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i 

ABSTRACT 

A nonlinear dynamic model for a passively cooled small modular reactor (SMR) 

is developed. The nuclear steam supply system (NSSS) model includes representations 

for reactor core, steam generator, pressurizer, hot leg riser and downcomer. The reactor 

core is modeled with the combination of: (1) neutronics, using point kinetics equations 

for reactor power and a single combined neutron group, and (2) thermal-hydraulics, 

describing the heat transfer from fuel to coolant by an overall heat transfer resistance and 

single-phase natural circulation. For the helical-coil once-through steam generator, a 

single tube depiction with time-varying boundaries and three regions, i.e., subcooled, 

boiling, and superheated, is adopted. The pressurizer model is developed based upon the 

conservation of fluid mass, volume, and energy. Hot leg riser and downcomer are treated 

as first-order lags. The NSSS model is incorporated with a turbine model which permits 

observing the power with given steam flow, pressure, and enthalpy as input. The overall 

nonlinear system is implemented in the Simulink dynamic environment. Simulations for 

typical perturbations, e.g., control rod withdrawal and increase in steam demand, are run. 

A detailed analysis of the results show that the steady-state values for full power are in 

good agreement with design data and the model is capable of predicting the dynamics of 

the SMR. Finally, steady-state control programs for reactor power and pressurizer 

pressure are also implemented and their effect on the important system variables are 

discussed. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

A small reactor, defined by the International Atomic Energy Agency (IAEA), is a 

nuclear reactor with an output of less than 300 MWe [1]. The term “modular” is derived 

from the fact that small reactors can be manufactured in a factory completely and 

delivered to the site for installation. 

The first commercial nuclear power plant in the U.S. was the Shippingport 

Atomic Power Station with a total capacity of 60 MWe [2]. The plant, which was located 

40 km away from Pittsburg, reached critically on December 2, 1957 and was able to 

produce electricity on December 18, 1957. Since then, the capacity of a single reactor has 

been increased up to around 1600 MWe considering economy of scale (see Figure 1.1). 

However, even in the 1960s when the trend was toward larger plant sizes, the potential of 

SMRs was being considered [3]. Starting with the late 1970s in the U.S., new projects for 

construction of nuclear power plants mostly have been postponed or canceled due to high 

initial investments, construction period exceeding 10 years, and cumbersome licensing 

process [4]. In fact, for the first time after almost 35 years, the Nuclear Regulatory 

Commission (NRC) approved construction and operation licenses for units 3 and 4 of the 

Alvin W. Vogtle Electric Generating Plant on February 10, 2012. Prior to that, the last 

construction permit for a nuclear power plant was issued in 1978 for the Shearon Harris 

Nuclear Power Plant located in New Hill, North Carolina [5]. 
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Figure 1.1 Electrical output of U.S. commercial nuclear power plants [6].                                   

Starting in the last decade, there has been a growing trend in the development and 

commercialization of small modular reactors (SMRs) not only in the U.S. but also in 

other countries including Russia, Japan, France, India, Argentina, South Korea, and 

China. However, these SMRs are not intended to be scaled-down version of today’s large 

nuclear reactors. The key in this scramble is to create a unique design, primarily, with the 

idea of combining steam generators and pressurizer with the reactor core in the reactor 

pressure vessel which is described with the term ‘integral’. Furthermore, lessons learned 

from 60 years of nuclear engineering and tragic accidents such as Three Mile Island, 

Chernobyl, and Fukushima compel the industry to develop intrinsically safer and more 

secure reactors.  

To support U.S.-based SMR projects, the Department of Energy (DOE) launched 

a program called SMR Licensing Technical Support Program in March 2012 [7]. 

According to this 6-year 452 million dollars cost-share public-private partnership, two 
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industry members were each awarded with half of the total funding. The first half of the 

funding was provided to a consortium led by Babcock & Wilcox (B&W) and including 

the Tennessee Valley Authority and Bechtel on November 20, 2012 [8]. Approximately 

one year later, DOE announced on December 12, 2013 that NuScale Power LLC would 

be the company receiving the second half of the funding [9]. Different design features of 

these two companies’ SMRs will be discussed later.    

SMRs can be utilized to supply the electricity needs of remote areas suffering 

from the lack of transmission and distribution infrastructure and also generate local 

power for particular regions within large population centers. In addition, SMR 

technology presents an ideal opportunity for small countries where the power demand 

does not change significantly and countries facing problems with high initial investments 

associated with large nuclear power plants [10]. However producing electricity is not the 

only area where SMRs are applicable. Other applications including: water desalination, 

general process heat for chemical or manufacturing processes, and district heating are 

also possible with appropriate design. 

Advantages of SMRs can be categorized into four groups [11]: 

1. Fabrication and construction, 

2. Plant safety, 

3. Operational flexibility, and  

4. Economics. 

Fabrication and construction: Parallel with power outputs of SMRs, the physical 

size of major components in a reactor shrinks which provides simplicity in manufacturing 
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by reducing or eliminating the need for forging and requires less advanced technology. 

Utilizing conventional fabrication methods is very important since the technology is a 

limiting factor causing large nuclear reactors to be manufactured by a few vendors 

throughout the world. Another problem related to employing large reactor vessel is 

transportation. Often, reactor vessel size imposes restrictions on possible options for plant 

location and forces it to be located near the shore of a sea or a large river. On the 

contrary, SMRs can be transported by a ship, ferry, rail, or even truck and sat onto inland 

areas or remote locations. Lastly, large nuclear power plants require great amount of on-

site work that both increases cost and can cause delays in scheduled construction plan. 

With SMRs, a higher percentage of a plant can be built in a factory and delivered to the 

plant site for installation. This also can improve the quality of various components as a 

result of quality control means of a factory environment. 

Plant safety: Regardless of their size and capacity, all nuclear power plants must 

meet criteria for safe operation. SMRs offer both active and passive features that may not 

be possible or applied to larger ones. First of all, reduced power output implies that 

amount of fuel placed in a rector will significantly decrease. Thus, less radioactive gases 

and fission products, highly dangerous for public health and the habitat around a plant, 

will be released to the atmosphere in an accident scenario. Moreover, one of the targets 

with the new design of SMRs is to eliminate large coolant pipes ensuring the circulation 

of coolant between reactor core and steam generator. This is crucial since any leakage or 

break of these pipes can result with severe accidents, e.g. reactor meltdown. Hence 

design of large nuclear power plants includes complex systems and control mechanism 

for safe circulation of coolant inside both primary and secondary loops. Related to this 
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aspect, placing steam generator and pressurizer inside reactor vessel will increase the 

height of the overall system facilitating natural circulation of coolant in a reactor. Finally, 

due to the size of a SMR, reactors in a plant can be placed into pools under surface level. 

That provides additional resistance against terror attacks and pools serve as a heat sink 

for removing the decay heat by radionuclides after a reactor shutdown or in an emergency 

situation. 

Operational flexibility: Nuclear power plants with SMRs compared to ones with 

large reactors have a smaller footprint, thus, reducing the size of the emergency planning 

zone [11]. This fact improves the flexibility on site selection and allows reactors to be 

placed near industrial areas and population centers. A plant site closer to potential 

customers is very important if the reactor will be utilized for process heat or district 

heating. Another advantage is that it reduces losses owing to long transmission and 

distribution lines if the purpose is to produce electricity. 

SMRs are also favorable for water usage since less electric output implies less 

heat rejection to the environment. Thus water demand decreases and the plant does not 

require a sea or a large river. In addition, reduced dependency on a big water supply is 

another factor contributing the site selection flexibility. 

The other advantage is that smaller capacity and reduced construction time allows 

matching growth in power demand closely and increasing the power output of a plant 

incrementally which also impacts plant economics as will be discussed below.  

Economics: A typical value for the total cost of a large nuclear power plant is 

about 10 billion dollars. This is a big capital investment which directly eliminates many 
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small countries and private utilities from involvement with nuclear industry. However, 

SMRs enable those countries to start their own nuclear program and utilities to own a 

nuclear power plant within the local grid they are responsible for. 

As mentioned above, the “economy of scale” principle encourages a reactor with 

higher electrical output but this fact, nevertheless, does not mean that SMRs are not 

economically viable. In fact, results of a study [12] conclude that the economy of scale 

law could be overcome by other SMR features such as modularization and lower upfront 

cost. These features increase SMR competitiveness over large reactors. For example, in 

case of a nuclear power plant comprising four SMRs, the construction plan can be 

organized in a way that each reactor is built after the preceding one is complete. In other 

words, when the first unit starts generating revenue, the second one comes into 

production line. As a result, cash outflow significantly drops reducing the risk related to 

high initial investment of large nuclear power plants. 

1.2 Different SMR Designs  

Different companies from different parts of the world have various unique designs 

and configurations for SMRs. A brief summary of some of them is provided below: 

CAREM-25 is a prototype reactor and currently being built 110 km northwest of 

Buenos Aires by the Argentine National Atomic Energy Commission (CNEA) with the 

help of INVAP in Lima [13]. CAREM-25 is a 100 MWt (27 MWe) light-water 

pressurized water reactor (PWR) and the design concept was first introduced in 1984 

[14]. Natural circulation provides the reactor core cooling and the reactor vessel 

encompasses 12 vertical helical-coil steam generators. The most prominent feature of 
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CAREM-25 is that the reactor does not have a pressurizer. The balance between the 

vaporization in the hot leg and the condensation of vapor due to the colder structures in the 

steam dome achieves self-pressurization in the primary system [15]. 

HTR-10 is a high-temperature gas-cooled research reactor with 10 MWt output 

developed at the Institute of Nuclear & New Energy Technology (INET) in China [16]. It 

is a modular pebble bed type reactor. The reactor core consists of 2700 spherical fuel 

elements of UO2 and each of them has 5 g of heavy metal. In this design, graphite is used 

as reflector and helium as coolant. Cooler helium at the inlet with a temperature of      

250 °C flows from top to bottom of the pebble bed reactor core and it reaches to up to a 

temperature of 700 °C at the outlet. HTR-10 is not an integral type reactor and the steam 

generator is connected to the reactor pressure vessel by hot gas duct. The steam generator 

is a once-through steam generator comprised of 30 helical-coil tube bundles [17]. HTR-

10 paved the way for a larger version of its design called HTR-PM. The construction of a 

power plant comprising two HTR-PMs, each 250 MWt, driving a single 201 MWe steam 

turbine began in December 2012 at Rongcheng in Shandong province in China. The plant 

is scheduled be online by 2015 [13]. 

SMART (System-integrated Modular Advanced Reactor) is a 330 MWt integral 

reactor developed by Korea Atomic Energy Research Institute (KAERI) [18]. SMART is 

designed for electricity generation (110 MWe) as well as seawater desalination. The 

reactor core is cooled with the help of four coolant pumps. The design data indicate the 

coolant temperature increases by 40 °C while passing through the reactor core 
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corresponding to a core outlet temperature of 310 °C. The reactor vessel houses 8 helical-

coil once-through steam generators [19]. 

The first DOE sponsored design, B&W’s mPower, is developed based upon the 

knowledge and experience gained by the B&W maritime reactor program. One of these 

earlier designs is used in Otto Hahn, a nuclear powered merchant ship launched in 1964 

[20]. mPower is an integral reactor with an output of 530 MWt. Net electricity generation 

changes according to type of condenser cooling employed—mPower is expected to 

produce 180 MWe when evaporative cooling is utilized whereas deploying an air-cooled 

unit reduces the electrical output to 155 MW. The reactor coolant flow rate relies on 

forced circulation by eight internal coolant pumps [21], [22]. 

Other U.S.-based SMRs being developed include the Westinghouse SMR, Holtec 

SMR-160, and PRISM (Power Reactor Innovative Small Module) by a consortium of 

General Electric and Hitachi [23]-[26]. The Westinghouse SMR and Holtec SMR-160 are 

PWRs with electrical outputs of 225 MW and 160 MW, respectively. PRISM, on the 

other hand, is a sodium-cooled fast neutron reactor expected to produce 311 MWe. 

1.2.1 NuScale SMR overview 

A detailed overview of the NuScale SMR is provided in this section since its 

design data are used throughout the modeling effort and dynamic analyses of this 

dissertation. However, the generic approach adopted in this research can be applied for 

passively cooled SMRs. 

The NuScale SMR, capable of producing 45 MWe, is based on the Multi-

Application Small Light Water Reactor (MASLWR) concept which was developed by a 
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consortium including Idaho National Laboratory and Oregon State University under a 

DOE-sponsored project [27]. 

Each nuclear steam supply system (NSSS), as seen in Figure 1.2, is immersed in a 

reactor pool, which has dimensions of 6 m wide by 6 m long and a depth of 23 m. The 

reactor pressure vessel is housed in the containment vessel sitting inside the reactor pool. 

The integral design allows the NSSS to encompass all major components, which are the 

reactor core, two helical-coil once-through steam generators, and pressurizer [28].    

Table 1.1 provides a summary of NuScale SMR design features [29]. 
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Containment 

Vessel

Steam 

Generator

Reactor Core

Downcomer

Hot Leg 

Riser

Pressurizer

Control Rod 

Drives

Reactor Pressure 

Vessel

Control Rods

Baffle Plate

Figure 1.2 Schematic diagram of a single NuScale SMR unit. 
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Table 1.1 Design features of NuScale SMR 

Parameters Value 

Reactor thermal power 160 MWt 

Power plant output, net 45 MWe 

Coolant/Moderator Light water 

Circulation type Natural circulation 

Reactor operating pressure 12.76 MPa 

Active core height 2 m 

Fuel material UO2 ceramic pellets 

Fuel element type 17×17, square array 

Cladding material Zircaloy-4 

U-235 enrichment < 4.95% 

Fuel cycle length 24 months 

Steam generator type Vertical, helical-coil 

Number of steam generators 2  

Pressurizer type Integral 

 

The NuScale SMR design employs natural circulation for the primary coolant 

system and therefore eliminates reactor coolant pumps. The primary coolant is heated as 

it passes over the fuel rods and enters the hot leg riser where convection and natural 

buoyancy provide enough force to drive the fluid upward. After leaving the riser, the 

primary coolant follows a downward path over the steam generator tubes and the heat is 

transferred to the feedwater. The denser primary coolant reaches the bottom of the core 

via the downcomer. 
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The reactor core is comprised of 37 standard Westinghouse PWR 17×17 square 

lattice array fuel assemblies with half of the nominal PWR height [30]. Each fuel 

assembly has 264 fuel pins, 24 guide tube locations for control rods, and a central 

instrument tube. The core also includes 16 control rod assemblies (CRAs). While four 

CRAs are used for power regulation during normal plant operation, the others, called the 

shutdown group, are used for reactor shutdown and scram events [28].  

Regulating 

group

Shutdown 

group

Core Barrel

Reflector

Fuel 

Assembly

 

Figure 1.3 Cross-sectional view of NuScale reactor core. 

Each NSSS includes two vertical, once-through, helical-coil steam generators. 

The steam generators are located in the annular space between the hot leg riser and the 

reactor pressure vessel wall and connections to upper and lower plenums are provided via 

tubesheets. Each steam generator consists of 506 tubes which are thermally-treated 

Inconel 690. The tubes have an outside diameter of 16 mm with a 0.9 mm wall thickness 

and a total length of 22.25 m (see Figure 1.4). The tubes are arranged on a square pitch, 
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with transverse (PT) and longitudinal (PL) pitch ratios of 1.8 and 1.5, respectively [31]. 

Preheated feedwater enters the lower steam generator plenum through nozzles on the 

reactor pressure vessel. As feedwater rises through the interior of the steam generator 

tubes, heat is added from the reactor coolant and the feedwater boils and exits the steam 

generator as superheated steam. 

 

Figure 1.4 Photo of NuScale full-length helical coil steam generator [32]. 

The pressurizer is integrated into the top of the reactor pressure vessel and a baffle 

plate separates the pressurizer from the primary coolant system (see Figure 1.2). The 

baffle plate, which serves as a thermal barrier between the saturated liquid inside the 

pressurizer and the primary coolant, has orifices to control the insurge (or outsurge) flow. 

The pressurizer regulates the primary coolant pressure with electric heaters, installed 
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above the baffle plate, and spray through nozzles at the top of the reactor pressure vessel. 

An increase in the coolant pressure is accomplished by actuating electric heaters while 

the coolant pressure is reduced by spraying cold water from the chemical and volume 

control system. Unlike traditional PWR pressurizers, a continuous spray flow is not 

anticipated. 

1.3 Research Objectives and Thesis Organization  

 The main objectives of this study are based upon the following: 

 To develop a dynamic model in MATLAB/Simulink for the a passively cooled 

SMR (such as the NuScale SMR) which is capable of predicting the response of 

the SMR for typical perturbations; and 

 To verify whether the model is realistic or not by comparing the results gathered 

from other studies. 

 To introduce and apply steady-state control algorithms for reactor power and 

pressurizer pressure. 

 After this introduction, a review of relevant literature is presented in Chapter 2. 

While Chapter 3 describes the mathematical models of real physical systems in single 

SMR unit, Chapter 4 is composed of testing the model in the dynamic environment of 

Matlab/Simulink. Lastly, Chapter 5 is dedicated to concluding remarks and future work. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

 Understanding reactor dynamics is crucial to the overall performance of a reactor 

and the design of suitable control algorithms. That is the reason dynamic modeling 

attracts a great interest in the nuclear industry.  

 With the increasing effort into development and commercialization of SMRs, the 

need for appropriate dynamic models emerges. Although studies regarding individual 

components of an SMR, i.e., reactor core, steam generator, and pressurizer, are available, 

there is a lack of complete models for single SMR units in the literature. In addition, 

different SMR designs require different considerations. In other words, the modeling 

endeavor is subject to change based on reactor configuration and operation. Considering 

the problems stated above, a representation for the NuScale SMR is developed in this 

study. 

2.2 Previous Studies on Dynamic Modeling 

Kerlin et al. [33] developed a mathematical model for the H. B. Robinson nuclear 

power plant (NPP) producing 740 MWe (2200 MWth). The model included point 

kinetics, core heat transfer, piping and plenums, pressurizer, and the steam generator. 

Point kinetics described the reactor power by using six groups of delayed neutrons and 

reactivity feedback terms caused by fuel temperature, coolant temperature, and primary 

loop system pressure. Core thermodynamics were represented with nodal approximation 

in which every axial section used two coolant temperature nodes for every fuel 

temperature node because of advantages of this approximation over others such as the 
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well-mixed and the arithmetic average approximation. The pressurizer was modeled with 

the help of mass, energy, and volume balances. Moreover, it was assumed that water-

steam mixture in the pressurizer was always at saturated conditions. Finally, a control 

system for the pressurizer was also implemented. For the steam generator, a simple 

model with the representation of primary fluid, tube metal, and secondary fluid lumps for 

the heat transfer process was used. All piping and plenums were defined with first-order 

lags while assuming that the heat was transferred without any losses. First, results for an 

isolated core when 7.1¢ ($ or ¢ are special units for reactivity which are defined to make 

the amount of reactivity easier to express) reactivity change occurred and isolated steam 

generator in the case of 1% increase in steam flow were presented. Following that, the 

response of the complete model to common step disturbances, such as changes in control 

rod or steam valve position, were compared with actual measurement results for 

validation of the theoretical model. A final note was made that the proposed model for 

the H. B. Robinson NPP was able to predict reactivity and steam valve perturbations 

well. 

In his MS thesis, from which the above paper was derived, Thakkar [34] 

discussed the modeling of the pressurizer in detail. Validation tests were performed on 

the isolated pressurizer by step increases in the 3 input variables (insurge and spray flow 

rate, and electric heat) and changes in the pressure due to these perturbations were 

presented. 
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 Onega and Karcher [35] wrote a paper about nonlinear modeling of a pressurized 

water reactor core which incorporates both prompt and delayed temperature feedback. In 

their model, nonlinearities were treated explicitly, and the temperature dependence of 

thermal-hydraulic parameters was preserved without any approximation. The isolated 

core models utilizing six and one group of delayed neutrons were compared with each 

other for a 30¢ step increase in the reactivity. Then, another comparison was made 

between the presented nonlinear core heat transfer model with one fuel and coolant node 

and the linear core heat transfer model with 15 fuel nodes and 30 coolant nodes 

introduced by Kerlin et al. [33] for a step reactivity insertion of 7.1¢. The results of the 

comparisons yielded that using six groups of delayed neutrons instead of just one did not 

have a significant improvement in the response of the model, and the nonlinear and linear 

core heat transfer models exhibited very similar behavior. In addition, the model 

responses for a loss of coolant pump and decrease in the coolant inlet temperature were 

provided. 

 One of the early studies about natural circulation phenomena in PWRs was 

conducted by Zvirin [36]. The study was focused on the single-phase natural circulation 

loops in which heat is transferred from a heat source to a heat sink at a higher elevation. 

Such loops are applicable in cooling systems of light water reactors (LWRs) and liquid 

metal fast breeder reactors (LMFBRS), and energy conversion systems such as solar 

heaters. After a review of existing modeling approaches to natural circulation loops, 

analytical and numerical methods were used to solve the conservation equations for 

momentum and energy. The results under both steady-state and transient conditions were 

presented and relevant stability characteristics were discussed. The effects of various 
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parameters (e.g. geometry, fluid properties, and boundary and initial conditions) were 

also examined.  

 More recent studies [37]-[39] investigated the natural circulation in SMRs, such 

as CAREM-25 and REX-10 (Regional Energy Reactor-10 MWt), and TRIGA Mark II. 

CAREM-25 is a 27 MWe SMR design by Argentina, as discussed previously, and REX-

10 is a 10 MWt prototype reactor by South Korea based on the SMART. The TRIGA 

Mark II, however, is a low power pool-type research reactor designed and manufactured 

by General Atomics [40].  All of these studies took advantage of the fact that the coolant 

temperature gradient in the primary loop is the main mechanism for the natural 

circulation and performed a momentum balance. Afterwards, an expression for the 

primary coolant mass flow rate was derived via the energy balance equation for the core 

at steady-state conditions. The analysis indicated that the reactor thermal power had 

significant impact on the natural circulation behavior whereas the primary pressure did 

not show remarkable effect on natural circulation. 

 Modeling effort for once-through steam generators has received considerable 

attention since the computerized simulation techniques evolved. In 1976, Ray and 

Bowman [41] presented a nonlinear dynamic model of a helical-coil once-through 

subcritical steam generator for gas-cooled reactors. The model included three sections 

(economizer, evaporator, and superheater) with time-varying phase boundaries. The 

nonlinear system composed of differential and algebraic equations was developed based 

on the conservation of mass, momentum, and energy. The transient response of 8 state 

variables, due to 5% independent step changes in 5 input variables at full power, was 
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discussed. In 1994, Abdalla [42] introduced a four-region (i.e. subcooled, nucleate 

boiling, film boiling, and superheated), moving-boundary, draft-flux flow model for the 

advanced liquid metal reactor superheated cycle heat-exchanger which is a once-through, 

helical-coil steam generator. The model was tested for a number of transients including: 

10% increases in (1) primary coolant inlet temperature, (2) feedwater flow rate, and (3) 

outlet steam pressure; and (4) 80% decrease in feedwater flow rate. The results indicated 

that the model is capable of simulating properly the dynamic response of the steam 

generator for a wide range of conditions. In a similar manner, recent papers [43], [44] 

developed representations for the once-through helical-coil steam generator of HTR-10. 

While Reference [43] incorporated subcooled, boiling, and superheated regions, the latter 

one employed only subcooled and boiling sections. 
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CHAPTER 3 DEVELOPMENT OF MATHEMATICAL MODELS 

 In this section, mathematical modeling of all major components inside a passively 

cooled SMR, i.e., reactor core, steam generator, pressurizer, hot leg riser, and downcomer 

is discussed in detail. In addition, control options for reactor power and primary coolant 

system pressure are presented. 

3.1 Reactor Core Model  

 The reactor core is represented with a combination of neutronics and 

thermohydraulics model. 

3.1.1 Reactor neutronics 

 The time dependent behavior of neutrons inside the reactor core is described with 

a point kinetics model, consisting of one energy group and a single combined neutron 

precursor group [33] and [35]. However, the point kinetics equations are expressed in 

terms of reactor thermal power (P) since P is proportional to average neutron density. 

The balance equations are written as: 

CP
dt

dP








          (3.1) 

CP
dt

dC






          (3.2) 

where C is the delayed neutron precursors; ρ is the reactivity; β is the effective delayed 

neutron fraction; Λ is the neutron generation time; and λ is the decay constant for the 

delayed neutron precursor. 
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The reactivity term in Equation (3.1) is also time dependent even though it is zero 

during steady-state operation. Changes in the position of control rods are an external 

reactivity input allowing the PWR to operate at different power levels. In addition, 

reactivity feedback terms due to changes in fuel and moderator temperatures contribute to 

the system reactivity and couple neutronics with thermohydraulics. Based on these 

contributors, the reactivity of the system can be expressed as: 

PPCCFFext pTT          (3.3) 

αF (–2.16×10–5/°C), αC (–1.8×10–4/°C), and αP (1.08×10-6/°C) are the reactivity feedback 

coefficients of fuel and coolant (moderator) temperature and primary coolant pressure 

[33] and [45], respectively; δT and δp represent the deviation from the steady-state for 

fuel (F) and coolant (C) temperatures and primary coolant pressure (P); and δρext is the 

reactivity induced by control rod movement. 

3.1.2 Reactor thermal-hydraulics 

3.1.2.1 Mann’s model for heat transfer process 

 The heat transfer process in the core region is represented using Mann’s model 

[46] that utilizes two coolant lumps for every fuel lump as seen in Figure 3.1. In this 

model, the temperature difference is taken as the difference between the fuel temperature 

and the average temperature of the first coolant lump. This approach provides better 

physical representation than utilizing just one coolant lump in which generally the 

average coolant temperature is the mean value of inlet and outlet coolant temperatures.  
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Figure 3.1 Schematic diagram of heat transfer model in reactor core. 

Modeling is achieved by considering a number of assumptions including 

 one-dimensional fluid flow model is utilized; 

 coolant lumps are considered to be well-stirred; and 

 the fuel-to-coolant heat transfer coefficient is assumed to be constant. 

The governing equations for the behavior of fuel and coolant temperatures are 

obtained by applying energy conservation to fuel and coolant volumes. The equations 

describing the fuel and coolant lumps are then      

    1, CFFCdFFpF TTAUPfTcm
dt

d
       (3.4) 
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where TF, TC1, and TC2 are the average temperatures of the fuel and first and second 

coolant lumps, respectively, while TCi is the core inlet coolant temperature; m and cp are 

the mass and specific heat of the particular region; fd is the fraction of the total power 

directly deposited in the fuel; UFC and AFC are the heat transfer coefficient from fuel to 

coolant and effective heat transfer surface area, respectively; and finally ṁC is the mass 

flow rate of the coolant in the core. 

3.1.2.2 Thermal resistance evaluation 

The developed thermodynamics model relates the core thermal power to the 

overall temperature drop from fuel to coolant via an overall heat transfer resistance which 

can be stated as R = 1/(UA)FC and dictates that, at steady-state conditions, the produced 

energy equals to the energy given to the coolant. Then, Equation (3.4) can be reorganized 

as 

 
0

0

1

0

Pf

TT
R

d

CF 
          (3.7) 

where terms with superscripts define the value of the associated parameters at steady-

state conditions. 

The thermal resistance is constituted by a series of resistances due to the fuel, the 

gap between the fuel and cladding, the cladding, and the convective heat transfer between 

the outer surface of the cladding and coolant [39]. Thus, the global heat transfer 

resistance can be formulated as: 

 scgf

fr

RRRR
n

R 
1

        (3.8) 
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where nfr is the total number of fuel rods inside the core; and R with the associated 

subscript is the thermal resistance of the fuel (f), the gap (g), the cladding (c), and the 

thermal resistance between the outer surface (s) of the cladding and coolant. 

 Substituting each term with its equivalence yields that [35], [47] 


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  (3.9) 

Geometrical properties [48] in Equation (3.9) are defined and their values are 

tabulated in Table 3.1. 

Table 3.1 Parameters used to calculate fuel-to-coolant thermal resistance 

Symbol Definition Value 

rf Fuel pellet radius 0.409 cm 

H Active core height 2 m 

tg Gap thickness 9×10–3 cm  

tc Cladding thickness 0.057 cm 

d Fuel rod diameter 0.95 cm 

p Pin pitch 1.26 cm 

 

The gap heat transfer coefficient (hg) is taken as 5678 W·m–2·°C–1 which is a 

typical value for a standard pressurized water reactor fuel rod while fuel (kf = 4.15 W·m–

1·°C–1) and cladding (kc = 19.04 W·m–1·°C–1) thermal conductivities are obtained from 

Lamarsh and Baratta [49]. The heat transfer coefficient of the cladding surface (hs) is 

calculated by utilizing a Dittus-Boelter correlation [50] and it can be described as: 
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where De is the equivalent (hydraulic) diameter; k is the thermal conductivity of the 

primary coolant; Re and Pr are the Reynolds and Prandtl numbers, respectively.  

3.1.2.3 Single-phase natural circulation model 

The main contributor to natural circulation in a passively cooled SMR is the so-

called buoyancy force that is the movement of coolant inside a reactor due to the coolant 

temperature gradient at various locations in the primary coolant system. In other words, 

the change in coolant density caused by the coolant temperature gradient establishes 

enough force to drive coolant either upward or downward depending on the location in 

the reactor and steam generator. 

The assumptions used to carry out the present analysis are listed below: 

 Only single-phase natural circulation is considered. 

 The coolant within the primary loop is incompressible, meaning the mass flow 

rate is constant under steady-state conditions.  

 The Boussinesq approximation, describing the density changes in response to a 

change in temperature at constant pressure [51], is valid 

p

V
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where βV is the volumetric thermal expansion coefficient. 

 The axial component of conductive heat transfer is neglected along the primary 

coolant system. 

Based on these assumptions, momentum balance equations can be summarized in terms 

of two driving mechanisms as follows: 

lb pp            (3.12) 

where Δpb and Δpl are, respectively, the pressure term due to buoyancy forces and the 

total pressure drop along the primary loop. Hence, it is possible to draw a conclusion that 

an equilibrium flow rate is reached when buoyancy forces are balanced with pressure 

losses. 

3.1.2.3.1 Buoyancy forces 

The driving pressure term due to buoyancy forces can be calculated by the closed 

path integral: 

 dzgp zb           (3.13) 

where ρz is the coolant density at specific locations along the vertical (z) axis; and g is 

gravitational acceleration (see Figure 3.2). Thus, solving Equation (3.13) yields that 

gzzgzzgzzgzzp daccdbchabb )()()()(      (3.14) 

where ρh and ρc are the coolant density at the hot leg riser and downcomer regions, 

respectively, and �̅� is the corresponding average density in that section. After rearranging 

the above equation and applying the Boussinesq approximation, it takes the form of 
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  LTTgp CiCtb  2         (3.15) 

where βt stands for the moderator (coolant) volumetric thermal expansion coefficient. 
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Figure 3.2 Schematic diagram of NuScale SMR. 
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3.1.2.3.2 Pressure losses 

The total pressure drop consists of friction losses and form losses. Pressure losses 

due to friction occur while coolant flow passes through various components or sections, 

and form losses are pressure losses due to an abrupt change in flow direction and/or 

geometry. 

The total pressure drop along the primary loop is calculated with the help of the 

mean density of the coolant inside the primary loop instead of calculating the pressure 

drop for each section. This is a common practice that is used in other works also [36] - 

[39]. 

2

2

1
pl Rp           (3.16) 

where v and Rp are the coolant velocity and overall flow resistance, respectively. Then, Rp 

is defined as: 


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ip K
D
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fR

1

         (3.17) 

where f is the Fanning friction factor; L is the length of the flow channel; D is the 

diameter of the flow channel; K is the form loss coefficient; and n number of sections 

inside primary system, i.e., reactor core, hot leg riser, steam generator, and downcomer. 

3.1.2.3.3 Primary coolant flow rate 

It is possible to express the coolant mass flow rate through the core as: 

ftcoreC Am           (3.18) 
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where Aft is the total cross-sectional flow area inside the reactor core and ρcore is the 

density of the primary coolant inside the reactor. After algebraic manipulation and 

utilizing Equations (3.15) and (3.16), an equation for the mass flow rate is found  

 
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C
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LTTgA
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
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2

222 
        (3.19) 

where ΔL is the distance between the center of the steam generator to the center of the 

reactor core.  

It should be noticed that the mass flow rate is a nonlinear function of two of the 

system state variables, i.e., the second coolant lump and reactor core inlet temperatures. 

The other way of calculating the coolant mass flow rate is to relate ṁC to the reactor 

thermal power [15]  
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
         (3.20) 

where corepc ,  is the average specific heat of the coolant inside the core region. The 

conclusion drawn from this new expression is that the coolant mass flow rate is 

proportional to the cubic root of the reactor thermal power. 

3.2 Hot Leg Riser and Downcomer Region 

The hot leg riser and downcomer region models are treated as first-order lags, that 

is 

 TT
dt

dT
in 



1
         (3.21) 
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where τ = m/ṁ is the residence time, and T and Tin are the average and inlet coolant 

temperatures for that particular region, respectively. Then, the energy balance equations 

for hot leg riser and downcomer region can be written as 

 HLCHLpHL
HL

HLpHL TTcm
dt

dT
cm  2,,

       (3.22) 

 DRPDRpDR
DR

DRpDR TTcm
dt

dT
cm  1,,

       (3.23) 

where m, cp, T, and ṁ are the coolant mass, specific heat, average temperature, and mass 

flow rate inside the particular region, i.e., the hot leg riser (HL) and downcomer (DR) 

regions; and TP1 is the primary coolant temperature at the steam generator outlet.  

Based on the data obtained from [31], the initial steady-state values of the 

residence time constants for the hot leg riser (τHL) and downcomer (τDR) are calculated as 

10.1 and 30.8 seconds, respectively. 

3.3 Steam Generator Model 

Two common steam generators (SGs) are used in PWRs: (1) recirculation (U-

tube) and (2) once-through SGs [52]. In a U-tube SG, heated coolant at high pressure 

from the reactor core enters at the bottom and follows an upward and then downward 

path through several thousand inverted U-shaped tubes. In a once-through SG, which 

usually employs a counterflow heat exchanger, the primary coolant enters at the top and 

flows downward through tubes and leaves the SG at the bottom. With this design, a dry 

vapor or a few degrees of superheated steam can be produced. The steam generator 

configuration in the NuScale SMR is similar to the once-through design. A major 
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difference is that the reactor pressure vessel of the SMR encompasses the steam 

generator, thus motivating the use of helical coils to increase the heat transfer area. 

Previous works on the dynamic modeling of helical coil SGs treated them as 

counterflow heat exchangers [41]-[44] although a helical coil SG is a combination cross 

and counter flow heat exchanger due to its unique design. All of these cited studies 

assumed that the two-phase flows in all of the tubes are identical which allows analyzing 

the SG dynamic behavior using a single characteristic tube concept. This treatment and 

assumption are applied for this SG model also. 

3.3.1 Governing equations and assumptions  

The helical-coil steam generator model developed in this study is divided into 

three regions according to conditions inside secondary side, i.e., subcooled, two-phase (or 

boiling), and superheated. Control volumes are used to derive the model equations and 

the length of each region is time-varying as depicted in Figure 3.3. 
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Figure 3.3 Schematic diagram of helical-coil steam generator model. 
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The fundamental assumptions made to simplify the model development are listed 

below: 

 Tubes inside the steam generator have identical flow. As such, a single tube heat 

exchanger concept is used for simulating the dynamic behavior of the steam 

generator. 

 One-dimensional fluid flow is utilized for both primary and secondary sides. 

 Perfect feedwater control is assumed, that is, feedwater and steam mass flow 

rates are equal. 

 Heat conductivity along the axial direction is negligible. 

 Primary and secondary side pressures are assumed to be uniform. 

 The two-phase region is in thermal equilibrium. 

He et al. [53] provide governing one-dimensional partial differential equations for 

the conservation of mass and energy (Equations (3.24) and (3.25)) which are applicable 

to all regions of the secondary side as well as an energy balance (Equation (3.26)) for the 

tube metal 
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The variables will be explicitly defined in the following sections. He et al. were 

modeling vapor compression cycles with an air heat sink, but this SMR steam generator 

requires a primary side energy balance of the form 

   PMooPPiPPp
P

PPp TTdTTmc
t

T
Ac 




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,,
     (3.27) 

The above conservation equations are integrated over each region and then Leibnitz 

theorem [54], which, is given by Equation (3.28), is applied to obtain a set of ordinary 

differential equations. 
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3.3.2 Secondary side equations 

In this section, only final forms of mass and energy balance equations for all 

secondary side regions are presented with aim of providing an insight. Readers interested 

in the intermediate steps can refer to Appendix B.1.  

3.3.2.1 Subcooled region mass and energy balance 

Integrating mass and energy balance equations for the subcooled region yields 
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where AS is the cross-sectional flow area inside the tube; ρ with subscripts (1) and (f) 

standing for the average density of the liquid inside the subcooled region and saturated 

liquid density, respectively; L1 is the length of the subcooled region; pS is the steam 

pressure; hi, h1, and hf are feedwater inlet enthalpy, average enthalpy for the subcooled 

region and saturated enthalpy, respectively; ṁS represents the secondary mass flow rate at 

the steam generator inlet (i) and at the interface of regions 1 and 2 (12); di is the tube 

inner diameter; αi1 is the region 1 heat transfer coefficient between the secondary side and 

tube metal; and finally, T with the related subscripts are tube metal (M1) and feedwater 

(S1) temperatures corresponding to the subcooled region. 

3.3.2.2 Two-phase region mass and energy balance 

Final forms of the mass and energy balance equations for two-phase region are 

given below: 
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where ρg and hg are saturated vapor density and enthalpy, respectively;  is the mean 

void fraction inside the two-phase region; L2 is the length of the two-phase region; ṁS,23 

is the mass flow rate at the interface of regions 2 and 3; αi2 is the region 2 heat transfer 
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coefficient between secondary side and tube metal; TM2 is the tube metal temperature at 

the two-phase region; and TS2 equals the saturation temperature (Tsat) at a given pressure. 

3.3.2.3 Superheated region mass and energy balance 

The same approach is followed for the superheated region and the resulting 

equations for mass and energy balance are 
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where ρ3 is the average density of vapor inside the superheated region; L3 is the length of 

the superheated region; ho and h3 are the steam outlet enthalpy and average enthalpy for 

the superheated region; ṁS,o is the steam flow rate at the outlet of the steam generator; αi3 

is the region 3 heat transfer coefficient between secondary side and tube metal; and T 

with the related subscripts are tube metal (M3) and steam (S3) temperatures 

corresponding to the superheated region. 

3.3.3 Tube metal equations 

An average temperature model, in which the temperature at each boundary is the 

mean value of temperatures of adjacent wall regions, is utilized to observe the dynamics. 
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Then the energy conservation equations corresponding to regions of the secondary side 

are given by 
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where AM, ρM, and cp,M are the cross-sectional area, density, and specific heat of the tube 

metal, respectively; do is the outer diameter of the tube metal; αo represents the heat 

transfer coefficient  between the primary side and tube metal for each region; TP2 and TP3 

are the average temperatures of the primary coolant for regions 2 and 3, respectively. 

3.3.4 Primary side equations 

In a similar manner, the energy balance equations for the primary side are 
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where AP is the cross-sectional area of the primary coolant flow channel; ρP, cp,P, and ṁP 

are the density, specific heat, and mass flow rate of the primary coolant; and TPi is the 

primary coolant temperature at the steam generator inlet. 
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3.3.5 Heat transfer coefficients and mean void fraction 

In this study, the surface heat transfer coefficient for primary side is calculated by 

utilizing the correlation for a bank of tubes given by [51] 

































6

25.0

36.0

102Re000,1

500Pr7.0

20

Pr

Pr
PrReNu

L

s

b

n

B

         (3.41) 

where Nu is the Nusselt number; coefficients B (0.021) and b (0.84) are determined from 

a table in Reference [51] according to the configuration of tubes (aligned or staggered) 

and the value of the Reynolds number; Prs is the Prandtl number at the surface 

conditions; and nL is the number of tubes in the bank. 

For the surface heat transfer coefficient of the secondary side, a modified version 

of the Dittus-Boelter correlation [55], which is valid for single-phase heat convection, is 

used 
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where dC is the coil diameter. The heat transfer coefficient for two-phase heat convection 

is determined by taking advantage of the known variables at initial steady-state condition 

for the two-phase region, i.e., the two-phase region length, the saturation temperature and 

the temperatures of the tube metal, and the heat delivered by the primary side. 
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The mean void fraction   is calculated with the help of the correlation given by 

Jensen and Tummescheit [56] 
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where  is the mean liquid fraction and a relationship of 1 is valid; and μ is the 

ratio of the saturated vapor density to the saturated liquid density. 

3.3.6 Steam valve equation 

The steam flow rate through the turbine is controlled via a steam valve. An 

expression is adopted for the valve based on the assumption that the steam flow rate is 

only a function of the steam pressure and any pressure drop inside the turbine does not 

cause an increase in the flow rate. This is known as critical flow assumption [57]. The 

relation is then 

SLoS pCm ,
           (3.44) 

where the constant steam valve coefficient CL calculated from the relevant values under 

steady-state full power condition. 

3.3.7 Steam generator state-space model 

The twelve differential equations presented above (Equations (3.29)–(3.40)) 

incorporate only ten explicit derivative terms. Therefore, the relevant equations are 

combined and necessary algebraic alterations are made to eliminate ṁS,12 and ṁS,23 [58]. 



 

40 

The resulting state vector is  TPPPMMMoS TTTTTThpLL 32132121x

and the input vector  TPPiioSiS mThmm 
,,u . Then, it is possible to represent the 

steam generator model in the following state-space form  
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The elements of D(x,u) are in given in Table 3.2. 
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Table 3.2 Elements of matrix D(x,u) 
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d5,1 )( 21, MMMpMM TTcA   

d5,5 1, LcA MpMM   

d6,6 2, LcA MpMM   

d7,1 )( 32, MMMpMM TTcA   

d7,2 )( 32, MMMpMM TTcA   

d7,7 3, LcA MpMM  

d8,1 )( 21, PPPpPP TTcA   

d8,8 1, LcA PpPP  

d9,9 2, LcA PpPP  

d10,1 )( 32, PPPpPP TTcA   

d10,2 )( 32, PPPpPP TTcA   

d10,10 3, LcA PpPP  

 

3.4 Pressurizer Model 

Unlike the traditional PWR pressurizer, which is a separate cylindrical tank 

connected to the reactor coolant system piping by a surge line, an SMR integrates the 

pressurizer into the top of the reactor pressure vessel. In addition, the pressurizer volume 

in an integral SMR is considerably larger than the volume of the typical PWR pressurizer 

relative to reactor thermal power. The larger pressurizer volume coupling with the larger 

primary coolant system results in slower pressure transients during normal operating 

conditions. Finally, continuous spray, employed in large PWRs to insure the line does not 

clog, is eliminated in many SMR design. Instead, a spray line, similar to the auxiliary 
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spray in larger PWRs, is employed and designed to reduce the pressure when needed 

[59]. 

The pressurizer model, as depicted in Figure 3.4, consists of two regions [34]: (1) 

liquid, and (2) vapor. The following assumptions are carried out to simply the modelling: 

 Water-steam inside the pressurizer section is always at saturated conditions 

corresponding to the primary coolant pressure. 

 Heat losses are neglected. 

 No condensation on the vessel wall or liquid surface. 

Vapor Region (v)

Liquid Region (l)

Evaporation – condensation 

Heater input, Qh 

Spray flow 
ṁsp

ṁsu Surge flow 

ṁec

 

Figure 3.4 Schematic diagram of pressurizer model. 

Mass, energy, and volume balance equations for the pressurizer model are 

presented as follows: 

 mass balances: 

ecspsu
l mmm

dt

md
          (3.46) 
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ec

v m
dt

md
           (3.47) 

For above equations, condensation occurs if ṁec < 0 while ṁec > 0 indicates that 

evaporation takes place. In similar manner, ṁsu > 0 accounts for surge flow into the 

pressurizer, whereas ṁsu < 0 means that the surge flow is out of the pressurizer. 

 volume balance: 

gvflvlT mmVVV           (3.48) 

 energy balances: 

dt

dV
phmhmhmQ

dt

dE l
gecDRspsuh

l         (3.49) 

dt

dV
phm

dt

dE v
gec

v            (3.50) 

where ml and mv are the masses of the liquid and vapor in the pressurizer section; ṁ with 

associated subscript gives surge flow (su), spray flow (sp), and evaporation-condensation 

(ec) rates; VT represents the total volume of the pressurizer (constant) comprised of liquid 

and vapor volumes; El and Ev denote energies of liquid and vapor; similarly, the products 

of p(dV/dt) represent flow work of liquid and vapor; Qh is the heat given by electric 

heaters; hDR is the primary coolant enthalpy in the downcomer region, and in the case of 

insurge h = hHL (primary coolant enthalpy in the hot leg riser) otherwise h = hf (saturated 

liquid enthalpy); and finally, hg is the saturated vapor enthalpy corresponding to primary 

coolant pressure. 
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Since saturated conditions are always assumed to be preserved inside the 

pressurizer, it is possible to derive following equalities for temperature and pressure  

satvl TTT            (3.51) 

satvlp pppp           (3.52) 

where the subscripts p, l, v, and sat stand for pressurizer, liquid, vapor, and saturation. 

The pressurizer pressure is about 0.35 MPa less than the primary pressure due to the 

difference in the elevation; see Figure 3.2. With the help of above equalities, the 

pressurizer pressure equation is obtained after several algebraic manipulations.  

)()()( fgecfDRspfsuh

p

f

P

f

l hmhhmhhmQ
dt

dp

p

h
m  















    (3.53) 

where hfg = hg − hf. Equation (3.48) is combined with an equation of state, in this case the 

ideal gas law ( satvvP RTmVp  ), to obtain an expression for the condensation-evaporation 

rate which is 

dt

dm

A

B

dt

dp

A
m lp

ec 
1

         (3.54) 

where    
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Substituting Equations (3.46) and (3.53) into Equation (3.54) and applying 

necessary alteration yields the final equation below for the pressurizer pressure. 
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  (3.55) 

Finally, the summation of expansion (or contraction) of the water inside each 

primary coolant section comprises the change in insurge (or outsurge) term [60] that is  





n

i

i
iisu

dt

Td
Vm

1


          (3.56)  

where Vi is the volume, Ti is the temperature, and ϑi is the slope of the primary coolant 

density versus Ti for the i-th section. 

3.5 Single SMR Unit model 

The developed models are combined with a steam turbine representation, which 

outputs the maximum attainable power Pm based on the steam properties, pressure and 

enthalpy, and steam flow rate, to constitute a single SMR unit. 

hmP oSTurbm  ,
          (3.57) 

where ηTurb represents the turbine efficiency (0.83) [61]; and Δh is the steam enthalpy 

difference between the turbine inlet and outlet. 

The overall nonlinear system of coupled differential equations is introduced in the 

form of a state-space model. The variables P, C, TF, TC1, TC2, THL, TDR, L1, L2, pS, ho, TM1, 

TM2, TM3, TP1, TP2, TP3, pp are selected as the state variables, ρext, Qh, CL and TSi are 

selected as the four input variables. The feedwater inlet temperature (TSi) is obtained from 

the enthalpy hi. Then, the differential equations, Equations (3.1), (3.2), (3.4), (3.5), (3.6), 



 

47 

(3.22), (3.23), (3.45), and (3.55), form the state equations. The combination of these state 

equations with algebraic equations, Eqs. (3.20), (3.44), and (3.56), constitute the overall 

reactor model. 

The reactor model is implemented in MATLAB/Simulink [62], which is a user-

friendly graphical programming environment for modeling, simulation and analysis of 

dynamic systems (see Figure 3.5).  

 

Figure 3.5 Simulink representation of overall reactor model. 
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3.6 Control Systems 

3.6.1 Reactor control 

 The control of a reactor can be accomplished by three different modes in a PWR, 

any one of which alters reactor thermal power in accordance with changes in certain 

parameters, i.e., average primary coolant system temperature (Tavg), and steam pressure 

(pS) [63]. 

3.6.1.1 Constant-average-temperature control mode 

 In this control mode, it is desired to keep the average temperature of the reactor 

coolant system (RCS) constant regardless of the power output. In the case of an increase 

in the load, the primary coolant average temperature decreases since the turbine extracts 

more energy from the primary system. The control system, then, senses the change in the 

RCS temperature and increases the system reactivity by withdrawing control rods. This 

control mode is in compliance with the natural behavior of a reactor with negative 

reactivity feedback coefficients and requires the least amount of control action. 

The disadvantage of this program is that large variations in steam pressure and 

temperature occur, assuming the steam valve position is fixed, which is not preferred by 

the secondary system. However, it is preferred by the reactor since the constant-average-

temperature control mode minimizes required pressurizer size because the volume of the 

water in the NSSS basically does not change. Figure 3.6 provides a depiction of this 

control mode.  
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Figure 3.6 Characteristics of constant-average-temperature control model. 

3.6.1.2 Constant-steam-pressure control mode 

 With this control mode, the reactivity of the reactor core is adjusted to maintain a 

constant secondary pressure as the turbine load is changed. This control scheme causes a 

rise in the temperature difference between primary and secondary sides by allowing the 

average RCS temperature to increase in order to keep the steam pressure constant (see 

Figure 3.7). The turbine favors the constant-steam-pressure control mode since excellent 

steam conditions are provided. Furthermore, some problems associated with automatic 

throttling devices and feedwater pumps are eliminated [64]. On the other hand, excessive 

control rod motion is required and the hot leg temperature can approach the saturation 

value corresponding to the primary coolant system pressure. 
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Figure 3.7 Characteristics of a constant-steam-pressure control mode. 

3.6.1.3 Sliding-average-temperature control mode 

 For a slightly different mode from the aforementioned ones, the cold leg temperature 

(or downcomer temperature) is kept constant which lets the average and hot leg temperatures 

increase as the power output increases. The advantage of this program over the constant-

average-temperature program is that the change in the steam pressure according to the power 

level is diminished. This program is also termed as a compromise program or non-constant 

program since it is intended to provide a balance between the needs of the primary and 

secondary systems. The relationship between temperatures and steam pressure for this control 

mode is illustrated in Figure 3.8 [65].  
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Figure 3.8 Characteristics of a sliding-average-temperature control mode. 

As a final note, most large PWRs utilizes a sliding-average-temperature program [66] 

and for this reason, the same approach is adopted in this study. The control action in this 

mode is achieved by a proportional-integral (PI) transfer function which takes the mismatch 

between the setpoint and actual value of the cold leg temperature as the input and produces a 

positive or negative external reactivity depending on the polarity and magnitude of the 

mismatch,  see Figure 3.9 and Equation (3.58). 

Σ 
+

_

Reactivity

(Control rod motion)

PI

Controller

TDR,ref

TDR

 

Figure 3.9 Block diagram of sliding-average-temperature controller. 
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where TDR,ref is the reference value of the downcomer temperature; KP,T and KI,T are the 

proportional and integral gain, respectively. 

3.6.2 Primary coolant system pressure control 

The control of the primary coolant system pressure is achieved by a bank of 

heaters which compensate steady-state heat losses from the pressurizer and also regulate 

the pressure under normal operating conditions. If the pressure is low, more power is 

applied to the heaters to increase the pressure, and in the case of high pressure, the power 

input to the heaters is decreased accordingly. When the pressure is below the control 

range, then, additional (auxiliary) heaters are turned on. For the reverse situation in which 

the pressure is too high and decreasing the heater power level is not sufficient, a spray 

flow from the chemical and volume control system provides cooling and reduces the 

pressure.  

The controller model used in this study is a proportional-integral-derivative (PID) 

controller given by Figure 3.10 and Equation (3.59) and only acts on the normally 

operated heaters to keep the reactor coolant pressure constant.  

Σ 
+

_

Heater 

Output

PID

Controller

pP,ref

pP

 

Figure 3.10 Block diagram of pressurizer pressure controller. 
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where pP,ref is the reference value of the primary coolant system pressure; KP,p, KI,p, and 

KD,p are the proportional, integral and derivative gain, respectively. 
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CHAPTER 4 TESTING THE DYMAMIC MODELS IN MATLAB/SIMULINK 

 In this chapter, the mathematical models discussed in the previous chapter are 

tested and evaluated with the help of Matlab/Simulink v8.5 by applying common 

disturbances to them. First, the dynamic simulation results for isolated core, steam 

generator, and pressurizer models are presented, and then the response of the combination 

of these models with hot leg riser and downcomer which constitute the single SMR unit 

is presented.  

4.1 Isolated Reactor Core Model 

 In order to test the isolated core model, small perturbations to reactivity and core 

inlet coolant temperature are applied separately, and changes in the reactor thermal 

power, core fuel and coolant temperatures, primary coolant flow rate and  system 

reactivity are demonstrated in Figures 4.1-4.6. The obtained results are compared to the 

results from References [33]. 
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Figure 4.1 Reactor power (P) response to a step increase in the input variable for isolated 

reactor core model. 

 
Figure 4.2 Fuel temperature (TF) response to a step increase in the input variable for 

isolated reactor core model. 
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Figure 4.3 Reactor core coolant node 1 temperature (TC1) response to a step increase in 

the input variable for isolated reactor core model. 

 
Figure 4.4 Reactor core coolant node 2 temperature (TC2) response to a step increase in 

the input variable for isolated reactor core model. 
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Figure 4.5 Primary coolant mass flow rate (ṁC) response to a step increase in the input 

variable for isolated reactor core model. 

 
Figure 4.6 System reactivity (ρ) response to a step increase in the input variable for 

isolated reactor core model. 
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4.1.1 Response to a step change in external reactivity 

A 7×10–5 (i.e., 1¢) increase in the reactivity due to control rod withdrawal is 

applied to the system at t = 20 s. This action causes an increase in the fission rate and 

neutron flux and, correspondingly, an initial rise in reactor thermal power, as shown in 

Figure 4.1. Following the increased power generation, the fuel temperature increases and 

more heat is transferred from the fuel region to the primary coolant in the core. The new 

steady-state fuel (TF), coolant node 1 (TC1) and 2 (TC2) temperatures rise by 1.9 °C, 0.11 

°C, and 0.22 °C, respectively, as shown in Figures. 4.2, 4.3 and 4.4. These temperature 

changes drive the negative reactivity feedback mechanisms thereby resulting in the new 

stable power level (P) of 161.2 MWt (see Figure 4.1). These results are consistent with 

those from Reference [33] where a 7.1¢ step change in external reactivity was applied to 

the linearized isolated core model developed for the H. B. Robinson Nuclear Plant. That 

study shows the responses of the reactor thermal power and reactor outlet temperature 

and their responses are identical with Figures 4.1 and 4.4 in terms of patterns of dynamic 

behavior. 

The coolant mass flow rate exhibits a pattern similar to coolant temperature which 

is consistent with the theory since it is a function of temperature difference across the 

core. The increase in coolant temperature induces an increase in the flow rate (ṁC) as 

expected based on Equation (3.19) and it reaches a value of 709.6 kg/s at the new steady-

state operating point as shown in Figure 4.5. In addition, as the transient is caused by a 

step change in external reactivity, a jump in system reactivity with a value of 7×10–5 is 

observed. After that, it starts to decrease due to negative temperature coefficients of the 
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fuel and coolant. When the new equilibrium is achieved, ρ goes to zero as it should be in 

Figure 4.6.   

4.1.2 Response to a step change in primary coolant inlet temperature 

As the second transient, a 2.45 ºC (i.e., 1%) increase in the core inlet coolant 

temperature is applied to the system, again, at t = 20 s. Due to this perturbation, the core 

coolant node 1 and 2 temperatures increase (see Figures 4.3 and 4.4). Correspondingly, 

the reactivity decreases due to the negative temperature coefficient of the moderator, 

which leads to a sharp decrease in the reactor thermal power as seen in Figure 4.1. As a 

result, the fuel temperature falls, and the heat transfer from fuel to coolant region 

decreases, and the increase in the coolant temperatures stops. When a new stable point is 

reached, the difference in the core thermal power compared to the initial condition is -8.2 

MW as depicted in Figure 4.1. The average fuel temperature dips to 493.5 °C while the 

rises in the core coolant node 1 and 2 temperatures becomes stable around values of 

291.9 °C and 270.2 °C, respectively. 

A sudden decrease in the coolant flow rate is observed as shown in Figure 4.5 

since an increase in core coolant temperature is implemented. Following that, it starts to 

recover as the coolant node 1 and 2 temperatures rise. However, the new steady-state 

value, which is 695.6 kg/s, is less than its initial value of 708 kg/s because the reactor 

operates with a lower thermal power output. Furthermore, the system produces negative 

reactivity as depicted in Figure 4.6 although there is no change in control rod position. 

This negative reactivity, an expected result of negative temperature coefficients, is due to 



 

60 

initial rises in coolant temperatures. The negative reactivity is eventually canceled by 

both the moderator and fuel temperature feedback coefficients.  

4.2 Isolated Steam Generator Model 

 Testing the isolated nonlinear steam generator model is achieved by introducing 

positive step disturbances to temperature of the primary coolant at the steam generator 

inlet, primary coolant flow rate, feedwater inlet temperature and to steam valve position, 

individually. Hence, there are two perturbations to the primary and two to the secondary 

side. A comparison is made between results from the isolated steam generator and 

References [41], [43], and [56]. Figures 4.7-4.11 show the behavior of some of the state 

variables and the relevant discussion is provided afterwards. 

 
Figure 4.7 Subcooled region length (L1) response to a step increase in the input variable 

for isolated steam generator model. 
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Figure 4.8 Two-phase region length (L2) response to a step increase in the input variable 

for isolated steam generator model. 

 
Figure 4.9 Superheated region length (L3) response to a step increase in the input variable 

for isolated steam generator model. 
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Figure 4.10 Steam pressure (pS) response to a step increase in the input variable for 

isolated steam generator model. 

 
Figure 4.11 Primary coolant outlet temperature (TP1) response to a step increase in the 

input variable for isolated steam generator model.  
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4.2.1 Response to a step change in primary coolant inlet temperature 

 For the first case, an increase of 2.9 °C (i.e., 1%) in the temperature of the 

primary coolant at the steam generator inlet is introduced at t = 20 sec. The change in the 

primary coolant temperature results in more heat transfer from the primary side to the 

secondary via tube metal walls. Since the steam generator considered in this study is a 

counter-flow heat exchanger, the disturbance is first felt by the superheated region of the 

secondary side. The increase in the heat transfer rate causes a rise in the steam production 

and, therefore, an elongation occurs in the superheated region length (L3) as illustrated in 

Figure 4.9. Concurrently, the steam pressure (pS) increases (constant steam valve 

position) and levels out at a new steady-state value of 3.19 MPa (see Figure 4.10). Figure 

4.8 shows that two-phase region (boiling) length (L2) has a declining trend throughout the 

simulation because the latent heat of evaporation (hfg) decreases with an increase in the 

corresponding saturation pressure. The subcooled region length (L1), however, exhibits 

an expansion initially and then starts decreasing as depicted in Figure 4.7. This behavior 

is a result of two different mechanisms acting on the subcooled region simultaneously. As 

the pressure rises the saturated liquid enthalpy (hf) increases which explains the early 

response of the subcooled region length. Following that the increased heat transfer from 

the primary coolant starts to overcome the need of extra heat to reach the saturation point 

which accounts for the latter response. In their study, Ray and Bowman [41] tested the 

helical-coil once-through steam generator model under five different, independent 

perturbations. One of the perturbations is a 5% step change in the primary coolant inlet 

temperature. A comparison between the results shows that the dynamic behaviors of the 
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lengths of each region of the steam generators are very similar: a length decrease in the 

subcooled and two-phase regions, and an increased length in the superheated region. 

Finally, a difference of around +2.5 °C is observed in the primary coolant 

temperature leaving the steam generator (TP1) when a new equilibrium is achieved; see 

Figure 4.11.  

4.2.2 Response to a step change in primary coolant flow rate 

 A 7 kg/s (i.e., 1%) step increase in the primary coolant flow rate is applied to the 

isolated steam generator model at t = 20 sec. Similar to the first case, this transient causes 

an increased heat transfer from the primary side to secondary side. Thus, the superheated 

region length expands whereas the lengths of subcooled and boiling regions diminish as 

seen in Figures 4.7-4.9. The difference in the initial behavior of the subcooled region is 

owed to a relatively small increase in the steam pressure compared to the previous case. 

The overall response of the steam generator model, however, is qualitatively similar with 

the response from the previous case except the fact that the system variables are 

quantitatively less perturbed.  

Another comparison with Reference [41], in which a 5% step increase in the 

primary coolant flow applied to the steam generator model, shows that all three region 

lengths exhibit similar transient responses. Furthermore, Ray and Bowman also found in 

their study that primary coolant inlet temperature and primary coolant flow simulation 

scenarios are qualitatively similar, however, the system variables are more perturbed in 

the first scenario. 
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4.2.3 Response to a step change in feedwater inlet temperature 

 A 1.5 °C (i.e., 1%) step increase in the feedwater inlet temperature is introduced 

at t = 20 sec for third simulation case. This change reduces the difference between the 

feedwater temperature and saturation temperature corresponding to the steam pressure. In 

addition, the secondary coolant velocity increases due to the decrease in the density for a 

constant coolant flow rate. Therefore, the subcooled region length shrinks as depicted in 

Figure 4.7. Furthermore, a slight reduction is observed in the steam pressure (see Figure 

4.10) since the higher velocity induces more pressure drop. The latent heat of 

vaporization increases with a decrease in the pressure which explains the rise in the two-

phase region length as shown in Figure 4.8. The superheated region length, on the other 

hand, exhibits a small decline compared to the initial steady-state value; see Figure 4.9. 

Finally, the primary coolant outlet temperature increases as the heat transfer from the 

primary side to the secondary side diminishes due to the perturbation.  

 Before moving into next section, a comparison is made with Li et al. [43], where a 

helical-coil steam generator model with helium as coolant is developed. Li et al. 

presented dynamic behaviors of the (i) steam pressure, (ii) subcooled, two-phase, and 

superheated regions, and (iii) helium outlet temperature for a 5% step increase in the 

feedwater temperature. All these mentioned system variables respond similarly to the 

results herein except the superheated region which expands a very small amount. This 

difference is likely due to fact that Li et al. include momentum balance into modeling and 

the pressure drop in each section of the steam generator is different while this study 

assumes a uniform secondary side pressure. 
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4.2.4 Response to a step change in steam valve opening 

 A 1% increase in the steam demand is introduced to the system via a step change 

in the steam valve position at t = 20 sec. The perturbation engenders a sudden drop in the 

steam pressure as depicted in Figure 4.10. Concomitantly, the corresponding saturation 

temperature decreases whereas the latent heat of vaporization increases. These changes 

result in a decline in the subcooled and two-phase region lengths and an expansion in the 

superheated region length (see Figures 4.7-4.9). The primary coolant delivers more heat 

to the secondary side due to the increased temperature difference between both sides 

caused by the need of additional heat for steam demand. This is the reason that the 

primary coolant outlet temperatures reaches a new equilibrium value slightly lower than 

the initial value; Figure 4.11. 

 This simulation case shows a similarity with the dynamic simulation in Reference 

[56], in which a moving boundary heat exchanger model is tested under three consecutive 

perturbations: (1) a 5% increase in the speed of primary coolant pump speed at t = 0 s, (2) 

a 10% increase in the outer heat transfer coefficient at t = 30 s, and (3) a 10% increase in 

the nozzle coefficient (or steam valve) at t = 60 s. The comparison of these results after t 

= 60 s with the results above reveals that steam pressure, subcooled and superheated 

region lengths show similar dynamic responses. However, the responses for two-phase 

region lengths are different from each other; the two-phase region length in Reference 

[56] increases while it exhibits a declining trend over the course of the simulation herein. 

This difference can be explained by the fact that in Reference [56], the perturbations are 
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not applied independently and hence, the first and second perturbations may have some 

lingering effect when the last one is introduced to the system. 

4.2.5 Comparison of results 

 Table 4.1 summarizes comparisons of the simulation results for the isolated steam 

generator model developed in this study against other references. The agreement of the 

results provides a basis for the validation of the model and allows it to be used as a part 

of the complete SMR model. 

Table 4.1 Comparison of results for isolated steam generator model without control 

systems 

Scenario 

 

Response of Isolated Steam 

Generator Model 

Other References 

A step 

increase in 

primary 

coolant 

temperature 

For a 1% change, a decrease in 

the subcooled and two-phase 

region lengths, and an increase 

in the superheated region length 

are observed. 

In Reference [41], the dynamic 

response of the lengths of each 

region of the steam generators for 

5% step change exhibit very similar 

behavior.  

A step increase 

in primary 

coolant flow 

rate 

The steam generator response is 

qualitatively similar with the 

response from the previous case 

except the fact that the system 

variables are quantitatively less 

perturbed. 

It is also found in Reference [41] 

that the simulation results show a 

similar pattern with less deviation 

in system variables from initial 

equilibrium conditions. 

A step increase 

in feedwater 

inlet 

temperature 

A decline in the lengths of 

subcooled and superheated 

regions and an elongation in 

two-phase region length are 

observed for 1% step change. In 

For a 5% increase, system variables 

in Reference [43] respond similarly 

except the superheated region 

which expands a very small 

amount. This difference is likely 
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addition, a slight reduction in 

the steam pressure occurs, and 

the primary coolant outlet 

temperature increases as the 

heat transfer from the primary 

side to the secondary side 

diminishes. 

due to fact that they include 

momentum balance into modeling 

and the pressure drop in each 

section of the steam generator is 

different.  

A step increase 

in steam valve 

opening 

Steam pressure decreases for a 

1% increase in the valve 

opening. The subcooled and 

two-phase regions shrink, and 

superheated region length 

increases for this perturbation. 

In Reference [56], steam pressure, 

subcooled and superheated region 

lengths show similar dynamic 

responses. However, the response 

for two-phase region length is 

different which might be due to the 

fact that the perturbations are not 

applied independently and hence, 

the first and second perturbations 

may have some lingering effect 

when the last one is introduced. 

 

4.3 Isolated Pressurizer Model 

 The isolated pressurizer model has three inputs: (1) electric heater, (2) insurge (or 

outsurge) flow, and (3) spray flow. The model is tested by perturbing the input variable 

under investigation from its initial equilibrium value while keeping the others constant. 

Figure 4.12 shows the response of the pressurizer pressure for changes in aforementioned 

input variables. The pressure response is also compared with the response from 

Reference [34]. 
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Figure 4.12 Pressurizer pressure (pp) response to a step increase in the input variable for 

isolated pressurizer model without control system. 

4.3.1 Response to a step change in electric heater input 

 A 100 kW step increase in the electric heater is applied to the isolated pressurizer 

model between t = 20 sec and t = 120 sec. As the pressurizer is under saturated conditions 

at the steady-state, vaporization starts because of the additional heat provided by the 

heaters. That is the reason that the pressurizer pressure increases during the time of 

disturbance as seen in Figure 4.12. After the electric heater is turned off, the pressure 

stays at that level which is 0.12 MPa higher that the initial equilibrium value. This result 

is congruent with the result from Reference [34], where a 100 kW step increase in the 

electric heat input is applied to the linearized pressurizer model.    
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4.3.2 Response to a step change in insurge flow rate 

 A 2 kg/s step increase in the surge flow (insurge) is introduced between t = 20 sec 

and t = 120 sec. The liquid inside the pressurizer and the subcooled liquid from the 

primary coolant system constitute a mixture that has a temperature lower than the 

saturation temperature. The decrease in the temperature causes the contraction of the 

liquid volume inside the pressurizer which accounts for the small gradual decrease in the 

pressure; see Figure 4.12. When this result is compared with the same perturbation case 

with a different magnitude in Reference [34], the dynamic responses do not agree each 

other. This is most likely due to the fact that the coefficient of the surge term for the 

linearized pressurized model in [34] is calculated by using only saturated liquid enthalpy 

(h = hf). In this study, however, enthalpy term (h) in Equation (3.49) changes depending 

on whether the surge flow is an insurge or outsurge flow. 

4.3.3 Response to a step change in outsurge flow rate 

 As the third case, an outsurge flow perturbation of 2 kg/s is applied at t = 20 sec 

and then the flow rate is reverted to its initial steady-state value at t = 120 sec. This 

perturbation causes a decline in the liquid volume inside the pressurizer. Hence, the 

pressurizer pressure shows a decreasing trend in Figure 4.12 and the overall pressure drop 

is bigger compared to the result from the preceding case as expected.  

4.3.4 Response to a step change in spray flow rate   

 For the last case, a 2 kg/s positive step change in the spray flow is introduced into 

system between t = 20 sec and t = 120 sec. The temperature of the spray is lower than the 

temperature of the insurge flow from the previous case. Due to this fact, the liquid 
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mixture has a lower temperature compared to the mixture from the last case. This, then, 

theoretically implies that the pressure drop should be larger for this transient which is 

congruent with the pressure response as illustrated in Figure 4.12. The result from 

Reference [34], again, for the same disturbance but with a different magnitude, exhibits 

the same dynamic behavior with the result of the simulation case above. 

 As seen from the results for four different scenarios, only the increase in the 

electric heater input induces a rise in the pressurizer pressure, which may explain why no 

continuous spray exists in SMRs as stated earlier in Section 3.4. 

4.3.5 Comparison of results 

 Table 4.2 summarizes comparisons of the simulation results for the isolated 

pressurizer model developed in this study against a MS thesis by Thakkar [34]. The 

agreement of the results provides a basis for the validation of the model and allows it to 

be used as a part of the complete SMR model. 

Table 4.2 Comparison of results for isolated pressurizer model without control systems 

Scenario 

 

Response of Isolated 

Pressurizer Model 

Other Reference 

A 100 kW 

step increase 

in electric 

heater  

As the pressurizer is under 

saturated conditions at the 

steady-state, vaporization 

starts because of the additional 

heat provided by the heaters 

and the pressurizer pressure 

increases.  

The model result is congruent with 

the result from Reference [34], 

where a 100 kW step increase in the 

electric heat input is applied to the 

linearized pressurizer model.    
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A step 

increase in 

insurge flow 

rate 

 

A 2 kg/s step increase in the 

surge flow (insurge) causes a 

small gradual decrease in the 

pressure. 

 

The pressurizer response for a 50 

lb/s step increase in Reference [34] 

does not agree with the result herein 

both qualitatively and quantitatively. 

This is most likely due to the fact 

that the coefficient of the surge term 

for the linearized pressurized model 

in [34] is calculated by using only 

saturated liquid enthalpy (h = hf).  

A step 

increase in 

spray flow 

rate 

A 2 kg/s positive step change 

in the spray flow leads to a 

drop in the pressurizer 

pressure.  

The result from Reference [34] for 

the same disturbance but with a 

different magnitude (50 lb/s), 

exhibits the same dynamic behavior 

with the result of the simulation case 

above. 

 

4.4 Single SMR Unit Model 

4.4.1 Steady-state performance of the model 

The overall SMR model is first simulated under steady-state conditions at 100% 

power using Simulink. Some important simulation results are listed in Table 4.3, and the 

steady-state temperature profile of the steam generator is shown in Figure 4.13. A 

comparison of the results with the design data [28] and [30] shows that they are 

consistent with each other, which justifies further studying of the model under dynamic 

conditions. However, as no other researchers have published a complete SMR dynamic 
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model, there will be no comparisons to make other than checking congruence of the 

model response with theory. 

Table 4.3 Steady-state values of important parameters 

Parameter Value 

Reactor thermal power 160.1 MW 

Net electrical output 45.3 MW 

Pressurizer pressure 12.41 MPa 

Primary coolant mass flow rate 708 kg/s 

Hot leg riser temperature 291 °C 

Downcomer region temperature 246 °C 

Steam generator total tube length 22.25 m 

Subcooled region length 2.90 m 

Two-phase region length 17.60 m 

Superheated region length 1.75 m 

Feedwater temperature 148.5 °C 

Steam temperature 264 °C 

Steam pressure 3.1 MPa 

Steam mass flow rate 71.25 kg/s 

 

It is noteworthy that the primary and secondary pressure values for the NuScale 

SMR are considerably less than those for today’s large PWRs. Typical values for a 

central station PWR are around 15.5 MPa and 7 MPa for the primary and secondary, 

respectively.   
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Figure 4.13 Steam generator temperature profile at steady-state (100% power). 

4.4.2 Dynamic performance of the model 

For the dynamic performance of the system, a step increase in each input variable, 

i.e., control rod position (withdrawal), steam demand, pressurizer electric heat, and 

feedwater temperature, is applied independently after 20 s of steady-state operation to 

demonstrate that the simulation starts from a stable point and so that the initial steady-

state conditions can be seen clearly. The output of the electric heaters, however, reverts to 

its initial steady-state value at the simulation time of 120 s. 

Figures 4.14-4.26 exhibit responses of the different output variables for the 

aforementioned perturbations. For each case, the input variable under investigation is 

perturbed from its initial steady-state value while the others are kept constant. The results 

are discussed in the following subsections according to the input step change. 
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Figure 4.14 Reactor power (P) response to a step increase in the input variable for single 

SMR unit. 

 
Figure 4.15 Fuel temperature (TF) response to a step increase in the input variable for 

single SMR unit. 
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Figure 4.16 Reactor core coolant node 1 temperature (TC1) response to a step increase in 

the input variable for single SMR unit. 

 
Figure 4.17 Reactor core coolant node 2 temperature (TC2) response to a step increase in 

the input variable for single SMR unit. 
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Figure 4.18 Primary coolant mass flow rate (ṁC) response to a step increase in the input 

variable for single SMR unit. 

 
Figure 4.19 System reactivity (ρ) response to a step increase in the input variable for 

single SMR unit. 
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Figure 4.20 Subcooled region length (L1) response to a step increase in the input variable 

for single SMR unit. 

 
Figure 4.21 Two-phase region length (L2) response to a step increase in the input variable 

for single SMR unit. 
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Figure 4.22 Superheated region length (L3) response to a step increase in the input 

variable for single SMR unit. 

 
Figure 4.23 Steam pressure (pS) response to a step increase in the input variable for single 

SMR unit. 
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Figure 4.24 Primary coolant temperature (TP1) response at the steam generator outlet to a 

step increase in the input variable for single SMR unit. 

 
Figure 4.25 Pressurizer pressure (pp) response to a step increase in the input variable for 

single SMR unit. 
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Figure 4.26 Maximum attainable power (Pm) response to a step increase in the input 

variable for single SMR unit. 

4.4.2.1 Response to a step change in external reactivity 

A 3.5×10–4 (i.e., 5¢) step increase in the reactivity due to control rod withdrawal 

is applied to the system at t = 20 s as seen in Figure 4.19. Since this perturbation causes a 

reduction in neutron absorption inside the core region, an upsurge in the fission rate and 

neutron flux occurs. Therefore, the reactor thermal power (P) exhibits an 8.3 MWt 

prompt jump as shown in Figure 4.14. Corresponding to the change in the thermal power, 

the fuel temperature (TF) rises (Figure 4.15) which induces more heat transfer from the 

fuel region to the primary coolant in the core. This is congruent with the increase in the 

coolant node 1 (TC1) and 2 (TC2) temperatures as shown in Figures 4.16 and 4.17, 

respectively.  
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The increase in the temperature of the primary fluid at the steam generator inlet 

leads to an increase in the heat transfer from the primary side to the secondary side of the 

steam generator through the tube metal wall. More heat transfer raises the steam 

generation and results in an expansion in the superheated region length (L3) as seen in 

Figure 4.22. Concomitantly, the secondary pressure (pS) rises (see Figure 4.23) since no 

change is made to the steam valve opening.  As the pressure increases, the corresponding 

saturation temperature of the secondary (feedwater) rises while the latent heat of 

vaporization (hfg) declines which explains the decrease in the length of the two-phase 

region (L2); see Figure 4.21. There is a competition between the increased heat delivery 

and the need for more heat to bring the feedwater to the saturation point, and as Figure 

4.20 reveals, there is a small decrease in the subcooled region length (L1) indicating that 

the first mechanism dominates.  

The overall increase in the temperature of the primary coolant system causes an 

expansion of the coolant volume which, then, leads a surge flow into the pressurizer. The 

mixture of the saturated liquid inside the pressurizer and the subcooled liquid from the 

primary coolant system has a lower temperature than the saturation temperature 

corresponding to the pressurizer pressure at the initial steady-state condition. This causes 

a gradual decrease in the pressurizer pressure (pp) due to the perturbation in the control 

rod position (see Figure 4.25).  

All of these ensuing changes in the fuel and reactor coolant temperatures, and the 

primary coolant pressure drive the reactivity feedback mechanisms thereby resulting in 

the new stable power level of 161.4 MWt. The primary coolant mass flow rate (ṁc) 
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shows a similar trend with the response of the reactor power as seen in Figures 4.14 and 

4.18 and as expected from Equation (3.20). As the disturbance is initiated at the primary 

side, the turbine starts to feel the associated effect after a time delay, which is 

approximately 10 s and in agreement with the initial steady-state time constant for the hot 

leg riser. The attainable power power (Pm) rises gradually and settles to a new steady-

state value of 45.7 MW as depicted in Figure 4.26. Finally, the system reactivity ρ returns 

to zero, as it should, when the new equilibrium is achieved (Figure 4.19).    

4.4.2.2 Response to a step change in feedwater inlet temperature 

For the second scenario, a 7.425 °C (i.e., 5%) increase in the feedwater inlet 

temperature (TSi) is introduced at t = 20 s. With this perturbation, the required heat for the 

feedwater to reach the saturation temperature diminishes and the length of the subcooled 

region is reduced as shown in Figure 4.20. In addition, the secondary fluid density 

decreases which results in higher velocity, correspondingly. The increase in the fluid 

velocity, then, engenders a larger pressure drop that accounts for the decline in the steam 

pressure (see Figure 4.23). Thus, the latent heat of vaporization rises and an increase in 

the length of the two-phase region is observed as depicted in Figure 4.21. Moreover, the 

superheated region length levels out at a new equilibrium value shorter that the initial 

one; see Figure 4.22.  

This input perturbation raises the average secondary temperature such that there is 

a decrease in the heat transfer from the primary side to secondary side.  This causes a rise 

in the temperature of the primary coolant at the steam generator outlet (TP1) as well as the 

primary coolant temperature leaving the reactor core as seen in Figures 4.24 and 4.17, 
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respectively. When the aforementioned temperature change is felt by the reactor core, the 

system reactivity starts decreasing due to the negative reactivity temperature coefficients 

and shows a dip with a minimum value of –1.78×10-5 as exhibited in Figure 4.19. Thus, a 

reduction in both the reactor thermal power and fuel temperature is observed. At the new 

steady-state operating level, the reactor thermal power has declined to 158.4 MW (Figure 

4.14). In addition, the coolant flow rate also shows a similar pattern and decreases by 

almost –2.6 kg/s. The attainable power power, however, exhibits a rise of about 0.2 MW 

at the new steady-state condition since the additional heat content of the feedwater 

exceeds the decrease in the reactor thermal power. This argument is supported by a 

simple heat balance. Considering the steam generator as a boiler 

boilerthm QnP            (4.1) 

hmQQQQ iSRXFWRXboiler  ,
       (4.2) 

where nth is the Rankine cycle thermal efficiency (28%); δQ terms with subscripts (RX) 

and (FW) are the change in heat provided by the reactor core (–1.6 MW) and feedwater, 

respectively; Δh is the difference in the enthalpy of the feedwater before and after the 

disturbance (32.6 kJ/kg) and the new equilibrium value of the feedwater flow rate (ṁS,i) is 

70.8 kg/s. After the calculation is performed, δPm is 0.2 MW which agrees with the result 

in Figure 4.26. 

The pressurizer pressure, in this case, shows a very similar behavior compared to 

the previous case and decreases due to the increase in the primary coolant temperature. 

However, the pressure decrement is smaller since the increase in the temperature is less 

compared to the first case. 
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4.4.2.3 Response to a step change in pressurizer heater input 

For the third case, a 100 kW increase in the pressurizer heater is applied to the 

system, between t = 20 s and t = 120 s, so as to observe the effect of a disturbance 

initiated inside the pressurizer on the primary and secondary sides. As more heat is 

transferred to the saturated liquid inside the pressurizer, the pressurizer pressure starts to 

increase until the heaters are turned off; see Figure 4.25. The deviation of the pressure 

from the initial steady-state value causes a very small positive change in the reactor 

thermal power due to the positive reactivity feedback coefficient of the primary pressure. 

In similar manner, the fuel temperature also increases slightly. After the heaters are 

turned off, the reactivity feedback mechanisms bring the system reactivity back to its 

initial value. As understood from a careful examination of the plotted results, the reactor 

remains at a slightly elevated temperature and pressure compared to the initial 

equilibrium condition, but overall the disturbance does not have a significant impact on 

the system state variables. 

4.4.2.4 Response to a step change in steam valve opening 

A 5% step increase in the steam valve opening is introduced at t = 20 s. The 

action induces a sudden dip in the steam pressure, as depicted in Figure 4.23, as well as in 

the corresponding saturation temperature. Thus, an abrupt vaporization takes place in the 

steam generator, which is the underlying reason of the prompt jump in the apparent 

attainable power; see Figure 4.26. This behavior is a result of the turbine model simply 

calculating the attainable power as the product of associated variables used in the study. 

In reality, however, the turbine inertia would prevent such response. The aforementioned 
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momentary steam production cannot be maintained since the reactor core is not able to 

respond to the need for steam instantly. These changes in the thermodynamic properties 

lead to a decrease in the lengths of the subcooled and two-phase regions whereas an 

elongation occurs in the superheated region length, as shown in Figures 4.20, 4.21, and 

4.22, respectively. 

The bigger temperature difference among the primary and secondary sides is due 

to the increase in the steam demand causing more heat transfer to the secondary side from 

the primary side and a decrease in the average temperature of the primary coolant. 

Simultaneously, the coolant volume shrinks which results in a surge flow out of the 

pressurizer. As a result, the primary coolant pressure in the pressurizer diminishes and 

then settles down to a new equilibrium point; see Figure 4.25. The reactivity feedback 

coefficients of the fuel and coolant temperatures and the primary pressure increase the 

system reactivity, reaching a maximum value of 9×10–6, and drive the reactor thermal 

power and fuel temperature up. The final steady-state value of the thermal power is 

around 161.4 MW which corresponds to a new stable value of the attainable power of 

45.7 MW. 

4.5 Single SMR Unit Model with Control Systems 

The effect of the control systems on the dynamic response of the single SMR unit 

model is analyzed with two different scenarios: 

1. Increase in steam valve opening, and 

2. Increase in reactor thermal power. 
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4.5.1 Increase in steam valve opening 

For the first scenario, a 5% step increase in the load is applied to the system at t = 

20 s, which results in a change in the steam valve opening.  For comparison, two different 

simulations under the same disturbance are run with and without the control systems.  

Figures 4.27-4.33 exhibit the changes in the important state variables of the 

system and the relevant discussion is provided afterwards.  

 
Figure 4.27 Reactor power (P) response for a step increase in the load for single SMR 

unit with and without control systems. 
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Figure 4.28 Change in primary coolant temperatures for a step increase in the load for 

single SMR unit without control systems. 

 
Figure 4.29 Change in primary coolant temperatures for a step increase on the load for 

single SMR unit with control systems. 
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Figure 4.30 Pressurizer pressure (pP) response for a step increase in the load for single 

SMR unit with and without control systems. 

 
Figure 4.31 Steam pressure (pS) response for a step increase in the load for single SMR 

unit with and without control systems. 
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Figure 4.32 Maximum attainable power (Pm) response for a step increase in the load for 

single SMR unit with and without control systems.  

 
Figure 4.33 Change in thermal and maximum attainable power for a step increase in the 

load for single SMR unit with control systems. 
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 When the disturbance is introduced without control systems, the steam pressure 

decreases (see Figure 4.31) and flash steam is produced momentarily as explained 

previously in Section 4.4.2.4. The rise in the steam demand causes more heat transfer 

from the primary side to secondary. Thus, the primary coolant temperatures decrease as 

shown in Figure 4.28 if no control action is taken. The reactivity feedback mechanisms 

induce a positive reactivity into the system due to the reduction in the temperatures, 

thereby leading to a gradual increase in the reactor thermal power (see Figure 4.27) even 

though no adjustment to the control rod positions is made. However, the increase does 

not satisfy the demand as the new steady-state value is around 166 MW, which is 3.5% 

higher than the initial steady-state value but a reactor power of 8.2 MW is needed to meet 

the demand. The attainable power also goes up by 1.7 MW and reaches a value of 47 

MW accordingly, as depicted in Figure 4.32, at the new equilibrium operating point.  

 The decrease in the primary coolant temperatures reduces the coolant volume in 

the primary loop and, therefore, an outsurge flow from the pressurizer via the baffle is 

observed. As the liquid-vapor balance inside the pressurizer is lost, the pressure 

diminishes with no active control on heaters until a new equilibrium is established (see 

Figure 4.30). 

 If the same disturbance is applied while the control systems are active, the initial 

decrease in the downcomer temperature (see Figure 4.29) produces an error signal for the 

sliding-average-temperature controller. Following that the control rods are withdrawn 

accordingly, thereby introducing a positive external reactivity. The external reactivity 

results in a faster increase in the thermal power compared to the no-control case as shown 
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in Figure 4.27. After an overshoot, the power level settles down to a value of 168.3 MW 

which is congruent with the new setpoint established by the change in the load. 

Furthermore, the downcomer temperature starts increasing, after the initial dip, and 

reaches the pre-transient steady-state value (Figure 4.29), which is the desired behavior 

achieved by the sliding-average-temperature controller. Finally, a small recovery is 

noticed in the steam pressure with the reactor control as seen in Figure 4.31. These latter 

observations are in agreement with the theory discussed in Section 3.6.1.3. 

 In a similar manner, the pressurizer pressure controller senses the difference 

between the reference and actual values of the pressure after the transient is initiated, and 

then applies more power to the heaters to keep the pressure constant. Figure 4.30 reveals 

that around 60 s after the disturbance, the primary pressure is returned to its initial steady-

state value.  

The attainable power rises in accordance with the thermal power and reaches a 

value of 47.56 MW as desired in the control case (Figure 4.32). Figure 4.33 shows the 

equilibrium deviation of the thermal (+8.2 MW) and attainable (+2.3 MW) power which 

yields a thermal efficiency of 28%.  

4.5.2 Increase in reactor thermal power 

The other scenario to test the effectiveness of the control system is to increase (or 

decrease) the reactor thermal power to a certain level within a desired time period when it 

is necessary. 

 For this simulation case, the reference value of the sliding-average-temperature 

controller is set to a new value of 253.3 °C , which was 245 °C initially, by a ramp 
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function between t =20 s and t = 320 s. And the set point is kept at this new value for the 

rest of the simulation (t > 320 s). A ramp is used instead of applying a step function to 

avoid large power overshoot. This is congruent with the industry practice for PWRs [65]. 

This control action is intended to reach a new thermal power level of 5% higher than the 

initial power level. 

 Figures 4.34-4.42 depict how some of the important system variables changes 

over time for this simulation case.  

 
Figure 4.34 Reactor power (P) response for a ramp increase in reactor power controller 

reference value for single SMR unit. 
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Figure 4.35 Fuel temperature (TF) response for a ramp increase in reactor power 

controller reference value for single SMR unit. 

 
Figure 4.36 Reactor core coolant node 2 temperature (TC2) response for a ramp increase 

in reactor power controller reference value for single SMR unit. 
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Figure 4.37 Primary coolant mass flow rate (ṁC) response for a ramp increase in reactor 

power controller reference value for single SMR unit. 

 
Figure 4.38 Normalized temperature difference (TC2/TC2,0 – TCi/TCi,0) for a ramp increase 

in reactor power controller reference value for single SMR unit. 
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Figure 4.39 System reactivity (ρ) response for a ramp increase in reactor power controller 

reference value for single SMR unit. 

 
Figure 4.40 Steam pressure (pS) response for a ramp increase in reactor power controller 

reference value for single SMR unit. 
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Figure 4.41 Pressurizer pressure (pp) response for a ramp increase in reactor power 

controller reference value for single SMR unit. 

 
Figure 4.42 Maximum attainable power (Pm) response for a ramp increase in reactor 

power controller reference value for single SMR unit. 
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As the controller reference value starts increasing, the difference between the 

actual and reference values introduces an error signal to the controller which then causes 

the movement of the control rods to induce a positive reactivity insertion (see Figure 

4.39). Accordingly, the reactor thermal power and fuel temperatures show a rise as seen 

in Figures 4.34 and 4.35. Following that the fuel-to-coolant heat transfer increases which 

explains the increase in the reactor core coolant node 2 temperature in Figure 4.36. 

Furthermore, the coolant mass flow rate exhibits an upward trend over the course of the 

ramp increase and then a downward trend for the constant controller setpoint as seen in 

Figure 4.37. This latter behavior is a result of the temperature difference in the primary 

system (see Figure 4.38) which is the main driving mechanism for the coolant mass flow 

rate as discussed in Section 3.1.2.3.3 by Equation (3.19).  

 With the increased temperature of the primary coolant, the temperature difference 

between the primary and secondary sides of the steam generator expands, thereby 

resulting in more heat transfer to the secondary side. The latter changes cause a growth in 

the steam generation. Thus, steam pressure increases as shown in Figure 4.40.  The 

attainable power rises gradually and settles to a new steady-state value of 47.56 MW as 

depicted in Figure 4.42 which is congruent with the new, desired operation conditions 

discussed earlier. 

 The system reactivity exhibits a response similar to a square pulse shape (see 

Figure 4.39). This is the result of external reactivity (control rods) and internal reactivity 

(reactivity feedback mechanisms) acting together on the system. In other words, when the 

disturbance is initiated, the external reactivity is dominant and the system reactivity 
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increases. However, reactivity feedback mechanisms level off at a positive value after a 

while. When the disturbance stops, since there is no external reactivity due to the control 

rod movement, reactivity feedback mechanisms bring the system reactivity back to its 

initial, pre-transient value. Finally, Figure 4.41 shows that this perturbation has minimal 

impact on the pressurizer pressure.   
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

5.1 Research Summary 

Over the last decade, there has been a growing trend in the development and 

commercialization of SMRs throughout the world. This interest is partially due to the 

smaller initial capital investment required for SMRs compared to typical power reactors. 

SMRs can be utilized to supply the electricity needs of remote areas with a lack of 

transmission infrastructure. However, this is not the only option; water desalination, 

general process heat for chemical or manufacturing processes, and district heating are 

other possible applications that can make use of SMRs with minor design alterations. 

With the integral type design of SMRs, generally the reactor vessel houses not 

only the reactor core but also steam generators and pressurizer, and heat removal from 

the reactor core is accomplished by natural circulation. This feature increases safety since 

the primary coolant pumps, and associated failure modes are eliminated from the system. 

The dynamic modeling of SMRs needs special attention and treatment due to 

aforementioned unique features. That is the reason that, in this work, a detailed analytical 

model for a passively cooled SMR is developed. The nuclear steam supply system 

(NSSS) model includes representations for reactor core, steam generator, pressurizer, hot 

leg riser and downcomer. The point kinetics equations with a single combined neutron 

precursor group and the models for an overall heat transfer resistance and single-phase 

natural circulation account for the neutronics and thermohydraulics in the reactor core 

region, respectively. A lumped parameter, moving-boundary approach is adopted for the 

once-through helical-coil heat exchanger in which boundaries between regions of 
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different fluid states (i.e., subcooled, boiling, and superheated) can vary over time. For 

the pressurizer model, an expression for the pressurizer pressure is derived from the 

fundamental mass, volume and energy balances. Hot leg riser and downcomer are treated 

as first-order lags. The NSSS model is incorporated with a turbine model which allows to 

observe the attainable power with given steam flow, pressure, and enthalpy as input. The 

overall nonlinear system is implemented in the Simulink dynamic environment. Various 

simulation cases are run to test the capability of the developed model to predict the 

dynamic response of the SMR. Finally, steady-state control programs for reactor power 

and pressurizer pressure are also introduced. The obtained results and the relevant 

discussion are presented.  

5.2 Main Results of the Study 

 A nonlinear dynamic model for a passively cooled SMR is developed in this 

study. Investigation into the components (i.e., reactor core, steam generator, and 

pressurizer) of the model is carried out, separately, by applying perturbations to the input 

parameters. Comparison between the obtained simulations results and the results from 

References [33], [34], [41], [43], and [56] yields that the individual components of the 

complete model are realistic, and able to predict the dynamic response. After the 

validation, the combination of these models with hot leg riser and downcomer which 

constitute the complete model for the single SMR unit is presented. Then, the single SMR 

unit model is also tested by applying independent step changes into input variables. 

Although there is no available data for the comparison since this is an original work, the 

results are in good agreement with the theory. 
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 A sliding-average-temperature control mode is adopted and a PID controller is 

used for reactor power and pressurizer pressure control, respectively. Dynamic 

simulations show that proposed control schemes are able to keep the related state 

variables at the desired values.  

5.3 Future Work 

 The presented study can be extended in several directions. Possible areas in which 

future work may be carried out include 

 A reduced order model for the linearized representation of the overall model can 

be obtained to develop a model based controller. 

 The model developed in this study can be utilized for future studies where the 

goal is an analysis and control of multiple SMRs coupled to a single steam 

turbine−generator set. 
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APPENDIX A  

REACTOR CORE PARAMETERS AND CALCULATIONS 
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A.1 Rector Core Parameters 

Table A.1 Reactor core parameters 

Variable Description Value Source 

P Reactor thermal power 160 MWt Reference [29] 

β Delayed neutron fraction 0.007 References [33], [45] 

Λ Neutron generation time 20 μs References [33], [45] 

λ Delayed neutron precursor decay 

constant 

0.1 s-1 References [33], [45] 

αF Fuel temperature coefficient of 

reactivity 

–2.16×10–5/°C References [33], [45] 

αC Coolant temperature coefficient of 

reactivity 

–1.8×10–4/°C References [33], [45] 

αP Primary pressure coefficient of 

reactivity 

1.08×10–6/°C References [33], [45] 

cp,F Specific heat of fuel 0.467 kJ/(kg·°C) Reference [67] 

fd Fraction of power produced in  fuel 0.975 Reference [68] 

p Pin pitch 1.26 cm Reference [48] 

d Fuel rod outside diameter 0.95 cm Reference [48] 

H Active core height 2 m Reference [48] 

nr Total number of rods 10693 Reference [48] 

ρC Coolant density  

(12.76 MPa and 268.3 °C) 

780.3 kg/m3 Reference [69] 

VC Coolant volume in core 1.879 m3 Calculated 

mC Coolant mass in core 1466 kg Calculated 

rf Fuel pellet radius  0.409 cm Reference [48] 

nfr Total number of fuel rods 9768 Reference [48] 

ρF Fuel density 10.96 g/cm3 Reference [67] 
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mF Total fuel mass 11252 kg Calculated 

hg Fuel gap heat transfer coefficient  5678 W/(m2·°C) Reference [49] 

kf Fuel thermal conductivity  4.15 W/m·°C Reference [49] 

kc Cladding thermal conductivity  19.04 W/m·°C Reference [49] 

tg Gap thickness 0.057 cm Reference [48] 

tc Cladding thickness 0.95 cm Reference [48] 

De Equivalent diameter 1.178 cm Calculated 

ṁC Coolant flow rate 708 kg/s Reference [30] 

v Mean coolant velocity 0.966 m/s Calculated 

μ Coolant dynamic viscosity 

(12.76 MPa and 268.3 °C) 

0.361 kg/(m·hr) Reference [69] 

k Coolant thermal conductivity  

(12.76 MPa and 268.3 °C) 

0.598 W/(m·°C) Reference [69] 

cp,C Specific heat of coolant  

(12.76 MPa and 268.3 °C) 

4.96 kJ/(kg·°C) Reference [69] 

TC1 Average core coolant temperature 268.3 °C Reference [30] 

hs Cladding surface heat transfer 

coefficient 

13730 W/(m2·°C) Calculated 

AFC Effective heat transfer area 583 m2 Calculated 

UFC Fuel-to-coolant heat transfer 

coefficient 

1135 W/(m2·°C) Calculated 

TF Average fuel temperature 504 °C Calculated 
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A.1.1 Coolant mass in reactor core 

 Figure A.1 shows the equivalent coolant channels in the reactor core for a square 

fuel lattice. Based on this configuration, the calculation of the coolant flow in the core is 

performed as follows: 

d
p

p

Fuel rods

Equivalent

channel

 
Figure A.1 Equivalent coolant channels in a square fuel lattice. 
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A.1.2 Fuel mass in reactor core 

 The mass of the fuel inside the core is calculated by 
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A.1.3 Fuel-to-coolant heat transfer coefficient 

 The overall heat transfer resistance is defined in Section 3.1.2.2 as R = 1/(UA)FC 

and Equation (3.9) gives an expression to calculate the heat transfer resistance. The only 

unknown variable in that equation is the cladding surface heat transfer coefficient which 

can be determined by Equation (3.10). However, the equivalent diameter (De) and the 

Reynolds (Re) and Prandtl (Pr) numbers should be calculated. 

 
cm178.1

)cm95.0(

)cm475.0()cm26.1(
4

2
4

22

2

2



































d

d
p

De    (A.4) 

 
s

m
966.0

kg1466

)m2()skg708( 1







C

C

m

Hm
v


      (A.5) 

88548
)hrmkg361.0(

)mkg3.780()sm966.0()cm178.1(
Re

11

31













CevD
  (A.6) 

8317.0
)CmW598.0(

)hrmkg361.0()CkgkJ96.4(
Pr

11

1111
,















k

c Cp 
   (A.7) 

Replacing all parameters in Equation (3.10) with their values yields that  
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then by utilizing Equation (3.9), 1/R = 661705 W·°C-1. The effective heat transfer area 

and fuel-to-coolant heat transfer coefficient can be calculated as 

  2m5839768)cm200()cm95.0(   frFC nHdA     (A.9) 
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 Finally, average fuel temperature can be found by Equation (3.7) 
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APPENDIX B   

STEAM GENERATOR PARAMETERS AND CALCULATIONS 
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B.1 Derivation of Secondary Side Equations 

B.1.1 Subcooled region 

 Integration of the mass balance equation (Equation 3.24) over the subcooled 

region yields that 
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where ρ(L1) is the saturated liquid density ρf. In addition, it is assumed that average 

enthalpy and density of the liquid for the subcooled region equal h1 = 0.5(hi + hf) and      

ρ1 = ρ(pS,h1), respectively. 

 The rate of change of mass in the liquid region, first term of Equation (B.2), can 

be evaluated as: 
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then Equation (B.2) can be rewritten as: 
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 The time derivative of the average liquid density equals the following expression 

by using the chain rule. 
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 Finally, inserting Equation (B.5) into Equation (B.4) gives the mass balance 

equation for the subcooled region which is 
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 In a similar manner, integration of the energy balance equation (Equation 3.25) 

over the subcooled region gives that 
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and evaluating the first term of Equation (B.8) results in 
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then, replacing the average liquid enthalpy and the rate of change of the average liquid 

density in Equation (B.9) with their equivalences yields the equation below. 
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 Combining Equations (B.8) and (B.10) gives the energy balance equation for the 

subcooled region. 
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 After algebraic manipulations, the final form of the energy conservation equation 

is obtained as: 
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B.1.2 Two-phase region 

 The mass balance equation for the two-phase region is derived by integrating the 

general mass balance equation over the region and, then, applying Leibnitz theorem. 
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where ρ(L1+L2) is the saturated vapor density ρg. 

 The rate of change of mass in the two-phase region, first term of Equation (B.14), 

can be evaluated as: 
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where ρ2 is the two-phase region mean density and equals to   fg   12 . Using 

this equity, Equation (B.15) can be rewritten as: 
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and, the combination of Equations (3.14) and (3.16) gives the mass balance equation in 

the form of 
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and, after substituting ρ2 with its equivalence result in the final form of the mass balance 

equation for the two-phase region. 
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 The same methodology is applied to the general energy balance equation in order 

to obtain the energy conservation equation of the two-phase region. 

 
 











 21

1

21

1

21

1

LL

L
SMii

LL

L

S
LL

L

SS TTd
z

hm

t

pAhA


 
    (B.18) 



 

120 

        
      

)(

)(

22212,23,

112

111

21

1
121212

SMiifSgS

LLLS

LL

L
LLLLLLSS

TTdhmhm

dt

dL
phA

dt

LLd
phAdzph

dt

d
A

















 (B.19) 

 An expression can be obtained for the integral term of Equation (B.19) as follows: 
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of Equations (B.19) and (B.20) results in the energy balance equation. 
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 After rearranging Equation (B.21), the final form of the energy balance equation 

is 
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B.1.3 Superheated region 

 The mass balance equation for the superheated region is obtained after the 

following steps: 
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 It is assumed that average enthalpy and density of the vapor for the superheated 

region equal h3 = 0.5(ho + hg) and ρ3 = ρ(pS,h3), respectively. 

 The rate of change of mass in the superheated region, first term of Equation (B.2), 

can be evaluated as: 
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then Equation (B.24) can be rewritten as: 
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 The time derivative of the average liquid density equals the following expression 

by using the chain rule. 
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Finally, inserting Equation (B.27) into Equation (B.26) gives the mass balance 

equation for the superheated region which is 
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In a similar manner, integration of the energy balance equation (Equation 3.25) 

over the superheated region gives that 
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and evaluating the first term of Equation (B.30) results in 
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then, replacing the average vapor enthalpy and the rate of change of the average vapor 

density in Equation (B.31) with their equivalences yields the equation below. 
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Combining Equations (B.30) and (B.32) gives the energy balance equation for the 

subcooled region. 

 
 

   

)(

2

1

2

1

2

1

33323,,

2121
333

3

3

3

33
33

21
33

3

SMiigSooS

SSggS
S

S

go
S

oS

S

g

hS

SS

TTdhmhm

dt

LLd
pA

dt

LLd
hA

dt

dp
LA

dt

dh

dt

dh
LA

dt

dh

hdt

dp

p

h

hp
hL

dt

LLd
phA

SS
































































































 (B.33) 

After algebraic manipulations, the final form of the energy conservation equation 

is obtained as: 
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B.2 Steam Generator Parameters 

Table B.1 Steam generator parameters at full power 

Variable Description Value Source 

L Steam generator tube length  22.25 m Reference [31] 

L1 Subcooled region length  1.75 m Calculated 

L2 Two-phase region length 17.6 m Calculated 

L3 Superheated region length 2.9 m Calculated 

do Tube outside diameter 1.6 cm Reference [31] 

di Tube inner diameter 1.42 cm Reference [31] 

St Transverse pitch 2.88 cm Reference [31] 

Sl Longitudinal pitch 2.4 cm Reference [31] 

N Total number of tubes 1012 Reference [31] 

ṁS,o Steam flow rate 71.25 kg/s Reference [30] 

pS Steam pressure 3.1 MPa Reference [30] 

TSi Feedwater inlet temperature 149 °C Reference [30] 

TSo Steam outlet temperature 264 °C Reference [30] 

Apht Total tube outer heat transfer area 1123 m2 Calculated 

Asht Total tube inner heat transfer area 1004.5 m2 Calculated 

kt Thermal conductivity of Inconel 

690 at 280 °C 

16.92 W/(m·°C) Reference [70] 

CL Steam valve coefficient 2.2983 kg/(s·bar) Calculated 
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The steam generator heat transfer process involve three mechanisms: (1) 

convective heat transfer between the primary coolant and the steam generator tube outer 

surface, (2) conductive heat transfer within the steam generator tube metal, and (3) 

convective heat transfer between the steam generator tube inner surface and the 

secondary coolant. Equations (3.41) and (3.42) give the correlations to calculate heat 

transfer coefficients for the first and third mechanisms. Reference [70], on the other hand, 

provides thermal conductivity data of Inconel 690 to determine the conductive heat 

transfer coefficient. Since the steam generator model consists of three regions, these 

calculations should be performed for each region. The MATLAB code in the following 

subsection describes the heat transfer in the steam generator and generates a plot showing 

the steady-state temperature profile for the steam generator (see Figure 4.13) 

B.2.1 MATLAB code for steam generator heat transfer calculations 

%% Checking heat balance between primary and secondary 

% Heat given by primary coolant 

G_p = 708; % kg/s 

P_p = 124.1; % bar 

T_pi = 291.1; % C 

T_po = 245.5; % C 

h_pi = XSteam('h_pT',P_p,T_pi); % kJ/kg 

h_po = XSteam('h_pT',P_p,T_po); % kJ/kg 

Q_p = G_p*(h_pi - h_po)/1000; % MWt 

  

% Heat picked up by secondary coolant 

G_s = 71.25; % kg/s 

P_s = 31; % bar 

T_so = 263.8; % C 

T_si = 148.9; % C 

h_so = XSteam('h_pT',P_s,T_so); % kJ/kg 

h_si = XSteam('h_pT',P_s,T_si); % kJ/kg 

Q_s = G_s*(h_so - h_si)/1000; % MWt 

  

%% Tp12 - Primary Coolant Temperature at Boundary of Region 1 

  

h_s12 = XSteam('hL_p',P_s); %  

Q_s1 = -(h_si - h_s12)*G_s; %  

Q_p1 = Q_s1; %  

  

c_p1= XSteam('Cp_pt',P_p,249); 

  

T_p12 = Q_p1/(c_p1*G_p) + T_po; 

  

%% Tp23 - Primary Coolant Temperature at Boundary of Region 2 
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h_s23 = XSteam('hV_p',P_s); 

Q_s2 = -(h_s12 -h_s23)*G_s; %  

Q_p2 = Q_s2; %  

  

c_p2= XSteam('Cp_pt',P_p,278); 

  

T_p23 = Q_p2/(c_p2*G_p) + T_p12; 

  

%% Tpi - Primary Coolant Temperature at Boundary of Region 3 

  

Q_s3 = -(h_s23 -h_so)*G_s; %  

Q_p3 = Q_s3; % 

  

c_p3= XSteam('Cp_pt',P_p,290); 

  

T_pi_cal = Q_p3/(c_p3*G_p) + T_p23; 

%% Average Primary Coolant Temperature for Each Region 

L_1 = 2.89; % subcooled section length (m) 

L_2 = 17.6; % boiling section length (m) 

L_3 = 1.76; % superheated section length (m) 

  

  

T_p1 = (T_po + T_p12)/2; 

T_p2 = (T_p12*(L_1+L_2) - T_p1*L_2)/L_1; 

T_p3 = (T_p23*(L_2+L_3) - T_p2*L_3)/L_2; 

  

%% SUBCOOLED REGION 

%% Heat Transfer from Primary Coolant to Tube Outer Surface, Subcooled 

do = 1.5875; % tube outside diameter (cm) 

St = do*1.8; % transverse pitch (cm) 

Sl = do*1.5; % longitudinal pitch (cm) 

N = 1012; % total number of steam generator tubes 

G_pc = G_p/N; % primary flow rate per channel (kg/s) 

de = 4*((St*Sl - pi*(do/2)^2) / (pi*do)); % equivalent  diameter (cm) 

rho_p1 = XSteam('rho_pT',P_p,T_p1); % density of water (kg/m^3) 

A_pc = St*Sl - pi*(do/2)^2; % primary coolant flow area per channel (cm^2) 

V_pc1 = L_1*A_pc/10000; % primary coolant volume per channel (m^3)                 

m_p1 = V_pc1*rho_p1; % primary coolant mass per channel (kg) 

v_p1 = (G_pc*L_1)/m_p1; % primary coolant velocity (m/s) 

v_mp1 = (St/(St-do))*v_p1; % primary coolant max velocity (m/s) 

mu_p1 = XSteam('my_pT',P_p,T_p1); % viscosity of water (kg/m-s) 

k_p1 = 0.630075; % thermal conductivity of water (W/m-C)  

Re_p1 = (0.01*do*v_mp1*rho_p1/mu_p1); % Reynolds number                              

Pr_p1 = 1000*c_p1*mu_p1/k_p1; % Prandtl number                                      

Nu_p1 = 0.021*Re_p1^0.84*Pr_p1^0.36; % Nusselt number 

H1 = (Nu_p1*k_p1/(do*0.01)); % heat transfer coefficient (W/m^2-C) 

A_ph1 = (pi*do*L_1)/100; % heat transfer area per tube (m^2) 

A_pht1 = N*A_ph1; % total heat transfer area (m^2) 

  

T_m1o = T_p1 - (Q_p1/(H1*A_pht1))*1000; % tube metal outside temperature (C) 

  

%% Heat Transfer from Tube Outer Surface to Tube Inner Surface, Subcooled 

  

k_t1 = 16.16; % thermal conductivity of Inconel 690 at 240 C (W/m-C) 

di = 1.42; % tube inner diameter (cm) 

t = 0.09; % tube thickness (cm) 

R_t1 = (1/(2*pi*k_t1*L_1))*log((di/2 + t)/(di/2)); % thermal resistance (W/C)^-1 

H_t1 = 1/(R_t1*A_ph1); % heat transfer coefficient (W/m^2-C) 

  

T_m1i = T_m1o - (Q_p1/(H_t1*A_pht1))*1000; % tube metal inside temperature (C) 

  

%% Heat Transfer from Tube Inner Surface to Secondary Coolant, Subcooled 

G_st = G_s/N; % secondary coolant flow per tube (kg/s) 

rho_s1 = XSteam('rho_pT',P_s,194); % density of water(kg/m^3)  

A_sc = pi*(di/2)^2/10000; % secondary coolant flow are per tube (m^2) 

V_sc1 = L_1*(A_sc); % secondary coolant volume per tube (m^3) 

m_s1 = V_sc1*rho_s1; % secondary coolant mass per tube (kg) 

v_s1 = (G_st*L_1)/m_s1; % secondary coolant velocity (m/s) 

mu_s1 = XSteam('my_pT',P_s,194); % viscosity of water (kg/m-s) 
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k_s1 = 0.657239; % thermal conductivity of water (W/m-C) 

c_s1 = XSteam('Cp_pt',P_s,194); % specific heat of water (kJ/kg-C) 

Re_s1 = (0.01*di*v_s1*rho_s1/mu_s1); % Reynolds number                    

Pr_s1 = 1000*c_s1*mu_s1/k_s1; % Prandtl number                                   

Nu_s1 = 0.023*Re_s1^0.8*Pr_s1^0.4; % Nusselt number                              

H_s1 = (Nu_s1*k_s1/(di*0.01)); %heat transfer coefficient (W/m^2-C) 

A_sh1 = (pi*di*L_1)/100; % heat transfer area per tube (m^2) 

A_sht1 = N*A_sh1; % total heat transfer area (m^2) 

  

T_s12 = XSteam('Tsat_p',P_s); % saturation temperature at 31 bar 

T_s1 = T_m1i - (Q_p1/(H_s1*A_sht1))*1000; 

  

  

%% BOILING REGION 

%% Heat Transfer from Primary Coolant to Tube Outer Surface, Boiling 

rho_p2 = XSteam('rho_pT',P_p,T_p2); % density of water (kg/m^3) 

V_pc2 = L_2*A_pc/10000; % primary coolant volume per channel (m^3) 

m_p2 = V_pc2*rho_p2; % primary coolant mass per channel (kg) 

v_p2 = (G_pc*L_2)/m_p2; % primary coolant velocity (m/s) 

v_mp2 = (St/(St-do))*v_p2; % primary coolant max velocity (m/s) 

mu_p2 = XSteam('my_pT',P_p,T_p2); % viscosity of water (kg/m-s) 

k_p2 = 0.601028; % thermal conductivity of water (W/m-C) 

Re_p2 = (0.01*do*v_mp2*rho_p2/mu_p2); % Reynolds number                         

Pr_p2 = 1000*c_p2*mu_p2/k_p2; % Prandtl number 

Nu_p2 = 0.021*Re_p2^0.84*Pr_p2^.36; % Nusselt number 

H2 = (Nu_p2*k_p2/(do*0.01)); % heat transfer coefficient (W/m^2-C) 

A_ph2 = (pi*do*L_2)/100; % heat transfer area per tube (m^2) 

A_pht2 = N*A_ph2; % total heat transfer area (m^2) 

  

T_m2o = T_p2 - (Q_p2/(H2*A_pht2))*1000; % tube metal outside temperature (C)   

  

%% Heat Transfer from Tube Outer Surface to Tube Inner Surface, Boiling 

  

k_t2 = 16.73; % thermal conductivity of Inconel 690 at 270 C (W/m-C) 

R_t2 = (1/(2*pi*k_t2*L_2))*log((di/2 + t)/(di/2)); % thermal resistance (W/C)^-1 

H_t2 =  1/(R_t2*A_ph2); % heat transfer coefficient (W/m^2-C) 

  

T_m2i = T_m2o - (Q_p2/(H_t2*A_pht2))*1000; % tube metal inside temperature (C) 

  

%% SUPERHEATER REGION 

%% Heat Transfer from Primary Coolant to Tube Outer Surface, Superheated 

rho_p3 = XSteam('rho_pT',P_p,T_p3); % density of water (kg/m^3) 

V_pc3 = L_3*A_pc/10000; % primary coolant volume per channel (m^3) 

m_p3 = V_pc3*rho_p3; % primary coolant mass per channel (kg) 

v_p3 = (G_pc*L_3)/m_p3; % primary coolant velocity (m/s) 

v_mp3 = (St/(St-do))*v_p3; % primary coolant max velocity (m/s) 

mu_p3 = XSteam('my_pT',P_p,T_p3); % viscosity of water (kg/m-s) 

k_p3 = 0.573095; % thermal conductivity of water (W/m-C) 

Re_p3 = (0.01*do*v_mp3*rho_p3/mu_p3); % Reynolds number                      

Pr_p3 = 1000*c_p3*mu_p3/k_p3; % Prandtl number 

Nu_p3 = 0.021*Re_p3^0.84*Pr_p3^.36; % Nusselt number 

H3 = (Nu_p3*k_p3/(0.01*do)); % heat transfer coefficient (W/m^2-C) 

A_ph3 = (pi*do*L_3)/100; % heat transfer area per tube (m^2) 

A_pht3 = N*A_ph3; % total heat transfer area (m^2) 

  

T_m3o = T_p3 - (Q_p3/(H3*A_pht3))*1000; % tube metal outside temperature (C) 

  

%% Heat Transfer from Tube Outer Surface to Tube Inner Surface, Superheated 

  

k_t3 = 16.92; % thermal conductivity of Inconel 690 at 280 C (W/m-C) 

R_t3 = (1/(2*pi*k_t3*L_3))*log((di/2 + t)/(di/2)); % thermal resistance (W/C)^-1 

H_t3 = 1/(R_t3*A_ph3); % heat transfer coefficient (W/m^2-C) 

  

T_m3i = T_m3o - (Q_p3/(H_t3*A_pht3))*1000; % tube metal inside temp (C) 

  

%% Heat Transfer from Tube Inner Surface to Secondary Coolant, Superheated 

rho_s3 = XSteam('rho_pT',P_s,250); % density of steam (kg/m^3) 

V_sc3 = L_3*(A_sc); % secondary coolant volume per tube (m^3) 

m_s3 = V_sc3*rho_s3; % secondary coolant mass per tube (kg) 
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v_s3 = (G_st*L_3)/m_s3; % secondary coolant velocity (m/s) 

mu_s3 = 0.000017321; % viscosity of steam (kg/m-s) 

k_s3 = 0.047217458; % thermal conductivity of steam (W/m-C) 

c_s3 = XSteam('Cp_pt',P_s,250); % specific heat of water (kJ/kg-C) 

Re_s3 = (0.01*di*v_s3*rho_s3/mu_s3); % Reynolds number 

Pr_s3 = 1000*c_s3*mu_s3/k_s3; % Prandtl number 

Nu_s3 = 0.023*Re_s3^0.8*Pr_s3^0.4; % Nusselt number 

H_s3 = (Nu_s3*k_s3/(0.01*di)); %heat transfer coefficient (W/m^2-C) 

A_sh3 = (pi*di*L_3)/100; % heat transfer area per tube (m^2) 

A_sht3 = N*A_sh3; % total heat transfer area (m^2) 

  

T_s3 = T_m3i - (Q_p3/(H_s3*A_sht3))*1000; 

T_s23 = T_s12; 

  

%% Plotting the Steady-State Temperature Profile 

L = 22.25; % length of single tube (m) 

T_m1 =(T_m1i+T_m1o)/2; 

T_m2 =(T_m2i+T_m2o)/2; 

T_m3 =(T_m3i+T_m3o)/2; 

T_m12 = (L_2*T_m1+L_1*T_m2)/(L_1+L_2); 

T_m23 = (L_3*T_m2+L_2*T_m3)/(L_2+L_3); 

T_mi = 2*T_m1 - T_m12; 

T_mo = 2*T_m3 - T_m23; 

  

T_p = [T_po T_p1 T_p12 T_p23 T_p3 T_pi] 

T_m = [T_mi T_m1 T_m12 T_m23 T_m3 T_mo] 

T_s = [T_si T_s1 T_s12 T_s23 T_s3 T_so] 

Length = [0 L_1/2 L_1 L_1+L_2 (L+L_1+L_2)/2 L]; 

  

figure(2) 

set(gca,'Fontsize',12);    

hold on   

plot(Length,T_p,'r','LineWidth',2);   

plot(Length,T_s,'--b','LineWidth',2);   

plot(Length,T_m,':k','Linewidth', 2) 

grid on    

xlabel('Tube Length (m)')    

ylabel('Temperature (^oC)');   

title(''); 

xlim([0 22.25]) 

legend('primary','secondary','tube metal','Location','South'); 

  

x = [0.23 0.16]; 

y = [0.2 0.3]; 

a = annotation('textarrow',x,y,'String','Subcooled'); 

a.FontSize = 14; 

  

x1 = [0.5 0.5]; 

y1 = [0.5 0.6]; 

b = annotation('textarrow',x1,y1,'String','Two-phase'); 

b.FontSize = 14; 

  

x2 = [0.8 0.88]; 

y2 = [0.7 0.7]; 

c = annotation('textarrow',x2,y2,'String','Superheated'); 

c.FontSize = 14; 
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APPENDIX C   

HOT LEG RISER, DOWNCOMER, PRESSURIZER, AND STEAM TURBINE 

PARAMATERS  
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C.1 Hot Leg Riser, Downcomer, Pressurizer, and Steam Turbine Parameters 

Table C.1 Hot leg riser, downcomer, pressurizer, and steam turbine parameters 

Variable Description Value Source 

VHL Primary coolant volume in hot leg 

riser  

9.7 m3 Reference [31] 

ρHL Primary coolant density in hot leg 

riser (12.76 MPa & 291 °C)   

739.6 kg/m3 Reference [69] 

mHL Primary coolant mass in hot leg 

riser 

7174 kg Calculated 

VDR Primary coolant volume in 

downcomer 

26.8 m3 Reference [31] 

ρDR Primary coolant density in 

downcomer (12.41 MPa & 246 °C) 

814 kg/m3 Reference [69] 

mDR Primary coolant mass in 

downcomer 

21815 kg Calculated 

Vv Vapor volume inside pressurizer 2.9 m3 Reference [31] 

Vl Liquid volume inside pressurizer 2.9 m3 Estimated 

pp Pressurizer pressure 12.41 MPa Calculated 

ho Steam enthalpy at steam turbine 

inlet ( 3.1 MPa & 264 °C) 

2893 kJ/kg Reference [69] 

pc Steam turbine exhaust (or 

condenser) pressure 

0.2 bar Reference [61] 

x Ideal Rankine cycle steam exit 

quality 

0.78 Calculated 

nTurb Isentropic turbine efficiency 0.83 Reference [61] 

hc Steam enthalpy at steam turbine 

outlet 

2226 kJ/kg Calculated 

KP,T Proportional gain for sliding-

average-temperature controller 

0.9 Calculated 
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KI,T Integral gain for sliding-average-

temperature controller 

0.023 Calculated 

KP,p Proportional gain for pressurizer 

pressure controller 

–200 Calculated 

KI,p Integral gain for pressurizer 

pressure controller 

–0.02 Calculated 

KD,p Derivate gain for pressurizer 

pressure controller 

–3000 Calculated 

 

C.2 PI Controller Tuning 

The PI controller parameters for the sliding-average-temperature control mode are 

tuned with the help of MATLAB/Simulink PID Tuner [62] and the nominal values for 

proportional (KP,T) and integral (KI,T) gains are found to be 0.9 and 0.023, respectively, as 

shown in Table C.1. 

This section includes the necessary plots to exhibit the effect of different values of 

these gains on important state variables, i.e., the reactor thermal power and downcomer 

temperature, and provide a basis for the author’s choice on the aforementioned values. 

C.2.1 Effect of proportional gain 

 The effect of the proportional gain on important state variables, i.e., the reactor 

thermal power and downcomer temperature, is investigated by keeping the integral gain 

constant and altering the proportional gain within a range of 0.5 ≤ KP,T  ≤ 1.5. However, 

the results for only three different values of KP,T are shown in Figures C.1 and C.2. 
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Figure C.1 Effect of proportional gain (KP,T) on reactor thermal power. 

 

Figure C.2 Effect of proportional gain (KP,T) on downcomer temperature. 
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C.2.2 Effect of integral gain 

In a similar manner, the effect of the proportional gain on the reactor thermal 

power and downcomer temperature is investigated by keeping the proportional gain 

constant and altering the integral gain within a range of 0.01 ≤ KP,T ≤ 0.03. However, the 

results for only three different values of KP,I are shown in Figures C.3 and C.4. 

 

Figure C.3 Effect of integral gain (KI,T) on reactor thermal power. 
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Figure C.4 Effect of integral gain (KI,T) on downcomer temperature. 
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APPENDIX D  

LINEARIZATION 
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 In this study, a small perturbation method, δx = x – x0, is used to linearize the 

dynamic models. All variables in the following equations with a subscript of 0 represent 

the initial steady-state value of that variable. 

D.1 Reactor Core Model 

D.1.1 Reactor neutronics 

 After replacing the reactivity term (ρ) in Equation (3.1) with its equivalent, the 

point kinetics equations are linearized to 
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D.1.2 Reactor thermal-hydraulics 

 Introducing perturbation variables in Equations (3.4), (3.5), and (3.6), the 

linearized form of the reactor thermal hydraulics is given by 
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D.2 Hot Leg Riser and Downcomer Region 

 In a similar manner, equations for the hot leg riser and downcomer are linearized 

to 
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D.3 Steam Generator Model 

 Steam generator model is in the form of Equation (3.45) and after applying the 

small perturbation linearization method it can be stated as 
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then it is possible to rewrite Equation (D.8) in the general form for a linear system          

(ẋ = Ax + Bu) 

δuFDδxFDxδ u

1

x

1           (D.9) 

 The partial derivative of the function f(x,u) with respect to the state and input 

variables are defined in Equations (D.10) and (D.11), with the matrix elements listed in 

Tables D.1 and D.2, respectively. 
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Table D.1 Elements of matrix Fx. 
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Table D.2 Elements of matrix Fu. 
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D.4 Pressurizer Model 

 After applying perturbation variables, Equation (3.53) takes the linearized form of 
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 Following that a linear expression for the condensation-evaporation rate is derived 

by utilizing the ideal gas law equation. 
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 Finally, the linearized pressurizer pressure equation is obtained by substituting 

Equation (D.12) and the linearized version of Equation (3.46) into Equation (D.13), 

which is  
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