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ABSTRACT

Finite element simulations modeling the hydrodynamic impact loads subjected

to an elastomeric coating were performed to develop an understanding of the per-

formance and failure mechanisms of protective coatings for cavitating environments.

In this work, two major accomplishments were achieved: 1) scaling laws were devel-

oped from hydrodynamic principles and numerical simulations to allow conversion of

measured distributions of pressure peaks in a cavitating flow to distributions of mi-

croscopic impact loadings modeling individual bubble collapse events, and 2) a finite

strain, thermo-mechanical material model for polyurea based elastomers was devel-

oped using a logarithmic rate formulation and implemented into an explicit finite

element code.

Combining the distribution of microscopic impact loads and finite element mod-

eling, a semi-quantitative predictive framework is created to calculate the energy

dissipation within the coating which can further the understanding of temperature

induced coating failures. The influence of coating thickness and elastomer rheology

on the dissipation of impact energies experienced in cavitating flows has also been

explored.

The logarithmic formulation has many desired features for the polyurea consti-

tutive model, such as objectivity, integrability, and additive decomposition compat-

ibility. A review and discussion on the kinematics in large deformation, including a

comparison between Lagrangian and Eulerian descriptions, are presented to explain

the issues in building rate-dependent constitutive models in finite strains. When

comparing the logarithmic rate with other conventional rates in test examples, the

logarithmic rate shows a better conservation of objectivity and integrability.

The modeling framework was validated by comparing predictions against temper-

atures measured within coatings subjected to a cavitating jet. Both the experiments
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and models show that the temperatures generated, even under mild flow conditions,

raise the coating temperature by a significant amount, suggesting that the failure of

these coatings under more aggressive flows is thermally induced. The models show

that thin polyurea coatings synthesized with shorter molecular weight soft segments

dissipate significantly less energy per impact and conduct heat more efficiently. This

work represents an important step toward understanding thermally induced failure in

elastomers subjected to cavitating flows, which provides a foundation for design and

optimization of coatings with enhanced erosion resistance.
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Chapter 1

INTRODUCTION

Cavitation occurs when the vapor bubbles are created in a liquid due to a rapid

decrease in pressure, e.g., as flows curve around high-speed naval components such

as propeller blades, local changes in the fluid pressure can lead to explosive growth

of bubble nuclei into cavities which then break up into individual vapor bubbles. As

these vapor bubbles are swept into regions of higher pressures, the bubbles collapse

violently, resulting in the creation of shock waves in the fluid, or when near a surface,

an asymmetric collapse leads to the formation of a micro jet that impinges on the

surface generating large pressures [1–6]. In a cavitating flow near naval components,

the repetitive collapse of bubbles against the surface leads to erosive wear eventually

causing component failure.

Recently, there has been an interest in developing polymeric coatings [7–9] to

absorb and dissipate the intense hydrodynamic loads generated by cavitating flows

through viscous deformation mechanisms. However, unlike metallic surfaces, where

the relationship between material properties and erosion resistance have been exten-

sively studied [10–15], the relationship between the material properties of polymers

and their erosion resistance has not yet been clearly established. In particular, the

effects of rheology and thermal stability are important factors in determining the cavi-

tation erosion resistance of polymeric materials. Cavitation erosion tests conducted by

Hattori and Itoh [16] demonstrated that the temperature rise of polymer specimens,

including epoxy resin, polypropylene, and polyamide 66, subjected to cavitating flows

was 10-20 times higher than for aluminum and stainless steel surfaces. As both the

rheological and yield properties of polymers are highly sensitive to temperature, the
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large amount of heating generated in polymeric coatings strongly suggests a thermal

mode of failure.

Many studies have been conducted to estimate impact loads generated by bub-

ble collapse and assess the resulting damage to the material surface. Tomita [17]

performed an experimental study to analyze the impulsive pressures generated from

single bubble collapses and demonstrated that small bubbles driven to collapse by

a shock wave could generate large enough localized pressures to cause plastic defor-

mation in materials. Okada [18] combined measurements of the area and depth of

erosion pits with separately measured impact loads to estimate the impact energy

which was correlated with the rate of volume loss in the material. Momma [19, 20]

developed a new type of pressure transducer using a piezoelectric foil to detect cavi-

tation pressure pulses, and attempted to correlate the pit size with the magnitudes of

surface impact pressures. Franc et al. [21] measured surface impact loads in a high-

speed cavitation loop by means of a flush-mounted pressure sensor and proposed that

two-dimensional distributions of impacts should be used to characterize the aggres-

siveness of a cavitating flow that consider both the size of the impacted area and

the load amplitude. As the micro jets are, in general, smaller than the transducers

available to measure loads, characterization of peak surface pressures has been indi-

rect, relying on inferences made from measurements of pit sizes, total impact forces,

and plastic deformation. Veysset et al. [22] tested the responses of poly(urethane

urea) (PUU) coatings to high-velocity microparticle impact and found that under

microscopic loadings with high strain rate and high pressure, (PUU) presents a hy-

perelastic response instead of glassy-like brittle behaviour while no fracture or plastic

indentation is observed after the impact. So it is not appropriate to adopt the above

methods which rely on the damage measurement after the impacts to characterize the
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cavitating loads. A more detailed review of investigations conducted to estimating

cavitation loads is provided by Kim et al. [23].

Recently, polyurea has attracted an increasing interest in coating industry as an

excellent candidate for protective coatings. It is widely reported that polyurea coat-

ings can effectively improve the blast resistance of the substrate [24–26] and prevent

ballistic penetration [27–29]. Moreover, the adhesive nature of polyurea makes it easy

to apply on the substrate, usually just sprayed on, and provides the ability to retain

the broken fragments generated when the structure is broken. So for cavitation ero-

sion, these properties of polyurea make it a promising coating material on propellers

or turbines. Additionally, polyurea coatings have other appealing features for naval

applications such as waterproof, acids resistant, weather tolerant, and so on.

Hydrodynamic impacts during cavitation erosion of a surface are characterized

by large local pressures (pressures greater than a gigapascal were inferred from mea-

surements conducted by Momma and Lichtarowicz [19]) applied over very short time

scales (on the order of microseconds [30]). Knowledge of the material response of

elastomers, such as polyurea, is limited in such extreme loads, particularly for multi-

axial stress states. Split-Hopkinson bar experiments have been conducted by several

groups [31–34] to characterize the behaviors of polyurea at a strain rate of 103 s−1.

These experiments indicate that polyurea is sensitive to strain rate, i.e. there is a

rubbery-to-glassy transition in the material response as the strain rate is increased.

Pressure–shear plate impact experiments conducted by Jiao et al. [35–37] were able

to probe the mechanical response of polyurea at pressures up to 9 GPa and shear

strain rates of 106 s−1. Youssef [38] studied the response of polyurea at strain rates of

107 s−1 using laser-driven stress waves with nanosecond rise times, and verified that

even at these extraordinarily high rates, the time-temperature superposition principle

is valid for polyurea. A comprehensive treatment of the high strain rate effects in
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elastomeric polymers, including polyurea, is discussed in the recent book edited by

Barsoum [39].

From these and other experimental characterizations of polyurea, several constitu-

tive laws, based on viscoelasticity, have been proposed for polyurea. El-Sayed [40, 41]

proposed a viscoplastic model for large deformation by introducing plastic strain into

the model to capture permanent material damage. Li [42] combined the hyperelastic

and viscoelastic characteristics of polyurea into a new hyper-viscoelastic constitu-

tive model. Shim [43] represented the long-term softening property by Gent elastic

equations and the time-dependent response by nonlinear viscoelastic equations. Ga-

monpilas [44] developed a nonlinear viscoelastic constitutive model for polyurea by

assuming a separable time and strain dependence. Amirkhizi et al. [45] proposed an

experimentally based model including temperature, pressure, and strain rate depen-

dence. Under the assumption of small deformation, this model decomposes the strain

into a hyperelastic dilatancy part and viscoelastic deviatoric part. The temperature

is computed from the dissipated energy which can be obtained from the creep strain.

This model successfully reproduces results of various independent tests, including the

pressure–shear plate impact experiments performed by Jiao and Clifton [35], and has

been widely used in applications involving blast loads [46, 47].

One limitation of the Amirkhizi model is the lack of compatibility of large ro-

tation deformation. To generalize this model, the decomposition expressions of the

volumetric-deviatoric and elastic-creep strains need to be rewritten in large deforma-

tion kinematics. Moreover, since the strain rate is involved, the objectivity of the

constitutive model must be considered.

The multiplicative decomposition rule, i.e. F = FeFp and F = J−
1
3F , is widely

used in finite deformation constitutive models. However, as discussed in [48–51],

the non-uniqueness property of multiplicative decomposition leads to several issues
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such as nonobjective elastic deformation, complicated separation of deformation rate

and elastic relation invariance. The non-uniqueness issue of the multiplicative de-

composition formula is reviewed by Naghdi in [52]. Furthermore, as pointed out

by Bažant [53], when decomposing the volumetric-deviatoric strain, two unappeal-

ing consequences arise (except Hencky strain), the isochoric strain εD tensor is not

traceless (trace(εD) 6= 0) and is dependent from the volumetric stretch (εD = f(εV )).

As shown in [53], derived from a multiplicative decomposition of deformation gra-

dient, the Hencky strain can be written in an additive expression without the issues

that other strains measures have and presents a consistency between two decompo-

sition formulas. Xiao [54, 55] comprehensively investigated the relationship between

logarithmic strain ln V and stretching (or deformation rate) tensor D and concluded:

1) the stretching tensor is identical to the objective rate form of Hencky strain with a

unique choice of spin tensor, which is named the logarithmic spin, and 2) the Hencky

strain and Cauchy stress form a work-conjugate pair.

In a general standpoint, Xiao et al. [56, 57], examined the Hencky strain and

logarithmic rate framework with the problems reported by early attempts to construct

Eulerian constitutive frames like the integrability issue pointed out by Simo [58] that

the integral of the objective stress rates, such as the Jaumann rate and Green-Naghdi

rate, along a closed path will not be zero. It is shown that the logarithmic rate formula

avoids introducing a fictitious intermediate configuration, e.g., the artificial state after

pure plastic deformation Fp, and keeps the additive strain separation consistent with

the energy separation, e.g. the plastic strain εp is uniquely and fully associated with

the irrecoverable energy.

As a result of these paragraphs, the logarithmic rate formulation has several at-

tractive features. First, the strain rate variable in the small-strain formulation can

be directly replaced by the deformation rate tensor without any modification to the
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elastic tangent moduli (see section 10.3 in [57]). Second, the additive decomposi-

tion is automatically inherited for both volumetric-deviatoric and viscoelastic-plastic

deformation rate separation. Third, the objectivity requirement of the rate form is

fulfilled. Finally, the logarithmic rate shows evidence of integrability.

Under the logarithmic rate form formulation framework, a nonlinear constitutive

model for polyurea is introduced. The molecular statistic based Arruda-Boyce hyper-

elastic model [59] is used to describe the stretch-dependent stress response. Moreover,

a plastic model is adopted to represent the stress softening behavior, i.e. the loss in

stiffness or plastic residual strain left by prior loads.

To summarize, we use the viscoelastic model developed by Amirkhizi et al. ex-

tended to a co-rotational, large deformation kinematic description, to analyze the

energy dissipated from hydrodynamic loads representing those generated by the col-

lapse of vapor bubbles near a coated surface. While this model does not account for

damage or strain–dependence of the dynamic moduli, it gives a reasonable description

of the dynamic behavior of polyurea, accurately accounts for the effects of pressure

and temperature on viscous flow, and provides a thermodynamically consistent rate

of energy dissipation. While a more sophisticated model, featuring damage evolution

and strain dependent moduli would, in principle, provide a better description, pa-

rameterization of such a model requires material characterization in conditions that

are extremely difficult to reproduce in controlled experiments. Thus, limited by in-

complete knowledge of the precise nature of the surface loadings generated under

cavitating flows and the material response under extreme pressure and strain rates,

the objective of this study is to provide a framework for semi–quantitative analysis

that can be used to generate new insights to the failure mechanisms of elastomeric

coatings subjected to cavitating flows.
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Chapter 2

A STATISTICAL MODEL OF CAVITATION AGGRESSIVENESS

In this chapter, a brief introduction to the nucleation, growth, and collapse of the

cavitation bubbles will be presented. The bubbles collapse leads to a high pressure and

short duration local impulsive load on the solid material surface. The massive number

of the bubbles magnifies the damage resulted from the impacts and eventually leads to

a macroscopic failure. Thanks to well-developed laboratory cavitation erosion testing

techniques, the bubble collapse loads can be measured in amplitude and duration and

a correlation between the experimental observation and FEA input parameters can

be established.

2.1 Introduction to Bubble Impact

Cavities, or bubbles, are nucleated in liquids under sudden pressure drop. A

bubble nuclei, referring to a microbubble existing in liquid flow around solid objects,

travels with a velocity Vf determined by the dynamic flow. Once the local pressure

reduces, the nuclei rapidly grows into various sizes from microns to millimeters. A well

known dimensionless number, called the cavitation number, expresses the relationship

between the pressure and the velocity:

σ =
2 (p− pv)
ρV 2

f

(2.1)

where p is the local pressure and pv is the vapor pressure of the fluid. The cavitation

number is an effective measurement of the extent of cavitation development in a flow.

The smaller the value is, the liquid is more likely to form cavities because according
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to the Bernoulli principle, a larger flow speed leads to a lower pressure that is more

close to the vaporize point.

The bubble collapse is triggered when the local pressure increases to a critical

point p = pc. This critical pressure is related to many factors including the surface

tension, vapor pressure, and bubble radius ([60]). According to Rayleigh’s model of

bubble dynamics, the duration of the bubble collapse, which is also called the Rayleigh

time, is related to the collapse pressure, which will be shown in the following section.

If the bubble collapses close to a solid wall, a re-entrant jet is formed and impacts

the solid wall with high speed. A highly concentrated and dynamic impulsive pressure

is then induced on the solid surface which can cause severe local deformation on the

material. In an energy point of view, the potential energy of the bubble is all converted

into kinetic energy when it collapses. A portion of the kinetic energy is carried by

the re-entrant jet and converted into external work done to the material during the

impact. An illustration of the bubble collapsing process is shown in Fig. 2.1

The velocity of the re-entrant jet depends on the bubble collapse pressure pc. In

order to quantify the relation between Vjet and pc, Chahine et al. [63] conducted CFD

simulations of the bubble evolution [64–66] and established a relationship between the

collapse pressure and jet speed. In their bubble dynamics simulations, bubbles were

grown to a 2 mm radius with their centers 1.5 mm away from a rigid wall. At the

same time, the pressure was raised to the collapse pressure, ranging from 100 kPa

to 15 MPa. Then the resulting velocities of the water jets vary due to the different

driving pressures. A linear fit is presented between the square root of the collapse

pressure and re-entrant jet velocity, shown in Fig. 2.2

Vjet = 4.6
√
pc/ρ (2.2)
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re-entrant jet
p = pc

Figure 2.1: The process of a bubble collapsing and the formation a re-entrant water

jet recorded by Chahine et al. [61, 62].

where ρ is the density of water. This equation also agrees to the previous studies by

Blake [6].

From the conservation of momentum relations, the pressure of re-entrant jet when

it arrives the wall is obtained:

pjet = ρcVjet (2.3)

where c is the sound speed of water. The pjet denotes the pressure at the tip of the

re-entrant water jet when exerted on a flat rigid surface. Fig. 2.3 shows the dynamic

interaction between the re-entrant water jet and surface material. The re-entrant jet

has a curved surface around the jet tip, due to the collapsing intensity difference within

the bubble: the center of the bubble generates the highest jet speed which develops

into the jet tip. So a factor of 0.6, which is fitted from bubble dynamics simulation

results as shown in Fig. 2.4, is multiplied to the tip velocity as an estimation of the

average velocity of the whole re-entrant jet. Then the maximum pressure applied
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Figure 2.2: Relation between the re-entrant jet velocity and the pressure driving the

bubble collapse (reproduced from Fig. 6.9 in [67] with permission from Dynaflow).

on the solid material is estimated according to the force equilibrium equation for

impacts:

pm = 0.6
ρscs

ρscs + ρc
ρcVjet

= 0.6γρcVjet

(2.4)

where ρs and cs are the density and sound speed for the solid surface material. The

parameter γ is related to the difference in impedance between the fluid and the surface

material and approaches unity in the limit of a perfectly rigid surface. However, since

the impedance of polyurea is comparable to that of water, it is not appropriate to

ignore this factor. In fact, γ is around 0.6 for polyurea when the impact initiates and

makes a significant difference to the impulsive pressure.

Although a single bubble collapse brings little energy into the material and would
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Figure 2.3: Generation of shock wave from water jet impact on solid surface.
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Figure 2.4: Relation between peak impact pressure and the jet velocity (reproduced

from Fig. 6.10 in [67] with permission from the author).
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(a) (b)

Figure 2.5: Typical cavitation erosion pattern induced by cavitation erosion on (a)

metal and (b) polyurea surfaces [68].

not cause visible damage, the material damage accumulates under the repetitive im-

pact forces produced by a cavitating flow. Macroscopic failure of the material occurs

when the cavitation damage increases over the failure criterion. As shown in Fig. 2.5,

the pattern of the cavitation induced pit on metal is different from that on polyurea.

The pit on metal has a clear edge while the pit on polyurea shows a swelled edge and

melt geometry. The damage criterion can be represented in many forms depending on

the material, e.g. the temperature rise or pressure, which are critical factors affecting

the properties of polymers. In this work, the dissipated energy is regarded as the

damage of the material as it is converted into heat and not recoverable. So to un-

derstand the macroscopic failure, the premise is to have a robust model which is able

to precisely model the impact on the material induced by single bubble collapse and

predict the increment of the dissipated energy within the material. Then the over-

all damage within a period and area can be predicted by integrating the dissipated

energy over all the impacts.

Since bubble collapse occurs over a time span measured in microseconds, high-

speed cameras and advanced imaging technologies are applied to capture its shape
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change. By using materials with a low yielding criterion, e.g. indium [17], the di-

mension and intensity of the bubble collapse load can be estimated by measuring the

radius and depth of the pit left on the solid surface. Numerical models are also cre-

ated to predict bubble collapse characteristics including collapse pressure, maximum

radius and re-entrant jet velocity and radius. Based on the Rayleigh-Plesset model,

the relations between bubble parameters and their effects on the resulting impulsive

pressure are well understood.

Although the dynamic behavior of a single bubble can be directly observed in

laboratory and simulated with robust models, it is challenging to correlate the single

bubble to the characteristics of a cloud of bubbles in a real cavitation environment.

Several experiments have been developed to produce a controlled cavitation environ-

ment, such as vibratory cavitation apparatus [69], cavitating jets [19, 70, 71] and

high-speed cavitation tunnels [72]. But a few numerical models exist to characterize

the multiple bubbles. As the large quantity and the diversity of bubbles require a

heavy computational resource, statistical approximations such as sampling and re-

gression modeling are usually used to simplify the problem.

Another challenge is to relate the cavitation fluid aggressiveness to the material

damage. The pits induced by the cavitating impacts on metallic surfaces can be

analyzed in terms of width and depth to deduce the pattern of the incoming loads. But

the pits are built by the cumulative bubble collapse loads with different parameters.

Philipp and Lauterborn [73] showed that a single bubble collapse can cause more than

one pit. Moreover, Dular et al. [74] showed that a single pit can be caused by more

than one bubble collapse. So it is extremely complex to precisely characterize the

formation process of pits from cavitation bubbles and retrieve the characteristics of

the bubble collapse impacts from the corresponding pit. Also, as a ductile material,

polymers usually do not form pits under cavitation environment.
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The goal of this chapter is to establish a statistical model to convert laboratory

cavitation environment measurements to bubble collapse load parameters. Instead of

analyzing the dimensions of the pits, we related the spatial span of bubble collapse

loads to the duration of the load using the Rayleigh time as a bridge. A correla-

tion between the macro-scale cavitation flow parameters and the micro-scale bubble

collapse load parameters is finally built to convert the material heating under single

bubble impact predicted by FEM to the overall material erosion under cavitating jet

environment.

2.2 Cavitation Impulsive Loads

The surface pressures on a plate induced by the bubble collapses under a cavitat-

ing jet were measured by our co-workers from Dynaflow. They provided us the peak

and duration of all the pressure signals and we built the numerical model based on

the bubble collapse distributions. In order to better explain our model, we briefly

summarize their experimental method here. The pressures were recorded in the Dy-

naflow laboratory using a high-frequency response pressure transducer to characterize

the impulsive pressure load distribution at two jet velocities, one with the dynamic

pressure at the exit of the jet nozzle, denoted as pjet, equals to 2.75 MPa and the

other with 5.52 MPa. So according to the equation pjet = 1
2
ρv2, the cavitating jet

velocity at the nozzle is 50 m/s for pjet = 2.75 MPa and 100 m/s for pjet = 5.52

MPa. This velocity of the cavitating jet will be significantly dissipated when arriving

the solid surface, but the actual velocity of the cavitating jet at the solid surface

is irrelevant. We will just use the jet pressure pjet instead of the jet velocity as the

measure of cavitation environment intensity to avoid confusion with the re-entrant jet

velocity Vjet. The measurement facility and methodology for analyzing the pressure

signals are described in detail by Singh et al. [30], so only a brief summary of the
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impulsive pressure load measurement is given here. The pressure transducer (PBC

model 102A03) has a response time of 1 µs and a resonant frequency of 500 kHz.

A Plexiglas (PMMA) insert was used both to protect the tip of the transducer and

reduce the effective sensing area from 19.63 mm2 to 3.14 mm2. Pressure signals from

a 2.19 mm diameter cavitating jet were sampled for different jet pressures with the

transducer placed at a standoff of 25.4 mm from the jet nozzle. The measured signals

were analyzed to extract the peak amplitudes and peak widths of all detected pulses

over a 60 second recorded sample. Pressure peaks are detected between two pairs of

crossings of a threshold pressure value of 65 kPa.

As the signals are usually noisy, a threshold amplitude is used to filter the irrele-

vant small peaks. Chahine et al. [75] validated that the threshold processing method

does not significantly affect the statistic characteristics of the impact signals. They

compared the signal width and height distributions processed by different amplitude

thresholds with original data and found that the difference is minimal and the overall

trend stays the same. The pulse width is measured as the time between the points

where the pressure reaches 50% of the peak pressure amplitude. From the measured

collapses, a two-dimensional impact distribution is generated, relating the density of

collapse events in terms of their peak pressures and peak durations.

Fig. 2.7 illustrates a representative bubble collapse over the surface of the trans-

ducer. The collapsing bubble generates a water jet of radius Rjet which impacts the

surface, generating a microscopic surface load over a characteristic hydrodynamic

loading radius Rh with a local pressure amplitude of pm. While the duration τ of

this bubble collapse load can be directly recorded, the hydrodynamic loading radius

is 2-3 orders of magnitude smaller than the size of the sensitive area of the pressure

transducer, and so the recorded measurement does not provide an accurate char-

acterization of the microscopic impulsive pressures exerted on the material surface.
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Figure 2.6: Frequency density of pressure peaks as a function of peak amplitude and

peak duration for jet pressures of (a) 2.75 MPa and (b) 5.52 MPa. The units of the

frequency density are 1
s
· 1
µs·log(MPa)
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Figure 2.7: Measurement of impact load from a jet resulting from the collapse of a

bubble of initial radius Rmax..

Instead, the average pressure pt, i.e., the total force generated by the microscopic

surface pressure distribution divided by the sensitive area of the pressure transducer,

is recorded.

The distributions of measured impacts under 2.75 MPa and 5.52 MPa jets is

shown in Fig. 2.6. Comparing the density distribution contours under two cavitating

jet pressure, the higher pressure lifts the contour peaks up in pt axis while narrowing

the range in τ axis, indicating that a more intensive cavitating jet produces more

powerful bubble impacts. The integrals of the density distribution contours are the

average numbers of impacts recorded per second during the experiment:

Ntotal =

∫ ∞
−∞

∫ ∞
0

f(τ, log [pt])dτd log [pt] (2.5)

The numbers are 6000 s−1 and 4800 s−1 for 5.52 MPa and 2.75 MPa jet pressures,

respectively.

In order to model the dissipation of energy from individual impact events, it is

necessary to translate the distribution of pressure pulses from the macroscopic pa-

17



x (mm)

−1.0
−0.5

0.0
0.5

1.0 t (¹s)0 1 2 3 4 5 6 7 8

p
 (M

Pa
)

0
20

40

60

80

100

Figure 2.8: Example bubble collapse load in 3D space of radius and time with typical

characteristic parameters: Rh =0.5 mm, τ =3.41 µs, pm =100 MPa.

rameters, pt and τ , to microscopic parameters, Rh and pm. Two linearly independent

constraints are needed to map between the macroscopic and microscopic distribu-

tions. Each impulsive surface load is modeled by a representative microscopic load

distribution which assumes a Gaussian distribution of pressure in space and an ex-

ponential decay of pressure in time. The microscopic load distribution is expressed

as

p(r, t) = pme
−t/τe−(r/Rh)2 , (2.6)

where pm is the maximum pressure exerted on the surface at the local microscopic

scale. Fig. 2.8 shows the shape of the load in time and space. Given the representative

load distribution, the total force generated by the microscopic load distribution is
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equated to the total force measured by the pressure transducer:

ptAt =

∫ 2π

0

∫ ∞
0

pme
−(r/Rh)2drdθ = πpmR

2
h, (2.7)

where At = 3.14 mm2 is the sensing area of transducer.

The second constraint arises from the relationship between the maximum size of

a bubble and its characteristic time scale. According to the Rayleigh model [1], the

characteristic time of a bubble collapse is determined by the maximum bubble radius

Rmax, the driving collapse pressure pc, and the fluid density ρ:

tR = Rmax

√
ρ/pc. (2.8)

Based on the numerical simulations reported by Chahine et al. [67], the duration

of the hydrodynamic loading at the surface is proportional to the Rayleigh time over a

wide range of bubble sizes and standoff distances. Thus we approximate the duration

of the hydrodynamic load as τ = αtR, with a parameter α:

τ = αtR (2.9)

where the factor α is determined by the normalized standoff between the bubble

center and the wall X/Rmax. As shown in Fig. 2.9, the temporal shapes of the shock

loads with the same normalized standoffs are very similar. Besides, as the bubble

center moves away from the wall, the resulting shock load on the surface will have

a smaller amplitude and shorter duration, because the re-entrant jet needs to travel

a longer distance to reach the wall and this will cause a larger loss in the impact

momentum. By fitting an exponential function following the shock decay term in

Eq. (2.6), the value of α can be estimated for different standoffs, e.g., α = 0.05 for

X/Rmax = 1.05 and α = 0.025 for X/Rmax = 1.25. In a real cavitation environment,

bubbles collapse at a range of different standoffs which is not possible to measure with
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Figure 2.9: Bubble collapse load history from CFD simulations with normalized stand-

off distance (a) 1.25 and (b) 1.05 fitted with exponential function (using Fig. 6.17 in

[67] with permission.

current experimental capabilities. According to [63], if the standoff is too small, e.g.

X/R < 0.75, the re-entrant jet directly hits the wall before it is fully developed and

accelerated to a large velocity. Also, if the standoff is too large, e.g. X/R > 1.25, the

re-entrant jet will lose its speed and pressure as it travels to the wall. We therefore

take X/Rmax = 1.25 as an effective bubble collapse standoff with a corresponding

value of α = 0.025.

Combining Eqs. (2.2) and 2.7, the maximum pressure applied on the surface is

calculated as:

pm ≈ 2.76γc
√
ρpc, (2.10)

where c is the fluid sound speed.

As reported by Chahine et al. [76], the hydrodynamic loading radius is propor-

tional to the maximum bubble radius:

Rh = βRmax (2.11)
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where the constant of proportionality, β = 0.15. This scaling factor β is also sensitive

to the standoff distance and significantly affects the energy dissipation within the

material. A discussion of the relation between scaling factor and energy will be

presented in section 4.2.

Combining Eqs. (2.8) and (2.10), the maximum bubble radius Rmax is related to

the temporal parameter τ by:

βτpm ≈ 2.76αγRhcρ. (2.12)

Solving Eqs. (2.7) and (2.12) for Rh and pm gives:

Rh =

(
βAtptτ

2.76αγπρc

)1/3

pm =

(
(2.76αγρc)2Atpt

π (βτ)2

)1/3 (2.13)

From each recorded pressure peak, the macroscopic parameters, pt and τ are

translated into the microscopic variables pm and Rh using Eq. (2.13). From this

data, we construct an impact density distribution as a function of the hydrodynamic

loading radii and maximum surface pressures. The resulting distribution is shown in

Fig. 2.10.

A uniform grid of sampling points is built upon the probability distribution con-

tour to simulate in the FEM model. Each sampling point with impulsive pressure

radius and amplitude is taken as an input loading in the FEM model and the resulting

coating behavior is the output. The choice of samples is based on the total energy

Etotal [1] carried by the bubbles which can be calculated as:

Etotal =
4

3
πpcR

3
max (2.14)

In total 71 sampling points are selected and marked with crosses in Fig. 2.10. If

summing up the total energy from sampling points multiplied by the frequency of
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represented signals, the resulted value should be approximately equal to the cumula-

tive total energy per second:

∑
i

Ei
total ≈

Nsample∑
j=0

Ej
totalN

j (2.15)

where the index i denotes the ith bubble collapse signal recorded in the experiment

and j denotes the jth sampling point in Fig. 2.10 while Ei
total and Ej

total are the

corresponding bubble total energies. N j is the frequency of the jth sample.

We also investigated the load frequency distributions along load radius and max-

imum pressure under different jet pressures. As shown in Fig. 2.11, the majority

of the bubbles generate a load with the radius less than 0.2 mm and peak pressure

below 200 MPa. Thus, most of the bubbles in the cavitating bubble cloud are with

the radius Rmax around 1.0 mm. The jet driven by a higher pressure (5.52 MPa)

generates larger load radius (0.15 mm) and larger peak pressure (100 MPa) than the

jet driven by lower pressure (2.75 MPa).

To summarize, the path we took to describe the cavitating fluid aggressiveness is

to relate the experimental measurement to the microscopic hydrodynamic pressure

load parameters. By converting the distribution of the pressure signals from exper-

iment to the distribution of bubble collapse impact loads, the cavitation intensity

including load peaks, load durations, and load sizes, is successfully represented by

the Gaussian pressure function. Compared with the method that indirectly corre-

lates the parameters of cavitation pits to the loads, our approach directly obtains

the load parameters from transducer records during the experiment based on bubble

dynamics and CFD simulations. Moreover, different from metal surfaces, polyurea

coatings do not generate microscopic pits under cavitation environment, thus it is

also essential to construct this new method to characterize the fluid aggressiveness.

22



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rh  (mm)

1

10

100

1000

p
m

 (M
Pa

)

(a)

100

101

102

103

104

105f

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rh  (mm)

1

10

100

1000

p
m

 (M
Pa

)

(b)

100

101

102

103

104

105f

Figure 2.10: Frequency density distribution of impacts as a function of peak surface

pressure and characteristic bubble size at a (a) 2.75 MPa and (b) 5.52 MPa jet

pressure. Sampling points for calculating energy dissipation are marked by white

cross symbols. The units of the frequency density are 1
s
· 1

mm·log(MPa)
.
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Chapter 3

MATERIAL MODEL FOR POLYUREA

The constitutive model used for polyurea is based on an additive decomposition of

deviatoric stress and pressure

σ = σ′ − pI. (3.1)

since elastomers respond very differently to hydrostatic and deviatoric loadings: the

bulk response is usually elastic and stiff while the shear response involves a viscoelastic

relaxation mechanism that arises time dependence. Accordingly, the additive relation

also exists in strains:

ε = ε′ + εhI (3.2)

where ε′ is the deviatoric strain and εh volumetric strain.

The bulk response of the polyurea is represented by the Lennard-Jones model

introduced in section 3.2.1. The shear response is modeled as a viscoelastic solid, and

the effects of temperature and pressure on the relaxation spectrum are incorporated

using the model of Amirkhizi et al. [45]. Compared with other viscoelastic material

models, this model provides a reliable description of the thermal dynamic behavior

of polyurea and a sound prediction of energy dissipating rate WD(r, y), which can be

regarded as a measure of the damage. It also considers the various factors affecting

the mechanical properties of polyurea such as pressure effects, stiffness retardation,

and strain rate dependence.

According to viscoelasticity theory, the deviatoric stress at time t in finite strain

with small rotation can be directly generalized from classical linear viscoelasticity
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Figure 3.1: Schematic of a Maxwell-Wiechert model.

equation

σ′ =

∫ t

−∞
G(t− τ)ε̇′(τ)dτ (3.3)

where G(t − τ) is the relaxation function which represents the time dependence of

the material shear stiffness. The strain rate ε̇′(τ) can be replaced by the deviatoric

deformation rate D′(τ) under the small deformation assumption. To separate the

elastic strain and creep strain, i.e. the strains associated with the recoverable energy

and irrecoverable energy respectively, the additive decomposition is applied again as

ε′ = εe + εv, (3.4)

where εe is the elastic strain and εv is the creep strain.

For large deformations, Eq. (3.3) is no longer valid because

D′(τ) 6= ε̇′(τ), (3.5)

and so the strain measurement must be described from either the Lagrangian or

Eulerian configuration. The deformation rate tensor D is defined as the symmetric

part of velocity gradient L and therefore is not the derivative of strain.
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3.1 Kinematics

3.1.1 Lagrangian Description

To generalize the material model for finite deformations, one of the common paths

is to use stress/strain variables in the reference configuration. One of the energy

conjugate pairs of the Lagrangian variables is the deformation gradient F and the

first Piola-Kirchhoff stress P . The energy equation is

ẇ = J−1P : Ḟ (3.6)

where ẇ is the energy rate per volume. Then instead of an additive decomposition,

a multiplicative decomposition is required to distinguish the deformations associated

with different forms of energies. For polyurea, the volumetric-deviatoric decomposi-

tion is needed due to its distinct bulk and shear behaviors:

F = J
1
3F , (3.7)

where J is the Jacobian and F is the deviatoric deformation gradient. Moreover, the

elastic-viscous decomposition is used in the viscoelastic model:

F = FeFv. (3.8)

where Fe and Fv represent the elastic deformation and creeping viscous deformation,

respectively. Then the energy rate can be expressed as

ẇ = J−1P :

(
∂

∂t

(
J

1
3

)
F + J

1
3 Ḟ

)
ẇ = J−1P :

(
ḞeFv + FeḞv

) (3.9)

In these equations, the energy rate is separated into two terms that are not associ-

ated with one particular deformation. For example, the term J−1P :
(
∂
∂t

(
J

1
3

)
F
)

is

neither the volumetric energy rate nor the deviatoric energy rate because it is related
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to both the volumetric deformation J and the deviatoric deformation F . The same

conclusion applies to the second equation, the term J−1P :
(
ḞeFv

)
is neither the

recoverable elastic energy rate nor the irrecoverable dissipated energy rate. However,

it is important to divide the deformation into different modes associated with differ-

ent energy form so that the stress can be computed accordingly. For the polyurea

model, solving for the creep strain is critical for computing the energy dissipation and

therefore it is important to remain the consistency between strain and energy.

Furthermore, the multiplicative decomposition has the non-uniqueness issue that

has been mentioned in Chapter 1. Taking F = FeFv as an example, under an alter-

native observation frame, the three tensors can be transformed by the rotation tensor

Q that is solely depending on the observation frame change and the multiplicative

relation should remain unaltered.

F ∗ = QF = QFeQx
TQxFv 6= F ∗e F

∗
v = QFeQFv (3.10)

where Qx is an arbitrary rotation tensor. Thus the solution for Qx is non-unique.

The consequences are that F ∗e = QFeQx
T is not objective and F ∗v = QFv can not be

uniquely specified. A simple solution that assuming Qx = I would only be valid for

isotropic materials. For materials like polyurea, which has a much stronger resistance

in compression than tension, the constitutive models based on the assumption will not

be objective. Another compromised solution is to neglect the rotational part in elastic

deformation Fe = Ue and therefore setting Qx = Q preserves the objectivity since

F ∗e = QUeQ
T = Ue. But ignoring the rigid body rotation can lead to an erroneous

result when the elastic rigid body motion is large, which is the case for polyurea.

Besides, this mathematical simplification actually assumes a stress-free intermediate

configuration, which does not exist in reality. The rotational parts Re and Rv should

always be considered when building a constitutive model as the generic formulations
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provided by Casey and Naghdi [48]. In which more complexity has been brought

into the system and for a nonlinear model that contains properties from multiple

constitutive laws such as a hyper-elastoplastic material, it becomes extremely difficult

to obtain a strain or stress solution.

Additionally, for nonlinear FEM applications, a work-conjugate pair of Lagrangian

measures is computed at the quadrature points. It is often necessary to recover the

Cauchy stress from the undergoing variables to check the structural safety parameters

or material status, such as checking von Mises stress. The traceless property of

the deviatoric Cauchy stress will be lost during the transformation while using the

multiplicative decomposition. For example, the deviatoric part of 2nd PK stress S is

not traceless and can not transform to a traceless Cauchy stress. More detail about

this issue will be shown in section 3.1.5.

3.1.2 Eulerian Description

To proceed with Eulerian strains and stresses is an alternative option. But there

are many long existed problems and difficulties in developing Eulerian constitutive

models. First of all, there is no simple and clear work-conjugate strain for Cauchy

stress in Eulerian configuration. Starting from the energetic relation,

ẇ = σ : D (3.11)

where ẇ is the energy rate density and σ is the Cauchy stress. This relation is

independent of notation or observation configuration.

If fixing a reference configuration, the same simple connection can be easily ob-

tained, like the Green strain E and the 2nd Piola-Kirchhoff stress S ,

ẇ = J−1S : Ė (3.12)
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because we have the relationship between D and E,

D = F−T · Ė · F−1. (3.13)

For Eulerian measures, it is difficult to relate D to the time derivative of a strain ε.

Norris [77] presented generic solutions for the stresses conjugate to arbitrary Eulerian

strains with extreme complexity.

The second difficulty is to define an objective rate of the strain measure (frame

indifference). Because the measure is based on the current configuration, which is also

in motion, the rates of Eulerian tensors are not objective. Letting ε̇ be a Eulerian

strain rate, then under a rotation of observer coordinate described byQ, it is rewritten

as:

ε̇∗ = ε̇∗ =
˙

QεQT

= Q̇εQT +Qε̇QT +QεQ̇T ,

(3.14)

which indicates that ε̇ is obviously not objective. By using an objective rate mea-

surement, e.g. the Jaumann rate εJ , the objectivity can be retained

OJ
ε = ε̇+ εW −W ε(

OJ
ε
)∗

= ε̇∗ + ε∗W ∗ −W ∗ε∗

= Q (ε̇+ εW −W ε)QT

= Q
OJ
ε QT

(3.15)

where W is the skew-symmetric part of velocity gradient L.

3.1.3 Corotational Formulation

When building a constitutive model with the objective strain rates, with constant

moduli, the objectivity requires the modulus matrix to be isotropic. For the Jaumann

rate, a hypoelastic relation is

OJ
τ = CτJ : D (3.16)
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and required to be objective:(
OJ
τ
)∗

= CτJ∗ : D∗

Q
OJ
τ QT = CτJ :

(
QDQT

)
OJ
τij = QmiQnjQpkQqlC

τJ
mnpqDkl

= CτJ
ijklDkl

(3.17)

so

CτJ
ijkl = QmiQnjQpkQqlC

τJ (3.18)

for all rotations Q, which leads to an isotropic CτJ(see [78]).

A corotational formula is preferable for anisotropic materials since it does not

have the limitation in moduli above. Let τ̂ and D̂ denote the corotational Kirchhoff

stress and deformation rate tensor. A hypoelastic relation is expressed as

τ̂ = Ĉτ : D̂ (3.19)

where

τ̂ = RTτR

D̂ = RTDR

(3.20)

Follow the same procedure with Eq. (3.17) to check the objectivity,

(τ̂ )∗ = RT∗τ ∗R∗ = RTQTQτQTQR = τ̂ (3.21)

and similarly D̂∗ = D̂, the moduli is now not required to be isotropic. The coro-

tational formula basically pulls the stress back by the rigid body rotation tensor R

which is dependent on the observation coordinate. So the resulting stress tensor is

independent of the rotation.

Additional issue arises that objective rates can not be exactly integrated for rate

equation in 3.3, or even the simplest:

σ̂(t) =

∫ t

0

˙̂σ(τ)dτ (3.22)
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where σ̂ is the corotational Cauchy stress (or Kirchhoff stress). This is known as the

non-integrability of objective rates that first described by Simo and Pister [58]. Many

of the commonly used objective rates including Jaumann rate, Green-Naghdi rate,

Truesdell rate, and Oldroyd rate were examined and reported to have the issue. A

more detailed example test will show this issue more clearly in section 3.1.5

3.1.4 Logarithmic Rate Formulation

Considering all the issues reviewed above, a logarithmic corotational formulation

is selected to extend the polyurea constitutive model to finite strains. It is based

on Eulerian configuration and was first presented by Xiao et al. [54] and showed

intrinsic advantages on strain decomposition and without falling into the objectivity

and integrability problem. According to the theory, the deformation rate tensor is a

corotational rate form of Hencky strain:

D = (
◦

lnV )

= ˙lnV + lnV Ωlog −Ωlog lnV

(3.23)

with a unique choice of spin tensor Ωlog

Ωlog = W +N log (3.24)

where N log is given as:

N log =
m∑

α,β=1
α 6=β

[(
bα + bβ
bβ − bα

+
2

ln (bα/bβ)

)
BαDBβ

]
(3.25)

This equation contains the m distinct eigenvalue of left tensor B = FF T , written as

bα and bβ. The αth eigenprojection tensor Bα is formed by outer product of two αth

eigenvectors

Bα = bαvα ⊗ vα or Bα
ij = bαv

α
i v

α
j (3.26)
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Note that in [54], the author further proved that the logarithmic strain is the only

strain measure establishing the relation to the deformation rate tensor. It is also

known that the deformation rate tensor and Cauchy stress form an energy conjugate

pair. So the Hencky strain is the work-conjugate strain of Cauchy stress.

For convenience, the Hencky strain is hereafter denoted as εH . The spin tensor

Ωlog is called the logarithmic spin tensor and the mathematical proof is also given in

the paper [54]. A rotation tensor can be derived from the logarithmic spin tensor is

called the logarithmic rotation tensor:

Qlog = −Ωlog ˙Qlog (3.27)

and it is called the logarithmic rotation tensor. The advantage of the logarithmic

rotation is that the corresponding corotational form of D is exactly the material time

derivative of Hencky strain

D̂ = (Qlog)TDQlog

= (Qlog)T ˙εHQ
log + (Qlog)TεH ˙Qlog + ˙(Qlog)TεHQ

log

=
˙

(Qlog)TεHQlog

(3.28)

Xiao et al. [54] also proved that no other objective rate formulation can establish such

a convenient relationship between the deformation rate tensor and a strain measure-

ment.

The above equation leads to a corotational form of Eq. (3.3) for large deformation:

σ̂′(t) =

∫ t

−∞
G(t− τ)D̂′dτ

(Qlog
(t) )Tσ′(t)Qlog

(t) =

∫ t

−∞
G(t− τ)(Qlog

(τ))
TD′Qlog

(τ)dτ

σ′(t) = Qlog
(t)

[∫ t

−∞
(Qlog

(τ))
TG(t− τ)D′(τ)Qlog

(τ)dτ

]
(Qlog

(t) )T

(3.29)

Xiao et al. [55, 57, 79–81] provided a detailed derivation of this logarithmic rate
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Figure 3.2: The logarithmic rotation finds an integrable intermediate configuration

for the deformation decomposition by solving for Q in Eq. (3.27).

kinematic system and its good prospect of application for elastoplasticity and hypoe-

lasticity problems.

A physical interpretation of the logarithmic rotation and the reason for these

benefits it contains are shown in Figure 3.2. There exists a unique solution of rotation

the matrix Qlog to transform the current configuration to a certain configuration

such that the deformation rate tensor is identical to the rate of Hencky strain. This

specific configuration is not a fixed configuration since Qlog is not only a function of

deformation but also a function of deformation rate (Qlog(F ,D)).

For our study, the logarithmic rate equation is embedded into the internal force

integration where the Cauchy stress is always rotated by the logarithmic rotation

tensor Qlog to a configuration such that the Hencky strain is integrable and additive

decomposition of the strain holds. The update algorithm of Qlog follows the Hughes-

Winget update described in [82] but uses a half step increment equation for Q to
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Figure 3.3: The element deformation is prescribed as case 1, rotation vr plus uniform

periodic elongation vn = A sin(2πt), and case 2, top two nodes moving in circles.

conform to the leapfrog integration scheme used in integrating the nodal trajectories:

˙Qlog = ΩlogQlog

Qlog
n+1/2 = Qlog

n +
1

2
∆tΩlog

n Q
log
n

Qlog
n+1 = Qlog

n+1/2 +
1

2
∆tΩlog

n+1/2Q
log
n+1/2

(3.30)

The benefits brought by this model such as additive decomposition, objectivity,

direct Cauchy stress updates, and direct energy accumulation are at a limited amount

of modifications to the small strain material model.

3.1.5 Performance of Different Rate Forms

A direct comparison between logarithmic rate and other rate forms is demon-

strated. A linear elastic material element is deformed periodically in two different

cases as shown in Figure 3.3. The stress evolution at one integration point is com-

puted with different rate forms. Because no irrecoverable deformation happens in
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linear elastic material, the residual stress after several complete cycles of deforming is

expected to be zero or the rate form is not integrable. The test case 2 is similar to the

test conducted in [83], but in our approach, only the deviatoric stress is computed,

because 1) in the viscoelastic model only the shear stress is rate dependent, 2) the

difference in deviatoric-volumetric decomposition by different integration schemes is

of high interest: the trace of Cauchy stress should always be zero since the deviatoric

stress should not be affected by volumetrical deformation.

σ̇′ = G0ε̇′ (3.31)

Additionally, a Lagrangian rate equation is also included in the comparison. In

Lagrangian frame, a linear constitutive equation would be

Ṡ = CSE : Ė (3.32)

in which S and E are the 2nd Piola-Kirchhoff stress and Green strain respectively.

The deviatoric strain rate, denote as Ė requires some modifications:

F = FJ−1/3

Ė =
1

2

(
Ḟ
T

F + F
T
Ḟ

)
Ṡ = G0Ė

(3.33)

Finally the 2nd PK stress is transformed to Cauchy stress by

σ = J−1FSF T (3.34)

where the isochoric Cauchy stress σ is not traceless.

The results are shown in Figure 3.4 and 3.5. In case 1, there’s hardly any differ-

ence between Eulerian frame rates (Logarithm, Jaumann, Green-Naghdi and Eulerian

triad) and all rate equations preserve the integrability since the final stress returns to
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Figure 3.4: Stress history comparison between different rates in case 1.

zero. However, the hydrostatic stress σh of the Lagrangian frame is not always zero

as expected. Indeed, the multiplicative deviatoric-volumetric decomposition can not

perfectly recover the traceless isochoric Cauchy stress.

In case 2, as going through more complex deformation, all rate forms do not

preserve integrability except logarithm and Lagrangian when looking at the residual

stress. Lagrangian rate equations are of course always perfectly integrable because

the reference configuration never changes. But the logarithmic rate as a Eulerian

rate, besides offering a traceless isochoric stress tensor, also retains a very good inte-

grability.

The above two cases well explain the advantage of logarithmic rate form. It
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Figure 3.5: Stress history comparison between different rates in case 2.

automatically satisfies the objectivity and integrability conditions without rotating

the variables back to reference configuration, which will eventually lead to a non-

traceless Cauchy stress tensor. One can check other objective rates, but as proved

in [54], the logarithmic rate is the only objective rate form that is integrable with a

hypoelastic constitutive model.

For the application of the viscoelastic model, it is critical to directly check the

objectivity of the logarithmic framework that whether it gives constant energy dis-

sipation under rigid body rotation. So similar to test case 1, the material with

the viscoelastic constitutive model is subjected to uniaxial stretch and rotation with

different frequency. The uniaxial deformation is fixed and can be described by a pe-
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Figure 3.6: Error of dissipated energy under changing frequency of rigid body rotation.

riodical deformation gradient field where F11 = 1.0 + A[1.0 − cos(2πfnt)]. The rigid

body rotation is applied by a rotation matrix:

R =

 cos(2πft) sin(2πft)

− sin(2πft) cos(2πft)

 (3.35)

Then the motion of the material is described as x = R(t)F (t)X.

As the stress-strain response should be independent of the rigid body rotation, the

dissipated energy should not change with different rotation frequency, i.e. Wvd(f) =

Wvd(0) ∀f . So the normalized difference compared with the reference Wvd(0) is plot-

ted in frequency domain in Fig. 3.6. It shows that as the frequency increases, the

loading speed is larger and the explicit system requires a smaller time step length. So

using the same time step length in the test leads to a larger error in higher frequency.

However, the change in the energy result is very small (and can be even smaller with

a smaller time step length) throughout the frequency domain. This is a strong proof

that the logarithmic rate form is objective and the energy integration does not depend

on the rigid body rotation.
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Tref 273 (K)

B 184.64.53 (K)

A -22.5

κref 4.948 (GPa)

Cte 2× 10−4 (K−1)

m -0.015 (GPa K−1)

Ctp 7.2 (K GPa−1)

Table 3.1: Material parameters used in the constitutive model.

3.2 Viscoelastic Model

For the viscoelastic material model for polyurea, it is straightforward to expand

the small deformation model to finite strain. Only two extra tensors to be computed

at each step, the logarithmic spin tensor Ωlog and rotation tensor Qlog and everything

remains the same. It is necessary to note that theQlog needs to be updated every time

step as a material status. Moreover, the deformation inputs and stress outputs of the

material subroutine all need to be rotated back and forth between the logarithmic

configuration and current configuration. Within the material subroutine, since every

variable is under the logarithmic configuration system, no tensor rotation need to be

computed.

Since the magnitude of pressure wave generated by the surface loading is reduced

both due to the viscosity of the coating and by stress reflection caused by the mis-

matched impedance between the substrate and the coating, the Plexiglas substrate is

modeled as a simple elastic solid with Young’s modulus E = 2.4 GPa, Poisson’s ratio

ν = 0.42, and reference density ρ = 1.18 g/cm3. All constants used in this model is

summarized in 4.2.
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Figure 3.7: Fitting the molecular dynamics data with Lennard-Jones pressure model.

3.2.1 Volumetric Behavior

The coating is modeled as a viscoelastic solid using the Lennard-Jones type po-

tential to describe the nonlinear pressure response:

p = −A
(
J−N−1
e − J−M−1

e

)
, (3.36)

where Je is the Jacobian considering the thermal expansion coefficient αV :

Je = J [αV (T − T0)]−3 (3.37)

The constants of this model are fitted from atomistic molecular systems generated by

Agrawal et al. [84] and listed in Table 3.2.

3.2.2 Deviatoric Response

The Prony series is used to simplify the nonlinear hereditary integration above.

The material modulus relaxation during each characteristic time period is represented

by an exponential function, which would vanish at a rate determined by qi. Then the
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PU-650 PU-1000

A(GPa) 8.618 8.501

N 3.575 3.820

M 3.999 4.196

Table 3.2: Constants in Lennard-Jones pressure model.

overall relaxation function is expressed as a sum of the modulus of each Prony term.

G(t) = G∞

(
1 +

n∑
i=1

pie
−t/qi

)
(3.38)

where G∞ is the fully relaxed shear modulus, qi is the ith dissipation time scale and

pi is the ith relative weight of shear modulus.

In order to obtain the material constants from DMA (Dynamic Mechanical Anal-

ysis) test, the relaxation function is expressed in the frequency domain.

G′(ω) = G∞

(
1 +

n∑
i=1

pi
ω2q2

i

1 + ω2q2
i

)
(3.39)

G′′(ω) = G∞

n∑
i=1

pi
ωqi

1 + ω2q2
i

(3.40)

Jia et al. [85] extracted the master curves of storage modulus G′ and loss modulus

G′′ from DMA test of PU-1000 using time-temperature superposition. In order to

get a higher frequency response, we fitted the master curves of PU-650 and PU-1000

provided by them using 9 and 10 Prony terms respectively. The fitting is plotted in

Fig. 3.8 and the resulting constants are listed in Table 3.3.

Temperature effect on polyurea’s dynamic properties has been considered in this

model. Above the glass transition temperature Tg = −50◦C, polyurea under lower

frequency loading behaves similarly with under higher temperature. Therefore an

empirical correlation between its temperature response and frequency response can
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Figure 3.8: Fitting master curves of storage modulus and loss modulus.

be described as a shifting function of temperature in frequency domain [86]:

ωr = a(T )ω (3.41)

where ωr is the reduced frequency and a(T ) is the frequency shifting function. This

time-temperature shifting property is widely used to learn the dynamic property of

polyurea in the frequency domain by testing it under different temperature since

directly applying wide range frequency condition is very challenging. It is validated

by Zhao et. al [87] that the time-temperature superposition principle used in classic

viscoelastic material models is still valid at various temperatures. The frequency

shifting factor can be computed according to Knauss et al. [88]:

a = 10A(T−Tref )/(B+(T−Tref )) (3.42)

Since polyurea is also sensitive to pressure, its pressure dependence is represented

by introducing a time-pressure coefficient Ctp which can be obtained experimentally.

T (t, p) = T (t)− Ctpp (3.43)
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PU-1000 PU-650

G∞ = 52.79 MPa G∞ = 139.06 MPa

pi qi (s) pi qi (s)

1.705 3.063×10−10 0.714 2.712×10−11

1.106 2.929×10−9 0.715 3.292×10−9

0.873 2.307×10−8 0.352 6.947×10−8

0.700 1.872×10−7 0.323 6.837×10−7

0.516 1.457×10−6 0.299 6.558×10−6

0.400 1.083×10−5 0.279 6.129×10−5

0.313 8.242×10−5 0.251 5.620×10−4

0.241 6.487×10−4 0.242 5.128×10−3

0.182 5.213×10−3 0.258 5.306×10−2

0.167 4.766×10−2

Table 3.3: Relaxation time scales and their corresponding shear moduli.

This linear shifting in temperature effectively describes the glass-like hardening be-

havior of polyurea under large pressure and greatly satisfies the need of modeling

high-pressure bubble collapsing loading.

In the material model, the time-temperature shifting factor is regarded as a delay

in material property change, in other words, the time variable in the constitutive

subroutine is scaled to a new timeline by the integration expression:

ξ(t) =

∫ t

0

dτ

a(T (τ), T0)
(3.44)

where ξ(t) is the new time frame that the material properties are changing with.

By the logarithm rate equations, the simplicity of Eq. (3.3) is preserved while con-
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forming with large rotation. Also, the deviatoric part of stress derived in Eq. (3.1) is

remained to be isochoric. More importantly, it maintains the additive decomposition

in elastic-viscous and elastic-plastic split from energy rate point of view.

Ẇ = σ : D = Ẇe + Ẇv (3.45)

and then De and Dv are introduced such that

Ẇe = σ : De, Ẇv = σ : Dv (3.46)

The sub-deformation rate De and Dv contributes to recoverable elastic energy and

irrecoverable viscous energy respectively.

Substituting Eq. (3.38) into Eq. (3.3) and apply the time-temperature shifting

factor, we have

σ̂′ =

∫ t

−∞
G∞

(
1 +

n∑
i=1

pie
−(ξ(t)−ξ(τ))/qi

)
D̂′dτ (3.47)

Taking one of the spring-dashpot element from the Maxwell-Wiechert model in

Fig. 3.1 into consideration, the stress σi is solely provided by the elastic spring that

being stretched by a strain of εie and a strain rate D̂e. From Eq. (3.47), we already

know that the stress on the single element is

σ̂i′ =

∫ t

−∞
G∞pie

−(ξ(t)−ξ(τ))/qiD̂′dτ

σ̂i′ = G∞pi

∫ t

−∞
e−(ξ(t)−ξ(τ))/qiD̂′dτ

(3.48)

and therefore the elastic strain is obtained accordingly:

ε̂i′e =

∫ t

−∞
e−(ξ(t)−ξ(τ))/qiD̂′dτ (3.49)

Then according to the additive decomposition, the viscous strain (creep strains) can

be expressed by the exponential forms as

ε̂i′v = ε̂′ − ε̂i′e =

∫ t

∞

(
1− e−(ξ(t)−ξ(τ))/qi

)
D̂′dτ (3.50)
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Here ε̂′ is the logarithmic form of the deviatoric Hencky strain (Qlog)TεHQ
log and

D̂′ = (Qlog)TD′Qlog.

Then the recursive increment of creep strain can be solved explicitly in each load-

ing step:

∆ε̂iv(t,∆t) = (1− e−∆ξ/qi)
(
ε̂′(t)− ε̂iv(t)

)
+

(
1− qi

∆ξ
(1− e−∆ξ/qi)

)
D̂′(t)∆t (3.51)

where ∆ξ denotes ξ(t)− ξ(τ) for convenience.

Finally, the dissipated energy is computed as a portion of the elastic energy and

the ratio is just the retardation time for each sub-element:

∂W i
d

∂t
=

n∑
i=1

σi′ : Di′
v (3.52)

=
n∑
i=1

1

qi
σi′ : εi′e (3.53)

= 2G∞
T

Tref

n∑
i=1

pi
qi

(ε′ − εi′v ) : (ε′ − εi′v ) (3.54)

and the raise of temperature is determined directly from dissipated energy by a linear

equation:

∂T

∂t
=

1

C

∂Wd

∂t
(3.55)

where C is the heat capacity at constant volume per unit of original volume.

Stress can be obtained straightforwardly now

σ′(t) = 2G∞

(
ε′(t) +

n∑
i=1

piε
i
e(t)

)
(3.56)

A nonlinear solver is required to obtain the recursive temperature changing. We

implemented a binary search based algorithm in the constitutive subroutine, which

has a first order convergence rate. However, since the FEM system is dynamic and

the bubble collapse loads are usually of extremely short duration, the time increment

is limited to extremely small (usually less than 10 nanoseconds for a reasonably fine

46



mesh). So the temperature increment in each step is small and the binary searching

range is narrow: it converges to less than 0.01% error in 10 iterations. We summarize

the algorithm to update the stress including the logarithmic co-rotational transfor-

mation as below:

3.3 Deformation-dependent Stress Response

The fact that the large stretch response of rubber materials is not simple linear

elastic is already widely observed and proved. Stress softening around 10% strain and

hardening at large strains is observed in the experiments conducted by different groups

[45, 89, 90]. So a more elaborate nonlinear hyperelastic model is needed to represent

these characteristics of polyurea. As suggested in [45], the 8-chain network model by

Arruda and Boyce [59, 91, 92] is embedded in the elastic component to address the

hyperelastic stress hardening at large deformation. Additionally, a simple power law

plastic model is also used to describe the material softening, or the Mullins effect.

This new model will be able to capture the characteristics of polyurea:

• Objective, stable, and accuratestress integration.

• Pressure and strain rate dependent thermal dissipation and viscosity.

• Deformation dependent nonlinear response in large deformation.

A preliminary result of this nonlinear model is shown to illustrate its capability of

modeling the material behavior under various load circumstances. However, due to

the lack of experimental data to validate the model, especially the results of the ther-

mal properties of polyurea, this section only presents the framework of the nonlinear

model and the parameters are not rigorously selected or fitted.
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Algorithm 1: Co-rotational Stress Update Algorithm

For every time increment from tn to tn+1:

A. Obtain co-rotational forms:

(a) Compute Dn+ 1
2
, Wn+ 1

2
, and Fn+ 1

2
from un+ 1

2
and vn+ 1

2

(b) Compute Ωlog

n+ 1
2

and update Qlog
n to Qlog

n+ 1
2

(Eq. (3.24) and 3.30)

(c) Update the variables to co-rotational forms by ˆ(∗) = QlogT

n+ 1
2

(∗)Qlog

n+ 1
2

B. Constitutive relations:

(a) Initiate the range of ∆T : [∆T guesslo , ∆T guessup ]

(b) Solve for ∆T recursively:

i. Set trial solution ∆T guess = 0.5(∆T guesshi + ∆T guesslo )

ii. Compute pn+1 (Eq. (3.36))

iii. Compute Ẇv (Eq. (3.54))

iv. Initiate the range of ∆ε̂p: [∆ε̂guessp,lo , ∆ε̂guessp,up ]

v. Solve for ∆ε̂p recursively:

1. Set trial solution ∆ε̂guessp = 0.5(∆ε̂guessp,lo + ∆ε̂guessp,up )

2. Check the error of ε̂guessp (Eq. (3.62))

3. If convered: quit; else: update ∆ε̂guessp,lo or ∆ε̂guessp,up and go to 1.

vi. Compute Ẇp (Eq. (3.65))

vii. Check the error of T guess (Eq. (3.55))

viii. If converged: quit; else: update ∆T guesslo or ∆T guessup and go to i.

(c) Update: σ̂n → σ̂n+1, ε̂p,n → ε̂p,n+1, ε̂c,n → ε̂c,n+1

C. Convert the stress back to global coordinate σ = Qlogσ̂QlogT

D. Update Qlog

n+ 1
2

to Qlog
n+1 (Eq. (3.30))
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3.3.1 Hyperelastic Model

In Arruda-Boyce model, a strain energy function based on the Langevin chain

statistics is expressed in terms of macro-scale stretch invariant. The Langevin ex-

pression of strain energy is

W = nkT

[√
Nλchainβ +N ln

β

sinh β

]
,

β = L−1

(
λchain√
N

) (3.57)

where L−1 is the inverse of the Langevin function. The λchain is an averaged stretch

of the chains that can be computed by λchain =
√

1
3
trace(B). The product of the

chain density n, Boltzmann’s constant k, and temperature T can be replaced by the

instantaneous shear modulus G0 at stress-free state. The constant N is the number of

Kuhn lengths in the molecular chain. So in total only two material constants, which

both have actual physical meaning, are required in this model which makes it more

concise. Using the series expansion of the inverse Langevin function, the first 5 terms

can be written as:

W (I1) = nkT

[
1

2
(I1 − 3) +

1

20N
(I2

1 − 9) +
11

1050N2
(I3

1 − 27)

+
19

7000N3
(I4

1 − 81) +
519

673750N4
(I5

1 − 243)

]
(3.58)

where I1 is the first invariant of left tensor B and λchain =
√

1
3
I1. Taking the deriva-

tive of this energy expression, the deviatoric Cauchy stress is obtained as:

σ′ = 2
dW

dI1

B′ (3.59)

whereB′ is the left tensor derived from traceless Hencky strain ε′ such that (det(B) =

1). Then the strain dependent stress relation is built

σ′(B) =
G0

√
N√

3I1

L−1

(√
I1

3N

)
B′ (3.60)
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where the Langevin inverse can be simply approximated as

L−1

(√
I1

3N

)
≈
√

I1

3N

3− I1
3N

1− I1
3N

(3.61)

3.3.2 Plastic Model

The long-term stress response σ∞ is further coupled with a Ramberg-Osgood

plasticity formula to account for the damage within the material:

εp = αεy

(
σ∞
σy

)n
(3.62)

where σ∞ is the von Mises stress of the long-term response, which is computed by

the hyperelastic stress formula in Eq. (3.60) using the elastic strain εe = ε − εp. α

and n are the material constants determining the hardening behavior of the material.

εpy is the effective plastic strain that needs to be solved each step. The yield stress is

assumed to change with temperature, according to [40]:

σy(T ) = σy0

(
1− T − T0

Tm − T0

)l
(3.63)

where σy0 is the initial yielding stress and is associated with the initial yielding strain

εy0, which is assumed to be 3%. The Tm and l are the melting temperature and the

thermal softening exponent, respectively. Therefore the plastic strain is also related

to the temperature and therefore must be solved in a sub-loop of the aforementioned

temperature solver. Additionally, since the elastic region is described by the hypere-

lastic formula, a nonlinear solver is needed to obtain the effective plastic strain. The

binary search algorithm is adopted in this work to solve for the plastic strain. The

estimated constants are listed in Table 3.4.

3.3.3 Coupled Formulation

The combination of the two models can be interpreted as replacing the linear elas-

tic springs in Fig. 3.1 by Arruda-Boyce deformation-dependent hyperelastic springs
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N n l α εy0 Tm (K)

4.0 8 0.75 0.33 0.03 500

Table 3.4: Constants in the nonlinear model including hyperelasticity and plasticity.
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Figure 3.9: Illustration of viscoelastic model coupled with deformation dependent

hyperelastic and power law plastic models.

and adding a plastic module to the static subelement, as shown in Fig. 3.9. Since

the additive strain decomposition is still valid and the strain is integrable, the elastic

strain ε′e in each sub-element can be easily computed cumulatively and a B′e ma-

trix associated with the elastic deformation is obtained according to the definition of

Hencky strain ε′e = (lnV ′)e:

σi′(Bi′
e ) =

G∞Tpi
√
N

Tref
√

3I i1
L−1

(√
I i1

3N

)
Bi′
e (3.64)

in which the stress of each spring is now a function of the current deformation state,

σi′(Bi′
e ), while still linearly scaled by the temperature.

Beside the viscous energy dissipation given by Eq. (3.54), a portion of the work

done by the static stress is also dissipated into heat due to the plastic strain. So the
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expression of dissipated energy is rewritten as:

Ẇd = Ẇv + Ẇp

=
n∑
i=1

1

qi
σi′(Bi′

e ) : εi′e + σ∞ : (ε̇− ε̇p)
(3.65)

This expression gives a more comprehensive description of the heating within the

material by including the plastic energy. In fact, under large deformation, the plastic

dissipation, thus the damage within the material, is the dominant resource of the

heating.

The deviatoric stress is a sum of all stresses associated with different frequency

and the static stress term results from plastic model:

σ′(B) = σ′∞(B′, T ) +
n∑
i=1

σi′(Bi′
e ) (3.66)

Comparing this nonlinear hyperelastic stress equation with linear equation elastic

equation in Eq. (3.56), the stress is now not only a function of time but also a function

of the deformation. In compression, due to the nonlinear relation with deformation

in the hyperelastic model, the model presents a stiffer material behavior than before

and better describes the stiffening behavior of polyurea under large deformation.

In fact, both volumetric and deviatoric plasticity exist in polyurea. According to

studies of crystalline polymers [93–95], the volumetric plasticity is generated when

the polymer is subjected to large negative pressure. For polyurea, since it is less

resistant in tension than in compression, the negative pressure load is very likely to

generate hydrostatic damage. In the application of liquid cavitation loading, since the

majority material is under compression and the tension stress in partial area is small,

only deviatoric plasticity is considered. However, it is highly interested to find a more

comprehensive plastic model with the description of the volumetric damage, e.g. the

Gurson model with porosity evolution. Moreover, the power law plastic model is not
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Figure 3.10: The Hopkinson pressure bar test and the simplified numerical model.

based on the underlying microstructural process in the material. It is a mathematical

approximation in order to capture the stress softening of the polyurea, so the material

constants are essentially fitted from experimental results and can hardly be a general

formula.

3.3.4 Preliminary Results

With the Hopkinson pressure bar test data from UCSD’s CEAM [45], we briefly

examined the performance of the new nonlinear model. As shown in Fig. 3.10, the

Hopkinson bar test is simplified to a cylindrical material subjected to a constant

velocity v0 in our axisymmetric FEM platform. Since the impedance of polyurea is

small compared with the incident and transmitted bars, which are made of steel, the

particle velocity of the shock load is assumed to be fully transmitted to polyurea

sample and keeps constant during the sample deformation. Moreover, the surface

contacting the transmitted bar is assumed constraint.

Two sets of experiments have been done, one with the collar confining the sample,

and the other without the collar. For the confined experiment, due to the large

resistant force from the sample, a noticeable hoop strain in the collar is observed. So

the hoop strain εθθ is measured by strain gauges on the outer surface and a moving
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Figure 3.11: The stress-strain relationship at different strain rates from numerical

model and the confined experiment.

boundary with an averaged velocity vr is defined:

vr =
εθθr

∆t
(3.67)

where r is the radius and ∆t is the total time. For the unconfined experiment, the

right boundary is a free surface.

Fig. 3.11 shows the stress-strain relationship predicted by the nonlinear material

model. Although the radial expansion of the sample is considered, it is very small

compared with uniaxial deformation. So significant volumetric deformation takes

place and the resulting pressure becomes the main resource of uniaxial stress, thus

the stress triaxiality is large. Because the pressure response of polyurea is not rate-

dependent, as introduced in section 3.2.1, the stress-strain curves under different
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Figure 3.12: The stress-strain relationship at different strain rates from the numerical

model and the unconfined experiment

strain rates are similar. The numerical result matches the experimental data very

well, indicating that the pressure law is reliable and accurate.

In Fig. 3.12, both the linear viscoelastic model and the augmented hyper-viscoplastic

model are compared with the experimental data. Without the collar, the sample ex-

pands freely in the radial direction and the material is nearly incompressible due to

the stiff volumetrical deformation resistance of polyurea. Then the uniaxial stress

mainly comes from the deviatoric stress, thus the shear response of polyurea. The

initial slope of the stress-strain curve, i.e. the instantaneous shear modulus, from

the linear model matches with the experiments very well, which is consistent with

the work by Amirkhizi et al. [45]. The nonlinear model successfully retains the ac-
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curacy within small strain while provides more realistic prediction at larger strains.

The stress is softened around 10% strain and slightly hardened at large deformation.

With increasing strain rates, the nonlinear model also generates a higher stress. In

general, the same trend of the stress-strain relationship is produced by the nonlinear

model.

Again the model is not rigorously calibrated with sufficient experimental data.

The results shown here is just to verify the framework is capturing the correct trend

of the polyurea behavior. Since the behavior of polyurea under large deformation is

highly nonlinear, characterized by temperature dependent, pressure dependent, hys-

teresis, plasticity, hyperelasticity, and rate dependent, it is highly interested to build

a constitutive law capturing all these properties while accounting for the microstruc-

tural behaviors. The existing Amirkhizi model and Arruda-Boyce model are the good

examples of such constitutive laws but emphasize on parts of the many characteristics:

temperature, pressure effects and thermal behavior by Amirkhizi model and stretch-

induced stress hardening by Arruda-Boyce model. A more sophisticated plastic model

is needed to enrich the model with description permanent strain evolution.

As a summary of this chapter, the kinematics of large deformation for construct-

ing constitutive models for polyurea have been disscussed and the logarithmic co-

rotational formulation is embedded in the Amirkhizi viscoelastic model. Test cases

are also given to show the integrability and objectivity of logarithmic rate. Aug-

mented constitutive model with stretch-dependent Arruda-Boyce hyperelastic model

and temperature dependent Ramberg-Osgood plastic model is shown as a prospective

framework to describe the response of polyurea in large deformation.
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Chapter 4

FINITE ELEMENT MODELING

4.1 FEM Model

The transmission and dissipation of the representative hydrodynamic bubble col-

lapse loads are modeled by a finite element simulation. The objective of this FE

model is to precisely calculate the energy dissipation within the coating under a sin-

gle bubble collapse load. Because the statistical integration of the heating energy is

based on the FE results of the sampled impact loads, the accuracy of the FE model

is critical. Nevertheless, since a large number of sampling simulations are needed

for different thickness, material, and cavitating environments, the efficiency of each

simulation is also important.

A schematic of the model is shown in Fig. 4.1. The simulation domain is a

cylindrical region of the coated plate specimen, centered directly under a collapsing

bubble. The simulation domain has a radius of 2 mm and extends 2 mm into the

depth of the substrate. The radius of the specimen, which is the domain width, and

the height of the substrate, are large enough so that the stress wave arriving at the

boundary is suppressed.

The domain is discretized by quadrilateral elements with an edge length of 20 µm.

The elements are first order quadrilateral elements with 4 Gaussian integration points.

Uniform mesh is used in this study as the geometry is simple. Since the radius of

a small bubble collapse load is as small as 50 µm, the element size is very limited

in order to capture the spatial distribution of the load. As shown in Fig. 4.2, for

a small bubble collapse load, a coarse mesh can not provide enough resolution to
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Figure 4.1: Finite element model of coated surface subject to a single bubble impact.

represent the shock pressure, leading to inaccurate input energy. It is unnecessary to

refine the mesh around the impact center, because 1), the time step is still limited by

the smallest element and 2), the larger elements will lead to a larger artificial energy

introduced by the viscous bulk damping which will be discussed later. The timestep

is the estimated critical time step according to the CFL condition, multiplies a factor

of safety 0.4:

∆t = 0.4× he
c

(4.1)

where he is the element length.

A mesh convergence study has been conducted to decide the element length. As

shown in Fig. 4.3, the dissipated energy converges along increasing number of ele-

ments. Although the energy differences between coarse mesh and fine mesh is small

(in the order of 0.01 mJ), the error will be exaggerated after integrating the energy
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Figure 4.2: The radial discretization of an impulsive load of Rh=0.05 mm by different

element sizes

over the bubble distribution. So the relatively fine mesh with 20 µm element length

is chosen considering both accuracy and efficiency.

To suppress the wave reflections at the boundary of the simulation domain, a

viscous damping boundary condition, denoted by dash pots in Fig. 4.1, is applied at

the outer radial and lower boundaries. At these boundaries, a damping traction is

calculated to compensate for the momentum flux leaving the prescribed domain,

t̄d = µv, where µ = ρc (4.2)

where ρ and c are the density and wave speed of the material at the boundary respec-

tively and v is material velocity evaluated at the boundary. As the wave speed varies

for shear and longitudinal waves, the boundary traction is decomposed into normal

and tangential components, proportional to the normal and tangential components
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Figure 4.3: Viscous energy dissipation within the coating with different mesh sizes

of velocity field at the boundary:

t̄d = t̄p + t̄s = ρ(cpvnn+ csvtt), (4.3)

where cp and cs are the longitudinal and shear wave speeds, respectively. Although

the wave speeds in polyurea are amplitude and rate dependent, an idealized linear

elastic response is used to calculate the boundary tractions as the waves reaching the

boundary have significantly decayed amplitude compared to the initial impact stress.

Furthermore, as the reflected energy at the polyurea boundary was observed to be

minuscule compared to the viscous dissipation, the error in heat generation due to

the reflection is insignificant.

The interaction between the fluid and coating surface is crudely approximated by

a damping boundary condition matched to the impedance of water. The reduction

of the impedance of water due to the presence of a vapor phase is not considered.

Furthermore, as water can only transmit a compressive wave, the normal component

of the applied viscous traction is restricted to only compressive traction, i.e. if the
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surface is moving away from the fluid, the surface traction is zero. The shear traction

is also zero, neglecting any shear boundary layer applied by the fluid. These approx-

imations are necessary to allow for the analysis of a cavitating environment where

a large number of bubble collapses take place. Fully coupled fluid-structure simula-

tions that more accurately represent the loading dynamics are left to a subsequent

publication.

A quadratic bulk viscosity damping is introduced to remove spurious pressure

oscillations resulting from the spatial discretization of the finite elements, and to

regularize the pressure discontinuity resulting from the impact load across several

elements. The bulk viscosity adds a contribution to the pressure in the form

ped =


b1ρcheDv − b2ρ(heDv)

2, Dv < 0

0, Dv ≥ 0

, (4.4)

where Dv is the volumetric deformation rate, b1 = 0.06 and b2 = 1.2 the non-

dimensional damping parameters, ρ is the material density, and κ is the bulk modulus.

The artificial energy introduced by the damping can be calculated as the damping

pressure ped multiplies the change of the volume ∆V . Then since the pressure is

scaled by the element length, the artificial energy in a large element would be larger

than the total artificial energy of smaller elements with the same total volume.

4.2 Energy Conservation

Summarizing all components of this model, the energy conservation equation of

this model can be expressed as

Wext = U + Ek +Wvd +Wbd +Wed (4.5)

where the notations are explained in table 4.1.
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Wext External energy

U Strain energy

Ek Kinetic energy

Wvd Viscous damping energy

Wbd Boundary damping energy

Wed Explicit damping energy

Table 4.1: Notation of different kinds of energies.
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Figure 4.4: Energy history from all sources within PU-650 coating subject to a

Rh =500µm and pm =100 MPa bubble collapse event.
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In Fig. 4.4 the history of each kind of energy is plotted as stacked area to show the

dynamic energy flow in the material. It is clear that the system has come to a stable

state in 20 µs as the energy stops changing. The kinetic energy Ek and strain energy

U rises up when the impact happens and goes to zero when the material is relaxed

after the load removes. The viscous dissipation energy Wvd occupies the largest area

at the end indicates that the energy converted into heat is significant. The boundary

damping energy Wbd forms the second largest area, thus the energy flows into the

neighboring regions, the water beyond the top, substrate below the bottom, and

adjunct material in the radial direction, that are outside of the simulation domain is

also significant. However, only the proportion that damped at the radial boundary

of the coating will affect the material heating calculation and it is small compared

with the material dissipation. The smallest area is the explicit artificial damping Wed,

so the extra energy brought into the system by the bulk viscosity damping is very

limited. A dashed representing the overall work done by the external force is plotted

on top of the stacked energies and matches with the edge very well. In fact the error

of the energy conservation, i.e. Wext − (U + Ek + Wvd + Wbd + Wed), is at the order

of 10−7 J.

When relating the fluid aggressiveness to the impulsive load in FEM model, linear

scaling factors were introduced, namely, the time scaling factor α and the radius scal-

ing factor β. We also investigated the two factors’ influence on the energy conversion,

including the conversion rate from the bubble’s total energy to the work done to the

material by the resulting water hammer (η1 = Wext/Etotal) and the conversion rate

from mechanical energy to thermal energy within the material (η2 = Wvd/Wext). As

shown in Fig. 4.5, for a fixed bubble collapse load with the peak pressure of 5 MPa

and characteristic radius of 0.1 mm, β effects η1 in a power law with the order of

2.4. This indicates that β strongly affects how much energy actually flows into the
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(a) (b)

Figure 4.5: Power law correlation between the energy conversion rates (η1 and η2)

and the scaling factors (a) α and (b) β.

material as the work done by the water hammer. Nevertheless, α does not affect η1

as significantly as β since the corresponding power function order is only 0.25. The

η2, which represents the proportion of external energy dissipated into heat within the

material, does not vary with both of the parameters. Because the material heating is

determined by its properties and the load shape while α and β are parameters related

to fluid aggressiveness.

4.3 Temperature Measurement

The temperature within the polyurea coating is directly measured during the

cavitating jet experiment using thermocouples in the Dynaflow laboratory. As shown

in Fig. 4.6, a 2 mm thick polyurea coating adheres to a PMMA sample holder of 4

mm thick below the coating and a cavitating jet is applied at the sample center. The

thermocouples are inserted 0.5 mm deep into the sample from the bottom and aligned

in the radial direction with 2.54 mm interval distance.
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Figure 4.6: The cavitating jet experiment with thermocouple recording the temper-

ature 1.5 mm below the surface.
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Figure 4.7: Temperature rise in PU-650 and PU-1000 at different radius under 2.75

MPa cavitating jet after 5 minutes.
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Then the radial temperature distribution at y = 1.5 mm after exposing the sample

to 2.75 MPa cavitating jet for 5 minutes is directly measured as shown in Fig. 4.7.

From the cavitating jet center to the edge, the temperature rises decays in a linear

order. The slopes of the curves, which is the radial temperature gradient dT/dr, are

similar for both materials, 0.887 K/mm for PU-650 and 1.063 K/mm for PU-1000. It

is also clear that the PU-1000 coating is heated to a higher temperature than the PU-

650 coating under the same cavitation loading. Note that although this is a different

experiment from the one measuring impulsive pressure pulses introduced in section

2.2, we assume that the cavitation aggressiveness in both experiments are the same

since the experiment setups are the same, including the jet pressure, nozzle standoff,

and nozzle diameter. Therefore the temperature rise measured here is directly related

to the bubble collapse loads recorded in section 2.2.

It is necessary to note that the temperature difference in radial direction causes a

certain amount of heat flux from the center to the periphery. We are neglecting this

flux in the following heat transfer model because the amount of heat flowing out of

the system is small as the heat conductivity of polyurea is small and the temperature

gradient at a different depth is not measured. As a consequence, the temperature at

thermal steady state will be overestimated in the numerical model.

4.4 Heat Transfer Model

The dissipated energy density along the thickness is integrated over the corre-

sponding cross section. By summing up these energy densities obtained from the

sampling FEM simulations corresponding to the conditions shown in Fig. 2.10, a

macroscopic heating power - depth curve can be obtained:

s(y) =
∑
i

Ai
∫ 2π

0

∫ ∞
0

f(Ri
h, p

i
m)eiD(r, y)rdrdθ, (4.6)
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Figure 4.8: Simplified 1D heat transfer model.

where eiD(r, y) is the dissipated energy density function at coordinate (r, y) of the ith

sampling simulation and f(Ri
h, p

i
m) is the frequency of bubbles detected within the

ith sampling region that is near the point (Ri
h, p

i
m). Ai = ∆ (log (pm)) ∆Rh is the area

of the ith sampling region in the frequency density distribution function.

Then a simplified 1D heat transfer model can be built as illustrated by the

schematic in Fig. 4.8. The heat is generated within the coating material and con-

ducted into the substrate, fluid, and the outer layer material in the radial direction.

The temperature at the interface is continuous all the time. The heat flux towards the

fluid q is linearly related to the temperature difference between water and structure

surface by the heat transfer coefficient h. Then the heat equation and the boundary

conditions can be written as:

AtC
∂T

∂t
= Atκ

∂2T

∂y2
+ s(y),

T |y=L = T0

and q|y=0 = h(T |y=0 − T0) ,

(4.7)

where At is the trasducer area. The expression can be rearranged as:

CṪ − κ∇2T =
s(y)

Ay
(4.8)

and can be solved by FEM with the weak form:∫
Ω

δTCṪdΩ =

∫
Ω

∇ · (δTκ∇T )−∇(δT )κ∇TdΩ +

∫
Ω

δTs(y)dΩ (4.9)
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Discretizing the above weak form using 1D shape function NI , a matrix first order

equation is obtained:

δTI

∫
Ω

NICNJdΩṪJ = δTI

(∫
Γ

NIqdΓ−
∫

Ω

BIkBJdΩTJ

+

∫
Ω

NINJdΩsJ

)
CMIJ ṪJ = FI −KIJTJ +MIJsJ

(4.10)

Applying the Crank-Nicolson time update method, we finally get a matrix inverse

problem (
C
M

∆t
+
K

2

)
T n+1 =

(
C
M

∆t
+
K

2

)
T n + F +MS

AT n+1 = Bn

(4.11)

Using the empirical relationship given by Martin [96], the average heat transfer

coefficient of the impinging jet was computed to be 220 kW/(m2·K), however we note

that for a heat transfer coefficient greater than 50 kW/(m2·K), the temperature at

the surface of the coating remains the same as the water temperature, effectively

imposing a Dirichlet boundary condition.

The purpose of building this heat transition model is to predict the temperature

rise of the system and compare the temperature rise of different thicknesses. It is

also a method to validate the statistic model by comparing the temperature with

the thermocouple records in the cavitating jet experiment. Necessary assumptions

have been made for this model: 1, the heat is linearly accumulated from each bubble

without considering the consecutiveness of bubble impacts; 2, the material is always

heated up from environment temperature T0 for each bubble impact; 3, the structural

deformation dynamics is not considered in the 1D heat transfer model.

Table 4.2 summarizes the material constants of the heat transfer model.

To summarize this chapter, the FEM simulations are built according to the hydro-

dynamic loads distribution and proper boundary conditions are built to mimic the real
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Parameter PU650 PU1000 PMMA

κ (W/(m·K)): 0.20 0.20 0.19

C (J/(cm3·K)): 1.98 1.98 1.61

ρ (g/cm3): 1.13 1.09 1.19

Table 4.2: Material parameters used in the constitutive model according to [97, 98]

stress wave propagation dynamics. The heat generation is predicted by the thermo-

mechanical viscoelastic material model. As a bridge between single impact heating

and macroscopic heating resulted from massive bubble impacts, a one-dimensional

heat transfer model is solved and the total heating power of polyurea coating can be

computed.
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Chapter 5

ANALYSIS OF HEATING AND DEFORMATION IN POLYUREA COATINGS

5.1 Material Deformation Under Bubble Collapse Load

The FEM simulations provide an insight into the dynamic response of polyurea

coatings under bubble collapse loads. From the simulations, we can visualize the

material deformation subjected to a bubble collapse impact. It is also of importance

to tell the bounds of strain and strain rate within the material in order to help

in designing experiments and optimizing materials. To characterize the range of

magnitudes and strain rates encountered by the coating under a collapse pressure, we

examine the deformation resulting from two representative bubble collapse loads, one

with hydrodynamic loading radius Rh = 0.05 mm and the other with Rh = 0.5 mm.

The pressure amplitudes of the two loads are set to be equal that pm = 100 MPa.

The load durations are calculated according to Eq. (2.8): τ = 0.22 µs for the smaller

load and τ = 2.26 µs for larger load.

Fig. 5.1 and Fig. 5.2 show the equivalent strain (εeq =
√

2
3
ε′ : ε′) wave and

vertical normal strain εyy waves (p wave) respectively. It is obvious that both of the

maximum equivalent strain and maximum axial strain happen at the upper part of the

coating. The deformation reaches the peak at around t = 0.5τ and is mostly damped

at t = 1.5τ . Tension axial wave (positive εyy) is also observed near the surface,

because while the compression load pushes the material down along the central line,

the material at the periphery of the sinking surface is being pushed out of the pit and

tensile stress is generated below. For polyurea, the tensile stress will build damage
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Figure 5.1: The equivalent strain wave propagating through the PU-650 coating under

Rh = 0.5 mm impulsive load.
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Figure 5.2: The Y axial strain wave propagating through the PU-650 coating under

Rh = 0.5 mm impulsive load.
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Figure 5.3: Maximum equivalent strain history during a large bubble and a small

bubble impact with time axis normalized by loading duration τ .

more quickly than compression because its tension stiffness is much weaker than the

compression stiffness.

Fig. 5.3 shows the history of equivalent strain (εeq =
√

2
3
ε′ : ε′) in a 2 mm thick

polyurea coating under the two representative impulsive loadings. The equivalent

strain histories were recorded at the locations of maximum deviatoric stress (at depths

of approximately 5 µm and 150 µm below the surface for the small and large bubbles,

respectively) and show a similar trend for different bubble sizes and materials when

scaled by the load duration. However, PU-1000 has a significantly higher strain

amplitude than PU-650, reaching 30% under the large bubble.

With regard to the strain rates, the smaller bubble collapse load generates larger

shear strain rate (1.7×106 s−1 for PU-650 and 2.6×106 s−1 for PU-1000) as compared

with the larger loads (1.3× 106 s−1 for PU-650 and 1.5× 106 s−1 for PU-1000).

In a single bubble simulation, minor energy is dissipated within the material. As
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Rh=0.5 mm (eD)max=1.38×10-7 J/mm3

Figure 5.4: PU-650 coating heat map under single bubble collapse loads with different

radius.

shown in Fig. 5.4, the heating energy density is as small as in an order of 10−7 J/m3

and maximum temperature change is up to 0.27 K. The location of the heating hot

spot is related to the characteristic radius. Although the hot spots from two pressure

loads are at different depth, they both appear at the center line where r = 0. Thus

the maximum energy dissipation always happens vertically below the center of the

load.

5.2 Thermal Energy Distribution

With FEM simulations, we have a clear understanding of the energy conversion

during a single bubble collapse event. According to Rayleigh model, the total energy

Etotal that a single bubble possesses can be estimated as the collapsing pressure times

the bubble volume. When the bubble collapses, a portion of the total energy is

converted to the external work done to the coating, denoted as Wex. Then the energy
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Figure 5.5: The percentage of maximum bubble potential energy converted to force

work done to the material with different load radius and peak pressure.

conversion rates η = Wex/Etotal can be an effective measurement of the cavitating

efficiency. As shown in Fig. 5.5, the conversion rates of different bubbles are marked

in Rh and pm coordinates. The conversion rate is mostly independent of the load

radius Rh but highly influenced by the maximum pressure pm.

For a single bubble simulation, the energy dissipated within the material under

the larger and more powerful bubble is higher than the smaller bubble. However,

considering the frequency density of the bubble impacts, it is not the larger bubbles
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Figure 5.6: Integrated heating power contributed by bubble collapse loads with dif-

ferent radius Rh and peak pressure pm under 2.75 MPa (a)(b) and 5.52 MPa (c)(d)

cavitating jet pressure.
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making the major contribution to the material heating. Because as suggested by

Fig. 2.11, the frequency of the loads decreases rapidly as the radius and maximum

pressure increases. As shown in Fig. 5.6, considering both energy and frequency

factors, the loading radius at 0.25 mm generate the most heating power for both

materials. The most harmful pressure amplitude shifts under higher cavitating jet

pressure: around 80 MPa under 2.75 MPa jet pressure and 100 MPa under 5.52 MPa

jet pressure.

It is also shown in Fig. 5.6 that thicker coatings generate higher heating power

than thinner coatings. This result agrees with the experimental observations that a

thinner coating is more resist to cavitating jet than a thicker coating. In the cavitating

experiment, under the same cavitation conditions, the 1 mm coating showed little or

none damage while 3 mm and 9 mm coating presented significant local melting and

failure. Even comparing the two thicker coatings, the 3 mm coating failed later than

9 mm coating under the cavitating jet.

5.3 Temperature Distribution Through Coating Thickness

It is also of high interest to study the heating power along the coating thickness

to find the most heated location. As shown in Fig. 5.7(a)(c), the location of the

maximum heating power density is always at a depth of 0.15 mm below the surface

regardless of the coating thickness, material, or flow condition. With a lower molec-

ular weight, PU-650 dissipates less energy than PU-1000 under the same cavitating

environment. Under a higher cavitating jet pressure, the maximum heating power

density increases drastically (7 times) for both materials. In a future work, it is of

high interest to find the factor that determines the peak power density location.

It is also noticeable that the heating power rises at the interface between the

coating and the substrate. This is due to the discontinuity in material impedance
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Figure 5.8: Temperature history of 1.5 mm below surface within a 2 mm coating

under 2.75 MPa cavitating jet.

at the interface that leads to a difference in radial wave speed and therefore induces

significant shear stress and dissipation within the polyurea coating.

Solving the heat equation 4.7 for 5 min with Crank-Nicolson implicit time inte-

grator, a steady state temperature distribution is obtained. To validate the numerical

model, the temperature rise of 2 mm coatings with two materials are compared with

the data recorded by the temperature measurement experiment. The PU-650 coating

has been heated up 10 K at the cavitating jet center during the experiment.

The steady state temperature distribution along the thickness is plotted on the

right column in Fig. 5.7. It shows that the thicker coating is heated to a higher tem-

perature than thinner coating under same loading condition. Therefore, the thicker

coating is less resistant to cavitation erosion as the material melts faster. The cause

is currently concluded as 1, total amount of heat within thinner coating is less than

79



0.0 0.5 1.0 1.5 2.0
y (mm)

0
10
20
30
40
50
60
70

s(
y)

  (
W

/m
)

(c)
0.0 0.5 1.0 1.5 2.0

y (mm)

0
5

10
15
20
25
30
35
40

¢
T

 (K
)

(d)

¯=0.10

¯=0.15

¯=0.20

¯=0.30

¯=0.40

¯↓

¯↓

0.0 0.5 1.0 1.5 2.0
y (mm)

0
10
20
30
40
50
60
70
80

s(
y)

  (
W

/m
)

(a)
0.0 0.5 1.0 1.5 2.0

y (mm)

0
5

10
15
20
25
30
35
40
45

¢
T

 (K
)

(b)

®=0.050
®=0.037

®=0.025
®=0.017

®=0.013

®↑

®↑

All     ¯ =0.15 

All     ®=1/40

Figure 5.9: The different predictions of heating power and temperature rise for 2 mm

PU-650 coating under 2.75 MPa cavitating jet by using different α and β.

thicker coating because of less mass; 2, the heating hot spot for thinner coating is

closer to the substrate interface and the fluid, therefore the overall heat transfer

efficiency is higher.

Fig. 5.8 shows the temperature history at y = 1.5 mm predicted by our numerical

model compared with the experimental data. One direct reason for overpredicting

the temperature is that no radial thermal conduction is considered in this model as
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discussed in section 4.3. Another potential cause is that the temperature prediction is

sensitive to the scaling factors used to correlate the surface impulsive pressures with

experimental measurements, such as factor α and β. Although these scaling laws are

derived from hydrodynamic principals, linearization and average approximation are

adopted in the process that would bring errors. As shown in Fig. 5.9, the s(y) and ∆T

distribution along y can be shifted down by using a smaller α and larger β value. It

is not complicated to further fit the two parameters if sufficient experimental data is

given, but that is not conducted in this work since we emphasize the model’s capability

of coupling both fluid aggressiveness and material impedance to analyze the elastomer

failure. Additionally, a conjectural error resource is that under the high amplitude

impact shock loads, the material reaches a high strain (up to 30% as discussed in

section 5.1) where the viscoelastic model with linear elasticity is not accurate anymore.

In this case, to combine a nonlinear elastic model, e.g., a hyperelastic law, is needed

to eliminate the error for large deformation.
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Chapter 6

SUMMARY

We have investigated the heat generation in elastomeric coatings subjected to

cavitating flows through a combined experimental and modeling effort, in which mea-

sured cavitation pressure pulses were approximated by a parameterized surface load

model. Although the model does not explicitly incorporate the complete hydrody-

namic details governing the distribution of pressure exerted on a surface due to each

bubble collapse, e.g., collective collapse from multiple bubbles, shock driven collapse,

the standoff distance of collapsing bubbles, or non-spherical bubble collapse, these

effects are implicitly embedded within the calculated distribution of representative

bubble collapses.

The elastomeric coatings were modeled by a viscoelastic model incorporating the

effects of temperature and pressure on the stress relaxation spectrum. The kinematics

of the model in large deformation has been extensively discussed and the reason

for choosing logarithmic formulation has been explained. Additionally, an enriched

model coupled with hyperelasticity and plasticity has been presented and preliminary

results have been shown. However, the lack of experimental data limits this work to

a prospective demonstration of the logarithmic formulation framework for building

more comprehensive constitutive models for elastomers.

The analysis of the cumulative effect of a distribution of single bubble impacts,

reveals that the amount of heating due to the viscoelastic dissipation of impact loads

results in a significant temperature rise of the polyurea coating. As the mechanical

properties of elastomers are quite sensitive to temperature this high rate of heating

implies a critical failure mechanism: as the temperature increases both relaxation
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times and the yield strength decrease, leading to accelerated inelastic deformation

and runaway heating.

The innovation and contribution of this work can be summarized 1) a direct corre-

lation between pressure transducer records in cavitating jet experiment to microscopic

hydrodynamic pressure load parameters is established according to bubble dynamics

and CFD simulations; 2) a logarithmic co-rotational rate form constitutive model for

polyurea including viscous heating is built based on the prior work by Amirkhizi;

3) a numerical framework that converting FEM simulation results for single impact

heating to macroscopic material heating is constructed.

As an extension of this work, we will attempt to quantitatively model this po-

tential failure mechanism by coupling the mechanical and thermal models. Further

efforts are needed to more accurately model the material response under more intense

cavitating flows where nonlinear material effects play a larger role. However, the pa-

rameterization of more complex material models remains a significant challenge at

the extreme loading rates and pressures generated in cavitating flows.
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