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ABSTRACT  

   

This paper investigates a relatively new analysis method for longitudinal data in 

the framework of functional data analysis. This approach treats longitudinal data as so-

called sparse functional data. The first section of the paper introduces functional data and 

the general ideas of functional data analysis. The second section discusses the analysis of 

longitudinal data in the context of functional data analysis, while considering the unique 

characteristics of longitudinal data such, in particular sparseness and missing data. The 

third section introduces functional mixed-effects models that can handle these unique 

characteristics of sparseness and missingness. The next section discusses a preliminary 

simulation study conducted to examine the performance of a functional mixed-effects 

model under various conditions. An extended simulation study was carried out to 

evaluate the estimation accuracy of a functional mixed-effects model. Specifically, the 

accuracy of the estimated trajectories was examined under various conditions including 

different types of missing data and varying levels of sparseness.  
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INTRODUCTION 

Psychological research often involves repeated measurements on variables of 

interest, for example, changes in reading and mathematics abilities throughout early 

elementary school (Grimm, 2008). When considering behavioral outcomes that change in 

varying ways over time, the aim is to estimate the trajectories of individuals in order to 

answer different research questions. For instance, do boys’ growth trajectories look 

different than girls’? Different literatures refer to measures of individual variables taken 

repeatedly by different names, among them longitudinal or functional data. Traditionally, 

the distinction between longitudinal data and function data rests upon the number of 

observed time points; longitudinal data are typically observed at a much sparser set of 

time points than are functional data. This project aimed to treat longitudinal data as 

sparse functional data (e.g., James, 2010; James, Sugar, & Hastie, 2000; Yao, Muller, & 

Wang, 2005). 

 The first section of the paper introduces functional data and the general ideas 

behind the functional data analysis framework.  A discussion of how longitudinal data 

can be analyzed in the context of functional data analysis is given in the second section. 

This discussion involves considering the unique characteristics of longitudinal data such 

as sparseness and missing data. Functional data are typically collected over a number of 

time points, e.g., tens, hundreds, or even thousands. However, longitudinal data typically 

have much smaller number of time points (e.g., fewer than 10). Functional data are 

intensively measured over a relatively short period of time, and in most cases they do not 

have any missing values. However, longitudinal data are often collected over a long 

period of time and thus can have substantial amount of missing data. Therefore 
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sparseness and missing data are a unique characteristic of longitudinal data that 

distinguish them from typical functional data. This implies that one needs to take into 

account these unique characteristics of longitudinal data when analyzing such data in the 

functional data analysis framework. There are an increasing number of studies aiming to 

develop functional data analysis methods for longitudinal data (e.g., Berk, 2012; James, 

2010; James et al., 2000; Yao et al., 2005; Wu & Zhang, 2006). Missing data, to my 

knowledge, has not been discussed in the functional data analysis literature. An 

introduction to functional mixed-effects models is given in the third section; functional 

mixed-effects models have the capability to deal with the unique characteristics of 

longitudinal data (i.e., sparseness and missing data) in the framework of functional data 

analysis.  The fourth section discusses a preliminary simulation study carried out to 

examine the performance of a functional mixed-effects model under various conditions. 

An extended simulation study was performed to evaluate functional mixed-effects models 

on the accuracy of the estimated trajectories under various conditions including different 

types of missing data and sparseness levels. Lastly, the results from the simulation are 

presented.  

 

FUNCTIONAL DATA ANALYSIS 

Functional data analysis (FDA) is a statistical approach for analyzing intensive 

streams of data, or so-called functional data (Ullah & Finch, 2013).  This technique is 

gaining increased interest in various fields including biomedical science and psychology.  

Functional data refer to data arising from infinite-dimensional smooth curves or functions 

evaluated at a finite number of measurement occasions. Traditional examples of 
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functional data are functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), and motion capture data.  Functional data are often 

characterized by hundreds or thousands of measurement occasions. The vast number of 

time points help display the highly complex trajectories typically seen in functional data; 

these trajectories often cannot be easily characterized by simple parametric models (e.g., 

linear, quadratic).  FDA was developed to capture and analyze these unique 

characteristics of functional data. By taking into account the continuity of curves or 

functions, FDA is capable of handling a large number of measurement occasions as well 

as unequally spaced and irregular time points varying across individuals. In addition, 

FDA is based on nonparametric approaches that make possible the characterization of 

complex nonlinear trajectories. Readers are referred to Ramsay and Silverman (2005) for 

a comprehensive overview of FDA. 

The general concept behind FDA is that raw data reflect an underlying smooth 

process varying over a continuum such as time and space. Hereafter, it will be assumed 

that the continuum is time. While the underlying process varies smoothly over time, the 

observed raw data are perturbed by error and do not appear smooth. Therefore, the 

observed raw data can be modeled as: 

��� = ���	��
 + ���, (1) 

where ��� denotes the observed response for the ith individual (i = 1, …, n) at the jth time 

point (� = 1, … , ��), 	�� is the jth time point for individual i, ��(	��) is the underlying 

smooth function for individual i evaluated at time 	��, and ��� is the measurement error. 

The first step in FDA is to estimate the underlying smooth curve, ��(	��),  from discrete 
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raw data, ���. The estimated curves are then used for further analyses, setting aside the 

raw data (Levitin, Nuzzo, Vines, & Ramsay, 2007).   

 There are various ways of estimating the underlying smooth curves. 

Conventionally, low-degree polynomials are used to model the data. Figure 1 displays 

plots of polynomials of different degrees that have been fit to simulated data. The 10 data 

points (	��, ���), for one person (person i), were generated from the following model: 

��� = ����2�	��
 + ���, (2) 

where 	�� (� = 1, … ,10) were equally spaced time points ranging from 0 to 1 and ��� 

represents random error. Specifically, ��� were generated from a normal distribution with 

a mean of zero and a standard deviation of 0.3. Dots in Figure 1 represent the generated 

data, dashed lines indicate the true underlying curve (���(2�	)), and solid lines are the 

fitted polynomials. A polynomial’s degree indicates the number of parameters, which is 

the highest degree of its terms plus one. For example, a polynomial of degree 3 is a 

quadratic polynomial, while a polynomial of degree 4 is a cubic polynomial. Figure 1 

depicts an example showing how increasing the degree of the polynomial yields better 

fits to the data. When a polynomial of degree 10 is used -- where the number of data 

points equals the number of parameters to estimate (i.e., a saturated model)-- the 

polynomial passes exactly though each data point. These higher degree polynomials tend 

to oscillate wildly at the boundaries of an interval, thus yielding a very poor 

representation of the true underlying curve. This is referred to as the Runge phenomenon 

(Dahlquist & Bjӧrk, 1974), and is shown in Figure 1 with the polynomials of degrees 9 

and 10.  
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One way to address this issue of wild oscillation at the boundaries of higher 

degree polynomials is to use a low degree piecewise polynomial. Let ��, ��, … , �� be K 

different time points that satisfy � < �� <  �� < ⋯ < �� < ! where an interval [a, b] 

contains all the observed time points 	��. These time points, ��, ��, … , ��, are called knots 

and divide the interval of interest [a, b] into (K + 1) subintervals. A piecewise 

polynomial is obtained by fitting a separate polynomial of the same degree within each 

subinterval. Piecewise polynomials avoid the Runge phenomenon making them useful for 

capturing local fluctuations. However, they might be inappropriate to estimate the 

underlying smooth curve because they can be discontinuous at the knots.  

A way to avoid discontinuities at the knots is to use a regression spline. A 

regression spline can be obtained by constraining a piecewise polynomial to join at each 

knot (Wu & Zhang, 2006, Chapter 5). In general, an degree-M spline is a piecewise 

polynomial of degree M that has continuous derivatives up to degree M - 2 (Hastie, 

Tibshirani, & Friedman, 2009, Chapter 5). For example, a spline of degree 4 with two 

interior knots {��, ��} can be represented as follows:  

��(	) = ∑ $%(	)&�%'%(�   (3) 

where ��(	) is the underlying curve for person i that is approximated by a spline of 

degree M,   $%(	) is the mth truncated power basis function as defined in equation (4) 

evaluated at time t, and &�% is the coefficient for the mth basis function. 

$�(	) = 1;  $�(	) = 	; $*(	) = 	�;  $+(	) = 	*; 
$,(	) = [max(0, 	 − ��)]* ; $'(	) = [max(0, 	 − ��)]*  

(4) 

From (3) and (4) we can see that in the first subinterval, where � < 	 <  ��, the 

underlying curve is represented by the following cubic polynomial: 
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��(	) = &�� + &��	 +  &�*	� + &�+	* + &�,(	 − ��)*. (5) 

In the third subinterval, where �� ≤ 	 < !, the underlying curve is represented by the 

following cubic polynomial:  

��(	) = &�� + &��	 +  &�*	� + &�+	* + &�,(	 − ��)* + &�'(	 − ��)*. (6) 

It can be easily verified that the three models (4), (5), and (6) are continuous at the knots, 

where 	 =  �� and 	 =  ��,  and their first and second derivatives are also continuous at 

the knots.  

In general, a spline of degree M with K interior knots can be represented as a 

linear combination of M + K truncated power basis functions. In addition, a spline can be 

represented by using other basis functions such as B-spline basis functions (de Boor, 

2001). Basis functions can be thought of as the functional extension of basis vectors. 

Borrowing concepts from linear algebra, any vector in a vector space can be expressed as 

a linear combination of a set of basis vectors that generate the vector space. A set of basis 

vectors of a vector space are a set of linearly independent vectors that can represent every 

vector in that space via linear combinations (Leon, 2010). There are many different sets 

of basis vectors that can generate the same vector space. In other words, a vector can be 

represented as a linear combination of each different set of basis vectors. Similarly, there 

are many different sets of basis functions that can generate a function space. A spline 

function in the function space can be represented as a linear combination of each different 

set of basis functions. 

The coefficients for the basis functions can be estimated by minimizing the sum 

of squared residuals given in (7). The estimated spline function is called a regression 

spline.  
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 55� =  ∑ (��� − �(	��))�67�(� = ∑ (��� − ∑ $%(	)&�%89�9�%(� )�67�(�   (7) 

Figure 2 displays regression splines of degree 4 fitted to the simulated data given in 

Figure 1. The left panel in Figure 2 shows a regression spline of degree 4 fit to the data 

with three equally spaced knots. The right panel shows a regression spline of degree 4 fit 

to the data with five equally spaced knots. As we can see, the performance of regression 

splines strongly depends on the choice of number and locations of the knots. In other 

words, we need to select the number and locations of the knots very carefully to obtain a 

good representation of the underlying curve. This is not a trivial problem. Refer to Wu & 

Zhang (2006, Chapter 3.3.3) for popular methods used for knot selection.  

 To bypass the problem of selecting the number and location of knots, one can 

estimate a spline function using the penalized least squares approach. This approach 

minimizes the following penalized sum of squared residuals: 

:55�( ;) =  <(��� − ���	��
)� + ; = ��′′�(	)
�?	@
A  

(8) 

where �′′�(	) indicates the second derivative of  ��(	) and [�, !] defines the range over 

which the function ��(	) is defined. The estimated spline function that minimizes this 

penalized least squares criterion is called a smoothing spline.  

 The penalized least squares approach aims to minimize the least squares criterion 

(i.e., sum of squared residuals) with the addition of a roughness penalty term. The first 

term in (8) is the sum of squared residuals as given in (7). The second term is a penalty 

term indicating the integrated squared second derivative of ��(	), which is multiplied by 

a non-negative smoothing parameter (;). The squared second derivative of a function at 

time 	 indicates the curvature or roughness of that function at time 	. If ��(	) is a straight 
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line having no curvature, the second derivative (�′′�(	)) will be zero over the entire range 

of 	. If ��(	) has a curvature at time 	, the second derivative of this function at time t will 

deviate from 0. Therefore, the integrated squared second derivative of this function 

indicates the overall roughness of ��(	). The non-negative smoothing parameter ; 

controls the importance of the penalty term. When ; = 0, the penalty term will vanish 

and the spline function is estimated in such a way that it fits the data as closely as 

possible. When ; = ∞, the penalty term will dominate the criterion (8) and even a tiny 

amount of curvature in ��(	) will yield a huge value of the criterion. Hence, minimizing 

the criterion (8) will yield the linear least squares line. In other words, a larger smoothing 

parameter ; will yield a smoother smoothing spline. Refer to Wu & Zhang (2006, 

Chapter 3.7) for a comprehensive overview of the methods used for smoothing parameter 

selection. 

Interestingly, it has been proven that there is a unique minimizer of the penalized 

least squares criterion (8), which is a natural cubic spline with knots at each time point 

(Green & Silverman, 1994, Chapter 2). A natural cubic spline is a cubic (fourth degree) 

spline with the constraint that the function be linear beyond the boundary knots. 

Smoothing splines avoid knot selection problems completely by placing a knot at each 

unique time point, while controlling the estimated function’s smoothness via the 

smoothing parameter. Figure 3 shows the estimated cubic smoothing spline for the 

simulated data given in Figure 1.  

An important assumption of FDA is that responses are measured at a dense grid of 

measurement occasions. When this assumption is met, each curve can be estimated by 

fitting a smoothing spline to the raw data from the particular individual. However, the 
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assumption of dense sampling might not be met, especially when researchers collect 

longitudinal data. This could place a potential limitation on the applicability of FDA to 

non-densely measured series. 

 

LONGITUDINAL DATA AS SPARSE FUNCTIONAL DATA 

Longitudinal data can be regarded as functional data that arise from a smooth 

underlying process, though, they are distinguished from traditional functional data in 

several aspects. Longitudinal data are measured at a relatively sparse set of time points. 

Consequently, they are referred to as “sparse” functional data as compared to “dense” 

standard functional data (e.g., James, 2010; James, Sugar, & Hastie, 2000; Yao, Muller, 

& Wang, 2005). Several examples are provided that show the application of FDA 

methods to sparse data. James (2010) analyzed spinal bone mineral density data 

measured from 280 individuals taken repeatedly at various ages. Even though there were 

a total of 860 observations over the entire range of time, each individual only contributed 

two to four observations. Yao et al. (2005) analyzed 283 individuals’ CD4 percentages, a 

commonly used marker for the health status of HIV infected persons. Many individuals 

missed scheduled visits and the number of observations per person varied widely from 1 

to 14.  

Longitudinal studies are also subject to missing data. A participant’s reason for 

missing a measurement may range from completely random to systematic. The reasons 

for missingness are classified by three different missingness mechanisms: missing 

completely at random (MCAR), missing at random (MAR), and missing not at random 

(MNAR) (Rubin, 1976). When data are MCAR, the probability of missing data on a 
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variable is unrelated to other observed variables and unrelated to the unobserved value of 

the variable itself. Data are MAR when the probability of missing data on a variable is 

related to some other observed variable(s) in the analysis model, but not related to the 

unobserved value of the variable itself. Lastly, MNAR means the probability of missing 

data on a variable is related to the unobserved value of that variable, even after 

controlling for other variables (Enders, 2010).  An example of systematic missingness 

(e.g., MAR or MNAR) is when a patient in a study investigating life expectancy after 

cancer treatment missed an appointment because he or she died; this is a case of MNAR 

because the reason for missingness on the outcome variable (life expectancy) is related to 

unobserved value of the variable (life expectancy) itself.  An example of MAR is if a 

patient had a fever and they were not allowed to do a physical fitness test for the study; 

the reason for missingness on the fitness test is related to another variable in the analysis 

model, in this case, presence of fever.  An example of non-systematic (i.e., ignorable) 

missingness is a patient missing an appointment because he or she had car trouble; the 

reason for missing data is assumed to be unrelated to variables under investigation.   

In classic ANOVA and multiple regression analysis, systematically missing data 

can severely bias results, and special care is required in the analysis of data with 

systematic missingness (e.g., Enders, 2010; Yang & Maxwell, 2014). If traditional 

approaches to handling missing data are used (e.g., listwise deletion, pairwise deletion, 

mean imputation, etc.), ANOVA or multiple regression can yield biased parameter 

estimates. If data are not MCAR, both listwise and pairwise deletion can lead to biased 

parameter estimates, and mean imputation can attenuate correlations and covariances 

(Ender, 2010).  More sophisticated analysis methods that use maximum likelihood 
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estimation, such as mixed-effects models, can yield unbiased parameter estimates if data 

are MCAR or MAR provided all covariates of missingness are accounted for in the 

model.  However, if the covariate(s) that account for missingness are omitted from the 

model or are unobserved (i.e., MNAR), the analysis can lead to biased inferences (Laird, 

1988). Most of the research on missing data has focused on the MCAR and MAR 

mechanisms. A much smaller amount of research exists for the MNAR mechanism (e.g., 

Yang & Maxwell, 2014).  

In the above examples on measures of spinal bone mineral density and CD4 

percentages, fitting a smoothing spline to each individual’s data may fail because the 

number of observations per curve is too small to fully reflect the underlying curve.  This 

is attributable to both sparseness and missingness. To estimate each individual’s curve, it 

would be necessary to borrow information from all curves.  James (2010) and Yao et al. 

(2005) suggest a mixed-effects framework is suitable for achieving this goal. These 

papers have investigated methods for handling sparse functional data; however, there is 

no body of literature available on the effects of missing data in FDA. In the following 

section, functional mixed-effects models to handle sparse functional data are discussed. 

 

FUNCTIONAL MIXED-EFFECTS MODELS 

Mixed-effects models are statistical models that contain both fixed and random 

effects (Searle, Casella, & McCulloch, 1992). Other terms for mixed-effects models 

include hierarchical linear models (Raudenbush & Bryk, 2002) and random coefficient 

models (Swamy, 1971). In social sciences and biomedical sciences, they are often 

referred to as multilevel models (Snjiders & Bosker, 1999).  
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Mixed-effects models aim to analyze data with a nested structure. Thus, they are 

very useful for analyzing repeated measures, or longitudinal data, where multiple 

repeated measurements are nested within individuals. Linear mixed-effects models (Laird 

& Ware, 1982) are among the most widely used methods for analyzing longitudinal data 

(Snijders & Bosker, 1999). The model given in equation (9) shows a linear growth curve 

model,  

C�� = DE + D�	�� + FE� + F��	�� + ��� (9) 

where C�� is the response or outcome variable for the ith individual (� = 1, … , �) at 	��, 

which is the jth time point (� = 1, … , ��) for the ith individual, DE is the mean 

intercept, D� is the mean slope for time, FE� indicates how much the intercept for person i 

deviates from the mean intercept, and F�� indicates how much the slope for person i 

deviates from the mean slope. In other words, DE + FE� is the person-specific intercept 

and D� + F�� is the person-specific slope. The mean intercept (DE) and mean slope (D�) 

are fixed parameters; the intercept deviation (FE�) and slope deviation (F��) are person-

level random effects. The residual, ���, indicates how much the observation at the jth time 

point for person i deviates from the linear trajectory of the person and is a measurement-

level random effect.  

 The observations for each person can be arranged in a vector and the model given 

in equation (9) can be re-written as: 

G� = H�I + J�K� + L� (10) 

where G� = [���, … , ��M7]N is a vector of observed responses for person i at �� time points, 

I is a vector of fixed effects, KO is a vector of person-level random effects, L� is a vector 

of residuals or measurement-level random effects for person i, and H� and JO are design 
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matrices for the fixed and random effects, respectively. For example, the linear growth 

model given in equation (9) can be written as:  

PC��C��C�*
Q = P1 	��1 	��1 	�*

Q RDED�S + P1 	��1 	��1 	�*
Q RFE�F��S + P��������*

Q 

(11) 

where G� = [���, ���, ��*]N, H� = T 1,   1,   1	��, 	��, 	�*UN
, I = [DE, D�]V,  J� = T 1,   1,   1	��, 	��, 	�*UN

,                  

KO = [FE� , F��]V, and W� = [���, ���, ��*]N. In general, the random effects are assumed to 

follow multivariate normal distributions, that is, KO~�(Y, Z) and WO~�(Y, [O). The 

person-level random effects KO and measurement-level random effects WO are assumed to 

be uncorrelated. In addition, the covariance matrix [O  is often assumed to be diagonal. 

These covariance matrices are left unstructured for the purpose of this project.  

The parameters I, D, and [O, can be estimated by minimizing the twice negative 

generalized log likelihood (Wu & Zhang, 2006, Chapter 2), which is given by:  

GLL =  < ^[G� − H�I − J�K�]N[�_�[G� − H�I − J�K�]6
�(� + K�NZ_�K� + log|Z|

+ log |[O|}. 
(12) 

The best unbiased predictor of the random effects K� is obtained by: 

Kd� = Ze J�N�J�Ze J�N + [e �
_�(G� − H�If) (13) 

where If, Ze , and  [e � are the estimates of I, D, and [O, respectively. Refer to Wolfinger, 

Tobias, & Sall (1994) and McCulloch, Searle, & Neuhaus (2008, Chapter 6) for more 

detailed estimation algorithms. 

 Mixed-effects models do not require each person to be observed at the same 

number of time points. In other words, the length of the vector G� in (10) can vary from 
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person to person. Therefore mixed-effects models can intrinsically deal with missing 

data. In addition, the parameters of mixed-effects models are estimated simultaneously by 

minimizing a single objective function as given in (12). This indicates that each person’s 

random effects are obtained by taking into account that individual’s data and data from 

all individuals (i.e., shrinkage estimate). Therefore mixed-effects models are suitable for 

analyzing sparse data that have only a few time points for each person but a lot of time 

points across all individuals. 

Functional mixed-effects models (FMEMs) are the functional extension of mixed-

effects models. Functional mixed-effects models take on the general form: 

C�� =  D�	��
 + F��	��
 +  ��� (14) 

where  D�	��
 is the grand-mean function evaluated at time 	��, F��	��
 is a person-

specific effect function evaluated at time 	��. This indicates how much the person-specific 

trajectory of person i deviates from the grand mean trajectory at time 	��; ��� is the 

residual that indicates how much the observed response at time 	�� deviates from the 

person’s trajectory.  

Let us assume that there are a total of K distinct time points in the data, 

^��, ��, … , ��}. For example, if some individuals are measured at their age of 8, 9, 10, and 

11 and other individuals are measured at their age of 10, 11, and 12, there are a total of K 

= 5 distinct time points in the data,  ^�� = 8, �� = 9, �* = 10, �+ = 11, �, = 12}. Using 

vector-matrix notations, the model can be re-written as: 

G� = H�I + J�K� + L� (15) 
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where G� and L� are defined as in equation (10),  I is the vector of the values of the 

grand-mean function D(	) evaluated at all distinct time points in the data set, and K� is the 

vector of the values of the person-specific effect function F�(	) evaluated at all distinct 

time points. In this model, J� is identical to H�. H� is an �� by K incidence matrix whose 

jth row of this matrix has a 1 by K indicator vector indicating which value of all distinct 

time points equals 	��. That is, the kth element of the indicator vector is 1 if the jth time 

point, 	��, equals the kth distinct time point, i.e., 	�� = �i, and all the other elements are 0. 

In this model, I is fixed and K� and L� are random. In general, the random effects are 

assumed to follow multivariate normal distributions, that is, KO~�(Y, Z) and 

WO~�(Y, [O). 

 For example, suppose that there are a total of 5 distinct time points in the data, 1, 

2, 3, 4, and 5, and person i is measured at the time points 1, 2, and 4. If so, then the model 

(16) for this person can be written as:  

PC��C��C�*
Q = P1 00 10 0     0 00 00 1    000Q

jk
kk
lD(��)D(��)D(�*)D(�+)D(�,)mn

nn
o

+ P1 00 10 0     0 00 00 1    000Q
jk
kk
lF�(��)F�(��)F�(�*)F�(�+)F�(�,)mn

nn
o

+ P��������*
Q 

(16) 

where G� = [���, ���, ��*]N, H� = J� = P1 00 10 0     0 00 00 1    000Q,                                                         

I = [D(��), D(��), D(�*), D(�+), D(�,)]V, KO = [F�(��), F�(��), F�(�*), F�(�+), F�(�,)]V, 

and     W� = [���, ���, ��*]N.  

The parameters of the model (15) can be estimated by minimizing the following 

twice negative penalized generalized log likelihood criterion (PGLL) (Wu & Zhang, 

2006, p.165):  
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PGLL =  < ^[G� − H�I − H�K�]N[�_�[G� − H�I − H�K�]6
�(� + K�NZ_�K�

+ log|Z| + log |[O|} + ;q =[D′′(	)]�?	
+  ;r < s=[F�tt(	)]�?	u6

�(� . 

(17) 

In the above expression, the first term is the twice negative generalized log likelihood as 

given in equation (12); the second term is the roughness of the fixed-effect function D(	) 

multiplied by its smoothing parameter ;q; the third term is the sum of the roughness of 

the random-effect functions F�(	) multiplied by a common smoothing parameter ;r. The 

smoothing parameter, ;q, controls the tradeoff between the goodness of fit and the 

roughness of D(	); the smoothing parameter, ;r, controls the tradeoff between the 

goodness of fit and the aggregated roughness of F�(	).  

Using the roughness matrix G as defined in Wu & Zhang (2006, p.55), the PGLL 

criterion can be re-written as (Wu & Zhang, 2006, p.166): 

PGLL =  < ^[G� − H�I − H�K�]N[�_�[G� − H�I − H�K�]6
�(� + K�NZ_�K�

+ log|Z| + log |[O|} + ;qINvI +  ;r < ^K�NvKO}6
�(� . 

(18) 

The minimizers of the PGLL criterion, If, Kd� , Ze , and  [e �, are called cubic mixed-effects 

smoothing spline estimators (Wu & Zhang, 2006, Chapter 6.5.1). They can be obtained 

by using an EM algorithm (Wu & Zhang, 2006, p.170), which is implemented in the sme 

package (Berk, 2012) in R. After obtaining If, Kd�, Ze , and  [e �, the estimated fixed effect 

curve,  D̂(	), and the predicted random effect curves, Fd�(	), can be evaluated at any value 
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of 	 using a simple formula given in Green & Silverman (1994, Chapter 2.4) or a simple 

interpolation.  

 

PRELIMINARY SIMULATION STUDY 

Various versions of FMEMs have been proposed by extending mixed-effects 

models to handle sparse functional data (e.g., James, 2010; James et al., 2000; Wu & 

Zhang, 2006; Yao et al., 2005). To date, however, there are no studies systematically 

examining how FMEMs perform under different degrees of sparseness and types of 

missingness. Therefore, I carried out a preliminary simulation study to investigate the 

effects of degree of sparseness and different types of missingness on the accuracy of the 

mean and individual trajectories estimated by FMEMs (Ward & Suk, 2015). More 

specifically, I examined the cubic smoothing spline mixed-effects model described in the 

previous section.  

Four factors were examined in this study. First, sparseness level was manipulated. 

Sparseness was defined as the number of time points per curve (��). As �� increases data 

become less sparse. Sparseness level varied at three levels: �� = 5, 10, 20. These values 

were chosen to reflect typical number of time points found in various longitudinal studies 

(e.g. Hankin, Abramson, Moffitt, Silva, Mcgee, & Angell, 1998; Porter, Crampon, & 

Smith, 1976; Cinciripini, Lapitsky, Seay, Wallfisch, Kitchens, & Van Vunakis, 1995). 

Sample size was varied at three levels: n = 40,100,400. Again, these sample size values 

were chosen to reflect those typical in longitudinal studies (e.g., Adler, 2012; Cinciripini 

et al., 1995; Esser, Schmidt, & Woerner, 1990). Error variance level was manipulated at 

three levels: yz� =  .25, .5, 1. These values were chosen to mimic previous simulation 
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studies on functional data (e.g., Yao et al., 2005; Di, Crainiceanu, Caffo, & Punjabi, 

2009). Lastly, three types of missingness were examined: no missing data, randomly 

missing, and time-dependent missing. In the no missing data condition, each curve was 

observed at every design time point. Both the random and time-dependent missing 

conditions had a total of 30% missing data, but in different ways. Typical rates of missing 

data in psychological studies are approximately 15-20% (Peugh & Enders, 2004). The 

value of 30% was chosen to be more extreme than this typical rate. In the randomly 

missing condition, data were missing completely randomly. That is, the probability of an 

observation being missing was 0.30 for all individuals across all time points. This 

condition was designed to mimic the missingness mechanism MCAR. In the time-

dependent missing data condition, more data were missing at later time points; the 

probability of an observation being missing depended on time. This condition was 

designed to mimic the missingness mechanism MAR. More specifically, to generate 

time-dependent missing data, all observations (for all individuals and for all time points) 

were split into four quarters according to the time points at which they were measured. 

This procedure is done on the entire set of data points; this means, for example, 5 time 

points multiplied by 100 curves gives 500 total time points. These 500 time points are 

broken up into quarters and a given percent of data is removed depending on the quarter. 

No observations were removed in the first quarter. Observations belonging to the second 

quarter were randomly removed with the probability of 20%. For those belonging to the 

third quarter, 40% were randomly removed. Lastly, those in the fourth quarter, 60% were 

randomly removed. Therefore, a total of 30% of the observations were removed.  
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In sum, this simulation had a total of 81 conditions (3 sparseness levels x 3 

sample sizes x 3 error variances x 3 types of missingness); 100 data sets were generated 

per condition. Each observation for the lth data set (l =1, … , 100) under each condition 

was generated as in Yao et al. (2005) from the following model: 

C��{ = ��{�	��{
 +  ���{ (19) 

where C��{ is the observed response for the ith individual (i = 1, …,n) in the lth data set at 

the jth time point (� = 1, … , ��), ��{�	��{
 is the true underlying person-specific curve for 

individual i in the lth data set evaluated at the jth time point for this person, 	��{; ���{ is the 

measurement error. This model is identical to the model given in (1). The person-specific 

curve, ��{(	), is modeled by:  

��{(	) = D(	) + F�{(	), (20) 

where D(	) is the grand mean function and F�{(	) is the person-specific effect function for 

the ith individual in the lth data set. Inserting (20) into (19) yields the following model: 

C��{ = D�	��{
 + F�{�	��{
 +  ���{, (21) 

which is identical to the model given in (14).  

The grand mean function, D(	), was defined as: 

D(	) = 	 + sin (	), (22) 

which is the green curve shown in Figures 6, 7 and 8 below. The person-specific effect 

functions, F�{(	), were generated from the following model:  

F�{(	) = ∑ $%(	)&�%{�%(� , (23) 

where the two basis functions, $�(	) and $�(	), were defined as:  
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$�(	) = −cos (��
�E)/√5

$�(	) = ���(��
�E)/√5 , 

(24) 

and the two person-specific basis function coefficients, &��{ and &��{, were randomly 

generated from the following bivariate normal distribution: 

R&��{&��{S ~� �R00S , R4 00 1S�. (25) 

The time points, 	��{, were randomly generated from a uniform distribution over the range 

[0,10]. The measurement errors, ���{, were randomly generated from a normal distribution 

of a mean of 0 and a variance of yz�. After the responses, C��{, were generated as 

described above, 30% of them were removed in the random missing and time-dependent 

missing conditions.  

Each data set under each condition was analyzed using a FMEM. The grand mean 

and person-specific effect functions were estimated by minimizing the PGLL criterion 

given in (17) using the sme package in R (Berk, 2012). Analysis results were evaluated in 

the following way. First, to evaluate the accuracy of the estimated grand mean function, 

D(	), a  mean square error (MSE) was calculated under each conditions. The MSE is 

defined as: 

MSE�D̂(	)
 = ∑ ∑ (D̂{(	�) − D(	�))��EE�(��EE{(� 100  , (26) 

where  D̂{(	�) is the estimated grand mean function for the lth data set evaluated at time 

	�, 	� is the sth time point out of the 100 equally spaced time points over the range of 

[0,10], and ( )tµ  is the true grand mean function given in (22). In the numerator, the term 

∑ (D̂{(	�) − D(	�))��EE�(� , measures how much the estimated grand mean function for the 

lth data set deviates from the true grand mean function across 100 equally spaced time 
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points. Therefore the mean square error, MSE�D̂(	)
, measures how much the estimated 

grand mean function deviates from the true grand mean function across 100 equally 

spaced time points, on average across 100 data sets. Second, the accuracy of the predicted 

person-specific trajectories was assessed by calculating the average mean square error 

(AMSE) defined as:    

AMSE��d(	)
 = ∑ ∑ ∑ ��d�{(	�) − ��{(	�)
��EE�(�6�(��EE{(� (100)(�)  

(27) 

where �d�{(	�) indicates the predicted curve for the ith individual in the lth data set 

evaluated at the sth time point, and ��{(	�) is the true curve for the ith individual in the lth 

data set evaluated at the sth time point. Similar to MSE�D̂(	)
, a lower value of 

AMSE��d(	)
 indicates that the estimated person-specific trajectories are closer to the 

true curves, indicating better recovery.  

 It was expected that the estimated mean and person-specific trajectories would 

become more accurate as data became less sparse, sample size increased, and error 

variance decreased. The time-dependent missing data condition was expected to produce 

the least accurate results, followed by the randomly missing condition. No missing data 

was expected to produce the most accurate results.  

The results of the simulation study are presented in Figures 4 and 5. Figures 6, 7, 

and 8 illustrate the estimated mean and individual trajectories. The results revealed that 

model performance increased with increasing sample size and decreasing sparseness, 

which was as expected. However, two surprising results were observed. First, the model 

worked well even with extremely sparse data (i.e., only five measurement points), 

without a noteworthy gain in accuracy with increasing measurement points. This result 
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contradicts the expectation that more measurement occasions would yield considerably 

more accurate estimates of the underlying trajectories. Second, the model’s ability to 

recover the underlying curves was virtually unaffected by different types of missingness. 

Should these results generalize, the use of a FMEM may permit researchers to avoid 

biased outcomes in longitudinal analyses with limited number of observations and time-

dependent missingness.  

 

PROPOSED SIMULATION STUDY 

The first simulation study was limited to data generation that used a single 

monotonically increasing mean trajectory, given in (22), and a single percentage of 

missing data (30%). The proposed simulation aimed to extend the first simulation study 

to more diverse conditions. That is, the proposed simulation was carried out to ensure the 

results found in the first simulation were not an artifact of the data generation process 

(i.e., using a specific mean trajectory), and to examine the impact of more extreme 

percentages of missingness on accuracy of estimation for the mean and individual 

trajectories. 

The factors manipulated in the proposed study were the shape of the underlying 

mean trajectory, percentage of missing data, type of missingness, degree of sparseness, 

and irregularity of time points.  More specifically, three different shapes of trajectories 

were examined: quadratic, asymptotic, and periodic.  Figures 9, 10, and 11 display the 

three different shapes of functions. These were chosen to mimic various trajectories 

found in longitudinal studies (e.g., Cinciripini et al., 1995; Ramsay & Silverman, 2005).  

To test the ability of FMEMs to handle more extreme amounts of missing data, percent 
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missingness was examined across four levels: 30%, 50%, 70%, and 90%.  Similar to the 

previous simulation, three different types of missingness were examined: no missing 

data, randomly missing throughout the range of time (MCAR), and time-dependent 

missing (MAR). In the time-dependent missing condition, data were again generated such 

that later time points contained greater missingness; data points were deleted with higher 

probability for later time points. Table 1 displays the percentage of randomly picked and 

removed data at each quintile under each percentage of missingness used to generate 

time-dependent missing data. For instance, for 30% time-dependent missing data, the 

third quintile had 30% of the data point in that quintile randomly selected and removed. 

Three sparseness levels were examined with the number of time points: �� = 5, 11, and 

21. Lastly, the irregularity of time points was manipulated with two different conditions: 

fixed and random. The fixed condition simulates longitudinal studies where 

measurements occur at predefined intervals and thus time points are common to all 

individuals. For example, each subject is collected at exactly times [0, 5, 10, 15, 20]. The 

random condition simulates measurements obtained at random intervals (e.g., Cinciripini 

et al., 1995) where time points vary across individuals. For example, subject 1 is 

collected at times [.03, 3, 11.99, 17, 19.6], while subject 2 is collected at times [3, 4.02, 

6.7, 6.9, 7.1].  Sample size was fixed at n =100, and error variance was fixed at yz� = 30. 

The value of 30 was chosen in order to maintain an approximate signal-to-noise ratio 

around 10; the goal was to have approximately 10 times the amount of signal variance in 

the data compared to noise variance. Sample size was chosen based on results in the 

previous simulation; the patterns of results were similar across all levels of this factor. 

Therefore, I selected the middle value for sample size.  
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In sum, there are a total of 162 conditions. More specifically, under no missing 

data, there are 18 conditions to examine: 3 trajectories x 3 sparseness levels x 2 

irregularity levels. Under missing data, there are 144 conditions to examine: 3 trajectories 

x 4 percent missingness levels x 2 types of missingness (random vs time-dependent) x 3 

sparseness levels x 2 irregularity levels. Each observation for the lth data set (l =1, … , 

100) under each condition was generated from the following model: 

C��{ = ��{�	��{
 +  ���{ (28) 

where C��{ is the observed response for the ith individual (i = 1, …,n) in the lth data set at 

the jth time point (� = 1, … , ��), ��{�	��{
 is the true underlying person-specific curve for 

individual i in the lth data set evaluated at the jth time point for this person, 	��{; ���{ is the 

measurement error. This model is identical to the model given in (1). The person-specific 

curve, ��{(	), is modeled by:  

��{(	) = D(	) + F�{(	), (29) 

where D(	) is the grand mean function and F�{(	) is the person-specific effect function for 

the ith individual in the lth data set. Inserting (28) into (29) yields the following model: 

C��{ = D�	��{
 + F�{�	��{
 +  ���{, (30) 

which is identical to the model given in (14).  

The three grand mean functions, D(	), were defined as: 

D�(	) = 12 (	 − 10)� + 10, (31) 

D�(	) = 50(1 − �_.*�) + 10, (32) 

D*(	) = 20 sin(. 7	) + 40. (33) 

The person-specific effect functions, F�{(	), were generated from the following model:  
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F�{(	) = ∑ $%(	)&�%{*%(� , (34) 

where $�(	), $�(	), and $*(	) were defined as three b-spline basis functions of degree 3 

with equally spaced knots over [0,20]; Figure 12 shows a graphical representation of 

these basis functions. The three person-specific basis function coefficients, &��{, &��{, and 

&�*{ were randomly generated from the following multivariate normal distribution: 

�&��{&��{&�*{
� ~� �P000Q ,  P2 0 00 5 00 0 10Q� 

(35) 

The time points, 	��{, were randomly generated from a uniform distribution over the range 

[0,20]. The grand mean curves and person-specific curves generated for the three 

different shapes of trajectories are shown in Figure 9, 10, and 11. The measurement 

errors, ���{, were randomly generated from a normal distribution of a mean of 0 and a 

variance of yz�. Again, the MSE (26) and AMSE (27) were calculated for evaluating the 

accuracy of the estimated mean and individual trajectories under each condition. 

It was hypothesized that the model would perform best with the asymptotic 

trajectory, the most time points, no missing data, and irregular time points.  The 

asymptotic trajectory is the least complex trajectory and thus should be the easiest to 

estimate, followed by the quadratic then periodic. No missing data should produce the 

most accurate estimation results.  The model should produce increasingly inaccurate 

estimates as the percentage of missingness increases with a possibility that the model 

might fail to run with data as sparse as the 90% missing condition. Based on the missing 

data literature, the time-dependent missing data condition should produce the least 

accurate results, followed by the randomly missing condition.  However, based on the 

previous simulation, this difference should be minimal. Finally, random time points 
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should produce more accurate results compared to fixed time points because the model 

would incorporate more information throughout the entire range of the functions.  Since 

the curves are observed at a more diverse set of time points, the model can use that 

diverse information for more accurate estimation. This concept is best illustrated by 

example in Figure 13. The first pane of Figure 13 depicts the true underlying curve of the 

process under study. The second pane of Figure 13 shows a representation of what could 

happen if each person was sample at a fixed point in time; in this case, the oscillations are 

completely missed and the process would appear to be linear when it is in fact highly 

non-linear. The third pane of Figure 13 shows a representation of sampling people at 

random time points; in this case, the oscillatory nature of the process can be captured 

because data are collected on the people at a variety of time points. 

The sme package (Berk, 2013) in R was used for the analysis. As noted in (17), 

two smoothing parameters are involved in estimation, one for the fixed and one for 

random effects; these smoothing parameters are denoted ;q and ;� in (17). Choice of a 

smoothing parameter can be obtained in several ways including cross-validation and 

likelihood based approaches among them AIC and BIC (Wu & Zhang, 2006). However, 

as Ramsay and Silverman (2005) noted, the selection of smoothing parameters can be 

subjective and is often best decided by examining various options. The sme package 

provides various measures that can be used for smoothing parameter selection, including 

AIC, AICc (corrected AIC), BIC, and BICn (BIC for longitudinal models with a sample 

size correction) (Berk, 2013). When smoothing parameters were chosen using these 

methods in the first simulation, the penalty was too severe. This resulted in a straight line 

fit for all conditions. This same issue occurred in the proposed simulation study; AIC, 
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BIC, AICc, and BICn all imposed too severe of penalties and resulted in straight line fits 

to the data. Therefore, various combinations of smoothing parameters were sampled and 

examined. The best overall result was obtained when ;q = 50 and ;� = 50; these were 

the smoothing parameter values used in the simulation. 

 

RESULTS 

To illustrate the estimated mean and individual trajectories with different 

trajectory shapes under different sparseness levels, I included Figures 14 to 22. Figures 

14, 15, and 16 show the estimated mean and individual trajectories for the quadratic 

trajectory under the no missing data condition at 5, 11, and 21 fixed time points, 

respectively. Figures 17, 18, and 19 present the estimated mean and individual 

trajectories for the asymptotic trajectory under the no missing data condition at 5, 11, and 

21 random time points, respectively. Figures 20, 21, and 22 present the estimated mean 

and individual trajectories for the periodic trajectory under the no missing data condition 

at 5, 11, and 21 random time points, respectively.  

This simulation aimed to investigate the effects of five factors on both MSE and 

AMSE: (1) shape of the underlying mean trajectory, (2) the degree of sparseness, (3) the 

percentage of missing data, (4) the type of missingness, and (5) the irregularity of time 

points. The results of the proposed simulation study are presented in Tables 2 to 6. 

Additionally, plots from the tables are shown in Figures 28 to 33.  Overall, results from 

the simulation revealed that estimation accuracy increased with decreasing sparseness 

and decreasing percent missing. Similar to the preliminary simulation, estimation of the 

mean curves was more accurate than estimation of the individual trajectories. This is 
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evident in the lower MSE values compared to AMSE values as shown in Figures 23 to 

27. The effects of each factor on the estimation accuracy are presented in the following 

paragraphs.  

Trajectory Shape 

The main effect of trajectory shape on MSE and AMSE are presented in Figure 

23. On average, the FMEM yielded high MSE and AMSE values for the periodic 

trajectories. This is due to the highly complex nature of the periodic trajectories; the 

curves contain 2.25 cycles over the range of time. Estimation becomes increasingly 

difficult when the curves contain numerous cycles, as these curves do. More specifically, 

examining Figures 20, 21, and 22 reveal why the MSE and AMSE values tend to be so 

high for the periodic trajectories compared to the quadratic and asymptotic trajectories.  

As shown in Figure 20, measuring the periodic curves only at five time points is not 

enough to fully capture the 2.25 cycles (in green); the estimated mean curve (in red) 

contained less than 2 cycles. This in turn yielded a high MSE value reflecting a huge gap 

between the true mean curve and the estimated mean curve. This effect rapidly decreases 

as the number of time points increases from 5 to 11 and 21, as evident from the 

improvement in fits shown in Figures 20, 21, and 22. The effect of trajectory shape shows 

that the more complex the underlying trajectory is, the more sampling points should be 

used to estimate the trajectory accurately. 

The FMEM yielded the lowest MSE and AMSE values for the asymptotic 

trajectories, on average. The asymptotic trajectories were smoother than the quadratic and 

periodic trajectory which explains why the asymptotic trajectories were the most 
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accurately estimated. The results support the hypothesis of less accurate estimation of 

more complex trajectories. 

Sparseness Level 

The simple effect of sparseness level on MSE and AMSE under each shape of 

trajectory is presented in Figure 24.  I did not aggregate MSE and AMSE values across 

the three different shapes of trajectory because the MSE and AMSE values for the 

periodic trajectories were so high that they were not comparable to those for the quadratic 

and asymptotic trajectories. In general, estimation accuracy increased with decreasing 

sparseness for both MSE and AMSE, as expected. The estimation accuracy increases 

when there are more data available to use, especially for the individual trajectories. This 

is an intuitive result. When data are sparse, each individual’s data do not contain much 

information and the individual curve will be less accurately estimated compared to when 

each curve is densely observed. Estimating individual trajectories is more difficult than 

estimating the mean trajectory; this is evident by higher AMSE values compared to MSE 

values. This result is also intuitive. Estimating an individual’s curve is reliant upon how 

much information is available in their curve and the mean curve. If an individual’s curve 

does not contain much information (i.e., the data are sparse) then the estimate will be 

shrunk towards the mean curve, resulting in a higher AMSE value. Estimating the mean 

curve involves using data across all individual’s curves and no shrinkage is involved, thus 

the MSE value is not affected by shrinkage. 

Percent Missingness 

The simple effect of percent missing on MSE and AMSE under each shape of 

underlying trajectory is presented in Figure 25. Under each shape of trajectory, both the 
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MSE and AMSE values increased with increasing percent missingness, as expected. As 

more data were removed from the model, less information was available to use for 

estimation of the curves, and the estimation accuracy decreased. For each trajectory, the 

MSE values were similar for missing data rates of 0%, 30%, 50%, and even 70% . This 

result was partly expected and mimicked the results from the preliminary simulation 

where a missing data rate of 30% was used. However, it was surprising that even with 

70% missing data, the estimation accuracy was comparable to 0% missing data. Once 

rates reached greater than 70%, MSE values began substantially increasing; there was a 

large spike in MSE values when missing data rates transitioned from 70% to 90%. 

However, when missing data rates started deviating from 0%, the AMSE values began 

increasing more rapidly than the MSE values. This is because as percent missingness 

increased, only a small amount of information was available for each individual curve, 

making estimation of each curve less accurate. 

Type of Missingness 

The simple effect of type of missingness on MSE and AMSE under each shape of 

trajectory is presented in Figure 26. Results for all trajectories revealed that time-

dependent missing data had higher MSE and AMSE values compared to randomly 

missing data. Interestingly for the asymptotic trajectory, the time-dependent missingness 

MSE value was only slightly higher than the randomly missing MSE value. Upon 

examination of Figure 30, in the �� = 5 random time points with missing data conditions, 

randomly missing data had higher MSE values than time-dependent missing data. This 

effect is related to how much data are present at the boundaries. When data were 

randomly missing, compared to time-dependent missing, there were more data available 
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at later time points around the boundary.  Depending on whether there were more data 

above or below the true mean curve around the boundary, the estimated mean function 

curved either up or down. However, when the missingness mechanism was time-

dependent, the estimated mean curves flatten out because the data were so sparse at later 

time points around the boundary that there was not enough information used to weight 

the curve in either direction. Figures 34 and 35 display this effect. The plots depict the 

estimated mean function, for the same data set, curved either up or down with randomly 

missing data, and contrast it to time-dependent missing data where the estimated mean 

function flattens out. 

Irregularity of Time Point   

The simple effect of the irregularity of time points under each shape of trajectory 

is presented in Figure 27. Results revealed estimation accuracy for the periodic 

trajectories were better in terms of both MSE and AMSE with random time points.  This 

result was expected. However, for the quadratic and asymptotic trajectories results 

revealed estimation accuracy was better in terms of both MSE and AMSE with fixed time 

points. This result was unexpected as random time points incorporate a more diverse set 

of data to use in estimation and should at least yield the same estimation accuracy as 

fixed time points.  

Upon investigation of this effect, the result is again likely due to lack of 

information at the boundaries. When data are collected at fixed time points, every 

individual is observed at the boundary time points, exactly 0 and exactly 20, which 

provides a good deal of information at the boundary locations. However, with random 

time points, individual curves were sampled around 0 and 20, but not necessarily exactly 



  32 

at those values. This causes the estimated mean curve to deviate from the true mean at the 

boundaries since there is less information present. Figures 36 and 37 depict the estimated 

mean function, for the same data set with either fixed or random time points, deviating 

from the true mean function with random time points due to lack of information at the 

boundaries. 

Effect Size Measure 

 In order to get an estimate of how much variance in the observed data could be 

accounted for by the estimated underlying function, �d��	��
, a pseudo-�� for the kth data 

set was calculated using the formula: 

pseudo-�i� = 1 − ∑ ∑ ��d7�� _ �7��
��7����7��
∑ ∑ ��7�� _ ��� 
��7����7��

 
(36) 

where ���i indicates the observed data point for person i in the kth data set at the jth time 

point, �d��i is the predicted value on the curve, and ��i is the mean of all observed data in 

the kth data set. Then, an average pseudo-�� was calculated across the 100 data sets for 

each condition. High values of average pseudo-�� indicate a better fit to the data.  

The results for average pseudo-�� are presented in Tables 7-9. Overall, fixed time 

points yielded higher average pseudo-�� than random time points. For quadratic and 

asymptotic trajectories, the average pseudo-�� decreases as the number of time points 

increases. This result makes sense because, in general, more data are less likely to yield 

overfitting. For periodic trajectories, the average pseudo-�� increased as the number of 

time points increased (this trend is much clearer for random time points) because a 

relatively large number of time points are required to capture the periodic trajectories 
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accurately. A more thorough examination of the average pseudo-�� is given in the 

discussion section. 

 

 DISCUSSION 

It is worthy to note that the FMEM occasionally failed for certain data sets with 

random time points in the 90% time-dependent missing data conditions when a curve was 

sampled at 11 and 21 time points. Estimation failed because knots were placed where 

data were too sparse, i.e., no data existed at the knot location. When this occurred, the 

number of knots used was decreased. For example, when a data set with �� = 11 would 

fail to run with 11 knots, 5 equally spaced knots were used instead. Similarly, when a 

data set with �� = 21 would fail to run with 21 knots, 11 equally spaced knots were used 

instead.  For each trajectory type, approximately 6% of data sets in the 90% time-

dependent missing data conditions with �� = 11 failed to run with 11 knots, and were 

successfully re-run with 5 knots. For each trajectory type, approximately 11% of data sets 

in the 90% time-dependent missing data conditions with �� = 21 failed to run with 21 

knots, and were successfully re-run with 11 knots.  Rather than placing knots at the fixed 

time point values, knots could have been placed at equally spaced percentiles of the 

random time points, which could have potentially avoided failed estimation due to 

sparseness at knot locations. Refer to Wu and Zhang (2006, Chapter 3.3.3) for a 

discussion on widely used methods for selecting knot locations.  

Choosing an optimal set of smoothing parameters (;q and ;�) is important for 

estimating curves accurately. The sme package provides AIC, BIC, AICc, and BICn 

measures for selecting smoothing parameters. The sme package selects the best pair of 
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smoothing parameters based on the model with the smallest AIC, AICc, BIC, or BICn 

(Berk, 2013).  However, when I used these four methods, all of them yielded results that 

were over-smoothed to the data. Essentially a linear line was fit to each data set when 

these selection methods were used. For instance, the AIC yielded smoothing parameter 

values of ;q = 1,000,000 and ;� = 1,000,000 when it was used to fit one of the 

periodic trajectory data sets with 21 fixed time points and no missing data, resulting in a 

very poor fit to the data set. In order to avoid over-smoothing, I sampled a set of much 

smaller values. Specifically, I sampled values between 1 and 50 for each smoothing 

parameter and examined the fits of the models as the smoothing parameter values 

changed. There were only minor differences between results obtained under each 

combination of smoothing parameters, so values of ;q = 50 and ;� = 50 were selected 

as the final smoothing parameters. This is obviously a highly subjective approach and 

requires some knowledge of what the trajectories should look like. Without knowing 

what shape the true underlying trajectories should be, researchers could be at risk of 

fitting curves that are not accurate representations of the true underlying curves. 

Investigations as to why the suggested methods (e.g., AIC, BIC, etc.) performed poorly 

are currently being carried out. Clearly, a more robust approach to selecting smoothing 

parameters is needed.  

Typically, the �� value is used as a measure of how much variation in the data is 

accounted for by the effect of interest and is used as a goodness-of-fit measure. Cohen (p. 

159; 1992) reports values of .0196, .1304, and .2592 as small, medium, and large effects 

for �� values. These benchmarks were developed with parametric relationships in mind, 

specifically a linear relationship between two variables. It is likely the case that these 
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benchmarks will not be suitable for non-parametric relationships. For instance, it is very 

clear that Figure 20 is a poor fit to the data. However, the average pseudo-�� for that 

condition is .47. Cohen’s benchmarks would suggest that this was a good model for the 

data, when clearly it is not. Since the researcher can control the goodness-of-fit of the 

FMEM by selecting smoothing parameter values that under-smooth the data, the �� 

values can become artificially increased without actually reflecting a proper model. 

Therefore, rather than using �� benchmarks like Cohen developed, it could be useful to 

compare �� values obtained from FMEMs to �� values obtained from non-linear 

parametric growth curve models as a way to gauge how accurately the model is fitting the 

data. 

As previously mentioned, I considered the signal-to-noise ratio (SNR) when 

choosing the error variance. The SNR indicated the variance of the true signal (i.e., the 

data without being perturbed by error) to the variance of the error. More specifically, the 

error variance level was chosen to maintain an approximate signal-to-noise ratio (SNR) 

around 10. To confirm this was the case, the SNR was calculated for each trajectory, at 

each sparseness level (�� = 5,11,21) for the fixed time points. The results for the SNR 

are presented in Table 10. The quadratic trajectory maintained the highest SNR over both 

asymptotic and periodic trajectory shapes. This indicates the quadratic trajectory has the 

highest signal variance and the periodic trajectory has the lowest signal variance. The 

periodic trajectory has the lowest SNR across each level of sparseness and interestingly 

also has the most stable SNR. The SNR ratio for the periodic trajectory ranges from 7.31 

to 7.64, while the other trajectories range approximately from 10 to 16 and 7 to 13.  In 

general, as the number of time points increased, the SNR decreased. When the curve is 
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sampled at a smaller number of time points the signal variance is relatively large. 

However, as the curve is sampled at more time points the difference between the time 

points becomes smaller, decreasing the signal variance. Thus the SNR becomes smaller 

since the signal variance decreases, while the denominator remains constant. If the SNR 

were calculated for the random time points, a smaller signal variance is expected. 

Therefore, a smaller SNR is expected for the random time points. Interestingly, the SNR 

for the periodic trajectory slightly increases as the number of time points increases. This 

is likely due to the fact that 5 time points contains hardly any signal for the complex 

trajectory, but as the number of time points increases more signal is introduced.  

The results of the simulation study support the notion that FMEMs can be useful 

tools for researchers who work with longitudinal data. Results revealed the estimation of 

the mean curve was accurate even when curves were observed at a few time points by 

design, data contained high amounts of missingness, which can be, time-dependent, and 

when data were generated from complex underlying trajectories. Though, caution should 

be taken when using a FMEM when data are generated from a complex underlying 

trajectory but are only observed at a few time points, and when missing data rates exceed 

70%. Additionally, as the mean square error tended to be higher at the boundaries of the 

data, researchers should collect data at the boundaries of interest to reduce this error and 

obtain more accurate results.  

These results can help researchers in designing their experiments to maximize the 

benefit of using a FMEM. Researchers studying phenomena with complex underlying 

trajectories should plan to collect a larger number of time points (e.g., at least 20). For 

instance, researchers seeking to measure phase synchrony in swinging pendulums (Fine, 
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Likens, Amazeen, & Amazeen, 2015) should be sure to collect a large number of time 

points in order to accurately capture the oscillatory nature of the phenomena. These 

results also illustrate the importance of collecting data at the boundaries of interest for the 

researchers. For example, if a researcher is interested in studying growth in babies from 

birth to 3 months, it is advised to collect data from each baby at birth and at the end of the 

study (3 months) as much as possible in order to obtain an accurate estimate of the 

growth curve. 

FMEMs hold great promise in exploratory data analysis. FMEMs offer the 

flexibility to view data without strict assumptions on the functional form. Thus, it makes 

a great tool for describing changes over time, especially at an early stage of investigation. 

When researchers are not certain about what parametric models should be used, starting 

analyses with a FMEM can guide researchers to select an appropriate parametric form. It 

can also inform researchers as to the appropriateness of a parametric model. In addition, 

the nonparametric nature of FMEMs enables researchers to capture the aspects of change 

that might be ignored by parametric models. 

This study had some limitations. The foremost issue is the selection of smoothing 

parameters, as previously discussed. The other limitation of this study is that the MSE 

and AMSE values might not be easily interpretable. An MSE value of 15 is better than an 

MSE value of 50, but it is hard to tell whether 15 is an acceptable level or not. Therefore, 

the MSE and AMSE values do not have any objective criteria against which the 

performance of the FMEM can be evaluated.  It would be useful to compare the MSE and 

AMSE values obtained from a FMEM to those obtained from parametric nonlinear 

growth curve models (Grimm, Ram, & Hamagami, 2011). This comparison will enable 
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researchers to gauge how well the FMEM performs compared to plausible parametric 

models.  

It would be largely beneficial to extend this work in two main directions: 

smoothing parameter selection and adding covariates to the model. As discussed, 

subjectively selecting smoothing parameters is a drawback if researchers do not have any 

a priori knowledge about the shape of the trajectories that should be observed. It would 

be beneficial to further investigate other software packages to see what techniques are 

used to select smoothing parameters. A comparison of likelihood based approaches (e.g., 

AIC, BIC) and generalized cross-validation (GCV; Craven & Wahba, 1979) would help 

identify the more robust method of selection. Additionally, the FMEMs considered in this 

thesis do not consider covariate when estimating individual and mean trajectories. 

However, most researchers are often interested in more than just describing the 

trajectories over time. How the shape of the trajectories is affected by covariates such as 

age, gender, and treatment condition is often of main interest to the researcher. Extending 

this work to incorporate covariates, and potentially allowing those covariates to account 

for missingness, would make FMEMs more useful (Green & Silverman, 1994, Chapter 4; 

Wu & Zhang, 2006, Chapter 8).  
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Figure 1. Plots of polynomials with various degrees fitted to simulated data. The dots 

indicate simulated data points, the dashed lines indicate the true underlying curve, and the 

solid lines are the fitted polynomials. 
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Figure 2. The left panel shows a regression spline of degree 4 with three equally spaced 

knots and the right panel shows a regressions spline of degree 4 with five equally spaced 

knots. Dots indicate simulated data points, solid lines are the fitted regression splines, and 

vertical lines indicates the locations of the knots.  

 

 

 

Figure 3. The estimated cubic spline smoothing with ;=0.45 
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Figure 4. MSE scores for the estimated means curve across all conditions.  
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Figure 5. AMSE scores for the estimated individual curves across all conditions. 

 

 

 

Figure 6. Model fit for a no missing data condition. This illustrates the model fit for 40 

curves observed at 10 time points with no missing data, and error variance level of .5. 
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Figure 7. Model fit for a randomly missing data condition. This illustrates the model fit 

for 40 curves observed at 10 time points with randomly missing data, and error variance 

level of .5. 

 

 

 

Figure 8. Model fit for a time-dependent missing data condition. This illustrates the 

model fit for 40 curves observed at 10 time points with time-dependent missing data, and 

error variance level of .5. 
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Figure 9. The shape of the quadratic grand mean trajectory (black) and individual 

trajectories (colored) used in the simulation study. 

 

 
Figure 10. The asymptotic grand mean trajectory (black) and individual trajectories 

(colored) used in the simulation study. 
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Figure 11. The periodic grand mean trajectory (black) and individual trajectories 

(colored) used in the simulation study. 

 

 

 

Figure 12. The three third-degree B-spline basis functions of degree 3 with equally 

spaced knots over [0, 20] used to generate the individual trajectories in the proposed 

simulation. 



  50 

 

 

Figure 13. Plot depicting benefit of sampling participants at random time points versus 

fixed time points. 
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Figure 14. Plot of fitted model for the quadratic trajectory with fixed time points, no 

missing data, and 5 time points. 

 

 

 

Figure 15. Plot of fitted model for the quadratic trajectory with fixed time points, no 

missing data, and 11 time points. 
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Figure 16. Plot of fitted model for the quadratic trajectory with fixed time points, no 

missing data, and 21 time points. 

 

 

Figure 17. Plot of fitted model for the asymptotic trajectory with random time points, no 

missing data, and 5 time points. 
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Figure 18. Plot of fitted model for the asymptotic trajectory with random time points, no 

missing data, and 11 time points. 

 

 

Figure 19. Plot of fitted model for the asymptotic trajectory with random time points, no 

missing data, and 21 time points. 
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Figure 20. Plot of fitted model for the periodic trajectory with random time points, no 

missing data, and 5 time points.  

 

 

Figure 21. Plot of fitted model for the periodic trajectory with random time points, no 

missing data, and 11 time points. 
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Figure 22. Plot of fitted model for the periodic trajectory with random time points, no 

missing data, and 21 time points. 

 

 
Figure 23. Plot of MSE and AMSE values for the three shapes of trajectory: quadratic, 

asymptotic, and periodic.  
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Figure 24. Plot of MSE and AMSE values for the three levels of number of time points: 

5, 11, and 21.  

 

 

 
Figure 25. Plot of MSE and AMSE values for the five degrees of percent missing: 0, 30, 

50, 70, and 90. 
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 Figure 26. Plot of MSE and AMSE values for the two types of missingness: random and 

time-dependent. 

 

 

 

 

  

 
Figure 27. Plot of MSE and AMSE values for the two types of irregularity of time points: 

random and fixed.  
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.  

 

Figure 28. Plots of MSE values for the quadratic trajectory across the levels of 

sparseness, percent missingness, type of missingness, and type of time point.  
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Figure 29. Plots of AMSE values for the quadratic trajectory across the levels of 

sparseness, percent missingness, type of missingness, and type of time point.  
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Figure 30. Plots of MSE values for the asymptotic trajectory across the levels of 

sparseness, percent missingness, type of missingness, and type of time point.  
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Figure 31. Plots of AMSE values for the asymptotic trajectory across the levels of 

sparseness, percent missingness, type of missingness, and type of time point.  
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Figure 32. Plots of MSE values for the periodic trajectory across the levels of sparseness, 

percent missingness, type of missingness, and type of time point.  
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Figure 33. Plots of AMSE values for the periodic trajectory across the levels of 

sparseness, percent missingness, type of missingness, and type of time point.  
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Figure 34. Plots of randomly missing data compared to time-dependent missing data.  

This shows a case where more data are above the true mean function and thus curve the 

estimated mean function up at later time points. This shows why time-dependent 

missingness was only slightly worse than random missingness. 
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Figure 35. Plots of randomly missing data compared to time-dependent missing data.  

This shows a case where more data are below the true mean function and thus curve the 

estimated mean function down at later time points. This shows why time-dependent 

missingness was only slightly worse than random missingness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  66 

 

 
 

Figure 36. Plots of random time points compared to fixed time points for the quadratic 

trajectory. This shows the estimated mean curve for the random time points deviating 

from the true mean curve at the boundaries. The estimated mean curve and true mean 

curve show no deviation at the boundaries for fixed time points. 
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Figure 37. Plots of random time points compared to fixed time points for the asymptotic 

trajectory. This shows the estimated mean curve for the random time points deviating 

from the true mean curve at the boundaries. The estimated mean curve and true mean 

curve show no deviation at the boundaries for fixed time points. 
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APPENDIX B 

 

TABLES 
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Table 1 

Percent missingness per quintile used for generating time-dependent missing data 

Percent 

Missing 

Quintiles 

1st 2nd 3rd 4th 5th 

30% 10% 20% 30% 40% 50% 

50% 30% 40% 50% 60% 70% 

70% 50% 60% 70% 80% 90% 

90% 82% 86% 90% 94% 98% 

 

 

 

 

 

 

 

 

Table 2 

MSE and AMSE values across the no missing data conditions 

Type of 

Time 

Points 

Trajectory 

Shape 

MSE  AMSE 

��=5 ��=11 ��=21  ��=5 ��=11 ��=21 

Fixed 

Quadratic 0.39 0.42 0.31  9.37 5.99 4.11 

Asymptotic 0.82 0.49 0.35  10.01 6.10 4.11 

Periodic 186.47 6.42 2.26  239.34 13.70 6.55 

Random 

Quadratic 0.90 0.51 0.34  12.42 7.15 4.66 

Asymptotic 1.51 0.67 0.39  13.37 7.42 4.71 

Periodic 119.93 7.70 2.82  171.04 16.96 7.98 
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Table 3  

MSE values across the fixed time point conditions 

Percent 

Miss-

ing 

Trajectory 

Shape 

Type of Missingness 

Randomly Missing  Time-Dependent Missing 

�� = 5 �� = 11 �� = 21  �� = 5 �� = 11 �� = 21 

30% 

Quadratic 0.51 0.52 0.34  0.63 0.54 0.38 

Asymptotic 1.06 0.612 0.41  1.20 0.63 0.37 

Periodic 180.41 10.83 3.91  179.79 10.88 4.02 

50% 

Quadratic 0.69 0.61 0.39  0.92 0.75 0.41 

Asymptotic 1.51 0.70 0.46  1.56 0.66 0.43 

Periodic 173.76 16.69 6.80  172.73 16.80 6.74 

70% 

Quadratic 1.16 0.88 0.50  1.79 1.27 0.74 

Asymptotic 2.17 1.19 0.62  2.32 1.22 0.75 

Periodic 164.17 29.06 13.33  165.91 31.00 15.66 

90% 

Quadratic 4.03 2.33 1.38  6.77 11.39 6.08 

Asymptotic 5.94 2.80 1.69  7.62 4.61 2.40 

Periodic 152.25 68.44 40.59  161.14 90.51 62.13 
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Table 4 

MSE values across the random time point conditions 

Percent 

Miss-

ing 

Trajectory 

Shape 

Type of Missingness 

Randomly Missing  Time-Dependent Missing 

�� = 5 �� = 11 �� = 21  �� = 5 �� = 11 �� = 21 

30% 

Quadratic 1.22 0.68 0.39  1.41 0.64 0.39 

Asymptotic 1.87 0.81 0.49  1.76 0.82 0.45 

Periodic 119.46 12.30 4.73  120.10 12.08 4.64 

50% 

Quadratic 1.69 0.80 0.46  2.08 0.89 0.51 

Asymptotic 2.40 1.14 0.64  2.10 1.04 0.57 

Periodic 120.00 17.68 7.68  122.15 17.96 7.72 

70% 

Quadratic 2.88 1.21 0.67  5.22 2.12 1.05 

Asymptotic 3.50 1.58 0.89  2.97 1.65 0.92 

Periodic 122.60 29.93 14.48  134.79 35.91 17.74 

90% 

Quadratic 10.87 3.33 1.95  21.92 9.39 5.18 

Asymptotic 10.41 3.90 2.12  7.16 4.45 2.90 

Periodic 136.79 68.67 41.85  154.36 96.18 63.96 
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Table 5 

AMSE values across the fixed time point conditions 

Percent 

Miss-

ing 

Trajectory 

Shape 

Type of Missingness 

Randomly Missing  Time-Dependent Missing 

�� = 5 �� = 11 �� = 21  �� = 5 �� = 11 �� = 21 

30% 

Quadratic 13.37 8.17 5.37  14.95 9.20 5.97 

Asymptotic 14.03 8.37 5.48  15.67 9.22 6.01 

Periodic 235.84 21.88 10.03  236.90 23.10 10.68 

50% 

Quadratic 17.22 10.84 7.01  19.28 12.63 8.22 

Asymptotic 17.71 11.11 7.04  19.95 12.90 8.26 

Periodic 231.02 33.71 15.45  232.85 35.78 16.77 

70% 

Quadratic 21.23 15.44 10.43  26.35 20.25 14.12 

Asymptotic 22.25 15.69 10.55  26.58 19.83 13.94 

Periodic 223.94 55.36 29.15  230.46 63.14 35.86 

90% 

Quadratic 29.25 28.29 23.71  36.17 41.72 34.91 

Asymptotic 31.94 28.77 25.21  36.21 33.52 29.96 

Periodic 215.86 114.64 79.00  231.58 139.18 105.27 
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Table 6 

AMSE values across the random time point condition 

Percent 

Miss-

ing 

Trajectory 

Shape 

Type of Missingness 

Randomly Missing  Time-Dependent Missing 

�� = 5 �� = 11 �� = 21  �� = 5 �� = 11 �� = 21 

30% 

Quadratic 16.11 9.34 5.93  17.35 10.43 6.58 

Asymptotic 16.94 9.64 6.15  17.72 10.65 6.66 

Periodic 172.71 25.79 11.89  174.67 26.98 12.24 

50% 

Quadratic 19.87 11.96 7.70  23.07 13.86 8.85 

Asymptotic 20.34 12.26 7.73  22.76 14.08 9.07 

Periodic 175.74 36.52 17.55  180.19 39.49 19.08 

70% 

Quadratic 25.60 17.47 10.96  32.09 24.08 14.80 

Asymptotic 26.19 17.80 11.42  29.89 23.51 14.81 

Periodic 180.08 57.71 31.47  196.33 69.69 39.83 

90% 

Quadratic 39.09 30.18 26.98  55.75 40.74 35.85 

Asymptotic 40.07 31.04 27.60  37.53 34.57 32.02 

Periodic 198.04 113.20 79.60 
 

220.09 148.94 108.83 
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Table 7 

Pseudo-�� values across the no missing data conditions 

Type of 

Time Points 
Trajectory Shape 

Pseudo-��  

�� = 5 �� = 11 �� = 21  

Fixed 

Quadratic 0.95 0.93 0.91  

Asymptotic 0.94 0.90 0.88  

Periodic 0.88 0.86 0.88  

Random 

Quadratic 0.91 0.90 0.90  

Asymptotic 0.88 0.86 0.85  

Periodic 0.47 0.86 0.88  
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Table 8  

Pseudo-�� values across the fixed time point condition 

Percent 

Miss-

ing 

Trajectory 

Shape 

Type of Missingness 

Randomly Missing  Time-Dependent Missing 

�� = 5 �� = 11 �� = 21  �� = 5 �� = 11 �� = 21 

30% 

Quadratic 0.95 0.93 0.91  0.95 0.93 0.91 

Asymptotic 0.94 0.91 0.88  0.95 0.92 0.89 

Periodic 0.88 0.84 0.87  0.86 0.84 0.87 

50% 

Quadratic 0.95 0.93 0.92  0.95 0.93 0.92 

Asymptotic 0.94 0.91 0.89  0.95 0.92 0.90 

Periodic 0.86 0.81 0.86  0.83 0.81 0.86 

70% 

Quadratic 0.96 0.94 0.92  0.95 0.93 0.92 

Asymptotic 0.94 0.91 0.89  0.95 0.93 0.91 

Periodic 0.82 0.74 0.82  0.71 0.71 0.82 

90% 

Quadratic 0.94 0.89 0.89  0.93 0.88 0.88 

Asymptotic 0.91 0.85 0.84  0.93 0.88 0.87 

Periodic 0.68 0.50 0.61  0.57 0.49 0.61 
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Table 9 

Pseudo-�� values across the random time point condition 

Percent 

Missin

g 

Trajectory 

Shape 

Type of Missingness 

Randomly Missing  Time-Dependent Missing 

�� = 5 �� = 11 �� = 21  �� = 5 �� = 11 �� = 21 

30% 

Quadratic 0.92 0.91 0.90  0.92 0.91 0.90 

Asymptotic 0.88 0.87 0.86  0.89 0.88 0.87 

Periodic 0.46 0.84 0.87  0.41 0.84 0.87 

50% 

Quadratic 0.92 0.91 0.90  0.90 0.91 0.90 

Asymptotic 0.88 0.87 0.86  0.88 0.89 0.88 

Periodic 0.43 0.81 0.86  0.37 0.80 0.86 

70% 

Quadratic 0.90 0.91 0.91  0.88 0.89 0.91 

Asymptotic 0.86 0.88 0.87  0.84 0.86 0.89 

Periodic 0.37 0.74 0.82  0.31 0.71 0.82 

90% 

Quadratic 0.85 0.84 0.85  0.85 0.83 0.83 

Asymptotic 0.74 0.77 0.78  0.81 0.80 0.81 

Periodic 0.30 0.51 0.62  0.28 0.50 0.62 
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Table 10 

Signal-to-noise ratio (SNR) values  

Trajectory 

Shape 

SNR  

�� = 5 �� = 11 �� = 21  

Quadratic 15.81 11.51 9.97  

Asymptotic 13.27 8.58 7.07  

Periodic 7.31 7.64 7.60  

 

 

 


