examines service decisions in the optimal

solutions from Step 1 experiment for two problem cases with server configuration 13 and

with seven clients and ten clients respectively.

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

1-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

B-3

B-1(b)

B-2(b) B-3 B-3

B-1(a)

 42

Table 12

Service Decisions made in the Optimal Solutions for Two Problem Cases in Case B

Problem

Case
Client Service

QoS

Requirement (����
�)

Server
Service parameter (�����)
and QoS provision (�����)

server

conf. 13

k = 1 comm. intensive

service

M (15) comm. centered

server
��,�,�: 3

��,�,�: 15.60

k = 2 comm. intensive

service

M (15) comm. centered

server
��,�,�: 3

��,�,�: 15.60

k = 3 comm. intensive

service

M (15) comp. centered

server
�E,�,�: 3

�E,�,�: 15.60

k = 4 comm. intensive

service

M (15) comm. centered

server
�I,�,�: 3

�I,�,�: 15.60

k = 5 comm. intensive

service

M (15) comm. centered

server
�J,�,�: 3

�J,�,�: 15.60

k = 6 comm. intensive

service

M (15) comm. centered

server
�K,�,�: 3

�K,�,�: 15.60

k = 7 comm. intensive

service

M (15) comm. centered

server
�L,�,�: 3

�L,�,�: 15.60

server

conf. 13

k = 1 comm. intensive

service

M (15) comm. centered

server
��,�,�: 3

��,�,�: 15.60

k = 2 comm. intensive

service

L (5) comp. centered

server
��,�,�: 1

��,�,�: 5.20

k = 3 comm. intensive

service

M (15) comp. centered

server
�E,�,�: 3

�E,�,�: 15.60

k = 4 comm. intensive

service

M (15) comm. centered

server
�I,�,�: 3

�I,�,�: 15.60

k = 5 comm. intensive

service

L (5) comm. centered

server
�J,�,�: 1

�J,�,�: 5.20

k = 6 comm. intensive

service

H (25) comm. centered

server
�K,�,�: 5

�K,�,�: 26.00

k = 7 comm. intensive

service

L (5) comp. centered

server
�L,�,�: 1

�L,�,�: 5.20

k = 8 comm. intensive

service

L (5) comm. centered

server
�M,�,�: 1

�M,�,�: 5.20

k = 9 comm. intensive

service

L (5) comm. centered

server
�N,�,�: 1

�N,�,�: 5.20

k = 10 comm. intensive

service

H (25) comm. centered

server
��O,�,�: 5

��O,�,�: 26.00

 43

 Server configuration 13 has two servers: the first server is the communication-

centered server with the resource level of S, and the second server is the computation-

centered server with the resource level of S. For the problem case with seven clients in

Table 12, all service requests are communication intensive services with one QoS level of

M. The optimal solution shows that the communication-centered server as the first server

selects to serve six service requests of the communication intensive service (client k = 1,

2, 4 through 7), while the computation-centered server as the second server selects to

serve one service request of the communication intensive service (client k = 3). It can be

generalized to Heuristic B-2(b) such that a server of one server type (e.g.,

communication-centered server) serves a service request of the same type (e.g.,

communication intensive service) with a higher probability than the probability a server

of a different server type (e.g., computation-centered server) has.

 For another problem case with ten clients in Table 12, all service requests are

communication intensive services with mixed QoS levels of L, M and H. The optimal

solution shows that the communication-centered server as the first server selects to serve

three out of five service requests of the communication intensive service with the QoS

level of L (client k = 5, 8 and 9), two out of three service requests of the communication

intensive service with the QoS level of M (client k = 1 and 4) and all two service requests

of the communication intensive service with the QoS level of H (client k = 6 and 10),

while the computation-centered server as the second server selects to serve two out of

five service requests of the communication intensive service with the QoS level of L

(client k = 2 and 7) and one out of three service requests of the communication intensive

service with the QoS level of M (client k = 3). Hence, it can be generalized to Heuristic

 44

B-3 such that a server of one server type (e.g., communication-centered server) serves a

service request of the same type (e.g., communication intensive service) with a given

QoS level of L, M or H with the corresponding probability of H�, H� or HE respectively,

and a server of a different server type (e.g., computation-centered server) serves the

service request with the given QoS level of L, M or H with the probability of (1 − H�),

(1 − H�) or (1 − HE) respectively, taking a value in (0, 1], and H� ≤ H� ≤ HE.

 For Case C problems, not only each server but all servers together do not have the

sufficient resource capacity to satisfy all service requests, Table 13 gives the heuristics

for Case C problems based on the analysis of their optimal solutions to these problems.

Probability values mentioned in Table 13 are arbitrarily chosen to obtain heuristic

solutions, and Table 14 summarizes two different sets of probability parameters used for

extended experiments in Chapter 2.6. Figure 3 shows the coverage of Case C problems

by these heuristics.

 45

Table 13

The Heuristics for Case C Problems

Heuristic Description

C-1

Select a server randomly to serve a service request. If the selected server is

full, then a service request is randomly assigned to another server. Drop a

service request if its QoS requirement cannot be satisfied by the available

resource capacity. This heuristic is same as B-1(a) with the addition of

dropping a service request due to the insufficient capacity.

C-2

Select a server of one server type (e.g., communication-centered server)

randomly to serve a service request of the same type (e.g., communication

intensive service) with the probability of γ and a server of a different server

type (e.g., computation-centered server) to serve the service request with the

probability of (1- γ). Drop a service request if its QoS requirement cannot be

satisfied by the available resource capacity. The parameter, γ, takes a value in

(0, 1] and is closer to 1. This heuristic is same as B-2(a) with the addition of

dropping a service request due to the insufficient capacity.

C-3

Select a server of one server type (e.g., communication-centered server)

randomly to serve a service request of the same service type (e.g.,

communication intensive service) with a given QoS level of L, M or H at the

corresponding probability of H�, H� or HE, respectively, and a server of a

different server type (e.g., computation-centered server) to serve the service

request with the given QoS level of L, M or H with the probability of (1 − H�),

(1 − H�) or (1 − HE), respectively. Drop a service request if its QoS

requirement cannot be satisfied by the available resource capacity. Each

parameter, H�, H� or HE, takes a value in (0, 1], and H� ≤ H� ≤ HE. This heuristic

is same as B-3 with the addition of dropping a service request due to the

insufficient capacity.

 46

Figure 3. The Coverage of Case C Problems by the Heuristics.

 Figure 3 shows the coverage of Case C problems by the heuristics as follows.

• If all servers are either communication-centered servers or computation-centered

servers, apply Heuristic C-1 (see rows 1-1 to 1-6 and rows 2-1 to 2-6).

• If some servers are communication-centered servers and the others are

computation-centered servers, and all service requests have the same QoS level of

L, M or H, apply Heuristic C-2 (see rows 3-1 to 3-9 and columns 1-1 to 1-3, 2-1

to 2-3 and 3-1 to 3-3).

• If some servers are communication-centered servers and the others are

computation-centered servers, and all service requests have the mixed QoS levels

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

1-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

C-2 C-3

C-1

 47

of L, M and H, apply Heuristic C-3 (see rows 3-1 to 3-9 and columns 1-4, 2-4 and

3-4).

Table 14

Two Sets of Probability Parameters used for Obtaining Heuristic Solutions

Parameter α β γ H� H� HE

Set 1 0.90 0.80 0.85 0.75 0.80 0.85

Set 2 0.98 0.90 0.80 0.70 0.80 0.90

 For all problem scenarios in Case C, server types and service types need to be

carefully looked into and compared with each other in finding important heuristics from

the optimal solutions. Table 15 shows and examines service decisions in the optimal

solutions from Step 1 experiment for two problem cases with server configuration 16 and

seven clients and with server configuration 13 and sixteen clients.

 48

Table 15

Service Decisions made in the Optimal Solutions for Two Problem Cases in Case C

Problem

Case
Client Service

QoS

Requirement

(����
�)

Server
Service parameter (�����)
and QoS provision (�����)

Estimated

objective value

server

conf. 16

k = 1 comm. intensive

service

H (25) comm. centered

server
��,�,�: 5

��,�,�: 26.00

0.04

k = 2 comm. intensive

service

H (25) comm. centered

server
��,�,�: 5

��,�,�: 26.00

0.04

k = 3 comm. intensive

service

H (25) comm. centered

server
�E,�,�: 5

�E,�,�: 26.00

0.04

k = 4 comm. intensive

service

H (25) comm. centered

server
�I,�,�: 5

�I,�,�: 26.00

0.04

k = 5 comm. intensive

service

H (25) comp. centered

server
�J,�,�: 5

�J,�,�: 26.00

0.04

k = 6 comm. intensive

service

H (25) none none 0.04

 k = 7 comm. intensive

service

H (25) none none 0.04

server

conf. 13

k = 1 comm. intensive

service

M (15) comm. centered

server
��,�,�: 3

��,�,�: 15.60

0.04

k = 2 comm. intensive

service

M (15) comm. centered

server
��,�,�: 3

��,�,�: 15.60

0.04

k = 3 comm. intensive

service

H (25) none none 0.04

k = 4 comm. intensive

service

H (25) comm. centered

server
�I,�,�: 5

�I,�,�: 26.00

0.04

k = 5 comp. intensive

service

L (6) comm. centered

server
�J,�,�: 1

�J,�,�: 6.10

0.02

k = 6 comm. intensive

service

H (25) comm. centered

server
�K,�,�: 5

�K,�,�: 26.00

0.04

k = 7 comp. intensive

service

M (17) none none 0.07

k = 8 comm. intensive

service

L (5) comm. centered

server
�M,�,�: 1

�M,�,�: 5.20

0.04

k = 9 comp. intensive

service

H (30) comp. centered

server
�N,�,�: 5

�N,�,�: 30.50

0.02

k = 10 comp. intensive

service

L (6) comm. centered

server
��O,�,�: 1

��O,�,�: 6.10

0.02

k = 11 comp. intensive

service

H (30) comp. centered

server
���,�,�: 5

���,�,�: 30.50

0.02

k = 12 comp. intensive

service

H (30) comp. centered

server
���,�,�: 5

���,�,�: 30.50

0.02

k = 13 comp. intensive

service

H (30) comp. centered

server
��E,�,�: 5

��E,�,�: 30.50

0.02

k = 14 comm. intensive

service

L (5) comm. centered

server
��I,�,�: 1

��I,�,�: 5.20

0.04

k = 15 comm. intensive

service

L (5) comm. centered

server
��J,�,�: 1

��J,�,�: 5.20

0.04

k = 16 comm. intensive

service

H (25) none none 0.04

 49

 For the problem case with server configuration 16 and seven clients in Table 15,

there are two servers used: the first server is the communication-centered server with the

resource level of S, and the second server is the computation-centered server with the

resource level of M, and all service requests of seven clients are communication intensive

services with one QoS level of H. The optimal solution shows that the communication-

centered server as the first server selects to serve four service requests of the

communication intensive service (client k =1 through 4), while the computation-centered

server as the second server selects to serve one service request of the communication

intensive service (client k = 5). It can be generalized to Heuristic C-2 such that a server of

one server type (e.g., a communication-centered server) serves a service request of the

same type (e.g., a communication intensive service) with higher probability than the

probability that a server of a different server type (e.g., computation-centered server) has.

 For the problem case with server configuration 13 and sixteen clients in Table 15,

there are two servers: the first server is the communication-centered server with the

resource level of S and the second server is the computation-centered server with the

resource level of S, and sixteen clients' service requests: some service requests are

communication intensive services with mixed QoS levels of L, M and H and the others

are computation intensive services with mixed QoS levels of L, M and H. The optimal

solution shows that the communication-centered server as the first server selects to serve

three service requests of the communication intensive service with the QoS level of L

(client k =8, 14 and 15), two service requests of the communication intensive service with

the QoS level of M (client k = 1 and 2), two service requests of the communication

 50

intensive service with the QoS level of H (client k = 4 and 6) and two service requests of

the computation intensive service with the QoS level of L (client k = 5 and 10), while the

computation-centered server as the second server selects to serve four service requests of

the computation intensive service with the QoS level of H (client k = 9, 11 through 13). It

can be generalized to Heuristic C-3 such that a server of one server type (e.g.,

communication-centered server) serves a service request of the same type (e.g.,

communication intensive service) with a given QoS level of L, M or H with the

corresponding probability of H�, H� or HE respectively, and a server of a different server

type (e.g., computation-centered server) to serve the service request with the given QoS

level of L, M or H with the probability of (1 − H�), (1 − H�) or (1 − HE) respectively,

taking a value in (0, 1] and H� ≤ H� ≤ HE.

 2.5.2 Statistical data supporting the heuristics. Statistics of the experimental

results from Step 1, Step 2 and Step 3 show the support of the heuristics defined in Tables

10, 11 and 13. Nineteen variables shown in Table 17 are collected to obtain the statistics

that address two questions for each heuristic: 1) what statistics (what variables with what

values) support the heuristic, and 2) those types of statistics do not show up under other

heuristics. Tables 18, 19 and 20 show the collection of all variables in Step 1, Step 2 and

Step 3 experiment respectively. Var2 through Var19 show an average in the first row and

the standard deviation in the second row in Tables 18, 19 and 20.

 In Tables 18, 19 and 20, compartment numbers correspond to those defined in

Figures 1, 2(a), 2(b) and 3. Each compartment may contain more than one sub-

compartment depending on different types of servers and service requests. Compartment

I has three sub-compartments, I-1, I-2 and I-3, with all comm. intensive services, all

 51

comp. intensive services and both comm. and comp. intensive services, respectively.

Compartment II has three sub-compartments, II-1, II-2 and II-3, with all comm. intensive

services, all comp. intensive services and both comm. and comp. intensive services

respectively. Compartment III has two sub-compartments, III-1 and III-2, with all comm.

intensive services and all comp. intensive services respectively. Compartment IV has one

sub-compartment. Compartment V has three sub-compartments, V-1, V-2 and V-3, with

all comm. intensive services, all comp. intensive services and both comm. and comp.

intensive services respectively.

 For each sub-compartment, the statistics obtained from Case A, Case B under

tight resource capacity, Case B not under tight resource capacity and Case C problems

are shown with each related heuristic. Table 16 shows the design of experimental setup

for Case B problems not under tight resource capacity used in Step 1, Step 2 and Step 3

experiments. Design of experimental setups for the other problem cases used in Step 1,

Step 2 and Step 3 experiments are shown in Tables 7, 8 and 9, respectively.

 52

Table 16

Design of Experimental Setup not under Tight Resource Capacity Condition for Case B

in Step 1, Step 2 and Step 3 Experiments

 Service

 Requests

Server

Configuration

All communication

intensive
All computation intensive Both service types

All-L

(1-1)

All-M

(1-2)

All-H

(1-3)

Mixed

(1-4)

All-L

(2-1)

All-M

(2-2)

All-H

(2-3)

Mixed

(2-4)

All-L

(3-1)

All-M

(3-2)

All-H

(3-3)

Mixed

(3-4)

1. All

communication

centered at S-S

(1-1)

21

13

18

7

7

7

5

6

6

11

10

8

6

6

7

2

4

2

2

3

2

2

5

3

17

17

22

8

9

8

4

7

7

6

14

9

2. All

communication

centered at M-M

(1-2)

41

17

20

14

9

8

9

7

6

21

14

9

7

9

8

3

6

4

2

4

2

3

6

4

20

24

25

8

12

9

10

9

7

10

19

11

3. All

communication

centered at L-L

(1-3)

72

31

22

24

16

8

15

13

7

34

26

9

8

12

10

3

8

3

2

5

3

4

9

4

13

22

28

24

16

10

16

14

8

25

32

13

4. All

communication

centered at S-M

(1-4)

41

17

20

14

9

8

9

7

6

21

13

9

7

9

8

3

6

3

2

4

2

3

6

5

21

16

25

7

12

9

9

9

6

10

17

11

5. All

communication

centered at S-L

(1-5)

71

31

23

24

16

8

15

13

6

34

22

10

8

12

10

3

8

3

2

5

3

4

7

4

12

22

29

24

16

10

15

14

7

24

16

13

6. All

communication

centered at M-L

(1-6)

72

31

23

24

16

8

15

13

6

34

22

10

8

12

10

3

8

3

2

5

3

4

7

4

13

22

29

24

16

10

15

14

7

24

16

14

7. All computation

centered at S-S

(2-1)

6

7

7

2

4

2

2

3

2

2

4

3

21

14

18

7

10

6

5

6

5

11

9

8

13

16

22

8

5

7

3

7

6

4

8

9

8. All computation

centered at M-M

(2-2)

7

9

7

3

5

2

2

4

2

3

6

4

41

21

20

14

14

7

9

9

5

21

11

8

14

15

25

5

9

8

6

8

6

6

13

12

9. All computation

centered at L-L

(2-3)

8

11

8

3

6

3

2

5

2

4

7

4

72

27

22

24

18

8

15

11

6

35

16

9

24

18

27

8

15

10

8

12

7

12

15

12

10. All computation

centered at S-M

(2-4)

7

9

7

3

5

2

2

4

2

3

6

4

41

21

20

14

14

7

9

9

5

21

16

8

14

15

25

6

9

8

6

8

6

5

13

12

11. All computation 8 3 2 4 71 24 15 35 24 8 8 11

 53

centered at S-L

(2-5)

11

8

6

3

5

2

7

5

27

22

18

8

11

6

20

9

18

27

15

9

12

7

15

13

12. All computation

centered at M-L

(2-6)

8

11

8

3

6

3

2

5

2

4

7

3

71

27

22

24

18

8

15

11

6

35

20

9

24

18

27

8

15

9

8

12

7

12

16

12

13. Both server types

(communication,

computation) at S-S

(3-1)

21

13

18

7

7

6

5

6

5

11

10

7

21

14

18

7

10

6

5

6

5

11

11

8

16

16

12

4

9

4

3

7

4

4

11

5

14. Both server types

(communication,

computation) at M-

M

(3-2)

41

17

20

14

9

7

9

7

5

21

11

10

41

21

20

14

14

7

9

9

5

21

16

8

14

20

14

6

14

6

4

10

4

14

11

6

15. Both server types

(communication,

computation) at L-L

(3-3)

71

31

22

24

16

8

15

13

6

34

21

10

71

27

22

24

18

8

15

11

6

35

20

9

14

24

17

6

18

6

4

9

5

6

19

7

16. Both server types

(communication,

computation) at S-M

(3-4)

21

13

18

7

7

6

5

6

5

11

9

8

41

21

20

14

14

7

9

9

5

21

16

8

14

15

14

6

9

5

4

7

4

12

10

5

17. Both server types

(communication,

computation) at S-L

(3-5)

21

13

18

7

7

6

5

6

5

11

10

7

71

27

21

24

18

7

15

11

6

35

20

8

14

16

14

5

9

5

4

7

4

14

11

6

18. Both server types

(communication,

computation) at M-L

(3-6)

41

17

20

14

9

7

9

7

5

21

13

9

71

27

22

24

18

7

15

11

6

35

20

8

14

18

15

6

11

6

4

8

4

12

12

6

19. Both server types

(communication,

computation) at M-S

(3-7)

41

17

20

14

9

7

9

7

5

21

13

9

21

14

18

7

10

6

5

6

5

11

11

8

14

15

13

5

9

5

3

7

4

14

9

6

20. Both server types

(communication,

computation) at L-S

(3-8)

71

31

22

24

16

8

15

13

6

33

24

9

21

14

18

7

10

6

5

6

5

11

11

8

14

25

15

6

14

5

3

7

5

5

12

7

21. Both server types

(communication,

computation) at L-M

(3-9)

71

31

22

24

16

8

15

13

6

33

25

9

41

21

20

14

14

7

9

9

5

21

15

8

14

26

16

5

12

6

4

8

4

6

14

8

 54

Table 17

Definition of Variables for the Supporting Statistics

Variable Description

Var1

Proportion of problem cases where the first server serves equal or higher

number of service requests than the other server(s)

(= Problem cases where the first server serves at least the same number of

service requests as the other server(s) / All problem cases)

Var2

Proportion of comm. intensive services (L) served by the first server

 (= The number of comm. intensive services (L) served by the first server /

Total number of comm. intensive services (L) served by all servers)

Var3

Proportion of comm. intensive services (L) served by the second server

 (= The number of comm. intensive services (L) served by the second server /

Total number of comm. intensive services (L) served by all servers)

Var4

Proportion of comm. intensive services (L) served by the third server if exist

 (= The number of comm. intensive services (L) served by the third server /

Total number of comm. intensive services (L) served by all servers)

Var5

Proportion of comm. intensive services (M) served by the first server

 (= The number of comm. intensive services (M) served by the first server /

Total number of comm. intensive services (M) served by all servers)

Var6

Proportion of comm. intensive services (M) served by the second server

 (= The number of comm. intensive services (M) served by the second server /

Total number of comm. intensive services (M) served by all servers)

Var7

Proportion of comm. intensive services (M) served by the third server if exist

 (= The number of comm. intensive services (M) served by the third server /

Total number of comm. intensive services (M) served by all servers)

Var8

Proportion of comm. intensive services (H) served by the first server

 (= The number of comm. intensive services (H) served by the first server /

Total number of comm. intensive services (H) served by all servers)

Var9

Proportion of comm. intensive services (H) served by the second server

 (= The number of comm. intensive services (H) served by the second server /

Total number of comm. intensive services (H) served by all servers)

Var10

Proportion of comm. intensive services (H) served by the third server if exist

(= The number of comm. intensive services (H) served by the third server /

Total number of comm. intensive services (H) served by all servers)

Var11

Proportion of comp. intensive services (L) served by the first server

(= The number of comp. intensive services (L) served by the first server /

Total number of comp. intensive services (L) served by all servers)

 55

Var12

Proportion of comp. intensive services (L) served by the second server

(= The number of comp. intensive services (L) served by the second server /

Total number of comp. intensive services (L) served by all servers)

Var13

Proportion of comp. intensive services (L) served by the third server if exist

(= The number of comp. intensive services (L) served by the third server /

Total number of comp. intensive services (L) served by all servers)

Var14

Proportion of comp. intensive services (M) served by the first server

(= The number of comp. intensive services (M) served by the first server /

Total number of comp. intensive services (M) served by all servers)

Var15

Proportion of comp. intensive services (M) served by the second server

(= The number of comp. intensive services (M) served by the second server /

Total number of comp. intensive services (M) served by all servers)

Var16

Proportion of comp. intensive services (M) served by the third server if exist

(= The number of comp. intensive services (M) served by the third server /

Total number of comp. intensive services (M) served by all servers)

Var17

Proportion of comp. intensive services (H) served by the first server

(= The number of comp. intensive services (H) served by the first server /

Total number of comp. intensive services (H) served by all servers)

Var18

Proportion of comp. intensive services (H) served by the second server

(= The number of comp. intensive services (H) served by the 2nd server /

Total number of comp. intensive services (H) served by all servers)

Var19

Proportion of comp. intensive services (H) served by the third server if exist

(= The number of comp. intensive services (H) served by the third server /

Total number of comp. intensive services (H) served by all servers)

 56

Table 18

Statistics for Step 1 Experimental Result

 57

 The statistics in Table 18 are summarized below. Heuristics A-1 and B-1(b) state

that a server as the dominant server (i.e., the server with i = 1) serves a service request

with higher probability than the other server(s). The support of Heuristics A-1 and B-1(b)

is shown through Var1 as follows.

• Var1 values are greater than 0.50 in 10 out of 12 problem cases, equal to 0.50 in 1

out of 12 cases and less than 0.50 in 1 out of 12 cases for Heuristic A-1. Similarly,

Var1 values are greater than 0.50 in 5 out of 6 problem cases and equal to 0.50 in

1 out of 6 cases for Heuristic B-1(b). In other words, Var1 values are greater than

0.50 in 83% of all problem cases under Heuristics A-1 and B-1(b), indicating that

 58

the first server as the dominant server serves at least same or higher number of

service requests than the other server(s) in most problem cases.

• Under other heuristics, Var1 values do not show a consistent pattern indicating no

dominant server for service provision.

o For Heuristics B-1(a) and C-1, Var1 values are greater than 0.50 in 3 out of 7

problem cases (43%) and in 4 out of 6 problem cases (67%), respectively,

which are smaller than 83% under Heuristics A-1 and B-1(b).

o For Heuristic B-2(a), Var1 value is greater than 0.50 in one problem case

(100%). However, this problem case involves both server types. Since its

solutions are significantly affected by both server types and service types, it

cannot be compared to the problem cases involving with one server type under

Heuristics A-1 and B-1(b). For Heuristic C-2, Var1 values are greater than

0.50 in 2 out of 3 problem cases (67%), which is smaller than 83% under

Heuristics A-1 and B-1(b).

o For Heuristic B-2(b), Var1 values are greater than 0.50 in 2 out of 4 problem

cases (50%), which is smaller than 83% under Heuristics A-1 and B-1(b).

o For Heuristics B-3 and C-3, Var1 values are greater than 0.50 in 3 out of 6

problem cases (50%) and in 2 out of 3 problem cases (67%), respectively,

which are smaller than 83% under Heuristics A-1 and B-1(b).

 Heuristics B-1(a) and C-1 state that a server randomly serves a service request.

The support of Heuristics B-1(a) and C-1 is shown through Var1 to Var19 as follows.

• For Heuristic B-1(a), Var1 values are greater than 0.50 in 3 out of 7 problem

cases, equal to 0.50 in 1 out of 7 cases and less than 0.50 in 3 out of 7 cases. In

 59

addition, Var2 through Var19 values show that the first server is selected with

higher probability than the second server to serve more number of service

requests in 3 out of 7 problem cases, with same probability as the second server in

1 out of 7 cases and with lower probability than the second server in 3 out of 7

cases. Those statistics support the random selection of a server for service

provision under Heuristic B-1(a). For Heuristic C-1, Var1 values are greater than

0.50 in 4 out of 6 problem cases, equal to 0.50 in 1 out of 6 cases and less than

0.50 in 1 out of 6 cases. Var2 through Var19 values show that the first server is

selected with higher probability than the second server to serve more number of

service requests in 5 out of 6 problem cases and with same probability as the

second server in 1 out of 6 cases. Since the problem cases under Heuristic C-1

have insufficient resource capacity to satisfy all service requests and have the

second server with at least same resource capacity as the first server, the random

server selection for service provision would result in selecting the second server

with higher probability than the first server to serve more number of service

requests due to its larger resource capacity. Therefore, Var1 through Var19 values

support the random selection of a server for service provision under Heuristic C-1.

• Under other heuristics, those values do not show a consistent pattern, indicating

there exists a dominant server for service provision.

o For Heuristics A-1 and B-1(b), Var1 values are greater than 0.50 in 10 out of

12 cases (83%) and in 5 out of 6 cases (83%), respectively, which are greater

than 43% and 67% under Heuristics B-1(a) and C-1. Similarly, Var2 through

Var19 values show that the first server is selected with higher probability than

 60

the second server in 8 out of 12 cases (67%) and in 3 out of 6 cases (50%)

under Heuristics A-1 and B-1(b), respectively, which are greater than 43%

under Heuristics B-1(a).

o Problem cases in Heuristics B-2(a), B-2(b), B-3, C-2 and C-3 involve both

types of servers. Since their solutions are significantly affected by both server

types and service types, they cannot be compared to the problem cases

involving with one server type under Heuristics B-1(a) and C-1.

 Heuristics B-2(a) and C-2 state that a server of one server type randomly serves a

service request of the same type with higher probability than the other server(s) of a

different type. The support of Heuristics B-2(a) and C-2 is shown through Var2 to Var19

as follows.

• The values show a consistent pattern in all 1 problem case (100%) for Heuristic

B-2(a) and in all 3 cases (100%) for Heuristic C-2, as stated in these heuristics.

Note that Heuristics B-2(a) and B-2(b) are same with two servers as in Step 1 and

Step 2 experiments.

• Under other heuristics, those values do not show a consistent pattern, indicating

that a server serves a service request regardless of its type.

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem

cases (33%), which is much smaller than 100% under Heuristics B-2(a) and

C-2.

o For Heuristic B-1(a), each server is almost equally likely to be selected for

service provision regardless of a service type in one problem case.

 61

o For Heuristics B-3 and C-3, the values show the same pattern in 5 out of 6

cases (83%) and 3 out of 3 cases (100%). However, problem cases under

those heuristics involve both types of servers and service requests with mixed

QoS levels. Since their solutions are significantly affected by serving different

QoS levels of service requests as well as matching server types and service

types, they cannot be compared to the problem cases involving with service

requests of one QoS level under Heuristics B-2(a) and C-2. Similarly,

Heuristics B-1(b) and C-1 cannot be compared since they do not have both

server types.

 Heuristic B-2(b) states that a server of each server type as the dominant one

serves a service request of the same type with higher probability than the dominant server

of a different type. The support of Heuristic B-2(b) is shown through Var2 to Var19 as

follows.

• The values show a consistent pattern in all 4 problem cases (100%), as stated in

Heuristic B-2(b). Note that Heuristics B-2(a) and B-2(b) are same with two

servers as in Step 1 and Step 2 experiments. Thus, Heuristic C-2 also shows this

consistent pattern as Heuristic B-2(b) in Step 1 and Step 2 experiments.

• Under other heuristics, those values do not show a consistent pattern indicating

that a server serves a service request regardless of its type.

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem

cases (33%), which is much smaller than 100% under Heuristic B-2(b).

o For Heuristic B-1(a), each server is almost equally likely to be selected for

service provision regardless of a service type in one problem case.

 62

o For Heuristics B-3 and C-3, the values show the same pattern in 5 out of 6

cases (83%) and 3 out of 3 cases (100%). However, problem cases under

those heuristics involve both types of servers and service requests with mixed

QoS levels. Since their solutions are significantly affected by serving different

QoS levels of service requests as well as matching server types and service

types, they cannot be compared to the problem cases involving with service

requests of one QoS level under Heuristic B-2(b). Similarly, Heuristics B-1(b)

and C-1 cannot be compared since they do not have both server types.

 Heuristics B-3 and C-3 state that a server of one server type randomly serves a

service request of the same type with a given QoS level of L, M or H at the

corresponding probability of δ�, δ� or δE, respectively, and a server of a different server

type to serve the service request with the given QoS level of L, M or H with the

probability of (1 − H�), (1 − H�) or (1 − HE), respectively. Each parameter, H�, H� or HE,

takes a value in (0, 1], and H� ≤ H� ≤ HE. The support of Heuristics B-3 and C-3 is shown

through Var2 to Var19 as follows.

• The values show a consistent pattern in all 6 cases (100%) for Heuristic B-3 and

in all 3 cases (100%) for Heuristic C-3, as stated in these heuristics.

• Under other heuristics, those values do not show a consistent pattern, indicating

that a server of one server type serves a service request of the same type with a

given QoS level of L, M or H at the corresponding probability of δ�, δ� or δE, but

each parameter does not follow H� ≤ H� ≤ HE.

o For Heuristic A-1, the values show the same pattern in 2 out of 3 problem

cases (67%), which is smaller than 100% under Heuristics B-3 and C-3.

 63

o All the other heuristics cannot be compared since they do not have mixed

levels of service requests.

 64

Table 19

Statistics for Step 2 Experimental Result

 65

 The statistics in Table 19 are summarized below. Heuristics A-1 and B-1(b) state

that a server as the dominant server (i.e., the server with i = 1) serves a service request

with higher probability than the other server(s). The support of Heuristics A-1 and B-1(b)

is shown through Var1 as follows.

• Var1 values are greater than 0.50 in 11 out of 12 problem cases and less than 0.50

in 1 out of 12 cases for Heuristic A-1. Similarly, Var1 values are greater than 0.50

in 4 out of 6 problem cases and less than 0.50 in 2 out of 6 cases for Heuristic B-

1(b). In other words, Var1 values are greater than 0.50 in 92% and 67% of all

problem cases under Heuristics A-1 and B-1(b), indicating that the first server as

 66

the dominant server serves at least same or higher number of service requests than

the other server(s) in many problem cases.

• Under other heuristics, Var1 values do not show a consistent pattern indicating no

dominant server for service provision.

o For Heuristics B-1(a) and C-1, Var1 values are greater than 0.50 in 3 out of 7

problem cases (43%) and in 3 out of 6 problem cases (50%), respectively,

which are smaller than 92% and 67% under Heuristics A-1 and B-1(b).

o For Heuristics B-2(a) and C-2, Var1 values are greater than 0.50 in 0 out of 1

problem case (0%) and in 1 out of 3 problem cases (33%), respectively, which

are smaller than 92% and 67% under Heuristics A-1 and B-1(b).

o For Heuristic B-2(b), Var1 values are greater than 0.50 in 2 out of 4 problem

cases (50%), which is smaller than 92% and 67% under Heuristics A-1 and B-

1(b).

o For Heuristics B-3 and C-3, Var1 values are greater than 0.50 in 3 out of 6

problem cases (50%) and in 1 out of 3 problem cases (33%), respectively,

which are smaller than 92% and 67% under Heuristics A-1 and B-1(b).

 Heuristics B-1(a) and C-1 state that a server randomly serves a service request.

The support of Heuristics B-1(a) and C-1 is shown through Var1 to Var19 as follows.

• For Heuristic B-1(a), Var1 values are greater than 0.50 in 3 out of 7 problem

cases, equal to 0.50 in 1 out of 7 cases and less than 0.50 in 3 out of 7 cases. In

addition, Var2 through Var19 values show that the first server is selected with

higher probability than the second server to serve more number of service

requests in 3 out of 7 problem cases, with same probability as the second server in

 67

1 out of 7 cases and with lower probability than the second server in 3 out of 7

cases. Those statistics support the random selection of a server for service

provision under Heuristic B-1(a). For Heuristic C-1, Var1 values are greater than

0.50 in 3 out of 6 problem cases, equal to 0.50 in 2 out of 6 cases and less than

0.50 in 1 out of 6 cases. Var2 through Var19 values show that the first server is

selected with higher probability than the second server to serve more number of

service requests in all 6 problem cases. Since the problem cases under Heuristic

C-1 have insufficient resource capacity to satisfy all service requests and have the

second server with at least same resource capacity as the first server, the random

server selection for service provision would result in selecting the second server

with higher probability than the first server to serve more number of service

requests due to its larger resource capacity. Therefore, Var1 through Var19 values

support the random selection of a server for service provision under Heuristic C-1.

• Under other heuristics, those values do not show a consistent pattern, indicating

there exists a dominant server for service provision.

o For Heuristics A-1 and B-1(b), Var1 values are greater than 0.50 in 11 out of

12 cases (83%) and in 4 out of 6 cases (67%), respectively, which are greater

than 43% and 50% under Heuristics B-1(a) and C-1. Similarly, Var2 through

Var19 values show that the first server is selected with higher probability than

the second server in 11 out of 12 cases (83%) and in 3 out of 6 cases (50%)

under Heuristics A-1 and B-1(b), respectively, which are greater than 43%

under Heuristics B-1(a).

 68

o Problem cases in Heuristics B-2(a), B-2(b), B-3, C-2 and C-3 involve both

types of servers. Since their solutions are significantly affected by both server

types and service types, they cannot be compared to the problem cases

involving with one server type under Heuristics B-1(a) and C-1.

 Heuristics B-2(a) and C-2 state that a server of one server type randomly serves a

service request of the same type with higher probability than the other server(s) of a

different type. The support of Heuristics B-2(a) and C-2 is shown through Var2 to Var19

as follows.

• The values show a consistent pattern in all 1 problem case (100%) for Heuristic

B-2(a) and in all 3 cases (100%) for Heuristic C-2, as stated in these heuristics.

Note that Heuristics B-2(a) and B-2(b) are same with two servers as in Step 1 and

Step 2 experiments.

• Under other heuristics, those values do not show a consistent pattern, indicating

that a server serves a service request regardless of its type.

o For Heuristic A-1, the values show the same pattern in 3 out of 6 problem

cases (50%), which is smaller than 100% under Heuristics B-2(a) and C-2.

o For Heuristic B-1(a), each server is almost equally likely to be selected for

service provision regardless of a service type in one problem case.

o For Heuristics B-3 and C-3, the values show the same pattern in 4 out of 6

cases (67%) and 3 out of 3 cases (100%). However, problem cases under

those heuristics involve both types of servers and service requests with mixed

QoS levels. Since their solutions are significantly affected by serving different

QoS levels of service requests as well as matching server types and service

 69

types, they cannot be compared to the problem cases involving with service

requests of one QoS level under Heuristics B-2(a) and C-2. Similarly,

Heuristics B-1(b) and C-1 cannot be compared since they do not have both

server types.

 Heuristic B-2(b) states that a server of each server type as the dominant one

serves a service request of the same type with higher probability than the dominant server

of a different type. The support of Heuristic B-2(b) is shown through Var2 to Var19 as

follows.

• The values show a consistent pattern in all 4 problem cases (100%), as stated in

Heuristic B-2(b). Note that Heuristics B-2(a) and B-2(b) are same with two

servers as in Step 1 and Step 2 experiments. Thus, Heuristic C-2 also shows this

consistent pattern as Heuristic B-2(b) in Step 1 and Step 2 experiments.

• Under other heuristics, those values do not show a consistent pattern indicating

that a server serves a service request regardless of its type.

o For Heuristic A-1, the values show the same pattern in 3 out of 6 problem

cases (50%), which is smaller than 100% under Heuristic B-2(b).

o For Heuristic B-1(a), each server is almost equally likely to be selected for

service provision regardless of a service type in one problem case.

o For Heuristics B-3 and C-3, the values show the same pattern in 4 out of 6

cases (67%) and 3 out of 3 cases (100%). However, problem cases under

those heuristics involve both types of servers and service requests with mixed

QoS levels. Since their solutions are significantly affected by serving different

QoS levels of service requests as well as matching server types and service

 70

types, they cannot be compared to the problem cases involving with service

requests of one QoS level under Heuristic B-2(b). Similarly, Heuristics B-1(b)

and C-1 cannot be compared since they do not have both server types.

 Heuristics B-3 and C-3 state that a server of one server type randomly serves a

service request of the same type with a given QoS level of L, M or H at the

corresponding probability of δ�, δ� or δE, respectively, and a server of a different server

type to serve the service request with the given QoS level of L, M or H with the

probability of (1 − H�), (1 − H�) or (1 − HE), respectively. Each parameter, H�, H� or HE,

takes a value in (0, 1], and H� ≤ H� ≤ HE. The support of Heuristics B-3 and C-3 is shown

through Var2 to Var19 as follows.

• The values show a consistent pattern in all 6 cases (100%) for Heuristic B-3 and

in all 3 cases (100%) for Heuristic C-3, as stated in these heuristics.

• Under other heuristics, those values do not show a consistent pattern, indicating

that a server of one server type serves a service request of the same type with a

given QoS level of L, M or H at the corresponding probability of δ�, δ� or δE, but

each parameter does not follow H� ≤ H� ≤ HE.

o For Heuristic A-1, the values show the same pattern in 1 out of 3 problem

cases (33%), which is much smaller than 100% under Heuristics B-3 and C-3.

o All the other heuristics cannot be compared since they do not have mixed

levels of service requests.

 71

Table 20

Statistics for Step 3 Experimental Result

 72

 The statistics in Table 20 are summarized below. Heuristics A-1 and B-1(b) state

that a server as the dominant server (i.e., the server with i = 1) serves a service request

with higher probability than the other servers. The support of Heuristics A-1 and B-1(b)

is shown through Var1 as follows.

• Var1 values are greater than 0.50 in all 12 problem cases for Heuristic A-1.

Similarly, Var1 values are greater than 0.50 in 5 out of 6 problem cases and less

than 0.50 in 1 out of 6 cases for Heuristic B-1(b). In other words, Var1 values are

greater than 0.50 in 100% and 83% of all problem cases under Heuristics A-1 and

 73

B-1(b), indicating that the first server as the dominant server serves at least same

or higher number of service requests than the other servers in most problem cases.

• Under other heuristics, Var1 values do not show a consistent pattern indicating no

dominant server for service provision.

o For Heuristics B-1(a) and C-1, Var1 values are greater than 0.50 in 4 out of 7

problem cases (57%) and in 3 out of 6 problem cases (50%), respectively,

which are smaller than 100% and 83% under Heuristics A-1 and B-1(b).

o For Heuristic B-2(a), Var1 value is greater than 0.50 in one problem case

(100%). However, this problem case involves both server types. Since its

solutions are significantly affected by both server types and service types, it

cannot be compared to the problem cases involving with one server type under

Heuristics A-1 and B-1(b). For Heuristic C-2, Var1 values are greater than

0.50 in 2 out of 3 problem cases (67%), which is smaller than 100% and 83%

under Heuristics A-1 and B-1(b).

o For Heuristic B-2(b), Var1 values are greater than 0.50 in 2 out of 4 problem

cases (50%), which is smaller than 100% and 83% under Heuristics A-1 and

B-1(b).

o For Heuristics B-3 and C-3, Var1 values are greater than 0.50 in 2 out of 6

problem cases (33%) and in 1 out of 3 problem cases (33%), respectively,

which are smaller than 100% and 83% under Heuristics A-1 and B-1(b).

 Heuristics B-1(a) and C-1 state that a server randomly serves a service request.

The support of Heuristics B-1(a) and C-1 is shown through Var1 to Var19 as follows.

 74

• For Heuristic B-1(a), Var1 values are greater than 0.50 in 4 out of 7 problem

cases and less than 0.50 in 3 out of 7 cases. In addition, Var2 through Var19

values show that each server is selected for service provision with almost same

probability in all 7 problem cases. Those statistics support the random selection of

a server for service provision under Heuristic B-1(a). For Heuristic C-1, Var1

values are greater than 0.50 in 3 out of 6 problem cases and less than 0.50 in 3 out

of 6 cases. Var2 through Var19 values show that the servers with larger resource

capacity are selected with higher probability than the other server(s) to serve more

number of service requests in 4 out of 6 problem cases, and each server is selected

with almost same probability for service provision in 2 out of 6 cases. Since the

problem cases under Heuristic C-1 have insufficient resource capacity to satisfy

all service requests and have some servers with at least same resource capacity as

the other servers, the random server selection for service provision would result in

selecting the servers with larger resource capacity with higher probability than the

other(s) to serve more number of service requests due to their larger resource

capacity. Therefore, Var1 through Var19 values support the random selection of a

server for service provision under Heuristic C-1.

• Under other heuristics, those values do not show a consistent pattern, indicating

there exists a dominant server for service provision.

o For Heuristics A-1 and B-1(b), Var1 values are greater than 0.50 in all 12

cases (100%) and in 5 out of 6 cases (83%), respectively, which are greater

than 57% and 50% under Heuristics B-1(a) and C-1. Similarly, Var2 through

Var19 values show that the first server as the dominant server is selected with

 75

higher probability than the other servers for service provision in 11 out of 12

cases (83%) and 3 out of 6 cases (50%) under Heuristics A-1 and B-1(b),

respectively, whereas there is no dominant server for service provision under

Heuristics B-1(a) and C-1.

o Problem cases in Heuristics B-2(a), B-2(b), B-3, C-2 and C-3 involve both

types of servers. Since their solutions are significantly affected by both server

types and service types, they cannot be compared to the problem cases

involving with one server type under Heuristics B-1(a) and C-1.

 Heuristics B-2(a) and C-2 state that a server of one server type randomly serves a

service request of the same type with higher probability than the other server(s) of a

different type. The support of Heuristics B-2(a) and C-2 is shown through Var2 to Var19

as follows.

• The values show a consistent pattern in all 1 problem case (100%) for Heuristic

B-2(a) and in all 3 cases (100%) for Heuristic C-2, as stated in these heuristics.

• Under other heuristics, those values do not show a consistent pattern, indicating

that a server serves a service request regardless of its type or by different patterns.

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem

cases (33%), which is much smaller than 100% under Heuristics B-2(a) and

C-2.

o For Heuristic B-1(a), each server is equally likely to be selected for service

provision regardless of a service type in one problem case.

o For Heuristic B-2(b), the values show the same pattern in 3 out of 4 problem

cases (75%), which is smaller than 100% under Heuristics B-2(a) and C-2.

 76

o For Heuristics B-3 and C-3, the values show the same pattern in 3 out of 6

cases (50%) and 2 out of 3 cases (67%), which are smaller than 100% under

Heuristics B-2(a) and C-2.

o Heuristics B-1(b) and C-1 cannot be compared since they do not have both

server types.

 Heuristic B-2(b) states that a server of each server type as the dominant one

serves a service request of the same type with higher probability than the dominant server

of a different type. The support of Heuristic B-2(b) is shown through Var2 to Var19 as

follows.

• The values show a consistent pattern in 3 out of 4 cases (75%), as stated in

Heuristic B-2(b).

• Under other heuristics, those values do not show a consistent pattern, indicating

that a server serves a service request regardless of its type or by different patterns.

o For Heuristic A-1, the values show the same pattern in 2 out of 6 problem

cases (33%), which is much smaller than 75% under Heuristic B-2(b).

o For Heuristic B-1(a), each server is equally likely to be selected for service

provision regardless of a service type in one problem case.

o For Heuristics B-2(a) and C-2, the values show the same pattern in 0 out of 1

problem case (0%) and in 2 out of 3 problem cases (67%), respectively, which

are smaller than 75% under Heuristic B-2(b).

o For Heuristics B-3 and C-3, the values show the same pattern in 1 out of 6

cases (17%) and 1 out of 3 cases (33%), respectively, which are smaller than

75% under Heuristic B-2(b).

 77

o Heuristics B-1(b) and C-1 cannot be compared since they do not have both

server types.

 Heuristics B-3 and C-3 state that a server of one server type randomly serves a

service request of the same type with a given QoS level of L, M or H at the

corresponding probability of δ�, δ� or δE, respectively, and a server of a different server

type to serve the service request with the given QoS level of L, M or H with the

probability of (1 − H�), (1 − H�) or (1 − HE), respectively. Each parameter, H�, H� or HE,

takes a value in (0, 1], and H� ≤ H� ≤ HE. The support of Heuristics B-3 and C-3 is shown

through Var2 to Var19 as follows.

• The values show a consistent pattern in 5 out of 6 cases (83%) for Heuristic B-3

and in all 3 cases (100%) for Heuristic C-3, as stated in these heuristics.

• Under other heuristics, those values do not show a consistent pattern, indicating

that a server of one server type serves a service request of the same type with a

given QoS level of L, M or H at the corresponding probability of δ�, δ� or δE, but

each parameter does not follow H� ≤ H� ≤ HE.

o For Heuristic A-1, the values show the same pattern in 1 out of 3 problem

cases (33%), which is much smaller than 83% and 100% under Heuristics B-3

and C-3.

o All the other heuristics cannot be compared since they do not have mixed

levels of service requests.

 2.5.3 The systematic flow of the heuristic algorithm. In this section, a

systematic flow of resource allocation heuristics is described as follows. In this heuristic

algorithm, all service requests of all clients are randomly ordered first, and then each

 78

problem case is determined to be one of three cases: Case A, Case B or Case C depending

on different conditions of resource capacity with information including QoS requirements

for all service requests of all clients and resource availability and workload of all servers.

 For a problem case determined as Case A, client k's service request is assigned to

a server following Heuristic A-1 until all service requests of all clients are successfully

assigned. For a problem case determined as Case B, it first checks one condition for

Heuristic B-2(a) if overall resource requirement for all the service requests takes at least

70% of the total available resource capacity over all servers. For each client k's service

request, all the related heuristic Bs depending on its conditions are applied in obtaining

its resource allocation solutions until all service requests of all clients are successfully

assigned. For a problem case determined as Case C, client k's service request is assigned

to a server by applying all the related heuristic Cs depending on its conditions. Since all

service requests of all clients cannot be served due to limited overall resource capacity,

experimental results are averaged for 100 runs. Note that all service requests of all clients

are randomly ordered at each iteration for the problem case in Case C.

 In order to obtain efficient resource allocation solutions using the proposed

heuristics, the objective function and the constraints expressed as Equations (1) through

(8) in Chapter 2.3 are considered as follows:

• Equation (1) as the objective function needs to be considered in such ways that all

servers try to serve as many service requests as they can and simultaneously they

seek for obtaining the best objective value by providing QoS closer to QoS

requirement. It could be achieved by applying the resource allocation heuristics.

 79

• Equation (2) of guaranteeing one server assignment for a service request is

satisfied since a client's service request is assigned to one server at most.

• Equation (3) of requiring the selected server's service provision for a service

request is not considered since all servers provide both service types of the

communication intensive service and the computation intensive service.

• Equations (4) through (8) are especially considered in selecting a server for a

client's service request.

o Equation (8) ensures satisfaction of the QoS requirement for the client's

service request when assigning a level of service parameter for the service

request. Note that Equation (8) is implemented as ����� ≥ �������
� for both

service types in this study.

o Equation (4) makes sure if the assigned level of service parameter for the

service request does not exceed the maximum level of the service parameter.

o The assigned level of service parameter for the service request can determine

the requirement of resource amount, and the resource amount can determine

the QoS value as shown in Equations (5) and (6) as resource and QoS impact

models.

o Equation (7) checks if the required resource amount is acceptable with

resource capacity limits of the selected server.

 Note that, as same as a centralized algorithm, this heuristic algorithm has a central

authority to collect important information of all service requests' QoS requirements and

resource status of all service providers. Using the updated information at each decision

epoch, the heuristic algorithm generates resource allocation solutions. However, this

 80

heuristic algorithm is different from the centralized algorithm such that it does not need

to search for all the solution space to produce optimal resource allocation decisions.

Instead, the proposed heuristics directly guide the solution path of how to allocate

resources of which server to which service request, resulting in a much smaller solution

space than the solution space of the centralized algorithm.

2.6 Description of Extended Problem Cases for Performance Comparison

 In this section, various problem cases are designed to evaluate performance of the

proposed heuristics in Case A, Case B and Case C by comparing the heuristic solutions

with the optimal solutions. For the performance evaluation of the heuristic solutions, a

total of four experiments are conducted, including the Step 1 and Step 3 experiments

described in Chapter 2.4 and additional experiments of Step 4 and Step 5 described as

follows. Table 21 shows three levels of QoS variables and the maximum level of service

parameters for the communication intensive service and the computation intensive

service used in Step 4 and Step 5 experiments.

 81

Table 21

QoS Levels and Limit of Service Parameters for Communication Intensive Service and

Computation Intensive Service in Step 4 and Step 5 Experiments

Experiment

Communication Intensive Service

(s = 1)

Computation Intensive Service

(s = 2)

QoS Levels

(���:
�)

Limit of service

parameter (���:��)

QoS Levels

(���:
�)

Limit of service

parameter (���:��)

Step 4

L (6~7)

M (13~14)

H (20~21)

3

L (6~7)

M (14~15)

H (22~23)

3

Step 5

L (5~6)

M (12~13)

H (18~19)

3

L (5~6)

M (11~12)

H (17~18)

3

 As shown in Table 21, Step 4 experiment has a range of QoS requirement for each

level and thus randomly assigns a specific value of the QoS variable given the QoS

requirement level from a client. Hence, Step 4 experiment lets each client using the

communication intensive service set the maximum level of the service parameter to 3 and

set the QoS requirement to one of three levels of L, M and H, and a specific QoS value is

randomly selected from 6 to 7 for L, from 13 to 14 for M and from 20 to 21 for H. It also

lets each client using the computation intensive service set the maximum level of the

service parameter to 3 and set the QoS requirement to one of three levels of L, M and H,

and a specific QoS value is randomly selected from 6 to 7 for L, from 14 to 15 for M and

from 22 to 23 for H.

 Similarly, Step 5 experiment lets each client using the communication intensive

service set the maximum level of the service parameter to 3 and set the QoS requirement

to one of three levels of L, M and H, and a specific QoS value is randomly selected from

 82

5 to 6 for L, from 12 to 13 for M and from 18 to 19 for H. It also lets each client using the

computation intensive service set the maximum level of the service parameter to 3 and set

the QoS requirement to one of three levels of L, M and H, and a specific QoS value is

randomly selected from 5 to 6 for L, from 11 to 12 for M and from 17 to 18 for H.

 Table 22 shows capacity limits of two resource variables: CPU resource and

bandwidth resource for the communication-centered server and the computation-centered

server.

Table 22

Capacity Limits of Two Resource Variables (<=>? , <=@?) for Communication-Centered

Server and Computation-Centered Server and Number of Servers used in Step 4 and Step

5 Experiments

Experiment Communication-Centered Computation-Centered Number of Servers

Step 4

S (23~24, 104~105)

M (31~32, 166~167)

L (39~40, 208~209)

S (115~116, 21~22)

M (183~184, 28~29)

L (229~230, 35~36)

10

Step 5

S (19~20, 95~96)

M (25~26, 139~140)

L (31~32, 177~178)

S (91~92, 19~20)

M (133~134, 26~27)

L (169~170, 32~33)

20

 As shown in Table 22, Step 4 experiment has a range of capacity limits for two

resource variables: CPU resource and bandwidth resource with resource levels of S, M

and L. Given the resource level from a server, it randomly assigns each specific value for

CPU resource and bandwidth resource as the capacity limits. Hence, Step 4 experiment

lets each communication-centered server set its resource capacity limits to one of three

levels of S, M and L, and a specific resource amount is randomly selected from 23 to 24

as the capacity limits of CPU resource and from 104 to 105 as the capacity limits of

 83

bandwidth resource for S, from 31 to 32 of CPU resource and from 166 to 167 of

bandwidth resource for M and from 39 to 40 of CPU resource and from 208 to 209 of

bandwidth resource for L. It also lets each computation-centered server set its resource

capacity limits to one of three levels of S, M and L, and a specific resource amount is

randomly selected from 115 to 116 as the capacity limits of CPU resource and from 21 to

22 as the capacity limits of bandwidth resource for S, from 183 to 184 of CPU resource

and from 28 to 29 of bandwidth resource for M and from 229 to 230 of CPU resource and

from 35 to 36 of bandwidth resource for L.

 Similarly, Step 5 experiment lets each communication-centered server set its

resource capacity limits to one of three levels of S, M and L, and a specific resource

amount is randomly selected from 19 to 20 as the capacity limits of CPU resource and

from 95 to 96 as the capacity limits of bandwidth resource for S, from 25 to 26 of CPU

resource and from 139 to 140 of bandwidth resource for M and from 31 to 32 of CPU

resource and from 177 to 178 of bandwidth resource for L. It also lets each computation-

centered server set its resource capacity limits to one of three levels of S, M and L, and a

specific resource amount is randomly selected from 91 to 92 as the capacity limits of

CPU resource and from 19 to 20 as the capacity limits of bandwidth resource for S, from

133 to 134 of CPU resource and from 26 to 27 of bandwidth resource for M and from 169

to 170 of CPU resource and from 32 to 33 of bandwidth resource for L. Note that Step 4

experiment has ten servers in total, and Step 5 experiment has twenty servers in total.

 Table 23 shows the resource and QoS impact models of the communication

intensive service and the computation intensive service used in Step 4 and Step 5

experiments. Table 24 and Table 25 describe the design of experimental setup with

 84

different numbers of service requests used in Step 4 and Step 5 experiments. In the first

column of Tables 24 and 25, the server configuration is indicated by #X-#Y with #X for

the configuration of the first half of servers and #Y for the second half of servers, where #

representing the number of servers and X or Y representing the resource capacity level.

For example, in Table 24 for Step 4 experiments with ten servers, 5S-5S for the server

configuration 1 represents that the resource capacity of the first 5 servers is set to the S

level and the resource capacity of the other 5 servers is set to the S level. Note that each

experiment has a total of 756 problem cases, which consist of 252 problem cases for Case

A, 252 problem cases for Case B and 252 problem cases for Case C, and all servers

provide both service types of the communication intensive service and the computation

intensive service in each experiment.

Table 23

Resource and QoS Impact Models of Communication Intensive Service and Computation

Intensive Service in Step 4 and Step 5 Experiments

Experiment
Communication Intensive Service

(s = 1)

Computation Intensive Service

(s = 2)

Step 4

���� = 0.2*���:�
���� = 6.9*���:�
���:� = 2���� + ����

���� = 7.6*���;�
���� = 0.1*���;�
���;� = ���� + 3����

Step 5

���� = 0.1*���:�
���� = 6.3*���:�
���:� = 3���� + ����

���� = 6.0*���;�
���� = 0.1*���;�
���;� = ���� + 2����

 85

Table 24

Design of Experimental Setup with Different Numbers of Service Requests in Step 4

Experiment

 Service

Request

Server

Configuration

Communication intensive

service

Computation intensive

service

Both types of services

(Communication,

Computation)

All-L All-M All-H Mixed All-L All-M All-H Mixed All-L All-M All-H Mixed

1. All

communication

centered at 5S-5S

(1-1)

A.13

B.137

C.188

A.5

B.65

C.87

A.3

B.46

C.63

A.6

B.64

C.88

A.2

B.28

C.38

A.1

B.8

C.13

A.1

B.9

C.13

A.2

B.17

C.25

A.14

B.154

C.213

A.7

B.74

C.100

A.4

B.40

C.63

A.2

B.18

C.25

2. All

communication

centered at 5M-5M

(1-2)

A.21

B.220

C.300

A.10

B.110

C.150

A.7

B.75

C.100

A.11

B.110

C.150

A.4

B.37

C.50

A.2

B.19

C.25

A.1

B.9

C.13

A.2

B.19

C.25

A.25

B.247

C.338

A.11

B.120

C.163

A.8

B.84

C.113

A.4

B.35

C.49

3. All

communication

centered at 5L-5L

(1-3)

A.28

B.275

C.375

A.14

B.140

C.188

A.9

B.95

C.125

A.12

B.136

C.188

A.4

B.46

C.63

A.2

B.19

C.25

A.1

B.9

C.13

A.3

B.28

C.38

A.32

B.312

C.425

A.15

B.159

C.213

A.10

B.104

C.138

A.5

B.58

C.75

4. All

communication

centered at 5S-5M

(1-4)

A.14

B.185

C.244

A.5

B.90

C.119

A.4

B.62

C.82

A.6

B.89

C.119

A.3

B.33

C.44

A.1

B.14

C.19

A.1

B.9

C.13

A.2

B.19

C.25

A.4

B.203

C.275

A.7

B.104

C.132

A.5

B.66

C.88

A.2

B.28

C.38

5. All

communication

centered at 5S-5L

(1-5)

A.15

B.215

C.282

A.6

B.105

C.138

A.4

B.73

C.94

A.7

B.106

C.138

A.2

B.38

C.50

A.1

B.14

C.19

A.1

B.9

C.13

A.2

B.24

C.32

A.15

B.240

C.319

A.7

B.119

C.157

A.4

B.76

C.100

A.2

B.40

C.50

6. All

communication

centered at 5M-5L

(1-6)

A.23

B.250

C.338

A.10

B.125

C.169

A.7

B.85

C.113

A.10

B.127

C.169

A.3

B.42

C.57

A.2

B.19

C.25

A.1

B.9

C.13

A.2

B.24

C.32

A.25

B.283

C.382

A.12

B.139

C.188

A.9

B.94

C.125

A.3

B.49

C.63

7. All computation

centered at 5S-5S

(2-1)

A.2

B.28

C.38

A.1

B.9

C.13

A.1

B.9

C.13

A.2

B.18

C.25

A.13

B.140

C.188

A.6

B.65

C.88

A.4

B.46

C.63

A.6

B.66

C.88

A.15

B.154

C.213

A.6

B.75

C.100

A.4

B.46

C.63

A.3

B.28

C.38

8. All computation

centered at 5M-5M

(2-2)

A.3

B.38

C.50

A.2

B.19

C.25

A.1

B.9

C.13

A.2

B.19

C.25

A.22

B.220

C.300

A.10

B.110

C.150

A.7

B.75

C.100

A.10

B.111

C.150

A.23

B.248

C.338

A.11

B.120

C.163

A.9

B.82

C.113

A.4

B.38

C.50

9. All computation

centered at 5L-5L

(2-3)

A.4

B.46

C.63

A.2

B.18

C.25

A.1

B.9

C.13

A.3

B.28

C.38

A.26

B.275

C.375

A.14

B.140

C.188

A.9

B.92

C.125

A.13

B.138

C.188

A.32

B.310

C.425

A.16

B.168

C.213

A.10

B.109

C.138

A.5

B.58

C.75

10. All computation

centered at 5S-5M

(2-4)

A.2

B.33

C.44

A.1

B.14

C.19

A.1

B.9

C.13

A.2

B.19

C.25

A.14

B.185

C.244

A.6

B.90

C.119

A.5

B.61

C.82

A.6

B.89

C.119

A.16

B.205

C.275

A.6

B.98

C.132

A.3

B.66

C.88

A.2

B.34

C.44

11. All computation

centered at 5S-5L

(2-5)

A.3

B.38

C.50

A.1

B.14

C.19

A.1

B.9

C.13

A.2

B.24

C.32

A.15

B.215

C.282

A.7

B.105

C.138

A.4

B.71

C.94

A.5

B.104

C.138

A.15

B.240

C.319

A.7

B.124

C.157

A.4

B.77

C.100

A.2

B.44

C.57

12. All computation

centered at 5M-5L

A.4

B.42

A.2

B.18

A.1

B.9

A.2

B.24

A.20

B.250

A.11

B.125

A.7

B.85

A.11

B.124

A.23

B.281

A.12

B.138

A.8

B.92

A.4

B.48

 86

(2-6) C.57 C.25 C.13 C.32 C.338 C.169 C.113 C.169 C.382 C.188 C.125 C.63

13. Both server types

(communication,

computation) at 5S-

5S

(3-1)

A.2

B.88

C.113

A.1

B.39

C.50

A.1

B.29

C.38

A.2

B.44

C.57

A.3

B.87

C.113

A.1

B.39

C.50

A.1

B.29

C.38

A.2

B.43

C.57

A.4

B.168

C.213

A.2

B.70

C.100

A.1

B.48

C.63

A.2

B.24

C.88

14. Both server types

(communication,

computation) at 5M-

5M

(3-2)

A.3

B.137

C.175

A.2

B.68

C.88

A.1

B.44

C.57

A.2

B.69

C.88

A.4

B.138

C.175

A.2

B.68

C.88

A.1

B.44

C.57

A.2

B.68

C.88

A.5

B.265

C.338

A.2

B.128

C.163

A.2

B.89

C.113

A.3

B.38

C.138

15. Both server types

(communication,

computation) at 5L-

5L

(3-3)

A.4

B.171

C.219

A.2

B.84

C.107

A.1

B.54

C.69

A.3

B.87

C.113

A.3

B.171

C.219

A.2

B.83

C.107

A.1

B.54

C.69

A.2

B.88

C.113

A.6

B.336

C.425

A.3

B.168

C.213

A.2

B.108

C.138

A.5

B.58

C.163

16. Both server types

(communication,

computation) at 5M-

5M

(3-4)

A.2

B.92

C.119

A.2

B.43

C.57

A.1

B.29

C.38

A.2

B.44

C.57

A.3

B.133

C.169

A.1

B.64

C.82

A.1

B.44

C.57

A.2

B.68

C.88

A.4

B.218

C.275

A.2

B.103

C.132

A.1

B.69

C.88

A.2

B.28

C.107

17. Both server types

(communication,

computation) at 5S-

5L

(3-5)

A.4

B.96

C.125

A.2

B.43

C.57

A.1

B.29

C.38

A.3

B.48

C.63

A.3

B.163

C.207

A.1

B.79

C.100

A.1

B.54

C.69

A.2

B.83

C.107

A.5

B.250

C.319

A.3

B.123

C.157

A.1

B.79

C.100

A.2

B.39

C.113

18. Both server types

(communication,

computation) at 5M-

5L

(3-6)

A.4

B.142

C.182

A.2

B.68

C.88

A.1

B.44

C.57

A.3

B.73

C.94

A.4

B.166

C.213

A.2

B.83

C.107

A.1

B.54

C.69

A.2

B.84

C.107

A.6

B.299

C.382

A.3

B.148

C.188

A.2

B.99

C.125

A.3

B.47

C.150

19. Both server types

(communication,

computation) at 5M-

5S

(3-7)

A.3

B.134

C.169

A.1

B.64

C.82

A.1

B.44

C.57

A.2

B.68

C.88

A.3

B.91

C.119

A.2

B.43

C.57

A.1

B.29

C.38

A.2

B.44

C.57

A.5

B.215

C.275

A.2

B.103

C.132

A.2

B.53

C.69

A.3

B.38

C.119

20. Both server types

(communication,

computation) at 5L-

5S

(3-8)

A.2

B.162

C.207

A.1

B.79

C.100

A.1

B.54

C.69

A.2

B.83

C.107

A.4

B.95

C.125

A.2

B.43

C.57

A.1

B.29

C.38

A.3

B.48

C.63

A.6

B.249

C.319

A.3

B.122

C.157

A.2

B.63

C.82

A.2

B.48

C.125

21. Both server types

(communication,

computation) at 5L-

5M

(3-9)

A.4

B.166

C.213

A.2

B.83

C.107

A.1

B.54

C.69

A.2

B.83

C.107

A.5

B.140

C.182

A.2

B.68

C.88

A.1

B.44

C.57

A.3

B.72

C.94

A.6

B.298

C.382

A.2

B.147

C.188

A.2

B.98

C.125

A.4

B.45

C.157

 87

Table 25

Design of Experimental Setup with Different Numbers of Service Requests in Step 5

Experiment

 Service

Request

Server

Configuration

Communication intensive

service

Computation intensive

service

Both types of services

(Communication,

Computation)

All-L All-M All-H Mixed All-L All-M All-H Mixed All-L All-M All-H Mixed

1. All

communication

centered at 10S-10S

(1-1)

A.13

B.290

C.375

A.5

B.135

C.175

A.4

B.96

C.125

A.5

B.136

C.175

A.2

B.58

C.75

A.1

B.19

C.25

A.1

B.20

C.25

A.2

B.38

C.50

A.16

B.328

C.425

A.7

B.155

C.200

A.3

B.78

C.125

A.6

B.136

C.176

2. All

communication

centered at 10M-

10M

(1-2)

A.20

B.420

C.550

A.10

B.210

C.275

A.5

B.135

C.175

A.9

B.211

C.275

A.3

B.78

C.100

A.2

B.39

C.50

A.1

B.19

C.25

A.2

B.38

C.50

A.23

B.478

C.625

A.11

B.230

C.300

A.7

B.154

C.200

A.6

B.134

C.175

3. All

communication

centered at 10L-10L

(1-3)

A.25

B.540

C.700

A.13

B.270

C.350

A.7

B.175

C.225

A.13

B.268

C.350

A.4

B.96

C.125

A.2

B.39

C.50

A.1

B.20

C.25

A.3

B.58

C.75

A.29

B.613

C.800

A.14

B.308

C.400

A.9

B.194

C.250

A.7

B.154

C.200

4. All

communication

centered at 10S-10M

(1-4)

A.14

B.360

C.463

A.6

B.175

C.225

A.4

B.116

C.150

A.6

B.175

C.225

A.3

B.68

C.88

A.1

B.29

C.38

A.1

B.19

C.25

A.2

B.39

C.50

A.16

B.404

C.525

A.8

B.194

C.250

A.3

B.125

C.163

A.5

B.134

C.175

5. All

communication

centered at 10S-10L

(1-5)

A.13

B.420

C.538

A.5

B.205

C.263

A.5

B.136

C.175

A.6

B.205

C.263

A.3

B.77

C.100

A.1

B.29

C.38

A.1

B.19

C.25

A.2

B.48

C.63

A.16

B.474

C.613

A.8

B.234

C.300

A.4

B.145

C.188

A.5

B.144

C.188

6. All

communication

centered at 10M-10L

(1-6)

A.20

B.480

C.625

A.10

B.240

C.313

A.6

B.155

C.200

A.10

B.241

C.313

A.3

B.87

C.113

A.2

B.39

C.50

A.1

B.20

C.25

A.2

B.49

C.63

A.22

B.547

C.713

A.11

B.269

C.350

A.7

B.174

C.225

A.7

B.145

C.188

7. All computation

centered at 10S-10S

(2-1)

A.3

B.57

C.75

A.1

B.19

C.25

A.1

B.20

C.25

A.2

B.37

C.50

A.15

B.290

C.375

A.6

B.135

C.175

A.4

B.96

C.125

A.5

B.135

C.175

A.14

B.328

C.425

A.7

B.154

C.200

A.4

B.91

C.125

A.2

B.59

C.72

8. All computation

centered at 10M-

10M

(2-2)

A.4

B.77

C.100

A.2

B.38

C.50

A.1

B.19

C.25

A.2

B.38

C.50

A.20

B.420

C.550

A.10

B.210

C.275

A.6

B.135

C.175

A.9

B.213

C.275

A.22

B.478

C.625

A.11

B.229

C.300

A.7

B.155

C.200

A.5

B.115

C.150

9. All computation

centered at 10L-10L

(2-3)

A.5

B.97

C.125

A.2

B.39

C.50

A.1

B.19

C.25

A.3

B.57

C.75

A.25

B.540

C.700

A.13

B.270

C.350

A.8

B.175

C.225

A.13

B.269

C.350

A.28

B.608

C.800

A.14

B.305

C.400

A.9

B.191

C.250

A.5

B.114

C.150

10. All computation

entered at 10S-10M

(2-4)

A.3

B.68

C.88

A.1

B.29

C.38

A.1

B.20

C.25

A.2

B.38

C.50

A.14

B.356

C.463

A.7

B.175

C.225

A.5

B.115

C.150

A.5

B.174

C.225

A.15

B.405

C.525

A.6

B.193

C.250

A.3

B.125

C.163

A.2

B.88

C.113

11. All computation

entered at 10S-10L

(2-5)

A.2

B.78

C.100

A.1

B.30

C.38

A.1

B.19

C.25

A.2

B.49

C.63

A.15

B.420

C.538

A.6

B.205

C.263

A.4

B.137

C.175

A.6

B.204

C.263

A.16

B.475

C.613

A.6

B.234

C.300

A.4

B.146

C.188

A.2

B.88

C.114

12. All computation A.3 A.2 A.1 A.2 A.21 A.10 A.7 A.10 A.24 A.11 A.8 A.4

 88

centered at 10M-10L

(2-6)

B.87

C.113

B.39

C.50

B.20

C.25

B.49

C.63

B.480

C.625

B.240

C.313

B.155

C.200

B.240

C.313

B.546

C.713

B.269

C.350

B.173

C.225

B.117

C.150

13. Both server types

(communication,

computation) at 10S-

10S

(3-1)

A.2

B.178

C.225

A.1

B.79

C.100

A.1

B.60

C.75

A.2

B.88

C.113

A.3

B.179

C.225

A.1

B.79

C.100

A.1

B.59

C.75

A.2

B.88

C.113

A.4

B.336

C.425

A.2

B.158

C.200

A.1

B.98

C.125

A.3

B.99

C.175

14. Both server types

(communication,

computation) at

10M-10M

(3-2)

A.4

B.257

C.325

A.2

B.128

C.163

A.1

B.79

C.100

A.2

B.128

C.163

A.4

B.257

C.325

A.2

B.130

C.163

A.1

B.79

C.100

A.2

B.128

C.163

A.5

B.497

C.625

A.2

B.238

C.300

A.2

B.159

C.200

A.4

B.127

C.275

15. Both server types

(communication,

computation) at 10L-

10L

(3-3)

A.4

B.326

C.413

A.2

B.159

C.200

A.1

B.99

C.125

A.2

B.167

C.213

A.5

B.326

C.413

A.2

B.159

C.200

A.1

B.100

C.125

A.3

B.167

C.213

A.6

B.632

C.800

A.4

B.316

C.400

A.2

B.198

C.250

A.5

B.136

C.350

16. Both server types

(communication,

computation) at 10S-

10M

(3-4)

A.3

B.186

C.238

A.2

B.90

C.113

A.1

B.59

C.75

A.2

B.88

C.113

A.3

B.248

C.313

A.1

B.120

C.150

A.1

B.80

C.100

A.2

B.128

C.163

A.4

B.417

C.525

A.2

B.199

C.250

A.2

B.129

C.163

A.3

B.128

C.225

17. Both server types

(communication,

computation) at 10S-

10L

(3-5)

A.4

B.196

C.250

A.2

B.89

C.113

A.1

B.60

C.75

A.3

B.97

C.125

A.2

B.308

C.388

A.1

B.150

C.188

A.1

B.99

C.125

A.2

B.158

C.200

A.5

B.486

C.613

A.3

B.239

C.300

A.2

B.149

C.188

A.4

B.126

C.263

18. Both server types

(communication,

computation) at

10M-10L

(3-6)

A.5

B.266

C.338

A.2

B.129

C.163

A.1

B.79

C.100

A.2

B.138

C.157

A.3

B.317

C.400

A.2

B.159

C.200

A.1

B.100

C.125

A.2

B.158

C.200

A.6

B.565

C.713

A.3

B.279

C.350

A.2

B.179

C.225

A.5

B.127

C.300

19. Both server types

(communication,

computation) at

10M-10S

(3-7)

A.2

B.248

C.313

A.1

B.119

C.150

A.1

B.80

C.100

A.2

B.128

C.163

A.3

B.187

C.238

A.2

B.89

C.113

A.1

B.60

C.75

A.2

B.89

C.113

A.4

B.417

C.525

A.2

B.199

C.250

A.1

B.129

C.163

A.3

B.98

C.213

20. Both server types

(communication,

computation) at 10L-

10S

(3-8)

A.3

B.308

C.388

A.1

B.149

C.188

A.1

B.99

C.125

A.2

B.158

C.200

A.4

B.196

C.250

A.2

B.90

C.113

A.1

B.59

C.75

A.3

B.97

C.125

A.5

B.486

C.613

A.3

B.239

C.300

A.1

B.149

C.188

A.3

B.106

C.263

21. Both server types

(communication,

computation) at 10L-

10M

A.3

B.317

C.400

A.2

B.159

C.200

A.1

B.100

C.125

A.2

B.158

C.200

A.4

B.266

C.338

A.2

B.129

C.163

A.1

B.79

C.100

A.3

B.137

C.175

A.7

B.565

C.713

A.3

B.278

C.350

A.2

B.178

C.225

A.4

B.137

C.313

 89

2.7. Results and Discussions

 This section first defines key measures for performance comparison in terms of

solution optimality between the optimal solutions and the heuristic solutions for various

problem cases designed in Chapter 2.6. Then, it provides the computation times of

obtaining the optimal solutions and the heuristic solutions to examine the scalability of

those methods.

 Regarding the solution optimality, two measures are introduced: the number of

dropped service requests and the average ratio of QoS values assigned for all served

service requests. Equation (8) as shown below is the objective function of the

optimization problem in Chapter 2.3, which consists of two parts as indicated in

Equations (9) and (10).

Minimize ∑ ∑ #∑ $%&��� '$%&�
(#

$%&�
(∗*���� (8)

If ∑ ����� < ����
�� , then Equation (8) can be written as Equation (9).

∑ ∑ Q �
*�

− ∑ $%&���
$%&�

(∗*�
R��� (9)

If ∑ QTUVW ≥ QTUV
XW , then Equation (8) can be written as Equation (10).

 ∑ ∑ Q∑ $%&���
$%&�

(∗*�
− �

*�
R��T (10)

 As mentioned earlier in Chapter 2.5.3, all experiments in this study consider two

services providing QoS at least a service request's minimum QoS requirement for all the

served service requests. Thus, if a service request is served by a server, then ∑ ����� ≥�

 ����
� . If a service request is not served by any server, then ∑ ����� = 0� . Note that this

 90

study considers one QoS variable (ps =1) for each service type, Equations (9) and (10)

can be transformed as shown below in Equations (11) and (12).

 If client k’s service request is not served by any server (i.e. ∑ ����� = 0 � and

∑ ����� < ����
��), then Equation (9) becomes Equation (11) indicating the total number

of dropped service requests as the first measure.

∑ 1� for dropped service requests k (11)

 If client k’s service request is served by a server (i.e. ∑ QTUVW ≥ QTUV
XW), then

Equation (10) becomes Equation (12).

 ∑ Q∑ $%:��
$%:(− 1R� (12)

From Equation (12), the second key measure of Service AVerage ratio (SAV ratio)

is drawn for the comparison in solution optimality as shown below in Equation (13).

∑ Q∑ $%:��
$%:(R� ∑ kZ (13)

Equation (12) considers ratio of the difference between the provided QoS and the

required QoS to the required QoS, and then each ratio is summed over all served service

requests. Equation (13), as the second measure of performance comparison, considers the

average ratio of the provided QoS to the required QoS for all served service requests.

 To analyze performance of the resource allocation heuristics in solution

optimality, two key measures are introduced: the number of dropped service requests in

Equation (11) and the SAV ratio in Equation (13). In addition, the percentage of having

the same service decisions as in the optimal solutions and the percentage of having

different service decisions from the optimal solutions are provided for the comparison in

solution optimality. To analyze scalability of the resource allocation heuristics, the

 91

computation times of obtaining the optimal solutions and the heuristic solutions are

compared in Chapter 2.7.2.

 2.7.1 Solution optimality. Table 26 shows the comparisons between the optimal

solutions and the heuristic solutions from the experiments of Step 1, Step 3, Step 4 and

Step 5 by using the first set of probability parameters indicated in Table 14.

 92

Table 26

Comparisons between the Optimal Solutions and the Heuristic Solutions with Parameter

Set 1

Experiment Case
Same

Decision

Different

Decision

Difference in Dropped

Requests, (heuristic

solution - optimal

solution) in number (%)

SAV ratio

Step 1

A
44.44%

(112/252)

55.56%

(140/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.04

1.02 ~ 1.08

0.02

Optimal

Solutions
Same above

B
58.33%

(147/252)

41.67%

(105/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.04

1.02 ~ 1.08

0.02

Optimal

Solutions
Same above

C
52.78%

(133/252)

47.22%

(119/252)

Avg.

Range

St.dev

2.25 (4.39%)

0.00 ~25.58

4.61

Heuristic

Solutions

Avg.

Range

St.dev

1.04

1.02 ~ 1.08

0.02

Optimal

Solutions
Same above

Step 3

A
37.70%

(95/252)

62.30%

(157/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.20

1.03 ~ 1.63

0.14

Optimal

Solutions
Same above

B
53.57%

(135/252)

46.43%

(117/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.21

1.05 ~ 1.51

0.13

Optimal

Solutions
Same above

C
61.90%

(156/252)

38.10%

(96/252)

Avg.

Range

St.dev

0.62 (1.45%)

-0.92 ~10.87

1.62

Heuristic

Solutions

Avg.

Range

St.dev

1.19

1.04 ~ 1.49

0.12

Optimal

Solutions

Avg.

Range

St.dev

1.17

1.03 ~ 1.45

0.11

 93

Step 4

A
43.25%

(109/252)

56.75%

(143/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.03 ~ 1.32

0.06

Optimal

Solutions
Same above

B
17.06%

(43/252)

82.94%

(209/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.05 ~ 1.24

0.05

Optimal

Solutions
Same above

C
57.94%

(146/252)

42.06%

(106/252)

Avg.

Range

St.dev

5.19 (2.82%)

0.00 ~79.92

12.71

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.04 ~ 1.24

0.05

Optimal

Solutions

Avg.

Range

St.dev

1.10

1.04 ~ 1.22

0.05

Step 5

A
38.89%

(98/252)

61.11%

(154/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.02 ~ 1.32

0.06

Optimal

Solutions
Same above

B
20.24%

(51/252)

79.76%

(201/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.05 ~ 1.23

0.05

Optimal

Solutions
Same above

C
58.33%

(147/252)

41.67%

(105/252)

Avg.

Range

St.dev

9.62 (2.69%)

0.00 ~168.85

24.74

Heuristic

Solutions

Avg.

Range

St.dev

1.10

1.05 ~ 1.23

0. 05

Optimal

Solutions

Avg.

Range

St.dev

1.09

1.04 ~ 1.20

0.04

 94

 As shown in Table 26, the heuristic solutions using the first set of probability

parameters are compared with the optimal solutions in the following four aspects: 1) the

percentage of the same service decisions as the optimal solutions, 2) the percentage of

different service decisions from the optimal solutions, 3) the difference in dropped

service requests of the heuristic solutions compared with the optimal solutions and 4) the

SAV ratio of the heuristic solutions and the optimal solutions.

 For Case A in Step 1 experiment, about 44.44% of 252 problem cases show that

the heuristic solutions have same service decisions as the optimal solutions, while about

55.56% of the problem cases show different service decisions from the optimal solutions.

The heuristic solutions do not drop any service request as same as the optimal solutions

due to a sufficient resource capacity at a server to satisfy all service requests of all clients

in Case A. Moreover, the heuristic solutions serve all service requests of all clients with

the same QoS values as the optimal solutions and thus have the same SAV ratio of 1.04 in

average of all problem cases with the range of 1.02 to 1.08 and the standard deviation of

0.02. Here, the SAV ratio is an average ratio value of the provided QoS to the required

QoS for all served service requests as indicated in Equation (13). If a service request

selects to be served, then a server provides at least its QoS requirement, and as a result,

the SAV ratio is at least 1 for any served service request. The SAV ratio of 1.04 in average

means that, for all the served service requests, the provided QoS in average is 1.04 times

to the QoS requirement.

 For Case B in Step 1 experiment, about 58.33% of 252 problem cases show that

the heuristic solutions have same service decisions as the optimal solutions, while about

41.67% of the problem cases show different service decisions from the optimal solutions.

 95

The heuristic solutions do not drop any service request as same as the optimal solutions

due to a sufficient resource capacity over all servers to satisfy all service requests of all

clients in Case B. Moreover, the heuristic solutions serve all service requests of all clients

with the same QoS values as the optimal solutions and thus have the same SAV ratio of

1.04 in average of all problem cases with the range of 1.02 to 1.08 and the standard

deviation of 0.02, which implies that the provided QoS in average is 1.04 times to the

QoS requirement for all served service requests.

 For Case C Step 1 experiment, about 52.78% of 252 problem cases show that the

heuristic solutions have same service decisions as the optimal solutions, while about

47.22% of the problem cases show different service decisions from the optimal solutions.

Since neither each server nor all server together have a sufficient resource capacity to

satisfy all service requests of all clients in Case C, both of the optimal solutions and the

heuristic solutions have some service requests to be dropped. However, the heuristic

solutions drop about two more service requests in average (i.e. it takes about 4.39% of all

service requests) than the optimal solutions, and the difference range is 0.00 to 25.58 with

the standard deviation of 4.61. The heuristic solutions have the same SAV ratio of 1.04 in

average with the range of 1.02 to 1.08 and the standard deviation of 0.02 as the optimal

solutions. It implies that the heuristic solutions serve three less service requests than the

optimal solutions in average but provide the same QoS values as the optimal solutions for

all the served service requests with the QoS provision of 1.04 times to the QoS

requirement.

 Table 15 from Chapter 2.5.1 shows service decisions of which service requests to

be dropped in the optimal solutions for two problem cases in Case C. In one problem case

 96

with server configuration 16 and seven clients, two service requests of the

communication intensive service (client k = 6 and 7) are dropped. All the seven clients'

service requests have one service type with one QoS level, and thus it implies that

random service requests are dropped when overall resource capacity is not sufficient to

serve all service requests of all clients.

 In another problem case with server configuration 13 and sixteen clients as shown

in Table 15, two service requests of the communication intensive service with the QoS

level of H (client k = 3 and 16) and one service request of the computation intensive

service with the QoS level of M (client k = 8) are dropped for Case C. The two dropped

service requests of the communication intensive service (client k = 3 and 16) have the

QoS level of H, which requires the largest resource consumption among the nine service

requests of the communication intensive service. The resource requirement can be

calculated by resource and QoS impact models in Table 6, and due to its linear

relationship between service parameters and resource consumption, service requests with

higher QoS levels need higher service parameters to meet their QoS requirements and

thus larger resource consumption than the service requests with lower QoS levels. The

other dropped service request of the computation intensive service (client k = 8) with the

QoS level of M has the highest estimated objective value of 0.07 among all the sixteen

service requests. With the objective function in Equation (1), the optimization problem in

Chapter 2.3 tries to minimize the overall objective value, and as a result, the service

request with the highest estimated objective value is dropped. It implies that a service

request requiring the largest resource consumption and/or resulting in the worst estimated

 97

objective value is dropped when overall resource capacity is not sufficient to serve all

service requests of all clients.

 Figure 4 shows the observation of dropping service requests for Case C, where

overall resource is not sufficient to serve all service requests of all clients. If all service

requests are either communication intensive services or computation intensive services

with one QoS level of L, M or H, then a random service request is dropped. For the other

cases, a service request requiring the largest resource consumption and/or resulting in the

worst estimated objective value is dropped.

Figure 4. Observation of Dropping Service Requests for Case C.

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

1-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

A random

request

A request requiring the

largest resource

consumption

AND/OR

A request resulting in the

worst objective value

 98

 For Case A and Case B in Step 3 experiment, about 37.70% and 53.57% of 252

problem cases show that the heuristic solutions have same service decisions as the

optimal solutions, while about 62.30% and 46.43% of the problem cases show different

service decisions from the optimal solutions respectively. The heuristic solutions do not

drop any service request as same as the optimal solutions due to a sufficient resource

capacity at a server (in Case A) or over all servers (in Case B) to satisfy all service

requests of all clients. Moreover, the heuristic solutions serve all service requests of all

clients with the same QoS values as the optimal solutions and thus have the same SAV

ratio of 1.20 in average with the range of 1.03 to 1.63 and the standard deviation of 0.14

in Case A and the same SAV ratio of 1.21 in average with the range of 1.05 to 1.51 and

the standard deviation of 0.13 in Case B. It implies that the provided QoS in average is

1.20 times and 1.21 times to the QoS requirement for all served service requests in both

optimal and heuristic solutions for Case A and Case B, respectively.

 For Case C in Step 3 experiment, about 61.90% of 252 problem cases show that

the heuristic solutions have same service decisions as the optimal solutions, while about

38.10% of the problem cases show different service decisions from the optimal solutions.

Since neither each server nor all server together have a sufficient resource capacity to

satisfy all service requests of all clients in Case C, both of the optimal solutions and the

heuristic solutions have some service requests to be dropped. However, the heuristic

solutions drop about one more service request in average (i.e. it takes about 1.45% of all

service requests) than the optimal solutions, and the difference range is -0.92 to 10.87

with the standard deviation of 1.62. Moreover, the heuristic solutions have the SAV ratio

of 1.19 in average with the range of 1.04 to 1.49 and the standard deviation of 0.12, while

 99

the optimal solutions have the SAV ratio of 1.17 in average with the range of 1.03 to 1.45

and the standard deviation of 0.11. It implies that the heuristic solutions serve one less

service request than the optimal solutions in average but provide higher QoS values with

the QoS provision of 1.19 times to the QoS requirement for all served service requests

than the QoS provision of 1.17 times to the QoS requirement for all served service

requests in the optimal solutions.

 One unusual problem case shows a negative value of -0.92 in the difference of the

dropped service requests, implying that the heuristic solution serves about one more

service request than the optimal solution. Table 27 shows and examines service decisions

made in the optimal solution and the heuristic solution at iteration 100 for the problem

case. Different decisions made in the heuristic solution from the optimal solution are

marked by "*" in Table 27.

 100

Table 27

Service Decisions made in the Optimal Solution and the Heuristic Solution at Iteration

100

Client Service

QoS

Requirement

(����
�)

Estimated

Objective

Value

Optimal Solution Heuristic Solution

Server

Service

parameter (�����)
and

QoS level(�����)
Server

Service

parameter (�����)
and

QoS level(�����)
k = 1 comp.

intensive

service

L (4) 0.23 comm.

centered

server

��,�,�: 1

��,�,�: 4.90

comm.

centered

server

��,�,E: 1

��,�,E: 4.90

k = 2 comp.

intensive

service

L (4) 0.23 comm.

centered

server

��,�,�: 1

��,�,�: 4.90

comm.

centered

server

��,�,�: 1

��,�,�: 4.90

k = 3 comp.

intensive

service

L (3) 0.63 none none comm.

centered

server*

�E,�,�: 1*

�E,�,�: 4.90*

k = 4 comp.

intensive

service

H (18) 0.09 none none comm.

centered

server*

�I,�,E: 4*

�I,�,E: 19.60*

k = 5 comp.

intensive

service

L (3) 0.63 none none comm.

centered

server*

�J,�,E: 1*

�J,�,E: 4.90*

k = 6 comp.

intensive

service

M (14) 0.05 comm.

centered

server

�K,�,E: 3

�K,�,E: 14.70

none* none*

k = 7 comp.

intensive

service

H (19) 0.03 comm.

centered

server

�L,�,�: 4

�L,�,�: 19.60

none* none*

k = 8 comp.

intensive

service

H (19) 0.03 comm.

centered

server

�M,�,�: 4

�M,�,�: 19.60

comm.

centered

server

�M,�,�: 4

�M,�,�: 19.60

k = 9 comp.

intensive

service

H (19) 0.03 comm.

centered

server

�N,�,E: 4

�N,�,E: 19.60

comm.

centered

server

�N,�,�: 4

�N,�,�: 19.60

k = 10 comp.

intensive

service

H (18) 0.09 none none none none

k = 11 comp.

intensive

service

L (4) 0.23 comm.

centered

server

���,�,�: 1

���,�,�: 4.90

comm.

centered

server

���,�,�: 1

���,�,�: 4.90

k = 12 comp.

intensive

service

L (3) 0.63 comm.

centered

server

���,�,�: 1

���,�,�: 4.90

comm.

centered

server

���,�,�: 1

���,�,�: 4.90

 101

 The problem case in Table 27 has that all servers are the communication-centered

servers with the resource level of S (i.e. server configuration 2) and all service requests

are computation intensive services with mixed QoS levels of L, M and H. The optimal

solution drops a total of four service requests: two computation intensive service with the

QoS level of H (client k = 4 and 10) and two computation intensive services with the QoS

level of L (client k = 3 and 5) due to insufficient resource capacity to satisfy all service

requests of all clients. The two dropped computation intensive service (client k = 4 and 10)

has the QoS level of H, which requires the largest resource consumption, and the other

two dropped computation intensive services (client k = 3 and 5) with the QoS level of L

have the highest estimated objective value of 0.63 among twelve service requests of the

computation intensive service. In general, the optimal solution selects to serve service

requests of smaller resource requirement and, instead, drop service requests of larger

resource requirement in order to serve as many clients' service requests as it can.

However, in a few cases, the optimal solution selects to serve service requests of larger

resource requirement but with lower objective value and, instead, drop service requests of

smaller resource requirement but with higher objective value in order to minimize the

overall objective value for all service requests of all clients as shown in Equation (1). On

the other hand, the heuristic solution drops two service requests of the computation

intensive service with the QoS level of H (client k = 7 and 10) requiring the largest

resource consumption and one service request of the computation intensive service with

the QoS level of M (client k = 6) requiring the second largest resource consumption

among twelve service requests of the computation intensive service. Instead, the heuristic

 102

solution selects to serve two more service requests of the computation intensive service

(client k = 3 and 5) with the QoS level of L, which require smaller resource consumption.

Using the heuristics do not consider an impact of serving a service request on the overall

objective value for all service requests of all clients, and thus the heuristic solution selects

to serve more number of service requests than the optimal solution but results in the

worse objective value for a few cases.

 For Case A and Case B in Step 4 experiment, about 43.25% and 17.06% of 252

problem cases show that the heuristic solutions have same service decisions as the

optimal solutions, while about 56.75% and 82.94% of the problem cases show different

service decisions from the optimal solutions respectively. The heuristic solutions do not

drop any service request as same as the optimal solutions due to a sufficient resource

capacity at a server (in Case A) or over all servers (in Case B) to satisfy all service

requests of all clients. Moreover, the heuristic solutions serve all service requests of all

clients with the same QoS values as the optimal solutions and thus have the same SAV

ratio of 1.11 in average with the range of 1.03 to 1.32 and the standard deviation of 0.06

in Case A and with the range of 1.05 to 1.24 and the standard deviation of 0.05 in Case B.

It implies that the provided QoS in average is 1.11 times to the QoS requirement for all

served service requests in both optimal and heuristic solutions for Case A and Case B.

 For Case C in Step 4 experiment, about 57.94% of 252 problem cases show that

the heuristic solutions have same service decisions as the optimal solutions, while about

42.06% of the problem cases show different service decisions from the optimal solutions.

Since neither each server nor all server together have a sufficient resource capacity to

satisfy all service requests of all clients in Case C, both of the optimal solutions and the

 103

heuristic solutions have some service requests to be dropped. However, the heuristic

solutions drop about five more service requests in average (i.e. it takes about 2.82% of all

service requests) than the optimal solutions, and the difference range is 0.00 to 79.92 with

the standard deviation of 12.71. Moreover, the heuristic solutions have the SAV ratio of

1.11 in average with the range of 1.04 to 1.24 and the standard deviation of 0.05, while

the optimal solutions have the SAV ratio of 1.10 in average with the range of 1.04 to 1.22

and the standard deviation of 0.05. It implies that the heuristic solutions serve five less

service requests than the optimal solutions in average but provide higher QoS values with

the QoS provision of 1.11 times to the QoS requirement for all served service requests

than the QoS provision of 1.10 times to the QoS requirement for all served service

requests in the optimal solutions.

 For Case A and Case B in Step 5 experiment, about 38.89% and 20.24% of 252

problem cases show that the heuristic solutions have same service decisions as the

optimal solutions, while about 61.11% and 79.76% of the problem cases show different

service decisions from the optimal solutions respectively. The heuristic solutions do not

drop any service request as same as the optimal solutions due to a sufficient resource

capacity at a server (in Case A) or over all servers (in Case B) to satisfy all service

requests of all clients. Moreover, the heuristic solutions serve all service requests of all

clients with the same QoS values as the optimal solutions and thus have the same SAV

ratio of 1.11 in average with the range of 1.02 to 1.32 and the standard deviation of 0.06

in Case A and with the range of 1.05 to 1.23 and the standard deviation of 0.05 in Case B.

It implies that the provided QoS in average is 1.11 times to the QoS requirement for all

served service requests in both optimal and heuristic solutions for Case A and Case B.

 104

 For Case C in Step 5 experiment, about 58.33% of 252 problem cases show that

the heuristic solutions have same service decisions as the optimal solutions, while about

41.67% of the problem cases show different service decisions from the optimal solutions.

Since neither each server nor all server together have a sufficient resource capacity to

satisfy all service requests of all clients in Case C, both of the optimal solutions and the

heuristic solutions have some service requests to be dropped. However, the heuristic

solutions drop about ten more service requests in average (i.e. it takes about 2.69% of all

service requests) than the optimal solutions, and the difference range is 0.00 to 168.85

with the standard deviation of 24.74. Moreover, the heuristic solutions have the SAV ratio

of 1.10 in average with the range of 1.05 to 1.23 and the standard deviation of 0.05, while

the optimal solutions have the SAV ratio of 1.09 in average with the range of 1.04 to 1.20

and the standard deviation of 0.04. It implies that the heuristic solutions serve ten less

service requests than the optimal solutions in average but provide higher QoS values with

the QoS provision of 1.10 times to the QoS requirement for all served service requests

than the QoS provision of 1.09 times to the QoS requirement for all served service

requests in the optimal solutions.

 Table 28 shows the comparisons between the optimal solutions and the heuristic

solutions in the experiments of Step 1, Step 3, Step 4 and Step 5 by using the second set

of probability parameters for obtaining the heuristic solutions.

 105

Table 28

Comparisons between the Optimal Solutions and the Heuristic Solutions with Parameter

Set 2

Experiment Case
Same

Decision

Different

Decision

Difference in Dropped

Requests, (heuristic

solution - optimal

solution) in number (%)

SAV ratio

Step 1

A
50.00%

(126/252)

50.00%

(126/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.04

1.02 ~ 1.08

0.02

Optimal

Solutions
Same above

B
63.10%

(159/252)

36.90%

(93/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.04

1.02 ~ 1.08

0.02

Optimal

Solutions
Same above

C
55.16%

(139/252)

44.84%

(113/252)

Avg.

Range

St.dev

2.23 (4.35%)

0.00 ~26.46

4.62

Heuristic

Solutions

Avg.

Range

St.dev

1.04

1.02 ~ 1.08

0.02

Optimal

Solutions
Same above

Step 3

A
42.46%

(107/252)

57.54%

(145/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.20

1.03 ~ 1.59

0.14

Optimal

Solutions
Same above

B
51.98%

(131/252)

48.02%

(121/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.20

1.03 ~ 1.47

0.13

Optimal

Solutions
Same above

C
61.51%

(155/252)

38.49%

(97/252)

Avg.

Range

St.dev

0.77 (1.73%)

-0.84 ~14.19

2.04

Heuristic

Solutions

Avg.

Range

St.dev

1.20

1.04 ~ 1.51

0.12

Optimal

Solutions

Avg.

Range

St.dev

1.18

1.03 ~ 1.47

0.11

 106

Step 4

A
57.54%

(145/252)

42.46%

(107/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.03 ~ 1.32

0.06

Optimal

Solutions
Same above

B
19.84%

(50/252)

80.16%

(202/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.04 ~ 1.24

0.05

Optimal

Solutions
Same above

C
57.94%

(146/252)

42.06%

(106/252)

Avg.

Range

St.dev

6.02 (3.09%)

0.00 ~116.38

15.66

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.04 ~ 1.24

0.05

Optimal

Solutions

Avg.

Range

St.dev

1.10

1.04 ~ 1.22

0.04

Step 5

A
37.70%

(95/252)

62.30%

(157/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.10

1.02 ~ 1.32

0.06

Optimal

Solutions
Same above

B
22.22%

(56/252)

77.78%

(196/252)
0

Heuristic

Solutions

Avg.

Range

St.dev

1.11

1.05 ~ 1.23

0.05

Optimal

Solutions
Same above

C
58.33%

(147/252)

41.67%

(105/252)

Avg.

Range

St.dev

10.46 (2.82%)

0.00 ~183.52

27.70

Heuristic

Solutions

Avg.

Range

St.dev

1.10

1.05 ~ 1.22

0. 05

Optimal

Solutions

Avg.

Range

St.dev

1.09

1.04 ~ 1.20

0.04

 107

 The experimental results with the second set of parameters are similar to the ones

with the first set of parameters in terms of solution optimality. Hence, it concludes that

the heuristic solutions are as good as or close to the optimal solutions. In Case A, where

each server has a sufficient resource capacity and in Case B, where all the servers

together have a sufficient resource capacity for all service requests of all clients, the

heuristic solutions do not drop any service request as same as the optimal solutions. For

Case A and Case B, the heuristic solutions have as same SAV ratios as the optimal

solutions, implying that using the heuristics serves all the service requests with the same

QoS values as in the optimal solutions. For Case C, where all the servers together do not

have sufficient resource capacity for all service requests of all clients, the heuristic

solutions drop more service requests of about 1% ~ 4% of all service requests than the

optimal solutions. However, the heuristic solutions provide at least the same level of QoS

to all served service requests as the optimal solutions with the same or higher SAV ratios.

 2.7.2 Scalability. Table 29 and Figure 5 show computation times (in seconds) of

obtaining the optimal and heuristic solutions in the four experiments using the first set of

probability parameters. As Figure 5 illustrates, the average computation times of

obtaining both the optimal and the heuristic solutions are increased as a problem case

becomes more complicated with increasing numbers of service requests and limited

resource capacity from Case A, Case B to Case C. The ranges of the computation times

for obtaining the optimal and the heuristic solutions also become larger with higher

values of the standard deviation from Case A, Case B to Case C. However, the rate of

increase in the average computation times with the increasing problem complexity is

much larger for the optimal solutions than the heuristic solutions.

 108

 Similarly, the average computation times of obtaining the optimal solutions and

the heuristic solutions are increased with increasing numbers of servers (from two servers

in Step 1 experiment to twenty servers in Step 5 experiment). The ranges of the

computation times for obtaining both the optimal and the heuristic solutions also become

larger with higher values of the standard deviation from Step 1 experiment to Step 5

experiment. However, the rate of increase in the average computation times with

increasing numbers of servers is much larger for the optimal solutions than the heuristic

solutions. Hence, using the heuristics demonstrate better computational efficiency and

thus scalability than solving the optimization problem.

 Note that, as shown in Table 29, the heuristic solutions for Case B have larger

ranges of the computation times with higher values of the standard deviation than the

ones for Case C in all experiments. The heuristic algorithm for Case B counts all

computation times consumed until it generates the final heuristic solution for satisfying

all service requests of all clients. On the other hand, for Case C the heuristic algorithm

averages the computation times consumed to obtain the heuristic solution for each

iteration.

 109

Table 29

Computation Times (in seconds) of Obtaining the Optimal Solutions and the Heuristic

Solutions with Parameter Set 1

Step 1 Step 3 Step 4 Step 5

Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev

Optimal

Solutions

Case A 0.12
0.02 -

0.60
0.11 0.06

0.02 -

0.30
0.05 0.07

0.03 -

0.39
0.05 0.10

0.03 -

0.48
0.08

Case B 0.20
0.03 -

0.82
0.13 0.09

0.03 -

0.37
0.06 0.87

0.05 -

4.19
0.85 3.43

0.00 -

17.68
3.37

Case C 0.41
0.03 -

3.31
0.45 1.50

0.00 -

64.88
6.14 32.83

0.07 -

138.54
50.33 59.20

0.23 -

170.60
65.05

Heuristic

Solutions

Case A 0.00
0.00 -

0.00
0.00 0.00

0.00 -

0.00
0.00 0.00

0.00 -

0.00
0.00 0.00

0.00 -

0.00
0.00

Case B 0.00
0.00 -

0.08
0.01 0.00

0.00 -

0.11
0.01 0.01

0.00 -

0.56
0.05 0.03

0.00 -

1.77
0.16

Case C 0.00
0.00 -

0.01
0.00 0.00

0.00 -

0.00
0.00 0.00

0.00 -

0.02
0.00 0.01

0.00 -

0.07
0.01

Figure 5. Computation Times (in seconds) of Obtaining the Optimal and Heuristic

Solutions.

0

10

20

30

40

50

60

Case A Case B Case C

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

e
c

o
n

d
s

)

Optimal Solutions

Step 1

Step 3

Step 4

Step 5

0

10

20

30

40

50

60

Case A Case B Case C

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

e
c

o
n

d
s

)

Heuristic Solutions

Step 1

Step 3

Step 4

Step 5

 110

 Table 30 shows computation times (in seconds) of obtaining the optimal and

heuristic solutions in the four experiments using the second set of probability parameters.

The experimental results using the second set of parameters are similar to the ones with

the first set of parameters. Thus it has the same conclusion such that using the heuristics

is much more scalable than running the optimization problem.

Table 30

Computation Times (in seconds) of Obtaining the Optimal and Heuristic Solutions with

Parameter Set 2

Step 1 Step 3 Step 4 Step 5

Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev Avg. Range St.dev

Optimal

Solutions

Case A 0.09
0.02 -

0.42
0.08 0.04

0.02 -

0.20
0.03 0.06

0.02 -

0.48
0.04 0.09

0.03 -

1.41
0.12

Case B 0.16
0.03 -

0.69
0.12 0.08

0.02 -

0.36
0.05 0.74

0.05 -

4.56
0.76 3.10

0.01 -

16.73
3.27

Case C 0.85
0.03 -

85.33
6.49 2.58

0.03 -

118.72
13.05 27.23

0.06 -

127.22
42.86 56.41

0.19 -

161.76
61.56

Heuristic

Solutions

Case A 0.00
0.00 -

0.00
0.00 0.00

0.00 -

0.00
0.00 0.00

0.00 -

0.00
0.00 0.00

0.00 -

0.00
0.00

Case B 0.00
0.00 -

0.17
0.01 0.00

0.00 -

0.14
0.01 0.00

0.00 -

0.22
0.02 0.04

0.01 -

2.82
0.24

Case C 0.00
0.00 -

0.00
0.00 0.00

0.00 -

0.00
0.00 0.00

0.00 -

0.02
0.00 0.01

0.00 -

0.06
0.01

2.8 Conclusions

 Many heuristics are introduced for efficient resource allocation in cloud

computing from the existing work, but more extensive research is required to develop

effective heuristics that can achieve optimal or near-optimal solutions with great

computational efficiency. This study in Chapter 2 starts with the analysis of the optimal

solutions in resource allocation for a set of problem cases and thus proposes heuristics,

 111

which can capture the decision making process from the optimal solutions for the various

problem cases. Then the proposed heuristics are further tested for the extended problem

cases with larger numbers of user requests and service providers for performance

evaluation of the resource allocation heuristics. The heuristic solutions are compared with

the optimal solutions in terms of solution optimality and scalability. Here, two key

measures of the total number of dropped service requests and the SAV ratio for all served

service requests are introduced in evaluating the solution optimality.

 Experimental results show that the resource allocation decisions from the heuristic

solutions are similar to the ones from the optimal solutions. In Case A, where each server

has a sufficient resource capacity and in Case B, where all the servers together have a

sufficient resource capacity for all service requests of all clients, the heuristic solutions do

not drop any service request as same as the optimal solutions. For Case A and Case B, the

heuristic solutions have as same SAV ratios as the optimal solutions, implying that the

heuristic solutions select to serve all the service requests with the same QoS values as in

the optimal solutions. For Case C, where all the servers together do not have a sufficient

resource capacity for all service requests of all clients, the heuristic solutions drop more

service requests of about 1% ~ 4% of all service requests than the optimal solutions.

However, the heuristic solutions provide at least the same level of QoS to all served

service requests as the optimal solutions with the same or higher SAV ratios.

 The average computation times of obtaining the optimal solutions and the

heuristic solutions are increased as a problem case becomes more complicated by larger

numbers of service requests and service providers and having limited resource capacity to

serve all service requests of all clients. The ranges of the computation times for obtaining

 112

both the optimal and the heuristic solutions also become larger with higher values of the

standard deviation. However, the rate of increase in the computation times with

increasing problem complexity is much larger for solving the optimization problem than

using the heuristics, especially for Case B and Case C with insufficient resource capacity

on each server or all servers together to serve all service requests of all clients and for the

problem cases with ten and twenty servers resulting in a larger solution space than the

other problem cases. Hence, using the heuristics is much more scalable than solving the

resource allocation optimization problem.

 113

CHAPTER 3

THE ANALYSIS OF SERVICE PROVIDER-USER COORDINATION FROM

CENTRALIZED ALGORITHM TO DEVELOP A DECENTRALIZED METHOD

 A distributed cloud computing environment for IT services requires resource

allocation in a decentralized manner through the coordination of service providers and

service users. Achieving the optimal solution of resource allocation through the

decentralized service provider-user coordination remains as a challenge. This study in

Chapter 3 looks into elements of service provider-user coordination first in the

formulation of the resource allocation problem in a centralized manner and then in the

formulation of the problem in a decentralized manner for various problem cases. By

examining differences between the centralized, optimal solutions and the decentralized

solutions for those problem cases, the analysis of how the decentralized service provider-

user coordination breaks down the optimal solutions is performed. Based on the analysis,

strategies of decentralized service provider-user coordination are developed.

3.1 Literature Review

 A lot of research work addressing the resource allocation problems in cloud

computing generally fall into two types. The first type includes centralized algorithms,

which assume to know important information such as requirements of all service requests

of all clients and resource status of all service providers (e.g. resource availability, a

current workload, etc.). With these information, centralized algorithms solve the

optimization problem directly or reach to an optimal solution by coordinating the

solutions of the problems. The second type includes decentralized algorithms, which try

 114

to obtain near-optimal solutions by sharing information among service providers or

between service providers and users without any global governance.

 Many algorithms from linear programming to more complex ones such as

Lyapunov optimization are centralized algorithms (Aoun, Doumith, & Gagnaire, 2010;

Casati & Shan, 2001; Wang et al., 2006; Zeng et al., 2004). Some studies allow the

centralized algorithms to have some levels of relaxations in the optimization problems so

that using the algorithms enables to generate solutions in polynomial time. One study

proposed to use utility-based service scheduling algorithms (Liu, Quan, & Ren, 2010).

However, it resulted in violations of service users' requirements, imposing a penalty

value. Ardagna and Pernici (2005, 2007) proposed to formulate the optimization problem

in mixed integer linear programming with global constraints, which are obtained by

running the local optimization first.

 Other studies use the centralized algorithms, which have a central entity to collect

all information about requirements of all service requests and resource status of all

service providers. With the updated information, an optimal solution is achieved through

communication or coordination among different agents. In (Haresh, Kalady, & Govindan,

2011), an agent based resource allocation method was proposed with involvement of

three types of agents: Consumer Agent, Resource Brokering Agent and Resource

Provider Agent. After obtaining a service request by the Consumer Agent, the Broker

Agent assigned a grade to service providers based on the feedback from the consumers.

Resource allocation decisions were made by the negotiation between the Broker Agent

and the Resource Provider Agent. Similarly, the adaptive resource allocation model with

different agents proposed in (Jung & Sim, 2011) discovered a proper data center based on

 115

two evaluations: the geographical distance between a consumer and data centers and the

workload of each data center.

 Different types of modeling are proposed in many studies for resource allocation

problems. An efficient bidding algorithm in combinatorial auction mechanisms used a

service user’s valuation function for VM instances within the user’s budgets (Zaman &

Grosu, 2011). Resource scheduling based on Pareto optimality theory was proposed to

achieve equilibrium between maximizing service providers' profits and minimizing

service users' payments (Li & Li, 2011). Yet, the performance of this algorithm was only

proved mathematically. The cooperative resource allocation game in (Hassan, Song, &

Huh, 2011) was based on game theory to determine the contribution of service providers

to VM resources and used global objective functions to maximize social welfare or total

utility of all service providers. Although the centralized algorithms enable to produce

optimal solutions in resource allocation, it is difficult to handle real-time service requests

due to much larger problem sizes. Moreover, it is not desirable to have a central authority

to collect all the information in cloud computing environments where resources are

physically distributed.

 Hence, numerous studies have proposed to use decentralized algorithms for

resource allocation problems. Various decentralized algorithms in several studies include

integer linear programming modeling (Rezvani et al., 2015), construction of a

hierarchical well-separated tree for matching critical events to available resources (Gao,

Guibas, Milosavljevic, & Zhou, 2009), vector packing approaches on heterogeneous

distributed platforms (Stillwell, Vivien, & Casanova, 2012), market-based approaches by

setting prices for shared resources with market demand (Ercetin & Tassiulas, 2003; Wang

 116

& Li, 2005) and utility-based price proportion methods for profit maximization of every

cloud users and the cloud provider through competition among the cloud users (Mao,

Shang, Liu, & Chen, 2013).

 In some studies using decentralized algorithms, decomposition techniques are

applied to the optimization problems in order to achieve near-optimal solutions with

improvements in computation times of obtaining the solutions. For example, two studies

(Alrifai & Risse, 2009; Alrifai, Skoutas, & Risse, 2010) used a MIP problem to find

optimal decomposition of global QoS constraints into local constraints for local service

selections in a distributed algorithm. Similarly, optimization decomposition methods

were applied to divide global problems into less coupled subproblems (Heo,

Jayachandran, Shin, Wang, & Abdelzaher, 2009; Smith, Chong, Maciejewski, & Siegel,

2012; Wendell, Jiang, Rexford, & Freedman, 2009).

 Many literatures suggest information sharing among different agents for

decentralized algorithms. Some work had local decisions, local data exchange (to share

state information) and local interactions between a service entity and its neighbors

(Manzalini & Moiso, 2011; Wuhib et al., 2010). However, it assumed that the maximum

distance between two agents for direct communication was small compared with the size

of the entire system. This assumption was a key factor to guarantee scalability of the

proposed algorithms. Shiang and van der Schaar (2009) utilized network nodes to

exchange information and further considered delays and cost of exchanging the network

information. Other work proposes to use feedbacks from cloud users so as to help

resource allocation decisions to service requests. Schlegel, Kowalczyk, and Vo (2008)

selected a provider for job execution using feedbacks of previous job allocations. If the

 117

feedback from the previous resource allocation decisions was positive, jobs were

allocated to resources used before for similar jobs. If not, jobs were allocated to resources

with the highest margin of free expected capacity over all required resource types.

Similarly, Varalakshmi et al. (2013) suggested to evaluate trustworthiness when

scheduling a job by monitoring resource and reputation. The trust computation was based

on the feedbacks collected from users. Heo, Henriksson, Liu, and Abdelzaher (2007)

presented a methodology to compose multiple performance management modules in

order to reduce possible negative interactions and achieve good aggregate behavior. Rao,

Bu, Xu, and Wang (2011) also proposed to evaluate requests submitted by individual VM

providers and provide feedbacks. However, the solutions were affected by initial

performance considerably.

 From the literature reviews using decentralized algorithms, one common method

is found for approaching to the efficient resource allocation solutions. Agents from

different management levels seek for their own profits in generating resource allocation

solutions, trying to achieve global optimality through communication among the agents.

The agent-based decentralized algorithm was proposed with coordination among three

levels of service management, workflow management and cloud management agents

(Wei & Blake, 2013). A similar work was done in (Wei, Blake, & Saleh, 2013) by

making resource allocation decisions based on predictive workload with coordination

among different management agents. In (Wang & Fang, 2014), a distributed task

scheduling model was constructed based on multi-agent coordination and interaction. The

fuzzy pattern recognition method in (Wang & Su, 2015) was used to assign tasks to

different levels according to their resource requirements, and each node determined the

 118

corresponding task level according to its idle ability. With an arrival of a new task, only

the nodes corresponding to the task level joined in the bid, and a successful node for a

task was selected through the bidding scheme.

 In a similar manner, the decentralized algorithm in Chapter 3 assumes to have two

management levels of CCSPs and cloud users. Each service provider makes local

resource allocation decisions for the given service requests of cloud users, while each

cloud user ensures if the user's workflow of services is satisfied. The detail of which

information is shared between service providers and cloud users and the formulation of a

service provider's local optimization problem are described in Chapter 3.3.2.

3.2 Research Focus

 In a distributed cloud environment involving multiple CCSPs, no one is in control

of all physical resources. Hence, there is not a central authority (e.g., agent or broker) that

has information of all CCSPs and makes decisions for all of them. Each CCSP may have

its own objectives concerning its resource utilization, system performance, and user

service satisfaction. CCSPs do not necessarily want to share information about its own

objectives along with system resource state (e.g., failure and availability) that changes

dynamically.

 Without expecting the coordination among CCSPs and among cloud users, it is

desirable to develop service provider-user coordination strategies for allocating resources

of CCSPs to meet service requests of cloud users in a decentralized manner and achieve

the service performance and satisfaction on the side of cloud users and the resource and

system performance on the side of CCSPs. The service provider-user coordination does

not mean the involvement of CCSPs and cloud users in the coordination. The service

 119

provider-user coordination can be implemented through cloud service provider-user

protocols in the cloud computing architecture with software agents for CCSPs and cloud

users.

 The decentralized resource allocation algorithms through service provider-user

coordination have not been well addressed in existing work on cloud computing and

traditional distributed computing infrastructures. A major challenge is to produce the

decentralized solution as good as or close to the optimal solution that is obtained by

solving the centralized problem with all information available and all decisions made in

one place. Therefore, it is essential to investigate and identify what elements are

necessary in a scalable, distributed algorithm to produce optimal or near-optimal

solutions for a set of representative problem cases. This study in Chapter 3 aims at

identifying elements of service provider-user coordination that can lead a scalable,

distributed algorithm to the optimal or near-optimal solution.

 To achieve this research goal, it starts with a simple service provider-user

coordination protocol in a scalable, distributed algorithm. By examining differences

between the centralized, optimal solutions and the decentralized solutions for various

problem cases involving various types of a service provider's configuration and different

numbers of service requests, this study analyzes how the decentralized service provider-

user coordination breaks down the optimal solutions and, as a result, suggests key

elements of the decentralized service provider-user coordination strategies.

3.3 Research Methodology

 In this section, the modified formulation of the centralized optimization problem

and a decentralized service provider-user coordination strategy are presented to use for

 120

obtaining resource allocation solutions at cloud computing environments. The resource

allocation problem in this study handles different workflows of services, both functional

(e.g., service type) and non-functional (e.g., QoS) service requirements, and resource and

QoS impact models of services. Note that two methods in Chapter 3 consider only one

service or sequential processing of a service workflow. One example using the sequential

workflow is an encrypted voice data service. First, a voice communication service is used

to obtain voice data, and then a data encryption service is used to encrypt the voice data.

The encrypted voice data service has such workflow constraints that the throughput of

voice communication should not exceed the limit on the input throughput for data

encryption.

 3.3.1 The modified formulation of the centralized resource allocation

problem. The resource allocation optimization problem expressed as a MIP in Chapter

2.3 is modified with an introduction of a workflow of services in this study. The

optimization problem is solved for each epoch of dynamic resource allocation. Note that

a service provider may have one or more servers and that a service user may generate one

or more clients. Each client may request one service or a workflow of services. Hence, in

the following formulation of the centralized resource allocation problem, the terms of

server and client are used. Table 31 and Table 32 indicate variables and indices, and

decision variables and given inputs used in the formulation respectively.

 121

Table 31

Variables and Indices used in the Modified Formulation of the Centralized Resource

Allocation Problem

� A given client, k = 1,…, K

 [� jth service of client k, jk = 1,…, Jk

� A given server, i = 1,…, I

	� Resource variable w of server i, wi = 1,…, Wi

s A service type, s = 1,…, S

�� Service parameter d of service s, ds = 1,…, Ds

� QoS variable p of service s, ps = 1,…, Ps

��\%��� The amount of resource variable w of server i taken by client k’s jk
th service

as a positive real value

��\%��� The value of QoS variable ps of client k’s jk
th service on server � as a positive

real value

 122

Table 32

Decision Variables and Given Inputs used in the Modified Formulation of the Centralized

Resource Allocation Problem

��\%� Binary decision variables such that

 ��\%� = 1 if client k’s jk
th service in the workflow is assigned to server i

 ��\%� = 0 if client k’s jk
th service in the workflow is not assigned to

server i

��\%��� Positive integer decision variables,

Level of service parameter ds for client k’s jk
th service on server i

��\%� Given inputs from client k, such that ∑ ��\%�] = 1 for a given k and a given jk.

��\%� = 1 if client k’s jk
th service in the workflow uses service s

��\%� = 0 if client k’s jk
th service in the workflow does not service s

��� Given inputs from server i,

��� = 1 if service s is provided by server i

��� = 0 if service s is not provided by server i

��\%���� Given inputs as a positive integer value from client k,

Limit (i.e. the maximum level) of service parameter ds of client k’s jk
th service

on server i

����
� Given inputs as a positive real value from server i to indicate the resource

capacity,

Limit of resource variable w of server i (this limit is set for only some wi’s)

��\%��
� Given inputs as a positive real value from client k to specify QoS

requirements,

Limit of QoS variable ps of client k’s jk
th service

 The modified formulation of the centralized resource allocation problem is as

follows.

Maximize ` ∑ ∑ ∑ a%b%��b%
c%� − ∑ ∑ ∑ #∑ $%b%&��� '$%b%&�

(#
$%b%&�

(∗*���\%� (14)

subject to

∑ ��\%� ≤ 1� ∀ �, [� (15)

 123

0∑ ∑ ��\%� − 1�\% 3 d∑ ��\%�� − ∑ ��\%e �� f = 0 ∀ �, [� ≠ [�h (16)

��\%���\%� ≤ ��� ∀ �, [�, �, . (17)

��\%��� ≤ ��\%���� ∀ �, �, [�, �� (18)

��\%��� = ��\%�/���0��\%��, … , ��\%2��3 ∀ �, �, [�, 	� (19)

��\%��� = ��\%�4���0��\%��, … , ��\%�5�3 ∀ �, �, [�, � (20)

∑ ∑ ��\%���\%� ≤ ����
� ∀ �, 	� (21)

��\%�����\%� ≤ ��\%��
� or ��\%��� ≥ ��\%���\%��

� ∀ �, �, [�, � (22)

 The first term of the objective function in Equation (14) represents the percentage

of satisfied services over all clients’ workflows. The second term of the objective

function is to make the levels of the QoS variables closest to the QoS requirements. In the

second term, the difference between the actual QoS level (��\%���) and the required QoS

level (��\%��
�) for each QoS variable (�) is first normalized by the required QoS level,

then summed and normalized over the total number of QoS variables, finally summed

over all services and all clients. The normalization in the second term makes all QoS

variables to be treated equally. For example, if a motion detection service has two QoS

variables, both QoS variables in total are treated equally to only one QoS variable of

another service. Here M is a positive value to give a tradeoff between two objectives

defined by the first and second terms of the objective function.

 As server-client coordination constraints, Equation (15) guarantees that client k’s

jk
th service can be assigned to one server i at most, and Equation (16) ensures if client k

has more than one service in the workflow, client k’s different services jk, jk’ must be

 124

either all served or all not served. As service constraints, Equation (17) requires if client

k’s jk
th service is assigned to server i, client k’s jk

th service’s service type s must be

provided by server i (i.e. if ��\%� = 1 and ��\%� = 1, then ��� = 1). Equation (18)

enforces that the level of service parameter ds of client k’s jk
th service on server i should

not exceed the limit (i.e. the maximum level).

 As service-resource-QoS relation constraints, Equation (19) gives relations of

service parameters with resource usages in function /��� of the assigned level of service

parameter ds of client k’s jk
th service on the server only if client k’s jk

th service is assigned

to the server i. Equation (20) gives the relation of resource usages with QoS performance

in function 4��� of the service’s resource usages on the server only if client k’s jk
th service

is assigned to the server i.

 As a resource capacity constraint, Equation (21) enforces that the total resource

usages on the resource variable w of server i by all clients’ all services should not exceed

the maximum resource capacity for this resource variable. As a QoS requirement

constraint, Equation (22) ensures that the QoS level of � for the client k’s jk
th service at

server i is equal to or less than the maximum QoS requirement or equal to or greater than

the minimum QoS requirement, only if client k’s jk
th service is assigned to server i.

 Workflow constraints of applications that describe the dependency among

services in each application should be satisfied (Berman, 1999; Yau et al., 2009; Ye et al.,

2010). For example, Berman (1999) described program models by a weighted data-flow-

style program graph or by a set of program characteristics which may or may not include

a structural task dependency graph. Lin and Lu (2011) also represented a workflow using

a weighted directed acyclic graph. In the graph, vertices represented a set of tasks, and

 125

edges represented a set of data dependencies. The weight of an edge denoted the

communication cost, and the weight of a vertex denoted the task computation cost. For

workflow constraints considered in this study, specific forms depend on specific services

in a workflow and thus are not given here in a general form.

 The MIP problem is implemented in ILOG OPL Development Studio IDE

Version 6.1. ILOG CPLEX 11.2.0 is used as a solver to the MIP problem. A laptop

computer used to run the software is a Samsung Q320 with Intel Core 2 Duo T6500 2.1

GHz processor, 4 GB RAM, and Windows 7. The ILOG OPL and CPLEX are integrated

into C# code in Microsoft Visual Studio 2010. The C# code first loads all the necessary

input files of the problem including given inputs as well as service-resource relation

functions and resource-QoS relation functions for each service type. With the loaded

input files, the C# code then calls ILOG OPL and CPLEX to run the MIP optimization

and solve the problem to generate an optimal solution. The computation time of obtaining

the optimal solution is recorded by the C# code. Note that times required for loading

input files and generating output files are also included in the computation time of

obtaining the optimal solution.

 3.3.2 A decentralized strategy of service provider-user coordination. In this

section, a decentralized strategy of service provider-user coordination is constructed.

Considering again that a service provider may have one or more servers and a service

user may have one or more clients, the terms of server and client are used in the

following description of the service provider-user coordination strategy. In this strategy,

each client sends the request for each unsatisfied service in the workflow to all servers

that provide the service. Each server makes local resource allocation decisions, and

 126

clients coordinate with servers in one or more iterations to obtain a resource allocation

solution. The service provider-user coordination strategy consists of the following steps

for client k, k = 1,…, K.

1) If client k’s workflow of services is not satisfied, the client sends the request

for each service in the workflow to all servers which provide the service. If

any service of the client k’s workflow is satisfied, the client k sends the input

of ��\%� = 1 for the satisfied service in the workflow to the server that

provides the service so that resources on the server are reserved for the

service.

2) Each server i solves a local optimization problem and sends the solution, i.e.,

decisions about ��\%� and ��\%��� along with ��\%��� to client k.

3) When client k receives the information of ��\%�, ��\%��� and ��\%��� from all

servers i = 1,…, I, the client checks the satisfaction of each service in the

workflow and workflow constraints. If more than one server selects to satisfy

a service, the client picks the server that gives the QoS levels closest to the

QoS requirements. If there are unsatisfied services in the workflow or

unsatisfied workflow constraints, the client marks the workflow of services as

unsatisfied and goes back to Step 1 for another iteration; otherwise, the client

obtains a complete solution satisfying its workflow of services.

 Each server i, i = 1,…, I, solves the following local optimization problem.

Maximize ` ∑ ∑ a%b%�b%
∑ ∑ i%b%�j���b%

� − ∑ ∑ ∑ #$%b%&��'$%b%&�
(#

$%b%&�
(∗*���\%� (23)

subject to

 127

��\%� = 1 for satisfied services (24)

��\%���\%� ≤ ��� ∀ �, [�, . (25)

��\%��� ≤ ��\%���� ∀ �, [�, �� (26)

��\%��� = ��\%�/���0��\%��, … , ��\%2��3 ∀ �, [�, 	� (27)

��\%��� = ��\%�4���0��\%��, … , ��\%�5�3 ∀ �, [�, � (28)

∑ ∑ ��\%���\%� ≤ ����
� ∀ 	� (29)

��\%�����\%� ≤ ��\%��
� or ��\%��� ≥ ��\%���\%��

� ∀ �, [�, � (30)

 The objective function in Equation (23) maximizes the percentage of provided

services requested and satisfied for clients on server i in the first term and makes the QoS

levels of each service for each client closest to the required QoS levels in the second

term. The two server-client coordination constraints in Equations (15) and (16) of the

centralized formation in Chapter 3.3.1 no longer exist in this local optimization problem

solved by each server because each individual server cannot take care of the server-client

coordination constraints that require information of all servers and all clients. Instead, the

constraint in Equation (24) is included to carry the partial solution(s) of satisfying

services of some but not all clients from previous iteration(s) to the current iteration

because the decentralized strategy may need several iterations to produce a complete

solution of resource allocation for all clients. The constraints in Equations (25) through

(30) also exist in the centralized formulation.

 The C# code is implemented to execute the decentralized strategy of service

provider-user coordination. ILOG OPL and CPLEX are used to solve the local

optimization problem at each server with the loaded input files. The solution process is

 128

stopped when workflows of all clients are satisfied or the solution from the current

iteration is the same as that from the previous iteration. The computation time of

obtaining the optimal solution at each server in each iteration is recorded by the C# code.

The computation time of obtaining a decentralized solution is computed as the sum of

computation times for all solution iterations. The computation time for each iteration is

the maximum of computation times used by individual servers to obtain their solutions. It

is assumed that each client takes no time to make decisions after receiving solutions from

servers. Note that times required for loading input files and generating output files are

also included in the computation time of obtaining a solution.

3.4 Description of Experimental Scenarios

 Resource and QoS impact models of various services including voice

communication, data encryption and motion detection are investigated and established in

(Yau et al., 2009; Ye et al., 2010). In a voice communication service, a client requests

and receives voice data from a server. The data encryption service encrypts data using an

encryption algorithm. In a motion detection service, video data is analyzed to detect

motion. Since such resource and QoS impact models of services are needed for Equations

(19) and (20) in the centralized method and Equations (27) and (28) in the decentralized

algorithm, this study in Chapter 3 uses those three services, and the resource and QoS

impact models of the three services are used in Equations (19), (20), (27) and (28).

 The voice communication service has two service parameters: sampling rate and

buffer size. The sampling rate is the rate of sampling voice data and determines the

quality of the sampled voice data. The sampling rate can take one of the five levels: 1 for

44,100 Hz, 2 for 88,200 Hz, 3 for 132,300 Hz, 4 for 176,400 Hz, and 5 for 220,500 Hz.

 129

The buffer size is the size of the buffer holding the sampled voice data at a server before

transmission. The buffer size can take one of the five levels: 1 for 16,384 Bytes, 2 for

24,576 Bytes, 3 for 32,768 Bytes, 4 for 40,960 Bytes, and 5 for 49,152 Bytes. This study

lets each client using the voice communication service set the maximum level

(��\%����) of the sampling rate to 5 and the maximum level of the buffer size to 5.

 The data encryption service has two service parameters: key length and

encryption percentage. The key length is the size of the key used for encryption. The key

length can take one of the three levels: 1 for 128 bits, 2 for 196 bits, and 3 for 256 bits.

The encryption percentage is the percentage of data for encryption. The encryption

percentage can take one of the two levels: 1 for 50%, and 2 for 100%. A larger key length

and a larger encryption percentage ensure a better security of protecting data

confidentiality. This study lets each client using the data encryption service set the

maximum level of the key length to 3 and the maximum level of the buffer size to 2.

 The motion detection has one service parameter: video resolution. More motions

can be detected from a video frame with a higher resolution, resulting in a higher motion

level of detection but more computational resources used for detecting motions. The

video resolution can take one of the three levels: 1 for 22*18 pixels, 2 for 44*36 pixels,

and 3 for 88*72 pixels. This study lets each client using the motion detection service set

the maximum level of the video resolution to 3. Table 33 summarizes levels of service

parameters for voice communication, data encryption and motion detection services.

 130

Table 33

Levels of Service Parameters for Voice Communication, Data Encryption and Motion

Detection Services

Service Type Service Parameters Level 1 Level 2 Level 3 Level 4 Level 5

Voice

Communication

Sampling rate (Hz) 44,100 88,200 132,300 176,400 220,500

Buffer size (Bytes) 16,384 24,576 32,768 40,960 49,152

Data Encryption

Key Length (bits) 128 192 256

Encryption

Percentage (%)
50 100

Motion

Detection

Video resolution

(pixels)
22*18 44*36 88*72

 In this study, there is one QoS variable considered for the voice communication

service: throughput in unit of packets/second; one QoS variable for the data encryption

service: average delay in unit of milliseconds; and two QoS variables for the motion

detection service: average motion level in terms of the percentage of pixels in a video

frame that have detected changes, and average delay in unit of milliseconds.

 For the three services used in this study, the following variables of resource

usages identified in (Yau et al., 2009; Ye et al., 2010) play a key role in determining the

QoS performance of the services:

1) Processor time in percentage

2) Committed memory in megabytes (MB),

3) Thread count,

4) IO other operations/sec,

5) IO read operations/sec,

 131

6) IO write operations/sec,

7) File write operations/sec,

8) File control operations/sec,

9) System calls/sec.

 The specific F functions of relations between service parameters and resource

variables are used in Equations (19) and (27), and the specific G functions of relations

between resource variables and QoS variables are used in Equations (20) and (28) for

each of the three services. For example of a voice communication service, Equations (31)

through (34) show the specific F functions for the resource variables of processor time in

percentage, committed memory in MB, thread count and IO other operations/sec

respectively. Equation (35) shows the specific G function for the QoS variable of the

throughput.

����� = ���� kO.MLNI∙∑ ∑ i%b%:b%% n�.OE∙o:::�'O.EEM∙o::;�
∑ ∑ i%b%:b%%

p (31)

����� = ���� kI�N.ONn�J.�NOL∙∑ ∑ i%b%:b%% n��.LIL∙o:::�nO.I�K�∙o::;�
∑ ∑ i%b%:b%%

p (32)

����E = ���� k�I.LNnI.��∙∑ ∑ i%b%:b%% nO.MIK∙o:::�'O.����∙o::;�
∑ ∑ i%b%:b%%

p (33)

����I = ���� k'�N.MnEL.I∙∑ ∑ i%b%:b%% nEL.K∙o:::�'EO.N∙o::;�
∑ ∑ i%b%:b%%

p (34)

����� = ���� k− LJII.KJ
∑ ∑ i%b%:b%%

+ 174.76 ∗ ����� + 16.6 ∗ ����� − 7.86 ∗ ����E −

0.06 ∗ ����Ip (35)

 Three services are used in two types of service workflow. In type 1 of service

workflow, a client requests and receives encrypted voice data by using first a voice

 132

communication service to obtain voice data and then a data encryption service to encrypt

the voice data. Hence, type 1 of service workflow involves two services in order of voice

communication first and data encryption second. Workflow constraints specify that, for a

given client, the throughput of voice communication should not exceed the limit on the

input throughput for data encryption. Type 2 of service workflow involves only one

service of motion detection.

 This study introduces six types of server configurations which are determined by

two factors: resource capacity and service provision. There are three types of resource

capacity:

• Each server has a sufficient resource capacity to satisfy all service requests of

all clients,

• Each server does not have a sufficient resource capacity to satisfy all service

requests of all clients, but the total resource capacity of all servers is sufficient

to satisfy all service requests of all clients,

• Neither each server nor all servers together have a sufficient resource capacity

to satisfy all service requests of all clients.

 This study uses two servers with two types of service provision:

• Each server provides all three services of voice communication, data

encryption, and motion detection.

• Server 1 provides two services of voice communication and motion detection,

and server 2 provides two services of data encryption and motion detection.

The same set of F and G functions are used on each server.

 133

 This study introduces various numbers of clients to give various problem sizes in

order to examine how the computation times of obtaining the centralized solution and the

decentralized solution change with problem sizes, specifically the number of clients.

There are three levels of clients used in this study: four clients, fifty clients and one

hundred clients. For four clients, there are two clients that use type 1 of service workflow

with the voice communication and data encryption services, while the other two clients

use type 2 of service workflow with the motion detection service. For fifty clients, twenty

five clients use type 1 of service workflow and the other twenty five clients use type 2 of

service workflow. For one hundred clients, fifty clients use type 1 of service workflow,

and the other fifty clients use type 2 of service workflow.

 Among the nine resource variables, the first two resource variables, processor

time in percentage and committed memory in MB have a capacity limit which is used in

Equations (21) and (29). Values of capacity limits for each problem case are set up to

maintain the type of server configuration for that problem case by looking into resource

usages of clients under various values of service parameters based on the F functions of

service-resource relations. Table 34 shows the resource capacity limits used in various

problem cases.

 134

Table 34

Capacity Limits of Two Resource Variables: Processor Time (%) and Committed

Memory (MB)

Server Configuration Server
Number of Clients

4 50 100

1. Type 1 of Resource Capacity

 Type 1 of Service Provision

Server 1

Server 2

65, 750

65, 750

470 , 1350

470 , 1350

855, 2010

855, 2010

2. Type 1 of Resource Capacity

 Type 2 of Service Provision

Server 1

Server 2

6, 520

47, 210

375, 1350

40, 100

400, 1650

430, 1650

3. Type 2 of Resource Capacity

 Type 1 of Service Provision

Server 1

Server 2

31, 400

35, 400

30, 900

405, 500

125, 1210

720, 810

4. Type 2 of Resource Capacity

 Type 2 of Service Provision

Server 1

Server 2

6, 520

47, 210

375, 1350

40, 100

400, 1650

430, 450

5. Type 3 of Resource Capacity

 Type 1 of Service Provision

Server 1

Server 2

20, 400

30, 350

61, 825

190, 260

120, 1210

360, 420

6. Type 3 of Resource Capacity

 Type 2 of Service Provision

Server 1

Server 2

32, 470

10, 100

210, 1090

40, 100

45, 1205

430, 405

 For example, in the problem case with type 1 of resource capacity, type 1 of

service provision and four clients in Table 34, server 1 has 65% as the capacity limit of

processor time and 750 MB of committed memory. When the number of clients increases

to fifty, capacity limits are set to 470% of processor time and 1350 MB of committed

memory. Considering that the maximum capacity of processor time is 100% in the real-

world situation, it may not seem reasonable to set 470% of processor time. This value is

set so that the problem case can still maintain type 1 of resource capacity in which each

server has a sufficient resource capacity to satisfy service requests of all fifty clients.

Hence, although 470% for processor time in Table 34 is unrealistic, mathematically the

 135

value allows to examine the problem of the same nature but with a different size for

testing how computation times change with the problem sizes.

 QoS requirements (��\%��
�) for each problem case are set up to ensure that an

optimal solution for the centralized formulation exists to meet both the resource capacity

constraints in Table 34 and QoS requirements of clients by looking into resource usages

of clients and QoS performance levels under various values of service parameters based

on the F functions of service-resource relations and the G function of resource-QoS

relations. Table 35 shows QoS requirements of problem cases with totally four, fifty and

one hundred clients.

Table 35

QoS Requirements of Various Problem Cases

 For the problem cases with totally four clients in Table 35, there are two clients

using type 1 of service workflow and the other two clients using type 2 of service

workflow. For one of the two clients using type 1 of service workflow, the minimum

requirement of the QoS variable for the throughput of the voice communication service is

Total

Number

of Clients

Type 1 of Service Workflow Type 2 of Service Workflow

Number

of

Clients

Voice

Communication,

Throughput

(packets/second)

Data

Encryption,

Average Delay

(milliseconds)

Number

of

Clients

Motion Detection,

Average

Motion Level

(percentages)

Average

Delay

(milliseconds)

4
1 850 20 1 0.2 150

1 950 35 1 0.15 90

50
12 200 10 12 0.01 450

13 250 15 13 0.03 500

100
25 200 10 25 0.01 450

25 250 15 25 0.03 500

 136

set to 850 packets/second, and the maximum limit of the QoS variable for the average

delay of the data encryption service is set to 20 milliseconds. For another of the two

clients using type 1 of service workflow, the minimum limit of the QoS variable for the

throughput of the voice communication service is set to 950 packets/second, and the

maximum limit of the QoS variable for the average delay of the data encryption service is

set to 35 milliseconds. For one of the two clients using type 2 of service workflow, the

minimum limit of the QoS variable for the average motion level of the motion detection

service is set to 0.2%, and the maximum limit of the QoS variable for the average delay

of the motion detection service is set to 150 milliseconds. For another of the two clients

using type 2 of service workflow, the minimum limit of the QoS variable for the average

motion level of the motion detection service is set to 0.15%, and the maximum limit of

the QoS variable for the average delay of the motion detection service is set to 90

milliseconds.

 For the problem cases with totally fifty clients in Table 35, twenty five clients use

type 1 of service workflow, and the other twenty five clients use type 2 of service

workflow. For twenty five clients with type 1 of service workflow, there are twelve

clients that have the minimum throughput requirement of 200 packets/second and the

maximum delay requirement of 10 milliseconds, and there are the other thirteen clients

that have the minimum throughput requirement of 250 packets/second and the maximum

delay requirement of 15 milliseconds. For twenty five clients with type 2 of service

workflow, there are twelve clients that have the minimum motion level requirement of

0.01% and the maximum delay requirement of 450 milliseconds, and there are the other

 137

thirteen clients that have the minimum motion level requirement of 0.03% and the

maximum delay requirement of 500 milliseconds.

 For the problem cases with totally one hundred clients in Table 35, fifty clients

use type 1 of service workflow, and the other fifty clients use type 2 of service workflow.

For fifty clients with type 1 of service workflow, there are twenty five clients that have

the minimum throughput requirement of 200 packets/second and the maximum delay

requirement of 10 milliseconds, and there are the other twenty five clients that have the

minimum throughput requirement of 250 packets/second and the maximum delay

requirement of 15 milliseconds. For fifty clients with type 2 of service workflow, there

are twenty five clients that have the minimum motion level requirement of 0.01% and the

maximum delay requirement of 450 milliseconds, and there are the other twenty five

clients that have the minimum motion level requirement of 0.03% and the maximum

delay requirement of 500 milliseconds.

 The objective functions in Equations (14) and (23) have two terms, the first term

to maximize the percentage of clients’ services satisfied, and the second term to minimize

the difference between the provided QoS levels and the QoS requirements for the

satisfaction of the QoS requirements. The M value of 10 is used in the objective functions

for all problem cases in this study. The specific value of M is set up in order to give more

importance in providing satisfied services for all clients’ requests first before considering

how close the actual QoS is to the required QoS. The normalized differences between the

actual QoS level and the required QoS level in the second term of the objective functions

depend on the specific service-resource-QoS relation models of a given service in

Equations (19), (20), (27) and (28) since the actual QoS level is determined by those

 138

models. Based on the service-resource-QoS models of the three services used in this

study, the ranges of the normalized differences between possible QoS levels and required

QoS levels are from 0 to 9.6. Hence, M is set to 10, which is higher than 9.6 so as to give

a higher priority to the first term in the objective functions.

3.5 Results and Discussions

 This section first gives and compares the centralized solutions and the

decentralized solutions for various problem cases to examine the solution optimality of

the decentralized solutions and discusses elements of service provider-user coordination

based on the comparison results. Then it provides the computation times of obtaining the

centralized and decentralized solutions to examine the scalability of the centralized and

the decentralized methods.

 3.5.1 Solution optimality. The objective functions as shown in Equations (14)

and (23) in the resource allocation problem formulations have two terms, the first term to

maximize the percentage of clients’ services satisfied, and the second term to minimize

the difference between the provided QoS levels and the QoS requirements for the

satisfaction of the QoS requirements. Table 36 gives the number of clients satisfied in the

centralized solutions and the decentralized solutions. Table 37 gives the values of the

objective function in the centralized solutions and the decentralized solutions.

 139

Table 36

Number of Clients Satisfied in the Centralized and Decentralized Solutions

Server

Configuration

4 Clients 50 Clients 100 Clients

Centralized Decentralized Centralized Decentralized Centralized Decentralized

1 4 4 50 50 100 100

2 4 4 50 50 100 100

3 4 4 50 50 100 100

4 4 4 50 50 100 100

5 3 3 38 38 75 75

6 3 3 38 38 75 75

 For the number of clients satisfied, the decentralized solutions are as good as the

optimal solutions from the centralized problem formulation as shown in Table 36. For the

values of the objective function that need to be maximized, the decentralized solutions

are close to the centralized solutions with slightly different values in some cases as

marked by “*” in Table 37, including two out of the six problem cases for four clients,

one out of six problem cases for fifty clients and two out of the six problem cases for one

hundred clients.

Table 37

Values of the Objective Function in the Centralized and Decentralized Solutions

Server

Configuration

4 Clients 50 Clients 100 Clients

Centralized Decentralized Centralized Decentralized Centralized Decentralized

1 39.10 39.10 447.86 447.86 900.76 900.76

2 38.57 38.57 447.67 447.67 900.22 900.22

3 39.10 38.61* 447.86 447.86 900.62 900.42*

4 38.57 38.57 447.67 447.67 900.22 900.22

5 28.48 27.14* 341.11 340.92* 674.16 674.04*

6 27.15 27.15 340.93 340.93 673.97 673.97

 140

 To look into causes for the differences of the decentralized solutions from the

centralized solutions, Table 38 shows service decisions made in the centralized and

decentralized solutions for two problem cases (server configurations 3 and 5) with four

clients. Server configuration 3 has type 2 of resource capacity and type 1 of service

provision. That is, there is not a sufficient resource capacity in one server but there is a

sufficient resource capacity on all the servers together to satisfy all service requests of all

clients, and all three services of voice communication, data encryption and motion

detection are provided on each server. Server configuration 5 has type 3 of resource

capacity and type 1 of service provision. That is, neither each server nor all the servers

have enough resource capacity to satisfy all service requests of all clients, and all three

services of voice communication, data encryption and motion detection are provided on

each server. Different decisions made in the decentralized solutions from those in the

centralized solutions are marked by “*” in Table 38.

 141

Table 38

Service Decisions made in the Centralized and Decentralized Solutions for Two Problem

Cases

Problem

Case
Client Service

QoS

Requirement

Centralized Solution Decentralized Solution

Server
Service Parameter

and QoS Level
Server

Service Parameter

and QoS Level

server

conf. 3

k = 1

voice

com.

throughput:

850
server 2

sam. rate: 5

buf. size: 5

throughput: 894.38

server 2

sam. rate: 5

buf. size: 5

throughput: 894.38

data

enc.
delay: 20 server 1

key len.: 3

enc. per.: 1

delay: 16

server 1

key len.: 3

enc. per.: 1

delay: 16

k = 2

voice

com.

throughput:

950
server 1

sam. rate: 5

buf. size: 2

throughput: 968.16

server 1

sam. rate: 5

buf. size: 2

throughput: 968.16

data

enc.
delay: 35 server 2

key len.: 3

enc. per.: 2

delay: 33.87

server 2

key len.: 2*

enc. per.: 1*

delay: 16.72*

k = 3
motion

det.

mot. lev.:

0.2%

delay: 150

server 1

vid. res.: 3

mot. lev.: 0.34%

delay: 134.08

server 2*

vid. res.: 3

mot. lev.: 0.34%

delay: 134.08

k = 4
motion

det.

mot. lev.:

0.15%

delay: 90

server 2

vid. res.: 2

mot. lev.: 0.19%

delay: 78.87

server 1*

vid. res.: 2

mot. lev.: 0.19%

delay: 78.87

server

conf. 5

k = 1

voice

com.

throughput:

850
server 2

sam. rate: 5

buf. size: 5

throughput: 894.38

server 1*

sam. rate: 5

buf. size: 5

throughput: 894.38

data

enc.
delay: 20 server 2

key len.: 2

enc. per.: 1

delay: 15.75

server 2

key len.: 2

enc. per.: 1

delay: 15.75

k = 2

voice

com.

throughput:

950
server 1

sam. rate: 5

buf. size: 2

throughput: 968.16

none* none*

data

enc.
delay: 35 server 2

key len.: 1

enc. per.: 2

delay: 33.29

none* none*

k = 3
motion

det.

mot. lev.:

0.2%

delay: 150

none none server 1*

vid. res.: 3*

mot. lev.: 0.34%*

delay: 134.08*

k = 4
motion

det.

mot. lev.:

0.15%

delay: 90

server 1

vid. res.: 2

mot. lev.: 0.19%

delay: 78.87

server 2*

vid. res.: 2

mot. lev.: 0.19%

delay: 78.87

 142

 For the problem case with server configuration 3 in Table 38, the decentralized

solution differs from the centralized solution in the levels of the service parameters for

the data encryption service of client k = 2 in that the decentralized solution selects a lower

level of the key length at level 2 and the encryption percentage at level 1 instead of the

key length at level 3 and the encryption percentage at level 2 in the centralized solution.

The decentralized algorithm produces this solution after two iterations. Table 39 shows

service decisions made at two iterations in the decentralized solution for the problem case

with server configuration 3. The selected services of clients at each iteration are marked

by "*" in Table 39.

 143

Table 39

Service Decisions made at Two Iterations in the Decentralized Solution for One Problem

Case with Server Configuration 3

Client Service
QoS

Requirement

Iteration 1 Iteration 2

Server 1 Server 2 Server 1 Server 2

k = 1

voice

com.

throughput:

850

sam. rate: 5*

buf. size: 5*

throughput:

894.38*

data

enc.
delay: 20

key len.: 3

enc. per.: 1

delay: 16

key len.: 3

enc. per.: 1

delay: 16

key len.: 3*

enc. per.: 1*

delay: 16*

k = 2

voice

com.

throughput:

950

sam. rate: 5*

buf. size: 2*

throughput:

968.16*

sam. rate: 5

buf. size: 2

throughput:

968.16

data

enc.
delay: 35

key len.: 2*

enc. per.: 1*

delay:

16.72*

k = 3
motion

det.

mot. lev.:

0.2%

delay: 150

vid. res.: 3*

mot. lev.:

0.34%*

delay: 134.08*

k = 4
motion

det.

mot. lev.:

0.15%

delay: 90

vid. res.: 2*

mot. lev.:

0.19%*

delay: 78.87*

vid. res.: 2

mot. lev.:

0.19%

delay: 78.87

 At iteration 1, server 1 selects to serve client 1's data encryption service at the key

length of level 3 and the encryption percentage of level 1, and the delay of 16

milliseconds, client 2's voice communication service at the sampling rate of level 5 and

the buffer size of level 2, and the throughput of 968.16 packets/second, and client 4's

 144

motion detection service at the video resolution of level 2, and the motion level of 0.19%

and the delay of 78.87 milliseconds. Server 2 selects to serve client 1's data encryption

service at the key length of level 3, the encryption percentage of level 1, and the delay of

16 milliseconds, client 2's voice communication service at the sampling rate of level 5,

the buffer size of level 2, the throughput of 968.16 packets/second and data encryption

service at the key length of level 2, the encryption percentage of level 1, and the delay of

16.72 milliseconds, and client 4's motion detection service at the video resolution of level

2, the motion level of 0.19%, and the delay of 78.87 milliseconds.

 With these server solutions, each client makes the decisions as follows. Client 1

marks the workflow including the voice communication service and the data encryption

service as unsatisfied since the voice communication service is not selected by either

server 1 or server 2. Both server 1 and server 2 select to serve the data encryption service

only. Client 2 selects server 1 for the voice communication service and server 2 for the

data encryption service. Both server 1 and server 2 select and satisfy the voice

communication service at the same levels of service parameters and QoS. The client 2

selects server 1 for the voice communication service arbitrarily. Client 3 marks the

workflow including the motion detection service as unsatisfied since neither server 1 nor

server 2 selects client 3 and its service. Client 4 selects server 1 for the motion detection

service. Both server 1 and server 2 select and satisfy the motion detection service at the

same levels of service parameters and QoS. The client 4 selects server 1 for the motion

detection service arbitrarily. Hence, after iteration 1, client 2 and client 4 have their

service workflow satisfied. Client 1 and client 3 request services of their workflows again

in iteration 2.

 145

 At iteration 2, server 1 selects to serve client 1's data encryption service at the key

length of level 3 and the encryption percentage of level 1, and the delay of 16

milliseconds. Server 2 selects to serve client 1's voice communication service at the

sampling rate of level 5, the buffer size of level 5, and the throughput of 894.38

packets/second and client 3's motion detection service at the video resolution of level 3,

the motion level of 0.34%, and the delay of 134.08 milliseconds. With these server

solutions, clients 1 and 3 make the following decisions: client 1 selects server 1 for the

data encryption service and server 2 for the voice communication service, and client 3

selects server 2 for the motion detection service. Hence, after iteration 2, all the four

clients are satisfied.

 From two iterations of the decentralized solution described above as in Table 39,

client 2 is satisfied after iteration 1. The satisfaction of the data encryption service of

client 2 at a lower level of service parameters and QoS in the decentralized solution than

that in the centralized solution is a result of server 2’s solution at iteration 1. In server

configuration 3, all the services of voice communication, data encryption, and motion

detection are provided on each server. That is, server 2 provides all the three services. In

order to maximize the percentage of provided services requested and satisfied for clients

as stated in the objective function, server 2 selects four services (client 1’s data

encryption service, client 2’s voice communication and data encryption services, and

client 4’s motion detection service) to satisfy. In contrast, in the centralized solution only

three services (client 1’s voice communication service, client 2’s data encryption service

and client 4’s motion detection service) are selected by server 2 at higher levels of service

parameters and QoS for voice communication and data encryption services than those in

 146

the decentralized solution from iteration 1. Server 2’s selection of three services in the

centralized solution at higher service levels is ensured by the server-client coordination

constraints in Equations (15) and (16) which are not included in the local optimization

problem of an individual server in the decentralized method. Without the server-client

coordination constraints, each server tries to serve as many services as possible, which

can lead to an overlap of the service provision by servers. For example, client 2’s voice

communication service is selected by both server 2 and server 1. As server 2 tries to

maximize the percentage of satisfied services, the service levels of these satisfied services

are lowered in order to meet the resource capacity constraints since in server

configuration 3 each server does not have a sufficient resource capacity to satisfy all the

services of all the clients.

 Therefore, the cause for the difference between the centralized solution and the

decentralized solution in the problem case with server configuration 3 and four clients is

the lack of server-client coordination constraints, more specifically the isolated work of

each server to maximize satisfied services at lower service levels without knowing an

overlap of the service provision by servers. In contrast, the centralized method uses the

server-client coordination constraints to pull all resources of all the servers together

optimally to satisfy all services of all clients at higher service levels. To address this

cause for the difference of the decentralized solution from the centralized solution, the

service provider-user coordination strategy can be revised to distribute requests for

services of the workflow to servers in a selective manner without the same service

request going to multiple servers to avoid an overlap of service provision among servers,

rather than sending requests for services to all servers that provide services.

 147

 For the problem case with server configuration 5 in Table 38, both the centralized

solution and the decentralized solution serve client 1 and client 4 at the same levels of

service parameters and QoS. In server configuration 5, neither each server nor all the

servers together have a sufficient resource capacity to satisfy all services of all clients.

The centralized solution selects to serve client 2 with two services of voice

communication and data encryption and not to serve client 3 with only one service of

motion detection. In contrast, the decentralized solution selects to serve client 3 and not

to serve client 2. This difference in service decisions between the centralized solution and

the decentralized solution yields the better value of the objective function from the

centralized solution than that from the decentralized solution as seen in Table 37. The

decentralized strategy produces its solution after three iterations. Table 40 shows service

decisions made at three iterations in the decentralized solution for the problem case with

server configuration 5 with four clients. The selected services of clients at each iteration

are marked by "*" in Table 40.

 148

Table 40

Service Decisions made at Three Iterations in the Decentralized Solution for One

Problem Case with Server Configuration 5

ClientService
QoS

Requirement

Iteration 1 Iteration 2 Iteration 3

Server 1 Server 2 Server 1 Server 2 Server 1 Server 2

k = 1

voice

com.

throughput:

850

sam. rate: 5*
buf. size: 5*

throughput:

894.38*

data
enc.

delay: 20

key len.: 1

enc. per.: 1

delay: 15

key len.: 2*

enc. per.: 1*

delay: 15.75*

k = 2

voice
com.

throughput:
950

data

enc.
delay: 35

key len.: 1
enc. per.: 1

delay: 16.43

key len.: 1
enc. per.: 1

delay: 16.43

 key len.: 1
enc. per.: 1

delay: 16.43

 key len.: 1
enc. per.: 1

delay: 16.43

k = 3
motion

det.

mot. lev.:

0.2%
delay: 150

 vid. res.: 3*
mot. lev.:

0.34%*
delay: 134.08*

k = 4
motion
det.

mot. lev.:
0.15%

delay: 90

 vid. res.: 2*

mot. lev.:
0.19%*

delay: 78.87*

 At iteration 1, server 1 selects to serve client 1's voice communication service at

the sampling rate of level 5, the buffer size of level 5, and the throughput of 894.38 and

data encryption service at the key length of level 1 and the encryption percentage of level

1, and the delay of 15 milliseconds, and client 2's data encryption service at the key

length of level 1 and the encryption percentage of level 1, and the delay of 16.43

milliseconds. Server 2 selects to serve client 1's data encryption service at the key length

 149

of level 2, the encryption percentage of level 1, and the delay of 15.75 milliseconds,

client 2's data encryption service at the key length of level 1, the encryption percentage of

level 1, and the delay of 16.43 milliseconds, and client 4's motion detection service at the

video resolution of level 2, the motion level of 0.19%, and the delay of 78.87

milliseconds.

 With these server solutions, each client makes the decisions as follows. Client 1

selects server 1 for the voice communication service and sever 2 for the data encryption

service. Both server 1 and server 2 select to serve the data encryption server. However,

the QoS level of the data encryption service from server 2 is closest to the QoS

requirement. Hence, server 2 is selected for the data encryption service. Client 2 marks

the workflow including the voice communication service and the data encryption service

unsatisfied since neither server 1 nor server 2 selects to serve the voice communication

service. Client 3 marks the workflow including the motion detection service as

unsatisfied since neither server 1 nor server 2 selects client 3 and its service. Client 4

selects server 2 for the motion detection service. Hence, after iteration 1, client 1 and

client 4 have their service workflow satisfied. Client 2 and client 3 request services of

their workflows again in iteration 2.

 At iteration 2, server 1 selects to serve client 3's motion detection service at the

video resolution of level 3, the motion level of 0.34%, and the delay of 134.08

milliseconds. Server 2 selects to serve client 2's data encryption service at the key length

of level 1, the encryption percentage of level 1, and the delay of 16.43 milliseconds. With

these server solutions, clients 2 and 3 make the following decisions: client 2 marks the

workflow including the voice communication service and the data encryption service

 150

unsatisfied since neither server 1 nor server 2 selects to serve the voice communication

service, and client 3 selects server 1 for the motion detection service. Hence, after

iteration 2, client 3 has its service workflow satisfied, in addition to clients 1 and 4

satisfied after iteration 1. Client 2 request services of its workflow again in iteration 3.

 At iteration 3, server 1 cannot serve any of client 2’s two services due to the

insufficient resource capacity. Server 2 serves client 2's data encryption service at the key

length of level 1, the encryption percentage of level 1, and the delay of 16.43

milliseconds as same as the server's decision from iteration 2. With these server solutions,

client 2 still does not have its service workflow satisfied because neither server 1 nor

server 2 selects to serve the voice communication service. The decentralized algorithm

stops after iteration 3.

 By examining the three iterations of the decentralized method, the difference

between the service decision of the centralized solution in serving client 2 but dropping

client 3 and the service decision of the decentralized solution in serving client 3 but

dropping client 2 starts at iteration 1. At iteration 1, server 1 selects to serve three

services (client 1's voice communication and data encryption services, and client 2's data

encryption service) in the decentralized solution, whereas server 1 selects to serve two

services (client 2's voice communication service and client 4's motion detection service)

in the centralized solution. Moreover, in the decentralized solution, both server 1 and

server 2 select to serve client 1’s data encryption service and client 2’s data encryption

service. Hence, the same cause of lacking server-client coordination and the isolated

work of each server to maximize satisfied services without knowing an overlap of the

 151

service provision by servers is observed as in the problem case with server configuration

3.

 This cause along with the insufficient resource capacity on each server and all the

servers together makes the decentralized strategy produce a different service decision

(i.e., server 1 serving client 1’s voice communication service and server 2 serving client

4’s motion detection service) from the centralized solution (i.e., server 2 serving client 1’

voice communication service and server 1 serving client 4’s motion detection service)

right after iteration 1. The service decision of the decentralized method after iteration 1

leads the solution path of the decentralized method to the eventually suboptimal solution.

As discussed previously, the service provider-user coordination strategy needs to be

revised to distribute requests for services of workflow to servers in a selective manner to

avoid an overlap of same service provision among multiple servers.

 Based on the analysis results above, the following directions of developing

service provider-user coordination strategies are suggested. In the decentralized resource

allocation problem, each client has choices of either submitting the request for each

service of the client to more than one server that provides the service, or going for servers

one after another. Letting each client submit the request for each service to more than one

server may result in the same problem of the overlap of service provision by multiple

servers as seen previously, because the local resource allocation problem of each server

does not have the server-client coordination constraint in Equation (15). It may also result

in having only some but not all services of a client selected by the server—the failure of

covering all services of the client, because the local resource allocation problem of each

server does not have the service-client coordination constraint in Equation (16). To

 152

overcome these problems caused by removing the server-client coordination constraints

in Equations (15) and (16) in the local resource allocation problems of the servers, each

client is suggested to take all of its services to one server and send remaining unsatisfied

services to another server, that is, going for servers one after another until all services of

the client are satisfied.

 Considering each server does not want to share its resource state and resource

allocation objectives with clients, the order of server selection for clients to send their

services of the workflow can be based on different criteria. A random selection of servers

can be one criteria, which may lead to the emergence of evenly distributed workloads on

all servers over time. Using the past history of server utilization (e.g., frequency of using

each server, and satisfaction with each server in terms of how many clients have been

satisfied and how well the delivered QoS performance levels are close to the QoS

requirements) may result in the emergence of desirable outcomes of match-making

between servers and clients through the collective behavior of servers and clients over

time without a central match-maker.

 3.5.2 Scalability. Table 41 and Figure 6 show computation times of obtaining a

centralized solution and a decentralized solution for the problem cases. As Figure 6

illustrates, the computation times of obtaining both the centralized and the decentralized

solution increase with the number of clients. However, the rate of increase in the

computation times with the number of clients is much larger for the centralized method

than the decentralized algorithm, especially for two problem cases with server

configuration 3 and server configuration 5, respectively. Due to insufficient resource

capacity on each server (in server configuration 3) or all servers together (in server

 153

configuration 5) and the provision of all three services on each server, these two problem

cases are much harder to solve with a larger solution space than the problem cases with

the other four server configurations. Hence, the decentralized algorithm is much more

scalable than the centralized method.

Table 41

Computation Times (in seconds) of Obtaining the Centralized and Decentralized

Solutions

Server

Configuration

4 Clients 50 Clients 100 Clients

Centralized Decentralized Centralized Decentralized Centralized Decentralized

1 0.03 0.03 0.41 0.22 1.39 0.81

2 0.05 0.03 0.41 0.24 1.83 1.43

3 0.06 0.07 1.13 0.23 4.39 1.84

4 0.05 0.03 0.41 0.24 1.83 1.43

5 0.06 0.09 7.74 2.13 9.98 2.41

6 0.05 0.06 1.62 0.52 2.29 1.60

 154

Figure 6. Computation Times (in seconds) of Obtaining the Centralized and

Decentralized Solutions.

3.6 Conclusions

 Although decentralized methods of resource allocation are highly desirable for

scalability and real-world applicability, more research is required to develop service

provider-user coordination strategies that can achieve the solution optimality through

decentralized resource allocation algorithms. This study in Chapter 3 starts with a server-

client coordination strategy for decentralized resource allocation algorithm and compares

the decentralized solutions on various problem cases with the optimal solutions from the

formulation of the centralized resource allocation problem in terms of solution optimality

and scalability.

 For one optimization objective of maximizing the number of clients satisfied, the

decentralized solutions are as good as the centralized solutions. For another optimization

0

2

4

6

8

10

4 50 100C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Number of Clients

Centralized Solutions

Server Configuration 1

Server Configuration 2

Server Configuration 3

Server Configuration 4

Server Configuration 5

Server Configuration 6

0

2

4

6

8

10

4 50 100C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Number of Clients

Decentralized Solutions

Server Configuration 1

Server Configuration 2

Server Configuration 3

Server Configuration 4

Server Configuration 5

Server Configuration 6

 155

objective of producing the QoS levels as closest to the QoS requirements, the

decentralized solutions are close to the centralized solutions with slightly worse values in

two out of the six problem cases for four clients, one out of the six problem cases for fifty

clients and two out of the six problem cases for one hundred clients.

 The computation times of obtaining both a centralized solution and a

decentralized solution increase with the number of clients. However, the rate of increase

in the computation times with the number of clients is much larger for the centralized

method than the decentralized method, especially for two harder problem cases with a

larger solution space due to insufficient resource capacity on each server or all servers

together and the provision of all three services on each server. Hence, the decentralized

method is much more scalable than the centralized method.

 By analyzing some decentralized solutions for small problem cases with four

clients in comparison with the centralized solutions, it identifies the lack of server-client

coordination as the major cause for differences of the decentralized solutions from the

centralized solutions. Specifically, the decentralized method does not have the server-

client coordination constraints that are included in the formulation of the centralized

resource allocation problem. The lack of these server-client coordination constraints

results in the isolated work of each server to maximize satisfied services without knowing

an overlap of the service provision by servers. Thus, it is strongly suggested for each

client to take its services to one server and send remaining unsatisfied services to another

server, that is, to go for servers one after another until all services of the client are

satisfied. Furthermore, different criteria of selecting which server to go for first and then

next needs to be explored and examined. The criteria can be based on a random selection

 156

or the past history of using the servers (e.g., frequency of using each server, and

satisfaction with each server in terms of how many clients have been satisfied and how

well the delivered QoS performance levels are close to the QoS requirements).

 157

 CHAPTER 4

CONCLUSIONS AND FUTURE WORK

 Efficient resource allocation is the most important part in cloud computing, which

determines the allocation of computer and network resources of service providers to

service requests of cloud users for satisfying the users' service requirements. However,

the resource allocation problem have been known to be challenging since it requires to

consider all the objectives of service providers and cloud users in an unpredictable

environment with dynamic workload, large shared resources and complex policies to

manage them. Many research have introduced various centralized algorithms or

decentralized algorithms with information sharing through communication protocols.

However, achieving both solution optimality and scalability still remains as a major issue

among the existing algorithms for efficient resource allocation.

 Therefore, this dissertation contributes to propose two efficient resource

allocation methods to generate optimal or near-optimal solutions, which can be obtained

from solving the centralized optimization problem. The resource allocation methods

proposed in this dissertation can be applied for resource allocation decisions with great

scalability.

 Chapter 2 first introduces a formulation of the resource allocation optimization

problem in MIP and then designs a set of representative problem cases to analyze the

optimal solutions to identify important heuristics for efficient resource allocation

decisions. The proposed heuristics, which capture the centralized decision making

behavior in generating the optimal solutions, are capable of making resource allocation

decisions as good as or close to the optimal solutions without solving the optimization

 158

problem directly. The resource allocation heuristics are tested in another set of problem

cases with the introduction of more complexity by increasing the number of service

providers and the total number of service requests, and the heuristic solutions

successfully demonstrate the performance quality.

 The experimental results show that the resource allocation decisions from the

heuristic solutions are close to the ones obtained from the optimal solutions. In Case A,

where each server has a sufficient resource capacity and in Case B, where all the servers

together have a sufficient resource capacity for all service requests of all clients, the

heuristic solutions do not drop any service request as same as the optimal solutions. For

Case A and Case B, the heuristic solutions have the same SAV ratios as the optimal

solutions, implying that the heuristic solutions serve all the service requests with the same

quality of QoS values as in the optimal solutions. For Case C, where all the servers

together do not have a sufficient resource capacity for all service requests of all clients,

the heuristic solutions drop more service requests of about 1% ~ 4% of all service

requests in average than the optimal solutions. However, the heuristic solutions provide at

least the same levels of QoS to all served service requests as the optimal solutions with

the same or higher SAV ratios.

 The average computation times of obtaining the optimal solutions and the

heuristic solutions are increased as problem cases become more complicated by

increasing numbers of service requests, increasing numbers of servers and having limited

resource capacity to serve all service requests of all clients. The ranges of the

computation times for obtaining both the optimal and heuristic solutions also become

larger with higher values of the standard deviation. However, the rate of increase in the

 159

computation times with increasing problem complexity is much larger for the optimal

solutions than the heuristic solutions, especially for Case B and Case C with insufficient

resource capacity on each server or all the servers together and for the problem cases with

ten and twenty servers resulting in a larger solution space than the other problem cases.

Hence, using the resource allocation heuristics is much more scalable than solving the

optimization problem directly.

 Chapter 3 provides the modified formulation of the centralized resource allocation

problem and the decentralized service provider-user coordination strategy in cloud

computing. It specifically looks into elements of service provider-user coordination from

the centralized formulation, and the differences between the centralized solutions and the

decentralized solutions for various problem cases are analyzed to recognize the key

elements of the decentralized service provider-user coordination strategy, which can lead

to get optimal or near-optimal solutions.

 The experimental results confirm that the decentralized solutions are as good as

the centralized solutions in terms of maximizing the number of clients satisfied as one of

the objective functions in the optimization problem. For another objective of producing

the QoS levels as closest to the QoS requirements, the decentralized solutions are close to

the centralized solutions with slightly worse values in two out of the six problem cases

for four clients, one out of the six problem cases for fifty clients and two out of the six

problem cases for one hundred clients. The computation times of obtaining the

centralized solution and the decentralized solution increase with the number of clients.

However, the rate of increase in the computation times with the number of clients is

much larger for the centralized method than the decentralized method, especially for two

 160

harder problem cases with a larger solution space due to insufficient resource capacity on

each server or all the servers together and the provision of all three services on each

server. Hence, the decentralized method is much more scalable than the centralized

method.

 By analyzing some decentralized solutions for small problem cases with four

clients in comparison with the centralized solutions, it identifies the lack of server-client

coordination as the major cause for differences of the decentralized solutions from the

centralized solutions. Specifically, the decentralized method does not have the server-

client coordination constraints that are included in the formulation of the centralized

resource allocation problem. The lack of these server-client coordination constraints

results in the isolated work of each server to maximize satisfied services without knowing

an overlap of the service provision by servers. Thus, it is strongly suggested for each

client to take its services to one server and send remaining unsatisfied services to another

server, that is, to go for servers one after another until all services of the client are

satisfied. Furthermore, different criteria of selecting which server to go for first and then

next need to be explored and examined. The criteria can be based on a random selection

or the past history of using the servers (e.g., frequency of using each server, and

satisfaction with each server in terms of how many clients have been satisfied and how

well the delivered QoS performance levels are close to QoS requirements).

 Two proposed methods in this dissertation show comparable performance to the

optimal solutions for resource allocation with respect to solution optimality and

scalability. All the experiments, however, are limited to have relatively a small number of

servers with simple structures of service provision on servers using up to three different

 161

types of services. Therefore, future work may include expanding problem sizes of the

resource allocation optimization by increasing the total number of servers, using various

types of workflow such as parallel processing with involvement of several different types

of services. Moreover, different service provisions on servers may also be introduced

with some degree of overlapping services such that servers provide all the same services,

servers provide services partially overlapped and servers provide different services with

no overlap. In addition to various changes in the total number of servers, workflow

structure and service provision on servers, future work may want to explore other

heuristics for further improvements in performance quality of the resource allocation

methods.

 162

REFERENCES

Alrifai, M., & Risse, T. (2009). Combining Global Optimization with Local Selection for

Efficient QoS-aware Service Composition. 18th International World Wide Web

Conference (WWW), 881-890.

Alrifai, M., Skoutas, D., & Risse, T. (2010). Selecting Skyline Services for QoS-based

Web Service Composition. 19th International World Wide Web Conference, 11-

20.

Aoun, R., Doumith, E. A., & Gagnaire, M. (2010). Resource Provisioning for Enriched

Services in Cloud Environment. 2nd IEEE International Conference on Cloud

Computing Technology and Science, 296-303.

Ardagna, D., & Pernici, B. (2005). Global and local QoS Guarantee in Web Service

Selection. IEEE International Conference on Web Services, 805-806.

Ardagna, D., & Pernici, B. (2007). Adaptive Service Composition in Flexible Processes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. 33, No. 6, 369-

384.

Ardagna, D., Casolari, S., & Panicucci, B. (2011). Flexible Distributed Capacity

Allocation and Load Redirect Algorithms for Cloud Systems. IEEE 4th

International Conference on Cloud Computing, 163-170.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Zaharia,

M. (2010). A View of Cloud Computing. Communications of The Acm, Vol. 53,

No. 4, 50-58.

Atiewi, S., Yussof, S., & Ezanee, M. (2015). A Comparative Analysis of Task

Scheduling Algorithms of Virtual Machines in Cloud Environment. Journal of

Computer Science, 804-812.

Berman, F. (1999). High-performance schedulers. In The Grid Blueprint for a New

Computing Infrastructure, edited by Ian Foster and Carl Kesselman. San

Francisco, CA: Morgan Kaufman Publishers.

Canfora, G., Penta, M. D., Esposito, R., & Villani, M. L. (2005). An Approach for QoS-

aware Service Composition based on Genetic Algorithms. International

Conference on Genetic and Evolutionary Computation (GECCO), 1069-1075.

Casati, F., & Shan, M.-C. (2001). Dynamic and adaptive composition of e-services.

Information Systems, 26(3), 143–163.

Chen, Y., Farley, T., & Ye, N. (2004). QoS requirements of network applications over

the internet. Information, Knowledge and System Management, Vol. 4, No. 1, 55-

76.

 163

Dhingra, A., & Paul, S. (2014). Green Cloud: Heuristic based BFO Technique to

Optimize Resource Allocation. Indian Journal of Science and Technology, Vol

7(5), 685-691.

Endo, P. T., Palhares, A. V., Pereira, N. N., Gonçalves, G. E., Sadok, D., Kelner, J., . . .

Mångs, J.-E. (2011). Resource Allocation for Distributed Cloud: Concepts and

Research Challenges. IEEE Network, Vol. 25, No. 4, 42-46.

Ercetin, O., & Tassiulas, L. (2003). Market-Based Resource Allocation for Content

Delivery in the Internet. IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO.

12, 1573-1585.

Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud Computing and Grid Computing

360-Degree Compared. Grid Computing Environments Workshop, 1-10.

Gao, J., Guibas, L., Milosavljevic, N., & Zhou, D. (2009). Distributed Resource

Management and Matching in Sensor Networks. IEEE International Conference

on Information Processing in Sensor Networks (IPSN), 97-108.

Gong, Z., Ramaswamy, P., Gu, X., & Ma, X. (2009). SigLM: Signature-Driven Load

Management for Cloud Computing Infrastructures. IEEE International Workshop

on Quality of Service (IWQoS), 1-9.

Goudarzi, H., & Pedram, M. (2011a). Maximizing Profit in Cloud Computing System via

Resource Allocation. 2011 31st International Conference on Distributed

Computing Systems Workshops, 1-6.

Goudarzi, H., & Pedram, M. (2011b). Multi-dimensional SLA-based Resource Allocation

for Multi-tier Cloud Computing Systems. 2011 IEEE 4th International

Conference on Cloud Computing, 324-331.

Haresh, M. V., Kalady, S., & Govindan, V. K. (2011). Agent Based Dynamic Resource

Allocation on Federated Clouds. IEEE Recent Advances in Intelligent

Computational Systems (RAICS), 111-114.

Hassan, M. M., Song, B., & Huh, E.-N. (2011). Distributed resource allocation games in

horizontal dynamic cloud federation platform. IEEE International Conference on

High Performance Computing and Communications, 822-827.

Heo, J., Henriksson, D., Liu, X., & Abdelzaher, T. (2007). Integrating Adaptive

Components: An Emerging Challenge in Performance-Adaptive Systems and a

Server Farm Case-Study. 28th IEEE International Real-Time Systems Symposium,

227-238.

Heo, J., Jayachandran, P., Shin, I., Wang, D., & Abdelzaher, T. (2009). OptiTuner: An

Automatic Distributed Performance Optimization Service and a Server Farm

 164

Application. 4th International Workshop on Feedback Control Implementation

and Design in Computing Systems and Networks (FeBID).

Hsu, C.-H., Chen, T.-L., & Park, J.-H. (2008). On improving resource utilization and

system throughput of master slave job scheduling in heterogeneous systems. The

Journal of Supercomputing, Vol. 45, 129-150.

Hu, L., Cao, J., & Gu, Z. (2008). Modeling semantic web service using semantic

templates. International Conference on Semantics, Knowledge and Grid, 165-172.

Jamkhedkar, P. A., Lamb, C. C., & Heileman, G. L. (2011). Usage Management in Cloud

Computing. IEEE 4th International Conference on Cloud Computing, 525-532.

Jung, G., & Sim, K. M. (2011). Agent-based Adaptive Resource Alloc tion on the Cloud

Computing Environment. International Conference on Parallel Processing

Workshops, 345-351.

Kadda, B. B., Benhammadi, F., Sebbak, F., & Mataoui, M. (2015). New Tasks

Scheduling Strategy for Resources Allocation in Cloud Computing Environment.

6th International Conference on Modeling, Simulation, and Applied Optimization

(ICMSAO), 1-5.

Kreger, H. (2001). Web Services Conceptual Architecture (WSCA 1.0). IBM Software

Group.

Kumar, K., Feng, J., Nimmagadda, Y., & Lu, Y.-H. (2011). Resource Allocation for

Real-Time Tasks using Cloud Computing. 2011 Proceedings of 20th

International Conference on Computer Communications and Networks (ICCCN),

1-7.

Kuribayashi, S.-i. (2011). Optimal Joint Multiple Resource Allocation Method for Cloud

Computing Environments. International Journal of Research and Reviews in

Computer Science (IJRRCS), Vol. 2, No. 1, 1-8.

Laili, Y., Tao, F., Zhang, L., Cheng, Y., Luo, Y., & Sarker, B. R. (2013). A Ranking

Chaos Algorithm for Dual Scheduling of Cloud Service and Computing Resource

in Private Cloud. Computers in Industry, Vol. 64, 448-463.

Lamparter, S., Ankolekar, A., & Studer, R. (2007). Preference-based selection of highly

configurable web services. International World Wide Web Conference, 1013-1022.

Li, H., & Li, H. (2011). A Research of Resource Scheduling Strategy For Cloud

Computing Based on Pareto Optimality MxN Production Model. International

Conference on Management and Service Science, 1-5.

 165

Li, K., Wang, Y., & Liu, M. (2014). A Task Allocation Scheme Based on Response Time

Optimization in Cloud Computing. Distributed, Parallel, and Cluster Computing,

1-19.

Lin, C., & Lu, S. (2011). Scheduling Scientific Workflows Elastically for Cloud

Computing. IEEE 4th International Conference on Cloud Computing, 746-747.

Liu, S., Quan, G., & Ren, S. (2010). On-line Scheduling of Real-time Services for Cloud

Computing. IEEE 6th World Congress on Services, 459-464.

Liu, Z., Zhou, H., Fu, S., & Liu, C. (2014). Algorithm Optimization of Resources

Scheduling Based on Cloud Computing. Journal of Multimedia, Vol. 9, No. 7,

977-984.

Livny, M., & Raman, R. (1999). High Throughput Resource Management. In The Grid

Blueprint for a New Computing Infrastructure, edited by Ian Foster and Carl

Kesselman (p. Chapter 13). San Francisco, CA: Morgan Kaufman Publishers.

Manzalini, A., & Moiso, C. (2011). Self-optimization of resource allocation in

decentralised server farms. 15th International Conference on Intelligence in Next

Generation Networks, 219-224.

Mao, Z., Shang, Y., Liu, C., & Chen, J. (2013). Utility-based Price Proportion in Cloud

Resource Allocation. Information Technology Journal 12 (22), 6882-6886.

Marinescu, D. C. (2013). Cloud Computing: Theory and Practice. 1 edition: Morgan

Kaufman.

Mehdi, N. A., Mamat, A., Ibrahim, H., & Subramaniam, S. K. (2011). Impatient Task

Mapping in Elastic Cloud using Genetic Algorithm. Journal of Computer Science

7 (6), 877-883.

MessinaFabrizio, PappalardoGiuseppe, & SantoroCorrado. (2012). Decentralised

Resource Finding in Cloud/Grid Computing Environments: a Performance

Evaluation. “2012 IEEE 21st International WETICE”, 143-148.

MessinaFabrizio, PappalardoGiuseppe, & SantoroCorrado. (2014). Decentralised

Resource finding and Allocation in Cloud Federations. “2014 International

Conference on Intelligent Networking and Collaborative Systems”, 26-33.

Nesmachnow, S., Iturriaga, S., & Dorronsoro, B. (2015). Efficient Heuristics for Profit

Optimization of Virtual Cloud Brokers. IEEE Computational Intelligence

Magazine, 33-43.

Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello´-Pastor, C., &

Monje, A. (2013). On the Optimal Allocation of Virtual Resources in Cloud

 166

Computing Networks. IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.

6, 1060-1071.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-Oriented

Computing: State of The Art and Research Challenges. IEEE Computer, Vol. 40,

No. 11, 38-45.

Rajan, S., & Jairath, A. (2011). Cloud Computing: The Fifth generation of Computing.

International Conference on Communication Systems and Network Technologies,

665-667.

Rao, J., Bu, X., Xu, C.-Z., & Wang, K. (2011). A Distributed Self-learning Approach for

Elastic Provisioning of Virtualized Cloud Resources. 19th Annual IEEE

International Symposium on Modelling, Analysis, and Simulation of Computer

and Telecommunication Systems, 45-54.

Rezvani, M., Akbari, M. K., & Javadi, B. (2015). Resource Allocation in Cloud

Computing Environments Based on Integer Linear Programming. Section B:

Computer and Communications Networks and Systems, The Computer Journal,

Vol. 58 No. 2, 300-314.

Schlegel, T., Kowalczyk, R., & Vo, Q. B. (2008). Decentralized Co-Allocation of

Interrelated Resources in Dynamic Environments. 2008 IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent Technology,

104-108.

Selvi, S. T., Valliyammai, C., & Dhatchayani, V. N. (2014). Resource Allocation Issues

and Challenges in Cloud Computing. 2014 International Conference on Recent

Trends in Information Technology, 1-6.

Sharma, S., Tantawi, A., Spreitzer, M., & Steinder, M. (2010). Decentralized Allocation

of CPU Computation Power for Web Applications. Performance Evaluation 67,

1187-1202.

Shi, W., & Hong, B. (2010). Resource Allocation with a Budget Constraint for

Computing Independent Tasks in the Cloud. 2nd IEEE International Conference

on Cloud Computing Technology and Science, 327-334.

Shiang, H.-P., & van der Schaar, M. (2009). Distributed Resource Management in

Multihop Cognitive Radio Networks for Delay-Sensitive Transmission. IEEE

TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 2, 941-953.

Shyamala, K., & Rani, T. S. (2015). An Analysis on Efficient Resource Allocation

Mechanisms in Cloud Computing. Indian Journal of Science and Technology, Vol

8(9), 814-821.

 167

Sindhu, S., & Mukherjee, S. (2013). A Genetic Algorithm based Scheduler for Cloud

Environment. 4th International Conference on Computer and Communication

Technology (ICCCT), 23-27.

Smith, J., Chong, E. K., Maciejewski, A. A., & Siegel, H. J. (2012). Overlay network

resource allocation using a decentralized market-based approach. Future

Genration Computer Systems, Vol. 28, No. 1, 24-35.

SonSeokho, JungGihun, & JunChanSung. (2013). An SLA-based cloud computing that

facilitates resource allocation in the distributed data centers of a cloud provider. “J

Supercomput”, 606-637.

Srinivasa, K. G., Kumar, K. S., Kaushik, U. S., Srinidhi, S., Shenvi, V., & Mishra, K.

(2014). Game Theoretic Resource Allocation in Cloud Computing. 2014 Fifth

International Conference on the Applications of Digital Information and WEb

Technologies (ICADIWT), 36-42.

Staikopoulos, A., Cliffe, O., Popescu, R., Padget, J., & Clarke, S. (2010). Template-based

adaptation of semantic web services with model-driven engineering. IEE

Transactions on Services Computing, Vol. 3, No. 2, 116-128.

Stillwell, M., Vivien, F., & Casanova, H. (2012). Virtual Machine Resource Allocation

for Service Hosting on Heterogeneous Distributed Platforms. 26th IEEE

International Parallel & Distributed Processing Symposium, 786-797.

Suresh, A., & Vijayakarthick, P. (2011). Improving Scheduling of Backfill Algorithms

using Balanced Spiral Method for Cloud Metascheduler. IEEE-International

Conference on Recent Trends in Information Technology, ICRTIT 2011, 624-627.

Tran, V. X., Tsuji, H., & Masuda, R. (2009). A new QoS ontology and its QoS-based

ranking algorithm for web services. Simulation Modelling Practice and Theory,

Vol. 17, No. 8, 1378-1398.

Urgaonkar, R., Kozat, U. C., Igarashi, K., & Neely, M. J. (2010). Dynamic Resource

Allocation and Power Management in Virtualized Data Centers. 2010 IEEE/IFIP

Network Operations and Management Symposium - NOMS, 479-486.

Varalakshmi, P., Judgi, T., & Hafsa, M. F. (2013). Local Trust Based Resource

Allocation in Cloud. 2013 Fift International Conference on Advanced Computing

(ICoAC), 591-596.

Wang, W., & Li, B. (2005). Market-Based Self-Optimization for Autonomic Service

Overlay Networks . IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS, VOL. 23, NO. 12, 2320-2332.

 168

Wang, X., Vitvar, T., Kerrigan, M., & Toma, I. (2006). A QoS-Aware Selection Model

for Semantic Web Services. International Conference on Service Oriented

Computing, 390-401.

Wang, Z., & Fang, T. (2014). Task Scheduling Model Based on Multi-Agent and Multi-

Objective Dynamical Scheduling Algorithm. Journal of Networks, Vol. 9, No. 6,

1588-1595.

Wang, Z., & Su, X. (2015). Dynamically hierarchical resource-allocation algorithm in

cloud computing environment. The Journal of Supercomputing, 2748-2766.

Wei, Y., & Blake, B. M. (2013). Decentralized Resource Coordination across Service

Workflows in a Cloud Environment. 2013 Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 15-20.

Wei, Y., Blake, B. M., & Saleh, I. (2013). Adaptive Resource Management for Service

Workflows in Cloud Environments. 2013 IEEE 27th International Symposium on

Parallel & Distributed Processing Workshops and PhD Forum, 2147-2156.

Wendell, P., Jiang, J. W., Rexford, J., & Freedman, M. J. (2009). Decentralized Server

Selection Through Joint Proximity and Load Optimization. Princeton University,

Computer Science: TR-868-09., Tech. Rep.

Wu, X., Deng, M., Zhang, R., Zeng, B., & Zhou, S. (2013). A Task Scheduling

Algorithm based on QoS-driven in Cloud Computing. 1st Inernational

Conference on Information Technology and Quantitative Management, Vol. 17,

1162-1169.

Wuhib, F., Stadler, R., & Spreitzer, M. (2010). Gossip-based Resource Management for

Cloud Environments. 6th International Conference on Network and Service

Management, 1-8.

Yang, Z., Qin, X., Li, W., & Yang, Y. (2013). Optimized Task Scheduling and Resource

Allocation in Cloud Computing Using PSO based Fitness Function. Information

Technology Journal 12 (23), 7090-7095.

Yau, S. S., Ye, N., Sarjoughian, H. S., Huang, D., Roontiva, A., Baydogan, M., &

Muqsith, M. A. (2009). Toward Development of Adaptive Service-Based

Software Systems. IEEE Transactions on Services Computing, Vol. 2, No. 3, 247-

260.

Ye, N., Yang, S. S., & Aranda, B. M. (2013). The Analysis of Service Provider-User

Coordination for Resource Allocation in Cloud Computing. Information

KnowledgeSystems Management, Vol. 12, No. 1, 1-24.

Ye, N., Yau, S., Huang, D., Baydogan, M., Aranda, B. M., Roontiva, A., & Hurley, P.

(2010). Models of dynamic relations among service activities, system state and

 169

service quality on computer and network systems. Information, Knowledge,

Systems Management, Vol. 9, No. 2, 99-116.

Yigitbasi, N., Iosup, A., Epema, D., & Ostermann, S. (2009). C-Meter: A Framework for

Performance Analysis of Computing Clouds. 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, 472-477 .

Yin, B., Wang, Y., Meng, L., & Qiu, X. (2012). A Multi-dimensional Resource

Allocation Algorithm in Cloud Computing. Journal of Information &

Computational Science 9: 11, 3021-3028.

Zaman, S., & Grosu, D. (2011). Efficient Bidding for Virtual Machine Instances in

Clouds. IEEE 4th International Conference on Cloud Computing, 41-48.

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalagnanam, J., & Chang, H. (2004).

QoS-Aware Middleware for Web Services Composition. IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, Vol. 30, No. 5, 311-327.

Zhang, L.-J., Zhang, J., & Cai, H. (2007). Services Computing. New York, USA:

Springer.

Zhang, Z., & Zhang, X. (2009). Realization of Open Cloud Computing Federation Based

on Mobile Agent. IEEE International Conference on the Intelligent Computing

and Intelligent Systems, 642-646.

Zheng, H., Yang, J., & Zhao, W. (2010). QoS Analysis and Service Selection for

Composite Services. IEEE International Conference on Services Computing, 122

- 129.

Zhou, J., Dutkiewicz, E., Liu, R. P., Fang, G., & Liu, Y. (2014). Modified Elite Chaotic

Immune Clonal Selection Algorithm for Sever Resource Allocation in Cloud

Computing Systems. 17th International Symposium on Wireless Personal

Multimedia Communications (WPMC2014), 226-231.

Zuo, X., Zhang, G., & Tan, W. (2014). Self-Adaptive Learning PSO-Based Deadline

Constrained Task Scheduling for Hybrid IaaS Cloud. IEEE Transactions on

Automation Science and Engineering, Vol. 11, No. 2, 564-573.

 170

APPENDIX A

DESCRIPTION OF VARIOUS HEURISTICS IN EXISTING STUDIES

 171

Literatures Heuristics

(Atiewi,

Yussof, &

Ezanee, 2015)

Three task scheduling algorithms are used:

• Random resource selection - Assign the preferred task in a

random manner to the available VM regardless of its workload

status of either heavy or light

• Round Robin (RR) - Assign the selected tasks over the

available VMs in a round-robin order, where each task is

equally administered

• Green scheduler - Use alternative server and stay away from

the congested routes by tracking buffer occupancy on the path

(Dhingra &

Paul, 2014)

VMs are migrated from one host to another according to three

heuristics:

• Maximum Utilization - Migrate a VM from the overloaded

hosts with the maximum CPU utilization

• Minimum utilization - Migrate a VM from the overloaded

hosts with the minimum CPU utilization

• Random choice - Migrate a VM, which is selected on the basis

of a uniformly distributed discrete random variable

(Goudarzi &

Pedram,

2011a)

As the first step of the heuristic, a good initial solution is obtained by

processing clients sequentially and assigning to the best cluster on that

time. This greedy algorithm is repeated for a number of times and the

best initial solution is selected. Then a local search is used to improve

the quality of the initial solution.

(Goudarzi &

Pedram,

2011b)

A heuristic inspired by the force-directed scheduling is used as a

search technique for a solution space. It is based on defined forces

between servers and clients, and a force is calculated based on the

partial profit gained from allocation each portion of a client's request

to a server. A client with highest force difference toward a new server

is picked and if the required server is available, the load replacement

is done. Forces are updated and new maximum force differential

client-to-server assignment is made. It continues until there is no

positive force differentials for any client.

(Kadda,

Benhammadi,

Sebbak, &

Mataoui, 2015)

A new task scheduling heuristic is proposed with a matrix of the

expected execution time for each job on a cluster. As the first step of

this heuristic algorithm, a good initial solution is applied to find two

first clusters with minimum Completion Time where jobs are assigned

sequentially to the cluster using the Min-min algorithm. Then, to

improve the quality of the initial solution, a local assigning in each

cluster is applied to allocate the tasks on the different available

servers.

 172

(Messina,

Pappalardo, &

Santoro, 2012,

2014)

A service request can flow on the overlay network, and the heuristic

strategies introduced in this study help to guide the traveling of the

network. Allocation heuristic specifies how to make a node choice

when more nodes are valid candidates, and "First Fit" (i.e. random

selection) is applied for the allocation heuristic. If the node is not

appropriate, six forward heuristics are executed to find candidate

nodes with different criteria as follows:

• Best Fit - Select the node with minimal distance from target

point

• Worst Fit - Select the node with highest amount of available

resources and thus the further node with regard to the

Euclidean distance

• Mass Center - Select the node among wider view of neighbors

at 2-hops

• Best Fit/Mass Center - Best fit strategy is kept if the request is

approaching the admissible region. Otherwise Mass Center

strategy is used.

• Max Connection - Select the node with highest number of

connections/links

• First Fit - Select a random neighbor

(Nesmachnow,

Iturriaga, &

Dorronsoro,

2015)

Seven heuristics are proposed to assign priorities to requests with

diverse criteria as follows:

• MaxMaxProfit - Assign a request to a VM with the global

profit

• MaxPMinT - Select a VM to serve a request the soonest and

then select the pair (request, VM) with best profit

• MinTMaxP - Build a set of (request, VM) pairs with the

maximum profit and then select the pair with minimum

execution time

• MaxQTMaxP - Search for a request with the maximum overall

profit and then select the pair with maximum waiting time

• MinQTMaxP - Search for a request with the maximum overall

profit and then select the pair with minimum waiting time

• MinGAPMaxP - Search for a request with maximum overall

profit and then select the pair with minimum deadline GAP

• MinDMaxP - Search for a request with maximum overall

profit and then select the pair with minimum deadline

Then, reordering local search is used to improve the solution quality

by performing a set of reordering movements on the schedule and

executing in a reduced time.

(Yang, Qin, Li,

& Yang, 2013)

Particle Swarm Optimization based fitness function scheduling

heuristic is to assign each subtask to an appropriate resource (routing

problem) and to sequence the subtasks on the resources (sequencing

problem).

 173

APPENDIX B

AN EXAMPLE OF THE RESOURCE ALLOCATION PROBLEM FORMULATION

 174

 The following example gives realization of the resource allocation problem

formulation for a problem case with two servers and four clients. It supposes that the first

server is the communication-centered server with resource capacity limits of 36 for CPU

resource and 200 for bandwidth resource, and the second server is a computation-

centered server with resource capacity limits of 232 for CPU resource and 32 for

bandwidth resource. It also supposes that clients 1 and 4 request computation intensive

services with minimum QoS requirements of 6 and 30, and clients 2 and 3 request

communication intensive services with minimum QoS requirements of 25 and 5. This

problem case assumes that each server has a sufficient resource capacity to satisfy all four

clients’ service requests, and all two services of communication intensive service and

computation intensive service are provided by each server.

• Variables and indices

k: a given client, k = 1, 2

i: a given server, i = 1, 2

wi: resource variable w of server i, wi = 1, 2, and wi = 1 for CPU resource, wi = 2

for bandwidth resource

s: service (type), s = 1, 2, and s = 1 for a communication intensive service, s = 2

for a computation intensive service

ds: service parameter d of service s, ds = 1, …, Ds, and D1 = 1, d1 = 1 for one

service parameter of the communication intensive service, D2 = 1, d2 = 1 for

one service parameter of the computation intensive service

ps: QoS variable p of service s, ps = 1, …, Ps, and P1 = 1, p1 = 1 for one QoS

variable of the communication intensive service, P2 = 1, p2 = 1 for one QoS

variable of the computation intensive service

�����: amount of resource variable w of server i taken by client k’s service request,

�����is a positive real value

�����: value of QoS variable ps of client k’s service request on server i, ����� is a

positive real value

• Decision variables

 175

��� = 1 if client k’s service request is assigned to server

 0 if client k’s service request is not assigned to server i

�����: level of service parameter ds for client k’s service request on server i

 ����= 1, 2, 3, 4, or 5

 ����= 1, 2, 3, 4, or 5

 �E��= 1, 2, 3, 4, or 5

 �I��= 1, 2, 3, 4, or 5

• Given inputs

��� = 1 if client k’s service request uses service s

 0 if client k’s service request does not use service s

 ��� = 0, ��� = 1 (client 1's service request uses the computation intensive

service)

 ��� = 1, ��� = 0 (client 2's service request uses the communication

intensive service)

 �E� = 1, �E� = 0 (client 3's service request uses the communication

intensive service)

 �I� = 0, �I� = 1 (client 4's service request uses the computation intensive

service)

��� = 1 if service s is provided by server i

 0 if service s is not provided by server i

 ��� = 1 (server 1 provides the communication intensive service)

 ��� = 1 (server 1 provides the computation intensive service)

 ��� = 1 (server 2 provides the communication intensive service)

 ��� = 1 (server 2 provides the computation intensive service)

������ : limit (i.e. the maximum level) of service parameter ds of client k’s service

request on server i

 ����� = 5

 ����� = 5

 �E��� = 5

 176

 �I��� = 5

����
� : limit of resource variable w of server i

 ���� = 36 (server 1's CPU resource capacity)

 ���� = 200 (server 1's bandwidth resource capacity)

 ���� = 232 (server 2's CPU resource capacity)

 ���� = 32 (server 2's bandwidth resource capacity)

����
� : limit of QoS variable ps of client k’s service request

 ���� = 6

 ���� = 25

 �E�� = 5

 �I�� = 30

• Objective function

Minimize ∑ ∑ #∑ vwxVyy 'vwxV
z #

vwxV
z ∗{VUVT (1)

|v:::nv::;'K|

K + |v;::nv;:;'�J|
�J + |v}::nv}:;'J|

J + |v~::nv~:;'EO|
EO

• Server-client coordination constraints

∑ ��� ≤ 1 ∀� � (2)

 ��� + ��� ≤ 1

 ��� + ��� ≤ 1

 �E� + �E� ≤ 1

 �I� + �I� ≤ 1

• Service constraints

XTWUT] ≤ VW] ∀k, i, s (3)

 X��U�� ≤ V��

 X��U�� ≤ V��

 X��U�� ≤ V��

 177

 X��U�� ≤ V��

 XE�UE� ≤ V��

 XE�UE� ≤ V��

 XI�UI� ≤ V��

 XI�UI� ≤ V��

AT�VW ≤ AT�VWX ∀i, k, d] (4)

 A��W ≤ 5

 A��W ≤ 5

 AE�W ≤ 5

 AI�W ≤ 5

• Service-resource-QoS relation constraints

RTW�y = XTWFW�y0AT�W, … , AT�VW3 ∀i, k, wW (5)

 R�W� = X�W ∗ (5.8 ∗ A��W), R�W� = X�W ∗ (0.3 ∗ A��W)
 R�W� = X�W ∗ (0.1 ∗ A��W), R�W� = X�W ∗ (5.0 ∗ A��W)
 REW� = XEW ∗ (0.1 ∗ AE�W), REW� = XEW ∗ (5.0 ∗ AE�W)
 RIW� = XIW ∗ (5.8 ∗ AI�W), RIW� = XIW ∗ (0.3 ∗ AI�W)

QTUVW = XTWGWUV0RTW�, … , RTW�y3 ∀i, k, p] (6)

 Q��W = X�W ∗ (R�W� + R�W�)

 Q��W = X�W ∗ (2R�W� + R�W�)

 QE�W = XEW ∗ (2REW� + REW�)

 QI�W = XIW ∗ (RIW� + RIW�)

• Resource capacity constraints

∑ RTW�yT ≤ RW�y
X ∀i, wW (7)

 R��� + R��� + RE�� + RI�� ≤ 36

 R��� + R��� + RE�� + RI�� ≤ 200

 R��� + R��� + RE�� + RI�� ≤ 232

 R��� + R��� + RE�� + RI�� ≤ 32

 178

• QoS requirement constraints

QTUVWXTW ≤ QTUV
X or QTUVW ≥ XTWQTUV

X ∀i, k, p] (8)

 Q��W ≥ 6 ∗ X�W
 Q��W ≥ 25 ∗ X�W
 QE�W ≥ 5 ∗ XEW
 QI�W ≥ 30 ∗ XIW

