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ABSTRACT

Software-Defined Networking (SDN) is an emerging network paradigm that de-

couples the control plane from the data plane, which allows network administrators

to consolidate common network services into a centralized module named SDN con-

troller. Applications’ policies are transformed into standardized network rules in the

data plane via SDN controller. Even though this centralization brings a great flexibil-

ity and programmability to the network, network rules generated by SDN applications

cannot be trusted because there may exist malicious SDN applications, and insecure

network flows can be made due to complex relations across network rules. In this dis-

sertation, I investigate how to identify and resolve these security violations in SDN

caused by the combination of network rules and applications’ policies. To this end, I

propose a systematic policy management framework that better protects SDN itself

and hardens existing network defense mechanisms using SDN.

More specifically, I discuss the following four security challenges in this disser-

tation: (1) In SDN, generating reliable network rules is challenging because SDN

applications cannot be trusted and have complicated dependencies each other. To

address this problem, I analyze applications’ policies and remove those dependen-

cies by applying grid-based policy decomposition mechanism; (2) One network rule

could accidentally affect others (or by malicious users), which lead to creating of

indirect security violations. I build systematic and automated tools that analyze net-

work rules in the data plane to detect a wide range of security violations and resolve

them in an automated fashion; (3) A fundamental limitation of current SDN pro-

tocol (OpenFlow) is a lack of statefulness, which is extremely important to several

security applications such as stateful firewall. To bring statelessness to SDN-based

environment, I come up with an innovative stateful monitoring scheme by extending

existing OpenFlow specifications; (4) Existing honeynet architecture is suffering from

i



its limited functionalities of ’data control’ and ’data capture’. To address this chal-

lenge, I design and implement an innovative next generation SDN-based honeynet

architecture.
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Chapter 1

INTRODUCTION

1.1 Introduction

A major shift in network infrastructure is in progress from the hardware-based os-

sified network to the software-based programmable network. The compelling example

of this is the advent of software-defined networks (SDNs) [47, 46, 60]. Traditional net-

work relies on a variety of hardware devices that can be installed at a specific location

in a network to provide networking functions such as firewall, IDS/IPS, load-balancer,

and proxy. However, the mixture of control logic and its data processing modules in-

side the box makes the network more complex and hard to manage. To solve this

challenge, SDN decouples the control plane from the data plane and consolidates the

control logic of devices into a dedicated SDN controller. In this way, SDN helps net-

work administrators easily program underlying network via specific control channels

(e.g., OpenFlow [86]).

Several benefits that SDN brings are summarized as below:

• Centralized network environment: Compared to the traditional network envi-

ronment, SDN basically decouples the control plane of a hardware from its data

processing modules [86]. The separation of the control plane from the data

plane allows network administrators to consolidate common network services

into SDN controller and help them centrally program the entire network.

• High-speed networking: SDNs implement high speed traffic forwarding by ap-

plying simple ”match-action” rules in the data plane. According to a recent

1



report from Google [70], SDN helped them achieve the utilization of WAN at

close to 100% utilization whereas other state-of-the-art network techniques only

showed about 30% to 40% network utilization. In addition, recent researches

have shown that SDN controllers can handle 1.6 million requests per second with

the response time of 2ms on average [118] and SDN switches has achieved high

throughput: 10.1 million packets (64B) per second with 100K flow rules [92].

• Flexible and programmable functions: To lower the barrier to network innova-

tion, SDN allows network administrators to easily program the data plane via

specific control channels such as OpenFlow [31]. An OpenFlow switch supports

multiple flow tables to process incoming packets and enforce multiple actions

using set-field actions. In this way, SDN transforms the switch into multi func-

tional device that acts as a route, firewall, and/or NAT device. Such flexibility

and programmability can significantly help network administrators design and

manage networks.

• Synergy with virtualization techniques: SDN is even more powerful when it

comes with virtualization techniques such as network functions virtualization

(NFV [61, 125]). A majority of cloud platforms including OpenStack [24],

Xen [29] and CloudStack [7] supports a software switch (Open vSwitch [25])

to enable the connectivity between each tenant. SDN can be considered to

effectively manage and program the tenant network by dynamically steering

network traffics. Recent studies [53, 100] also show that combining SDN with

NFV is promising and synergistic.

However, these benefits enabled by SDN come at a cost of security. I introduce four

important security challenges in emerging SDN-based network environment. First,

generating reliable policies in SDN is challenging. More specifically, some network
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rules generated by an arbitrary SDN application cannot be trusted. There may

exist SDN applications (e.g., firewall, load-balancer, route applications) that jointly

manage the same network flow. These applications maintain their own policies and

necessary network rules will be composed by the SDN controller to implement these

policies. However, complex relations among applications’ policies may create the

insecure and inefficient generation of network rules. For example, suppose that the

controller composes two SDN applications (load-balancer and firewall) sequentially.

In this case, rewritten packets by the load-balancer could enable malicious packets to

bypass the firewall since the firewall would not be able to see original packet headers.

Hence, the careless composition of application policies may cause security breaches in

the network. In case network administrators want to compose two SDN applications

in parallel to enforce their policies simultaneously. Indeed, some policies in the load-

balancer are unnecessary to be composed if the firewall blocks the same network

traffic. Therefore, it becomes inefficient to always compose the multiple policies.

Second, network rules in the data plane (i.e., switches) create complex relations,

which lead to indirect security violations. OpenFlow, as the prevailing SDN standard,

allows various set-field actions that can dynamically change the packet headers

in a path. Adversaries could take advantage of this feature to strategically enable

flow rules that would evade network security mechanisms. For example, the firewall

application has a policy to deny network packets from host A to host C, namely flow 1.

Suppose that another application running on the controller establishes a flow 2 for

the connection between host A and host D by installing a set of network rules, which

do not violate the firewall policy. Adversaries then install a new network rule that

rewrites the source address (SRC) of the packets to host B and the destination address

(DST) of the packets to host C. In this case, if host A sends a packet to host D, the

packet will be first processed by the malicious network rule and eventually delivered
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to host C, which violates the firewall policy. This type of network attacks is newly

introduced in SDN-based network.

Third, a fundamental limitation of OpenFlow is the lack of statefulness. Current

OpenFlow mechanism allows SDN controller to generate network policies based on

the first packet (e.g., TCP SYN) of a new flow. Because the controller is unaware

of subsequent packets of the flow, including state changing packets (e.g., TCP FIN),

the controller has no knowledge of the state of connections in the network. This

per-flow based OpenFlow workflow is insufficient for enabling state-based network

applications (e.g., stateful firewalls) and monitoring suspicious behaviors occurring

inside of a flow (e.g., man-in-the-middle attacks). For example, a firewall could specify

“packets from server B to host A are allowed, if and only if host A initiates the

connection to server B.” This stateful policy is incredibly useful for network firewalls

when they specify that a web server should accept incoming connections but never

initiate an outgoing connection. However, it is impossibly hard to build a stateful

firewall in an SDN-based network without the support of stateful packet inspection.

In addition, adversaries can attempt unauthorized access to an active connection by

performing man-in-the-middle attacks including TCP sequence inference attacks by

spoofing packets. If adversaries successively infers the sequence number of the next

packet, they could terminate active connections by setting the TCP flags with FIN.

With current OpenFlow mechanism, it is challenging to detect this type of attacks

occurring in between end hosts.

Lastly, the applicable domains of SDN up to date are heavily restricted to data

center networks, and campus networks. This makes following question arise: “Can

SDN help improve security of other networks?” More specifically, I am interested in

adopting SDN into traditional honeynet architecture. The latest honeynet architec-

ture (Gen-III [115, 33]) basically employs a custom firewall called honeywall as the
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gateway of the network to take control of inbound/outbound traffic. However, current

honeynet architecture is suffering from its limited functionalities of ’data control’ and

’data capture’. Existing data control mechanism cannot monitor internal propagation

of malware in the network, and it does not support honeypot transitions from one

to another (e.g., a low-interaction honeypot to a high-interaction honeypot). The

data capture capability of traditional honeynet is also restricted as it is vulnerable to

fingerprinting attacks.

1.2 Dissertation Statement

To overcome aforementioned challenges, I envision that analyzing network policies

and enforcing them in an appropriate manner are imperative in both protecting SDN-

based network itself and hardening existing network defense mechanisms. I thus

develop following hypothesis for this dissertation:

“Systematic policy management is imperative in software-defined networks (SDNs),

and it can help improve security of SDN-based network environment and existing se-

curity measures.”

To validate the hypothesis above, I propose a systematic policy management

framework for SDN that solves the security challenges and enables policy-driven net-

work defense schemes. To address the first challenge, generating reliable network

rules in SDN, I propose the grid-based policy decomposition mechanism called RPM

that breaks dependency relations across different SDN applications. This mechanism

globally examines all application-specific policies to identify overlapping policies and

generate disjointed matching space to generate reliable network rules. For the second

challenge, which is indirect security violations, I propose FlowGuard that catego-

rizes each of violation cases into partial and entire violation and provides automatic
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and effective resolution mechanisms. Based on the class of violations, it performs four

different resolution strategies: dependency breaking, update rejecting, flow removing,

and packet blocking. To address the lack of statefulness in SDN, I design an inno-

vative per-connection monitoring scheme named StateMon by making lightweight

extension of current OpenFlow specification (OpenConnection). OpenConnection-

enabled switch maintains customized flow table to enforce connection-based actions

at the data plane and sends them to the controller to inform state-changing events

while the controller centrally maintains the states of each connection in the net-

work. To address the last challenge, I introduce HoneyProxy as a next generation

SDN-based honeynet. HoneyProxy globally monitors all internal traffic via SDN

controller to prevent internal malware propagation, and it enables a novel connection

management mechanism across different honeypots to support honeypot transitions.

HoneyProxy also improves the data capture capability in existing honeynet by cir-

cumventing fingerprinting attacks through multicasting malicious traffic to relevant

honeypots and selecting the response which does not contain fingerprinting indica-

tor(s) from them.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 first describes

generic OpenFlow workflow with essential backgrounds of this dissertation. Next, I

elaborate security challenges in generating network rules for SDN in Chapter 3. Chap-

ter 4 discusses detection methodologies and resolution strategies to address indirect

security violations, which is based on an analysis of stateless network rules. In Chap-

ter 5, I present stateful network monitoring schemes for SDN. SDN-based intelligent

honeynet will be presented in Chapter 6 and Chapter 7 concludes this dissertation.
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Chapter 2

BACKGROUND

2.1 Software-Defined Network (SDN) and OpenFlow

As illustrated in Figure 2.1, each network box in the conventional network has

specialized packet forwarding hardware to process incoming and outgoing packets.

Network operating system and applications run on this hardware to control and man-

age it in an appropriate fashion. However, such an architecture implements rather

“closed” network environment since all components are bundled in a single box. Con-

sequently, it not only becomes extremely difficult for network programmers to change

the configurations but also requires high maintenance costs once these boxes are de-

ployed in the network. In addition, it might not be fully compatible with each other

due to different versions of software and/or different vendors.

On the other hand, SDN is trying to break those tight relation between hardware

and software by decoupling the data plane from the control plane. SDN takes network

operating systems out of the box and consolidates them into the centralized control

plane. In this way, network applications can also be consolidated so as to run on

top of SDN control plane together. The control plane exposes northbound APIs

to the application plane to communicate each other. In the data plane, instead

of having specialized forwarding hardware, SDN only needs simplified forwarding

hardware because southbound APIs are standardized under the SDN protocols such as

OpenFlow [23]. Through OpenFlow, SDN enables “open” and programmable network

infrastructure and lets network programmers implement business logic and enforce

them in a centralized manner.
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(a) Conventional network architecture

(b) SDN architecture

Figure 2.1: Architectural Difference Between Conventional Network and SDN.
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As the first and widely adopted standard for SDN, OpenFlow [114] essentially

implements SDN concepts, and makes the entire network to become directly pro-

grammable as well as the underlying infrastructure to be abstracted for network

applications. With OpenFlow, only the data plane exists in the network device, and

all control decisions are communicated to the device through a logically-centralized

controller. To understand how OpenFlow implements SDN concepts, we provide an

overview of the current OpenFlow workflow. When an OpenFlow-enabled switch re-

ceives a packet, it first checks its flow tables to find matching rules. If no such rules

exist, this means it is the first packet of a new flow. The switch then forwards the

packet to the controller, and it is the controller’s job to decide how to handle the

flow and to install flow table rules in the appropriate switches 1 . Specifically, the

switch encapsulates the raw packet within an OFPT PACKET IN message to send it to

the controller, then the controller installs corresponding rules called flow entries into

the switches along the controller’s intended path for the flow. Once these flow entries

are installed, all subsequent packets of this flow are directly forwarded by the switches

without sending the packet to the controller.

For example, in Figure 2.2, host A wants to initiate a TCP connection with web

server B. The first packet (TCP SYN) sent by host A is checked by the ingress

switch S1 and forwarded to the controller because S1 has no matching flow entry for

the packet. The controller allows the flow from host A to server B by installing flow

entries fe1, fe2, and fe3, into switches S1, S2, and S3, respectively. The flow from

host A to server B is called as a forward flow. Using the same process, the response

packet (TCP SYNACK) generated by server B will trigger the controller to install

fe4, fe5, and fe6 into S3, S2, and S1, respectively. The flow from server B to host A

1The controller has a global view of the network, so it can calculate the best routing path that
the new flow should take in the network.
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fe1: A → B forward fe3: A → B forward

Forward Flow Reverse Flow

S1 S3

SDN Controller

Host A
Webserver B

fe6: B → A forward fe4: B → A forward

S2

fe2: A → B forward

fe5: B → A forward

SDN Applications

Route

App

Load-balance

App

Firewall

App

Webserver C

A → B
B → A

Figure 2.2: Example of a Standard OpenFlow Connection.

is called as a reverse flow. Upon the completion of these bi-directional flows, host A

can establish a TCP connection with web server B.

2.2 Security Challenges in SDN

There exist several unique security challenges in SDN, which stem from its ar-

chitectural differences from the conventional network [105, 39, 78, 79, 93, 34]. First,

current southbound APIs (e.g., OpenFlow [31]) allow various set-field actions that

can dynamically change the packet headers. Adversaries could take advantage of this

feature to strategically enable flow rules that would evade network security mecha-

nisms (e.g., firewalls) [95]. In addition, flow rules may overlap each other in a flow

table, indicating the intra-table dependency of flow rules [74]. The rules in a fire-

wall policy may also overlap each other [122]. These rule dependencies could also be

leveraged by malicious SDN applications to bypass existing security measures such

as firewalls.
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Second, unprecedented threats are emerging in the control layer due to the nature

of SDN, which is centralization. In particular, attackers residing in the data plane

may target specific SDN controller by launching DoS attacks or poisoning the network

visibility. DoS attacks [110, 53] targeting the controller can be a significant threat

since it may result in disrupting all network services running on the same controller.

Other attacks such as topology poisoning [65] that tricks a real topology by manip-

ulating LLDP packets would also be possible. In the worst case scenario, attackers

would be able to exploit the entire communication channel and hijack sessions be-

tween SDN switches and the controller (man-in-the-middle introduced in [105, 39]).

Upon successful exploitation, adversaries could take full control of the data plane in

the network by manipulating OpenFlow messages destined to SDN switches.

Third, the application plane in SDN is not only suffering from design flaws but also

vulnerable to information disclosure and rootkits. There exist no standard require-

ment nor rules in implementing the controller or SDN applications, thus design flaws

or vulnerabilities may arise depending on their implementation. For example, Rose-

mary [111] exploits design flaws of existing controller that allows SDN applications

to run in the same privilege zone with the controller. By calling system exit function

from SDN applications, attackers can eventually crash network services running on

the controller. In addition, user-defined or application-specific implementation makes

finding malicious applications to become extremely difficult. Malicious users may ex-

ploit these inherent limitations to develop and distribute malicious SDN applications

to SDN markets such as SDN Dev Center [19]. Consequently, malicious applications

could leak network information [105] and install rootkits into the controller [103].

This is why SDN applications cannot be fully trusted and need to be validated.

In this dissertation, we are not trying to solve all types of security challenges in

SDN. But we believe many security challenges can be addresses via well-managed
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network policies. In particular, we are targeting: (1) malicious SDN applications,

which will be discussed in Chapter 3; (2) flow modification attacks, which is possibly

mitigated using stateless policy management (Chapter 4); and (3) man-in-the-middle

attacks, which can be mitigated by stateful policy management (Chapter 5).

2.3 Policy Management and Policy Verification Tools for SDN

A couple of verification tools [35, 74, 73, 76, 85] for checking network invariants

and policy correctness in OpenFlow networks have been proposed. Anteater [85]

detects violations of network invariants using a SAT solver through transferring the

data-plane information to boolean expressions and converting network invariants into

instances of SAT problem. FlowChecker [35] translates network policies into boolean

expressions and uses Binary Decision Diagram (BDD) to model the network state for

checking network invariants. However, both Anteater and FlowChecker are static in

nature and could not scale well to dynamic changes in the network. VeriFlow [76]

and NetPlumber [74] are capable of checking the compliance of network updates

with specified invariants in real time. VeriFlow uses graph search techniques to verify

network-wide invariants and deals with dynamic changes. NetPlumber utilizes Header

Space Analysis (HSA) [73] in an incremental manner to ensure real-time response for

checking network policies through building a dependency graph. Even though these

tools can be potentially used to detect network policy violations, they could not pro-

vide automatic and effective violation resolution. Also, they ignore rule dependencies

within security constraints, such as firewall policies, for compliance checking.

Policy verification tools discussed above are able to check network reachability

and potentially utilized for tracking flow paths in OpenFlow networks. However,

Anteater [85] and FlowChecker [35] are indeed offline systems and cannot be applied

for real-time flow tracking. VeriFlow [76] can perform reachability checking in real
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time, but it does not support dynamic packet modifications. Another option for flow

tracking would be FlowTags [54], which can additionally deal with dynamic trans-

formations in the presence of legacy middleboxes (e.g., proxies). However, FlowTags

needs to alter existing OpenFlow architecture. In this dissertation, we leverage the

mechanism introduced by NetPlumber [74] to track flow paths for network policy

violation detection, since NetPlumber provides a couple of features that fit for our

purpose, such as support for arbitrary header modifications, automatic rule depen-

dency detection, and real-time response.

As another work, FortNOX [95] was proposed as a software extension aiming

to provide security constraint enforcement for OpenFlow controllers, being able to

identify indirect security violations. FortNOX was then used as a security enforcement

kernel for FRESCO [109], an OpenFlow security application development framework.

However, we cannot directly adopt FortNOX approach due to several reasons. On one

hand, the rule conflict analysis algorithm provided by FortNOX records rule relations

in alias sets, which are unable to accurately track all flows. In particular, the conflict

detection algorithm in FortNOX only conducts pairwise conflict analysis between new

flow rule(s) and each single security constraint without considering rule dependencies

within flow tables [74, 76] and among security constraints (represented as a firewall

policy in our approach) [63, 122]. On the other hand, when FortNOX detects a

security violation caused by new rule(s) installed by a non-security application, it

simply rejects the rule(s) without offering a fine-grained violation resolution.
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Chapter 3

MEDIATING POLICY CONFLICTS FOR SDN APPLICATIONS

3.1 Introduction

Traditional network environment is ill-suited to meet the requirements of today’s

enterprises, carriers, and end users. Software-Defined Networking (SDN) is recently

introduced as a new network paradigm which is able to provide unprecedented pro-

grammability, automation, and network control by decoupling the control and data

planes, and logically centralizing network intelligence and state [49]. In SDN, net-

work applications can communicate with the SDN controller via an open interface and

define network-wide policies based on a global view of the network provided by the

controller. The SDN controller, which resides in the control plane, manages network

services and provides an abstract view of the network to the application plane. At the

same time, the controller translates policies defined by applications into actual packet

processing rules which are identifiable by the data plane. As the first standard for

SDN, OpenFlow [86] helps generate a set of flow rules to enforce network-wide poli-

cies in physical devices. Each flow rule specifies a pattern that matches on bits in the

packet header, actions that are performed on matching packets to describe packet

forwarding, packet modification or packet dropping, a priority that disambiguates

among overlapping patterns, and timeouts that allow a switch to delete expired rules.

The multi-layered SDN architecture significantly helps manage and process net-

work flows. However, each layer of SDN architecture heavily relies on complicated

network policies and managing those policies in SDN requires not only dedicated

cautions but also considerable efforts. Our study reveals that such a multi-layered
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architecture brings great challenges in policy management for SDN as follows:

• Policy management in SDN application plane: An SDN application could

employ multiple modules, such as access control, load-balancing, routing and

monitoring, to process the same flow and generates various functional policies

by composing rules produced by those modules [57, 89]. However, policy com-

position is not a trivial task, since rules generated by a single module may

overlap each other (intra-module dependency) and rules from one module may

also overlap with rules from other modules (inter-module dependency). Thus,

policy composition should address issues caused by both intra-module and inter-

module dependencies.

• Policy management in SDN control plane: In SDN control plane, there

may exist multiple SDN applications running on top of a controller and they

might jointly process the same traffic flow. In such a situation, flow rules gen-

erated by different application for processing the same flow may also overlap

each other (inter-application dependency) and lead to policy conflicts [56, 95].

• Policy management in SDN data plane: In SDN data plane, different flows

may go through the same switches and flow rules defining different flows in the

same flow table may also overlap each other. We call this situation intra-table

dependency. In this case, unintended flow path modification could happen.

To address above challenges, we propose a framework for robust policy manage-

ment (RPM) in SDN with respect to three planes in SDN architecture. In SDN

application plane, we introduce a policy segmentation mechanism to compute and

resolve intra-module and inter-module dependencies and enable a secure and efficient

policy generation. Our novel policy segmentation mechanism generates a number of
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disjoint segments which are able to identify various dependencies and thereby allow

to automatically remove those dependencies. In SDN control plane, our framework

identifies inter-application dependencies with the help of policy segmentation mech-

anism and resolves the dependency relations through two ways in terms of different

situations. On one hand, if different applications are desired to collaboratively pro-

cess the same flow, our framework composes policies produced by those applications .

On the other hand, when the applications are mutually exclusive and each time only

one application is allowed to process the flow, our framework breaks inter-application

dependencies by assigning policies from different application with different priorities.

Lastly, we propose an flow isolation mechanism for removing intra-table dependencies

to address conflicting flows in SDN data plane.

The major contributions of this chapter are summarized as follows:

• We present various challenges in SDN policy management with respect to three

planes, application, control and data planes, in the multi-layered SDN architec-

ture.

• We propose a comprehensive framework to enable a robust policy management

in SDN based on three layers of SDN architecture. A set of systematic resolution

strategies are introduced for different layers in our framework.

• We provide a prototype implementation of our framework in an open SDN con-

troller. We evaluate our solution using a real-world network configuration and

an emulated OpenFlow network. Our experimental results show that our imple-

mentation has low performance overhead to enable effective policy management

for SDN.

This chapter is organized as follows. Section 5.3.2 overviews our framework and

presents policy management challenges and corresponding resolution strategies based
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on three planes in SDN architecture. In Section 6.6, we introduce our implementation

details and evaluations followed by related work discussed in Section 6.9. Section 6.10

concludes the chapter.

3.2 Robust Policy Management (RPM) Framework

3.2.1 Overview

We first present our RPM framework which enables robust policy management

for SDN in terms of three planes of SDN architecture: (1) SDN application plane; (2)

SDN control plane; and (3) SDN data plane.

App 1

MonitorRoute LBFW

Traffic Flow 1

Security Module Non-Security Module

App 2

MonitorRoute LBFW

Traffic Flow 2

Security Module Non-Security Module

App 3

Data layer

Application

layer

Control

layer

Figure 3.1: Multi-layered SDN Policy Management: (1) Application Plane; (2)
Control Plane; and (3) Data Plane.

In SDN application plane, a main issue comes from policy composition where

intra-module and inter-module dependencies should be addressed. Partially or en-

tirely overlapped rules in a module make nontrivial intra-module dependencies and

complicate the process of policy composition. In addition, inter-module dependen-

cies between security and non-security modules may cause security challenges due to

incomplete policy composition. As illustrated in Figure 3.1, we investigate inefficient

and insecure policy composition issues and introduce our policy generation algorithm
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along with a policy segmentation mechanism to address such issues.

In SDN control plane, multiple applications processing the same flow may cause

inter-application dependencies. As shown in Figure 3.1, App 2 and App 3 is processing

the same flow, Flow 2, and the flow policies produced by two applications may conflict

with each other. In order to identify inter-application dependencies, we recall the

policy segmentation mechanism in the first layer and obtain overlapping segments

which indicates the rule dependency relations. We consider two resolution strategies

in this layer. First, we compose policies generated by different applications and

allow them to jointly process the same flow. Second, we break inter-application

dependencies by assign dependent rules with different priorities.

In SDN data plane, OpenFlow-enabled switches store flow rules into the flow

tables by their priorities. A rule defining one flow, such as Flow 1 in Figure 3.1,

with a lower priority might be affected by a rule for another flow, such as Flow 2 in

Figure 3.1, with a higher priority, causing intra-table dependency. Since intra-table

dependencies might change the behaviors of associated flows, our framework provides

two flow isolation mechanisms, flow rerouting and flow tagging, to address such a

issue.

3.2.2 Policy Management in SDN Application Plane

In this section, we first explore various considerations and policy management

challenges in SDN Application Plane. We then present our fine-grained policy com-

position mechanism in the RPM framework.

Considerations and Challenges

An SDN application generally employs several network modules to build multi-functional

policies. While an application with multiple modules processes a traffic flow, funda-
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mental considerations are intra-module and inter-module dependencies. To illustrate

policy composition issues, we adopt two kinds of composition operators introduced

in [89]. “Parallel” composition operator (|) means the union of two modules and

generates a set of packet processing rules which should be applied to the same flow

simultaneously. “Sequential” composition operator (≫) stands for serialization of

modules so that the matching rules would be performed one by one on a flow. We

next investigate several policy management challenges in SDN application plane.

Firewall Policy
r1: src = 10.0.x.x, dst = 1.2.3.x → deny

r2: dst = 1.2.3.4 → allow

r3: src = 10.0.0.x, dst = 1.2.3.x → deny

Load-balance Policy
r4: src = 10.0.1.1, dst = 1.2.x.x → src = 10.2.2.2

Route Policy
r5: src = 10.0.0.x, dst = 1.2.3.4 → fwd(1)

r6: src = 10.2.2.2, dst = 1.2.x.x → fwd(2)

r7: src = 10.2.2.2, dst = 1.2.3.x → fwd(3)

Monitor Policy
r8: src = 10.0.1.1, dst = 1.2.10.11 → count

r9: src = 10.1.x.x, dst = 1.2.3.4 → count

Figure 3.2: Sample Policies Defined by Four Different Network Modules.

1. Intra-module dependency: Assume that there exist four different modules, Fire-

wall, Load-balance (LB), Route and Monitor, which can be used by an SDN

application. And each module produces several rules which are ordered by their

priorities as shown in Figure 3.2. In Firewall policy, r1, r2, and r3 are mutu-

ally dependent. Thus, computing intra-module dependencies in Firewall policy

requires considerable efforts. Computing dependencies in Route policy is rela-

tively easy, since r6 is a superset of r7 and r7 is not visible in the network. On

the other hand, LB and Monitor policies do not have any intra-module depen-

dencies.

2. Inter-module dependency: Computing inter-module dependencies is more tricky.

In Figure 3.2, we can observe that r1 is dependent with r4 and r5, r2 is de-

pendent with r9, and r3 is dependent with r5. Therefore, Firewall policy is
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dependent with all other modules’ policies. But Route policy is only dependent

with Firewall policy, since r5 is dependent with r1, r2, and r3. As discussed

above, computing inter-module dependencies by pair-wise comparison requires

considerable efforts.

3. Insecure composition caused by inter-module dependency: We now explore prob-

lematic issues potentially caused by inter-module dependencies. We first assume

that two modules are sequentially composed, Firewall≫ LB. Since r1 and r4

internally overlap with each other, the packets matching r4 will be blocked by

r1. However, if we consider an opposite composition sequence, LB ≫ Firewall,

r4 in LB modifies packets’ source IP address to 10.2.2.2 and r1 in Firewall can-

not block these packets. In such a case, we argue that inaccurate composition

sequence may cause security breaches in the network.

4. Inefficient composition caused by intra-module and inter-module dependencies:

A programmer may want to compose two modules in parallel such as Firewall |

Route. In Figure 3.2, we could observe that all rules in Firewall policy are

dependent with r5. Since r1 has the highest priority, r1 and r5 are jointly

combined and we can obtain the following rule: src = 10.0.0.x, dst = 1.2.3.4 −→

deny, fwd(1). Indeed, r5 is not necessary to compose with Firewall rules, since

the Firewall rule, r1, already blocks packets matching the rule pattern. In

addition, composing r6 and r7 with Firewall policy is also invalid since r7 should

not appear in the network. Therefore, we argue that it is obviously inefficient to

always compose the multiple policies and install them into the network switches

like Pyretic [89] does.

As discussed above, we need to pay special attention on addressing challenges
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in this layer. First, treating every module equally sometimes evades security policies

such as a firewall policy. Since a firewall policy is generally considered more important

than policies produced by other modules, distinguishing security modules from non-

security modules is vital for secure policy composition. Second, commodity SDN

switches with limited ternary content addressable memory (TCAM) space typically

support only a few thousands of rules [72, 117]. Thus, we should also strive to provide

mechanisms with respect to an efficient policy composition.

Efficient Policy Generation

To efficiently compose policies generated by different modules of an SDN application,

we group security modules and non-security modules separately and carefully examine

the inter-module dependencies between security modules and non-security modules.
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(a) Inefficient flow rule generation
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(b) Efficient flow rule generation

Figure 3.3: Comparison Between Inefficient and Efficient Flow Rule Generation.

Figure 3.3 shows an example comparing inefficient policy generation mechanism

and our solution. In Figure 3.3a, Firewall and Load-balance (LB) modules are com-

posed sequentially so that only legitimate packets can traverse the network. In this

case, the generated packet processing rule contains an unnecessary rule, r4, which

modifies source IP address to 10.2.2.2. Such an extra operation will impose overhead

to the production network. In contrast, our approach ignores subsequent policies

generated by non-security modules if security modules deny matching packets. Fig-
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ure 3.3b illustrates our approach where r1 drops the matching packets immediately

without the processing of r4. We use a new notation (:) to indicate our policy gener-

ation operation.

Policy Segmentation

The major goal of our framework in this layer is to remove intra-module and inter-

module dependencies for policy composition. In order to achieve such a goal, com-

puting these dependencies is essential. Since SDN applications can obtain a global

view of network, our segmentation algorithm also adopts global data structure which

allows us to compute intra-module and inter-module dependencies at the same time.

Our policy segmentation mechanism generates a set of disjoint segments.

Definition 1 (Segment). A segment is a 4-tuple {sid, ms, Ra, OR}, where sid is a

segment identifier, ms is a matching space of segment, Ra is a set of active rules, and

OR is a set of overlapping rules. An element of Ra is selected from OR by finding out

a rule having the highest priority in the overlapping rule set associated with a module.

Therefore, Ra ⊆ OR.

Our policy segmentation mechanism globally examines overlapping rules and com-

putes distinct matching space in order to remove intra-module and inter-module

dependencies. To compute dependencies, we record all overlapping rules in each

segment. Overlapping rules indicate those rules are possibly have intra-module or

inter-module dependencies so that we could remove all dependencies and obtain ac-

tive rules. Active rules are completely applicable to process matching packets because

dependencies in corresponding overlapping segments could be completely removed.

Algorithm 1 shows the pseudocode of our policy segmentation mechanism. We

first insert security policies into a set of disjoint segments. As shown in lines 17-40
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Algorithm 1: Policy Segmentation Algorithm.

Input: A security policy Ps and non-security policies Pns = {P1, · · · , Pk}.
Output: A set of segments S.

1 PolicySegmentation(R)
2 S.New();
3 /*Insert security module rules*/
4 R←− GetRule(Ps);
5 foreach r ∈ R do
6 S ←− InsertRule(S, r);
7 end
8 /*Insert non-security module rules*/
9 foreach P ∈ Pns do

10 S.AppendModuleSeperator();
11 R←− GetRule(P );
12 foreach r ∈ R do
13 S ←− InsertRule(S, r);
14 end
15 end
16 /*Compute active/inactive rules in each module*/
17 foreach s ∈ S do
18 s←− ComputeActiveRule(s);
19 end
20 return S;
21 InsertRule(S, r)
22 sn ←−MatchingSpace(r);
23 sn.OverlappingRules.Append(r);
24 foreach s ∈ S do
25 /* sn.ms is a subset of s.ms*/
26 if sn.ms ⊂ s.ms then
27 s.ms←− s.ms \ sn.ms;
28 sn.OverlappingRules.Append(s.OverlappingRules);
29 S.Append(sn);
30 break;
31 end
32 /* sn.ms is a superset of s.ms*/
33 else if sn.ms ⊃ s.ms then
34 sn.ms←− sn.ms \ s.ms;
35 s.OverlappingRules.Append(sn.OverlappingRules);
36 end
37 /* sn.ms partially matches s.ms*/
38 else if sn.ms ∩ s.ms 6= ∅ then
39 sc.New();
40 sc.ms←− sn.ms ∩ s.ms;
41 sc.OverlappingRules.Append(sn.OverlappingRules ∪ s.OverlappingRules);
42 S.Append(sc);
43 s.ms←− s.ms \ sc.ms;
44 sn.ms←− sn.ms \ sc.ms;
45 end
46 end
47 S.Append(sn);
48 return S;
49 ComputeActiveRule(s)
50 if s.OverlappingRules ∩ Ps 6= ∅ then
51 R←− s.OverlappingRules ∩ Ps;
52 s.ActiveRules.Append(GetHighP riorityRule(R));
53 if s.RuleT ype = deny then
54 return s;
55 end
56 end
57 else
58 foreach P ∈ Pns do
59 if s.OverlappingRules∩ P 6= ∅ then
60 R←− s.OverlappingRules∩ P ;
61 s.ActiveRules.Append(GetHighP riorityRule(R));
62 continue;
63 end
64 end
65 end
66 return s;
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in Algorithm 1, InsertRule function computes disjoint matching space of a segment

and substitutes newly updated matching space to old one for resident segments. At

the same time, each segment stacks up overlapping rules. A function called Compute-

ActiveRule generates active rules of segments (lines 41-53). To achieve an efficient

policy generation, this function compares denying rules first (line 45) so that it only

obtains active denying rule without computing additional relations.
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Figure 3.4: Policy Segmentation.

For example, assume that a programmer installs two rules r6 and r7. Since r6

has no dependent rules, our algorithm will add a segment, s9, directly. Regarding r7,

it examines if the relation between r6 and r7 satisfies one of the following relations:

subset, superset, partial match, or disjoint. Since r7 is a subset of r6, we compute

intersection between r7 and s9. Then, Algorithm 1 appends new segment s10 and
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updates overlapping rules of s10. After appending a set of segments, Algorithm 1 calls

ComputeActiveRule function to compute active/inactive rules. Since there doesn’t

exist denying rule, both segments, s9 and s10, choose r6 as their active rules.

Figure 3.4 illustrates a detailed policy segmentation. The OR of segment s1 are

r2 and r9. Ra is the same as OR, since r2 and r9 are defined in different modules.

However, Ra of segment s10 is r6, since r6 and r7 are defined in the same module and

the priority of r6 is higher than the priority of r7. Note that our algorithm applies

different operations on segments s4 and s6. Since they have a denying rule r1 as an

active firewall rule, the rest of overlapping rules are ignored.

Policy Composition

Algorithm 2 presents how our policy composition mechanism leverages the results

of policy segmentation to generate composed policies. This algorithm imports a set

of segments S and composing definition D, which consists of two modules with the

composition operator. Policy segmentation provides a set of disjoint segments with

corresponding active rules in each segment. The algorithm only computes active

rules in each segment (lines 5-20) and checks M1 first. If any element of active rules

overlaps with M1, the algorithm keeps composing with M2. Since the algorithm deals

with two kinds of composition operators, it performs two different tasks, sequential

composition and parallel composition.

3.2.3 Policy Management in SDN Control Plane

If different applications attempt to process the same flow, there may exist control

plane conflicts caused by inter-application dependencies. We describe such conflicts

in depth with a motivating example and provide corresponding resolution strategies.
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Algorithm 2: Policy Composition

Input: A set of segments S and composing definition D = {M1, M2, type}, where D.type = {≫, |}.

Output: A set of packet processing rule P R = {pr1, pr2, · · · , prk}, such that pri = {ms, action}.

1 PolicyComposition(S, D)

2 P R.New();

3 /*Insert security module rules*/

4 foreach s ∈ S do

5 if s.ActiveRules ∩D.M1 6= ∅ then

6 pr.New();

7 pr.ms←− s.ms;

8 pr.action←− (s.ActiveRules ∩D.M1).action;

9 if D.type =′≫′ then

10 if s.ActiveRules ∩D.M2 6= ∅ then

11 pr.action←− pr.action ∪ (s.ActiveRules ∩D.M2).action;

12 end

13 else

14 temp.ms←− ComputeMachingSpace(pr.ms, pr.action);

15 if IsDependent(temp.ms, D.M2) then

16 pr.action←− pr.action ∪ ComputeNextAction(temp.ms, D.M2);

17 end

18 end

19 end

20 else if D.type =′|′ then

21 if s.ActiveRules ∩D.M2 6= ∅ then

22 pr.action←− pr.action ∪ (s.ActiveRules ∩D.M2).action;

23 end

24 end

25 P R.Append(pr);

26 end

27 else if s.ActiveRules ∩D.M2 6= ∅ then

28 pr.New();

29 pr.ms←− s.ms;

30 pr.action←− (s.ActiveRules ∩D.M2).action;

31 P R.Append(pr);

32 end

33 end

34 return P R;
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Inter-application Dependency

In this layer, our framework deals with inter-application dependencies when different

applications process the same flow. The root cause of those dependencies is that each

application wants to enforce its own policy over other policies in order to process the

same flow. Figure 3.5 illustrates those dependencies more precisely.
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Figure 3.5: Different Applications Cause Control Plane Conflicts While Managing
the Same Flow.

The APP 1 composes Load-balance (LB), Route, and Monitor modules sequen-

tially contrary to the APP 2 which composes Monitor module first. Incoming packets

matching source IP address 10.0.1.1 and destination IP address 1.2.10.11 is managed

by two different applications since both r4 in LB and r8 in Monitor have been defined

to handle these packets. The APP 1 accepts a packet and modifies source IP address

to 10.2.2.2 and forwards it to port 2 and counts it sequentially. On the other hand,

the APP 2 drops it after counting it because there exist no matching rules in Route

and Monitor modules. Runtime will generate these flow rules at the same time so

that there exist confusion on production network.

In order to identify these conflicts, we need to recall policy segmentation mech-

anism in order to extract Ra of each segment. As shown in Figure 3.4, policy seg-

27



mentation indicates Ra of s7 is r4 and r8. So we obtain the new overlapping module

set, ORM = {LB, Monitor}, since r4 ∈ LB and r8 ∈ Monitor. And let us make

another set A1, and A2 for the APPs 1 and 2 to enumerate modules used by each

application, A1 = {LB, Route, Monitor} and A2 = {Monitor, Route, LB}. Since

A1 ∩A2 = {LB, Route, Monitor} ⊇ ORM = {LB, Monitor}, we conclude that there

exist potential conflicts between two applications. It is easy to detect whether dif-

ferent applications have potential conflicts or not. If ORM is a subset of ∩iMi, we

conclude that these applications have potential conflicts.

Resolution Strategy

We consider two situations: one is that different applications are allowed to jointly

combine each policy and another is that application are mutually exclusive. For the

first case, we accept inter-application dependency so that we apply parallel composi-

tion operator to combine two policies. As an alternative, we remove inter-application

dependency by assigning different priorities to conflicting applications. By assigning

different priorities to conflicting applications, we enforce the policy defined by the

application having the higher priority for the same flow. And we also enforce one

of policies in a similar way by assigning different priorities to the applications. For

example, an application that employs security module may have a upper priority so

that this application takes the precedence over other normal applications. Different

conflict resolution strategies proposed by our previous work [66] could be also applied

to resolve inter-application dependencies caused by conflicting applications.
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3.2.4 Policy Management in SDN Data Plane

Intra-table Dependency

Different applications normally do not make any problematic issues when they manage

two distinct flows. However, if the flow paths of the different flows overlap each other,

intra-table dependency should be identified to check potential violations.
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Figure 3.6: Two Applications Manage Two Different Flows.

For example, there exist two traffic flows processed by different applications as

shown in Figure 3.6. An application, App 1, generates the flow rule which accepts

the packet matching source IP address 10.2.2.2 and destination IP address 1.2.3.4

and forwards to the port 2. On the other hand, another application, App 2, priorities

combines two network modules so that it obtains the flow rule which accepts different

packet and modifies source IP address to 10.2.2.2 and forwards to the port 2. Even

though incoming packets are different, flow space [108] of outgoing packets are over-

lapped so that one of applications might lose its control of the flow. In particular, if

different flows have common visiting switch along with their flow paths, the flows can

be affected by different priorities so that original flow paths would be changed.
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Resolution Strategy

Our goal in this layer is to remove intra-table dependency through flow isolation.

To achieve this goal, we consider two flow isolation methods, flow tagging and flow

rerouting.

Inspired by the approach discussed in [54], which utilizes tags to distinguish

packets belonging to different versions of policies for ensuring consistent network

updates, we can use tags to delete the dependencies. In this mechanism, the new flow

policy is preprocessed by adding a tag to differentiate the match pattern with other

policies. The rule of the policy in the ingress switch will take additional action on the

packets to stamp them with the same tag. As the packets leave the network, in the

egress switch, the corresponding rule of the policy will strip the tag from the packets.

Using flow rerouting, when a flow path causes an intra-table dependency, we

request the controller to find another routing path for the policy to avoid the depen-

dency. During this process, we maintain a list called switch evading list that contains

all switches associated with the intra-table dependency. We provide such a list to the

controller, and then the controller will calculate a new routing path ignoring those

switches in the list to break the dependency.

3.3 Implementation and Evaluation

We have implemented our framework on top of an open SDN controller, Flood-

light [11]. Our proof-of-concept implementation consists of three major components:

(1) policy generation; (2) policy segmentation; and (3) resolution strategy. The pol-

icy generation component imports policies created by applications to generate multi-

functional policies, which are then used by the controller to generate corresponding

flow rules and install them in OpenFlow-enabled switches. The policy segmentation
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component captures every flow rule to produce a set of segments, which are able to

identify intra-module and inter-module dependencies. The resolution strategy compo-

nent obtains a global view of network from the Floodlight controller using northbound

APIs [11] and implements different resolution strategies as described in Section 5.3.2.

All of our experiments were performed with Floodlight v0.90 and Mininet v2.1.0 [22].

We obtained a real-work network configuration from Stanford backbone network [13],

which has 26 switches with corresponding ACL rules, for our experiments. We re-

moved redundant ACL rules and converted them to a firewall policy and in turn

obtained 1, 206 firewall rules in total. At the same time, we generated 8, 908 network

rules by parsing original network rules existing in Stanford network configuration to

Floodlight-recognizable rules. Because these network rules contain routing rules as

well as rewriting rules, we assume that these rules are generated by two modules,

Route and Load-balance (LB) modules.

Our policy generation mechanism enables efficiently composing multiple modules

and in turn generating a number of flow rules. To evaluate our policy generation

mechanism, we performed experiments in two ways: (1) Firewall : (Route|LB) 1 ;

and (2) Firewall >> (Route|LB). Suppose we only have one denying rule in firewall

policy which blocks a number of network rules.

Without our policy generation mechanism, in case (2), the system generates ex-

actly the same number of rules, | Firewall | + | (Route|LB) |, which is the worst

case shown in Figure 3.7. Every single rule in (Route|LB) may overlap with fire-

wall policy. Thus, in the best case, our mechanism only generates firewall rules

without (Route|LB) rules. The average case means that half of (Route|LB) rules

overlap with firewall policy. Thus, the system installs the following number of rules,

| Firewall | +1
2
| (Route|LB) |. As shown in Figure 3.7, the best case constantly

1Note that our operator (:) means that it adopts our policy generation mechanism.
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Figure 3.7: Comparison Between Inefficient VS. Efficient Policy Generation Mech-
anism.

takes only 3 milliseconds for both generating and installing flow rules to correspond-

ing switches. On the other hand, the deployment time of the worst case increases

dramatically in accordance with the growing number of rules in (Route|LB).

To evaluate computing overheads of our policy segmentation mechanism, we in-

stalled all network rules into the network and measured the updating time of pol-

icy segments. As a result, 456 segments out of 688 firewall rules were produced

by the policy segmentation mechanism, 8, 273 segments out of 8, 908 network rules

were generated, and we got 8, 729 segments in total. Because there exist some

redundant rules, the number of segments is less than the total number of rules,

| Firewall | + | (Route | LB) |. 75% of updates have been finished within 0.2

milliseconds and most of cases (98%) have been computed less than 0.5 milliseconds.

We also evaluated the performance of two resolution strategies: assigning priorities
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Figure 3.9: Evaluation of Two Resolution Strategies: Assigning Priorities for the
SDN Control Plane and Updating VLAN Field for the SDN Data Plane.

for the SDN control plane and updating VLAN field for the SDN data plane. Both

resolution strategies update a set of rules which define conflicting flows. First, we

measured elapsed time for assigning priorities of rules. As shown in Figure 3.9, the

elapsed time grows in accordance with the growing number of rules per flow. Similarly,

we checked the elapsed time for updating VLAN field for isolating conflicting flows.

The elapsed time increases with the growing number of rules per flow, but it generally
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took more time than the assigning priorities case, since the systems spent more time

finding out ingress/egress switches of the flows to add and strip VLAN tags.

3.4 Related Work

Modular network programming has recently received considerable attention in

SDN community [109, 57, 89, 77, 45]. However, this area is still immature and needs

in-depth investigation in terms of security and effectiveness of module composition.

Pyretic [89] enables a program to combine different policies generated by different

modules together using policy composition operators. Then, combined policies can

be propagated and enforced at SDN switches. However, lacking a policy dependency

detection mechanism in Pyretic, it is obviously inefficient to always compose the mul-

tiple policies and install them into the network switches. Although FRESCO [109]

deals with security application development framework using modular programming

for SDN, it couldn’t directly handle dependencies between modules in SDN appli-

cations. In contrast, our framework deals with various dependencies such as intra-

module, inter-module, inter-application, and intra-table dependencies for robust SDN

policy management.

Many research efforts have been recently devoted to the policy validation and enforce-

ment mechanism in SDN due to programmability of SDN. Traditional policy checking

mechanism such as binary decision diagrams (BDD) has been widely employed for

checking anomalies of a firewall [66, 123, 52] which is not efficient for verifying real-

time systems. Newly emerging network analysis tools such as NetPlumber [74] and

VeriFlow [75] support real-time validation and verification of networks. Several mid-

dlebox approaches [97, 54] can deal with dynamic packet modification made by a

number of rewriting flow rules in OpenFlow networks. Meanwhile, NICE [44] was
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proposed to adopt a model-checking framework which utilizes symbolic execution to

automate testing process for OpenFlow applications. Even though our policy man-

agement framework imposes manageable overheads in SDN policy management, we

will further study a more practical and efficient mechanism supporting analysis and

enforcement of network policies in real time.

3.5 Conclusion

We investigated numerous problematic issues and security challenges in SDN pol-

icy management and proposed a novel framework to facilitate robust policy manage-

ment for SDN with respect to three planes in the SDN architecture. In the SDN

application plane, we introduced an efficient policy composition mechanism along

with a policy segmentation technique to address the issue created by the situation

where one application with multiple modules jointly precess the same flow. We also

discussed approaches to address the inter-application dependency issue in the SDN

control plane. Lastly, we provided flow isolation technique to address the intra-table

dependency issue in the SDN data plane. Our experimental results showed that our

solution is effective and only introduce manageable performance overheads to enable

robust SDN policy management.

As our future work, we will extend our framework to support dynamic policy up-

dates. In that case, a more sophisticated composition mechanism should be designed

to consider both policy revocation and recomposition situations. In addition, since

our current framework only deals with policy management challenges with respect to

one SDN controller, we would like to expand our solution to support comprehensive

SDN policy management in terms of heterogeneous controllers.
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Chapter 4

FLOWGUARD: ENABLE STATELESS NETWORK POLICY MANAGEMENT

4.1 Introduction

Over the past few years, Software-Defined Networking (SDN) has evolved from

purely an idea [47, 46, 60] to a new paradigm that various networking vendors are

not only embracing, but also pursuing as their model for future enterprise network

management. As the first standard for SDN, OpenFlow [86] essentially separates

the control plane and the data plane of a network device, and enables the network

control to become directly programmable as well as the underlying infrastructure to

be abstracted for network applications. With OpenFlow, only the data plane exists in

the network device, and all control decisions are communicated to the device through

a logically-centralized controller.

One primary goal of SDN is to enable various network applications, which are

basically network services, to run on the controller to manage the network directly by

configuring packet-handling mechanisms in underlying devices. Consequently, when

enterprises adopt OpenFlow for their networks, it is virtually inevitable that legacy

security applications such as firewalls and intrusion detection and prevention systems

(IDS/IPS) have to be migrated to OpenFlow-based networks by re-designing and

implementing them as compatible security applications. In this chapter, we focus

on the challenges of designing and implementing a reliable firewall application for

OpenFlow-based networks.

Firewalls are the most widely deployed security mechanism in most businesses and

institutions. A conventional firewall sits on the border between a private network and
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the public Internet, and examine all incoming and outgoing packets to defend against

attacks and unauthorized access. However, one key assumption under this traditional

model is that all insiders of the protected network are trusted, since internal traffic

is not seen and cannot be filtered by the firewall [68]. That assumption has been

invalid for a long time, because insiders could easily launch attacks on others inside

the network by circumventing security mechanisms [104]. With OpenFlow, such a

problem could be potentially alleviated, since OpenFlow offers a deeper level of control

granularity via placing enforcement points in any entries of traffic flows in a network.

Unfortunately, OpenFlow also brings great challenges for designing firewall appli-

cations in emerging SDNs. First, OpenFlow allows various Set-Field actions, which

can rewrite the values of respective header fields in packets. Such a feature can sig-

nificantly increase the usefulness of an OpenFlow implementation. For example, a

load balancer application may need to dynamically change flow paths and destina-

tions. However, malicious OpenFlow applications could also leverage this feature to

strategically enable flow rules that would evade security mechanisms 1 . Second, in

an OpenFlow network, network states are dynamically updated and configurations

are frequently changed. Thus, simply checking policy violations against new traf-

fic flows in a firewall application is not effective since security violations induced by

other changes of network states and configurations–such as updating flow entries and

firewall rules–should be examined as well. Last but not least, when a security vio-

lation is detected, firewall applications cannot plainly reject the new flow rule(s) or

remove resident flow rule(s) that causes the violation. In OpenFlow, multiple traffic

flows may match the same rule. Also, OpenFlow allows using wildcard rules to define

a flow. In these cases, if only partial packets matching a rule violate the firewall

policy, eliminating the rule may drop legal traffic which in turn could encumber the

1We further articulate such scenarios in Section 4.3.2.
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availability and utility of network services.

Therefore, we observe that OpenFlow not only presents tremendous opportunities

to networking, but also changes the way of defining network security appliances,

including firewalls. As a robust security solution, we claim that an OpenFlow-based

firewall application should have following properties: (1) monitoring network insiders;

(2) tracking dynamic packet modifications; (3) examining various network state and

configuration changes; (4) providing fine-grained violation resolution; and (5) enabling

real-time network protection.

An exemplar firewall application based on OpenFlow has been introduced in

Floodlight [11], a popular open SDN controller, which enforces security rules against

traffic flows by monitoring all packet-in behaviors in a network. Nevertheless, this

preliminary implementation only inspects a traffic flow at its ingress switch and lacks

a capability to actively monitor packet modifications. In other words, once a flow

passes the ingress switch, modified packets cannot be further inspected by the fire-

wall. Also, it can only examine violations when a new flow comes in the network, but

cannot check any other network updates.

In this chapter, we propose FlowGuard, a new firewall application, which is de-

signed to facilitate not only accurate detection but also effective resolution of firewall

policy violations, and support network-wide access control in dynamic OpenFlow net-

works. FlowGuard detects violations by examining flow path space against firewall

authorization space. The violation detection approach in FlowGuard is capable of

tracking flow paths in the entire network and checking rule dependencies [74, 122]

in both flow tables and firewall policies. Besides, FlowGuard can determine vio-

lations dynamically when network states or configurations are changed. In addition,

we introduce a flexible violation resolution framework in FlowGuard to enable a

fine-grained violation resolution with the help of four resolution strategies, namely
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dependency breaking, update rejecting, flow removing, and packet blocking, considering

diverse update situations in both flow entries and firewall rules. In order to ensure

real-time response in FlowGuard, we also address several optimization considera-

tions in the FlowGuard design.

The major contributions of this chapter are summarized as follows:

• We present security challenges and design requirements in building a firewall

application for OpenFlow networks with respect to both packet modifications

and rule dependencies in flow tables and firewall policies.

• We propose a systematic solution for designing an OpenFlow-based firewall ap-

plication that enables network-wide access control in dynamic OpenFlow net-

works. Our design addresses challenges created by the inter-reaction of flow

path and firewall authorization space, and facilitates not only accurate detection

but also effective resolution of firewall policy violations in OpenFlow networks.

• We provide a prototype implementation of FlowGuard in an open SDN con-

troller. We evaluate FlowGuard using a real-world network topology and

an emulated OpenFlow network. Our experimental results show that Flow-

Guard has low performance overhead to enable real-time violation detection

and resolution.

This chapter is organized as follows. We overview related work in Section 6.8.

Section 4.3 overviews the security challenges and design requirements in constructing

an OpenFlow-based firewall application. Section 4.4 presents the design of Flow-

Guard in detail. We address the implementation and the evaluation of FlowGuard

in Section 5.5. Section 6.9 describes several important issues and our future work.

We conclude this chapter in Section 6.10.
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4.2 Related Work

Several recent efforts have been devoted to address various security challenges,

such as scanning attack prevention [69, 87], DDoS attack detection [42], vulnerability

assessment [39, 78], and saturation attack mitigation [110], in SDNs. Differentiating

from those work, our work focuses on exploring how to build reliable firewalls for

SDNs.

Floodlight contains a firewall application [11] where each packet-in behavior trig-

gered by the first packet of a traffic flow is matched against the set of existing firewall

rules that allow or deny a flow at its ingress switch. However, such a primitive imple-

mentation of OpenFlow-based firewall application suffers from a couple of limitations

as discussed before. Pyretic [89] was recently introduced as a higher-level language

in the Frenetic Project [57] that allows SDN programmers to write modular network

applications, including firewall application. Pyretic’s sequential composition opera-

tors could potentially resolve direct policy conflicts by compiling conflicting policies

into a prioritized rule set. However, lacking a flow tracking capability [54], Pyretic

cannot discover and resolve indirect security violations caused by dynamic packet

modifications. FortNOX [95] was proposed as a software extension aiming to provide

security constraint enforcement for OpenFlow controllers, being able to identify in-

direct security violations. FortNOX was then used as a security enforcement kernel

for FRESCO [109], an OpenFlow security application development framework. How-

ever, we cannot directly adopt FortNOX approach to design our firewall application by

virtue of several reasons. On one hand, the rule conflict analysis algorithm provided

by FortNOX records rule relations in alias sets, which are unable to accurately track

all flows. In particular, the conflict detection algorithm in FortNOX only conducts

pairwise conflict analysis between new flow rule(s) and each single security constraint
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without considering rule dependencies within flow tables [74, 75] and among security

constraints (represented as a firewall policy in our approach) [63, 122]. On the other

hand, when FortNOX detects a security violation caused by new rule(s) installed by

a non-security application, it simply rejects the rule(s) without offering a fine-grained

violation resolution.

A couple of verification tools [35, 74, 73, 76, 85] for checking network invariants

and policy correctness in OpenFlow networks have been proposed. Anteater [85]

detects violations of network invariants using a SAT solver through transferring the

data-plane information to boolean expressions and converting network invariants into

instances of SAT problem. FlowChecker [35] translates network policies into boolean

expressions and uses Binary Decision Diagram (BDD) to model the network state for

checking network invariants. However, both Anteater and FlowChecker are static in

nature and could not scale well to dynamic changes in the network. VeriFlow [76]

and NetPlumber [74] are capable of checking the compliance of network updates

with specified invariants in real time. VeriFlow uses graph search techniques to verify

network-wide invariants and deals with dynamic changes. NetPlumber utilizes Header

Space Analysis (HSA) [73] in an incremental manner to ensure real-time response for

checking network policies through building a dependency graph. Even though these

tools can be potentially used to detect firewall policy violations, they could not provide

automatic and effective violation resolution. Also, they ignore rule dependencies

within security constraints, such as firewall policies, for compliance checking.

Policy verification tools discussed above are able to check network reachability

and potentially utilized for tracking flow paths in OpenFlow networks. However,

Anteater [85] and FlowChecker [35] are indeed offline systems and cannot be applied

for real-time flow tracking. VeriFlow [75] can perform reachability checking in real

time, but it does not support dynamic packet modifications. Another option for flow
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tracking would be FlowTags [54], which can additionally deal with dynamic trans-

formations in the presence of legacy middleboxes (e.g., proxies). However, FlowTags

needs to alter existing OpenFlow architecture. In this work, we leverage the mecha-

nism introduced by NetPlumber [74] to track flow paths for firewall policy violation

detection, since NetPlumber provides a couple of features that fit for our purpose, such

as support for arbitrary header modifications, automatic rule dependency detection,

and real-time response.

Numerous firewall algorithms and tools have been designed to assist system ad-

ministrators in managing and analyzing firewall policies [36, 37, 38, 122]. Especially,

some work has presented policy analysis tools with the goal of detecting firewall pol-

icy conflicts. Al-Shaer and Hamed [36] designed a tool called Firewall Policy Advisor

to detect pairwise anomalies in firewall rules. Yuan et al. [122] presented FIREMAN,

a toolkit to check for misconfigurations in firewall policies through static analysis.

However, existing firewall policy analysis tools only detect policy conflicts within a

firewall policy, but cannot be directly applied to deal with firewall policy violations

against flow policies in dynamic OpenFlow networks.

4.3 Background Technologies and Challenges

Before introducing the design of FlowGuard, we first briefly introduce the con-

cepts of flow policy and firewall policy in this section. We then review security

challenges and design requirements that motivate the features of FlowGuard.

4.3.1 Overview of Flow Rules and Firewall Policies

Flow Policy: In an OpenFlow network, flow rules can be added into flow tables, both

reactively (generating rules in response to the packets of new flows) and proactively

(generating rules before packets arrive at the switches) [2]. In the first case, if a

42



Host A

Host B

Host C

Host D

Switch 1 Switch 2 Switch 3

A → D, forward

Rule 1.2

Rule 1.n

Flow Table 1

Rule 2.2

Rule 2.n

Flow Table 2

B → C, forward

Rule 3.2

Rule 3.n

Flow Table 3

A → D, rewrite  SRC 
to B and DST to C

A → C, deny

Rule 2

Rule n

Firewall Policy

Firewall App

SDN 

Controller

…... …... …...

…...

A →
 D

A → D B → C

B →
 C

Other Apps

Figure 4.1: Firewall Is Bypassed by a Single Flow.

switch receives a packet for which no matching rule is found, it forwards the packet

to the controller for the further inspection. The controller will determine whether that

packet should be sent and can then install a new flow policy, which is a collection of

rules to be installed at switches 2 , for handling future packets of the same type. In

the second case, the controller or applications are allowed to initiate some rules in

the network devices before receiving flow packets.

Each flow rule specifies a pattern that matches on bits in the packet header,

actions that are performed on matching packets to describe packet forwarding, packet

modification or packet dropping, a priority that disambiguates among overlapping

patterns, and timeouts that allow a switch to delete expired rules.

Firewall Policy: A firewall policy consists of a sequence of rules that define the

actions performed on packets that satisfy certain conditions. The rules are specified

2In OpenFlow v1.0, each switch consists of one flow table. However, new versions of OpenFlow
allow every switch contains multiple flow tables.
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in the form of 〈condition, action〉. A condition in a rule is composed of a set of fields,

which is typically specified in a 5-tuple format that contains source IP, source port,

destination IP, destination port, and protocol, to identify a certain type of packets

matched by this rule. The general action in a firewall rule is either “allow” or “deny”.

In a firewall policy, multiple rules may overlap, which means one packet may match

several rules. Moreover, multiple rules within one policy may conflict, implying that

those rules, not only overlap each other but also yield different decisions. To resolve

policy conflicts, a firewall typically implements a first-match resolution mechanism

based on the order of rules. In this way, each packet processed by the firewall is

mapped to the decision of the first rule that the packet matches.

4.3.2 Security Challenges

OpenFlow offers greater flexibility to networking. At the same time, its flexibility

comes with security challenges. One such a challenge is introduced by the feature

of packet modification, since OpenFlow permits various Set-Field actions that can

dynamically change the packet headers. Adversaries could take advantage of this

feature to circumvent network security mechanisms (e.g. firewalls). Another challenge

may arise due to rule dependencies in flow tables and firewall policies. Flow rules may

overlap each other in a flow table, indicating intra-table dependency of flow rules [74].

The rules in a firewall policy may overlap as well [63, 122]. These rule dependencies

could be also leveraged by malicious OpenFlow applications and may cause severe

network breaches. Next, we articulate two hypothetical scenarios to elaborate these

challenges. To make our discussion concrete, we use an example network shown in

Figures 4.1 and 4.2 with three switches, four hosts, and one SDN controller on which

a simple firewall application (e.g. the Floodlight built-in firewall application) and

several other applications are running.
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Figure 4.2: Firewall Is Bypassed Due to Rule Dependency.

Bypass Scenario 1: Figure 4.1 shows a simple bypass scenario, which is similar to

the example given in [95]. The firewall application has a rule to deny network packets

from Host A to Host C. 3 Suppose that another application running on the controller

establishes a new flow by installing a flow policy, which contains three rules installed

in flow tables of different switches, in the network. The first rule in the flow policy

allows to simply forward packets from Host A to Host D. The second rule rewrites the

source address (SRC) of a packet to Host B and the destination address (DST) of the

packet to Host C. The last rule forwards packets from Host B to Host C. In this case,

if Host A sends a packet to Host D, the packet will be finally delivered to Host C,

which violates the firewall rule. However, if the firewall application only inspects the

flow at its ingress switch (Switch 1 ) without tracking the entire flow in the network,

such a violation cannot be observed by the firewall.

Bypass Scenario 2: A more complicated bypass scenario is illustrated in Figure 4.2.

3For brevity, we use the host name to represent the source and destination directly in the example
rules.
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The firewall application has the same policy. Assume that a policy for a flow (Flow 1 )

has been installed by an application in the network. Only the first rule in the flow

policy is different from Scenario 1. That rule matches packets from Host B to Host D

and modifies the source address of the matched packets to Host A. Since the original

source of this flow is Host B and the final destination is Host C, the flow policy

does not violate the firewall policy. Then, suppose another application installs a new

policy, which contains three forwarding rules, for a flow (Flow 2 ) in the network.

This policy is allowed by the firewall, since it directly forwards packets from Host A

to Host D and does not violate the firewall policy either. We further assume that

the policy for Flow 2 are installed in the switches with a lower priority than the

policy for Flow 1 as shown in Figure 4.2. As we can notice, two rules belonging to

different flow policies in Switch 2 overlap each other, as they both match packets with

Host A as the source address and Host D as the destination address. As a result, the

packet belonging to Flow 2 originally sent from Host A to Host D will be changed

and eventually sent to Host C. This situation causes a violation of the firewall policy.

Thus, even though individual policies defined for different flows (such as Flow 1 and

Flow 2 ) do not violate the firewall policy, the dependency relations among them may

induce violation(s).

The rule dependencies in firewall policies may also affect the presence of violations.

For example, if we add a new rule, saying “A, B → C, allow”, before the current rule

in the firewall policy. The new rule will overlap with the existing rule, because the

packets sent from Host A to Host C can match both of them. However, the first-

matched rule will take precedence in the firewall. Thus, the new rule will shadow the

existing rule [122]. As a result, no violation arises when applying such a new firewall

policy to both Scenario 1 and Scenario 2.

The built-in firewall application in Floodlight and Pyretic’s composition operators
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could not detect and resolve both bypass scenarios discussed above, since they are

unable to monitor dynamic packet modifications. FortNOX has a limitation in iden-

tifying the violation introduced in the second scenario, as the rule conflict analysis

algorithm in FortNOX ignores rule dependencies in flow tables and firewall policies.

4.3.3 Design Requirements

Our goal is to design a reliable firewall application that enables effective and

efficient detection and resolution of firewall policy violations in dynamic OpenFlow

networks. Consequently, to achieve our goal, we seek a solution that fulfills following

design requirements to balance network protection and system performance.

1. Accuracy. The firewall application should precisely detect violations caused by

traffic modifications, as well as rule dependencies in both flow tables and fire-

wall policies. Also, the identified violations should be effectively resolved with

respect to different violation situations, such as partial or entire violations. 4

2. Flexibility. The firewall application should have the capability to inspect any

network state and configuration updates, which may potentially incur firewall

policy violations. In addition, flexible resolution strategies should be provided

to deal with fine-grained violation resolutions.

3. Efficiency. The firewall application needs to continuously work in a timely

fashion. Also, the state of an OpenFlow-based network generally evolves rapidly.

Thus, it naturally requires that the response time of the firewall application

should be fast enough and its performance overhead should not affect other

network utilities.

4The detailed definitions are given in Section 18.
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4.4 FlowGuard Design

In this section, we introduce our design of FlowGuard that is based on the

proposed requirements. We focus on two main functions in FlowGuard: violation

detection and violation resolution.

4.4.1 Violation Detection

In an OpenFlow network, the header fields of flow packets could be dynamically

changed when the packets traverse the network. Thus, to support accurate violation

detection, a firewall application needs to check violations at the ingress switch of each

flow. It should also track the flow path and then clearly identify both the original

source and final destination of each flow in the network. Next, we will first introduce

flow path classifications and then articulate our violation detection method.

Flow Path Classification

A flow path is a forwarding path where one or multiple flows can pass through in

the network. A flow path, which contains a sequence of (switch, rule) pairs, can be

denoted by:

(s1, r1)→ . . .→ (sn−1, rn−1)→ (sn, rn).

OpenFlow supports two kinds of flow rules, microflow rules and wildcard rules. A

microflow rule is a rule in which all header fields that a packet can exactly match.

In contrast, wildcard rules can match a large group of packets, such as all packets

with source IP address matching the prefix 1.*.*.*, which represents an IP address

range from 1.0.0.0 to 1.255.255.255. Therefore, we classify flow paths as two cate-

gories: microflow path and wildcard-flow path. In a microflow path, it contains at

least one microflow rule, but the rules in a wildcard-flow path are all wildcard rules.
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Figure 4.3 (a) shows an example of a microflow path where only packets from Host A

to Host B can be sent. In Figure 4.3 (b), a wildcard-flow path is illustrated in such

a way that Host A and Host B can send packets to Host C and Host D.

Since the packet headers of a flow may be modified when it passes through a path

in the network, we further divide flow paths into two other categories: direct flow

path and shifted flow path. In a direct flow path, all rules only perform “forward”

action to the matched packets. In a shifted (or indirect) flow path, at least one rule

enforces Set-Field action(s) to the matched packets. Figure 4.4 shows two examples

for these paths. In the direct flow path shown in Figure 4.4 (a), Host A sends packets

to Host B without any changes. However, in the shifted path depicted in Figure 4.4

(b), the destination of packets sent by Host A is changed from Host B to Host C.

Flow Path Space Analysis

Flow Tracking: To support network-wide access control in an OpenFlow network,

a firewall application needs to figure out both the original source address and final

destination address of each flow in the network through tracking its flow path. Ac-

cordingly, we need an effective flow tracking mechanism to identify flow paths. Several
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existing network invariant verification tools [74, 76] could check network reachability

in real time and be potentially used to help find flow paths in OpenFlow networks.

We currently leverage NetPlumber [74] as a baseline for building our flow tracking

mechanism, because it offers a couple of features that can fulfill our design require-

ments: (1) Building on HSA [73], NetPlumber uses a geometric model (Header Space)

of packet processing to provide a uniform and protocol-independent model of the net-

work; (2) NetPlumber models networking boxes using a switch transfer function,

which can transform a received header to a set of packet headers arbitrarily, sup-

porting dynamic packets modifications; and (3) NetPlumber constructs a plumbing

graph, which represents all next-hop dependencies and intra-table dependencies of

rules. Through such a plumbing graph, all flow paths including both direct and

shifted flow paths in the network can be automatically captured.

In a direct flow path, when the flow packets pass through it, the packet headers

keep the same. For checking the firewall policy violations, it is not necessary to track

this kind of direct flow path and violations can be simply identified in its ingress

switch. Therefore, we introduce a concept of Shifted Flow Path Graph (SFPG), which

is a sub-graph of the plumbing graph and contains all shifted flow paths and partial

direct flow paths that have dependency relations with shifted flow paths. Therefore,

our firewall application only needs to maintain and deal with an SFPG graph when

monitoring an OpenFlow network, which could significantly reduce the overhead of

flow tracking process.

Flow Path Space Calculation: We abstract fields, which are needed for checking

firewall policy violations, from the pattern expression of a flow rule to represent the

space of corresponding flow path. In addition, we reorganize these fields with a (source

address, destination address) pair, denoted as [P s, P d], to specify a flow path space.
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In the context of IP 5-tuple sense, the source address P s consists of bit values from

three fields, source IP, source port, and protocol of the flow rule. The destination

address P d contains bit values from two fields, destination IP and destination port of

the flow rule. Then, we additionally define three kinds of spaces for representing a

flow path space:

1. Incoming Space (SP
i ): It represents original header spaces of packets that can

pass through the flow path, denoted as [P s
i , P d

i ].

2. Outgoing Space (SP
o ): It represents final header spaces of packets after the

packets pass through the flow path, denoted as [P s
o , P d

o ].

3. Tracked Space (SP
t ): This space represents original source address and final

destination address of header spaces of packets that can pass through the flow

path. Thus, it is a combination of the source address of the incoming space

(P s
i ) and the destination address of outgoing space (P d

o ), denoted as [P s
i , P d

o ].

Figure 4.5 (a) depicts the relationships of three types of flow path space. As we

can see, the incoming space of a flow path is calculated from the header spaces of

incoming packets of the flow. The outgoing space of the flow path is computed from

the header spaces of outgoing packets of the flow. Then, the tracked space of the flow

path is derived from the source address of the incoming space and the destination

address of outgoing space. An example is given in Figure 4.5 (b), which illustrates

the space representation of a wildcard shifted flow path. The incoming space of this

flow path, [(A, B), (C, D)], indicates that Host A and Host B can send packets to

Host C and Host D through this flow path, while the outgoing space of the flow path,

[(E, F ), (M, N)], presents that Host E and Host F can send packets to Host M and

Host N. That is, any packets sent from Host A and Host B through this flow path
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will be finally delivered to Host M or Host N. Thus, the tracked space of this path is

composed of the source address from its incoming space and the destination address

from its outgoing space, represented as [(A, B), (M, N)].

Firewall Authorization Space Partition

In many cases, a system administrator may intentionally introduce certain overlaps

in firewall rules knowing that only the first rule is important. In reality, this is a

commonly used technique to exclude specific parts from a certain action, and the

proper use of this technique could result in a fewer number of compact rules [122].
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Algorithm 3: Partitioning firewall authorization space

Input: A set of rules, R.

Output: A set of allowed spaces, SF
a ; A set of denied spaces, SF

d
.

1 foreach r ∈ R do

2 sr ←− HeaderSpace(r);

3 if Action(r) = allow then

4 foreach s ∈ SF

d
do

5 /* sr is overlapping with s*/

6 sr ←− sr \ s;

7 SF
a

.Append(sr);

8 end

9 end

10 if Action(r) = deny then

11 foreach s
′

∈ SF
a do

12 /* sr is overlapping with s
′

*/

13 sr ←− sr \ s
′

;

14 SF

d
.Append(sr);

15 end

16 end

17 end

18 return SF
a

, SF

d
;

Hence, for the purpose of accurately detecting firewall policy violations in OpenFlow

networks, the dependency relations between “allow” rules and “deny” rules in the

firewall policy should be decoupled.

We first introduce a concept of Firewall Authorization Space, which represents

a collection of all packets either allowed or denied by the firewall rules. Then, we

introduce an approach, which represents rules with header space and performs various

set operations on rules, to convert a list of firewall rules into two disjoint authorization
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Figure 4.6: Example of Firewall Authorization Space.

sub-spaces, denied authorization space and allowed authorization space. Algorithm 3

shows the pseudocode of partitioning authorization space for a set of firewall rules

R. This algorithm works by sequentially examining a header space sr derived from

a rule r and adding it to corresponding firewall authorization space sets, SF
a or SF

d ,

based on its type. For each r in R, if this rule is an “allow” rule, the header space

sr derived from this rule is compared with existing header spaces in the denied space

set SF
d . If the header space sr is covered by any existing header spaces in SF

d , the

covered space(s) is removed from sr and then the modified sr is added into SF
a . The

similar process is applied to a “deny” rule. Therefore, one can utilize set operations to

separate the overlapped spaces of a firewall policy into two disjoint authorization space

sets SF
a : {sF

a1
, ..., sF

an−1
, sF

an
} and SF

d : {sF
d1

, ..., sF
dm−1

, sF
dm
}. Formally, sF

ai
∩ sF

dj
= ∅,

where sF
ai
∈ SF

a , sF
dj
∈ SF

d , 1 ≤ i ≤ n, and 1 ≤ j ≤ m. Note that it is unnecessary

to eliminate overlapping header spaces within SF
a and SF

d , since those overlapping

header spaces could not affect the results of violation detection and keeping them can

potentially reduce the number of header spaces in each authorization space set.

An example of firewall authorization space partition is shown in Figure 4.6. For

the purposes of brevity and understandability, we employ a two-dimensional geo-

metric representation for each header space derived from firewall rules. Note that a

firewall rule typically utilizes five fields to define the rule condition, thus a complete
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representation of header space should be multi-dimensional. In Figure 4.6 (b), we

utilize colored rectangles to denote two kinds of authorization spaces: allowed space

(white color) and denied space (pink color), respectively. In this example, there are

an allowed space representing the first rule and a denied space depicting the second

rule. Two spaces overlap when there are packets matching both rules (Figure 4.6 (b)).

Applying Algorithm 3 to the example policy (Figure 4.6 (a)), the header space of the

first rule is added into the allowed authorization space set. Then, the overlapped

space is removed from the header space of the second rule, and the modified header

space is added to the denied authorization space set.

Violation Discovery

Once the space of a flow path and the firewall authorization space of the firewall

policy are calculated, we identify violations through checking the tracked space (SP
t )

of a flow path, which allows a flow to pass through the network, against the denied

authorization space (SF ′

d ) that is a union of all header spaces in the denied authoriza-

tion space set (SF
d ) of the firewall policy. If these two spaces overlap each other, we

call the overlapping space as the violated space (Sv = SP
t ∩ SF ′

d , denoted by [P s
v , P d

v ],

where s and d denote source and destination addresses, respectively), which indicates

a firewall policy violation. There are two kinds of violations.

• Entire Violation: If the denied authorization space SF ′

d includes the whole

tracked space SP
t of the flow path, the violated space Sv indicates an entire

violation. Formally, SP
t ⊆ SF ′

d .

• Partial Violation: If the denied authorization space SF ′

d partially includes the

tracked space SP
t of the flow path, the violated space Sv points out a partial

violation. Formally, SP
t * SF ′

d and SP
t ∩ SF ′

d 6= ∅.
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Figure 4.7: Violation Detection.

Figure 4.7 shows an example of our violation detection approach. The tracked

space depicts that the original source of the flow is Host A and Host B, and the

final destination of the flow is Host M and Host N. The firewall authorization space

illustrates that all packets from Host A and Host C to Host M and Host N are denied.

Thus, the violated space, which is depicted in inclined stripes in Figure 4.7, contains

a partial tracked flow space represented with the original source of Host A and the

final destinations of Host M and Host N. That is, all packets originally sent from Host

A and finally arrived at Host M or Host N should be denied by the firewall.

4.4.2 Violation Resolution

An intuitive means for resolving a firewall policy violation is to simply disable

the violated flow policy. That is, for a new flow policy, the request for installing this

policy is rejected, if the firewall application detects this policy is in violation of the

firewall policy. Regarding existing flow policies that violate the firewall policy, they

are removed from the network devices directly. However, such a solution have several

drawbacks. First, a flow policy may only partially violate the firewall policy as we

discussed in Section 18. In this case, rejecting/removing the flow policy may affect
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Figure 4.8: FlowGuard Violation Resolution Framework.

the utility of network services. Second, a rule in a flow policy may have dependency

relations with the rules of other flow policies. Deleting a rule in a violated policy may

impact other flow policies and even create new violation(s). Obviously, it is necessary

to seek a systematic solution to enable a flexible and effective violation resolution.

To this end, we introduce a violation resolution framework, as depicted in Figure 4.8,

which demonstrates how FlowGuard adopts four violation resolution strategies to

resolve different firewall policy violations in terms of various update operations on

both flow policies and firewall policies in OpenFlow networks. We next discuss such

a framework based on those resolution strategies.

Dependency Breaking

Situation: A new flow policy is being added into the network switches and this single

flow policy does not violate the firewall policy. However, the rules in this new flow
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policy overlap with the rules of other flow policies when it is installed in the switches

following the routing path calculated by the controller. Such a situation causes rule

dependencies among flow policies. In addition, like the Scenario 2 demonstrated in

Section 4.3.2, these rule dependencies cause new firewall policy violation(s). This

kind of violation can also be incurred by other changes of network states, such as

modifying flow entries and updating firewall rules.

Solution: Since rule dependencies among different flow policies could cause unex-

pected changes in packet headers of flows and also lead to new firewall policy viola-

tions, an approach for these issues is to break the dependencies among flow policies.

Then, we can guarantee that when the packets of a flow traverse the network, they

are precisely processed by the policy defining such a flow.

Inspired by the approach discussed in [101], which utilizes tags to distinguish

packets belonging to different versions of policies for ensuring consistent network

updates, we can use tags to break the rule dependencies as well. In this mechanism,

the new flow policy is preprocessed by adding a tag to differentiate the match pattern

with other policies. The rule of the policy in the ingress switch will take additional

action on the packets to stamp them with the same tag. As the packets leave the

network, in the egress switch, the corresponding rule of the policy will strip the tag

from the packets.

Update Rejecting

Situation: There are three possible cases that can apply this strategy: (1) when

adding a new flow policy, corresponding flow path is detected as a violation of the

firewall policy and the violation is an entire violation; (2) changing a rule induces

new entire violation(s); and (3) deleting a rule causes new entire violation(s), since

some rules of other flows have dependency relations with this rule.
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Figure 4.9: Violation Resolution Through Packet Blocking.

Solution: Applying this strategy, the update operation is rejected directly. Note

that, this strategy may not be always applied for cases (2) and (3), since a change

or delete operation on a rule may be mandatory depending on the privileges of the

operator. 5

Flow Removing

Situation: Two cases can apply this strategy: (1) when updating (adding, changing,

or deleting) a rule(s) in the firewall policy, the firewall application examines the

current network state applying the updated rule(s) and detect new entire violation(s);

and (2) a change or delete operation on a rule is allowed, even though it causes entire

violation(s).

Solution: Using this strategy, all rules associated with a flow path, which entirely

violates the firewall policy, are removed from the network switches.

5A permission system for OpenFlow controller like the proposal discussed in [121] is required for
deciding the operator’s privileges.
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Table 4.1: Detection and Resolution Elapsed Time in ms for Different Resolution
Strategies.

Resolution Method
Example Topology Stanford w/o rules Stanford w/ rules

Detection Resolution Detection Resolution Detection Resolution

Dependency Break 2.12 10.11 5.84 10.24 6.93 11.39

Update Rejecting 2.73 1.42 5.13 1.50 7.09 4.83

Flow Removing 2.62 2.61 5.86 2.80 7.85 16.27

Packet Blocking 2.36 5.34 5.74 5.21 6.34 5.25

Packet Blocking

Situation: For any partial violation detected by the firewall application, this strategy

can be applied.

Solution: There may exist two ways to block packets of a flow: (1) if the flow is a

new flow, the firewall application only needs to block it in the ingress switch of the

flow; and (2) if the flow is an old flow, the firewall application needs to block the

packets in both ingress and egress switches. In such a case, blocking packets in the

ingress switch can prevent any new packets of the violated flow entering the network,

while blocking packets in the egress switch can prevent any inflight packets of the

violated flow from going through the network.

In order to block packets, the firewall application needs to install new blocking

rules in the ingress and/or egress switches. As shown in Figure 4.9, the blocking

rules can be derived from the violated space (Sv: [P s
v , P d

v ]). The header space of

the blocking rule for the ingress switch is a combination of the source address of the

violated space (Sv) and the destination address of the incoming space (SP
i ), denoted

as [P s
v , P d

i ]. The header space of the blocking rule for the egress switch is combined

from the source address of the outgoing space (SP
o ) and the destination address of

the violated space (Sv), denoted as [P s
o , P d

v ].
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4.4.3 Optimization Considerations

Since an OpenFlow firewall application must perform the violation detection and

resolution in real time, several optimization mechanisms should be considered.

Incremental Checking: Building on NetPlumber, the flow track mechanism in

FlowGuard is capable of performing incremental checks when updating flow policy.

In addition, FlowGuard enables incremental checks for the firewall policy as well.

Instead of recomputing an entire firewall authorization space each time whenever the

firewall policy changes, FlowGuard only incrementally calculates the header spaces

that are affected by these changes.

Maintaining Partial Flow Graph: As we have discussed in Section 4.4.1, Flow-

Guard only needs to maintain an SFPG graph that is a sub-graph of the plumbing

graph. In addition, FlowGuard can check the source address in the incoming space

of each shifted flow path against the source address of head spaces in its denied space.

If these two source addresses do not overlap each other, FlowGuard can guarantee

that the shifted flow path will not violate its policy without tracking the flow path.

Thus, that shifted flow path can be removed from the SFPG graph.

4.5 Implementation and Evaluation

We have implemented our FlowGuard application on top of Floodlight. Flow-

Guard adopts NetPlumber data structure [13] for building header objects and com-

puting intra-table dependencies. Thus, FlowGuard adds several new classes, such

as HeaderObject and RuleNode, to implement bit-level representation of packet head-

ers and rule dependency checking features. In addition, FlowGuard adds listeners

to monitor two modules, Static Flow Pusher and Memory Storage Source, supported

by Floodlight controller to retrieve network topology information and flow rules in
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real time. FlowGuard retrieves flow rules using the Static Flow Pusher module

to build/modify RuleNodes, so that FlowGuard sorts them by their priorities and

computes intra-table dependencies. At the same time, FlowGuard obtains the in-

formation of network devices including attached switch ID and corresponding port

number using the Memory Storage Source module, and utilizes it to understand the

physical topology of a network.

FlowGuard combines topology information with flow rules installed in the net-

work to build the flow graph for tracking flow paths. If the tracked spaces of flow

paths overlap with firewall denied authorization space, FlowGuard analyzes the

root cause of each violation and leverages a corresponding resolution strategy to

resolve the identified violation as illustrated in Figure 4.8. At the same time, Flow-

Guard maintains updated flow rules and network topology information, so that it is

able to re-propagate header objects at any associated switches to update flow paths.

In addition, FlowGuard utilizes the Floodlight built-in firewall to generate new

blocking rules and the Static Flow Pusher module to add/modify/delete flow rules

for violation resolution with respect to different violation resolution strategies.

4.5.1 Experiment Design

All of our experiments were performed in Ubuntu 12.04 virtual machines, each of

which has four processors and 8GB memory. We ran Mininet 2.0 [22] in one virtual

machine to simulate the network topologies and used another virtual machine to run

FlowGuard on top of Floodlight v0.90.

The experiments were carried out on two network topologies, one of which is the

network demonstrated in Section 4.3.2. We instantiated the IP addresses of Host A

to Host D from 10.0.0.1 to 10.0.0.4. The other topology is constructed based on the

Stanford backbone network [74] that includes 14 operational zone Cisco routers, 10
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Ethernet switches, and 2 backbone Cisco routers. By using this real-world network,

we attempted to demonstrate the scalability of FlowGuard. The entire configu-

ration of the Stanford backbone network was retrieved from [13]. We developed two

parsers to convert the file formats in Stanford dataset to Floodlight’s languages. The

first parser reads Cisco routing table information and outputs Floodlight-acceptable

flow table information. Overall, there are 8, 908 flow entries in the network. The

second parser accepts Cisco access control list (ACL) files as input and generates

corresponding firewall rules for FlowGuard. There are the total of 1, 206 realistic

firewall rules used in the network.

4.5.2 FlowGuard Violation Detection and Resolution

Dependency Breaking: To test the effectiveness of our dependency breaking strat-

egy, we used the same topology as shown in Bypass Scenario 2. The flow tables

of Switches 1, 2, and 3 before applying the resolution technique are shown in Fig-

ure 4.11 (a), (c), and (e). There was only one firewall rule specified in FlowGuard,

which denied the communications from 10.0.0.1 to 10.0.0.3. As we discussed in Sec-

tion 4.4, Flow 1 and Flow 2 in Figure 4.2 does not violate the firewall rule directly.

However, the intra-table dependency occurred in Switch 2 introduces a potential fire-

wall rule violation. In order to resolve this issue, FlowGuard removed the intra-

table dependency by isolating Flow 1 from Flow 2 using a virtual LAN (VLAN)

field. As depicted in Figures 4.11 (b), (d), and (f), the flow tables were updated by

FlowGuard respectively. The action field of the first flow entry in Switch 1 has

been updated to add a VLAN ID 100, and the corresponding flow entry in Switch 2

was modified to match the same VLAN ID. And finally Switch 3, which is the egress

switch in this case, removed the VLAN ID to restore the original packet.

We carried out the same experiment again in the Stanford backbone network. As
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(a) Switch 1 Flow Table before Resolution

(b) Switch 1 Flow Table after Resolution

(c) Switch 2 Flow Table before Resolution

(d) Switch 2 Flow Table after Resolution

(e) Switch 3 Flow Table before Resolution

(f) Switch 3 Flow Table after Resolution

Figure 4.10: Flow Tables Before/After FlowGuard’s Packet Blocking Strategy.
Every Subfigure Is a Screen Shot Taken from the Floodlight Controller GUI.
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(a) Switch 1 Flow Table before Resolution

(b) Switch 1 Flow Table after Resolution

(c) Switch 2 Flow Table before Resolution

(d) Switch 2 Flow Table after Resolution

(e) Switch 3 Flow Table before Resolution

(f) Switch 3 Flow Table after Resolution

Figure 4.11: Flow Tables Before/After FlowGuard’s Dependency Breaking Strat-
egy. Every Subfigure Is a Screenshot Taken from the Floodlight Controller GUI.
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shown in Table 4.1, the detection and resolution time with the example topology

were 2.12 and 10.11 milliseconds (ms), respectively. And the resolution time with

the Stanford topology was almost unchanged but the detection time has been slightly

increased.

Update Rejecting: We used the scenario shown in Bypass Scenario 1 to test this

strategy. We first installed the flow entries in Switch 1 and Switch 3 as shown in Fig-

ure 4.1. As the green boxes in Figure 4.13 indicate, the installations were successful.

Then we tried to add the flow entry shown in Flow Table 2 in Figure 4.1 to Switch 2.

As the red box showing in Figure 4.13, FlowGuard decided to reject this flow ta-

ble update request since it brought a firewall rule violation. As shown in Table 4.1,

FlowGuard spent 2.73 ms to detect this violation and 1.42 ms for resolution with

example topology. For the Stanford network with flow entries, FlowGuard took

7.09 ms for detection but only spent 4.83 ms for resolution since FlowGuard simply

rejected to insert new rule.

Flow Removing: We utilized Bypass Scenario 1 again to evaluate this strategy. We

first set up all the flow entries shown in Figure 4.1 without running FlowGuard.

As expected, the built-in Floodlight firewall could not identify any violation. Then,

we enabled FlowGuard and specified the firewall rule as shown in Figure 4.1. As a

result, FlowGuard detected the violation and removed corresponding flow entries

that caused this violation in the three switches. As Table 4.1 shows, the detection

took 2.62 ∼ 7.85 ms (slightly increasing) but the Stanford topology with flow entries

took 16.27 ms to resolve the violation since FlowGuard inspected all flow entries

to find out any missing flow entries which are associated with the removed flow.

Packet Blocking: To set up a partial violation, we first installed a flow policy as

shown in Figure 4.10. The flow entry in Switch 1 forwards every packet whose source
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Figure 4.13: Screen Shot for Update Rejecting Strategy.

IP is in 10.0.0.0/24 and destination IP is in 10.0.0.0/24. The flow entry in Switch 2

modifies source IP to 10.0.0.6/32 when the incoming packet has source IP 10.0.0.1/32

and destination IP in 10.0.0.0/24. The flow entry in Switch 3 rewrites destination

IP to 10.0.0.4/32 whenever the source IP is in 10.0.0.0/24 and the destination IP is

10.0.0.5/32. Then, we enabled FlowGuard and installed a firewall rule that blocks

packets from 10.0.0.1 to 10.0.0.4. Since the installed flow policy would allow the

connection between 10.0.0.1 to 10.0.0.4, the firewall rule is violated. FlowGuard

detected such a partial violation, generated two additional flow entries, and installed

them in the ingress switch and egress switch, respectively.

As shown in Figure 4.10 (b), FlowGuard installed a new flow entry in Switch 1

that blocked packets with source IP 10.0.0.1/32 and destination IP 10.0.0.5/32. Since

the flow entry in Switch 2 rewrote the source IP of packets from 10.0.0.1/32 to

10.0.0.6/32, FlowGuard also installed a new flow entry in Switch 3 that dropped

packets with source IP 10.0.0.6/32 and destination IP 10.0.0.5/32. In addition,

FlowGuard installed a new firewall rule that denied the packets from 10.0.0.1

to 10.0.0.5. As Table 4.1 shows, the overhead of detection is similar to the other

strategies, and it took 5.21 ∼ 5.34 ms for resolution.
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4.5.3 Scalability Analysis of FlowGuard

Although we have performed our evaluation under two different topologies, we

still want to examine the scalability of FlowGuard with respect to different sizes

of flow rules. Therefore, we increased the number of flow rules based on the Stanford

network topology to evaluate the scalability of FlowGuard. We checked detection

and resolution time changes under two different scenarios. In the first scenario, by

inserting 100 ∼ 500 additional flow rules in each switch, the Stanford network have

11k ∼ 22k rules in total since it contains 26 switches. In the second scenario, we

only increased the number of flow rules at the switches associated with the violated

flow paths by adding 500 ∼ 2, 500 flow rules at each relevant switch. As shown in

Figure 4.12 (a) and Figure 4.12 (b), the violation detection time was increased linearly

in accordance with the growing numbers of flow rules. The resolution time changes

in the second scenario, depicted in Figures 4.12 (d), tell us that the dependency

breaking strategy is the most heavy resolution mechanism among four resolution

strategies. However, as shown in Figures 4.12 (c), FlowGuard spent less than 25

ms to resolve each violation in networks with large sizes of flow rules.

4.5.4 Performance Comparison with Floodlight Built-in Firewall

We also compared the performance of FlowGuard (FG) with the performance of

the Floodlight built-in firewall (FW). We first measured the time FG and FW spent

to initialize themselves in different network configurations. For an empty network

where there is no network node, FG took 0.88 ms to finish initialization, while FW

took 0.87 ms. For the Stanford network without any flow entries, FG took 3.21 ms,

while FW spent 1.02 ms. For the Stanford network with all forwarding entries and

ACL rules installed, FG spent 740.08 ms, while FW took 0.97 ms. This is because
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Figure 4.14: Firewall Rule Update Time in Microsecond.

FG needs to analyze many flow entries as well as firewall rules. As we can observe,

even with a real world network, the initialization of FlowGuard is fast (less than

one second).

We are also interested in how long it takes for FG and FW to update new firewall

rules. To test this, we updated FG and FW with around 700 rules for each of which we

recorded the time FG and FW used for processing. We draw an empirical cumulative

distribution function (CDF) graph based on the results as shown in Figure 4.14. As

the figure suggests, FG has almost the same update time as FW does, under the same

network conditions. Most rules could be updated in less than 63 microseconds in the

Stanford topology.

We also generated around 5K testing packets to measure per-packet inspection

time for FG and FW. We used the Stanford topology with all ACL rules installed.

As shown in Figure 4.15, the inspection time of 90% packets with flow entries was

slower than 0.074 milliseconds, while without flow entries FG and FW spent less than

0.051 milliseconds to inspect 90% packets. As the results suggest, even though it took
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Figure 4.15: Per Packet Inspection Time in Microsecond.

longer for FG to inspect packets than FW, the processing speed was still very fast.

4.6 Discussion and Future Work

Security Enforcement Kernel: The design goal of FortNOX is to provide a se-

curity enforcement kernel (SEK) that can be integrated into OpenFlow controllers.

Then, other OpenFlow-based security applications can rely on such an SEK to detect

and resolve rule conflicts that may be introduced by non-security applications. Fort-

NOX has been utilized to support FRESCO [109], an OpenFlow security application

development framework. However, as we have discussed above, FortNOX has several

limitations in rule conflict detection and resolution. In contrast, FlowGuard pro-

vides a new design that facilitates not only accurate conflict detection but also flexible

and effective conflict resolution. Thus, we believe the solution provided by Flow-

Guard could be potentially utilized for building a more robust SEK for OpenFlow

controllers.

Stateful Monitoring: Currently, OpenFlow only provides very limited access to
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packet-level information in the controller [112]. In addition, the OpenFlow forward-

ing plane is almost stateless and incapable to actively monitor flow status without

the involvement of the controller [113]. Therefore, as our first step for designing

an OpenFlow-based firewall application, we only implemented FlowGuard as a

stateless firewall application, which could not perform stateful packet inspection in

OpenFlow networks. However, we would explore how FlowGuard can be extended

to support stateful packet inspection.

Flow Tracking: The flow tracking mechanism used in FlowGuard builds on Net-

Plumber, which has limitations for dealing with middleboxes with dynamic state [74].

FlowTags [54] was recently proposed to handle dynamic traffic modification in the

presence of legacy middleboxes. However, FlowTags needs to extend current Open-

Flow architecture to support flow tracking features. As our further work, we would

like to study a more effective flow tracking solution for FlowGuard implementation.

Network Programming Language: The current design of FlowGuard is built

on top of OpenFlow, which is defined at a low level of network abstraction. The Fre-

netic Project [57] introduces a family of languages providing reusable and high level

abstractions for programming SDNs. In particular, Pyretic [89], which is one member

of the Frenetic family, enables a program to combine multiple policies together using

policy composition operators, potentially resolving partial policy conflicts including

direct firewall policy violations. However, lacking a policy conflict detection mecha-

nism in Pyretic, it is obviously inefficient to always compose the firewall policy with

flow policies and install them into the network switches due to several reasons. First,

a firewall policy may consist of over thousands of rules, but commodity SDN switches

with limited TCAM space typically support only a few thousands of rules [117]. Sec-

ond, if flow policies entirely violates the firewall policy, it is unnecessary to install

those violated flow policies into the network switches. Therefore, we would study
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solutions that facilitate more secure and effective policy compositions in high level

abstractions for building security applications in SDNs.

4.7 Conclusion

In this chapter, we have presented the design and implementation of a new

OpenFlow-based firewall application, FlowGuard, for software-defined networks.

FlowGuard provides an effective approach to detect firewall policy violations through

examining the flow path space against the firewall authorization space. In addition,

FlowGuard supports a flexible and fine-grained conflict resolution with respect to

different update scenarios in flow entries and firewall rules. Our experimental re-

sults show that FlowGuard has the manageable performance overhead to enable

real-time monitoring of software-defined networks.
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Chapter 5

STATEMON: ENABLE STATEFUL NETWORK POLICY MANAGEMENT

5.1 Introduction

Over the past few years, Software-Defined Networks (SDNs) have evolved from

purely an idea [47, 46, 60] to a new paradigm that several networking vendors are not

only embracing, but also pursuing as their model for future enterprise network man-

agement. According to a recent report from Google, SDN-based network management

helped them run their WAN at close to 100% utilization compared to other state-of-

the-art network environments with about 30% to 40% network utilization [70].

As the first widely adopted standard for SDNs, OpenFlow [86] essentially separates

the control plane and the data plane of a network device and enables the network

control to become directly programmable as well as the underlying infrastructure

to be abstracted for network applications. With OpenFlow, only the data plane

exists in the network device, and all control decisions are conveyed to the device

through a logically-centralized controller. In this way, OpenFlow can tremendously

help administrators access and update configurations of network devices in a timely

and convenient manner and provide this ease of control to SDN applications as well.

While the abstraction of a logically centralized controller, which is a core principle

of SDNs is powerful, a fundamental limitation of OpenFlow is the lack of capability

to enable the maintenance of network connection states inside both the controller and

switches. First, OpenFlow-enabled switches only forward the first packet of a new

flow to the controller so that the controller can make a centralized routing decision.

Because the controller is unaware of subsequent packets of the flow, including those
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that change the state of a network connection (e.g., TCP FIN), the controller has no

knowledge of the state of the connections in its network. Second, OpenFlow-enabled

switches are incapable of monitoring network connection states as well. The “match-

action” abstraction of OpenFlow heavily relies on L2/L3 fields (e.g., src ip and dst ip)

and the limited L4 fields (only src port and dst port), yet essential information for

identifying and maintaining the state of connections is contained in other L4 fields,

such as TCP flags and TCP sequence and acknowledgment numbers.

The lack of knowledge of network connection states in SDNs brings significant chal-

lenges in building state-aware access control management schemes [90]. In particular,

some critical security services, such as stateful network firewalls that perform network-

wide access control, cannot be realized in SDNs. A stateful network firewall, which is

a key network access control service in a traditional network environment [59, 64, 102]

and requires state-awareness, keeps track of the states of connections in the network

and makes a decision for its access (e.g., ALLOW or DENY) according to the states

of connections in networks. However, it is impossibly hard to realize them in current

SDNs due to the inherent limitations of OpenFlow.

Some recent research efforts [88, 90, 54, 120, 41, 8, 40, 124] extended the OpenFlow

data plane abstraction to support stateful network applications. They attempted to

let individual switches, rather than the controller, track the state of connections. We

believe that, not only does this design go against the spirit of SDN (because it brings

the control plane back to switches and makes switches manipulate connection states

and performs complex actions beyond a simple forwarding operation), these existing

approaches are only applicable for designing applications that need only local states

on a single switch [40]. However, such solutions force SDN applications individually

access every single switch to collect entire network states, consequently network-wide

monitoring to detect abnormalities and enforcing network-wide access control of flows
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become extremely difficult.

To overcome the limitations of existing approaches, we argue that utilizing the

SDN controller for global tracking connections is more advantageous than existing

solutions in terms of its state visibility across SDN applications that is crucial to some

security applications such as a stateful network firewall. To bring such a state-aware

network access management in SDNs, we propose a novel state tracking framework

called StateMon. StateMon models active connections in SDNs and monitors

global connection states in the controller with the help of both a global state table

that records the current state of each active connection and a state management

table that governs the state transition of new and existing connections. StateMon

also introduces a lightweight extension to OpenFlow, called OpenConnection, that

programs the data plane to forward the state-changing packets to the controller.

At the same time, it retains the simple “match-action” programmable feature of

OpenFlow and avoids scalability problems over the communication channel between

the controller and switches. In essence, StateMon follows the general SDN principle

of logical-to-physical decoupling and avoids embedding complicated control logic in

the physical devices, therefore, keeping the SDN data plane as simple as possible.

In addition, to demonstrate the practicality and feasibility of StateMon and

state-aware network access management applications in SDNs, we design a stateful

network firewall based on the APIs provided by StateMon. Our firewall application

provides more in-depth access control than a stateless SDN firewall [67]. It detects

and resolves connection disruptions and unauthorized access attempts targeting active

connections in SDNs. To demonstrate the generality of StateMon, we reimplement

a prior work (port knocking) based on StateMon (Section 5.5.2). Our experimental

results show that StateMon and network access management applications (stateful

firewall and port knocking) introduce manageable performance overhead to manage
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network access control.

Contributions: The contributions are summarized as follows:

• We propose a connection tracking framework called StateMon that enables

SDN to support state-aware access control schemes by leveraging global network

states. StateMon keeps the data plane as simple as possible, thus being

compliant with the spirit of SDN’s design principle.

• We propose the OpenConnection protocol, which is a lightweight extension

to OpenFlow and retains the simple “match-action” programmable feature of

OpenFlow to enable a stateful SDN data plane.

• We implement a prototype of StateMon using Floodlight [11] and Open

vSwitch. Our experiments demonstrate that StateMon introduces a minimal

increase of communication messages with manageable performance overhead

(3.27% throughput degradation).

• We design a stateful network firewall application, using the APIs provided by

StateMon. Our experiments show that the stateful firewall provides more con-

trol than existing stateless firewalls and it can effectively detect and mitigate

certain connection-related attacks (e.g., connection disruptions and unautho-

rized access) in SDNs.

This chapter is organized as follows. We overview the motivating problems in

Section 6.2. Section 6.3 presents the design of state-aware StateMon. Section 5.4

describes the design of stateful network firewall supported by StateMon, and the

implementation and evaluation details are in Section 5.5. Section 6.8 discusses the
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Figure 5.1: Standard OpenFlow Operation and Its Stateless Property.

related work of this chapter, and Section 6.9 describes several important issues. In

Section 6.10, we conclude this chapter.

5.2 Background and Problem Statement

To understand our proposed solution to adding state-awareness to SDNs, we pro-

vide an overview of the current OpenFlow operation. When an OpenFlow-enabled

switch receives a packet, it first checks its flow tables to find matching rules. If no such

rules exist, this means it is the first packet of a new flow. The switch then forwards

the packet to the controller, and it is the controller’s job to decide how to handle

the flow and to install flow table rules in the appropriate switches. Specifically, the

packet is encapsulated in an OFPT PACKET IN message sent to the controller, and the

controller then installs corresponding rules called flow entries into the switches along

the controller’s intended path for the flow. Once these flow entries are installed, all
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Table 5.1: Existing Stateful Inspection and Management Methodologies for SDNs.
(D = Data Plane, C = Control Plane, A = Application Plane)

Solution
Inspection Storage

Implementation
D C A D C A

App-aware [88] X X firewall, load-balancer

UMON [120] X X software switch

Conntrack [8] X X software switch

OpenState [40] X X software switch

FAST [90] X X firewall

SDPA [124] X X firewall, hardware switch

FlowTags [54, 55] X X X proxy cache

OpenNF [58] X X X intrusion detection system, network monitor

P4 [41] X X X (no implementation)

StateMon X X X -

subsequent packets of this flow are automatically forwarded by the switches, without

sending the packet to the controller.

For example, in Figure 5.1, host A wants to initiate a TCP connection with web

server B. The first packet (TCP SYN) sent by host A is checked by the ingress

switch S1 and forwarded to the controller because S1 has no flow table entry for the

packet. The controller allows the flow from host A to server B by installing flow

entries fe1, fe2, and fe3, into switches S1, S2, and S3, respectively. The flow from

host A to server B is called a forward flow. Using the same process, the response

packet (TCP SYNACK) generated by server B will trigger the controller to install

fe4, fe5, and fe6 into S3, S2, and S1, respectively. The flow from server B to host A

is called a reverse flow.

As can be seen from Figure 5.1, neither the OpenFlow-enabled switch nor the

controller has the ability to track and maintain connection states, which makes it im-
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possible to directly develop stateful access control based on OpenFlow in SDNs. As a

result, existing SDN controllers (e.g., Floodlight) only have a stateless firewall appli-

cation that enforces ACL (Access Control List) rules to monitor all OFPT PACKET IN

behaviors.

Using Figure 5.1 as an example, these stateless firewall applications can only

specify simple rules, such as “packets from server B to host A are allowed.” In contrast,

a stateful firewall is a critical component in traditional systems and networks which

provides more control over whether a packet is allowed or denied based on connection

state information. For example, a stateful firewall rule could specify “packets from

server B to host A are allowed, if and only if host A initiates the connection to

server B.” These stateful rules are incredibly useful for security purposes, for instance

to specify that a web server should be able to accept incoming connections but never

initiate an outgoing connection. However, despite the great security benefit of these

stateful policies, it is challenging to build a stateful firewall in SDNs without the full

support of stateful packet inspection [67], which is critical to provide effective network

access control management.

In addition to the development of a stateful firewall application, the knowledge

of connection states in SDNs can also help maintain the network’s availability. The

SDN controller and applications can install, update, or delete flow entries for their own

purposes. However, these actions may interrupt established connections, which may

consequently damage the availability of services in the network. Consider the case of

a load balancer application, which switches flows between two web servers (Servers

B and C in Figure 5.1). If the flows are changed while a network connection is still

in progress, the availability of the service would be affected. Also, attackers, who are

able to perform a man-in-the-middle attack on OpenFlow-enabled switches [39], can

also disrupt existing connections in the network by intentionally updating flow entries.
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The root cause of these issues is that the controller and the SDN applications have

no knowledge of the connection states, which results in creating potential chances of

unauthorized access into existing connections by attackers. We argue that a critical

functionality of OpenFlow or any other SDN implementation is that the controller

should be able to identify the conflicts between active connections and any pending

flow entry update and provide network administrators with an early warning before

a conflicting flow entry takes effect. Existing verification tools [74, 73, 75, 85] cannot

detect and address such conflicts, because they are unaware of connection states in

the network. By tracking global connection states in the network, the controller will

be able to deal with such conflicts and help maintain the availability of the services

in the network.

We summarize existing solutions in Table 5.1 that are mostly applicable only for

designing applications that need states locally. App-aware approach [88] adds cus-

tomized OpenFlow table in the data plane to be able to check packets and redirect

them to different network applications such as a firewall and a load balancer. However,

this application-aware table is statically defined at the compile time and maintains

network states locally. Consequently, network states are to be distributed whereas

StateMon centrally collects all network state and records them in SDN controller.

UMON [120] and Conntrack [8] put customized tables in the middle of OpenFlow

pipelines in the data plane to perform anomaly detection and stateful packet inspec-

tion, respectively. OpenState [40] performs state checking using the state table in

conjunction with an extended finite state machine that is directly programmable by

the controller. FAST [90] compiles the state machine of a specific network proto-

col such as TCP in the control plane and installs corresponding state-based tables

(state transition table and action table) into SDN switches. SDPA [124] inserts the

forwarding processor into OpenFlow-based processing pipeline to enable stateful for-
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warding scheme including hardware-based design. FlowTags [54, 55] attaches tag

information at the end of TCP header of in-flight packets to record middleboxes’

state-based information rather than checking state using SDN switches or the con-

troller. However, none of these approaches is able to maintain global network states

centrally and helps SDN applications access the information, allowing them to im-

plement their business logic based on global network states. Only OpenNF [58] and

P4 [41] attempt to utilize the control plane of SDNs for state checking and consoli-

dating network states. OpenNF focuses on collecting states of network middleboxes

(e.g., IDS, Net-Monitor) to support dynamic middlebox migration, and P4 is a pro-

posal for next generation of OpenFlow to support state inspections. However, the

former is not applicable for collecting generic network states (e.g., connection state),

and the latter does not include a workable implementation. Thus, we argue that a

global connection monitoring framework, which can be aggregated by the controller,

is imperative for network-wide connection monitoring and access management. Such

a global connection awareness not only enables stateful firewall applications to detect

indirect policy violations considering dynamic packet modification in SDNs, but also

helps identify connection disruptions and unauthorized access occurred in existing

connections.

5.3 StateMon Design

In this section, we first present the key design goals of our StateMon framework.

Then, we illustrate the overall architecture and working modules of StateMon and

further show how they meet our design goals.
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5.3.1 Design Goals

To enable stateful access management applications and overcome the limitations

of existing approaches, we propose a novel state-aware connection tracking framework

called StateMon to support building stateful network firewall for SDNs. StateMon

is designed with the following goals in mind:

• Centralization: StateMon should, in adhering to the principles of SDN,

manage a global view of all network connection states in a centralized manner

at the control plane.

• Generalization: StateMon should support any state-based protocols and

provide state information to SDN applications.

• High Scalability: StateMon should minimize message exchanges between

the controller and switches so that the control channel will not be the perfor-

mance bottleneck when monitoring all network connection states.
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Figure 5.2: StateMon Architecture Overview

5.3.2 StateMon Architecture Overview

Figure 5.2 shows an overview of the StateMon architecture, which adds new

modules in both the control plane (controller) and the data plane (switches) of the

OpenFlow system architecture.

To achieve the centralization goal, StateMon modules in switches use only the

match-action abstraction to perform packet lookups, forwarding, and other actions

based on the OpenConnection table (Section 5.3.3), whereas modules in the con-

troller track a global view of states (Section 5.3.4). A controller uses the OpenCon-

nection protocol to program OpenConnection tables, which are added to the Open-
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Flow processing pipeline by introducing a “Goto OpenConnection Table” instruction

(Goto-OCT) in OpenFlow action set.

To achieve the generality goal, StateMon maintains a pair of global state table

and state management table for each state-aware application. A state-aware applica-

tion initializes those tables and registers callback functions using the APIs provided

by StateMon. The global state table records network-wide connection state infor-

mation. Each entry in this table represents an active connection by specifying the

flow entries that govern the active connection (e.g., fe1, · · · , fe6 in Figure 5.1) and its

connection state (e.g., ESTABLISHED in TCP). The state management table keeps

state transition rules and actions that should be performed on each state (e.g., send

an OpenConnection message to the controller).

StateMon uses three methods to minimize the communication overhead between

the controller and switches to meet the high scalability design goal. First, State-

Mon leverages existing OpenFlow protocols such as OFPT PACKET IN message for

monitoring connection states. For example, the first packet of a new flow delivered

by OFPT PACKET IN message would not trigger a separate OpenConnection message.

Second, StateMon identifies ingress and egress switches for each connection and only

installs necessary OpenConnection entries into those switches to perform a state-based

inspection. Thus, StateMon minimizes the increase of additional table entries and

avoids the potential overhead that can be generated by other intermediate switches

on the path. Third, the OpenConnection protocol sends only expected state-changing

packets from switches to the controller.

5.3.3 OpenConnection Protocol

On receipt of a packet, an OpenConnection-enabled switch starts with the OpenFlow-

based packet process. For any new flow, the first packet of this flow is forwarded to the
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Figure 5.3: Structure of an Entry in an OpenConnection Table.

controller via an OFPT PACKET IN message. Then, the controller determines whether

that packet should be sent. If so, the controller will install new flow entries into corre-

sponding switches to handle future packets of the same flow. StateMon also listens

to the OFPT PACKET IN message. If this message carries a packet that any state-aware

application wants to monitor (Section 5.3.5), StateMon will install OpenConnec-

tion entries in OpenConnection tables (Section 5.3.3) of corresponding switches using

OpenConnection messages (Section 5.3.3) and add a Goto-OCT instruction in the flow

entries to start OpenConnection processing pipeline.

OpenConnection Table

Before illustrating how OpenConnection-enabled switches process packets, we first

explain the structure of the OpenConnection table. An OpenConnection entry, which

is shown in Figure 5.3, has (1) connection match fields, (2) actions for a decision of

forward, drop, and update fields, etc., and (3) OC CON SIG match fields that triggers

switches to send OC CON SIG message when matched. To achieve generality, both

connection and OC CON SIG match fields are directly programmable by state-aware

SDN applications (Section 5.3.5).

If and only if a packet matches connection match fields, the packet will be pro-

cessed by both the OpenFlow and OpenConnection pipeline as shown in Figure 5.4. In

case the packet also matches the OC CON SIG match fields, which means the packet is a

state changing packet, such as FIN in TCP, it will be encapsulated in an OC CON SIG

message and forwarded to the connection tracking module of StateMon in the
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controller. The connection tracking module will maintain the state and manage asso-

ciated switches accordingly. Upon completion of these OpenConnection-based packet

process, the action set that includes the rest of the OpenFlow actions will be executed.

The design of the OpenConnection table is aligned in spirit to the design of the

flow table, so that the data plane can process packets using the simple “match-action”

paradigm. However, OpenConnection tables are more scalable than OpenFlow tables,

because OpenConnection table entries are only installed in the OpenConnection tables

of the two endpoint switches that directly connect the initiating host and the receiving

host of a connection. In contrast, using OpenFlow for each new flow, corresponding

flow entries must be installed in all flow tables of switches that the flow traverses.
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Table 5.2: OpenConnection Messages (C: Controller, S: Switch)

Message Name Direction Description

OC CON SIG S→C Encapsulate entire packet (including payload) and forward it to connection tracking module

OC ADD C→S Install a new entry in an OpenConnection table

OC UPDATE C→S Update an OpenConnection entry

OC REMOVE C→S Remove an OpenConnection entry

OpenConnection Message Exchanging Format

We define four OpenConnection messages to enable state-based connection monitor-

ing. OpenConnection messages help the connection tracking module of StateMon

monitor the overall process of connection establishment and tear-down behaviors oc-

curring in the data plane. Table 5.2 summarizes the four OpenConnection messages

with a brief description of each.

The OC CON SIG message is used to encapsulate the state-changing packet and

conveying it to the controller (switch-to-controller direction). The main difference

from OpenFlow OFPT PACKET IN is that the OC CON SIG message is only for State-

Mon (so that it will not be effective to other SDN applications), and it also contains

a randomly generated unique identifier for the connection to distinguish the affilia-

tion of the message. The other messages are sent from the controller to the switches

to program an OpenConnection table. The connection tracking module generates a

OC ADD message to install a new entry in an OpenConnection table. For instance,

to monitor a TCP connection, it installs an entry to match TCP ACK packet at its

ingress switch of the flow path. OC UPDATE is used for updating an OpenConnection

table entry. If a connection is terminated (or by timeout mechanism), the connection

tracking module sends an OC REMOVE message to remove all associated entries. Com-

pared with OpenFlow, which exchanges messages between the controller and multiple

switches, OpenConnection introduces only a constant number of message exchanges

between the controller and two endpoint switches for handling a specific state-based
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connection. Using TCP as an example, OpenConnection uses eight messages in total

for a TCP connection (see Table 5.5): (1) three OC CON SIG messages, (2) two OC ADD

messages, (3) one OC UPDATE message, and (4) two OC REMOVE messages.

5.3.4 Tracking Connection States

For generality, StateMon maintains a pair of global state table and state man-

agement table for each state-aware application. The connection tracking module

listens to OFPT PACKET IN messages to initialize an entry in the global state table for

a connection and listens to OC CON SIG messages to update the states of the connec-

tion based on state transition rules in the state management table provided by the

application.

Global State Table

The global state table records network-wide connection state information. However,

simply extracting a connection’s state from a specific switch is not sufficient to account

for the overall global state of a connection. Because OpenFlow-enabled switches are

able to rewrite packets’ headers at any point using the Set-Field action, a packet’s

header may look different at its ingress and egress switches. This poses a challenge

for the controller to identify which packets belong to the same connection. To solve

this problem, StateMon bonds a connection’s state (e.g., ESTABLISHED) with

its associated network rules (i.e.,the forward and reverse flow entries) to effectively

monitor and track an active connection.

We design the entry in the global state table as 5-tuple denoted 〈CI , CE, σF , σR, Sa〉.

Connection information at the ingress switch (CI) contains a set of packet header

fields along with its incoming physical switch port, pi. Connection information at

the egress switch (CE) contains the same elements, except po which refers to the out-
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Table 5.3: State Management Table Example for TCP connection. (A or B Refers a
Pair of 〈IP, port〉.)

State
Transition Conditions

Next State
OpenConnection Events

Timeout
Message Type Source Match Fields Message Type Destination OC CON SIG Match Fields

INIT OFPT PACKET IN Ingress A→B, TCP, Flag=SYN SYN SENT OC ADD Ingress A→B, TCP, Flag=ACK ∞

SYN SENT OFPT PACKET IN Egress B→A, TCP, Flag=SYNACK SYNACK SENT OC ADD Egress B→A, TCP, Flag=FIN 5

SYNACK SENT OC CON SIG Ingress A→B, TCP, Flag=ACK ESTABLISHED OC UPDATE Ingress A→B, TCP, Flag=FIN 5

ESTABLISHED OC CON SIG
Ingress A→B, TCP, Flag=FIN

FIN WAIT 1800
Egress B→A, TCP, Flag=FIN

FIN WAIT OC CON SIG
Egress B→A, TCP, Flag=FIN

CLOSED 60
Ingress A→B, TCP, Flag=FIN

CLOSED - - - INIT
OC REMOVE Ingress

0
OC REMOVE Egress

going physical switch port. For instance, CI for a TCP connection can be defined

as 〈src ip, src port, dst ip, dst port, network protocol, pi〉. Note that some fields in CI

and CE (e.g., src ip, src port, dst ip, dst port) might not be identical due to dynamic

packet modification (Set-Field action) in SDNs. σF is a series of identifiers of flow

entries that enable the forward flow, and σR is also a series of identifiers for the re-

verse flow. For example, the forward flow and the reverse flow in Figure 5.1 would

be σF = 〈fe1, fe2, fe3〉 and σR = 〈fe4, fe5, fe6〉, respectively. The last element, Sa,

denotes the state of a connection and it will be further elaborated in Section 5.3.4.

The elements in a global state table entry have several properties. The relation

between CI and CE is to be determined by σF or σR such that CI
σF−→ CE and

C−1
E

σR−→ C−1
I . C−1

I and C−1
E are directly derived from CI and CE by replacing the

source with the destination and changing the incoming port (pi) to the outgoing port

(po). For example, if CI =〈src ip: 10.0.0.1, src port: 3333, dst ip: 10.0.0.2, dst port: 80,

network protocol: tcp, pi: 2〉 then C−1
I =〈src ip: 10.0.0.2, src port: 80, dst ip: 10.0.0.1,

dst port: 3333, network protocol: tcp, po: 2〉.
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State Management Table

An entry in the state management table is a 5-tuple denoted as 〈State, Transition Con-

ditions, Next State, OpenConnection Events, Timeout〉. When an OFPT PACKET IN or

OC CON SIG message is received, the connection tracking module compares its orig-

inated location and header of the encapsulated packet with the Source and Match

Fields of the current state in the state management table. If the packet meets the

Transition Conditions of the current state, the state will be updated to the Next

State and OpenConnection Events will be triggered. OpenConnection events instruct

the connection tracking module to send OC ADD, OC UPDATE, or OC REMOVE to corre-

sponding switches. The Match Fields in OpenConnection Events will configure the

OpenConnection table entries in corresponding switches to initialize connection and

OC CON SIG match fields. Timeout allows StateMon to automatically close a con-

nection.

Table 5.3 shows how a state-aware application can use the state management

table for the TCP state transitions. A TCP connection starts with INIT state that

transitions to SYN SENT when it receives an OFPT PACKET IN message that contains

a TCP SYN flag. StateMon identifies the location of the ingress switch (I) from the

message, and it sends an OC ADD message back to I with its match fields. StateMon

locates the egress switch (E) as well by listening for the second OFPT PACKET IN

message. OC CON SIG messages collected from I or E are then used to update the

connection states. CLOSED is a temporary state only used for sending OC REMOVE

messages and removing the associated entries. Note that one state can transition to

multiple Next States based on matching conditions and generate a variety of actions

as defined by SDN applications.
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Table 5.4: StateMon APIs

Category API Name Key Parameters Description

Type I

InitGST() Match fields in CI and/or CE

Initialize the global

state table

InitSMT() 5-tuple of state management table Initialize the state

management tableSetInterest() Range of match fields with wildcard

Type II

SearchEntry() Raw packet or ConnectionID
Search an associated

global state entry

GetConnState() ConnectionID
Obtain current state

of a connection

DeleteEntry() ConnectionID Delete a connection

Type III
ConnAttempt() Type of message and raw packet Return one of actions

(allow or drop)StateChange() ConnectionID and next state

5.3.5 StateMon APIs

StateMon provides three types of application programming interfaces (APIs)

for SDN applications so that the applications only need to implement their business

logic. The APIs can be used (1) to configure both the global state table and the state

management table (Type I), (2) to retrieve state information from the global state

table (Type II), and (3) to register callback functions in StateMon to subscribe

specific state-based events (Type III). The APIs are summarized as follows:

• Type I is used to configure the two state-specific tables in StateMon: the

global state table and the state management table. To customize the global

state table, SDN applications can specify match fields for CI or CE (e.g., IP

and port number) to distinguish one connection from another. Applications can

also define a state set for the connection along with its transition rules for the

state management table.
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• Type II APIs are built for sending queries (applications to StateMon) to

retrieve network states, which SDN applications are interested in. Because all

connection information is recorded in the global state table, those queries are

directly conveyed to the global state table.

• Type III APIs are used to register callback functions in StateMon. For

example, when a global state entry is updated, StateMon can call this function

to subscribing applications to allow them to execute their own business logic.

5.4 Stateful Firewall Design

In this section, to demonstrate the practicality and feasibility of StateMon and

state-aware network access management applications in SDNs, we illustrate how a

stateful firewall can take advantage of StateMon to implement its state-aware access

control logic in SDNs.

The stateful firewall application first calls Type I APIs to initialize its global state

table and state management table. We focus on TCP connections as a state-based

protocol for this application. To enforce a stateful firewall policy such as “host B

can communicate with host A if and only if host A initiates the connection,” our

firewall uses the state management table shown in Table 5.3. Then, StateMon calls

the registered callback function (Type III) when a state changing event occurs. The

application only needs to implement the logic in the callback function: (1) a packet

(or flow) heading from host B to host A should be denied when its state is in INIT

or SYNACK SENT and (2) a packet (or flow) heading from host B to host A should

be allowed when its state is in SYN SENT or ESTABLISHED. Thus, the connection

attempt (e.g., TCP SYN) initiated from host B cannot be made whereas the attempt

from host A will pass.

To show some benefits of our stateful firewall, we focus on following features: (1)
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Table 5.5: Additional State Management Table Entries for Unauthorized Access
Prevention

State
Transition Conditions

Next State
OpenConnection Events

Timeout
Message Type Source Match Fields Message Type Destination OC CON SIG Match Fields

SYNACK SENT OC CON SIG Ingress A→B, TCP, Flag=ACK ESTABLISHED OC ADD Egress A→B, TCP, Flag=FIN 5

SYNACK SENT OC CON SIG Ingress A→B, TCP, Flag=ACK ESTABLISHED OC ADD Ingress B→A, TCP, Flag=FIN 5

ESTABLISHED OC CON SIG Egress A→B, TCP, Flag=FIN DETECTED 1800

ESTABLISHED OC CON SIG Ingress B→A, TCP, Flag=FIN DETECTED 1800

DETECTED - - - ESTABLISHED 0

state-aware firewall policy enforcement, (2) connection disruption prevention, and (3)

unauthorized access prevention against active connections.

5.4.1 State-aware Firewall Policy Enforcement

Since StateMon provides global network states to the firewall, our firewall appli-

cation utilizes the state information for the following scenarios: (1) a host attempts

to establish a new connection, (2) the state of an active connection has been updated,

and (3) the firewall application updates the firewall policy.

First, when host A attempts to open a new connection to host B, both host A

and host B exchange initiating signal packets to establish the connection. As soon

as StateMon receives these attempts, the firewall would get relevant information

via the Type III callback function defined when it called ConnAttempt(). If this

attempt violates the pre-defined stateful firewall policy, the initiating packet is im-

mediately denied and the firewall stops the controller from executing the rest of the

OFPT PACKET IN handling process so that no flow entry is sent to the switches.

Second, if a global state entry is updated, the stateful firewall will also be noti-

fied via Type III callback function, StateChange(). Our firewall application per-

forms pair-wise comparison, the current state of the connection against existing

stateful firewall policies. The firewall searches the associated global state entry

by calling SearchEntry() and acquires the connection information from the entry.
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Algorithm 4: Obtaining Affected Entry Set (AES)

Input: New (or Updated) flow entry (nf) and existing flow entries (F E = {e1, e2, ...}) at the same switch.

Output: Affected entry set AES = {a1, a2, ...} such that ai ∈ F E.

1 /* First, append the new flow entry (nf) to AES */

2 AES.append(nf);

3 /* F Et: a set of flow entries installed in table t */

4 F Et ←− retrieveEntries(nf.getSwitchID, nf.getT ableID);

5 foreach e ∈ F Et do

6 /* Check if nf has higher priority than e and is dependent with e */

7 if nf .priority ≥ e.priority and nf .match ∩ e.match 6= ∅ then

8 AES.append(e);

9 /* Recursively perform identical operation if e has Goto-OCT instruction */

10 if e.getInstruction contains GotoT able then

11 temp e.match ←− e.applyActions();

12 temp e.setT ableID(e.getInstruction.getT ableID);

13 AES child = self.(temp e, E);

14 AES.append(AES child);

15 end

16 end

17 end

18 return AES ;

To consider Set-Field actions, it retrieves tracked space denoted T (I, E), getting

〈src ip, src port〉 from I and 〈dst ip, dst port〉 from E. By putting them together,

we obtain T (I, E) = 〈I.src ip, I.src port, E.dst ip, E.dst port〉. Using the combina-

tion of T (I, E) and its current state, the firewall checks for rule compliance with

firewall policies. If the update of the state is not allowed by the policy, the applica-

tion raises an alarm to network administrators and the update is denied by setting

the return value of StateChange() to drop. In case the stateful firewall application

wants to remove the connection, it may invoke DeleteEntry() function to remove the

associated entries from the OpenConnection and flow tables.

The final scenario deals with the case of updating firewall policies. When the
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firewall application updates a stateful rule in its policy set, all active connections

are examined against the new rule to identify potential violations. Because each

firewall policy has a priority, computing dependency relations of firewall rules after

the updates are vital for identifying overlaps between rules. All violating connections

are to be deleted from the network by calling the API DeleteEntry(). As a result, the

associated OpenConnection and flow entries will be flushed from the OpenConnection

tables and flow tables.

5.4.2 Connection Disruption Prevention

A malicious SDN application can manipulate existing flow entries or install new

flow entries to disrupt active connections that consequently damage the availability of

services in the network. To prevent this type of attack, detecting these attempts before

they take effect in the network is mandatory, so our firewall application proactively

analyzes the expected impact of updates on active connections. To this end, the

application computes the Affected Entry Set (AES) as described in Algorithm 4.

When a new flow entry is to be inserted into the network or an existing flow entry

is about to be updated, the application computes its dependencies with existing flow

entries in the same switch. To this end, it first retrieves all flow entries FE from a

specific switch and computes affected flow entries by new (or updated) flow entry nf .

The application next selects the exact flow table affected by nf and builds FEt which

is a subset of FE. Then, it compares the priority and matching conditions between e

and nf , to decide whether e is affected. If nf is dependent on e and has higher priority

than e, the application adds e into AES. If e has a goto instruction, the application

further visits the specified flow table to find AESchild. Considering Set-Field actions

e may have, the actions will be applied first in advance before pipelining to another

flow table. The firewall makes use of AES to detect the connection disruption attacks.
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Detection of connection disruption attacks: Newly installed (or updated) flow

entry nf triggers the application to compute AES and check AES against active

connections obtained from StateMon. The application then compares AES with

σF and σR of each of active connections and invokes the connection tracking module

to re-calculate σ′F and σ′R. The updated σ′F may change the relation between CI

and CE i.e., CI

σ′

F−→ C ′E . If CE 6= C ′E, the firewall concludes that the candidate flow

entry nf will disrupt an active connection. nf may also disrupt the reverse flow of

the connection. If C−1
E

σ′

R−→ C ′−1
I and C−1

I 6= C ′−1
I , the firewall also concludes nf will

disrupt an active connection.

Countermeasure: When the controller receives the request of installation of a new

flow entry nf which may cause a connection disruption or interruption, StateMon

treats it as a candidate flow entry and holds it until StateMon evaluates its impact

on the network. Upon completion of computing AES and σ′F (or σ′R), if the firewall

detects any error such as CE 6= C ′E or C−1
I 6= C ′−1

I , it raises an alarm to the adminis-

trator about the attempt. The administrator can decide whether it is legitimate and

an intended request. If it turns out nf is valid, StateMon allows it to be installed

in the network. Otherwise, the firewall rejects the installation of nf .

5.4.3 Unauthorized Access Prevention

An attacker can attempt unauthorized access into an active connection by per-

forming a man-in-the-middle attack such as TCP sequence inference attack to spoof

packets. TCP protocol is inherently vulnerable to sequence inference attacks [99, 98].

We do not fundamentally solve these known vulnerabilities but can partially prevent

specific types of unauthorized access to an active connection (e.g., TCP termination

attacks). If an attacker successively infers the sequence number of the next packet,

he/she will be able to create a spoofed termination packet by setting the TCP flags
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with FIN (i.e., man-in-the middle attack [39]). Our firewall can leverage StateMon

to detect such an attack by customizing the state management table and adding

OpenConnection entries.

Detection of connection termination attacks: The key idea of the detection mech-

anism is to add additional checking logic in the egress switch for the forward flow

(or the ingress switch for the reverse flow) by installing new OpenConnection entries.

In addition to the state management table described in Table 5.3, the firewall adds

additional transition rules (Table 5.5) to install OpenConnection entries and detect

connection termination attacks. The firewall first creates a new OpenConnection

Events (the first line in Table 5.5) for the SYNACK SENT state that instructs the

egress switch to install a new OpenConnection entry that matches the forward flow.

OC CON SIG match fields of this entry will match the TCP FIN packet that belongs

to the forward flow. Benign TCP FIN requests sent from the initiating host will be

checked at its ingress switch by Table 5.3, so StateMon transitions the state of the

connection to the ESTABLISHED state. Hence, OC CON SIG fields of the third entry

in Table 5.5 will not match the packet. However, attacking packet which is forged

by an attacker in the middle of the flow path will match the OC CON SIG conditions

of the third entry at the egress switch which results the state to be DETECTED.

DETECTED state defined in the fifth line in Table 5.5 is a temporary state that is

used to inform the existence of a TCP termination attack to the firewall. In the case

of the reverse flow, the firewall leverages the second and the fourth entry for detecting

connection termination attacks. In such a way, the firewall can capture this type of

attack with the help of StateMon.

Countermeasure: To protect the network from the aforementioned unauthorized

access (e.g., TCP termination attack), the firewall can take two countermeasures: (1)

return actions in the Type III callback function with drop to drop the spoofed packet
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and (2) rollback the connection state (DETECTED to ESTABLISHED) to maintain

the connectivity between end hosts. In addition, the firewall may add complementary

business logic in a Type III callback function to implement post processing behaviors

such as sending warning messages to the network administrator.

5.5 Implementation and Evaluation

5.5.1 Implementation

To implement StateMon, we chose a widely used controller, Floodlight, and

a reference OpenFlow software switch implementation, Open vSwitch (ovswitch).

The routing module and link discovery modules in Floodlight are used to provide

network topology information to the connection tracking module. To track existing

flow entries in the network and build its reachability graph, we used header space

analysis [73] which translates each flow entry into a transition function that consists

of a set of binaries, 0, 1, and x (for wildcard), to represent its matching conditions

and actions. We also added OFPT PACKET IN listener within the controller along

with an OpenConnection message handler to receive the state changing packets and

program OpenConnection tables. Each global state entry has a unique identifier to

distinguish it from other entries for ease of maintenance. The connection tracking

module leverages the OFPT FLOW MOD OpenFlow message to construct controller-to-

switch OpenConnection messages.

In the data plane, we implemented the OpenConnection table along with Open-

Connection message handler. Because current versions of ovswitch can only support

OpenFlow up to version 1.3.0, which cannot inspect TCP flags and sequence/ac-

knowledgment numbers, we implemented a parsing module to additionally retrieve

TCP flags and sequence/acknowledgment numbers. Then, we modified the legacy
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OpenFlow pipelining logic to enable OpenConnection-based packet processing. In

total, less than 500 lines of C code were added to the ovswitch code base.

To implement the stateful firewall we leveraged a built-in firewall application in

Floodlight to add a stateful checking module. A stateful checking module in the

firewall is able to access the global state table by using StateMon APIs for checking

and enforcing its stateful firewall policy. We added the state parameter to REST

interface methods provided by the built-in firewall so that users can define a stateful

policy using REST requests. To prevent connection disruption and unauthorized

access, we added a listener in the Static Flow Pusher module in Floodlight, so the

application is able to intercept potentially malicious or accidentally harmful flow entry

update requests and analyze their impacts on active connections before they become

effective.

5.5.2 Evaluation

To manage the state of a connection, existing solutions add the transition logic of

the connection in the data plane (Table 5.3). The fundamental question, therefore,

is how many additional messages and/or performance overhead are introduced to

achieve the same goal in StateMon. To this end, we conducted experiments using

three virtual machines, each of which had a quad-core CPU and 8GB memory and

ran a Linux operating system (Ubuntu). One virtual machine was used to run the

Floodlight controller and each of another ran Mininet [22] to simulate two networks.

After we built two separated networks, we connected them using a GRE tunnel to

flexibly add new hosts and links in one network without impacting the other network.

We also modified the size of the network by changing the number of intermediaries

(i.e., network switches).
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Evaluation of StateMon

To measure the worst-case performance of StateMon, it was configured to monitor

every connection in the network. However, in a real-world deployment, StateMon

only needs to monitor connections specified by state-aware applications, which will

only improve the performance.

We first conducted experiments on an OpenConnection-enabled switch to test the

overhead created by StateMon in the data plane. OpenConnection enabled-switch

spent less than 1µ for checking the affiliation of incoming traffic in an OpenCon-

nection table when the table is set to have 100 entries. Creating and updating the

corresponding entries in the OpenConnection table have been completed within 2µs

on average.

In the controller side, the connection tracking module is in charge of installing/delet-

ing an entry in the global state table and computing next state using the state man-

agement table. This module spent less than 3µs on average to complete those two

tasks when there exist 100 connections in the network. To evaluate how much of the

delay can be attributed to network latency, we compared the numbers of message

exchanges generated by both OpenFlow protocol and OpenConnection protocol. We

collected real network traffics (five PCAP files) from different sources (available at

[26, 20]) to generate real network traffic. Our testing framework (1) automatically

identifies source and destination IP addresses of each packet in a PCAP file, (2)

dynamically generates hosts for those IP addresses in a network, and (3) sends the

packet through their network interfaces. Figure 5.5a shows the number of message

exchanges. The first traffic is collected from VoIP traffic and consists of 32 connec-

tion attempts and 29 successful establishments. Network traffic generated by this

file caused the controller to generate 324 OpenFlow messages along with 215 Open-
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Connection messages, which mean 10 OpenFlow messages and 7 OpenConnection

Messages per connection on average. For counting OpenFlow messages, we excluded

unrelated messages, such as OFPT HELLO, OFPT ECHO REQUEST, and FEATURE REPLY,

and filtered out unrelated OFPT PACKET IN messages used to handle connectionless

packets, such as LLDP, ARP, and DNS. Therefore, OpenConnection protocol actually

generated much fewer messages than OpenFlow protocol. To account for theoretical

number of OpenFlow messages, we develop the equation (5.1). For one way flow, we

need one OFPT PACKET IN message and n number of OFPT FLOW MOD messages where

n is the number of switches on the path. Because a connection requires bi-directional

flows, it is computed by 2 ∗ (1 + n).

BOF (n) = 2 ∗ (1 + n) (5.1)

However, the number of OpenConnection messages does not depend on n. Because

StateMon requires eight messages for monitoring a connection, every PCAP type in

Figure 5.5a creates ≤ 8 OpenConnection messages per connection. Considering the

third traffic that contains DoS attacks, it has generated a large number of OpenFlow

messages due to substantial connection attempts, while the count of OpenConnection

messages remained unchanged. This results clearly show StateMon creates mini-

mal message exchanges under any circumstances. Figure 5.5b shows how StateMon

scales with respect to increasing the number of switches in the network. To stress an

overhead, we maintained 300 connections when measuring Figure 5.5b. As expected,

OpenFlow message count was linearly increased in accordance with the growing num-

ber of switches while StateMon maintains a constant number of message exchanges

no matter how many switches exist in the network.

To discover overall overhead of StateMon including network latency, we first

measured the time for establishing a connection using a TCP handshake with and
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Figure 5.5: Message Exchanges in StateMon

without StateMon. As defined in Table 5.3, StateMon exchanges 4 messages to

monitor a TCP handshake. While a TCP handshake took 3.356ms on average without
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Figure 5.6: Throughput Between End Hosts

StateMon, it took 3.651ms on average with StateMon. This means StateMon

only introduced a 0.295ms delay, which is 8.79% overhead for a TCP handshake.

To evaluate the overall performance degradation caused by StateMon, we used the

throughput between hosts as another metric. We used Iperf [1] for this experiment.

Iperf client (host in network A) initiated a new connection with Iperf server (host

in network B) and exchanged a set of packets to measure the throughput. In an

Open vSwitch and Floodlight setting without StateMon, the throughput scored an

average of 10.74 Gbits/sec (100 runs). With StateMon enabled, the throughput

scored 10.40 Gbits/sec on average, with only 3.27% throughput degradation.

Evaluation of Stateful Network Firewall

We configured the number of firewall policies to be 1k and fixed the size of global

state entries with 10k to measure the overhead of our stateful firewall.

For performing state-aware firewall policy enforcement, the firewall spent 1.02ms

on average. When a host attempts to establish a new connection, it took 0.83ms to

complete the searches with existing firewall policies, and the attempt was immediately
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denied in real-time (0.01ms). Whenever a global state entry is updated, the firewall

performed a pair-wise comparison of the update with existing state-based rules within

1.16ms, and it took 0.26ms to delete the violating connection from the network. In

case of firewall policy updates, the firewall finished its dependency checking mostly

within 0.5ms, and spent a similar time (0.31ms) for deleting the conflicting connection

from the network.

Preventing connection disruptions in the network is another key feature in our

firewall. To this end, the firewall computes the Affected Entry Set (AES), and gen-

erating AES took less than 0.35ms on average. In addition to AES, the firewall

computes updated flow entries, namely σ′F or σ′R, to further compute C
′

E and C
′

I ,

respectively. By comparing the relation the old CE and the updated C
′

E, the firewall

draw a conclusion of potential connection disruption iff CE 6= C ′E. All these tasks

were completed in 0.49ms on average.

To detect/prevent unauthorized access into active connections, the firewall ma-

nipulates the state management table as described in Section 5.4.3. As shown in

Table 5.5, the firewall proactively installs necessary rules in the state management

table. Once a connection has successively been established between two end hosts, the

firewall asks StateMon to install an additional OpenConnection entry to monitor

the terminating packet at its egress switch. Since the firewall will be directly notified

by StateMon when a connection termination attack is detected, the firewall only

implements a logic to drop the attack packet. The firewall drops this packet and

recovers the connection’s state to its previous one, ESTABLISHED. Duration time

for handling this type of unauthorized access took around 0.44ms in total.

We also checked the scalability of the stateful firewall application by measuring

the duration time for completing three types of strategies. We gradually increased

the number of existing connections from 20k to 100k. As shown in Figure 5.7, state-
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Figure 5.7: Scalability Analysis of Stateful Firewall

aware policy enforcement took almost constant time (≈ 1ms) no matter how many

connections exist in the network. The firewall spent more time in preventing connec-

tion disruptions than that of unauthorized access prevention due to the computation

overhead incurred by Algorithm 4. However, overall duration time for both cases lin-

early increased with respect to increasing number of connections and took less than

3 milliseconds at 100k connections, which is manageable.

Evaluation of Other Application: Port Knocking

Even though we mainly focused on TCP connection in this chapter, a key design goal

is that StateMon can support different state-based protocols, such as port knocking.

Port knocking is a method to open a closed port by checking a unique knock sequence,

a series of connection attempts destined to different ports [80]. Thus, we developed
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this application to demonstrate how other network access management schemes can

be also implemented using StateMon in SDNs.

For example, an application may want to allow a connection iff a series of requests

matches a specific port order of A, B, C, and D. By modifying the state management

table in StateMon, the application can receive state-changing packets by listening

OFPT PACKET IN messages. In other words, the initial state can transition to the first

knock state (e.g., PORT KNOCK1) when the packet is destined to port A, waiting

for the subsequent knocking sequence (port B). Such a way, the application opens the

closed port of a server if the state becomes the OPEN state.

To evaluate the overhead incurred by StateMon-based application, we reim-

plemented the port knocking that has been demonstrated in prior work [80], which

performs the same functions but locally maintains the state in the switch. We in-

stalled the state transition rules for the port knocking in the switch. To complete

the knocking sequence, it took 104.96ms without StateMon, and StateMon-based

application spent 113.83ms in total (8.45% overhead).

5.6 Related Work

As explained in Table 5.3, majority of existing solutions are focused on performing

stateful inspection in the data plane [88, 90, 54, 120, 41, 8, 40, 124]. There is some

debate as to whether this design goes against the spirit of SDN’s control and data

plane separation. In addition, none of these approaches give much attention on how to

leverage the logically centralized controller for providing a global state visibility of the

network to applications. In contrast, the unique contribution of StateMon comes

from its consolidated state checking mechanism enabled by OpenConnection protocol

and the connection tracking module. Specifically, StateMon can provide global

state-based connection information to SDN applications along with several APIs that
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allows them to define application-specific states. Even though OpenNF [58] attempts

to achieve a similar state sharing, it mainly collects a state of middleboxes (e.g.,

firewall, proxy, and load-balancer), not generic network states.

A number of verification tools [95, 67, 85, 75, 74, 73] for checking network in-

variants and policy correctness in SDNs have been recently proposed. FortNOX [95]

was proposed as a software extension to provide security constraint enforcement for

OpenFlow-based controllers. However, the conflict detection algorithm provided by

FortNOX is incapable of analyzing stateful security policies. FlowGuard [67] was

recently introduced to facilitate not only an accurate detection but also a flexible res-

olution of firewall policy violations in dynamic OpenFlow-based networks. However,

the design of FlowGuard fully relies on flow-based rules in the data plane and is only

capable of building a stateless firewall application for SDNs. Anteater [85] is indeed an

offline system and cannot be applied for a real-time flow tracking. VeriFlow [75] and

NetPlumber [74] are able to check the compliance of network updates with specified

invariants in real time. VeriFlow uses graph search techniques to verify network-wide

invariants and deals with dynamic changes. NetPlumber utilizes Header Space Anal-

ysis [73] in an incremental manner to ensure real-time response for checking network

policies through building a dependency graph. Nevertheless, none of those tools are

capable of checking stateful network properties in SDNs.

5.7 Discussions

The OpenFlow protocol is evolving continuously, and the latest version (v1.5.0)

has been recently released [30]. The newest version of OpenFlow attempts to add

TCP flags for the extended matching criteria to address the problem of insufficient

L4 header inspection capability as we have discussed.

However, the newest version of OpenFlow could not answer critical questions
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related to the maintenance and manipulation of network connection states. Especially,

it does not articulate how to leverage TCP flags to monitor states in both the switch

and controller. We expect that our design of OpenConnection in StateMon could

provide an inspirational solution for OpenFlow to build and enable its future stateful

inspection scheme.

While we took great efforts to realize state-aware applications for SDNs, the de-

ployment of StateMon to real-world production networks requires additional con-

siderations in terms of network security. For example, defense mechanisms against

DDoS attacks discussed in [110] may need to be considered in StateMon. In addi-

tion, the current design and implementation of StateMon utilize OpenFlow-based

controller and switch modules, hence it only works in the context of an OpenFlow-

based environment. However, the main idea of StateMon, which is to provide state

tracking framework for various network applications, can be also realized in other

network paradigms, such as Network Function Virtualization (NFV) [3, 61] .

5.8 Conclusion

In this chapter, we have articulated network access control issues in SDNs and

presented a state-aware connection tracking framework called StateMon that facil-

itates the control and data planes of SDN to enable stateful inspection schemes. In

the control plane, we have designed a novel connection tracking mechanism using a

global state table and a state management table to track active connections. To en-

able a state-aware data plane, we have introduced a new OpenConnection protocol,

which defines four message formats and a state-aware OpenConnection table. We

have implemented StateMon using Floodlight and Open vSwitch along with two

access management applications (i.e., a stateful network firewall application and a

port knocking application) for SDNs, to demonstrate the flexibility of StateMon.
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Our experimental results have demonstrated that StateMon and two state-aware

network access management applications showed manageable performance overhead

to enable critical state-aware protection of SDNs.
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Chapter 6

HONEYPROXY: DESIGN AND IMPLEMENTATION OF

NEXT-GENERATION HONEYNET VIA SDN

6.1 Introduction

Today’s internet system has evolved rapidly, leading to more and more business

transactions (e.g., e-commerce and banking) carried out exclusively over the network.

These sensitive transactions call for a need to provide a secure and reliable system

that can effectively prevent security breaches, to preserve the integrity of the data

and protect customers [81]. In addition to securing the integrity of the data, network

infrastructure is faced with new exploits, automated scanning tools, and bots, which

results in a great loss of business assets and units [96, 32].

It is difficult, if not impossible, to protect the network if we do not have knowledge

of the attacker’s techniques. In this way, network defenders can remain up-to-date

on the latest exploits, tools, and bots. We require software tools and techniques to

study behaviors of attackers and exploits. Some research and studies carried out in

this direction provide robust mechanisms for early detection and prevention of such

attacks thereby securing the network infrastructure. One such attempt is the advent

of honeypots. A honeypot is a system that is designed to intentionally let attackers

probe, scrutinize and ultimately exploit the system by exposing a set of vulnerable

services [116, 32, 106]. The primary purpose of a honeypot is to closely monitor the

emulated system to learn attackers’ behaviors and collect malicious data during and

after the exploitation of the honeypot. Honeypots are under active attack by real

adversaries, therefore they are often isolated from the real operating system, services,
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or network. Therefore, honeypots’ collected data and attackers’ log can provide early

warnings of new attacks and exploitation, to help administrators protect the real

systems and networks from real adversaries.

Honeypots are generally categorized into two types: a low-interaction honeypot

and a high-interaction honeypot. The main difference between them lies on their

complexity and the level of interaction they provide to the attacker. Low-interaction

honeypots emulate operating systems and other services, therefore low-interaction

honeypots do not provide attackers much control. The main advantage stems from

their simplicity (i.e., easy deployment and maintenance) and the low risk factor be-

cause they are not real production system. High-interaction honeypots are typically

actual systems (i.e., not emulated systems), and therefore elicit more interactive in-

formation from attackers than that of low-interaction honeypots. However, the high

level or interactivity has a downside in considerable maintenance and deployment cost

with a high risk factor.

As an example, kippo [21] is one of the well-known low-interaction honeypots

that emulates the ssh service to record brute force attacks and log all shell activities

performed during the active session with attackers. However, shortcomings of kippo

include a risk of being easily fingerprinted due to its nature of an insufficient level

of interactions. To emulate the real ssh service, kippo mimics several functionalities

using hard-coded strings, which make it vulnerable to fingerprinting attacks [62, 6].

A honeynet is an evolution of a honeypot, and it consists of a collection of hon-

eypots. However, this collection poses the same weakness. In addition, the first

honeynet architecture (Gen-I [115]) has first been proposed in the year of 2002, and

the latest architecture, Gen-III [33], was built in 2004. Due to the outdated honeynet

architecture, existing honeynet suffers from insufficient data control mechanisms and

data capture capability. As described in Table 6.1, honeypots kept evolving (see
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Table 6.1: Emerging Honeypots and Their Last Updates (As of September 2016).

Honeypot Interaction Level Emulated Services Last Commit

Glastopf [12] Low HTTP Aug 16

HIHAT [14, 91] High HTTP Apr 16

Honeyd [16, 96] Low Network Dec 13

Dionaea [10] Low HTTP, FTP, SMB Jun 2014

Honeytrap [18] Low TCP Jun 2016

Kippo [21] Low SSH Oct 2015

Conpot [9] Low ICS (SCADA) Aug 2016

Last Commit in Table 6.1) to accommodate an emerging services (e.g., industrial

control system, or ICS) and catch up the enormous growth in well-crafted attacks

and exploits. However, the latest architecture (Gen-III) remained unchanged for

more than a decade—it is consequently losing its momentum. For example, inbound-

/outbound traffic control mechanisms in Gen-III architecture cannot prevent internal

propagation of malware within a honeynet because access control rules are mainly en-

forced by a custom gateway called honeywall [51, 84]. It is also incapable to support

the transition between a low-interaction honeypot and a high-interaction honeypot.

Low-interaction honeypots are beneficial to collect high level information about at-

tackers (e.g., username and password pair) whereas high-interaction honeypots focus

on collecting low level details [15]. However, existing honeynet architecture does not

provide a practical way to fully utilize the advantages of both low-interaction and

high-interaction honeypots.

In order to solve aforementioned problems, we argue that the architecture of cur-

rent honeynet should be redesigned to provide more flexibility in terms of its network

access management. We observe that such flexibility and network access controls can
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be satisfied by taking advantage of Software-defined Networking (SDN [23]). SDN ba-

sically provides a centralized network management platform by decoupling the control

plane (e.g., exchanging network rules) from the data plane (e.g., network switches).

SDN can centrally configure routing policies of connected devices via the SDN con-

troller and can provide a global view of the network to SDN applications to help them

easily build network-wide business logic. These strengths of SDN have high potentials

to address the limitations of existing honeypots and honeynet architecture.

Thus, we propose a novel honeynet architecture to overcome the limitations of

existing honeypots and honeynet architecture by leveraging SDN technology. Hon-

eyProxy consists of the proxy module and corresponding SDN application. It takes

the form of a reverse proxy to provide improved control over incoming and outgo-

ing traffic while obtaining network configuration via the SDN controller. Malicious

traffic from attackers is redistributed to all associated honeypots, and HoneyProxy

selects one response from the response queue that does not contain fingerprinting

indicator(s). To prevent internal malware propagation, HoneyProxy cooperates

with the SDN controller to detect any anomalies within the network. Supporting a

dynamic transition between a low-interaction honeypot and a high-interaction hon-

eypot is realized by enabling three types of operating modes.

The contributions we make in this chapter are summarized as follows:

• We propose an SDN-based honeynet architecture called HoneyProxy that

consists of a reverse proxy module and of a corresponding SDN application.

HoneyProxy tackles important problems in existing honeypots and honeynet

architecture: (1) fingerprinting attacks targeting honeypots, (2) internal mal-

ware propagation in honeynet, and (3) lack of honeypot transition.
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• We propose a connection management engine that supports three operating

modes: (1) Transparent Mode, (2) Multicast Mode, and (3) Relay Mode. Based

on the decision of HoneyProxy-enabled controller, malicious traffic is pro-

cessed differently so as to meet our design goals (Section 6.3). To the best of

our knowledge, this is the first attempted to introduce flexibility to honeynets.

• We implement a prototype of HoneyProxy that is written in both Python and

C. Our experimental results show that the TCP throughput of HoneyProxy

achieves the line rate TCP throughput (942 Mbps) using multiple worker pro-

cesses. The latency incurred by HoneyProxy is in the range of 0.5 − 1.2

milliseconds on average.

The structure of this chapter is as follows. Section 6.2 discusses the problems

we tackle in this chapter. Section 6.3 describes our design strategies along with the

architecture and building blocks of our system. In Section 6.4, we introduce the

core mechanism of the connection management engine. Section 6.5 focuses on flow

programming modules. Implementation details are discussed in Section 6.6 followed

by our experimental results (Section 6.7). Section 6.8 introduces related works, and

Section 6.9 discusses several important issues. In Section 6.10, we conclude this

chapter.

6.2 Problem Statement

Existing honeypots suffer from fingerprinting attacks, and current honeynet archi-

tecture suffers from internal malware propagation and a lack of honeypot transition

mechanisms.

Vulnerable to fingerprinting attacks. A fundamental drawback of existing

honeypots is that they can be easily fingerprinted by attackers. The essential objective
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of honeypots is to collect as many attacks as possible to learn attacker’s behaviors and

to discover new types of attacks and malware to provide early warnings to network

administrators. However, lack of exposed functionalities and insufficient interactions

of honeypots (especially low-interaction honeypots) hinder attackers from probing

and exploiting the system. or example, existing ssh honeypots such as kippo [21]

can be easily fingerprinted by Linux commands such as uname -a. Because kippo

does not implement the entire functionality of the uname command, it prints out the

hard-coded timestamp “Wed Nov 4 20:45:37 UTC 2009” (see Table 6.2). In this way,

attackers can instantly identify the presence of honeypots, which reduces the effective-

ness of collecting attacker behavior. Existing honeynet data control mechanisms do

not take into account the fingerprinting attach, thus, removing honeypots themselves

must remove emulation artifacts. In other words, neither honeypots nor honeynet

architecture is capable to prevent fingerprinting attempts.

Internal propagation of malware. Current honeynet architecture cannot

monitor internal traffic because access control mechanisms are enforced at the custom

gateway called the honeywall. The honeywall monitors incoming and outgoing traffic

at a fixed location, and the honeywall acts as a transitional network firewall. Due

to the fixed location of a honeywall, monitoring and preventing internal propagation

of malware in the honeynet is difficult. In general, honeypots are not to be trusted

because attackers are encouraged to actively exploit the honeypots. Therefore, if

a honeypot is compromised, it can easily infect other honeypots coexisting in the

same network. To prevent these incidents, administrators may want to add host-

based protection mechanisms within a machine (e.g., anti-virus, iptables, or sandbox),

however host-based solutions are not feasible because the attacker, who is taking

control of the honeypot, can circumvent these countermeasures. This is why existing

honeynet architecture should be redesigned to better provide network-level protection.
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Dynamic transition between low interaction honeypot and high inter-

action honeypot. Based on the level of interaction with attackers, honeypots are

generally categorized into two types: low-interaction honeypots and high-interaction

honeypots. Low-interaction honeypots emulate a set of real functionalities and ex-

pose (fake) vulnerable and (fake) exploitable services to attackers. The advantages

of using them include the ease of deployment and a low possibility of compromise,

however they can be easily fingerprinted. In particular, low-interaction honeypots are

widely used in the early stage of attacks to collect information on scanning attacks

and login attempts (i.e., username/password pairs). High-interaction honeypots im-

plement the majority of the real service (e.g., ssh and http), along with exploitable

and/or emulated vulnerabilities. While high-interaction honeypots provide deeper

and realistic interactions to attackers, they require sophisticated configurations, high

maintenance cost, and high possibility of compromise. Consequently, current hon-

eynet mechanisms totally rely on the capability of each honeypot, resulting in the

loss of potential opportunities for maximizing the advantages of both low-interaction

honeypots and high-interaction honeypots. For example, we could consider to acti-

vate low-interaction honeypots for massive attacks or the login phase of an attack,

while high-interaction honeypots provide more interactive attacker actions after a

successful login event. Honeybrid [83, 15] strives to facilitate the use of both honey-

pots by supporting transition mechanisms between a low-interaction honeypot and a

high-interaction honeypot. However, this approach does not provide a flexible way to

configure when and how to migrate the establish connection from the one to another.

6.3 HoneyProxy: Design and Architecture

HoneyProxy is a novel next-generation honeynet architecture, which leverages

Software-Defined Networking. In this section, we describe the key design goals of our
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Figure 6.1: Overview of HoneyProxy.

approach, and we illustrate the architecture of HoneyProxy along with the detailed

building blocks.

6.3.1 Design Goals

To overcome the limitations of existing honeypots and current honeynet archi-

tecture, we present an innovative SDN-based honeynet architecture called Hon-

eyProxy. We define the following design goals that any next-generation honeynet

architecture should support:

• Globalization. The approach should globally monitor all internal traffic to

prevent compromised honeypots from propagating malware within the network.

Globalization should also include centralized network monitoring and network-

wide policy enforcement.

• Flexibility. The honeynet architecture must support a smooth transition from

a low-interaction honeypot to a high-interaction honeypot or vice versa. This

transaction should also be flexible and configurable.

• Stealthiness. The approach must be covert, in that it has to hide the existence
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of itself and minimize the exposure of residing honeypots as much as possible.

From this point of view, the approach should not incur noticeable delay in

conducting the given tasks, as the delay can result in the detection of the

honeynet.

• Generalization. The approach should be applicable—regardless of the type

of residing honeypots or running services. The key question here is related to

how the approach can address the redundant services in the network offered by

different honeypots.

6.3.2 HoneyProxy Overview

At a high level, HoneyProxy consists of a proxy module and a HoneyProxy-

enabled SDN controller (see Figure 6.1). Multiple honeypots are connected to differ-

ent switches, and those switches are centrally managed by the HoneyProxy con-

troller. SDN allows network administrators to have centralized control over the entire

network by separating the data plane from the control plane. Based on the residing

honeypots, the HoneyProxy controller centrally installs the necessary network rules

and enforces security rules within the network. On the proxy side, the request sent

by the attackers passes through a series of modules in the proxy and is transmitted

to a set of relevant honeypots (based on the request).

As shown in Figure 6.1, the proxy pushes a specific type of tagging information

inside the packet headers. HoneyProxy controller then creates SDN rules that

check the tagging information at the SDN switches to enforce network policies. The

proxy module has three operational modes. Based on the decision made by the

HoneyProxy controller, the operating mode of the proxy would be reconfigured

when necessary (see Section 6.4). The proxy module inspects the payloads of response
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Figure 6.2: HoneyProxy Reshapes the Landscape of Honeynet Architecture To-
ward One ‘BIG’ Honeypot.

to see if it includes any fingerprinting indicators that may expose the presence of

honeypots and/or honeynet. Upon discovering an indicator, the proxy module signals

to the HoneyProxy controller to take appropriate action, such as changing the

proxy mode or updating network configurations, accordingly. Section 6.3.3 provides

detailed architecture and building blocks of HoneyProxy.
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Figure 6.2 illustrates how HoneyProxy changes the landscape of honeynet ar-

chitecture. Traditional honeynet architecture runs multiple honeypots behind the

custom firewall (honeywall), shown in Figure 6.2a. This architecture allows residing

honeypots to run their emulated services, which are possibly redundant with other

honeypots as shown in Table 6.1. One consequence of this architecture is that only

one vulnerable services is accessible to an attacker at any given time, while the rest

are inactive. Because of these reasons, lots of manual configurations of honeypots

are necessary to avoid duplicating services, and it can be easily detected since the

configurations remain unchanged.

HoneyProxy, shown in Figure 6.2b, allows us to consider the honeypots as one

large honeypot running many vulnerable services, which are the union of individ-

ual honeypots. It does not require the extra burden of running redundant services

across diverse honeypots, because the proxy module distributes requests and selects

the best response. In other words, from the attackers’ perspective, our honeynet

would appear as one large honeypot. To effectively generate multicast messages, the

proxy module in HoneyProxy is internally conducting network address translation

(NAT [119]) and deep packet inspection (DPI [43]) to interconnect the same services

across honeypots.

Our approach has several strengths compared to existing honeynet architecture:

(1) It allows attackers to easily access a variety of vulnerable services, which allows

greater elicitation of behaviors; (2) Fingerprinting attacks can be mitigated by dy-

namically selecting the most appropriate response, which reduces fingerprinting and

allows for collecting more attack data and learning attacker behavior; (3) SDN con-

troller can globally monitor the entire honeypot network to detect abnormal behav-

iors of the honeypots (e.g., connection attempts between honeypots) so that internal

propagation of malware can easily be prevented at first hand.
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6.3.3 Architecture and Building Blocks

The HoneyProxy architecture is illustrated in Figure 6.3, and HoneyProxy

consists of a reverse proxy module and an SDN application. This design separates

the concerns of performing network programming and packet processing. The reverse

proxy module processes incoming and outgoing traffic using three sub-components:

Request Handler, Connection Management Engine, and Response Scrubber. The

counterpart, the SDN application, manages network configurations and enforces SDN

rules, while monitoring suspicious packets within the network. Detailed building
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blocks of HoneyProxy are introduced as follows:

Request Handler is responsible for handling the incoming traffic. When a

packet arrives at the Request Handler, it first checks the payload to decide if the traffic

contains any known fingerprinting attacks, which can fingerprint or compromise the

honeypot (see Table [21]). In case of scanning attacks that use OSI L3 or below, the

Request Handler adds the scanning tag to the packets and directly forwards them so

that SDN switches can direct them to IDS running honeypot. Based on this result,

the Request Handler signals the Connection Management Engine to perform network

address translation (NAT) and deep packet inspection (DPI) to manage the sessions.

Thus the request handler mainly monitors the incoming traffic for suspicious attacks

and sends the results to the Connection Management Engine.

Connection Management Engine Engine is the core of the reverse proxy

module that orchestrates the Request Handler and the Response Handler. The main

goal of this engine is to select the response among multiple responses and maintain the

sessions to support the three operating modes of HoneyProxy (Section 6.4). The

Connection Management Engine also adds tagging information to packet headers

of incoming traffic, which allows SDN switches to forward them to the matching

destination.

Response Handler is responsible for detecting fingerprinting indicators that

may exist in a given response. As defined in Table 6.2, the matching packet would

trigger this handler to notify the HoneyProxy controller. Responses from associated

honeypots are recorded in the R Queue, and it waits for the arrival of remaining

responses until a size of the queue equals to the number of associated honeypots. If

the queue size matches (or by timeout event), the Connection Management Engine

selects the most appropriate response from the R Queue.

Flow Programming Module runs as a part of the SDN application of the
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HoneyProxy controller. This module is responsible for notifying the controller

to add an SDN rule (i.e., a flow entry) that corresponds to the particular traffic

processed by the reverse proxy. The packets marked as scanning will be forwarded

to the honeypot running intrusion detection systems (e.g., snort [28]). Other packets

with the three operating modes would be counted to keep record of attackers’ behavior

and further utilize them to make a better strategies for attackers.

Mode Decision Module concludes the serving mode of the proxy. For those

attackers who conducted fingerprinting attacks are to be mainly served by high-

interaction honeypots rather than low-interaction honeypots. Based on several cri-

teria (Section 6.4.3), this modules sends REST request to the proxy to change the

operating mode (see Table 6.3).

To achieve the first design goal (globalization), HoneyProxy leverages SDN to

globally make a decision on operating modes of HoneyProxy and enforce network

and security rules via the SDN controller. HoneyProxy monitors all flows in the

network via the SDN controller so that any connection attempts generated by (poten-

tially) compromised honeypots can be logged, monitored, and prevented. To support

dynamic transitions across different honeypots in flight (the second design goal), the

proxy module in HoneyProxy has Connection Management Engine that selects the

most appropriate reply from a receiving queue and tracks the state changes of all

active connections. In this way, HoneyProxy can also transparently migrate the

connection from one honeypot to another. To satisfy the third design goal, stealth-

iness, HoneyProxy attempts to minimize the performance gaps between different

operating modes of HoneyProxy using multi-processing techniques [94]. As elabo-

rated in Section 6.7, latency gaps between different modes are less than a millisecond

(< 1 ms), which is not distinguishable when attackers connect over the internet. To
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meet the last design goal, generalization, HoneyProxy establishes multiple sockets

with the associated honeypots to support L4 or higher in OSI layer. Because vulner-

able services are mostly utilizing application layer protocol (L7) except for scanning

attacks, HoneyProxy can accommodate most of protocols. For scanning attacks

utilizing L3 or below, SDN application of HoneyProxy redirects those packets to

one of honeypots that runs an intrusion detection system (which is specifically con-

figured to detect scanning attacks).

6.4 Operating Modes and Connection Management Mechanism

The Connection Management Engine supports three operating modes: transpar-

ent mode (T-Mode), multicast mode (M-Mode), and relay mode (R-Mode). The

purpose of these modes is to efficiently and effectively deliver malicious traffic to rele-

vant honeypots and select the most appropriate reply among multiple responses from

honeypots.

6.4.1 Operating Modes

Figure 6.4 illustrates the three operating modes that HoneyProxy supports.

Each mode is intended to provide the following features to HoneyProxy:
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• Transparent Mode (T-Mode): T-Mode accounts for the initial stage of at-

tacks such as login trials. Because these attempts are normally launched in an

automated manner (e.g., bots or scripts), low-interaction honeypots can effec-

tively handle such attacks. For scalability reason, HoneyProxy only performs

network address translation without conducting deep packet inspection.

• Multicast Mode (M-Mode): Upon the completion of successful login

events, HoneyProxy transitions from T-Mode to M-Mode to proactively coun-

teract fingerprinting attacks. In this mode, every incoming payload is delivered

to all associated honeypots. However, merely sending multicast messages would

not work, because each session has unique session variables such as cookie or

shared session key, which are created and managed by the end honeypot. To

address this issue, HoneyProxy builds multiple sockets to maintain a set

of connections between the honeypots and HoneyProxy and records session

data. Section 6.4 elaborates on how HoneyProxy maintains multiple session

data and determines the best reply to send to the attacker among multiple

responses.

• Relay Mode (R-Mode): On the receipt of mode change commands issued

by the HoneyProxy controller, HoneyProxy transitions from M-Mode to

R-Mode or vice versa. R-Mode essentially allows only one connection, which is

established by a high-interaction honeypot, to interact with the attacker while

other sessions are temporarily suspended. Keeping advanced and motivated

attackers connected with low-interaction honeypots is impractical and not fea-

sible. In such case, HoneyProxy is no longer necessarily taking a burden

caused by M-Mode (sending multicast messages to associated honeypots). Due

to these reasons, R-Mode enhances performance by configuring the rest of the
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Table 6.2: Example of Known Fingerprinting Indicators for the SSH Honeypot
Kippo.

Request Response

type payload type payload

exact match uname -a exact match Wed Nov 4 20:45:37 UTC 2009

pattern .{7,}\n exact match bad packet length

exact match vi exact match E558: Terminal entry not found in terminfo

exact match ifconfig exact match HWaddr 00:4c:a8:ab:32:f4

sessions to a standby state. If necessary (e.g., bulk requests that exceed a spec-

ified threshold), the controller can transition to M-Mode to let low-interaction

honeypots interact with attackers again.

6.4.2 Response Selection and Session Management

HoneyProxy maintains known fingerprinting indicators that expose the pres-

ence of honeypots or honeynet architecture. For example, Table 6.2 describes several

known fingerprints from an ssh honeypot named kippo [21, 6]. Depending on the

incoming request, HoneyProxy concludes that fingerprinting attacks are successful

if the response contains predefined indicators by an exact or a pattern match. The

HoneyProxy controller is notified of the event, to keep a record of attackers’ behav-

ior. The proxy module in HoneyProxy discourages sending known fingerprinting

responses to the attacker, therefore it selects another response that does not contain

the fingerprint(s). Because this task is performed during the deep inspection of pack-

ets in flight, the selection decision would not be made by the SDN application but

by the proxy module directly. However, fingerprinting traces are reported back to

the SDN application of HoneyProxy for later usage by the Mode Decision Mod-

ule. Note that, finding fingerprints of honeypots or honeynet architecture shown in

127



Attacker
HoneyProxy

(N:1 mapping)

LIH 1

LIH 2

HIH

Socket 0

Socket 1

Socket 2

Socket N

{SOCKET 0: {“USER”: “AB”, “PASSWD”: “pwd-ab”, “HOST”: “[proxy_ip]:80”, “SESSION”: “x”}}

{SOCKET 1: {“USER”: “AB”, “PASSWD”: “pwd-ab”, “HOST”: “10.0.0.1:80”, “SESSION”: “x”}}

{SOCKET 2: {“USER”: “AB”, “PASSWD”: “pwd-ab”, “HOST”: “10.0.0.2:80”, “SESSION”: “xx”}}

{SOCKET N: {“USER”: “AB”, “PASSWD”: “pwd-ab”, “HOST”: “[ip]:[port]”, “SESSION”: “xxx”}}

Figure 6.5: An Illustration of Connection Selection and Session Management.

Table 6.2 is out of our research scope.

HoneyProxy manages multiple sessions in a structured fashion. It establishes

a session with an attacker and internally creates a number of sessions (n) with the

associated honeypots. Figure 6.5 illustrates a snapshot of active sockets running in

M-Mode that maintains 1 : N sessions. Socket 0 corresponds to a connection made

by the attacker whereas the rest correspond to each of connection with a vulnerable

service of N honeypots. Each session is centrally managed by the proxy module of

HoneyProxy (Connection Management Engine) including attacker’s identity (e.g.

a pair of username and password). Because each session data may vary, those infor-

mation is stored in the table so that HoneyProxy can rewrite the attacker’s socket,

allowing the vulnerable service to properly accept payloads. Examples of session

information include cookies of a HTTP service and a shared session key of an ssh

service.

6.4.3 Transition Criteria of HoneyProxy Controller

To make a reasonable decision of whether or not the attacker needs to be served

by a high-interaction honeypot (R-Mode), we develop several criteria, which includes
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connection duration (δt), fingerprinting attack counts (#c), and previous record of

an attacker (< Rt, Rc >). The same IP address that has the same identity (username

and password pair) is used to locate the previous records. For those who previously

accessed our honeynet, we keep records of those attackers into Malicious Behavior

Logs repository. HoneyProxy looks up the past records from the repository to

utilize them to better serve the attackers. The mode of operation function (fm) for

the session (s) is determined by the following equation.

fm(s) =



















R-Mode, if Rt

Rt+δt
· Rc + δt

Rt+δt
·#c ≥ θ

M-Mode, otherwise

We configure a threshold value (θ) to balance the workloads of low-interaction hon-

eypots and high-interaction honeypots.

6.5 Flow Programming Mechanism

HoneyProxy takes advantage of the programmability of SDN. The Connection

Management Engine classifies the type of incoming packets and adds tagging informa-

tion to the packets. Using the tags, the SDN controller enforces appropriate actions

to process the packets.

6.5.1 Flow Programming

Inspired by tagging techniques [48, 54], we leverage the MPLS field to classify

incoming traffic and statically reroute the incoming packets based on the marked tag.

The Request Handler first divides incoming traffic into “scanning attacks” (L3 or

below) and others that would be further categorized by the Connection Management

Engine. The Connection Management Engine is responsible to classify the packet

into four types (T =< S, F, T, M, R >) such that S belongs to scanning attacks, F
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belongs to fingerprinting attempts and T, M, R are an element of T-Mode, M-Mode,

and R-Mode, respectively. However, this syntax cannot account for each vulnerable

services across diverse honeypots. We thus specify the destined service information

(S =< s, h, d, f · · · >) for more accurate analysis of malicious traffic where s, h, d, f

stand for the ssh, http, database, and ftp services, respectively. In summary, the total

number of SDN rules to process incoming traffic is therefore computed by |T | × |S|.

This information is recorded and used by the Mode Decision Module of HoneyProxy

to take appropriate actions for attackers.

6.5.2 Blocking Malware Propagation

To block internal propagation of malware within the honeynet, traditional hon-

eynets insert host-based access control rules (e.g., iptables) in each honeypot machine

to prevent potential malicious traffic from being generated. However, once a honey-

pot is compromised, the attacker can circumvent the host-based access control rules.

To address this issue, HoneyProxy uses a network-wide monitoring scheme and

enforces access control rules via the SDN controller instead of enabling host level

protection. To this end, SDN rules are installed in the network to forward outgo-

ing traffic to the specific honeypot that runs the intrusion detection system (IDS),

such as snort. In this way, internal traffic between honeypots is also be monitored

by an IDS, so it consequently helps network administrators detect internal malware

propagation. Note that, the routing path of incoming traffic is not identical to that

of outgoing traffic because the incoming packets would pass through IDS. Also, in-

coming and outgoing flows are physically separated by SDN rules; as all incoming

traffic is tagged by the proxy module of HoneyProxy, which is extremely useful for

network administrators to manage the network and investigate security breaches.
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Table 6.3: RESTful Application Programming Interfaces Between the Reverse Proxy
Module (P) and the SDN Application (S).

Application Programming Interface Direction Type

/api/addhoneypot/[service] S→P POST

/api/gethoneypots S→P GET

/api/runproxy/[service] S→P POST

/api/killproxy/[service] S→P GET

/api/sdn/modechange/[id] S→P POST

/api/sdn/connection/[id] P→S POST

/api/sdn/connection/[id]/fingerprint P→S POST

6.6 Implementation

We implement HoneyProxy with a commonly used SDN controller, POX [27],

along with KVM virtualization infrastructure to run a number of virtual honeypots.

For agile development of HoneyProxy, we choose to use the Python language to

build the proxy module and the corresponding SDN application of HoneyProxy. As

explained in Section 6.3, the Python module has three subcomponents, and it runs a

separate RESTful server to communicate with the SDN application over HTTP. The

supported RESTful application programming interfaces between the proxy module

and corresponding SDN applications are summarized in Table 6.3. To run the proxy

instance, the HoneyProxy SDN application should configure each of the honeypots

using /api/addhoneypot/[service]. Because our proxy module runs at TCP layer

(L4), any services built on top of TCP would work, including http, ftp, and database

services. It additionally supports transport layer security (TLS) to address https
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and ssh services. After configuring honeypots, the SDN application can instantiate

a number of proxies by sending /api/runproxy/[service] request. Each proxy

binds to the specified port and serves one vulnerable service per proxy. To enhance

the overall performance of a proxy, we implement parallel programming techniques

to run multiple worker processes. If a proxy receives fingerprinting indicators, it

notifies the server with relevant data, along with associated connection identifier via

/api/sdn/connection/[id]/fingerprint.

Next, we elaborate the packet processing logic of M-Mode in HoneyProxy 1 .

First, a proxy instance listens on an assigned port. We use the Python select module

to receive payloads from one or more sockets in an asynchronous manner. Upon the

receipt of a new payload via a specific socket, the proxy checks the affiliation of this

socket. If the socket is not found from the existing socket pool, it means that a new

attack has arrived at our honeynet, causing the proxy to create a new socket map

(see Figure 6.5). Otherwise HoneyProxy locates the matching socket map from the

pool. In case the socket is originated from the attacker, HoneyProxy performs deep

packet inspection (DPI) to search for any known fingerprinting attempts (Table 6.2).

It then makes a copy of the payloads and performs network address translation (NAT)

to send multicast messages to all associated honeypots. Consequently, HoneyProxy

creates an empty receiving queue (R Queue) for this socket map where the size of

the queue is set to the number of associated honeypots (N). Returning responses

from honeypots are inserted into the R Queue until it becomes full (i.e., all requests

are returned). On this event (or a timeout is reached), HoneyProxy chooses the

response from the R Queue to send back to the attacker. Section 6.4.2 discusses how

HoneyProxy selects an appropriate response.

1Because algorithms for the rest (T-Mode and R-Mode) are relatively straightforward than that
of M-Mode, we only introduce its detailed logic for brevity.
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Figure 6.6: Packet Processing Logic of M-Mode of HoneyProxy.

6.7 Evaluation

Monitoring and analyzing payloads of incoming and outgoing packets requires

a considerable amount of resources. In particular, when the data arrives at the

proxy module of HoneyProxy, it must conduct a pair-wise comparison with known

fingerprinting attacks, thereby it could be a bottleneck for processing the requests.
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Figure 6.7: Testbed Network Configuration.

The fundamental question, hence, is to quantify the overhead of HoneyProxy and

the overhead affect the behaviors of attackers. To this end, we consider three test

metrics while conducting the experiments: (1) throughput (Mbits per second), (2)

latency (milliseconds), and (3) CPS (connections per second). We first introduce our

testbed followed by detailed experimental results.

6.7.1 Test Environment

Figure 6.7 illustrates the testbed setup for the evaluation. Our testbed consists of

two physical machines, each of which has Intel Xeon CPUs (E5-2658v3 @ 2.20GHz,

24-cores) and 128GB RAM. One machine runs HoneyProxy (the proxy module and

HoneyProxy controller) on CentOS 7.2 (Linux kernel v.3.10.0) and the other runs

KVM virtualization infrastructure on Ubuntu 16.04 (Linux kernel v.4.4.0) to emulate

a set of honeypots. To create a network of honeypots, we used a software switch

(OpenvSwitch v.2.5.0 [25]) that can act as an SDN switch. All incoming traffic des-

tined to our SDN-based honeynet is considered malicious and, therefore, would pass

through HoneyProxy. As shown in Figure 6.7, HoneyProxy interconnects the

external network (Internet) and honeynet by relaying the packets from the Internet
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Figure 6.8: TCP Throughput of HoneyProxy with Respect to Three Different
Running Modes.

to honeynet or vice versa.

To effectively run the experiments, our testbed was configured to run two repre-

sentative services: http and ssh. For the http service, we chose a widely deployed

low-interaction honeypot, glostopf [12], and HIHAT [14], a high-interaction honey-

pot. To run the ssh service, kippo [21] was selected as a low-interaction honeypot

and HonSSH plays a role of high-interaction honeypot. Each honeypot is configured

to have 4 vCPUs along with 4GB RAM, and the link speed for every honeypot was

set to maximum 1 Gbps.

6.7.2 Performance of HoneyProxy

As explained in Section 6.6, HoneyProxy utilizes parallel programming tech-

niques to effectively utilize multicore CPUs for scalability. Figure 6.8 shows TCP
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throughput results with respect to different number of worker processes used in Hon-

eyProxy. To measure the test metric, we used iperf [1]. When a single worker pro-

cess was used, T-Mode achieved 264 Mbits per second (Mbps). M-Mode and R-Mode

showed 83 and 157 Mbps, respectively. It is worthwhile to note that M-Mode creates

a copy of malicious payloads and sends multicast messages, therefore it requires a

considerable amount of resources compared to the others. Overall TCP throughput

performance linearly increased with respect to increasing number of worker processes.

For example, when eight worker processes were employed, T-Mode scaled up to the

near line rate speed (942 Mbps), and we observed that the other modes also showed

proportionally increased results (M-Mode 471 Mbps and T-Mode 729 Mbps, respec-

tively).

Although we have obtained the near line rate TCP throughput in T-Mode, we
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could still enhance the performance of other modes. To this end, we re-implemented

the proxy module using C language to investigate how much performance we could

achieve. As a result, C-version of HoneyProxy was able to hit the line rate TCP

throughput using only one worker process regardless of the selection of modes: 941

Mbps for T-Mode, 940 Mbps for M-Mode, and 934 Mbps for R-Mode, respectively.

We took latency as an additional test metric to measure the performance, because

latency can show end-to-end responsiveness between attackers and honeypots while

throughput metric measures the performance with respect to a massive data trans-

action. To conduct these experiments, we implemented a socket server and client to

measure the latency. The client sends a hello message to the server, and the server

responds back with an echo message. We measure the round trip time (RTT ) for

the client to send and receive the message. To obtain ground truth, we first ran the

custom server on one of the honeypots and measured the latency without running

HoneyProxy. As illustrated in Figure 6.9, RTT took 0.5 milliseconds on average.

When HoneyProxy was enabled, the average RTT was observed in the range of 1

and 1.7 milliseconds. Each mode showed 1.24, 1.50, and 1.32 on average, respectively

(ordered by T-Mode, M-Mode, and R-Mode). From these results, we could expect

0.5 1.2 milliseconds delay incurred by HoneyProxy. These results are shown in

Table 6.4.

Table 6.4 shows latency variations based on differing the number of worker pro-

cesses and the location of attackers. We repeated the same experiment to measure

the latency metric with respect to different number of worker processes. We then

conducted the identical experiments over internet to measure how much latency can

be attributed to different geolocational network access. Note that the experiments,

which were conducted within the same network (the third column), were mainly used

to provide the ground information for the latter experiments (the fourth column).
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Table 6.4: Latency Variations Based on Different Number of Worker Processes and
Network Access Points.

Proxy Mode
Number of

Workers

Access within

The Network

Access Over

The Internet

T-Mode

1 1.24 165.13

2 1.14 195.71

4 0.94 168.45

M-Mode

1 1.50 167.81

2 1.19 167.08

4 1.15 168.84

R-Mode

1 1.32 166.79

2 1.15 167.15

4 1.05 168.14

As expected, the more worker processes were used, the less RTT was observed, re-

gardless of the type of modes. However, if the client (attackers) accessed from the

external network (e.g., over internet), RTTs were not distinguishable. In this case,

consistent duration time were measured at approximately 166 milliseconds. The time

delta between different number of workers observed in the first experiments (within

the network) were less than .35 milliseconds, and this pattern was no longer effective

due to unforeseeable delays in the internet. In particular, several outliers observed in

T-Mode with two worker processes made the average of RTT considerably high. Our

experimental results demonstrate that it would be difficult for attackers to identify

the operating mode of HoneyProxy remotely.
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6.8 Related Work

Software Defined Networking (SDN) is a promising future network technology.

When we discuss about applications for security, we look for qualities such as pro-

grammability, flexibility, agility, and scalability to easily define and enforce security

policies [4, 107]. SDN has the potential to address these requirements of security

by providing a global view and centralized control mechanisms to SDN applications.

By the same token, SDN can help provide flexibility in monitoring and controlling

untrusted traffic within honeynet. We thus leverage the SDN approach in our imple-

mentation to centrally monitor and route packets to honeypots, thereby supporting

internal traffic monitoring and mitigate the risk of internal malware propagation.

Honeypot farm [17] is an approach which involves deployment of many virtual

honeypots in a network. Any malicious traffic directed to the real network will be

sent to the dedicated group og honeypots in the network without the knowledge of the

attacker. However, this approach only redirects the malicious traffic to the honeypot

farm, does not provide any data control mechanisms, and it is also vulnerable to

internal propagation of malware. Our prototype makes use of SDN technology, which

separates out the control plane to a different entity altogether from the data plane so

as to have centralized control over the entire network.

Honeybrid [15] is an architecture which is closely related to our approach which

uses connection migration between low-interaction and high-interaction honeypots to

take advantage of the functionalities provided by both types of honeypots. However,

honeybrid has a few design flaws. In their mechanism, only the first scanning attacks

are handled by low-interaction honeypot, and the rest of connection are relayed to a

high-interaction honeypot. Therefore,the high-interaction honeypots are active dur-

ing majority of the connection time. On the other hand, HoneyProxy, based on
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its analysis of the incoming payloads, will route traffic dynamically to be handled by

either low-interaction or high-interaction honeypot at any given time.

Collapsar [71] enables a VM-based honeyfarm architecture, which consists of a

group of virtual honeypots. It aims at providing centralized administration, effi-

cient data classification, and distributed view of honeypots. Though this architecture

succeeds in providing centralized monitoring of the honeypots, it does not support

connection migration between low-interaction and high-interaction honeypots, which

becomes important when dealing with a large scale of various attacks to the system.

Our work, HoneyProxy, is greatly influenced by HoneyMix[62], which presents

a native SDN-based honeynet architecture. HoneyMix[62] involves deployment of

various modules in the SDN controller for dynamic connection selection. However, it

does not discuss design issues, implementation, or evaluation details.

6.9 Discussion and Limitations

As most of the internet traffic contains either web traffic (http) or file requests

which are carried out using ssh, HoneyProxy aims at detecting attacks that are

mainly centered around these protocols, such as fingerprinting attacks, login attempts,

and denial of service. Hence, we mainly focused on http and ssh services in mind.

However, there may exist a special purpose honeypot that is targeting a very specific

service. For example, conpot [9] emulates the industrial control system (ICS), which

is also known as supervisory control and data acquisition (SCADA) system. Due

to its unique feature, having this honeypot within HoneyProxy architecture does

not actually provide an extra benefit over existing honeynet architecture. This is

because HoneyProxy basically assumes that multiple honeypots are serving the

same service (redundancy of services).

Our implementation only takes advantage of existing honeypots to provide higher
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quality of data capture and data control, thereby acting as a mediator that lures the

attacker and provides a hoax system which emulates the real network characteristics

by taking into account diverse functionality present in various existing honeypots.

It does not fix the defects and vulnerabilities in individual honeypots [5, 71]. The

level of security would depend on the capabilities of honeypots that are present in the

honeynet. Our assumption is that by having foolproof honeypots, we could take ad-

vantage of the uniqueness of each of them by connecting them to an entity which could

centrally monitor and respond to the attacker behind a honeywall. Thus reducing the

chances of revelation of the honeynets and hence provide network administrators suf-

ficient information that would help in detection, prevention and securing the network

infrastructure.

HoneyProxy fundamentally relies on intrusion detection systems (IDS) for de-

tecting internal malware propagation by configuring way point of internal traffic. It

means that an advanced malware might not be filtered by our approach, depend-

ing on the capability of IDS. Another technique that can address this limitation is

VMI-based abnormality detection [82]. By monitoring the state of virtual machines

via hypervisors, we can detect suspicious virtual machines at first hand. However,

VMI-based solutions are valid if and only if honeypots are implemented in a virtu-

alized environment whereas HoneyProxy generally works regardless of the type of

residing honeypots.

Due to an exponential increase in attacks on the internet system each day, it is

very important to build powerful data capture and data control tools and techniques

to efficiently provide early warning and detection of threats so that effective security

mechanisms can be installed on the network systems. Instead of focusing on securing

various ssh and web transactions, many researchers have shifted their study toward

expanding applicable area such as Smart Grid, IoT, etc. Honeypots and honeynets
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are great technologies that can be exploited by the security community. Implementing

a competent honeynet system has the potential of being a catalyst to a more secure

internet system. This comes with a lot of unknowns and challenges. We hope this

chapter triggers active discussion in honeynet researches and security professionals

would work toward inventing new techniques to outplay the attackers [50].

6.10 Conclusions

In this chapter, we have articulated the limitations of existing honeypots and hon-

eynet architecture: (1) fingerprinting attacks, (2) internal malware propagation, and

(3) honeypots transition. To overcome these shortcomings, we presented an inno-

vated SDN-based honeynet architecture called HoneyProxy as a next generation

honeynet. In HoneyProxy, honeypots were grouped by vulnerable services to re-

shape the landscape of honeynet architecture toward one ‘BIG’ honeypot. To this

end, we have designed HoneyProxy that consists of the reverse proxy module and

corresponding SDN application. We devised a novel Connection Management Engine

as a part of the proxy to select the response that does not have fingerprinting indi-

cators and enable dynamic transitions between low-interaction and high-interaction

honeypots. To address internal malware propagation, we introduced a flow pro-

gramming scheme supported by the SDN application of HoneyProxy. We have

implemented HoneyProxy using python and C programming languages.Our exper-

imental results have demonstrated that HoneyProxy was able to support the near

line rate throughput (942 Mbps) using parallel programming techniques, and latency

incurred HoneyProxy was negligible (0.5− 1.2 milliseconds).
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Chapter 7

CONCLUSION

In this dissertation, we have proposed a systematic policy management framework

for SDN to address several security challenges. To address complex relations across

multiple SDN applications, we remove those dependency relations by applying grid-

based policy decomposition mechanism. To prevent indirect security violations, we

have built automated policy conflicts detection/resolution mechanisms, which are

based on analysis of stateless network rules. To remedy statelessness property of

existing OpenFlow, we then come up with an innovative stateful monitoring scheme

by extending current OpenFlow specifications. To facilitate the wide adoption of

SDN and test its capability for improving security of networks, we also proposed an

SDN-based next generation honeynet architecture that enables policy-driven network

defense mechanisms.

7.1 Dissertation Contributions

This dissertation makes following contributions:

• We proposed a systematic policy management framework for managing policies

for SDN that enables policy-driven network defense mechanisms. The frame-

work includes several mechanisms: reliable network rule generation mechanism,

stateless policy violation detection/resolution mechanism, and stateful network

monitoring scheme.

• We proposed the grid-based policy decomposition mechanism to generate reli-

able network rules by eliminating dependency relations in an SDN application
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and/or across multiple applications. Our decomposition mechanism computes

and eliminates intra-app and inter-app dependencies, and enables a secure and

efficient network rule generation.

• We proposed FlowGuard that facilitates not only accurate violation detec-

tion but also systematic resolution mechanisms based on the analysis of stateless

network rules in OpenFlow-based networks. The violation detection approach

in FlowGuard detects the indirect security violations by examining flow path

space against firewall authorization space, and it is capable of tracking flow

paths in the entire network and checking rule dependencies in both flow ta-

bles [74] and firewall policies [122]. In addition, we introduced a flexible and

effective violation resolution mechanism with the help of four resolution strate-

gies, namely dependency breaking, update rejecting, flow removing, and packet

blocking.

• We proposed a stateful network monitoring framework called StateMon that

helps SDN support state-aware security applications by maintaining global con-

nection states and providing common APIs to them. To this end, we also

proposed the OpenConnection protocol, which is a lightweight extension to

OpenFlow, and it retains the simple “match-action” programmable feature of

OpenFlow to enable a stateful SDN data plane.

• To facilitate the wide adoption of SDN and test its capability for improving

security of networks, we have proposed an SDN-based next generation hon-

eynet architecture called HoneyProxy. HoneyProxy consists of the reverse

proxy module and corresponding SDN application. We devised a novel Con-

nection Management Engine as a part of the proxy to select the response that

does not have fingerprinting indicators and enable dynamic transitions between
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low-interaction and high-interaction honeypots. To address internal malware

propagation, we introduced a flow programming scheme supported by the SDN

application of HoneyProxy.
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