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ABSTRACT

The proper quantification and visualization of uncertainty requires a high level of

domain knowledge. Despite this, few studies have collected and compared the roles,

experiences and opinions of scientists in different types of uncertainty analysis. I

address this gap by conducting two types of studies: 1) a domain characterization

study with general questions for experts from various fields based on a recent literature

review in ensemble analysis and visualization, and; 2) a long-term interview with

domain experts focusing on specific problems and challenges in uncertainty analysis.

From the domain characterization, I identified the most common metrics applied

for uncertainty quantification and discussed the current visualization applications

of these methods. Based on the interviews with domain experts, I characterized

the background and intents of the experts when performing uncertainty analysis.

This enables me to characterize domain needs that are currently underrepresented or

unsupported in the literature. Finally, I developed a new framework for visualizing

uncertainty in climate ensembles.
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Chapter 1

INTRODUCTION

Computational advances are enabling the generation of massive amounts of model

simulation results. However the complexity and high dimensionality of the raw simu-

lation data brings challenges to traditional uncertainty analysis. Data analysis tech-

niques largely focus on aggregations and summarizations to identify simulation pat-

terns from which quantitative uncertainty analysis is performed. Visualization tech-

niques encourage data explanation; however, the choice of visual metaphor (Potter

et al. (2012b)) is critical for displaying uncertainty.

From my literature study and collaborations with domain experts, what hinders

effective analysis and visualization is a lack of tools that can couple a high level

of domain knowledge with the uncertainty analysis. When a high level of domain

knowledge, especially modeling knowledge, is required, most of the current visualiza-

tion tools and results can only be understood by domain experts, which limits the

use of such results in policy and decision making. Therefore, the gap among domain

experts, analysts and stakeholders often serves as an obstruction to the effective un-

certainty analysis and representation. In order to bridge the knowledge gap, many

studies have focused on analyzing the visualization issues in other domains as well as

the problem of integrating domain knowledge in visualization field (Goodwin et al.

(2013); Dasgupta et al. (2015); MacEachren et al. (2012)). For example, Dasgupta

et al. (2015) analyze a large set of static climate data visualizations for identifying

defects with respect to the visualization design. At a higher level, some studies fo-

cus on how to enable human-in-the-loop analyses (Sacha et al. (2016); MacEachren

(2015)) and avoid the pitfalls during the analysis (Sedlmair et al. (2012); Kwon et al.
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(2011)).

This thesis focuses on addressing the gaps between uncertainty analysis and visu-

alization. To this end, I have collaborated with several domain experts and conducted

two types of studies: 1) a domain characterization study with general questions for

domain experts from various climate related fields that utilize ensemble analysis and

visualization, and; 2) a regular long-term interview with domain experts focusing on

specific problems and challenges in uncertainty analysis and visualization. From the

domain characterization, we identify the most common metrics applied for uncertainty

quantification and discuss the application of these methods for visualization. Based

on the interviews and surveys with domain experts, I characterize the background and

intent of the experts performing uncertainty analysis. This enables me to characterize

domain needs that are currently underrepresented or unsupported in the literature.

Through collaborations with domain experts, I have developed an interactive web-

based framework for visualizing numerical uncertainty in climate model ensembles.

This framework not only enables uncertainty analysis at both the model-level and the

ensemble-level uncertainty, but also helps users understand the uncertainty through

visual comparisons among ensembles of models.
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Chapter 2

RELATED WORK

In this section, I first review existing taxonomies of uncertainty quantification and

visualization. Then I review work on integrating the role of domain experts in uncer-

tainty analysis and visualization.

2.1 Uncertainty Quantification and Visualization

A variety of uncertainty metrics are defined, categorized, reframed or proposed

(Buttenfield and Weibel (1988); Pang (2001); Plewe (2002); Kandlikar et al. (2005);

Thomson et al. (2005); MacEachren et al. (2005); MacEachren (2015)). The re-

lated visualization techniques and challenges have been well documented. For exam-

ple, Sanyal et al. (2009) compare uncertainty visualizations in 1D and 2D datasets.

MacEachren (2015) applies concepts from visual semiotics to characterize the visual

significance of different categories of uncertainties. Potter et al. (2010) focus on the

use and adaptation of box plots in uncertainty visualization. Potter et al. (2012b)

and Bonneau et al. (2014) summarized multiple visualizations in terms of their data

dimensions and demonstrated their practical uses, and Potter et al. (2012b) illus-

trated the use of color maps for 2D uncertainty (Potter et al. (2012a)) and the use

of glyphs, color maps, isosurfacing and volume rendering for 3D uncertainty (Potter

et al. (2008)).

However, there are few studies characterizing how uncertainty quantification meth-

ods are understood by domain users. Potter et al. (2012b) argued that communicat-

ing uncertainties is a task often left to visualization without any connection between

the quantification and visualization. Klir and Wierman (1999) evaluated uncertainty

3



from the fuzziness of the data and generalized applications of information theory for

quantifying uncertainty. Thomson et al. (2005) expanded the typology for uncer-

tainty from past frameworks in scientific computing and presented some basic quan-

titative models. Potter et al. (2010) reviewed a narrow set of summary statistics,

from which uncertainty is represented as a single value, and later work by Potter

et al. (2012b) focused on typical measures for two types of uncertainty: epistemic

and aleatoric. Epistemic uncertainty is caused as the information we will loss due

to the lack of knowledge or data. Aleatoric uncertainty is expressed as the random-

ness of mutable data values. Bonneau et al. (2014) generally reviewed three types of

most utilized uncertainty theories (classical probability theory, Dempster-Shafer The-

ory, and possibility theory) but failed to go into deeper analysis. Therefore a more

thorough taxonomy and problem diagnosis for uncertainty quantification measures is

needed.

2.2 Uses of Domain Knowledge

Though there have been many endeavors in developing automatic algorithms and

workflows, how to engage humans in the analysis loop and make use domain knowl-

edge for uncertainty analysis have drawn more discussions in recent work through

theoretical frameworks and practical experiments. For example, Sacha et al. (2016)

proposed a knowledge generation model for visual analytics which proposes a pipeline

for how humans’ perceptual and cognitive biases influence the user’s awareness of un-

certainties. Sedlmair et al. (2012) proposed a methodological framework consisting

of nine stages: learn, winnow, cast, discover, design, implement, deploy, reflect, and

write. Each stage involves different levels of the participation from different parties

(e.g. writers, tool builders, or project coordinators) in the analysis pipeline. Endert

et al. (2014) argued for a shift from “human in the loop” philosophy for visual analyt-
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ics to the “human is the loop” which focuses on recognizing analysts’ work processes

and seamlessly fitting analytics into existing interactive processes. However, another

issue in engaging humans in the analysis process is how to prevent the pitfalls from

the participation of human. In the nine-stage framework proposed by Sedlmair et al.

(2012), more than 30 pitfalls are defined based on the analysis of previous work and,

more importantly, solutions to avoid the pitfalls are also outlined. Kwon et al. (2011)

also identified some “visual analytic roadblocks” for novice users in an investigative

analysis scenario.

In practice, the major approach for extracting domain knowledge is to interview

domain experts directly. For example, Goodwin et al. (2013) carried out several

workshops which invited energy analysts and modelers to investigate the require-

ments, design concepts and give feedback of visualizations in energy field. Dasgupta

et al. (2015) held both in-person and teleconference meetings and three workshops to

exchange knowledge in respective domains. They conducted a visualization use and

design study by transforming the visualization design problems created by climate

scientists to the challenges for visualization researchers. For example, when domain

experts intend to compare the temporal variability of multiple models in a line chart,

Dasgupta et al. (2015) characterized the visual clutter problem in the line chart and

solved it through a series of small multiples. Following the guidelines in Sedlmair et al.

(2012), Quinan and Meyer (2016) characterized their research problems through a

series of contextual interviews. Another way of investigating visual analysis problems

is to review and extract problems from cross-domain publications (Sedlmair et al.

(2012)). From the view of domain experts, for example in climatology of atmospheric

fields, Gleckler et al. (2008) employed various graphical tools to visualize, analyze

and compare climate models, in which multiple visualization problems may be ex-

posed. For example, when Gleckler et al. (2008) encoded different models within the

5



orientations of triangles, users had difficulty in distinguishing each model due to the

visual clutter.
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Chapter 3

TAXONOMY OF UNCERTAINTY QUANTIFICATION AND VISUALIZATION

A wide array of taxonomies and typologies (e.g. Pang (2001); Sanyal et al. (2009);

MacEachren et al. (2012)) focusing on uncertainty visualization have been published

to help researchers in the design and development of uncertainty visualization tools.

As an essential step before uncertainty visualization, especially for numerical uncer-

tainty, quantifying the uncertainty plays an important role in delivering uncertainty

information. Many taxonomies on uncertainty visualization (e.g. Thomson et al.

(2005); Potter et al. (2012b); Bonneau et al. (2014)) have mentioned some quantifica-

tion approaches. However, due to the growth of simulation results in climate research,

it is increasingly necessary for domain experts to choose proper uncertainty quantifi-

cation approaches under different uncertainty analysis requirements. With this need,

and the lack of taxonomies centering on uncertainty quantification, I conducted a lit-

erature review by focusing on the use of uncertainty quantification approaches. The

scope of this literature review is limited to the climate research and visualization fields.

Furthermore, I restrict the literature review of uncertainty quantification approaches

to: 1) quantification approaches that do not require reference data; 2) quantification

approaches in low dimensional space; 3) quantification approaches commonly seen in

the visualization domain. The first restriction is due to the fact that domain experts

rarely have access to ground truth data, especially in the climate modeling field.

In the second restriction, I find that the biases from high-dimensional approaches

are hard for domain experts to understand in low dimensional space. In the third

restriction, I focus on methods that visualization designers frequently adopt.
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In this taxonomy, I categorize three expressions of uncertainty: 1) uncertainty

portrayed as the data divergence, 2) uncertainty portrayed as the estimation results of

unknown parameters, and; 3) uncertainty portrayed as the chaos in categorical data.

I then extract three types of quantification approaches based on the above three forms

and analyze their defects and visualization issues. Exemplar uncertainty visualization

techniques along with their uncertainty quantification approaches are summarized in

Table 3.1. While more systematic uncertainty visualization taxonomies can be found

in past works (e.g. Pang (2001); Sanyal et al. (2009), and MacEachren et al.

(2012)), in contrast, our main goal throughout the taxonomy is to shift the focus of

uncertainty analysis from visualization to quantification and mitigate the concerns of

domain experts in choosing quantification approaches.

3.1 Defining and Quantifying Uncertainty

In the climate research field, one of the earliest discussions about uncertainty and

visualizing uncertainty can be found in the work of MacEachren (1992). MacEachren

(1992) argued that, compared to the term data quality, uncertainty might be a better

description for the data qualify of geographic information. More often, uncertainty is

understood as a composition of different concepts (Pang et al. (1997); Pang (2001);

Thomson et al. (2005)) such as error, imprecision in measurements, accuracy, noise,

non-specificity, etc. The ambiguity in defining the uncertainty is caused by its various

sources and applications. For example, uncertainty can be explained as imprecision

because of the limitation of instruments, or uncertainty can be explained as an accu-

racy issue due to data conversion or resampling. For a modeler in the climate research

field, the source of uncertainty is defined with respect to the behavior of models in

different scenario analyses. After generalizing the functionalities of the uncertainty

analysis tools presented in the past works (e.g. Potter et al. (2010); Sanyal et al.
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(2009); Potter et al. (2013); Xu et al. (2010); Chen and Jaenicke (2010)), I categorize

three major expressions of uncertainty in scenario analyses:

• Portrayed by the data divergence

• Portrayed by the estimation results of unknown parameters

• Portrayed by the fuzziness in clustering or classifying data

The first expression of uncertainty is often manifested as the inconsistent behav-

iors of models, such as the variability of the simulation results from multiple runs or

from different model settings. For instance, Gleckler et al. (2008) defined uncertainty

as the variation of the difference between the simulated results and the reference data

of each model. In the second expression, one of the examples is weather forecasting,

in which the estimated result is either a confidence interval or taken as the largest

probability value in a probability distribution function (PDF). For example, Smith

et al. (2009) propose a Bayesian analysis that estimates a posterior distribution of

future temperature increase from multiple models, in which the uncertainty of the

predicted temperature increase is expressed as probabilities in the posterior distri-

bution. The third expression of uncertainty often occurs in clustering or classifying

data. For example, when segmenting an image into different classes, we may define

a membership function for each group and each pixel in the image may belong to

different classes with different probabilities. In this case, the uncertainty is defined as

the fuzziness among different membership functions. Potter et al. (2013) illustrated

this problem with the segmentation of brain tissues, in which each voxel belongs to

11 different tissues with different probabilities.

In response to the above three major expressions of uncertainty, a lot of approaches

are adopted in the quantification step. From our literature review, three major types

of approaches are categorized:

9



• Descriptive statistical approaches (e.g. moments)

• Inferential statistical approaches (e.g. hypothesis test)

• Information theoretical approaches (e.g. Shannon entropy)

Descriptive statistics involve the measurements of central tendency (e.g. median

and mean) and variability (e.g. standard deviation). These methods are considered

to be simple and intuitive summaries about the data and are used extensively. In-

ferential statistics are used for estimating statistical properties from observed data,

in which the estimated properties could be seen as the numerical expression of un-

certainty. These methods include point estimates (e.g. estimating PDF), interval

estimates (e.g. confidence interval), testing hypothesis (e.g. modality test), or clus-

tering data points. For example, one may estimate the confidence interval, which

belongs to inferential statistics, as a numerical expression of the uncertainty for an

unknown parameter. For the third category, information theory has an intrinsic ad-

vantage over the above two categories, descriptive statistics and inferential statistics,

in characterizing the spread of categorical data. If there are more categories in the

data, each data object may belong to more categories and hence has larger uncer-

tainty. In classification, if a data object belongs to different classes with different

probabilities, uncertainty can be expressed as the disagreements of the probability

values. However, it is noteworthy that these three categories are not exclusive to

each other. For example, information theory requires knowledge of probability dis-

tribution functions from inferential statistics. In the following sections, each type of

quantification approach will be discussed with respect to its definitions, advantages,

disadvantages, and accompanying visualization approaches.

10



Table 3.1: Exemplar visualizations in each category of uncertainty quantification.
D.S. represents the works of descriptive statistics. I.S. represents the works of infer-
ential statistics. I.T. represents the works of information theory.

Visualization Quantification Exemplar Work

Line Chart D.S.

(Mascaro et al. (2015); Dasgupta et al.

(2015))

Scatter Plot D.S./I.S./I.T.

(Biswas et al. (2013); Kehrer et al. (2010))

Bar Chart D.S./I.S.

(Chen et al. (2015); Demir et al. (2014))

Box Plot D.S.

(Potter et al. (2010); Mirzargar et al.

(2014))

Taylor Diagram D.S./I.T.

(Correa and Lindstrom (2013); Gleckler

et al. (2008))

Map/Original Data Space D.S./I.S./I.T.

(Potter et al. (2009); Kao et al. (2002))
11



3.2 Descriptive Statistical Approaches

Descriptive statistics are measures that quantitatively summarize features of a

collection of information (Mann (1995)). Generally, there are two major types of

measures in descriptive statistics: measures of central tendency and measures of dis-

persion. Measures of central tendency, which are frequently represented as mean,

mode and median, describe the central value among a collection of data. Measures

of dispersion, such as standard deviation, kurtosis and skewness, describe how data

values are stretched. In descriptive statistics, central tendency and data divergence

are used most often in climate research as measures of uncertainty. For example,

Potter et al. (2010) present a new hybrid summary plot that incorporates a collection

of descriptive statistics, including mean, standard deviation, skewness, and kurtosis,

to highlight the salient features of temperature ensembles. Zehner et al. (2010) en-

code the mean and maximum deviation of weather prediction ensembles with colors

and sizes for visually comparing the ensembles. More measures of the data disper-

sion are adopted to compare the differences between climate models. Mascaro et al.

(2015) evaluate the spatial uncertainty in precipitation, evaporation and runoff mod-

els through the coefficient of variation. Taylor (2001) binds three measures (root

mean square, covariance, and correlation coefficient) together to compare the per-

formance of climate models. The most common descriptive statistics are listed in

Table 3.2.

One of the biggest advantages of descriptive statistics is that these methods are

considered to be very intuitive to end users and only require a small set of parame-

ters (Potter et al. (2010)) regardless of the data complexity. This is also the reason

why descriptive statistics have become the most prevalent means of summarizing

data features and portraying uncertainty information in many domains. However,

12



Table 3.2: Common methods in descriptive statistics. xi represents the ith observed
values in a random set of values X. yi represents the ith observed values in another
random set of values Y . Q3 and Q1 represents the third and first quartile.

Categories Equations

Mean µ =
∑N

i=1 xi/N

Standard Deviation σ =
√

1
N

∑N
i=1 (xi − µ)2

Root Mean Square xrms =
√

1
N

∑N
i=1 x

2
i

Covariance σ(X, Y )= E[(X − E[X])(Y − E[Y ])]

Interquartile Range IQR = Q3 −Q1

Coefcient of Variation Cv = σ
µ

Correlation Coefficient R =
1
N

∑
(xi−µx)(yi−µy)
σxσy

most descriptive statistics, such as mean, standard deviation, interquartile range and

coefficient of variation, are based on the assumption that data follows a Normal distri-

bution. Only when the data distribution is Normal, do measures of central tendency

make credible summaries about the data (Vogt (2011)). However, in practice, there

is no empirical distribution that can precisely match the Normal distribution. Due to

this problem, many works have adopted different solutions for avoiding the normality

constraint. For example, Sanyal et al. (2010) implement an ensemble mean bootstrap

(Efron and Tibshirani (1994)) which resamples the data and generates an estimated

distribution with no assumptions on the types of source distribution. Kehrer et al.

(2010) employ robust estimates of four statistical moments (mean, variance, skewness

and kurtosis) and compare them with the traditional moments in an iterative visual

analysis process. Another limitation of descriptive statistics is that they are too weak

to differentiate some distributions within one or two values. For example, shown as

Figure 3.1, three very different distributions have similar mean and standard devia-

tion value. Bensema et al. (2015) and Chen et al. (2015) both point out this problem

13



by giving the example that two distributions with similar mean and standard devi-

ation may have different modalities or other characteristics. To solve this problem,

Bensema et al. (2015) focus on the modality test of data distributions and Chen

et al. (2015) project the data into another space where two data distributions can be

better differentiated.

To visualize the quantification results of descriptive statistics, central tendency

and dispersion are often visualized together for providing users with a contextual

analysis environment. When only two or three types of descriptive statistics are

involved, traditional visualization methods are sufficient, such as scatter plots (Kehrer

et al. (2010)), bar charts (Chen et al. (2015)), Talyor diagrams(Taylor (2001)), and

line charts (Sanyal et al. (2010)). However, visualization becomes problematic when

users want multiple descriptive statistics in one graph. One of the solutions is to

encode the extra information with more visual variables. For example, Potter et al.

(2010) present an advanced summary plot in which multiple statistics are represented

as different symbols and put at different places in a density histogram. Sanyal et al.

(2010) encode the uncertainty statistics with sizes and colors in an ellipse and compose

a ribbon by connecting the ellipses on the map. Inspired by these encoding strategies,

Chen et al. (2015) take the sum of the standard deviation as the overall uncertainty

and visualize these sums within a discrete color bar chart. Another possible solution is

to combine multiple visualization charts into one chart. Demir et al. (2014) present

a new chart which combines bar charts and line charts together to show multiple

summary statistics. Mirzargar et al. (2014) plot the curve box plot onto the map to

show the uncertainty in weather forecasting ensembles.
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Figure 3.1: All three distributions (A, B, C) have similar mean and standard devi-
ation values, but different modalities. Distribution A is bimodal. Distribution B is
unimodal. Distribution C is multimodal (Bensema et al. (2015)).

3.3 Inferential Statistical Approaches

Estimating statistical properties from observed data is common in ensemble mod-

eling. Smith et al. (2009) propose a Bayesian analysis that estimates a posterior

distribution of future temperature increase from multiple models. Adamowski (2008)

predict the peak daily water demand by different statistical models, such as linear

regressions and artificial neural networks. In such cases, the estimated properties are

often seen as the numerical expression of uncertainty. If a parameter is unknown,

domain experts may use the confidence interval to show the possible range of that

parameter, in this example, the confidence interval is defined as uncertainty. Also,

when domain experts conduct parameter estimations in predictive analyses, the pos-

terior distribution of the parameter can be portrayed as the prediction uncertainty.

In such cases, inferential statistics are often adopted over descriptive statistics. The

reason is that, in contrast to descriptive statistics, inferential statistics can infer new

statistical properties, such as PDF, from a larger population in which the observed

data is assumed to be sampled from the larger population. From our literature review

in the climate research field, these methods are frequently seen in:

• Deriving estimates, including point estimates and interval estimates
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• Testing hypotheses

• Clustering or classifying data objects into groups

Deriving estimates can be divided into point estimates and interval estimates (See

Neyman (1937) for further explanation). Typically, point estimates refer to the pro-

cess of estimating a parameter from a probability distribution. For example, Smith

et al. (2009) quantify the uncertainty of climate model projections as a Bayesian pos-

terior distribution in which the estimation of the posterior distribution belongs to the

point estimates. Interval estimates refer to the process of finding the possible range

of an unknown parameter. For example, Sanyal et al. (2010) portray uncertainty

using the width of the 95% confidence interval in which the confidence interval is

a result of interval estimates. For the second form, testing hypotheses refer to the

process of checking if a formulated hypothesis should be accepted or not, which often

involves a p-value or significance level test. For instance, Bensema et al. (2015) use

Hartigan’s dip test to test the unimodality of the data, in which the p-values are used

for validating hypotheses. Clustering or classifying data objects is often applied on

large ensembles of climate models. For example, twelve seasonal forecasting models

are clustered by Yuan and Wood (2012). Other typical methods and related work in

different types of inferential statistics are listed in Table 3.3.

There are multiple advantages in using different inferential statistics. First, when

using the confidence interval in interval estimates, the uncertainty is explained as a

bounded range, which is more understandable than a single value (e.g. standard de-

viation)(Potter et al. (2012b)). Second, when selecting the best model or parameter

using Bayesian inference in point estimates, the uncertainty could be described as

a probability value, which is more straightforward in decision-making (Spiegelhalter

et al. (2011)). However, in order to infer the statistical properties beyond the ob-
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Table 3.3: Common methods in each type of inferential statistics.

Categories Measures used in Visualization

Point Estimates Bayesian Inference (Kniss et al. (2005); Smith

et al. (2009); Saad et al. (2010); Gosink et al.

(2013)), Maximum Likelihood (Najafi and Morad-

khani (2015))

Interval Estimates Confidence Interval (Sanyal et al. (2010))

Testing Hypotheses Dip Test (Bensema et al. (2015))

Clustering or Classification Hierarchical clustering (Yuan and Wood (2012))

served data, most of the inferential statistics, such as point estimates, will need to

estimate the probability distribution function. From our literature review, I find both

parametric and non-parametric methods are used in density estimations. Among the

non-parametric methods, kernel density estimation (KDE) is frequently used (Hall

and Manabe (1997); Feng et al. (2010); Maciejewski et al. (2010); Chen et al. (2015)).

The advantage of KDE is that it only requires configuring two values: the kernel

function and the bandwidth. Particularly, the choice of the bandwidth is critical

to the bias-variance trade-off. If the bandwidth is too large, the bias will be large,

especially for heavily tailed data. However, if the bandwidth is too small, the bias

is small but the variance is large. To avoid such issues, many works (e.g. Chen

et al. (2015); Pöthkow and Hege (2013)) choose automated selection methods. For

parametric methods, the choice of the parametric model is dependent on analysts’

knowledge of the data. A typical example for such a parametric model is the Normal

model where only two parameters, ~θ = (µ, σ2), need to be estimated. The meth-

ods of estimating the parameters of the assumed parametric model can be maximum

likelihood (e.g. Najafi and Moradkhani (2015)), Bayesian estimation (e.g. Gosink
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et al. (2013)) or expectation maximization (e.g. Liu et al. (2012)). As opposed to

the descriptive statistics, inferential statistics need more knowledge of the data and

more expertise in statistics.

Visualization of uncertainty information from inferential statistics is also more

complex than descriptive statistics. While the uncertainty is typically expressed as

a PDF, few visualization approaches can directly visualize the PDF of each point

in the original data space(Potter et al. (2012b)). More often, visualization designers

will summarize a few features from the PDF of each pixel within a single value or an

interval to mitigate such visualization issue. For example, rather than showing the

whole PDF of each point on the map, Bensema et al. (2015) categorize the PDF into

three types of modality (unimodal, bimodal and multimodal) and map each modality

with a unique color. Zehner et al. (2010) extract the major divergence of the PDF as

an interval, and then visualize it as a small line segment over the data point. However,

this solution can often misrepresent the characteristics of the actual data (Potter et al.

(2012b)). At the cost of space, another solution is to plot more properties of the PDF

in another graph and then link the graph with the original data space. For example,

Gosink et al. (2013) visualize the bias and variance of the PDF in a scatter plot that

maps the color to the original data space.

3.4 Information Theoretical Approaches

Categorical output (e.g. types of land uses) is very common in the outputs of cli-

mate model simulations. To describe the uncertainty in these data, information theo-

retical methods have an intrinsic advantage over descriptive statistics and inferential

statistics. From the literature review, as shown in Table 3.4, Shannon entropy and

mutual information are broadly applied in climate research, such as climate model en-

sembles (Correa and Lindstrom (2013)), multi-dimensional data (Chen et al. (2015)),
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and 2D flow data (Xu et al. (2010)). Shannon entropy quantifies the amount of un-

certainty in a set of random variables. Larger Shannon entropy values indicate larger

uncertainty in the data. Mutual information is a measure of quantifying the shared

information between two variables, in which larger values indicate two variables are

more similar.

The great advantage provided by information theory lies in the discovery that there

is a unique and unambiguous criterion for the amount of uncertainty represented by

a discrete probability distribution (Jaynes (1957)). It is very useful in comparing

uncertainties of different sets of models. Typically, the unit of the information is

decided by the number of categories in the data. However sometimes only part of

the categories will show up in some data. Therefore, in order to unify the unit of the

Shannon entropy globally, domain experts may need to find all possible categories by

scanning the whole data first. From this, domain experts can also infer the maximum

Shannon entropy if every data value is unique, and the minimum Shannon entropy

can be inferred if all data values are the same. To apply information theory to

continuous data, a typical strategy is to discretize the numerical data with a set

of bins. For example, Chen et al. (2015) discretize the numerical data into 256

bins before computing the relative entropy. Other concerns in information theory

focus on the clarification of information and uncertainty. Biswas et al. (2013) have

discussed their differences and usages through the generation of streamlines in flow

visualization. For example, for a visualization resulting in visual clutter, visualization

users will obtain less information and be faced with larger uncertainty. But for the

visualized subject, its original intention is that adding more visual variables may

deliver more information and eliminate the uncertainty from misunderstanding.

In the accompanying visualization approaches, quantification results of informa-

tion theoretical measures are either encoded as visual representations to portray the
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uncertainty or taken as the indicators for generating a more effective visualization

result. In portraying uncertainty, one common method is visualizing the quantifica-

tion results in the original data space, such as maps, with values encoded by color

lightness, hues or saturations. Van der Wel et al. (1998) compute the entropy values

on a set of remote sensing data and encode them within different saturations of gray.

Potter et al. (2013) compute the entropy values of classified brain tissues and encode

them with different color lightness. From another perspective, Correa and Lindstrom

(2013) built a new coordinate system, namely Taylor diagrams, by taking advantage

of the triangle equality among Shannon entropy, mutual information and the variation

of information. The axes in the Taylor diagram, shown in Table 3.1, represent the

three measures and each dot represents a model. When taking the information theory

methods as the indicators for generating a more effective visualization result, the vi-

sualization results are often updated in an iterative process. For example, Xu et al.

(2010) and Ji and Shen (2006) evaluate the communication effectiveness through

the information entropy in the visualization results. If a visualization result involves

more data categories, that is larger entropy values, the visualization result is regarded

as being more effective. Therefore, the visualization can be improved by iteratively

looking for larger entropy values. Xu et al. (2010) also demonstrated that a flow

visualization with highlighted features has a larger entropy value. Likewise, Ji and

Shen (2006); Wang and Shen (2011) conclude some similar uses of information theory

in scientific visualization, such as the selection of viewpoints. A better view point is

defined as larger entropy in the visualization result.

20



Table 3.4: Common methods in information theory. p(x, y) is the joint probability
distribution function of variable X and Y. p(x) and p(y) are the marginal probability
distribution function of X and Y respectively.

Categories Equations

Shannon Entropy H(X) = −
∑

X p(x) log2 p(x))

Mutual Information I(X;Y )=
∑

Y

∑
X p(x, y) log2(

p(x,y)
p(x)p(y)

)

Variation of Information V I(X;Y )= H(X) +H(Y )− 2I(X, Y )
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Chapter 4

INTEGRATING DOMAIN KNOWLEDGE INTO UNCERTAINTY ANALYSIS

The importance of integrating domain knowledge into uncertainty analysis has been

broadly discussed (Kwon et al. (2011); Sedlmair et al. (2012); Goodwin et al. (2013);

Endert et al. (2014); Dasgupta et al. (2015); MacEachren (2015); Sacha et al. (2016)).

Previous works described three major approaches to extract domain knowledge: lit-

erature reviews, interviews and questionnaires. In the previous chapter, I have con-

ducted a literature review and summarized the work into a taxonomy. In this chapter,

I will introduce a long-term interview and an online questionnaire from which I char-

acterize domain knowledge.

4.1 Interviews

The long-term interview occurred over one and a half years with weekly face-

to-face and email meetings. The goal of the interview is to thoroughly investigate

and elicit the role of domain experts in uncertainty analysis. Participants of the

meetings include two parties: domain experts in hydrology and domain experts in vi-

sual analytics. Domain experts provide the source data, abstracted domain problems

and domain insights for the new tools. Visual analytics experts convert the domain

problems into visual analytical problems and look for solutions in the visualization

field. Though the participants changed over time, which refers to pitfall three in

Sedlmair et al. (2012), roles of each party were continued. In the regular interview,

the continuous participation of each party helps prevent any disjointing from the re-

search cycle. Also, the direct engagement of experts helps maximally eliminates tool

builders’ recognition biases during the implementation. To improve the structure
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of the long-term interview, the meetings were composed of multiple small iterative

research cycles and generally followed the structure of the nine-stage framework pro-

posed by Sedlmair et al. (2012) which include learn, winnow, cast, discover, design,

implement, deploy, reflect, and write.

4.2 Online Questionnaire

In reviewing the knowledge gaps between domain experts and visualization ex-

perts, most of the domain experts did not have systematic principles in uncertainty

analysis and often failed to recognize their roles (Sedlmair et al. (2012)). With respect

to this problem, I have conducted a broad survey through an online questionnaire (See

the Appendix II for the IRB approval form). As shown in Appendix I, the question-

naire is composed of four parts (Background, Visualization, Quantification and Anal-

ysis) and 30 questions. Most of the questions are more general than the discussions

in the long-term interview. The goal of the questionnaire is to collect details about

domain uses of uncertainty quantification and visualization problems that the experts

commonly encountered. The targeted participants of the questionnaire are domain

experts with strong expertise in climate research. Eight participants responded to

our invitation and only one of them submitted an incomplete questionnaire.

Background: Out of eight participants, five came from hydrology and the other

three came from the emissions field, the integrated assessment modeling field, and

the land use field. Six of the participants have related experience in uncertainty

analysis. Some of them shared their concerns in uncertainty analysis. For example,

one of them said that they typically did uncertainty analysis through scenario analysis

rather than formal quantifications. Another said that they do not know how to

properly visualize uncertainty. When asking their goals in uncertainty analysis, most

of respondents replied with supporting the decision making process and providing
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model comparisons.

Visualization of Uncertainty: Typically, the visualization methods are closely

tied to specific types of data. The goal of this part is to investigate how domain experts

use visualization methods for data analysis and exploration, and then elicit what kind

of visualization problems they have encountered. In the fields of the participants, most

of their data are related to climate, hydrology, gas emissions and energy, and the

dimensions range from one dimensional data to multi-dimensional data. They were

given different types of visualization methods, such as coloring schemes, visualization

charts, visual variables, and then were asked to select visualization problems they

have encountered.

Figure 4.1: Visualization examples for the visualization methods specified by the
respondents of the questionnaire. From left to right, it shows the River Flow vi-
sualization (Havre et al. (2002)), radar charts (Claessen and Van Wijk (2011)) and
Sankey visualization(Riehmann et al. (2005)).

Most of respondents has clear goals and principles in selecting proper color schemes

(sequential, divergent, and qualitative). From the responses, the qualitative color

scheme is used to differentiate the categorical variables , the divergent color scheme is

used to reflect the data fluctuations, such as the Normal distribution and changes from

negative to positive values, and the sequential color scheme is only used for strictly

positive (or negative) data and showing the magnitude. Traditional visualization

charts, including line charts, bar charts, scatter plots and box plots, are used most

often among the respondents. Another popular visualization method is to directly
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visualize the data in its original data space, such as on a geographical map. However,

Taylor diagrams, shown in Table 3.4, have never been used by any respondents. From

this, one may infer that visualization improvements on traditional visualization charts,

such as line charts, might be more helpful due to their frequent usages. One of the

respondents also specified many other visualization methods (shown as Figure 4.1)

outside the given list, such as River flow, Sankey visualization, radar charts, etc.

Eleven visual variables (see as the Appendix I) were given to the participants and

we found sizes and hues are used most frequently in their experiences. However, it is

noteworthy that the orientation, grain and arrangement were never used among any

respondents.

Participants were also asked to select the visualization issues they encountered.

The goal of these questions were to identify which visualization problems in other do-

mains can be avoided by adapting more advanced visualization techniques, and which

problems can be mitigated by strengthening the collaborations between different par-

ties. First, the respondents were asked to choose the visualization problems they

have encountered. The top two problems in the response include visual clutter due

to overlapping or color mixing and comparison complexity due to superposition over-

load. Stemming from these issues, a complicated legend involving too many symbols

becomes another problem for experts. Typically, the major cause of these problems

come from the overwhelming information to visualize. Possible solutions to mitigate

visualization problems include using different levels of details and focus + context

techniques. The least voted visualization problem is the comparison complexity issue

due to lack of explicit encoding schemes or missing annotations. This problem is typ-

ically caused by the knowledge gaps between two domains. For example, while one

may encode the dissimilarity among a set of models as the Euclidean distance in a

2D space, the convention in climate research is to encode the dissimilarity with colors
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so that they can compare the data values. In this case, we assume that the partici-

pants had close collaborations with visualization designers and hence the knowledge

gap across domains was mitigated. Participants also indicated some other visualiza-

tion problems based on their experience, part of which are reproduced in Figure 4.2.

For instance, the scatter plot in Figure 4.2,one respondent said that the large values

mapped with more salient colors in the scatter plot dominate the visualization effect,

which will distract people’s attention from the uncertainty area in the middle of the

plot. Another example is shown in the map in Figure 4.2 where each data interval is

too hard to be distinguished if too many colors hues are used .

Figure 4.2: Visualization issues identified by the respondents. The left one shows
the issue that people will easily get distracted by the data points with larger values
or salient colors. The right one shows the issue that people can hardly distinguish
each data interval when too many color hues are used.

Quantification of Uncertainty: Another gap located between the visualization

domain and other domains is the use and understanding of uncertainty quantifica-

tion methods. The goal of these questions is to better understand what, and how,

quantification methods are used in climate research.

First, the participants were asked to select the quantification approaches they

used from the given list (See as Appendix I). They were also encouraged to specify

methods outside this list. Traditional methods, such as mean, standard deviation, and
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confidence interval, were chosen by every respondent. However, metrics in information

theory, such as Shannon entropy, were not chosen by any respondent. One of the

respondents specified the probability of detection method which is not included in the

list. In general, we conclude that, compared to the variety of visualization methods,

the quantification of uncertainty is more limited to traditional methods.

The respondents were also asked to describe their concerns regarding quantifi-

cation errors. For example, one of them said that the mean and median might be

misleading for some highly tailed data. In the questionnaire, we have listed some com-

mon pitfalls (See Appendix I) and asked the participants if they were aware of those

pitfalls in their previous uncertainty research. From their responses, most of them

were aware of the pitfalls. Another noteworthy issue in quantifying uncertainty is to

find the boundary of uncertainty. Besides describing the uncertainty within a single

value, it is more reasonable to know what the maximum and minimum uncertainty

is. However, two of the respondents did not realize its importance.

Visualization and Quantification of Uncertainty: We also wanted to elicit

more personal opinions towards uncertainty analysis, from which we may envision

future directions in uncertainty visualization and quantification. First, an interesting

result is that over half of the respondents think some of the results cannot be verified

by their domain knowledge. From our analysis, we may attribute this issue to the

use of unfamiliar methods or limited knowledge of the data. Secondly, many respon-

dents prefer to limit the uncertainty analysis within their own research fields instead

of showing to the stakeholders. Thirdly, when they are asked about what gaps will

obstruct their understanding of uncertainty, most of them select the visualization gap

and knowledge gap. The visualization gap happens because some visualization meth-

ods are rarely used in their own domains and require effort to learn. The knowledge

gap happens because of disagreements in domain conventions. Lastly, when they are
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asked that if they realize the uncertainty propagation during the quantification and

visualization stage, four out of six respondents chose No. From all these discussions,

we can see the gap of uncertainty analysis and visualization between visualization

designers and domain experts in other domains.
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Chapter 5

VISUAL ANALTYIC TOOLS

Based on our findings from the regular interviews with domain experts, I defined the

uncertainty in our data into two levels: model-level uncertainty and ensemble-level

uncertainty. For each type of uncertainty, I developed an interactive web-based tool

which aims to assist domain experts in understanding both types of uncertainty as

well as building the awareness of the differences among uncertainty quantification

approaches. Shown in Figure 5.2 and Figure 5.4, the framework is composed of two

tools. The first tool (See Figure 5.2) enables the visualization and exploration of

model-level uncertainty for each model. The second tool (See Figure 5.4) enables the

ensemble comparison and uncertainty analysis.

5.1 System Architecture

The system is developed based on the Model-View-Controller (MVC) architecture.

A general model-view-controller architecture is composed of three parts: the model

that manages the data, logic and rules of the systems, a view that shows the output

of the model, and the controller that accepts the requests from users and sends them

to the model for processing the requests. The following diagram (See as 5.1) shows

the MVC architecture of our tools.

On the model side, we have built two servers using J2EE and Node to manage the

climate model data and process the requests from controllers. As the main server,

Node server supports the communication between clients and servers, such as sending

HTML and JavaScript files and receiving parameter settings from clients. Other work,

such as multithreaded rendering of geospatial data, are separately assigned to J2EE.
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Figure 5.1: The sytem is designed based on the Model-View-Controller (MVC)
architecture. The model part is composed of two servers, Java and Node.js, which
retrieve and process the data in response to the requests sent from the controller.
The view shows the output of the model through multiple visualization methods.
The control panel is implemented through JQuery and sends requests to the model
using AJAX.

On the view side, the output of the model is visualized using D3.js, and includes

spatial maps, scatter plots, matrix views, and parallel coordinate plots. As the most

important part of our work, the view part will be further explained in the following

sections.

On the controller side, we have implemented a parameter control panel using

JQuery which contains multiple select boxes, time sliders, buttons, etc. For each

visualization tool, the controller also supports multiple interactions and animations,

such as zooming in or zooming out on the map view. Many REST (Representational

State Transfer) services, such as retrieving water supply data or computing mean

values, were developed on the model side to respond and fulfill the request sent from

the controller side. Major programming languages used for implementing the system

include Java and Javascript. On the Java side, we use Jersy to implement the REST

web services. On the JavaScript part, we use Node.js as the server and implement

the view part and controller part with D3.js and JQuery. Other open source libraries,

such as OpenStreetMap and Leaflet.js, were also used.
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5.2 Data Description and Uncertainty Definition

The climate data we used in this tool contains three parts: precipitation, minimum

temperature, and maximum temperature. For each type of data, it was estimated

from outputs of different combinations of Global (GCMs) and Regional (RCMs) Cli-

mate Models. These were provided by the Coordinated Regional Climate Downscal-

ing Experiment (CORDEX), a project sponsored by the World Climate Research

Program that uses a set of advanced RCMs to dynamically downscale the latest set

of GCM climate scenarios and predictions produced within the 5th Coupled Model

Inter-comparison Project (CMIP5) (Giorgi and Asrar (2009)). The GCM-RCM com-

binations of CORDEX were run in a historical period from 1950 to 2005 and for

future climate projections from 2006 to 2100 under the newly developed Representa-

tive Concentration Pathways (RCPs) (Vuuren et al. (2011)). Specifically, each pixel

contains a three-dimensional distribution in which the Z axis represents simulated

values, X axis represents time, and Y axis represents models.

Due to the complexity of the data, we define the uncertainty in the data into two

levels:

• Model-level uncertainty refers to the disagreements in mutable simulation

results from multiple runs of a single model. Usually, this type of uncertainty

is expressed as a 2D PDF in which the x axis represents the runs and y axis

represents the mutable results. It can be quantified as a single value by measures

of data divergence, such as standard deviation or interquartile range, where

traditional visualization methods (e.g. line charts or scatter plots) can be easily

applied.

• Ensemble-level uncertainty refers to the disagreements of multiple models in

which each model contains its own model-level uncertainty. Therefore, this type
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of uncertainty is often expressed as a three-dimensional distribution in which the

Z axis represents simulated values, X axis represents time, and Y axis represents

models. To quantify such uncertainty, a common method in visualization and

climate research is to convert the three-dimensional PDF into a 2D PDF by

summarizing the model-level uncertainty of each model into a single value (e.g.

mean or entropy). Therefore, visualization designers can apply the visualization

methods from model-level uncertainty on ensemble-level uncertainty.

5.3 Exploring Model-Level Uncertainty

The goal of our model-level uncertainty visual analytic tools is to help domain

experts explore the model-level uncertainty inside each model. This tool is composed

of four parts (See Figure 5.2). Part A is only used for visualization purposes. Part

B, C, and D are control panels for changing the visualization scheme.

Figure 5.2: The tool for exploring the model-level uncertainty of a single climate
model. (A) shows the spatial distribution of the model-level uncertainty. The color
mapping scheme is decided by the tree in part(B). Each layer in the tree, except
the root node, represents one uncertainty metric selected from the list on the left.
In the scatter plot of part(C), each dot represents a spatial point on the map. The
x-axis and y-axis can be any uncertainty metric. The slider in part(D) colors the data
distribution within three discrete color scales.
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Part C is a scatter plot of all spatial points in which X axis and Y axis can be

selected as any uncertainty quantification method. Dots with higher opacity repre-

sent more overlapped points. Through this view, users can explore the relationship

between two quantification approaches. As shown in Figure 5.3, it shows four combi-

nations between mean and another quantification approach. We can see that as the

mean value becomes larger, the entropy, standard deviation, kurtosis and skewness

stretch out further. The histogram beside the axis shows the data distribution com-

puted by that approach. For example, in Figure 5.3, the histogram below the X-axis

represents the data distribution of mean values. Part D is a range slider which can

map the data distribution within three gray scales.

In order to compare more quantification approaches, users can use the tree-like

structure in Part B. The left list gives a pool of quantification approaches where

users can choose as many methods as they want. The right tree divides the spatial

points into several groups. Each tier in the tree, except the root tier, represents

one quantification method, and each node represents a set of spatial points of which

the quantification results are in a specific range. For example in Figure 5.2, the

upper node in the second tier from left to right represents the points with their

mean values larger than 292.49. Likewise, the uppermost node in the third tier

represents the points with mean larger than 292.49 and standard deviation smaller

than 0.47. Till the colored leaf nodes, each node represents the spatial points of which

the quantification results match all the conditions from each tier. For example, the

darker orange leaf node represents the spatial points with a model-level IQR values

larger than the threshold 0.67, SD values larger than 0.47 and mean values larger than

292.49. Through the combination of conditional filters at each tier, we find that some

regions with the same values in one method could be very different in another similar

method, which illustrates the differences of these methods. For instance, even though
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standard deviation and IQR are both used for quantifying the data divergence, the

contrast between darker green regions and lighter green regions demonstrate that they

are very different in IQR values. In order to better support the visual comparison,

we use a hierarchical color scheme:1) different color tones (warm or cold) denote the

differences among mean values; 2) different color hues in the same color tone denote

the differences among standard deviation values; and 3) different color saturations in

the same color hues denote differences among IQR values.

Figure 5.3: For each scatter plot in clockwise order, X axis represents the mean
value over all time slices and Y axis represents standard deviation, kurtosis, entropy,
and skewness respectively. We can see that as the mean value becomes larger, the
entropy, standard deviation, kurtosis and skewness stretch out further.

In conclusion, there are three levels of functionalities in this tool. The funda-

mental functionality, shown as Part D, is to support mapping each data distribution
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within three discrete colors. The middle-level functionality, shown as part C, is to

compare the relationship between two quantification approaches as well as their data

distributions. The high-level functionality, shown as Part B, is to compare more

quantification approaches and visualize their differences.

5.4 Exploring Ensemble-Level Uncertainty

The second tool, shown as Figure 5.4, is used for comparing ensemble-level uncer-

tainty using different quantification approaches. In general, Part A shows the overall

spatial distribution of ensemble-level uncertainty and other parts are used for looking

into the uncertainty in a specific group of points which can be selected and extracted

through Part A and Part B.

To clarify the confusion between ensemble-level and model-level uncertainty quan-

tification in this tool, we give following definitions and notations. A model-level distri-

bution represents the time series in one single model. Based on this definition, for any

model Mi, where i = 1, 2, 3, ..., 18, the feature vector of model Mi at a geographical

point (x, y) is composed as Equation 5.1.

~Mi(x, y) = [µi(·), σi(·), IQRi(·), ...,Kurti(·)]> (5.1)

where µ(·), σ(·), IQR(·),Kurt(·) represents the features we extract from the model-

level distribution using some quantification approaches, such as mean, standard de-

viation, and IQR. Similarly, the ensemble-level uncertainty is computed based on the

model-level features of each model, which can be represented as Equation 5.2:

Ens
〈
~M1(x, y), ~M2(x, y), ..., ~Mi(x, y), ..., ~Mn(x, y)

〉
(5.2)

where n represents the number of models, r represents the row index of the feature

vector ~Mi(x, y), and Ens 〈·〉 represents quantification methods for ensemble-level un-
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Figure 5.4: The tool for exploring ensemble-level uncertainty among ensembles
of climate models. Part(A) visualizes the ensemble-level uncertainty quantified by
various uncertainty quantification metrics and also supports multiple interactions
directly on the map, such as dragging, zoom in and out, and clicking. By clicking
on the left map, the scatter plot in part(C) shows the distribution of climate models
on that clicked point. Each dot represents a single model and its color is grouped by
model settings. In part(B), each vertical axis in the parallel coordinate represents an
uncertainty metric and each line represents a group of points having that metric value.
Part(D) visualizes how each model deviates from the average performance within a
matrix grid where each column represents a climate model and each row represents
a group of points which equals to one line in the parallel coordinate of part(B). The
legend for the color is shown at the bottom of the matrix.

certainty which could be Std 〈·〉, IQR 〈·〉, CV 〈·〉, etc. Therefore, if we extract the

mean from the feature vector of each model-level distribution, we can compute the

ensemble-level uncertainty by computing the standard deviation of the mean values,

which can be written as Std 〈µ1(·), µ2(·), ..., µi(·), ..., µn(·)〉.

To make ensemble-level uncertainty understandable, we take the mean of each

model-level distribution as the only feature of each model. However, users are given

the freedom to change the feature they want to use in describing the model-level dis-

tribution, such as standard deviation, through the select box in Part A. Given the two

maps in Part A, users can directly compare the results by changing different features

in model-level distributions or changing the uncertainty quantification approaches for
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ensemble-level distributions. Also, the two maps are synchronized with each other

for the convenience of comparisons across maps.

To investigate one specific area, users can click any point, which is highlighted as

the blue marker in the left map. They will see the detailed distribution of each model

at that point in the scatter plot of Part C. Each dot in the scatter plot represents a

model and can be colored by model settings, such as GCM and RCM. Similar to part

C in Figure 5.2, domain experts can also change the quantification methods on axis

X and Y such as µ(·), σ(·), IQR(·), etc. The dash star in the middle represents the

mean value of all models over X and Y dimensions.

Afterwards, we extract a set of points which have similar ensemble mean Mean 〈·〉

values. From these points, we want to know if they will still be similar in other

quantification approaches. In the parallel coordinate of part B, we take each axis as a

ensemble-level uncertainty quantification method Ens 〈·〉 and each line represents one

or a set of points. From Figure 5.4, we will see many bifurcate lines indicating that

they have the same values in some methods but become different in other methods.

For instance, in Figure 5.4, the lines gathering around the top of the Mean axis diverge

at the Std axis ranging from 160 to 260. Also, the slope between two neighbor axes

shows their relationship. In definition, standard deviation, IQR and CV are all used

for quantifying data divergence. Since the lines between standard deviation and CV

are nearly parallel in Figure 5.4, we can know that these two approaches are very

similar as their definition. However, for the irregular crossings between axis IQR and

axis CV, we may guess these two methods have different emphasis in quantifying data

divergence and therefore behaved very differently.

Part D is another overview showing the distribution of models. Each row repre-

sents one ore more spatial points in the map and each column represents a model.

Here we use the model-level mean as the feature of each model and then standardize
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the model-level mean value (z-score) of each model with respect to the mean values of

all models. From the standardized values, we can see how far each model is deviated

from their average. Encoded by the diverging color from red to blue, the change

of z-score value shows the change from negatively maximum deviation to positively

maximum deviation. As shown in Figure 5.4, it is easy to see that model 9 has the

darkest red for all rows, i.e. all lines in the parallel coordinate, and therefore telling

that model 9 is positively most deviated.

In conclusion, this tool supports more detailed data analysis and exploration in

comparing differences among models and quantification approaches. It also supports

various types of interactions. Users can mouse over, drag and zoom in or out the

parallel coordinate and the matrix to highlight interested data points.

5.5 Global Climate Assessment Models

We have collaborated with climate scientists from the Joint Global Change Re-

search Institute and Pacific Northwest National Laboratory, the developers of the

Global Change Assessment Model (GCAM). GCAM is a global integrated assess-

ment model combining representations of the global economic, energy, agricultural,

land use and climate systems (Clarke et al. (2007) and Jin and Guo (2009)). It has

made significant contributions to the Inter-governmental Panel on Climate Change

(IPCC) climate change assessment reports.

Running GCAM will generate multiple scenarios. In each scenario, the whole

world is separated into multiple regions. Each region includes multiple variables such

as population, GDP, electricity, and geothermal. And each variable is represented as

a time series which involves both historical data and future prediction data. Based

on such complex data structures, naive data mining techniques, such as K-means, in

clustering algorithms cannot be directly used for data analysis. Particularly, regarding
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its spatial and temporal characteristics, its high dimensional space, which is composed

by regions, time, and variables (e.g. population, GDP, and electricity), cannot be

simply projected to the low dimensional space through dimension reduction skills,

e.g. principle component analysis (PCA). To mitigate such issue, we try to extract a

few data features to describe the original data and then conduct uncertainty analysis

over those derived features.

The goal of this line chart tool, shown as Figure 5.5, is to reflect the disparities

among different regions for any given output variable and also to point out the most

outlying regions (maximum and minimum). Before drawing the line chart, users

need to pick one interested output variable. In the line chart, the x-axis represents

the time and y-axis represents the variable values. For all given scenarios, we compute

the mean value from all regions, which is shown as the black line in the middle of

the line chart. We also compute its standard deviation and draw the three sigma

range (µ ± 3 ∗ σ) as the blue area in the line chart. We can see this range as the

expected disparities among different regions if they follow the Normal distribution.

On the other hand, we draw the maximum and minimum as the red and blue line in

the line chart respectively. Users can mouse over the red or blue line to further check

what are these regions. But in order to properly show more detailed information

without further mousing over the points, we draw the regional polygon, rather than

a dot, in the line chart to show the regional information and only replace the regional

polygon if one or more new regions become the maximum or minimum. For example,

as shown in Figure 5.5, we can see China region in year 1990 at the beginning of the

red line but it changes to India region in year 2020. That means China region has

the maximum population at the beginning and then India region turns into having

maximum population in 2020.

To demonstrate the use of the line chart tool, we take Figure 5.5 as an example.
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Figure 5.5: In the line chart, the x-axis represents time and y-axis represents the
variable values. The blue area shows the expected disparities among regions. The
black line shows the average value of all regions. The red and blue line shows the
maximum and minimum value in the data respectively. The regional polygon in the
red and blue line visualize the geographic information in each dot.

This figure shows the change of populations from 1990 to 2100. From the red and

blue line, you can see that in 1990 China has the largest population while European

Free Trade Association and other 7 regions have the smallest population. And when

it comes to 2020, India replaces China as it has the largest population but European

Free Trade Association and other 7 regions, such as the South Pole, still have the

smallest population. From the black line, we find the average population is very

close to the blue line, which means the majority of all regions is still within small

populations. Also, under the assumption of Normal distribution, the growing blue

area shows that different regions are expected to have larger differences in population.

One more thing worthwhile to note is the relative position of the red/blue line
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and the area chart. As we introduced above, the area chart represents three sigma

range µ ± 3 ∗ σ which can be explained as the expected 99.73 percentile of the data

values if they follow the Normal distribution, while on the other side the red/blue

line represents the actual maximum/minimum value in the data. Based on their

differences, we may infer some interesting distribution patterns. First of all, if both

red and blue line are in the blue area, we may guess that the actual data distribution

is narrower than Normal distribution. Secondly, if both red and blue line are outside

the blue area, we may infer that the actual data distribution is much sparser and

spread than Normal distribution. Last and more often in our actual cases, one of the

red and blue line is inside the area while another line is outside the area, which can

be seen in Figure 5.5. For this case, we may infer that the center in the actual data

distribution is shifted to one side.

5.6 Data Processing and Implementation

In our project, there are two major data sources. The first type of source data is

provided by the Coordinated Regional Climate Downscaling Experiment (CORDEX)

which is sponsored by the World Climate Research Program. The second data with

larger regional scale and more outputs is provided by the Joint Global Change Re-

search Institute and Pacific Northwest National Laboratory. During the collaboration

with two groups of domain experts, they proposed different requirements for the tool,

e.g. one requiring a web application and another one requiring a desktop application,

and therefore we used different techniques to process the data and implement the

tool.

For the first data source, it is estimated from outputs of different combinations of

Global and Regional Climate Models (GCMs and RCMs) and is extracted within the

range of the Niger River basin by the domain experts. The data has three variates:
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precipitation, minimum temperature, and maximum temperature. The GCM-RCM

combinations of CORDEX were run in a historical period from 1951 to 2000. There-

fore, we have 18 combinations of GCMs and RCMs, each of which contains 50 time

slices map data and is generated under a chaotic process. The resulting maps of each

model have a resolution of 30 sec and units of m3/year. Particular technique details

such as the data discretization in computing normalized Shannon entropy are covered

as described in Section 3. To enable the fast and interactive analysis environment in

a light web-based framework, all the data is precomputed and stored on the server

side. The total size of all computed data using seven quantification approaches is

over 30 Gigabytes but will be on-call as request. Parallel processing, such as paral-

lelly drawing the map, is also supported on the server side. In the front-end side,

the libraries we used include JQuery, Bootstrap, D3.js and Leaflet. In the back end,

the server is installed on Apache Tomcat and developed by Java. Particularly, Java

library GDAL is used for parsing the data in GeoTiff format.

For the second data source, compared to the first data source, its size is very

small and hence all computation work can be executed on the fly. Regarding its

complex data structure which has been discussed in section 5.5, we first aggregate

the data in different levels. For example, to compute the mean value of all regions, we

need to aggregate the data for all regions and scenarios. Due to the requirements of

running the tool locally, we implemented this tool using Electron which is a high-level

framework based on JavaScript. In order to avoid the reproduction of some basic data

mining techniques such as PCA and hierarchical clustering, we linked an external call

to the python packages. Since the tool is enabled by the Chromium V8 engine in

nature, all the functionalities are implemented through JavaScript frameworks and

the performance is up to the performance of running machines.
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Chapter 6

CASE STUDIES

In this chapter, I will demonstrate how I integrate the taxonomy studies and developed

systems into practical uncertainty analysis through two case studies. In the first case

study, I aim to help users explore the agreement levels on water scarcity in the Niger

River Basin area among different models as well as assess the future uncertainty. In

the second case study, I will present an initial visualization prototype that combines

data from population and climate simulation as inputs to a patch-based mosquito

spread model for analyzing the potential disease spread vectors and their relationship

to climate variability.

6.1 Prediction of Water Scarcity in Niger River Basin

In this case study, I have developed a geovisual analytics tool for exploring sim-

ulation results under combinations of climate models, climate policies, and future

population growth. Moreover, our tool is capable of ensemble-visualization and al-

lows users to explore agreement levels among different climate models to assess future

uncertainty.

6.1.1 Data Description:

Water Supply Data: The water supply was estimated from outputs of different

combinations of Global (GCMs) and Regional (RCMs) Climate Models. These were

provided by the Coordinated Regional Climate Downscaling Experiment (CORDEX),

a project sponsored by the World Climate Research Program that uses a set of ad-

vanced RCMs to dynamically downscale the latest set of GCM climate scenarios and
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predictions produced within the 5th Coupled Model Intercomparison Project (CMIP5)

(Giorgi and Asrar (2009)). The GCM-RCM combinations of CORDEX were run in

a historical period from 1950 to 2005 and for future climate projections from 2006

to 2100 under the newly developed Representative Concentration Pathways (RCPs)

(Vuuren et al. (2011)). Specifically, for each pixel, water supply was computed as the

sum of the local runoff plus river corridor discharge. The resulting maps of water

supply have a resolution of 30 sec and units of m3/year (as shown in Fig. 6.1 (b).)

Water Demand Data: Water demand data can be measured in multiple ways. For

example, it can be measured in terms of the liters of water per person needed based

on daily usage such as drinking and bathing, or based on usage by different sectors

such as agricultural and industrial demand. In this work, we use the Falkenmark

index ( Falkenmark (1989)), which is an average regional indicator (with pre-defined

thresholds) that measures water demand by the total cubic meters of water avail-

ability per person per year in a region. We have collected and generated historical

population data as well as population projections. Historical population density data

(in person/km2) is collected from the Gridded Population of the World (GPW) v3

from the Socioeconomic Data and Applications Center (SEDAC), Columbia Univer-

sity (resampled to 30 arc-second (approx. 1km) resolution). We projected the spatial

distribution of future population through the year 2100 using two different models.

The first is an exponential growth model assuming that population in the basin will

grow at a given percentage each year. The second model for population projection

is based on the Shared Social Path (SSP) population projections proposed by Moss

et al. (2010). The SSP provides the projected total population for each of the basin

countries at 5 year intervals until 2100.

Water Scarcity Data: Based on the per capita water usage in cubic meters, the

water conditions in a pixel can be categorized per Falkenmark (Falkenmark (1989))
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Figure 6.1: Simulation view for the RCP85 emission policy with MPI-ESM-LR
GCM and CCLM RCM in climatological mean condition in 2050. In clockwise or-
der, starting from the uppper left view, they are (a) Water scarcity map in the 4
scarcity levels using Falkenmark indicator, (b) Water supply map with gauge station
view and river networks, (c) Water demand map with political boundaries using a
1% exponential growth model, and (d) Control panel for composing water scarcity
scenarios.

as: no stress (greater than 1700), stress (between 1000 and 1700), scarcity (between

500 and 1000), and absolute scarcity (less than 500). To apply the Falkenmark

indicator, we (i) calculated the water availability per capita per year as the ratio

between water supply and population layers (in m3/person year), and (ii) classified

the supply demand ratio according to the thresholds of 500, 1000 and 1700 (Fig.

6.1(c) ), which is also how we apply the color scheme in the visualization part.

6.1.2 Visual Analytic View

The goal of our visualization platform is two-fold: 1) to simulate historical and

future scenarios, and; 2) to compare and analyze the uncertainty associated with

these scenarios. Two visualization views are designed accordingly.

The first view is the simulation view (Fig. 6.1), which consists of three map pan-
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els for geographical information (about water supply, demand, and scarcity, resp.)

and one control panel that allows users to enter parameters and generate scenarios.

Quantities of water supply and demand were color-coded in an intuitive manner in

the map panels. The blue color was used (shown in Fig. 6.1(b)) to present water sup-

ply, and tones from deep blue to light blue represent water supply values from large

to small. Similarly, orange colors were used in Fig. 6.1(c) to represent different levels

of water demand. For water scarcity (Fig. 6.1(a)), four colors: light green, yellow,

orange, and red were used to represent increasing levels of water scarcity defined by

the Falkenmark index, with alarming colors such as yellow and red indicating areas

of scarcity.

In addition to basic information about spatial distributions of water supply and

demand, we used interactive visual elements on top of the base layers to provide users

with rich information about data, modeling inputs, and spatial contexts. As shown in

Fig. 6.1(b), we have implemented popup windows to visualize the volume of stream

flows at stream gauge stations, which were used to derive and calibrate the amount

of water supply. Time series of stream flows (m3/s) by month were plotted as line

charts for different climate models.

The control panel (Fig. 6.1(d)) provides a summary of basic model parame-

ters. Data were organized by the modeling year and then by the types of water

demand/supply models. A slide bar and dropdowns were used to allow a user to

select any modeling year and combinations of water supply model and demand mod-

els. To facilitate decision making and communication in a collaborative environment,

we have developed an interface to allow users to store interesting scenarios as model

profiles in a database. We have also implemented other features to facilitate data ex-

ploration. For example, when exploring maps with dragging or zooming, three maps

are synchronized to the same zoom level and view center, which helps in targeting
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problem areas. Users are also allowed to use an “area selection” mode to highlight

regions of interest.

In Fig. 6.2, following the color schemes suggested by Kaye et al. (2012), we used

a two-dimensional color matrix that employs color and hue in order to simultaneously

visualize the average intensity of water scarcity as predicted by the models as well as

uncertainty associated with ensemble predictions using multiple models. The same

four colors as in the simulation view were used to represent average water scarcity.

To visualize the uncertainty from ensemble prediction, we introduce the level of

agreement among model predictions as a measure of uncertainty. We employ tones

as a second channel and use lighter colors to indicate greater uncertainty about an

ensemble-predicted water scarcity level. The agreement level is measured as the

percentage of the dominant water scarcity value out of all predicted water scarcity

values. For example, if 3 out of 5 water demand/supply models predicted “absolute

scarcity” for a cell, and the other two predicted “scarcity” and “stress”, respectively,

the agreement (or certainty) level is 3/5 = 60%. In this case, the color of the cell would

be salmon red, corresponding to the second column and first row in the legend. By

definition, the greater the agreement level, the lower the uncertainty is in an ensemble

prediction. We have also explored using an entropy metric to evaluate uncertainty

of ensemble prediction as the chaos/entropy in the ensemble of model results, which

showed similar spatial patterns of uncertainty as in Fig. 6.2.

6.1.3 Case Studies

We focus on the comparisons of water scarcity computed from combinations of

five different water supply models under the RCP45 emission scenario and one water

demand model (with a 1% exponential growth) as shown in Fig. 6.2. In total, there

are five combinations of water models. We categorize the agreement level into four
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regions: 40%, 60%, 80%, and 100% for each level of water scarcity. The minimum

agreement is 40% because there are only four scarcity levels in five water models and

at least two of them must have the same scarcity level.

Figure 6.2: Agreement view for 5 combinations of water models in 2025. Color
matrix (right) shows the visualization scheme. Each row represents different levels of
water scarcity with color; each column represents different agreement levels (40% to
100%) with hue.

From Fig. 6.3, we can observe that under the assumption of relatively mild future

population growth (1%), there is little water scarcity (or absolute scarcity) over the

majority of in the basin. Notable exceptions are areas around the cities of Niamey

and Sokoto (see also a closer view in Fig. 6.3), where there is significant water scarcity

partly due to the much higher population density there. However, from the tones of

the color, we can observe that the five models reach low levels of agreement on the

water scarcity around the two cities for 2025 projections. This case study exemplifies

the uncertainty associated with ensemble predictions that can be explicitly visualized

with our tool and can be neglected when only mean values of model results are

used. With our tool, we have also identified cases in which the models predict water

scarcity with higher levels of agreement over a longer term. As shown in Fig. 6.3, we

can observe that the water scarcity in city Sokoto (pentagram) and Katsina (X-Star)

are merging with each other. While some surrounding regions (the lighter red regions)
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have higher uncertainty in 2025, they are mostly turning into the absolute scarcity

category with high certainty in the more distant future.

Figure 6.3: The scarcity of two cities, Sokoto and Katsina, is merging from 2025 to
2100.

6.2 Prediction of Malaria Spread in Western Africa

In this case study, I will present an initial visualization prototype that combines

data from population and climate simulations as inputs to a patch-based mosquito

spread model for analyzing potential disease spread vectors and their relationship to

climate variability.

6.2.1 Data Modeling

To simulate and explore the relationship between climate variability and trans-

mission of mosquito borne diseases, we first need to provide a model with a set of

initial conditions. We use the historical population data from the first case study as

the input for the initial amounts of potential human hosts, the historical temperature

and precipitation data as the descriptors of climate variability (which future work
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will replace with a downscaled ensemble of climate simulations for predictive anal-

ysis), and an epidemic model of malaria transmission. Patches in the transmission

model are simplified as geographical rectangles in a region. As input to the model,

each patch uses the average precipitation and temperature value of all pixels con-

tained within a patch. Future work will explore downscaling methods for increased

temporal and spatial resolutions to improve the model efficacy.

The epidemic model used in our study is based on a meta-population mathemat-

ical model for the transmission dynamics of malaria in a community consisting of

multiple patches, which takes into account the effect of temperature (air and water)

and precipitation variability on the hosts and vectors (Agusto et al. (2015)). The

total host population at time t for each patch i, denoted by N
(i)
H (t), and is split into

four epidemiological states, namely mutually-exclusive susceptible S
(i)
H (t), exposed

(with no clinical symptoms of malaria) E
(i)
H (t), infectious I

(i)
H (t) and recovered in-

dividuals R
(i)
H (t), where N

(i)
H (t) = S

(i)
H (t) + E

(i)
H (t) + I

(i)
H (t) + R

(i)
H (t). Similarly, the

total population for vectors at time t for each patch i, denoted by N
(i)
V (t), is subdi-

vided into three compartments where L
(i)
V denotes the immature mosquitoes (eggs,

larvae and pupae), adult mosquitoes S
(i)
V (t), and infectious mosquitoes I

(i)
V (t). Hence,

N
(i)
V (t) = L

(i)
V (t) + S

(i)
V (t) + I

(i)
V (t). The equations for the patch model considered

in this study take the simplified form of the deterministic system of non-linear dif-

ferential equations given by Agusto et al. (2015) within the multi-patch framework.

Though there is a large number of parameters in this model, we primarily use the val-

ues suggested by (Agusto et al. (2015)) and only tweak the climatic variables based

on historical data. In order to solve the differential equations based on the web-

based system, related computation is parallely performed by the support of Parallel

Javascript library (Savitzky (2016)) and Numeric Javascript library (Loisel (2016)).
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Figure 6.4: Overview of the default system. The top left map shows the spatial
distribution of infected humans. The patch highlighted by the blue rectangle is iden-
tified as the center of disease and population diffusion. The lower left two maps show
the distribution of temperature and precipitation which can also be switched to line
chart views showing their temporal changes. The right line charts show the changing
amount of seven states in host and vectors by the time. The lower right sliders are
used for changing the time by months or by years.

6.2.2 Visual Analytic View

Our prototype system consists of two visualization elements: line charts and map

views. Line charts are used for representing the change of each model variable over

the time. Map views are used for showing the disease transmission over space or

temperature or precipitation distributions, as shown in Figure 6.4. In the geographic

views, each patch is a semi-transparent rectangle on the map. In the largest map,

patches in red denote higher volumes of infectious humans and patches in green denote

lower volumes of infectious human. Gray patches represent regions where population

data is unavailable, and future work will explore methods for automatically estimating

population from satellite imagery. For the other two maps, the left map shows the

temperature distribution with orange representing higher temperatures and yellow
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lower temperatures. The right map shows the precipitation with darker blue being

larger amounts of precipitation. To see the temporal trend of the temperature or

precipitation, users may click the radio button above the two maps and switch between

the map view and line chart view.

The right part of our interface, Figure 6.4, consists of seven line charts each

showing the host and vector states over time (these are the states previously defined

in Section 6.2.1). The x-axis represents time and the y-axis represents the amount

of the host or vector in that state. Each line in the line charts represents a patch

and is distinguished by the color. From top to bottom, these states are infectious

host, susceptible host, exposed host, recovered host, adult vector, infected vector and

immature vector. Despite the visual clutter in the line charts, users can mouse over

the patch on the map to highlight the corresponding line.

6.2.3 Case Studies

Our current prototype focuses on the West Africa region near the Niger basin

and shows regular patterns of temperature and precipitation. What is of interest is

exploring how changes in climate will impact the resultant amount of malaria cases. In

the epidemic model, the influence from the temperature are directly projected onto the

natural mortality rate of immature mosquitoes, egg deposition rate and maturation

rate, which will further affect the amount of infected vectors and the infectious host.

Therefore, it is reasonable to expect that the change of adult and immature vectors,

even for the infected host, may follow the change of temperature or precipitation.

Also, due to the mobility of the population among patches, which is also considered

in the epidemic model, we can make a bold presumption that the infectious host or

infected vectors will also diffuse or transmit among patches. To validate the above

assumptions, the model visualization is explored by modeling experts.
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Figure 6.5: Difference maps for the infected vector in March 2000 between simu-
lations with historical temperature (left) and 2 ◦C higher temperature (right). The
color in the right map from orange to green represents the positive growth rate 1000
to negative growth rate 2000.

Parameter Settings: As a simulation system, parameter settings and data pro-

cessing plays an important role in generating the simulated results. In this model,

humans and mosquitoes are considered as the disease host and vectors respectively.

All parameters, except the initial total of hosts, vectors, initial infectious hosts, in-

fected vectors, temperature and precipitation, are fixed using the values suggested

by Agusto et al. (2015). The amount of vectors is proportional to the magnitude

of the total hosts and can be modified as more mosquito collection reports are pro-

vided. The amount of initial infectious hosts and infected mosquitoes are set as ten

percent of the total amount of host and vector separately. The West Africa region is

uniformly split into 24 patches and they are numbered from 1 to 24 for convenience

from left to right and from top to bottom. During the computation, temperature

and precipitation are loaded from the collected historical data directly. The step size

during the integration of the differential equations is taken as 10−6.

Simulation Results And Analysis: Figure 6.4 shows the default visualization

at the beginning of the simulation. The epidemic map on the top-left shows the

distribution of initial infectious humans. As an explorative trial, Figure 6.5 shows

a simple first pass difference map where the user simply compares what happens to

disease transmission if the average temperature increases by 2 ◦C. We can see more

infected vectors emerge in patch 19 and less infected vectors in patch 18, 20 and 21.
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Chapter 7

CONCLUSION AND FUTURE WORK

The goal of this work is bidirectional: 1) to help visualization scientists correctly

recognize the role of domain experts in uncertainty analysis, and; 2) to help domain

experts understand the uncertainty visualization and quantification techniques in the

visualization field. To achieve this goal, I have conducted several surveys and inter-

views as well as developed three web-based visualization frameworks. The surveys

include a long-term interview and two short-term surveys. The long-term interview

occurred over one and half years with weekly face-to-face and email meetings. The

short-term surveys include a thorough literature review and an online questionnaire.

In the literature review, I have summarized and compared three types of uncertainty

quantification approaches: descriptive statistics, inferential statistics and information

theory. Related visualization approaches are also summarized and analyzed in the

taxonomy. Through the questionnaire, I have collected some domain gaps in uncer-

tainty analysis, and also characterized several uncertainty quantification and visual-

ization problems. The implementation of those web-based visualization frameworks

is a practice of the knowledge from the previous surveys. During the implementation,

each step involves the choice of visualization and quantification methods, how to let

the domain experts engage in uncertainty analysis, and how to take advantage of the

domain knowledge to explain the uncertainty analysis results. In the first case study,

I presented a visual analytics framework for analyzing water scarcity in the Niger

River Basin. Basin-wide water demand and supply as well as derived water scarcity

are visualized using interactive maps, which can provide the user with auxiliary infor-

mation, such as the climatological input, population distribution, and geographical
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context within which water scarcity occurs. More importantly, this tool can assist

users in exploring different future scenarios by allowing multiple water supply and

demand models to be used for predicting future patterns of water scarcity. In the

second case study, I have developed a prototype system which provides a method for

linking multi-source data with disease transmission models. The goal of this tool is to

develop a way to explore the impact of future climate variability. Thus, future work

will explore the creation of disease risk maps using an ensemble of climate simulations

as input to the model. In conclusion, each tool presented in the work successfully

allows users to explore the model data from multiple perspectives and effectively vi-

sualizes uncertainty information in intuitive ways, which demonstrates the usefulness

of the taxonomy and effectiveness of the uncertainty analysis.

There are many extensions and work that are worth further exploration. Given the

time sensitivity of the literature review, the taxonomy on this topic should be updated

regularly. More detailed analysis over the three types of quantification methods should

be added in future. Also, if possible, the online questionnaire should have more

participants in order to find more insights into the domain gaps between the climate

research and visualization field. The personal bias in the questionnaire from the

author also need to be reduced. The structure and form of the questionnaire should

be improved by taking the advice from experts in related fields. For the implemented

tools, more new features could be added. For example, because the tools are all

developed as web-based frameworks, it is possible to extend them for different devices

such as tablet, cell phones, etc. Other features, such as the similarity analysis over

ensembles of features, linking and coupling the implemented visualization tools into

an integrated system, and more organized visual components, could be added.
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Background Question 

1. What is your major research area? 

 

2. Have you ever used any tool or worked on any research project which involves the 

quantification and visualization of uncertainty? 

 

3. Can you briefly tell us your goals while conducting uncertainty analysis? (Specific to your 

field) 

 

 

Questions in Visualization 

1. What are the typical types of data you are visualizing? 

79



 

2. How many dimensions does the data have? 

 

3. Sequential color scheme: 

 

4. Diverging color scheme: 

 

5. Qualitative color scheme: 

 80



6. Which of following uncertainty visualizations have you ever used? 

 

7. Given the visual variables reported in the pictures below the answers, which of the following 

have you ever felt helpful in representing uncertainty? (Ref: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6327255) 

 

8. Which of the following problems have you ever met in your research? (Ref: 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7061479) 
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9. In your experience, which of the visual variables mentioned above have caused problems for 

you to understand the uncertainty information? 

 

10. Can you mention an example where you had problems using the above visual variables or 

visualizations during uncertainty analysis? 
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11. In your experience, which of the visual variables mentioned above helped you quickly 

understand the uncertainty information in your data? 

 

 

Questions in Uncertainty Quantification 

1. Which of the following metrics have you used in the quantification of uncertainty or 

comparison of ensemble members or simulation results? 

 

2. Are there two or three metrics that you have used more frequently? If so, can you explain why? 

You can explain your reasons based on data types, objects and distribution characteristics or the 
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specific analysis requirements, etc.

 

3. Are there any uncertainty metrics which are very helpful in your area but not commonly used 

in other areas? If so, can you mention one of them and explain why? 

 

4. Are there other specific problems related to the quantification of uncertainty that you would 

like to highlight? Problems can be related to data preprocessing (e.g. discretizing data for specific 

metrics such as entropy), justify full uncertainty boundary, the computation performance, 

accuracy, etc. 

 

5. Are you aware of the assumption of normal distribution in using moments, e.g. mean and 

standard deviation? 
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6. Are you aware of that moments are limited to portray the distribution modality? For example, 

shown as the figure below, three distributions have very close summary statistics but very 

different modality characteristics. 

 

7. Are you aware of that the selection of parameters in estimating probability distribution will 

change the results? 

 

8. In a Bayesian framework, are you aware of the selection of prior distribution, likelihood 

function and posterior function would influence the results? 

 

9. Are you aware of the unit problem when using entropy to quantify uncertainty? 

 

10. Are you aware of the importance of uncertainty boundary in quantifying uncertainty? 
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Questions in Analyzing Uncertainty Quantification and Visualization 

1. In your experience, how frequently do you think the uncertainty quantification results cannot 

be verified with your domain knowledge? 

 

2. In your experience, how do you think the chosen visualization metrics helped you to reach the 

goals? 

 

3. In your experience, which of the followings prevented you from fully understanding the 

outcomes of the application of an uncertainty metric that you used in the past? 

 

4. In your experience, what benefits can you recall that you obtained from the uncertainty 

analysis? For example: I can gain a big picture of the data; I can characterize the uncertainty of a 
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crucial parameter of a numerical model; I can explain to stakeholders why predictions or 

estimation of certain parameters/variables are uncertain. 

 

5. In your experience, are you aware of the uncertainty propagation during the uncertainty 

quantification and visualization process? Uncertainty can be propagated through loss of data 

while processing data or loss of details while visualization, etc. 

 

6. If Yes above, did you involve them into your analysis? Can you mention an example? 
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