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ABSTRACT

From time immemorial, epilepsy has persisted to be one of the greatest impediments to

human life for those stricken by it. As the fourth most common neurological disorder,

epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures.

Seizures have the effect of debilitating patients on a physical and psychological level.

Although not lethal by themselves, they can bring about total disruption in consciousness

which can, in hazardous conditions, lead to fatality. Roughly 1% of the world population

suffer from epilepsy and another 30 to 50 new cases per 100,000 increase the number of

affected annually. Controlling seizures in epileptic patients has therefore become a great

medical and, in recent years, engineering challenge.

In this study, the conditions of human seizures are recreated in an animal model

of temporal lobe epilepsy. The rodents used in this study are chemically induced to

become chronically epileptic. Their Electroencephalogram (EEG) data is then recorded

and analyzed to detect and predict seizures; with the ultimate goal being the control and

complete suppression of seizures.

Two methods, the maximum Lyapunov exponent and the Generalized Partial Directed

Coherence (GPDC), are applied on EEG data to extract meaningful information. Their

effectiveness have been reported in the literature for the purpose of prediction of seizures

and seizure focus localization. This study integrates these measures, through some

modifications, to robustly detect seizures and separately find precursors to them and in

consequence provide stimulation to the epileptic brain of rats in order to suppress seizures.

Additionally open-loop stimulation with biphasic currents of various pairs of sites in differing

lengths of time have helped us create control efficacy maps. While GPDC tells us about

the possible location of the focus, control efficacy maps tells us how effective stimulating a

certain pair of sites will be.

The results from computations performed on the data are presented and the feasibility of

the control problem is discussed. The results show a new reliable means of seizure detection
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even in the presence of artifacts in the data. The seizure precursors provide a means

of prediction, in the order of tens of minutes, prior to seizures. Closed loop stimulation

experiments based on these precursors and control efficacy maps on the epileptic animals

show a maximum reduction of seizure frequency by 24.26% in one animal and reduction of

length of seizures by 51.77% in another. Thus, through this study it was shown that the

implementation of the methods can ameliorate seizures in an epileptic patient. It is expected

that the new knowledge and experimental techniques will provide a guide for future research

in an effort to ultimately eliminate seizures in epileptic patients.
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Chapter 1

INTRODUCTION

1.1 Overview

Epilepsy is a chronic, noncommunicable medical condition that results in seizures,

affecting a wide range of mental and physical functions in humans. The World Health

Organization depicts that epilepsy affects 50 million people worldwide and annual new

cases are between 30 and 50 per 100,000 people in the general population [158]; making it

the fourth most common neurological disorder after Migraine, Stroke, and Alzheimer’s [51].

Although Epilepsy occurs in all age groups, the highest incidence rates are among children

and the elderly [32].

The known factors in causing epileptogenesis in humans are traumatic brain injuries,

central nervous system infections, brain tumors and genetic abnormalities among many

others [5]. Of the 2.2 million troops returning from Iraq and Afghanistan, 100,000 is

estimated to develop post-traumatic epilepsy (PTE) [22], owing to the fact that traumatic

brain injuries have a 50% incidence risk of epilepsy [92]. The CDC estimates 5.1 million

adults and children combined, in the US, have been diagnosed with epilepsy as of 2016

(1.6% of total US population) [13]. The total indirect and direct cost of epilepsy in the

United States is estimated to be $15.5 billion yearly. This estimate is based on a reported

cost of $12.5 billion in 1995 converted to 2004 dollar value using Bureau of Labor Statistics

data [13].

With a surface area of roughly 2,600 cm2, and a thickness of 3–4 mm, the neo-cortex of

a human brain is a thin, extended, convoluted sheet of tissue. It contains up to 28 × 109

neurons which are connected with each other and with cells elsewhere in the brain by a

vast number of synapses, of the order of 1012 [99]. Epilepsy manifests itself in patients

as epileptic seizures (ES) due to synchronous neural firing in the cerebral cortex. It has
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been found that these paroxysmal electrical discharges may begin in a small neighborhood

of the brain, in which case they are called partial seizures or focal seizures with single or

multiple foci. Or, they may begin simultaneously in both cerebral hemispheres which are

called primary generalized seizures [28]. Although, a more recent study has shown that

even primary generalized seizures originate within local microcircuits and then propagate

from that initial ictogenic zone [113]. After the onset of a seizure, partial seizures may

remain localized and cause relatively mild cognitive, psychic, sensory, motor relapses or

may spread to other regions of the brain and cause symptoms similar to generalized ones.

Generalized seizures at their onset bring about altered states of consciousness and can also

have a variety of motor symptoms, ranging from a minimal loss of motor action or brief

localized body jerks to heavy convulsive actions known as tonic-clonic activity. Immediately

after the seizure, the person may lose complete consciousness and wake up a few minutes

later, never realizing what they went through.

The ancient Greeks thought of epilepsy as a disease that was “given by the Gods” to

the patient (The Latin word Epilepsia is a translation of the Greek term Epilambanein

which means “to take hold of” or “seize” [142]). This was primarily due to the fact that

seizures would come and go, in a seemingly unpredictable fashion. For some patients it

happens hundreds of times a day and for others, once every few years. The elusive property

of seizures is what makes them difficult to treat. Approximately 60% of new onset epilepsy

cases respond to existing antiepileptic drugs (AEDs) but 30% are pharmaco-resistant,

having seizures that cannot be fully controlled with available medical therapy or without

unacceptable side effects, [26]. However, in addition to the lack of efficacy for complete

seizure control, there also is a substantial morbidity associated with the use of AEDs in

patients, especially when polypharmacy is required.

The goal of epilepsy management is to make the patient completely seizure free, with

minimal side effects or none at all from the anti-epileptic treatment. While surgical

removal of the seizure focus is an important and effective therapeutic intervention; for

2



some of the people with uncontrollable epilepsy, because of multiple foci, seizure foci located

within non-resectable areas of the brain and possible post-operative complications, resective

surgery is unlikely to ever replace chronic treatment as the primary mode of epilepsy

management in the large majority of patients with epilepsy. Patients with seizures who

cannot be treated with AEDs and are not candidates for lobectomies are termed to have

refractory epilepsy. This leaves us searching for alternative means of treatment for the

nearly 15 million patients with refractory epilepsy worldwide in the form of Deep Brain

Stimulation (DBS), Vagus Nerve Stimulation (VNS), Transcranial magnetic stimulation

(TMS) etc. which have all shown promising results across a range of neurological and

neuropsychiatric disorders [68].

An endeavor to control the occurrence of seizures must begin with identifying them

accurately and in a timely fashion. Ever since its discovery in the 1920’s by Hans Berger

[103], the Electroencephalogram (EEG) has been utilized to diagnose conditions of the

brain including seizures [144]. The EEG collection process and equipments have evolved

considerably over the last decade and are sophisticated enough to incorporate as many as

256 recording channels with sampling rates up to 30 kHz. In the past, although fewer

channels were being used to record data, [135] provides evidence that adequately sampling

the human EEG across the full surface of the head requires a minimum of 128 sensors

so as to not violate the spatial Nyquist sampling rate. Thus, using these data, a trained

electroencephalographer would notice changes in the EEG and be able to diagnose that a

seizure is occurring and also in cases of partial seizures, mark the focal electrodes. However,

this method has a dire limitation in the fact that a timely intervention either by the use

of drugs or electrical stimuli via DBS cannot be made effective since the seizure initiation

can only be marked when a visible change occurs in the EEG, not to mention human error

whereby the expert may fail to identify the seizure altogether. To this end, research has

progressed greatly in the last three decades, aided by mathematical tools commonly used in

the engineering principles of signal processing to help detect and even in some cases predict
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seizures.

Until recently, the general belief in the medical community was that epileptic seizures

could not be anticipated [94], although scientific intuition gave evidence for the contrary

[114, 87]. Using tools from signal processing, in the late 1980s, Iasemidis and colleagues

have reported on such mathematical methods that utilize nonlinear systems theory to assess

the state of the brain [54, 62]. In their work they analyzed EEG data from epileptic patients

to compute what is known as the Short Term Maximum Lyapunov Exponent (STLmax)

[64, 62]. It was shown that as the brain transitions from interictal to preictal to ictal and then

to postictal (see Appendix B) and back to interictal stages, the nonlinear dynamics of the

brain evolves along the lines of chaos-to-order-to-chaos transitions [57, 125]; these changes

were tracked through temporal evolutions of the STLmax metric and its statistical distance,

the T-index. In [61, 60] the same researchers detail how the choice of different parameters

in the STLmax algorithm can be fine tuned to reveal the change of the brain states between

interictal to preictal in the order of minutes or even hours. These detection/prediction

algorithms implied that finally it would be possible to think of a real time intervention

strategy minutes before a seizure occurs.

Receiver Operating Curves (ROC) analysis showed the superiority of the STLmax

algorithm over optimal random prediction schemes and over other linear and nonlinear

“predictability” schemes. Other research groups followed and found transitions toward

low-dimensional states and reduction of brain’s complexity a few minutes before the

occurrence of epileptic seizures [86, 83, 136, 81]. Through the use of support vector machines

Williamson et al use space-delay correlation and covariance matrices to predict seizures [159]

and have shown acceptable performance as well. Analysis of intracranial EEG (iEEG) from

18 patients show a characteristic decrease in phase synchronization among different brain

sites minutes to several hours before a seizure [97]. With a different approach, [69] have

reported that application of a periodic burst of stimulus can help predict seizures better

and be used to control them; in a sense this can be thought of as an observability problem,
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where the chance of predicting seizures is increased through minute stimulations. Most

of these metrics use univariate measures, except for T-index of STLmax, thus [2] elicits

many univariate and bivariate measures but ultimately concludes that bivariate measures

are better in prediction. In a completely different approach, [75] describes a new portable

method of seizure detection using motion sensors, that can prove very useful in clinical

practice; 91% of seizures were detected within a median period of 17 seconds for tonic-clonic

seizures. High-frequency electrical stimulation (HFES; 100–500Hz) triggered by automated

seizure detections may have had promise [107]; however, attempting to abort a seizure

by stimulating after detection is not a very effective method [89] even if done in close to

real-time.

Equipped with the ability to “predict”, the difficulties in designing and implementing

effective seizure-suppressing controllers have motivated many to take a new look at the

problem. The brain is not an unstructured, random collection of neurons guided by

statistics. Thus, there is no need for brain models to be so. In their work with such

theoretical models, Tsakalis et al have shown that a phenomenological seizure model can be

justified by a failing feedback and seizure suppression can be well achieved by employing a

feedback decoupling control strategy [146]. The implementation of such theoretical models

required only weak knowledge of the detailed neuronal structure. It is noteworthy that the

type of “epileptic” pathology that these networks can exhibit appears to be independent of

the configuration of the network, that is, it is a generic property. It is also independent of the

type of the oscillator used, e.g., see [147, 15] for similar results with physiologically motivated

models of neuron-level populations and thalamocortical populations. Such methodologies,

of looking for aggregate effects that quantify types of behavior should be contrasted with

other types of detailed models (see e.g., [145, 25]), which are valuable but could obscure

the important functional mechanisms of seizure generation for the design of a feedback

controller. To achieve closed loop feedback control, sensory information about the system’s

states is necessary. One of the most prominent ways to achieve this is by the use of
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observers, a.k.a filters. [6] uses a neural mass model based on that by Jansen and Rit

[67] and implemented an Unscented Kalman Filter to estimate model parameters to be

used eventually for control.

For the implementation of a feedback controller, the use of electrical stimulation

presents itself as an attractive alternative for the treatment of epilepsy but the development

of effective stimulation strategies and the mechanisms of operation are still not well

understood. In addition to the extremely high complexity of brain operation and the

variety of seizure types, there are only limited modes of data collection that can be used,

both because of physical constraints and because of ethical regulations. The net result is

that we are currently lacking a solid and widely acceptable model of seizure development,

including seizure precursors or predicting mechanisms. As a few examples of the variety

of models we cite [14, 55], whereby coupled oscillator networks were used to model the

behavior of an epileptic brain during a seizure [38], which in a focal model of epilepsy shows

that stimulation results in seizure elimination in 48% and improvement in seizures in 43% of

patients [53], showing how using spectral power features from pre-ictal and inter-ictal data

in a logistic regression classifier can improve chances of seizure prediction in dogs with focal

epilepsy [6], which uses patient specific tuning of neural mass model parameters through

the implementation of unscented Kalman filters to synthesize electrocorticogram (ECoG)

data and [157], where micro and macro models were generated to see if epileptic spikes from

human, rat and in-vitro gunea pig brain can be replicated in the models.

A natural succession to modeling the brain and its epileptic behavior would be to

consider actual stimulation of it and observe efficacies of various implementations of stimuli.

The more “traditional” line of work looks at the injection of a stimulus at the epileptic focus.

Here, it is important to model the effect of the different type of stimuli on the observed

brain behavior. For example, [11] shows that it is possible to either extend or truncate

the tonic or clonic phases of the seizure by changing the frequency of stimuli. [95] shows

that deep-brain stimulation (DBS) strongly reduced the sustained epileptic activity of focal
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cortical dysplasia (FCD) for low-frequency (LFS, < 2Hz) and high-frequency stimulation

(HFS, > 70Hz) while intermediate-frequency stimulation (IFS, around 50Hz) had no effect.

Tassinari et al. [140] and Boroojerdi et al. [12] have reported in their study how TMS had

affected seizure rates to decrease, also in [93] Lulic et al. reported promising results for VNS

in patients with refractory epilepsy. Similarly, DBS, principally of thalamic structures, has

been reported to reduce seizure frequency in humans [52, 73]. Using 3 and 0.3 Hz rTMS in

complex partial epilepsy of mesiobasal limibic onset in rats has led to a decrease in epileptic

spike frequency [143]. However useful these results are, there is still plenty of room for

research in the control of this “divine” disease. One such area for study is the stimulation

parameters for seizure control. As Kuncel et al. have shown that, in their algorithm, there

are a total of 12964 possible combinations of stimulation parameters [77]. A search for the

optimal parameter set is not in the scope of this study and so a known “safe” parameter

set was chosen as described in Chapter 5.

Once the question of “when” a seizure is detected and/or predicted, in a manner of

speaking, is answered, the next obvious question becomes “where” is it going to happen?

Naturally, such a question can only be asked in cases of focal seizures. Focus localization

has been approached as an information flow problem using transfer entropy metrics [124].

However, simpler linear metrics have been shown to produce similar or better results.

Following Granger’s famous 1969 paper on econometrics, which postulated the idea of causal

relations between signals [40], Saito and Harashima utilized the notion of Granger causality

in EEG to determine directional flow of information between different EEG channels [126].

Their methods were later modified into the concepts of partial directed coherence and

generalized partial directed coherence (GPDC) by Baccala et al [8, 10, 9]. GPDC has been

shown to effectively pinpoint focus in epileptic patients [138]. The localization of the seizure

focus is not the end of the story. Our knowledge in systems theory elucidates that one needs

to consider multiple stimulation points and durations to account for varying effectiveness

of the stimulation. The development and maintenance of such “control efficacy” maps adds
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new dimension to the seizure control problem. Simply put, it may not be necessary that

stimulating the focus will abort a seizure; it is conceivable that sites surrounding the seizure

may need to be stimulated as well. In our study we do take this effect into consideration.

While models, both computer and animal, allow us to study seizures and their control

mechanisms, translating these work into human seizure control is still a challenge. There

are an estimated 0.4 million Americans whose epilepsy cannot be treated with AEDs or

surgery [22]. Currently, there are only two FDA-approved devices for treatment. One is

a neurostimulator called RNS System developed by NeuroPace to reduce the frequency of

seizures and is an implantable device [31]. The other is a vagus nerve stimulator developed

by Cyberonics; this device is implanted in the chest to prevent seizures and has been FDA

approved since the 90’s. Both these devices claim to capture a patient’s unique seizure

patterns and apply appropriate electrical stimulation. The RNS worked only in a subset

of patients and could provide only a 50% or more reduction in the rate of seizures two

years post implant [49]. None of these treatments have provided a cure for the disease and

even their effectiveness is limited [72]. Hence, there is a great need to develop a wearable

device that can make this a treatable disease. Quite a number of research efforts, over the

past two decades, have been carried out in combining control engineering and physiological

functioning of the brain to develop theoretical and computational models combined with

experiments on animals for epileptic seizure prediction and intervention [148].

One of the key impediments to the advances in this field comes from the fact that

recording, analyzing and modeling brain activity is a data intensive task. Until recently

our resources were largely limited by the computational tools available to us. Modeling

and analyzing epilepsy can potentially involve a variety of metrics computed from real-time

signals. The volume of the data can increase very rapidly when we consider the number of

electrodes used (10 in a simple rodent study but beginning from 32 all the way up to 256 in

most modern systems involving human subject studies) and the frequency of sampling (from

240Hz of the earlier EEG sampling rates to tens of kHz that may appear in some relatively
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modern studies). And, while the intent and the paradigm followed by each investigator is

to use one metric as a seizure predictor or detector, the possibility that the computational

algorithm may require some form of tuning for different cases clearly demonstrates the

need for extremely high computing capabilities aka, High Performance Computing (HPC).

Finally, a great variety in the data can be found from simultaneous acquisition of EEG data

with ambient data, muscle motion data and video data that, at the very least, can relate the

observed electrical signals to the clinical behavior of the subject. The variety of metrics, the

volume of data and its varying types is what has made the treatment of epilepsy a big data

problem in recent years. Thus, latest advances in Big Data analytics are driving seemingly

impossible tasks in analyzing epileptoform activity from the past, towards fruition today.

In our work, however, we have focused on one type of data, i.e. EEG only but the analysis

performed on these data are still quite computationally intensive.

Even with the advent of these new tools, control of epileptic seizures still remains an

open ended question and the search for the “holy grail”, the best prediction and control

scheme, continues. This work is but a minute push in the positive direction towards the

end goal.

1.2 Report Organization

This report is organized in 8 chapters. After the first chapter, i.e. this one -

� In Chapter 2, we introduce the concept of chaos and provide sufficient detail as a

backdrop for it in the search for a solution to epilepsy as an engineering challenge.

� In Chapter 3, the development of the theory of largest Lyapunov from nonlinear

dynamics is introduced and its relevance to chaotic systems and the epileptic brain.

� Chapter 4 describes the theory of generalized partial directed coherence; it’s

advantages over other mechanisms of measuring connectivity and therefore the reason

for it being chosen in our study as a means to detect focal candidate sites.
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� In Chapter 5, we provide detailed information about the experimental setup both

hardware and software used to collect data and provide stimulation to the animals.

� Chapter 6 details the analysis and results from using a more robust method of

computing the maximum Lyapunov exponent and provides evidence that it can be

utilized to detect seizures.

� In Chapter 7, we use the same method shown in Chapter 6, albeit with a slightly

different approach to preempt seizures by stimulating the brain.

� Chapter 8 provides the conclusions of the study so far and the scope of future work

in this area of research.
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Chapter 2

NONLINEAR DYNAMICAL SYSTEMS WITH CHAOS

2.1 Introduction

Mathematical models have enabled us to understand the universe we live in and to a

great extent manipulate behaviors of physical, chemical and biological systems. While the

accuracy of a model in an application is debatable, the fact that a fairly accurate model helps

predict the system’s behavior is not. This was clearly demonstrated by Pierre-Simon Laplace

with his concept of universal determinism [132]. In his 1778 work, Laplace ingeniously

explained the motions of the known celestial bodies in his time (sun, moon, and planets)

with Newton’s laws of motion and reduced the study of planets to a set of differential

equations.

A century later, Henri Poincaré developed what is known as state-space - a set of system

states defined over time. This helped study the evolution of a physical system over time

by characterizing the system based on laws of physics with the application of differential

equations, [115]. It is during this work that Poincaré observed the phenomenon of sensitivity

to initial conditions. While studying the classical three-body problem involving the earth, the

sun, and the moon, he found that they have orbits that are non-periodic, yet their periods

are neither stable nor unstable. In other words, the periods are bounded within a region

in their state-space, neither escaping to infinity nor settling to a fixed-point. However,

as Poincaré pointed out, knowledge of the initial conditions of the states does not allow

for their long-term predictability. Thus breaking away from Laplace’s work of universal

determinism. This point in time is regarded as the birth of “Chaos Theory”, although it

would take another century for this field of science to become mainstream.

A nonlinear dynamical system is said to be chaotic when it is sensitive to differences in

initial conditions, is topologically mixing and has dense periodic orbits. The high sensitivity
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to initial conditions is often referred to as the butterfly effect in pop culture. These

minuscule differences in initial conditions may appear due to noise or machine accuracy in

computation and can yield widely diverging outcomes for such nonlinear chaotic dynamical

systems. Long-term prediction thus becomes impossible in general. Chaotic systems need

not be complex in nature, they can be completely deterministic, implying that their future

states are completely predictable with no stochasticity involved. Therefore, the study of

mathematics that deals with deterministic systems with chaotic behavior is known as Chaos

Theory and was first formalized by Edward Lorenz in 1963 [90].

Chaos: When the present determines the future, but the approximate present

does not approximately determine the future.

- Edward Lorenz.

Ever since, Lorenz’s discovery of chaotic phenomena in weather modeling, the field of

chaos theory has exploded into many aspects of science and engineering. Chaos theory

is used in cryptography by computer scientists, creating population models in biology,

studying turbulence in fluid mechanics. In economics, it is utilized to predict stock market

behavior but has had mixed results due to the tremendous complexity of such systems.

Feedback, where humans anticipate and react to changes in the market by buying or selling

stocks, exacerbates this complexity in stock market behavior. In astronomy, chaos has been

used to describe the motion of many planetary bodies and in particular to better predict

asteroid paths and whether or not they may come in contact with Earth. And, in more

recent years it has been applied in the prediction and/or control of human brain dynamics.

While this list of applications is by no means comprehensive, it does provide us with a notion

of how ubiquitous chaos is in our modern lives. In the following we present a discussion

of nonlinear systems leading to chaos. The conditions for chaos are provided with some

examples for the reader to acquire some preliminary intuition about the matter.
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2.2 Nonlinear Systems and Their Phase Space

A dynamical system is represented mathematically as a set of differential equations. The

function that describes a dynamical system, establishes the time dependence of its states

and is generally represented in the form

ẋ = f(x, u, t) (2.1)

where, x, u and t represent the state, input and time variables respectively. If the system

is time-invariant then t is no longer a variable and is dropped from the function. In this

case the system is said to be autonomous. Sometimes an output equation will be added and

the whole description is said to be a state-space representation of the dynamical system.

y = g(x, u, t) (2.2)

Due to the nature of differential equations (difference equations in discrete time systems),

dynamical systems exhibit memory ; that is the value of the current states would depend

on its past values. For instance, a swinging pendulum is a system where the current states,

position and velocity of the pendulum, relies on knowledge of its past states. For most

real-world systems, the differential equations that describe their behavior are nonlinear in

nature. As an example, equation 2.3 describes the motion of a pendulum with force input

at its pivot.

θ̈ +
c

mL2
θ̇ +

g

L
sin(θ) =

Tmax
mL2

T (2.3)

Here, θ (output) is the angle between the pendulum rod and the vertical and θ̇, θ̈ are

the corresponding higher order derivatives (angular velocity and acceleration). c is the

coefficient of friction, m is the mass of the pendulum, assumed to be centered at the end of

the rod of length L. T is the applied torque and is normalized to the maximum applicable

value, Tmax (dependent on the maximum torque of a motor). Typically, for the pendulum,

the states are considered to be the angle θ and its angular velocity θ̇. As can be seen in

this case, the non-linearity in the model appears from the presence of the sine term on
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the system output θ; however non-linearity can appear in any other mathematical form

for other systems. The validity of the model is also in question; we can have models that

represent a system “closely” but never perfectly. This is one of the fundamental limitations

of modeling real-world systems. The science of modeling is a juggling act between time and

energy spent in creating an “accurate” model versus the benefits of the increased accuracy.

As far as the laws of mathematics refer to reality, they are not certain, and

as far as they are certain, they do not refer to reality.

- Albert Einstein.

The state space (for discrete-time systems) or phase space (for continuous time systems)

describes the set of values that the states in a system can take for the entire range of its

operation. For instance, in the case of the pendulum, if the two states were represented on

the two axes of a coordinate system, then a ring centered about [0, 0] would describe the

phase-space plot of the system. At no point in time can the pendulum have values for states

outside the ring. Certain class of systems exhibit a behavior in which the phase-space is

such that a large set of initial conditions will lead to the state-space trajectory converging

to a point or an area; the region of initial conditions that do so is called a basin of

attraction. Regions of phase-spaces with such behavior are called attractors. The four

types of attractors are described in brief-

� Fixed-point: A fixed point attractor is one that comes out of a system whose

eigenvalues are in the left-half-plane (stable systems). Typically systems that lose

energy have fixed-point attractors; e.g. a pendulum with friction will always converge

to the bottom position (θ = 0, θ̇ = 0), if there is no force input. The phase-space

will show trajectories converging to the fixed-point from all local initial conditions

(angular position and velocity). Intuitively, no matter where we start the pendulum

off, after a certain amount of time, the bob will come to rest at the vertical downwards

position.
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� Limit Cycle: A limit cycle appears from systems whose states display periodic

behavior. The trajectory takes the shape of a ring. A good example is the oscillator

circuit used to generate tuning frequencies in a radio.

� Limit Torus: A limit torus, like a limit cycle has a periodic trajectory. However, in

this case the system exhibits more than one natural frequency and any two of these

frequencies being an irrational ratio makes for the trajectory to take the shape of a

torus in the phase-space. An example would be an oscillator with two sinusoids where

the frequencies form an irrational fraction.

� Strange attractor: Strange attractors are “strange” simply because the trajectories

neither converge entirely into a fixed-point, nor do they escape like an unstable system,

nor form a periodic orbit of a concentric nature and the trajectories are not quite on

the same plane. The trajectories are locally bounded but never overlap. Nearby

trajectories would seem to escape from each other, yet the distance cannot grow

beyond a specific value. The dimension of these attractors are also fractal in nature

due the trajectories not being on the same plane. A strange attractor is the cornerstone

of a chaotic system’s phase-space. The Lorenz attractor (Figure 2.3) is an example of

such an attractor.

Having been introduced to the concept of nonlinear systems, their phase space and

what strange attractors are, we are now ready to look deeper into chaotic systems and what

separates them from random processes.

2.3 Chaotic Nonlinear Systems

David Ruelle and Takens are credited to have introduced the term strange attractors

after Ruelle studied the Lorenz attractor in depth, [121]. It is worth mentioning that not all

dynamical systems would have attractors in their phase space. Having briefly introduced

the concept of phase-space and attractors in the previous section, we now move on to its

relevance to chaotic systems. In the following, “state-space” and “phase-space” are used
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Figure 2.1: Plot of the y variable from the Lorenz equation. The initial conditions, y0,
were chosen as 1, 1.0001 and 1.001. As can be seen, even the slightest variation in initial
conditions can make the output of y vary greatly over a 50 second evolution of time; even
though they start off being similar near the beginning of the simulation. No noise was
added to this data to emphasize that the sensitivity is indeed to initial conditions and not
any external influence. The values for the parameters were σ = 45.92, ρ = 16 and β = 4,
while the initial conditions for states other than y were fixed to x0 = 0 and z0 = 1.05.

interchangeably with the assumption that the reader understands that “state-space” is

meant for systems described by discrete time systems and “phase-space” for continuous

ones.

Edward Lorenz’s discovery of chaotic behavior came as a culmination of two centuries

of research in systems theory and mathematics. He found that using the same equations,

the computer solution with rounding in three digits versus six, produced solutions that

were entirely different from each other [105]. This is known as sensitive dependence to

initial conditions and is one of the building blocks of chaos theory. In his 1972 paper titled

“Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?”

[27], Lorenz popularized the notion of the Butterfly effect. That the insignificant effect of

the flapping of a butterfly’s wings can lead to a tornado in another part of the world, all

because a slight variation in the initial conditions was brought about, was the gist of the

publication. However, a formal definition of chaos would not be put forward until much
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later when Robert Devaney laid out the three essential properties for a system to be chaotic,

[46]:

� Sensitivity to initial conditions.

� Topological mixing.

� Dense periodic orbits.

Figure 2.1 shows the effect of sensitivity to initial conditions. The output was generated

from the differential equations of a Lorenz system, which is a nonlinear dynamical system

comprised of three states. The initial conditions for states [x, z] were kept the same while

that for y was varied between [1, 1.0001, 1.001]. As can be seen from the Figure, in a short

time, the state y evolved with a rather significant difference.

Topological mixing, implies that the system will evolve over time such that an open

set in its state-space will eventually overlap with any other given region in the state-space.

Mixing is a non-reversible process. Turbulence in fluids is an example of a chaotic system;

the analogy allows us to imagine how two fluids can interact within a volume. As an

example, Figure 2.2 shows how a set of points bounded in [0, 1] evolves over six iterations

of the Logistic Map, another example of a chaotic system. As is evident from the images,

the process of mixing smears the blue circle from the first iteration into almost a blur in

the closed region. after just six iterations. The sixth iteration shows that the points are

almost completely scattered in the phase space. Had we progressed further in iterations, the

mixing would have been homogeneous and irreversible. The logistic map has a state space

function as given in Equation 2.4. In order to expand the state-space of the logistic map into

two dimensions, a second state, y, was artificially created. The y variable being depicted

modulo one at each step makes the points fold over within the unit square, otherwise the

points may have escaped the region. This modulo operation implies that in Figure 2.2(d) -

2.2(f) the points near the top and bottom edge are in fact closer to each other than they

appear; this is because the operation creates a cylinder parallel to the x axis.
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(c) (d)

(e) (f)

Figure 2.2: Six iterations of a set of states [x, y] passed through the logistic map. (a)
shows the first iterate (initial condition), which essentially forms a circle. Plots (b) through
(e) show the second to the sixth iteration of the circular initial conditions. It can be seen
that mixing occurs as we progress in iterations.
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Finally, dense periodic orbits refer to the state-space trajectory of a system. The

informal meaning or intuition of dense periodic orbits can be attained by thinking of

trajectories in the state-space that can be arbitrarily close to each other. Figure 2.3 shows

the trajectory of the Lorenz attractor in three-dimensional space. The solutions to the

Equation were computed numerically using MATLAB and only 50 seconds worth of data

are presented. This is why the “dense” nature of the orbits is not apparent, however longer

simulations would have produced an output whereby the trajectories would seem to overlap

each other; it must be emphasized trajectories never overlap in a chaotic attractor. More

data would not necessarily imply that the attractor would grow (or shrink) in size, only

that the trajectories would show more density. It is perchance that the shape of the Lorenz

attractor looks similar to that of a “butterfly”, finding another coincidence to the coining

of the term “The Butterfly Effect”.

So far, we have given conditions and their examples of how chaos comes about. We

now look at two systems that show chaotic behavior. Equation 2.4 describes the logistic

map in two dimensions. The logistic map, is an example of how chaos can arise from a

simple system, i.e complex systems are not a necessity for chaotic phenomena. It must

also be noted that the logistic map, a discrete-system that is represented by difference

equations, can display chaoticity with a single state variable(xk); yk is artificially created

in this example for the purpose of visualization in Figure 2.2 and is not considered a true

second state of the system.

xk+1 = 4xk(1− xk), (2.4)

yk+1 =

 xk + yk, if xk + yk < 1

xk + yk − 1, otherwise
(2.5)

On the other hand we have Equation 2.6 which describes the Lorenz system. According

to the Poincarè-Bendixson theorem, unlike discrete systems, continuous systems must have

at least three dimensions in their phase-space to produce chaotic behavior. The lorenz

system is a result of Edward Lorenz’s work on weather prediction and forms the basis of
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Figure 2.3: A diagram of the Lorenz attractor. This plot was generated via a 3-D plot in
MATLAB. The Lorenz equations were solved using MATLAB ode45 tool with a step-size
of 0.001 seconds. The simulation was run for 50 seconds. It is worth noting that the picture
could be made to look dense as a chaotic attractor by simply allowing for much more time
evolution of the trajectory. For this simulation the values for the parameters were the same
as used in Figure 2.1.

a mathematical model that describes atmospheric convection. By inspection it is apparent

that this system is also deterministic; that is, knowing the exact initial conditions, we can

tell the output after a certain time. This stands as an example that deterministic systems

too can become chaotic under certain conditions. For the Lorenz system, those conditions

are the values for the parameters σ, ρ and β (refer to Figure 2.1 for a set of values for these

parameters).

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(2.6)
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Figure 2.4: Strange attractors from an epileptic animal EEG. (a) shows the attractor
during an interictal epoch of 10 seconds whereas (b) shows the same for an ictal epoch.
These attractors were created using 10 seconds of EEG data from the same first channel,
expanding it into seven dimensions using Takens’ embedding theorem methodology and then
compressing into three dimensions, using orthogonal projection, for visual representation.
The trajectories may seem like they cut each other in 3D but that will not be the case in
higher dimensions of embedding. The attractor at seizure seems to occupy more volume
indicating that the trajectories separate from each other more. This intuition will be
corroborated with data presented later. The axis limits in both images are the same for
X,Y and Z.

2.4 Conclusions

A description of chaotic system behavior is incomplete without comparing it to random

or stochastic systems. It is imperative to understand the difference between chaotic systems

and stochastic ones and be able to separate the two from given data. While a detailed

discussion is irrelevant in our work, it suffices to say that in order to differentiate between a

chaotic output and a stochastic output we need to start with a test state in the trajectory

of the two systems and find the nearest neighbor to their respective test states in a nearby

trajectory and measure the difference in the two states after a few discrete time evolutions.

A chaotic system will have a difference which increases exponentially over time; the time

evolution of the differences in a stochastic system, however, will be randomly distributed.

For a more mathematical approach to distinguish between chaos and random noise, [42]

shows how ν, the correlation exponent can be used to distinguish between chaos and random
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noise and its relationship to the fractal (Hausdorff) dimension, D.

This has been but a concise introduction to the topic of systems theory and chaos.

Dynamical systems, nonlinear dynamical systems and chaos are by themselves topics of their

own, creating enormous interest in the scientific community. A more detailed description

of these topics is out of the scope of this chapter and would lose focus from our subject

matter - the treatment of epilepsy and the role of chaos as applied to its solution based on

principles of mathematics and engineering. For a more detailed study of nonlinear systems

and chaos, the avid reader is referred to an excellent book chapter in [134] or a tutorial in

[112].

Understanding chaos is an important aspect to our method of studying epilepsy. The

brain acts as a chaotic system and the basis for that will be presented in the later chapters.

As an interesting addition to the discussion in this section we present Figure 2.4 which shows

the orthogonal projection of attractors present in an epileptic brain. The attractors shown

here originally are of much higher dimension but their projection was taken for suitable

visualization on paper. Two epochs of data are used in the generation of these attractors.

One that is interictal (in between seizures) and another that is ictal (during a seizure).

Intuition from these images will be used later to better corroborate our findings.
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Chapter 3

THE LYAPUNOV EXPONENT

3.1 Introduction

In the last few decades a great amount of mathematical and engineering principles have

been brought into medical studies. This culminates from the idea that our body is primarily

governed by chemical reactions and electrical signals. Thus, when it came to matters of

the brain, it was apt to try and apply the already well developed theories of electrical

engineering into interpreting its function on a neural level; since, neurons communicate

with each other via electrical signals. Theories ranging from the use of Fourier analysis, to

those of nonlinear dynamics and chaos were being reported in the literature. In recent days

even the use of artificial neural networks have been brought in as well [160] to better model

the behavior of the brain. It is essential at this point to note that modeling the output of

the brain accurately, i.e the EEG from all channels, is overly ambitious due to mathematical

and computational constraints and limited knowledge of the brain’s underlying operations.

However, modeling certain aspects or states of the brain may be viable.

More recently, improvements in nonlinear time series analysis techniques brought about

better characterizations of the spatio-temporal dynamics of epileptic brain states, [82]. The

Lyapunov exponent arises from nonlinear time series analysis as a metric for chaoticity of

a nonlinear chaotic system. Thus, in their work, Iasemidis et al. have shown how the

brain behaves as a strange chaotic attractor [64] and how during a seizure its chaoticity

varies before, during and after a seizure. The Lyapunov exponent is a nonlinear dynamical

measure; which means that since the brain is highly nonlinear and chaotic, the Lyapunov

exponent, although a univariate measure, has been shown in a great number of studies to

be a very effective tool to characterize human EEG data [64, 58, 152, 54, 60, 61, 100, 125].

Therefore, this method has been adopted in this study and implemented on EEG data
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collected from rats albeit with some modifications.

3.2 Lyapunov Exponents

For dynamical systems, the Lyapunov exponent is a quantity that characterizes the

separation rate of two nearest neighbor trajectories in the phase-space of the system.

Nearest neighbor trajectories are found based on a distance metric, euclidean distance

for example. Mathematically, the Lyapunov exponent can be described by the following

linearized approximation

δL(t) ≈ eλtδL0 (3.1)

where, δL0 is the initial separation of the nearest neighbors and δL(t) is their distance

after time evolution t. In Equation 3.1, λ is the Lyapunov exponent along the direction

being considered. In a dynamical system, there will be as many Lyapunov exponents as

there are dimensions in its phase-space. The Lyapunov exponent in each case represents

the separation rate in the directional orientation of the initial separation vector δL0.

Of this spectrum of Lyapunov exponents, one in particular is of utmost interest in the

study of chaotic systems - the maximum Lyapunov exponent (Lmax). Its importance is due

to the fact that Lmax being positive is an indication of a system being chaotic. However, for

a chaotic attractor to be present, the overall dynamics must be dissipative; i.e. the system

must be globally stable and the sum of all the Lyapunov exponents must be negative [120].

The larger Lmax is, the more chaotic the system. A system being more chaotic simply

implies that the rate of separation is higher. This has been characterized as the Lyapunov

time for chaotic systems and is strictly dependent on its dynamics. Electrical circuits that

are chaotic have very short Lyapunov times (milliseconds) versus the solar system which

has Lyapunov time in the order of millions of years.

Given a system model with n equations, computing the spectrum of Lyapunov exponents

is achieved by solving all the equations for a set of nearby initial conditions and allowing

them to expand through the equations. The growth of the vectors defined by the initial

conditions is measured and at every time evolution a Gram-Schmidt Reorthonormalization
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procedure is performed to ensure that the vectors maintain proper phase-space orientation

and do not all lean towards the direction of the most rapid growth, [161]. The rate of the

growth of these vectors can then be used to compute all the Lyapunov exponents. However,

there are cases when a mathematical model of a system is not available, only experimental

data. In those cases, particularly to estimate the chaoticity of a system, only Lmax is

required and can be estimated using the methods described in the following section.

3.3 Numerical Computation of Lyapunov Exponents

It has been shown in [58] that EEG in humans and animals are not random stochastic

signals as they were thought of in the past. Rather, they can be described as electrical

activity generated by a chaotic oscillator that is part of the brain’s mechanism. Figure 2.4

is a graphical representation in three dimensions of an attractor generated from EEG data of

an epileptic animal. This data is proof that the epileptic attractor is strange in nature. As

such, the chaoticity of a strange attractor can be quantified by means of its Maximum

Lyapunov Exponent (Lmax). In the absence of a dynamical model (state equations),

computing the Lyapunov exponent means relying on Taken’s embedding theorem which

allows a single observed variable to be expanded into a higher dimensional state-space. The

Lyapunov exponent is then computed as a mean logarithmic deviation of the trajectories in

the higher dimensional space over time. The following describes a few notable algorithm’s

that can achieve just that.

3.3.1 The Wolf Algorithm

The first step in computing the Lyapunov exponent is to create a delayed vector of

observed values from a time series. [110] and [139] have shown that this delayed signal

contains within them all the state variables of the system. This is due to the fact that

delay coordinate embedding is a diffeomorphic transformation. That is to say the embedded

trajectory has the same topology as the original trajectory in the phase-space of the system.

In the case of EEG, this method can be used to reconstruct the multidimensional state space
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of the brain’s electrical activity from each EEG channel. For example, if x(t) is a n × 1

dimensional vector of duration T recorded from an EEG channel and sampled every Ts

seconds, then X̄i(t) is the n× p dimensional reconstructed signal such that

X̄i(t) = [x(ti), x(ti + τ), . . . , x(ti + (p− 1) ∗ τ)] (3.2)

where, τ is the delay between successive components of X̄i(t) and it rarely, if ever, is the same

as Ts. If a phase space plot of the n× p dimensional vector X̄i(t) were to be created, then

it would look like that of a strange chaotic attractor, [58]. For reference, such an attractor

is shown in Figure 2.4. The complexity of this attractor is measured by its dimension D

and Iasemidis et al have shown that for a sinusoidal attractor, the value of D = 1 and for

that of a chaotic attractor, such as those found in EEGs of epileptic patients, to be within

D = [2.5, 2.7].

A description of how D can be estimated from time series data via its state space

correlation dimension ν is given by [3, 41]. The measure of chaoticity of these attractors

can be defined via either their Kolmogorov Entropy [43] or their Lyapunov exponents [41].

As mentioned previously, an attractor is defined as chaotic if the largest of all its Lyapunov

exponents (Lmax) is positive.

The method for choosing p, the embedding dimension of the state space of the signal

x(t), was proposed in [139] to be p ≥ (2∗D+1). Although the dimension of an attractor can

be fractal, that of the embedded signal, p, cannot. It is worthwhile to mention that the brain

is a nonstationary system and as such never reaches steady state; so its value for D is never

constant. This is why the time window of T = 10 seconds is chosen so as to better satisfy

the assumption of stationarity for the signal. While the embedding dimension , p, should

be changed from epoch to epoch, the value of p = 7 is kept fixed for pre-ictal, post-ictal

and interictal stages. The justification is that the existence of irrelevant information in

dimensions higher than 7 might not influence the estimated dynamical measure by a great

degree and also the reconstruction of the state space with high p suffers more from the short

length of moving windows that are used to handle non-stationary data, [62].

26



Figure 3.1: Diagram of a single evolution of the perturbed fiducial trajectory in ∆t amount
of time. The fiducial trajectory is the one associated with time ti.

Originally, Wolf had proposed an algorithm to estimate Lmax from stationary data [161],

however, later, Iasemidis et al. modified this algorithm to compute what is known as the

average short-term maximum Lyapuonv exponent (STLmax) for non-stationary EEG data

on short time windows [61]. STLmax can be calculated as follows:

STLmax =
1

Na∆t

Na∑
i=1

log2
|δX̄i,j(∆t)|
|δX̄i,j(0)|

(3.3)

where, δX̄i,j(0) = X̄(ti) − X̄(tj) is the displacement vector at time ti, i.e. a perturbation

of the fiducial orbit at ti, and δX̄i,j(∆t) = X̄(ti + ∆t)− X̄(tj + ∆t) is the evolution of this

perturbation after time ∆t. In other words, ∆t is the the time over which δX̄i,j(0) is allowed

to evolve in the state space. When the evolution time, ∆t, is given in seconds, STLmax

has units in bits/sec. Na is the number of local Lyapunov exponents that are estimated

within a duration T of the data segment. This gives us the following relation between T ,

the length of a segment of data, and ∆t, the evolve time:

T = (N − 1)∆t ≈ Na∆t(p− 1)τ (3.4)

Figure 3.1 is an attempt to diagrammatically show one evolution of the perturbation of the

fiducial trajectory in a time ∆t. Computations for STLmax are generally carried out by

breaking up a data record into T second long windows for all channels.
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3.3.2 The Rosenstein and Kantz Algorithms

The principal flaw in Wolf’s algorithm was in the re-selection process wherein after

every evolve time, ∆t, a new candidate for the nearest neighbor to the fiducial trajectory

is selected. This process lends itself to increased error in the presence of even the slightest

amount of noise in the data and is also sensitive to attractor reconstruction parameters such

as embedding delay and dimension [21]; rendering the Wolf method useless to any real data.

In the ‘90s two other groups formulated new methods to estimate the Lyapunov exponent

in order to circumvent this error [120] and [71].

In the Rosenstein method [120], Takens’ embedding theorem is applied to reconstruct

the state-space in higher dimensions. Then an initial fiducial trajectory is chosen along

with its nearest neighbor trajectory. The average divergence between two points, one on

the fiducial and another on its nearest neighbor trajectory, L(t), at time t, is computed

using the following equation,

L(t) = CeLmaxt (3.5)

where, C is a constant that normalizes the initial separation. In order to compute Lmax

numerically, the trajectories are allowed to evolve over the entire finite data set of time T .

Then the log distance versus evolution time is plotted and the gradient of the initial part

of the log distance curve is evaluated as the Lmax for one trajectory pair. This is because

we can take logarithms on both sides of Equation 3.5 to get

Lmax =
1

t
ln
L(t)

C
(3.6)

Similarly, for the rest of the data set, the process is repeated by moving forward, a number

of samples at a time, in the phase-space and computing an estimate for Lmax with the

remaining data set. The average of all such Lmax values is the final result from the

Rosenstein algorithm. One has to be careful in how many times the operation is repeated

since near the end not too many samples are left to see the divergence clearly.

The Kantz algorithm [71], also starts from computing the expanded phase-space
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Figure 3.2: Time vs log distance curves of the (a) Rosenstein and (b) Kantz algorithm
applied to data from a Lorenz attractor sampled at 100Hz. The straight lines show the fit
that is used and its gradient is the value for Lmax. The value for Lmax from (a) and (b)
respectively are 1.3870 and 1.4877. 1.5 is the theoretical value; thus Kantz algorithm works
better in this case.

trajectory. However, unlike the Rosenstein algorithm, instead of selecting a single nearest

neighbor to track, the Kantz algorithm chooses a radius around the fiducial and computes

the average of how all the trajectories within the radius separates from the fiducial. The

log distance vs evolve time is plotted and like the Rosenstein algorithm, the gradient at the

beginning of the plot is the value for Lmax. This uses an exponentially greater number of

trajectories and thus is more robust to perturbations in the signal. It must be noted that the

first few points in the evolution is discarded since the maximal Lyapunov exponent at that

time has not overtaken the other stable Lyapunov exponents. Also, the Kantz algorithm is

not too sensitive to the embedding dimension and so a few of them can be used at the same

time and the average of the Lmax computed can be used as the final result. For a detailed

explanation of the Kantz algorithm and its implementation in the TISEAN package, refer

to [50]

Figure 3.2, shows how these two methods are employed in computing Lmax for a Lorenz

attractor. The data was sampled at 100 Hz. The log distance curve in both cases was

allowed to evolve for 500 samples. The straight line has a gradient that is the estimate of
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Table 3.1: Comparison of Lmax values from the Kantz, Rosenstein and Wolf algorithms
to the theoretical value.

Method Value Error %

Kantz 1.487 0.867

Rosenstein 1.387 7.53

Wolf 1.3318 11.21

Theoretical 1.50 N/A

Lmax. The Kantz algorithm correctly estimates the value for Lmax at 1.4877 followed by

the Rosenstein Lmax of 1.387. It must be noted that the Wolf algorithm can lead to greatly

incorrect values as it did with an Lmax = 1.3318 on the same data (see Table 3.1 for a

comparison). Hence the Kantz algorithm, for its higher reliability in estimating Lmax, is

what we utilize in our work.

3.3.3 Parallel Computation of Lyapunov Exponents

Extensive offline investigations are required to optimize the input parameters for the

Kantz algorithm and its output to suit our needs in seizure detection/prediction. Our

choice of Kantz algorithm for computation of Lyapunov exponents of chaotic dynamical

systems was presented earlier. The flowchart in Figure 3.3 shows the algorithm and it’s

parallel implementation using Matlab’s parfor. These computations are naturally parallel

and lend themselves easily to rapid prototyping for this application. In the implementation,

Lyapunov exponents are calculated over windows of T = 10 seconds of data as mentioned

in the previous subsection 3.3.1. Note, a single EEG recording can be as long as 178 hours

(1 week) or more. These 10 second segments overlap with an offset of 2 seconds between

two consecutive segments. The computations over 10 channels of EEG data (iteration

counter i in Figure 3.3) are parallelized using parfor, a loop based parallelism mechanism

provided in Matlab. But this limits the computation to just one node with multiple cores

in a cluster. This, loop level coarse-grained parallelization over channels was used as the

first step towards parallelization. It was found inadequate for the large number of offline

computations needed for parameter optimizations. So, HPCmatlab (A cluster computing
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tool developed at ASU, [44]) was used to divide the EEG data as work segments (j iterate)

or epoch among Message Passing Interface (MPI) processes. Each MPI process calculates

the Lyapunov exponent for its part of data segments (10 seconds) in the EEG data file and

at the end, results from all processes are gathered in one single array on the root process.

This has resulted in a hybrid programming model where data segments are distributed on

different nodes via MPI and parfor is used within a node to parallelize the computation on

10 different channels.

In the case of real-time implementation, the ith iterations are performed using MATLAB

parfor the jth iterates are basically advancements in time. So in essence Lmax is computed

for every 10 seconds of past data moving forward 2 seconds in realtime for all channels. The

computer used to perform the real-time application is capable of acquiring data, filtering it

and computing Lmax for all channels within less than 0.6 seconds!

3.4 Entrainment and the T-index

The paired T-test is a well known statistical measure of relatedness. It is used to reject

the null hypothesis that the means of two samples are the same.

H0 : D̄ = µ1 − µ2 = 0 (3.7)

D̄ is the difference in the means of the samples. For a given pair of samples, the T-index

can be computed as in Equation 3.8.

Tind =
µ1 − µ2√
σ̂2
1
n1

+
σ̂2
2
n2

(3.8)

where σ̂i and ni are the standard deviations and number of samples of the respective data

sets. For a specific case, as in this study, if the length and standard deviation of both pairs

of samples are the same, the T-index can be computed as:

Tindij =
|D̄ij |
σ̂ij√
n

(3.9)

The T-indices in this study were computed using Equation 3.9, at time t and a moving

window of Twin = [t, t − n ∗ T ] seconds across all possible pairs of Lyapunov exponents
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that were computed on each electrode. It was seen previously that a window of 10

seconds help establish stationarity in the data and that is the length T used in computing

Lyapunov exponents. If the true mean of the differences D̄ij is equal to zero, and σ̂i

are independent and normally distributed then Tij is asymptotically distributed according

to the t-distribution with (n-1) degrees of freedom. It was shown in [123] that these

independence and normality conditions are satisfied. The null hypothesis in this case is

that of desynchronization of sites i and j when Tindij is significantly different from zero at

a predefined significance level α. The desyncrhonization condition between the electrode

sites i and j, as detected by the paired t-test, is

Tij > tα/2,(n−1) = Tthreshold (3.10)

where Tthreshold, is the 100(1 − α/2) critical value of the t-distribution with (n-1) degrees

of freedom. If Tij ≤ Tthreshold then the null hypothesis cannot be rejected, i.e. the sites

may or may not be desynchronized. In this study n = 60 and α = 0.01, which makes

Tthreshold = 2.662. So, whenever the value of the T-index is above 2.662, we can say with

99% confidence that the pair of electrodes are not entrained. This is a sufficient but not

necessary condition. Iasemdidis et al. have shown that to make any claims about sites being

entrained when the T-index falls below 2.662, there must be a progressive convergence over

time of the T-index into a value less than the threshold [57]. In another study the same

researchers use quadratic zero-one programming in order to select the best pair of sites

(using T-index) and track their entrainment over time to correctly predict 90% of seizures

[54]. Thus the time-profile of Tindij , if chosen appropriately, may allow us to make a claim

about synchronicity or entrainment of the two channels.

3.5 Conclusion

This chapter discussed the history and development of the Maximum Lyapunov

Exponent and its formulation. The Lyapunov exponent, as was mentioned earlier, is a

measure of chaoticity in a chaotic attractor. It was shown how among three methods of
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computing Lmax from sampled time series data, the Kantz algorithm stands out as the

most robust. A measure of synchrony between two electrode sites was introduced through

the use of the paired t-test. Results from the computation of Lmax and their t-tests will

be presented later. It will be seen that the time profile of Lmax on all channels of EEG is

quite distinct during a seizure and that certain other characteristics can help us generate a

warning for an impending seizure. The progression to zero in the T-indices that Iasemidis et

al. presented here will also be shown. The next chapter discusses a measure of connectivity

known as the generalized partial directed coherence.
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Chapter 4

GENERALIZED PARTIAL DIRECTED COHERENCE: A MEASURE OF

CONNECTIVITY

4.1 Introduction

In 1969, when Clive Granger formulated his famous theory of causality [40], little did he

know what a wide impact it will have on the understanding and usage of the idea of causal

relationships in determining connectivity among systems. Its simple, really! Two signals can

seem to be unrelated and independent by studying their present measurements; however,

if knowledge of the past of one signal allows better prediction of the future behavior of the

other, then it is said that the first signal Granger causes the second. Although Granger

formulated this as an econometrics problem, it got wide acceptance in the engineering

community in determining correlation and coherence between signals.

A formal definition of Granger causality as given in [164] starts with the assumption that

a signal U Granger causes V . A model is constructed to express the relationship between

the current output of V and its past information V − and the past information of U−. This

function can be written as V = f(V −, U−). From the values obtained in the sampled signal,

the parameters in the model f(V −, U−) have to be estimated and then the predictions of

V based on V − alone and on V − and U− are generated. In both cases, innovations in the

predictions may be quantified by the variance of the prediction errors for two-dimensional

modeling, var(V |V −) and var(V |V −, U−). The Granger causality of U to V , GU→V , is

then defined by

GU→V = ln
var(V |V −)

var(V |V −, U−)
(4.1)

A similar representation of Y Granger causing U can also be expressed by interchanging

the variables in Equation 4.1. Knowledge of GU→V and GV→U means that a bi-directional

causality between the signals can be measured separately. However, it relies on accurate
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estimation of the model. Since many signals, especially electrophysiological ones, can be

nonlinear and/or time-varying in nature, some researchers have attempted to create both

linear and non-linear parametric models in their attempt to obtain a more reliable value for

causality [164, 88, 48]. Another causality termed Gersch causality was proposed by Gersch

in the ’70s, however Albo et al. have shown that it fails to correctly identify the true source

of a signal in a mix of three, if at least one of them has a high signal-to-noise ratio (SNR)

irrespective of the actual connectivity pattern [4].

Since true connectivity in many electrophysiological signals, e.g. EEG, is unknown it

is difficult to say with certainty whether one method of modeling is better than the other

[17]. In most cases, simulated data are utilized in the beginning to fine tune the algorithm

and then they are applied on actual sampled signals with a-priori knowledge of certain

anatomy is employed to support neuronal connectivity paths. This is a fundamental problem

when studying directional connectivity between brain areas. i.e, causality relationships

between scalp EEG does not necessarily imply the same relationship is present between

underlying neural sources. Thus [37] shows how the use of MVAR modeling and Independent

Component Analysis (ICA) is able to determine the temporal activation of the neuronal

sources as well as their approximate locations. In [18] Cheung et al. utilized a state-space

based estimation of the multivariate autoregressive (MVAR) models for cortical connectivity

assertions from EEG. Typically fitting an MVAR model to data also means that the noise

or innovations from a parameter estimation problem be white, otherwise we may be left

with biased models. The challenge is greater for nonlinear models, since in those cases the

noise models must be nonlinear in nature too [47].

In the of case of EEG data, signals are acquired from a broad array of sensors distributed

spatially over the human brain and a considerable amount of mixing of signals is involved.

The human skull acts as a low-pass filter in both spatial and temporal domains, so in [135]

Srinivasan et al. have shown that adequately sampling the human EEG would require

a minimum of 128 sensors to respect a spatial Nyquist sampling theorem. Given such
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large inter-connectivity patterns in the brain, it is necessary for us to develop fine tuned

methods to estimate these connections as correctly as possible. Baccalá et al have done

an extensive study using graph theoretical approach to describe the effective connectivity

dynamics behind epileptic seizures in the brain. On the other hand, laying out a platform

for identifying what is “coupling” versus what is “causal” (in a Granger sense) is also crucial;

the effectiveness of coherence and partial coherence and also directed coherence and partial

directed coherence computed from MVAR processes as metrics for coupling and causality

respectively is evaluated in [29].

Although a rudimentary method of computing Granger causality was produced earlier,

a more robust method would be welcome; one that deals not with stochasticity of signals,

rather their inherent underlying dynamical properties. The potential benefit of having a

model based measure fine tuned for a specific task such as quantifying coupling or coherence

can be enormous in conclusively estimating the source of activity within the brain. One of

the early lines of work to use the idea of Granger Causality in EEG was one by Saito et al.

[126]. Their method known as the Directed Coherence (DC), was a unique decompositon

of the ordinary coherence function into two directed coherences. The limitation being that

the algorithm would break down as the number of channels increased beyond only 2. In

their work, Kaminski and Blinowska [70], also attempted to formulate another measure for

connectedness known as the Directed Transfer function (DTF). Although a good measure

with the capacity to involve more channels, the DTF would rank interaction among brain

sites, i.e. EEG channels, with respect to total inflow only of information from all channels

into one.

In [8], Baccalá et al. tested the use of DC and Granger Causality on EEG data and

consequently formulated the Partial Directed Coherence (PDC) [9]; this, unlike the DTF,

would offer strength of connectivity as a matrix of information flow from every channel

to the other. In [138] it was shown that a PDC of zero indicates an absence of a direct

connection between time series. In [39] Gotman and Letvova proposes the use of coherence
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and phase spectrum linearity to show that the amygdala is more likely to lead when seizures

have regional onset while on the other hand the hippocampus is more likely to lead in

focal-mesial seizures. Mean phase coherence as another measure for connectivity, as elicited

in [97], shows that there is a preictal drop in synchronization; much like the results of

Iasemidis et al using Lyapunov exponents [60].

Astolfi et al. used PDC and its squared value to show that using a SNR of at least 3 in

the signals, both measures were able to correctly identify connectivity patterns, [7]. The use

of Dual extended Kalman Filter (DEKF) to estimate time varying MVAR parameters was

introduced in [106] to compute time varying PDC and show that seizures are detectable in

neonatal epileptic patients. However, Schelter and colleagues have shown that PDC suffers

from interpretability due to its normalization of all coherence measures to the [0, 1] interval

and thus proposed the use of a renormalized PDC measure [128]. Following their previous

work, realizing that PDC suffered from correlated noise structures (mean and variance) in

the innovations processes involved, Baccalá et al. formulated the concept of Generalized

Partial Directed Coherence (GPDC) [10]. In their work, Yasumusa et al. [138] tested the

performance of this GPDC algorithm on EEG data and helped to show how the focus could

be located through its use. In more recent years GPDC has been used for the purpose of

focus localization using EEG data correctly in 2 out of 3 patients [154]. The same researches

later showed how magnetoencephalography (MEG) data can be analysed with GPDC to

localize seizure focus with or without the presence of interictal spikes [76]. Other more direct

forms of coupling have been investigated more recently. As an example among many, in

[141] the authors used GPDC in order to assess information flow between medial prefrontal

cortex (mPFC) and hippocampus of the rat brain, under isoflurane anesthesia and kainic

acid-induced enhanced neuronal activity.

The use of GPDC in all these studies implies that it can be a very useful tool for

estimating a measure for connectivity in determining the focus in epileptic patients. The

GPDC algorithm is described in detail in the following section. Before proceeding to the
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algorithm it must be mentioned that computing the GPDC takes a fair amount of processor

time. A short section of data is first modeled using MVAR process, then the GPDC is

evaluated at discretized frequencies of interest. Typically this frequency vector can have 100s

of points. Although all computations are linear, evaluating GPDC for human data where the

number of channels can be anywhere between 16 and 256 and the data are sampled upwards

of 1KHz to 30KHz for days and even weeks in some cases, these computations can take in the

order of days to complete. This calls for a parallelizable solution to the GPDC algorithm on

EEG data. In our work we have utilized tools such as the supercomputing cluster available

at ASU and the Gordon cluster at San Diego Supercomputer Center through the NSF

XSEDE program. Another parallelizable approach through the use of GPUs for computing

GPDC was presented in our work in [35, 36]; this solution implies that GPDC can be

computed real-time without the need for complicated supercomputing structures. The next

section describes the formulation of the GPDC algorithm.

4.2 Computing the GPDC

In computing the GPDC, the first step is to assume a set of simultaneously sampled time

series with N channels and that they can be modeled using the following MVAR equation :


x1(n)

...

xN (n)

 =

p∑
k=1

Ak


x1(n− k)

...

xN (n− k)

+


w1(n)

...

wN (n)


⇒X(n) =

p∑
k=1

AkX(n− k) + W (n) (4.2)

where, p is the MVAR model order (lag), X(n) is the time series with N channels, xi(n)

is the time series in the ith channel, and W (n) is the vector innovations process having

zero mean and covariance Σw . Zero mean for the innovations process is necessary to have

unbiased parameters from modeling. From Equation 4.2, it follows that the discrete time
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transfer function of the MVAR process model can be written as

H = Ā−1(f) =

[
I −

p∑
k=1

Akz
−k

]−1∣∣∣∣∣∣
z=e−2πj(f/fs)

(4.3)

where,f is the range of frequencies of interest and fs is the sampling rate. Ā(f) is a matrix

of frequency dependent system coefficients with elements as shown below

Āij(f) =



a11(f) a12(f) · · · a1N (f)

a21(f)
. . .

...
...

... · · · aij(f)
...

aN1(f) · · · · · · aNN (f)


(4.4)

Here, i and j are indices of the rows and columns respectively. The GPDC from channel j

to i, computed at each frequency is then found by

πij(f) =
1
σi
Āij(f)√

N∑
k=1

1
σ2
k
Ākj(f)Ā∗kj(f)

(4.5)

Using Equation (4.3), we have

Āij(f) =


1−

p∑
k=1

aij(k)e−2πjFk , if i = j

−
p∑

k=1

aij(k)e−2πjFk , otherwise
(4.6)

where F = f
fs

is the frequency at each point normalized to the sampling rate. In computing

the GPDC as in Equation (4.5), the denominator normalizes the GPDC coefficients

(Equations (4.7), (4.8)). The normalization is such that the following two conditions

always hold

|πij(f)|2 ≤ 1 (4.7)

and

N∑
i=1

|πij(f)|2 = 1 (4.8)
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Figure 4.1: (a) GPDC computed from simulated data generated using Equations 4.9 -
4.13. (b) Average GPDC computed by taking mean of all frequencies in each channel to
channel interaction. This provides a simplistic view of the strength of interaction between
channels.

This implies that the squares of each individual GPDC term evaluated at each frequency

cannot be greater than 1 (Equation (4.7)) and also that the sum of the squares of the GPDC

must equal 1 at all frequencies (Equation (4.8)) .

4.2.1 A Case Study Using Simulated Data

Here we present results from the implementation of the GPDC algorithm on simulated

data. The data was generated using the following set of equations found in [9]

x1(n) =0.95
√

2x1(n− 1)− 0.9025x1(n− 2) + w1(n) (4.9)

x2(n) =− 0.5x1(n− 1) + w2(n) (4.10)

x3(n) =0.4x2(n− 2) + w3(n) (4.11)

x4(n) =− 0.5x3(n− 1) + 0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w4(n) (4.12)

x5(n) =− 0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w5(n) (4.13)

where, xi corresponds to the signal in the ith channel and wi is the noise in the

corresponding channel. Figure 4.1(a) shows the GPDC computed on data generated from

this set of signals. The strength of interaction in the parameters of the delayed signals in the
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Figure 4.2: Uncertainty entry point in a model expressed in a divisive form.

equations are clearly reflected in the GPDC versus frequency plot. Figure 4.1(b) essentially

produces a single value for each channel j to channel i interaction by taking an average over

all frequencies. While the average was chosen as a metric to simply the results for this case,

a better one would be to compute the L2 norm for each channel to channel interaction since

that would provide us a better estimate of the “energy” in the interaction.

4.3 Choice of GPDC Parameters

As was shown in section 4.2, the computation for GPDC begins with estimating a

Multivariate Auto-Regressive (MVAR) Model of the data. MVAR modeling requires the

choice of two crucial parameters. The first one is the model order, p, which is essentially

the amount of delays considered in generating the MVAR model. Too low a value of p will

underestimate the model, since not enough data points are being considered; too high a

value has the problem of over fitting the data i.e. fitting noise. The second factor is the

length of data (number of samples) that is used to create a model. If a system is stationary

and linear, the length of the data is a non issue. As long as the signal is longer than

the lowest frequency it contains, we can model the process appropriately. However, for

non-stationary data the length must be small enough so that it seems stationary but not so

large that the modeling error increases greatly. In this work, a method for determining a

“good choice” of the length of the segment of data (in seconds), denoted hereon as T , and

the MVAR model order, p, is shown.

Details of the different types of uncertainties that can appear in system models are
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discussed in [166] . Following along those lines, we start by assuming a divisive uncertainty

model as is shown in Figure 4.2. u is the input to the system , P0, and ŷ is its true

(estimated) output. y is the output mixed with the uncertainty (noise). Thus the error

of the system can be represented as e = y − ŷ. From Figure 4.2 we can write down a

representation for P , the system with uncertainty as

P = P0

(
1

1−∆d

)
(4.14)

and, using power spectrum notations

Φy(jω) = P (jω)Φu(jω) (4.15)

Φŷ(jω) = P0(jω)Φu(jω) (4.16)

where, Φy(jω), Φŷ(jω), Φu(jω) are the power spectrum of the signals y, ŷ and u respectively.

From Equation (4.14) it follows that ∆d(jω) can be written as

∆d(jω) =
P (jω)− P0(jω)

P (jω)
(4.17)

∆d(jω) =
P (jω)Φu(jω)− P0(jω)Φu(jω)

P (jω)Φu(jω)
(4.18)

∆d(jω) =
Φy(jω)− Φŷ(jω)

Φy(jω)
(4.19)

∆d(jω) =
Φe(jω)

Φy(jω)
(4.20)

Thus, from a set of sampled signals the norm of the error system can be computed and a

measure of modeling error may be estimated. It makes sense to consider the L2 norm since

it appears naturally in the signal spaces. In order to do this in practice, 5 hour windows

of EEG data were collected from a rat. No stimulation was provided during this time.

The 5 hour segments were then divided into T second long pieces. MVAR modeling is

then performed on each T second long data by varying T between 5 and 50 seconds with

increments of 5 seconds; in other words T = [5 : 5 : 50] and simultaneously varying model

order between 1 and 50 with unit increments for each value of p (i.e. p = [1 : 1 : 50]). The

models obtained for each pair of values (T , p) were then tested on the data by computing
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Figure 4.3: MVAR modeling error from 5 hours of data collected from Rat 10
(non-epileptic) with respect to (a) changing order, p, and (b) segment length, T .

the residual error, e, between the actual data and the estimated data. The final step is to

compute the L2 norm of the error system. This was done by applying the following formula:

‖∆d(jω)‖L2
=

∥∥∥∥FFT [e(t)]

FFT [y(t)]

∥∥∥∥
L2

(4.21)

where, y(t) and e(t) are the output and error signals respectively, FFT denotes the Fast

Fourier transform operation. Using Equation 4.21 the L2 norm of the error system for each

pair of values of T and p are computed for each channel and all the 3600× 5/T segments of

data. The average of the norms among each channel is computed and then averaged over

all the segments of data giving us a single real value for each pair of (T , p). Finally we have

a matrix of values for every combination of (T , p) which is used to produce plots as shown

in Figures 4.3, 4.4, 4.5.

Figure 4.3 uses data from a healthy (non-epileptic) rat while Figures 4.4 and 4.5 is from

epileptic animals. The reason for showing these three different cases is to emphasize on our

properly chosen model order p, which we will justify shortly. The first subplot in Figures

4.3, 4.4, 4.5 (a) shows the L2 norm of error vs. model order over all segment lengths. The
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Figure 4.4: MVAR modeling error from 5 hours of data collected from Rat 14 (epileptic)
with respect to (a) changing order, p, and (b) segment length, T .

plots for the 10 cases of T in each case are indistinguishable in the plots owing to the fact

that they are very close to each other. The second subplot is for error vs order by taking

average of all segment lengths. Finally, the last subplot is the same as the second one but

with logarithmic scale. The first subplot in Figures 4.3, 4.4, 4.5 (b) shows the L2 norm

of error vs. segment lengths over orders 12 through 50; it made little sense to consider

orders smaller than that since under-fitting would cause too much error and bias in our

interpretation of the results. The second subplot is for error vs segment lengths by taking

average of the chosen model orders between 12 and 50. Once again, the last subplot is the

same as the second one but with logarithmic scale.

Careful consideration of the second and third subplot in Figures 4.3, 4.4, 4.5 (a) shows

that the error does not significantly decrease after model order is increased beyond 20.

Therefore in this study p = 20 was chosen for all GPDC computations. Likewise, a scrutiny

of Figures 4.3, 4.4, 4.5 (b) shows that the error norm increases with increasing length of the

segments. This is justifiable because, even for the maximum MVAR order of 50, a segment

length of 50 seconds when the data is sampled at 512 Hz may have too many samples and

cause under-fitting. So choosing a very high value for T is unadvisable. On the other hand,
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Figure 4.5: MVAR modeling error from 5 hours of data collected from Rat 13 (epileptic)
with respect to (a) changing order, p, and (b) segment length, T .

choosing too small a value for T will cause over-fitting and that should be avoided too.

Thus, as a compromise the segment length is chosen as T = 10 seconds which still provides

a relatively low error; this is also in lieu of the value used in computing the Lyapunov

exponent where T = 10 seconds helped uphold stationarity properties. Therefore from here

on, all computations of MVAR models are done with this value of segment length.

4.4 Conclusion

The algorithm for computing the Generalized Partial Directed Coherence was described

in this chapter. One remark that must be mentioned about the scaling term in the

denominator of Equation 4.5 is that it provides a ranking of outflow of information/energy

with respect to total outflow of information from xj to all other channels xi. This is in

stark contrast to the DTF method in [70], where interaction of the channels is ranked with

respect to total inflow of information to each individual channel. For detection of the focus

sites in an epileptic brain, where the focus is assumed to drive other parts of the brain

into a seizure, it is worthwhile to be able to look at both outflow of information as well

as inflow. The GPDC as a metric for causality allows us to achieve just that. For any
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interested reader, an excellent review paper has been presented by Baccalá et al on the

topic of directed coherence and Granger causality in [8].
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Chapter 5

EXPERIMENTAL SETUP

5.1 Introduction

In this chapter we look at the experimental techniques and setup used during the course

of this study. A number of different components came together in the proper setup of a

test-bed for studying epilepsy. The animals, and how they were made epileptic is discussed

first. Next, we describe in detail the electronics involved in collecting data and performing

stimulations in multiple sites of the brain followed by a description of the actual stimulation

waveforms utilized in the study. The software environment (GUI) that helps control all these

functions are briefly touched upon as well. All in all, by the end of the chapter the reader

would be left with a thorough understanding of the entire procedure of carrying out such

experiments.

5.2 Preparation of Animals

The animals used in this study were male Spraque Dawley rats [45], weighing between

200 - 225 grams, from Harlan Laboratories. All animal experimentation used in the

study were performed in the Laboratory For Translational Epilepsy Research at Barrow

Neurological Institute (BNI) upon approval by the Institutional Animal Care and Use

Committee (IACUC). The protocol for inducing chronic epilepsy was described previously

in [156]. This procedure generates generalized convulsive status epilepticus (SE) [24] .

Although electrical stimulation can be used to produce SE in animals [91, 104], it has been

shown that it is not the most effective method. Thus, status epilepticus was induced by

intraperitoneal (IP) injection of lithium chloride (3 mmol/kg) followed by subcutaneous

(SC) injection of pilocarpine (30 mg/kg) 20-24 hours later. Following the injection of

Pilocarpine, the EEG of each rat were monitored visually for clinical signs of SE noted
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Figure 5.1: Diagram of surgical placement of electrodes in the rat’s brain (top view).

behaviorally by the presence of a Racine level 5 seizure (rearing with loss of balance [119]).

At EEG Stage V (approximately 4 hours after pilocarpine injection) SE was stopped using

a standard cocktail of Diazepam 10 mg/kg, and Phenobarbital 25 mg/kg, both IP. The rats

were then kept under visual observation for 72 hrs within which all measures were taken

to stop them from deceasing. In the event that none of the methods to keep them alive

worked, the animals were euthanized.

After SE was successfully induced in the animals, they were allowed five weeks for the

seizure frequency to stabilize. Following this five week period, the animals were taken into

surgery and an electrode array, as shown in Figure 5.1, were implanted into their brain. Not

including the reference and ground connections, each rat had 10 electrodes implanted. From
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this point onward, the electrode names are abbreviated from what is shown in the Figure

to F3, F4, LT, RT, LA, RA, LM, RM, LL, RL, corresponding to channels 1 through 10 as

recorded in the EEG. After surgery, each animal was allowed a week before being connected

to an EEG machine. The referential voltages from each of the 10 electrodes mentioned

was then recorded using an EEG machine, an Intan RHD2000 development board or Xltek

Neurolink IP 128 depending on the circumstance.

5.3 Electronic Components and Hardware

Here we describe the different components that form the recording and stimulation setup

used in the experiment. A wholistic view is developed near the end.

5.3.1 EEG Recording Unit

For the purpose of recording EEG, although in the latter stages of the study we used an

Intan RHD2000 Development board (Figure 5.2 [65]), initially an Xltek Neurolink IP 128

machine from Natus Medical Inc. was being used [102]. The disadvantage to using the

Xltek system was that we could not collect data in real-time in order to perform closed-loop

control experiments. Apart from providing real-time access to data, the Intan device

is also capable of sampling at very high speeds, approximately 32KS/s per channel. It

also has a number of hardware and software filters that can be programmed to modify

the cutoff frequencies. Along with all these capabilities, the Intan system is equipped

with an impedance measurement unit that we utilized in order to estimate impedances of

the electrode sites. These measurements were later used to calculate “safe” stimulation

parameters for the study.

The Intan EEG system is controlled from a desktop computer using MATLAB and an

API provided by Intan Technologies. All the hardware and DSP filter configurations on the

board can be setup using this API, including sampling rates. The board has a large enough

buffer (≈130 MB) for the ADC to sample the data and store in real-time. The buffer serves

up the data to the MATLAB program when it is polled. The software setup is described in
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Figure 5.2: Intan RHD2000 Development board connected to an RHD2216 16 channel
amplifier and digitizer. Image reproduced from [65] with permission.

a later section (subsection 5.3.4).

5.3.2 Electrical Stimulation

Deep Brain Stimulation (DBS) protocols in several animal models of epilepsy have shown

some effectiveness in controlling epileptic seizures with high frequency stimulation targeting

the subthalamic nucleus, anterior thalamic nucleus, caudal superior colliculus, substantia

nigra, and hippocampus [153, 79, 165, 107]. Some researchers have shown the effectiveness of

DBS using neural oscillator models as well [122, 95]. All these investigators used stimulation

parameters in - frequency ranging from 50-230 Hz and bipolar constant current pulses

between 30-1000 µsec at current intensities from 0.1 to 2 mA. In contrast, low frequency

(between 1 Hz and 30 Hz) stimulation resulted in an increase of seizure susceptibility or

synchronization of EEG.

In this study, the stimulation is applied between pairs of electrodes (amygdalar,

hippocampal, thalamic, frontal) according to the results from certain analysis; i.e. whenever

a seizure warning is issued by our seizure warning algorithm or in the case of the offline
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Figure 5.3: Front view of the digital stimulus isolator from A-M Systems. The current
and voltage levels must be manually selected using the corresponding knobs.

stimulation - in an open-loop manner for a fixed duration on various pairs of electrodes. A

stimulation switching circuitry was developed in-house for the purpose of stimulating any

pair of sites at will (described in subsection 5.3.3). Deep Brain Stimulation (DBS) of the

animal was achieved by means of a Digitial Stimulus Isolator from A-M systems [1]. This

stimulator (Figure 5.3) has a control port which requires a 3 digit binary code. This code

can generate an output of:

� A DC offset,

� A positive DC level from offset, and

� A negative DC level from offset.

In our case, the DC offset was chosen to be 0 V, the high and low levels were 0.1 V

respectively so as to create a bi-phasic rectangular pulse wave. The frequency of this wave

can be chosen by carefully timing the three binary codes that are sent to the stimulator.

For this purpose an Arduino Mega 2560 microcomputer was used. The microcomputer

receives stimulation parameters from a code implemented in MATLAB 2014b running on a

Windows-10 desktop computer. The Arduino then implements the timing for the switching

between the three levels to create the shape of the stimulation used in this study as shown

in Figure 5.4.
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5.3.2.1 The Stimulation Parameters

A description of the stimulus parameters needed to obtain the waveform in Figure 5.4

and what types of stimulation was used during this study follows. It must be noted that

this stimulation method was used in open-loop stimulations only.

� +ve Pulse Duration: this is how long the pulse stays high. In this study we used 150

µSec.

� -ve Pulse Duration: this is how long the pulse stays low. In this study we used 150

µSec.

� Time Period: a gap of zero DC voltage is applied after each positive and negative

pulse to keep the total charge applied to the brain tissue within tolerable limits. The

time period in this study was 4 msec leading to a frequency of 250 Hz.

� Packet On Time is the duration these short pulses were applied in one burst. 30

seconds was used in this study.

� Packet Off Time was applied to provide a break in stimulation and was chosen as 90

seconds in this case.

� Stimulation Duration was the time for which the entire packet train was applied. This

was 20 minutes. There was a gap of 40 minutes between each Stimulation Duration.

For the epileptic rats involved in this study, EEG recording was started as soon as it

recovered from surgery. Typically a few weeks of data were collected prior to the start of

stimulation. This was to establish baseline data for the rat. For animals that went through

open-loop stimulation only, the regime involved applying 5 hours of stimulation to each

electrode pair, amounting to a total of 45 electrode pairs for all the 10 electrodes. A 3

hour break of stimulation was provided before switching between the pairs. It must be

pointed out that within the 5 hours of stimulation time the parameters provided in Figure

5.4 was applied. The stimulation pairs were chosen randomly so as to be consistent with
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Figure 5.4: Shape of one type of open-loop stimulation applied to a pair of electrodes
implanted in the rat’s brain.

the principles of appropriately designed engineering experiments; namely - Randomization,

Replication and Blocking [96]. The switching of electrode pairs between collecting EEG and

allowing stimulation to pass through without damaging the EEG machine was achieved by

implementing a switching circuit comprised of multiple gates and is described in more detail

later (subsection 5.3.3).

In the more recent experiments, a different type of stimulation was provided. We found

that the long durations of “packet Off time” was not providing enough control input to

affect the brain state the way we wanted it to. In order to remedy this, we switched

to a stimulation method whereby the stimulation frequency was set to 500 Hz and the

positive and negative pulse durations were set to 300 µsec. There was no Packet Off Time

altogether. This pulse width modulation like technique allowed for more stimulation energy

to be applied. The only other parameter that was changed in that case was the “stimulation

duration”. The electrical stimulation we used in our closed-loop experiments had a current

rating ranging from 100-750 µA and “stimulation duration” of 10 - 20 minutes. Considering

possible induced tissue damage by electrical stimulus, the maximum current intensity of 750

µA falls under the safe allowable charge density limit of 30 µC/cm2 as reported by [77] for

deep brain stimulation; given the size of the stimulating electrode and pulse parameters

chosen. While these specific values of the stimulation parameters are being utilized in our
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work, their optimization can become a project on its own right and is not considered at this

point.

The function for calculating the parameters for stimulation is as follows

Charge density =
Voltage applied× Pulse Width

Impedance× Electrode Surface Area
(5.1)

In our experiments, the voltage applied on the electrodes was always fixed to 0.1 V. Pulse

width varied between 150 - 300 µSec. The surface area of the electrode was calculated using

Area = πr2 + 2πrh, where the radius, r, of the electrodes is 87.5 µm and have a cylindrical

non insulated surface of height, h, 500 µm. Thus, giving us a total of 0.003 cm2 of exposed

surface area for the electrodes. From impedance measurements collected through the Intan

system, the average impedance for each electrode was approximately 500 KΩ in magnitude

(ignoring phase). The result of the charge density suggests that our choice of stimulus

parameters kept the charge density orders of magnitude below the recommended value of

30 µC/cm2.

5.3.3 Switching Circuit

Since one of the primary goals of this study was not only to apply stimulation but also

to determine what modality of stimulation locations would be most beneficial in seizure

suppression, we needed to implement a method of being able to stimulate in different areas

(a) Switching circuit (b) Switching circuit with the Arduino attached on top

Figure 5.5: Actual switching circuit being used in the study. The ICs contain 4 high speed
solid state relays.
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of the brain at will. The stimulator provided by A-M systems could only stimulate in a

pair of sites, however, given the 10 electrodes we were using in our study, we needed to

stimulate a possible 45 pairs! Thus we designed and implemented a switching circuit to be

able to propagate the stimulation signal to any chosen pair of brain sites at a given instance.

The actual switching circuit that was built on a PCB board is shown in Figure 5.5. This

controller can choose which pair of sites to stimulate when commanded from an Arduino

Mega and appropriately disengage the EEG channels during stimulation so they are not

damaged by the much larger stimulation voltages and currents.

5.3.4 Software Environment

The main data acquisition and analysis is performed on a desktop computer equipped

with an Intel® Core I-7® 4790 processor running at 3.60 GHz clock speed with 4 cores

Figure 5.6: Software GUI used for recording EEG data and displaying the computed Lmax
values as well as performing closed-loop control experiments.
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and 16GB of DDR3 SDRAM. This system utilizes a MATLAB 2014b installation that

in conjunction with the Intan API and MATLAB built-in Serial communication protocol

controls the Arduino Mega and performs data acquisition from the Intan EEG system. Once

the data are in, the MATLAB program performs analysis on the data and based on the

algorithm implemented (open-loop or closed-loop) sends out stimulation “start” and “stop”

commands to the Arduino Mega. Figure 5.6 shows a screenshot of the GUI developed. This

GUI allows the user to visualize the EEG in the top panel and the computed Lyapunov

time profiles in the bottom panel.

For any offline computation performed on our data, we utilized a Dell Precision T3500

computer equipped with a Six Core Intel® Xeon® Processor W3690 series, 3.46GHz

clock speed, 12M L3 cache, 6.4GT/s and 24GB, 1333MHz FSB, DDR3 SDRAM. Alongside

that, at times when the volume of data exceeded the capacity of a single computer, ASU

super-computing resources as well as those in the NSF funded XSEDE systems were utilized.

The super-computing resources were availed mostly during parameter tuning of certain

algorithms when multiple parameters sets were varied and the analysis performed on the

same data sets. These calculations tend to take tens of hours, even with the help of massively

parallelized code running on computing clusters.

5.4 The Big Picture

As mentioned previously, the Intan RHD2000 development board and its 16 channel

amplifier was setup as the EEG acquisition machine. The rats used in our study have 10

EEG channels, a ground and a reference channel. We collect EEG data from 10 electrodes

located in different parts of the rat brain (see Figure 5.1). The EEG channels go through

a switch board into the Intan EEG data acquisition system. The Intan board has an

amplifier that conditions the signals so that its 16bit ADC has sufficient resolution in the

EEG waveforms which are typically in the 100s of µV range. Once digitized, the data is

collected in a FPGA buffer until a MATLAB program polls it from the buffer over USB.

The MATLAB code operates every two seconds and it brings in two seconds worth of data
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Figure 5.7: Block diagram showing the experimental setup used. The Switching circuit
is controlled by the Arduino Due which in turn receives commands from the MATLAB
program running on the computer. The switching circuit enables us to stimulate any pair
of electrodes at will. The stimulation signal is generated from the A-M systems stimulator.

that are sampled from the ADC at 512Hz from all channels. On MATLAB, either the

offline fixed stimulation code or the seizure warning algorithm decides on when and how

to stimulate and those parameters are sent over emulated Serial Port(USB Virtual COM

port) to the Arduino MEGA. The MEGA then commands the stimulator ([1]) to provide

stimulation on its output port. At the same time, the Arduino also commands the switching

circuit so that it disconnects a chosen pair of electrodes from the rat to the EEG board and

connects them to the stimulator so that the stimulation signal can pass through to the rat

brain. When stimulation needs to be switched off, the Arduino commands the stimulator

to switch off and reconnects the EEG channels to the rat electrodes. Figure 5.7, shows the

entire setup just described and a more detailed diagram of the switching circuit and its

operation can be found in Appendix A.
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Chapter 6

SEIZURE DETECTION

6.1 Introduction

As elucidated in Chapter 1, epilepsy is a neurological disorder characterized by seizures

which are recurrent perturbations of normal brain function. One of the challenges in

the field of epilepsy management is the process of detecting seizures. Currently, the

established practice is to admit patients into long-term epilepsy monitoring units where

epileptologists and trained technicians review continuous EEG (cEEG) recordings over

days/weeks. While there have been many methods introduced in the literature on seizure

detection [150, 34, 117, 33, 111, 97, 152], several of which involve the use of Neural Networks,

none can yet show detection of seizures with 100% Sensitivity and 100% Specificity (see

Appendix B). The poor result is mostly due to the fact that an intermediate metric is

computed from EEG data based on linear measures, e.g. statistical measures [133, 127],

frequency and power spectral analysis [137], before the actual seizure detection metric is

implemented. The brain is not an unstructured, random collection of neurons guided by

statistics, neither is its behavior linear in nature. Thus, it does not lend itself well to being

modeled by such measures. So, while yielding decent results for academic purposes, these

methods were not accurate enough for deployment in clinical settings [125].

Using a different seizure detection paradigm (i.e. without using EEG data) implemented

in [75], Kramer et al show the use of patient movement data collected by accelerometers

during a seizure event to detect it. However, this method is ineffective since not all seizures

manifest themselves clinically. Lehnertz et al elicits the use of nonlinear time series analysis

as a great tool for efficient use in detection and prediction of epileptic seizures [83]. Notably,

among these methods, is the use of Lyapunov exponents in computing chaoticity of an

epileptic brain. Following the work of Takens [139] and Wolf [161], Iasemidis et al [59, 61, 62]
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have shown how to estimate the Lyapunov exponent, a nonlinear measure, from delay

coordinate embedding of sampled EEG data. In this work, using Lyapunov exponents

computed from the Kantz algorithm, we have brought to light a fundamental flaw and

thereby difference in outcomes in estimating the Lyapunov exponent versus one computed

from the modified Wolf algorithm as suggested by Iasemidis et al. Chapter 3 describes the

maximum Lyapunov exponent (Lmax) and the its computation, which when done correctly

as we have shown, can be used to produce a reliable estimate of Lmax from data.

The method implemented in this study utilizes knowledge of chaotic systems and

Lyapunov exponents as nonlinear measures that more accurately describes brain activity,

allowing for a seizure detection scheme with extremely high Sensitivity and high Specificity

(see Appendix B). The accuracy is due to the implementation of the Kantz algorithm as

shown in subection 3.3.2, which provides more reliable estimates of Lmax compared to the

other two algorithms. Due to the nonlinear nature of the analysis and the exponentially

greater number of trajectories tracked, as compared to the Wolf and Rosenstein algorithms,

this method is computationally expensive. However, the expense of compute time does

provide us with the benefit of producing a reliable seizure detection mechanism which will

aid medical practitioners and patients in epilepsy.

Typically the number of patients admitted at a time between Epilepsy Monitoring Units

(EMU) and Intensive Care Units (ICU) in a hospital can become overwhelming, owing to

the fact that epilepsy is such a common neurological disorder. Technicians and doctors

simply cannot keep up with sifting through volumes of EEG generated in such short period

of time. Owing to this, studies have shown that nearly 30% of ICU patients are left with

undiagnosed seizures due to this manual and labor-intensive process that is prone to human

error [23, 78]. Untimely detection of seizures increase the morbidity of patients and can

lead to mortality in certain cases. It also means that the patients have to stay in the

hospital longer, thus adding to cost. It is our hope that the newly invented implementation

of the automated seizure detection mechanism in this dissertation will help alleviate much
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of that burden, equipped with its high true positive and low false positive detection rate

(see Appendix B).

6.2 Siezure Detection Results

From our work, we have seen that the use of Kantz algorithm enhances the results

for Lmax computation not only in simulated data from chaotic systems but also in real

EEG data collected from animals. Careful and long hours of tuning the kantz parameters

allowed us to arrive at these results. In certain cases, choosing certain “wrong” parameter

values have produced negative Lmax values which absolutely do not make sense for a chaotic

system; therefore one must be extremely careful in the implementation of Lmax estimation

algorithms. Figure 6.1 shows a comparison of the three different methods applied to the

same set of EEG data from animal labeled Rat 7 during the study. A seizure as marked
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Figure 6.1: Comparison of Lmax vs time on the same set of EEG data, where Lmax is
estimated from (a) Kantz, (b) Rosenstein, (c) Wolf algorithms respectively. Clearly the one
computed from Kantz shows a distinct shape during the seizure at time 13 minutes. The
blue vertical line marks the beginning of the seizure.
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visually by inspecting EEG is seen to occur at about 13 minutes. The plot shows Lmax over

time, where Lmax, for each channel, was computed for 10 seconds of data moving forward

in time with a 2 second overlap. It is interesting to observe that during the seizure, while

the Kantz algorithm shows a distinct peak in the Lmax time profile, that from the Wolf

shows none and the one from the Rosenstein algorithm shows a drop but it is not consistent

over many other seizures. Also, the Rosenstein algorithm seems to be more susceptible to

noise as is evidenced by the differing value of one channel compared to the rest; this channel

had more noise in its EEG data. At this point it would be prudent to mention that the

intuition gained about the shape of the epileptic attractor during interictal and ictal epochs

(refer to Figure 2.4) does support the idea that during a seizure Lmax would have a higher

value since the trajectories seem to separate from each other more in Figure 2.4(b) than in

Figure 2.4(a).

126:16:40 126:20:00 126:23:20 126:26:40 126:30:00 126:33:20

Time (hhh:mm:ss)

0

10

20

30

40

50

60

70

L
m

ax
(B

its
/s

ec
)

← Detection adjusted
   126:25:28

Figure 6.2: Plots of Maximum Lyapunov Exponents computed using Kantz algorithm on
all 10 channels of a rodent; the thick black line is the mean of the Lmax from the channels
at each time point. The Lmax was computed using 10 seconds of data, sampled at 512 Hz,
moving forward every 2 seconds in time. The red vertical line marks the beginning of the
seizure event at time 126 hours 25 minutes and 28 seconds from the beginning of recording.
As can be seen the Lyapunov drops a little a few minutes before the seizure, then at the
seizure, rises to a higher value than its mean.

62



Following this, we now draw attention to Figure 6.2, where the Lmax temporal profile

computed using the Kantz algorithm is shown in higher resolution. The data used was

acquired from Rat 13. Here, it can be seen clearly that the Lmax profile drops from its

mean level of roughly 30 bits/sec to a lower value almost 5 minutes prior to the seizure start;

this in turn can become useful as a seizure precursor measure and be used to stimulate in

order to attempt a seizure abortion. We have seen this drop in all seizures analyzed over 3

animals so far.

At this point it would be interesting to point out that Iasemidis et al made a conjecture

that during a seizure the brain changes state from chaotic to ordered to chaotic. We can

ascertain this logic by scrutinizing the temporal evolution of the Lmax plot obtained using

their modified Wolf algorithm in Figure 6.1. We contend that the use of Wolf algorithm

and its weakness to noisy data obscured some of the dynamics before, during and after

the seizure. Using the optimized Kantz algorithm we show that a seizure in fact consists
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Figure 6.3: Plots of Maximum Lyapunov Exponents computed using Kantz algorithm on
all 10 channels of Rat 12. The thick black line is the mean of the Lmax from all the channels
at each time point. The Lmax was computed using 10 seconds of data, sampled at 512 Hz,
moving forward every 2 seconds in time. (a) Shows a seizure detection event at time 9
hours 53 minutes and 28 seconds from the beginning of recording; the seizure start time as
seen from the EEG was 9 hours 53 minutes and 52 seconds. The red vertical line marks the
beginning of the seizure. As can be seen the Lyapunov drops a little a few minutes before
the seizure, then at the seizure, rises to a higher value than its mean before resetting to
its interictal value after the seizure is complete. (b) Shows the same temporal profile for a
separate recording file approximately 2 weeks later. Here the seizure detection algorithm
shows the start time as 101 hours 34 minutes and 26 seconds compared to the start marked
visually from EEG at 101 hours 34 minutes and 36 seconds.

63



of a transition from an interictal (chaotic state) to a preictal brain state where the brain

transitions from chaotic to ordered (less chaotic) and then ictally to unstable, exponentially

growing, which in Lmax terms is manifested as extremely chaotic, and finally to the original

chaotic levels postictally. In Figure 6.2, this is characterized by the drop of the Lmax

profile from its mean value of 30 bits/sec to about 20 bits/sec at 126 hours and 21 minutes

approximately, then the abrupt transition to about 40 bits/sec at the seizure onset time of

126 hours 25 minutes and 28 seconds and the final postictal state where the Lmax converges

to its original mean value of about 30 bits/sec that it existed in preictally. In all these plots

the time presented is relative to the beginning of corresponding recording.

We support our conjecture using more seizures from different animals at different times.

First, Figures 6.3(a)-(b) is obtained from Lmax profiles computed from Rat 12. A few

channels had considerable amount of noise in Rat 12. Yet, we can see that the Lmax profile

clearly shows the transitions we discussed in the previous paragraph. Second, we look at
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Figure 6.4: Plots of Maximum Lyapunov Exponents computed using Kantz algorithm on
all 10 channels of Rat 13. The thick black line is the mean of the Lmax from all the channels
at each time point. The Lmax was computed using 10 seconds of data, sampled at 512 Hz,
moving forward every 2 seconds in time. (a) Shows a seizure detection event at time 1
hours 31 minutes and 52 seconds from the beginning of recording; the seizure start time as
seen from the EEG was 1 hours 31 minutes and 57 seconds. The red vertical line marks the
beginning of the seizure. As can be seen the Lyapunov drops a little a few minutes before
the seizure, then at the seizure, rises to a higher value than its mean before resetting to
its interictal value after the seizure is complete. (b) Shows the same temporal profile for a
separate recording file approximately 8 weeks later. Here the seizure detection algorithm
shows the start time as 69 hours 27 minutes and 10 seconds compared to the start marked
visually from EEG at 69 hours 27 minutes and 20 seconds.
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Figure 6.5: Plots of Maximum Lyapunov Exponents computed using Kantz algorithm on
all 10 channels of Rat 14. The thick black line is the mean of the Lmax from all the channels
at each time point. The Lmax was computed using 10 seconds of data, sampled at 512 Hz,
moving forward every 2 seconds in time. (a) Shows a seizure detection event at time 5
hours 27 minutes and 12 seconds from the beginning of recording; the seizure start time as
seen from the EEG was 5 hours 27 minutes and 10 seconds. The red vertical line marks the
beginning of the seizure. As can be seen the Lyapunov drops a little a few minutes before
the seizure, then at the seizure, rises to a higher value than its mean before resetting to
its interictal value after the seizure is complete. (b) Shows the same temporal profile for a
separate recording file approximately 8 weeks later. Here the seizure detection algorithm
shows the start time as 3 hours 34 minutes and 40 seconds compared to the start marked
visually from EEG at 3 hours 34 minutes and 37 seconds.

two more seizures from Rat 13 in Figure 6.4(a)-(b). Both plots show very distinct Lmax

profiles as the EEG transitions from interictal to preictal to ictal and finally to postictal. In

Figure 6.4(b) the beginning of the plot shows the Lmax profiles from some of the channels

to have higher variance. This is because the animal was being stimulated during that time,

and stimulation artifacts do cause the Lmax profiles of channels to show inconclusive results.

However, ignoring the Lmax from the stimulated channels will show us the characteristic

Lmax profile from a seizure as we will show soon. Finally, we observe the Lmax profile

computed from data collected on Rat 14. Rat 14 showed considerable degradation of EEG

data quality after the first few months. Figure 6.5(a) shows data from the first week, while

Figure 6.5(b) shows the same profile 9 weeks later. There was overall more noise in all the

channels but a few suffered worse. Yet, the seizure profile is still quite distinguishable from

the interictal data.

At this point it must be noted that although a similar profile in Lmax can be seen
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for all seizures, their lengths and amplitude changes are not the same. We now turn our

attention to the case when data is obfuscated with stimulation artifacts/noise. We have

shown how data from Rat 12 and Rat 14 contain noise yet the Lmax seizure profile is

clearly distinguishable through Figure 6.3(a)-(b) and Figure 6.5(b) respectively. In Figure

6.6 we can see how the seizure profile is still clearly distinguishable even in the presence of

stimulation artifacts. This is data from Rat 14 whose channels already had a considerable

amount of noise. A stimulation for 14 minutes was provided between electrodes LA-RA

(refer to chapter 5 for location of electrodes and their abbreviated names) and a seizure

occurred at time 14 hours, 42 minutes and 52 seconds from the start of the recording file.

The transitions of the Lmax profile can still be seen and the seizure detected through visual

inspection.

The caveat to using the Kantz algorithm in such a setting is that it is computationally

intensive. Thus, we implemented the tuned algorithm in a parallelizable fashion so as to

allow for fast computations. Since, the Kantz algorithm tracks not one but a large number

of trajectories (in the order of 100s) within a neighborhood, the information used is much

greater than in either Wolf or Rosenstein algorithms. This is a double-edged sword since

we would have to trade-off speed with accuracy. Our approach to circumvent this was to

utilize the parallel-computing toolbox available in MATLAB and run these computations

in parallel on 10 cores in a single hyper-threaded CPU. Each core computes Lmax for 10

seconds of data on each rat EEG channel; this is the value for T shown in the algorithms in

Chapter 3. This process takes about 0.1 seconds to complete when parallelized but about 3

seconds when run serially on an Intel Xeon Processor in offline mode. On humans, where the

typical EEG has between 32 and 128 channels we can expect the process to take significantly

longer. The process is repeated with new data every two seconds, i.e. every two seconds

the past ten seconds of data is passed to the Lmax algorithm to get a single value from each

channel. Without the use of super-computing platforms offline data analysis would take

days to weeks and online computations would be infeasible in the absence of accelerators
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Figure 6.6: Plot of Maximum Lyapunov Exponents computed using Kantz algorithm on
all 10 channels of Rat 14. The thick black line is the mean of the Lmax from all the channels
at each time point. The Lmax was computed using 10 seconds of data, sampled at 512 Hz,
moving forward every 2 seconds in time. In this figure we detail the automatic seizure
detection algorithm. The seizure detection event as marked by the algorithm is at time 14
hours 42 minutes and 52 seconds from the beginning of recording; the seizure start time as
seen from the EEG was 14 hours 42 minutes and 51 seconds. The red vertical line marks
the beginning of the seizure using the automated detection algorithm. The thick green plot
is the moving maximum of the black line (mean at every time point) and the thick magenta
plot is the moving minimum. A detection event is marked when the moving maximum at
an instance crosses a predetermined threshold higher than all the past 60 seconds of moving
minimums.

such as GPUs and coprocessors.

The key difficulty in achieving these Lmax profiles from the Kantz algorithm is the

fine-tuning of the 12 parameters required as input arguments. Over 200,000 CPU hours

were spent in the ASU supercomputing center and Gordon XSEDE resources in optimizing

this program to the epilepsy problem With these tuned parameters, when the computed

Lmax profile is plotted over time, a distinct pattern emerges near the ictal periods, as we

have already shown, but it is not seen at any other time. To a human operator, this profile

stands out immediately with little training. Compared to learning to mark seizures from
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Figure 6.7: Plot of Maximum Lyapunov Exponents computed using Kantz algorithm on
all 28 channels of de-identified human data. The EEG data was collected in differential
mode. Seizure can be seen to start at about 3 hours 54 minutes from the beginning of
recording.

EEGs this is over a factor of 10 increase in efficiency for rodent data. Preliminary tests

on one set of human data has also shown promise. Figure 6.7 shows the same Lmax profile

against time plotted for human EEG. Here it can be clearly seen that the Lmax profile

goes through a characteristic drop in chaoticity at about time 3 hours and 54 minutes and

then spikes at about 3 hours and 55 minutes and resets to normal around time 3 hours 55

minutes and 30 seconds. These transitions are quite similar to the rodent data presented

previously and correlates to the hypothesis that the brain goes through chaos to order to

more chaotic then resetting to chaotic state as a seizure evolves and completes. It is worth

noting that, this set of analysis on human data was done using the same parameters for

the Kantz algorithm that were used in rodent data. Although, these parameters have held

true for all rodent data we have analyzed, the same claim cannot be made as yet for human

data since only one seizure from a human was been analyzed so far.
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6.2.1 Automated Seizure Detection Algorithm

Leading up to this point we have only provided a discussion of how the Lmax profile

evolves during a seizure. For now we are employing a simplistic thresholding algorithm to

automate the Lmax profile detection during a seizure. The methodology is explained with

the help of Figure 6.6 where the thick line in black is the mean of the Lmax values at every

time point. This essentially tracks the center of the Lmax of all channels; in cases where there

are stimulations or we know that certain channels are bad (noisy) we exclude such channels

from the mean computation. The thick green line tracks the maximum of the black

line (mean), while the thick magenta line tracks its minimum. The detection algorithm

essentially looks at the current value of the moving maximum of averages of Lmax (green

line) and compares it to the past 1 minute of the moving minimum of the average (magenta

line). A detection is signaled whenever the difference between the moving maximum and

the past 1 minute of minimums is greater than a threshold. Essentially this allows the

current point in the average Lmax plot (black line) to be marked when it moves from its

lowest value at the start of the seizure to a high value once the seizure has progressed. This

detection would in fact only show an alarm after the seizure has started; in order to see

the start of the seizure a second algorithm adjusts for the time of detection by looking at

the minimum value of the average Lmax and plotting it in the output window using the

red vertical line with the adjusted detection time adjacent to it as seen in all the plots.

This does not perform as well if the data is extremely noisy; noise can be from air-waves or

from various artifacts generated in the body, e.g. muscle, eye movement etc. and external

inputs such as stimulation. A future goal to improvise the automated detection will be to

investigate methods to accurately detect the Lmax profile during a seizure using wavelet

matching, neural networks etc.

Before concluding this section we present the Receiver Operating Characteristics (ROC)

curve for our threshold based seizure detection algorithm in Figure 6.8(a) and the True

Positive Rate (TPR) and False Positive Rate (FPR) against threshold in Figure 6.8(b).
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Figure 6.8: Using Rat 13 week 1 data, which had 3 seizures, we determine the best
threshold for the automated seizure detection scheme. (a) Shows the Receiver Operating
Characteristics; with an area under the curve of 0.9882 we can say with certainty that the
threshold based algorithm performs quite well. (b) Shows the True Positive Ration and
False Positive Ration against detection threshold. The best value of threshold is 22 since it
allows for TPR of 1 and FPR of 0.01545

TPR is the same as Sensitivity and FPR is 1−Specificity (see Appendix B for definitions).

This data is from Rat 13 Week 1; similar operations are performed on all rats to test out the

best detection threshold. As can be seen the ROC curve has an area that is 0.9882 which is

very close to 1 implying the feasibility of our classification technique based on thresholds.

Additionally, looking at the TPR and FPR curves against threshold we can see that a value

of threshold = 22 produces the highest TPR = 1 while simultaneously providing a low

FPR = 0.01545.

6.3 Conclusions

In Chapter 3, we have shown a method of computing the maximum Lyapunov Exponent

accurately. In this chapter we have presented a comparison of the Wolf and Rosenstein

algorithm to our implementation of the tuned Kantz algorithm and shown that it provides

a succinctly discernible temporal profile of Lmax over time. We have produced many such

Lmax profiles and shown that it transitions through a drop to spike and then a resetting

of its mean level during a seizure. Furthermore, after analyzing weeks of data over many
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different rats we have seen that the modified Kantz algorithm is able to produce this profile

consistently and prominently even in the presence of considerable noise. What is more

important to acknowledge is that this method does not show such profiles when a seizure is

not present; something that is not true for both Wolf and Rosenstein methods. The same is

also true for healthy animals; plots from healthy are not shown since nothing is interesting

enough to produce in this report.

The final objective of this work is to develop a highly reliable and fully automated

computational algorithm that will enable real-time seizure detection. We hypothesize that

such a tool will immediately benefit epileptologists and open up the possibility of wide

acceptance by a number of commercially available implantable devices that attempt to treat

epilepsy. Integrating this new technologoy to already existing portable neuro-modulators

such as the Neurpace RNS system [31] and Cyberonics VNS system can strive to improve

these automated stimulation devices by providing feedback on performance, i.e. how many

seizures are occurring with the neuromodulator connected to the patient.

Currently the algorithm requires some human involvement. Complete automation will

be achieved by testing out a number of shape detection algorithms through the use of neural

networks and wavelet matching, not unlike the methods implemented in [101] albeit with

better accuracy. The tuned Kantz algorithm uses almost 100’s of times more information

than any of the methods utilized in the past. While we have been able to program it

efficiently, increase in the number of EEG channels to be analyzed will most certainly cause

time constraints on computation. A possible hurdle to overcome in the future would be

to implement it on parallelizable platforms such as GPUs while adhering to the real-time

nature of the algorithm. If successfully implemented, such a product will become crucial in

allowing medical practitioners to have a real-time seizure detection/warning system to help

them better diagnose and treat patients with epilepsy.
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Chapter 7

PREDICTION AND CONTROL OF SEIZURES

7.1 Introduction

AEDs are prone to creating systemic and central nervous system side effects and studies

have shown that electrical stimulation as an alternative to seizure control may not have

the same undesirable outcomes. On top of that, in comparison to surgery, with electrical

stimulation, there is no need to resect the focus which is an irreversible process with side

effects ranging from loss of memory to a number of possible permanent disruptions in

brain function. Deep brain stimulation (DBS), principally of thalamic structures, has been

reported to reduce seizure frequency in humans. Examples of DBS include 4-8 Hz electrical

stimulation in the head of the caudate nucleus and 20-130 Hz centromedian nucleus (CM)

stimulation. The stimulus delivery is either continuous (12-14hours/day), intermittent (10

min “on,” 15-20 min “off” for 12-14 hours/day) or continuous periodic (20-30 minutes on,

3 or 4 times a day) [151, 162, 52, 73, 20].

The Vagus Nerve Stimulator (VNS) as an antiepileptic device was approved by the

US Food and Drug Administration in 1997. This device stimulates the brain through the

vagus nerve, at regular intervals, with predetermined intensity, frequency and pulse shapes.

Although the reported side effects are minimal, only one-third of patients implanted with

the VNS device experience a 50% reduction of seizure frequency, and fewer than 10% become

seizure free [30]. Two further clinical trials of DBS for epilepsy management have also been

conducted in the United States, one by Medtronic and the other by NeuroPace. Surgical

implantation of stimulating electrodes into the thalamus and other deep brain structures

is required for both. Like the VNS device, the Medtronic device is programmed to deliver

intermittent stimulations independent of the presence or absence of seizure activity. The

NeuroPace device attempts to detect seizures about their electrographic onset(see Appendix
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B), and then try to abort them by delivering an electrical stimulation. Both devices have

reported some success in reducing seizure frequency [73, 74, 107, 108].

While holding promise for a possible relief to epileptic patients, these devices could

benefit from a quantum leap in conceptual and practical improvement whereby the stimulus

is activated by certain preictal electrical activity in the brain, sufficiently early, to prevent

the impending seizure from occurring. This would require the ability to detect predictive

EEG changes of an impending seizure a long time (e.g. tens of minutes), before the seizure

onset. Along these lines, a study reported that by stimulating after a seizure is predicted

from EEG analysis, seizure frequency reduced markedly [130]. Such a technique would

require considerable tuning, in order to improve performance, not only in the algorithm but

in the shape of the stimulation signal as well [155]. Potential wireless implementations have

shown that we could eliminate the hassle of having wires connected and hanging around the

patient’s body [163]. Although at this stage it is too early to claim whether the electrical

stimulation approach will lead to a complete cure for epilepsy, or simply postpone seizures,

the benefits to epileptic patients could be significant.

Based on work on seizure prediction it was shown that measures of spatial

synchronization of dynamics, through the measurement of phase correlations, show that

a preictal state can be characterized several minutes prior to seizure onset [118]. Dividing

the EEG signal between six bands - delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta

(12–30 Hz), low-gamma (30–70 Hz), and high-gamma (70–180 Hz) and training a logistic

regression classifier, [53] shows that seizures can be predicted in an animal model of epileptic

dogs. On the other hand, using nonlinear dynamics as their primary focus, Iasemidis et

al have shown the use of maximal Lyapunov exponent and its statistical distance metric

(T-index) to provide decent prediction results [55, 63].

The contention to seizure prediction schemes come from studies which show that the

solution to this problem is still at its infancy. As a few examples we cite [80], where the

predictive power of the Lyapunov exponent is challenged; [66], where the variability of

73



099:35:00 099:43:20 099:51:40 100:00:00 100:08:20 100:16:40 100:25:00 100:33:20
0

10

20

30

40

50

60

← Detection adjusted
   100:03:34

(a)

121:15:00 121:23:20 121:31:40 121:40:00 121:48:20 121:56:40 122:05:00
0

10

20

30

40

50

60

(b)

099:35:00 099:43:20 099:51:40 100:00:00 100:08:20 100:16:40 100:25:00 100:33:20
-30

-20

-10

0

10

20

30

← Detection adjusted
   100:03:34

(c)

121:15:00 121:23:20 121:31:40 121:40:00 121:48:20 121:56:40 122:05:00
-30

-20

-10

0

10

20

30

(d)

Figure 7.1: Lmax and its paired T-index profiles computed on 1 hour of ictal and interictal
data from Rat 13. Lmax for ictal data and the corresponding T-index profile are shown in
(a) and (c). Likewise, (b) and (d) show the same for interictal data. At first look not much
can be said about the predictive power of the T-index.

sensitivity (65% - 100%) and specificity (65% - 80%) of prediction is quite poor and finally

[98], which makes a concluding remark that while pre-seizure states have been shown to

exist, no prospective prediction scheme with 100% senstivity and specificity respectively has

been achieved. Our own investigation into using T-index computed on pairs of Lmax profiles

of channels show no discernible prediction measure. With the help of Figures 7.1(a),(c) and

7.1(b),(d) we provide evidence that little to no difference can be seen in the T-index profile

during seizure and non seizure periods, thus T-index even on Lmax computed from the

optimized Kantz algorithm isn’t quite effective at seizure prediction at first look; further

analysis may contain the possibility of yielding better results. All these studies provide

little solace to medical practitioners and epileptic patients.

Through our own studies, in particular the behavior of Lyapunov exponents of critical

brain sites as shown in Chapter 6, we have shown that a good characterization of the

transition to seizures and can be provided by the tuned Kantz algorithm and utilized in
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the reliable issuance of warnings on impending seizures. As such, and in view of postulated

models in [15], these interictal to preictal transitions can be interpreted as an increased

seizure susceptibility state of the brain. This may not be entirely useful as a prediction

measure, especially since in epileptic subjects such periods do arise frequently, compared to

healthy subjects where they do not occur at all, but it creates the possibility of being used

as an appropriate signal for feedback control and stimulation.

For the implemented closed-loop controller, the quantification of the controller’s

performance affects the control objective and the solvability of the control problem. A

key issue in the control of the epileptic brain is that standard control objectives are

not directly applicable. Desired trajectories are not known to enable the formulation of

a tracking problem, either for aggregate outputs (measures of dynamics) like Lyapunov

exponents, phase correlations etc. and more so for EEG states. The popular chaos control

schemes for the stabilization of a periodic trajectory in [109, 116, 16] are inappropriate. To

circumvent this problem, Tsakalis et al have shown through the use of chaotic oscillator

models that seizures can be controlled by the application of an external feedback controller

that compensates for the pathological tuning of the internal controller of the brain [147, 149].

While the results from such models produce a good hypothesis and validation from

simulation, the problem with the methodology is its incorporation in the actual brain.

Where does the control input go in the epileptic brain? In addition, we have seen through

our work, that if the aggregate output (Lmax profile) is what we are tracking, then the

application of a stimulus that is larger than the EEG, will completely confound the EEG

and tracking the output becomes near impossible during those times.

On top of answering the riddle to “when” the stimulation be applied, another potential

difficulty comes from the question of “where” the stimulation should be provided. A partial

direction towards the selection of an appropriate pair of electrodes for stimulation may

be obtained by analyzing the EEG data for focus localization, using the GPDC method

of [9], as refined by [154]. This method can provide an indication of the brain site that
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is the most likely candidate for a focus, and hence a good first choice for stimulation.

However, the drawback of this method is that the results are (so far) based on the analysis

of averaged short-term data. Long term effects and possible plasticity have been observed in

the work of [56], and therefore further analysis of the data is necessary to provide quantifiable

relationships. Another direction that we have investigated during the course of this study

is where stimulation of a particular site with a fixed amount of time will start to produce

disentrainment as is validated by changes in the Lmax profile. In the following sections

we provide results from our GPDC implementation on preictal data, a creation of “control

efficacy maps” through disentrainment with stimulation on specific pairs of sites and finally

the results of control on seizure frequency and length.

7.2 Results of GPDC Algorithm on Localizing the Focus

As mentioned in the previous section, focus localization will have the benefit of allowing

us to choose a location to apply the stimulus. Instead of taking all the interictal data as

shown in [154], we utilize the preictal zone of seizures as identified by our tuned Kantz

algorithm for computing Lmax. The result of interest in this case is that during all preictal

zones the same electrodes are active in almost the same manner in addition to the fact that

looking at preictal data, we may gain better insight into the seizure activity than doing so at

interictal periods. This result can be seen by observing Figures 7.2, 7.3, 7.4 and 7.5. These

plots show results from GPDC applied to the four seizures which were recorded in the fifth

week of experimentation where no stimulation was provided to Rat 13. For all figures, the

first subplot is computed by measuring inflow in the GPDC epochs in the interictal period

for each channel and then ranking them as a percentage of total inflow to all channels. The

second subplot is the same but for outflow. The third subplot is the average of GPDC over

all the epochs. Although GPDC is essentially a frequency dependent metric, which means

that the plots should have looked like transfer functions, we took the total energy in each

element of the GPDC matrix to represent it as a single number. Additionally, the bars

marked in red are classified as outliers using Grubb’s test with a confidence of α = 0.05.
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Figure 7.2: For the first seizure in “Week 5” of Rat 13 (a) shows the maximal inflow as
computed from GPDC data. (b) Shows the maximal outflow and (c) the average GPDC
for the entire preictal data set.
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Figure 7.3: For the second seizure in “Week 5” of Rat 13 (a) shows the maximal inflow
as computed from GPDC data. (b) Shows the maximal outflow and (c) the average GPDC
for the entire preictal data set.
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Figure 7.4: For the third seizure in “Week 5” of Rat 13 (a) shows the maximal inflow as
computed from GPDC data. (b) Shows the maximal outflow and (c) the average GPDC
for the entire preictal data set.
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Figure 7.5: For the fourth seizure in “Week 5” of Rat 13 (a) shows the maximal inflow
as computed from GPDC data. (b) Shows the maximal outflow and (c) the average GPDC
for the entire preictal data set.

In computing the GPDC we employed the use of a small amount of white noise to provide

an easy way of regularizing the MVAR parameters. The addition of noise (with variance

1e−5) to each channel creates a persistence of excitation condition, this essentially helps

bias the parameters more towards the diagonal ones. Since for the purpose of localization,

delayed self-inflow as measured by the parameters in the diagonal of the MVAR output are

irrelevant, this “poor man’s regularization” allows us to clean out effects of noise in the data

that may falsely indicate stronger cross connectivity of information. Making the diagonal

parameters larger in the MVAR solution helps alleviate such effects of noise whereby wrong

inflow or outflow results could be potentially misleading. More elaborate methods of

regularizing the parameters based on orthogonal projections could be used, however we

forsook them and traded off sophistication for the benefit of speed. Observing the figures

presented here together, it is quite clear that F4 and LT electrodes are the most active sinks

for information inflow, while RA is the predominant source for information outflow. While

[154] makes a claim about the channels involved in inflow being the focus, we intend to not

focus on such results as these and try to generalize our findings in the following - if certain

electrodes are more active than others at information inflow and outflow, we mark these

locations as possibly interacting with the focus, wherever the focus may be. Where the

focus really is, is difficult to tell for rat data; in contrast to human EEG, where the results

of this method could be accurately verified through the eyes of a trained epileptologist. The
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Table 7.1: Effect of stimulation on Lyapunov Profile for Rat12.

Pair 5m 10m 15m 20m Sum Pair 5m 10m 15m 20m Sum

F3-F4 1 1 1 1 4 LT-RL 1 1 0 1 3

F3-LT 1 0 1 1 3 RT-LA 0 1 0 0 1

F3-RT 1 0 1 0 2 RT-RA 0 1 1 1 3

F3-LA 0 1 1 1 3 RT-LM 0 0 0 1 1

F3-RA 1 1 1 1 4 RT-RM 0 0 0 0 0

F3-LM 0 0 0 0 0 RT-LL 0 1 0 0 1

F3-RM 0 0 1 0 1 RT-RL 0 0 0 0 0

F3-LL 0 1 1 1 3 LA-RA 0 0 0 1 1

F3-RL 0 1 0 0 1 LA-LM 0 0 1 0 1

F4-LT 1 0 1 1 3 LA-RM 0 0 1 0 1

F4-RT 0 1 1 1 3 LA-LL 0 0 1 0 1

F4-LA 1 1 1 1 4 LA-RL 0 0 0 0 0

F4-RA 0 1 1 1 3 RA-LM 0 0 1 1 2

F4-LM 0 1 0 0 1 RA-RM 0 0 1 1 2

F4-RM 0 0 0 1 1 RA-LL 0 0 0 1 1

F4-LL 1 1 1 1 4 RA-RL 0 1 1 1 3

F4-RL 1 0 0 0 1 LM-RM 1 1 1 0 3

LT-RT 1 1 1 1 4 LM-LL 1 0 1 1 3

LT-LA 0 1 1 0 2 LM-RL 0 1 1 1 3

LT-RA 0 1 1 1 3 RM-LL 1 1 1 0 3

LT-LM 1 1 0 0 2 RM-RL 0 0 1 1 2

LT-RM 0 1 0 1 2 LL-RL 0 1 1 1 3

LT-LL 1 1 1 1 4

difficulty even for a trained EEG technician to pinpoint focus in a rat, from EEG data, lies

partly due to the fact that the rat brain is so much smaller than that of a human, thus

spatio-temporal differences in the EEG are difficult to discern.

Therfore, from these results we could ascertain that stimulating a combination of sites

that involve these three (F4, LT, RA) would have the potential to abort a seizure. Further

experimentation is required in order to substantiate these claims, however we do have

promising preliminary data from such experiments that will be presented in Section 7.4.
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Table 7.2: Aggregate effect of stimulation on Lyapunov Profile for Rat12.

5m 10m 15m 20m

1 15 25 29 27

0 30 20 16 18

7.3 Control Efficacy Maps

A different way of answering the problem of “where” to stimulate could be through what

we have come to call Control Efficacy Map (CEM). We arrived at this approach due to the

difficulty in the design of a seizure control system that arises from the multivariable nature

of the stimulation as well as its relation to the energy of the stimulus. From the figures of

seizures in Chapter 6, we have already shown how during transitions to preictal periods,

the Lmax profile drops to below its mean value. Essentially, we use these transitions as

precursors to seizures. These transitions also happen when not followed by a seizure, which

makes prediction of seizures harder to track with great reliability. However, our hypothesis

is that the epileptic brain is going through different transitions in its state all the time and

not all such transitions end up in seizures. It was shown in [100], albeit with the use of Lmax

computed using Wolf’s algorithm, that seizures have a way of resetting the brain dynamics

and that the Lmax profile ends up at a value equal to, higher or lower than its original

mean after the seizure, depending on the age of animals. Notwithstanding the variability

introduced by age of subjects, in our study, this concept has been generalized as we have

seen from our own results that in the postictal state the Lmax returns to its original level

before it sunk to that of the preictal state. Following this, what could be argued is that if

stimulation can act as an intermediary, i.e. pull the level of Lmax up when it drops below

the higher mean value, then a seizure may have been aborted; since the stimulation would

have brought a change of state similar to postictal without the seizure ever occurring.

Table 7.1 shows a characterization of the stimulus efficacy (as a binary decision over a

days-long set of experiments), when the stimulation is applied across a given electrode pair

on Rat 12. Essentially, the methodology of the experiment is to apply stimulation on each
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Figure 7.6: (a) Shows the effect of stimulation electrodes F3-RA for 16 minutes. As can
be seen, the stimulation was successful in bring the Lmax up to the original level. The level
dropped as soon as the stimulation ended indicating that more stimulation was necessary.
(b) In this case a 12 minute stimulation on LM-RM was unsuccessful at affecting the Lmax
profile indicating either more stimulation energy was required or that stimulating this pair
of sites would not have much effect.

of the 45 pairs of electrodes in increments of 5, 10, 15 and 20 minutes in a random order.

An hour of wait time is provided between each stimulation so as to reduce any residual

plasticity effects from the last one. Once all the combinations of stimulation (45×4 = 180)

are complete, we look at the the Lmax trajectories and rank the effects of stimulation on

them as a binary decision of 1 and 0. The value of 1 is assigned to cases where the Lmax

is at a lower value than its mean and the stimulation is able to pick it back up. This is

illustrated with the help of Figure 7.6(a) where we can see that the Lmax profile dropped

from its mean level and as soon as stimulation started the profile was pulled back up. In this

case however, as soon as stimulation was stopped the profile went back down, indicating

that a longer stimulation may have been beneficial. Likewise a value of 0 is assigned to

the case when the Lmax drops but stimulation on a certain pair for a certain amount of

time has no considerable effect on the Lmax profile. To illustrate, we refer to Figure 7.6(b),

where the stimulation had no effect but at all.

Once the table is filled, we look at the effects of stimulation. The column “Sum” in

Table 7.1 is simply adding up the effects of stimulating a pair of electrodes. From this, we

choose only those electrodes as maximally effective in disentraining the brain dynamics if
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Table 7.3: Effect of stimulation on Lyapunov Profile for Rat13.

Pair 5m 10m 15m 20m Sum Pair 5m 10m 15m 20m Sum

F3-F4 1 0 1 1 3 LT-RL 1 1 1 1 4

F3-LT 1 0 0 0 1 RT-LA 0 1 1 1 3

F3-RT 0 0 1 0 1 RT-RA 0 0 1 1 2

F3-LA 0 1 0 1 2 RT-LM 0 0 0 0 0

F3-RA 0 0 0 0 0 RT-RM 0 0 1 0 1

F3-LM 0 0 0 1 1 RT-LL 0 0 0 1 1

F3-RM 0 1 1 1 3 RT-RL 0 0 1 1 2

F3-LL 0 1 1 1 3 LA-RA 0 0 1 0 1

F3-RL 0 0 0 1 1 LA-LM 1 0 0 1 2

F4-LT 1 1 1 1 4 LA-RM 0 0 0 0 0

F4-RT 0 1 0 1 2 LA-LL 1 0 0 1 2

F4-LA 1 1 1 0 3 LA-RL 0 0 0 1 1

F4-RA 0 1 1 1 3 RA-LM 0 1 0 0 1

F4-LM 0 1 0 1 2 RA-RM 0 0 0 1 1

F4-RM 0 0 0 1 1 RA-LL 1 0 1 0 2

F4-LL 1 1 1 1 4 RA-RL 1 1 0 1 3

F4-RL 0 1 1 1 3 LM-RM 0 0 1 0 1

LT-RT 0 0 0 1 1 LM-LL 1 0 0 1 2

LT-LA 0 1 1 1 3 LM-RL 0 1 0 0 1

LT-RA 1 1 0 0 2 RM-LL 1 1 1 1 4

LT-LM 0 0 1 1 2 RM-RL 1 0 1 0 2

LT-RM 1 0 0 0 1 LL-RL 1 1 1 0 3

LT-LL 1 1 1 1 4

Table 7.4: Aggregate effect of stimulation on Lyapunov Profile for Rat13.

5m 10m 15m 20m

1 17 20 23 29

0 28 25 22 16

the sum is 4 or 3. Likewise Table 7.2 provides a summary of how the length of stimulation

affects disentrainment irrespective of which channel is being stimulated. What is curious

to find here is that as the length of stimulation is increased the number of pairs which get

disentrained by stimulation increases (Row 1 in the table). Tables 7.3 and 7.4 show the

results from the same experiments carried out on Rat 13. In the same manner as in Rat

12, with Rat 13, the increase in stimulation length causes more sites to disentrain.
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From the creation of these control efficacy maps it is quite apparent that stimulation of

arbitrary electrodes may not bring about the desired effect. The same is true if the duration

(i.e., energy) of the stimulus is not high enough as given by the stimulation current, pulse

width, frequency etc. So far in our study we have not investigated the effects of other

parameters than the stimulation length. For these experiments the other parameters were

chosen as specified in Section 5.3.2.1. Finally we are equipped with sufficient information of

“where” and “when” to stimulate the epileptic brain. In the next section we provide results

from our closed-loop experiments.

7.4 Results of Closed Loop Control Experiments

While seizures can be predicted with good sensitivity and specificity [57, 63, 85, 84],

the question remains if we can intervene effectively to change the brain dynamics and

prevent a seizure from occurring. We have already provided results from our work which

shows that the applied electrical stimulation dynamically disentrains the brain sites. This

constitutes evidence that electrical stimulation can actually change the spatio-temporal

dynamics of the brain in the desired direction (Figure 7.6(a)), and hence has been used

as actuation in a control scheme for epileptic seizure prevention in the work reported here.

This work entails an expansion to our proof-of-concepts for the development of an efficacious

controller for the epileptic brain using adaptive spatially distributed control. The developed

controller (online) has been validated in vivo. Our main thrust includes multivariable

stimulation with guidance from focus localization techniques and multivariable modeling

that we have presented in the preceding sections in this chapter of the report, and the use

of pulse-train-modulated signals for implementation of a realistic adaptive stimulation.

During the course of this study we have shown that impulsive electrical stimulation does

desynchronize the rat’s epileptic brain dynamics, provided that the stimulus duration and

the electrode location is chosen wisely, i.e., based on a prior “control efficacy” experiment

(Tables 7.1 and 7.3). So, our choice of electrical stimulation as a control input appears to be

a viable candidate. For a realistic and feasible implementation of the desired effect, the input
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to the system is chosen as a biphasic control signal with its pulse-width or pulse-number

modulated to accomplish the desynchornization of the brain dynamics. Following the results

shown in Tables 7.2, 7.4 we chose a minimum stimulation time of 5 minutes and a maximum

of 20 minutes for the closed-loop control experiments. The length of stimulation starts off at

10 minutes when the experiment begins but adaptively increases in increments of 2 minutes

if the number of seizure warnings keep increasing within a moving 2 hour window. This

allows for more energy in stimulation to be delivered to the brain if the stimulation was

not effective. Likewise, the stimulation length will be decreased by 2 minutes as well if in a

moving 2 hour window the number of seizure precursor warnings decrease.

Although, data from Rat 12 was available to complete Table 7.1, the rat was euthanized

due to head-cap breakage soon after and no closed-loop control experiment was performed

on it. Figure 7.7 shows the efficacy of applying stimulation to Rat 13 over a 10 week

period. The animal was allowed 4 weeks of rest after Status Epilepticus (SE) was induced

so that the seizure frequency stabilized. Following this recuperation period the experiments

started. The details of each experiment are provided in Table 7.5. Here the “Week” label

does not always imply an actual week (typically +/- one day from a week) but a recording

file which goes from the beginning to the end of the experiments. At first, 5 “weeks” of

baseline recording was done and on the sixth week stimulation was applied to a set of

electrodes, every time a “seizure warning” was generated by the computer system when it

detected a drop of Lmax beyond a threshold. The pairs of electrodes that were stimulated

are F3-F4, F3-LT, F3-RA, F4-LT, F4-LA, F4-LL, LT-LL, LT-RL, RA-RL, LM-RM, LM-LL,

LM-RL and RM-LL; these were selected based on the “control efficacy maps” we discussed

earlier. Each time a seizure warning is generated the algorithm randomly picks one of these

pairs and stimulates them. As we can see from the plot of seizure lengths and seizure

frequency (seizures per 168 hours) in Figure 7.7(a) and Figure 7.7(b) respectively, the

length of seizures decreased during the stimulation weeks. The 10th experiment (“week”)

was recorded after about a month of stimulation cessation and we can see that both seizure
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Table 7.5: Beginning, end and length of experiments on Rat13. Information on whether
closed-loop control was performed or not is provided in column 5.

File Start Date End Date Duration Stimulation

Week 1 25 Nov 2015 2 Dec 2015 175 hrs No

Week 2 2 Dec 2015 10 Dec 2015 179 hrs No

Week 3 21 Dec 2015 29 Dec 2015 187 hrs No

Week 4 29 Dec 2015 7 Jan 2016 215 hrs No

Week 5 7 Jan 2016 19 Jan 2016 287 hrs No

Week 6 29 Jan 2016 6 Feb 2016 191 hrs Yes

Week 7 6 Feb 2016 15 Feb 2016 238 hrs Yes

Week 8 18 Feb 2016 25 Feb 2016 168 hrs Yes

Week 9 26 Feb 2016 1 Mar 2016 91 hrs Yes

Week 10 6 Apr 2016 12 Apr 2016 144 hrs No
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Figure 7.7: (a) Shows the box and whisker plots of seizure lengths for Rat 13 over the
course of 10 weeks preceded by 4 weeks of rest after status epilepticus induction. The
black dots indicate the mean of each box. (b) Average number of seizures per day for the
same rat over the same 10 week period of experimentation. Here week essentially imply
a recording file which in general is never exactly 168 hrs. The first 5 weeks were baseline
recording, thus no stimulation was provided. The files in which closed-loop control was
provided shows shorter seizure lengths and lower seizure frequency as compared to those in
the baseline period. Week 10 was another case of no stimulation but this was recorded 5
weeks after the end of the week 9 file. No stimulation was provided during those 5 weeks
and it can be seen that the seizure lengths and the seizure rate per week both had started
to increase gradually.
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lengths and frequency had gone up; this is possibly due to any residual plasticity effects

of the stimulation wearing out. On the other hand, through scrutiny it can be seen that

during the first week of stimulation (week 5) both seizure length and frequency were higher

than before they were stimulated. During this week the adaptive stimulation was not

implemented. Every time a seizure warning was generated one of the pairs of sites mentioned

earlier was stimulated with a fixed 5 minute duration. Based on this result we can say that

small stimulations may in fact increase seizure susceptibility in epileptic rats. All other

“weeks” of stimulation had the adaptive stimulation algorithm implemented.

One more finding in our study was that when the “Sum” for Rat 12 and Rat 13 had

values of [4,4], [4,3] and [3,4] for an electrode pair, we assume that stimulation of those pairs

are most likely to bring about disentrainment. This is justified since the same pairs seem

to have similar disentrainment effect on both animals. While this result is not statistically

accurate, it is a good starting point. Comparing Tables 7.1 and 7.3 such pairs are F3-F4,

F4-LT, F4-LA, F4-LL, LT-LL, LT-RL, RA-RL and RM-LL. Inspecting the stimulation of

these sites on Rat 13 we expect no seizure to follow. Looking at the results we see that a

seizure occured in 2 minutes of when F4-LA was stimulated, this is probably because the

stimulation did not start early enough. Another case was when F4-LA was stimulated only

Table 7.6: Details of number of times the best candidate electrode pairs were stimulated
on Rat 13. The randomization algorithm missed stimulating RM-LL altogether due to
an implementation error. Looking at the average performance each week we can see that
stimulating these pairs reduced the number of warnings generated as time progressed with
the exception of the second week, where an inverse response characteristic can be seen.

Electrodes Week 6 Week 7 Week 8 Week 9 Total

F3-F4 22 24 13 6 65

F4-LT 22 23 10 4 59

F4-LA 28 34 11 6 79

F4-LL 26 25 13 3 67

LT-LL 21 44 13 9 87

LT-RL 23 22 15 9 69

RA-RL 19 22 12 5 58

Average 23 27.7 12.4 6
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for 5 minutes and a seizure occured about 20 mins following that; this can be justified by

the fact that 5 minutes of stimulation was probably insufficient. A similar scenario was

observed with F4-LL being stimulated for 5 minutes and a seizure occured 10 minutes after

that; once again the stimulation had too low energy. The last case was when LT-LL was

stimulated and a seizure occured within 2 minutes; once more stimulation was provided

but not soon enough. Other than these cases there were no instances of a seizure following

the stimulation of any of these pairs. A list of how many times each of these pairs were

stimulated is provided in Table 7.6. It can be seen here, that as the weeks progressed, the

number of seizure warnings started to decrease as well, indicating that these pairs were

positively affecting brain dynamics to remain more in the chaotic (healthy) stages.

Overall, our results are encouraging since [131] had shown that seizures can be made

shorter by stimulation at the detection of a seizure and [108] reported on how stimulation

had brought about a mean reduction in seizure frequency of 75.6% over 36 month period

in 4 patients. We now focus our attention to Rat 14 which was stimulated in sites F3-F4,

F3-LT, F3-RA, F4-LT, F4-LA, F4-LL, LT-LL, LT-RL, RA-RL, LM-RM, LM-LL, LM-RL

and RM-LL based on results from GPDC analysis. Table 7.7 provides the duration of

experiments carried out on Rat 14 after the 4 weeks of recuperation time. It must be

pointed out that Rat 14 had almost 30 times as many seizures as Rat 13. Figures 7.8(a) and

7.8(b) show the seizure lengths and average seizure frequency (per 168 hours) respectively.

All stimulation experiments in this case had the adaptive implementation. While seizure

frequency was seen to decrease, no conclusive statement about the length of seizures can

be made. What can be commented on, is the fact that the length of seizures in Rat 14 was

already less than half that of Rat 13 before stimulation. Since Rat 14 seizes so often its

seizure lengths probably had to be shorter because the neurons need to re-energize before

discharging and could not get sufficient time to do so. Thus reducing the length of the

seizures did not seem feasible, however, the seizure frequency clearly reduced, albeit not to

a great extent. A summary of the results from Rat 13 and 14 are provided in Table 7.8.
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Table 7.7: Beginning, end and length of experiments on Rat14. Information on whether
closed-loop control was performed or not is provided in column 5.

File Start Date End Date Duration Stimulation

Week 1 10 Mar 2016 18 Mar 2016 189 hrs No

Week 2 18 Mar 2016 24 Mar 2016 139 hrs No

Week 3 12 Apr 2016 14 Apr 2016 34 hrs No

Week 4 14 Apr 2016 20 Apr 2016 138 hrs No

Week 5 22 Apr 2016 28 Apr 2016 152 hrs Yes

Week 6 28 Apr 2016 5 May 2016 147 hrs Yes

Week 7 5 May 2016 12 May 2016 147 hrs Yes

Week 8 17 May 2016 25 May 2016 191 hrs Yes

Week 9 25 May 2016 5 Jun 2016 263 hrs Yes

Week 10 7 Jun 2016 17 Jun 2016 241 hrs Yes

Week 11 23 Jun 2016 27 Jun 2016 93 hrs Yes

Week 12 27 Jun 2016 5 Jul 2016 188 hrs Yes
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Figure 7.8: (a) Shows the box and whisker plots of seizure lengths for Rat 14 over the
course of 15 weeks preceded by 4 weeks of rest after status epilepticus induction. The black
dots indicate the mean of each box. (b) Average number of seizures per day for the same rat
over the same 15 week period of experimentation. Here week essentially imply a recording
file which in general is never exactly 168 hrs. The first 4 weeks were baseline recording,
thus no stimulation was provided. A clear difference in seizure frequency can be observed
when comparing non-stimulation files to the ones where closed-loop control was provided.
The same cannot be said about seizure lengths for this rat.
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Table 7.8: Summary of average seizure length (“seconds”) and average seizure frequency
(“seizures/hour”) along with the percentage changes for both Rat 13 and Rat 14. The
comparisons in the “Before” and “After” columns imply the results before closed-loop
control experiments were performed and the ones after.

Rat 13 Rat 14

Before After % Change Before After % Change

Avg. length 100.73 48.58 51.77 38.69 37.99 1.81

Avg. freguency 0.0144 0.014 2.78 0.8404 0.6365 24.26

7.5 Conclusions

In this chapter we finally presented results from closed-loop control experiments. While

the problem is not anywhere near being solved, our results indicate certain advantages

are to be gained from multivariable spatial inputs of stimulation. A key ingredient that

could be incorporated into our Lmax computation profile is along the lines of what was

reported in [19], where preictal states were classified using support vector machines but

then arbitrary tranistions in the output profile was smoothed out using a Kalman filter.

Such an implementation could possibly reduce the number of false warnings that our seizure

prediction algorithms generate. This would benefit the closed-loop strategy by being more

power efficient and not stimulating the brain when not needed. Additionally, the Control

Efficacy Maps presented here are essentially tables of binary decisions. A more elegant

approach would be to create a dynamical system from the control input(stimulation) to the

output(Lmax) after which PID controllers could be designed using methods described in

[129]. While we do recognize that results from only two animals is not statistically relevant,

it does shine light on our conjecture that controlling seizures will require proper tuning

of stimulation length, location and possibly more parameters in the stimulation signal;

essentially an expansion to our Control Efficacy Maps.
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Chapter 8

CONCLUSIONS AND FUTURE DIRECTIONS

As the ability to better detect and predict leads to the possibility of control, research

in control of seizures is expected to flourish in the near future, much to the benefit of

patients with intractable epilepsy. Investigations in stimulation and control of the brain have

attracted the attention of the academic community at an explosive rate. Likewise, medical

device companies have spun off into designing and implementing intervention devices

for epilepsy, with clinical trials underway to test potential prediction and intervention

methodology and devices for FDA approval.

Electromagnetic stimulation and/or administration of anti-epileptic drugs at the

beginning of the preictal period, to disrupt the observed entrainment of the brain with

the epileptogenic focus, may result in a significant reduction of the number and severity of

epileptic seizures. Our underlying hypothesis is that an epileptic seizure will be prevented

if an external intervention successfully resets the brain prior to the seizure’s occurrence.

Results from our experiments produced in this document have shown that both the length

of seizures and the rate can be lowered by such means. However, it is very important to

investigate the parameters that lead to maximum efficacy and minimum side effects of such

an intervention. Experimental results provided so far proves that this is not an intractable

problem any longer.

We have shown that a successful and robust controller should be correcting the

pathological part of the system, that is where the coupling between brain sites increases

excessively; a situation the existing internal feedback in the brain cannot compensate

for. To this end, we have shown how Lmax computed using the tuned Kantz algorithm

can be treated as a synchronization measure (output) of interest. The method exploited

in our work involving the reliable computation of Lyapunov exponents can be utilized
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in generating a highly accurate automated seizure detection system as well. A reliable

seizure detection mechanism will aid medical practitioners by reducing time to diagnose

and therefore strategize a better treatment plan for patients in epilepsy.

Based on results provided in the preceding chapters, we expect that the envisioned active

real-time seizure detection and feedback control techniques will mature into a technology for

intervention and control of the transition of the brain towards epileptic seizures and would

result in a novel and effective treatment of epilepsy. The “heavy machinery” of computing

Lyapunov exponents is a significant overhead to be paid, as compared to existing linear

measures, in order to improve the reliability of seizure detection and prevention algorithms.

Computational power is definitely of great concern, especially if the technology is to be

applied in a portable fashion so that patients can go on with their day-to-day lives without

interference. Considerations must be taken into account of how the devices can perform big

data operations while at the same time being small enough to be portable. The ultimate

goal is to provide a seizure-free epileptic brain capable of functioning “normally”, with

minimum time-wise and power-wise intervention and side effects with the help of these

advancements. We envision that this technology will eventually enable a long anticipated

new mode of treatment for other brain dynamical disorders too, with neuromodulation,

anti-epileptic drugs and electromagnetic stimuli as its actuators.

In this dissertation we were only able to produce closed-loop control experiment results

from two animals. The reason being these experiments are long, in the order of weeks, thus

analysis of results and producing meaningful interpretations take quite a while. Added to

the difficulty is when an animal will cease due to health issues. In such cases the experiments

have to be restarted with a new animal. Mortality rates for animals are typically between

40% - 60% after Status Epilepticus is induced. Another miscreant to the mortality rate is

headcap breakage, whereby during a seizure a rat would violently hit the cage walls and the

recording headcap will break off; in such cases euathanizing the animal is the only remaining

option. Additionally as in the case of Rat 14, we have seen significant degradation of signal
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quality after a few months of electrode implantation. The theory is that the accumulation

of glial cells around the electrodes change their impedance and therefore SNR output. A

future study is being planned where better electrodes will be utilized to get clean signals for

longer experiments. With this, we conclude this dissertation by listing the topics covered

in preceding chapters followed by a discussion of possible future directions that can further

the results we have obtained so far.

A brief review of the history of epilepsy and the research done in the field is presented

in Chapter 1. Chapter 2 discussed the theory of nonlinear dynamics, chaotic systems and

its relevance to the epilepsy problem. The maximum Lyapunov exponent, a measure of

chaoticity of a dynamical system, was introduced in Chapter 3 and the most robust method

of computing it was presented. In Chapter 4, the algorithm to compute the generalized

partial directed coherence was presented along with justification for the choice of GPDC

computation parameters. Chapter 5 went into the details of the experimental setup, starting

from how the animals are made epileptic to the construction of the multivariable control

input system and all the relevant hardware and software utilized in the study. Chapters

6 and 7 provides results in seizure detection, focus localization, control efficacy maps and

closed-loop control that we obtained during the course of this work. We showed how,

although many researchers are looking into an accurate prediction scheme, it may be

noteworthy that given a good control action, 100% accurate prediction may not be necessary.

Any warning for seizure may be utilized to desyncrhonize the epileptic dynamics in the brain

and abort an impending seizure.

8.1 Future Work

To wrap up, we present in the following, a list of prospective future work that may

further the advancement of research in this topic of interest -

� The GPDC algorithm suffers largely from the MVAR modeling process. MVAR

modeling by nature generates systems that are high pass; this is not very reliable.

One future work would be to incorporate some frequency weighting in the MVAR
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process so as to get models that are low pass and contain only frequencies of interest.

� GPDC is essentially a normalized inverse transfer function of a sampled data system.

After such a light has been shed on the matter, it becomes possible to think of other

such measures to try and achieve GPDC-like interaction measures. To that end,

future work could involve applying well known system identification techniques as is

abundant in the control systems literature. One such method is treating each channel

as an input and determining the transfer function that has the rest of the channels as

an output.

� Improvement of seizure detection algorithm will entail tuning for both rat and

human data. Additionally some form of artificial neural networks may be employed

over the simplistic threshold based algorithm being used currently. Thus, feature

detection algorithms based either in wavelet matching methods or neural networks

such as support vector machines (SVM) or deep-learning algorithms could make the

automation of seizure detection more robust to artifacts in the data.

� Another potential addition to the seizure detection algorithm would be to accurately

mark the electrographic onset (see Appendix B) of a seizure based on Lmax profiles.

If successful this could lend a hand to doctors in marking the exact time that a seizure

is starting and not just an approximate time of when the seizure is detected.

� Porting the Lmax code to a GPU or other accelerator device would improve speed of

analysis by orders of magnitude. Efficient GPU code development will involve data

pipelining, increased parallelism and efficient memory usage. The application benefit

of such a scheme may allow real-time detection for human EEG that involves high

volumes of data to be analyzed.

� A possible future direction in this work will entitle generating dynamical system

models from the applied stimulus (input) to the Lyapunov exponents (outputs) as

an improvement to the “Control Efficacy Maps”. The inputs, as always, will be
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time modulated with a biphasic impulse train since this is the type of signal that

gave us better decoupling results so far. It is worth mentioning that the measure of

synchronization can include, but not be limited to, Lyapunov exponents computed

from EEG and other biomarkers such as heart rate, pulse oxygen levels, body

temperature, etc. A parameterization of these signals in terms of their duration,

frequency, and location should also be considered in order to eventually develop a

comprehensive input-output model from the average stimulus power to the output of

interest.

� A great challenge at this moment is that whenever stimulation is applied the EEG

signal is corrupted, thus computing Lmax accurately becomes difficult. A future

improvement could involve stimulating with currents in the range of or lower than

EEG signals. Additionally the stimulation could be EEG like in shape and form

instead of being biphasic.
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APPENDIX A

DETAILS OF THE SWITCHING CIRCUIT
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Figure A.1 shows how the complete switching circuit works in conjunction with the
Intan board, the Arduino Mega and the stimulator from A-M Systems. To recap, the 10
electrodes we use are F3, F4, LT, RT, LA, RA, LM, RM, LL, RL which are correspondingly
connected from the Intan board to the animal’s head-cap using the switches EEG 1 through
EEG 10 as shown in the Figure. As an example, if at a certain point in time, it is intended to
stimulate the F3-F4 electrode pair, the computer sends out this command to the Arduino.
The Arduino carries out the instruction by holding voltages on its digital pins accordingly to
switch off the EEG 1 and EEG 2 switches and switch on the StimR1 and StimB2 switches.
This will allow stimulation current to flow between the chosen pair of electrodes while
simultaneously disconnecting the first two Intan ADCs. This ensures that the ADCs are
protected from the stronger stimulating current. When the time to end stimulation comes
about, the computer program will send a stop command to the Arduino Mega. Then the
Arduino will respond by switching off the StimR1 and StimB2 switches and switching back
on the EEG 1 and EEG 2 switches. Thus, re-establishing recording capability in those two
channels.
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APPENDIX B

TERMS AND ACRONYMS
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Some of the terms and Acronyms used in this report are explained here.

� Ictal - During seizure.

� Interictal - Between seizures.

� Preictal - Tens of seconds before seizure.

� Postictal - Tens of seconds after seizure.

� Electrographic Onset (EO) – The time at which the seizure is marked to have begun
through expert visual analysis of the EEG/ECoG.

� Electrographic End (EE) – The time at which the seizure is marked to have ended
through expert visual analysis of the EEG/ECoG.

� Clinical Onset (CO) – The time at which an expert observer, or an observer familiar
with the patient’s seizures first identifies a behavioral manifestation of a seizure.

� False Positive (FP) – The occurrence of a seizure detection at a time when no seizure
is occurring.

� False Negative (FN) – The failure to detect a seizure that has occurred.

� True Positive (TP) – The detection of a seizure that has occurred.

� True Negative (TN) – Correctly being in the state of non-detection during a time
when a seizure is not occurring.

� Sensitivity – A measure of how likely an epoch during a seizure is to be detected. The
classical definition, for a binary classifier, is given by

Sensitivity =
#TruePositives

#TruePositives+ #FalseNegatives

� Specificity - A measure of how likely an epoch during a non-seizure epoch is to be
detected. The classical definition, for a binary classifier, is given by

Specificity =
#TrueNegatives

#TrueNegatives+ #FalsePositives
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APPENDIX C

EEG DATA SAMPLES

Here, we present two samples of EEG data collected from Rat 13. Both data were
sampled at 512 Hz. First, in Figure C.1 we show 1 minute and 40 seconds of interictal
data that starts at 125 hours 13 minutes and 48 seconds from the beginning of the record.
Next, in Figure C.2 we show ictal data from a seizure that occurs roughly an hour after
the interactal data. The data starts at 125 hours 25 minutes and 17 seconds from the
beginning of the EEG file. Visual comparison shows a clear distinction of the seizure during
the ictal period as compared to the interictal one. The seizure start is marked at 126 hours
25 minutes and 39 seconds from the beginning of the record file.
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