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ABSTRACT

Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs,

and as with ordinary directed graphs, there are various C∗-algebraic objects that

can be associated with them. This thesis adopts a functorial approach to study

the relationship between k-graphs and their associated C∗-algebras. In particular,

two functors are given between appropriate categories of higher-rank graphs and

the category of C∗-algebras, one for Toeplitz algebras and one for Cuntz-Krieger

algebras. Additionally, the Cayley graphs of finitely generated groups are used to

define a class of k-graphs, and a functor is then given from a category of finitely

generated groups to the category of C∗-algebras. Finally, functoriality is investigated

for product systems of C∗-correspondences associated to k-graphs. Additional results

concerning the structural consequences of functoriality, properties of the functors,

and combinatorial aspects of k-graphs are also included throughout.
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Chapter 1

INTRODUCTION

Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs,

first introduced by Kumjian and Pask in [6] to provide a general combinatorial frame-

work encompassing both ordinary graph algebras and the higher-rank Cuntz-Krieger

algebras studied by Robertson and Steger in [15] and [16]. Much research has since

been done on the various C∗-algebraic objects associated with k-graphs, including

their Cuntz-Krieger and Toeplitz algebras, as well as certain product systems of C∗-

correspondences. A persistent aim of such research is to relate properties of the

C∗-algebraic object to properties of the underlying graph. For example, the ideal

structure of the associated Cuntz-Krieger algebras can, for a large class of k-graphs,

be determined by the structure of the graph (see [13]).

The current research is motivated from questioning how far the connections be-

tween the algebra and the graph actually extend. The combinatorial apparatus for

determining such things as the simplicity and ideal structure of an algebra is some-

what involved, and it would be worth knowing whether, for example, the symmetries

of a graph, which are usually apparent from simple inspection, reflect symmetries of

the algebra. In this way, complexities of the C∗-algebraic world would be further

reduced and deferred to the simpler graphical setting.

This thesis adopts a functorial approach to study the relationship between k-

graphs and their associated C∗-algebras. There are three main sections after the

preliminary material of chapter two. In the first (chapter 3), two functors are given

between appropriate categories of higher-rank graphs and the category of C∗-algebras,

one for Toeplitz algebras and one for Cuntz-Krieger algebras. Next, the Cayley graphs
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of finitely generated groups are used to define a class of k-graphs, and a functor is

then given from a category of finitely generated groups to the category of C∗-algebras.

Finally, functoriality is investigated for product systems of C∗-correspondences as-

sociated to k-graphs. Additional results concerning the structural consequences of

functoriality, properties of the functors, and combinatorial aspects of k-graphs are

also included throughout.
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Chapter 2

PRELIMINARIES

2.1 Higher-Rank Graphs and their Algebras

A k-graph (Λ, d) is a countable small category Λ = (Obj(Λ),Hom(Λ), r, s) together

with a functor d : Λ→ Nk that satisfies the factorization property: For all λ ∈ Λ and

m,n ∈ Nk with d(λ) = m+n, there are unique elements µ, ν ∈ Λ such that d(µ) = m,

d(ν) = n, and λ = µν. For n ∈ Nk, define Λn := d−1(n). With this notation, Λ0

is the set of vertices of Λ, and the map o 7→ ido gives a bijection between Obj(Λ)

and Λ0; thus, we typically identify the two. Also, set Λ∗ :=
⋃
n∈Nk Λn. For v ∈ Λ0,

define vΛ := Λ∩ r−1(v) and Λv := Λ∩ s−1(v). (Λ, d) is said to be row finite if vΛn is

finite for all v ∈ Λ0 and n ∈ Nk, and it has no sources if vΛn 6= ∅ for all v ∈ Λ0 and

n ∈ Nk. Let e1, . . . , ek denote the standard basis for Nk. Then, (Λ, d) is said to be

locally convex if for all 1 ≤ i < j ≤ k, e ∈ Λei , and f ∈ Λej with r(e) = r(f), there

are paths ee′ and ff ′ in Λei+ej that extend e and f , respectively.

There are two basic types of maps between higher-rank graphs. The difference

is in whether the dimensions of the graphs are allowed to vary. A morphism is

a degree preserving functor between two k-graphs: φ : (Λ1, d1) → (Λ2, d2) with

d1(λ) = d2(φ(λ)). A quasimorphism from an l-graph (Λ1, d1) to a k-graph (Λ2, d2) is

a functor φ : Λ1 → Λ2 together with a map ψ : Nl → Nk that intertwines the degree

maps: d2(φ(λ)) = ψ(d1(λ)). Also, a morphism φ : (Λ1, d1) → (Λ2, d2) is said to be

saturated if γ ∈ φ(Λ) whenever r(γ) ∈ φ(Λ0), and a quasimorphism φ : Γ → Λ from

an l-graph to a k-graph with l ≤ k is said to be weakly saturated if for all v ∈ φ(Γ0)

and all ei ∈ Nk, either vφ(Γ) ∩ Λei = vΛei or vφ(Γ) ∩ Λei = ∅.

3



Finally, given a k-graph Λ, a subgraph Γ ⊆ Λ is taken to be a subcategory of Λ

that is an l-graph for some l ≤ k. We say that Γ is weakly saturated if the inclusion

map is weakly saturated.

Definition 2.1.1. Let (Λ, d) be a row-finite k-graph with no sources. A Cuntz-

Krieger Λ-family in a C∗-algebra B is a collection T = {tλ : λ ∈ Λ} of partial

isometries satisfying the Cuntz-Krieger relations:

1. {tv : v ∈ Λ0} is a family of mutually orthogonal projections;

2. tλtµ = tλµ whenever s(λ) = r(µ);

3. t∗λtλ = ts(λ) for all λ ∈ Λ; and

4. tv =
∑

λ∈vΛn tλt
∗
λ for all v ∈ Λ0 and all n ∈ Nk.

Call these relations (CK1) through (CK4).

Definition 2.1.2. Let T = {tλ : λ ∈ Λ} be a family of partial isometries satisfying

(CK1) through (CK3). If instead of the (CK4) relation, we have that for all v ∈ Λ0

and all n ∈ Nk, the operators in {tλt∗λ : λ ∈ vΛn} are mutually orthogonal and

tv ≥
∑
λ∈vΛn

tλt
∗
λ,

then T is said to be a Toeplitz-Cuntz-Krieger Λ-family. Call this condition (TCK4).

The Cuntz-Krieger algebra of (Λ, d) is defined as the C∗-algebra generated by a

universal Cuntz-Krieger Λ-family. More specifically, we have the following proposi-

tion:

Proposition 2.1.3 (Prop. 10.9, [12]). Let Λ be a row-finite k-graph with no sources.

Then there is a C∗-algebra C∗(Λ) (called the C∗-algebra of Λ) generated by a Cuntz-

Krieger E-family {sλ} such that for every Cuntz-Krieger Λ-family t = {tλ} in a
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C∗-algebra B, there is a homomorphism πt : C∗(Λ)→ B satisfying πt(sλ) = tλ for all

λ ∈ Λ∗.

Note also that the Cuntz-Krieger algebra is equal to the closed linear span of

elements of the form tλt
∗
µ where λ, µ ∈ Λ.

Proposition 2.1.4 (Corollary 10.8, [12]). Let (Λ, d) be a row-finite k-graph with no

sources, and let {tλ) be a Cuntz-Krieger Λ-family. Then

C∗({tλ}) = span{tλt∗µ : s(λ) = s(µ)}.

Analogous results hold for the Toeplitz algebra T (Λ), which is generated by a

universal Toeplitz-Cuntz-Krieger Λ-family.

When the algebras of higher-rank graphs were first introduced in [6], the k-graphs

were required to be both row-finite and sourceless. Later, Raeburn et al. ([13]) defined

Cuntz-Krieger relations that apply to any row-finite k-graph. The fourth relation, in

particular, is the one at issue for more general classes of graphs, though its revision

looks remarkably similar when using the following notation: For n ∈ Nk and v ∈ Λ0,

define

Λ≤n := {λ ∈ Λ : d(λ) ≤ n and s(λ)Λei = ∅ if d(λ) + ei ≤ n}, and

vΛ≤n := Λ≤n ∩ r−1(v).

We can then replace (CK4) with

tv =
∑

λ∈vΛ≤n

tλt
∗
λ for all v ∈ Λ0 and all n ∈ Nk.

However, Theorem 3.5 of [13] indicates that this generality is not needed to capture

most of the interesting behavior afforded by Cuntz-Krieger algebras, since, by the

theorem, given a row-finite k-graph (Λ, d), there exists a Cuntz-Krieger Λ-family

{tλ : λ ∈ Λ} with each tλ nonzero if and only if Λ is locally convex. Still, even
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though significant structural results can be obtained in this more general setting, the

theory is most robust in the case of row-finite k-graphs with no sources, and much

of the literature proceeds under these constraints. Thus, the standing assumption in

what follows is that all k-graphs are row-finite with no sources, and we will use the

Cuntz-Krieger relations as first presented in this section.

2.2 Gauge-Invariant Uniqueness Theorem

First proved by Kumjian and Pask ([6], Theorem 3.4), the gauge-invariant unique-

ness theorem is one of the most significant general results about the Cuntz-Krieger

algebras of higher-rank graphs. Given a k-graph (Λ, d), there is a canonical, strongly

continuous action of the torus Tk on C∗(Λ) called the gauge action:

γ : Tk → Aut C∗(Λ), γz(tλ) = zd(λ)tλ,

where for z = (z1, · · · , zk) ∈ Tk and n = (n1, · · · , nk) ∈ Nk, we set zn := zn1
1 · · · z

nk
k .

The presence of a gauge action on a Λ-family S = {sλ : λ ∈ Λ} in a C∗-algebra

B can reveal much about C∗(Λ). Under modest assumptions, the ∗-homomorphism

πS : C∗(Λ) → B, whose existence is a consequence of universality, is injective, and

the abstractly generated algebra C∗(Λ) can then be related to some more familiar

C∗-algebra B. The result is therefore employed constantly when trying to find a

more concrete realization of C∗(Λ), as, for instance, in example 2.2.2.

Theorem 2.2.1. Gauge-Invariant Uniqueness Theorem Let (Λ, d) be a row-

finite k-graph with no sources. Let S = {Sλ} be a Cuntz-Krieger Λ-family in a C∗-

algebra B with Sv 6= 0 for every v ∈ Λ0. Suppose there is an action β : Tk → Aut B

such that βz(Sλ) = zd(λ)Sλ for every λ. Then the homomorphism πS : C∗(Λ)→ B is

injective.

Proof. See [6], Theorem 3.4.
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Example 2.2.2. Consider the 1-graph nCk, which consists of a k-cycle with n (di-

rected) edges between successive vertices. More specifically, let eij denote an edge

from vj to vj+1 for 1 ≤ j ≤ k − 1, and let it denote an edge from vk to v1 for j = k.

Then,

V (nCk) = {v1, . . . , vk}

E(nCk) = {e1
j , . . . , e

n
j : 1 ≤ j ≤ k}.

We’ll show that

C∗(nCk) ∼= On ⊗Mk(C).

Let S1 . . . Sn be partial isometries generatingOn. Define vertex projections in Mk(On)

by

(pvj)pq =


1On if p = j = q

0 otherwise.

For 1 ≤ j ≤ k − 1, define partial isometries

(seij)pq =


Si if p = j + 1, q = 1

0 otherwise.

Finally, define

(seik)pq =


Si if p = 1, q = k

0 otherwise.

As can be checked, this collection of operators is a Cuntz-Krieger family for nCk, and

γ ⊗ idMk
is a gauge action on On ⊗Mk where γ : T→ On is the gauge action on On.

As such, the canonical homomorphism is an isomorphism onto the algebra generated

by the above family of partial isometries. (See Theorem 2.2, [12] for the statement of

the gauge-invariant uniqueness theorem in the case of ordinary directed graphs).
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2.3 Covering Maps and the Fundamental Groupoid

In [9], Pask et al. defined the fundamental groupoid G(Λ) of a k-graph (Λ, d)

to give an analogue of the fundamental groupoid of an ordinary graph. They later

expanded on this work in [10], where they used the groupoid machinery to explore

covering maps of k-graphs. Such work was of the first in a growing literature to

treat k-graphs topologically. Unfortunately, the fundamental groupoid is not always

well-behaved. In particular, the canonical functor i : Λ→ G(Λ) need not be injective.

In Section 4.4, a necessary condition is given to detect whether a given k-graph does

embed faithfully.

It will suffice to consider only the concrete presentation of the fundamental groupoid

as given in Section 5 of [9]. Let (Λ, d) be a k-graph with 1-skeleton E.

Definition 2.3.1. For each e ∈ E1, let e−1 be an edge with r(e−1) = s(e) and

s(e−1) = r(e). Set E−1 := {e−1 : e ∈ E1}. The augmented graph E+ of E is defined

as E+ = (E0, E1 ∪E−1, r, s). The cancellation relations C for E+ are all relations of

the form (e−1e, s(e)) where e ∈ E1.

The fundamental groupoid is then given concretely as a quotient of the path

category P(E+) of the augmented graph E+. More specifically, let S = {S1, S2, . . . }

be the collection of commuting squares of (Λ, d). Note that each Sj is a relation

ef = gh between bi-colored paths. Let /S denote the quotient by the equivalence

relation generated by S. Then, Pask et al. (Section 5, [9]) show that

G(Λ) ∼= P(E+)/(C ∪ S) ∼= (P(E+)/C)/S = π(E)/S

where

π(E) := P(E+)/C

is the fundamental groupoid of an ordinary directed graph.
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2.4 C∗-Correspondences

Let B be a C∗-algebra and let X be a right B-module. A B-valued inner-product

on X is a function 〈·, ·〉B : X × X → B such that for all ξ, η, ζ ∈ X, b ∈ B, and

α, β ∈ C

1. 〈ξ, αη + βζ〉B = α〈ξ, η〉B + β〈ξ, ζ〉B,

2. 〈ξ, ηb〉B = 〈ξ, η〉Bb,

3. 〈ξ, η〉B = 〈η, ξ〉∗B,

4. 〈ξ, ξ〉B ≥ 0, and

5. 〈ξ, ξ〉B = 0 if and only if ξ = 0.

X is said to be a (right) Hilbert B-module if it is complete with respect to the norm

‖ξ‖2 = ‖〈ξ, ξ〉B‖. An operator T : X → X is said to be adjointable if there is

T ∗ : X → X such that

〈Tξ, η〉B = 〈ξ, T ∗η〉B

for all ξ, η ∈ X, and the collection of all adjointable operators on X is denoted by

L(X). When equipped with the standard operator norm, L(X) is a C∗-algebra.

Given ξ, η ∈ X, there is an operator Θξ,η with adjoint Θη,ξ defined by

Θξ,ηζ = ξ〈η, ζ〉B.

K(X) = span{Θξ,η : ξ, η ∈ X} is the algebra of compact operators in L(X); it is an

ideal, and for T ∈ L(X), TΘξ,η = ΘTξ,η.

Let A be a C∗-algebra. An A-B C∗-correspondence is a right Hilbert B-module X

together with a ∗-homomorphism φX : A→ L(X), called the left action. An A-A C∗-

correspondence is called either a C∗-correspondence over A or an A-correspondence.
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Furthermore, the C∗-correspondence X is nondegenerate if span{φX(a)ξ : a ∈ A, ξ ∈

X} = X, it is full if span{〈ξ, η〉A : ξ, η ∈ X} = A, and it is faithful if φX : A→ L(X)

is injective.

Example 2.4.1. Product systems of C∗-correspondences associated to higher-rank

graphs will be the main object of study later, but the one-dimensional case is instruc-

tive. Given an ordinary directed graph E = (E0, E1, r, s) with countable vertex set

E0, the graph correspondence of E is a nondegenerate C∗-correspondence X(E) over

c0(E0) defined as follows:

X(E) = {ξ : E1 → C : v 7→
∑
s(e)=v

|ξ(e)|2 is in c0(E0)}.

Given a, b ∈ c0(E0) and ξ, η ∈ X(E), the module actions are given by

(a · ξ · b)(e) = a(r(e))ξ(e)b(s(e)),

and the c0(E0)-valued inner product is given by

〈ξ, η〉(v) =
∑
s(e)=v

ξ(e)η(e).

Later, we will associate a product systems of C∗-correspondences to a higher-rank

graph Λ. For more on ordinary graph correspondences, see chapter 8 of [12].

Example 2.4.2. Any C∗-algebra A can be taken as a C∗-correspondence over A.

The left and right actions are given by left and right multiplication, and the A-valued

inner product is given by

〈a, b〉A = a∗b.

Various C∗-algebras can be associated to C∗-correspondences. Pimsner, in [11],

was the first to introduce such a construction; however, the left action in his work

was required to be injective. In [5], Katsura showed that injectivity is not required.
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In either case, the resulting C∗-algebras can either be built constructively or with

representations. The latter approach is presented here.

Let (X,A) be a C∗-correspondence over A. Define an ideal JX of A by

JX = {a ∈ A : φX(a) ∈ K(X), and ab = 0 for all b ∈ ker(φX)}.

Note that if φX is injective on JX , then JX = φ−1
X (K(X)).

Definition 2.4.3. Let X be a C∗-correspondence over A. A Toeplitz representation of

X is a pair (ψ, π) where ψ : X → B is a linear map, π : A→ B is a ∗-homomorphism,

and where for x, y ∈ X and a, b ∈ A,

1. ψ(a · x · b) = π(a)ψ(x)π(b), and

2. ψ(x)∗ψ(y) = π(〈x, y〉A).

Given a Toeplitz representation (ψ, π), there is a ∗-homomorphism π(1) : K(X)→

B satisfying

π(1)(Θx,y) = ψ(x)ψ(y)∗.

The representation is said to be Cuntz-Pimsner covariant if for all a ∈ JX ,

π(1)(φX(a)) = π(a).

Definition 2.4.4. The Toeplitz algebra TX of X is the C∗-algebra which is universal

for Toeplitz representations of X, and the Cuntz-Pimsner algebra OX is the C∗-

algebra universal for Cuntz-Pimsner covariant Toeplitz representations of X.

Cuntz-Pimsner algebras can also be developed in a functorial framework, as was

done by Robertson and Szymański in [14]. This perspective is presented below.

Let (X,A), (Y,B), and (Z,C) be C∗-correspondences over A, B, and C, respec-

tively. As noted in [14], for any continuous linear map ψX : X → Y , there is a
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∗-homomorphism ψ+
X : K(X)→ K(Y ) that satisfies

ψ+
X(θξ,η) = θψX(ξ),ψX(η).

Moreover, if ψY : Y → Z is another such map, then

(ψY ◦ ψX)+ = ψ+
Y ◦ ψ

+
X .

Definition 2.4.5 (Def. 2.3 of [14]). A morphism from (X,A) to (Y,B) is a pair

(ψX , ψA) consisting of a linear map ψX : X → Y and a ∗-homomorphism ψA : A→ B

such that

1. 〈ψX(ξ), ψX(η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X,

2. ψX(φX(a)ξ) = φY (ψA(a))ψX(ξ) for all ξ ∈ X and a ∈ A,

3. ψA(JX) ⊆ JY , and

4. φY (ψA(a)) = ψ+
X(φX(a)) for all a ∈ JX .

C∗-correspondences together with the above morphisms form a category, and the

Cuntz-Pimsner algebra can be defined by using these morphisms as representations

in the following manner.

Definition 2.4.6. Let (X,A) be a C∗-correspondence over A, and let B be a C∗-

algebra. A covariant representation of (X,A) onB is a morphism (ψX , ψA) : (X,A)→

(B,B), where (B,B) is the C∗-correspondence canonically associated to B, as in

example 2.4.2.

Definition 2.4.7. Let (X,A) be a C∗-correspondence over A. Then, OX is the

C∗-algebra universal for covariant representations of (X,A). That is, there exists a

universal covariant representation (πX , πA) of (X,A), and OX is generated by the

image of (X,A) under this representation.
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Let (ψX , ψA) : (X,A)→ (Y,B) be a morphism of C∗-correspondences. Using the

universal property of the associated C∗-algebras, it follows (see [14], Proposition 2.9)

that there is a map F (ψX , ψA) : OX → OY such that

(X,A)
(ψX ,ψA)

//

(πX ,πA)

��

(Y,A)

(πY ,πB)

��

OX
F (ψX ,ψA)

// OY

commutes.

By Proposition 2.11 of [14], the map F that takes (X,A) to OX and (ψX , ψA)

to F (ψX , ψA) is a covariant functor from the category of C∗-correspondences to the

category of C∗-algebras.

With these preliminaries in place, the main results of the thesis may begin. Func-

toriality for k-graphs and their associated Cuntz-Krieger and Toeplitz algebras is

investigated first.
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Chapter 3

FUNCTORIALITY FOR CUNTZ-KRIEGER AND TOEPLITZ ALGEBRAS

Functorial results concerning graphs and their associated analytic objects have been

considered previously. In the case of ordinary directed graphs, Spielberg ([17]) defined

a functor from a category of directed graphs with inclusions to a category of C∗-

algebras with injective ∗-homomorphisms and proved a number of structural results

from the construction. In the case of k-graphs, Kumjian et al. ([7]) defined k-morphs,

which consist of data for combining a k- and an l-graph into a k + l-graph, and they

then constructed a functor from a category of k-graphs with morphisms given by

isomorphism classes of k-morphs to a category of C∗-algebras with morphisms given

by isomorphism classes of C∗-correspondences.

The k-morph machinery is fairly involved, but functoriality also holds in certain

cases for more standard categories. In [8], Maloney et al. showed that for an injective,

saturated k-graph morphism φ : Λ → Γ, there is a ∗-homomorphism φ∗ : C∗(Λ) →

C∗(Γ). Since injectivity and saturation are preserved under composition of k-graph

morphisms, the assignments Λ 7→ C∗(Λ) and φ 7→ φ∗, together with the composition

(φ◦π)∗ = φ∗ ◦π∗, define a functor from k-graphs with injective, saturated morphisms

to the category C∗alg of C∗-algebras together with ∗-homomorphisms. As will be

shown, the saturation condition here is stronger than is needed, though a similar

constraint is still required for the Cuntz-Krieger relations to hold among the images

of the generating operators.

Indeed, for Cuntz-Krieger algebras there seems to be no straightforward way to

get functoriality with injective morphisms alone. To see this, suppose φ : Λ → Γ is

an injective morphism. Then, φ can be taken as a map φg : Λg → Γg where Λg and

14



Γg are the universal Cuntz-Krieger families for the k-graphs. To satisfy (CK4), we

might first try to send vertex projections to sums: For v ∈ Λ0, let

φg(pv) =
∑

{λ∈Λn:r(λ)=v}

sφ(λ)s
∗
φ(λ), for all n ∈ Nk.

However, there is no way to guarantee that the sums will match for each choice of

n ∈ Nk. As such, saturation or a similar condition is needed so that projections can

be sent to projections. The weakly saturated condition (recalled below) is exactly

enough to ensure that projections satisfy (CK4), relative to its Γ-family definition.

Definition 3.0.8. Let (Γ, d) and (Λ, d) be l- and k-graphs, respectively, with l ≤ k.

A quasimorphism (φ, ψ) is said to be weakly saturated if for all v ∈ φ(Γ0) and all

ei ∈ Nk, either

vφ(Γ) ∩ Λei = vΛei , or

vφ(Γ) ∩ Λei = ∅.

In the case of quasimorphisms, further constraints on the intertwining map are

needed to preserve the Cuntz-Krieger relations. Namely, ψ : Nl → Nk must be

injective, and it must send generators to generators so that factorizations still hold.

This implies that we can only pass from graphs of lower rank to graphs of higher

rank, which is to be expected, though, since if the dimension collapses information

will be lost, whereas a graph of lower dimension can be embedded into one of higher

dimension without corruption.

These considerations show that to get functoriality for Cuntz-Krieger algebras,

the constraints are fairly rigid. Passing to the Toeplitz algebra is, as will be seen, the

more natural choice. Still, there are various inductive constructions in the literature

that implicitly employ functoriality to realize the associated Cuntz-Krieger algebra

as an inductive limit of subalgebras, and it is thus worth knowing the precise cases

in which functoriality holds.

15



Definition 3.0.9. Let φ : Γ → Λ be a quasimorphism with intertwining map ψ :

Nl → Nk. Then, (φ, ψ) is said to be Toeplitz-Cuntz-Krieger preserving if φ and ψ are

both injective and ψ sends generators to generators. The pair is called Cuntz-Krieger

preserving if, in addition, φ is weakly saturated.

The result from [8] is extended somewhat in Corollary 3.0.12 by allowing the maps

to be Cuntz-Krieger preserving quasimorphisms between higher-rank graphs. First,

though, functoriality for Toeplitz algebras is characterized in Theorem 3.0.11. For

Toeplitz algebras, it does suffice to send projections to a sum of (sums of) operators.

Proposition 3.0.10. The following are categories:

i. HG: The objects are row-finite higher-rank graphs with no sources, and the

morphisms are Toeplitz-Cuntz-Krieger preserving quasimorphisms.

ii. cHG is a subcategory of HG obtained by restricting to Cuntz-Krieger quasi-

morphisms.

Proof. Let φ1 : Λ1 → Λ2 and φ2 : Λ2 → Λ3 be quasimorphisms with intertwining

maps ψ1 : Nk1 → Nk2 and ψ2 : Nk2 → Nk3 . If (φ1, ψ1) and (φ2, ψ2) are Toeplitz-Cuntz-

Krieger preserving then (φ2 ◦φ1, ψ2 ◦ψ1) is as well since injectivity is preserved under

composition and generators are still sent to generators. If (φ1, ψ1) and (φ2, ψ2) are

Cuntz-Krieger preserving, then, in particular, φ1 and φ2 are weakly saturated. Let

v = (φ2 ◦ φ1)(w) ∈ (φ2 ◦ φ1)(Λ0
1),

and let ei ∈ Nk3 . Assume

v(φ2 ◦ φ1)(Λ1) ∩ Λei
3 = v(φ2 ◦ φ1)(Λ1)ei 6= ∅.
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Then, there is ej ∈ Nk2 with ψ2(ej) = ei. Since φ1 and φ2 are weakly saturated and

the intersection is nonempty, it follows that

v(φ2 ◦ φ1)(Λ1)ei = (φ2 ◦ φ1)(w)φ2(φ1(Λ1)ej)

= φ2(φ1(w)φ1(Λ1)ej)

= φ2(φ1(w)Λ
ej
2 )

= (φ2 ◦ φ1)(w)φ2(Λ
ej
2 )

= vφ2(Λ2)ei

= vΛei
3 .

Thus, φ2 ◦ φ1 is weakly saturated. Since the composition of quasimorphisms is asso-

ciative, HG and cHG are categories.

Let φ : Γ → Λ be a quasimorphism in HG. Let γ ∈ Γ \ Γ0, and let v ∈ Γ0. Set

φ∗(sγ) = sφ(γ), and set

φ∗(sv) =
k∑
i=1

∑
λ∈φ(v)φ(Γ)ei

sλs
∗
λ.

We’ll show in Theorem 3.0.11 that φ∗ extends to a ∗-homomorphism from T (Γ) to

T (Λ) and that this assignment is functorial.

Theorem 3.0.11. The assignments

(Λ, d) 7→ T (Λ)

(φ : Γ→ Λ) 7→ (φ∗ : T (Γ)→ T (Λ))

give a functor from HG to C∗alg.

Proof. Let (Λ, d) be a row-finite k-graph with no sources. For objects, (Λ, d) simply

maps to T (Λ). For morphisms, let φ : Γ → Λ be a quasimorphism in HG with

intertwining map ψ : Nl → Nk where l ≤ k. Then, we can reduce to the case of a
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morphism by taking Γ as a k-graph in the following manner. First define f : Nl+1 →

Nl by projection onto the first l coordinates: (n1, . . . , nl+1) 7→ (n1, . . . , nl). Define

f ∗Γ := {(γ, (n1, . . . , nl, 0)) ∈ Γ× Nl+1 : d(γ) = f(n1, . . . , nl, 0)}.

The set f ∗Γ inherits edge factorizations from Γ, and it is an l + 1-graph with

s(γ, (n, 0)) = s(γ), r(γ, (n, 0)) = r(γ), and d(γ, (n, 0)) = (n, 0)

for n = d(γ) ∈ Nl. Note that the structure of the graph is unchanged, and, in

particular, Γg is still a universal generating family for f ∗Γ under the correspondence

between sγ and sγ,(n,0) where d(γ) = n. Thus, T (f ∗Γ) and C∗(f ∗Γ) are isomorphic

to T (Γ) and C∗(Γ), respectively, and by iterating this relabeling of the degrees, we

may regard Γ as (isomorphic to) a k-graph.

Note that the graph f ∗Γ now technically has sources, but this object is only

introduced for notational convenience. By supposing that Γ is isomorphic to a k-

graph, we can bypass the work of renaming degrees with ψ and thereby exclude it

from computations. Crucially, though, in what follows we still obtain a TCK Γ-family

in T (Λ) through the correspondence between sγ and sγ,(n,0).

Let γ ∈ Γ \ Γ0, and let v ∈ Γ0. Set φ∗(sγ) = sφ(γ), and define vertex projections

pv in T (Λ) by

pv := φ∗(sv) =
k∑
i=1

∑
γ∈vΓei

sφ(γ)s
∗
φ(γ)

=
k∑
i=1

∑
λ∈φ(v)φ(Γ)ei

sλs
∗
λ.

Then, for any v ∈ Γ0 and ei ∈ Nk,

pv ≥
∑
γ∈vΓei

sφ(γ)s
∗
φ(γ).
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Hence, pv is a projection in Λ satisfying the (TCK4) condition relative to the Γ-family

definition of the relations. Furthermore, if s(γ) = r(µ), then

sφ(γ)sφ(µ) = sφ(γ)φ(µ) = sφ(γµ),

and hence the second Toeplitz-Cuntz-Krieger relation is satisfied, while satisfaction

of the third is inherited from Λ. Thus,

{sφ(γ) : γ ∈ Γ \ Γ0} ∪ {pv : v ∈ Γ0}

is a TCK Γ-family in Λ. As such, there is a ∗-homomorphism φ∗ : T (Γ) → T (Λ)

where sγ 7→ sφ(γ) for γ ∈ Γ \Γ0 and sv 7→ pv for v ∈ Γ0. Moreover, since φ is injective

and each φ∗(pv) is nonzero for v ∈ Γ0, it follows from the gauge-invariant uniqueness

theorem that, in particular, φ∗ is injective.

Finally, let φ : Γ→ Λ and ψ : Λ→ Σ be morphisms in HG. Assume Γ, Λ, and Σ

are all (isomorphic) to k-graphs for some k. Then, for γ ∈ Γ \ Γ0,

(ψ ◦ φ)∗(sγ) = sψ◦φ(γ)

= ψ∗(sφ(γ))

= ψ∗ ◦ φ∗(sγ),

and for v ∈ Γ0,

(ψ ◦ φ)∗(sv) =
k∑
i=1

∑
γ∈vΓei

sψ◦φ(γ)s
∗
ψ◦φ(γ)

=
k∑
i=1

∑
λ∈φ(v)φ(Γ)ei

sψ(λ)s
∗
ψ(λ)

= ψ∗

 k∑
i=1

∑
λ∈φ(v)φ(Γ)ei

sλs
∗
λ


= ψ∗ ◦ φ∗(sv).

Thus, there is a (covariant) functor from HG to C∗alg.
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For Corollary 3.0.12, define φ∗(sγ) = sφ(γ) for γ ∈ Γ. We’ll show that this map

extends to a ∗-homomorphism φ∗ : C∗(Γ) → C∗(Λ) and that this assignment is

functorial.

Corollary 3.0.12. The assignments

(Λ, d) 7→ C∗(Λ)

(φ : Γ→ Λ) 7→ (φ∗ : C∗(Γ)→ C∗(Λ))

give a functor from cHG to C∗alg.

Proof. For objects, (Λ, d) maps to C∗(Λ). For morphisms, let φ : Γ → Λ be a

quasimorphism in cHG with intertwining map ψ : Nl → Nk where l ≤ k. Assume

that Γ is isomorphic to a k-graph, as in Theorem 3.0.11. We’ll show that S :=

{sφ(γ) : γ ∈ Γ} is a Cuntz-Krieger Γ-family in C∗(Λ). The first three Cuntz-Krieger

relations are satisfied as in the case of Toeplitz algebras. It remains to check the

fourth Cuntz-Krieger relation.

Since φ is weakly saturated and injective, φ(v)φ(Γ) ∩ Λei = φ(v)Λei for v ∈ Γ0

whenever 1 ≤ i ≤ l. Thus, for 1 ≤ i ≤ l,

sφ(v) =
∑

λ∈φ(v)(Γ)∩Λei

sλs
∗
λ =

∑
λ∈φ(v)Λei

sλs
∗
λ,

and consequently, sφ(v) is a projection in Λ satisfying (CK4) relative to the Γ-family

definition of the Cuntz-Krieger relations. Thus, S is indeed a Cuntz-Krieger Γ-family

in C∗(Λ), and as such, there is a ∗-homomorphism φ∗ : C∗(Γ) → C∗(Λ) where

sγ 7→ sφ(γ). Moreover, since φ is injective and each sφ(v) is nonzero for v ∈ Γ0, it again

follows from the gauge-invariant uniqueness theorem that φ∗ is injective.

For compositions of morphisms φ : Γ→ Λ and ψ : Λ→ Σ in cHG, we have that
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for γ ∈ Γ,

(ψ ◦ φ)∗(sγ) = sψ◦φ(γ)

= ψ∗(sφ(γ))

= ψ∗ ◦ φ∗(sγ).

Hence, there is a (covariant) functor from cHG to C∗alg.

One feature of functoriality is that in certain cases we can characterize the C∗-

algebra of a k-graph as an inductive limit of C∗-subalgebras associated to an increasing

chain of (weakly saturated) subgraphs. (Recall that a subgraph of Γ is a subcategory

of Γ that is itself a higher-rank graph, and it is called weakly saturated if the inclusion

map is weakly saturated).

In what follows, the maps in the direct sequences are inclusion maps i : Λn → Λn+1

and their induced ∗-homomorphisms.

Proposition 3.0.13. Let Λ be a k-graph. Suppose there is an increasing chain of

subgraphs Λ1 ⊆ Λ2 ⊆ · · · such that
⋃
n≥1 Λn = Λ. Then, T (Λ) ∼= lim−→T (Λn).

Proof. By Theorem 3.0.11, there are injective ∗-homomorphisms i∗ : T (Λn)→ T (Λn+1)

for n ≥ 1. As such, (T (Λn), i∗)
∞
n=1 is a direct sequence of increasing C∗-algebras, and

since for large enough N , each generator of T (Λ) is in
⋃N
n=1 T (Λn), it follows that⋃∞

n=1 T (Λn) is dense in T (Λ). Thus, T (Λ) ∼= lim−→T (Λn).

Proposition 3.0.14. Let Λ be a k-graph. Suppose there is an increasing chain

of weakly saturated subgraphs Λ1 ⊆ Λ2 ⊆ · · · such that
⋃
n≥1 Λn = Λ. Then,

C∗(Λ) ∼= lim−→C∗(Λn).

Proof. By Corollary 3.0.12, (C∗(Λn), i∗)
∞
n=1 is a direct sequence of increasing C∗-

algebras such that
⋃∞
n=1C

∗(Λn) is dense in C∗(Λ). Hence, C∗(Λ) ∼= lim−→C∗(Λn).
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Example 3.0.15. The simplest example of this inductive structure is the realization

of K(`2(N)) as the direct limit of increasing matrix algebras:

C∗(E∞) ∼= K(`2(N)) ∼= lim−→Mn
∼= lim−→C∗(En)

where En is a directed path on n vertices.
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Chapter 4

COMBINATORIAL RESULTS

In this section, it is shown how to obtain k-graphs from the Cayley graphs of finitely

generated groups. Moreover, it is shown that the process of going from a group to

a graph algebra is functorial: there is a functor from a category of finitely generated

groups to the category of C∗-algebras. Finally, a combinatorial result about the

fundamental groupoid of a higher-rank graph is also presented.

4.1 Cayley k-Graphs

Definition 4.1.1. Let G be a group with generating set S. The Cayley graph Γ(G,S)

is a colored directed graph with vertex set V (Γ) = G and edge set E(Γ) = {(g, sg) :

g ∈ G, s ∈ S}. Each generator s ∈ S is assigned a color cs, and the edge (g, sg) is

colored cs. If |S| = k, then our convention is to assume that colors take their values

in Nk. More specifically, for a generating set S = {s1, . . . , sk}, we set csi = ei ∈ Nk

where, again, ei is one of the standard basis elements of Nk.

The Cayley graph of a finitely generated abelian group can be regarded as a

1-skeleton of a unique k-graph, and the C∗-algebras of such graphs are easily char-

acterized by Proposition 4.2.3. When the group is not abelian, the Cayley graph no

longer serves as a 1-skeleton, since there is, in general, no way to satisfy the factor-

ization rules. If, however, a sufficiently large equivalence relation is placed on the

vertices of the Cayley graph, the resulting quotient graph can again be used to define

a k-graph.

One approach for defining the needed equivalence relation is to minimize the dam-
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age done to the structure of the original graph while still ensuring that factorizations

are possible. Unfortunately, this approach leaves one with a number of arbitrary

choices when defining factorizations. If instead the equivalence relation collapses ev-

erything to a single vertex, there is a straightforward way to define factorizations in

a uniform manner using the original Cayley graph. Furthermore, in the single vertex

case, the process of going from a finitely generated group to the Toeplitz algebra of

the single vertex k-graph is functorial for appropriate categories.

The single vertex k-graphs are defined below, though examples of other graphs

coming from Cayley graphs are also given in the next section.

Let Γ := Γ(G,S) be a Cayley graph, and let ∼:= V (Γ)×V (Γ) be the equivalence

relation on Γ that reduces the vertex set to a single element v0. The quotient graph

Γ/ ∼ has vertex set V (Γ)/ ∼ and edge set

{(x, y) ∈ V (Γ/ ∼)× V (Γ/ ∼) : ∃ (g, h) ∈ E(Γ) with g ∈ x and h ∈ y}.

Note that there is a bijection q : E(Γ) → E(Γ/ ∼) that sends (g, sg) to ([g], [sg]).

That is, ([g], [sg]) is a copy of the edge (g, sg), but now s([g], [sg]) = v0 = r([g], [sg]).

Let P be the set of all bicolored paths P = f1f2 in Γ/ ∼. Each edge fj of any

such path P is associated to a unique edge q−1(fj) = (gj, sijgj) of the Cayley graph,

where sij 6= sil for j 6= l. Define a map F : P → P by

F (P ) = ([g1], [si2g1])([g2], [si1g2]),

where P = ([g1], [si1g1])([g2], [si2g2]). Call F (P ) the Cayley factorization of P , and

call F the Cayley factorization map.

Since there is exactly one in-edge and one out-edge of each color at every vertex

of the Cayley graph, and since there is a bijection between the edges of the original

Cayley graph and the quotient graph, F is a well-defined bijection.
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Proposition 4.1.2. Let (G,S) be a finitely generated group. Using Cayley factor-

izations, Γ(G,S)/ ∼ is a 1-skeleton that determines a unique k-graph Λ[G,S].

Proof. Let Γ := Γ(G,S) be a k-colored Cayley graph where S = {s1, . . . , sk}. Let ∼

be the equivalence relation from above.

The degree functor d : Λ→ Nk is defined on an edge ([g], [sjg]) of Γ/ ∼ by

d(([g], [sjg])) = csj ∈ Nk.

Then, d extends to all of Λ by factoring any λ ∈ Λ (in the way described below) into

a concatenation of edges from the 1-skeleton. That is, write

λ = ([g1], [sj1g1]) · · · ([gn], [sjngn]),

and set

d(λ) = csj1 + · · ·+ csjn .

As discussed in [13], to show that the factorization property holds, it suffices

to check that multicolored paths in the 1-skeleton of length two or three factor ap-

propriately. Furthermore, since the Cayley factorization map is a bijection on the

collection of bicolored paths in Γ/ ∼, we need only check that this bijection satisfies

the commuting cube property for paths of length three.

More specifically, let P = f1f2f3 be a tricolored path in Γ/ ∼. Each edge fj is

uniquely associated to an edge (gj, sijgj) of the original Cayley graph where sij 6= sil

for j 6= l. Then, if we complete the commuting cube associated with P by first

factoring f2f3, we have

([g2], [si2g2])([g3], [si3g3]) = ([g2], [si3g2])([g3], [si2g3]),

([g1], [si1g1])([g2], [si3g2]) = ([g1], [si3g1])([g2], [si1g2]), and

([g2], [si1g2])([g3], [si2g3]) = ([g2], [si2g2])([g3], [si1g3]),
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which implies that

([g1], [si1g1])([g2], [si2g2])([g3], [si3g3]) = ([g1], [si3g1])([g2], [si2g2])([g3], [si1g3]).

Alternatively, if we complete the commuting cube by first factoring f1f2, we have

([g1], [si1g1])([g2], [si2g2]) = ([g1], [si2g1])([g2], [si1g2]),

([g2], [si1g2])([g3], [si3g3]) = ([g2], [si3g2])([g3], [si1g3]), and

([g1], [si2g1])([g2], [si3g2]) = ([g1], [si3g1])([g2], [si2g2]),

which again implies that

([g1], [si1g1])([g2], [si2g2])([g3], [si3g3]) = ([g1], [si3g1])([g2], [si2g2])([g3], [si1g3]).

Since either way of completing the commuting cube associated with P gives the

same factorization, it follows that Cayley factorizations determine a consistent collec-

tion of commuting squares. Hence, Γ/ ∼ determines a unique k-graph Λ[G,S].

4.2 Examples

As noted, the Cayley graphs of finitely generated abelian groups can already be

taken as 1-skeletons that determine unique k-graphs. The algebras yielded in this

manner are easily classified by Proposition 4.2.3. Note first the following preliminary

observation.

Definition 4.2.1. Let G and H be directed graphs. The Cartesian product of G and

H is the graph G×H with underlying vertex set V (G)× V (H). An edge is directed

from (v1, w1) to (w1, w2) if either v1 = v2 and (w1, w2) ∈ E(H) or if w1 = w2 and

(v1, v2) ∈ E(G).

Remark 4.2.2. Let Λ and Γ be higher-rank graphs with 1-skeletons EΛ and EΓ.

Then, the 1-skeleton EΛ×Γ of the categorical product Λ×Γ coincides with the Carte-
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sian product of the 1-skeletons. That is,

EΛ×Γ
∼= EΛ × EΓ.

This follows from the factorization property. More specifically, recall that a morphism

from (V1,W1) to (V2,W2) in Λ × Γ is a pair (f, g) where f : V1 → V2 and g : W1 →

W2 are morphisms in Λ and Γ, respectively. But any (f, g) can be factored as a

composition of the form

(f, g) = (f, idW2) ◦ (idV1 , g) = (idV2 , g) ◦ (f, idW1).

Hence, the 1-skeleton of Λ×Γ includes only those edges corresponding to morphisms

of the form (f, idγ) or (idλ, g). But this is just the Cartesian product EΛ ×EΓ of the

1-skeletons.

For Proposition 4.2.3, we will use Λ[G] to denote the k-graph obtained from treat-

ing the Cayley graph Γ of a finitely generated abelian group G (equipped with stan-

dard generators) as a 1-skeleton. Hence, in what follows Λ[G] is not one of the

single-vertex k-graphs defined previously, as here no quotient relation is imposed on

the vertices of Γ.

Proposition 4.2.3. LetG := Zl×Zn1×· · ·×Znm be a finitely generated abelian group

with standard generators. Then, the Cuntz-Krieger algebra of Λ[G] is isomorphic to

K(`2(Zl))⊗ C (Tm,Mn1(C)⊗ · · · ⊗Mnm(C)) .

Proof. Let G be a finitely generated group of the form above. There are l + m gen-

erators of the form (0, . . . , 0, 1, 0, . . . , 0). That is, the first l positions generate Zl and

each position thereafter generates one of the Znj
factors. The Cayley graph associated

to G can be written as the Cartesian product of the Cayley graphs associated to its

factors:

Γ(G) ∼= Γ(Zl)× Γ(Zn1)× · · · × Γ(Znm).
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From the above remark, and from the fact that the Cayley graphs of (finitely gen-

erated) abelian groups are already 1-skeletons of higher-rank graphs, we then have

that

EΛ[G]
∼= EΛ[Zl] × EΛ[Zn1 ] × · · · × EΛ[Znm ]

∼= EΛ[Zl]×Λ[Zn1 ]×···×Λ[Znm ].

Since the factorizations are unique, isomorphic 1-skeletons determine isomorphic

higher-rank graphs. Thus,

Λ[G] ∼= Λ[Zl]× Λ[Zn1 ]× · · · × Λ[Znm ].

Then, by Corollary 3.5 in [6], we have

C∗(Λ[G]) ∼= C∗(Λ[Zl])⊗ C∗(Λ[Zn1 ])⊗ · · · ⊗ C∗(Λ[Znm ]).

Each Λ[Znj
] is a cycle of length nj, and Λ[Zl] corresponds to the l-graph ∆l :=

{(m,n) ∈ Zl × Zl : m ≤ n} where r(m,n) = m, s(m,n) = n, and d(m,n) = n −m.

Hence,

C∗(Λ[G]) ∼= K(`2(Zl))⊗ C(T,Mn1(C))⊗ · · · ⊗ C(T,Mnm(C))

∼= K(`2(Zl))⊗ C (Tm,Mn1(C)⊗ · · · ⊗Mnm(C)) .

The following are examples of k-graphs obtained from Cayley graphs of finitely

generated nonabelian groups where the quotient relation on the Cayley graph does

not collapse the entire vertex set to a single point. Let Γ := Γ(G,S) be the Cayley

graph of a finitely generated group (G,S). Define ∼R to be the smallest equivalence

relation on V (Γ) containing the set

R = {(sisjg, sjsig) ∈ V (Γ)× V (Γ) : g ∈ V (Γ), si, sj ∈ S, i 6= j}.
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Recall that nCk is a k-cycle with n (directed) edges between successive vertices

and that C∗(nCk) ∼= On ⊗Mk(C) (see example 2.2.2). In the following examples,

each graph Λ[G] := Γ/ ∼R can be taken as the categorical product of graphs of the

form nCk. Hence, C∗(Λ[G]) can be described as a tensor product of the C∗-algebras

of the k-cycles.

Example 4.2.4. Let Dn be the dihedral group with presentation Dn = 〈a, b | a4 =

b2 = e, ab = ba3〉. Then for n odd, Dn/ ∼R= nC1 × nC2, whereas for n even,

Dn/ ∼R= n
2
C2 × n

2
C2. Thus, for n odd, C∗(Λ[Dn]) ∼= C∗(nC1) ⊗ C∗(nC2), and

C∗(Λ[Dn]) ∼= C∗(n
2
C2)⊗ C∗(n

2
C2) for n even. That is,

C∗(Λ[Dn]) ∼=


On ⊗On ⊗M2 for n odd

On/2 ⊗On/2 ⊗M4 for n even.

Example 4.2.5. The symmetric group behaves similarly, except that the dimension

of the matrix algebra now varies with n. Let Sn be generated by cyclic permutation

and transposition. Then, for n even, Sn/ ∼R= (n − 1)Cn × (n − 1)C2, so C∗(Λ[Sn])

is isomorphic to

On−1 ⊗On−1 ⊗M2n.

4.3 Functoriality

Here it is shown that the single-vertex k-graphs Λ[G,S] of Proposition 4.1.2 can be

used to define a functor from a category of finitely generated groups to the category

of C∗-algebras. More specifically, it is shown that the sequence of assignments

(G,S) 7→ Λ[G,S] 7→ T (Λ[G,S])

that takes the finitely generated group (G,S) to the Toeplitz C∗-algebra T (Λ[G,S])

is functorial at each step under appropriate morphisms. The categories involved are

listed below.
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i. FG: The objects are pairs (G,S) where S is a finite generating set for G.

A morphism from (G1, S1) to (G2, S2) is an injective group homomorphism

φ : G1 → G2 such that φ(S1) ⊆ S2.

ii. HG: The objects are row-finite higher-rank graphs with no sources, and the

morphisms are Toeplitz-Cuntz-Krieger preserving quasimorphisms.

iii. C∗alg: C∗-algebras together with ∗-homomorphisms.

Note that injective morphisms are not needed for FG to be a category, but injec-

tivity is needed when passing to the C∗-algebraic side of things, and the assumption

is therefore built in for convenience.

Proposition 4.3.1. FG is a category.

Proof. The morphisms of FG are injective group homomorphisms that send gener-

ators to generators. If φ : (F,R) → (G,S) and σ : (G,S) → (H,T ) are morphisms

in FG, then the composition σ ◦ φ : (F,R)→ (H,T ) is an injective group homomor-

phism, and σ ◦ φ(R) = σ(φ(R)) ⊆ T since φ(R) ⊆ S and σ(S) ⊆ T . Since group

homomorphisms are associative, FG is a category.

Let φ : (G,S) → (H,T ) be a morphism in FG. Define a map φΛ : Λ[G,S] →

Λ[H,T ] on elements of the 1-skeleton by

φΛ(([g], [sg])) = ([φ(g)], [φ(s)φ(g)]).

In Lemma 4.3.2, we’ll show that this map extends to a morphism in HG and that

the assignment is functorial.

Lemma 4.3.2. The assignments

(G,S) 7→ Λ[G,S]

(φ : (G,S)→ (H,T )) 7→ (φΛ : Λ[G,S]→ Λ[H,T ])
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give a functor from FG to HG.

Proof. The functor is obtained by passing through the Cayley graphs of the groups.

For maps, let φ : (G,S) → (H,T ) be a morphism in FG. Assume S = {s1, . . . , sl}

and T = {t1, · · · , tk}. The map φ determines a graph homomorphism φΓ : Γ(G,S)→

Γ(H,T ) between Cayley graphs: φΓ acts on vertices by φΓ(g) = φ(g), and the edge

(g, sg) is sent to (φ(g), φ(s)φ(g)), which is an edge of Γ(H,T ) by definition since

φ(s) ∈ T .

We can get a quasimorphism from Λ[G,S] to Λ[H,T ] by reverting to the Cayley

graph, applying the φΓ map, and then collapsing the vertices again under the equiv-

alence relation. More specifically, let φΛ : Λ[G,S]→ Λ[H,T ] be defined as above:

φΛ(([g], [sg])) = ([φ(g)], [φ(s)φ(g)])

where ([g], [sg]) is an element of the 1-skeleton Λ/ ∼. Since φ (and therefore φΓ) are

injective, φΛ is also injective on the 1-skeleton. We can extend this map to the whole

k-graph since repeated applications of the factorization property allow us to write an

element λ as a concatenation of edges in the 1-skeleton. Moreover, the intertwining

map ψ is defined on the standard basis of Nl by

d2(φΛ(([g], [sg]))) = cφ(s) = ψ(cs) = ψ(d1(([g], [sg]))).

Since ψ is an injection that sends generators to generators, (φΛ, ψ) is a morphism in

HG.

Finally, if φ : (F,R) → (G,S) and σ : (G,S) → (H,T ) are morphisms in FG,

then

(σ ◦ φ)Λ([a], [b]) = ([σ ◦ φ(a)], [σ ◦ φ(b)])

= σΛ([φ(a)], [φ(b)])

= σΛ ◦ φΛ([a], [b]).
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Thus, there is a (covariant) functor from FG to HG.

Theorem 4.3.3. The assignments

(G,S) 7→ T (Λ[G,S])

(φ : (G,S)→ (H,T )) 7→ (φ∗ : T (Λ[G,S])→ T (Λ[H,T ]))

give a functor from FG to C∗alg.

Proof. From Lemma 4.3.2 and Theorem 3.0.11, the following assignments are func-

torial at each step:

(G,S) 7→ Λ[G,S] 7→ T (Λ[G,S])

φ 7→φΛ 7→ φ∗.

4.4 Faithful Groupoid Embeddings

In this section, a necessary condition is given to decide whether a k-graph embeds

faithfully into its fundamental groupoid.

Let {ni}ki=1 be the standard basis for Nk, and let (Λ, d) be a k-graph with com-

muting squares S1, S2, . . . and 1-skeleton E1. Each Sj is a relation ef = gh between

bi-colored paths. For our purposes, we always assume that i > j where d(e) = ni and

d(f) = nj.

Definition 4.4.1. The factorization graph of a k-graph (Λ, d) is a simple (i.e., no

loops or multiple edges) undirected graph GΛ = (V (GΛ), E(GΛ)) defined as follows:

V (GΛ) = {(e, g) ∈ E1 × E1 : ∃ Sj with ef = gh or fe = hg}

E(GΛ) = {{(e, g), (f, h)} : ∃ Sj with ef = gh or fe = hg}
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We will denote an edge between (e, g) and (f, h) by juxtaposition. Note also that

the edges of each pair (e, g) have orthogonal degrees and either a shared source or a

shared range. Now, let

P = (e1, e2)(e3, e4) · · · (e2(m+1)−3, e2(m+1)−2)(e2(m+1)−1, e2(m+1))

be a path of length m in GΛ. Consider the odd and even sequences

e1, e3, . . . , e2(m+1)−3, e2(m+1)−1, and

e2, e4, . . . , e2(m+1)−2, e2(m+1).

Definition 4.4.2. Let P a path as above. P is called alternating if for any subpath

(ej−2, ej−1)(ej, ej+1)(ej+2, ej+3) we have either

ejej+2 = ej+1ej+3 if and only if ejej−2 = ej+1ej−1, or

ej−2ej = ej−1ej+1 if and only if ej+2ej = ej+3ej+1

Definition 4.4.3. We say that GΛ collapses if there exists an alternating path P and

1 ≤ i < j ≤ 2(m + 1)− 1 such that ei = ej and ei+1 6= ej+1 or such that ei+1 = ej+1

and ei 6= ej.

Definition 4.4.4. We call a k-graph faithful if it embeds faithfully into its funda-

mental groupoid. That is, the canonical functor is injective.

Proposition 4.4.5. A k-graph (Λ, d) is faithful only if its factorization graph GΛ

does not collapse.

Proof. Let (Λ, d) be a k-graph. We’ll show the contrapositive. Assume GΛ collapses.

Then, there is an alternating path

P = (e1, e2)(e3, e4) · · · (e2(m+1)−3, e2(m+1)−2)(e2(m+1)−1, e2(m+1))

in GΛ with either ei = ej and ei+1 6= ej+1 or ei+1 = ej+1 and ei 6= ej for some

i, j ∈ {1, . . . , 2(m+ 1)− 1}, i < j. Without loss of generality, assume m is even, and
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suppose ei 6= ej and ei+1 = ej+1. (The other possible combinations follow a parallel

argument). In fact, it suffices to only consider the shortest path between the relevant

vertices, and thus, we may assume that ei = e1 and that ej = e2(m+1)−1, or, setting

j := m, we may assume that e1 6= ej−1 while e2 = ej. We’ll show that e1 = ej−1 in

the fundamental groupoid.

Assume that e1e3 = e2e4. (If instead e3e1 = e4e2, the computation is similar).

Since the path is alternating, the other commuting squares are

e5e7 = e6e8

e9e7 = e10e8

...

ej−1ej−3 = ejej−2 = e2ej−2.

Then, in the fundamental groupoid, we have

e1 = e2e4e
−1
3

= e2e
−1
6 e5

= e2e8e
−1
7

...

= e2ej−2e
−1
j−3

= e2e
−1
j ej−1

= e2e
−1
2 ej−1

= ej−1.

Thus, Λ is not faithful.

It is possible that the converse holds as well, but a proof is not yet known. The

strategy for such a proof should presumably be as follows. Assume Λ is not faith-

ful. Then, there are distinct elements e and f of Λ that are identified in G(Λ). In
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particular, we may assume that e and f are elements of the 1-skeleton. Since G(Λ)

inherits degrees from Λ, d(e) = ni = d(f) for some ni ∈ Nk, and since the 1-skeleton

of Λ, taken as a directed graph, does faithfully embed into G(Λ), e and f must be

identified through substitutions involving the commuting squares. The problem then

is to justify the existence of commuting squares making the computation

e = h2h3h
−1
1

...

= h2hjh
−1
j−1

= h2h
−1
2 f

= f

go through. (The above assumes, at the least, that there is a square eh1 = h2h3.

If there is a square h1e = h3h2, the computation should again be similar). Such

a computation would demonstrate that there is an alternating path in GΛ between

(e, h2) and (f, h2), and as such, the factorization graph would collapse, proving the

converse.
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Chapter 5

FUNCTORIALITY FOR C∗-CORRESPONDENCES

The C∗-correspondence associated to an ordinary directed graph was introduced in

example 2.4.1. The analogous construction for higher-rank graphs requires product

systems of C∗-correspondences, which are reviewed here. Functorial properties be-

tween k-graphs and product systems of C∗-correspondences are then explored.

5.1 Product Systems of C∗-Correspondences

Let (X,A) be a C∗-correspondence over A. Then, X⊗n, the n-fold internal tensor

product of X, can also be taken as a C∗-correspondence over A, and the collection

{X⊗n : n ∈ N} is the basic example of a product system. In [1], Fowler constructed

a C∗-algebra associated to product systems fibred over more general semigroups.

Definition 5.1.1. Let X and Y be A-correspondences. The balanced tensor product

X ⊗A Y of X and Y is the completion of the vector space spanned by x⊗A y (x ∈ X,

y ∈ Y ) subject to the relation

x · a⊗A y = x⊗A φ(a)y,

where the norm is induced by the inner product

〈x1 ⊗A y1, x2 ⊗A y2〉A = 〈y1, 〈x1, x2〉A · y2〉A.

Define a right action of A on X ⊗A Y by

(x⊗A y) · a = x⊗A (y · a).
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Given T ∈ L(X), the map defined by

(T ⊗ idL(Y ))(x⊗A y) = Tx⊗A y

is an adjointable operator. As such, we can define a left action on X ⊗A Y by

a 7→ φ(a)⊗ idL(Y ).

When equipped with these left and right actions, X ⊗A Y has the structure of a

C∗-correspondence over A.

Let P be a countable semigroup with identity e, and let p : X → P be a collection

of A-correspondences fibred over P . Denote p−1(s) by Xs, the C∗-correspondence

over A with left action φs : A→ L(Xs).

Definition 5.1.2 (Def. 2.1 of [1]). We say that p : X → P is a (discrete) product

system over P if X is a semigroup, p is a semigroup homomorphism, Xs is an A-

correspondence for each s ∈ P \{e}, and the multiplication on X induces a collection

of A-correspondence isomorphisms

βs,t : Xs ⊗A Xt → Xst

such that Xe = A; βe,s : Xe ⊗A Xs → Xs and βs,e : Xs ⊗A Xe → Xs are induced by

a⊗ ξ 7→ a · ξ and ξ ⊗ a 7→ ξ · a, respectively; and for all r, s, t ∈ P ,

βrs,t ◦ (βr,s ⊗ idt) = βr,st ◦ (idr ⊗ βs,t).

Definition 5.1.3. Let p : X → P be a product system of A-correspondences, let B

be a C∗-algebra, and let ψ : X → B. Write ψs for the restriction of ψ to Xs. Then,

ψ is a Toeplitz representation of X if

1. (ψs, ψe) is a Toeplitz representation of (Xs, A) on B for each s ∈ P ,

2. ψst(xy) = ψs(x)ψt(y) for x ∈ Xs and y ∈ Xt.
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If each (ψs, ψe) is also Cuntz-Pimsner covariant, then ψ is said to be a Cuntz-Pimsner

covariant Toeplitz representation.

The Toeplitz algebra of p : X → P is the algebra TX that is universal for Toeplitz

representations of X. Similarly, the Cuntz-Pimsner algebraOX is universal for Cuntz-

Pimsner covariant Toeplitz representations. See Propositions 2.8 and 2.9 of [1] for

more on these algebras.

5.2 The C∗-Correspondence of a Higher-Rank Graph

Let E and F be directed graphs over a vertex set V .

Definition 5.2.1. The fibred product of E and F is the directed graph E ∗ F with

vertex set V , edge set

(E ∗ F )1 = {(e, f) ∈ E1 × F 1 : rF (f) = sE(e)},

and range and source maps given by

r(e, f) = rE(e) and s(e, f) = sF (f).

Definition 5.2.2. Let P be a countable semigroup with identity e. A product system

over P of graphs on V is a collection E = {Es : s ∈ P} of directed graphs over

V (where Ee = (V, V, idV , idV )) together with a collection α = {αs,t : s, t ∈ S} of

vertex fixing graph isomorphisms αs,t : Es ∗ Et → Est satisfying associativity for all

r, s, t ∈ P :

αrs,t ◦ (αr,s ∗ idt) = αr,st ◦ (idr ∗ αs,t).

See [2], Definition 1.1, for a more general formulation.

Let (Λ, d) be a k-graph. For m ∈ Nk, d−1(m) is the edge set of an ordinary directed

graph Em over V where the range and source maps are inherited from Λ. Let Xm be
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the graph C∗-correspondence over c0(V ) associated to Em; (see example 2.4.1 for the

definition of Xm). Let χe denote the characteristic function of {e}. Then, as noted

in [4],

{χe ⊗ χf : (e, f) ∈ (Em ∗ En)1}

has dense span in Xm⊗c0(V )Xn. Hence, there are isomorphisms βm,n : Xm⊗c0(V )Xn →

Xm+n such that

βm,n(χe ⊗ χf ) = χαm,n(e,f) = χef

for (e, f) ∈ (Em ∗ En)1.

Definition 5.2.3 (See Example 1.5 of [2]). The pair (X, β) where X = {Xm : m ∈

Nk} and β = {βm,n : m,n ∈ Nk} is called the k-graph correspondence of (Λ, d).

Definition 5.2.4. Let (X, β) be a product system of A-correspondences fibred over

Nk. Set Yi := Xei , and set

Ti,j := β−1
ej ,ei
◦ βei,ej : Yi ⊗A Yj → Yj ⊗A Yi.

Let Y = {Yi : 1 ≤ i ≤ k}, and let T = {Ti,j : 1 ≤ i < j ≤ k}. Then, (Y, T ) is called

the skeleton of (X, β).

For 1 ≤ i < j < l ≤ k, the hexagonal equation holds:

(Tj,l ⊗ idi)(idj ⊗ Ti,l)(Ti,j ⊗ idl)

= (idl ⊗ Ti,j)(Ti,l ⊗ idj)(idi ⊗ Tj,l).

The product system (X, β) is uniquely determined up to isomorphism by the

skeleton (Y, T ); (see [2], Proposition 2.11, and [4], Section 2 for more on this).

5.3 k-Graph Correspondence Functor

In this section, we show that there is a functor from a category of k-graphs to a

category of product systems. Since all C∗-correspondences are over a fixed C∗-algebra

A, we can simplify the definitions of the needed morphisms as follows.
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Definition 5.3.1. Let A be a C∗-algebra. Let X and Y be C∗-correspondences over

A. An A-correspondence morphism is a linear map ψ : X → Y such that

i. ψ(a · ξ · b) = a · ψ(ξ) · b, and

ii. 〈ψ(ξ), ψ(η)〉A = 〈ξ, η〉A.

Definition 5.3.2. Let (X,α) and (Y, β) be A-correspondence product systems over

a semigroup P . An A-correspondence product morphism is a collection ψ = {ψs : s ∈

P} of A-correspondence morphisms fibred over P such that the diagrams

Xm ⊗Xn
αm,n

//

ψm⊗ψn

��

Xm+n

ψm+n

��

Ym ⊗ Yn βm,n

// Ym+n

commute.

Let V be a countable set. We will work with the following categories:

i. kG(V): The objects are k-graphs with vertex set V ; the morphisms are injective,

vertex-fixing k-graph morphisms.

ii. pC0(V): The objects are c0(V )-correspondence product systems over Nk; the

morphisms are c0(V )-correspondence product morphisms.

Proposition 5.3.3. kG(V) and pC0(V) are categories.

Proof. It is known that k-graphs together with k-graph morphisms are a category,

and since associativity, injectivity, and the vertex fixing property are all preserved for

compositions of morphisms in kG(V), it follows that kG(V) is a category.

Let (X,α), (Y, β), and (Z, γ) be c0(V )-correspondence product systems over Nk,

and let φ : X → Y and ψ : Y → Z be c0(V )-correspondence product morphisms.

Then, for m ∈ Nk,

(ψ ◦ φ)m = ψm ◦ φm

40



is a c0(V )-correspondence morphism from Xm to Zm. Moreover, the diagrams

Xm ⊗Xn
αm,n

//

(ψm⊗ψn)◦(φm⊗φn)

��

Xm+n

(ψm+n)◦(φm+n)

��

Zm ⊗ Zn γm,n
// Zm+n

commute. Hence, the composition ψ ◦ φ = {ψm ◦ φm : m ∈ Nk} is a morphism in

pC0(V). Since c0(V )-correspondence morphisms are associative, pC0(V) is a category.

Theorem 5.3.4. The assignments

Λ 7→ (X(Λ), β)

(φ : Λ→ Γ) 7→ (X(φ) : X(Λ)→ X(Γ))

define a functor from kG(V) to pC0(V).

Proof. Let φ : Λ → Γ be a morphism in kG(V), and let X(Λ) and X(Γ) be the

associated k-graph correspondences. For m ∈ Nk, let X(φ)m : X(Λ)m → X(Γ)m be

obtained by linearly extending the map defined on the indicator functions by

X(φ)m(χe) = χφ(e).

This gives us a family X(φ) = {X(φ)m : m ∈ Nk} of C∗-correspondence morphisms.

Moreover, these morphisms intertwine the transition maps since

X(φ)m+n ◦ αm,n(χe ⊗ χf ) = X(φ)m+n(χef )

= χφ(ef)

= χφ(e)φ(f)

= βm,n(χφ(e) ⊗ χφ(f))

= βm,n ◦X(φ)m ⊗X(φ)n(χe ⊗ χf ).

Thus, X(φ) is a morphism in pC0(V).
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Let φ : Λ → Γ and σ : Γ → Σ be morphisms in kG(V). Then, for any m ∈ Nk

and any indicator function,

X(σ ◦ φ)m(χe) = χ(σ◦φ)(e)

= X(σ)m(χφ(e))

= X(σ)m ◦X(φ)m(χe),

and hence, by linearity,

X(σ ◦ φ)m = X(σ)m ◦X(φ)m = (X(σ) ◦X(φ))m.

Thus, X(σ ◦ φ) = X(σ) ◦X(φ). As such, there is a (covariant) functor from kG(V)

to pC0(V).

Theorem 5.3.6 proves that this functor is injective on objects and that it reflects

isomorphisms. It uses the machinery of Hilbert systems, which were introduced in

[4]. All definitions can be found therein.

Definition 5.3.5 (See section 4 of [4]).

1. A Hilbert matrix over V is a family H = {Huv}u,v∈V of Hilbert spaces.

2. An isomorphism of Hilbert matrices H and K is a family S = {Suv}u,v∈V of

unitary operators Suv : Huv → Kuv.

3. The product of Hilbert matrices H and K is the Hilbert matrix H ∗K given by

(H ∗K)uv =
⊕
x∈V

(Hux ⊗Kxv).

4. A Hilbert system is an (k + 1)-tuple (H1, . . . , Hn, S = {Sij}) where H i is a

Hilbert matrix (over V ) and Sij : H i ∗Hj → Hj ∗H i is an isomorphism.
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5. An isomorphism of Hilbert systems,

σ : (H1, . . . , Hk, S)→ (F 1, . . . , FK , T ),

is a collection of isomorphisms σ = {σ(i)}, σ(i) : H i → F i, such that the

diagrams

H i ∗Hj Sij
//

σ(i)∗σ(j)

��

Hj ∗H i

σ(j)∗σ(i)

��

F i ∗ F j

T ij
// F j ∗ F i

commute, where

(σ(i) ∗ σ(j))uv =
⊕
x∈V

(σ(i)
ux ∗ σ(j)

xv ).

The crucial fact needed for Theorem 5.3.6 is that there is a (categorical) equiv-

alence between product systems and Hilbert systems. As such, a product system

induces a Hilbert system (in the manner described below), and an isomorphism be-

tween product systems induces an isomorphism between the corresponding Hilbert

systems.

Theorem 5.3.6. Let V be a countable set, and let Λ and Γ be objects in kG(V).

i. If X(Λ) = X(Γ) in pC0(V), then Λ = Γ in kG(V).

ii. If φ : Λ→ Γ induces an isomorphism X(φ) : X(Λ)→ X(Γ) in pC0(V), then φ

is an isomorphism in kG(V).

Proof. The proof of (i.) follows the case for ordinary directed graph correspondences,

as proved in [3]. Suppose Λ 6= Γ in kG(V). If Λ∗ 6= Γ∗, then there is χe such that either

χe ∈ X(Λ) \X(Γ) or χe ∈ X(Γ) \X(Λ), and hence, X(Λ) 6= X(Γ). Alternatively, if

Λ∗ = Γ∗, then since Λ 6= Γ, there is e ∈ Λ∗ = Γ∗ such that either rΛ(e) 6= rΓ(e) or

sΛ(e) 6= sΓ(e). Hence, setting u = rΛ(e) and v = sΛ(e), it follows that pu ·χe · pv = χe

in X(Λ), but pu · χe · pv = 0 in X(Γ), and thus X(Λ) 6= X(Γ).

43



For (ii.), note that since φ is injective,

φ(uΛv) ⊆ uΓv

for u, v ∈ Λ0. Let (H1, · · · , Hk, S = {Sij}) be the Hilbert system associated to

(X(Λ), β): H i = {H i
uv}u,v∈V is the Hilbert matrix given by

H i
uv = pu · Yi · pv

where (Y1, · · · , Yk) is the skeleton of (X(Λ), β), and S is a family of Hilbert matrix

isomorphisms Sij : H i ∗Hj → Hj ∗H i. That is, Sijuv is a unitary operator

Sijuv : (H i ∗Hj)uv =
⊕
x∈V

(H i
ux ⊗Hj

xv)

−→
⊕
x∈V

(Hj
ux ⊗H i

xv) = (Hj ∗H i)uv.

Let (F 1, . . . , F k, T = {T ij}) be the Hilbert system associated to (X(Γ), α) where

(Z1, . . . , Zk) is the skeleton of (X(Γ), α). Then, the sets

Λej
uv = {χe : e ∈ uΛejv} and

Γejuv = {χf : f ∈ uΓejv}

form orthonormal bases for the Hilbert spaces Hj
uv and F j

uv, respectively. Note also

that

X(φ)(Λej
uv) = {X(φ)(χe) : e ∈ uΛejv} = {χφ(e) : e ∈ uΛejv} ⊆ Γejuv.

Since X(φ) is an isomorphism, it induces a Hilbert system isomorphism

σ : (H1, . . . , Hk, S)→ (F 1, . . . , FK , T ).

In particular, we get unitaries σ
(i)
uv from H i

uv to F i
uv. Thus,

X(φ)(Λej
uv) = Γejuv.
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As such,

X(φ)(pu ·X(Λ) · pv) = pu ·X(Γ) · pv,

and this implies that φ(uΛv) = uΓv. Since the morphisms are injective and vertex-

fixing, it follows that φ is an isomorphism in kG(V).

45



REFERENCES

[1] N. J. Fowler. Discrete product systems of Hilbert bimodules. Pacific J. Math.,
204(2):335–375, 2002.

[2] N.J. Fowler and A. Sims. Product systems over right-angled Artin semigroups.
Trans. Amer. Math. Soc., 354:1487–1509, 2002.

[3] S. Kaliszewski, N. Patani, and J. Quigg. Characterizing graph C∗-
correspondences. Houston J. Math., 38:751–759, 2012.

[4] S. Kaliszewski, N. Patani, and J. Quigg. Obstructions to a general characteriza-
tion of graph correspondences. J. Austral. Math. Soc., 95:169–188, 2013.

[5] T. Katsura. On C∗-algebras associated with C∗-correspondences. J. Funct. Anal.,
217(2):366–401, 2004.

[6] A. Kumjian and D. Pask. Higher rank graph C∗-algebras. New York J. Math.,
6:1–20, 2000.

[7] A. Kumjian, D. Pask, and A. Sims. Generalised morphisms of k-graphs: k-
morphs. Trans. Amer. Math. Soc., 363:2599–2626, 2010.

[8] B. Maloney, D. Pask, and I. Raeburn. Skew-products of higher-rank graphs and
crossed products by semigroups. Semigroup Forum, 88:162–176, 2014.

[9] D. Pask, J. Quigg, and I. Raeburn. Fundamental groupoids of k-graphs. New
York J. Math., 10:195–207, 2004.

[10] D. Pask, J. Quigg, and I. Raeburn. Coverings of k-graphs. J. Algebra, 289(1):161–
191, 2005.

[11] M.V. Pimsner. A class of C∗-algebras generalizing both Cuntz-Krieger algebras
and crossed products by Z. In Free Probability Theory, volume 12 of Fields Inst.
Commun., pages 189–212. American Mathematical Society, Providence, Rhode
Island, 1997.

[12] I. Raeburn. Graph Algebras, volume 103 of CBMS Regional Conference Series in
Mathematics. American Mathematical Society, Providence, Rhode Island, 2005.

[13] I. Raeburn, A. Sims, and T. Yeend. Higher-rank graphs and their C∗-algebras.
Proceedings of the Edinburgh Mathematical Society, 46:99–115, 2003.
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