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ABSTRACT

This dissertation carries out an inter-disciplinary research of operations research,

statistics, power system engineering, and economics. Specifically, this dissertation

focuses on a special power system scheduling problem, a unit commitment problem

with uncertainty. This scheduling problem is a two-stage decision problem. In the

first stage, system operator determines the binary commitment status (on or off)

of generators in advance. In the second stage, after the realization of uncertainty,

the system operator determines generation levels of the generators. The goal of this

dissertation is to develop computationally-tractable methodologies and algorithms to

solve large-scale unit commitment problems with uncertainty.

In the first part of this dissertation, two-stage models are studied to solve the

problem. Two solution methods are studied and improved: stochastic programming

and robust optimization. A scenario-based progressive hedging decomposition algo-

rithm is applied. Several new hedging mechanisms and parameter selections rules

are proposed and tested. A data-driven uncertainty set is proposed to improve the

performance of robust optimization.

In the second part of this dissertation, a framework to reduce the two-stage

stochastic program to a single-stage deterministic formulation is proposed. Most

computation of the proposed approach can be done by offline studies. With the assis-

tance of offline analysis, simulation, and data mining, the unit commitment problems

with uncertainty can be solved efficiently.

Finally, the impacts of uncertainty on energy market prices are studied. A new

component of locational marginal price, a marginal security component, which is the

weighted shadow prices of the proposed security constraints, is proposed to better

represent energy prices.
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Chapter 1

INTRODUCTION

1.1 Overview

Operations Research (OR) has long been known as a mathematical and analytical

tool to help decision makers make better decisions. In this dissertation, the state-

of-art OR-based methodologies are studied, improved and applied into the field of

electric power system scheduling problems.

The National Academy of Engineering ranks the electrification as the greatest

achievement of the 20th century (National Academy of Engineering, 2015). Electric

power industry is an $840-billion industry in the U.S., which represents approximately

3% of the real gross domestic product (Edison Electric Institute, 2013). Each year,

electric power utilities spend roughly $200-billion in their planning and operation

(Energy Information Administration, 2015).

Specifically, this dissertation focuses on a special power system scheduling prob-

lem, a unit commitment (UC) problem with uncertainty. The problem is of interests

in two folds. First, practically, electric power industry is one of the biggest sectors

in the U.S., and a slight improvement in decision-making can lead to huge savings

for social welfares. Second, theoretically, the UC problem with uncertainty is formu-

lated as large-scale mixed integer programming, which is one of the most challenging

optimization problems to solve.

This dissertation is built upon three projects as follows:

• Stochastic unit commitment with intermittent resources (supported by Sandia

National Laboratory, 1/2013-6/2013)
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• Mathematical frameworks for dynamic reserve policies (supported by National

Science Foundation, 8/2013-12/2014)

• Markets for ancillary services in the presence of stochastic resources (supported

by Power System Engineering Research Center, 1/2015-8/2016)

The goal of this dissertation is to develop computationally-tractable OR method-

ologies and algorithms to solve large-scale UC problems with uncertainty; thus, to

improve the reliability and economic efficiency of the power systems.

1.2 Research Focus

This dissertation carries out an inter-disciplinary research of operations research,

statistics, power system engineering, and economics. Specifically, this dissertation

focuses on a special power system scheduling problem, a unit commitment problem

with uncertainty. This scheduling problem is a two-stage decision problem. In the

first stage, system operator determines the binary commitment status (on or off) of

generators in advance. In the second stage, after the realization of uncertainty, the

system operator determines generation levels of the generators.

In general, the power system is a special type of network, with nodes (buses)

and arcs (transmission lines). However, electricity differs from ordinary products in

several ways: the demand is close to perfectly inelastic; the supplies and demands

must be in balance to maintain system frequency continuously under high uncertainty;

the electricity travels in the power grids (network) following the Kirchhoff’s laws;

the storage of bulk energy is considered too expensive with current technologies.

Therefore, there are more challenges in electric power system scheduling than in

other standard network or supply chain problems.

If everything in the system is certain, then the UC problem can be formulated

as a deterministic mixed integer program. The problem can be solved efficiently
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with commercial software, even for real-world large-scale power systems. However,

uncertainty in the system may result in the inefficiency of the solution obtained

from the deterministic models. The uncertainty complicates the scheduling decision-

making; thus, advanced tools and methodologies are desired to make better decisions.

Currently, there are three prevalent methodologies to solve the UC problem with

uncertainty: stochastic programming, robust optimization, and deterministic approx-

imation (modeling reserves). The first two methods are limited due to the computa-

tional challenges. System operators are not convinced to implement the models yet.

Industrial practice adopts modeling reserves (extra capacities that generators can de-

liver) to hedge uncertainty in the power systems. However, the procured reserves

may not be deliverable due to post-contingency system congestion. Many ad-hoc

reserve determination rules have been applied. There is a lack of systematic and

mathematical approaches to determine the reserves in the system.

In the first part of this dissertation, improvements for stochastic programming

and robust optimization are proposed in order to make the methodologies scalable

and less conservative. In the second part of this dissertation, the focus is on replacing

the two-stage UC models by a stochastic equivalent deterministic model with a set of

constraints. In order to do so, the potential constraints to be included are analyzed. A

necessary and sufficient condition to ensure a feasible dispatch is given. Then, a set of

security constraints are explicitly described. Since the number of potential constraints

is exponential, an offline simulation and data mining procedure is proposed to reduce

the number of constraints to be included. In the last part of this dissertation, the

market implications of the proposed security constraints are analyzed.
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1.3 Summary of Chapters

Chapter 2 introduces the background of power system scheduling and market

models. Basic concepts of power system scheduling are given. The process of unit

commitment problem decision is described. Different types of uncertainties in the

power systems are illustrated.

Chapter 3 studies the existing literature, and identifies the drawbacks of the ex-

isting methodologies. The chapter summaries the three prevalent methodologies:

stochastic programming, robust optimization, and deterministic approximation (mod-

eling reserves).

Chapter 4 formulates the problem as two-stage stochastic models. A progressive

hedging algorithm is studied and improved to solve the UC problem with single-

generator-failure contingency. Hedging on startup and shutdown variables is pro-

posed. Different penalty selection rules are proposed. Finally, the progressive hedg-

ing algorithm is used as a pre-solve tool to fix most binary variables, the resulting

formulation is solved as mixed integer program.

Chapter 5 proposes a data-driven uncertainty set formulation to reduce the conser-

vativeness of robust optimization. The size of uncertainty set is reduced by decorrelate

the temporal and spatial correlations of the data. The solution with the proposed

uncertainty set maintains system security and reduce scheduling cost significantly.

Chapter 6 gives the theoretical supports to replace two-stage models with an

equivalent deterministic model with a set of security constraints. First, a necessary

and sufficient condition to ensure a feasible dispatch in the power system is explic-

itly given. The condition is based on a polyhedral structure. The extreme rays of

the polyhedron are explicitly characterized. Then, based on the condition, different

security constraints are given to respond to different types of uncertainty. With the
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derived security constraints, the two-stage stochastic program is able to be replaced

by an equivalent deterministic program.

Chapter 7 proposes a framework to reduce the number of constraints to be in-

cluded, with the assists of offline simulation and data mining. With the proposed

framework, the program can be solved efficiently with a reliable solution.

Chapter 8 studies shadow prices of the UC problem with uncertainty, and the

impacts of security constraints on energy markets. With the security constraints, the

prices are a better reflection of the quality of service provided by the generators.

Finally, Chapter 9 concludes this dissertation and proposes several future research

directions.
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Chapter 2

BACKGROUND

2.1 Electric Power System

Electric power systems can be divided into four sub-systems: the generation,

transmission, distribution, and load systems, as illustrated in Figure 2.1 (U.S.-Canada

Power System, 2004).

Figure 2.1: Structure of Electric Power Systems

(U.S.-Canada Power System, 2004)

The electric power industry throughout the U.S. was originally operated through

vertically integrated public utilities, where the utilities own the generators and trans-

mission lines by themselves and serve certain consumers (California ISO, 2011). As

the transmission technology became more efficient, the long-distance power transmis-

sion became more viable (California ISO, 2011). This created the possibility for many
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utilities to compete over the customer base (California ISO, 2011). The deregulation

of the electric power industry in the U.S. was motivated by the growing dissatis-

faction of the regulatory structure governing the vertically integrated utilities. This

dissatisfaction stemmed from apparent operating inefficiencies, a lack of variety in the

products and services available, as well as the potential for exercising market power

resulting from the absence of transparency of information regarding the system state

and prices. Followed the federal energy policy act in 1992, the concepts of regional

transmission organization (RTO) and independent system operator (ISO) were first

introduced into public. Currently, two-thirds of the U.S. power systems is served

by these independent grid operators, Figure 2.2 illustrates their respective service

territories (California ISO, 2011).

Figure 2.2: RTO/ISOs in the U.S.

(California ISO, 2011)
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RTO/ISOs are non-profit independent entities and play a similar role to that of air

traffic controllers in air transportation industry. RTO/ISOs focus on the planning and

operation of power generation and transmission. RTO/ISOs operate the power system

with different markets: including but not limited to energy market, ancillary services

market, financial transmission rights market, and capacity market. The function of

RTO/ISOs is to ensure transmission reliability and an efficient, competitive market.

One of the most important markets is the energy market. The energy market

is a multi-settlement market including mainly day-ahead market (DAM) and real-

time market (RTM). The DAM and RTM represent a forward market and a spot

market. The forward (financial) market is in advance of the corresponding real-time

spot (physical) market where agreements are made based on the future delivery at

agreed upon forward contracts. Although different RTO/ISOs have different mar-

ket clearing processes and terminologies for the processes, there is a general market

clearing process describes as follows. In DAM, RTO/ISOs: a) collect bids, b) run

security-constrained unit commitment (SCUC) model to determine generator com-

mitments, c) fix commitments, run security-constrained economic dispatch (SCED)

model to determine dispatch solution, d) post DAM solution and DAM prices. In

RTM, RTO/ISOs: a) run SCED to balance energy supply and demand, b) deter-

mine RTM prices. Figure 2.3 (Midcontinent ISO, 2007) illustrate the DAM process

in MISO.

2.2 Unit Commitment Problem

One of the most power system challenging problems is the unit commitment (UC)

problem. The UC problem refers to the optimization problem that determines the

generators (units) on/off status (commitments) in an economical manner. The UC

problem is formulated as a mixed integer programing (MIP) due to the discrete nature
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Figure 2.3: DAM Process in MISO

(Midcontinent ISO, 2007)

of the commitment decisions. This results in a non-convex optimization problem,

which is a type of difficult problems to solve, known as NP-hard problems (Nemhauser

and Wolsey, 1999).

The generation units in the power systems can be categorized as follows:

• Nuclear units

• Coal units

• Petroleum units

• Natural gas turbine units

• Hydro units

• Renewable units (wind, solar, ocean wave, etc.)

For the thermal (nuclear, coal, petroleum, and natural gas) units, it takes some

time to start up and shut down the generators. Moreover, once the generators are

turned on or off, they need to keep the commitment status for minimum up and
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down times due to the physical requirements of the generators. Therefore, thermal

units’ commitment status need to be determined in advance in order to ensure enough

supplies will be available during the real-time operation. RTO/ISOs solve the UC

problem in their DAMs with the collected supply and demand bids.

2.3 Market Model

In DAM and RTM, RTO/ISOs solve a set of market models to obtain a schedule

with the goal of maximizing the social welfare. Power flow problems are non-linear,

non-convex problems (Wood and Wollenberg, 1996). RTO/ISOs adopt linearized

power flow models to approximate the real power flow in the market models, as known

as direct current optimal power flow (DCOPF) models (Federal Energy Regulatory

Commission, 2011). A generalized market model is represented as follows:

min C(u,p) (2.1)

s.t. (ug,pg) ∈ Xg ∀g resource-level constraints (2.2)

K(p,D) ≤ 0 system-level constraints (2.3)

where decision variables are commitment status, u, and dispatch quantities, p. Equa-

tion (2.1) is objective to minimize total system cost. Equation (2.2) represents a set

of resource-level constraints restricting each generator’s commitment status, ug, and

generation level output, pg; where Xg, ∀g, are feasible commitment and dispatch sub-

spaces of each generator. The resource-level constraints include generation bounds

constraints, ramping constraints, commitment minimum up/down constraints. Equa-

tion (2.3) represents a set of system-level constraints; where K(p,D) is linear func-

tions of generation level output, p, and forecasted load, D. The system-level con-

straints usually include system-balance constraint (total generations equal to total

loads) and network constraints (power flows are within transmission line limits).
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2.4 Uncertainty in Power System

The uncertainty in the power systems can be categorized into discrete or con-

tinuous uncertainty. The discrete uncertainty includes the system element failure

contingency events. The continuous uncertainty includes the fluctuation of loads and

renewable resources.

Power system security refers to the ability to survive potential disturbances (con-

tingencies) without interruption to customer services (Kundur et al., 2004). The

North American Electric Reliability Corporation (NERC) requires an N-1 contingency

reliability criteria for each RTO/ISO (North American Electric Reliability Corpora-

tion, 2007). The N-1 criteria describes that the power systems must be able to

withstand the loss of any single element (a generator or a non-radial transmission

line or a transformer) without having any involuntary load shedding.

Transmission contingency modeling is handled efficiently today within existing

commercial grade SCUC and SCED tools. Transmission contingencies are modeled by

including line outage distribution factors (LODFs) to capture the change in line flows

from the pre-contingency base case to the post-contingency transmission outage case

(Stott et al., 2009; Guo et al., 2009; Davis and Overbye, 2009; Souag et al., 2013; Sood

et al., 2014; Bo et al., 2015; Dourbois et al., 2016). With power transfer distribution

factors (PTDF) (Wood and Wollenberg, 1996) being used to capture base-case flows,

LODFs then allow for the straightforward determination of post-contingency line

flows. Existing SCUC and SCED tools are able to manage transmission contingencies

efficiently today; however, such tools need assistance in the management of generator

contingencies.

Nowadays, more and more renewable energy resources (mainly wind and solar

farms) are being built to provide electric power in order to lower generation costs
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and reduce environmental pollutions. According to California Renewables Portfolio

Standard (California Public Utilities Commission, 2015), the eligible renewable en-

ergy resources in California will be increased to 33% of total procurement by 2020,

compared with the current 12% nationwide renewable generation (Energy Informa-

tion Administration, 2014). However, the intermittent and volatile nature of the

renewable resources may impact power system characteristics such as voltages, fre-

quency and generation adequacy, which can potentially increase the vulnerability of

power systems (Wang et al., 2008). The intermittency refers to the unavailability of

renewable for an extended period and the volatility refers to the fluctuations of the

renewable within its intermittent characteristics (Wang et al., 2008).

While it brings many benefits both economically and environmentally, on the

other hand, the high penetration of the renewable also complicates the power system

scheduling due to their uncertain nature. When solving the UC problem in the DAM,

the RTO/ISOs need to make the scheduling decisions in advance with the considera-

tion of all kinds of the uncertainty that would happen in the real-time operation. The

uncertainty in the power systems complicates the power system scheduling process.

2.5 Locational Marginal Price

Most markets in the U.S. now have a nodal structure and the energy price is

given as the term of the locational marginal price (LMP). The LMPs describe the

total power system cost changes when consuming one more or less unit of power at a

certain location. They are the uniform prices with emphasis on locational perspective.

The dual variable of the node-balance constraint in the SCED is corresponding to the

LMP. The LMP gives a proper pricing signal for the dispatch.

The LMP captures three components, which include the marginal energy, marginal

congestion, and marginal loss components (ISO New England, 2014). The inter-

12



pretation of the LMP is the system total cost increment/decrement when increas-

ing/decreasing one unit of power at the corresponding location. The shadow prices

(dual variables) of the system-level constraints give marginal cost of supplying one

more/less MWh of energy, i.e., the LMPs.
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Chapter 3

LITERATURE REVIEW

3.1 Introduction

Many OR-based methodologies have been proposed in literature to solve the UC

problems with uncertainty. Currently, there are mainly three prevalent methodolo-

gies: stochastic programming, robust optimization, and deterministic approximation

via modeling reserves.

3.2 Stochastic Programming

In contrast to the deterministic formulation where all data are assumed to be

fixed (usually taken as the expected value), the stochastic programming includes the

presence of random quantities in the model in order to obtain the optimal decision

with uncertainty (Birge and Louveaux, 1997; Shapiro et al., 2009). Based on the

different formulation structures, stochastic programming can be categorized as two-

stage stochastic programming (TSSP), multi-stage stochastic programming (MSSP),

and chance-constrained stochastic programming (CCSP) (Zheng et al., 2015; Tahanan

et al., 2014).

3.2.1 Two-Stage Stochastic Programming

In the TSSP, the first-stage decision is made before the realization of the second-

stage recourse action data. Let x denote the first-stage decision variables, y denote the

second-stage decision variables. The generic linear programming form of the TSSP is

described as follows,
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min
x∈Rn

c′x+ E[Q(x; ξ)] (3.1)

s.t. Ax ≤ b (3.2)

x ≥ 0 (3.3)

where Q(x; ξ) is the optimal value of the second-stage problem, and the random vector

ξ := (q̃, h̃, T̃ , W̃ ) is corresponding to the data of the second-stage problem.

The second-stage problem is given as follows,

miny∈Rm q̃′y (3.4)

s.t. W̃y = h̃− T̃ x (3.5)

y ≥ 0. (3.6)

The second-stage objective is the expectation with respect to the probability dis-

tribution of the random vector ξ. Instead of using the distribution of ξ, a series of

discrete scenarios that derived from the historical data are included. Each scenario

ξs := (q̃s, h̃s, T̃ s, W̃ s) of the TSSP is assigned with a probability πs, s = 1, 2, · · · , S.

Then by listing all scenarios, the TSSP can be reformulated as its extensive form

formulation as follows,

min c′x+
∑
∀s

πs(q̃s)′ys (3.7)

s.t. Ax ≤ b (3.8)

W̃ sys = h̃s − T̃ sx ∀s (3.9)

x ≥ 0 (3.10)

ys ≥ 0 ∀s. (3.11)

Most of the literature formulates the UC problems with uncertainty as TSSP

(Bouffard et al., 2005), (Shahidehpour et al., 2005), (Wu et al., 2008), and (Hedman
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et al., 2010). In the formulations, commitment decisions of the generators are put in

the first stage; dispatch decisions are pushed to the second stage. The formulations

follow the nature of scheduling processes that the commitment status of generators

are determined in advance and the dispatch decisions are determined in the real-time

operation when uncertainties are revealed. TSSP formulation of the UC problem

optimizes the decisions to minimize the total scheduling costs including the day-ahead

commitment costs and the expected real-time dispatch costs.

TSSP is a straightforward way to formulate the UC problems with uncertainty.

However, the solution quality is dependent on the scenarios and their probability

distribution. The scenario selection itself is a very challenging problem. A lot of

literature has studied the scenario selection and reduction. Dupačová et al. (2003)

studied the scenarios reduction algorithms. Papavasiliou and Oren (2013) applied

importance sampling algorithm to generate wind scenarios.

The TSSP extensive form formulation by including all scenarios explicitly is com-

putationally intractable to solve within allowable time for real-world electric power

systems. Decomposition algorithms are applied in order to solve the problem.

The TSSP has a nice “L-shape” structure, it can be solved by Benders’ decompo-

sition (Benders, 1962) and (Nemhauser and Wolsey, 1999). Wang et al. (2008) solved

the security-constrained UC problem by adding Benders’ cuts. Zheng et al. (2013) ap-

plied a Benders’ decomposition-based method to solve the UC problem with discrete

decisions in the second stage. However, the drawback of the Benders’ decomposition

algorithm is that the master problem may grow in size (with the added optimality

cuts and feasibility cuts) to the point where it can be as challenging to solve as the

original extensive form formulation. Wu and Shahidehpour (2010) studied multiple

strong Benders’ cuts to improve the algorithm convergence.

16



In order to take the advantages of parallel computing structures, scenario-based

decomposition algorithms are proposed to solve the TSSP. The extensive form for-

mulation is decomposed into scenario-based sub-problems, where each sub-problem

can be solved in parallel to save computational time. There are two scenario-based

decomposition algorithms in the literature that have been applied to solve the power

system scheduling problems, dual decomposition algorithm, and progressive hedging

decomposition algorithm. Papavasiliou et al. (2011) applied the dual decomposition

with Lagrangian relaxation on the non-anticipativity constraints to decompose the

TSSP. Due to the non-convexity of the UC problem, the dual decomposition only pro-

vides the lower bound for the UC problem (minimization problem). Papavasiliou and

Oren (2013) proposed a heuristics to generate feasible solutions of the problem. Wat-

son and Woodruff (2011) studied the progressive hedging algorithm to decompose the

UC problem with uncertainty. The progressive hedging algorithm guarantees to con-

verge to the global optimal solution for convex problems. However, cycling behavior is

observed for the UC problem and the algorithm cannot converge (Ryan et al., 2013).

Watson and Woodruff (2011) proposed several heuristics to improve convergence of

the algorithm, but the performances are not stable and the optimality cannot be

guaranteed. Guo et al. (2015) combined dual decomposition and progressive hedging

algorithms to obtain both the lower and upper bounds of the UC problem.

3.2.2 Multi-Stage Stochastic Programming

MSSP is a extension of TSSP. The stages can be seen as hierarchical decisions

or temporal decisions. In contrast to TSSP, which treats the second-stage data in a

scenario to reveal all at one time, MSSP attempts to capture the dynamics of unfolding

uncertainty over time and adjust decisions dynamically (Zheng et al., 2015).
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A scenario tree is often utilized to solve the MSSP. Figure 3.1 illustrates a scenario

tree with four stages, eight scenarios, and fifteen nodes.

Figure 3.1: Scenario Tree Example

The decisions at any node in the decision tree should agree with each other despite

how the scenario branch evolves afterwards. The MSSP is often formulated as a set

of scenario-based deterministic problems with bundling constraints (Takriti et al.,

1996). The generic form of the MSSP is described as follows,

min
∑
∀s

πs(c′xs + (q̃s)′ys) (3.12)

s.t. Axs ≤ b ∀s (3.13)

W̃ sys = h̃s − T̃ sx ∀s (3.14)

xs = x(n) ∀s ∈ S(n), n (3.15)

xs, ys ≥ 0 ∀s (3.16)

where decisions x, y are corresponding to the same decisions in the TSSP. However,

in the MSSP, each scenario has its own first-stage decision xs,∀s.
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In contrast to the TSSP that all first-stage decisions are restricted to be the

same, the MSSP only restricts the decisions in the same node of the decision tree

to be consistent, as described in equation (3.15), where x(n),∀n are the first-stage

decisions at each node of the decision tree and S(n) is the subset of scenarios going

through the node n.

Takriti et al. (1996) formulated the UC problem with uncertainty as the MSSP

with bundling constraints and applied dynamic programming to solve the problem.

In their model, the model is formulated without network constraints, ramping con-

straints, nor minimum up/down constraints. Shiina and Birge (2004) applied column

generation algorithm to decompose the MSSP. The MSSP adds more computational

complexity with the scenario tree structure. One of the biggest disadvantages is the

cures of dimensionality that the nodes of the scenario tree grow exponentially.

3.2.3 Chance-Constrained Stochastic Programming

CCSP is another way to manage the risks by including a set of chance constraints.

In the case that a generated scenario may be rare and extreme, one as an optimizer

may not want to sacrifice more resources to respond to that scenario. Instead, the

optimizer may want a good solution with certain confidence levels, such as 90% or

95% of the scenarios. A generic form of the chance constraints is described as follows,

min f(x) (3.17)

s.t. P{A(ξ)x ≤ b(ξ)} ≥ 1− ε (3.18)

x ∈ X (3.19)

where x ∈ Rn are the decision variables, A(ξ) and b(ξ) are the technology matrix and

right hand side with respect to the random variable ξ, ε is the risk level with small

value such as 0.05 or 0.1, and X is subspace of Rn.
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The chance constraints have been applied in the UC problem with different risk

measurements. Ozturk et al. (2004) included the chance constraints to satisfy the

loads. Wang et al. (2012) enforced the chance constraints to restrict the wind power

utilization in the power systems.

The chance constraints are equivalent to restricting value at risk (VaR). Condi-

tional value at risk (CVaR) gives another way for the tradeoff. The CVaR is also

referred as the expected shortfall or expected tail loss. The CVaR is a coherent and

more conservative risk measurement. Suppose the loss of loads, l, are used as a risk

measurement, the CVaR is described as follows,

CVaRε(l(ξ)) = E [l(ξ)|VaRε(l(ξ)) ≥ η] (3.20)

where η is a pre-specified maximum allowed loss of loads, and

VaRε(l(ξ)) = inf {l|P(l ≥ l(ξ)) ≥ 1− ε} . (3.21)

The chance constraints are generally non-convex. Moreover, the constraints are

highly dependent on the random variable distribution, which is difficult to evaluate in

practice. Statistical methodologies such as Monte Carlo simulation have been applied

to solve the CCSP. Ozturk et al. (2004) reformulated the CCSP into a set of linear

constraints with statistical properties and assumptions. Wang et al. (2012) proposed

sample average algorithms to solve the CCSP.

3.3 Robust Optimization

The robust optimization is an alternative to solve the UC problems with un-

certainty. Instead of formulating scenarios, the robust optimization optimizes the

problem under an uncertainty set (Bertsimas and Sim, 2003). Each point in the un-

certainty set can be seen as one potential data realization during the operation. The
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uncertain data (e.g., the loads and renewable resources) in the uncertainty set are re-

stricted by some constraints such as a lower bound and an upper bound. The robust

optimization for the UC problem returns the most cost-efficient solution ensuring the

system reliability against the worst case (data realization).

Robust optimization (RO) has recently gained substantial popularity as a deci-

sion making tool under uncertainty, led by the work in (Ben-Tal and Nemirovski,

1998), (Ben-Tal and Nemirovski, 1999), (Bertsimas and Sim, 2004), and (Bertsimas

and Thiele, 2006). The need for RO has been recognized in several power system

applications: robust unit commitment (Zhao and Zeng, 2012), (Jiang et al., 2012),

and (Bertsimas et al., 2013), transmission planning (Jabr, 2013) and (Chen et al.,

2014), and contingency analysis (Wang et al., 2013) and (Street et al., 2011), etc.

3.3.1 Uncertainty Sets

If the scenario selection is the key factor for the stochastic programming, then the

uncertainty set is critical for the robust optimization. Since the robust optimization

protects the worst-case scenario, then the solution is often regarded as very conser-

vative. Therefore, it is critical to construct an effective uncertainty set that is less

conservative while retaining robustness. The conservativeness of the robust optimiza-

tion solution can be controlled by the formulation of the uncertainty sets (Bertsimas

and Sim, 2003).

Previous studies of uncertainty sets can be divided into two groups. The first group

makes mild assumptions about certain structural features of uncertainty sets, referred

to as the rule-based set. The most trivial one is a box uncertainty set, where uncertain

parameters are assumed to vary within an interval (Soyster, 1973). Bertsimas and

Sim (2004) proposed the budget of uncertainty to adjust the conservativeness of the

box uncertainty set. The uncertainty sets are modeled as polyhedral (Atamtürk
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and Zhang, 2007), and ellipsoidal (Ben-Tal and Nemirovski, 1998) and (Ben-Tal and

Nemirovski, 1999) structures for the sake of computational tractability.

The following lists two canonical rule-based uncertainty sets,

Cardinality-restricted uncertainty set :

ΩC =

{
d :
∑
n

⌈
|dn − d̄n|/hn

⌉
≤ Γ, d̄n − hn ≤ dn ≤ d̄n + hn,∀n

}
(3.22)

Budget uncertainty set :

ΩB =

{
d :
∑
n

πndn ≤ π0, d̄n − hn ≤ dn ≤ d̄n + hn,∀n

}
(3.23)

The second group utilizes data to design uncertainty sets. Bertsimas and Brown

(2009) construct uncertainty sets using the theory of coherent risk measures. The

confidence region of statistical hypothesis test is used to quantify the uncertainty

set in (Bertsimas et al., 2015). Several rules are suggested to shrink the size of

uncertainty sets based on historical data in (Guan and Wang, 2014). Lorca and

Sun (2015) develops dynamic uncertainty sets to capture the temporal and spatial

correlations of uncertainty.

3.3.2 Two-Stage Robust Optimization

The two-stage robust optimization (TSRO) and the TSSP share many similar

features. Let x be the first-stage decision variables and let y be the second-stage

decision variables. The generic form of the TSRO is described as follows,

minx∈Rn c′x+ max
µ∈Ω

Q(x, µ) (3.24)

s.t. Ax ≤ b (3.25)

x ≥ 0 (3.26)

where Q(x, µ) is the optimal value of the second-stage problem with respect to first-

stage variable x and data µ := (q̃, h̃, T̃ , W̃ ) in the uncertainty set Ω.
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The second-stage problem is given as follows,

miny∈Rm q̃′y (3.27)

s.t. W̃y = h̃− T̃ x (3.28)

y ≥ 0. (3.29)

Instead of optimizing the expected second-stage costs, the TSRO optimizes the

total costs that includes the first-stage cost and the worst-case second-stage costs,

given the uncertainty set and the first-stage decisions. Therefore, the TSRO can be

seen as a three-level min-max-min optimization problem. The third term “min” is to

minimize the second-stage cost; the middle term “max” is to consider the worst case

in the given uncertainty set Ω; and the first term “min” is to minimize the first-stage

cost with the corresponding worst-case second-stage cost. The first term is referred

as the outer problem; the second and the third term together are referred as the inner

problem.

Jiang et al. (2012) applied the TSRO to the UC problem with pumped storage

hydro units. Jiang et al. (2012) proposed an algorithm that first derived the dual of

the inner problem and then generated Benders’ cuts to solve the outer problem. Zhao

and Zeng (2012) proposed a primal-cut algorithm to solve the TSRO. Bertsimas et al.

(2013) proposed an outer approximation method to solve the bi-linear inner problem.

Jiang et al. (2014) proposed an exact algorithm to solve the TSRO with polyhedral

studies. Zhao and Guan (2013) unified the TSSP and TSRO with weight coefficients

in the objective function to balance the computational complexity of the stochastic

programming and the conservativeness of the robust optimization.

23



3.4 Deterministic Approximation

In existing market practices, RTO/ISOs acquire reserves to protect the power

system. The reserves are the extra capacities that generators can dispatch in real-time

operation to respond to the uncertainty. The reserves are necessary for maintaining

system reliability. Varieties of reserves are required for different functions. However,

since the power systems and markets in the U.S. leverage adequacy-based reserve

policies, the security requirements do not guarantee a N-1 reliable solution on a

locational basis. The procured reserves may not be deliverable in the post-contingency

states due to transmission limitations. As a result, RTO/ISOs make different types

of out-of-market, operator-initiated corrections in their scheduling and operation (Al-

Abdullah et al., 2013; LaBove et al., 2014; Al-Abdullah et al., 2015).

There are many different categorizations of the reserves, according to different

organizations or RTO/ISOs (Ellison et al., 2012). National Renewable Energy Lab-

oratory (NREL) categorizes the reserves into regulating reserve, following reserve,

contingency reserve and ramping reserve, where the first two are responsible for non-

events such as variation of the loads and the last two are responsible for events which

are rare and severe such as contingency and intermittent wind power (Ela et al.,

2011). While most RTO/ISOs have market structures to procure reserves, their re-

serve requirements vary significantly. California Independent System Operator (Cal-

ifornia ISO or CAISO) defines the reserves as regulation reserve, spinning reserve,

non-spinning reserve and replacement reserve. The regulation reserve is utilized for

Automatic Generation Control (AGC) to ensure system frequency stays at 60Hz.

The spinning reserve is provided by the generator that is in-sync, connected to the

power grid; while the non-spinning reserve is provided by fast-start offline generator.

Both spinning and non-spinning reserve are used primarily to respond to contingen-
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cies, and are required to response in approximately 10 minutes. The replacement

reserve must come on-line and provide the required output within 30 minutes to re-

place the spinning and non-spinning reserve. CAISO provides four types of ancillary

services in their market now: regulation up, regulation down, spinning reserve and

non-spinning reserve (California ISO, 2015). MISO defines the reserves as regulating

up/down reserve, spinning up/down reserve, and non-spinning reserve (Midcontinent

ISO, 2015b).

Although modeling reserves is straightforward and easy to implement, there are

still some issues with this methodology. First, the reserve requirement level (reserve

margin) is determined by some rule-of-thumb methods that are based on the oper-

ators’ experience. Different RTO/ISOs have different rules for their reserve require-

ments. For instance, a 3 + 5 rule is proposed by NREL, where 3% of total predicted

loads and 5% of total predicted wind power are required for operating reserves (Ela

et al., 2011). It can be expected that, with increasing renewable power penetration

in the power systems, a systematical methodology is desired to determine the reserve

requirement level. Another issue for modeling reserves is that even when substantial

reserves are procured, some of the reserves may not be deliverable due to transmission

line congestion.

Reserve policies and reserve zone partitions to improve system security are stud-

ied by (Doherty and O’Malley, 2005), (Zheng and Litvinov, 2008), (Ortega-Vazquez

and Kirschen, 2009), and (Cotilla-Sanchez et al., 2013). Lyon et al. (2014) studied

intra-zonal congestion and proposed a framework to dynamically relate the minimum

reserve levels to transmission stress. Lyon et al. (2015) proposed an algorithm to dis-

qualify the reserves that cannot be delivered. In RTO/ISOs’ practice, reserve zones

are given to ensure the deliverability of the reserves, where certain reserve levels are

required inside each of the zone. However, the reserve zones are usually determined
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by geographical boundaries, which is not very efficient. Wang and Hedman (2015)

proposed a K-means clustering algorithm to determine the reserve zones based on the

power transfer distribution factors and transmission congestion. Wang and Hedman

(2015) grouped the buses that have similar impacts on system transmission lines to-

gether as a reserve zone. Wang and Hedman (2015) proposed dynamic zones based on

the power grid congestion, where different reserve zones were determined in different

periods.

3.5 Conclusions

The UC problems with uncertainty are formulated as MIP problems. The stochas-

tic programming or robust optimization introduces substantial computational com-

plexity, which results in the computational intractability for solving the real-world

large-scale power systems. Many decomposition algorithms have been proposed to

solve TSSP; however, none of them are promising. The MSSP gives a more flex-

ible UC scheduling by considering the system dynamics, but creates more compu-

tation complexity. The CCSP complicates the UC problem by including a set of

non-convex constraints. As a result, though substantial literature has been focused

on stochastic programming applied in the UC problems, none of them have convinced

the RTO/ISOs to implement stochastic programming in practice. RTO/ISOs are still

using deterministic formulations, i.e., the proxy reserve requirements, to solve the UC

problems with uncertainty. However, most reserve requirement rules are base on the

operators’ experience and there are few systematic methods to determine the optimal

reserve allocations.

The future may lie in improving the computational capability as well as devel-

oping more suitable methodologies and algorithms to solve the UC problems with

uncertainty. This dissertation is built on the existing literature, combines the deter-
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ministic policies with the stochastic programming and robust optimization, in order

to improve the system performance, at the same time to achieve industry adoption.

This dissertation is aimed to find the balance between the deterministic models and

the stochastic models. The focus is on trading off the solution quality and the com-

putational tractability.
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Chapter 4

SCENARIO-BASED DECOMPOSITION ALGORITHM

4.1 Introduction

The real-world power systems involve thousands of nodes (buses) and arcs (trans-

mission lines), which results in the stochastic programming formulation huge in size.

Moreover, there is a time constraint to solve the program, usually a few hours. There-

fore, directly solving a large-scale stochastic program is computationally intractable

today. One of the possible ways to solve the large-scale stochastic programs is by

applying scenario-based decomposition algorithms. The decomposition algorithms

break the entire problem into several smaller sub-problems, where each of the sub-

problems can be solved in a short time. In addition, all the sub-problems can be

solved in parallel.

This chapter studies one of the scenario-based decomposition algorithms, i.e., pro-

gressive hedging (PH) algorithm, in order to take the advantages of parallel computing

to solve large-scale stochastic programs.

The PH algorithm is applied to one of the most basic UC problem with uncer-

tainty, a single-generator-failure reliable UC problem, referred to as G-1 reliable UC

henceforth. G-1 reliable UC problem aims at finding a set of UC solutions that

can guarantee a feasible dispatch after any single-generator-failure contingency. The

problem can be formulated as a two-stage stochastic program, where the first stage is

pre-contingency base case and the second stage includes post-contingency scenarios.

Since the contingencies are discrete events, all scenarios can be explicitly modeled in

the stochastic program.
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In this chapter, several innovations are proposed for the PH algorithm. The PH

algorithm is not guaranteed to converge to the global optimal solution since the UC

problem involves integer variables. Slow convergence rates and cyclic behaviors have

been previously observed in practice. Hedging is conventionally performed on the

UC status variables. Hedging on the startup and shutdown variables is proposed and

tested in this chapter. The performance of the PH algorithm is rather sensitive to the

choice in the penalty factors. Thus, several strategies for choosing the penalty factors

are evaluated for the cases when using the UC status variables versus using the startup

and shutdown binary variables as the hedging mechanisms. A hybrid approach using

both the PH and a stochastic programing formulation is implemented in order to

obtain a set of feasible UC solutions and compare different hedging methods.

This chapter is organized as follows. Section 4.2 introduces the PH algorithm. Sec-

tion 4.3 describes the model formulation. Section 4.4 investigates different hedging

mechanisms and penalty factors. Section 4.5 carries out computational experiments

on an IEEE 73-bus test case and compares the results under different proposed meth-

ods. Finally, section 4.6 concludes the chapter.

4.2 Progressive Hedging Algorithm

The PH algorithm, first proposed by Rockafellar and Wets (1991), is a decom-

position algorithm based on the augmented Lagrangian relaxation. The PH solves

each scenario-based sub-problem individually as a deterministic model, combines the

solution of each scenario to get an average solution, and introduces a penalty to the

objective for deviating away from the average solution. The PH continues with this

iterative process until it reaches a certain stopping criterion. The PH “drags” all

scenarios to a unified solution. The PH converges to a global optimal solution when

the problem is convex (Rockafellar and Wets, 1991).
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Recently, the PH algorithm has been studied to solve large-scale stochastic pro-

gramming problems. The PH does not guarantee a global optimal solution for mixed

integer programming (MIP) since non-convexities. Slow convergence rates and cyclic

behaviors have been previously observed in practice. However, the PH can be used as

a heuristic to obtain acceptable solutions for the MIP with special structures due to

its computational advantages since it is trivially parallelizable. If appropriate penalty

factors can be chosen to ensure convergence to a good solution, the PH is often pre-

ferred since it can be easily parallelized and then the computational performance is

generally better than other decomposition techniques. Ryan et al. (2013) has shown

that the parallel computing structure can improve the run time and make the PH

possible to be implemented in practice. The PH is also not susceptible to other com-

mon drawbacks of other decomposition algorithms where a repeatedly solved master

problem may grow in size to the point where it can be as challenging to solve as the

original extensive form problem, which can happen for Benders’ decomposition. This

is referred to as bloating and such methods are known for having long tails associ-

ated to convergence. The PH may also have a long tail effect. In this chapter, a

hybrid approach using the PH as a pre-solve tool for stochastic program is proposed

to avoid the drawbacks. The PH also does not have issues with other techniques

where there are binary variables within the second-stage subproblems. However, the

primary downside of the PH is that it is a heuristic for non-convex problems. Thus,

it does not directly provide a lower bound. Gade et al. (2014) proved the PH could

provide a lower bound for the stochastic program. However, the result is still under

review.

The following Algorithm 1 describes the pseudo code of the PH algorithm for G-1

reliable UC program.
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Algorithm 1 Progressive Hedging Algorithm

k = 0
for s ∈ S do
xs,(0) = arg minx(c

′x+ (f s)′ys)
end for
x̄(0) =

∑
∀s π

sxs,(0)

for s ∈ S do
ωs,(0) = ρ(xs,(0) − x̄(0))

end for
g(0) =

∑
∀s π

s‖xs,(0) − x̄(0)‖
while g(k) > ε do
k = k + 1
for s ∈ S do
xs,(k) = arg minx(c

′x+ ωs,(k−1)x+ ρ
2
‖x− x̄(k−1)‖2 + (f s)′ys)

end for
x̄(k) =

∑
∀s π

sxs,(k)

for s ∈ S do
ωs,(k) = ωs,(k−1) + ρ(xs,(k) − x̄(k))

end for
g(k) =

∑
∀s π

s‖xs,(k) − x̄(k)‖
end while

4.3 Model Formulation

The PH has been examined for the stochastic UC (SUC) problem where the

uncertainty can be based on the loads uncertainty or intermittent renewable resources

(wind and solar). In this chapter, the PH algorithm is studied where the uncertainty is

the potential loss of a generator. There are two primary issues that make this a more

difficult problem to solve: (1) RTO/ISOs are mandated to protect their system against

single contingencies and, thus, G-1 is a robust policy; and (2) the loss of a generator

is a dramatic event as there is a substantial loss in supply over a very short time

period. While N-1 reliability mandates that the system must be able to withstand

the loss of any single generator or non-radial transmission asset (line or transformer),

the studies focus only on generator outages since, typically, the generator outages are

more severe than transmission outages.
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In this chapter, the SUC is formulated as a two-stage stochastic program (TSSP)

with second-stage scenarios that explicitly represent the single-generator-failure con-

tingencies. The power flow is modeled as a linear approximation of the actual power

flow (the alternating current optimal power flow problem), which is referred as the

direct current optimal power flow (DCOPF) problem based on Hedman et al. (2010).

The following extensive form formulation of the SUC includes the constraints for

s = 0, i.e., the base case, and all contingency states s ∈ S. The proposed PH

framework includes, for each subproblem, an extensive form of the SUC formulation

with only the base case and one G-1 contingency modeled. Next, each component of

the SUC model is introduced and explained.

The objective is represented as (4.1). The model assumes a linear production cost

and the total cost function involves a startup cost, a no-load cost, and a variable

production cost. There is no shutdown cost in this model. The objective is to mini-

mize the cost of the base case while ensuring it can move from the base case solution

to a solution that does not have involuntary load shedding without having any post-

contingency constraint violations within roughly 10 minutes of the event; this is based

on the typical 10-minute spinning and non-spinning reserve requirement rules that

most RTO/ISOs ensure. In this model, only the spinning reserves are considered.

Since the G-1 policy is a robust criterion and the goal of the day-ahead scheduling

process is to minimize the pre-contingency (base case) operating costs, the objective

does not consider the costs during the potential post-contingency states.

min
∑
∀t

∑
∀g

{
CSU
g vgt + CNL

g ugt + Cgp
0
gt

}
(4.1)

Equation (4.2) represents the node (flow) balance constraints, which represents the

Kirchhoff’s current law since it imposes that all current flowing into a bus is equal

to the flow exiting the bus. Equation (4.3) represents the power flow constraints,
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which is a linear approximation of the Kirchhoff’s law. Equation (4.4) represents the

line flow limit constraints. Equation (4.5) represents the generator bounds. Note

that generation psgt is forced to zero whenever the UC status variable, ugt, or the

contingency indicator, G1sg, are zero. Equation (4.5) formulates the generator failure

throughout all of the planning periods to satisfy the G-1 security requirement. In

this stochastic extensive form formulation, a single indicator for the generator failure

is used throughout the time periods. N s
g is not indexed by t based on the modeling

of the recourse state when imposing G-1 for day-ahead UC models.

∑
∀l∈δ+(n)

f slt −
∑

∀l∈δ−(n)

f slt +
∑
∀g∈G(n)

psgt = Dnt ∀n, t, s (4.2)

f slt = Bl(θ
s
nt − θsmt) ∀l ∈ (n,m), t, s (4.3)

−Fl ≤ f slt ≤ Fl ∀l, t, s (4.4)

Pmin
g ugtG1sg ≤ psgt ≤ Pmax

g ugtG1sg ∀g, t, s (4.5)

Equation (4.6) represents the relations between the commitment status, the startup,

and the shutdown binary variables. Equations (4.7) and (4.8) represent the min-up

and min-downtime constraints; the constraints are facet-defining inequalities for the

u, v projection (Rajan and Takriti, 2005). Equations (4.9)-(4.11) impose the restric-

tions on the three sets of binary variables; while the startup and the shutdown vari-

ables are binary, their integrality constraints can be relaxed since (4.6)-(4.11) force

the variables to always take on a binary solution, i.e., all feasible solutions for the

startup and shutdown variables are guaranteed to be binary even though they are

modeled as continuous variables.
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vgt − wgt = ugt − ug,t−1 ∀g, t (4.6)

t∑
∀i=t−UT g+1

vgi ≤ ugt ∀g, t ∈ {UTg, · · · , T} (4.7)

t∑
∀i=t−DTg+1

wgi ≤ 1− ugt ∀g, t ∈ {DTg, · · · , T} (4.8)

0 ≤ vgt ≤ 1 ∀g, t (4.9)

0 ≤ wgt ≤ 1 ∀g, t (4.10)

ugt ∈ {0, 1} ∀g, t (4.11)

Equations (4.12) and (4.13) impose the hourly ramp rate limits along with the

startup and shutdown ramp rate limits for the generators. Each individual scenario

that is solved by the PH is an extensive form SUC problem with two states: the

base case state (no contingency) and one single generator outage. The reason for this

approach is to not only get a unified commitment solution but to be able to find a uni-

fied base case dispatch solution. Equations (4.14) and (4.15) are included in order to

ensure that each generator can move from its base case dispatch solution to a required

post-contingency dispatch solution within 10 minutes. This captures the commonly

adopted procedure to ensure that the system can move from the pre-contingency state

to a post-contingency state without load shedding based on the 10-minute spinning

and non-spinning reserve that is available within the system (California ISO, 2015).

p0
gt − p0

g,t−1 ≤ Rhr
g ug,t−1 +RSU

g vgt ∀g, t (4.12)

p0
g,t−1 − p0

gt ≤ Rhr
g ugt +RSD

g wg,t−1 ∀g, t (4.13)

psgt − p0
gt ≤ R10

g ugt ∀g, t, s (4.14)

p0
gtG1sg − psgt ≤ R10

g ugt ∀g, t, s (4.15)
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Equations (4.16) and (4.17) state that the amount of available 10-minute spinning

reserve from a committed generator is at most its 10-minute ramp rate or the differ-

ence between its capacity and its output level, whichever is lower. Equation (4.18)

states that the total reserve in the system must exceed the single largest contin-

gency (generator). These equations are the typical spinning reserve equations that

are included in a deterministic UC formulation. Equations (4.16)-(4.18) are included

to ensure additional reserves (system wide) are procured. These reserve constraints

form a necessary condition to guarantee G-1 reliability. Also, the reserve requirement

constraints help the PH achieve a unified schedule for the UC solutions across all

states in less number of iterations.

r0
gt ≤ Pmax

g ugt − p0
gt ∀g, t (4.16)

r0
gt ≤ R10

g ugt ∀g, t (4.17)∑
∀i

r0
it ≥ r0

gt + p0
gt ∀g, t (4.18)

The above MIP can be solve by the commercial software such as CPLEX or

Gurobi.

4.4 Investigation of Hedging Mechanisms

Previous literature has only considered hedging on the UC status binary variables,

u. In this chapter, the PH algorithm is applied while hedging on other sets of binary

variables. Specifically, the performance of hedging on the UC status variables, u, to

the startup and shutdown variables, v and w, is compared under different updating

rules for the penalty factor, ρ. Adjusting ρ is necessary when the chosen hedging

instrument is changed since the performance of the PH is sensitive to the selection of

ρ and the associated hedging mechanism (Watson and Woodruff, 2011). The primary

difference between hedging on the startup and shutdown binary variables versus the
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UC status variables is that there are generally far fewer startup and shutdown binary

variables that take on a solution of one as compared to the UC binary variables.

Furthermore, the number of discrepancies between the startup and shutdown binary

variables across the different independent (deterministic) subproblems is far less than

the discrepancies for the UC status variables. Since the PH algorithm, by itself, can

take a long time to converge for non-convex problems, a hybrid PH approach is taken

to solve the SUC problem. In order to obtain a lower bound to the SUC problem, an

extensive form formulation of the SUC is solved. With the lower bound, optimality

gaps can be calculated in order to provide a benchmark to evaluate performance.

4.4.1 Hedging on Startup and Shutdown Variables

The startup variables, v, and the shutdown variables, w, indicate whether the

generator is turned on or off correspondingly in period t. The relation between u, v,

and w is specified by (4.6). Table 4.1-4.3 show one instance of the respective solutions

for the UC status, startup, and shutdown binary variables.

Table 4.1: Unit Commitment Status Variables
Period 1 2 3 4 5 6 7 8 9 10

Gen1 0 0 1 1 1 1 1 1 0 0
Gen2 0 1 1 1 1 0 1 1 1 0
Gen3 0 0 0 1 1 0 0 1 1 1
Gen4 1 1 1 1 1 1 1 1 1 1

Table 4.2: Corresponding Startup Variables
Period 1 2 3 4 5 6 7 8 9 10

Gen1 0 0 1 0 0 0 0 0 0 0
Gen2 0 1 0 0 0 0 1 0 0 0
Gen3 0 0 0 1 0 0 0 1 0 0
Gen4 0 0 0 0 0 0 0 0 0 0

Existing PH methods generally hedge on the UC status variables, u. This is intu-

itive since the goal is to attain a unified UC schedule. However, based on the generic

description of the PH, continuous generation variables, p0, and binary startup and
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Table 4.3: Corresponding Shutdown Variables
Period 1 2 3 4 5 6 7 8 9 10

Gen1 0 0 0 0 0 0 0 0 1 0
Gen2 0 0 0 0 0 1 0 0 0 1
Gen3 1 0 0 0 0 1 0 0 0 0
Gen4 0 0 0 0 0 0 0 0 0 0

shutdown variables, v and w, are also candidates as hedging mechanisms. Moreover,

startup variables, v, along with shutdown variables, w, also uniquely determine the

commitment schedule given the initial status of a generator. From Tables 4.1-4.3, it

can be easily observed that the solution matrices, with respect to v and w, have fewer

instances where they are equal to one than the matrix for u. Thus, fewer discrep-

ancies are expected while hedging on the startup and shutdown binary variables. In

addition, hedging on the startup and shutdown binary variables is expected to help

improve the convergence of the PH by being able to focus more intently on dragging

all of these independent subproblems to a common solution due to the ability to

identify the critical periods where there are discrepancies between the startup and

shutdown cycles.

4.4.2 Selection of Penalty Factors

Watson and Woodruff (2011) showed the performance of the PH is rather sensitive

to the choice in the penalty factors; Watson and Woodruff (2011) also showed that the

penalty factors should be proportional to the cost associated to the hedged variables.

Ryan et al. (2013) used locational marginal prices as the penalty factors for different

generators and periods. A locational marginal price is obtained by fixing the optimal

UC status variables, solving the DCOPF, and obtaining the dual solutions associated

to the node-balance constraints. The economic translation of locational marginal

prices is the additional cost of dispatching one more (or less) unit of power at node

n in period t. Thus, locational marginal prices are one easy estimation to reflect
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the cost of the hedged UC status variables, u. However, since the hedged variables

in the UC problem reflect the unit’s binary status as opposed to its dispatch, the

corresponding locational marginal prices may not be the best hedging mechanism.

Based on the idea of using locational marginal prices as penalty factors, using

shadow prices of the hedged variables as the penalty factors of the PH is proposed.

The procedure to obtain the shadow prices of the hedged variables is described.

1. After solving each state model, obtain the optimal solution (us)∗;

2. Impose the constraint u = (us)∗ for each state model and re-solve the model as

a linear program (LP);

3. Obtain optimal dual solution for constraint u = (us)∗ and denote it as usdual;

4. Calculate the average dual value with udual =
∑

s∈S π
susdual.

The use of these shadow prices as penalty factors will be investigated as to whether

they are better at influencing the PH algorithm to drag the UC variables to an

economically efficient and unified solution. Using the same penalty factors for hedging

on the UC status variables, u, and startup variables and shutdown variables, v and w,

will not be proper since the penalty factor needs to be chosen while considering the

hedging mechanism. Thus, the same process is applied when the hedging mechanisms

are v and w, except that the shadow prices (dual solutions) associated to the optimal

solutions for v = (vs)∗ and w = (ws)∗ are used.

The test results show that some of the shadow prices are negative. In the aug-

mented objective function, there are two penalty terms: the first term is the linear

term, ωsu, and the second term is the quadratic term, ρ
2
‖u− ū‖2. The coefficient of

the quadratic term should always be nonnegative; otherwise, it would encourage the

states to diverge instead of converge. Thus, the absolute values of the dual solutions

defined above are used for the quadratic term.
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4.4.3 Improving Convergence with Rounding

The PH algorithm for the UC problem does not guarantee convergence. Cyclic

behavior and slow convergence speeds are often observed. In order to improve the con-

vergence speed of the PH and compare the solutions of different hedging mechanisms,

a heuristics within the PH is implemented to obtain the UC solution.

The extensive form model of the SUC is too computationally challenging to im-

plement in practice with current computational capability. First, the extensive form

SUC involves a huge number of continuous variables and constraints in addition to

many binary variables. It generally takes way too long time to get a solution with

a desired optimality gap. Moreover, when the scale of the problem is large, the ex-

tensive form becomes impossible to solve, often due to memory requirements alone.

Decomposition algorithms help to ease the high memory requirements at the begin-

ning; however, they often encounter the same problem with regards to achieving a

solution with a good optimality gap within a reasonable time due to the bloating that

generally occurs with the master problem. However, with the PH framework, most

UC status variables converge to 1 or 0 after a moderate amount of iterations. There-

fore, these converged variables can be fixed to their converged value. The extensive

form model will be much easier to solve if most binary variables are fixed, which

significantly reduces the problem size. In order to get more variables to be fixed, a

threshold (ε1, ε2) can be set to separate the UC status variables into three categories,

• if u ≥ 1− ε1, then u = 1;

• if u ≤ ε2, then u = 0;

• else u ∈ {0, 1}

Table 4.4 illustrates an instance of the average UC status solution after several

iterations of the PH algorithm. There are 40 binary variables initially. With the PH,
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17 variables converge to 1 and 8 variables converge to 0. Moreover, some variables are

very close to the binary values; for instance, u1,6 = 0.98, u1,9 = 0.02, and u2,3 = 0.01.

By selecting proper thresholds, there are roughly one-fourth of the binary variables

that are left undecided.

Table 4.4: Average Unit Commitment Status Variables
Period 1 2 3 4 5 6 7 8 9 10

Gen1 0 0.21 1 1 1 0.98 0 0 0.02 0
Gen2 0 0.05 0.01 0 0 1 1 1 1 0.87
Gen3 0 0.22 0.38 0.44 0.54 0.73 0.67 0.67 0.67 0.08
Gen4 1 1 1 1 1 1 1 1 1 1

This heuristic can speed up the run time but it can also cause infeasibility. In ad-

dition, the performance of the heuristic largely depends on the number of fixed binary

variables. In order to improve the chance to obtain a feasible solution, threshold ε2

can be set to be very close to zero to allow enough flexible capacity system-wide. On

the other hand, there is more flexibility with setting threshold ε1 since ensuring fea-

sibility is more likely by committing additional units. This heuristic is adopted after

several iterations of the PH with different hedging schemes. The overall performance

of difference strategies is compared in the next section. Since v and w variables suffi-

ciently represent the commitment variable u, this heuristic can also be adopted when

v and w are chosen to be the hedging variables, i.e., the same rounding procedure

will be applied to u no matter if the hedging instrument is u or if it is a combination

of v and w.

4.5 Case Study

In this chapter, the PH techniques are implemented on the modified IEEE RTS96

73-bus test case described in Hedman et al. (2010). The original IEEE RTS96 test

case can be found from University of Washington (2015). IBM ILOG CPLEX version

12.4, with Concert Technology version 3.0, is used to implement the test cases. A
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Dell Precision T7500 Workstation is used to run the C++ code. The processor

of the workstation is dual six-core Intel Xeon Processor X5690 (4.46GHz, 12M L3,

6.4GT/s). The memory of the workstation is 48GB, 1333MHz, DDR3RDIMM, ECC

(6DIMMS). The PH algorithm is parallelized onto 12 threads with a Linux operating

system. With 99 generators, there are 99 states (1 state for each potential generator

failure) and the process is repeated at most 9 times in order to solve all 99 states.

Three typical sets of loads are tested, i.e., one high-load day in the winter (week

51, Tuesday); one medium-load day in the summer (week 23, Thursday); and one

low-load day in fall (week 38, Sunday).

4.5.1 Stochastic Formulation

The extensive form of the SUC problem is first solved to get the lower bound for

deriving the optimality gap. The optimality gap of CPLEX is set to be 1% while

solving the extensive form. Table 4.5 summarizes the run times, objective values,

and the optimality gaps. Not surprisingly, the extensive form formulations take very

long to find a solution within the optimality gap.

Table 4.5: Extensive Form Formulation Results
Objective Value ($) Run Time (min) Optimality Gap

High-load 3,072,138 397.2 0.83%
Medium-load 1,822,837 337.9 0.97%
Low-load 605,617 756.1 0.40%

Given an incumbent, feasible solution y to a minimization problem, the optimality

gap would be defined as optgap%= (y−y)/y, where y = the greatest lower bound (the

best relaxed solution). By solving the original extensive form problem with CPLEX,

a lower bound is obtained. This lower bound is used to establish the optimality gaps

for the corresponding PH results.

In the following tests, the heuristics described in “Improving Convergence with

Rounding”, is implemented. The procedure is described as follows:
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1. Apply PH with the specified stopping criterion;

2. Fix the converged UC variables and then solve the extensive form model to

determine the remaining variables.

Two stopping criteria are adopted for the PH algorithm. First, the number of

the PH iterations is fixed to 10. The resulting UC solution (with some of the binary

variables fixed) is then solved with an extensive form SUC structure. Second, the

time to run the PH is fixed to be 1 hour. With a longer run time for the PH, more

UC binary variables are expected to converge to a better, more unified solution.

After the PH algorithm is terminated, the residual problem (i.e., only the converged

binary variables are fixed while the remaining binary variables are to be determined)

is formulated as an extensive form SUC with an optimality gap of 1% and the total

run times are then compared. Since this extensive form SUC at this stage has some of

the binary variables fixed based on the PH solution, then the true optimality gap may

be larger than 1%; note that within all the subsequent tables, the reported optimality

gap is based on the lower bounds obtained by solving the original extensive form the

SUC.

4.5.2 Hedging on Commitment Status Variables

The PH performance is known to be sensitive to the selection of the penalty factor,

ρ (Watson and Woodruff, 2011). In this subsection, several penalty factor selection

strategies are tested for the PH algorithm by hedging on the UC status variable

u. Table 4.6 represents three hedging mechanisms with the penalty factors set at a

constant 100, a constant 1, 000, as well as set based on the locational marginal prices.

In this set of experiments, the PH algorithm is set to iterate for 10 iterations and

the high-load day is tested. The rounding down threshold ε1 is set to be 0 and the

rounding up threshold is set to be 0.98.
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Table 4.6: Hedging on Commitment Status Variables
Penalty factor Constant 100 Constant 1000 LMP
PH run time (min) 31.4 21.1 36.3
Variables fixed to 0 763 754 709
Variables fixed to 1 1,291 1,381 1,275
Variables binary 322 241 392
Extensive form run time (min) 118.3 167.8 265.8
Objective value ($) 3,072,190 3,080,500 3,075,889
Optimality gap 0.83% 1.10% 0.95%

The test results show that the PH algorithm with the proposed heuristics uses less

run time and achieves comparable solutions compared to directly solving the extensive

form model. Moreover, the test results show that the larger penalty factors will speed

up the convergence process of the PH algorithm but return lower quality solutions.

Large constant penalty factors simply force the problem to find a feasible solution

since the penalty factors dominate the augmented objective function. Obviously, large

penalty factors may not ensure convergence to the optimal UC solution.

When a penalty factor associated to the locational marginal prices is used, the

extensive form SUC, which is solved after the PH algorithm terminates, took much

longer than the other penalty factor policies, as seen in Table 4.6. Generally, the

locational marginal prices are smaller in value than the other penalty factor selections,

which result in the penalties having less of an influence in regards to forcing solutions

to converge. Thus, this mechanism generally requires more time to solve the problem.

While it may be considered that the locational marginal prices may be preferred for

the penalty factors since they reflect the value of a marginal MW at each bus for

each period, they are marginal signals associated to the dispatch decisions, not the

UC decisions.

It is essential to note that different heuristic based rounding rules can affect the so-

lution, i.e., solving the extensive form model after imposing a threshold based round-

ing rule. Setting improper rounding thresholds may cause infeasibility of the proposed
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heuristics. Here, the instance of using a constant 1, 000 as the penalty factor is used to

illustrate such potential infeasibility problems. Two rounding thresholds are selected

for testing. First, after the PH algorithm is terminated, the binary variables with

continuous solutions that are below 0.02 are rounded to 0 and the binary variables

with continuous solutions greater than 0.98 are rounded to 1. The residual problem

is then solved by an extensive form SUC after all of these variables are fixed. While

this is a rather conservative threshold policy, the residual extensive form SUC turned

out to be infeasible. Since the G-1 reliability is a robust requirement, one particular

state may require a specific unit to be committed, which is what caused the residual

SUC to be infeasible. Then, in order to avoid infeasible solutions, the threshold for

rounding down is modified to be 0, i.e., only if the UC status variables for all states

converge to 0, they will be fixed to 0 within the residual extensive form SUC. Table 4.7

illustrates the influences of these threshold policies. Therefore, in the experiments of

Table 4.6, the rounding down threshold is set to be 0.

Table 4.7: Different Thresholds Comparison
Condition when variables fixed to 0 ≤ 0.2 ≤ 0
Variables fixed to 0 816 754
Variables fixed to 1 1,381 1,381
Variables binary 179 241
Extensive form run time (min) 28.1 167.8
Objective value ($) Infeasible 3,080,500
Optimality gap N/A 1.10%

4.5.3 Comparisons of Hedging on Different Variables

In this subsection, hedging on startup variables and shutdown variables is com-

pared to hedging on UC status variables with different penalty factor selections.
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Constant Numbers as the Penalty Factors

Since the density of startup variables, shutdown variables, and UC status variables

are different, a constant penalty factor of 1, 000 is selected as the penalty factor for

hedging on the startup variables and shutdown variables, which is then comparable

to using a constant 100 as the penalty factor for hedging on the UC status variables.

Table 4.8 shows the results. Here again, the PH algorithm is set to iterate for 10

iterations and the high-load day is tested.

Table 4.8: Hedging under Constant Penalty Factors
Hedging on u Hedging on v, w

PH run time (min) 31.4 36.2
Variables fixed to 0 763 738
Variables fixed to 1 1,291 1,242
Variables binary 322 396
Extensive form run time (min) 118.3 128.5
Objective value ($) 3,072,190 3,072,607
Optimality gap 0.83% 0.85%

The result shows the two mechanisms perform nearly the same. Thus, hedging on

the startup variables and shutdown variables, v and w, is a valid method.

Coefficients in the Objective Function as the Penalty Factors

Watson and Woodruff (2011) proposed a penalty factor that is proportional to the

cost of the hedging mechanism. In the objective function, the coefficient of the UC

status variables, u, is the no-load cost, and the coefficient of the startup variables, v,

is the startup cost. Thus, the no-load costs and the startup costs are tested as the

penalty factors for hedging on UC status variables and hedging on startup variables

and shutdown variables correspondingly. For this work, there is no-cost coefficient for

the shutdown binary variable and, thus, the startup cost coefficient is chosen instead.

Tables 4.9 and 4.10 show the performance comparisons. Three sets of load data are

tested under two stopping criteria described in the “Extensive Form Formulation”.
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Table 4.9: Hedging under Cost Penalty Factors Fixed Iterations
High-load Medium-load Low-load

Hedging on u v,w u v,w u v,w
PH run time (min) 25.2 28.3 25.9 33.7 31.2 39.4
Variables fixed to 0 662 732 844 820 1,202 1,185
Variables fixed to 1 1,309 1,252 1,197 1,137 757 672
Variables binary 405 392 335 419 417 519
Extensive form 112.9 93.2 103.9 91.2 113.2 101.3
run time (min)
Objective value ($) 3,066,500 3,064,020 1,816,400 1,811,990 608,008 607,391
Optimality gap 0.65% 0.56% 0.61% 0.37% 0.80% 0.69%

Table 4.10: Hedging under Cost Penalty Factors Fixed Run Time
High-load Medium-load Low-load

Hedging on u v,w u v,w u v,w
PH run time (min) 60 60 60 60 60 60
Variables fixed to 0 680 793 818 757 1,148 1,224
Variables fixed to 1 1,325 1,292 1,189 1,124 761 688
Variables binary 371 291 369 495 467 464
Extensive form 100.3 80.2 97 63.2 97 91.8
run time (min)
Objective value ($) 3,064,780 3,064,710 1,817,790 1,810,890 607,106 605,762
Optimality gap 0.59% 0.59% 0.69% 0.31% 0.65% 0.42%

From Table 4.9 (high-load day), the use of the cost coefficients as penalty factors

made more variables converge to one as compared to the results in Table 4.8 where

constant penalty factors were chosen (100 for hedging on u and 1, 000 for hedging on

v and w). Choosing the penalty factor based on the cost coefficients also produced a

better solution with a faster run time.

In Tables 4.9 and 4.10, hedging on the startup and shutdown variables outper-

formed the policy of hedging on the UC variables. The optimality gaps are lower for

each solution and, in some cases, much lower than the policy when hedging on the u

variable.Each run time for the tests on hedging on the startup and shutdown variables

is less than the run time for hedging on the UC variables. Hedging on startup and

shutdown variables allows the PH algorithm to focus more intently on dragging all

of the subproblems to a common solution due to the ability to identify the critical

periods where there are discrepancies between the startup and shutdown cycles.
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Shadow Prices as the Penalty Factors

Finally, the proposed method of using the shadow prices as the penalty factors, de-

scribed in “Selection of the Penalty Factors”, is tested and the results are shown in

Tables 4.11 and 4.12.

Table 4.11: Hedging under Shadow Price Penalty Factors Fixed Iterations
High-load Medium-load Low-load

Hedging on u v,w u v,w u v,w
PH run time (min) 24.7 26.9 24.9 25.9 32.2 40.1
Variables fixed to 0 682 771 832 1,002 1,129 1,175
Variables fixed to 1 1,361 1,312 1,225 1,174 783 680
Variables binary 333 293 319 200 464 521
Extensive form 116.7 85.5 72.7 64.6 96.9 78.2
run time (min)
Objective value ($) 3,071,942 3,070,792 1,812,092 1,811,620 607,132 606,828
Optimality gap 0.82% 0.79% 0.37% 0.35% 0.65% 0.60%

Table 4.12: Hedging under Shadow Price Penalty Factors Fixed Run Time
High-load Medium-load Low-load

Hedging on u v,w u v,w u v,w
PH run time (min) 60 60 60 60 60 60
Variables fixed to 0 701 841 962 1,057 1,085 1,183
Variables fixed to 1 1,363 1,330 1,234 1,174 778 673
Variables binary 312 205 180 145 513 520
Extensive form 110.3 34.7 73.4 48.6 77.6 63.4
run time (min)
Objective value ($) 3,071,651 3,067,519 1,810,860 1,811,570 607,547 605,683
Optimality gap 0.81% 0.68% 0.31% 0.35% 0.72% 0.41%

The proposed method using shadow prices as the penalty factor gives the fastest

PH run time and the fastest extensive form run time. Once again, the policy to

hedge on the startup and shutdown variables dominates the solutions, both in terms

of optimality gaps and run times, obtained when hedging on the UC variables, except

for one solution. In Table 4.12, for the medium-load day, the solution for the hedging

on v and w produces an optimality gap of 0.35% in comparison to the optimality

gap of 0.31% obtained when hedging on u. Note, however, that the run time for the

extensive form SUC is far better, with a time of 48.6 minutes as compared to 73.4
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minutes. Since the extensive form SUC has an optimality gap stopping criterion of

1%, it is likely that if the extensive form SUC for hedging of v and w was allowed

to run for at most 73.4 minutes, then the optimality gap would improve and it may

very well still beat the optimality gap for the hedging on u result.

Next, the run times and optimality gaps of the three selected penalty factors,

i.e., a constant number, the cost coefficients from the objective function, and shadow

prices, are compared in Figure 4.1. The results are obtained with 10 PH iterations

for the high-load day.
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Figure 4.1: Comparison of Three Penalty Factors

The six series in Figure 4.1 represent hedging on u using a constant 100 as the

penalty factor (u const), hedging on v and w using a constant 1, 000 as the penalty fac-

tor (vw const), hedging on u using the no-load costs as the penalty factors (u nlcost),

hedging on v and w using the startup costs as the penalty factors (vw nlcost), hedg-

ing on u using the shadow prices as the penalty factors (u sp), and hedging on v and
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w using the shadow prices as the penalty factors (vw sp). From Figure 4.1, when

hedging on v and w, the total run times and the optimality gaps are generally lower,

except for the case when a constant penalty factor is chosen. The two trials with

constant penalty factors have the longest run time and the largest optimality gap;

this is partially a result of the difficulty to choose the best constant penalty factor for

both the u and the v and w hedging mechanisms and this is also due to the fact that

a constant penalty factor does not differentiate between the different assets as well as

between the different time periods. For the choice between using the cost coefficients

from the objective in comparison to the shadow prices as penalty factors, the run

times are relatively similar but the cost coefficient policy produced better optimality

gaps. In these test cases, hedging on v and w, with the startup costs as penalty fac-

tors, obtains the best optimality gap and hedging on v and w, with the shadow prices

as penalty factors, obtains the fastest total run time with good optimality gaps.

Next, the overall performance of hedging on v and w is compared with hedging

on u using the cost coefficients as penalty factors versus using the shadow prices as

penalty factors, under the three sets of loads. The results are plotted in Figures 4.2-

4.4. The eight series in Figures 4.2-4.4 represent hedging on u using the no-load costs

as penalty factors with 10 PH iterations (u nlcost 10 iter), hedging on u using the

no-load costs as penalty factors within 1 hour (u nlcost 1 hr), hedging on u using the

shadow prices as penalty factors with 10 PH iterations (u sp 10 iter), hedging on u

using the shadow prices as penalty factors within 1 hour (u sp 1 hr), hedging on v

and w using the startup costs as penalty factors with 10 PH iterations (vw sucost 10

iter), hedging on v and w using the startup costs as penalty factors within 1 hour

(vw sucost 1 hr), hedging on v and w using the shadow prices as penalty factors with

10 PH iterations (vw sp 10 iter), and hedging on v and w using the shadow prices as

penalty factors within 1 hour (vw sp 1 hr). From Figures 4.2-4.4, hedging on v and
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w is generally better off than hedging on u, with a lower total run time and a better

optimality gap. Hedging on v and w, using the shadow prices as penalty factors, gives

the solution with the least total run times and the best optimality gaps. From these

figures, the additional PH iterations have almost negligible impact on the computation

results when hedging on u. However, when hedging on v and w, the optimality gaps

are generally improved with more PH iterations. This implies that the PH algorithm

is better at dragging the individual problems to good unified solutions with v and w

as hedging instruments. Overall, the results suggest that hedging on v and w is at

least as effective as hedging on u and, based on these specific experiments with this

test case, hedging on v and w would be the preferred hedging policy.
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Figure 4.2: Comparison under High-Load Day Data

When the PH algorithm is allowed to run for 60 minutes, the overall run times are

longer. This suggests that there may be a preferred length of time to allow the PH

algorithm to run as the improvement in the solution quality may not be proportional

to the number of iterations, especially since cyclic behaviors are often observed in the

PH algorithm. The PH algorithm is effective at dragging a substantial portion of the
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Figure 4.3: Comparison under Medium-Load Day Data
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Figure 4.4: Comparison under Low-Load Day Data

binary solutions to a unified solution but not all. The results show that it is effective

at substantially speeding up the time it takes to solve a stochastic program while still

ensuring high-quality results (low-optimality gaps).
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4.6 Conclusions

In this chapter, a hybrid algorithm using the scenario-based PH decomposition

algorithms as a pre-solve heuristic is proposed to solve the UC problem while pro-

tecting against any single generator forced outage. The PH algorithm is examined by

comparing its performance while using various hedging mechanisms in combination

with various penalty factor selection rules. Test results show that hedging on the

startup and the shutdown variables makes the PH converge faster to a good unified

UC solution as compared to hedging on UC status variables for these chosen test

cases; however, further analysis is needed to confirm this result. Hedging on the

startup and the shutdown binary variables also suggested that a better (economi-

cally efficient) solution could be obtained; however, additional testing is needed for

different test cases to see if this is a consistent result.

The PH algorithm is sensitive to the chosen penalty factor. Multiple penalty

factors were tested including various constant numbers, a penalty factor based on the

hedging mechanism’s cost coefficient, penalty factors based on the locational marginal

prices for the generator’s location, and penalty factors associated to the dual solution

by enforcing the binary variable (the hedging mechanisms) to take on a value obtained

when solving a deterministic UC problem initially. The test results suggest that using

shadow prices (dual solutions) as the penalty factors is an effective strategy to both

improve the computational performance and achieve economically efficient solutions.

Future work will concentrate on speeding up the convergence of the PH by selecting

proper penalty factors and developing new heuristics. The proposed method will be

applied to other large-scale stochastic programming problems.
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Chapter 5

DATA-DRIVEN UNCERTAINTY SET

5.1 Introduction

Under the robust optimization framework, uncertainties are often characterized

by a pre-defined uncertainty set, and then the system is optimized against the worst-

case realizations within the set. Although solutions to robust optimization can ensure

robustness, a common concern is that such an approach can be too conservative, or

too costly. Therefore, it is critical to construct an effective uncertainty set that is less

conservative while retaining robustness.

Except (Lorca and Sun, 2015), much of the literature of data-driven uncertainty

sets focuses on analyzing data at a certain time point, overlooking the time-domain

correlation. However, in many cases, uncertain data, e.g., loads or wind genera-

tion, are time-series data. In other words, the previous data realizations have strong

implications on the future data realizations. Therefore, it is important to have a

methodology for designing uncertainty sets that explicitly model the autocorrelation

on time horizon.

In this chapter, a data-driven framework is proposed to construct uncertainty sets

for both temporally and spatially correlated data. The framework is composed of

two main steps. First, an autoregressive (AR) integrated (I) moving average (MA)

model, which is first developed by (Box and Jenkins, 1970), is adopted to construct

a time-series model by using the historical uncertain data. Next, whitening trans-

form (Fukunaga, 2013) is performed to identify the spatial correlation of the residual

uncertain data obtained from the ARIMA model. The proposed data-driven uncer-
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tainty sets have similar structure as the one in (Lorca and Sun, 2015). However, the

key differences are: (1) Lorca and Sun (2015) presumes that data are autoregressive

correlated with certain lead time, whereas the proposed uncertainty set fully utilize

data to determine the temporal correlation based on ARIMA models without making

presumption on data; and (2) Lorca and Sun (2015) assumes that error terms are only

spatially correlated at the same time period. In the proposed model in this chapter,

besides the spatial correlation, the temporal correlation of the errors is also included

if moving average process is identified from the data. Therefore, this chapter provides

a more systematic and general data-driven approach as compared to Lorca and Sun

(2015).

The contributions can be summarized as follows:

• A general data-driven framework is proposed for constructing uncertainty sets

for temporally and spatially correlated data using time-series models.

• The data-driven uncertainty set is applied to robust unit commitment problem.

Numerical experiments are conducted on the real-world power system operated

by the ISO New England.

• The empirical results show that the proposed data-driven uncertainty sets out-

perform the rule-based uncertainty sets. By using historical data, the robust

model built from the former yield less conservative UC solutions than latter

while keeping system reliable.

This chapter is organized as follows. Section 5.2 reviews the ARIMA model and

notations for constructing uncertainty sets. Section 5.3 describes the framework to

construct the proposed data-driven uncertainty sets. Section 5.4 presents a case study

of robust unit commitment with interchange flow uncertainty. Finally, section 5.5

concludes.
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5.2 ARIMA Model

A brief presentation of the ARIMA model is given below. For a more detailed

discussion, the reader is referred to a comprehensive time series analysis text, such as

Box and Jenkins (1970), Box et al. (2008), and Montgomery et al. (2008). In power

system scheduling, ARIMA model has been mainly applied to the price and wind

power forecasting (Contreras et al., 2003; Conejo et al., 2005; Chen et al., 2010).

A set of time series, yt, can be expressed by the sum of two components: a signal,

µ, and a noise, εt, i.e., yt = µ+ εt, ∀t. ARIMA model gives an efficient way to model

time series. The autoregressive part AR (p) models a time series as a linear function

of p previous observations in order to predict the current one. The moving average

part MA(q) determines the moving average of the series with a time window size of

q. Finally, the ARIMA process (p, d, q) is based on a series that has been differenced

d times, with p autoregressive terms and q moving average terms. The model can be

described in the following generic form:

Φ(B)∇dyt = δ + Θ(B)εt (5.1)

where B is backshift operator, such that Byyt = yt−1; Φ(B) is autoregressive function:

Φ(B) = 1 −
∑p

i=1 φiB
i; Θ(B) = 1 −

∑q
i=1 θiB

i; ∇d is differencing function: ∇d =

(1 − B)d; and δ is a scalar. The parameters, φi’s, δ, and θi’s, are chosen to best fit

the data.

ARIMA model can be generalized to seasonal ARIMA if strong cyclic patterns are

observed. Seasonal ARIMA (p, d, q)× (P,D,Q)s can be described in a generic form:

Φ∗(Bs)Φ(B)∇d(∇s)Dyt = δ + Θ∗(Bs)Θ(B)εt (5.2)

where Φ∗(Bs) = 1−
∑P

i=1 φ
∗
iB

is, Θ∗(Bs) = 1−
∑Q

i=1 θ
∗
iB

is, and (∇s)D = (1− Bs)D,

are seasonal autoregressive, moving average, and differencing functions, respectively.
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5.3 Construct Data-Driven Uncertainty Sets

In this section, the framework for constructing the uncertainty sets for temporally

and spatially correlated data is described. Denote the uncertain data at location n

at time period t as dnt,∀n, t. The assumptions and a high level description of the

procedure for constructing uncertainty sets are presented first. Then the detailed

steps and formula are described in the rest of the section.

5.3.1 Assumptions

The following three assumptions are made to construct uncertainty sets:

1. Data are temporally autocorrelated at each location

2. The mean of the noises, εt, at each location is zero

3. Noises in different locations have static spatial correlation

Under the above assumptions, the temporally and spatially correlated data can

be “whitened” in two steps:

First, ARIMA model is used to decorrelate the temporal correlation of data under

assumptions 1 and 2. By properly identifying the ARIMA model, the autocorrelation

of the data can be determined. The remaining noises can achieve zero mean so the

second assumption is held.

Second, statistical whitening transform is applied to the noises to decorrelate

spatial correlation under assumption 3.
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5.3.2 Temporal Separation

At the first step, at each location n, the following ARIMA model is construct to

fit historical data:

Φn(B)dnt = δn + Θn(B)rnt (5.3)

where rnt, ∀n, t, are the residuals with zero mean and constant variance, and contain

no temporal correlation. For each time period t, denote dt and rt(∈ RN) as the

vectors of the original time-series data and residuals across all locations, respectively,

where N is the number of the locations. Then, (5.3) can be written in the matrix

form as follows:

Φ(B)dt = δ + Θ(B)rt (5.4)

where Φ and Θ are diagonal matrices, and each diagonal element is a function of

backshift operator.

5.3.3 Spatial Separation

At the second step, the spatial correlation of the residuals, rt, at each time period

is studied since the spatial correlation of the residuals is assumed to be time-invariant

under assumption 3. The spatial covariance matrix of the residuals, Σ(NN), calcu-

lated from historical data can be used to estimate the true covariance matrix. Using

the eigen-decomposition theorem (Fukunaga, 2013), the covariance matrix can be

decomposed as follows:

Σ = QΛQ′ (5.5)

where Λ is N × N diagonal matrix consist of eigenvalues; Q is N × N orthogonal

matrix consist of eigenvectors.
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Whitening is a traditional statistical method for turning the data covariance ma-

trix into an identify matrix. Whitening is applied on the residuals to decorrelate

the spatial correlation. Whitening transform is applied to rt by decomposing it as

follows: rt = QΛ−
1
2 εt, where εt are uncorrelated white noises with zero mean and unit

variance.

As a result, the original temporally and spatially correlated data, dnt,∀n, t, are

“whitened” as the functions of white noises εnt, ∀n, t as follows:

Φ(B)dt = δ + Θ(B)QΛ−
1
2 εt (5.6)

where dt,εt are historical data if t < 0; otherwise, the uncertain variable dt can be

expressed by the white noises εt.

5.3.4 White Noise Modeling

Last, the variation range of the white noises ε is further controlled by using the

budget-constrained uncertainty sets in (Zhao and Zeng, 2012). The final data-driven

uncertainty sets can be described as follows:

U =


(d, ε)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ(B)dt = δ + Θ(B)QΛ−
1
2 εt ∀t

−z1−α ≤ εnt ≤ z1−α ∀n, t

|
∑
∀n εnt| ≤ Γ

√
Nz1−α ∀t

|
∑
∀t εnt| ≤ Γ

√
Tz1−α ∀n


(5.7)

where z1−α represents 1− α confidence level for standard normal distribution; Γ is

a scalar to control the size of uncertainty set; T is the number of the modeled time

periods.
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5.4 Case Study

In this section, the case study focuses on the uncertain interchange levels in the

power system operated by ISO New England (ISONE), and the proposed data-driven

approach is applied to construct uncertainty sets for the robust unit commitment

problem. In the robust UC, commitment status decisions are determined in the first

stage (here-and-now); and dispatch decisions are determined in the second stage (wait-

and-see) after the realization of uncertain data. The robust UC solves the problem

with a set of UC decisions to minimize the overall costs (including both commitment

and dispatch costs) under the worst plausible second-stage uncertain data realization.

Since the emphasis of this chapter is the construction of uncertainty sets, the robust

UC model is not described in detail here. In this case study, the column and cut

generation (CCG) algorithm (Zhao and Zeng, 2012) is applied to solve the robust

UC.

In the ISO system, the interchange forecast error can be more than an order of

magnitude higher than the forecast errors of load and renewable. Due to its large

variability, simply using a box uncertainty set for the interchange flow in robust UC

will lead to overly conservative UC solution. Therefore, the proposed data-driven

approach is applied to obtain an effective uncertainty set. The numerical results

show that the robust UC solutions from the data-driven sets are less conservative

than the rule-based uncertainty set, while remaining the robustness properties.

5.4.1 Data

There are six interchanges in the ISONE system. The hourly historical data

of interchange forecast and real-time interchange flows are used in this case study.

Specifically, data from 10/1/2012-12/31/2012 are used to estimate model parameters,
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Ω = (δ,Φ,Θ,Λ, Q), denoted as training data; data from 1/1/2013-1/31/2013 are

used to evaluate the robust UC performance with different uncertainty sets models,

denoted as testing data.

5.4.2 ARIMA Model and Whitening Transform

JMP 11.0 is used to analyze training data and determine ARIMA model param-

eters. One of the interchange locations, Location 4, is used to demonstrate how

ARIMA model is developed. Figure 5.1 shows the training data of the real-time in-

terchange level at Location 4. By plotting the autocorrelation function (ACF) and

the partial autocorrelation function (PACF) of the training data, strong autocorrela-

tion patterns are observed. As shown in Figure 5.2, the ACF shows an exponential

decay, and the PACF cuts off after the first lag. This indicates that an AR process

occurs (Montgomery et al., 2008). After modeling the AR process, obvious patterns

are observed at lag 24, which indicates seasonal ARIMA terms are desired. Therefore

a seasonal ARIMA (1, 0, 0)× (1, 0, 0)24 is selected to fit the data at Location 4. JMP

11.0 estimates the corresponding coefficients, δ, φ, θ, φ∗, θ∗, in (5.3). Figure 5.1 plots

the ACF and PACF of residuals r, which show little patterns. This suggests that the

ARIMA model fits the training data well.

Figure 5.1: Training Data at Location 4

Resulting residuals at each location have zero mean and bell-shape distributions.
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Figure 5.2: ACF/PACF of Original Data at Location 4

Figure 5.3: Residual ACF/PACF of ARIMA Model at Location 4

Next, whitening transform is applied to the residuals of all locations. Figure 5.4 is

the scatter plot of the covariance of the residuals at six locations. It shows that the

spatial correlation is not very strong. This can be further verified by the correlation

matrix in Figure 5.5, where all the absolute values of non-diagonal components are

smaller than 0.1. When determining (Λ, Q) in (5.6) using whitening transform, all

elements with an absolute value less than 2% are considered as noises and set to zero

in the covariance matrix.

5.4.3 Uncertainty Set

To construct the uncertainty set, ARIMA model is applied to four different groups

of data to reduce the sizes of uncertainty sets. Table 5.1 summarizes the results.
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Figure 5.4: Scatter Plot of the Covariance of Residuals at 6 Locations

Figure 5.5: Correlation Matrix of the Residuals at 6 Locations

1. Real-time interchange levels at each location

2. Interchange forecast errors at each location

3. Total interchange level across all locations

4. Total interchange forecast error across all locations

Table 5.1: ARIMA Models for Different Data
Real-time level Errors from forecast level

Location 1 (1, 0, 0)× (1, 0, 0)24 (1, 0, 0)× (1, 0, 0)24

Location 2 (1, 0, 0) (1, 0, 0)
Location 3 (1, 0, 1)× (1, 0, 0)24 (1, 0, 0)
Location 4 (1, 0, 0)× (1, 0, 0)24 (1, 0, 0)
Location 5 (1, 0, 0)× (1, 0, 1)24 (2, 0, 0)× (1, 0, 0)24

Location 6 (2, 0, 0) (1, 0, 0)× (1, 0, 0)24

Total (1, 0, 0)× (1, 0, 0)24 (1, 0, 0)× (1, 0, 0)24
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In the budget-constrained uncertainty sets, (5.7), adopted for white noises ε, two

budget constraints are included: one restricts the sum of the white noise across all

locations in each period, and the other restricts the sum of white noise across all time

periods at each location. The confidence level α = 0.01 and Γ = 0.9.

Additionally, the upper and lower bounds obtained from historical data are im-

posed in uncertainty sets. The following system ramping limitation is also incorpo-

rated: the change of the total net interchange between two consecutive time periods

shall not exceed 500MW.

5.4.4 Results

The performance of proposed uncertainty sets is tested. Testing data have 31 days.

For each day, a deterministic security-constrained unit commitment (det SCUC) is

solved using forecast interchange levels. Robust UC with different uncertainty sets

are also solved to determine commitment solutions. Then, each commitment solu-

tion is passed to the real-time security-constrained economic dispatch (SCED) with

actual interchange realizations to evaluate the performance of different UC solutions,

including costs, system violations, and computation time. The det SCUC results

are summarized in Table 5.2. Since there is a large error in the interchange fore-

cast, violations occur in all testing days and huge penalties are applied as shown in

Table 5.2.

Table 5.2: Test Results for the Deterministic SCUC
Performance measures Deterministic SCUC
Average computation time (s) 42.47
Average UC cost ($) 3,093,846
Average dispatch cost w/o violation penalty ($) 8,926,177
Average total cost w/o violation penalty ($) 12,020,023
Average Violation Penalty Cost ($) 106,537,216
# of violated scenarios 31
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Robust UC are tested with the following three different uncertainty sets:

1. The modified box uncertainty set: The uncertainty set only models data lower

and upper bounds, and the ramping limitation of total interchange level change.

2. Budget-constrained uncertainty set: In addition to the constraints used in

the modified box uncertainty set, this set also includes traditional budget-

constrained uncertainty sets, similar to (5.7). The uncertain variables are the

total interchange level across all locations in each period, and total interchange

level across all periods at each location, instead of the white noises ε as in (5.7).

The confidence level α = 0.01 and Γ = 0.9. The autocorrelation of the data is

ignored.

3. The proposed data-driven uncertainty set

The first two are rule-based uncertainty sets. As demonstrated by the results to

be analyzed next, the first one is the most conservative uncertainty set, while the

last set is the least conservative one. Table 5.3 summarizes the comparison results of

these three sets.

Compared to the computation time of det SCUC in Table 5.2, robust UC takes

more time to solve. As reported in Table 5.3, all three uncertainty sets drastically re-

duce the number of violation scenarios and penalty costs, indicating their operational

effectiveness in reducing costly emergency actions and improving system reliability.

However, the robustness comes at the expenses of increased UC, dispatch and total

costs in all testing day as compared to the deterministic counterparts.

Next, the focus is on the comparison among three uncertainty sets. The proposed

data-driven uncertainty set results in the least cost increase while keeping the system

relatively reliable. More specifically, the modified box uncertainty set, i.e., the most

conservative policy, guarantees system reliability, but it commits too many units. As a
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result, its commitment cost is the highest compared to the other two uncertainty sets.

The budget-constrained uncertainty set is relatively conservative compared to the

proposed data-driven uncertainty set since it does not recognize the autocorrelation

patterns. As shown in Table 5.3, the data-driven uncertainty set reduces commitment

costs by almost 15% compared to the modified box set. All three robust solutions

do not affect the dispatch cost too much. In terms of the total cost, the data-driven

set results in only 8.5% cost increase over the deterministic case. By considering the

temporal and spatial correlations in uncertainty sets, the proposed method can save

almost half million dollars compared to the traditional modified box set.

Table 5.3: Test Results for Robust SCUC with 3 Types of Uncertainty Sets
Uncertainty sets Modified box Budget-constrained Data-driven
Average computation time (s) 95 341 381
Max computation time (s) 331 1,362 1,289
Avg. UC cost ($) 4,482,361 4,317,584 4,028,774
(% increase w.r.t. det SCUC) ( 44.9%) ( 43.2%) ( 30.2%)
Avg. dispatch cost 9,013,887 9,012,315 9,009,538
w/o violation penalty ($)
(% increase w.r.t. det SCUC) ( 1%) ( 1%) ( 0.9%)
Average total cost 13,496,248 13,329,899 13,038,312
w/o violation penalty ($)
(% increase w.r.t. det SCUC) ( 12.3%) ( 10.9%) ( 8.5%)
Average violation penalty ($) 0 311,194 29,484
# of violation scenarios 0 1 3

5.5 Conclusions

In this chapter, a framework is proposed to construct uncertainty sets based on

ARIMA model and statistical whitening. The resulting uncertainty sets capture tem-

poral and spatial correlations of data. Therefore, sizes of uncertainty sets are con-

trolled, and the conservativeness of robust solutions is reduced. Test results on the

robust unit commitment show that the proposed uncertainty sets reduce commitment

costs compared to traditional rule-based uncertainty sets, which ignore autocorrela-

tion of time series. At the same time, system reliability is improved over deterministic
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policy with affordable cost increment and computational complexity. Future research

will focus on building more accurate and general ARIMA model to decorrelate tem-

poral autocorrelation.
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Chapter 6

EXTREME RAY FEASIBILITY CUTS

6.1 Introduction

In this chapter, a set of feasibility cuts (constraints) for the UC problems with

uncertainty are studied. It is shown that the proposed cuts, which are special cases

of Benders’ feasibility cuts, can be characterized by the combinatorial selection of

the transmission lines and buses of the power systems. The cuts give mathematical

support to ensure system reliability. Compared with the stochastic programming

or the robust optimization, the extreme ray feasibility cuts can collapse the second-

stage recourse into first-stage decision by taking advantages of the power system

characteristics and engineering insights. Most of the computation is able to be carried

out by offline simulations and study. The resulting formulation is a deterministic

formulation. As a result, the computational burden is shifted from the scheduling

periods to the offline study. The proposed cuts provide a more reliable solution with

only little computational increment over the current reserve requirements.

The contributions of the chapter are listed as follows.

• A reformulation that considers only the available generation capacities in the

recourse stage is proposed and distinguishes the traditional Benders’ reformu-

lation for two-stage stochastic programming. With the proposed reformulation,

handy results are observed, which enable the corresponding extreme ray feasi-

bility cuts to be determined by offline studies.

• Given any system operating state, a necessary and sufficient condition to ensure

a feasible dispatch is explicitly presented with a polyhedral structure.
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• The extreme rays of the dual cone are studied and proven to be determined by

combinatorial selections of transmission lines and buses in the power system.

• The crucial extreme rays can be identified by offline simulations with engineering

insights. Thus, the computational burden is shifted from scheduling periods to

offline studies.

• The proposed extreme ray feasibility cuts give mathematical support rather

than rule-of-thumb determination for security requirements.

• The proposed approach avoids formulating scenarios or using an iterative pro-

cess to solve the UC problem with uncertainty; it solves the problem efficiently

as a deterministic equivalent model with the cuts.

The rest of the chapter is organized as follows. Section 6.2 derives the feasibil-

ity cuts. Section 6.3 describes several applications of the cuts. Section 6.4 shows

numerical results of test cases. Section 6.5 concludes the chapter.

6.2 Extreme Ray Feasibility Cuts

In this section, the feasibility cuts for the UC problem with uncertainty are de-

rived. The mathematical conditions for a power system to be “reliable” is analyzed.

Due to the nature of the two-stage decision process of the UC problem, a UC solution

is reliable if in any considered real-time scenario, there is a feasible dispatch solution

without load shedding. Therefore, the focus is on the second-stage feasible dispatch

problem.

First, the basic linearized dispatch model is introduced in 6.2.1. Based on the

dispatch model, a necessary and sufficient feasible dispatch condition is given in 6.2.2.

The condition is based on a polyhedral structure (pointed cone). The extremes rays

of the polyhedron are studied in 6.2.3.
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6.2.1 Dispatch Model

The dispatch model is described as follows:

min
∑
∀g

Cg(pg) (6.1)

s.t. Lg ≤ pg ≤ Hg ∀g (6.2)

in =
∑
∀g∈G(n)

pg −Dn ∀n (6.3)

− Fl ≤
∑
∀n

Ψlnin ≤ Fl ∀l (6.4)

∑
∀n

in = 0 (6.5)

This model is a linearized optimal power flow formulation, referred as direct cur-

rent optimal power flow (DCOPF) model (Wood and Wollenberg, 1996). This model

is widely adopted in congestion-constrained power system scheduling (Stott et al.,

2009). In this model, pg, in,∀g, n, are decision variables representing the power gen-

eration level of generator g and nodal net injection at bus n, respectively. Equation

(6.1) is the objective to minimize total dispatch costs. Equation (6.2) restricts the

generation lower and upper bounds. Equation (6.3) represents nodal net injection con-

straints. Equation (6.4) gives the network constraints. The coefficients (Ψ), referred

as power transfer distribution factor (PTDF), describe the power flow distribution

on each transmission line when injecting one unit of power from one certain bus to

the reference bus. PTDFs are the results of the Kirchhoff’s circuit laws. The PTDF-

based DCOPF model provides relative independent impacts of power injection on

individual transmission lines. This property enables the further exploration of the

insights from mathematical conditions to the physical power system. In this chapter,

it is assumed that the PTDFs are fixed, i.e., the topology does not change and a

failure of a transmission line is not considered. The results can be generalized to the
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changed topology by calculating new PTDFs. Equation (6.5) restricts the total nodal

net injection to be zero, in other words, the total generation equals to the total loads.

6.2.2 Feasibility Necessary and Sufficient Condition

The dispatch model can be re-written as a dispatch feasibility problem as follows.

max 0 (6.6)

s.t. − pg ≤− Lg ∀g φ−g (6.7)

pg ≤Hg ∀g φ+
g (6.8)

−
∑
∀g∈G(n)

pg + in =−Dn ∀n λn (6.9)

−
∑
∀n

Ψlnin ≤Fl ∀l µ−l (6.10)

∑
∀n

Ψlnin ≤Fl ∀l µ+
l (6.11)

−
∑
∀n

in =0 τ (6.12)

In this feasibility problem, the objective (6.6) is modified to maximize a null

value. Equation (6.7)-(6.12) are the duplicate of equation (6.2)-(6.5) with listing

corresponding dual variables for convenience. Next, the dual problem of this dispatch

feasibility problem can be derived as follows.

min
∑
∀g

(Hgφ
+
g − Lgφ−g ) +

∑
∀l

Fl(µ
+
l + µ−l )−

∑
∀n

Dnλn (6.13)

s.t. φ+
g − φ−g − λn(g) = 0 ∀g (6.14)∑
∀l

Ψln(µ+
l − µ

−
l ) + λn − τ = 0 ∀n (6.15)

φ+
g , φ

−
g , µ

+
l , µ

−
l ≥ 0 ∀g, l (6.16)

Let Q denote the feasible set of the above dual problem equation (6.14) - (6.16).

Q is a pointed cone, referred as dual cone.
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In order to ensure a feasible dispatch, the focus is on the current system state. The

current system state is determined by the parameters in the dispatch model includ-

ing Lg, Hg, Fl, Dn,∀g, l, n. Specifically, Lg, Hg,∀g, are available generation capacities

restricted by commitment status, physical minimum and maximum generation capa-

bility (EcoMin and EcoMax), ramping capability, and generator contingency; Dn,∀n,

represent the real-time net load (the net load can be seen as the total load subtracts

non-dispatchable wind generation) at each bus; and Fl,∀l, are the transmission line

capacities. A necessary and sufficient conditions that ensures a feasible dispatch with

respect to the current system state is given as follows.

Proposition 1. For any given system state parameters, (Lg, Hg, Dn, Fl),∀g, n, l, the

power system has a feasible dispatch if and only if, ∀γ = (φ+
g , φ

−
g , µ

+
l , µ

−
l , λn, τ) ∈ Q,∑

∀g

(Hgφ
+
g − Lgφ−g ) +

∑
∀l

Fl(µ
+
l + µ−l )−

∑
∀n

Dnλn ≥ 0 (6.17)

Proof. This is a direct application of Farkas’s Lemma (Bazaraa et al., 2006).

If ∀γ ∈ Q, (6.17) is satisfied, then γ∗ = 0 is the optimal solution for the dual

problem since it is a feasible point in the dual cone and all other solutions have

objectives that are greater than or equal to zero. Therefore, the primal problem must

be feasible since there is an optimal solution for the dual problem, i.e., there exists a

feasible dispatch.

If the system has a feasible dispatch, it indicates the primal problem is feasible.

Then the dual problem is feasible and cannot be unbounded. From the weak duality

theorem, the objective value of the dual problem must be greater than or equal to 0,

i.e., (6.17) is satisfied.

Corollary 2. If there exists a γ̄ = (φ̄+
g , φ̄

−
g , µ̄

+
l , µ̄

−
l , λ̄n, τ̄) ∈ Q such that (6.17) is not

satisfied, then there is no feasible dispatch solution for the system with parameters
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(Lg, Hg, Dn, Fl),∀g, n, l. Moreover, transmission line capacity Fl, for l such that µ̄+
l

or µ̄−l > 0, and generator capacity Hg (Lg) for g such that λ̄n(g) < 0(> 0) are crucial

for the infeasibility.

Proof. The conclusions follow directly from Proposition 1. The coefficients (parame-

ters Fl, Hg, Lg) of nonzero dual values µ̄+
l , µ̄−l , and φ̄+

g , φ̄
−
g are crucial for the violation

of inequality (6.17), since if such parameters are changed, the system can be feasible.

From (6.14), φ̄+
g = λn(g) if λn(g) > 0 and φ̄−g = −λn(g) if λn(g) < 0 at extreme rays,

nonzero λn(g) corresponds to the generator capacity Hg or Lg.

Corollary 2 provides an intuition to identify extreme rays that are likely to cause

system infeasibility. On the other hand, the identified extreme rays along with (6.17)

can be used as constraints to ensure dispatch feasibility, which are the extreme ray

feasibility cuts discussed in this chapter. When µ̄+
l or µ̄−l > 0, increasing the trans-

mission line capacity Fl increases the likelihood of feasibility of the system. Therefore,

the corresponding transmission lines are likely to be congested. Similarly, if λn(g) 6= 0,

the generator g is likely to be at the capacity bounds. These intuitions can be used

to identify the lines and generators. The left hand of (6.17) can be seen as the sum-

mation of weighted generation capacities, weighted transmission line capacities, and

weighted loads, where the weights are determined by the dual cone structure.

6.2.3 Extreme Rays of the Dual Cone

The extreme rays of the dual cone are characterized in this part. Specially, the

extreme rays that cause the violation of condition (6.17) when system parameters

change, i.e., uncertainty happens, are of interests, denote these rays as crucial extreme

rays.

First, the trivial extreme rays that are unlikely to be violated are characterized.
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Lemma 3. For any extreme ray γ = (φ+
g , φ

−
g , µ

+
l , µ

−
l , λn, τ) ∈ Q, if τ = 0, then γ is

one of the following cases,

γ1k =



µ+
k = µ−

k = 1

µ+
l = µ−

l = 0 ∀l : l 6= k

φ+g = φ−g = 0 ∀g

λn = 0 ∀n

τ = 0

γ2i =



φ+i = φ−i = 1

φ+g = φ−g = 0 ∀g : g 6= i

µ+
l = µ−

l = 0 ∀l

λn = 0 ∀n

τ = 0

γ3k =



µ+
k = 1

µ−
k = 0

µ+
l = µ−

l = 0 ∀l : l 6= k

λn = −Ψkn ∀n

φ+g = max(λn(g), 0) ∀g

φ−g = max(−λn(g), 0) ∀g

τ = 0

γ4k =



µ−
k = 1

µ+
k = 0

µ+
l = µ−

l = 0 ∀l : l 6= k

λn = Ψkn ∀n

φ+g = max(λn(g), 0) ∀g

φ−g = max(−λn(g), 0) ∀g

τ = 0

Proof. First, it is clear that the set of rays in the lemma are conically independent.

Then, ∀γ = (φ+
g , φ

−
g , µ

+
l , µ

−
l , λn, τ) ∈ Q, if τ = 0, γ can be written as the conic

combination,

γ =
∑
∀g
φ̄gγ

2
g +

∑
∀l

[
µ̄lγ

1
l + (µ+

l − µ̄l)γ
3
l + (µ−l − µ̄l)γ

4
l

]
,

where µ̄l = min(µ+
l , µ

−
l ) and φ̄g = min(φ+

g , φ
−
g ).

The number of extreme rays in Lemma 3 is linear to the network size. When

applying these to inequality (6.17), γ1
k and γ2

i are simply corresponding to nonnegative

line capacities and generator capacities. While γ3
k and γ4

k indicate that under the

current system state parameters, for any single transmission line k, it has the sufficient

capacity to supply the load in the optimist case. These constraints are not trivial.

However, in the practical power system network, redundancy has been built and these

constraints are rarely violated even when uncertainty are considered.
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Next, the crucial extreme rays that are likely to be violated are characterized.

Lemma 4. The extreme rays in Q has one-to-one correspondence to the extreme

points in Q′ that is obtained by fixing τ .

Proof. From equation (6.14), φ+
g , φ

−
g ,∀g are determined by λn(g). Thus the dual cone

Q is described by equation (6.15).

A cone can be represented in the form, D = {x ∈ R|Ax ≤ 0} or D = {z ∈ R|Az =

0, z ≥ 0}. Then the dual cone can be represented as,

Q =



µ+, µ−, λ+, λ−, τ+, τ− ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[ ψ′ −ψ′ I −I 1 −1 ]



µ+

µ−

λ+

λ−

τ+

τ−


= 0


Denote Q = {γ ≥ 0|Aγ = 0}, where A = [ ψ′ −ψ′ I −I 1 −1 ] and γ =

(µ+, µ−, λ+, λ−, τ+, τ−)

Consider the extreme rays that τ > 0, i.e., τ+ > 0, τ− = 0.

W.l.o.g., let τ+ = 1, τ− = 0. Then polyhedron Q′ = {x|Bx = 1, x ≥ 0} is

obtained, where B = [ ψ′ −ψ′ I −I ] and x = (µ+, µ−, λ+, λ−)

Now the Lemma becomes to prove that x is an extreme point in Q′ iff γ = (x, 1, 0)

is an extreme ray in Q.

Sufficiency: prove by contradiction.

Assume γ is not an extreme ray in Q. Then ∃ non-identical γ1, γ2 ∈ Q s.t.

γ = λγ1 + (1− λ)γ2, λ ∈ (0, 1)

Since γ has τ− = 0, then γ1 = (x1, τ
+
1 , 0) and γ2 = (x2, τ

+
2 , 0).
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Suppose one of τ+
1 , τ

+
2 is zero, w.l.o.g., assume τ+

2 = 0, then x = λx1 + (1− λ)x2

and λτ+
1 + (1− λ)τ+

2 = λτ+
1 = 1.

Note x1
τ+1

= λx1 is a feasible point in Q′ and x2 is a non-zero ray in recession cone

of Q′.

This contradicts that x is an extreme point in Q.

Suppose none of τ+
1 , τ

+
2 is zero, i.e., τ+

1 , τ
+
2 > 0.

Then γ = λγ1 + (1− λ)γ2 ⇒ λτ+
1 + (1− λ)τ+

2 = 1

Note x1
τ+1
, x2
τ+2

are two feasible points in Q′, let β1 = λτ+
1 , β2 = (1− λ)τ+

2 .

Then x = β1
x1
τ+1

+ β2
x2
τ+2
, β1 + β2 = 1, β1, β2 ∈ (0, 1).

This contradicts that x is an extreme point in Q.

Necessity: prove by contradiction.

Assume x is not an extreme point in Q′. Then ∃ non-identical x1, x2 ∈ Q′ s.t.

x = λx1 + (1− λ)x2, λ ∈ (0, 1).

Then γ = (x, 1, 0) = λ(x1, 1, 0) + (1− λ)(x2, 1, 0).

This contradicts that γ is an extreme ray of Q.

Similarly, the conclusions hold when τ < 0 or τ = 0. The Lemma is proved.

Lemma 5. For any extreme ray γ = (φ+
g , φ

−
g , µ

+
l , µ

−
l , λn, τ) ∈ Q with τ 6= 0, τ is

normalized such that |τ | = 1. Then γ can be represented as follows,
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γ5
L̃,Ñ

=



µ+
l = max(µ̃L̃,Ñ

l , 0) l ∈ L̃

µ−
l = max(−µ̃L̃,Ñ

l , 0) l ∈ L̃

µ+
l = µ−

l = 0 ∀l ∈ L \ L̃

λn = 0 ∀n ∈ Ñ

λn = λ̃L̃,Ñ
n ∀n ∈ N \ Ñ

φ+g = max(λn(g), 0) ∀g ∈ G

φ−g = max(−λn(g), 0) ∀g ∈ G

τ = 1

γ6
L̃,Ñ

=



µ+
l = max(−µ̃L̃,Ñ

l , 0) l ∈ L̃

µ−
l = max(µ̃L̃,Ñ

l , 0) l ∈ L̃

µ+
l = µ−

l = 0 ∀l ∈ L \ L̃

λn = 0 ∀n ∈ Ñ

λn = −λ̃L̃,Ñ
n ∀n ∈ N \ Ñ

φ+g = max(λn(g), 0) ∀g ∈ G

φ−g = max(−λn(g), 0) ∀g ∈ G

τ = −1

γ5, γ6 are induced by the selection of two subsets: L̃ ⊆ L, Ñ ⊆ NG ⊆ N , where

NG is the subset of buses with generators. Moreover, |L̃| = |Ñ |. The selection results

in a sub-square-matrix ΨÑ,L̃, which consists of the corresponding rows n ∈ Ñ and

columns l ∈ L̃. The selection is restricted such that ΨÑ,L̃ is nonsingular. Then,

µ̃Ñ,L̃
L̃

=
(

ΨÑ,L̃
)−1

1Ñ and λ̃Ñ,L̃
N\Ñ = 1N\Ñ −ΨN\Ñ,L̃µ̃Ñ,L̃

L̃
, where 1 is the column vector

with all elements as 1 with proper dimension, ΨN\Ñ,L̃ is the sub-matrix consists of

the corresponding rows l ∈ L̃ and columns n ∈ N \ Ñ .

Proof. For any extreme ray with γ 6= 0, w.l.o.g., τ is normalized |τ | = 1. From

Lemma 4, the extreme rays in the dual cone have one-to-one correspondence with

the extreme points in the polyhedron by restricting |τ | = 1. The goal is equivalent

to characterizing the extreme points of the following polyhedron:

Ψ′µ+ Iλ = 1 or − 1 ⇔ [Ψ′ I]

 µ

λ

 = 1 or − 1 (6.18)

where µ|L|×1 is the line variables vector with components that µl = µ+
l − µ−l ,∀l,

λ|N |×1 is the bus variables, Ψ′|N |×|L| is the PTDF matrix, I|N |×|N | is identity matrix,

and 1|N |×1 is the unit vector with all components equal to one.

After fixing τ , (6.15) is a linear system with |N |+|L| variables and |N | constraints.

The extreme points of this polyhedron, i.e., the extreme rays of Q by fixing τ = 1, can
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be solved by partitioning the matrix [Ψ′ I] to a |N |×|N | basic matrix and a |N |×|L|

non-basic matrix. The way to partition [Ψ′ I] is to select i, 0 ≤ i ≤ |N | line variables

µl and (|N | − i) bus variables λn to be the basic variables. Correspondingly, the rest

(|L| − i) line variables µl and i bus variables λn are selected to be non-basic variables

and equal to zero. Let Ψ′
L̃,Ñ

denote the resulting PTDF sub-square-matrix by se-

lecting i columns corresponding to the basic line variables and i rows corresponding

to the non-basic bus variables. Denote the extreme ray that is characterized by the

selection of i lines and i, 0 ≤ i ≤ |N | buses as i-dimensional extreme ray. Then the

basic line variables, denoted as µB, can be calculated by the following equation,

µB = (Ψ′
L̃,Ñ

)−11̃ (6.19)

where 1̃ is the unit vector defined previously with suitable dimension. µ+
l and µ−l , ∀l

are determined based on the sign of µl,∀l. Then, λn,∀n are calculated according to

(6.15). Finally, φ−g and φ+
g ,∀g are determined based on the sign of λn(g),∀g according

to (6.14).

These extreme rays are corresponding to γ5
L̃,Ñ

and γ6
L̃,Ñ

. These extreme rays are

characterized by the combinatorial selection of lines and buses in the system.

With the above lemmas, all the extreme rays in Q are characterized.

Proposition 6. The extreme rays in the dual cone include all the extreme rays

γ1, γ2, ..., γ6.

Proof. The results follow directly from Lemma 3 and Lemma 5. Since all possible

cases of τ are included, these are all the extreme rays.

6.3 Applications

In this section, the derived extreme ray feasibility cuts are applied to the unit

commitment problem with uncertainty. Two types of uncertainties are studied, the
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single-generator-failure contingency (G-1) and load uncertainty. In the G-1 contin-

gency modeling, a single generator could fail in any period. The system requires a

feasible post-contingency dispatch in every contingency scenario. In the load uncer-

tainty modeling, the loads at buses could vary in ranges. The loads can be seen as the

residual loads by subtracting dispatched renewable resources from consumers’ loads.

The system requires a feasible dispatch in any realized load uncertainty scenario.

6.3.1 Offline Study to Identify Crucial Extreme Rays

Although all extreme rays have been characterized, the number of crucial extreme

rays, γ5 and γ6 in Lemma 5, is exponential, which is at the scale of the combination

number |N | + |L| choose |N |. It is not practical to enumerate all the extreme rays.

Lemma 5 shows γ5 and γ6 are characterized by the combinatorial selection of lines

and buses in the system. From Corollary 2, the selection of lines corresponds to the

congested transmission lines; and the selection of buses corresponds to the buses that

have generator with extra reserves. In other works, µ−l or µ+
l ,∀l is non-zero only if

the corresponding transmission line l is operating at its full capacity Fl. The extreme

rays induced by these selections are the crucial rays.

The selection of L̃ and Ñ can be based on historical data or experience, i.e., the

congested transmission lines and the generators with reserves that are likely not fully

dispatched. The selection of transmission lines and buses has the same number. It

indicates whenever a transmission line is congested, there is a bus where generators

have extra capacities that cannot be dispatched. Furthermore, there are strong con-

nections between the congested lines and the buses with extra capacities. In fact,

whenever a transmission line is at its full capacity, the bus with extra capacity is

likely close to the congested line. The chance of higher dimensional rays, i.e., several

transmission lines are at full capacities at the same time, to be crucial extreme rays
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is much smaller than the lower dimensional extreme rays. Therefore, based on the

engineering insights of the power system, the candidates of crucial extreme rays can

be limited to a reasonable number.

In this chapter, an offline simulation procedure is suggested to identify the crucial

extreme rays for a given power system. The procedure is described in Figure 6.1.

Historical data can also be used for the selection of the crucial extreme rays.

Generate

Base Case

Scenario

Run

Deterministic 

Unit Commitment

Commitment 

and Dispatch 

Solutions

Impose Uncertainty

Generate Real-time 

Scenarios

Check

Dispatch Feasibility

Critical

Line-bus

Pairs

Characterize 

Extreme Rays

Figure 6.1: Flow Chart of Identifying Crucial Extreme Rays

First, a base case scenario is generated as the day-ahead predicted load. Then

the deterministic UC model (with reserves requirements) is solved and the commit-

ment and dispatch solutions are obtained. Next, the uncertainty is imposed. The

uncertainty includes load fluctuation and system contingencies. The power flows re-

dispatch after imposing the uncertainty. The re-dispatch is then examined. If there
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is no feasible re-dispatch solution, then the transmission lines that reach their full

capacities and the buses that have undelivered capacities are recorded to characterize

the crucial extreme rays.

The crucial extreme rays, i.e., the selections of the transmission lines and buses

are inherited from the power system characteristics, such as the generation and load

distribution, the transferability of the network. The elections should be invariant with

uncertainty in the power system. Once the crucial extreme rays have been identified,

they can be utilized to respond to different types of uncertainties.

6.3.2 Sufficient Reserve Levels

Given the identified crucial extreme rays, the sufficient zonal reserve levels under

uncertainty can be determined. The sufficient zonal reserve levels, represented as

α% of the total zonal loads, give the lower bounds of the required reserves in order

to ensure the system security under uncertainty. If the α% level is not achieved,

then there are situations that some reserves cannot be dispatched due to system

transmission limits, consequently cause security issues. For a given crucial extreme

ray γ̄ and the α% level, denote the sufficient reserve level problem as SRL(γ̄, α). The

SRL(γ̄, α) determines whether the α% level is sufficient for the given crucial extreme

ray γ̄. In order to obtain the sufficient reserve levels for the entire system, all of the

crucial extreme rays are considered. The algorithm to find the sufficient reserve levels

is proposed and described in Algorithm 2.

This algorithm iteratively increases the α% level until it is sufficient to ensure

system security for all of the identified crucial extreme rays. The mixed integer

programming (MIP) SRL(γ̄, α) does not need to be solved to the optimality. Once

a feasible solution is found and the objective value with respect to the corresponding

crucial extreme ray is less than zero, it indicates the α% level is not sufficient for the
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Algorithm 2 Sufficient Reserve Level Algorithm

α = α0, Insufficient = true
while Insufficient = true do

Insufficient = false
Increase α level
for each crucial extreme ray γ̄i, 1 ≤ i ≤M do

Solve SRL(γ̄, α)
if BestIncubent < 0 then

Insufficient = true
Exit for Loop

else if BestBound > 0 then
Go to check the next crucial extreme ray

end if
end for

end while

given extreme ray. Then there is no need to check the remaining crucial rays, “for

loop” is quit, and the α% level is increased. Similarly, if the best bound of the MIP

is larger than zero, it indicates that the α% level is sufficient for the given crucial

extreme ray. By checking the incumbent solution and the best bound of the MIP,

the proposed algorithm can be solved efficiently. Once the α% level has nonnegative

solution of SRL(γ̄, α) for all of the crucial extreme rays, the α% level is claimed to

be the sufficient reserve level for the system under uncertainty.

The SRL(γ̄, α) is described as follows with different uncertainty modeling.

Sufficient Reserve Levels for G-1 Contingency

In this part, the uncertainty is modeled as the G-1 contingency. For each crucial ex-

treme ray γ̄ = (φ̄+
g , φ̄

−
g , µ̄

+
l , µ̄

−
l , λ̄n, τ̄) ∈ Q, denote the following generator contingency

sufficient reserve level problem as SRLGC(γ̄, α).
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min
∑
∀g

(
P max
g φ̄+

g − Pmin
g φ̄−g

)
ug(1− xg)

+
∑
∀l

Fl(µ̄
+
l + µ̄−l )−

∑
∀n

Dnλ̄n (6.20)

s.t. (6.3)− (6.5)

pg ≥ Pmin
g ug ∀g (6.21)

pg + rg ≤ Pmax
g ug ∀g (6.22)∑

∀g∈Zk

rg ≥ α%
∑
∀n∈Zk

Dn ∀k (6.23)

rg ≥ 0 ∀g (6.24)

ug ∈ {0, 1} ∀g (6.25)∑
g

xg = 1 (6.26)

xg ∈ {0, 1} ∀g (6.27)

The SRLGC(γ̄, α) aims at determining if the α% level is sufficient to ensure a fea-

sible dispatch for every post-contingency state given a set of feasible pre-contingency

commitment and generation solutions that satisfy the α% level reserve requirements.

In this formulation, it is assumed that once the generator is committed, the resulting

capacity will be [Pmin
g , Pmax

g ],∀g, which are the generators’ minimum and maximum

generation capacity. Equation (6.20) is the objective. If the objective value is less

than zero, from Corollary 2, it indicates that there is no feasible dispatch in some

post-contingency state; thus, the α% level is not sufficient to ensure the system G-1

security; otherwise the α level is sufficient for the given crucial extreme ray. Equations

(6.21) and (6.22) restrict pre-contingency generation levels with the consideration of

reserves. Equation (6.23) describes the zonal reserve requirements that the total zonal

reserves are more than α% of the total zonal loads. Equation (6.24) restricts single
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generator failure. Next, the non-linear terms ug(1− xg) are linearized as yg,∀g, and

the SRLGC(γ̄, α) is represented as follows.

min
∑
∀g

(P max
g φ̄+

g − Pmin
g φ̄−g )yg +

∑
∀l

Fl(µ̄
+
l + µ̄−l )−

∑
∀n

Dnλ̄n (6.28)

s.t. (6.3)− (6.5)

(6.21)− (6.27)

yg ≤ ug ∀g (6.29)

yg ≤ (1− xg) ∀g (6.30)

yg ≥ ug − xg ∀g (6.31)

0 ≤ yg ≤ 1 ∀g (6.32)

Sufficient Reserve Levels for Load Uncertainty

In this part, the uncertainty is modeled as the residual load uncertainty. For any

given γ̄ = (φ̄+
g , φ̄

−
g , µ̄

+
l , µ̄

−
l , λ̄n, τ̄) ∈ Q, denote the following load uncertainty sufficient

reserve level problem as SRLLU(γ̄, α).

min
∑
∀g

(P max
g φ̄+

g − Pmin
g φ̄−g )ug +

∑
∀l

Fl(µ̄
+
l + µ̄−l )−

∑
∀n

dnλ̄n (6.33)

s.t. (6.3)− (6.5)

(6.21)− (6.25)

d ∈ U (6.34)

The differences between SRLLU(γ̄, α) and SRLGC(γ̄, α) is loads in SRLLU(γ̄, α)

become variables and can be varied in a given load uncertainty set U. SRLLU(γ̄, α)

aims at determining if the α% level is sufficient to ensure a feasible dispatch for

any load realization within the uncertainty set given a set of feasible commitment
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and generation solutions that satisfy the α% level reserve requirements for predicted

loads. The load uncertainty set is modeled as a budget uncertainty set U(κ1, κ2, κ3)

(Jiang et al., 2014). It is represented as follows.

U(κ1, κ2, κ3) =

d :

(1− κ1%)Dnt ≤ dnt ≤ (1 + κ1%)Dnt ∀n, t∑
∀n dnt ≤ (1 + κ2%)

∑
∀nDnt ∀t∑

∀t
∑
∀n dnt ≤ (1 + κ3%)

∑
∀t
∑
∀nDnt

 (6.35)

The security conservativeness can be controlled by modifying the parameters

(κ1, κ2, κ3).

In the algorithm, the MIP problems typically do not need to be solved to the

optimality. Once a feasible solution is found and the objective value with respect to

the corresponding crucial extreme ray is less than zero, it indicates the α% level is

not sufficient for the given extreme ray. Then there is no need to check the remaining

crucial rays. The loop is terminated and the α% level is increased. Similarly, if the

best bound of the MIP is larger than zero, it indicates that the α% level is sufficient

for the given crucial extreme ray. By checking the incumbent solution and the best

bound of the MIP, the proposed algorithm can be solved efficiently. Once the α%

level has nonnegative solution of SRL(γ̄, α) for all of the crucial extreme rays, the

α% level is claimed to be the SRL for the system with corresponding uncertainty.

In these SRL models, the UC indicator, ug, ∀g, are variables which satisfies the

feasibility condition of the nominal scenario. Therefore, in the SRL formulations, it

picks the worst case commitment status. The reserve level obtained by these models

are conservative, but sufficient. Practically used reserve levels are much lower. How-

ever, these reserve levels provide a metric to review the effectiveness of the method.
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6.3.3 Security Constraints

In this part, the security constraints for the UC problem with uncertainty are

developed based on Proposition 1 and the identified crucial extreme rays. The security

constraints change the generators’ commitment status and dispatch schedule to ensure

the system security under uncertainty. The constraints cut unreliable MIP solutions

from the deterministic UC feasible region. From another prospective, the constraints

re-allocate the reserves in the system in order to avoid the undeliverability of the

reserves due to system transmission limits. It is a mathematical way to determine the

reserves in the system. The security constraints with respect to different uncertainty

modelings are given as follows.

Security Constraints for G-1 Contingency

The security constraints with respect to G-1 contingency are given as follows.

p̂Hgt ≤ Pmax
g ugt ∀g, t (6.36)

p̂Hgt ≤ pgt +R10
g ∀g, t (6.37)

p̂Lgt ≥ Pmin
g ugt ∀g, t (6.38)

p̂Lgt ≥ pgt −R10
g ∀g, t (6.39)∑

∀g

G1sg
(
p̂Hgtφ̄

+
ig − p̂Lgtφ̄−ig

)
+
∑
∀l

Fl(µ̄
+
il + µ̄−il )

−
∑
∀n

Dntλ̄in ≥ 0 ∀s, i, t (6.40)

Equation (6.36)-(6.39) restrict the post-contingency available generation capaci-

ties, p̂Lgt, p̂
H
gt,∀g, t. The capacities are limited by the commitment status, ugt,∀g, t;

the physical generation capability, Pmin
g , Pmax

g ,∀g, t; and the 10-minute fast-ramping

capability, R10
g ,∀g. Equation (6.40) are the security constraints. G1sg,∀s, g, are the

indicator parameters of generator failures. If the generator fails, G1sg = 0; otherwise
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G1sg = 1. γ̄i = (φ̄+
ig, φ̄

−
ig, µ̄

+
il , µ̄

−
il , λ̄in, τ̄i),∀i, are the identified crucial extreme rays,

which are parameters that have been calculated from offline study.

One of the extreme rays, the zero-dimensional extreme ray, is characterized by

selecting zero line variables and all bus variables to be basic variables. Then λ̄n =

1,∀n; µ̄+
l = µ̄−l = 0,∀l; φ̄−g = 0,∀g; φ̄+

g = 1,∀g; i.e., γ̄0 = (φ̄+
0g, φ̄

−
0g, µ̄

+
0l, µ̄

−
0l, λ̄0n, τ̄0) =

(1,0,0,0,1, 1). The corresponding G-1 security constraints with respect to γ̄0 are

simplified as follows.

(6.36)− (6.37)∑
∀g

G1sgp̂
H
gt −

∑
∀n

Dnt ≥ 0 ∀s, t (6.41)

The security constraints require the post-contingency available capacities must

be more than the total loads, which is a necessary condition to ensure a feasible

post-contingency dispatch. In fact, the above security constraints with respect to the

zero-dimensional extreme ray are equivalent to the reserve requirements as follows.

pgt ≥ Pmin
g ugt ∀g, t (6.42)

pgt + rgt ≤ Pmax
g ugt ∀g, t (6.43)

rgt ≤ R10
g ∀g, t (6.44)∑

∀q∈G

rqt ≥ rgt + pgt ∀g, t (6.45)

The security constraints and the reserve requirements are connected. For the se-

curity constraints with respect to higher-dimensional crucial extreme rays, weighted

capacities, loads, and transmission line limits are combined together to restrict the al-

location of the reserves in the system. The security constraints give the mathematical

supports to determine the reserves in the system.
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Security Constraints for Load Uncertainty

The security constraints with respect to load uncertainty are given as follows.

pHgt ≤ Pmax
g ugt ∀g, t (6.46)

pHgt ≤ pg,t−1 +Rhr
g ug,t−1 +RSU

g vgt ∀g, t (6.47)

pLgt ≥ Pmin
g ugt ∀g, t (6.48)

pLgt ≥ pg,t−1 −Rhr
g ∀g, t (6.49)∑

∀g

(
pHgtφ̄

+
ig − pLgtφ̄−ig

)
+
∑
∀l

Fl(µ̄
+
il + µ̄−il )

−
∑
∀n

d∗intλ̄in ≥ 0 ∀i, t (6.50)

Equation (6.46)-(6.49) restrict the hourly available generation capacities, i.e.,

pLgt, p
H
gt,∀g, t. The capacities are limited by the commitment status, the physical

generation capability, and the hourly-ramping capability. Equation (6.50) gives the

security constraints for load uncertainty. d∗int,∀i, n, t, denote the worst-case loads

given a certain extreme ray i, a time period t, and an uncertainty set U. They

can be solved by the following worst-case load problem, denoted as WL(i, t,U),

d∗int = arg maxWL(i, t,U),∀i, n, t.

max
∑
∀n

dntλ̄in (6.51)

s.t. d ∈ U (6.52)

This approach is similar to the TSRO. However, the crucial extreme rays are

identified by offline study. The crucial extreme rays are used as fixed parameters in

solving the worst-case loads in the uncertainty set, avoiding the bi-linear terms in the

TSRO. The conservativeness can be controlled by designing different uncertainty sets

and tuning parameters of the uncertainty sets.
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Unit Commitment Model

Finally, the security constraints are included in the SCUC problem to obtain the reli-

able day-ahead UC schedule under uncertainty. The formulation is based on Hedman

et al. (2010), and given as follows, denoted as the SCUC with security constraints,

min
∑
∀t

∑
∀g

(
CSU
g vgt + CNL

g ugt + Cgpgt
)

(6.53)

s.t. vgt ≥ ugt − ug,t−1 ∀g, t (6.54)

t∑
q=t−UT g+1

vgq ≤ ugt ∀g, t (6.55)

t+DT g∑
q=t+1

vgq ≤ 1− ugt ∀g, t (6.56)

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt ∀g, t (6.57)

pgt − pg,t−1 ≤ Rhr
g ug,t−1 +RSU

g vgt ∀g, t (6.58)

pg,t−1 − pgt ≤ Rhr
g ugt +RSD

g (vgt − ugt + ug,t−1) ∀g, t (6.59)

int =
∑
∀g∈G(n)

pgt −Dnt ∀n, t (6.60)

− Fl ≤
∑
∀n

Ψlnint ≤ Fl ∀l, t (6.61)

∑
∀n

int = 0 ∀t (6.62)

ugt ∈ {0, 1} ∀g, t (6.63)

0 ≤ vgt ≤ 1 ∀g, t (6.64)

u,g ∈ C (6.65)

Equation (6.53) is the objective function to minimize the total costs including

the startup cost, the no-load cost, and the dispatch cost. Equations (6.54)-(6.59) are

resource-level constraints. Equation (6.54) specifies the relation between the commit-

ment variables and the startup variables. Equation (6.55)-(6.56) are the minimum
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up/down requirement constraints (Rajan and Takriti, 2005). Equation (6.57) restricts

the generation dispatch bounds. Equations (6.58)-(6.59) are the hourly ramping con-

straints. Equations (6.60)-(6.62) are system-level constraints. Equation (6.63)-(6.64)

specify the unit commitment status variables and the startup variables. Equation

(6.65) represents the generic form of the developed security constraints. The re-

serve requirements are not formulated explicitly, but are restricted by the security

constraint implicitly.

The problem is still formulated as a deterministic model, thus, can be solved

efficiently. Compared with the deterministic UC formulation, a set of constraints

(6.65), i.e., the security constraints, are included to ensure the system reliability

under uncertainty.

6.4 Cases Study

In this section, the problem is modeled as a 24-period day-ahead SCUC prob-

lem with uncertainty. Two test cases are studied in this section, a 73-bus system

and a 118-bus system. The original data can be found in University of Washington

(2015). Table 6.1 lists the characteristics comparison of the two systems. There are

more generators (maximum capacities range from 12MW to 400MW) in the 73-bus

system; while there are fewer generators (maximum capacities range from 30MW to

420MW) in the 118-system, but the network structure of the 118-bus system is more

complicated.

Table 6.1: Test Cases Comparison
# # # Total Gen. Peak
of of of Capacities Load

Buses Lines Gen. (MW) (MW)
RTS96 73-bus system 73 120 99 10,215 8,550
IEEE 118-bus system 118 186 54 7,220 4,519
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IBM ILOG CPLEX version 12.6, with Concert Technology version 3.0, is used to

implement the test cases. A Dell Precision T7500 Workstation is used to run the C++

code. The processor of the workstation is a dual six-core Intel Xeon Processor X5690

(4.46GHz, 12M L3, 6.4GT/s). The memory of the workstation is 48GB, 1, 333MHz,

DDR3RDIMM, ECC (6DIMMS). The MIP gap for CPLEX is set to be 0.5%.

6.4.1 RTS96 73-Bus System

The RTS96 73-bus system naturally has three zones. Each zone has 24 buses and

are almost identical with each other except that Zone3 has one more bus. Figure 6.2

shows the network of this 73-bus system.

Figure 6.2: RTS96 73-Bus System
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Crucial Extreme Rays

Different load profiles and transmission limits are tested to study the crucial extreme

rays of the 73-bus system. The case profile identity “P1-P2-P3-P4” is described as

follows.

• P1: Two different network configurations are tested, a 117-line system (P1=117)

and a 120-line system (P1=120). Three transmission lines are switched off and

on (the lines connecting bus 111-113, 211-213, 311-313 respectively) in these

two networks.

• P2: Two different transmission systems are tested, a normal system (P2=N) and

a congested system or (P2=C). Three transmission lines (the lines connecting

bus 114-116, 214-216, 314-316 respectively) are derated from 500MW to 350MW

in the congested system.

• P3: Two peak load distributions are tested. Figure ?? represents the peak load

comparison of Load1 (P3=1) and Load2 (P3=2) in a single zone (the other two

zones are duplicated). The total peak loads of both cases are 2,850MW in the

single zone. However, in Load2 case, the bus 113 has a very high peak load.

• P4: Three typical load percentage profiles are tested. In the high-load day

(P4=H), the loads across all periods vary from 59%-100% of the peak load; in

the medium-load day (P4=M), the loads vary from 41%-66% of the peak load;

in the low-load day (P4=L), the loads vary from 33%-52% of the peak load.

First, a benchmark of each system variation under G-1 contingency is studied. The

problem is formulated as a TSSP, where the first stage is the pre-contingency base case

and the second stage includes all the post-contingency scenarios. In the base case, all

of the generators are available, i.e., there is no generator-failure in the system. In the

second stage, each scenario represents an G-1 contingency, where one of the generators
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Figure 6.3: Peak Load Distribution

is failed in a certain period. The stochastic extensive form formulation (SEF) of this

problem, by including all post-contingency scenarios explicitly, is very difficult to

solve (Li et al., 2015). The SEF introduces many second-stage (post-contingency)

variables and constraints into the model, and causes the MIP to take a long time

(to branch-and-bound, add cutting planes) to find the optimal solution within the

desirable optimality gap. Instead of solving the SEF, a modified extensive form (MEF)

algorithm is utilized as the benchmark. Figure 6.4 describes the procedure of the MEF

algorithm. The master problem at first only includes the pre-contingency base case

to avoid formulating all second-stage scenarios into the problem. After obtaining a

set of UC and dispatch solutions, the load-shedding tests are carried out for post-

contingency scenarios. If there exists non-zero load-shedding in some scenarios, then

the corresponding scenario is added into the master problem with the whole set of

variables and constraints of the scenario as they are formulated in the SEF. If there is
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no load-shedding, the solution has met the G-1 security requirement. The MEF can

solve the G-1 reliable UC problem for small test cases (73-bus system and 118-bus

system) very efficiently (within few minutes). However, since each iteration of the

algorithm introduces many variables and constraints into the MIP, the algorithm is

expected to be unscalable.

Master Problem

Scenario 1

Period 2

Load Shedding Test

Scenario 2

Period 1

Scenario 1

Period 1

Scenario s

Period t... ...

If load shedding

> 0

Solution

No

Add scenario

variables

constraints

Yes

Figure 6.4: Modified Extensive Form Algorithm

Table 6.2 lists the UC solutions under different load profiles and network features.

From the test results, when the thermal limits of the three selected lines are

500MW, the deterministic UC with reserves policy can ensure G-1 security for al-

most all cases except for the 117-line system under Load2 and high-load day. Simi-
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Table 6.2: Modified Extensive Form Algorithm Results
Transmission lines # 117 117 117 120 120 120
Normal/Congested N N N N N N
Load distribution 1 1 1 1 1 1
Load percentage profile L M H L M H
Optimal solution without G-1 reliability (k$) 607 979 3,033 607 977 3,024
Load-shedding scenarios # 0 0 0 0 0 0
Total added scenarios # 0 0 0 0 0 0
Total iterations # 1 1 1 1 1 1
Optimal solution with G-1 reliability (k$) 607 979 3,033 607 977 3,024
Solution time (sec.) 12 8 12 10 10 13

Transmission lines # 117 117 117 120 120 120
Normal/Congested N N N N N N
Load distribution 2 2 2 2 2 2
Load percentage profile L M H L M H
Optimal solution without G-1 reliability (k$) 608 978 3,025 608 977 3,026
Load-shedding scenarios # 0 0 7 0 0 0
Total added scenarios # 0 0 18 0 0 0
Total iterations # 1 1 8 1 1 1
Optimal solution with G-1 reliability (k$) 608 978 3,025 608 977 3,026
Solution time (sec.) 10 10 167 10 9 12

Transmission lines # 117 117 117 120 120 120
Normal/Congested C C C C C C
Load distribution 1 1 1 1 1 1
Load percentage profile L M H L M H
Optimal solution without G-1 reliability (k$) 608 979 3,075 607 979 3,032
Load-shedding scenarios # 0 83 147 0 35 80
Total added scenarios # 0 91 154 0 44 127
Total iterations # 1 4 3 1 5 7
Optimal solution with G-1 reliability (k$) 608 982 3,098 607 979 3,035
Solution time (sec.) 11 486 276 11 158 1,014

Transmission lines # 117 117 117 120 120 120
Normal/Congested C C C C C C
Load distribution 2 2 2 2 2 2
Load percentage profile L M H L M H
Optimal solution without G-1 reliability (k$) 607 977 3,057 608 980 3,110
Load-shedding scenarios # 2 61 85 0 109 198
Total added scenarios # 2 82 146 0 109 272
Total iterations # 2 5 5 1 2 6
Optimal solution with G-1 reliability (k$) 607 981 3,063 608 986 3,130
Solution time (sec.) 34 403 918 12 242 3,092

larly, under the low-load day, the deterministic reserve policy can ensure G-1 security

for almost all cases except for the 117-line system under Load2 and the de-rated

transmission lines. Therefore, when the loads are low, there is little transmission con-

gestion, the reserves can be dispatched to respond to the contingencies. Adding more
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transmission lines may not result in decreasing the total costs, in contrast, under the

medium-load or high-load day, the total cost of the 120-line system is much higher

than that of the 117-line system. Switching from Load1 to Load2 generally increases

the total costs. However, there are cases that the total costs under the Load2 is

lower than the total costs under the Load1, such as the 117-line system under the

de-rated transmission lines and the high-load day. From all 24 variations, the 120-line

system under the Load2, the de-rated transmission lines, and the high-load day has

the highest total costs, and it takes the longest time to solve this system variation.

The solution time is positively co-related to the total costs.

Next, the lines that reach the thermal limits and the buses with extra capacities

are checked in each load-shedding scenario. As mentioned previously, there are few

load-shedding scenarios when the total loads are low or the transmission line capac-

ities are high. For the systems with load-shedding under the deterministic reserve

policy, the results show that the systems share the same lines that reach the thermal

limits. Moreover, for each line that reaches the thermal limits, there are certain corre-

sponding buses with extra capacities that cannot be delivered. Specifically, there are

6 transmission lines that reach the thermal limits, and three of them are the de-rated

transmission lines with 350MW thermal limits (the lines connecting bus 114-116, 214-

216, 314-316 respectively). The transmission lines and their corresponding buses are

marked in Figure 6.2 and listed in Table 6.3. From the test results, different load

profiles have little impacts on the selection of the transmission line and bus pairs to

characterize the crucial extreme rays. The transmission lines that reach their thermal

limits under one system variation often reach the limits in other system variations.

Table 6.3: Lines Reach Limits and Buses with Extra Capacities
Line 11 23 49 61 87 99
Bus 107 116 207 216 307 316

118 218 318
322
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In the following tests, the 117-line system under the Load2, the de-rated transmis-

sion lines (117-C-2 system variation) is tested as the nominal test case. This variation

is selected since it has moderate system congestion. The offline simulation procedure

described in Figure 6.1 is performed to identify the crucial extreme rays of the system.

Total nineteen crucial extreme rays are identified. The combinatorial selection of the

buses and the lines are listed in Table 6.4.

Table 6.4: Crucial Extreme Rays for 73-Bus System
# Line Bus
1 11 107
2 23 116
3 23 118
4 49 207
5 61 216
6 61 218
7 87 307
8 99 316
9 99 318
10 99 322
11 23,49 116,207
12 23,87 116,307
13 23,49 118,207
14 23,61 118,218
15 49,87 207,307
16 49,99 207,322
17 11,49,87 107,207,307
18 23,49,87 116,207,307
19 49,87,99 209,307,322

Sufficient Reserve Levels for G-1 Contingency

Two reserve policies are adopted to study the sufficient reserve levels for G-1 contin-

gency, a single-zonal and a 3-zonal reserve policies. The single-zonal reserve policy

requires the total reserves in the power system to satisfy the α% level of the total

predicted loads; while the 3-zonal reserve policy adopts the zonal partition based on

the system network structure (three duplicated zones), and requires the reserves in

each zone to satisfy the α% level of the total predicted loads within the corresponding
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zone. Figure 6.5 represents the sufficient reserve levels and the corresponding total

reserves required in the system under two reserve policies.
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Figure 6.5: Zonal Sufficient Reserve Levels

From the results, the sufficient reserve levels are high under both single-zonal and

3-zonal reserve policies. The 3-zonal reserve policy decreases the sufficient reserve

levels, but not significantly. It indicates that a better zone partition is desired. The

system requires more than 1,000MW reserves to ensure G-1 security while the largest

generator capacity is 400MW. When the loads are low, the system is not limited by

the transmission capability very much, most of the reserves can be delivered and the

sufficient reserve level is relatively low. When the loads are high, the choices of the

reserve locations are limited; thus, the sufficient reserve levels are decreasing as the

total loads increases. However, in some medium range of the peak-load (from 70% to

80% of the total loads), even 2,000MW reserves cannot ensure the system security. It

indicates that requiring certain reserve levels in each zone may not be a very effective
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policy to ensure system security, especially when the locations of the reserves can be

selected from many buses. Bad reserve allocations result in the load-shedding, and it

requires a large amount of reserves to avoid the bad allocations.

Next, the total reserves obtained from the MEF G-1 reliable solution and the

sufficient reserves in each period of a high-load day are compared, the results are

represented in Figure 6.6.
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Figure 6.6: Total Sufficient Reserve Levels Comparison

From the test results, the total reserves solved from the MEF algorithm are much

lower than the sufficient reserve levels for the same load percentage. It indicates that

the total reserves to ensure system security can be low if the reserves are allocated

properly.
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Sufficient Reserve Levels for Load Uncertainty

Four uncertainty sets are adopted to study the sufficient reserve levels for load un-

certainty. As defined in (6.35), parameters (κ1, κ2, κ3) characterize the uncertainty

sets. The four studied uncertainty sets are selected as (κ1, κ2, κ3) = (5, 3, 2), (8, 5, 3),

(10, 7, 5), (15, 12, 10). 3-zonal reserve policy is adopted. Figure 6.7 represents the

sufficient reserve levels for load uncertainty with different uncertainty set modeling.
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Figure 6.7: Sufficient Reserve Levels of Different Uncertainty Set Modeling

From the test results, the sufficient reserve levels increase as the load variations

increase. Moreover, even under the low load variation, i.e., (κ1, κ2, κ3) = (5, 3, 2), the

system requires a lot of reserves in order to ensure the system security. The results

confirm that reserve level policies are not very efficient to ensure system security.
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Security Constraints for G-1 Contingency

The computational performances of the proposed security constraints are studied. In

this part, the problem is formulated as the UC problem with G-1 contingency. Three

solution methods are compared.

The first solution method is the Benders’ decomposition (BD) algorithm. The sub-

problem is decomposed into each generator contingency in each time period. Multiple

Benders’ cuts are added to the master problem in each iteration.

The second solution method is the MEF as described previously. For both BD and

MEF, the reserve requirements to cover the lost of the largest generator are modeled

in the pre-contingency base case.

The last solution method, referred to as (ER), is the proposed approach that solves

the problem by including the extreme rays induced security constraints. Table 6.5

show the computational performance for the UC problem with G-1 contingency. The

high-load day and medium-load day profiles are tested. In the low-load day, the

deterministic reserve policy can ensure the system security since there is no congestion

in the power system.

Table 6.5: Computational Performance Comparison
High-load Medium-load

BD MEF ER BD MEF ER
Objective ($) 3,063,440 3,063,490 3,064,160 980,855 981,357 980,779
Solution time (sec.) 6,481 918 40 2,895 483 46
Iteration # 288 5 - 147 5 -
Added variables 0 42,194 0 0 23,698 0
Added constraints 7,866 96,214 8,664 2,875 54,038 8,664

The cost efficiencies of the three methods are comparable. The small differences

result from the MIP gap since all problems are not solved to optimal but to the solu-

tions within 0.5% MIP gap. The proposed approach solves the problem much faster

than the BD and MEF methods. There are two important factors that contribute

to improve the solution time. First, the proposed approach is not an iterative al-
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gorithm. It solves the problem only once as a deterministic formulation. Secondly,

the proposed approach doses not introduce extra scenario-based variables into the

formulation. The uncertainty is considered by including a set of constraints into the

formulation. With these two features, the proposed approach has big advantages in

solution time when the system is large.

In the proposed approach, the computational burdens are shifted to the offline

simulations to identified the crucial extreme rays. The offline study has identified 19

extreme rays for this test case. Moreover, there are 19 out of 99 generator-failures

cause security issues in the system. The security constraints are applied to all time

periods. Therefore, there are total 8, 664 security constraints added to the UC formu-

lation. The number of the cuts can be further reduced by more offline studies, and it

is left for future work.

Next, the average computation performance of the proposed approach is studied.

One hundred high-load day scenarios are generated. In each scenario, the loads are

normally distributed with a mean as the corresponding base-case load and a standard

deviation as 5%, 8%, 10 % of the corresponding base-case load respectively. The solu-

tion times are summarized in Table 6.6. Table 6.6 listed the average, minimum, and

maximum solution time among the 100 generated cases. Moreover, the solution time

distribution for the 100 generated cases is presented. The solution time distribution

is divided into 7 bins. The number of test cases in each bin is listed in the table.

Table 6.6: Solution Time Performance
Summary (s) Distribution (#)

Test Case Avg. Min Max 0-20 20-30 30-40 40-50 50-60 60-70 70+
5% 35.48 16 91 8 31 34 14 9 2 2
8% 38.19 16 106 4 37 29 14 6 2 8

10% 38.96 22 89 0 36 32 16 4 6 6

The test results show that the proposed security constraints approach is consistent

in solution times, most test cases can be solved within a minute. Furthermore, the
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load-shedding tests show that the obtained solutions are G-1 reliable for all of the

generated scenarios. The identified crucial extreme rays are sufficient for the system

while the loads vary.

Security Constraints for Load Uncertainty

In this part, the computational performances of the security constraints for the load

uncertainty are studied. Two policies are compared. The first policy is to solve the

problem as the deterministic UC model with the 3-zonal reserves; the second policy is

to solve the problem by including the security constraints in the UC model. The high-

load day profile is selected as the based case. Once the day-ahead UC model is solved,

the commitment status are passed to the dispatch stage. In the dispatch stage, 100

test scenarios are generated. The loads in each test scenario are normally distributed

with a mean of the corresponding base case load and a standard deviation as 5%, 8%,

10%, 15% of the corresponding base case load. Different uncertainty sets are adopted

to respond the different level of load uncertainty. Specifically, the uncertainty sets

(κ1, κ2, κ3) = (5, 3, 2), (8, 5, 3), (10, 7, 5), (15, 12, 10) are adopted to respond to the

5%, 8%, 10%, 15% standard deviation correspondingly. In order to compare the cost

efficiency, a value of lost load (VOLL) is introduced to penalize the load-shedding,

the value is set to be $10, 000/MWh. Table 6.7 show the computational results for

the load uncertainty.

From the test results, the proposed security constraints improve the system secu-

rity. Compared with the deterministic zonal reserve policy, the commitment costs of

the proposed approach increase, but the number of load-shedding scenarios reduce a

lot. On average, the expected total costs improve consistently but not very signifi-

cantly. However, on the other hand, the total costs for the worst-case scenario improve

significantly. There are a few load-shedding scenarios under the proposed approach.
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Table 6.7: Solutions with Load Uncertainty
Load demand std. dev. 5% 8% 10% 15%
Reserve level 5% 8% 10% 15%

Deter. Commitment cost ($) 397,716 429,913 449,690 509,670
UC Base-case total cost ($) 3,050,970 3,086,860 3,112,100 3,203,940
+ Load-shedding scenarios # 12 21 31 21

Zonal Average dispatch cost ($) 2,662,990 2,694,640 2,737,640 2,819,940
Reserves Average total cost ($) 3,060,700 3,124,550 3,187,330 3,329,610

Worse-case total cost ($) 3,232,940 3,432,670 3,940,620 4,449,770
Uncertainty set (5,3,2) (8,5,3) (10,7,5) (15,12,10)

Extreme Commitment cost ($) 401,543 432,658 457,812 521,383
Ray Base-case total cost ($) 3,049,120 3,086,040 3,121,660 3,222,610
+ Load-shedding scenarios # 1 2 5 12

Uncertainty Average dispatch cost ($) 2,650,620 2,665,470 2,693,910 2,784,040
Set Average total cost ($) 3,052,160 3,098,130 3,151,730 3,305,420

Worse-case total cost ($) 3,103,080 3,207,240 3,450,880 3,914,660
Average total cost (%) 0.28% 0.85% 1.13% 0.73%
Worse-case total cost (%) 4.18% 7.03% 14.19% 13.67%

The scenarios are extreme scenarios that fall outside of the modeled uncertainty sets.

By using different uncertainty set modeling, the security can be controlled. However,

there is always a trade-off between the security and the cost efficiency. Generally, the

proposed security constraints approach is a better way than the deterministic reserve

requirements to protect the system under the load uncertainty, especially under some

extreme load scenarios.

6.4.2 IEEE 118-Bus System

For this test case, the crucial extreme rays are studied and the test result for the

UC problem with G-1 contingency is presented.

Crucial Extreme Rays

The offline simulations indicate that there are seven transmission lines reach the

thermal limits in the load-shedding scenarios. The transmission lines reached the

thermal limits and the buses with extra capacities are marked in Figure 6.8 and

listed in Table 6.8.

In this system, seven crucial extreme rays are identified from offline simulations.

The combinatorial selection of transmission lines and buses are listed in Table 6.9.
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Figure 6.8: IEEE 118-Bus System

Table 6.8: Congested Lines and Responsible Buses
Line 11 37 49 110 114 148 161
Bus 8 24 8 62 80 87 103

62 65 99
65 66

Table 6.9: Crucial Extreme Rays for 118-Bus System
# Line Bus
1 37,148 24,87
2 49,148 65,87
3 110,148 62,87
4 110,148 65,87
5 114,148 80,87
6 37,49,148 24,65,87
7 37,148,161 24,87,100
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Security Constraints for G-1 Contingency

Table 6.10 compares the computational performance under different solution methods.

The previous analysis drawn from the 73-bus system are confirmed. The proposed

security constraints approach solves the problem efficiently.

Table 6.10: Computational Performance Comparison
High-load Medium-load

BD MEF ER BD MEF ER
Objective ($) 1,049,240 1,048,150 1,048,280 650,666 650,719 650,666
Solution time (sec.) 223 270 23 57 21 20
Iteration # 26 3 - 6 2 -
Added variables 0 44,217 0 0 7,514 0
Added constraints 883 100,827 9,072 41 17,134 9,072

6.5 Conclusions

With the current computational capability and limited scheduling periods to solve

day-ahead UC models, stochastic UC models are not implemented in practice to solve

the UC problem with uncertainty. Reserve requirement policies are wildly adopted

to hedge uncertainty; however, simple zonal reserve level requirements may not be

sufficient to ensure system reliability. The procured reserves may not be able to be

delivered due to transmission limits.

This chapter studies a set of feasibility cuts to improve system reliability. The

cuts are induced by the extreme rays of the dual cone. The extreme rays of the

dual cone are explicitly characterized. This chapter shows the system reliability is

related to the transmission lines that reach their limits and the buses that have extra

undelivered reserves. The extreme rays of the dual cone can be characterized by

the combinatorial selections of the transmission lines and buses of the power system

network. As a result, the extreme ray feasibility cuts can be determined by offline

simulations based on engineering insights. The proposed approach solves the UC

problem with uncertainty as a deterministic model with the extreme ray feasibility
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cuts, which is equivalent to the stochastic models. The proposed approach avoids

the introduction of extra scenario-based variables and constraints, or the iterative

process to solve the problem. Most computational burdens are able to be shifted

from scheduling periods to the offline studies. The deterministic equivalent model

with the extreme ray feasibility cuts can be solved efficiently and a more reliable

day-ahead scheduling solution can be obtained.
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Chapter 7

ENHANCING STOCHASTIC UNIT COMMITMENT WITH DATA MINING

7.1 Introduction

Stochastic unit commitment (SUC) problem is usually formulated as two-stage

models where commitment decisions are determined in the first stage and dispatch

decisions are determined in the second stage after the uncertain data are realized. The

two-stage stochastic unit commitment is challenging to solve with current computa-

tional capability and limited scheduling time due to the inclusion of many scenario-

based variables and constraints, however.

In this chapter, on top of Chapter 6, a framework is proposed to replace the two-

stage stochastic UC by an enhanced deterministic model with a set of constraints,

in order to avoid the inclusion of scenario-based variables and constraints. First,

an offline simulation procedure is used to identify the potential crucial constraints;

then, a data mining algorithm is applied to select the included crucial constraints,

given a new forecast system operating condition. With the proposed framework,

the difficulties of handling uncertainty are shifted from the scheduling periods to

the offline simulation and data mining. The resulting enhanced deterministic model

with the additional constraints can be solved efficiently and the system security is

improved.

The rest of this chapter is organized as follows. Section 7.2 introduces the frame-

work to transform the SUC to the deterministic model with a set of constraints.

Section 7.3 represents a case study. Finally, section 7.4 concludes the chapter.
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7.2 Methodology

A two-stage SUC can be replaced by an equivalent deterministic mixed integer

program (MIP) with the inclusion of extra constraints (Benders, 1962), as shown in

Figure 7.1.

Figure 7.1: Stochastic Unit Commitment Formulations

Benders’ decomposition algorithm (Benders, 1962) finds the constraints (feasibility

cuts and optimality cuts) iteratively. The drawback of Benders’ decomposition is

that the master program is solved repeatedly and takes longer time to solve in each

iteration as the algorithm proceeds, because of the inclusion of more constraints. If

all necessary constraints can be identified from offline study and be included all at

once, then the solution time can be reduced significantly.

In this chapter, the focus is on a SUC problem that requires the system having a

feasible re-dispatch after any single-generator-failure (G-1) contingency. This prob-

lem is of interests because: 1) The North American Electric Reliability Corporation

(NERC) requires the N-1 reliability criterion for system operation, which states the

system must be able to withstand any single bulk element failure (generator, trans-

mission line, or transformer) (North American Electric Reliability Corporation, 2007).
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The failure of generator has more impacts on the system security. The state-of-art

market models are able to handle transmission outage contingencies by imposing line

outage distribution factor (LODF) based transmission security constraints, but are

lack of similar deterministic constraints to hedge generator contingencies. 2) The

G-1 contingencies are discrete uncertainty events which can be enumerated and listed

explicitly in the SUC formulation. The proposed framework can be applied to other

types of SUC problems with simple modifications.

All potential constraints to replace the two-stage G-1 secured UC formulation

into the deterministic equivalent model have been characterized in Chapter 6. The

constraints are indexed by (r, s, t), where r represents the extreme rays in a system

dependent polyhedron, s represents the contingency scenarios (which generator is

failed), t represents the time periods the contingency happen. The extreme rays in

the polyhedron can be characterized by combinatorial selections of the transmission

lines and buses in the system, therefore the number of the extreme rays is exponen-

tial, which further indicates that the number of potential constraints is exponential.

Among the exponential number of potential constraints, only a small subset of the

constraints may be violated. Define the constraints that are potentially to be violated

as crucial constraints. Once all crucial constraints are identified, given a new forecast

system operating condition, the included crucial constraints have to be selected. For

each crucial constraint, a binary indicator parameter is assigned. If the indicator is

1, then the constraint is included for the given system operating condition; otherwise

the indicator is 0. The inclusion of the crucial constraints is illustrated in Figure 7.2.

In order to complete the replacement, there are two key steps: 1) How to identify

the crucial constraints? 2) Given a new forecast system operating condition, which

crucial constraints to be included? In this chapter, an offline simulation procedure is

proposed to identify all crucial constraints. Data mining algorithms are utilized to

109



Figure 7.2: Crucial Constraints

select the included crucial constraints to be included.

7.2.1 Offline Simulation

As shown in Chapter 6, the extreme rays of the polyhedron to describe the con-

straints are characterized by the combinatorial selection of the transmission lines and

buses in the system.The selected transmission lines are the congested lines in post-

contingency states and the selected buses are the buses with extra generation capacity

but cannot be delivered in post-contingency states. For a given power system (with a

fixed network structure, generation mix, etc.), if the system operating condition (such

as load profile) has similar characteristics, then the congested transmission lines and

buses with extra capacities in the post-contingency states have similar patterns among

all the cases. Therefore, the crucial constraints can be identified by solving a group of

test cases with similar system operating conditions. The test cases can be obtained

from historical data, or generated from simulation.

For each test case, a G-1 security-constrained UC (SCUC) is solved offline. The

solution procedure is an iterative algorithm that is similar to Benders’ decomposi-

tion. The UC problem is initially solved with no additional constraints but a reserve
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requirement to procure the reserves more than the largest generator contingency.

Then, the solution of the SCUC is tested against a contingency analysis. If there

is a post-contingency scenario with load shedding, then there are some congested

transmission lines and undelivered capacity in the corresponding post-contingency

state. The corresponding extreme rays and security constraints can be identified and

included into the master problem. Next, the problem with the identified constraints

is solved again. The procedure is repeated until the UC solution is G-1 secure. As

a result of the procedure, the included constraints indexed by (r, s, t) are recorded,

i.e., in each specific test case, which constraint is included. As more and more test

cases are solved, all crucial constraints are likely to be identified. The descried offline

simulation procedure is illustrated in Figure 7.3.

Figure 7.3: Offline Simulation Procedure

The test cases are solved offline. As opposed to the limited scheduling time win-

dow, there is enough time to solve the test case offline. Once a test case is solved, the

result is used as a training data record for all future system operating conditions.
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7.2.2 Data Mining

After the offline simulation, a set of crucial constraints is obtained, along with

the indicator matrix describing which constraint has been included in which test

cases. The number of the identified crucial constraints may still be a large number.

The included crucial constraints for a given test case can be further reduced by data

mining algorithms.

The test cases in the offline simulation are used as a training data set. The given

new test case is treated as a testing data set. In this chapter, the forecast net load

profile at each node (the load subtracts the dispatchable renewables), Dnt,∀n, t, is

used as attributes in the data mining model. A binary decision is the output, i.e.,

the prediction whether to include the corresponding constraint (r, s, t). The general

procedure is described in Figure 7.4.

Figure 7.4: Data Mining to Identify Necessary Crucial Constraints

A decision tree algorithm (Tan et al., 2006) is selected to be the data mining

algorithm due to its simplicity and its ease to be interpreted. For each of the crucial

constraint, a decision tree is built based on all training data to determine if the

constraint needs to be included.
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7.2.3 Deterministic Equivalent Model

After the previous two steps, a deterministic model with a set of selected crucial

constraints is obtained to replace the two-stage SUC model.

There is no guarantee that all necessary crucial constraints can be identified. The

reasons are as follows. 1) Some crucial constraints for the new case may not be

identified from the offline simulation procedure. 2) The data mining algorithm ends

up with a wrong prediction. However, the inclusion of the set of selected constraints

can improve the system security and provides an initial market solution that requires

fewer out-of-market corrections.

In this chapter, the process described in Figure 7.3 is utilized to determine an

exact G-1 secured UC schedule. The goal is to solve the SCUC in one iteration.

In the cases that more constraints are needed, it can be expected only a few more

iterations are needed to obtain a secure solution.

Moreover, instead of a binary indicator, zero or one, the decision tree algorithm can

return a probability of the prediction to be one. Then, the number of constraints to

include can be traded off by a probability threshold. For instance, if the data mining

algorithm predicts one constraint to be included crucial constraint with probability

0.38, then the constraint will be included if the threshold is 0.3; but not to be included

if the threshold is 0.4. Since missing one constraint may have more impacts than

adding one redundant constraint, a more conservative threshold should be used. In

other words, the threshold should be set as a relative small number in order to include

more potential crucial constraints, but not to increase the solution time of SCUC too

much at the same time.

Finally, the procedure of the proposed framework embedded in the day-ahead

(DA) market is illustrated in Figure 7.5.
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Figure 7.5: Day-Ahead Market Solution Procedure

During the offline study stage, a number of crucial constraints are identified first.

For each crucial constraint, a data mining model is built to predict whether the

corresponding constraint needs to be included in the DA SCUC model for a given DA

forecast load. In the DA planning stage, the system operator first obtains a forecast of

the net load. Then, the forecasted load profile is used with the data mining models to

determine which constraints to be included. With the forecast load, the market input

information, and the included crucial constraints, the DA SCUC model is solved, and

a DA schedule is obtained.

7.3 Case Study

In this section, the proposed framework is tested on a modified IEEE 73-bus

system (RTS 1996) (University of Washington, 2015). The test system has 73 buses,

99 generators and 117 transmission lines. The total generation capacity is 10,215MW.

The peak load is 8,550MW. The G-1 SCUC is formulated as a 24-period DA model.

Any generator can be failed in any time period, so there are totally 2,376 discrete

scenarios.

First, the offline simulation described in Figure 7.3 is carried out. One historical

load profile is selected to be the base case. In the base case, the loads in different pe-

riods vary from 59% to 100% of the peak load. One thousand test cases are generated
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as the training data set and twenty test cases are generated as the testing data set.

In each generated test case, the load at each bus in each period, Dnt,∀n, t, follows a

normal distribution with a mean as the corresponding base case load, and a standard

deviation as 5% of the corresponding base case load.

A total of 226 crucial extreme rays are identified from the offline simulation.

Figure 7.6 plots the number of identified crucial extreme rays versus the number

of test cases included. From Figure 7.6, it can be seen that the total number of

identified crucial extreme rays increases sharply in the first few hundred test cases;

but increases more slowly after approximately 500 test cases. The results show that

all crucial extreme rays are likely to be identified as a certain number of test cases

have been carried out. Moreover, many of the late-discovered crucial extreme rays

only appear in one single test case. These extreme rays can be seen as outliers caused

by the extreme test case.
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Figure 7.6: Identified Crucial Extreme Rays Increment

Table 7.1 lists the top 15 most frequent identified crucial extreme rays that are
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induced by the lines (L) and buses (B) of the power system network. For instance,

the most frequent crucial extreme ray #1 is induced by line L87 and bus B54, which

indicates in the corresponding post-contingency states, the line L87 is congested and

the bus B54 has extra capacity cannot be delivered. The situation happens 24,562

times in the offline simulation (in different test cases, contingency scenarios, and time

periods).

Table 7.1: Most Frequent Crucial Extreme Rays
# 1 2 3 4 5

Frequency 24,562 17,196 16,528 12,726 11,004
Line L87 L98 L50 L98 L23
Bus B54 B69 B30 B65 B17
# 6 7 8 9 10

Frequency 9,367 9,050 8,655 7,982 6,972
Line L50, L87 L23 L61 L50, L98 L50, L98
Bus B30, B54 B15 B41 B30, B69 B30, B65
# 11 12 13 14 15

Frequency 6,328 5,924 5,104 5,080 4,726
Line L23, L87 L98 L61 L87, L98 L23, L87
Bus B15, B54 B63 B39 B54, B69 B17, B54

A total of 4,589 crucial constraints are identified from the offline simulation. Ta-

ble 7.2 lists the top 15 most frequent identified crucial constraints with the corre-

sponding constraint index (r, s, t). For instance, the most frequent crucial constraint

#1 is corresponding to crucial extreme ray #5, scenario 57 (generator #57 is failed),

and time period 23 (the generator failure happens in time period 23). Out of 1,000

test cases, 991 test cases have identified the constraint (5,57,23) as crucial constraint.

Table 7.2: Most Frequent Crucial Constraints
# 1 2 3 4 5

Frequency 991 989 968 917 916
(r, s, t) (5,57,23) (2,99,1) (5,57,7) (5,56,23) (5,57,1)

# 6 7 8 9 10
Frequency 897 822 818 815 809

(r, s, t) (5,56,7) (13,89,2) (8,89,24) (8,89,2) (12,24,2)
# 11 12 13 14 15

Frequency 804 794 788 788 769
(r, s, t) (13,89,24) (8,90,24) (2,99,23) (12,24,24) (8,90,2)
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Theoretically, the number of potential constraints to be included in the determin-

istic model is exponential. However, by the offline simulation, the number of crucial

extreme rays is reduced to 226 and the number of crucial constraints is reduced to

4,589. Given a new forecast load profile, the number of the crucial constraints to be

included can be further reduced with data mining.

For each identified crucial extreme ray, a decision tree is built to determine whether

the constraint should be included or not given the new forecast load. The decision

tree algorithm is implemented in Python code with SciKit-Learn package (SciKit-

Learn, 2016). To avoid over-fitting, a maximum depth parameter is used to control

the depth of the tree model. A five-fold cross-validation (Tan et al., 2006) is used

to determine the optimal maximum depth of the tree. Table 7.3 presents the cross-

validation results. The decision trees with maximum depth equals to 4 gives the

highest prediction accuracy.

Table 7.3: Cross-validation with Different Maximum Depth
Max depth Different folds accuracy Avg.
unlimited 0.546 0.688 0.658 0.553 0.544 0.598

3 0.453 0.755 0.728 0.671 0.631 0.648
4 0.566 0.757 0.725 0.686 0.616 0.670
5 0.487 0.764 0.725 0.631 0.632 0.648
6 0.544 0.744 0.716 0.642 0.62 0.653

Figure 7.7 presents three parts of the decision tree for crucial constraint #15. For

this crucial constraint, in the offline simulation, 769 out of 1,000 test cases included the

constraints. The decision tree tries to find the common features of the 769 test cases

that distinguish them from the other 231 test cases. From the first part of Figure 7.7,

in the root node, the splitting criterion is X[648] ≤ 493.86. X[648] corresponds

to the load at bus B37, in the period T1, D37,1. The splitting criterion gives the

best separation of the cases including the constraint and the cases not including the

constraint. The cases with D37,1 ≤ 493.83 belong to the left descendant node and
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the cases with D37,1 > 493.83 belong to the right descendant node. Then, for the

two nodes at depth 1, the splitting criteria are D33,1 ≤ 126.23 and D37,2 ≤ 439.785

respectively. Finally, each leaf node provides a case distribution (whether the case

including the constraint) for the cases falling into the node. For instance, the very

left leaf node on the second part of Figure 7.7 has 4 cases not including the constraint

and no case including the constraint. If a new load profile falls into this node, it is

likely that the constraint is not necessary. In contrast, the very right leaf node on

the third part of Figure 7.7 has 94 cases not including the constraint and 310 cases

including the constraint. If a new load profile falls into this node, it is likely that the

constraint is necessary, with a probability of 76.6%.

Figure 7.7: Decision Tree
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In the case study, a decision trees makes a prediction of whether to include a

constraint, along with a probability. Thus, a threshold can be used to select the

constraints that have relative higher probabilities to be selected. In Table 7.4, the

result of using different threshold values are summarized.

Table 7.4: Solution Comparison with Different Thresholds
Average

# of pre- # of extra solution
included included time for
crucial # of crucial SCUC

Thresholds constraints iterations constraints (s)
0.2 255 6.0 31.3 126.7
0.1 432 3.8 11.5 79.2

0.001 2,506 1.3 0.9 41.3

From the test results, even setting the threshold to be 0.2, many necessary crucial

constraints are not pre-included. On average, five more iterations are needed and

approximately 31 extra crucial constraints are included to obtain a secure solution.

Further reducing the threshold to 0.1 increases the number of pre-included crucial

constraints from 255 to 432 on average. However, the solution after the first iteration

is still far away from the G-1 secure solution. When the threshold is set to be 0.001,

the number of pre-included crucial constraints increases to 2,506 on average. However,

the solutions after the first iteration are very secure. Since most test cases can be

solved in one iteration, the solution time under the threshold 0.001 outperforms the

others. Therefore, the threshold 0.001 is preferred.

The proposed solution method (M3) is compared with another two benchmarks:

the Benders’ decomposition (M1) (Benders, 1962) and the deterministic model with

all identified crucial constraints (M2). The comparison is given in Table 7.5.

From Table 7.5, the iterative Benders’ decomposition takes the longest computa-

tional time to solve. The Benders’ decomposition can identify the necessary crucial

constraint accurately. Only around 220 constraints on average are included in each
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Table 7.5: Solution Comparison with Different Solution Methods
Average

# of pre- # of extra solution
included included time for

Solution crucial # of crucial SCUC
Method constraints iterations constraints (s)

M1 0 7.1 218.6 143.5
M2 4,589 1 0 48.5
M3 2,506 1.3 0.9 41.3

test case. If all identified crucial constraints are included, among the 20 generated

testing test cases, it is guaranteed that the solution after the first iteration is se-

cure. However, too many redundant constraints are included. Under the proposed

solution method, the data mining algorithm reduces the number pre-included crucial

constraints to 45% of the identified crucial constraints. Compared with the iterative

Benders’ decomposition, the average solution time of the proposed solution method

is only 32% of that of Benders’ decomposition. At the same time, most test cases

can be solved in one iteration. Even though some test cases need to add extra crucial

constraints, after the second iteration, a G-1 secure solution can be obtained. Only

a few crucial constraints are not identified by the data mining algorithm. The data

mining algorithm can be further improved to accurately identify the necessary crucial

constraints.

Finally, the solutions of the 20 testing test cases after the first iteration are ex-

plicitly given in Table 7.6.

From the test results, with the identified crucial constraints, even if the solution

method is limited to one iteration, the obtained solutions have low load shedding. The

identified crucial constraints improve the system security significantly. Moreover, the

solution time is stable. Most test cases can be solved within 40 seconds. The results

show that including selected crucial constraints in SCUC can improve the reliability

of the solution while keeping the added computational complexity at minimum.
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Table 7.6: Solution for Each Testing Case
# of # of Total SCUC

pre-included Total load- load- solution
Case crucial cost shedding shedding time

# constraints ($) scenarios (MW) (s)
1 2,539 3,072,580 0 0 35
2 2,471 3,076,680 0 0 28
3 2,520 3,069,760 1 0.15 25
4 2,558 3,049,460 0 0 49
5 2,518 3,068,730 0 0 26
6 2,473 3,052,950 6 2.4 40
7 2,514 3,097,480 0 0 45
8 2,496 3,080,110 0 0 40
9 2,461 3,123,820 0 0 37

10 2,513 3,060,080 0 0 39
11 2,522 3,084,160 0 0 47
12 2,566 3,046,740 0 0 31
13 2,465 3,049,580 0 0 41
14 2,467 3,087,570 2 1.66 41
15 2,513 3,071,290 0 0 30
16 2,514 3,072,970 0 0 26
17 2,512 3,007,110 3 1.96 39
18 2,517 3,092,430 0 0 39
19 2,512 3,104,590 0 0 25
20 2,477 3,085,920 0 0 44

7.4 Conclusions

This chapter presents a framework to use an enhanced deterministic UC model

to approximate the stochastic UC formulation. The proposed framework avoids the

inclusion of scenario-based variables and constraints. The deterministic model is

enhanced with a set of selected crucial security constraints that are identified from

offline simulation and data mining. All crucial constraints are first identified from the

offline simulation and the number of included crucial constraints is further reduced

by data mining algorithm. Test results show that, even though many redundant

crucial constraints are included, the proposed framework still outperforms the itera-

tive algorithm such as Benders’ decomposition (in solution time). By including the

identified crucial constraints, the system security is improved significantly, and the

computational complexity is increased at minimum.
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Future research will focus on improving the data mining algorithm to identify

the crucial constraints more accurately. In the presented decision tree models, many

attributes are used as model inputs. Different algorithms can be used to reduce the

dimension of the inputs. Moreover, the proposed framework will be tested for other

stochastic unit commitment models.
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Chapter 8

SHADOW PRICES: MARKET IMPLICATIONS OF SECURITY CONSTRAINTS

8.1 Introduction

RTO/ISOs include different types of security requirements to approximate system

security issues. Power system security refers to the ability to survive potential dis-

turbances (contingencies) without interruption to customer services (Kundur et al.,

2004). The North American Electric Reliability Corporation (NERC) requires the

N-1 reliability criterion for system operation, which states the system must be able

to withstand any single bulk element failure (generator, transmission line, or trans-

former) (North American Electric Reliability Corporation, 2007).

In this chapter, only a subset of N-1 events, single-generator-failure (G-1) con-

tingencies, are considered. Transmission (or transformer) contingencies are not mod-

eled for the following reasons. Transmission contingency modeling is handled ef-

ficiently today within existing commercial grade security-constrained unit commit-

ment (SCUC) and security-constrained economic dispatch (SCED) tools; at the same

time, the impacts of transmission line contingencies are reflected in energy prices. .

Transmission contingencies are modelled by including line outage distribution factors

(LODFs) to capture the change in line flows from the pre-contingency base case to the

post-contingency transmission outage case. With power transfer distribution factors

(PTDF) being used to capture base-case flows, LODFs then allow for the straightfor-

ward determination of post-contingency line flows. Existing SCUC and SCED tools

are able to manage transmission contingencies efficiently today; however, such tools

need assistance in the management of generator contingencies.
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In existing market practices, RTO/ISOs acquire reserves (extra generation capac-

ity) in order to protect the power system from generator contingencies. However,

since the power systems and markets in the U.S. leverage adequacy-based reserve

policies, the security requirements do not guarantee a N-1 reliable solution on a lo-

cational basis. The procured reserves may not be deliverable in the post-contingency

states due to transmission limitations. As a result, RTO/ISOs make different types of

out-of-market, operator-initiated corrections in their scheduling and operation (Fed-

eral Energy Regulatory Commission, 2014). These security requirements may result

in committing more units or re-allocating the reserves. However, the out-of-market,

operator-initiated corrections are not reflected in the market models and such dis-

cretionary changes are not transparent. The market prices are distorted and do not

reflect true marginal costs. In this chapter, a set of G-1 security constraints, which

play a similar role as the LODF-based transmission security constraints, are pro-

posed to be added into SCUC and SCED in order to efficiently determine the reserve

allocation with respect to post-contingency dispatch feasibility.

In the U.S. energy markets, RTO/ISOs adopt locational marginal prices (LMP)

to represent energy prices (Pope, 2014). The LMP captures three components, which

include the marginal energy, marginal congestion, and marginal loss components (ISO

New England, 2014). In most RTO/ISOs, energy and reserves are co-optimized in a

single market model (Federal Energy Regulatory Commission, 2014). Market partic-

ipants submit separate bids for energy and reserve. Although the energy prices, i.e.,

LMPs, are coupled with reserve requirements, the existing adequacy-based reserve

requirements restrict only pre-contingency base-case operating conditions and do not

accurately reflect the deliverability requirements of reserves in the post-contingency

states. With the proposed G-1 security constraints, the model not only captures

the base-case operating conditions but also capture the post-contingency operating
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conditions. The approach has a similar feature as using LODF-based transmission

security constraints to consider both pre and post transmission outage contingency

states. As a result of the G-1 security constraints, the reserves are re-allocated to

ensure post-contingency dispatch feasibility.

In this chapter, with the market implication analysis of the proposed security

constraints, a new component of LMP, marginal security component, is proposed

to better represent the energy prices. The marginal security components are the

weighted shadow prices corresponding to the set of G-1 security constraints. With

the marginal security component, the LMPs will capture the marginal cost from a

G-1 secure state to another G-1 secure state; thus, it captures the true marginal

costs by restricting the dispatch feasibility in both pre-contingency base case and

post-contingency states.

The main contributions of this chapter are listed as follows:

• Rather than imposing simple adequacy-based reserve requirements to hedge

generator contingencies, the proposed security constraints efficiently allocate

reserves in the system with the consideration of post-contingency dispatch

feasibility. The proposed G-1 security constraints play the same role as the

LODF-based transmission outage security constraints by considering the post-

contingency state transmission limitations. The proposed G-1 security con-

straints can be easily combined into SCUC and SCED tools to improve the

market models.

• The market implications of the proposed security constraints, i.e., the impacts

of the proposed security constraints on energy prices, are analyzed in detail.

• A new component of LMP, marginal security component, is proposed in order to

capture the marginal cost from a secure system state to another secure system

state.
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The rest of the chapter is organized as follows: section 8.2 analyzes the market

implications of the proposed security constraint. Section 8.3 gives a 3-bus system

as illustrative example. Section 8.4 represents a case study for IEEE 73-bus system.

Finally, section 8.5 concludes.

8.2 Market Implications of Security Constraint

In Chapter 6, a set of G-1 security constraints have been presented to improve the

system security. In this chapter, the implications of these G-1 contingency security

constraints are analyzed.

The G-1 security constraint is explicitly represented as follows:

∑
∀g

G1sg
(
pHgtφ̄

+
ig − pLgtφ̄−ig

)
+
∑
∀l

Fl(µ̄
+
il + µ̄−il )−

∑
∀n

Dntλ̄in ≥ 0

∀i, s, t (8.1)

where, (φ̄+, φ̄−, µ̄+, µ̄−, λ̄),∀i are given crucial extreme ray parameters of the dual

cone that have been identified; index s is corresponding to G-1 contingency scenario;

index t is corresponding to time period the contingency happens.

When a generator fails, the corresponding weighted capacity,
(
pHgtφ̄

+
ig − pLgtφ̄−ig

)
, is

lost, which may result in the left side of (13) to be less than zero if (8.1) is not enforced.

In (8.1), pLgt/p
H
gt,∀g, t, are the post-contingency available generation capacities, that

are described in the following constraints:
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pLgt = pgt − rdgt ∀g, t (8.2)

pHgt = pgt + rugt ∀g, t (8.3)

pgt − rdgt ≥ Pmin
g ugt ∀g, t (8.4)

pgt + rugt ≤ Pmax
g ugt ∀g, t (8.5)

0 ≤ rdgt, r
u
gt ≤ Rg ∀g, t (8.6)

In current market designs, the LMPs are used to price the energy. The LMP

is interpreted as the system total dispatch costs increment/decrement by increas-

ing/decreasing one unit of power at the corresponding location. If the security con-

straints (8.1) are to be included, the increment/decrement of load Dnt will also have

impacts on these security constraints. Consider the reformulation as follows:∑
g∈G(n)

pgt − int − dnt = 0 ∀n, t (δnt) (8.7)

∑
∀g

G1sg
(
p̂Hgtφ̄

+
ig − p̂Lgtφ̄−ig

)
+
∑
∀l

Fl(µ̄
+
il + µ̄−il )−

∑
∀n

Dntλ̄in ≥ 0 ∀i, s, t (ξsit) (8.8)

dnt = Dnt ∀n, t (∆nt) (8.9)

The reformulation changes the original fixed loads, Dnt,∀n, t, to variables, dnt,∀n, t;

then enforces non-anticipativity constraints (8.9). When the load, Dnt, increases by

one unit, it will not only affect the nodal net injection (8.7), but also affect the se-

curity constraints (8.8). Let δnt, ξ
s
it,∆nt represent the shadow prices of (8.7)-(8.9)

respectively; their relations are specified by the following proposition.

Proposition 7. The shadow prices of (8.7)-(8.9) satisfy,

∆nt = δnt +
∑
∀i

∑
∀s

λ̄inξ
s
it ∀n, t (8.10)
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Proof. If deriving the dual of the reformulation, variables, dnt,∀n, t, only appear in

(8.7)-(8.9), then the corresponding dual constraints are given as (8.10).

The shadow prices, δnt, ∀n, t, represent the change in the total system dispatch

costs when the corresponding load, Dnt, increases by one unit. From (8.10), the price

∆nt is separated into two parts. The first part, δnt, is the current LMP that captures

the marginal energy component and marginal congestion component in the lossless

model. The additional part,
∑
∀i
∑
∀s λ̄inξ

s
it, is the marginal security component. The

interpretation of this new component is that, if the security constraints are included

in the model, when the load is increased by one unit, it may cost more in order to

satisfy the security constraints. The extra costs are captured by the shadow prices of

the security constraints.

8.3 Illustrative Example

In this section, an illustrative 3-bus system is used to explain the arguments in

section 8.2. Figure 8.1 gives the topology of the system and Table 8.1-8.3 gives the

system data.

Figure 8.1: 3-Bus System
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Table 8.1: Generator Data
Gen1 Gen2 Gen3

EcoMin (MW) 5 20 5
EcoMax (MW) 45 45 40
Ramp rate (MW) 25 25 10
Variable cost ($/MW) 10 20 30
No-load cost ($) 100 100 100

Table 8.2: Shift Factors
Line 1 Line 2 Line 3

Bus A 0 0 0
Bus B 0.5 0.5 0.5
Bus C 0.25 0.75 -0.25

Table 8.3: Load and Transmission Line Limits
Load A 40 MW
Load B 0 MW
Load C 0 MW
Thermal limit of Line 1 15 MW

The system reserve requirements, which ensure adequate reserves for G-1 contin-

gency, are described as follows,

∑
∀k∈G

ruk ≥ pg + rug ∀g (8.11)
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8.3.1 Base Case

First, consider the base case without the proposed security constraints. The full

formulation to solve this single-period problem is explicitly given as follows,

min 10p1 + 20p2 + 30p3 + 100(u1 + u2 + u3) (8.12)

s.t.: p1 ≥ 5u1 (8.13)

p1 + ru1 ≤ 45u1 (8.14)

0 ≤ ru1 ≤ 25 (8.15)

p2 ≥ 20u2 (8.16)

p2 + ru2 ≤ 45u2 (8.17)

0 ≤ ru2 ≤ 25 (8.18)

p3 ≥ 5u3 (8.19)

p3 + ru3 ≤ 40u3 (8.20)

0 ≤ ru3 ≤ 10 (8.21)

p1 + p2 + p3 = 40 (8.22)

ru1 + ru2 ≥ p3 (8.23)

ru1 + ru3 ≥ p2 (8.24)

ru2 + ru3 ≥ p1 (8.25)

0.5p1 + 0.25(p2 + p3) ≤ 15 (8.26)

Equation (8.12) is objective function to minimize the summation of generation

costs and commitment costs. Equations (8.14)-(8.21) are the resource-level con-

straints. Equation (8.21) is the system energy-balance constraint. Equations (8.23)-

(8.25) specify the system reserve requirements. Equation (8.26) is the network con-

straint.
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Since Gen1 is the cheapest generation resource, it is preferred to supply the loads.

However, Gen1 generating 40MW violates the thermal limit of transmission line 1

and the reserve requirements. Therefore, the optimal solution is committing Gen1

and the second cheapest generation resource, Gen2. Table 8.4 gives the commitment

and dispatch solution for the base case.

LMPs are defined as the shadow prices by increasing or decreasing one unit of

power at corresponding location. In the following, the LMPs are calculated as the

shadow price by increasing one unit of power.

In this base case solution, transmission line 1 is congested; thus, price separation

is expected. At bus A, if the load increases to 41MW, due to the transmission limit,

Gen1 cannot dispatch one more unit of power. The solution will be Gen1 decreases

1MW output and Gen2 increases 2MW. Table 8.5 gives the commitment and dispatch

solution for the base case when load at bus A increases by one unit.

When the load at bus A increases by 1MW, the total cost increment is $30.

Therefore, LMPA = 30. Similarly, the load increment at Bus C can be only supplied

by Gen2 due to transmission congestion, i.e., LMPC = 20. Table 8.6 gives the LMPs

for the base case.

Table 8.4: Base Case Solution
u p r

Gen1 1 20 25
Gen2 1 20 25
Gen3 0 0 0
Total cost ($) 800

Table 8.5: Base Case Solution when Load A Increases 1MW
u p r

Gen1 1 19 25
Gen2 1 22 23
Gen3 0 0 0
Total cost ($) 830
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Table 8.6: LMPs for Base Case
LMP A $30/MWh
LMP B $10/MWh
LMP C $20/MWh

8.3.2 Security-Constrained Case

Although the base case solution meets the reserve requirement (8.11), it is not a

secure solution with respect to G-1 contingency. Specifically, when Gen2 fails, even

though Gen1 can dispatch up to 45MW, because of the network constraint, it can

only dispatch 30MW instead. There is 10MW load shedding at bus A; thus, the

system is not secure. Committing Gen3 is necessary.

Consider the proposed G-1 security constraints. First, characterize the extreme

ray of the dual cone corresponding to the contingency. The feasible region of the dual

cone for this illustrative example is given as follows (τ = −1 and µ = µ+ − µ−):

λ1 = 1 (8.27)

0.5µ1 + 0.5µ2 + 0.5µ3 + λ2 = 1 (8.28)

0.25µ1 + 0.75µ2 − 0.25µ3 + λ3 = 1. (8.29)

When Gen2 fails, transmission line 1 is congested, and bus B has extra capacities

that are unable to be delivered. Based on this engineering insight, µ2 = µ3 = 0 and

λ2 = 0. Then all variables in the dual cone can be calculated.

γ̄ =


λ1 = 1 µ+

1 = 2 µ−1 = 0 φ+
1 = 1 φ−1 = 0

λ2 = 0 µ+
2 = 0 µ−2 = 0 φ+

2 = 0 φ−2 = 0

λ3 = 0.5 µ+
3 = 0 µ−3 = 0 φ+

3 = 0.5 φ−3 = 0


Plug in the extreme ray to the security constraint (8.1) with respect to the Gen2

failure scenario, the constraint is described as follows:

0.5(p3 + ru3 ) + 30− 40 ≥ 0 (8.30)
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Combine (8.30) to (8.12)-(8.26), the security-constrained solution is given in Ta-

ble 8.7. The security requirement changes the market settlement. One obvious change

is to commit Gen3; thus, the total costs increase. In addition, price separation no

longer exists since transmission line 1 is not congested. Table 8.8 gives the com-

mitment and dispatch solution for the security-constrained case when load at bus A

increases by one unit. Table 8.9 gives the LMPs for the security-constrained case

without the marginal security component.

Table 8.7: Security-Constrained Case Solution
u p r

Gen1 1 10 25
Gen2 1 20 25
Gen3 1 10 10
Total cost ($) 1,100

Table 8.8: Security-Constrained Case Solution when Load A Increases 1MW
u p r

Gen1 1 11 25
Gen2 1 20 25
Gen3 1 10 10
Total cost ($) 1,110

Table 8.9: LMPs for Security-Constrained Case
LMP A $10/MWh
LMP B $10/MWh
LMP C $10/MWh
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8.3.3 Proposed Reformulation and Pricing Scheme

Consider the reformulation described in section 8.2 applied to this illustrative

example, the pricing model is described as follows:

min 10p1 + 20p2 + 30p3 (8.31)

s.t.: resource-level constraints (8.14)-(8.21)

reserve requirement (8.23)-(8.25)

− d1 − i1 = 0 (8.32)

p1 − d2 − i2 = 0 (8.33)

p2 + p3 − d3 − i3 = 0 (8.34)

i1 + i2 + i3 = 0 (8.35)

0.5i1 + 0.25i2 ≤ 15 (8.36)

0.5(p3 + ru3 ) + 30− d1 − 0.5d3 ≥ 0 (8.37)

d1 = 40 (8.38)

d2 = 0 (8.39)

d3 = 0 (8.40)

When the load at bus A increases by 1MW, it will not only affect the nodal net

injection (8.34), but also the security constraint (8.37). The security constraint (8.37)

then becomes p3 + ru3 ≥ 22, which implies p3 ≥ 12 since ru3 ≤ 10. If the re-formulated

security constraint is not enforced, the solution will have Gen1 pick up the one more

unit power, as shown in Table 8.8. This solution will not cause network violation in

pre-contingency state; however, this solution is not secure when Gen2 fails. When

Gen2 fails, Gen3 can only ramp to 20MW, which requires Gen1 to ramp to 21MW.

In the post-contingency state, transmission line 1 is congested, load shedding occurs.
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Therefore, Gen3 has to increase its generation level in order to ensure the system

security. The new dispatch solutions are given in Table 8.10.

The security constraint results in Gen3 increases 2MW and Gen1 decreases 1MW.

The system costs increment is $50, i.e., LMPA = 50. This LMP is the summation

of original LMP ($10) and the weighted shadow prices of security constraints ($40).

When the load at bus A increases by one unit, it costs more than $10 to supply

the increment due to the security requirement. The model (8.31)-(8.40) captures the

shadow prices from a secure state to a new secure state, instead of from a secure state

to a feasible but not secure state.

Similarly, when the load at bus C increases by 1MW, the security constraint (8.37)

requires p3 = 11. Gen3 picks up the increased load. The total costs is increased by

$30, so LMPC = 10 + 0.5(40) = 30. Table 8.11 gives the LMPs under the proposed

pricing scheme.

The total load payment becomes $2,000. Gen2 makes profits. Gen1 and Gen3 are

marginal units. The total uplift payment is reduced to $200. Prices separation still

exists even no transmission line is congested. The prices separation is caused by the

security constraints.

Table 8.10: Solution when Load A Increases 1MW with Proposed Formulation
u p r

Gen1 1 9 25
Gen2 1 20 25
Gen3 1 12 10
Total cost ($) 1,150

Table 8.11: LMPs under Proposed Pricing Scheme
LMP A $50/MWh
LMP B $10/MWh
LMP C $30/MWh
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8.4 Case Study

In this section, the proposed framework is tested on a modified IEEE 73-bus

system (RTS 1996) (University of Washington, 2015). The test system has 73 buses,

99 generators and 117 transmission lines. The total generation capacity is 10,215MW.

The peak load is 8,550MW.

The discussions in this section focus on the day-ahead energy market. The problem

is formulated as 24-period day-ahead model. The loads across all periods vary from

59%-100% of the peak load. The procedure of the day-ahead energy market clearing

process is described in Figure 8.2.

Figure 8.2: Market Clearing Process

In the clearing process, a SCUC is solved to obtain binary commitment solutions.

Then, a SCED is solved. The dispatch solutions and LMPs are obtained. The dispatch
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solutions are tested for G-1 contingency analysis. If the system is insecure with

respect to G-1 criterion, the proposed security constraints are added with respect to

the violated scenario and period. The procedure is iterated until a secure solution

is obtained. The market solution is posted with the secure commitment, dispatch

solutions and the prices.

The proposed extreme ray security constraints are induced by the congested trans-

mission lines and the buses with extra capacities in the post-contingency state. In

this 73-bus system, 6 lines are identified to be congested in different post-contingency

states; moreover, for each of the lines, there are certain buses with extra capacities

that correspond to the congested line. The candidates of the congested lines and the

buses with extra capacities are marked in Figure 8.3.

Figure 8.3: 73-Bus System Diagram
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Total 35 different line-bus induced extreme rays are identified. Some extreme rays

appear in several G-1 scenarios and periods. Table 8.12 summarizes 15 out of 35

line-bus induced extreme rays that appear 8 times or more.

Table 8.12: Frequent Line-Bus Induced Extreme Rays
# Frequency Lines Buses

(times)
1 56 87 307
2 42 50,87 207,307
3 33 50 207
4 21 50,98 207,322
5 20 23,87 116,307
6 20 50,98 207,318
7 14 98 322
8 12 23,50 116,207
9 11 61 218
10 11 98 318
11 10 61 216
12 10 50,98 207,316
13 9 23 118
14 8 98 316
15 8 23,61 118,218

The added line-bus induced extreme ray security constraints in Figure 8.2 are the

potential binding security constraints in SCED. If one constraint is not identified from

the iterative process, then the constraint is not likely to be binding. The correspond-

ing shadow price will be zero. Therefore, only the identified line-bus induced extreme

ray security constraints are crucial to the marginal security component of LMPs.

From the test results, even for the identified extreme ray security constraints, most

of them are not binding in the SCED. There are eight line-bus induced extreme ray

security constraints identified to be binding in SCED and contribute to the marginal

security components: #1, #5, #7, #9, #11, #13, #14, and #15.

Two pricing schemes are compared: one is without the marginal security compo-

nent (LMP1) and the other is with the marginal security component (LMP2). The

two schemes have the same market commitment and dispatch solutions, but differ in

LMPs.
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First, the average price differences between the two schemes, i.e., the average

marginal security components, are studied. The results are represented in Figure 8.4.

The prices are increased significantly in high-load periods, as high as $47/MWh in

peak-load periods. In addition, the price differences follow the pattern of total load

percentage of the peak load. When the total system load increases and keeps at high

level, the security constraints tend to be binding. The load increment cost more to

keep the security constraints satisfied.

Figure 8.4: Average Price Difference Across All Periods

Figure 8.5 and Figure 8.6 select two buses to compare the two pricing schemes:

bus 114, which has the largest accumulative price differences across all periods, and

bus 16, which has the smallest accumulative price differences across all periods. At

bus 114, the pattern is consistent with the average price difference pattern; during

high-load periods, the proposed marginal security components are high. In periods 18

and 19, when at peak load, the marginal security component is as high as $213/MWh.

The high price is an indication of network congestion. LMP1 represents the marginal
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cost from a secure system state to a feasible system state. In periods 18 and 19,

LMP1 is as high as $156/MWh in order to move to a feasible system state. LMP2

represents the marginal cost from a secure system state to a new secure system state.

It costs more to maintain a secure system state, the marginal costs in periods 18 and

19 are as high as $369/MWh. On the other hand, at bus 116, the price differences

are not significant since the original LMPs are relatively low, which indicates the

network congestion does not cost more to maintain system security at the location.

The marginal security components are positively correlated to the original LMPs.

Figure 8.5: Price Comparison at Bus 114

The market surplus allocations under two pricing schemes are summarized in

Table 8.13. Since energy prices are increased, the total load payment is increased

27.6% from LMP1 to LMP2. The total generation revenue is increased 43.9% from

LMP1 to LMP2. The total uplift payment is reduced 49.1% from LMP1 to LMP2.

Since RTO/ISOs do not prefer to implement uplift payments as they distort the

market price signals, one benefit from the proposed approach is that it reduces uplift
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Figure 8.6: Price Comparison at Bus 116

payments. While this is not guaranteed to occur, the inclusion of security constraints

further captures grid security requirements and reflects the value of service provided

by generators to achieve grid security. This added value that is captured with the

proposed method translates into prices that reflect that added value, which is expected

to increase profits and, thus, decrease needed uplift payments.

Table 8.13: Market Surplus Allocation
LMP1 LMP2

Total load payment ($) 8,189,920 10,446,800
Total generation revenue ($) 3,773,714 5,429,060
Total uplift payment ($) 376,826 191,779

Finally, individual generator’s market surplus is analyzed. Table 8.14 lists 5 rep-

resentative generators’ market surplus. Gen44 and Gen47 are slow-start coal units;

Gen49 is fast-start gas-turbine unit; Gen57 is nuclear unit; and Gen58 is dispatchable

hydro unit. Under the proposed pricing scheme, the nuclear unit, which is with low

variable cost and high capacity, has the highest profit improvement. The hydro unit

also obtains significant profit increment due to the low costs. Gen44, Gen47, and
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Gen49 are likely to be the marginal units due to the high variable generation costs.

Gen44 flips from the negative profit to the positive profit. Gen47, though still has

negative profit, its revenue is increased significantly. The profits of fast-start units

are relatively the same.

Table 8.14: Generator Settlement
Gen44 Gen47 Gen49 Gen57 Gen58

Capacity (MW) 100 197 12 400 50
Variable cost ($/MW) 75.6 74.8 94.7 5.5 0
Startup cost ($) 4,754 6,510 571 2,400 0
No-load cost ($) 839 1,160 73 215 0
Total generation cost ($) 121,989 165,079 1,771 57,578 0
Revenue under LMP1 ($) 104,643 115,242 482 321,022 39,827
Revenue under LMP2 ($) 132,260 159,933 776 432,359 53,627
Profit under LMP1 ($) -17,346 -49,837 -1,289 263,444 39,827
Profit under LMP2 ($) 10,271 -5,146 -996 374,781 53,627
Profit increment ($) 27,617 44,691 293 111,337 13,800

8.5 Conclusions

Existing market tools, SCUC and SCED, already efficiently capture transmis-

sion contingencies but they lack an efficient approach for generator contingencies.

In this chapter, a set of G-1 security constraints are proposed. The G-1 security

constraints restrict system dispatch feasibility in both pre-contingency base case and

post-contingency states. While existing SCUC and SCED models include reserve

requirements, those requirements only require a quantity of reserve and do not im-

pose post-contingency reserve deployment capability. With the newly proposed con-

straints, reserve deliverability in the post-contingency case is acknowledged.

By studying the market implications of the security constraints, a new component

of LMP, a marginal security component, has been identified and added on top of the

existing LMP components to better represent energy prices associated to generator

contingencies. The components are composed of weighted shadow prices of the G-1

security constraints. With the proposed marginal security components, the LMPs
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capture the marginal cost from a secure system state to another secure system state.

The proposed advancement will not just help improve the overall system efficiency but

also translates to improved price signals that better reflect available resource while

considering deliverability issues associated to reserves. Future work should consider

further enhancement of the security constraints along with deeper analysis on market

implications of the proposed changes.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Unit commitment (UC) problem is one of the most important power system

scheduling problems. In RTO/ISOs’ day-ahead markets, the UC problem is mod-

eled and solved as a linearized network-constrained mixed integer program (MIP).

The solution gives the on/off status of generators and allocates the reserves in the

power system. Uncertainty in the power system complicates the scheduling process.

The uncertainties in power system include the discrete event such as system element

failure contingency and fluctuation of loads and renewables.

Stochastic UC models have been studied extensively in literature and are believed

to give more efficient scheduling solutions amid uncertainty, in terms of both system

security and cost efficiency. The stochastic UC models are usually formulated as two-

stage or multi-stage models following the nature of the UC problem process, where

binary commitment status and reserve allocations are determined in the first stage,

and real-time dispatch is determined in the second stage.

The most straightforward stochastic UC model is to include a set of scenarios

as the second-stage plausible real-time scenarios, and minimize the overall expected

cost of all scenarios. However, this formulation includes many scenario-based vari-

ables and constraints, which leads to that the formulation grow in size exponentially.

Although variety of decomposition algorithms have been proposed, with the current

computational capability, challenges still remain for solving stochastic UC of the

real-world large-scale system. One of the most promising ways to solve this type

144



of stochastic UC models is to develop scenario-based decomposition algorithms that

take the advantage of parallel computing. Progressive hedging (PH) algorithm is a

scenario-based decomposition algorithm. In the iterative PH algorithm, each sce-

nario is solved independently, and penalized in the objective function to converge

to a unified solution. The PH algorithm is proved to be converged for convex prob-

lem. Cyclic behavior is observed for MIP. Chapter 4 proposed hedging on startup and

shutdown variables, and using shadow prices of commitment status non-anticipativity

constraints as penalty factor. Test results show the proposed schemes help the PH

algorithm converge faster. After a few PH iterations, most binary variables are able

to be converged. Then, the converged variables are fixed and a reduced stochastic

UC model is solved. The PH algorithm with the proposed hedging schemes is used

as a pre-solve tool to converge most binary variables.

Another typical stochastic UC model is robust optimization. Robust optimization

has gained increasing attention in the power system area due to its ability to model

uncertainties using modest information while producing reliable solutions. Robust

optimization optimizes the scheduling cost against the worst scenario in a pre-defined

uncertainty set. Computationally, robust optimization is easier to solve compared

with scenario-based stochastic UC. However, a common concern with the robust

approach is that it can be overly-conservative. To address this issue, Chapter 5

proposed a data-driven method to construct uncertainty sets by using autoregressive

integrated moving average (ARIMA) model and whitening transform on temporally

and spatially correlated data. The proposed uncertainty set captures temporal and

spatial correlations of data. Therefore, sizes of uncertainty sets are shrunken, and

the conservativeness of robust solutions is reduced. The proposed uncertainty set is

tested on a real-world power system operated by ISO New England. Numerical test

results show that the proposed uncertainty set outperforms traditional uncertainty
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sets that ignore the correlation of the data, in terms of reducing commitment costs

while maintaining system security.

In this first part of this dissertation, the UC problem with uncertainty is formu-

lated as two-stage models. Although state-of-art solution methods have been studied

and improved, computational challenges remain due to the inclusion of scenario-based

variables and constraints, or modeling the uncertainty sets. Alternatively, in the sec-

ond part of this dissertation, the goal is to replace the two-stage stochastic model

with an equivalent deterministic model with a set of constraints. In order to com-

plete the replacement, Chapter 6 derives a necessary and sufficient condition to ensure

a system feasible dispatch based on a polyhedral structure. Based on the condition,

a set of security constraints to replace the stochastic model to a deterministic model

is explicitly characterized. However, the number of all potential constraints is ex-

ponential. Only a subset of the constraints may be violated in real-time operation.

Chapter 7 proposed an offline simulation procedure to identify the crucial constraints.

The number of the constraints to be included for a new given operating condition is

further reduced by data mining. With the proposed framework, the stochastic UC

model is replaced by a deterministic equivalent model with the selected constraints.

The equivalent deterministic model can be solved efficiently. The system security is

improved significantly with the selected security constraints.

Lastly, Chapter 8 studies the market implication of the uncertainty in the power

system. Due to the uncertainty in the power system, some generators are committed

online for security reasons. However, the committed generators are not properly paid

under the current utilized locational marginal pricing scheme. The current pricing

mechanism only model pre-contingency dispatch feasibility, but does not model the

post-contingency dispatch feasibility. The inclusion of the derived single-generator-

failure contingency security constraints improves the existing market model. By

146



studying the market implication of the security constraints, the dual variables of

the proposed security constraints give a security component of the energy price. Un-

der the proposed pricing scheme, the prices capture the marginal cost from a secure

system state to another secure system state and release a better pricing signal.

In summary, this dissertation thoroughly studied the UC problem with uncertainty

and made several contributions to the literature and practice. Especially, a frame-

work is proposed to replace the stochastic models by deterministic equivalent models

with a set of constraints. The framework shifts the computational burden from the

scheduling periods to the offline simulation and studies. The proposed framework

gives an alternative way to efficiently solve the UC problem with uncertainty.

9.2 Future Work

Power system scheduling is a complex problem. Additional research is needed

before the proposed methods to be implemented into practice. First of all, mar-

ket models described in this dissertation are linearized models to approximate the

non-linear nonconvex power system problems. Even though the market models give

“perfect” solutions, additional corrections are expected to be made afterwards. For

instance, because market models approximate AC power flow with linearized DC

power flow model, the market solution may be AC infeasible. Corrections are needed

to make the market solution from AC infeasibile to AC feasible. Most corrections

are with respect to power engineering rather than optimization. Since the real-world

power systems are large in scale, system operators may prefer a good but not opti-

mal solution in a short time (heuristics) to an optimal but computational challenging

solution in a long time, especially with the consideration that both solutions may

need to be corrected. On the other side, a good solution can reduce the efforts in

correcting phase. Therefore, the balance between the chase for optimality and the
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solution time need to be considered when applying the algorithms to the real-world

large-scale power system scheduling problems.

In current market practice, system operators prefer reserve requirement policies

to hedge uncertainty in the power system. From mixed integer program (MIP) point

of view, the reserve policies are cutting planes which can result in a restricted feasible

region. However, the reserve policies may be too loose such that unreliabe solutions

are not cut off; or, the reserve policies can be too conservative such that too many

reliable solutions are cut off, resulting in a high cost of the scheduling. Much re-

search has been done to derive proper reserve requirement policies to ensure system

security (Doherty and O’Malley, 2005; Zheng and Litvinov, 2008; Ortega-Vazquez

and Kirschen, 2009; Lyon et al., 2014, 2015; Wang and Hedman, 2015; Hedayati-

Mehdiabadi et al., 2015). The questions to be answered are: 1) How to determine

the reserve zones? 2) What are the adequate reserve levels in each zone? 3) How

to allocate the reserves? The reserve zones in current practice are approximately

determined by congestions in the power system network. However, congestions inside

the zone are observed and may prevent the delivery of the reserves inside the zone.

Reserve zone sharing is also under study. Most reserve requirement policies are based

on operations research (optimization) oriented methodologies. There are still a lot of

room to improve the current reserve policies. An alternative way to procure reserves

is to generate tighter constraints to automatically restrict the reserve allocation, as

the security constraints discussed in this dissertation. The constraints can disqualify

undeliverable reserves and re-allocate the reserves to the proper location.

RTO/ISOs also design different market components to ensure system security

amid uncertainty. For instance, capacity market has been implemented in many

RTO/ISOs with a goal to have enough generation capacity to respond to the largely

increased volatile and intermittent renewables. Similarly, ramping-related products
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have also been proposed to reward the generators providing flexible ramping capa-

bilities in the real-time operation. Demand response programs (Zhao et al., 2013)

have been implemented to make the power system more flexible against uncertainty.

Do-not-exceed limits (Zhao et al., 2015) for wind farms are being implementing in

order to reduce the fluctuation of renewable resource output. Different market design

and products can assist the power system to better hedge the risk of uncertainty.

This area leave a big space to develop.

With the respect to optimization, the unit commitment scheduling problem is a

special case of large-scale MIP. The discussed methodologies in this dissertation can

be further improved.

Scenario-based Stochastic Unit Commitment

For scenarios-based two-stage stochastic UC models, decomposition algorithms are

the promising direction to solve the UC problems for large-scale systems. The two-

stage stochastic UC has “L”-shape structure, so Benders’ decomposition is one of the

algorithms to solve the problem. The drawback of Benders’ decomposition is that the

master problem need to be solved repetitively; and in each iteration, many feasibility

cuts and optimality cuts are added into the mater problem, which makes the master

problem take longer time to be solved. In practice, due to the large-scale system,

even solving a deterministic UC (without consideration of uncertainty) may take a

long time, the system operators cannot afford an iterative solution algorithm with

the current computational capability and limited scheduling time. For instance, in

MISO, there are 45,098 network buses, 1,401 generating units, and more than 10,000

transmission lines (Midcontinent ISO, 2015a). The day-ahead market is required to be

cleared in four hours. For this large-scale system, in the UC model, if all variables and

constraints are included in the MIP, the MIP won’t be solved in four hours. System
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operators in MISO implemented many operator-initialed heuristics to make the UC

problem less computationally challenging. Scenario-based decomposition algorithm

such as progressive hedging (PH) algorithm is preferred. Although the PH algorithm

cannot guarantee optimality, it can take the advantages of parallel computing. The

convergence of the algorithm remains as an issue. Ryan et al. (2013) have proposed

many heuristics to improve the PH algorithm, and implement the PH algorithm to

solve large-scale system UC. There are research opportunities to develop more efficient

decomposition algorithms.

Another key question for scenario-based stochastic UC is how many scenarios

to include and how to select the scenarios , especially with continuous uncertainty

data. Adding one more scenario may increase the solution complexity exponentially.

Although much literature has studied scenario selection and reduction (Dupačová

et al., 2003; Papavasiliou and Oren, 2013), there is still much space to explore.

In the described two-stage formulation in this dissertation, there is no integer

variables in the second (recourse) stage. However, the discrete decision may exist

in the recourse stage. For instance, in real-time operation, if contingency happens,

system operators may turn on some fast-start generation units to respond to the

contingency. The binary variables in the second stage may change the structure of

the re-formulation and solution methods. Research can be carried out in for this type

of problem.

Robust Unit Commitment

For robust optimization, the main difficulty lie in the bi-linear term caused by taking

the dual of the inner problem. The product of uncertain data and dual variables

causes the non-linearity, nonconvexity. Most literature assume special properties

of the uncertainty sets in order to deal with bilinear term, such as only upper or
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lower bound can be achieved or affine policy (Street et al., 2011; Jiang et al., 2012;

Wang et al., 2013; Zhao and Guan, 2013). Approximation (Bertsimas et al., 2013)

and exact algorithms (Jiang et al., 2014) are also applied to solved the problem.

A column-constraint-generation algorithm (Zhao and Zeng, 2012) is proposed and

reported to solve two-stage robust optimization very efficiently; however, the algo-

rithm is expected not be scalable to large systems due to the introduction of extra

scenario-based variables and constraints.

Since the uncertainty set modeling is the key factor for robust optimization, data-

driven uncertainty set is under extensive study. The question to be answered is how

to model the uncertainty set such that the UC solution is robust but not be too

conservative.

Moreover, as two-stage scenario-based stochastic UC, if binary decisions exist in

the recourse stage, then the computational complexity increases. The problem be-

comes a bi-level problem with integer variables in both upper and lower level problems.

Deterministic Equivalent Model

From the test results of this dissertation, adding a set of scenario-based variables

and constraints to the formulation has much more impacts on solution time than

adding a set of constraints. Therefore, the framework proposed in Chapter 6 and

Chapter 7 seems to be a more promising way to solve the stochastic UC problems.

The framework also matches the current market practice of using a deterministic

model to solve the UC problems. The constraints proposed in this dissertation have

more mathematical supports rather than rule-of-thumb policies.

There are two key issues to improve the proposed framework: 1) How to char-

acterize the constraint? 2) How to reduce the number of included constraints? In

this dissertation, a set of constraints to ensure a feasible dispatch is explicitly derived
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based on a dual cone. If the costs of re-dispatch is considered, then the feasible region

of the dual problem is no longer a cone, but a polytope or polyhedron. How to char-

acterize the extreme points and extreme rays for the cost-constrained dual problem is

left for future study. There may be other types of constraints to improve the system

security. Actually, a crucial constraint pool can be established for any kind of con-

straints that can improve system security. After identifying all crucial extreme rays,

the next question is to reduce the number of included constraints to the determinis-

tic model. Even though adding constraints has less impact on the solution time of

MIP, the solver may take a long time to find optimal solution if too many redundant

constraints are included. Data mining algorithms can help reduce the number of in-

cluded crucial constraints. In this dissertation, a decision tree algorithm is adopted,

other data mining algorithms such as supporting vector machine, random forest can

also be tested. Moreover, in the current approach, day-ahead forecast loads at each

location in each period are used as model input, which results in too many attributes

for the model. Feature selection or reduction methods should be applied to reduce the

dimension of input attributes. The goal is to predict the necessary crucial extreme

more accurately. An alternative way to reduce the number of included constraints is

to study the dominance of the constraints and represent several constraints with a

single constraints. For instance, there may 10 identified crucial constraints to restrict

the reserve allocation; however, if the 10 constraints can be combined together as one

dominating constraint, then only one constraint needs to be added. The research to

study the dominance of the constraints can give valuable contributions to both MIP

theory and power system scheduling practice.

Finally, most discussed works in this dissertation are with respect to the day-

ahead scheduling. The unit commitment problem also exist in short-term real-time

scheduling. Future research should extend the study to real-time operations.
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AC Alternating Current
ACOPF Alternating Current Optimal Power Flow
AGC Automatic Generation Control
ARIMA Autoregressive Integrated Moving Average
BD Benders Decomposition
CAISO California Independent System Operator
CCSP Chance-constrained Stochastic Programming
CVaR Conditional Value at Risk
DAM Day-ahead Market
DCOPF Direct Current Optimal Power Flow
ED Economic Dispatch
ER Extreme Ray
FERC Federal Energy Regulatory Commission
G-1 Single Generator Failure
ISF Injection Shift Factor
ISO Independent System Operator
ISONE Independent System Operator New England
LP Linear Programming
LODF Line Outage Distribution Factor
LR Lagrangian Relaxation
LSE Load Serving Entity
LMP Locational Marginal Price
MEF Modified Extensive Form
MILP Mixed Integer Linear Programming
MIP Mixed Integer Programming
MISO Midcontinent Independent System Operator
MSSP Multi-stage Stochastic Programming
NERC North American Electric Reliability Corporation
NREL National Renewable Energy Laboratory
OMC Out-of-Market Correction
OPF Optimal Power Flow
OR Operations Research
PH Progressive Hedging
PJM Pennsylvania-New Jersey-Maryland Interconnection
PTDF Power Transfer Distribution Factor
RTO Regional Transmission Organization
RTM Real-time Market
RUC Residual or Robust Unit Commitment
SCUC Security Constrained Unit Commitment
SCED Security Constrained Economic Dispatch
SEF Stochastic Extensive Form
SO System Operator
SPP Southwest Power Pool
SUC Stochastic Unit Commitment
TSSP Two-stage Stochastic Programming
TSRO Two-stage Robust Optimization
UC Unit Commitment
VaR Value at Risk
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Sets and Indices:
g ∈ G generators
g ∈ Gf fast-start generators
g ∈ G(n) generators at bus n
i ∈ I extreme rays
j ∈ J wind farms
k ∈ K zones
l ∈ L transmission lines
l ∈ δ−(n) transmission lines from bus n
l ∈ δ+(n) transmission lines to bus n
n ∈ N buses
n ∈ Zk buses in zone k
t ∈ T time periods
s ∈ S scenarios

Parameters:
Bl transmission line susceptance
Cg linearized dispatch cost
CNL
g /CSU

g no-load/startup cost
Dnt predicted loads
DTg/UTg minimum down/up time
Fl transmission line rating
G1sg G-1 indicator
Hg/Lg available capacity bounds
Pmax
g /Pmin

g generation capabilities
R5
g/R

10
g 5-minute/10-minute contingency ramping capability

Rhr
g /R

SD
g /RSU

g hourly/shutdown/startup/ ramping capability
Qmin
k zonal reserve requirement

πs scenario probability
Ψln PTDF
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Unit Commitment Variables
ugt commitment status
vgt startup status
wgt shutdown status

Dispatch Variables
dnt loads
flt transmission line flow
int bus injection
pgt generation
pHgt/p

L
gt available generation bounds

p̂Hgt/p̂
L
gt post-contingency available generation bounds

rgt reserves
θnt bus angle

Dual Cone Variables
λn dual variables of node-balance constraint
µ+
l /µ

−
l dual variables of transmission bounds

φ+
g /φ

−
g dual variables of generation bounds

τ dual variables of total injection constraint
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C.1 Linear Programming

Linear programming (LP) is one special subset of constrained optimization (or
mathematical programming) where the objective function and all constraints are in
linear relation (Winston, 1993). The canonical form of LP is represented as follows,

min c′x (C.1)

s.t. Ax ≤ b (C.2)

x ∈ Rn (C.3)

where xn×1 is decision variable and (Am×n, bm×1, cn×1) are parameters. Equation (C.1)
is the objective function of the LP and (C.2) is a set of m linear constraints.

Any of the LP can be transformed into a standard form as follows,

min c′x (C.4)

s.t. Ax+ s = b (C.5)

x ≥ 0 (C.6)

where sn×1 is slack variable vector.
Many algorithms have been developed to solve the LP. Theoretical result shows

that there exist a polynomial algorithm to solve the LP (Hillier and Liberman, 2005).
However, in practice, the most efficient algorithm to solve the LP is simplex method,
which is not a polynomial algorithm. Commercial software solvers such as CPLEX,
Gurobi combine many techniques together (simplex, dual simplex, interior point
method) to solve the LP.

C.2 Convex Sets and Polyhedron

Definition 8. Let v1, v2, · · · , vk be vectors in Rn, a convex combination of the vectors
is defined as w =

∑k
i=1 λiv

i such that λi ∈ R+, ∀i, and
∑k

i=1 λi = 1.

Definition 9. A set S ∈ Rn is said to be convex if the convex combination of any two
points in S also belongs to the set, i.e., ∀x1, x2 ∈ S ⇒ λx1 +(1−λ)x2 ∈ S,∀λ ∈ [0, 1].

Definition 10. A convex hull of a given set S, denoted by conv(S), is defined as the
minimum convex set that contains all points in S.

Definition 11. S = {x ∈ Rn|p′x = α} is called a hyperplane. S = {x ∈ Rn|p′x ≥ α}
is called a half-space. A polyhedron P is any set in Rn that can be represented as the
intersection of a finite number of half-spaces.

Definition 12. A set C ⊆ Rn is said to be a cone if ∀x ∈ C and ∀θ > 0, θx ∈ C. A
set C ⊆ Rn is said to be a pointed cone if ∀x ∈ C and ∀θ ≥ 0, θx ∈ C.

Proposition 13. The feasible region of a LP is a polyhedron and it is a convex set
(Bazaraa et al., 2006).

Proof. By definition, the feasible region of a LP, P = {x ∈ Rn|Ax ≤ b} is the inter-
section of m half-spaces, i.e.,

∑n
j=1 aijxj ≤ bi,∀i = 1, 2, · · · ,m. ∀x1, x2 ∈ P,Ax1 ≤

b, Ax2 ≤ b. Let y = λx1 + (1 − λ)x2,∀λ ∈ [0, 1], then Ay = λAx1 + (1 − λ)Ax2 ≤
λb+ (1− λ)b = b, ⇒ y ∈ P , thus P is a convex set.
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C.3 Duality

For every LP, there is an associated LP with it called its dual. The relationship
between the original problem (called the primal) and the dual problem is extremely
useful in many ways (Hillier and Liberman, 2005).

Primal :

min c′x (C.7)

s.t. Ax ≤ b (C.8)

x ≥ 0 (C.9)

Dual :

max b′y (C.10)

s.t. A′y ≤ c (C.11)

y ≤ 0 (C.12)

Table C.1 summarizes primal-dual formulation corresponding relation and Ta-
ble C.2 summarizes primal-dual feasibility corresponding relation.

Table C.1: Primal-dual Formulation Corresponding Relation
Primal Dual

Minimize Z Maximize W
constraint i: variable yi:

Sensible ≥ form yi ≥ 0
Odd = form unconstrained
Bizarre ≤ form yi ≤ 0

variable xj: constraint j:
Sensible xj ≥ 0 ≤ form
Odd unconstrained = form
Bizarre xj ≤ 0 ≥ form

Table C.2: Primal-dual Feasibility Corresponding Relation
Optimal Unbounded Infeasible

Optimal
√

× ×
Unbounded × ×

√

Infeasible ×
√ √

Theorem 14 (Weak Duality Theorem). For any primal (minimization problem) fea-
sible solution and dual feasible solution, the corresponding primal objective is greater
than or equal to the dual corresponding objective, i.e., Z ≥ W .

Theorem 15 (Strong Duality Theorem). If there exists an optimal solution for pri-
mal problem, then there also exists an optimal solution for dual problem, and the
corresponding objective of primal problem equals to the corresponding objective of
dual problem, i.e., Z∗ = W ∗, where the star indicates the optimal solution.
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Proposition 16 (Complementary Slackness). If both primal and dual have optimal
solution x∗, y∗ respectively, then the following conditions hold,

(bi −
n∑
j=1

aijxj)y
∗
i = 0,∀i = 1, 2, · · · ,m (C.13)

(cj −
m∑
i=1

aijyi)x
∗
j = 0,∀j = 1, 2, · · · , n (C.14)

C.4 Mixed Integer Programming

Mixed integer programming (MIP) is another subset of constrained optimization
problems where some decision variables are restricted to take integer values. Without
specification, the MIP refers to mixed integer linear programming (MILP) here and
forth. The generic form of the MIP is represented as follows Nemhauser and Wolsey
(1999),

min c′x+ h′y (C.15)

s.t. Ax+Gy ≤ b (C.16)

x ∈ Zn1 , y ∈ Rn2 (C.17)

where y1×n2 are continuous variables, however x1×n1 can be only integer values. Pa-
rameters c, h, A,G, b are with corresponding dimensions.

Since the discrete nature of integer variables, the MIP results in the feasible regions
that are not convex sets. Non-convex problems are difficult to solve. In computational
complexity theory, the corresponding decision problem of the MIP is NP-complete
and the MIP is said to be a NP-hard problem, which means there does not exist any
known polynomial solution algorithm to solve the problem efficiently.

Commercial softwares combine branch-and-bound algorithms and cutting-plane
algorithms to solve the MIP. The former first solves the LP relaxation problem of the
MIP, branches the fractional integer variable and prunes nodes with certain criterion.
The latter generates cutting planes to cut the LP optimal but not MIP feasible
solution iteratively, aims at obtaining the tightest formulation of the MIP, as known
as the facet-defining constraints.

C.5 Benders Decomposition

Benders’ decomposition Benders (1962) is a decomposition method which can solve
the MIP with special structure efficiently (Nemhauser and Wolsey, 1999). Benders’
decomposition breaks the MIP into a master problem and subproblems. Considering
the following MIP,

min c′x+ h′y (C.18)

s.t. Ax+Gy ≤ b (C.19)

x ∈ Zn1
+ , y ∈ Rn2

+ (C.20)
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Suppose that there is a solution for all integer variables, then by fixing the integer
variables, the problem denoted as LP (x̄) becomes,

min h′y (C.21)

s.t. Gy ≤ b− Ax̄ (C.22)

y ∈ Rn2
+ (C.23)

By taking its dual denoted as D(x̄),

max u′(b− Ax̄) (C.24)

s.t. u′G ≤ h (C.25)

u ≤ 0 (C.26)

Let Q = {u : u′G ≤ h, u ≤ 0}, and uk, k = 1, 2, · · · , K be a set of extreme points
of Q, γj, j = 1, 2, · · · , J be a set of extreme rays of Q, the Benders’ reformulation is
represented as follows.

min c′x+ η (C.27)

s.t. η ≥ (uk)′(b− Ax) ∀k (C.28)

(γj)′(b− Ax) ≤ 0 ∀j (C.29)

x ∈ Zn1
+ , η ∈ R+ (C.30)

Equation (C.28) is referred as optimality cuts since if there exists an extreme
point uk such that (uk)′(b − Ax) > η then the optimality is not achieved. Equation
(C.29) is referred as feasibility cuts since if there exists an extreme ray γj such that
(γj)′(b− Ax) > 0 then the feasibility is not achieved.

Then the master problem of Benders’ decomposition is described as follows,

minx,η c′x+ η (C.31)

s.t. η ≥ (ūk)′(b− Ax) ∀k ∈ CO (C.32)

(γ̄j)′(b− Ax) ≤ 0 ∀j ∈ CF (C.33)

x ∈ Zn1
+ , η ∈ R+ (C.34)

where CO and CF are the subsets of optimality cuts and feasibility cuts respectively.
The subproblem of Benders’ decomposition is,

maxu u′(b− Ax̄) (C.35)

s.t. u′G ≤ h (C.36)

u ≤ 0 (C.37)
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The following Algorithm 3 describes the structure of the algorithm,

Algorithm 3 Benders’ Decomposition Algorithm

loop
solve master problem return (x̄, η̄)
solve subproblem
if unbounded then

return γ̄, add feasibility cut to the master problem
else

return ū, ū′(b− Ax̄)
if ū′(b− Ax̄) > η̄ then

add optimality cut to the master problem
else

exit loop
end if

end if
end loop

C.6 Lagrange Relaxation

Definition 17. A problem R where zR = min{g(x)|x ∈ Y } is the relaxation of
problem P where zP = min{f(x)|x ∈ X}, if f(x) ≥ g(x), ∀x ∈ X and X ⊆ Y .
(Nemhauser and Wolsey, 1999; Bazaraa et al., 2006)

Proposition 18. The following statements hold for the relaxation problem R and the
original problem P .

• If R is infeasible, then P is infeasible
• If P and R have optimal solutions, then zP ≥ zR

• If xR is an optimal solution to R such that xR ∈ X and g(xR) = f(xR), then
xR is an optimal solution to P

Consider the following problem,

min c′x (C.38)

s.t. Ax ≤ b (C.39)

Dx ≤ d (C.40)

x ∈ X (C.41)

By dropping the complicating constraints Dx ≤ d and putting it to the objec-
tive function with penalty λ ≥ 0, the Lagrangian relaxation (LR) of the problem is
obtained as follows,

min c′x− λ′(d−Dx) (C.42)

s.t. Ax ≤ b (C.43)

x ∈ X (C.44)

171



Let LR(λ) denote the above problem and zLR(λ) denote the objective value of
the above problem, the Lagrangian dual problem is defined as,

zLD = max
λ≥0

zLR(λ) (C.45)

Theorem 19. Let P = {x : Dx ≤ d} and Q = {x ∈ X : Ax ≤ b}, then

zLD = min{c′x : x ∈ P ∩ conv(Q)} (C.46)

Proof. Let xk, k = 1, 2, · · · , K be a set of extreme points of conv(Q) and γj, j =
1, 2, · · · , J be a set of extreme rays of conv(Q), then by Minkowski’s theorem, ∀x ∈
conv(Q), x =

∑
k αkx

k +
∑

j βjγ
j,
∑

k αk = 1,∀αk, βj ≥ 0. For any given λ ≥ 0,

zLR(λ) = mink=1,2,··· ,K{c′xk − λ′(d − Dxk) : (c′ + λ′D)γj ≥ 0,∀j} since the optimal
solution has to be one of the extreme points if the optimal solution exists. Then the
Lagrangian dual problem can be reformulated as

max η

s.t. η ≤ c′xk − λ′(d−Dxk) ∀k
(c′ + λ′D)γj ≥ 0 ∀j
λ ≥ 0

reordering the terms,

max η

s.t. η + λ′(d−Dxk) ≤ c′xk ∀k (αk)

− λ′Dγj ≤ c′γj ∀j (βj)

λ ≥ 0

take the dual,

min
∑
k

c′xkαk +
∑
j

c′γjβj

s.t.
∑
k

(d−Dxk)αk −
∑
j

Dγjβj ≥ 0∑
k

αk = 1

αk, βj ≥ 0 ∀k, j
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equivalent to,

min c′

(∑
k

αkx
k +

∑
j

βjγ
j

)

s.t. D

(∑
k

αkx
k +

∑
j

βjγj

)
≤ d∑

k

αk = 1

αk, βj ≥ 0 ∀k, j

equivalent to,

min c′x

s.t. Dx ≤ d

x ∈ conv(Q)

Therefore, zLD = min{c′x : x ∈ P ∩ conv(Q)}, the theorem is proved.

Theorem 20. zLR(λ) is a piece-wise linear concave function with respect to λ.

Proof. Suppose ∀λ ≥ 0, there exists an optimal solution for zLR(λ), i.e., it is not
unbounded, then the optimal solution has to be an extreme point of conv(Q) as
defined before. Let fk(λ) = c′xk − λ′(d − Dxk) where xk, k = 1, 2, · · · , K is one of
the extreme points of conv(Q), then zLR(λ) = mink=1,2,··· ,K{fk(λ)}. For any two
points λ1, λ2, let λ3 = αλ1 + (1 − α)λ2, α ∈ (0, 1). Suppose zLR(λ3) = f i(λ3),
then zLR(λ3) = f i(αλ1 + (1 − α)λ2) = αf i(λ1) + (1 − α)f i(λ2) since f i(λ) is a
linear function with respect to λ. Since f i(λ1) ≥ mink=1,2,··· ,K{fk(λ1)} and f i(λ2) ≥
mink=1,2,··· ,K{fk(λ2)}, we have zLR(λ3) ≥ αzLR(λ1) + (1− α)zLR(λ2), thus zLR(λ) is
a concave function with respect to λ by definition. Moreover, zLR(λ) is the minimum
of a finite set of linear functions, thus zLR(λ) is piecewise linear function with finite
many break points.

Since zLR(λ) is a piece-wise linear function, sub-gradient algorithm is often adopted
to solve the Lagrangian dual problem. In addition, after dropping the complicating
constraints, the problem can be decomposed into several smaller problems which are
easier to solve.

C.7 Dual Decomposition

Dual decomposition (DD) algorithm, first proposed by Carøe and Schultz (1999),
is decomposition algorithm based on the Lagrangian relaxation. The TSSP can be
re-formulated as follows,
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min
∑
∀s

πk(c′xs + (q̃s)′ys) (C.47)

s.t. Axs ≤ b ∀s (C.48)

W̃ sys = h̃s − T̃ sx ∀s (C.49)

xs = x0 ∀s (C.50)

xs, ys ≥ 0 ∀s (C.51)

The reformulation (Carøe and Schultz, 1999; Lubin et al., 2013) introduces the
scenario-based first-stage decision variables xs,∀s, and the non-anticipativity con-
straint equation (C.50). Let F s = {(xs, ys)|Axs ≤ b, T̃ sx + W̃ sys = h̃s, xs, ys ≥ 0},
then the problem is equivalent to,

z = min

{∑
∀s

πs(c′xs + (q̃s)′ys) : (xs, ys) ∈ F s, xs = x0,∀s

}
(C.52)

The only binding constraint is the non-anticipativity constraint, using the Lagrangian
relaxation to relax this constraint, the Lagrangian relaxation for a set of given λ̄ =
(λ̄1, λ̄2, · · · , , λ̄s) is described as follows.

D(λ̄) = min

{∑
∀s

[
Ls(xs, ys, λ̄s)− (λ̄s)′x0

]
: (xs, ys) ∈ F s,∀s

}
(C.53)

where Ls(xs, ys, λ̄s) = πs(c′xs + (q̃s)′ys) + (λ̄s)′xs. Let
∑
∀s λ̄

s = 0, then the problem
can be decomposed into s scenario-based sub-problems,

Ds(λ̄s) = min
{
Ls(xs, ys, λ̄s) : (xs, ys) ∈ F s,∀s

}
(C.54)

Since the Lagrangian relaxation provides the lower bound for the original problem,
then Lagrangian dual is defined as,

zLD = max
λ

{∑
∀s

Ds(λs) :
∑
∀s

λs = 0

}
(C.55)

The Lagrangian dual is a concave function with respect to λ. For each of the sub-
problem Ds(λs), the solution x̄s given λ̄s is a sub-gradient of the problem (Nemhauser
and Wolsey, 1999).

Ds(λs) ≤ Ds(λ̄s) + (x̄s)′(λs − λ̄s) (C.56)

The Lagrangian dual problem can be solved by a cutting plane algorithm (Lubin
et al., 2013). The master problem is described as follows,
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max
∑
∀s

θs (C.57)

s.t.
∑
∀s

λs = 0 ∀s (C.58)

θs ≤ Ds(λ̄s,k) + (x̄s,k)′(λs − λ̄s,k) ∀s, k (C.59)

The following Algorithm 4 (Lubin et al., 2013) describes the pseudo code of the
the DD algorithm for SUC.

Algorithm 4 Dual Decomposition Algorithm

k = 0
λ̄s,0 = 0,∀s
while g(k) > ε do

for s ∈ S do
Solve Ds(λ̄s,k), obtain (xs)∗

x̄s,k ← (xs)∗

end for
Solve the mater problem, obtain (θs)

∗, (λs)∗,∀s
k = k + 1
¯λs,k ← (λs)∗,∀s
g(k) =

∑
∀s[(θs)∗−Ds(λ̄s,k−1)]
1+|

∑
∀sD

s(λ̄s,k−1)|
end while

The DD algorithm provides a lower bound of the original problem. Heuristics
have been proposed to generate a feasible solution of the original problem to obtain
an upper bound (Papavasiliou and Oren, 2013).

C.8 Direct Current Optimal Power Flow

The electric power flow is an alternating current (AC) based flow and follows the
Kirchhoff’s circuit laws when transferring in the power grid. On top of economic
dispatch, system operators also need to take optimal power flow (OPF), also referred
as network constraints, into consideration when making the scheduling decisions.
Alternating current optimal power flow (ACOPF) formulates a non-linear mathe-
matical programming problem and is extremely difficult to solve when the system is
large. Instead of solving ACOPF, the system operators solve a direct current opti-
mal power flow (DCOPF) model, which is a simplified linear model from the ACOPF
model based on some assumptions (Wood and Wollenberg, 1996). After obtaining the
DCOPF solution, system operators make a set of justifications to ensure the solution
is AC feasible. The following is the derivation of DCOPF model.

Z: impedance R: resistance X: reactance
Y : admittance G: conductance B: susceptance
V : voltage I: current E: electric potential
S: complex power P : real power Q: reactive power
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Z = R + jX, Y = G+ jB

Y =
1

Z
, G =

R

R2 +X2
, B = − X

R2 +X2

I = Y V I1

I2
...

 =

 Y11 Y12 · · ·
Y21 Y22 · · ·
...

...
. . .

 V1

V2
...


For bus i, if there is a line from bus i to bus j, Yij = −yij, while Yii =

∑
j yij + yig

for all lines from bus j connected to bus i. The following Figure C.1 shows one
example (Wood and Wollenberg, 1996).

Figure C.1: Admittance Example
(Wood and Wollenberg, 1996)

Net power injection into bus i,

Si = Pi + jQi = ViI
∗
i

characterize I∗i ,

Ii =
N∑
k=1

YikVk

I∗i =

(
N∑
k=1

YikVk

)∗
=

N∑
k=1

Y ∗ikV
∗
k

⇒ Pi + jQi = Vi

N∑
k=1

Y ∗ikV
∗
k =

N∑
k=1

ViY
∗
ikV

∗
k
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Denote Yik = Ḡik + jB̄ik,

Pi + jQi =
N∑
k=1

ViY
∗
ikV

∗
k

=
N∑
k=1

(|Vi|ejθi)(Ḡik + jB̄ik)
∗(|Vk|ejθk)∗

=
N∑
k=1

|Vi||Vk|(Ḡik − jB̄ik)e
j(θi−θk)

=
N∑
k=1

|Vi||Vk|(Ḡik − jB̄ik)[cos(θi − θk) + j sin(θi − θk)]

Reorder the equation,

Pi + jQi =
N∑
k=1

|Vi||Vk|(Ḡik − jB̄ik)[cos(θi − θk) + j sin(θi − θk)]

=
N∑
k=1

|Vi||Vk|[Ḡik cos(θi − θk) + B̄ik sin(θi − θk)]

+ j
N∑
k=1

|Vi||Vk|[Ḡik sin(θi − θk)− B̄ik cos(θi − θk)]

⇒ Pi =
N∑
k=1

|Vi||Vk|[Ḡik cos(θi − θk) + B̄ik sin(θi − θk)]

Qi =
N∑
k=1

|Vi||Vk|[Ḡik sin(θi − θk)− B̄ik cos(θi − θk)]

Now consider the power flow for a single line as shown in Figure C.2,

Figure C.2: Power Flow for a Single Line

Ḡii = Gik, Ḡik = −Gik, B̄ii = Bik, B̄ik = −Bik
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Pik = |Vi|2Gik − |Vi||Vk|[Gik cos(θi − θk) +Bik sin(θi − θk)]
Qik = −|Vi|2Bik − |Vi||Vk|[Gik sin(θi − θk)−Bik cos(θi − θk)]

where zik = zki = rik + jxik, yik = yki = 1
zik

= rik
r2ik+x2ik

− j xik
r2ik+x2ik

DCOPF model makes the following assumptions,

• Ignore reactive power

– Qik ≈ 0

• All voltages are 1 p.u.

– |Vi| = |Vk| ≈ 1

• Voltage angle differences across a line are small

– θi − θk ≈ 0
– sin(θi − θk) ≈ θi − θk
– cos(θi − θk) ≈ 1

• The resistance of a line is far less than the reactance of the line

– rik � xik
– Bik = − xik

r2ik+x2ik
≈ − 1

xik

Sik = Pik + jQik

≈ Pik

= |Vi|2Gik − |Vi||Vk|[Gik cos(θi − θk) +Bik sin(θi − θk)]
≈ Gik − [Gik cos(θi − θk) +Bik sin(θi − θk)]
≈ Gik −Gik −Bik(θi − θk)

≈ 1

xik
(θi − θk)

Pik = Bik(θk − θi) =
1

xik
(θi − θk)

The following gives the DCOPF formulation,

min
∑
∀g

Cg (pg) (C.60)

s.t. Lg ≤ pg ≤ Hg ∀g (C.61)∑
l∈δ+(n)

fl −
∑

l∈δ−(n)

fl +
∑
g∈G(n)

pg = Dn ∀n (C.62)

fl = Bl(θn − θm) ∀l = (m,n) (C.63)

− Fl ≤ fl ≤ Fl ∀l (C.64)

This resulting formulation is referred as B-θ formulation. By canceling bus angle
variables θ, another formulation is obtained and is referred as power transfer distri-
bution factor (PTDF) or shift factor formulation.
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Let BL×L be a L× L diagonal matrix where each component represents the cor-
responding susceptance of the transmission line. Let AN×L be the N × L node-arc
incidence matrix of the transmission network, where for each column l there is one
1 (mth component) indicating that transmission line l is from bus m, one −1 (nth

component) indicating that transmission line l is to bus n and all other components
are 0. Let fL×1 be the vector of line flow. Let θN×1,pN×1,dN×1 be the vector of bus
angle, power generation and load demands at the bus respectively. Then (C.62) and
(C.63) can be written in the matrix form (Ruiz et al., 2012),

−Af = d− p (C.65)

f = −BA′θ (C.66)

⇒ ABA′θ = d− p (C.67)

Let MN×N = ABA′ be the nodal-susceptance matrix of the network. In order
to cancel θ, the invertible matrix of M is desired. However, M is not invertible
since A is not full rank matrix. Generally, rank(A) = N − 1, then M becomes
invertible by eliminating one row of A. Now introducing a reference bus, suppose
the first bus is the reference bus, then the corresponding reduced matrix and vec-
tor A−(N−1)×L, θ

−
(N−1)×1,p

−
(N−1)×1,d

−
(N−1)×1 by eliminating the first bus are obtained.

M−
(N−1)×(N−1) = A−B(A−)′. Set the bus angle of the reference bus to be 0.

M−θ− = d− − p− (C.68)

f = −B(A−)′θ− (C.69)

⇒ θ− = (M−)−1(d− − p−) (C.70)

⇒ f = −B(A−)′(M−)−1(d− − p−) (C.71)

⇒ f = B
[
0, (A−)′(M−)−1

]
(p− d) (C.72)

⇒ f = Ψ(p− d) (C.73)

Here the ΨL×N = B [0, (A−)′(M−)−1] is the PTDF matrix, sometimes referred
as the injection shift factors (ISF) matrix, describes the power flow distribution on
each transmission line when injecting one unit power from one certain bus to the
reference bus. The PTDF is the result of the Kirchhoff’s circuit laws. The PTDF-
based DCOPF model has been adopted by many RTO/ISOs. The advantage of this
model is that system operator can only include a subset of transmission lines which
are the possible congested lines into the formulation and relax the ones that will
not be congested. Then the number of constraints is reduced, which may improve
the solution time. However, one limitation for PTDF-based model is that when the
topology of the power grid changes, the PTDF will change.
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The following gives the economic dispatch with network constraints (PTDF-based
DCOPF formulation) (Wood and Wollenberg, 1996).

min
∑
∀g

Cg(pg) (C.74)

s.t. Lg ≤ pg ≤ Hg ∀g (C.75)∑
∀g

pg =
∑
∀n

Dn (C.76)

− Fl ≤
∑
∀n

Ψnl

 ∑
g∈G(n)

pg −Dn

 ≤ Fl ∀l (C.77)

While this model makes many simplification assumptions such as only real power
is considered, it is still one of the most important market models to start with.

C.9 Unit Commitment

The following gives a full SCUC model based on (Hedman et al., 2010).

min
∑
∀t

∑
∀g

CSU
g vgt + CNL

g ugt + Cgpgt (C.78)

s.t. vgt ≥ ugt − ug,t−1 ∀g, t (C.79)
t∑

i=t−UT g+1

vgi ≤ ugt ∀g, t (C.80)

t+DT g∑
i=t+1

vgi ≤ 1− ugt ∀g, t (C.81)

pgt ≥ Pmin
g ugt ∀g, t (C.82)

pgt + rgt ≥ Pmax
g ugt ∀g, t (C.83)

pgt − pg,t−1 ≤ Rhr
g ug,t−1 +RSU

g vgt ∀g, t (C.84)

pg,t−1 − pgt ≤ Rhr
g ugt +RSD

g (vgt − ugt + ug,t−1) ∀g, t (C.85)∑
∀g

pgt =
∑
∀n

Dnt ∀t (C.86)

− Fl ≤
∑
∀n

Ψnl

 ∑
g∈G(n)

pgt −Dnt

 ≤ Fl ∀l, t (C.87)

∑
∀i

rit ≥ rgt + pgt ∀g, t (C.88)

pgt, rgt ≥ 0 ∀g, t (C.89)

ugt ∈ {0, 1} ∀g, t (C.90)

0 ≤ vgt ≤ 1 ∀g, t (C.91)
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Equation (C.78) is the objective includes startup cost, no-load coast and gener-
ation cost. Equation (C.79) specifies the relation between the startup variable, vgt,
and the unit commitment status variable, ugt. Equation (C.80) and (C.81) are the
generator minimum up and down time constraint. It restricts that if the generator g
is turned on at period t, then it has to be on for the next UT g periods; similarly if
the generator g is turned off at period t, it has to be off for the next DT g periods.
There are many methods to model minimum up and down time constraints. Rajan
and Takriti (2005) proved that the given constraints are the facet-defining constraints
for u, v projection polytope. Equation (C.82) and (C.83) specify the generation level
lower and upper bounds respectively. Reserve rgt is included in this formulation.
When the generator is not committed, i.e., ugt = 0, then both the generation and
reserve are forced to be zero. Equation (C.84) and (C.85) impose the hourly ramp
rate limits along with the startup and shutdown ramp rate limits for the genera-
tors. Equation (C.86) is the power balance constraint and (C.87) is the network
constraint. Equation (C.88) states that the total reserve in the power system must
exceed the single largest generator contingency, which is a necessary condition to
withhold system security. Equation (C.89) restricts the power generation and reserve
to be non-negative. Equation (C.90) restricts the unit commitment status variable
to be binary variables. Although startup variable is linearized in (C.91), the optimal
solution returned form this MIP for vgt will be either 0 or 1 because (C.79)-(C.81)
restrict it to be so given ugt are binary.
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