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ABSTRACT 

For many years now, researchers have documented evidence of fractal scaling in 

psychological time series.  Explanations of fractal scaling have come from many sources 

but those that have gained the most traction in the literature are theories that suggest 

fractal scaling originates from the interactions among the multiple scales that make up 

behavior.  Those theories, originating in the study of dynamical systems, suffer from the 

limitation that fractal analysis reveals only indirect evidence of multiscale interactions.  

Multiscale interactions must be demonstrated directly because there are many means to 

generate fractal properties.  In two experiments, participants performed a pursuit tracking 

task while I recorded multiple behavioral and physiological time series.  A new analytical 

technique, multiscale lagged regression, was introduced to capture how those many 

psychological time series coordinate across multiple scales and time.  The results were 

surprising in that coordination among psychological time series tends to be oscillatory in 

nature, even when the series are not oscillatory themselves.  Those and other results 

demonstrate the existence of multiscale interactions in psychological systems. 
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Multiscale Interactions in Psychological Systems 

For over forty years now, researchers have found evidence that humans exhibit 

fractal scaling (e.g., Gilden, Thornton, & Mallon, 1995; Ihlen & Vereijken, 2010; Kello 

et al., 2010; Likens, Fine, Amazeen, & Amazeen, 2015; Van Orden, Holden, & Turvey, 

2003; Voss & Clarke, 1975).  Fractal scaling is a curious phenomenon found in the 

roughness of psychological time series, and was initially intriguing because roughness is 

a defining feature of many natural phenomena (e.g., coastlines and stock markets; 

Mandelbrot, 1982).  Initial results in cognitive science (e.g., Gilden et al., 1995) were 

followed by a deluge of related experiments, claiming the presence of fractal scaling in 

virtually every aspect of human behavior ranging from tapping one’s finger (e.g., Chen, 

Ding, & Kelso, 1997; Lemoine, Torre, & Delignieres, 2006) to recalling members of a 

category (Rhodes & Turvey, 2007; Szary, Dale, Kello, & Rhodes, 2015).  The ubiquity of 

fractals prompted questions about meaning and significance.  Those questions were first 

answered by physiologists who showed fractal scaling co-varied with health (e.g., 

Hausdorff et al., 1997; Ivanov, 2001) and later by psychologists who found that fractal 

scaling predicted performance in many psychological experiments (e.g., Stephen, 

Broncoddo, Magnusson, & Dixon, 2009; Stephen & Anastas, 2011).  Whereas no single 

model of fractal scaling has reached paradigmatic status, the empirical evidence favors 

interpretations with two key components: self organization and coordination across 

numerous scales of analysis.  To date, however, empirical evidence of multiscale 

interactions has remained indirect (e.g., Kelty-Stephen, Palatinus, Saltzman, & Dixon, 

2013; Ihlen & Vereijken, 2010; Likens, Amazeen, Stevens, Galloway, & Gorman 2014).  

The primary purpose of this dissertation is to capture multiscale coordination directly.  
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However, multiscale interactions must be grounded in the other aspects of psychological 

behavior, and so, the secondary aim is to show that multiscale interaction is an 

inseparable part of intentional forms of behavior.   

Fractals in Psychological Time Series  

 Fractal scaling is the starting point for theoretical arguments concerning 

multiscale interactions in psychological performance.  In recent literature, researchers 

have treated fractal time series as the necessary and sufficient evidence to support the 

hypothesis that psychological performances are best conceived as emerging from 

nonlinear interactions across the multiple scales that make up even single acts (e.g., 

Davis, Brooks, & Dixon, 2016; Dixon, Holden, Mirman, & Stephen, 2012; Stephen, et 

al., 2012; Wijnants, 2014; c.f.  Wagenmakers, Farrell, & Ratcliff, 2004; Wagenmakers, 

van der Maas, & Farrell, 2012).  Given the gravity of that claim, it is important to answer 

the two following questions: (1) what does it mean for a psychological time series to be 

fractal; and (2) why do fractal time series carry such importance in theoretical discussions 

of psychological variability?  There is no easy path from roughness in stock markets to 

roughness in reaction times, but the following sections provide a guided tour to the 

development of theories about fractal scaling in psychology.  The tour involves some 

necessary stops outside the psychological literature, but eventually arrives at the 

conclusion that fractal scaling in human behavior implies multiscale interactions. 

What it Means to be Fractal 

 The term fractal was coined by Mandelbrot (1967; 1975) to describe natural 

patterns that cannot be accurately described using Euclidean forms such as circles and 

squares.  Euclidean surfaces and solids fail to describe the rich variability inherent in 
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nature because, as Mandelbrot (1967; 1975; 1982) noted, nature is rough and irregular.  

The terms rough and irregular are also appropriate for observations of psychological 

performance.  Figure 1 (a) is a time series obtained when a participant repeatedly 

estimated the passing of one second and depicts the roughness typical in psychological 

time series (Wagenmakers et al., 2004).  The time estimation series in Figure 1 (a) also 

has other important fractal properties – self-similarity and scale-invariance.  Those 

properties can be casually observed by focusing on a reduced number of observations 

relative to the entire time series observations (i.e., reducing scale size), as shown in 

subplots of Figure 1 (a).  Self-similarity is evident in the fact that the structure of a 

smaller number of observations resembles the structure of the full series.  Scale-

invariance follows because, if the variability in a time series is invariant to changes in 

scale size, then no scale acts as the privileged scale of analysis.   
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Figure 1.  (a) Time estimation series for one participant from 

Wagenmakers et al., 2004.  The subplots show the self-similarity when the 

time series is halved and quartered.  (b) Detrended fluctuation analysis 

(see Appendix A) of the time series in (a).  The subplot in (b) is the 

autocorrelation function for the time series in (a). 

!

! !
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Fortunately, researchers do not have to rely on qualitative judgments like those 

just given.  Like other natural phenomena of interest to Mandelbrot (1982), the roughness 

in psychological time series is quantifiable (see Eke, Hermann, Kocsis, & Kozak, 2002; 

Beran, 1994 for general introductions to fractal analysis).  Figure 1 (b) demonstrates the 

quantification of the roughness in psychological time series as a form of self-similar scale 

invariance.  Figure 1 (b) is the output of a procedure called detrended fluctuation analysis 

(DFA).  The procedure is described fully in the Appendix A, but for now, the important 

point to make is that the ordinate represents a measure of variability and the abscissa is 

scale size.  The linear trend implies that variability in time estimation is invariant over 

transformation of scale and the slope of that trend (HDFA = 0.98, R2 = 0.996) is the Hurst 

exponent, H, a measure of self-similarity.  In general, H is defined on the interval (0,1) 

where H = 0.50 indicates a random, white noise process.  Values of H on the interval 

(0.50, 1.0) indicate fractal scaling where the time series exhibits self-similarity in 

variability but also a slowly decaying, positive autocorrelation function [subplot of Figure 

1 (b)].  Values of H on the interval (0, 0.50) imply rapidly decaying, negative 

autocorrelations.  Evaluating HDFA against those criteria reveals the fractal nature implied 

by the structure in Figure 1 (a).  Furthermore, that observation – that time estimation 

series have fractal properties – provides an answer to question one from above:  

Psychological time series are fractal when they exhibit an irregular form of roughness 

characterized by self-similar scale-invariance.  The following sections elaborate an 

answer to question two. 
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The Significance of Fractals in Psychological Time Series 

Meaning from Ubiquity.  One reason fractal properties seem important for 

psychological theorizing is the seeming ubiquity with which they are observed (e.g., 

Kello, Anderson, Holden, & Van Orden, 2008).  In addition to time estimation, fractals 

arise in psychological time series time series when participants react to both simple and 

complex stimuli (e.g., Aks, Zelinsky, & Sprott, 2002; Gilden, Thornton, & Mallon, 1995; 

Van Orden, Holden, & Turvey, 2003);  search for hidden objects (e.g., Stephen & 

Anastas, 2011; Stephen & Mirman, 2010); learn rules and solve problems (Stephen, 

Boncoddo, Magnuson, & Dixon, 2009; Anastas, Stephen, & Dixon, 2011; Stephen, 

Anastas, & Dixon, 2012); or even when people perform complicated tasks like making 

jewelry (e.g., Nonaka & Bril, 2014) or steering a vehicle (Likens, Fine, Amazeen, and 

Amazeen, 2015).  Moreover, self-similar structure appears in a host of physiological 

outcome variables such as the time difference between successive heart beats (e.g., Peng 

et al., 1995; Ivanov, 2001), the time between successive breaths (e.g., Peng et al., 2002; 

West, Griffin, Frederick, & Moon, 2005), and the length of strides while walking 

(Hausdorff et al., 1996; Hausdorff et al., 2001).  Fractal properties are so common in 

individual performances and processes that some researchers called them pervasive and 

ubiquitous (e.g., Kello, Anderson, Holden, & Van Orden, 2008; Likens et al., 2015; Van 

Orden, Holden, & Turvey, 2003).  Taken alone, those findings might give the impression 

that fractal scaling is a purely individual level phenomenon, but fractal properties have 

also been observed in a number of social contexts where people coordinate their bodies in 

both rhythmic and non-rhythmic ways (e.g., Coey, Washburn, Hasselbrock, & 

Richardson, 2016; Davis, Brooks, & Dixon, 2016; Demos, Chaffin, & Kant, 2014; Fine, 
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Likens, Amazeen, & Amazeen, 2015; Likens, Amazeen, Stevens, Galloway, & Gorman, 

2014;  Marmelat & Delignieres, 2012).  The implication is that fractal properties emerge 

within the superordinate structure of coordinated action, whether or not the action 

involves one more people.  Fractal properties do appear pervasive (Kello et al., 2008). 

The many findings reported in this section are by no means exhaustive but offer a 

reasonable glimpse into breadth of studies implicating fractal scaling as “The Provenance 

of Correlations in Psychological Data” (Thornton & Gilden, 2005).  The seeming 

ubiquity of fractal results implies that fractal properties are psychological properties; 

however, that statement is somewhat unproductive.  Clearly, documenting a phenomenon 

is a vital step in establishing that phenomenon as psychological behavior worthy of study, 

but continued interest requires making contact with other psychologically meaningful 

variables (Likens et al., 2015). 

 Fractal properties and psychological constructs.  The fact that fractal 

properties appear so often in psychological time series leads to deeper questions 

concerning their meaning and significance.  The preceding section gave many examples 

of fractal scaling involving both individuals and groups, but, as presented, those findings 

are just facts.  What relevance do fractal properties hold for constructs that are of interest 

to psychologists?  The vast literature on fractal scaling has offered several tentative 

answers.   

 One case for relevance originates physiological literature, where it is well 

established that the degree of fractal scaling is associated with health.  Earliest 

observations of that relationship were made concerning the cardiac behavior (Peng et al., 

2001; Ivanov et al., 2001).  Specifically, the literature has noted two important results: (1) 
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heat rate time series that exhibit fractal properties are indicative of health, and (2) when 

the observed physiological process is, on average, fractal, the variability around that 

average provides further diagnostic advantage.  More, but still fractal, variability is 

associated with a healthier heart (e.g., Ivanov et al., 2001), but cardiac activity is not the 

only physiological process that exhibits fractal behavior in its healthy state.  Healthy 

breathing rates also tend to be fractal (e.g., Peng et al., 2002), as do postural sway (e.g., 

Collins & DeLuca, 1995) and neural patterns (Voytek et al., 2015).  From these 

examples, one can infer that the fractal properties are relevant to the physiological 

domain because they characterize the health of the physiological system in question.  The 

fact that fractal properties distinguish so many instances of physical health leads one to 

wonder whether fractal analysis of behavioral time series might yield similar benefits.   

 There is now considerable evidence that fractality is an important psychological 

property, not only because of its ubiquity, but because self-similarity is an important 

predictor of other performance data.  Fractal variability seems to help people make sense 

of the vast stimulus array.  Fractal movements while wielding an object improves 

perception of that object’s kinematic properties (e.g., Stephen, Arzamarksi, & Michaels, 

2010; Stephen & Hajnal, 2011; Turvey & Carello, 2011).  Searching arrays in a fractal 

manner increases the speed with which people find objects (e.g., Stephen & Anastas, 

2011).  Fractal fluctuations in posture reflect subtle changes in perceptual intent (e.g., 

Kelty-Stephen & Dixon, 2014; Palatinus, Kelty-Stephen, Kinsella-Shaw, Carello, & 

Turvey, 2014).  Fractality has also been used as an important index of short- and long-

term learning:  Increases in fractality are associated with development of insight in novel 

problem solving (e.g., Stephen, Broncoddo, Magnusson, & Dixon, 2009), and fractal 
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scaling has categorically distinguished more than one form of expertise (e.g., Nonaka & 

Bril, 2014; Nouritt-Lucas, Tossa, Zelic, & Delignieres, 2015).  As hinted earlier, fractal 

properties also appear to be important for coordinating with other people (e.g., Fine et al., 

2014; Marmelat & Delignieres, 2012).  Suffice to say, fractal properties are important 

aspects of human behavior, but despite the many associations among fractal properties, 

health, perceiving, acting, and learning, a question looms large: why should it be that any 

of these processes exhibit such a peculiar form of behavior in the first place?   

 Fractal properties and multiscale interactions.  So far, the discussion has given 

many examples that illustrate the ubiquity of fractal scaling in psychological time series 

as well as many of the documented relationships between fractal scaling and other 

meaningful aspects of behavior.  Those examples, more or less, represent the state of art 

concerning the significance of fractal scaling in the study of human behavior.  Genuinely 

understanding the significance of fractals in psychology requires pushing below those 

surface level descriptions, and below the surface is the development and test of 

hypotheses that explain the origin of roughness in psychological time series.  In the best 

of worlds, those hypotheses would lead to domain-general knowledge regarding 

psychological function.   

To date, the literature has offered and debated several possible explanations of 

fractal scaling in psychological time series (e.g., Diniz et al., 2010; Gilden, 2001; 

Thornton & Gilden, 2005; Ihlen & Vereijken, 2010; Kello et al., 2010; Torre & 

Wagenmakers, 2009; Van Orden et al., 2003; Wagenmakers et al., 2004).  First, the so-

called multiscale randomness hypothesis suggests that fractal scaling is nothing more 

than the superposition of many unrelated sources of noise, captured at the point of 
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measurement (e.g., Gardner, 1978; Hausdorff & Peng, 1996; Wagenmakers et al., 2004).  

Second, the shifting strategy (aka regime-switching) model suggests that fractal variation 

in psychological processes is an artifact of nonstationarity in the data.  The 

nonstationarity stems from changes in the mean that in turn reflect temporal variation in 

strategy.  The example given in Wagenmakers et al.  (2004) is of a participant estimating 

time intervals – changes in the mean occur when the person switches between imagining 

a clock and simply counting digits.   

Third, the two-component hypothesis proposes that noise measured in cognitive 

experiments has two sources (Gilden, 2001; Thornton & Gilden, 2005).  One is a 

cognitive source of fractal scaling that emerges from dynamical interactions of cognitive 

processes.  Examples processes include time-keepers and memory structure.  The other 

source is a white noise component that reflects the contamination of cognitive emissions 

of fractal scaling by motor noise involved in generating observable behavior.  The latter 

of the two sources became necessary to account for flat high frequency regions often 

observed in the power spectra of response time series (see Holden, Choi, Amazeen, & 

Van Orden, 2011, for an alternative explanation).  Fourth, the dynamical systems (aka 

interaction-dominant) hypothesis suggests that fractal scaling emerges from complex 

interactions among components that make up a psychological system (Ihlen & Vereijken, 

2010; Van Orden et al., 2003: Wijnants, 2014).  The hypothesis further implies that 

control of behavior is distributed among the system’s components, a form of control that 

emerges from coordination across many different time scales, ranging from the rapid time 

scales of neural oscillations to the relatively slow time scales of the experiment and 

beyond.  Champions of those – and other – approaches have argued their case for two 



	

	

	

11 

decades now and articulated the strengths and weaknesses in generous detail.  Those 

arguments will not be recapitulated here (c.f.  Van Orden et al., 2003; Van Orden & 

Stephen, 2012; Wagenmakers et al., 2004; Wagenmakers et al., 2012).  Rather, the 

current work focuses on what has long been a major weakness in the dynamical systems 

approach – demonstration of the multiscale interactions that is essential to its future 

theoretical success. 

A cornerstone of the dynamical systems hypothesis is the idea that fractal 

properties self-organize from coordination among the many spatial and temporal scales 

that compose psychological systems (Davis et al., 2016; Ihlen & Vereijken, 2010; Ihlen 

& Vereijken, 2013a; Ihlen & Vereijken, 2013b; Kelty-Stephen et al., 2013; Likens et al., 

2014; Likens et al., 2016; Stephen, Anastas, & Dixon, 2012; Wijnants, Cox, Hasselman, 

Bosman, & Van Orden, 2012; Wijnants, 2014).  The principal evidence in support of that 

hypothesis comes from the dozens of studies reported so far concerning fractal scaling in 

psychological time series.  However, fractal findings, while necessary, are not sufficient 

to substantiate claims concerning multiscale interactions, despite claims to the contrary 

(Van Orden et al., 2003).   

Overview 

The primary purpose of this dissertation is to document direct evidence of 

multiscale interactions among many of the components that make up a psychological act.  

For over a decade, researchers have claimed multiscale interactions are the source of 

fractal properties in psychological time series but have yet to demonstrate those 

interactions directly.  Thus, satisfying that purpose fills a large gap in the literature.  

Furthermore, it has been proposed that fractal properties represent the distributed form of 



	

	

	

12 

control inherent in complex, dynamical systems (Van Orden et al., 2003; 2005; Wijants, 

2014).  If that is true, and if coordination across scales can be quantified, then the degree 

of coordination across scales should predict psychological performances.   

In two experiments, participants performed simple pursuit-tracking tasks while 

multiple behavioral and physiological measurements were recorded.  The general task 

involved participants coordinating their limbs with oscillatory stimuli (Strayer & 

Johnson, 2001).  Experiment 1 probed how multiscale coordination among motor, 

respiratory, and cardiac systems predicts one’s ability to track and coordinate with 

oscillatory stimuli.  Experiment 2 further explored how multiscale interactions among 

brain regions, eye-movements, and cardiac activity combine to generate performances in 

task context similar to Experiment 1.   

The tracking task was chosen based on several considerations.  First, the task was 

continuous so that behavior among many interacting systems could be time aligned.  

Second, the task was simple so that dynamics revealed as multiscale interactions could be 

cast within the context of an easy-to-understand performance variable.  Simplicity in task 

also permits generalization to more complicated situations.  Third, the task was 

commonly used in the literature to avoid concern that results regarding multiscale 

interactions might stem from some specialized task.  

The task of characterizing the coordination among those different systems at 

many time scales is no small feat.  Although many methods exist for analyzing time 

series under assumptions of linearity (e.g., Hill, Griffiths, & Lim, 2011) and nonlinearity 

(e.g., Riley & Van Orden, 2005), very few methods exist that characterize the co-

evolution of a system’s components.  Notable exceptions are those developed in the 
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economics (e.g., Vector Error Correction Modeling; Hill et al., 2011) and dynamical 

systems (e.g., joint recurrence quantification analysis, Webber & Marwan, 2015) 

literature.  However, the development of this project made clear the inadequacy of 

existing methods in capturing multiscale relationships; autoregressive, distributed lag 

models captured serial dependence but not multiscale relationships.  Thus, the current 

work introduces a new quantitative method capable of unraveling coordination across 

many temporal scales.  The method is introduced in Appendix A along with a number of 

simulations that showcase the potential of the tool.    
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Experiment 1 

Participants performed a pursuit-tracking experiment in three conditions: one 

control condition and two experimental conditions that involved a manipulation of 

movement frequency or respiratory rate as a perturbation within the trial.  The aim of the 

experiment was to demonstrate multiscale interactions, but also to examine how 

multiscale interactions relate to performance.  In pursuit-tracking tasks, the usual 

variables of interest are limited to the tracking signal and the tracked movement of the 

participant.  That is, researchers derive performance metrics based on the correspondence 

between the target tracking signal and participant behavior.  Several measurements of 

performance could be used for the purpose of assessment (e.g., root mean square error, 

Strayer & Johnston, 2001; absolute integrated error, Pew, 1974); however, the oscillatory 

nature of the task suggests this work may benefit from the work that has been conducted 

on oscillatory dynamics in motor control.  Relative phase measures, standard deviation of 

relative phase (SDRP), have been and continue to be used extensively to measure 

stability of coordination (e.g., Amazeen, Amazeen, & Turvey, 1998; Haken, Kelso, & 

Bunz, 1985; Kelso, 1984; Kelso, 1995; Lamb & Stöckl, 2014).  Thus, SDRP measures 

should be well suited to the task of characterizing performance in a pursuit-tracking.  The 

expectation was that SDRP would be higher during the perturbation than during the non-

perturbation periods.   

To explore multiscale interactions, several additional measures were recorded 

while participants performed the pursuit-tracking task.  Those measures included several 

physiological measures (e.g., respiratory rate and heart rate) and postural sway.  

Multiscale lagged regression (MLR), the new analytic technique introduced in Appendix 
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A of this manuscript, was applied pairwise to those measurements during three task 

segments corresponding to the pre-, during-, and the post-perturbation periods.  The 

general expectation is that MLR will uncover meaningful patterns that predict pursuit-

tracking performance.  Specific patterns that will be revealed are unknown due to the 

novelty of this technique, but correspondences can be understood from the simulations in 

Appendix A.   

Method 

Participants 

 Twenty participants (Male = 14, MAge = 21.85, SDAge = 3.94) from Arizona State 

University volunteered to participate in this study.  Participants were all non-smokers and 

reported no injuries to limbs or trunk and no known cardiopulmonary disease.  All 

participants reported normal or corrected to normal vision and 18 were right-handed by 

self-report.  Data from three participants were excluded from further analysis because of 

equipment failures not detected until after data collection was complete.  Data from two 

participants were excluded because participants failed to comply with task instructions.   

Apparatus and Procedure 

 Experiment 1 involved a pursuit-tracking task similar to that found in Strayer and 

Johnston (2001).  The task required participants to coordinate their movements, depicted 

as an oscillating circle on a computer screen, with the movements of another circle 

controlled by a computer program (see Figure 2a, c).   
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Figure 2. Depiction of the onscreen display used in Experiment 1. (a) 

Participants coordinated with movements of a circle on a display during 

Experiment 1.  (b) A time series representation of the path involved during 

the Motion Path Perturbation condition.  (c) Participant motion during all 

conditions of the experiment.   

 

Participants were asked to maintain a 0° phase relationship between the circle 

they controlled and the computer-controlled circle.  Perfect performance meant that red 

and blue circles in Figure 2a completely overlapped at each moment in time.  The path of 

both the computer- and participant-controlled circles was constrained to the horizontal 

plane.  The path of the participant-controlled circle was mapped to the lateral position of 

the participant’s hand as measured by an Optotrak 3020 camera system.  Participants 

were instructed to control the position of the circle by using external and internal rotation 
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about the elbow to move a motion-tracked manipulandum (e.g., Figure 2c).  Participants 

were instructed to rest their arm such that the forearm was parallel with the floor.  

Electromyogram activity corresponding to the external rotation was measured from the 

infraspinatus fossa located just below the spine of the scapula.  Unfortunately, 

participants failed to keep elbows planted in the fixed position required by the 

experiment, resulting in unreliable EMG data that was not analyzed further.  Postural 

sway was captured by measuring movement from a marker placed on seventh cervical 

vertebrae.  Respiratory flow was measured using a pneumotachometer (Hans Rudolph, 

Inc., Kansas City, MO), and electrocardiogram activity was recorded using a Lead III 

electrocardiogram from a BIOPAC MP150 (Goleta, CA).  Those various data sources 

were synchronized at the hardware level within the Optotrak Data Acquisition Unit.  All 

data were sampled at 500 Hz to accommodate muscular activity up to 250 Hz.   

 The task was performed under three perturbation conditions, discussed in the next 

sections.  Prior to performing any of the conditions, participants were given a practice 

trial where they practiced coordinating with the moving circle for seven minutes.  During 

the practice trial, the circle oscillated at 1.0 Hz with the peak to peak lateral distance of 

about 25 cm (about 14° of visual arc).  The duration of the practice trial was chosen for 

consistency with Strayer and Johnson (2001).   

 Control condition.  In the control condition, participants were instructed to 

simply match the lateral movement of the oscillating stimulus (i.e., a red circle).  The 

lateral position of the computer-controlled circle was updated once every 33 ms from a 1 

Hz sine wave.  The trial lasted 15 minutes.  Trial length was also chosen for consistency 

with Strayer & Johnston (2001).   



	

	

	

18 

Movement perturbation condition.  The path of the computer-controlled circle 

was generated by a pre-determined sinusoidal function that varied in (1 – 1.5 Hz) over 

time (Figure 2b).  Specifically, the circle moved at 1 Hz for the first five minutes of the 

experiment; it moved at 1.5 Hz for the second five minutes of the experiment; and it 

returned to a 1 Hz oscillation for the final five minutes of the experiment.  Thus, the trial 

lasted 15 minutes overall with 5 minute pre-, during-, and post-stimulus periods. 

Respiratory perturbation condition.  This condition also involved a 15 minute 

trial with pre-, during-, and post-perturbation intervals.  This condition was visually 

identical to the control condition.  Before beginning the trial, participants were told that, 

at some point during the trial, they would receive a verbal signal to slow their breathing.  

The specific instruction was that they should notice their current rate of breathing before 

choosing and performing a slower respiratory rate.  Interpretation was left to the 

participants.  Participants were told that they should do their best to return to their 

original respiratory rate after receiving a second verbal signal.  During the trial, the 

researcher gave the verbal instruction at 5 minutes into the trial, and gave the second 

verbal instructions 10 minutes into trial.  Those intervals were chosen for consistency 

with the movement perturbation condition.  Inspection of respiratory time series showed 

interpretation of those instructions varied considerably among participants.  For example, 

some participants took deeper breaths without changing the frequency of their breaths.  

Some participants slowed their breathing for a few cycles but then returned to what was 

presumably their preferred respiratory frequency.  Hence, we were not optimistic about 

outcomes involving the respiratory perturbation. 
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Analysis Strategy 

Standard deviation of relative phase (SDRP).  Standard deviation of relative 

phase (SDRP) was used as an index of variability around the target frequency.  To 

calculate SDRP, relative phase was calculated as the difference in phase between the 

target tracking signal and participant movements at each sampled moment (Kelso, 1984).  

The result was a relative phase time series – SDRP was calculated as the sample standard 

deviation over the entirety of the time series. 

Data preparation.  Physiological data streams are rarely, if ever, analyzed in raw 

data form because those signals tend to very noisy and some form of processing is 

necessary to extract meaningful information.  For example, heart rate and respiratory rate 

are much more common and more easily understood than raw ECG or flow signals.  

However, most summary measures discard details that might be informative for our 

purposes.  Therefore, I computed instantaneous frequency for ECG and respiratory flow 

data using the method outlined in Barros and Ohnishi (2001).  Instantaneous frequency of 

lateral arm movements was computed by Hilbert transform (e.g., Gabor, 1946; Lamb & 

Stöckl, 2014; Lamoth, Daffertshofer, Huys, & Beek, 2009).  Postural path length – the 

3D Euclidean distance between successive samples –was calculated as a measure of 

postural sway (e.g., Gibbons, Amazeen, & Likens, under review; Kerby, Price, & 

MacLeod, 1987; Rugelj, Tomsic, & Sevsek, 2013).  Instantaneous frequency was not 

computed for postural path length because postural corrections are known to have more 

than one characteristic time scale (e.g., Collins & DeLuca, 1995).   



	

	

	

20 

Detecting multiscale interactions.  The current work introduces a new analytical 

technique called multiscale lagged regression (MLR) as a means of capturing multiscale 

interactions among psychophysiological time series.  In this section, I present the MLR 

algorithm with limited theoretical discussion.   That presentation is repeated in the 

Appendix A with a more detailed theoretical discussion as well as a number of 

simulations.   

Variability in psychological performance is thought to emerge from the multiscale 

interactions among the many components that make up a psychological system (e.g.  Van 

Orden et al., 2003).  The litany of positive results from fractal analysis support that claim, 

but fractal techniques provide very little information concerning the nature of those 

interactions.  Standard regression, while capturing the monoscale relationship between 

two series, ignores the multiscale structure inherent in psychological time series.  What is 

needed is an analytical method that can elucidate the time-varying relationships among 

psychological processes, relationships that may be likewise depend upon the many 

temporal scales that make up behavior.  The following paragraphs propose just such a 

method.   

Recently, Kristoufek (2013; 2015) observed that detrended cross correlation 

analysis (DCCA; Podobnik & Stanley, 2008) – the bivariate extension of DFA – could be 

leveraged to develop a multiscale form of regression (see Appendix A for explanation of 

DFA).  The main difference between DFA and DCCA is that DCCA is concerned with 

the combined fluctuation function, 𝐹"#$ (𝑠), between two time series, Xt and Yt (Podobnik 

& Stanley, 2008).  That is, DCCA performs steps (1) - (3) of the DFA procedure found in 

Appendix A independently for each time series; however, instead of computing the scale-
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wise variance, 𝐹"$(𝑠), for each variable in step (4), the scale-wise covariance,	𝐹"#$ (𝑠), is 

computed by taking the cross-product of the scale-wise detrended series and averaging at 

each scale s.  If the joint fractal properties are of interest to the researcher, then she can 

examine the linear relationship between the logarithm of 𝐹"#$ (𝑠) and the logarithm of s. 

The resulting slope reflects the average scaling exponent, 𝛼"#, for Xt and Yt, 

where  𝛼"# = (𝛼" + 𝛼#)/2.  However, the current interest is in characterizing how the 

relationship between Xt and Yt changes as a function scale and time, not whether the 

processes have similar scaling properties.  Referring to Equation (2) in Appendix A, one 

can appreciate that the regression coefficient, 𝛽/, is nothing more than the ratio between 

the covariance of X and Y and the variance of X (Kristoufek, 2015).  Thus, the 

components of the standard regression coefficient are similar to estimates of variance, 

𝐹"$ 𝑠 , and covariance, 𝐹"#$ (𝑠), generated by the DFA and DCCA procedures.  Kristoufek 

(2015) went on to show that scale-wise variance and covariance measures could be used 

to construct scale-wise regression coefficients, 

 

𝛽/ 𝑠 = 	𝐹"#$ (𝑠)/𝐹"$(𝑠)      (1). 

 

The current work extends the idea of scale-wise regression coefficient by exploring how 

the relationships estimated in Equation (1) change as a function of time-lag.  Extending 

the DFA-based regression in this way may help to answer questions concerning how 

changes in one variable at one time scale might be predicted by changes in another 

variable at a similar time scale, both contemporaneously and in the past.  The outlined 

steps that follow this paragraph represent the new MLR algorithm.  Steps 1 – 6 
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correspond to earlier work developing fractal analysis and DFA based regression.  In step 

7, the introduction of time lags, reflects my contribution to the DFA-based regression 

framework: 

1. Normalize each of two time series, Xt and Yt, to have zero mean and unit variance. 

2. Separate each time series into N/s bins of length s.   

3. Within each bin, for each time series and several s, estimate the best fitting line 

and subtract that line from the binned time series.  This step requires some 

justification.  In the original DFA algorithm and in many other forms of fractal 

analysis (Eke et al., 2010), the interest is in analyzing the intrinsic fluctuations of 

a system, the ebb and the flow.  The detrending procedure was introduced in 

fractal analysis by Peng and colleagues (1994) to address situations where 

nonstationarities such as a drift and singularities (e.g., sharp peaks or step-like 

jumps in time series) might bias estimates of scaling behavior by overestimation 

of long range correlations.  However, detrending data before analysis by 

regressive techniques has long been a recommendation in time series analysis 

where it has been shown that spurious trends lead to gross overestimation of 

temporal relationships between variables (Granger & Newbold, 1974).   

4. Compute the residuals variances for X and Y as well as residual covariance 

between the binned series.   

5. Compute the average covariance eat each scale, s.   

6. For each scale, compute the scale-wise regression coefficient as 𝛽/ 𝑠, 𝑙 =

	𝐹"#$ (𝑠, 𝑙)/𝐹"$(𝑠, 𝑙), where l is lag of X .  When l is zero, the procedure in 

Kristoufek (2015) is recovered. 
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7. Repeat Steps 1 through 6 for several scales and several lags to obtain an s × l 

matrix, B, that contains the regression coefficients for each scale and lag 

combination.  The resulting rows of B give the temporal evolution of relationship 

between Xt and Yt. 

Those seven steps, encapsulating the MLR procedure, were applied to all possible 

pairs of the data sources described in the Data Preparation section.  MLR was computed 

over scales ranging from 0.20 s to 32.00 s in increments of 0.20 s and lags ranging from 

0.02 s to 32.00 seconds in increments of 0.02 s.  For each process pair, MLR was 

conducted in two directions (e.g., respiratory rate was regressed on past values of heat 

rate and heart rate was regressed on past values of respiratory rate) to capture possible 

directional dependencies.  The output of the MLR procedure is a matrix, B, of scaled and 

lagged regression coefficients, β1(s ,l).  Once B was calculated for each process pair (e.g., 

movement frequency and postural path; movement frequency and respiratory rate, etc.), a 

method was needed to summarize results for comparison with SDRP.   

There are potentially many ways of summarizing the contents of B, but the 

results reported here explore only one, involving the Fast Fourier Transform 

(FFT).  The proposed method begins by averaging across rows in B to yield the 

typical regression coefficients at each time lag.  Then, an FFT is applied to the 

time series of average lags.  The underlying mathematics of the FFT suggest that 

any curve can be approximated by a linear combination (i.e., addition) of 

sinusoids, or equivalently, complex exponentials (Cochran et al., 1967).  That 

means application of the Fourier Transform to the lag-wise average regression 

coefficient series should reveal characteristics of the ensemble of scaled and 
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lagged relationships.  In general, the power spectra have strong peaks over a small 

range of frequencies.  For that reason, total power was used as a metric of 

multiscale coordination, reasoning that if power is clustered within a small 

frequency band, then total power should generally reflect frequency content 

observed at multiple temporal scales and thus represent a basic measure of 

multiscale interaction. Those steps were followed for each process pair, within 

each condition, and within each task segment (i.e., pre-, during-, and post-

perturbation).   

Multiscale coordination and performance.  The repeated measures 

nature of the design, along with the mixture of continuous (total power) and 

categorical (segment and condition) independent variables suggests that ordinary 

least squares regression and ANOVA will not be sufficient for examining changes 

in SDRP.  Instead, those comparisons were made with linear mixed-effect 

regression models (Snijders & Bosker, 2011).  In each case, model construction 

followed a similar logic.  First, a baseline model was fit with fixed participant 

effects on the intercept term.  Second, power was entered into the model and 

compared with the baseline model via χ2 test for improvement in explaining 

SDRP over and above individual differences in SDRP – the same testing 

procedure was applied to subsequent models.  Total power was chosen as the first 

predictor variable to enter the model because it is the primary predictor of interest 

and because this work is exploratory.  The latter reason is relevant because there 

is good reason to suspect that experimental manipulations may strongly predict 

changes in SDRP; however, the effect of total power as derived from Βs is 
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entirely unknown.  For that reason, I chose to give total power the best chance 

possible to predict performance.  Because it is the theoretical predictor of interest, 

total power was retained in each modeling step even it was not significant when 

compared to baseline, as total power could be implicated in higher order 

interaction terms.  Third, time (pre, during, post) was entered and model fit will 

be assessed to determine if task segment predicts SDRP over and above power.  

The fourth model added the condition fixed effects on the intercept and the fifth 

model included fixed effects of condition on time and power slopes.  For each 

process pair, only the final model is discussed.  Tables presented in Appendix B 

identify the output of each model. 

Results 

The following six sections present pairwise comparisons generated from 

MLR, along with results from linear mixed-effects models.  Each section will 

consist of two parts:  First, graphical depictions of representative B matrices will 

be shown and described.  Data from a single, representative participant was used 

for all graphical depictions.  Where those plots deviate from random noise (Figure 

A4), there is reason to conclude that psychological systems exhibit multiscale 

interactions.  Second, the relationship between a performance measure (SDRP) 

and total power is assessed along with experimental treatment effects.  Those 

relationships between total power and SDRP were explored across all participants 

in a linear mixed-effect model.  Where total power predicts performance, there is 

reason to conclude that multiscale interactions play a significant role in the 

manifestation of psychological behavior. 
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Movement Frequency and Respiratory Rate  

 MLR was used to regress current values of movement frequency on current and 

previous values of respiratory rate at multiple time scales.  Presentation of these 

results is rather involved; however, general tendencies are revealed in this 

analysis that make reporting on subsequent process pairs less tedious.  Figure 3 

(a) depicts the scaled and lagged relationship between movement frequency and 

respiratory rate.  Graph colors represent the magnitude of β1(s,l) at each scale and 

lag, with a color scale range from -1.0 (blue) to 1.0 (red) allowing for 

comparisons of directionality [e.g., note the obvious difference in color variation 

between Figure 3 (a) and Figure 3 (b).  Values outside the color range are 

depicted in white.  The MLR plots for the remaining process pairs all share these 

plot characteristics.   
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Figure 3 (a).  MLR plot depicts movement frequency regressed on 

current and previous values of respiratory rate and (b) MLR plot 

showing respiratory rate regressed on current and previous values 

of movement frequency.   

 

Figure 3 (a) shows that that β1(s,l) seems to increase from small to large 

scales as can be seen from the large patches of red at scales ranging from ~ 15 to 

30 s.  In addition, the graph gives the impression of oscillations at both small and 

large scales, albeit with different frequencies.  At the smallest scales (~ 1 - 2 s), 

there does not appear to be any evidence of oscillation; most β1(s,l) are near zero.  

However, those weak relationships become a semiregular pattern of oscillation at 

A 

B 
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scales in the range of 2-5 s.  Strong, slower ripples across successive lags appear 

at the largest scales, implying that the relationship between movement frequency 

and respiratory rate does indeed depend on scale.   

Examination of Figure 3 (b) depicts the MLR relationships obtained by 

regressing current values of respiratory rate on current and previous values of 

movement frequency.  Comparison with Figure 3 (a) reveals that prediction of 

changes in respiratory rate from movement frequency are much weaker than 

predictions of movement frequency from respiratory rate and only appear at 

smallest time scales (< 5 s).  In fact, this plot basically shows the opposite 

relationship to Figure 3 (a) – the trend is that regression coefficients decrease 

rapidly over the scale.   

To summarize the MLR results, it appears that motor-respiratory 

coordination takes place across many time scales.  Coordination seems to be 

oscillatory in nature, especially at time scales larger than the time scale of the 

task.  At large time scales, respiratory rate is a much better predictor of movement 

frequency than vice versa.  The motor-respiratory relationship is subtler at small 

scales but there does appear to be at least some predictive advantage for 

movement frequency over respiratory rate at finer scales, suggesting an 

asymmetry in multiscale motor-respiratory coordination.   

MLR has revealed the multiscale nature of the motor-respiratory 

coordination, but the task remains to explore how that relationship might predict 

performance in the pursuit-tracking task, across all participants in the study.  The 

MLR coefficients in Figure 3 were averaged at each lag before serving as input to 
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an FFT.  Next, the total power in the FFT was computed as a coarse measure of 

the multiscale coordination present in each instance of MLR (movement on 

respiration and vice versa). 

Two linear mixed-effects models were then estimated, one for each 

possible direction of dependence with random participant effects on the intercept.  

The results regarding prediction of respiratory rate from movement frequency are 

considered first.  In the final model, there was a main effect of total power, 

Estimate = -10.53, CI = (-20.25, -0.53), p < 0.05.  There was also a main effect of 

time, such that SDRP was higher post-perturbation than pre-perturbation, 

Estimate = 0.13, CI = (0.03,0.23), 

p < 0.05.  There was also an interaction effect between time and condition such 

that SDRP was higher with a movement perturbation than without a perturbation, 

Estimate = 0.35, CI = (0.27, 0.48), p < 0.05.  Lastly, there was condition × total 

power interaction such that, during the movement perturbation, there was a 

positive relationship between total power and SDRP but a negative relationship 

between power and SDRP without a perturbation, t(109.53) = 2.76, p < 0.05.   

Regarding MLR of movement frequency on respiratory rate, there was a 

main effect of total power, Estimate = 2.00, CI = (1.25, 2.75), p < 0.05.  There 

was also main effect of condition, such that SDRP was higher for the movement 

perturbation condition than for the control condition, Estimate = 0.15, CI = (0.02, 

0.29), p < 0.05.  The main effect of condition was modified by an interaction with 

time such that, when compared to the control condition, the movement condition 

showed higher SDRP during the movement perturbation, Estimate = 0.33, CI = 
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0.19 – 0.46, p < 0.05.  Lastly, there was a condition × total power interaction, 

owing to the fact that during the movement perturbation, there was positive 

relationship between total power and SDRP in the control condition but a negative 

relationship in the movement perturbation condition, t(112.23) = 3.17, p < 0.05.  

These results, and many that follow, are exciting in that they demonstrate a 

statistical relationship between multiscale interactions, as measured by MLR, and 

performance in a psychological task.   

Many features observed in the Figure 3 recur in coming sections involving 

other process pairs, and many results involving SDRP and treatment effects will 

repeat as well.  To avoid monotony, repetitive descriptions will be eschewed in 

favor of pointing out features and effects that seem unique to a process pair or 

particularly interesting.  That goal advances by forecasting the coming results 

with some general trends: 

(1) SDRP tends to increase during the movement perturbation but not during the 

breathing perturbation; (2) there is some evidence of a time-based trend in SDRP, 

even after controlling for perturbations; (3) most process pairs exhibit oscillation 

in their relationships that unfold over time and scale; (4) most process pairs 

exhibit directional effects such that one process is a much stronger predictor than 

the other; and (5) most process pairs exhibit scale-dependence where if β1(s,l) is 

large at large scales, it tends to decrease at smaller scales; large β1(s,l) at small 

scales tend to decrease at smaller scales. 
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Movement Frequency and Postural Path Length  

Figure 4 (a) shows the result for MLR of movement frequency on postural path 

length.  MLR coefficients increase across scale, similar to Figure 3 (a) but there is 

also faint evidence of oscillation at small scales.  In Figure 4 (b), the MLR of 

postural path length on movement frequency shows strong oscillations at small 

temporal scales.  In both Figure 4 (a) and Figure 4 (b), oscillations at small scales 

correspond to the frequency of the tracking stimulus.  These results imply that 

changes in posture are not strong predictors of movement frequency at small time 

scales but may predict movement frequency at large time scales.  That makes 

sense as a gross change in posture could determine the actual muscles involved in 

a movement, thereby altering kinematics over large time scales (Andersson et al., 

1975).  Conversely, it appears the rapid arm movements do predict changes in the 

postural sway, in a regular way consistent with the requirements of the task. 
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Figure 4 (a).  MLR plot showing movement frequency regressed 

on current and previous values of postural path length.  (b) MLR 

plot showing postural path length regressed on current and 

previous values of movement frequency. 

 

 The relationship between SDRP and power was assessed along with other 

treatment effects by linear mixed-effect models with random participant effects on 

the intercept.  The results regarding prediction of movement frequency from 

postural path length are presented first.  The model showed that there was a main 

effect of time, such that SDRP was higher during perturbation than pre-

perturbation, Estimate = 0.11, CI = (0.01, 0.22), p < 0.05.  There was also an 

A 
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interaction between time and condition, corresponding to the fact that SDRP was 

higher during the movement perturbation than during the same task segment 

without a perturbation, Estimate = 0.35, CI = (0.20, 0.50), p < 0.05.   In contrast, 

results concerning prediction of postural path length from movement frequency 

showed a main effect of total power, Estimate = -1.19, CI = (-2.18, -0.21), p < 

0.05.  There was also a condition × time interaction where SDRP was higher with 

than without a movement perturbation, Estimate = 0.38, CI = (0.24, 0.53), p < 

0.05.  No other main effects or interactions reached conventional significance.   

The results of MLR were consistent across participants, and so these 

modeling results are not surprising.  Essentially, movement frequency strongly 

predicts changes in postural path length (Figure 4 (b)); prediction of movement 

frequency from postural path length was much weaker.  There are clearly some 

hot spots at larger scales in Figure 4 (a) but the structure is not nearly as well 

defined. 

Movement Frequency and Heart Rate 

Figure 5(a) shows the result when MLR is used to regress movement frequency 

on heart rate.  The plot shows that most prediction in movement frequency comes 

from moderate to large temporal scales, and seems to oscillate with a period > 10 

s.  The pattern seems somewhat nonlinear with the troughs (blue regions) being 

more narrow than the peaks (red regions).  Large white patches further indicate 

that the MLR coefficients at large scales tend to relatively large, compared to 

those at small scales.  Figure 5 (b) shows the result for MLR of heart rate on 

movement frequency.  Surprisingly, prediction of heart rate by movement 
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frequency is inconsistent.  That result is surprising because increases in exertion 

should clearly lead to increases in cardiac output, yet movement frequency was 

not as strong a predictor heart rate as one might expect.  However, the task was 

not very vigorous – participants only swung their arms at a maximum of 1.5 Hz, a 

fact that could be related to that result.  Perhaps the “sedentary” task was simply 

did not have enough physical demand to capture expected relationship.  

 

Figure 5 (a).  MLR plot showing movement frequency regressed 

on current and previous values of heart rate.  (b) MLR plot 

showing heart rate regressed on current and previous values of 

movement frequency. 

 

A 
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 The relationships implied by the structure in Figure 5 were further 

explored via linear mixed-effect modeling of SDRP as a function of total power 

and other treatment effects with random participant effects on the intercept.  The 

model regarding prediction of movement frequency from heart rate are presented 

first.  The results suggest there was a main effect of power, Estimate = 0.73, CI = 

(0.49, 0.98), p < 0.05.  The time × condition interaction was significant, as in 

previous analyses, Estimate = 0.33, CI = (0.20, 0.46), p < 0.05, because the 

movement perturbation produced higher SDRP than performing without a 

perturbation.  More interesting was the power ´ condition interaction, resulting 

from the fact that there was a negative relationship between SDRP and power 

during the movement perturbation but a positive slope without a perturbation, 

t(113.31) = 3.26, p < 0.05.   

 MLR results of heart rate on movement frequency are presented next.  The 

model results suggest that there was a main effect of time such that SDRP was 

higher during the perturbation, Estimate = 0.18, CI = (0.11, 0.25), 

p < 0.05, and SDRP was also higher during the third task segment than the first, 

Estimate = 0.08, CI = (0.01, 0.15), p < 0.05.  There was also a main effect of 

condition where SDRP was higher in the movement perturbation condition than in 

the control condition, Estimate = 0.12, CI = (0.05, 0.19), p < 0.05.  Lastly, there 

was a significant power × condition interaction.  The nature of the interaction was 

such that the slope between SDRP and power was positive during the movement 

perturbation but negative without a movement perturbation, t(112.30) = 2.71,  

p < 0.05.   



	

	

	

36 

Postural Path Length with Respiratory Rate 

MLR results, for when postural path length is regressed on respiratory 

rate, appear in Figure 6 (a).  Of note is the obvious presence of three scaling 

ranges with three different oscillation frequencies.  The most obvious pattern is 

the large scale (≥ 18 s) oscillation with a period of around 15 s and MLR 

coefficients that increase as a function of scale.  The period of oscillation at 

moderate scales (i.e., scales ranging between 3 and 18 s) seems to be around 10 s.  

At smaller scales (< 5 s), MLR coefficients tend to oscillate every three or four 

seconds.  Do changes in postural sway also predict changes in respiratory rate?  

Figure 6 (b) suggests that they do.  Within the same scale ranges identified 

in Figure 6 (a), one sees oscillations across lags with similar frequencies.  Both 

findings are consistent with the literature where it has been shown that respiration 

is indeed a potent perturbation for posture (e.g., Hodges, Gurfinkel, Brumagne, 

Smith, & Cordo, 2002), especially when seated (e.g., Bousett & Dechene, 1994).  

Posture is not expected to be as strong a predictor of respiratory rate because 

participants remained in an upright seated position (Buchheit, Haddad, Laursen, 

& Ahmaidi, 2009; Takahashi, Okada, Saitoh, Hayano, & Miyamoto, 2000). 
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Figure 6 (a).  MLR plot showing postural path length regressed on 

current and previous values of respiratory rate.  (b) MLR plot 

showing respiratory rate regressed on current and previous values 

of movement frequency. 

 

 The relationships implied in Figure 6 were further investigated by 

regression of SDRP on total power and other treatment effects.  The results for 

MLR of postural path length on respiratory rate are presented first.  Despite 

similarities highlighted in the MLR-generated plots the model only revealed a 

time × condition interaction, Estimate = 0.36, CI = (0.21, 0.50).   
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The results concerning MLR of respiratory rate on postural path length 

pose a contrasting viewpoint.  That model found a main effect of total power, 

Estimate = -4.28, CI = (-7.09, -1.47), p < 0.05.  There was also a main effect of 

time such that SDRP was higher post-perturbation than pre-perturbation.  There 

was also an interaction between time and condition, Estimate = 0.32, CI = 0.18, p 

< 0.05.  The power × condition interaction was significant because the 

relationship between SDRP and power was positive during the movement 

perturbation, t(113.87) = 2.56, p < 0.05, and during the breathing perturbation, 

t(110.18) = 2.23, p < 0.05, but negative in the absence of any perturbation. The 

modeling results seem to conflict with those depicted in Figure 6.  The results of 

MLR capture expected relationships between posture and breathing, namely, that 

respiration is expected to perturb, and by extension, predict changes in postural 

sway (Hodges et al., 2002).  The surprising result was that response of respiration 

to changes in posture predicts performance in the pursuit-tracking task. Perhaps 

respiratory rate is more sensitive to changes in posture than has been explored in 

the literature (e.g., Buchheit et al., 2009; Takahasi et al., 2000).  

 Postural Path Length with Heart Rate.  Figure 7 (a) gives the results for 

MLR of postural path length on heart rate.  The patterns are similar to those in 

Figure 6 (a), as are the patterns in Figure 7 (b), which shows the only scale ranges 

with coefficients of appreciable magnitude are moderate scales near lags of about 

five seconds.  It is not surprising that there should be a strong relationship 

between posture and heart rate as those relationships have been studied 

extensively in the physiological literature where the general finding is that posture 
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predicts changes in heart rate (e.g., Pomeranz et al., 1985).  What is the surprising 

is that the results of MLR show that the contrary relationship also exists, changes 

in heart rate predict changes in postural sway, especially at large temporal scales, 

and the literature has been relatively silent on that particular relationship.   

  

Figure 7 (a).  MLR plot showing postural path length regressed on 

current and previous values of heart rate.  (b) MLR plot showing 

heart rate regressed on current and previous values of postural path 

length. 

 

 As with previous process pairs, linear mixed-effects modeling revealed 

significant effects of time and condition but did not reveal any effect of power 
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after controlling for those treatment effects.  Null results seem somewhat 

surprising, given the strong relationship indicated when predicting postural path 

length from heart rate, not to mention there is considerable evidence that heart 

rate variability is linked to changes posture (Pomeranz et al., 1985).  There are 

several possible explanations for the lack of an effect.  One possibility is that the 

power measurement is not sensitive enough to capture those relationships as it is a 

rather coarse measure.  Another possibility is that the corrections between posture 

and heart rate posture are not relevant in the pursuit-tracking task, beyond 

providing a structural and physiological constraint over which the pursuit-tracking 

system can develop. 

Heart Rate on Respiratory Rate 

Figure 8 represents the result of MLR of heart and respiratory rate. The 

clear delineation of three scaling regions in Figure 8 is similar to what was 

observed in Figure 7.  Other aspects seem puzzling.  When respiratory rate 

predicts heart rate as in Figure 8 (a), there is a negative relationship, but the 

relationship is reversed when heart rate predicts respiratory rate [Figure 8 (b)].  A 

full explanation of those results is beyond the scope of the current work, but there 

are potential physiological reasons for the conflicting patterns.   
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Figure 8 (a).  MLR plot showing heart rate regressed on current 

and previous values of respiratory rate.  (b) MLR plot showing 

respiratory rate regressed on current and previous values of rate. 

 

Respiratory sinus arrhythmia is a known, healthy phenomenon whereby 

heart rate increases during inspiration but decreases during expiration (Acharya, 

Joseph, Kannanthal, Lim & Surry, 2006).  It is quite possible that participants in 

this study took longer to inhale than to exhale, on average.  If so, then that would 

lead to lower respiratory rate, on average, because respiratory rate in the current 

study was calculated instantaneously.  A negative relationship follows where 

decreases in respiratory rate associated with longer inhalations would predict 
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increases in heart rate.  Of course that suggestions would have to be empirically 

verified, but perhaps MLR reveals two different aspects of the cardiopulmonary 

relationship.  When heart rate predicts respiratory rate, the positive, expected 

relationship is observed.  When respiratory rate predicts heart rate, a surprising, 

but physiologically plausible negative relationship is revealed.  

Discussion 

 Experiment 1 required participants to perform a pursuit-tracking task under three 

conditions: a movement perturbation, a breathing perturbation, and a control condition 

with no perturbation.  The general hypothesis concerning performance was that 

performance, as measured by standard deviation of relative phase, would be worse during 

the movement and breathing perturbation conditions than the control condition, 

specifically during the perturbation period.  The above results suggest that the movement 

perturbation consistently increased SDRP but the breathing perturbation had little, if any, 

effect.  The absence of a breathing perturbation effect warrants further discussion.  One 

possibility is that the perturbation was not strong enough to disrupt pursuit-tracking 

performance.  This is somewhat surprising because, informally, several participants 

mentioned that it was fairly difficult to focus on breathing while performing the pursuit-

tracking task.  Another, more likely possibility is that the magnitude of perturbation was 

left to the discretion of each participant, creating sufficient noise in the data as to mask 

the effect.  Both possibilities could be addressed in a future study by providing consistent 

(across participants) yet graded (across experimental conditions) instances of the 

breathing perturbation.  In addition, a somewhat consistent finding was that SDRP tended 

to increase across time, perhaps owing to some type of fatigue effect.  The fatigue effect 
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explanation seems reasonable given that trials lasted 15 minutes each and each participant 

performed 3 trials (one for each condition).   

Predictions concerning multiscale coordination were less concrete.  Uncertainty 

comes from two sources – the method is new and both the existence and degree of 

multiscale coordination in psychological systems is undocumented in the literature.  The 

results presented in the previous section offer many possibilities for discussion, some of 

which will be addressed in the general discussion.  In this brief discussion, however, two 

key questions will be addressed: (1) do psychological systems exhibit evidence of 

multiscale coordination; and (2) is multiscale coordination related to task performance, 

after accounting for treatment effects?   

 Concerning the first of those two questions, the answer seems to be yes.  MLR 

revealed a complicated set of relationships among the various process pairs examined in 

the current experiment.  Despite that complication, some general trends emerged among 

the process pairs.   

First, it appears that residual relationships between the processes involved is often 

oscillatory in nature.  That fact may seem unsurprising when comparing, say postural 

path length and movement frequency.  After all, the task involved oscillations of the 

limbs which surely influences the movement of the trunk, possibly generating oscillations 

in postural sway.  In fact, overtly rhythmic postural sway was observed in some 

participants.  However, it is important to recall that postural path length was not regressed 

on position but movement frequency, the instantaneous rate at which participants swung 

their arm.  One could still argue, of course that participants should move their limbs at 

different rates during external and internal rotation, based purely on motor kinematics.  
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Given that the task involved synchronizing rotations with an oscillating stimulus, 

regularities of the task might correlate with regularities in the speed of rotations about the 

elbow.  As such, it might make sense that the relationship between postural path length 

and movement frequency might be oscillatory for no other reason than both were 

involved in an oscillatory task.   

That explanation becomes less likely when one considers that postural path length 

showed evidence of oscillatory relationships with other processes such as heart rate.  One 

could also argue that heart rate, being measured by placing electrodes on the skin, is 

susceptible to movement artifacts from the jostling of wires during movement.  That 

second argument would be more convincing if raw signals were compared by MLR, but 

path length was regressed with instantaneous heart rate not the raw signal.  The argument 

regarding heart rate becomes even more untenable when one considers that oscillations 

between posture and respiratory rate were also observed.  Respiratory rate was calculated 

based on flow which was measured by pneumotachometer and should be far less 

sensitive to physical perturbations.  Thus, the oscillatory patterns revealed by MLR may 

reflect actual coordinative structure among the systems that made up the pursuit-tracking 

system. 

 Second, the relationships observed between process pairs seems to be directional.  

For example, movement frequency appears to predict changes in heart rate at small scales 

but heart rate seems to predict movement frequency only large temporal scales.  

Moreover, the magnitude of predictions made by heart rate on movement frequency are 

much larger than in the opposite direction.  Similar observations were made for each 

process pair, a possible exception being the relationship between respiratory rate and 
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heart rate.  However, even in the cardio-pulmonary comparison, the plots were not 

identical, again suggesting directional dependence.  Asymmetry in MLR revealed 

relationships was more the rule than the exception (Figures 4 - 9).   

 Lastly, the MLR plots further imply that coordination patterns are not constant 

across scales.  In fact, it appears that two general trends can be distilled.  Regression 

coefficients that are large at small scales tend to decrease at larger scales; and regression 

coefficients that are large at large scales tend to decrease at smaller time scales.  The 

exploratory nature of this study forbids strong conclusions about the meaning of 

directional dependence; however, the consistency in this pattern permits a few additional 

words.  Directional dependence is a known characteristic in least squares regression, a 

characteristic that has recently been investigated with respect to determining causal 

relationships between variables (Sungur, 2005).  A complete discussion of that approach 

is well beyond scope of the current work but provides interesting ideas concerning future 

extensions of MLR.   

 Regarding the second question – Do multiscale relationships predict 

performance? – the answer is a cautious yes.  Several of the models presented in the 

results section implicated total power, a potential metric of multiscale interactions, as an 

important predictor of pursuit-tracking performance.  The most interesting of those 

findings was the frequent observation of an interaction between condition and power.  

Leaving limitations for the general discussion, what are the implications of such a 

finding?  The immediate implication is that multiscale relationships are different for 

steady-state performance (e.g., the control condition) than perturbed performance (e.g., 

movement and breathing perturbations).  If so, then the current results are aligned, at the 
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least at the surface level, with the large literature on fractal scaling – some of the clearest 

evidence of fractal scaling is from steady-state performances (e.g., Likens et al., 2015; 

Wagenmakers et al., 2004), whereas frequent perturbations can lead to decreases in 

fractal scaling (e.g., Holden, Choi, Amazeen, & Van Orden, 2011; Dingwell & 

Cusumano, 2010).  Furthermore, the condition by power interaction was rarely observed 

in the breathing perturbation. That finding that is consistent with the idea that changes in 

fractal scaling accompany changes in the constraints placed on the system.  Because 

performance was unaffected by the breathing perturbation, perhaps the perturbation was 

not strong enough to elicit a strong compensatory adaptation across psychological scales.  

An important caveat is that an interaction between power and condition was not always 

observed within each process pair – perhaps the presence or absence of that effect reflects 

the degree to which different systems are actively involved in the control of behavior 

during the pursuit-tracking task.  For example, a rigid coupling among heart, lungs, and 

task could lead to very unwanted outcomes.  It is also possible, that in the case of cardio-

pulmonary coordination, the task was not vigorous enough to produce an obvious effect.   

 In summary, the results from Experiment 1 look promising.  MLR revealed 

structure in the multiscale relationships between the components that make up the special 

purpose pursuit-tracking system.  Moreover, that structure may be related to tracking 

performance.  Experiment 2 seeks to extend those findings by examining multiscale 

coordination with different bodily systems and one additional task.   
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Experiment 2 

Experiment 1 showed that psychophysiological variables exhibit multiscale 

relationships.  Those relationships, as revealed by MLR may have characteristic forms 

(e.g., oscillation) that vary over both time and scale.  Results from Experiment 1 also 

showed that, at least in some instances, the structure of multiscale coordination predicts 

performance in a pursuit-tracking task, even after controlling for treatment effects.  

Experiment 2 continued to explore those relationships by examining multiscale 

coordination among three different brain regions and other bodily processes while 

participants engaged in a pursuit-tracking task.  In this experiment, neural activity was 

recorded by electroencephalogram (EEG) while participants performed the same pursuit 

tracking task in two conditions.  The first task was similar to the movement perturbation 

condition in Experiment 1 – subtle differences are explained in the method section.  In 

addition, participants performed a pursuit-tracking task with a dual-task component, a 

go/no-go reaction time task.  In that task, participants were asked to perform pursuit-

tracking while monitoring the color of the tracking stimulus for possible changes.  

Change to one color signaled go; change to another color signaled no-go.  As in 

Experiment 1, SDRP was expected to increase during the movement perturbation.  The 

result from applying MLR to these new data sources is unknown; however, there is still 

an expectation that MLR will reveal multiscale interactions, the structure of which should 

predict pursuit-tracking (i.e.  SDRP) and secondary task performance (i.e.  RT).   



	

	

	

48 

Method 

Participants.  Eleven participants (Female = 6) volunteered to participate in the 

experiment with an average age of 27.2 years (SD = 5.51).  Participants were non-

smokers with no injuries to limbs or trunk.  All participants reported normal or corrected 

to normal vision.   

Apparatus and Procedure. The experimental paradigm was the same pursuit 

tracking task used in Experiment 1.  The goal of this experiment was to extend the 

analysis to brain activity data.  In order to accomplish this, data collection occurred in an 

EEG lab with different equipment.  That change in location made it impossible to collect 

some of the measures used in Experiment 1, including respiratory rate and 3-D position 

data from motion tracking, but made it possible to include new measures, including 

electroencephalogram (EEG) and electrooculogram (EOG).  EEG data were recorded 

with a 32 channel SynAmps (Neuroscan, Sterling, VA) as was electrocardiogram (ECG), 

electromyogram (EMG) from the medial deltoid muscle of the shoulder, and left and 

right horizontal electrooculogram (EOG) data.  Only left horizontal EOG data were 

analyzed because the task involved lateral movements and meaningful vertical eye 

movements were not expected.  Medial deltoid activity was recorded in this experiment 

as an attempt to improve EMG measurement over Experiment 1; however, failure of 

participants to comply with task instructions resulted in unusable data.  MLR was 

conducted on the pairing of ECG and EOG data but not ECG and EEG data because the 

precision of instantaneous heart rate at very high frequencies, like those typical of brain 

activity, is unknown.. 
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The change in experimental venue also required a slight adjustment to the 

experimental task.  Instead of controlling a motion-tracked manipulandum, participants 

controlled their on-screen circle with a Logitech Extreme 3D Pro joystick (Newark, CA).  

The following two subsections give additional details regarding specific task conditions 

but, as in Experiment 1, participants practiced the tracking task without perturbation for 

seven minutes.  The tracking signal during practice oscillated at a frequency of 0.8 Hz. 

Movement perturbation.  The path of the computer-controlled circle was 

generated by a pre-determined sinusoidal function that varied in (0.8 – 1.3 Hz) over time 

(Figure 2b).  The speed was slower than Experiment 1 because pilot participants reported 

the Experiment 1 pace to be too difficult with the joystick.  Subsequent pilot testing on 

the selected range revealed a comparable level of difficulty to Experiment 1.  

Specifically, the circle moved at 0.8 Hz for the first five minutes of the experiment; the 

circle oscillated at 1.3 Hz for the second five minutes of the experiment; and the circle 

returned to a 0.8 Hz oscillation for the final five minutes of the experiment.  As in 

Experiment 1, the trial lasted 15 minutes overall with 5 minute pre-, during-, and post-

stimulus periods.  SDRP served as the dependent variable and was calculated as the 

standard deviation in phase difference between the tracking stimulus and lateral joystick 

movements sampled directly from the device. 

 Go/No-go task.  Experiment 2 also added a go/no-go reaction time task similar to 

that used in Strayer and Johnston (2001).  In this condition, a white target tracking circle 

presented on a black background oscillated at a constant frequency of 0.8 Hz.  

Participants controlled a blue circle with a joystick while monitoring the color of the 

target stimulus.  At random intervals between 10 and 20 s, the white tracking circle 
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would change color to either red (the no-go signal) or green (the go-signal).  Participants 

were instructed to press a button on the joystick with their non-tracking hand as soon as 

they saw a go signal, and to do nothing if they saw a no-go signal.  In both cases, they 

were instructed not to let the dual task sacrifice their performance.  SDRP and RT were 

dependent variables.   

Analysis Strategy 

Data preparation.  Instantaneous frequency was computed for ECG data in the 

same manner as Experiment 1 (Barros & Ohnishi, 2001).  Instantaneous frequency was 

computed for wavelet filtered EOG data in a manner similar to movement data in 

Experiment 1 (i.e., Hilbert Transform) because EOG data were very oscillatory, no doubt 

from tracking an oscillating stimulus.  EEG data were pre-processed by passing data 

through a bandpass filter (1-120 Hz) before applying independent component analysis 

(ICA; Hyvärinen, 2000).  EEG data are often contaminated by numerous bodily signals 

such as those that arise from the movement of the eyes as well as EMG signal from 

clinching the jaws and other muscles.  ICA is considered the gold standard for removing 

artifacts, and the current work used the implementation found in the EEGLAB toolbox 

for Matlab (Delorme & Makeig, 2004; Mathworks, Inc., Natick, MA).  ICA was applied 

to EEG data to remove eye-blink artifacts, EOG, and EMG contaminants.  Data from two 

subjects had too many artifacts to be corrected by ICA and were removed from further 

analysis.  Three EEG (F3, Oz, & Cz) channels were selected for analysis by MLR, 

corresponding to frontal, motor, and visual cortices.  These channels reflect three possible 

brain areas that have been implicated in oculomotor behavior, namely, the dorsolateral 
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pre-frontal cortex, and the primary visual and motor cortices (Cohen, 2016; Nagel et al., 

2006).  Other brain regions were not examined further.   

Multiscale coordination and performance.  As in Experiment 1, MLR was 

applied pairwise for many of the signals described in the Data Preparation section.  For 

neural signals, MLR was calculated on scales ranging from 0.04 s to 6.4 s increments of 

0.04 s and lag ranges from 0.0 s to 6.4 s in increments of 0.004 s.  The same number of 

scales and lags were analyzed as in Experiment 1.  However, those numbers 

corresponded to different amounts of clock time across the two experiments:  0 – 32 s in 

Experiment 1 and 0 – 6.4 s in Experiment 2.  That decision was made for two reasons – 

one practical and one physiological.  The practical reason is that, in its current form, the 

MLR algorithm is computationally very expensive with long time series like EEG, and 

using the same clock time range exceeded the capability of available computing power.  

The physiological reason is that brain dynamics are thought to take place at time scales 

much faster than respiratory rate or heart rate, which often occur at frequencies much 

lower than 1 Hz.  For that reason, a smaller clock time window, relative to Experiment 1, 

was chosen to closer match the characteristic time scale of neural dynamics.   

The average β1(s,l) was then taken at each lag, in each B, and for each process 

pair.  Total power was calculated from the FFT of the average lag-wise β1(s,l) (Figure 9).  

A series of linear regression analyses were then conducted to assess the dependence of 

SDRP on total power.  Separate analyses were conducted for the movement perturbation 

and go/no-go conditions because of the marked dissimilarity in the two tasks.  The go/no 

go task did not have a discrete time structure (e.g., pre, during, post) like the movement 

perturbation condition.   
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Figure 9.  Power spectrum average lag-wise B when Cz is regressed on Oz 

with MLR.  Note that peak power occurs at a frequency very near the 

tracking stimulus frequency of 0.80 Hz.  The insert is the series of average 

regression coefficients on which the power spectrum was based. 

 

Results 

The results for Experiment 2 will follow a template similar to that used in 

Experiment 1.  MLR plots for brain dynamics are presented first.  For the data involving 

brain regions, I also introduce another MLR visualization method that depicts the same 

data but emphasizes the observed regularity (e.g., Figure 10).  The x-axis is the same time 

lag depicted in the matrix plots from Experiment 1; the y-axis is the magnitude of β1(s,l), 
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with each plotted line (and color) depicting a single time scale.  The color legend ranges 

from red to blue, with the smallest scales (0.04 s) in red, moderate scales in green, and 

the largest scales (6.4 s) in blue.  Following description of those figures, performance 

(i.e., SDRP, and when appropriate, RT) is regressed on total power in the average lag-

wise MLR coefficients.  In the case of the movement perturbation, time (pre, during, and 

post perturbation) was also included as a predictor in the model.   

 

Figure 10.  MLR plots depicting bidirectional relationships between neural 

measurement sites in the go/no-go condition. (a) Oz regressed on Cz; (b) 

Cz regressed on Oz; (c) Oz regressed on F3; (d) F3 regressed on Oz; (e) 

F3 regressed on Cz; and (f) Cz regressed on F3.   
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 Figure 10 depicts pairwise MLR plots for one representative participant and the 

three neural measurement sites.  The graphs highlight both the regularity across lags and 

the symmetry across MLR directions.  For example, the relationship between activity at 

Oz [Figure 10 (a)] and Cz [Figure 10 (b)] starts strong, but quickly dampens into a 

regular, sinusoidal pattern.  That is, the structure in the plot shows that the relationship 

between activity at Oz and activity at Cz is strongly oscillatory in nature, at least at 

moderate and large scales.  In addition to being sinusoidal, Figure 10 suggests that 

oscillations over many scale sizes may also exhibit phase alignment.  The structure at the 

smallest scales quickly decays near zero and has a noisy appearance.  That description 

applies equally well whether Oz is regressed on Cz or Cz is regressed on Oz and when 

involving other measurement sites as shown in Figure 10 (c) – (f).  Furthermore, the 

description carries over to the movement perturbation condition as shown in Figure 11.  

Next, statistical results predicting performance from total power are presented within 

each task for each process pair.   
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Figure 11. MLR plots depicting bidirectional relationships between neural 

measurement sites in the movement perturbation condition. (a) Oz 

regressed on Cz. (b) Cz regressed on Oz.  (c) Oz regressed on F3. (d) F3 

regressed on Oz. (e) F3 regressed on Cz. (f) Cz regressed on F3.  

  

A 

C 

B 

D 

E F 



	

	

	

56 

Oz and Cz 

Performance Results.  The relationship between reaction time and total power 

was explored using ordinary least squares regression; that is, average reaction time for 

each participant was regressed on total power.  In this, and proceeding analyses, data 

from one participant was omitted because their average RT was more than 2.5 times the 

standard deviation of the sample.  The results concerning MLR of Cz on Oz showed that 

total power did not predict reaction time.  In contrast, the results for MLR of Oz on Cz 

found that a one unit increase in total power predicted a 0.14 s decrease in average RT, 

F(1, 6) = 8.07, p < 0.05.  The relationship between total power and SDRP was also 

assessed by linear regression.  The results showed only a marginal effect for MLR of Oz 

on Cz where a one unit increase in total power predicted a 0.55 decrease in SDRP.   

Concerning the movement perturbation task, linear mixed-effects models revealed 

that the only significant results were related to the perturbation, such that SDRP increased 

during perturbation, F(2, 18.21) = 6.62, p < 0.05, stemming from the fact that SDRP was 

higher during-perturbation than pre-perturbation period.  In contrast, SDRP was lower 

post-perturbation than pre-perturbation.  The same result was obtained for  MLR of Oz 

on Cz and MLR of Cz on Oz. 

Oz and F3 

Performance Results.  The relationship between reaction time and total power 

was explored using ordinary least squares regression, that is, average reaction time for 

each participant was regressed on total power.  The results concerning MLR of Oz on F3 

showed that total power did not predict reaction time.  However, there was a marginal 

relationship revealed for MLR of F3 on Oz, such that one unit increase in total power 
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predicted a 0.09 s decrease in average RT, F(1, 6) = 5.08, p = 0.07.  The relationship 

between total power and SDRP was also assessed by linear regression.  The results 

showed no effect of total power on SDRP.   

Concerning the movement perturbation task, the only significant results were 

related to the perturbation, such that SDRP increased during perturbation, 

F(2, 17.75) = 7.30, p < 0.05, stemming from the fact that SDRP was higher during-

perturbation than pre-perturbation. SDRP was lower post-perturbation than pre-

perturbation.  The same result was obtained for both directions of MLR. 

F3 and Cz 

 Performance results.  The relationship between reaction time and total power 

was explored using ordinary least squares regression, that is, average reaction time for 

each participant was regressed on total power.  The results concerning MLR of F3 on Cz 

gave evidence of a marginal trend, where a one unit increase in total power predicted a 

2.0 s decrease in RT, F(1,6) = 4.56, p = 0.07.  While the regression coefficient seems 

extreme, total power in this case only ranged from about 0.02 to 0.08, implying that small 

changes in power might predict dramatic changes in reaction time.  More convincing, 

though, are the results concerning Cz on F3 which showed a significant linear trend 

where a one unit change in power predicted a 1.69 s decrease in RT, F(1,6) = 15.36, p < 

0.05, and carry the same implication as the preceding case involving MLR of Cz on F3.  

The relationship between total power and SDRP was also assessed by linear regression.  

The results showed no effect of total power on SDRP.   

Concerning the movement perturbation task, the only significant results were 

related to the perturbation, such that SDRP increased during perturbation, F(2, 18.79) = 
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6.31, p < 0.05, stemming from the fact that SDRP was higher during-perturbation than 

pre-perturbation period.  In contrast, SDRP was lower post-perturbation than pre-

perturbation.  The same result was obtained for both directions of MLR. 

The above results illustrate two points.  First, it seems that total power, as 

measured from FFT of the lag-wise average of MLR coefficients, does not predict SDRP.  

However, the above results suggest RTs do depend on total power, at least when 

comparing some measurement sites.  Given the regularity in MLR plots and the strong 

peak in Figure 9, one conclusion is that total power reflects the degree of coordination 

across neural time scales.  If so, then the implication is that increases in synchronization 

across neural time scales is related to performance of speeded reactions. 

Eye movement frequency and heart rate 

The matrix plots used in Figures 4 -9 obscured the regularity in MLR revealed 

relationships between brain regions.  Similarly, multiline graphs used to discuss brain 

behavior make it difficult to assess the structure between eye movement frequency and 

heart rate.  The matrix plots used in Experiment 1 were used to depict the results of MLR 

of eye movement frequency on heart rate and vice versa (see Figure 12).   
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Figure 12 (a).  MLR plot showing heart rate regressed on current 

and previous values of eye movement frequency. 

(b) MLR plot showing eye movement frequency regressed on 

current and previous values of heart rate. 

  

Figure 12 is visibly different than any plot examined in Experiment 1.  Panel (a) 

of Figure 12 has a clearly delineated region of scales where heart rate predicts eye 

movement frequency, i.e., in the range of about 1 to 2 seconds.  The pattern seems 

oscillatory across lags within that scale range, but has a wavy characteristic across scales 

(i.e., variability in phase).  In contrast, eye movements only seem to predict heart rate at 

very small time scales and that relationship also seems regular and periodic.  The pattern 

is also different than what was observed in brain data – MLR of brain areas suggested 

phase alignment across scales.  That is, peaks and troughs are not aligned across scale 

(c.f. Figure 10).  Total power was on a much different scale than RT because power was  
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relatively low.  Both were converted to z-scores before entering into the linear regression 

model.  Statistical analysis revealed that when MLR was used to regress eye movement 

frequency on heart rate [Figure 12(b)], a standard deviation change in total power 

predicted a 0.73 standard deviation increase in reaction time, F(1,6) = 7.00, p < 0.05.  No 

other results involving RT or SDRP were significant for the go/no-go task.   

 The data in Figure 12 are representative of all participants when performing in the 

go/no-go condition.  Hence, those patterns are reminiscent of findings from Experiment 

1.  However, the relationships revealed by MLR between eye movement frequency and 

heart rate in the movement perturbation condition are extremely variable from one 

participant to the next.  Figure 13 shows the MLR results for three participants and 

highlights the variability that was observed.  The small sample size prevents me from 

making general statements about clustering of patterns.  For now, it is apparent that more 

research is needed to understand these results.  For consistency with other process pairs, a 

linear mixed-effect model was estimated to regress SDRP on time and power.  Not 

surprising was the lack of an effect of power but effects of time as in other processes 

already considered in Experiment 2: SDRP increased during perturbation before 

decreasing below baseline level post-perturbation, F(2, 18.04) = 7.21, p < 0.05. 
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Figure 13 (a, c, e).  MLR plot showing heart rate regressed on current and 

previous values of eye movement frequency.  (b, d, f) MLR plot showing 

eye movement frequency regressed on previous values of heart rate.  Each 

row is a different participant. 

 

Eye movement frequency and neural measurements 

This section reports the results for MLR involving eye movement frequency and 

the three EEG measures (Oz, Cz, & F3).  Before going further, it should be noted that 
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total power did not predict performance in terms of either SDRP (in either tasks) or RT 

(in the go/no-go task).  However, establishing a link between multiscale interactions and 

performance represents the secondary goal of this work.  The primary goal was 

uncovering multiscale interactions.  For that reason, representative MLR plots between 

eye movement frequency and each EEG measurement site are presented in Figures 14 

(go/no-go) and 15 (movement perturbation. Those figures, for a single participants, 

capture interesting multiscale patterns.   

Notable features in Figure 14 include an obvious similarity in the scaling patterns 

across pairwise MLRs.  That pattern observed between eye movement frequency and Oz 

is similar to the pattern observed between eye movement frequency.  There are also 

elements that are reminiscent of trends observed in Experiment 1.  The plots seem exhibit 

strong directional dependences where large scales dominate in one direction and 

moderate and small scales dominate in the other directions.  Figure 15 has that latter 

feature in common but the direction of dependence reverses.  Also distinguishing Figure 

15 from Figure 14 is the fact that there is less similarity across process pairs.  In Figure 

15, MLR of eye movement frequency on Oz shows that moderate scales show a 

prominent relationship over time; other pairs show that small time scales have the most in 

common.  These results are interesting because the data in Figure 14 and Figure 15 are 

from two different tasks, the go/no-go task and the movement perturbation task, 

respectively.  Hence, even though the relationships revealed by MLR do not predict 

performance variables, multiscale relationships eye movement frequency and neural 

activity do appear to depend on task constraints. 
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Figure 14. MLR plots depicting bidirectional relationships between eye 

movement frequency and neural measurement sites in the go/no-go 

condition. (a) Eye movement regressed on Oz. (b) Oz regressed on eye 

movement frequency (c) Eye movement frequency regressed on F3. (d) F3 

regressed eye movement frequency. (e) Eye movement frequency 

regressed on CZ. (f) Cz regressed on eye movement frequency. All panels 

are from the go/no-go condition.  
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Figure 15. MLR plots depicting bidirectional relationships between eye 

movement frequency and neural measurement sites during the movement 

perturbation condition. (a) Eye movement regressed on Oz. (b) Oz 

regressed on eye movement frequency (c) Eye movement frequency 

regressed on F3. (d) F3 regressed eye movement frequency. (e) Eye 

movement frequency regressed on CZ. (f) Cz regressed on eye movement 

frequency. All panels are from movement perturbation condition before 

perturbation. 

Discussion 

Experiment 2 required that participants perform a pursuit-tracking task in two 

conditions, one involving a movement perturbation, the other involving a dual-task 

A 

C 

B 

D 

E F 



	

	

	

65 

component. The movement perturbation condition was identical to the one used in 

Experiment 1, except for a different apparatus and a slight decrease in tracking speed.  

Following expectations, the results showed that SDRP increased during the perturbation.  

A surprising result was that SDRP was lower at baseline post-perturbation.  That result is 

surprising because participants in Experiment 1 seemed to exhibit a fatigue effect where 

SDRP was higher post-perturbation than pre-perturbation.  The difference between 

Experiment 1 and Experiment 2 is likely do to the fact that controlling the manipulandum 

in Experiment 1 was more physically demanding than controlling the joystick in 

Experiment 2.  Thus, the performance gain in Experiment 2 might simply reflect 

participants becoming more skilled at the task, as one might expect from previous 

literature (Pew, 1974).  In the dual task condition, participants performed the same 

pursuit tracking task while simultaneously performing a go/no-go reaction time task.  

Reaction times were not expected to vary in a systematic way across the trial because no 

other manipulations were introduced; however, reaction times were in similar in 

magnitude to those observed in previous literature (e.g., Strayer & Johnston, 2001). 

Across both conditions, hypotheses were explored concerning multiscale 

interactions and their involvement in performance of tracking and decision-making (i.e., 

to react or refrain).  As in Experiment 1, expectations concerning multiscale coordination 

were more exploratory but follow the same basic question: Do measurements in 

Experiment 2 imply the presence of multiscale interactions so often implied by the fractal 

literature?  The answer seems to be affirmative because several general patterns (e.g., 

oscillation, scale- and directional-dependence) emerged from MLR of neural data and 

other measurements.  An important caveat is that the precise nature of those interactions 



	

	

	

66 

depends on the processes being compared.  The coming paragraphs discuss those findings 

in additional detail while addressing eccentricities in the MLR-revealed relationships 

between psychophysiological processes. 

For neural data, the defining feature was oscillation.  In fact, the patterns captured 

in Figures 10 and 11 highlight the most striking case of oscillatory covariance captured 

by MLR in either Experiment 1 or Experiment 2.  An interesting observation was that 

oscillations were near the frequency imposed by the tracking task.  One might think the 

patterns stems from mechanical perturbations such as shaking of one’s head while 

tracking.  That explanation, however, can be ruled out because filtering prior to analysis 

was used to remove mechanical artifacts related to the frequency of the task.  Thus, the 

results imply that the multiscale, temporal relationship between neural measurement sites 

is oscillatory in nature.  A secondary feature was symmetry, that is, application of MLR 

in both directions yielded similar results.  At first glance, that result is reminiscent of 

Simulations 1 and 7 in Appendix A, implying that MLR simply captured simple 

correlation between oscillatory variables.  That intuition must be tempered by the 

knowledge that neural data generally exhibit fractal scaling (e.g., Voytek et al., 2015; 

Woyshville & Calebrese, 1994). Thus, oscillations in scaled and lagged neural covariance 

were found, even though neural data themselves were not oscillatory. 

Oscillation was also found to be a defining feature of the temporal relationship 

between eye movement frequency and three neural measurement sites.  Unlike neural 

data alone, those data, as shown in Figures 14 and 15, also appear to exhibit both scale- 

and directional-dependence, and so, those findings are reminiscent of the many patterns 

observed in Experiment 1.  The addition of a dual-task component yielded an observation 
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not possible in Experiment 1: directional dependencies were not consistent across tasks.  

The implication is that different task constraints require specific organizations of the 

neuromuscular substrate (e.g., Bingham, 1988; Kelso, Buchanan, DeGuzman, & Ding, 

1993).  That idea could be explored in a manner similar to early applications of 

dynamical systems to motor coordination (e.g., Kelso, 1984). Driving the motor system 

to a point of instability and beyond could reveal lawful changes in the multiscale 

interactions that co-occur before, during, and after phase transitions.   

The MLR results for eye movement frequency and heart rate were perhaps the 

most peculiar observed in either experiment because of a complete lack of consistency 

across participants (Figure 13).  The idiosyncrasy in those results suggest two possible 

implications.  One is that coordination between heart rate and eye movement frequency is 

irrelevant for a pursuit-tracking task.  Discussion of that possibility is left for the general 

discussion.  The alternative explanation is that idiosyncrasy reflects something 

meaningful about multiscale coordination of eye movements and heart rate in a pursuit-

tracking problem.  The N in Experiment 2 is too small make such conclusions but could 

easily be explored in a future study involving a larger sample.  The goal would be to 

identify clusters of coordination patterns that could, in turn, reflect different solutions to 

the same problem.  Where they exist, those clusters could help to explain performance on 

the pursuit-tracking task.  In fact, that same approach could be applied to any of the 

process comparisons made in Experiment 2.  The outcome of that approach could reveal 

which processes are most relevant to tracking a moving target. 

Concerning performance, there was also an expectation that multiscale 

interactions would predict performance on a pursuit-tracking task.  A positive conclusion 
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was cautious in Experiment 1; here caution is further justified.  The results involving 

neural data showed that, regardless of which electrodes were being compared, there were 

a few marginal and significant relationships between power and reaction time such that 

increases in power predicted reduction in reaction time.  The tenuous implication of those 

findings is that neural coordination across more than three orders of magnitude predicts 

one’s ability to make simple decisions about whether to act or refrain.  MLR of eye 

movement frequency on heart rate showed the opposite trend where increases in total 

power predicted dramatic increases in reaction time.  The relationships between neural 

data and eye movement frequency were less revealing.  Despite seemingly clear evidence 

of directed, oscillatory behavior in those plots, total power failed to predict either of  the 

performance measures.  Lastly, multiscale interaction results for Experiment 2 are 

distinct from those in Experiment 1 in that the magnitude of total power did not predict 

SDRP.   

As an interim summary, the results from Experiment 2 provided additional 

evidence that the time varying relationships between the many processes that make up 

behavior do, in fact, interact over many different scales.  Experiment 2 results further 

suggest that some multiscale interactions predict other meaningful aspects of behavior, 

albeit less convincingly than in Experiment 1.  Null results here and in Experiment 1 raise 

interesting questions about the role of certain processes in the production of behavior.  

Treatment of those questions will be left for the General Discussion section. 
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General Discussion 

The primary purpose of this dissertation was to uncover direct evidence of 

multiscale interactions in psychological processes.  Participants performed a pursuit-

tracking task while multiple behavioral and physiological measures were recorded.  In 

Experiment 1, participants tracked an onscreen circle while experiencing perturbations of 

movement speed and respiration as well as a control condition that had no external 

perturbation.  In Experiment 2, conditions involved a movement perturbation similar to 

the one from Experiment 1 and a second condition that involved a dual-task component, a 

go/go-go reaction time task.  In both experiments, hypotheses were generated for both 

task performance and multiscale interactions.  Each set of predictions and results are 

discussed in turn, beginning with performance data.   

Treatment Effects on SDRP 

Treatment effects on performance variables provide the context for further 

discussion of findings related to multiscale interactions.  This paragraph restates the main 

findings concerning SDRP.  In both experiments, we examined changes in SDRP that 

resulted from experimental perturbations; perturbations were expected to increase SDRP.  

Results from Experiment 1 were consistent with that prediction, at least during the 

movement perturbation. The respiratory perturbation had little effect likely because of 

variability in participant interpretations of instructions.  The performance results in 

Experiment 2 were similar to Experiment 1 in that the movement perturbation led to an 

increase in SDRP relative to pre-perturbation. However, the movement perturbation 

condition in Experiment 2 produced an effect not observed in Experiment 1 where post-

perturbation SDRP was lower than SDRP pre-perturbation.  The results concerning 
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SDRP are reasonable given the constraints present in this task.  Later in this discussion, 

those trends will inform more general statements concerning multiscale interactions and 

psychological performance. 

Multiscale Interactions 

Multiscale interactions have long been thought to be the causal agents behind 

observations of fractal scaling in any number of psychological time series (Van Orden et 

al., 2003; Ihlen & Vereijken, 2010; Likens et al., 2014).  However, uncovering direct 

evidence of multiscale interactions has proven challenging.  Historically, researchers 

have relied on fractal analysis to draw conclusions about distributed control of behavior, 

but fractal scaling alone is a shaky foundation for claims of multiscale coordination 

(Wagenmakers et al., 2012).  It is true that complex systems entail multiscale interactions 

and that fractal scaling is a defining feature of those systems; however, there are many 

ways to generate fractal properties (Beran, 1994; Gardner, 1978; Gilden, 2001; Ihlen & 

Vereijken, 2010; Thornton & Gilden, 2005; Van Orden et al., 2003; Wagenmakers et al., 

2004).  Thus, fractal scaling can provide only indirect evidence of multiscale interactions 

in psychological performance.  The current work sought to demonstrate the existence of 

multiscale coordination by more direct means.   

In both experiments, multiple physiological and behavioral measures were 

recorded and compared with a new analytical method called multiscale lagged regression 

(MLR).  The method assessed how dependence between psychological time series varies 

as function of both time and scale.  This is a major advantage over fractal analysis of 

psychological time series that is commonly used to construct arguments of multiscale 

interactions (e.g., Kello et al., 2010; Kelty-Stephen et al., 2012; Van Orden et al., 2003).  
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As noted in the preceding paragraph, information gained from fractal analysis has limited 

value in identifying underlying dynamics.  That is not say that observation of fractal 

scaling is unimportant.  To the contrary, observation of fractal scaling provides a clue that 

observable behavior may be conceived as the product of a complex, dynamical system 

(e.g., Van Orden et al., 2003; Van Orden et al., 2005).  Nonetheless, that is only a clue.  

Fractal analysis reveals that time series exhibit some form of multiscale relationship but 

tells very little about the nature of that relationship. The meaning of fractal scaling 

becomes even more opaque in multivariate forms of fractal analysis (Kristoufek, 2013; 

Podobnik & Stanley, 2008; Xiong & Shang, 2016).  In contrast, MLR measures the 

magnitude and direction in the relationships between psychological time series.  In the 

current work, MLR allowed the following question to be asked and answered: How do 

the multiple scales that make up behavior actually interact? 

The results from both experiments showed evidence of multiscale interaction 

among the many processes that support psychological performance.  Those patterns can 

be distilled into several general observations.  The coming sections examine those 

observations by revisiting the multiscale patterns of interaction observed in each 

experiment before discussing those findings within the context of experimental 

manipulations and performance data.  

 Multiscale interactions in Experiment 1. The application of MLR to behavioral 

and physiological data was first explored in Experiment 1.  In general, the results 

supported the hypothesis that psychological processes interact over multiple temporal 

scales.  In all cases examined, the relationships among physiological and behavioral 

components of behavior are distinguishable from randomness.  Simulation 3 in Appendix 
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A shows that when processes are unrelated over time and scale, β1(s,l) is practically zero 

for all scales and lags.  None of the comparisons considered in Experiment 1 had that 

characteristic.  At the most surface level, that means multiscale interactions are not 

random.  At first, that result seems somewhat trivial; however, the deeper implication is 

that the multiscale randomness model of fractal scaling may not be a reasonable 

explanation of the complexity observed in human performance (Gardner, 1978; 

Wagenmakers et al., 2004).  That result is also important because detecting deviations 

from randomness has figured prominently into theories concerning multiscale 

interactions (Ihlen & Vereijken, 2010; Kelty-Stephen et al., 2012).  There are, however, 

an infinite number of ways to deviate from randomness.  The purpose of this experiment 

was to investigate how multiscale interactions might be structured.  The structure 

revealed in Experiment 1 took on several general forms.   

The major observation was that the relationships between variables tended to be 

oscillatory in nature, suggesting that the relationship between psychological processes is 

not constant over time but ebbs and flows in a regular way.  Simulations 1 and 7 

(Appendix A) showed two ways in which time series might generate oscillations that 

persist across many temporal lags. The current results depart from those examples in 

important ways.  The time series in those simulations were sinusoids and produced 

oscillating patterns of correlation across time, a pattern that persisted almost regardless of 

the scale of analysis.  The time series in Experiment 1, on the other hand, were all 

empirical time series known to produce temporal variability typical of fractal scaling 

(Fine et al., 2015; Peng et al., 2001; Peng et., 2002; Collins & DeLuca, 1995).  Thus, the 
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finding that the observed time series produced oscillatory relationships over time is 

surprising.  Implications will be discussed in the concluding sections of this manuscript. 

A further departure from Simulations 1 and 7 is fact that the frequency of 

oscillatory relationships did not persist across all time scales.  Figure 6 showed that the 

MLR-revealed relationship between postural path length and respiratory rate was 

organized into distinct scale ranges that coincided with different frequencies of 

oscillation, a pattern observed in the comparisons of postural path length and heart rate 

(Figure 7) and heart rate and respiratory rate (Figure 8).  Those findings are interesting 

because they may reflect the time course typical of coordination among bodily systems.  

Postural corrections are known to coincide with the time course of respiration (e.g., 

Bouisset et al, 1994; Hodges et al., 2002) as does variability in heart rate (Acharya et al., 

2006).  For example, frequency analysis of postural correction time series reliably 

produces significant power in frequency bands typical for human respiration (Bouisset et 

al, 1994).  MLR appears to have also captured those relationships because oscillations 

found in the moderate scale sizes of Figures 6 and 7 are consistent with the typical rates 

of human breathing.  

Other typical observations were that the magnitude of MLR coefficients tended to 

be graded across scales, and gradation was directionally dependent.  For example, when 

MLR was used to predict changes in movement frequency from changes in heart rate, 

MLR coefficients tended to be small at small scales and large at large scales [Figure 

5(a)].  That result implies that patterns in heart rate variability are seemingly 

inconsequential to movement frequency over small time windows but large scale heart 

rate variability may come to play a larger role in predicting movement frequency, at least 
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in the current task. In contrast, Figure 5 (b) showed that changes in movement frequency 

only tend to predict changes in heart rate at finer scales. Those patterns of results were 

not limited to movement frequency and heart rate.  Figure 4 showed that changes in 

movement frequency predicted rapid, oscillatory changes in postural path length; 

however, changes in postural path length only predicted slowly undulating changes in 

movement frequency that registered at time scales greater than 15 seconds.  

Results concerning gradation and directional dependence are exciting because 

they have great potential for application. One idea for applied research would be to 

investigate multiscale relationships in tasks involving expert manual dexterity.  For 

instance, researchers could investigate the psychophysiological context of mistakes made 

during simulated surgeries.  Are errors made in the context of brief, intermittent 

physiological flutters like sharp but fleeting increases in heart rate or respiratory rate? 

Alternatively, do errors emerge when changes in physiological processes extend over 

longer stretches of time?  Trends revealed from those types of studies could be used to 

develop new monitoring techniques and introduce potentially life-saving interventions.  

Imagine a surgeon wearing unobtrusive monitoring gear that could alert her when her 

psychophysiological context predicts danger.  Relatedly, MLR could characterize points 

of vulnerability in a system as well as provide a means to assess, and even predict, how 

perturbations are absorbed within a system (Likens et al., 2014).  Simulation 6 in 

Appendix A readily captures that idea.  In that simulation, regular perturbations 

introduced in one part of the system seem to cascade to larger and larger scales in another 

part of the system.  Those results are likewise exciting because of the importance recent 

research has placed on understanding the effects of perturbations in team coordination 
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research (Gorman et al., 2010a, b; Likens et al., 2014).  That is, researchers could 

introduce perturbations like a loss of communication at a specific point in time and 

observe how communication failure affects team performance at different temporal 

scales.  Perhaps the effect is transient, only degrading performance, momentarily.  Maybe 

the effect diffuses across both time and scale, causing widespread performance issues.  

The current result suggest that it may be possible to diagnose either case and understand 

the potency of perturbations in team coordination and many other applied research areas. 

Multiscale Interactions in Experiment 2.  Application of MLR revealed 

patterns both similar to and distinct from those in Experiment 1.  Consistent across both 

experiments was the observation that relationships among the psychological processes 

tends to be oscillatory, scale-dependent in nature and, in many cases, appears to exhibit 

directional dependence.  Experiment 2 data presented two deviations from those general 

tendencies.  One departure emerged when MLR was used to compare eye movement 

frequency and heart rate during the movement perturbation task.  In strict contrast to 

other process pairs considered in these experiments, those results were very inconsistent 

across participants (see Figure 13).  There are at least two possible explanations for those 

results.  One possibility is that the relationship between eye movement frequency and 

heart rate is idiosyncratic, meaning that there are large individual differences in the 

coordination of those behaviors.  Another explanation is that multiscale coordination of 

eye movement frequency and heart rate may not be important in a pursuit-tracking task.  

If that is true, then those explanations could come from a common source.   

Psychological systems are thought to self-organize into suitable configurations for 

accomplishing specific tasks (Bingham, 1988; Gibbs & Van Orden, 2003).  There is no a 
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priori reason to suspect that coordination between eye movement frequency and heart 

rate is essential to the formation of a pursuit tracking device.  If coordination of those 

systems is unimportant in the current task, then perhaps the peculiar patterns revealed in 

Figure 13 simply reflect idiosyncratic individual differences and task-irrelevant 

correlation between eye movement frequency and heart rate.  The more general 

implication is that consistency in multiscale coordination observed across participants 

may reveal the subcomponents important for a particular task.  That idea is speculative 

but could be explored empirically by changing tasks constraints abruptly within 

continuous performances. 

MLR comparison across different neural measurement sites showed a more 

systematic deviation from the general tendencies observed in Experiment 1, excepting 

oscillatory behavior.  In contrast to other process pairs, oscillations in the relationships 

between measured areas of brain activity seemed to maintain the same frequency of 

oscillation across many temporal scales, a frequency that seemed consistent with the 

required frequency of the task (Figure 9).  That is, oscillatory relationships seemed to 

exhibit phase alignment across many temporal scales.  Capturing oscillations among 

brain areas is probably not so surprising.  EEG studies typically focus either on event 

related potentials or time-frequency analysis of EEG recordings.  That latter of two is 

based on the premise that neural behavior is oscillatory in nature (Cohen & van Gaal, 

2014).  Functional connectivity in brain activity is a contemporary topic in neuroscience 

(e.g., Friston, 2011), and there is considerable evidence that regular stimuli produced 

regular neural oscillations often in time with frequency of the stimulus (Vialette, 

Maurice, Dauwels, & Cichocki, 2010).  What is remarkable, though, is that oscillatory 



	

	

	

77 

patterns involving neural dynamics captured by MLR have so much in common with the 

dynamics observed among other bodily processes.  That is, MLR results suggest that that 

oscillation is a general means with which systems of the body organize in service of 

behavior.  

Multiscale Interactions in Pursuit-Tracking Systems.  At the outset of this 

paper, the claim was made that finding evidence of multiscale coordination becomes 

interesting when grounded in other psychologically meaningful variables.  Many patterns 

of multiscale interaction have been reported so far.  The lingering issues to be explored in 

this paper are concerned with how those patterns might predict performance in the pursuit 

tracking task.  To address those issues, total power in average lag-wise MLR coefficients 

was introduced as a singular measure of multiscale coordination.  Hypotheses concerning 

the relationship between total power and performance variables (SDRP and RT) were 

necessarily two-tailed.  The results show some promise in terms of prediction but must be 

interpreted with caution. 

In Experiment 1, several process pairs gave evidence that multiscale interactions 

seem to play a role in performance of a pursuit tracking task.  The results showed that 

total power from several process pairs predicted SDRP and was implicated in several 

interactions with perturbations.  Unfortunately, the magnitude and direction of those 

effects is less than straight forward.  For example, total power from MLR of movement 

frequency on respiratory rate shows a negative relationship with SDRP.  MLR of 

respiratory rate on movement frequency shows the opposite trend.  Based on the patterns 

present in Figure 4 (a) and (b), one might be tempted to think that differences in slope 

reflect directional dependence in gradation captured by MLR; however, there was simply 
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not enough consistency among results to draw that conclusion. Similar statements can be 

made concerning interaction effects.  Interactions between total power and condition 

suggest that the relationship between multiscale interactions and SDRP depends on task 

constraints.  Unfortunately, interaction effects were not consistent. Sometimes negative 

slopes became positive during a perturbation. Sometimes positive slopes became 

negative, making direct interpretation of those results difficult.  However, the presence of 

any interaction warrants some discussion.  

Interactions imply that relationship between multiscale coordination and 

performance during steady state behavior is somehow different when behavior is 

perturbed.  One of the claims associated with a dynamical systems explanation of fractal 

scaling is that fractal variability reflects a system flexibly adapting to perturbations both 

internal and external to the system (Likens et al., 2014; Van Orden et al., 2003).  The fly 

in the ointment is that fractal properties often degrade in the face of external constraints 

(e.g., Dingwell & Cusumano, 2010; Holden et al., 2011; Likens et al., 2015).  That is, 

evidence of fractal scaling is most likely to be observed when a system is engaged but not 

overly restricted (e.g., Holden et al., 2011).  The current results suggest a reason why, 

namely, coordinative structures vary according to the constraints of task. 

 Experiment 2 introduced a new task, a go/no reaction time task and found that, for 

neural process pairs, total power may predict RT in a consistent way.  For each process 

pair, total power from at least one MLR direction was significant.   Moreover, each of 

those slopes was negative, suggesting increases in total power predict faster responses.  

In contrast, there was no measurable relationship between total power and SDRP for any 

of the process pairs.  The lack of an effect for total power concerning eye movement 
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frequency and heart rate is not surprising given the peculiar results already discussed at 

some length.  However, given the results of Experiment 1 and the regularity present in 

Figures 10, 11, 14, & 15, null results concerning eye movement frequency and EEG are 

surprising.  One possible explanation for that effect is statistical.  The sample size is 

relatively small and it could be that the sample did not generate enough variability to 

reveal the same relationships observed in Experiment 1.  

Limitations and Future Directions 

 The analyses and results presented in this dissertation hinge upon the new 

analytical technique introduced in Experiment 1 and Appendix A, namely, multiscale 

lagged regression.  Therefore, it is important to discuss limitations of the MLR tool.  

Acknowledging those limitations in no way diminishes the current findings but provides 

a convenient segue to discuss ongoing and future developments of MLR.  One important 

limitation is that MLR is only a bivariate tool. Future work will address extending the 

technique to include multiple predictor variables as a further compliment to existing 

regression techniques (Cohen et al., 2003; Hill et al., 2011).  One of the most powerful 

aspects the regression framework is the ability to control for covariates when assessing 

the relationship between a predictor and a criterion.  Extending that idea to the MLR tool 

will be challenging but, if possible, would allow researchers to control for the influence 

of covariates at many different time scales.  Another limitation is that, in its current form, 

MLR does not asses model fit or provide other statistics common in regression 

procedures (e.g., R2, F statistics, p values, and so on).  Already, it is possible to assess 

scale-wise R2 in the DFA-based regression introduced in Kristoufek (2015); however, 

future work will explore the generality of such measures in MLR. 
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  Another limitation to the current findings is that total power may not be the best 

metric for summarizing MLR coefficients.  The MLR tool is new and still under 

development, and future work will investigate other ways of characterizing MLR-

revealed structure.  If the oscillatory patterns shown in these experiments are general and 

replicable, then one possibility is the use of differential equation modeling of the activity 

observed at each scale (e.g., Butner, Amazeen, & Mulvey, 2005; Butner, Gagnon, Geuss, 

& Lassard, 2015).  Oscillatory patterns across both experiments suggest damped 

oscillator models would be a good place to start. Estimation of those models via 

multilevel modeling techniques could reveal stability of oscillatory relationships at 

different time scales (i.e., Lyapunov exponents, Rosenstein, Collins, & DeLuca, 1993).  

This has implications for the earlier discussion regarding detecting points of 

vulnerability.  Lyapunov exponents describe, among other things, the resistance of a 

system to external perturbations.  Knowing the Lyapunov exponents for a given scale of 

analysis is then tantamount to knowing how vulnerable that scale level is to perturbation.  

Ongoing work is exploring the utility of those modeling approaches in settings similar to 

those explored in this dissertation. 

The current results make clear the fact that MLR uncovers multiscale interactions 

among the systems that make up a pursuit-tracking system.  However, it is also clear that 

establishing the importance of those relationships in psychological contexts means 

characterizing multiscale interactions in the most appropriate way.  There are many 

possible means of distilling those relationships that future work concerning MLR will 

address. 
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Multiscale Interactions in Psychological Systems 

  The results from these experiments suggest that an oscillatory form of 

coordination is a default behavior among the many systems involved in pursuit-tracking, 

even when the systems themselves are not oscillatory.  That was stated explicitly with 

respect to measures from Experiment 1 (Fine et al., 2015; Peng et al., 2001; Peng et., 

2002; Collins & DeLuca, 1995) but holds true for measures used in Experiment 2.  These 

findings stand to impact a field that has long relied on indirect evidence to make 

conclusions about the underlying dynamics in psychological systems.  Measurements of 

fractal scaling have come to dominate much of the contemporary literature on dynamical 

systems approaches to cognition, perception, and action.  Indeed, the large literature 

reviewed in the introduction gives the impression that once the Hurst exponent is known, 

the system under study is understood. The results of these experiments propose an 

alternative point of view.   

 Fractal analysis of rough-looking time series is just the starting point for 

dynamical systems approaches to understanding psychological systems. Without a doubt, 

it is an exciting idea that such a simple measure like the Hurst exponent could somehow 

provide a general metric of health (e.g., Peng et al., 2001), learning (e.g., Nourritt-Lucas 

et al., 2015), social coordination (e.g., Fine et al., 2015; Marmelat & Delignieres, 2012) 

and so on.  However, persistent pursuit of fractal scaling leads down a blind alley, 

without fully appreciating why fractal properties are so pervasive.  It has already been 

established that understanding the meaning and significance of fractal scaling requires 

understanding the experimental contexts in which it is reasonable to observe fractal 

scaling (e.g., Likens et al., 2015).  The current results take that notion one step further 
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because direct demonstration of multiscale interactions means it should be possible to 

explain why fractal properties vary across experimental contexts, in the first place.  
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APPENDIX A 

MULTISCALE LAGGED REGRESSION 
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 The literature on fractal scaling in psychological time series has principally relied 

on the idea that complexity emerges in psychological time series from coordination 

across multiple scales of analysis, and historically, documentation has relied heavily on a 

broad range of statistical methods known as fractal analysis (Eke et al., 2002; Eke et al., 

2012; Beran, 1994).  The purpose of this section is threefold: (1) it provides a brief and 

minimally technical overview of ordinary least squares regression and fractal analysis; 

(2) it discusses reasons why, on their own, those methods are insufficient for 

characterizing coordination across scales; and (3) it synthesizes those tools into a new 

method for analyzing temporal relationships across multiple temporal scales. 

 Ordinary least squares regression analysis.  This section introduces a new 

method for the analysis of multiscale systems.  The method draws from two 

methodological sources, ordinary least squares regression and fractal analysis (Cohen, 

Cohen, West, & Aiken, 2003; Eke et al., 2002; Kristoufek, 2015).  Given its importance 

to the proposed analysis, a brief review of least squares regression is warranted before 

giving full attention to the new technique.  Least squares regression is arguably the most 

general tool for studying the relationship between two or more variables.  In the bivariate 

time series case, least squares regression is concerned with estimating the coefficients in 

the general equation,  

Yt = β0 + β1Xt + ϵt,         (1) 

where Xt is a measured predictor at time t, Yt is the measured criterion at time t, and the ϵt 

gives the difference between the predicted and observed criterion.  Thus, β0 gives the 

expected value of Yt when Xt is equal to zero and β1 gives the expected change in Yt for a 

one unit change in Xt, assuming that β0 is zero.  When X is centered at zero, β0 is 
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equivalent to the mean of Yt.  Estimation and statistical testing of β1 is usually the focus 

and is captured in the following equation,  

𝛽/ = 	
(23	42	)(	53	45	)6

378
(294	2):;

978
	~	=>?

=>
:      (2) 

where, 

𝑥 = 	 𝑥AB
AC/        (3) 

and, 

𝑦 = 	 𝑦AB
AC/        (4) 

For later development, special attention is given to the fact that the coefficient,	𝛽/, is 

essentially ratio of covariance, 𝜎"#$ , over variance, 𝜎"$ because it provides a basic metric 

of the linear relationship between two variables.   

The value of ordinary least squares regression cannot be overstated; however, the 

standard regression framework illustrated in equations (1) - (4) gives a potentially 

oversimplified picture of the relationships among psychological variables.  In the 

introduction, numerous examples were given of psychological time series that have 

structure at multiple scales (e.g., Likens et al., 2014; Likens et al., 2015; Van Orden et al., 

2003; Wagenmakers et al., 2004).  To the extent that multiscale structure exists in 

psychological time series, it is reasonable to expect that the relationships among 

psychological time series might also depend on scale.  If so, then the depiction of 

dependence given by the standard regression framework seems unreasonable, owing to its 

emphasis on a single temporal scale.  In contrast, fractal analysis was developed to 

explicitly understand how variability changes as a function of scale (e.g., Mandelbrot, 

1967), and recent developments in fractal analysis add multiscale resolution to the 
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regression framework (e.g., Kristoufek, 2013, 2015).  The following sections given an 

overview of fractal analysis before integrating fractal analysis with the general regression 

framework and extending. 

Fractal analysis.  Fractal analysis comes in many forms with varying degrees of 

algorithmic complexity, but nearly all procedures provide a means to capture how some 

measure of variability changes as a function of scale size.  Detrended fluctuation analysis 

(DFA) is generally considered to be the gold standard, despite newer and more 

complicated approaches (e.g., Bashan, Bartsch, Kantelhardt, & Havlin, 2008).  It forms 

the basis for the new method introduced in this paper.  The DFA algorithm involves five 

steps: (1) Create the profile by subtracting the mean and then taking the cumulative sum 

of the time series. 

(2) Partition the time series of length, N, into N/s non-overlapping boxes such that each 

box contains s observations.  (3) Fit local least squares line within each box and subtract 

the trend from each data point.  (4) Square the residuals within each box.  Repeat steps 

two and three for many s, computing the root mean squared residual for each s.  The 

maximum s should be less than N/4, and the range of s can be divided either 

logarithmically (e.g., Peng et al., 1994; Likens et al., 2015) or linearly (e.g., Almurad & 

Deligniéres, 2016).  The result of this step, the fluctuation function, 𝐹"$(𝑠), is the basic 

quantity used in fractal analysis (e.g., Mandelbrot, 1967). 

(5) Regress the logarithm of 𝐹"$ 𝑠 on the logarithm of s.  The slope resulting from step 

(5) gives a so-called scaling coefficient, α, and represents the relationship between the 

measure of variability and scale size.  When the relationship between 𝑙𝑜𝑔𝐹"$ 𝑠  and logs 

is linear, and α is in the interval, (0.5, 1), then the time series exhibits evidence of fractal 
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scaling.  That is, variability is self-similar over many scales of analysis.   

DFA has been extended to bivariate and multivariate settings (e.g., Podobnik & 

Stanley, 2008; Kristoufek, 2013; Kristoufek, 2015; Xiong & Shang, 2016), where scaling 

exponents represent the average of the scaling exponents that characterize component 

processes.  The latter observation that bivariate and multivariate extensions to DFA 

capture the average scaling behavior is theoretically interesting.  One implication is that 

the noise observed in a system’s components comes from a common origin.  A less 

obvious implication is that the relationships among a system’s components might depend 

on temporal scale.  So, while theoretically interesting, multivariate extensions of DFA are 

somewhat unsatisfying in that they identify that a multiscale relationship exists among 

component processes but do not specify what that relationship is, how it changes as a 

function of scale, or how it might change over time.   

Multiscale lagged regression.  Considered together, fractal analysis and standard 

regression make obvious a missing element in the analysis of psychological time series.  

Recall that variability in psychological performance is thought to emerge from the 

multiscale interactions among the many components that make up a psychological system 

(e.g.  Van Orden et al., 2003).  The litany of positive results from fractal analysis support 

that claim, but fractal techniques provide very little information concerning the nature of 

those interactions.  Standard regression, while capturing the monoscale relationship 

between two series, ignores the multiscale structure inherent in psychological time series.  

What is needed is an analytical method that can elucidate the time-varying relationships 

among psychological processes, relationships that may be likewise depend upon the 

many temporal scales that make up behavior.  The following paragraphs propose just 
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such a method.   

Recently, Kristoufek (2013; 2015) observed that detrended cross correlation 

analysis (DCCA; Podobnik & Stanley, 2008) – the bivariate extension of DFA – could be 

leveraged to develop a multiscale form of regression.  The main difference between DFA 

and DCCA is that DCCA is concerned with the combined fluctuation function, 𝐹"#$ (𝑠), 

between two time series, Xt and Yt (Podobnik & Stanley, 2008).  That is, DCCA performs 

steps (1) - (3) of the DFA procedure independently for each time series; however, instead 

of computing the scale-wise variance, 𝐹"$(𝑙), for each variable in step (4), the scale-wise 

covariance,	𝐹"#$ (𝑠), is computed by taking the cross-product of the scale-wise detrended 

series and averaging at each scale s.  If the joint fractal properties are of interest to the 

researcher, then she can examine the linear relationship between the logarithm of 𝐹"#$ (𝑠) 

and the logarithm of s. 

The resulting slope reflects the average scaling exponent, 𝛼"#, for Xt and Yt, 

where  𝛼"# = (𝛼" + 𝛼#)/2.  However, the current interest is in characterizing how the 

relationship between Xt and Yt changes as a function scale and time, not whether the 

processes have similar scaling properties.  Referring back to Equation (2), one can 

appreciate that the regression coefficient, 𝛽/, is nothing more than the ratio between the 

covariance of X and Y and the variance of X (Kristoufek, 2015).  Thus, the components of 

the standard regression coefficient are similar to estimates of variance, 𝐹"$ 𝑠 , and 

covariance, 𝐹"#$ (𝑠), generated by the DFA and DCCA procedures.  Kristoufek (2015) 

went on to show that scale-wise variance and covariance measures could be used to 

construct scale-wise regression coefficients, 
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𝛽/ 𝑠 = 	𝐹"#$ (𝑠)/𝐹"$(𝑠)      (5). 

 

The current work extends the idea of scale-wise regression coefficient by exploring how 

the relationships estimated in Equation (5) change as a function of time-lag.  Extending 

the DFA based regression in this way may help to answer questions concerning how 

changes in one variable at one time scale might be predicted by changes in another 

variable at a similar time scale, both contemporaneously and in the past.  The outlined 

steps that follow this paragraph represent the new MLR algorithm.  Steps 1 – 6 

correspond to earlier work developing fractal analysis and DFA based regression.  In step 

7, the introduction of time lags, reflects my contribution to the DFA based regression 

framework: 

8. Normalize each of two time series, Xt and Yt, to have zero mean and unit variance. 

9. Separate each time series into N/s bins of length s.   

10. Within each bin, for each time series and several s, estimate the best fitting line 

and subtract that line from the binned time series.  This step requires some 

justification.  In the original DFA algorithm and in many other forms of fractal 

analysis (Eke et al., 2010), the interest is in analyzing the intrinsic fluctuations of 

a system, the ebb and the flow.  The detrending procedure was introduced in 

fractal analysis by Peng and colleagues (1994) to address situations where 

nonstationarities such as a drift and singularities (e.g., sharp peaks or step-like 

jumps in time series) might bias estimates of scaling behavior by overestimation 

of long range correlations.  However, detrending data before analysis by 

regressive techniques has long been a recommendation in time series analysis 
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where it has been shown that spurious trends lead to gross overestimation of 

temporal relationships between variables (Granger & Newbold, 1974).   

11. Compute the residuals variances for X and Y as well as residual covariance 

between the binned series.   

12. Compute the average covariance eat each scale, s.   

13. For each scale, compute the scale-wise regression coefficient as 𝛽/ 𝑠, 𝑙 =

	𝐹"#$ (𝑠, 𝑙)/𝐹"$(𝑠, 𝑙), where l is lag of X .  When l is zero, the procedure in 

Kristoufek (2015) is recovered. 

14. Repeat Steps 1 through 6 for several scales and several lags to obtain an s × l 

matrix, B, that contains the regression coefficients for each scale and lag 

combination.  The resulting rows of B give the temporal evolution of relationship 

between Xt and Yt. 

New analytical techniques require simulations to test and understand behavior of the 

algorithm.  The following simulations help to illustrate the output of multiscale lagged 

regression (MLR) and demonstrate the generality of MLR in revealing the structure 

shared by time series data.  The method also makes possible striking visualizations of 

scale by lag relationships, visualizations that prove very useful in making sense of 

empirical data, where properties are unknown or the series are extremely noisy.   

Simulation 1 – Independent sine waves.  Two 1 Hz sine waves were generated by at 

a sampling frequency of 100 Hz, both with zero phase offset and both with unit amplitude 

[Figure A1 (a) and (b)].  Figure A1 (c) and Figure A1 (d) show the outcome when we use 

the MLR algorithm on those sine wave series with scales ranging from 0.1 s to 50 s by 

intervals of 0.5 s and lags ranging from 0.0 s to 5 s in increments of 0.01 s – the graphs 



	

	

	

99 

are striking.  Colors in Figure A1(c) represent the magnitude of scaled and lagged 

regression coefficient calculated in step (6).  The range is from blue to red, such that blue 

represents the most negative coefficient (i.e., -1.0), red represents the most positive 

coefficient (i.e., 1.0) and green represents a coefficient of zero.  White regions indicate 

regions outside the color scale.  With that in mind, the results are exactly as one would 

expect.  Moving your eyes from left to right over Figure A1 (c) reveals alternating bands 

of positive (red)  and negative (blue) association, interspersed with zero association.  

Note that the relationship is the same, regardless of the scale at which one analyzes the 

data.  Figure A1 (d) shows the average 𝛽/ 𝑠, 𝑙  at each lag, a quantity used in later 

analysis.  The smooth curve in Figure A1 (d) also captures the oscillatory nature of the 

sine waves.  
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Figure A1.  Multiscale lagged regression applied to simple oscillations.  

Panels (a) and (b) are time series plots of identical sine waves.  Panel (c) is 

a graphical representation of the Β matrix obtained in step (7) in MLR.  As 

expected, the MLR reveals the oscillatory relationship between these 

variables.  The oscillatory relationship that projects across time is further 

evident in panel (d), which shows 𝛽/ 𝑠, 𝑙  averaged over columns of Β. 

 

Simulation 2 – Two identical white noise processes.  This simulation compares two 

identical white noise processes [Ns = 30,000; see Figure A2 (a) and (b)].  One would 

expect, in this case, that the regression coefficient for all scales should equal unity when 

the lag is zero but the coefficient should decay rapidly on successive lags.  Figure A2 (c) 

shows that exact pattern as a strong, thin, red line that traverses all scales for a lag of zero 

but rapidly decays near zero for lags greater than zero and regardless of scale.  Figure A2 

(d) demonstrates that average 𝛽/ 𝑠, 𝑙  is near 1.0 at lag zero but is close to zero for all 

other values. 

A B 

C D 
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Figure A2.  Multiscale lagged regression for identical white noise 

processes.   Panels (a) and (b) are time series plots of identical white noise.  

Panel (c) is a graphical representation of the Β matrix obtained in step (7) 

in MLR.  The nature of the relationship is difficult to observe in (d) 

because, as expected, most lags and scales produce a 𝛽/ 𝑠, 𝑙  very near 

zero.  The singular exception is at lag zero when one time series perfectly 

predicts the other (i.e., itself). 

 

Simulation 3 – Two independent white noise processes.  Two distinct white noise 

processes were generated with zero mean and unit variance (Ns = 30,000).  Similar to the 

previous simulation, the expectation is that the majority of scaled and lagged regression 

coefficients should be zero.  Where this example is expected to differ is that the lag zero 

coefficient is also expected to be near zero, regardless of scale.  Figure A3 (a) and (b) 

show the simulated time series, and Figure A3 (c) and (d) show the expected result, 

namely, that the series are independent of one another, regardless of time or scale. 

A B 

C D 
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Figure A3.  Multiscale lagged regression for independent white noise 

processes.  Panels (a) and (b) are time series plots of identical white noise.  

Panel (c) is a graphical representation of the Β matrix obtained in step (7) 

in MLR.  The nature of the relationship between the independent series is 

obvious in that 𝛽/ 𝑠, 𝑙  is always near zero in (d).   

 

Simulation 4 – Two independent white noise processes with a common linear trend.  

Here, two independent white processes were generated (N = 30,000), each with a 

superimposed linear trend that increases by one unit every second, assuming a 100 Hz 

sampling rate.  This simulation is similar to the many examples given in introductory 

lectures on spurious correlations such as when a child’s growth is correlated with growth 

in the stock market.   The three prior simulations, while necessary, were somewhat 

unsurprising.  Simulation 4, however, is arguably a little more interesting because there is 

a clear linear trend present in each of the series and the trend appears to be more or less 

the same (see Figure A4 (a) and (b)).  An important result would be for MLR to reveal 

A B 

C D 
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the spuriousness of the common trend – Figure A4 shows the anticipated result.  As 

expected, MLR shows the time series to be unrelated across all scales and lags.  Figure 

A5 depicts the result without the detrending steps.  In that case, not performing the 

detrending procedure gives the impression that strong positive relationship exists between 

the simulated series.  That result is inaccurate because the two time series are random, 

independent noise that exert no influence on one another.   

 

Figure A4.  Multiscale lagged regression for independent white noise 

processes that share a common trend.  Panels (a) and (b) are time series 

plots of identical white noise.  Panel (c) is a graphical representation of the 

Β matrix obtained in step (7) in MLR.  The nature of the relationship 

between the independent series is obvious in that 𝛽/ 𝑠, 𝑙  is always near 

zero in (d).   

A B 

C D 
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Figure A5.  Multiscale lagged regression of spurious trends.  Panels (a) 

and (b) are time series plots of identical white noise.  Panel (c) is a 

graphical representation of the Β matrix obtained in step (7) in MLR.  

Here, the spurious trend creates the illusion of a relationship in (d) when 

the detrending is omitted from MLR.   

A B 

C D 
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To contrast, consider an alternate situation in which two time series are correlated but 

share a common trend imposed by a source external to both series.  The series in Figure 

A6 (a) and (b) were generated by simulating series with  

r ≅ 0.75 and, then giving them each the same trend as the previous simulation.  Figure A6 

(c) and (d) shows MLR’s performance is also good in that scenario—MLR reveals a 

strong positive coefficient at lag zero that decays to zero at all other lags.  Figure A7 

depicts the (inaccurate) results that are obtained if the series are not detrended.  Taken 

together, these two simulations show that detrending is beneficial in identifying spurious 

relationships while properly characterizing genuine dependence. 

 

Figure A6.  Multiscale lagged regression for independent white noise 

processes that share a common trend.  Panels (a) and (b) are time series 

plots of correlated series that also share a common upward trend.  Panel 

(c) is a graphical representation of the Β matrix obtained in step (7) in 

MLR.  Panel (d) shows that, as expected, the series have a strong 

contemporaneous relationship that decays rapidly over time.   

A B 

C D 
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Figure A7.  Multiscale lagged regression for independent white noise 

processes that share a common trend.  Panels (a) and (b) are time series 

plots of correlated series that also share a common upward trend.  Panel 

(c) is a graphical representation of the Β matrix obtained in step (7) in 

MLR.  Panel (d) shows that, without detrending, the algorithm 

overestimates the contemporaneous relationship but also projects that 

overestimation to all scale and lags.   

 

Simulation 5 – Two long range correlated series with a contemporaneous 

relationship.  Two time series were simulated in this example – a fractal time series, Xt, 

with scaling exponent, α ≅ 0.8, and a second time series, Yt = β0 + β1Xt + ϵt, with β0 = β1 = 

1, and where ϵt is a white noise process.  In this case, the expectation for a well-

performing algorithm is the ability to capture the contemporaneous relationship between 

Xt and Yt as unity with slow decay indicative of long range correlation.  Figure A8 

 

A B 

C D 
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confirms this finding.  There is a strong positive relationship at lag zero that decays quite 

slowly over successive lags.  

 

Figure A8.  Multiscale lagged regression of long range correlated series 

that share a strong contemporaneous relationship.  Panels (a) and (b) are 

time series plots of identical white noise.  Panel (c) is a graphical 

representation of the Β matrix obtained in step (7) in MLR.  The spurious 

relationship between creates the illusion of relationship (d) when the 

detrending is omitted from MLR.   

 

 Simulation 6 – Time series related by multiple lags.  This simulation shows that 

the method is sensitive to perturbations in one time series that originate in another time 

series.  The time series in Figure A9 (a) and (b) were generated such that Figure A9 (b) 

A B 

C D 
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depends on previous values of Figure A9 (a).  Specifically, the series in Figure A9 (a) 

perturbs the series in 8 (b) 1 s, 2 s, 3 s, 4 s, and 5 s in the past.  The pattern of 

perturbations is clearly visible in Figure A9 (c) and (d).  In Figure A9 (c), the 

perturbations are most visible at small scales and diffuse to longer and longer time scales.  

In Figure A9 (d), the pattern presents as a sequence of scallops resting at lags from 1 s to 

5 s. 

 

Figure A9.  Multiscale lagged regression of spurious trends.  Panels (a) 

and (b) are time series plots of identical white noise.  Panel (c) is a 

graphical representation of the Β matrix obtained in step (7) in MLR.  The 

spurious relationship between creates the illusion of relationship (d) when 

the detrending is omitted from MLR.   

 

A B 

C D 
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Simulation 7 – Two noisy sine waves.  The same sine waves generated in 

Simulation 1 were regenerated in current simulation (see Figure A10 (a) and (b)).  The 

main difference was that the sine waves in the current simulation were contaminated by 

independent sources of white noise.  Figure A10 (c) shows that the relatively small 

coefficients at small scales gives way to the expected oscillating pattern at large scales 

(c.f.  Figure 1).  That is interesting because it implies that if only small time scales were 

analyzed, then the relevant, oscillatory structure would be missed.  MLR uncovered the 

oscillatory relationship between the time series, even though the relationship was buried 

in noise. 

 

Figure A10.  Multiscale lagged regression of noise corrupted sine waves.  

Panels (a) and (b) are time series plots of noisy sine waves.  Panel (c) is a 

graphical representation of the Β matrix obtained in step (7) in MLR.  

Despite considerable and independent noise in the time series, MLR still 

captures the tendency for oscillation across many scales as can be seen by 

average  

A B 

C D 
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It is clear from the simulations above that MLR reveals the multiscale temporal 

relationships between time series.  The general utility of the MLR approach is its 

capability to capture structure not just contemporaneously, but also over successive lags.   

MLR functions well in the face of noise and misleading trends.  Important for the 

analysis of psychological time series is the fact that MLR captures temporal dynamics at 

multiple time scales.  Details of how those multiscale interactions are left to analysis 

sections involving experimental data as those summarization method are not a direct part 

of the algorithm. 
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APPENDIX B 

LINEAR MIXED-EFFECTS MODELS FROM EXPERIMENT 1 
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Table B1.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of respiratory rate on heart rate. 

 

 

  

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.45 –
 0.62 <.001  0.44 0.35 –

 0.53 <.001  0.40 0.30 –
 0.50 <.001  0.44 0.33 –

 0.55 <.001

power  0.89 -0.24 –
 2.03 .126  0.49 -0.55 –

 1.52 .359  -0.12 -1.14 –
 0.90 .814  1.47 -0.38 –

 3.31 .124

timetime2    0.20 0.13 –
 0.27 <.001  0.20 0.14 –

 0.27 <.001  0.04 -0.06 –
 0.15 .438

timetime3    0.08 0.01 –
 0.16 .025  0.08 0.02 –

 0.15 .017  0.12 0.02 –
 0.22 .027

conditionmove      0.13 0.06 –
 0.19 <.001  0.00 -0.10 –

 0.10 .986

conditionbreath      -0.01 -0.08 –
 0.06 .824  -0.02 -0.12 –

 0.09 .732

timetime2:conditionmove        0.38 0.23 –
 0.53 <.001

timetime3:conditionmove        -0.01 -0.16 –
 0.13 .857

timetime2:conditionbreath        0.07 -0.08 –
 0.22 .361

timetime3:conditionbreath        -0.08 -0.23 –
 0.06 .261

conditionmove:power        -1.47 -3.72 –
 0.78 .203

conditionbreath:power        -3.19 -5.60 –
 -0.78 .011

Random Parts

σ2  0.038  0.030  0.027  0.020
τ00, id  0.023  0.024  0.024  0.027
ρ01      1.000  1.000
Nid  15  15  15  15
ICCid  0.375  0.440  0.476  0.575
Observations  135  135  135  135

R2 / Ω0
2  .444 / .435  .556 / .551  .614 / .611  .724 / .722

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B2.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of respiratory rate on movement 

frequency. 

 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.43 –
 0.62 <.001  0.43 0.32 –

 0.53 <.001  0.39 0.29 –
 0.50 <.001  0.48 0.36 –

 0.60 <.001

power  1.49 -5.90 –
 8.88 .693  2.00 -4.68 –

 8.67 .559  1.04 -5.35 –
 7.43 .750  -10.53 -20.52 –

 -0.53 .041

timetime2    0.21 0.13 –
 0.28 <.001  0.21 0.14 –

 0.27 <.001  0.06 -0.04 –
 0.16 .253

timetime3    0.08 0.01 –
 0.16 .024  0.08 0.02 –

 0.15 .017  0.13 0.03 –
 0.23 .015

conditionmove      0.12 0.05 –
 0.19 <.001  -0.09 -0.21 –

 0.04 .172

conditionbreath      -0.00 -0.07 –
 0.06 .909  0.02 -0.11 –

 0.14 .794

timetime2:conditionmove        0.35 0.21 –
 0.50 <.001

timetime3:conditionmove        -0.02 -0.16 –
 0.12 .793

timetime2:conditionbreath        0.04 -0.11 –
 0.18 .632

timetime3:conditionbreath        -0.11 -0.26 –
 0.03 .124

conditionmove:power        18.47 5.36 –
 31.59 .007

conditionbreath:power        3.91 -7.83 –
 15.64 .516

Random Parts

σ2  0.038  0.031  0.027  0.020
τ00, id  0.023  0.023  0.024  0.030
Nid  15  15  15  15
ICCid  0.373  0.431  0.473  0.604
Observations  135  135  135  135

R2 / Ω0
2  .435 / .425  .552 / .547  .612 / .608  .734 / .733

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B3.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of respiratory rate on postural path length. 

  

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.45 –
 0.62 <.001  0.44 0.34 –

 0.53 <.001  0.40 0.29 –
 0.50 <.001  0.41 0.30 –

 0.52 <.001

power  -0.95 -2.71 –
 0.81 .294  -0.89 -2.49 –

 0.71 .279  -1.04 -2.55 –
 0.46 .176  -4.28 -7.09 –

 -1.47 .003

timetime2    0.21 0.13 –
 0.28 <.001  0.21 0.14 –

 0.27 <.001  0.10 0.00 –
 0.21 .050

timetime3    0.09 0.02 –
 0.16 .017  0.09 0.02 –

 0.16 .010  0.14 0.04 –
 0.25 .007

conditionmove      0.13 0.06 –
 0.19 <.001  0.03 -0.08 –

 0.13 .610

conditionbreath      -0.00 -0.07 –
 0.06 .897  0.03 -0.07 –

 0.14 .518

timetime2:conditionmove        0.32 0.18 –
 0.47 <.001

timetime3:conditionmove        -0.04 -0.18 –
 0.11 .614

timetime2:conditionbreath        0.01 -0.14 –
 0.15 .941

timetime3:conditionbreath        -0.12 -0.26 –
 0.03 .111

conditionmove:power        4.53 1.06 –
 8.00 .012

conditionbreath:power        4.40 0.53 –
 8.27 .028

Random Parts

σ2  0.038  0.030  0.027  0.020
τ00, id  0.024  0.024  0.025  0.025
Nid  15  15  15  15
ICCid  0.383  0.445  0.481  0.556
Observations  135  135  135  135

R2 / Ω0
2  .441 / .432  .558 / .553  .618 / .615  .726 / .724

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B4.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of heart on rate respiratory rate. 

 

 
 

 

 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.43 –
 0.62 <.001  0.42 0.32 –

 0.53 <.001  0.39 0.28 –
 0.50 <.001  0.37 0.24 –

 0.50 <.001

power  0.35 -1.83 –
 2.54 .752  0.68 -1.29 –

 2.66 .499  0.34 -1.60 –
 2.28 .733  1.85 -0.39 –

 4.09 .108

timetime2    0.21 0.13 –
 0.28 <.001  0.21 0.14 –

 0.27 <.001  0.09 -0.01 –
 0.20 .091

timetime3    0.09 0.01 –
 0.16 .020  0.09 0.02 –

 0.15 .016  0.15 0.04 –
 0.26 .009

conditionmove      0.12 0.06 –
 0.19 <.001  0.03 -0.12 –

 0.18 .699

conditionbreath      0.00 -0.07 –
 0.07 .976  0.09 -0.04 –

 0.22 .180

timetime2:conditionmove        0.35 0.20 –
 0.50 <.001

timetime3:conditionmove        -0.03 -0.19 –
 0.12 .661

timetime2:conditionbreath        0.03 -0.12 –
 0.19 .673

timetime3:conditionbreath        -0.11 -0.27 –
 0.05 .167

conditionmove:power        -0.34 -4.61 –
 3.94 .878

conditionbreath:power        -4.02 -10.34 –
 2.30 .215

Random Parts

σ2  0.038  0.031  0.027  0.021
τ00, id  0.024  0.024  0.025  0.026
Nid  15  15  15  15
ICCid  0.383  0.445  0.480  0.554
Observations  135  135  135  135

R2 / Ω0
2  .437 / .428  .556 / .551  .613 / .610  .714 / .713

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B5.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of heart on movement frequency. 

 

 
 
 
 
 
 
  
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.45 –
 0.62 <.001  0.44 0.34 –

 0.53 <.001  0.40 0.30 –
 0.50 <.001  0.40 0.30 –

 0.50 <.001

power  3.44 -3.64 –
 10.51 .343  2.69 -3.69 –

 9.07 .410  2.69 -3.38 –
 8.76 .387  -8.43 -19.80 –

 2.94 .149

timetime2    0.20 0.13 –
 0.28 <.001  0.20 0.14 –

 0.27 <.001  0.18 0.11 –
 0.25 <.001

timetime3    0.09 0.01 –
 0.16 .023  0.09 0.02 –

 0.15 .015  0.08 0.01 –
 0.15 .018

conditionmove      0.12 0.05 –
 0.19 <.001  0.12 0.05 –

 0.19 <.001

conditionbreath      -0.01 -0.08 –
 0.06 .850  0.00 -0.06 –

 0.07 .961

timetime2:power        7.60 -7.19 –
 22.39 .316

timetime3:power        1.19 -11.68 –
 14.06 .856

power:conditionmove        21.28 5.88 –
 36.69 .008

power:conditionbreath        5.95 -7.15 –
 19.04 .375

Random Parts

σ2  0.038  0.031  0.027  0.025
τ00, id  0.022  0.023  0.024  0.026
Nid  15  15  15  15
ICCid  0.367  0.432  0.467  0.506
Observations  135  135  135  135

R2 / Ω0
2  .436 / .427  .554 / .549  .612 / .609  .655 / .652

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B6.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of heart on postural path length. 

 
 
 
 
 
 
 
 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.57 0.49 –
 0.66 <.001  0.47 0.37 –

 0.57 <.001  0.43 0.32 –
 0.54 <.001  0.48 0.36 –

 0.61 <.001

power  -2.36 -4.34 –
 -0.37 .022  -1.79 -3.60 –

 0.02 .054  -1.38 -3.13 –
 0.37 .125  -1.86 -4.14 –

 0.41 .112

timetime2    0.20 0.13 –
 0.27 <.001  0.20 0.13 –

 0.27 <.001  0.06 -0.05 –
 0.17 .283

timetime3    0.08 0.01 –
 0.15 .034  0.08 0.01 –

 0.15 .023  0.09 -0.02 –
 0.20 .099

conditionmove      0.11 0.05 –
 0.18 .002  -0.04 -0.17 –

 0.09 .534

conditionbreath      -0.01 -0.08 –
 0.06 .748  -0.03 -0.16 –

 0.11 .692

timetime2:conditionmove        0.37 0.22 –
 0.52 <.001

timetime3:conditionmove        0.02 -0.13 –
 0.17 .833

timetime2:conditionbreath        0.05 -0.10 –
 0.20 .504

timetime3:conditionbreath        -0.06 -0.22 –
 0.09 .408

conditionmove:power        1.66 -1.83 –
 5.15 .353

conditionbreath:power        1.11 -3.19 –
 5.40 .615

Random Parts

σ2  0.037  0.030  0.027  0.021
τ00, id  0.023  0.024  0.024  0.025
Nid  15  15  15  15
ICCid  0.381  0.442  0.476  0.539
Observations  135  135  135  135

R2 / Ω0
2  .457 / .449  .566 / .561  .619 / .616  .710 / .708

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B7.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of movement frequency on respiratory 

rate. 

 
 
 
 
 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.49 0.39 –
 0.58 <.001  0.37 0.27 –

 0.47 <.001  0.32 0.21 –
 0.43 <.001  0.31 0.20 –

 0.42 <.001

power  0.88 0.06 –
 1.71 .038  1.17 0.44 –

 1.90 .002  1.13 0.43 –
 1.83 .002  2.00 1.25 –

 2.75 <.001

timetime2    0.22 0.15 –
 0.29 <.001  0.22 0.15 –

 0.28 <.001  0.09 -0.00 –
 0.19 .061

timetime3    0.08 0.01 –
 0.15 .021  0.08 0.02 –

 0.15 .014  0.08 -0.01 –
 0.18 .085

conditionmove      0.13 0.06 –
 0.19 <.001  0.15 0.02 –

 0.29 .031

conditionbreath      0.02 -0.05 –
 0.08 .640  0.11 -0.02 –

 0.24 .109

timetime2:conditionmove        0.33 0.19 –
 0.46 <.001

timetime3:conditionmove        0.02 -0.12 –
 0.16 .772

timetime2:conditionbreath        0.02 -0.12 –
 0.15 .805

timetime3:conditionbreath        -0.06 -0.19 –
 0.08 .395

conditionmove:power        -2.35 -3.81 –
 -0.90 .002

conditionbreath:power        -1.41 -3.28 –
 0.46 .142

Random Parts

σ2  0.037  0.028  0.025  0.018
τ00, id  0.024  0.025  0.025  0.023
Nid  15  15  15  15
ICCid  0.394  0.468  0.504  0.568
Observations  135  135  135  135

R2 / Ω0
2  .457 / .448  .589 / .585  .644 / .641  .761 / .760

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B8.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of movement frequency on heart rate. 

 

 
 
 
 
 
 
 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.45 –
 0.62 <.001  0.44 0.35 –

 0.53 <.001  0.39 0.29 –
 0.49 <.001  0.43 0.33 –

 0.53 <.001

power  0.44 0.15 –
 0.73 .003  0.53 0.28 –

 0.78 <.001  0.51 0.27 –
 0.75 <.001  0.73 0.49 –

 0.98 <.001

timetime2    0.22 0.15 –
 0.29 <.001  0.22 0.15 –

 0.28 <.001  0.09 -0.00 –
 0.19 .053

timetime3    0.07 0.01 –
 0.14 .035  0.07 0.01 –

 0.14 .024  0.06 -0.03 –
 0.16 .211

conditionmove      0.13 0.06 –
 0.19 <.001  0.01 -0.08 –

 0.10 .823

conditionbreath      0.02 -0.05 –
 0.08 .606  0.02 -0.07 –

 0.11 .673

timetime2:conditionmove        0.33 0.20 –
 0.46 <.001

timetime3:conditionmove        0.05 -0.09 –
 0.18 .495

timetime2:conditionbreath        0.02 -0.11 –
 0.15 .788

timetime3:conditionbreath        -0.03 -0.17 –
 0.10 .618

conditionmove:power        -0.86 -1.38 –
 -0.34 .001

conditionbreath:power        -0.45 -1.21 –
 0.32 .256

Random Parts

σ2  0.036  0.027  0.024  0.017
τ00, id  0.023  0.023  0.024  0.022
Nid  15  15  15  15
ICCid  0.387  0.463  0.500  0.565
Observations  135  135  135  135

R2 / Ω0
2  .472 / .465  .608 / .604  .661 / .658  .771 / .770

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B9.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of movement frequency on postural path 

length. 

 

 
 
 
 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.56 0.47 –
 0.65 <.001  0.46 0.37 –

 0.56 <.001  0.42 0.31 –
 0.52 <.001  0.45 0.34 –

 0.57 <.001

power  -0.50 -1.24 –
 0.24 .190  -0.61 -1.27 –

 0.05 .074  -0.44 -1.07 –
 0.19 .175  -0.50 -1.35 –

 0.35 .249

timetime2    0.21 0.14 –
 0.28 <.001  0.21 0.14 –

 0.28 <.001  0.08 -0.02 –
 0.19 .118

timetime3    0.08 0.01 –
 0.15 .024  0.08 0.02 –

 0.15 .017  0.11 0.01 –
 0.22 .036

conditionmove      0.12 0.05 –
 0.19 <.001  -0.02 -0.16 –

 0.11 .736

conditionbreath      -0.00 -0.07 –
 0.06 .913  -0.01 -0.12 –

 0.11 .928

timetime2:conditionmove        0.35 0.20 –
 0.50 <.001

timetime3:conditionmove        -0.00 -0.15 –
 0.15 .982

timetime2:conditionbreath        0.02 -0.13 –
 0.17 .752

timetime3:conditionbreath        -0.09 -0.24 –
 0.06 .250

conditionmove:power        0.70 -1.03 –
 2.43 .429

conditionbreath:power        0.49 -0.68 –
 1.65 .415

Random Parts

σ2  0.038  0.030  0.027  0.022
τ00, id  0.023  0.024  0.025  0.025
Nid  15  15  15  15
ICCid  0.383  0.447  0.480  0.540
Observations  135  135  135  135

R2 / Ω0
2  .444 / .434  .565 / .561  .618 / .615  .707 / .705

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B10.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of postural path length on respiratory rate. 

 
 
 
 
 
 
 
 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.45 –
 0.62 <.001  0.44 0.34 –

 0.53 <.001  0.40 0.29 –
 0.50 <.001  0.41 0.30 –

 0.52 <.001

power  -0.95 -2.71 –
 0.81 .294  -0.89 -2.49 –

 0.71 .279  -1.04 -2.55 –
 0.46 .176  -4.28 -7.09 –

 -1.47 .003

timetime2    0.21 0.13 –
 0.28 <.001  0.21 0.14 –

 0.27 <.001  0.10 0.00 –
 0.21 .050

timetime3    0.09 0.02 –
 0.16 .017  0.09 0.02 –

 0.16 .010  0.14 0.04 –
 0.25 .007

conditionmove      0.13 0.06 –
 0.19 <.001  0.03 -0.08 –

 0.13 .610

conditionbreath      -0.00 -0.07 –
 0.06 .897  0.03 -0.07 –

 0.14 .518

timetime2:conditionmove        0.32 0.18 –
 0.47 <.001

timetime3:conditionmove        -0.04 -0.18 –
 0.11 .614

timetime2:conditionbreath        0.01 -0.14 –
 0.15 .941

timetime3:conditionbreath        -0.12 -0.26 –
 0.03 .111

conditionmove:power        4.53 1.06 –
 8.00 .012

conditionbreath:power        4.40 0.53 –
 8.27 .028

Random Parts

σ2  0.038  0.030  0.027  0.020
τ00, id  0.024  0.024  0.025  0.025
Nid  15  15  15  15
ICCid  0.383  0.445  0.481  0.556
Observations  135  135  135  135

R2 / Ω0
2  .441 / .432  .558 / .553  .618 / .615  .726 / .724

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 
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Table B11.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of postural path length on heart rate. 

 
 
 
 
 
 
 
 
 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.53 0.45 –
 0.62 <.001  0.44 0.34 –

 0.53 <.001  0.40 0.30 –
 0.50 <.001  0.43 0.32 –

 0.54 <.001

power  -0.01 -0.27 –
 0.24 .925  -0.02 -0.25 –

 0.21 .872  -0.04 -0.26 –
 0.17 .711  -0.19 -0.46 –

 0.09 .182

timetime2    0.21 0.13 –
 0.28 <.001  0.21 0.14 –

 0.27 <.001  0.08 -0.02 –
 0.18 .134

timetime3    0.08 0.01 –
 0.16 .025  0.08 0.02 –

 0.15 .017  0.12 0.01 –
 0.22 .029

conditionmove      0.12 0.06 –
 0.19 <.001  0.01 -0.10 –

 0.11 .878

conditionbreath      -0.00 -0.07 –
 0.06 .923  0.02 -0.09 –

 0.12 .739

timetime2:conditionmove        0.35 0.20 –
 0.49 <.001

timetime3:conditionmove        -0.01 -0.15 –
 0.14 .938

timetime2:conditionbreath        0.03 -0.12 –
 0.18 .695

timetime3:conditionbreath        -0.09 -0.24 –
 0.05 .220

conditionmove:power        0.26 -0.20 –
 0.72 .263

conditionbreath:power        0.24 -0.33 –
 0.81 .414

Random Parts

σ2  0.038  0.031  0.027  0.021
τ00, id  0.024  0.025  0.025  0.027
Nid  15  15  15  15
ICCid  0.385  0.447  0.484  0.560
Observations  135  135  135  135

R2 / Ω0
2  .438 / .428  .555 / .550  .614 / .610  .711 / .709

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 

	



	

	

	

123 

Table B12.  Linear mixed-effect model regressing total power on SDRP and other 

treatment effects.  Model corresponds to MLR of postural path length on movement 

frequency. 

 
 
 

 

  B CI p  B CI p  B CI p  B CI p

Fixed Parts

(Intercept)  0.56 0.46 –
 0.65 <.001  0.46 0.35 –

 0.56 <.001  0.40 0.29 –
 0.51 <.001  0.47 0.36 –

 0.59 <.001

power  -1.02 -2.07 –
 0.02 .058  -0.59 -1.57 –

 0.38 .233  0.81 -0.14 –
 1.75 .101  -1.19 -2.18 –

 -0.21 .019

timetime2    0.20 0.12 –
 0.27 <.001  0.20 0.13 –

 0.26 <.001  0.05 -0.06 –
 0.15 .396

timetime3    0.08 0.00 –
 0.15 .042  0.08 0.01 –

 0.15 .022  0.09 -0.02 –
 0.19 .112

conditionmove      0.11 0.05 –
 0.18 .001  -0.04 -0.16 –

 0.08 .487

conditionbreath      -0.02 -0.08 –
 0.05 .634  -0.02 -0.14 –

 0.10 .727

timetime2:conditionmove        0.38 0.24 –
 0.53 <.001

timetime3:conditionmove        0.02 -0.12 –
 0.17 .754

timetime2:conditionbreath        0.06 -0.09 –
 0.21 .430

timetime3:conditionbreath        -0.06 -0.21 –
 0.09 .405

conditionmove:power        1.51 -0.90 –
 3.92 .222

conditionbreath:power        0.98 -0.99 –
 2.96 .331

Random Parts

σ2  0.036  0.030  0.025  0.020
τ00, id  0.028  0.027  0.032  0.029
ρ01      -1.000   
Nid  15  15  15  15
ICCid  0.433  0.473  0.559  0.583
Observations  135  135  135  135

R2 / Ω0
2  .462 / .454  .564 / .559  .637 / .634  .722 / .721

Intercept 
  
Power 
  
Pre vs During 
  
Pre vs Post 
  
Move vs Control 
  
Breath Vs Control 
  
Move Vs Control During 
  
Move Vs Control Post 
  
Breath Vs Control During 
  
Breath vs Control Post 
  
Power x Move 
  
Power × Breath 

	


