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ABSTRACT

The lack of healthy behaviors - such as physical activity and balanced diet - in

modern society is responsible for a large number of diseases and high mortality rates in

the world. Adaptive behavioral interventions have been suggested as a way to promote

sustained behavioral changes to address these issues. These adaptive interventions

can be modeled as closed-loop control systems, and thus applying control systems

engineering and system identification principles to behavioral settings might provide

a novel way of improving the quality of such interventions.

Good understanding of the dynamic processes involved in behavioral experiments

is a fundamental step in order to design such interventions with control systems ideas.

In the present work, two different behavioral experiments were analyzed under the

light of system identification principles and modelled as dynamic systems.

In the first study, data gathered over the course of four days served as the basis for

ARX modeling of the relationship between psychological constructs (negative affect

and self-efficacy) and the intensity of physical activity. The identified models suggest

that this behavioral process happens with self-regulation, and that the relationship

between negative affect and self-efficacy is represented by a second order underdamped

system with negative gain, while the relationship between self-efficacy and physical

activity level is an overdamped second order system with positive gain.

In the second study, which consisted of single-bouts of intense physical activity,

the relation between a more complex set of behavioral variables was identified as a

semi-physical model, with a theoretical set of system equations derived from behavioral

theory. With a prescribed set of physical activity intensities, it was found that less fit

participants were able to get higher increases in affective state, and that self-regulation

processes are also involved in the system.
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Chapter 1

INTRODUCTION

In modern society, problems and mortality caused by behavioral issues are of

major concern. It is well understood that physical activity is vital in the prevention

of chronic diseases (Schroeder, 2007); however, the lack of healthy behaviors amongst

many people is still a common problem. Physical inactivity, poor diet, and tobacco

use contribute to major chronic diseases, being responsible for more than 50% of

preventable deaths (Heckler et al., 2013). The World Health Organization states that,

in 2014, 39% of adults were overweight, and 13% obese (World Health Organization,

2016).

For those reasons, it is clear that any research or study aiming at promoting

healthy behaviors is of fundamental importance to society. One of the solutions that

has been widely proposed and studied are behavioral interventions, which, if done

properly, can cause sustained lifestyle changes in the participants, promoting healthy

habits like improved diet and increased physical activity levels (Navarro-Barrientos

et al., 2011).

Most behavioral interventions traditionally are fixed interventions. In these,

the dosage of intervention components (e.g., prescription of physical activity types,

intensities, and durations) are the same for all participants throughout the entire

duration of the intervention (Collins et al., 2004; Rivera et al., 2007). There have been

many criticisms about traditional health behavior theories and models because of their

inability to explain behavioral processes that happens in more frequent scales, focusing
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instead on limited occurrence (longer time-scale) behaviors (Noar and ZimmermVan,

2005).

With modern improvements in technology and data-gathering capabilities, so-called

adaptive interventions have been increasingly studied for the context of promoting

lasting behavioral changes. Unlike the fixed interventions, the goal of an adaptive

intervention is to constantly adjust dosages or components throughout the intervention,

adapting it to best suit the participant’s needs (Collins et al., 2004). In this manner,

novel research has compared such adaptive intervention with closed-loop feedback

control systems (Rivera et al., 2007), since those are defined by constant, or frequent,

adjustments of manipulated variables based on measurements of controlled variables.

Thus, control systems engineering – combining system identification techniques and

controller design principles – might prove to be useful tools for modeling behavioral

systems and designing interventions, respectively.

Dynamical systems and control represent well-known engineering fields of study,

with diverse practical applications in chemical processing, robotics, mechanical engi-

neering, aerospace systems, electronics, amongst others. Control systems engineering

is the study and application of mathematical and computational tools and tech-

niques with the goals of analyzing, manipulating, controlling, and optimizing a system

(whether it is chemical, mechanical, electronic, etc.). This control is made through the

manipulation of inputs u(t) – or manipulated variables – with the goals of reaching

desired levels (also known as setpoint) for some variables that cannot be directly

manipulated – called outputs y(t) – even in the presence of disturbances (which can

be thought of as undesired, non-manipulated, and/or non-measurable inputs). The

goals of controlling processes and systems are many, including optimized productivity

2



and/or efficiency, cost reduction, ensuring product quality, and increase in operational

safety (Ogunnaike and Ray, 1994).

In order for a system or plant control to be effectively implemented, it is necessary,

or at least extremely desirable, that dynamical structural mathematical relations

between the many variables that compose the system are known. Dynamic systems

modeling allows the process to be characterized by a transient response between the

inputs and outputs (which can be defined even outside a controller’s perspective

– inputs are either the manipulated inputs or disturbances, while outputs are the

measurement of interest in terms of modeling and prediction). Dynamic systems are

usually represented as a set of ordinary differential equations (for continuous-time

systems) or difference equations (for discrete-time), and/or represented by a set of

transfer functions that relate each system output to one or more inputs or disturbances

(Ogunnaike and Ray, 1994).

The advantages of dynamically modeling systems and processes lie in the fact that

the causal relationship between variables can be represented in the model. In other

words, it is possible to analyze how a specified change in any input variable affects the

outputs, not only in terms of final stationary net changes but also in terms of speed

of response (how slow or fast the output settles) and shape of response (i.e., whether

the response is smooth or oscillatory, presence or absence of inverse response and/or

overshoot) (Ogunnaike and Ray, 1994; Franklin et al., 2006).

Sometimes, the equations or transfer functions that represent a dynamic model

can be readily obtained through first principles (such as material or energy balances).

However, the most common case is that in which the studied systems are so complex

that a mere theoretical analysis proves incapable of modeling all the relations between

the variables. For this reason, many dynamic systems are currently modeled with
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system identification techniques, which stands for the computational and statistical

tools that allow for dynamical equations and/or transfer functions that model a system

be obtained through measured input-output data (Ljung, 2001). The methods and tools

provided by system identification includes initial experiment design (in data collection

phases) – in order to obtain a data set that allows for meaningful identification; data

treatment and preprocessing; model structure selection or determination; parameters

estimation; and model validation (Dunton et al., 2015). The advantages of using system

identification can be found in the ability of predicting and/or modeling statistically

significant systems without the need of an internal theoretical system’s knowledge

(although such knowledge can greatly improve the quality of the obtained models).

For this reason, system identification plays a major role in control systems engineering

(Ogunnaike and Ray, 1994).

As previously described, control systems engineering already finds wide applications

in the fields of engineering and technology. However, with recent technological and

computational advances, the capacity to study and apply such controls and system

identification concepts to less conventional fields of study is increasing, such as medicine

(Wellstead et al., 2008; Ahn et al., 2006), supply chain optimization (Wang and Rivera,

2008; Schwartz et al., 2006; Nandola and Rivera, 2013), and economics (Neck, 2009).

The central idea is similar: any system that can be mathematically modeled as a set

of inputs, outputs, and disturbances with inter-relations can, in theory, benefit from

dynamic modeling and control techniques, so that transient responses can be analyzed

and, with proper controlling, faster, safer, and/or more efficient levels of specified

variables can be achieved.

Of particular interest, one such less conventional (in relation to traditional control

systems engineering) field of study is behavioral sciences. Recent inter-disciplinary
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research has been pursued regarding the implementation of controller design and system

identification principles to understand, model, control and/or optimize behavioral

problems (Carver and Scheier, 2002; Martín Moreno, 2016; Navarro-Barrientos et al.,

2011; Rivera et al., 2007; Dong et al., 2013, 2012; Vanderwater and Davison, 2009, 2012;

Davison et al., 2011; Timms, 2014; Dunton et al., 2015). Behavioral processes can be

modeled as dynamical systems that describe the relationships and interconnections

between psychological and physiological variables and behavioral components. As

such, as mentioned before, an adaptive intervention share similarities with closed-loop

control systems (mostly feedback controllers). In Martín Moreno (2016), a design for a

closed-loop (adaptive) behavioral intervention using controller principles is proposed.

The benefits of using control systems concepts for behavioral health systems are

apparent. A participant in a behavioral experiment might present optimal levels

of a certain studied behavior according to the many inputs and disturbances that

composes the system, making the study and manipulation of these desirable. As a

hypothetical example regarding physical activity behaviors, participants with lower

physical conditioning might get demotivated more easily in case the level or intensity

of a physical activity prescription is too elevated, and that demotivation might hamper

the performance in that activity, negatively influencing the result. On the other hand,

very light physical activity prescriptions might make a participant take longer to

visualize improvements in associated outcomes (for example, weight loss), and that

might demotivate the participant, which again, could influence negatively the behavior.

In this hypothetical example, physical activity could be modeled as a dynamic system

with inputs and outputs, including activity prescription levels, outcomes, outcome

expectancies and motivation.
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1.1 Thesis Outline

In this research, two different case studies of behavioral processes, both concerning

physical activity, are analyzed through the lens of system identification. Input/output

data for these experiments are used in conjunction with behavioral theories to obtain

dynamic models through different system identifications techniques.

This thesis is structured in the following way:

Chapter 1 introduces the main ideas and also explains the importance of improving

health interventions and how system interventions and how system identification can be

used to study behavioral processes. This chapter also explains the basic mathematical

principles of system identification.

Chapter 2 is the first case study, in which participant behavioral data was collected

in the course of four days and then used to obtain dynamic models - a model that

relates mood (negative affect) and self-efficacy, and another model that relates self-

efficacy to moderate-to-vigorous physical activity (MVPA) - through ARX modeling.

Modeling results show negative oscillatory response for the first system, and positive

smooth response for the second. The results suggests the presence of self-regulatory

behavioral processes for the participants.

Chapter 3 describes the second study. Participants performed single-bouts of

exercise and their physiological (heart rare) and psychological (rate of perceived

exertion, felt arousal scale, and feeling scale) constructs were measured. Based

on behavioral theories, a suggested structural path diagram was mathematically

analysed through a fluid analogy. Semi-physical identification was carried based on

the experimental data and the theoretical model, resulting in estimated parameters

for the dynamic relations that described the system.
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Finally, Chapter 4 concludes this thesis and presents suggestions for improvements

on this work.

1.2 Justification

The vast number of chronic diseases, health issues, and deaths caused by behavioral

problems (as in, the lack of healthy behaviors) in modern society justify the need

for research that improve the design and efficacy of behavioral interventions, which

aims to promote sustained lifestyle changes in individuals. Optimally performed

interventions have the potential of reducing the amount of preventable deaths and

diseases caused by behavioral risk factors such as physical inactivity and poor diets

Control systems engineering represent a novel approach to handling such behavioral

health problems, with one of the ultimate goals being applying controller design

principles to adaptive interventions. However, as in any control system design, this

requires good understanding of the dynamical interrelations between the many variables

that comprises the behavioral system. For that purpose, a good understanding of

system identification principles and how to apply them become a necessity for the

design of adaptive intervention as a control system.

System identification is already a broad discipline, with many different tools and

techniques that can be applied in different scenarios. For many traditional engineering

and technology applications, which have benefited from control systems principles for

years, the problem of finding statistically significant dynamic models through system

identification techniques is not trivial; that is even more true for this novel research

applying system identification in behavioral sciences.

For that reason, any attempt to understand how behavioral problems can be
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modeled as dynamic systems, to examine how system identification techniques might

be used in such behavioral processes, and to analyze and interpret dynamic models

obtained through system identification, is a necessary step towards improving the

quality of adaptive interventions based on control designs. With a better grasp of the

dynamics of behavioral systems, not only can these processes be better understood,

but also better performing adaptive interventions can be designed, which represents a

significant improvement in behavioral health studies.

1.3 System Identification Principles

As described previously, the goal of system identification is to obtain useful dynamic

models that allow for a system’s prediction, simulation, and/or control. The techniques

used to obtain such dynamic structures are varied in numbers and scope. System

identification is a very broad problem, and thus there are different ways to approach

the modeling a system, each one having their advantages and drawbacks (Ljung, 1999).

One way to categorize methods to model dynamic systems is based on the require-

ment of using mathematical principles and/or collected data. In that regard, there

are three different types of models:

White-box models are those obtained exclusively through first-principles (such as

conservation of energy or momentum) and/or theoretical knowledge and information

about the system in question. Thus, even though it is possible to get dynamic model

through this method, it is outside the scope of the system identification discipline,

since it does not utilize data in the modeling. White-box models are based on a priori

knowledge of the system, but it has a major disadvantage in that process complexities,
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unknown dynamics, and random effects might severely weaken the model (Bohlin,

2006).

Black-box models, on the other hand, lack prior information about the system and

is based almost solely on measured input/output data. This type of modeling is widely

used because many real world processes and systems are inherently complex, and/or

because these system’s construction are unknown, in a way that physical insight has

no real value or cannot be used properly. When that’s the case, standard black-box

models can be used, that are empirically known to model well a great number of

dynamic systems (Ljung, 2001). However, these type of models might show poor

reproducibility, as in significantly different model structures might be obtained when

repeating the same experiments with only minor experimental modifications. Also,

the models obtained through black-box identification are not always easily interpreted

– the model can describe parameters and structures which might lack in physical

significance (Bohlin, 2006).

Finally, combining the purely theoretical physical/structural knowledge with

statistical tools applied to gathered input/output data results in the so called grey-box

models (also called semi-physical models). There are a wide range of different grey-box

models, including those that are a theoretical model with some parameter values

determined from data, those almost exclusively modeled from experimental data

but with only a small fraction based on theoretical structures, and all in-between

(Whiten, 2013). Semi-physical modeling combines the advantages of prior internal

system knowledge with statistical data analysis, but as with any other modeling

strategy, has its own drawbacks. Grey-box identification tends to be harder to perform

in a numerical sense, presenting problems such as hard computing, great need for

interactivity, and higher chance of numeric failures (Bohlin, 2006).

9



Each of the behavioral experiments studied in this research was modeled using one of

the techniques mentioned above (excluding white-box modeling, since it deviates from

the scope of system identification). In the the first study (Chapter 2), classic prediction-

error methods were used for estimating model parameters only from experimental data,

characterizing the steps as black-box identification; in the second study (Chapter 3), a

previously postulated behavioral diagram was described in mathematical terms using

a fluid analogy, resulting in a system of differential equations in which parameters

were obtained through grey-box estimation.

1.4 Prediction Error Methods

One of the system identification methods used in this research is the classical

sampled-data prediction error models. This process involves fitting the system into a

user-defined model structure and order, and then numerically estimating the chosen

structure’s parameters by minimizing the prediction errors. This is made in a way

that, at every time point, current and previous data points are used to estimate

“step-ahead” (beyond that time point) predictors (Ljung, 1999). The basic ideas

behind the prediction error methods are described in Ljung (2001). First, the model

is described as a predictor of the output:

ŷm(t|t− 1) = f(Zt−1) (1.1)

Where ŷm is the one-step ahead prediction of the output, f is an arbitrary func-

tion, and ZN = {u(1), y(1), u(2), y(2), . . . , u(N), y(N)} is a vector containing the

measurement of all current and past experimental data points up to time instance

10



N . Equation 1.1 represents the idea of obtaining a one-step ahead prediction of the

output as a function of current and past data (both inputs and outputs).

Then, these step-ahead predictors are parametrized, or in other words, written as

a function of a parameter vector, represented by θ:

ŷ(t|θ) = f(Zt−1, θ) (1.2)

Based on the model parametrization and the data set, the parameters θ are

estimated such that the difference between the predictors and the actual output

measurements – defined as the prediction error, e(t), are minimized:

e(t) = y(t)− ŷ(t|t− 1) (1.3)

The minimization problem can be stated as:

θ̂N = arg minθVN(θ) (1.4)

VN(θ) =
N∑
t=1

`(y(t)− f(Zt−1, θ)) (1.5)

Where Equation 1.4 means that the estimated parameters (θ̂N ) are the ones that

minimizes the function VN . In Equation 1.5, ` represents a suitable distance function

(Ljung, 2001). For example, ` could be a quadratic norm (Ljung, 1999):

`(ε) =
1

2
ε2 (1.6)

There are many distinct ways of approaching a prediction error method problem,

these include choices of predictor function f , the minimization procedure `(e), and

even a possible pre-filtering of the predictor error vector. The parametrization function,
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f , can be Linear Time Invariant (LTI), meaning that the relation between predictors,

parameters and measured data are linear, and the parameters are time-invariant;

more complicated model structures might present time-invariant parameters and/or

non-linear expressions (Ljung, 2001).

When opting for identifying a system using a LTI model, which is a common first

attempt in many identification problems, Equation 1.2 can be written as:

f(Zt−1, θ) = Wy(q, θ)y(t) +Wu(q, θ)u(t) =

=
t−1∑
k=1

wy(k)y(t− k) +
t−1∑
k+1

wu(k)u(t− k)
(1.7)

When a linear time-invariant model is assumed for identification purposes, the

relation between output and input becomes:

y(t) = G(q, θ)u(t− nk) +H(q, θ)e(t) (1.8)

Where e(t) is an unpredictable white-noise, and nk is the order of the input

data time delay. G(q, θ) and H(q, θ) are rational transfer functions containing the

parameters. This means that there are a number of different possibilities for prediction

error models structures, depending on the rational functions used. The general family

of models is (Ljung, 1999):

A(q)y(t) =
B(q)

F (q)
u(t− nk) +

C(q)

D(q)
e(t) (1.9)
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A(q) = 1 + a1q
−1 + · · ·+ anaq

−na

B(q) = b1 + b2q
−1 + · · ·+ bnb

q−nb+1

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc

D(q) = 1 + d1q
−1 + · · ·+ dnd

q−nd

F (q) = 1 + f1q
−1 + · · ·+ fnf

q−nf

(1.10)

Where q is the shift operator in continuous time, and the model parameters are

[a1, . . . , ana , b1, . . . , bnb
, c1, . . . , cnc , d1, . . . , dnd

, f1, . . . , fnf
]. For this most general class

of LTI prediction error models, Equations 1.9 and 1.10 are related by:

G(q, θ) =
B(q)

A(q)F (q)
q−nk

H(q, θ) =
C(q)

A(q)D(q)

(1.11)

Not all of these polynomial transfer functions (denoted by A(q), B(q), C(q), D(q),

F (q)) need to be used in the model; if that’s the case, a value of 1 is assigned to

the entire polynomial. This means that, from the general class of PEM, there are

many possibilities of model structures that can be used. However, a few of these

combinations prove to be more popular models due to being successfully used in many

identification problems. These are:
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Table 1. Common PEM Model Structures

Method G(q, θ) H(q, θ)

ARX B(q)
A(q)

q−nk 1
A(q)

ARMAX B(q)
A(q)

q−nk C(q)
A(q)

FIR B(q)q−nk 1

Box-Jenkins B(q)
F (q)

q−nk C(q)
D(q)

Output Error B(q)
F (q)

q−nk 1

Some advantages of these prediction error methods include its capacity to be

applied to a great number of different model parametrization and its ability to model

closed-loop systems. Although it is not a perfect methodology, it is widely used in

system identification problems (Ljung, 2001).

1.5 Semi-Physical Modeling

Another way to perform system identification is through the use of grey-box, or

semi-physical, models. With this approach, a system that has an already partially

determined dynamics (obtained through theoretical internal knowledge) can be com-

pleted by fitting into measured input-output data, combining aspects of white-box

and black-box modeling. Many times, a mathematical model obtained through first

principles (white-box model) needs to be simplified, or the model cannot capture all

the interactions due to a system’s complexity. In that case, combining theoretical

knowledge with data fitting brings a number of advantages, such as the estimation of

model parameters that yield physical significance (Hauth, 2008).

Unlike black-box modeling, it is not necessary to assume an arbitrary model

structure (such as ARX) during semi-physical modeling - the model structure is

already determined by the set of differential equations and/or transfer functions
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known a priori, so the step of determining an arbitrary structure type and order does

not take place in grey-box identification. That is not to say that investigating a model

structure and/or order is impossible. Sometimes, the model structure obtained by

theoretical knowledge might be incomplete, or some parts of it might be wrong. In

these cases, the identification procedure might involve iteratively making alterations

in the model in order to search for better models.

Grey box identification might be performed for linear or nonlinear systems. Linear

identification procedures revolve around searching for parameters that minimizes a

determined loss function, similar to the prediction error method. Different parameter

search methods exists that can be used to perform this estimation, such as the

Gauss-Newton algorithm or the Levenberg-Marquardt method (MathWorks, 2016b).

1.6 Fluid Analogies

Behavioral models are not usually quantitatively interpreted in the same way that

a physical system is. Even when a given behavioral system is presented as a structure

diagram, a set of differential equations, state space, transfer functions, or any other

mathematical representation of the dynamics is not promptly obtained. One possible

way to obtain this mathematical representation is through a fluid analogy, such as seen

in Navarro-Barrientos et al. (2011) and Schwartz et al. (2006). This is a way to convert

the representation of a behavioral structural diagram into a set of inventory tanks with

flows and valves, through which it is much easier to obtain dynamic mathematical

relations.

In Martín Moreno (2016), the concept of fluid analogy is illustrated by applying it

to the Theory of Planned Behavior (TPB) (Ajzen and Madden, 1986). TPB is a be-
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havioral theory that was has been widely used to explain behaviors in many situations,

including physical activity (Godin et al., 1993; Norman et al., 2000; Symons Downs

and Hausenblas, 2005). The TPB states that a person’s intention is a good indicator or

predictor of his or her readiness to engage the studied behavior, and that intention is

shaped by the person’s attitude towards the behaviour, the perceived social incentive

or pressure to perform the behavior (Subjective Norm), and how the person believes

he or she can engage the behavior (Perceived Behavioral Control) (Ajzen and Madden,

1986).

A path diagram and mathematical model of this behavioral theory can be obtained

by a technique called Structure Equation Modeling (SEM) (Bollen, 1989). The result

of this modeling is the path diagram presented in Figure 1.

ζ5ζ4

γ11

γ22

γ33

ζ1

ζ2

ζ3

Attitude
Toward the
Behavior

(η1)

Intention
(η4)

Behavior
(η5)

Perceived
Behavioral
Control
(η3)

Behavioral
belief ×

evaluation
of outcome

(ξ1 = b1 × e1)

Normative
belief ×

motivation
to comply

(ξ2 = n1 ×m1)

Control
belief ×
power of

control belief
(ξ3 = c1 × p1)

β41

β42

β43

β54

β53

Subjective
Norm
(η2)

Figure 1. Structural Path Diagram for TPB (Navarro-Barrientos et al., 2011).

The diagram in Figure 1 shows the relations between the constructs for this
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behavioral theory (Attitude Towards Behavior; Subjective Norm; PBC; Intention;

and Behavior) described in a mathematical manner, with (qualitatively explaining)

ηi being the quantity of a particular construct i, βij the amount of influence that

construct j exerts on construct i, ζi representing a random, unpredictable change to

construct i, εi represents an exogenous variable influencing the initial constructs, and

γij being the amount of such influence.

The structural path diagram fails to show the dynamic mathematical relations

between the constructs. That is how the fluid analogy becomes a useful technique;

assuming a linear system, the dynamics represented as a set of inventory tanks and

flows are presented in Figure 2.

I20

Intention

Behavior

Attitude PBC

β41η1(t− θ4) β43η3(t− θ6)

(1− β41)η1

(1− β54)η4

β54η4(t− θ7)
ζ5(t)

ζ1(t)

(η3)(η1)

(η4)

(η5)

η5(t)

100%

0%

100%

0%

100%

0%

100%

0%

Subjective

Norm

100%

0%

ζ2(t)

ζ3(t)
(η2)

β42η2(t− θ5) (1− β42)η2

ζ4(t)

γ11ξ1(t− θ1)ξ1(t)

γ22ξ2(t− θ2)ξ2(t)

γ33ξ3(t− θ3) ξ3(t)

β53η3(t− θ8)

(1− β43 − β53)η3

Figure 2. Proposed Fluid Analogy for TPB corresponding to diagram shown in
Figure 1 (Navarro-Barrientos et al., 2011).

In this analogy, each of the constructs is represented as an inventory with level
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ηi, which increases or decreases based on the inflows and outflows. The variables

γij and βij represent inflow resistances and outflow resistances, respectively. ηi are

the exogenous inputs, ζi is a zero-mean stochastic signal affecting inventory i, and θi

stands for time delays between each inflow or outflow and their respective inventory.

For each inventory, a material balance based on the conservation of total mass can

be applied:

Rate of Accumulation = Inflow Rate−Outflow Rate (1.12)

When this material balance is applied to each inventory, a differential equation is

generated. With five inventories, five differential equations would be generated in this

TPB example, forming the set of dynamic equations that define the system:

τ1
dη1

dt
= γ11ε1(t− θ1)− β41η1(t)− (1− β41)η1(t) + ζ1(t)

= γ11ε1(t− θ1)− η1(t) + ζ1(t),

τ2
dη2

dt
= γ22ε2(t− θ2)− β42η2(t)− (1− β42)η2(t) + ζ2(t)

= γ22ε2(t− θ2)− η2(t) + ζ2(t),

τ3
dη3

dt
= γ33ε3(t− θ3)− β43η3(t)− β53η3(t)− (1− β43 − β53)η3(t) + ζ3(t)

= γ33ε3(t− θ3)− η3(t) + ζ3(t),

τ4
dη4

dt
= β41η1(t− θ4) + β42η2(t− θ5) + β43η3(t− θ6)− β54η4(t)− (1− β54)η4(t) + ζ4(t)

= β41η1(t− θ4) + β42η2(t− θ5) + β43η3(t− θ6)− η4(t) + ζ4(t),

τ5
dη5

dt
= β54(t− θ7) + β53(t− θ8)− η5(t) + ζ5(t)

(1.13)

Where τi represents a time constant for inventory i. All the differential equations

in Equation 1.13 represent a transient, dynamic system. When the derivative terms
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are set to 0 (stationary, or steady-state), the equations correspond to those obtained

by the SEM model (Navarro-Barrientos et al., 2011).

As mentioned previously, Equations 1.13 were derived on the basis that this

behavioral system is linear and all inventory equations were considered first order

equations. The problem of fluid analogy complicates with the presence of higher order

equations and nonlinearities, but the example was still helpful to showcase how fluid

analogy can be used to create a set of differential equations from only a qualitative

stationary structure path diagram originated from a behavioral theory. With these

equations and measured input-output data from experiments, semi-physical modeling

can be performed in order to estimate the many parameters τi, βij, γij, and θi, thus

obtaining a quantitative dynamic model.

This example shows how to use fluid analogy in order to obtain a set of differential

transient equations based on a behavioral theory, but the inverse path is also a

possibility. That is, if a mathematical model is obtained for a system (e.g., obtained

through black-box modeling), the equations can be described in terms of a set of

inventory-flows (fluid analogy), which can then be reinterpreted as a structural path

diagram. In that way, the fluid analogy is not only useful to obtain mathematical

equations from a behavioral theory, but it can also be used to obtain insights about

behavioral theories based on experimental input-output data.

1.7 Model Validation

Simply estimating the dynamic models is not sufficient to identify a system.

It is also of vital importance to validate the model, which is, to determine if the

obtained model is "good enough" to represent, predict, or simulate the studied system.
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According to Ljung (1999), some aspects to be considered when validating a model

are whether it agrees (to a reasonable point) with the measured data, and whether it

describes the true system (if not perfectly accurate - which might be close to impossible

- at least to a good enough degree for the identification purposes).

One of the most common ways of validating, or testing, a model is to simulate

it with the experimental data set. In this way, the same collected input data that

was used for identification is used as an input for the model, which is simulated and

generates some output data (since a model describes the dynamic relation between

input and output). If the model happens to be an accurate description of the true

system, this generated output should match, or at least be very similar to, the

experimental output; otherwise, a "poor" model would generate vastly different output

signals for the same inputs.

Mathematically, this proximity between generated output and simulated output

can be represented by a scalar called goodness-of-fit, according to:

Goodness-of-Fit [%] = 100

(
1− ‖y(t)− ỹ(t)‖2

‖y(t)− ȳ‖2

)
(1.14)

In Equation 1.14, the vector of measured output data is y(t), it’s average is (̄y),

and ỹ(t) is the vector of simulated output (generated by the model). The ‖ ‖2 notation

indicates the 2-norm - the square root of the sum of the squared vector elements.

Goodness-of-fit can range from minus infinity (an infinitely bad model, incapable of

describing the system) to 100% (the model-generated output is exactly the same as the

experimental output data, that is, the model is a perfect descriptor of the dynamics).

A goodness-of-fit of 0 means that the output vector generated by the model is the

same as the averaged measurements, ȳ.

A better way of validating a model is with cross-validation, which gives a better

20



determination of the predictive ability of the model. If the data collection experiment

generates a sufficiently big data set, that set can be divided into estimation data and

validation data. Estimation data is used in the system identification procedure (e.g.

parametric estimation) to obtain a dynamic model. That model is then compared

not against the same data set, but instead with the validation data set. Instead of

running the model with the experimental input to generate a simulated output, and

compare this with the experimental output, the model is simulated with the validation

data set input, and the simulated output is compared with the validation data set

output (using some criteria such as the goodness-of-fit). In this way, one set of data

is used solely to generate a model, and another set of data uses only to validate it.

This method of model validation is usually preferred upon, since it tests the model’s

capacity of predicting the output. The problem with this method lies in the fact that

generating a large enough data set to be split in two (estimation and validation) can

be difficult. The model estimation is a step that benefits from a large data set (ideally,

infinite data points); if that data set is split into estimation and validation, the model

quality may be compromised.

Sometimes, simply analysing the identified model responses grants insight upon

the model validity. Simple model responses, such as the step response (as in, the

output signals generated by a step change in one or more inputs) may be analysed

and yield information about the system. This form of validating can be useful if

prior theoretical knowledge of how the system should behave is at hand, which may

allow for the modeled responses to be put into contrast against the intended output

behavior. A similar analysis can be made to the identified model’s frequency response,

which might grant information about the frequency content of the modeled system,

allowing for comparisons with any prior knowledge about the true system.
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Another common method of model validation is residual analysis. The difference

between simulated output and experimental output generate an error vector. Ideally, if

the model is a good representation of the true system, this error should only represent

measurement noises, instead of modeling errors such as bias. For this reason, an

analysis of the error sequence might grant or remove validity to a model; a good model

will contain a sequence of errors that is a white-noise sequence (that is, a sequence of

independent random variables), and that should have no cross-correlation with any

input sequences (Ljung, 1999).

There are many other aspects to analyse when doing model validation, such as

the mathematical/physical feasibility of the identified parameters (as in, even if an

identified model shows good fit and adequate responses, some parameters values or

ranges might make no physical sense). There is no exclusive way of determining if an

identified model really corresponds to the true system.
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Chapter 2

BLACK-BOX SYSTEM IDENTIFICATION IN OBSERVATIONAL BEHAVIORAL

STUDY

2.1 Overview

In this first case study, black-box ARX modeling was used to obtain model

structures relating behavioral constructs (negative affect and self-efficacy) with physical

activity (the desired behavior). This analyzed set of data came from a study called

Project MOBILE (Measuring our Own Behavior in Living Environments), which had

the purpose of investigating the effects of environmental and intrapersonal factors

into health behavioral decisions (Dunton et al., 2015)).

The data used for system identification purposes was obtained for over 90 par-

ticipants by measuring, for each participant, the amount of moderate-to-vigorous

physical activity (MVPA), as well as measuring the investigated self-reported be-

havioral constructs, among other assessments, throughout the course of four days,

after scheduled prompts from a mobile phone app. The gathered data was averaged

among the participants divided by different cohorts - segregating data by age, gender,

and BMI category - and using different combinations of estimation-validation sets.

Classical system identifications techniques were performed to obtain the dynamic

structures.

As will be developed in this chapter, the results implies that the behavioral systems

regarding the studied variables are actually under the influence of self-regulatory

processes, akin to controllers in traditional engineering systems.

23



The theoretical dynamic relations between the studied variables – negative-affect

and self-efficacy; and then self-efficacy and behavior – come from the well-established

Social Cognitive Theory (SCT) (Bandura, 1986). According to Locke and Latham

(1990), the behavioral dynamics of this systems can be seen in Figure 3:

Figure 3. Open-loop Behavioral Model from Social Cognitive Theory

With black-box modeling, the exact structure of the system is not needed in order

to obtain dynamic models between variables of choice. So for the purposes of this

study, only a sub-set of this dynamic system was chosen: the relation between negative

affect (one of the Intrapersonal States), Self-Efficacy, and Behavior (in this case, the

studied behavior is MVPA). The simplified structure can be seen in Figure 4:
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Figure 4. Simplified Open-loop Behavioral Model

So, in this study, two identification problems were carried out; one for each of the

constructs relationship seen in Figure 4 above.

2.2 Data Collection Overview

Performing black-box system identification requires a good amount of informative,

time-varying data in the form of time series, continuous or discrete. With recent

technological advances, it is easy to obtain such time-intensive data for physical

activity-related measurements. Constant positioning can be easily tracked with Global

Positioning System (GPS); heart rate can be measured directly during a physical

activity session; numbers of daily walked steps can be monitored with smartphones

or fitness trackers. These are but a small number of examples of how mobile sensors

allows the gathering of time series useful for health behavioral studies, at least with

regards to physiological variables.

Psychological variables, such as affective feeling states and social-cognitive beliefs,

can also be measured in a similar fashion. Ecological Momentary Assessment (EMA) or

Experience Sampling Methods (ESM) (Kaplan and Stone, 2013; Shiffman et al., 2008)

is a data-collection technique used to obtain real-time information about participants.

By this method, at the moment and place the behavior is happening, the research par-

ticipants input self-reports about emotional states, attitudes, beliefs, and perceptions
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with a smartphone (or other mobile device). When these self-reports are repeated

throughout the length of an experiment, this in-context information assessment is

able to be treated as a time series, showing how these behavioral constructs vary over

time prior to, during, and after the behavior (Dunton et al., 2015)). Thus, EMA and

ESM allows for visualization of time-varying intra-individual assessment (Dunton and

Atienza, 2009; Dunton et al., 2009).

The self-reported methods provided by EMA and ESM allow for the time-intensive

measurement of many behavioral variables such as physical and social contexts

(Shiffman et al., 2002), environmental perceptions (Dunton et al., 2012), affective and

physical feeling states (Dunton et al., 2014; Shiffman et al., 2007), and social-cognitive

beliefs – like self-efficacy (Hekler et al., 2012).

EMA and ESM methods are being more used in research involving health behavior,

since the time-series analysis provided by these techniques can provide insights into

the determinant causes of a behavior, as well as reducing recall error and biases

(since reports are made at the context the behavior is happening) (Kaplan and Stone,

2013). Because mobile phones are common and easy to use, EMA and ESM data

can be quickly gathered from large numbers of people and the information can be

easily transferred to remote servers for data analysis (Patrick et al., 2008; Riley et al.,

2011). For these reasons, EMA and ESM have been used to investigate health-related

behavior in a number of recent studies. This includes physical activity (Dunton et al.,

2011a,b), eating (Carels et al., 2004), smoking and substance use (Piasecki et al., 2014;

Freisthler et al., 2015; Swendsen et al., 2014), and risky sexual behaviors (Roth et al.,

2014), among others.
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2.3 Participants and Recruitment

Three EMA data collection waves were performed, each separated by six months

(although this work only focused on the second data wave). No data was gathered

in the periods of late July to August and January (since extreme temperatures and

weathers can significantly alter physical activity behaviors). Each wave consisted of

data being assessed in 4 consecutive days. System identification analysis for this study

were made using data from the second wave only, for being more complete in terms of

data points. Also, data points from the first collection are more prone to report error

due to potential reactivity, social desirability, and lack of familiarity associated with

completing the EMA questionnaire (Dunton et al., 2015)).

A total of 95 participant data was used for the dynamic analysis of the relation

between negative affect and self-efficacy, and data from 93 participants used to study

the relation between self-efficacy and physical activity (MVPA in the following 60

minutes). The actual number of participants involved in the second data collection

wave (the one used in this analysis) was 97 (out of a total of 116 participants enrolled

in the study), but some did not provide all the necessary EMA or accelerometer data.

Participant ages ranged between 28 and 74 years, with an average of 40.3 years. Most

participants were female (72%) and overweight or obese (63%).

Participants chosen for the data collection included healthy adults living in Southern

California that met the following criteria: age of 25 years or older; fluent English

speaker and reader; able to answer electronic EMA surveys while at work; and willing

to wear an accelerometer. Were excluded those participants with an annual household

income greater than $210,000, those who regularly performed more than 150 minutes

per week of exercise or physical activity, and/or those with physical limitation that
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makes them unable to perform exercises. These exclusions happened because the main

goal of the larger study was to evaluate physical activity behaviors for participants

at elevated risk for obesity, which means low active and low-to-moderate income

individuals.

Physical activity levels (MVPA) were measured by a waist-worn accelerometer

used by the participants during waking hours across the four days of each wave.

Behavioral EMA data were collected by a mobile phone through the MyExperience

software (Froehlich et al., 2007). Eight EMA surveys were prompted each day, at

random times between 6:30am and 10:00pm, to gather information about negative

affect, self-efficacy, and other variables. Each of these prompts required about three

minutes to complete, and the prompt were to be ignored in case the participant could

not answer at the time (for instance, if he or she were bathing) – in that case, the

phone asked for another survey after five-minutes, up to three reminders.

For the affect assessment, EMA used the bi-dimensional circumplex model con-

sisting of valence (varying between pleasure and displeasure) and arousal (varying

between activation to deactivation), where negative affect represents the combination

of activated displeasure (e.g., nervous, anxious or stressed) and deactivated displeasure

(e.g., sad, depressed or frustrated) (Posner et al., 2005). EMA prompts response

options for each of these affective states were “Not at all”, “A little”, “Moderately”,

“Quite a bit”, and “Extremely”.

The other behavioral variable used in dynamic modeling was self-efficacy, which

momentary levels were measured with the EMA through two questions: “Can you do

at least 10 minutes of physical activity sometime within the next few hours even if

you get busy?”, and “Can you do at least 10 minutes of physical activity sometime

within the next few hours even if you start to feel tired?”. These questions, based on
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pervious EMA studies, were delivered through a 5-point response scale (with 1 being

“I know I cannot” and 5 being “I know I can”) (Freisthler et al., 2015; Swendsen et al.,

2014; Roth et al., 2014).

Only 60% of the total EMA prompts – chosen randomly - included affect assess-

ments (including both negative affects and positive affects, which were measured but

not used in the system identification analysis) to avoid potential participant burden,

while only 40% of the EMA assessments included self-efficacy questions for the same

reasons. So, the chances of a participant receiving both negative affect and self-efficacy

assessments (both used in the dynamic modeling) in the same prompt was 24% (60%

x 40%).

On the 5-point response scale used to measure negative affect and self-efficacy,

the average negative affect rating was 1.4 (with 0.4 standard deviation), and for

self-efficacy a 3.0 (with 0.8 standard deviation) rating was the average. Concerning

physical activity, the average time participants spent doing moderate-to-vigorous

physical activity was 1 minute (with 0.7 standard deviation) after each EMA prompt.

2.4 Data Analysis and Pre-Treatment

Some analysis and treatment to the collected EMA and accelerometer data were

performed prior to the system identification processes.

Participant data, originated from Excel-sheets, contained, for each participant,

8 prompt answers for each of the four days of the data wave (for a total of 32 data

points per participant). However, not all participants answered the same number of

prompts at the same times, due to the nature of the experiment – since not every

EMA prompt asked for a negative affect or a self-efficacy measurement.
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The data collection happened in a limited time interval each day – ranging from

around 6.30am to 10pm – and thus there was a long period of no data collection after

the last point in a day (around 10pm) and the first point of the next day (around

6.30am). For that reason, instead of making one time series for each participant

containing all the 32 data points, each day was considered its own experiment, so four

different time series were generated for each participant. These were designated by

the numbers 1 (Saturday), 2 (Sunday), 3 (Monday), and 4 (Tuesday) – each being

one of the days in which data collection happened.

System identification techniques can be used for an idiographic (focused on each

subject individually) study, but in the case of this research, because of the lack of

some data points, it was decided to generate time series by averaging the participant’s

data. To visualize and compare the interplays between negative affect, self-efficacy,

and MVPA happening amongst different participant groups, participant data were

also separated into different cohorts. So, for each cohort, four time series (one for each

day) were generated by averaging all the daily data for all participants in that cohort.

The cohorts have been divided in a way that, in theory, different output responses

would be obtained, meaning that the interconnections between variables would be

different. In other words, the identified model structure, shape of response, and/or

parameters would be different for each cohort. With that in mind, the analyzed

cohort divisions were aggregation by age (one cohort for participants with age less

than the median, and another for participants with age higher than the median);

by gender (one cohort for male participants, and another for female participants);

and lastly, an aggregation by BMI category (one cohort for participants considered

Underweight/Normal, and another cohort for Overweight/Obese participants). The

median age for all participants was 39 years.
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So, summarizing the cohort division, the time series created in the data pre-

treatment phase were:

1. Four time series (one for each day) averaging all participants data (95 partici-

pants);

2. Four time series (one for each day) averaging participants with age less than

median data (46 participants);

3. Four time series (one for each day) averaging participants with age more than

median data (45 participants);

4. Four time series (one for each day) averaging male participants data (26 partici-

pants);

5. Four time series (one for each day) averaging female participants data (67

participants);

6. Four time series (one for each day) averaging underweight/normal participants

data (34 participants);

7. Four time series (one for each day) averaging overweight/obese participants data

(60 participants).

The total is 28 time series. All this analysis was made only for one of the input-

output relations. Considering there was two identification problems to be studied

(negative affect and self-efficacy; and self-efficacy and MVPA), the actual total number

of time series generated was 56.

Each of these time series was transformed into an iddata object, necessary for

being used in MATLAB’s System Identification Toolbox. These iddata objects

contain the input and output time series – in the first identification problem, these

were negative affect and self-efficacy, respectively; in the second problem, self-efficacy

and MVPA in the following 60 minutes after the EMA prompt, respectively.

31



A plot showing one of these time series for this study is shown below. Because of

the large number of different time series (depending on studied cohort and experiment

day), it is unfeasible showing all the possible plots here; Figure 5 shows a representative

time series - in this case, for the averaging of all participants in Day 1 (Saturday).
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Figure 5. Representative Time Series Used Prior to Identification - All Participants,
Day 1

Although Figure 5 does not explicit the dynamic relations between these constructs,

it is useful to allow some patterns to be visualized. The Figure indicates that the

averaged participant at this day presents two peaks of moderate-to-physical activity

throughout the day (one in the morning and one in the afternoon). Self-efficacy begins

at a higher level in the morning, but then decreases at the end of the day, while
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negative affect begins in a low level, increases in the middle of the day, and then returns

to a value closer to the initial level. Data for other cohorts and/or experiment days,

although being different in details, also show this pattern of decreasing self-efficacy,

peaks in MVPA, and rise-and-fall of negative affect.

2.5 ARX Modeling

With all the time series in hand, proper system identification was used to obtain

model structures. This was done using MATLAB’s System Identification Toolbox

through the ident command, which opens the system identification app. A repre-

sentative image of the toolbox being used for identification purposes can be seen in

Figure 6.

For this study, the chosen model structure to attempt data fitting were ARX

(AutoRegressive with eXternal inputs) models. This is a very common prediction

error model structure with many advantages from a theoretical point of view, such as

consistency. It is always straightforward to perform identification through this model

structure. Ljung (1999) recommends, for most identification problems, to initially

try ARX modeling as a standard approach to parameter estimation, and only if the

obtained models are not sufficiently good, trying other approaches.

ARX models represent the following structure:

y(t)+a1y(t−1)+· · ·+anay(t−na) = b1u(t−nk)+· · ·+bnb
u(t−nk−nb+1)+e(t) (2.1)

Equation 2.1 is for a single-input, single-output system; the structure is expanded

for multiple inputs and/or outputs, but that is not the case in this study. Here,
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Figure 6. Representative System Identification Toolbox App Window

y(t), u(t) and e(t) represent the outputs, inputs, and a white-noise term, respectively;

[a1, . . . , ana , b1, . . . , bnb
] are the parameters to be estimated, and na, nb, nk represent

the orders of the model. The number of inputs and outputs is determined by the

studied problem and included in the iddata objects that contains the measured time

series; the model’s order, on the other hand, is specified by the user prior to starting

the identification computations. For this reason, ARX models are always named in

conjunction to stating the model’s order (ARX [na nb nk]) – for example, ARX [4 4

1] is a model with structure following Equation 2.1 with na = 4, nb = 4, nk = 1, and

thus 8 parameters to estimate.

Since the user specifies the structure order to try to find the best fits, this method

is inherently interactive. If a certain order does not provide a good result (based

on the model validation criteria), another structure order can be chosen and the
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computations are repeated. The choice of structure order depends naturally on the

problem. Usually, ARX requires relatively high orders to generate a good model if

there is significant noise present (Ljung, 1999); on the other hand, there is the problem

of over parametrization – that is, deciding for a model order higher than what it is

needed to capture a good model. Usually, parsimonious models (that is, models with

the lowest amount of parameters necessary) are sought for, because they are easier

to interpret physically and to work on computationally. A good recommendation

made by (Ljung, 1999) for some cases is to start with an ARX [4 4 1], which, in most

situations, provide a good balance between model flexibility and over parametrization,

and then increase or decrease the order as necessary (Dunton et al., 2015)).

For experiments with enough data points are available so that estimation and

validation data can be used, the System Identification Toolbox app (used for the

modeling in this study), in MATLAB, offers an Order Selection feature for ARX

estimation. With this feature, the user defines a model order range for each parameter

(usually 1-10 for all parameters – this is input as na = [1 : 10], nb = [1 : 10], nk =

[1 : 10]), and then the software will exhaustively obtain all models in the range and

provide their goodness-of-fit for comparison (other model validation criteria, such as

step response, are not as readily available, but the user can reproduce any model

structure for individual inspection).

Because of the limited amount of data points, however, it was impossible to identify

ARX model orders higher than ARX [4 4 1] due to software limitations based on the

amount of data points. For this reason, the Order Selection features was performed

by ranging na = [1 : 4], nb = [1 : 4]. For the sake of model simplicity, no time delay

was considered, so nk was left at a constant value of 1.

For this study, that was the procedure used to obtain dynamic models. For each
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of the 56 iddata objects generated in the data processing step, a good ARX model

was searched using the Order Selection feature, as well as individual investigation

of generated models in most cases.

In the System Identification Toolbox app, when a polynomial model (such as

ARX) structure is decided upon for identification, the user has an option to decide the

focus of identification procedure: prediction, simulation, stability, or a user-defined

filter. This identification option is related to how the loss function is minimized

(Equations 1.4 and 1.5) (MathWorks, 2016a). Usually the prediction focus is used as

a system obtained this way provides a better indicator of the predictive capacity of the

model; for this study, however, prediction focus generated unstable models (possibly

due to the small amount of data points in each time series). For this reason, stability

focus was opted for, which enforces an additional constraint - that the identified model

must be stable - in the computing process.

2.6 Model Validation

After an ARX model was generated, it needed to be validated. Model validation

was done in the following ways. Firstly, scalar goodness of fit (as described earlier,

defined by Equation 1.14) was used to compare models, but not great emphasis on

this validation method was given. Goodness of fit might not be a perfect indicator of

model quality if the data collection was not designed with system identification in

mind, following the steps of good experiment design. Also, the small amount of data

points for each experiment day hinders the model quality.

The focus given was, instead, to the step response. The models that best describe

the dynamical system were based on the works of Dunton et al. (2015), that is,
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following similar shape of response; underdamped with negative gain for the negative

affect to self-efficacy problem, and overdamped with positive gain for the self-efficacy

to MVPA60 problem.

Models with step response that deviated from these responses were discarded, as

well as models with unreasonable or impossible responses (like those with extremely

high settling time which does not make sense in a real world behavioral scenario).

By splitting all the time series into each of the four days the experiment took, it

was decided to use the data for half the days for model estimation, and the other half

for model validation. With the four experiment days, there are six possible pairs of

estimation data; these are [1,2], [1,3], [1,4], [2,3], [2,4], and [3,4], with the opposite

pair used for validation. However, only four of these pairs combine a weekday and

a weekend-day ([1,3], [1,4], [2,3], [2,4]). Each model was generated and analyzed for

each of these four pair combinations, to avoid the possibility of behavioral differences

occurring from a weekend and a week-day interfering in the models.

Another way of validating model that was evaluated was considering all days for

estimation and all days for validation. In this way, all the generated iddata objects

contained the four days (as four different experiments), and participant data was

split in two; one half for estimation and the other for validation. However, for most

cases this resulted in worse models (either from a goodness-of-fit or from a system’s

response perspective), with the exception of the iddata created by all participants

(no cohorts). This might be because, when splitting participants in cohorts, each

cohort has naturally fewer number of participants. Upon further splitting into half

participants for estimation and half for validation, the number of participants decrease

too much for each iddata object and that compromises the quality of the model.
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2.7 Results and Discussion

Important information about all the estimated models is summarized in

Tables 2 and 3, which details the identified ARX order, which days were used for

estimation and which for validation, and the models’ goodness of fit %, for each of the

cohorts. Table 2 contains information about the first identification problem (negative

affect as input, self-efficacy as output), while Table 3, about the second (self-efficacy

as input, MVPA as output). Estimated parameters for the identified ARX models are

presented in Appendix A.
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Table 2. ARX Structure, Estimation-Validation Sets, and Goodness-of-Fit for all
Cohorts for First Identification Problem (NA as Input, SE as Output)

Cohort ARX Structure Days Used for Days Used for Goodness-of-Fit
Estimation Validation

All Participants ARX [2 5 1] 1, 2, 1, 2, 49.03% (day 1),
3, and 4* 3, and 4* 27.99% (day 2),

72.43% (day 3),
51.87% (day 4)

Age
Age < Median ARX [4 2 1] 2 and 3 1 and 4 54.01% (day 1),

13.12% (day 4)
Age > Median ARX [4 3 1] 1 and 4 2 and 3 30.06% (day 2),

30.46% (day 3)
Gender
Female ARX [4 1 1] 2 and 3 1 and 4 60.88% (day 1),

48.11% (day 4)
Male ARX [3 3 1] 1 and 4 2 and 3 16.17% (day 2),

11.59% (day 3)
BMI Category
Underweight / Normal ARX [3 1 1] 2 and 3 1 and 4 52.64% (day 1),

39.05% (day 4)
Overweight / Obese ARX [3 3 1] 1 and 3 2 and 4 31.71% (day 2),

18.33% (day 4)

*Half participants used for estimation, half participants used for validation.

Each of the identified models’ step responses are discussed below, as well as

comparatives against model obtained within a same data aggregation category (division

by age, by gender, and by BMI category, respectively). Step response analysis is

one of the most ubiquitous ways of analyzing a dynamical model. It shows how a

permanent (considering the problem’s time scale) unitary increase in one input will

affect the outputs. Many classes of dynamic systems are well categorized and studied

based on the system’s step response (Ogunnaike and Ray, 1994).

Being discrete-time ARX models, these will all follow the model structure:

A(q)y(t) = B(q)u(t− nk) + e(t) (2.2)
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Table 3. ARX Structure, Estimation-Validation Sets, and Goodness-of-Fit for all
Cohorts for Second Identification Problem (SE as Input, MVPA as Output)

Cohort ARX Structure Days Used for Days Used for Goodness-of-Fit
Estimation Validation

All Participants ARX [3 3 1] 1 and 3 2 and 4 62.35% (day 2),
27.99% (day 4),

Age
Age < Median ARX [3 1 1] 1 and 3 2 and 4 61.68% (day 2),

12.18% (day 4)
Age > Median ARX [2 2 1] 1 and 3 2 and 4 26.58% (day 1),

30.40% (day 3)
Gender
Female ARX [4 2 1] 2 and 4 1 and 3 33.98% (day 1),

37.79% (day 4)
Male ARX [4 3 1] 2 and 4 1 and 3 24.24% (day 1),

32.51% (day 3)
BMI Category
Underweight / Normal ARX [4 1 1] 2 and 3 1 and 4 50.86% (day 1),

63.94% (day 4)
Overweight / Obese ARX [3 4 1] 2 and 4 1 and 3 67.03% (day 2),

41.89% (day 4)

As defined by Equation 1.9, with the polynomials C(q) = D(q) = F (q) = 1

(defining characteristic of ARX model).

2.7.1 All Participants - General Considerations

The two Figures below show the system – identified using averaged data from all

participants – step responses; Figure 7 show how a unit increase in negative affect

will change self-efficacy; while Figure 8 demonstrates the effect that a unit increase in

self-efficacy will have on the MVPA.
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Figure 7. Step Response from NA to SE for All Participants
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Figure 8. Step Response from SE to MVPA for All Participants

Figure 7 shows that, upon increasing the negative affect, self-efficacy will have a

drastic reduction, which then oscillates back and forth – alternatively increasing and

decreasing the self-efficacy value over time – until it settles down. After reaching its

settling time, the output’s final stationary value will be lower than the original value,

which means that the increase of negative affect will ultimately provoke a decrease in
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self-efficacy levels. This is naturally to be expected – when a participant gets increased

levels of displeasure (i.e. negative affect), his or her confidence in performing physical

activity goes down. This is also the same shape of response reported by Dunton et al.

(2015).

The second identification problem – self-efficacy as the input with intended behavior

(MVPA) as output – is starkly different. As seen in Figure 8, a step increase in the

input causes the output to smoothly increase, settling in a stationary level that is

higher than the initial amount. Once again, that is easy to grasp – the more capable

a participant thinks he or she is of performing the behavior, the more that participant

will actually perform the behavior after the EMA prompt. Based on these responses,

the transfer function between negative affect and self-efficacy has negative gain, while

the transfer function between self-efficacy and MVPA is characterized by a positive

gain.

Both systems also represent an open-loop stable system, which is defined by a

bounded input – bounded output. In other words, a finite change in the input will

lead to a response which settles in a stationary final value (Ogunnaike and Ray, 1994).

From a control systems engineering point of view, the step responses seen in

Figures 7 and 8 represent well-known dynamic system types, or at least systems

with similar characteristic in terms of shape of response. The oscillatory pattern of

the first identification problem (negative affect to self-efficacy) is a characteristic of

an underdamped system, while the smooth consistent response seen on the second

identification problem (self-efficacy to MVPA) probably characterizes and overdamped

system. One of the easiest ways of mathematically understanding these concepts is

by analyzing a second order system, which has the following transfer function (in

continuous-time):
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y(s)

u(s)
=

K

τ 2s2 + 2ζτs+ 1
(2.3)

Where ζ denotes the damping coefficient (Ogunnaike and Ray, 1994). If ζ is less

than 1, the system has imaginary poles and its response is underdamped, oscillatory;

on the other hand, if it is greater than 1, the system has real valued poles, and the

response will be overdamped. K, the steady-state process gain, denotes whether an

increase in the input will ultimately lead to an increase or a decrease in the output.

The presence of underdamped response in the first dynamic pairing may suggest an

inefficient self-regulation, such as is the case of many underdamped physical systems

(Dunton et al., 2015)). In other words, the effects of altering negative affect on a

participant are not consistent, at least not initially – self-efficacy levels will decrease

and then increase, and then decrease again, in an oscillatory pattern, until a certain

settling time is reached.

The overdamped response seen in Figure 8, on the other hand, is characteristic of a

system that show well-tuned regulation – as in, MVPA levels will increase or decrease

consistently, in a predictable fashion, following an associated increase or decrease in

self-efficacy, respectively. This result is in accordance to previous modeling studies of

these variable pairings, even those using non-dynamic modeling (Dunton et al., 2015).

When analyzing goodness-of-fit (in Tables 2 and 3), it can be noticed that, com-

paratively to the models obtained through cohort aggregation, these two models –

based on data originated from all participants – have relatively high fit percentages.

One possible reason for this is that, since the input and output data are averaged over

a higher number of participants, random variability in the data is reduced and the

model becomes better predictive.

One problem obtained with the identified model was the presence of wide confidence
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intervals, meaning that estimated parameters’ variance is too high. A representative

example of one of the identified model’s step response (from SE to MVPA for all

participants), including 95% confidence intervals, is shown below in Figure 9.
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Figure 9. Step Response from SE to MVPA for All Participants Including 95%
Confidence Intervals

The models obtained for cohorts other than the average of all participants (shown

below) did not contain confidence intervals.

In the sections below, similar analysis will be performed for the responses of the

system identified using participant data aggregated in cohorts. The overall shape of

response is similar for most of the systems, though – negative affect to self-efficacy

systems display negative gain, underdamped responses, while self-efficacy to MVPA

function display overdamped responses with positive gains. Specific parametric values

– such as the gain value, settling time, period of oscillation, or time constants - differ

from one model to another, though.
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2.7.2 Age Aggregation

Figures 10 and 11 show a comparison of the step-responses for both input-output

pairing, comparing the responses for participants below and above the median age.
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Figure 10. Step Response from NA to SE for Participants with Age Less than Median
(Blue, Solid) and Age Higher than Median (Red, Dash-Dotted)
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Figure 11. Step Response from SE to MVPA for Participants with Age Less than
Median (Blue, Solid) and Age Higher than Median (Red, Dash-Dotted)

As noted before, the general shapes of response follow – oscillatory with negative

gain for the negative affect and self-efficacy problem, and smooth consistent positive

gain for the self-efficacy and MVPA problem. For the second identification problem, the

systems identified with participants with age less than the median also demonstrated

overshoot – that is, the response reaches levels higher than the final stationary value

and then decreases to it’s steady-state level. In a dynamic systems perspective,

overshoot is represented by the presence of a positive zero in the system (that is,

numerator dynamics in the transfer function) (Ogunnaike and Ray, 1994).

For both identification problems, participants with higher age showed greater

stationary gain – as in, after the input changes, both outputs would get greater

alterations when compared to younger participants. In a behavioral sense, this would

suggest that changes in behavioral constructs have a bigger impact in the participant’s

dynamics for older participants, as in, they are more responsive to changes in behavioral

constructs (both positive and negative).
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However, it is important to note that the goodness-of-fit (seen in Tables 2 and 3

were not particularly high for this cohort aggregation. This might be because the

cohort division was based on the median age (that was 39 years old), which was

an arbitrary choice to split the participants. This cut point might not be a good

representative division point of different behavioral dynamics.

2.7.3 Gender Aggregation

Separating participants based on gender, the step responses can be seen in

Figures 12 and 13.
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Figure 12. Step Response from NA to SE for Male (Blue, Solid) and Female (Red,
Dash-Dotted) Participants
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Figure 13. Step Response from SE to MVPA for Male (Blue, Solid) and Female (Red,
Dash-Dotted) Participants

When comparing the responses, the Figures 12 and 13 suggest that, for the first

system, female participants show higher gains and slower responses than those of the

male participants. This might suggest that female participants are more influenced by

negative affect changes, but that the responses take longer to reach their final value.

The female cohort self-efficacy response for negative affect change (Figure 12) also

shows more oscillations than the male participants’, which might indicate less efficient

self-regulation.

On the other hand, for the second system, the situation is inverted; male partic-

ipants’ stationary gain is shown to be higher. The implications of that is that, for

female participants, self-efficacy does not play as strong a part in their ability to

perform physical activity as vital as it does for male participants.

It is worth noticing, though, that the male participants’ dynamic systems displayed

poorer goodness-of-fit when compared to the female participants. The most probable

reason for this is the lower number of male participants. In system identification, as
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in any statistical analysis, better modeling is obtained when a larger number of data

points is collected. Having way fewer participants, the quality of the male cohort

modeling is naturally compromised.

2.7.4 BMI Category Aggregation

The results of the last of the cohort division, separation by BMI Category (Un-

derweight/Normal compared against Overweight/Obese participants), can be seen in

Figures 14 and 15 for the two identification problems.
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Figure 14. Step Response from NA to SE for Underweight / Normal Participants
(Blue, Solid) and Overweight / Obese Participants (Red, Dash-Dotted)
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Figure 15. Step Response from NA to SE for Underweight / Normal Participants
(Blue, Solid) and Overweight / Obese Participants (Red, Dash-Dotted)

For this aggregation, both cohorts showed reasonably good fit %, as can be seen

in Tables 2 and 3.

These system responses suggest that, for the negative affect to self-efficacy dynamics,

participants categorized as overweight or obese show higher gain, and higher settling

time, than for those categorized as underweight or normal. This suggests that changes

in negative affect have a bigger impact on overweight / obese participants, for these

have worse self-regulation in terms of self-efficacy response.

On the other hand, for the other problem (self-efficacy to MVPA), comparatively

similar gains were obtained for both cohorts. This suggests that an increase in

Self-Efficacy affects participants from all BMI Categorys in a similar fashion.

Best goodness-of-fit were obtained when comparing participants with this cohort

division. This suggest that BMI Category might play a more influential role in

determining a participant’s behavioral dynamics than age or gender, and that is better

to compare different participants based on this characteristic.
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2.8 Control Systems Perspectives

These dynamic responses obtained from system identification techniques indicate

self-regulatory behavioral processes. The ideas of behavioral self-regulation suggested

by Carver and Scheier (2002, 1998) present similar system dynamics as that of an

engineering system with a controller, suggesting that the open-loop diagrams showed

in Figures 3 and 4 might be incomplete. A closed-loop version of Figure 4, including

self-regulation, might be better represented as in Figure 16.

Figure 16. Closed-Loop Behavioral Dynamics

According to this theory, the dynamics between negative affect, self-efficacy, and

behavior are self-regulatory. This means that, when a change in an input happens, the

behavioral self-regulation processes will compare the new input to a reference value

and adjust the output accordingly. When the self-regulation (e.g., control system)

is poorly tuned or inefficient, the output oscillates for a short time, until the period

of oscillation decreases and a stationary value is reached – such is the case when

negative affect is the input and self-efficacy is the output. On the other hand, when

the self-regulation process is well tuned, a change in input will provoke a consistent,

smooth change in the output – such is the case when self-efficacy is the input and

MVPA is the output. A diagram representing this self-regulation scheme is seen in

Figure 17 (Carver and Scheier, 1998):
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Figure 17. Behavioral Self-Regulatory Process

Where NA stands for negative affect, SE for self-efficacy, and the behavior in

question is moderate-to-vigorous physical activity.

As mentioned before, this self-regulatory behavioral system can be represented

in terms of a fluid analogy, making a parallel with a well-known physical dynamic

system. With this analogy, the behavioral self-regulatory dynamics described here

would be represented by Figure 18 (Dunton et al., 2015)).

52



Controller /    
Self-

Regulator

LT

Output y(t)

Input u(t)
(e.g., negative affect, self-efficacy)

(e.g, self-
efficacy, MVPA)

Valve

ResistancePipe

LT Level transmitter

Pump

Figure 18. Fluid Analogy for Behavioral Self-Regulation
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Chapter 3

SEMI-PHYSICAL MODELING OF BEHAVIORAL SYSTEM IN SINGLE-BOUT

PHYSICAL ACTIVITY

3.1 Overview

In this second study, semi-physical modeling was used to identify and characterize

a dynamic system relating how physical activity influences behavioral constructs and

states after a bout of exercise is completed. Unlike the previous case study, this time

the intensity of physical exercise is used as the driving force for the process - similar

to a single bout of behavioral intervention.

The experiment was performed at UT Austin at the Environmental and Autonomic

Physiology Lab. Data from a total of 45 participants was collected and used for system

identification. Each participant realized a single bout of physical activity with varying

levels of intensity during the process, for a total duration of 42 minutes average

(with standard deviation of 2.2 minutes). During certain time intervals, spread

throughout the activity, participants would respond to questions about behavioral

states, generating time series for these constructs; these are dubbed the infrequent

measures (when compared to the time scale of the other time series). For this

experiment, the constructs measured were:

• The stage of physical activity (hereby called only Stage), that is, the exercise

intensity. For this experiment, Stage assumed discrete values of 0 (sitting/resting),

2.5, 3.5, and 5.5, with the numbers representing the pace (mph) of walking.
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• Heart rate (HR) measurement, collected each 30 seconds through a heart rate

monitoring device (polar).

• Respiratory exchange ratio (RER) collected almost continuously when compared

to the time scale of the experiment (averaged sampling time of 0.25 minute).

• Rating of perceived exertion (RPE), a behavioral construct indicating the

participant’s perception of his or her exertion caused by the activity. Was measured

based on the Borg exertion scale, which vary from 6 (no exertion at all) to 20 (maximum

exertion) (Borg, 1982). RPE was one of the more infrequent measures.

• Felt Arousal Scale (FAS), varying from 1 (low energy) to 6 (highly energized),

which was also one of the infrequent time series.

• Feeling Scale (FS), varying from -5 (very bad) to +5 (very good), with 0 meaning

neutral. Also one of the infrequent measures.

FAS and FS were measured and analysed under the circumplex dimensional model

of affect, which considers that these two constructs combine to determine the person’s

basic affect state (Russel, 1978, 1980).

As well as these time series, each participant was asked to report a feeling of

Pride after the exercise ("I finished with a sense of pride") on a scale ranging from 1

(Strongly Disagree) to 5 (Strongly Agree). Unlike the other measurements, Pride was

not generated as a time series, instead used as a single scalar value.

The main purpose of this study was to analyse the dynamic interactions between

these behavioral constructs, as well as the sensation of pride, resulting from this single

bout of exercise for the participants. This analysis was performed with semi-physical

identification, that is, an internal model structure was assumed, and parameter

estimation followed from that theoretical model knowledge. In this case, Stage was

considered to be (at first) the only exogenous input, ultimately driving all the other
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behavioral signals, since the intensity of physical exercise was directly manipulated

by the researchers. All the other signals were treated as outputs, although internal

inter-relations between these were taken into account, since grey-box modeling allow

for identification of complex sets of equations.

Based on the ideas of Ekkekakis (2003) and discussions with the investigators who

collected the data, the following path diagram was initially proposed to serve as the

basis of the identification study.

Figure 19. Initially Proposed Path Diagram for Single Exercise Bout

The diagram in Figure 19 was used as a first attempt for obtaining a mathematical

model, but it does not necessarily represent the true system. Some representatives

results using that diagram will be shown later. After further investigations and

discussions, an alternative path diagram was used.
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Figure 20. Proposed Path Diagram for Single Exercise Bout

This new diagram (in Figure 20 was used as the basis of the internal model needed

for the grey-box routines. The direct interconnection between FAS and FS was

removed to account for the bidimensional circumplex model of emotion. In this model,

emotional state can be represented as a point in a two-dimensional circular space,

with arousal (measured by FAS) being the vertical axis, and valence (measured by

FS) being the horizontal axis (Ekkekakis, 2003; Russel, 1978, 1980). Because this

model states that these constructs are independent of each other, the aforementioned

variable relationship (FAS to FS) was removed in the updated diagram.

Also, the second path diagram (Figure 20) does not have a RER construct. It was

speculated that RER and HR might have similar roles in influencing the behavioral

variables; so, for the sake of model simplicity and parsimony, that construct was

removed.
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3.2 Data Analysis and Pre-Treatment

All participant data was organized in time series form containing the construct

measurements (Stage, HR, RER, FAS, RPE, and FS), using the iddata command in

MATLAB. For identification purposes, it is important that all the time series contain

the same number of measurements and sampling time; however, the experimental

data comprised of some frequently-measured signals (the behavioral and physiological

constructs variables - Stage, HR and RER) and some signals with very few measure-

ments in comparison (the psychological constructs measurement - FAS, RPE and FS).

For this reason, the first treatment done to the data before identification was carried

out was bringing all the time series to the same scale and number of data points.

Thus, the infrequent measurements (psychological signals) were linearly interpo-

lated in order to bring these time series to the same scale as the frequent measurements.

For each participant, however, psychological variable signals formed non-smooth time

series with probable aliasing problems (as in, the time series values between the original

data points might not be the best description of the actual pattern of the signal),

and probably aliasing problems were present in the signal. This can be illustrated in

Figure 21 below, which show the input-output time series (after linear interpolation)

for a representative participant (Participant 2, who finished with a Sense of Pride

equal to 3).
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Figure 21. Time Series for Representative Participant after Linear Interpolation

To avoid these problems and obtain meaningful data signals, it was decided to

average the data by splitting the participants into cohorts. Since one of the purposes

of this study is to analyse the feeling of Pride after the exercise for each participant,

this scalar measure was used to distinguish the three cohorts: those with reported

pride equal to or lower than 3 (16 participants), those with pride equal to 4 (16

participants), and those who reported pride equal to 5 (10 participants). In each

of these cohorts, all participant data was averaged so that the signals were more

representative of an actual dynamic for these psychological constructs.

Some participants have more data points than others; in order to average properly

and allow for easier identification, all participant’s time series were clamped to a single

final value (chosen to be 40 minutes); otherwise, after this time point, the averaging

59



become less efficient due to the lower number of participants, and thus the signals

present non-smooth shapes after that point in time.

Finally, some of the output signals presented an initial slope before the input had

any change (before the experiment actually begins), which was considered a side effect

of the data averaging. These initial slopes were turned into stationary lines, such as

seen in Figure 22. This brought the signal to a baseline level where changes would

only occur after the input was excited, making for a better representation of the actual

system’s dynamics.
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Figure 22. FAS Signal for Third Cohort Before (Left) and After (Right)
Pre-Treatment

After all these steps, the experimental time series data for the three cohorts, as

well as a plot showing the signals averaged over all participants for comparison, are

shown below.
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Figure 23. Time Series for Participants with Reported Pride ≤ 3
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Figure 24. Time Series for Participants with Reported Pride = 4
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Figure 25. Time Series for Participants with Reported Pride = 5
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Figure 26. Time Series for All Participants

Figures 23 to 26 show the input-output signals used in the identification, that is,

time series for Stage, HR, FAS, RPE, and FS after all the pre-treatment described

previously. Besides the original input (Stage), there is also an exogenous input added

in the system, shown in these Figures, called "Experiment Begins". The plots show
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that RPE signal starts to increase before Stage increase, meaning RPE increases even

before any actual physical activity is performed. For that reason, it was speculated

that another input would be responsible for this early change in RPE. That is the

reason for the addition of the exogenous signal "Experiment Begins", included as

a unit step input - with a value changing from 0 to 1 - to represent and try to

model the psychological effects that the mere knowledge of the experiment has on

the behavioral variables, even before the participant starts doing physical activity.

The knowledge that the experiment will begin might produce an anticipatory stress

response that induces cardiovascular changes (Everson et al., 1996). During the model

validation phases, the addition of this new exogenous input actually improved models

goodness-of-fit.

The revised path diagram that takes this new input in consideration is seen below.
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Figure 27. Revised Path Diagram with Addition of "Experiment Begins" Exogenous
Input

Some general comments regarding the raw data plots (Figures 23 to 26) follow.

Firstly, it is a common trend in all of the time series that most signals follow similar

patterns as the Stage signal - that is, they increase and decrease in a similar fashion as

the main input does. This indicates a direct dynamic relation between these constructs

and the intensity of physical activity, as described in the model. The only construct

which does not seem to follow the input as closely is FS. This might indicate more

complex dynamics surrounding that behavioral construct.

For participants with lower self-reported feeling of pride after the exercise

(Figure 23), the FS signal rapidly decreases to 0 after the activity ends (Stage signal

returns to 0). In contrast, the FS signal for the other cohorts (higher sense of pride), as
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well as the same signal for the plot with all participants, have a very small inclination

at the end, which mean that these participants have a better ability to maintain their

FS level after the activity ends. Figure 24 show a small positive inclination for the FS

function, while Figures 25 and 26 show a small negative inclination. This difference

between the second cohort (participants with reported pride equal to 4) and the

third (reported pride equal to 5) might be due to errors due to interpolation issues;

however, both cohorts show a better ability to maintain their FS after the exercise.

This suggests a direct relation between the feeling of pride and the FS measurement,

meaning that those with higher sense of pride are able to maintain their increased

feeling affect for longer periods after the activity is done.

It is also worth mentioning that the actual magnitudes of the FS signal are different

for each cohorts, with a direct relation to the reported feeling of pride. The first cohort

show maximum FS values around approximately 0.8 on the scale; the second cohort,

1; and the third cohort, 1.5 (remembering that these are deviation variables, meaning

that these numbers are in relation to the initial FS value prior to the activity).

Lastly, one interesting aspect to notice is how the signals for all participants in

Figure 26 look "smoother" than the others. This is because that plot shows the data

for the averaged signals of all participants, which thus naturally presents a better

averaging than the other plots (which show the signal for each cohort).

3.3 Fluid Analogy and Mathematical Representation

From the path diagram obtained in Section 3.2 (Figure 27), a fluid analogy, as

described in Section 1.6, was derived in order to obtain a mathematical description of

the system in terms of differential equations.
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Figure 28. Fluid Analogy for the Proposed Behavioral Diagram Path

In Figure 28, ui and yi represent the levels of the input and output signals,

respectively, as denoted in Table 4. The other notations remain similar to those used

in Figure 2 - γij for inflow resistances, βij for outflow resistances, θi for time delays,

and ζi for a zero-mean stochastic signal. Although not explicitly represented in the

inventory-tank depiction above, another property of the system is τi, the time constant

associated with inventory i, which influences the speed in which the inventory’s level

increases or decreases.
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Table 4. Notation for Input and Output Signals in Fluid Analogy for Studied
Behavioral System

Notation Signal
u1 Stage
u2 "Experiment Begins"
y1 HR
y2 RPE
y3 FAS
y4 FS

From this fluid analogy, material balances (Equation 1.12) were performed for each

inventory. For the sake of modelling simplicity, time delays and the stochastic signals

are considered to be zero (θi = ζi = 0 ∀i ∈ [1, 2, 3, 4]). With these simplifications, the

set of differential equations obtained is:

τ1
dy1

dt
+ y1(t) = γ11u1(t) (3.1)

τ2
dy2

dt
+ y2(t) = γ22u2(t) + β21y1(t) (3.2)

τ3
dy3

dt
+ y3(t) = β32y2(t) (3.3)

τ4
dy4

dt
+ y4(t) = β42y2(t) (3.4)

In Equations 3.1 to 3.4, ui and yi are the input and output signals (as denoted in

Table 4) obtained through the experimental data. The parameters that need to be

identified - the core goal of this semi-physical identification procedure - are γij, βij,

and τi.

It is worth noting that system identification, particularly semi-physical modeling,

is an iterative procedure. Even though Equations 3.1 to 3.4 were obtained through a
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mathematical transcription of the behavioral path diagram, modifications to these

equations (e.g., making some of the equations second order, or adding a zero) were

done in order to pursue higher validation fits. Upon many re-iterations of the equations

in order to pursue best goodness-of-fits and/or shape of responses, the system of

equations that was found to best described the model (once again, considering time

delays and stochastic signals as 0 for the sake of simplicity) was:

τ1
dy1

dt
+ y1(t) = γ11

(
u1(t) + α11

du1

dt

)
(3.5)

τ2
dy2

dt
+ y2(t) = γ22u2(t) + β21

(
y1(t) + α21

dy1

dt

)
(3.6)

τ3
dy3

dt
+ y3(t) = β32y2(t) (3.7)

τ4
2d

2y4

dt2
+ 2ζ4τ4

dy4

dt
+ y4(t) = β42

(
y2(t) + α42

dy2

dt

)
(3.8)

The main differences to the first attempt (Equations 3.1 to 3.4) were the addition

of the input derivatives (on the right-side of the equations) for y1, y2 and y4 equations

(the terms associated with α11, α21, and α42, respectively) and turning Equation 3.4

into a second-order differential equation (Equation 3.8). The αij terms are called the

zeros of the systems, while ζ4 is the damping coefficient, which governs the oscillation

or smoothness of the second-order system (Ogunnaike and Ray, 1994). The addition

of zeros allow for easier tuning of the parameters, which provides greater flexibility

when adjusting parameters in order to pursue improved quality models.

From the fluid analogy, a second-order system represents a self-regulatory process

(Martín Moreno, 2016), such as seen in Figure 18. The lead-lag systems (first-order
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equations with input derivative) can be thought of as second order systems with a

zero that dominates over one of the poles.

3.4 Grey-Box Modeling

Many different software exist that are capable of performing grey-box identification

(Bohlin, 2006; Palmkvist, 2014; Sorlie, 1996). In this thesis, MATLAB’s System

Identification Toolbox was used. This MATLAB toolbox provides two commands

necessary for the identification: idgrey (MathWorks, 2016c), which is used to generate

a specific object type to be used by the estimation computations, and greyest

(MathWorks, 2016b), which is the model identification per se. A summarized way

to explain these codes is stating that the former command creates the template

of the differential equations that define the system, stating which parameters are

ready to be identified (free) and which are already pre-determined (fixed), while the

latter command performs the parametric estimation. Important to note is that these

commands are for linear systems identification; nonlinear systems must be identified

with more advanced programming.

The idgrey command requires the user to specify the system’s differential equations

in state-space representation. State-space is a way of representing a system of

differential equations in a compact form using matrices for states, inputs, outputs,

and parameters. For linear time-invariant systems, considering deviation variables

(initial, baseline values equal to 0) the representation is:

f = ẋ = Ax+Bu+Kd

g = y = Cx+Du+ d

(3.9)
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Where f and g are vector-valued functions, x is a vector of state variables, u is the

input vector, d is the disturbance vector, and y is the output vector. State variables

are related to accumulation terms in non-stationary differential equations, and must

be defined based on the equations. The state vector relates to, but is not necessarily

equal to, the number of delayed inputs and outputs in the system (Rowell, 2002;

Rivera, 2004).

The state-space representation is inserted into MATLAB coding by the creation of

a function that relates the matrices A, B, C and D (and K and initial state vector

x0, if needed) to the system parameters that compose them. This function is used

with the idgrey command, as well as the actual list of parameters and their possible

ranges and constraints, to create the initial setup of the model - which is an idgrey

data object. This also includes a list of initial values for the parameters, provided by

the user, which can also interfere in the way the programming takes place.

Lastly, the greyest command takes the idgrey object and the set of input-output

data to perform the estimation. The result is a set of parameters that makes up the

state-space matrices for the dynamic system and the simulated output response for

the provided experimental input based on the identified model.

The first step in using this toolbox was to, as mentioned, write the system’s

equations in state-space form - that is, applying Equations 3.9 to Equations 3.5 to 3.8.

The state-space matrices A, B, C, and D are defined in terms of the states, inputs,

and outputs vectors by the following relations (Rivera, 2004; Rowell, 2002):

A = ∇xf̄ B = ∇uf̄

C = ∇xḡ D = ∇uḡ

(3.10)

Where
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∇zf̄ =


∂f1
∂z1
|x̄,ū · · · ∂f1

∂zn
|x̄,ū

... . . . ...
∂fnf

∂z1
|x̄,ū · · ·

∂fnf

∂zn
|x̄,ū

 ∇zḡ =


∂g1
∂z1
|x̄,ū · · · ∂g1

∂zn
|x̄,ū

... . . . ...
∂gng

∂z1
|x̄,ū · · · ∂gng

∂zn
|x̄,ū

 (3.11)

Remembering that f = dx
dt

and g = y. In this notation, z can be either x or u (for

the sake of simplicity, disturbances and manipulated inputs can be included in the

same vector u); n = dim(z), nf = dim(f), and ng = dim(g). Also, for the simple case

of all differential equations being first order, the state vector and output vector are

the same (x = y).

When a system has zeros (such as the case of Equation 3.5), determining the state

vector is not as apparent as the regular case of systems without zeros. The procedure

involves defining the states in order to find one equation for the derivative of each

state ẋi relating these to each state xi (vector f) and each input ui, and one equation

for each output yi (vector g) again relating these to each state and each input. For

the studied case, the states were defined as follow:

x1 = y1 −
α11γ11

τ1

u1

x2 = y2 −
α21β21

τ2

y1

x3 = y3

x4 = y4

x5 =
dy4

dt
− α42β42

τ4
2
y2

(3.12)

Applying these concepts to Equations 3.5 to 3.8 results in:
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A =



a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a33 0 0

a41 a42 0 0 a45

a51 a52 0 a54 a55


B =



b11 0

b21 b22

b31 0

b41 0

b51 0



C =



c11 0 0 0 0

c21 c22 0 0 0

0 0 c33 0 0

0 0 0 c44 0


D =



d11 0

d21 0

0 0

0 0



(3.13)

With

a11 =
−1

τ1

a21 =

(
β21

τ2

)(
1− α21

τ2

)
a22 =

−1

τ2

a31 =
β32β21α21

τ3τ2

a32 =
β32

τ3

a33 =
−1

τ3

a41 =
β42α42β21α21

τ4
2τ2

a42 =
β42α42

τ4
2

a45 = 1 a51 =

(
β42β21α21

τ4
2τ2

)(
1− 2ζ4α42

τ4

)
a52 =

(
β42

τ4
2

)(
1− 2ζ4α42

τ4

)
a54 =

−1

τ4
2

a55 =
−2ζ4

τ4

(3.14)

b11 =

(
γ11

τ1

)(
1− α21

τ2

)
b21 =

(
β42γ11α11

τ2τ1

)(
1− α21

τ2

)
b22 =

γ22

τ2

b31 =
β32β21α21γ11α11

τ3τ2τ1

b41 =
β42α42β21α21γ11α11

τ4
2τ2τ1

b51 =

(
β42β21α21γ11α11

τ4
2τ2

)(
1− 2ζ4α42

τ4

) (3.15)

c11 = 1 c21 =
β21α21

τ2

c22 = 1 c33 = 1 c44 = 1 (3.16)
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d11 =
γ11α11

τ1

d21 =
β21α21γ11α11

τ2τ1

(3.17)

This state-space system was used to investigate the models generated by grey-box

identification. However, because of the final values for FS signals for the cohorts with

pride equal to 4 and 5 having very small inclination, these cohorts were eventually

modeled as an integrator system. Doing this allowed for better model qualities to be

obtained. This was done by using the same equations, but with Equation 3.8 changed

to:

τ4
2d

2y4

dt2
+ 2ζ4τ4

dy4

dt
= β42y2(t) + α42

dy2

dt
(3.18)

With state-space representation being the same, except for one element: in the

matrix A, the element a54 is 0 (instead of −1
τ42

).

Lastly, parameters ranges were also defined prior to the estimation procedure.

Due to the nature of these parameters, all the time constants (τi) and the damping

coefficient ζ4 were forced to be greater than 0, and the gain between "Experiment

Begins" and RPE (γ22) was also forced to be positive - since this parameter represents

the initial increase in RPE signal prior to the Stage input being excited, and in the

absence of a zero for the u2(t) signal, this gain must be positive - while all the other

parameters could have any value. Also, due to the lack of "physical" knowledge of the

system, no parameter was fixed - all were free for estimation.

Finally, the fluid analogy imposes one last restriction. From a material balance

perspective, it follows that the sum of any given inventory’s outflows cannot be higher

than the level of that same inventory. For an arbitrary inventory j, the outflows are

βij, and thus:
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N∑
i=1

βijyj(t) ≤ yj(t) =⇒
N∑
i=1

βij ≤ 1 (3.19)

For the studied case, Equation 3.19 implies

β21 ≤ 1

β32 + β42 ≤ 1

(3.20)

must be satisfied. After parametric estimation, the relations in Equation 3.20 were

investigated, no matter the goodness-of-fit and shape of response.

With these matrices and the set of parameters par = [τ1, τ2, τ3, τ4, ζ4, γ11, γ22,

β21, β32, β42,α11,α21,α42], and their ranges, the MATLAB grey-box routines performed

the identification.

All the procedures of depicting the system with a fluid analogy, writing the

differential equations, and then performing grey estimation in MATLAB were also

done to all the path diagrams investigated, even though this whole process is only

deailed for the "current" diagram used (Figure 27).

3.5 Results and Discussion

The results of the simulation for the best models obtained - considering the path

diagram in Figure 27 and the system described by the state-space representation in

Equation 3.13 - are shown and discussed below. Some representative simulations for

the initial path diagram (Figure 19) and system of equations (Equations 3.1 to 3.4)

investigated in this study are shown in Appendix B.

Figures 29, 30, and 31 compare the simulated response obtained with the model

against the experimental data, for all the four outputs in question.
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Figure 29. Simulated Outputs (Blue, Dashed) versus Experimental Outputs (Red,
Dash-Dotted) for First Cohort (Pride ≤ 3).
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Figure 30. Simulated Outputs (Blue, Dashed) versus Experimental Outputs (Red,
Dash-Dotted) for Second Cohort (Pride = 4).
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Figure 31. Simulated Outputs (Blue, Dashed) versus Experimental Outputs (Red,
Dash-Dotted) for Third Cohort (Pride = 5).

Good values for fit percentage were attained by these models, as seen in Table 5.

Table 5. Goodness-of-fit for Simulated Systems for Each Cohort

Cohort HR RPE FAS FS
Pride ≤ 3 64.14% 69.59% 76.68% 53.65%
Pride = 4 62.84% 63.27% 80.46% 68.76%
Pride = 5 68.96% 67.25% 77.12% 75.83%

Goodness-of-fit were comparably similar for HR, RPE and FAS signals across the

three cohorts, but significantly different for FS. This result suggests that the sense of

pride reported by the participants not only influence their affective state during and

after exercise (as noted previously by the fact that higher sense of pride correlate with

higher FS), but is also related to model quality. The first three signals (HR, RPE, and

FAS) are more tied to changes in physiology, while FS is more related to cognition /

thought. It is possible that participants with lower senses of pride are more influenced

by variance and the FS measurement for them more affected by measurement noises,

resulting in lower model qualities; while those with higher sense of pride were able
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to more accurately report their Feeling Scale and grant the model a better quality.

The fact that the third cohort has fewer participants, but still a better model fit %,

corroborates with this idea. However, it can also be the case that physiology predicts

psychology when pride is high, but does not predict as well when pride is low. This

suggests the presence of other, unmeasured predictors in the lower pride cohorts (such

as frustation or disappointment).

The estimated parameters are shown in Table 6 below.

Table 6. Estimated Parameters for Semi-Physical Modeling

Parameter Cohort 1 Cohort 2 Cohort 3
τ1 (min) 2.98 8.21 9.49
τ2 (min) 2 4.39 2
τ3 (min) 0.89 0.21 0.7
τ4 (min) 0.66 0.0005 9.78
ζ4 1.48 22.82 2.79
γ11 12.08 12.84 16.58
γ22 0.6 0.76 0.27
β21 0.07 0.08 0.09
β32 0.32 0.38 0.4
β42 0.13 0.00024 0.38
α11 (min) 1.01 4.11 3.73
α21 (min) 2.6 4.51 3
α42 (min) -3.46 11.01 25.01

*Cohorts 1, 2, and 3 represent, respectively, participants with reported pride equal to
3 or lower; 4; and 5.

The list of initial parameters used in the simulations is presented in Appendix B.

The parameters τ2 and α21 are, respectively, the time constant and the zero for

RPE (Equation 3.6). Considering constant u2 (for the sake of demonstration), this

equation can be written in transfer function form:
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y2(s)

y1(s)
= β21

(α21s+ 1)

(τ2s+ 1)
(3.21)

Upon investigating the estimated parameters, it can be seen that, for all cohorts,

α21 and τ2 had similar values. This means that, in (Equation 3.21), the zero and

pole almost cancel each other, making RPE (y2) almost a scaled version of HR (y1).

In other words, the dynamics between these two constructs are very weak, almost

non-existent. This is not a surprising result, since RPE scale was designed to serve as

a self-reported measure of exercise intensity (Borg, 1982).

One important thing to note about the parameters in Table 6 is that the restriction

imposed by Equation 3.19 are always met: β21, and the sum of β32 with β42 are less

than 1 for all cohorts.

The integrator action modeled for the cohorts with pride equal to 4 and 5 can

be seen in these system responses. In the system described in Figure 29, FS quickly

decreases when the other signal decreases. For the system shown in Figures 30 and 31,

on the other hand, the experimental signal stay almost stationary after the experiment

is done, which was better modeled by the integrator action. A system with integrator

has the ability of maintaining the output level even after the input returns to 0. From

a behavioral perspective, this means that the sense of pride indicates the participant’s

capacity of sustaining a change in affective state even after the physical activity ends.

A negative (right-half plane) zero was estimated for the first cohort but not for the

second and third cohort. Negative zeros for second-order systems indicate an inverse

response, that is, the initial direction of change is opposite to its final direction. In

other words, an increase in physical activity intensity will ultimately increase the FS

signal of such a participant (for the examined range of exercise intensities - higher
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exercise intensities might reduce FS (Ekkekakis, 2003)), but initially it will decrease.

This trend doesn’t occur for participants with higher sense of pride.

Figures 32 to 35 below show the step response from each input (Stage and "Ex-

periment Begins") to all the output signals. Because of the presence of the integrator

system for the second cohort, Figure 33 shows that the time scale for the FS signal

that ramps up, and thus the plot scale is not sufficient to show the dynamics for

the other signals. For this reason, Figure 34 was also shown; it presents the same

step responses but without the FS signal. For the cohort with highest sense of pride,

the integrator is also present but was not shown in any Figure to avoid repeating

information.
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Figure 32. Unit Step Responses for First Cohort (Pride ≤ 3)
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Figure 33. Unit Step Responses for Second Cohort (Pride = 4)
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Figure 34. Unit Step Responses for Second Cohort (Pride = 4), without FS Response

80



Step Response

Time (minutes)

A
m

p
lit

u
d

e

0 5 10 15 20 25 30 35 40

From: Begin of Experiment

0 5 10 15 20 25 30 35 40
0

0.5

1

T
o

: 
F

A
S

0

0.5

1

1.5

T
o

: 
R

P
E

0

10

20
From: Stage

T
o

: 
H

R

Figure 35. Unit Step Responses for Third Cohort (Pride = 5), without FS Response

Some general interpretations can be made from the step responses seen in

Figures 32 to 35. The integrator action can be seen in Figure 33 by the step re-

sponse from any input to FS output; instead of settling to some final value, the output

signal remains increasing. If the input signal returns to 0 (representing the ending

of the physical activity bout), this signal would settle in a new level, instead of also

returning to 0 (which happens for systems without integrators).

The simulated model for the first cohort presents an inverse response (bottom-left

plot of Figure 32), as previously characterized by the estimated left-half plane zero

for that system, for the FS signal. This means that, for these participants with lowest

reported sense of pride, the beginning of exercise is accompanied by an almost sudden

decrease in mood affect, which then slowly recovers and reach a level higher than the

baseline should the increased exercise input remain at the same level. This shape of

response does not present itself to participants with higher pride; these participant

benefit from increasing affect state at the start of the activity.

These responses also show that static gain between Heart Rate (HR) and the
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activity intensity is higher for participants with higher pride, as seen in Table 6 (γ11

parameter). There are a number of implications for the use of the HR as a measure.

First, it is an objective measure that is less prone to noisy measurement issues that

occur with self-report measures. Second, it is measured almost immediately and is

less effected by averaging or interpolation effects. Both of these indicate that HR is a

more accurate measure than the others used in this simulation. Finally, HR response

to exercise is an indicator of cardiorespiratory, or aerobic fitness. That is, a person is

considered more aerobically fit if they can perform the same intensity of exercise with

a lower HR. Because the low pride group had a lower HR response to each exercise

stage, it can be inferred that they were more aerobically fit than the high pride group.

This is important, because those who are less fit must work harder to complete each

stage of the trial. Thus, this group responded with a greater degree of pride than the

higher fit participants. The greater variability in HR for the high pride group might

have provided sufficient variation to result in a better fitting model. However, it may

also be that other, unmeasured cognitive factors (such as frustration, boredom, low

enjoyment, etc.) might be important for the low pride group.

For these reasons, the proposed behavioral path diagram describes less fit partici-

pants better than more fit participants.
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Chapter 4

CONCLUSIONS

This study focuses on how the principles of control systems engineering, in particular

system identification, can be applied to investigate and model behavioral processes

during physical activities. Inter-disciplinary research involving these two fields of

study is a novel way of understanding human behavior and presents the possibility of

developing more efficient adaptive behavioral interventions.

The concept of fluid analogies was investigated in order to transcribe behavioral

problems into a mathematical form. A behavioral path diagram describing the

relations between constructs can be re-interpreted as a system of inventory and

flows, and from that analogy material balances can be performed to generate a set

of differential equations describing the system’s dynamics. Alternatively, a dynamic

model obtained through black-box identification can be analysed as a fluid system,

and then re-interpreted through behavioral science concepts.

Two behavioral data sets were studied in this thesis, under the light of system

identification principles. In the first case study, participant data collected through

the course of four days in an observational study was used to generate black-box

models relating negative affect, self-efficacy, and moderate-to-vigorous physical activity.

Participants were aggregated into cohorts so that different models could describe how

different types of participants behaved in the experiment. As a general result, the

identification showed that the dynamic relation between negative affect and self-efficacy

presents oscillatory response with negative gain, while the relation between self-efficacy

and physical activity is smooth with positive gain. These results suggest the presence
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of self-regulatory processes, with inefficient self-regulation for the first transfer function

but more efficient for the second. This suggests that the way behavioral constructs

affect actual behavior is more akin to a closed-loop system.

In the second study, physical activity intensities were prescribed to participants

during single-bouts acute exercise studies while measurements of behavioral constructs

were made. Through the use of fluid analogies, these experimental data were combined

with a mathematical description of the model in order to estimate parameters using

semi-physical identification ideas. For this study, the physical activity was the main

input while physiological constructs like Heart Rate (HR) and behavioral constructs

like Rate of Perceived Exertion (RPE), Felt Arousal Scale (FAS) and Feeling Scale (FS)

were the output signals. Again, participants were aggregated into different cohorts so

that comparisons could be made between them. A direct relation between a sense of

pride reported after the exercise and the positive feeling of the participant was found,

in the way that higher pride maned higher measurements of FS and also the ability of

maintaining the positive feeling even after the exercise ended. The dynamic relations

between activity and behavioral constructs was also found to have the influence of

self-regulation.

More informative results were obtained in the first study when participants were

divided by BMI Category, while participant cohort division also represented fitness

level in the second study. These results suggests that participant’s BMI and/or fitness

level are a characteristic that influences the behavioral processes involving physical

activity.
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4.1 Future Work

System identification is not a procedure that can be performed once and then

be concluded. Due to the very nature of this field of study, many different methods

of approaching an identification problem allows for continuing investigations of the

studied systems and parameters. Model structures, numerical search methods, and

decisions upon which data to be used for estimation or validation are but a small

number of options that can bear influence upon the dynamical system identification.

A further study that can be performed involves treating the systems as non-linear.

For the sake of programming and modeling simplicity, all the models obtained in this

study treated the systems as linear; although this might be a reasonable approximation

for many cases, some dynamic model might represent the true systems more closely

when treated as non-linear systems - and this might be specially true for social or

behavioral problems. A possible way to expand this study though is analysing how

non-linear modeling principles could be applied for the experimental data sets.

Run-to-run control represents the concept of controlling processes that happen in

batches, with the input manipulation or determination of one batch being dependent

on the results (or outputs) of previous batches. Ideas from this type of control can

be applied to modeling physical activity experiments which happens over the course

of different days; results from one day might influence the inputs of prescription of

following days.

The ideas presented above for improving this study involves only mathematical,

computational, and/or modeling suggestions, but there are even more ways to advance

this work. As with any other statistical analysis, system identification techniques

are more reliable when larger data sets are obtained. The ideas presented in this
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thesis can be applied to behavioral experiments containing more data points (more

participants and/or experiments that last longer) in order to obtain dynamic model

more statistically significant.

The size of the data set is not the only possible experimental way of obtaining data

that facilitates system identification. As described by Ljung (1999), the principles of

system identification can inform the user or researcher about proper ways to perform

data collection in order to improve the quality of identified models. In other words,

there are ways to realize a data-gathering experiment that will provide results more

informative about the dynamics of the studied system - this is the field of identification

experiment design. These ideas, which includes topics such as decision of input and

output variables and optimal input signal design, can be the basis of new behavioral

experiments aimed at obtained informative data sets.

In both studies performed in this thesis, participant data was aggregated into

cohorts sharing similar characteristics, and in each cohort all participant data was

averaged. These divisions were done to account for problems such as data missingness

and low amount of data points (in the study in Chapter 2) or signals measured with

different sampling times (in the study in Chapter3). Ideally, if a large enough data set

without these problems is obtained, system identification could allow for idiographic

investigations, that is, dynamically modeling how each individual participant behaves

during physical activity without the need to average participant data. This approach

might not only reduce averaging errors but also grant insight into how individual

characteristics influences the behavioral constructs.

Finally, one way that the study can be expanded is to apply control systems

principles in order to design adaptive behavioral interventions as controllers. The

behavioral dynamic models obtained through system identification are useful to shed
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light on processes that occur in participants during the behavior, but can also form

the basis of optimized health interventions. This represents a new way of approaching

interventions, which stands for a promising improvement in behavioral health.
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APPENDIX A

ESTIMATED ARX PARAMETERS FOR DYNAMIC SYSTEMS IDENTIFIED IN
CHAPTER 2
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Tables 7 and 8 contains the parameters estimated for the identified models in
Chapter 2, with the most general form of the ARX model obtained in this problem
being represented by:

y(t) + a1y(t− 1) + a2y(t− 2) + a3y(t− 3) + a4y(t− 4) =

= b1u(t− 1) + b2u(t− 2) + b3u(t− 3) + b4u(t− 4) + b5u(t− 5) + e(t)
(A.1)

Worth noting that all the identified models had nk = 1.

Table 7. Estimated ARX Parameters

System a1 a2 a3 a4
All
Participants
NA to SE -1.7 0.9359 0 0
SE to MVPA 0.2474 -0.3095 -0.2159 0
Age < Median
NA to SE -0.6866 -0.3787 0.5853 0.07748
SE to MVPA 0.06139 -0.00921 0.1648 0
Age > Median
NA to SE -1.502 1.529 -0.6809 0.2374
SE to MVPA 0.1739 -0.2124 0 0
Females
NA to SE -0.7861 -0.4563 -0.2092 0.6025
SE to MVPA -0.01011 0.06601 0.04251 -0.255
Males
NA to SE -0.6884 -0.4555 0.6746 0
SE to MVPA 0.6836 0.152 -0.489 -0.1524
Underweight
/ Normal
NA to SE -1.217 0.4223 0.2305 0
SE to MVPA -0.2094 -0.2064 -0.4378 -0.01813
Overweight
/ Obese
NA to SE -1.348 0.6351 0.1411 0
SE to MVPA -0.8773 0.4136 -0.1364 0
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Table 8. Estimated ARX Parameters (Cont.)

System b1 b2 b3 b4 b5
All
Participants
NA to SE -1.811 0.2109 0.08771 -1.114 0.3211
SE to MVPA -0.007612 0.8245 0.1494 0 0
Age < Median
NA to SE -0.398 -1.112 0 0 0
SE to MVPA 0.2216 0 0 0 0
Age > Median
NA to SE -1.063 -0.3994 -1.01 0 0
SE to MVPA 0.03531 0.29 0 0 0
Females
NA to SE -0.8539 0 0 0 0
SE to MVPA -0.04335 0.5016 0 0 0
Males
NA to SE -0.1564 0.007614 -1.378 0 0
SE to MVPA 1.91 1.842 0.8771 0 0
Underweight
/ Normal
NA to SE -0.3202 0 0 0 0
SE to MVPA 0.538 0 0 0 0
Overweight
/ Obese
NA to SE -0.4666 1.284 -1.618 0 0
SE to MVPA 0.9679 0.4096 -0.5756 0.572 0
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GREY-BOX MODELING CONSIDERATIONS FOR SYSTEMS IDENTIFIED IN

CHAPTER 3
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B.1 Initial Parameters for Simulation

The table below presents the initial parameters used for simulation in each model.

Table 9. Initial Parameters for Grey-Box Simulation

Parameter Cohort 1* Cohort 2* Cohort 3*
τ1 2 2 2
τ2 2 1 2
τ3 2 2 2
τ4 2 20 10
ζ4 1 1 1
γ11 10 10 10
γ22 0.6 2 1
β21 0.1 0.05 0.05
β32 0.5 0.5 0.5
β42 0.5 0.5 0.7
α11 2 2 2
α21 2 2 2
α42 2 2 2

*Cohorts 1, 2, and 3 represent, respectively, participants with reported pride equal to
3 or lower; 4; and 5.

B.2 Representative Simulations for Investigated Diagrams and Equations

The resulting semi-physical simulation for some intermediate path diagrams that

were investigated are shown, as well as the goodness-of-fit. The first simulation

(Figure 37) used the diagram in Figure 19, which contains the RER construct, an

interconnection between FAS and FS, and only 1 input signal.
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Figure 36. Simulated Outputs (Blue, Dashed) versus Experimental Outputs (Red,
Dash-Dotted) for First Cohort (Pride ≤ 3) for Diagram in Figure 18.

Using the diagram depicted in Figure 27 but with all differential equations being

first order and having no zeroes (Equations 3.1 to 3.4) yield the following simulation.
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Figure 37. Simulated Outputs (Blue, Dashed) versus Experimental Outputs (Red,
Dash-Dotted) for Third Cohort (Pride = 5) for Diagram in Figure 25.

For the two representative simulations above, the following table shows the

goodness-of-fit.
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Table 10. Goodness-of-fit for Representative Simulations Above

Representative
Simulation HR RPE FAS FS RER
Figure 34 56.07% 58.63% 77.75% 42.65% 36.19%
Figure 35 63.13% 52.9% 63.44% 75.95% -

100


	comeco - 1-12 - ajustado novo
	1
	2 - ajustado
	3
	4
	5
	6
	7
	8
	9
	10
	11
	11 que vira 12

	RESTANTE



