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ABSTRACT 

Cities can be sources of nitrate to downstream ecosystems resulting in 

eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on 

economies and human health. One potential solution to this problem is to increase nitrate 

removal in cities by providing locations where denitrification— a microbial process in 

which nitrate is reduced to N2 gas permanently removing nitrate from systems— can 

occur. Accidental urban wetlands– wetlands that results from human activities, but are 

not designed or managed for any specific outcome– are one such feature in the urban 

landscape that could help mitigate nitrate pollution through denitrification.  

The overarching question of this dissertation is: how do hydrology, soil 

conditions, and plant patches affect patterns of denitrification in accidental urban 

wetlands? To answer this question, I took a three-pronged approach using a combination 

of field and greenhouse studies. First, I examined drivers of broad patterns of 

denitrification in accidental urban wetlands. Second, I used a field study to test if plant 

traits influence denitrification indirectly by modifying soil resources. Finally, I examined 

how species richness and interactions between species influence nitrate retention and 

patterns of denitrification using both a field study and greenhouse experiment.  

Hydroperiod of accidental urban wetlands mediated patterns of denitrification in 

response to monsoon floods and plant patches. Specifically, ephemeral wetlands had 

patterns of denitrification that were largely unexplained by monsoon floods or plant 

patches, which are common drivers of patterns of denitrification in non-urban wetlands. 

Several plant traits including belowground biomass, above- and belowground tissue 

chemistry and rooting depth influenced denitrification indirectly by changing soil organic 
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matter or soil nitrate. However, several other plant traits also had significant direct 

relationships with denitrification, (i.e. not through the hypothesized indirect relationships 

through soil organic matter or soil nitrate). This means these plant traits were affecting 

another aspect of soil conditions not included in the analysis, highlighting the need to 

improve our understanding of how plant traits influence denitrification. Finally, 

increasing species richness did not increase nitrate retention or denitrification, but rather 

individual species had the greatest effects on nitrate retention and denitrification.  
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Chapter 1  

INTRODUCTION 

Urban areas cover less than 3% of the land, yet have global impacts on ecosystem 

structure and function (Grimm et al. 2008).  Urbanization can change biodiversity, 

biogeochemical cycles, resources, hydrology, and disturbances relative to non-urban 

systems (McDonnell and Pickett 1990; Kaye et al. 2006). Understanding how these 

changes affect ecosystem functions can be especially challenging given that human 

decision-making has both direct and indirect effects on ecosystem structure and function.  

The Southwest is one of the most rapidly populating and urbanizing regions in the 

United States, leading to dramatic changes in the distribution of water in the landscape 

(Fitzhugh and Richter 2004; Gober et al. 2010). In desert cities, large amounts of water 

are imported for human consumption and use (Sabo et al. 2010). Irrigation of urban 

landscapes results in a general shift from xeric to mesic environments, and also in local 

loss of stream and wetland habitat (Roach et al. 2008; Steele et al. 2014). Therefore, 

historically perennial rivers become more dry, and engineered canals and lakes increase 

in number (Larson and Grimm 2012). 

Water availability and biogeochemical cycling are tightly coupled (McClain et al. 

2003; Belnap et al. 2005). Changing where and when water is present in urban 

watersheds affects the transformations of nutrients and pollutants such as nitrate, a 

common pollutant in urban areas (Zhu et al. 2005; Roach et al. 2008). High nitrate levels 

are commonly found in urban waters due to runoff from over-fertilized landscaping, 

leaky septic tanks, and wastewater discharges (Paul and Meyer 2001). High nitrate in 

water has deleterious consequences for human health (Nolan et al. 1997; Townsend et al. 
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2003) and can cause ecologically harmful algal blooms (Vitousek et al. 1997; Carpenter 

et al. 1998). Nitrate levels in groundwater used for human consumption are high in 

significant portions of the Southwest (Rosen and Kropf 2009). Consequently, mitigation 

of nitrate inputs is critical in the region and is intimately tied to water availability.  

Aquatic ecosystems such as rivers and wetlands are important for the transport 

and processing of nitrogen in watersheds. The convergence of water and nutrients 

supports high primary production, and saturated conditions promote the anaerobic 

microbial process of denitrification (Seitzinger et al. 2006). Much of the research 

examining the processes and environmental conditions that promote denitrification in 

urban wetlands has been conducted on wetlands constructed and managed specifically for 

nitrate removal (Kadlec et al. 2000). However, wetlands in urban landscapes can occur 

anywhere that water is present, such as at storm drain outfalls or in brownfields (White 

and Stromberg 2011; Palta et al. 2014; Bateman et al. 2015). These wetlands result 

indirectly from human decisions and design, but, contrary to many urban features, are 

largely unmanaged. I will refer to these unplanned and unmanaged urban wetlands as 

“accidental wetlands.” These accidental wetlands are largely unstudied, but have high 

potential for processing nitrate in urban ecosystems through denitrification.  

Processes and characteristics unique to urban wetlands may affect the frequency 

with which key substrates (labile carbon and nitrate) and anaerobic conditions necessary 

for denitrification co-occur. Relative to non-urban counterparts, some accidental urban 

wetlands have altered hydrology, low groundwater levels, low soil organic carbon, and 

compacted soils, all of which tend to reduce denitrification rates (Ehrenfeld 2000). 

Changes in the frequency and duration of inundation and surface-groundwater 
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interactions determine whether nitrification or denitrification occurs by changing soil 

redox conditions (Hernandez and Mitsch 2007a). In remnant urban riparian zones, 

decreases in groundwater levels and increased stream incision disconnect riparian 

floodplains from nitrate-rich groundwater. This results in riparian floodplains with 

aerobic soils, which promote the aerobic process of nitrification and that may act as a 

source rather than a sink of nitrate (Groffman et al. 2002). Previous industrial or 

commercial land use can result in depletion of carbon from urban soils (Gift et al. 2010; 

Marcotullio 2011). Consequently, the shortage of organic carbon may limit denitrification 

even in the presence of ample nitrate. Further, even if nitrate and labile carbon are 

plentiful, certain soil characteristics may interfere with denitrification. For example, 

urban soils can be compacted due to previous industrial use (Marcotullio 2011). This 

reduces infiltration of water carrying nitrate and carbon to deep soils, resulting in low 

denitrification rates (Myrold and Tiedje 1985). Palta et al. (2014) found that soil 

properties that typically promote denitrification (small particle size and high organic 

matter) supported lower denitrification in urban brownfields because of nitrate limitation. 

Finally, changes in vegetation in urban wetlands, and how the vegetation modifies the 

soil environment have the potential to affect nitrogen cycling (Ehrenfeld 2003). 

In addition to characteristics unique to urban wetlands that can influence 

denitrification, we also do not have a clear understanding of how plant traits or species 

richness influences denitrification generally (Cardinale et al. 2011; Sutton-Grier et al. 

2012; Alldred and Baines 2016). Understanding the mechanistic link between plant 

species and denitrification via plant traits, and how species interactions resulting from 
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increased richness affects denitrification could be of particular importance in degraded or 

urban wetlands where improving ecosystem functions is often a desired outcome. 

 The overarching question for this dissertation is: How do hydrology, soil 

conditions, and plant patches affect patterns of denitrification in accidental urban 

wetlands? To answer this question, I took a three-pronged approach. First, I examined 

broad patterns and drivers of denitrification in accidental urban wetlands. Second, I tested 

if plant traits influence denitrification indirectly by modifying soil resources. Finally, I 

examined how species richness and interactions between species influence nitrate 

retention and patterns of denitrification using both a field and greenhouse study. 

 

STRUCTURE OF THIS DISSERTATION 

In Chapter 2, I describe patterns of potential denitrification in accidental urban 

wetlands in the Salt River in Phoenix, Arizona. Little is known about patterns of 

denitrification in accidental urban wetlands, and this is the first study to look for broad 

scale patterns and drivers of denitrification in the accidental urban wetlands of the Salt 

River. To identify general patterns, I took a patch-based sampling approach and measured 

potential denitrification from nine wetlands with different hydroperiods. I sampled from 

three to four dominant plant patches in each wetland during three different seasons. My 

objective for Chapter 2 is to examine the relative importance of hydrology (as a large-

scale driver) and plant patches (as a small-scale driver) for shaping spatial and temporal 

patterns of potential denitrification in accidental urban wetlands. 

For Chapter 3, I examine how plant traits affect denitrification by modifying soil 

resources. Many studies on denitrification focus on the effects of different species, as I 
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did in Chapter 2 (Groffman et al. 1996; Groffman et al. 1996; Windham and Ehrenfeld 

2003; Hernandez and Mitsch 2007b; Alldred and Baines 2016). However, plants can 

affect denitrification by modifying the soil environment that denitrifying microbes 

experience. Because the hypothesized effect of plant traits on denitrification is indirect 

(i.e., mediated by soil conditions), traditional statistical techniques, such as linear 

regression, only test if there is a relationship between plant traits and denitrification. 

Structural Equation Modeling (SEM) allows for the testing of specific hypothesized 

relationships, including direct and indirect relationships, because models are specified a 

priori. For Chapter 3, I use SEM to examine if plant traits influence denitrification 

indirectly via commonly hypothesized effects on soil conditions.  

 For Chapter 4, I examine the relationship between species diversity and nitrogen 

retention in a greenhouse experiment. I also conducted a field study to examine if the 

interaction of plant patches generates spatial variation in denitrification in a field study. 

How ecosystem function relates to species diversity has been a central debate in ecology 

for the past two decades (Dı́az and Cabido 2001). However, despite the hundreds of 

studies in grasslands, relatively few have been conducted in wetlands (Cardinale et al. 

2011), and even fewer have examined how species diversity affects denitrification 

(Engelhardt and Ritchie 2001; Callaway et al. 2003; Bouchard et al. 2007; McGill et al. 

2010). Wetlands plants often occur in monotypic clonal patches (Spence 1982), a 

configuration different than species mixtures typical of grasslands. My first objective for 

Chapter 4 is to determine if increasing species richness increases nitrate retention and 

denitrification when wetland species are grown in patches rather than mixtures. This 

objective is addressed using a greenhouse experiment, in which wetland mesocosms were 
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planted with one, two or three species patches. My second objective is to determine if 

species interactions at wetland plant patch edges increase denitrification. This objective is 

addressed by: (1) determining if there was spatial variation between plant-patch edges 

and centers in a field study; and (2) determining if plant edge interactions were the cause 

of variation between patch edges and centers in a greenhouse experiment. 

 In Chapter 5, I summarize the main findings of this dissertation. Additionally, I 

discuss the implications of the findings for other systems, and how the findings may be 

useful for city managers. 
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Chapter 2  

SPATIAL AND TEMPORAL PATTERNS OF POTENTIAL DENITRIFICATION IN 

ACCIDENTAL URBAN WETLANDS IN PHOENIX, AZ 

 

ABSTRACT 

Denitrification is an ecosystem process that permanently removes reactive 

nitrogen from systems. Much research on denitrification has occurred in non-urban or 

highly managed urban wetlands. However, in urban landscapes nitrogen-rich water is 

often discharged into areas not designed or managed to reduce nitrate loads. “Accidental” 

wetlands resulting from these discharges may have the capacity to remove nitrate, but are 

subject to unique hydrologic and soil conditions that could create unexpected spatial and 

temporal patterns of denitrification. My objective for this study was to examine the 

relative importance of hydrologic regime as a large-scale driver, and plant patches as 

small-scale driver of spatial and temporal patterns of denitrification in accidental urban 

wetlands.  

I measured potential denitrification (DNP) on soils from nine wetlands forming at 

storm drain outfalls in Phoenix, AZ. Wetland sites were categorized into three 

hydroperiods: perennial, intermittent, and ephemeral (inundated >90%, 50 to 85%, and 

10 to 30% of the year respectively). To assess spatial variation of DNP, I collected 

samples from two to four dominant vegetation patch types within each wetland. To assess 

temporal variation of DNP, samples were also collected during three seasons differing in 

rainfall pattern.  
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I found small- and large-scale spatiotemporal patterns in DNP that have important 

implications for management of urban wetlands for stormwater quality. DNP increased 

from ephemeral to intermittent to perennial wetlands. The presence of plants increased 

DNP compared to unvegetated patches at wetlands of all hydroperiods. Further, plants 

did not alleviate carbon limitation at wetlands of any hydroperiod; rather, DNP became 

more nitrate limited as hydroperiod increased. I found a range of responses in DNP 

among wetlands to seasonal monsoon floods, which interacted with wetland hydroperiod. 

In perennial wetlands, monsoon floods equalized DNP among plant patches; however, 

coefficients of variation did not decrease in individual wetlands after monsoon floods 

suggesting that monsoon floods were not homogenizing resources or denitrification in 

wetlands. At ephemeral wetlands, overall DNP unexpectedly decreased after monsoon 

floods possibly due to deposition of fresh sediment. Together, these findings offer novel 

insights into the complex interactions in accidental urban wetlands among plant patches, 

monsoon floods, and hydroperiod. 

 

INTRODUCTION 

Urban watersheds are often sources of nitrogen (N) to downstream systems 

(Shields et al. 2008; Kaushal et al. 2011). However, features in the urban landscape have 

the potential to reduce N exports (Baker et al. 2001; Passeport et al. 2012; Koch et al. 

2014). Such studied features, including stormwater detention/retention basins, treatment 

wetlands, swales, and restored floodplains, are often designed, engineered, and managed 

(Zhu et al. 2005; Bettez and Groffman 2012; Hale et al. 2014; Johnson et al. 2014). An 

understudied feature of urban landscapes that could affect N export from cities are 
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accidental urban wetlands. Accidental urban wetlands are neither remnant wetlands in 

urban landscapes, nor are they constructed/engineered wetlands. Rather, they are 

wetlands that result from human activities, but that are not designed or managed for any 

specific purpose, such as N removal.  

Wetlands are effective removers of N because of soil conditions that promote high 

rates of denitrification (Seitzinger et al. 2006). Denitrification, a microbial process that 

reduces nitrate (NO3
-) to nitrogen gas (N2), requires three conditions to occur: soil anoxia, 

high nitrate, and high labile carbon (McClain et al. 2003; Seitzinger et al. 2006; 

Wallenstein et al. 2006; Groffman et al. 2009). Urban wetlands can have substantially 

altered hydrology and biota potentially influencing soil conditions and the effectiveness 

of urban wetlands to remove nitrate via denitrification (Ehrenfeld 2000; Groffman and 

Crawford 2003; Palta et al. 2014). For example, lower groundwater tables in urban 

riparian areas reduce saturation of soils and decrease denitrification (Groffman et al. 

2003). Previous industrial or commercial land use can deplete carbon from soil reducing 

carbon available to denitrifiers (Gift et al. 2010; Marcotullio 2011). Further, changes in 

vegetation can affect soil carbon and nitrate available for denitrification (Ehrenfeld 2000; 

Windham and Ehrenfeld 2003).  

The few studies on urban wetlands have been conducted in mesic cities 

(Groffman and Crawford 2003; Ehrenfeld 2008; Stander and Ehrenfeld 2008; Gift et al. 

2010; Harrison et al. 2011; Palta et al. 2014). Urban wetlands can also occur in desert 

cities (White and Stromberg 2011; Bateman et al. 2015), where the urban environment 

may have different effects on denitrification than in urban wetlands in mesic 

environments relative to their non-urban counterparts (Hale et al. 2016). To our 
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knowledge, this is the first study to examine denitrification in accidental urban wetlands 

in a desert city. Denitrification in wetlands is highly variable, both spatially and 

temporally. This study therefore contributes to understanding the drivers of 

denitrification in accidental urban wetlands, and how urbanization may affect these 

drivers. Specifically, this study examines how the hydrologic regime—a large-scale 

driver—and variation in plant patches—a small-scale driver via their effect on soil 

environmental conditions—affect spatial and temporal patterns of denitrification.  

Hydrologic regime and soil environmental conditions (e.g. soil carbon, redox 

potential, soil texture) are important drivers of denitrification in wetlands (Seitzinger et 

al. 2006; Wallenstein et al. 2006; Groffman et al. 2009). Hydrologic regime is an 

important large-scale driver of wetland ecosystem functions, such as denitrification, as it 

affects the local soil environment (e.g. soil anoxia) and biota (Brinson 1993; Mitsch and 

Gosselink 2007) that can affect denitrification. However, urban wetlands can have 

hydrologic regimes that are dramatically altered compared to non-urban counterparts, 

thus affecting ecosystem functions (Ehrenfeld 2000; Groffman and Crawford 2003; 

Stander and Ehrenfeld 2008). In non-urban desert rivers, where riparian areas and 

riverine wetlands are important sites of denitrification, hydrologic regimes can affect 

denitrification through both water and resource availability (Harms and Grimm 2010). 

Surface flow is not always present in these rivers, and floods create saturated, anoxic soil 

conditions necessary for denitrification. The timing, frequency, and location of floods 

affects patterns of where and when denitrification occurs in desert rivers (Harms et al. 

2009). Further, non-urban desert rivers are subject to intense seasonal flooding which 

have the capability of both delivering resources from the landscape and homogenizing 
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local soil resources and denitrification in associated riparian areas (Harms et al. 2009; 

Harms and Grimm 2010).  

Urbanization can affect hydrologic regimes of desert riverine wetlands and 

riparian areas by changing the amount of water available and the magnitude of seasonal 

floods. Urbanization can decrease water available to urban rivers and wetlands owing to 

groundwater pumping and upstream impoundment (Roach et al. 2008). However, water 

availability may be increased by engineered water features in the landscape and runoff 

resulting from urban water use (i.e. urban baseflow) in other parts of the urban 

environment (Roach and Grimm 2011; Larson and Grimm 2012; Steele et al. 2014). 

Further, the magnitude of seasonal floods and resource delivery can be dampened by 

retention basins and other flood control features in desert cities (Hale et al. 2014) 

resulting in urban wetlands that would not see increases in denitrification, or 

homogenization of denitrification after monsoon floods observed in non-urban desert 

riverine wetlands. 

In addition to hydrologic regime as a large-scale driver, plant patches are 

important small-scale drivers of patterns of denitrification. Plants can affect 

denitrification by influencing the soil environment that microbes experience, such as 

carbon availability, redox potential, infiltration, soil moisture, and soil texture (Brady and 

Weil 2008). Generally, plants in wetlands have been shown to increase denitrification 

compared to unvegetated areas (Alldred and Baines 2016), and different plant 

communities have been shown to differentially affect denitrification through changes 

they induce in soil resources (Windham and Ehrenfeld 2003; Hernandez and Mitsch 

2007a). In desert rivers, plants alleviate carbon limitation for denitrifiers by providing 
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organic carbon as litter deposition and root exudates (Schade et al. 2001; Heffernan and 

Fisher 2012). However, urbanization can also mask the effects of plants on soil resources 

because resource deposition (external inputs of resources) is often high in urban 

environments (Hall et al. 2009).  

The central question of this study was: What is the relative importance of plant 

patches and seasonal flooding for explaining patterns of denitrification in accidental 

urban wetlands with different hydroperiods? The research objectives of this study were 

to: (1) Determine the effects of hydroperiod on patterns of denitrification; (2) determine 

the effects of plant patches on patterns of denitrification; and (3) determine the effects of 

monsoon floods on patterns of denitrification by examining interactions between seasonal 

floods and plant patches on denitrification. Assuming urban wetlands function as their 

non-urban counterparts with respect to denitrification, I hypothesized that hydrologic 

regimes will affect denitrification in accidental urban wetlands in two ways: (1a) 

Denitrification will be greater in accidental urban wetlands that are more frequently 

inundated, which creates conditions more conducive to denitrification (i.e., soil anoxia); 

and (1b) seasonal monsoon floods will increase denitrification due to delivery of 

resources (e.g. nitrate, carbon) and generation of soil anoxia necessary for denitrification. 

I hypothesized that plant patches will affect denitrification in two ways: (2a) 

denitrification will be higher under plant patches compared to unvegetated patches; and 

(2b) plants will enhance denitrification by alleviating carbon limitation on denitrifiers. 

Finally, I hypothesized that: (3) denitrification rates will be more similar among plant 

patches after seasonal monsoon floods due to scouring and redistribution of resources 

(i.e. monsoon floods will have a homogenizing effect on denitrification). 
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METHODS 

Study area 

The historically perennial Salt River has been mostly dry as it bisects downtown 

Phoenix since 1938. In this reach of the Salt River, the floodplain has been highly 

modified and engineered for flood management, and in places it is mined for gravel. The 

study was conducted in a 30-km reach of the Salt River in Phoenix, Arizona. 

Dozens of storm drains discharge urban runoff into the Salt River during storms. 

However, during dry periods, the Salt River also receives relatively continuous urban 

baseflow through a subset of these storm drains that serve large urban watersheds, and 

wetlands have formed at many of these outfalls (White and Stromberg 2011; Bateman et 

al. 2015). I identified nine accidental wetlands that were characterized by storm-drain 

discharges differing in their timing and frequency of discharges. I categorized the 

wetlands into three different hydroperiod groups: ephemeral, intermittent, and perennial. 

Ephemeral wetlands flooded largely in response to precipitation and remained inundated 

for 10 to 30% of the year. Intermittent wetlands received urban base flow during dry 

periods and remained inundated for 50 to 85% of the year. Perennial wetlands received 

enough continuous urban base flow to be inundated for more 90% of the year (Figure	2.1 

andFigure	2.2). 

Phoenix is in an arid climate zone and receives an average of 19 cm of rain 

annually divided between two seasons: the summer monsoon season and the winter 

frontal season (www.wrcc. dri.edu). On average, half of the rain falls during the monsoon 

season, which runs from mid-June through mid-September in the form of intense, 

localized rainfall that results in flashy urban runoff, and sometimes substantial floods. 
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The winter rainy season runs from November through April. Winter rains are the result of 

Pacific frontal storms that generate more gentle, sustained rains, usually resulting in less 

intense flooding.  

Sampling design 

In each study wetland, two to four dominant plant patches were identified 

including one patch without vegetation designated “open” (Table	2.1). At ephemeral 

sites, patches designated “grass” were either Schismus sp. or Cynodon dactylon. While 

these species are from different genera, they are both from the Poaceae family, which 

share several unique characteristics. Patches designated Amaranthus sp. were 

Amaranthus palmeri, Amaranthus albus, or both. At the intermittent and perennial sites, 

patches designated “grass” were Paspalum distichum. Patches designated Typha sp. were 

either Typha domingensis, Typha latifolia, or both. Wetlands were sampled three times 

between June 2013 and March 2014 to capture differences in seasonal precipitation and 

urban runoff. The pre-monsoon sampling was conducted in June 2013 before monsoon 

rains began. The post-monsoon sampling period was conducted in October 2013 after the 

monsoon rains ended. The winter sampling period was conducted from February to 

March 2014. During winter sampling period only six of the nine sites were sampled due 

to time and sampling constraints (Table	2.1; Figure	2.2).  

Hydroperiod measurements 

Estimations of wetland hydroperiod were determined using ibutton temperature 

sensors (DS1921G; https://www.maximintegrated.com). Ibuttons were placed in 

waterproof casings (DS9107; https://www.maximintegrated.com) and deployed on the 

soil surface to record temperature every hour. The presence or absence of water in each 
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wetland was estimated by manually comparing the temperature record from ibuttons to 

the temperature record from local weather sensors 

(http://www.fcd.maricopa.gov/Weather/Rainfall/ALERT/ssdata.aspx). Periods with 

dampened daily temperature oscillations that could indicate inundation of wetlands were 

identified. Those periods were compared to air temperature records to determine if the 

dampened temperature oscillations were due to inundation or due to changes in air 

temperature. Categorization of presence/absence of water from ibutton data was also 

compared to field observations of inundation to verify the accuracy of categorization.  

Soils  

During the pre-monsoon season, two soil cores were taken from each patch, 

during the other two seasons four soil cores were taken from each patch (n = 246). Soil 

cores of the same patch type were taken from different patches when possible. If only a 

single large contiguous plant patch occurred at a site, cores were taken at least 5 meters 

apart. Soil cores were taken to a maximum depth of 10 cm to encompass the most active 

soil layer (Groffman et al. 1999). Cores were stored on ice in the field and then stored at 

4 °C in the lab until processing, which typically occurred within 24 hours.  

Soil cores were homogenized and analyzed for moisture content, organic matter, 

nitrate, texture, and potential denitrification. Soil moisture was determined 

gravimetrically by drying soils for 48 hours at 105°C. Soil organic matter was determined 

by mass loss on ignition for 4 hours at 550°C. Soil nitrate (NO3
–) was extracted by 

shaking 10 grams of sample with 50 mL 2M KCl for 1 hour and then filtering through 

pre-leached Whatman number 42 ashless filters. Extracts were collected and frozen until 

analyzed colorimetrically on a Lachat QC8000 flow-injection analyzer. Soils were dried 
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and sieved through a 2-mm sieve to determine gravel fraction of soil. Forty grams of 

sieved soils were shaken overnight in 100 mL of a sodium hexametaphosphate solution 

and percent sand, silt and clay were determined using the hydrometer method (Robertson 

et al. 1999). Soils samples with greater than 10% organic matter were processed to 

remove organic matter using the hydrogen peroxide extraction method before 

determining soil texture (Robertson et al. 1999). 

Denitrification was measured using denitrification enzymes assays (Groffman et 

al. 1999). Fifty grams of soil were placed into 125 ml Wheaton bottles and 50 ml of one 

of the following media was added. To measure denitrification potential (conditions in 

which no factor is limiting denitrification) I added media amended with NO3
- (100 mg 

NO3-N kg soil-1 as KNO3) and carbon (40 mg glucose-C kg soil-1 as glucose) to the 

samples (Groffman et al. 1999; Roach and Grimm 2011). To measure limitation effects 

of carbon and nitrate, samples were amended with only NO3
-, only glucose, or received 

neither. The resulting four treatments for each soil core were: distilled water only (DI), 

NO3
- only (N), carbon only (C), and NO3

- and carbon (N+C). Headspace of samples was 

replaced with N2 gas to create anaerobic conditions and 10 ml of acetylene gas to block 

the reduction of N2O to N2 (Yoshinari and Knowles 1976; Groffman et al. 1999). 

Samples were incubated at room temperature and shaken at 140 rpm for 4 hours. Gas 

samples were taken at 30 minutes and 4 hours and analyzed on a Varian 3800 gas 

chromatograph for N2O concentration. 

Statistical Analyses 

Soil moisture, soil organic matter, soil NO3
–, and soil texture (%silt/clay) were 

compared for each hydroperiod across seasons and across plant patches using two-way 
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ANOVA with Tukey’s HSD post hoc tests if main effects were significant. Soil moisture, 

soil organic matter, and soil texture data were arcsine transformed and soil NO3
– data 

were log transformed to conform to rules of normality. 

Hypotheses 1a, 1b, 2a, and 3a were tested using ANOVA with Tukey’s HSD post 

hoc tests that compared the effects of season (i.e. effects of monsoon floods), 

hydroperiod, and plant patches on denitrification potentials. Notably, ephemeral wetlands 

had a different data distribution than intermittent and perennial wetlands. Data for 

ephemeral wetlands were normally distributed, while data for intermittent and perennial 

wetlands were log-normally distributed. Therefore, the analyses for ephemeral wetlands, 

and for intermittent and perennial wetlands were run separately. I ran a two-way ANOVA 

to examine effects of season and plant patches at ephemeral wetlands, and a three-way 

ANOVA to examine effects of season, hydroperiod, and plant patches for intermittent 

and perennial wetlands. Type 4 sum of squares was used to account for unbalanced cell 

sizes and cells with missing data as a result of smaller sampling effort during winter 

season.  

To further examine if monsoon floods had a homogenizing effect on 

denitrification in wetlands (hypothesis 3a), coefficients of variation (CV) were calculated 

for log-transformed data for each of the nine sites in the pre- and post-monsoon season. 

Then a paired t-test was used to determine if the CV changed between these two seasons. 

The winter season was excluded from this analysis due to the reduced sampling effort 

during that season.  
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To determine whether NO3
– or carbon limited denitrification (hypothesis 2c), the 

results of limitation experiments were normalized to the control treatment (DI) to 

determine the relative response (RR) of each treatment: 

RR-X = DNPX / DNPDI 

DNP is denitrification potential and X is the treatment of interest (N, C, or N+C). The 

closer an RR is to one the closer that factor is to the control (DI). 

Relative responses of N to C treatments (RR-N/RR-C) indicate the relative 

strength of N or C limitation. RR-N/RR-C was calculated as: 

(RR-N/RR-C) = DNPN / DNPC 

For RR-N/RR-C, a result greater than one indicated stronger NO3
– limitation, while a 

result less than one indicated stronger carbon limitation. These relative responses were 

tested for effects of plant patch and hydroperiod using two-way ANOVA. All statistical 

analyses were conducted in SPSS version 19. 

 

RESULTS 

Hydroperiod, season (monsoon floods), and plant patch type, along with 

significant interactions among the three, significantly affected denitrification. In the 

following section, I first describe general patterns of soil conditions across hydroperiods, 

season, and plant patches. I then describe the results for each of the hypotheses. 

Soil conditions 

In general, across the different hydroperiods, soil moisture, organic matter, NO3
–, 

and texture there were not different among seasons, but differed among plant patches 

(Figure	2.3Figure	2.4). Soil organic matter and %silt/clay did not differ significantly 
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across seasons for wetlands of any hydroperiod. Soil moisture was significantly different 

among seasons only for ephemeral wetlands. Soil NO3
– was significantly different among 

seasons for all wetlands (Figure	2.3). There were significant differences among plant 

patches for all soil conditions except soil organic matter at ephemeral wetlands, and soil 

NO3
– at intermittent and perennial wetlands (see Figure	2.4 for details). 

Effects of hydroperiod and seasonal monsoon floods (hypotheses 1a and 1b) 

Across all wetlands, I found a significant main effect of hydroperiod with 

increasing potential denitrification (µg N2O g soil-1 h-1) from ephemeral to intermittent to 

perennial sites (ANOVA: F(2,208) = 31.29, P < 0.001; Table	2.2; Figure	2.5a). However, 

there was no significant main effect of season on potential denitrification (ANOVA: 

F(2,208) = 1.76, P = 0.17; Table 2.2; Figure	2.5b) suggesting that monsoon floods did not 

uniformly increase potential denitrification in the study reach.  

Effects of plant patches (hypothesis 2a) 

For each hydroperiod, the presence of vegetation significantly increased potential 

denitrification (t-test: ephemeral, t =-2.05, df = 70, P = 0.04; intermittent, t = -2.75, df = 

88, P = 0.007; perennial, t = -5.67, df = 82, P < 0.001; Figure	2.6). The effect of plant 

patch type was also significant (i.e., species; ANOVA: F(6,208) = 2.84, P = 0.01; Table 

2.2); however, there was a significant interaction among plant patch type and 

hydroperiod. For this reason, I discuss specific plant patch type effects in more detail 

under section “Effects of seasonal monsoon floods on patterns of denitrification.” 

Limiting substrates (hypothesis 2b) 

The main effect of plant patch type on substrate limitation was not significant (P 

= 0.20). There was a significant effect of hydroperiod (P < 0.001) and a significant 
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interaction between plant patch type and hydroperiod (P < 0.001). Because of this 

significant interaction, the effect of plant patches will be discussed separately for each 

hydroperiod. For simplicity, plant patch effects will be discussed for the relative response 

of N treatment to C treatment (RR-N/RR-C) as this provides a general summary of the 

whether the patch was NO3
– limited (RR-N/RR-C > 1), carbon limited (RR-N/RR-C < 1), 

or co-limited (RR-N/RR-C = 1). For ephemeral wetlands, none of the vegetated patches 

were significantly different from the open patch (Figure	2.7a). Further, the average RR-

N/RR-C for ephemeral wetlands was not significantly different than one (P = 0.13; 

Figure	2.8d). Together, these results showed that ephemeral wetlands, generally, were 

not limited by either carbon or NO3
–, and vegetation did not alleviate carbon limitation. 

At intermittent wetlands, the average RR-N/RR-C for all patch types, including 

unvegetated patches, was significantly greater than one (P < 0.001). Only patches of 

Ludwigia peploides had greater NO3
– limitation than open patches (P = 0.001; Figure	

2.7b). Together, these results showed that intermittent wetlands were consistently NO3
– 

limited regardless of patch type (Figure	2.8d). In perennial wetlands, the average RR-

N/RR-C for all patches, including unvegetated patches, was significantly greater one (P < 

0.001). Only Typha sp. patches were more NO3
– limited than open patches (P = 0.02; 

Figure	2.7c). Together, these results showed that denitrification in perennial wetlands, 

similar to intermittent wetlands, was NO3
– limited regardless of patch type.  

There was a significant effect of hydroperiod on substrate limitation in accidental 

urban wetlands. Average relative response (RR) of denitrification to N additions was 

significantly different across hydroperiods, increasing from ephemeral to intermittent to 

perennial wetlands (ANOVA: F(2,233) = 55.24, P < 0.001; Figure 2.8a) suggesting 



 25 

increasing NO3
– limitation as wetlands were more frequently inundated. The average 

relative responses of denitrification to C additions were significantly different among 

hydroperiods, with ephemeral sites having an overall greater response than intermittent 

and perennial sites (ANOVA: F(2,233) = 6.95, P < 0.01; Figure 2.8b). Average relative 

response of denitrification to N+C additions showed results similar to those with N 

additions, with slightly greater overall responses (ANOVA: F(2,233) = 55.33, P < 0.001; 

Figure 2.8c). The average RR-N/RR-C, which reveals the relative strength of NO3
– or 

carbon limitation, also showed increasing NO3
– limitation from ephemeral to intermittent 

to perennial sites (ANOVA: F(2,233) = 55.10, P < 0.001; Figure 2.8d). As discussed above, 

RR-N/RR-C values at ephemeral wetlands were not significantly different from one, 

suggesting denitrification in ephemeral wetlands was not limited by either NO3
– or 

carbon.  

RR-N/RR-C of intermittent and perennial wetlands were significantly greater than 

one, suggesting denitrification in these wetlands was NO3
– limited. Together these results 

suggested that NO3
– limitation of denitrification increased as wetlands were inundated 

more frequently. To confirm this, I examined how RR-N/RR-C changed with 

hydroperiod values for individual wetlands (percent flooded days per year rather than 

hydroperiod categories). Wetlands that were inundated for less than 45% of the year did 

not have RR-N/RR-C values different from each other, and did not have values 

significantly greater than one demonstrating neither carbon nor NO3
– limitation at these 

wetlands (Figure 2.9). Whereas, wetlands inundated for more than 45% of the year also 

had RR-N/RR-C values that were not significantly different from each other, but were 

significantly different than wetlands that were inundated less frequently. Further, RR-
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N/RR-C values for wetlands were significantly greater than one, suggesting NO3
– 

limitation of denitrification in these wetlands (Figure 2.9). 

Effects of seasonal monsoon floods on patterns of denitrification (hypothesis 3a) 

To determine if seasonal monsoon floods changed patterns of denitrification, I 

examined interactions among season and plant patch type. The analysis of hypothesis 3a 

was divided into two separate analyses: ephemeral wetlands, and intermittent plus 

perennial wetlands. For the ephemeral wetlands, two-way ANOVA revealed that season 

and plant patch had significant effects on potential denitrification (F(2,57) = 3.77, P = 0.03; 

F(4,57) = 3.29, P = 0.02 respectively; Table 2.2), but there was no interaction between the 

two, indicating that monsoon floods controlled the magnitude of potential denitrification, 

but not the patterns. Potential denitrification was not significantly different in pre- versus 

post-monsoon season, but post-monsoon was significantly lower than the winter season 

despite similar soil moisture during those two seasons (Figure 2.3and 2.10a). While there 

was a significant main effect of plant patch (Table 2.2), pairwise comparisons revealed 

only one significant relationship: Amaranthus sp. had higher potential denitrification than 

open patches (P=0.04; Figure 2.10b). 

For intermittent and perennial wetlands, three-way ANOVA revealed significant 

effects of hydroperiod and plant patch type (F(1,151) = 6.74, P = 0.01; F(3,151) = 16.06, P < 

0.001 respectively), and a three way interaction among season, hydroperiod, and plant 

patch type (F(5,151) = 2.80, P = 0.02; Table 2.2). Comparing hydroperiods across seasons, 

potential denitrification at intermittent and perennial wetlands was significantly different 

in pre-monsoon and winter seasons, but became more similar to each other (and not 

significantly different) in the post-monsoon season (Figure 2.11a). To further deconstruct 
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this pattern and examine significant interactions, I looked at potential denitrification in 

plant patches across seasons at intermittent and perennial sites separately. At perennial 

sites, plant patches were significantly different in the pre-monsoon and winter season, but 

there were no significant differences among plant patches during the post-monsoon 

season (Figure 2.11b). Specifically, during the pre-monsoon season, potential 

denitrification in Ludwigia peploides patches was significantly higher than potential 

denitrification in all other patches. During the post-monsoon season, vegetated patches 

had significantly higher potential denitrification than in open patches, but did not differ 

from one another. During the winter season, grass and Typha sp, patches had significantly 

higher potential denitrification compared with open and Ludwigia peploides patches. At 

the intermittent sites, the increase in potential denitrification during the post-monsoon 

season was driven by an increase in one plant patch, Ludwigia peploides (Figure 2.11c). 

Specifically, during the pre-monsoon season, potential denitrification in Typha sp. and 

Ludwigia peploides patches was significantly higher than open patches while potential 

denitrification in Ludwigia peploides patches was significantly higher than in grass 

patches. During the post-monsoon season, potential denitrification in Ludwigia peploides 

patches was significantly higher than in all other patches, and potential denitrification in 

Typha sp. patches was significantly higher than potential denitrification in grass patches. 

During the winter season, only potential denitrification in Ludwigia peploides patches 

was significantly higher than all other patches. 

I examined coefficients of variation (CV) to determine if monsoon floods had a 

homogenization effect (i.e. if monsoon floods reduced variation) on potential 

denitrification at individual wetlands. If monsoon floods homogenized potential 
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denitrification, then one would expect to see a decrease in CV in the post-monsoon 

season. There was a marginally significant increase in CV from the pre-monsoon to the 

post-monsoon season suggesting monsoon floods did not have a homogenizing effect on 

individual wetlands (0.81 vs 1.32; t-test: t = -2.12, df = 8, P = 0.06; Figure 2.12).  

 

DISCUSSION  

Findings from this study revealed that accidental urban wetlands in the Salt River, 

in Phoenix AZ, do have the capacity for denitrification. However, patterns of potential 

denitrification were not necessarily similar to patterns observed in nearby non-urban 

desert riverine wetlands. I first discuss notable findings in relation to the hypotheses. 

Then I discuss denitrification in accidental wetlands from this study compared to similar 

studies from non-urban wetlands. Finally, I discuss why accidental wetlands should be 

considered within the context of city planning and management.  

Clear hydroperiod, but no seasonal variation at the reach scale (hypotheses 1a and 1b) 

Accidental urban wetlands showed no seasonal variation in denitrification 

potential across the 30-km study reach, refuting hypothesis 1a. This was unexpected, as 

previous researchers have found that monsoon floods increased potential denitrification 

in nearby mesic and xeric desert river riparian areas (Harms et al. 2009). Despite the lack 

of seasonal effects on potential denitrification, wetlands may still experience reduced 

capacity to remove NO3
– in the winter season as lower temperatures slow microbial 

processes and thus reduce denitrification rates (Pfenning and McMahon 1997; Hernandez 

and Mitsch 2007b). While Phoenix air temperature rarely falls below freezing, the winter-

season sampling period did have lower average temperature compared to the pre- and 
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post-monsoon sampling season (18°C, 34.8°C and 23.6°C respectively; 

http://w2.weather.gov). However, I did not measure denitrification in the field and cannot 

conclusively say denitrification rate in wetlands was lower during the winter season. 

My findings indicated that hydroperiod did affect potential denitrification in 

accidental urban wetlands. Hypothesis 1b was therefore supported, as potential 

denitrification increased with increased hydroperiod. This finding is similar to other 

studies in non-urban and constructed wetlands, where researchers have generally found 

that wetlands with permanent standing water had higher denitrification rates compared 

with wetlands that dry out occasionally (Koch et al. 1992; Johnston et al. 2001; 

Hernandez and Mitsch 2007b). Lower potential denitrification in ephemeral wetlands is 

likely due to persistent low soil moisture that creates a soil environment not conducive 

for denitrification (Peterjohn and Schlesinger 1991; Austin et al. 2004). However, in 

intermittent wetlands, lower potential denitrification may be due to greater oxygen 

availability compared to perennial wetlands. Oxygen inhibits the production of the 

enzymes that reduce NO3
- to N2 gas (Smith and Tiedje 1979; Körner and Zumft 1989).  

Plant patch type affected potential denitrification (hypothesis 2a) 

Similar to many studies, my results showed that the presence of vegetation 

enhanced potential denitrification (see Alldred and Baines 2016 for a recent meta-

analysis). Plants have the capacity to alter the soil environment through various 

mechanisms, including increased soil organic matter, the trapping of sediments, and 

increased infiltration (Angers and Caron 1998; Brady and Weil 2008). In the intermittent 

and perennial wetlands, vegetated patches typically had more soil organic matter and a 

greater percentage of silt/clay, both of which can contribute to higher potential 
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denitrification (Groffman et al. 1996; Hernandez and Mitsch 2007a; Attard et al. 2011). 

This suggests that plant patches are modifying the soil environment making it more 

favorable for denitrification. Typha sp. and Ludwigia peploides patches showed the 

highest potential denitrification (Figure	2.11), but these plants are also considered by 

some city managers to be nuisance species (City of Phoenix, personal communication); 

both are listed by the USDA as weedy or invasive (http://plants.usda.gov). However, 

these species are beneficial for promoting denitrification in the accidental wetlands of the 

Salt River. I argue that this is an important consideration for city managers, particularly 

in Phoenix where NO3
– removal is a valued ecosystem service. 

Hydroperiod, not plant patch type, controlled limiting factors for denitrification 

(hypothesis 2b) 

Hydroperiod, rather than plant patch type, appeared to control whether carbon or 

NO3
– limited denitrification in accidental urban wetlands. I hypothesized that plant 

patches would alleviate carbon limitation; however, there were no differences in limiting 

substrates between open and vegetated patches in wetlands with the same hydroperiod. 

Ephemeral wetlands exhibited no limitation from carbon or NO3
–, and intermittent and 

perennial wetlands exhibited strong NO3
– limitation. An apparent “threshold” appears at  

~45% days of inundation per year, at which point the wetlands switched from not being 

limited by either carbon or NO3
–, to NO3

– limitation. This is an interesting observation 

that warrants further investigation, as it is not clear if this pattern is driven by 

characteristics within the wetlands, or characteristics of the surrounding urban 

watersheds. Within-wetland characteristics could explain this pattern, as autochthonous 

carbon sources may be higher in wetlands with greater inundation duration and thus with 
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greater plant and algal growth that could alleviate carbon limitation in even open areas. 

However, watershed characteristics may also explain this pattern as land use can change 

the quantity and quality of allochthonous carbon inputs that enters accidental wetlands 

via urban stormwater baseflow and during floods. Newcomer et al. (2012) found that 

urbanized watersheds in Baltimore, Maryland had higher concentrations of dissolved 

organic carbon (DOC). Further, they showed that DOC derived from sources such as 

lawn clippings stimulated denitrification rates in urban streams (Newcomer et al. 2012). 

These findings have direct applications to this study, as the wetlands with more than 45% 

days of inundation per year received urban baseflow from watersheds that were largely 

residential, while the wetlands with less than 45% inundated days per year received urban 

baseflow from more industrial or agricultural watersheds (unpublished data). Therefore, 

wetlands that flood more frequently are not only getting DOC delivered more frequently, 

but also could be receiving higher concentrations of and better quality DOC due to the 

land-use difference among the storm watersheds. These differences could affect carbon 

limitation in urban wetlands. 

Unexpected effect of monsoon floods and plant patches at ephemeral sites (hypothesis 1b 

and 3a) 

Monsoon floods have been shown to increase potential denitrification at xeric 

sites in nearby desert rivers by orders of magnitude due to the creation of saturated 

conditions and delivery of NO3
– and carbon (Table 2.3; Harms et al. 2009). Potential 

denitrification at ephemeral wetlands in this study did not increase after monsoon floods, 

opposite of what I hypothesized (1b). Potential denitrification did increase during the 

winter season, despite similar soil moisture conditions between the post-monsoon and 
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winter seasons. One reason for this may be the difference in the magnitude and timing of 

flood disturbance between those two seasons. Monsoon floods are typically more intense 

than winter floods and can flush out sediment that builds up in storm drains during the 

dry period prior to monsoon season (City of Phoenix Stormwater Services, personal 

communication). After the monsoon floods, I observed between 10 and 30 centimeters of 

new sediment deposited at the ephemeral wetlands. It is possible that this newly 

deposited sediment did not have many denitrifying microbes, which would lower 

potential denitrification in the recipient wetlands. However, this is speculative and should 

be investigated further by quantifying changes in microbial biomass in sediments. 

Plant patch type also was not important for explaining patterns of potential 

denitrification in the ephemeral wetlands. Further, soil organic matter content was not 

significantly different among plant patches in the ephemeral wetlands (Figure	2.4). This 

suggests that plants may not serve as important “islands of fertility” for these systems, as 

they do in other resource-poor environments (Schlesinger et al. 1996). Taken together, 

accidental ephemeral wetlands did not show predictable patterns of potential 

denitrification as a result of either monsoon floods or plant patch type. 

Unclear effect of reach-scale homogenization after monsoon floods (hypothesis 3a) 

Monsoon floods had no discernable effects on denitrification in ephemeral 

wetlands (i.e., no significant interactions between season and plant patch type). However, 

monsoon floods did appear to affect the magnitude of potential denitrification, as 

discussed in the previous section. Potential denitrification in intermittent and perennial 

wetlands, however, did have a significant interaction among season and plant patches, 

suggesting an influence of monsoon floods on patterns of denitrification. Potential 
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denitrification patterns in perennial wetlands suggested that monsoon floods could have a 

homogenizing effect as potential denitrification was more similar among plant patches 

after monsoon floods (Figure	2.11b). To check if this pattern was due to 

homogenization, I examined the variation within individual wetlands. If monsoon floods 

were homogenizing potential denitrification, the variance within each individual wetland 

should decrease after the monsoon season as well. However, I found that eight of the nine 

wetlands showed an increase in intra-site CV after monsoon floods. This suggested that 

the observed pattern of homogenization in perennial wetlands may be an anomaly and 

therefore not a result of homogenization. Conducting a follow-up study across multiple 

monsoon seasons would more clearly elucidate the effect of monsoon floods on patterns 

of potential denitrification. Future studies should also consider measuring the magnitude 

of floods in individual wetlands. Storm drain networks break up large urban watersheds 

into smaller storm pipe-sheds that differ greatly in size and incorporate different 

stormwater control infrastructures (Hale et al. 2014). Both of these characteristics will 

affect the magnitude of floods experienced by recipient accidental wetlands. 

Consequently, individual wetlands within the same river reach experience floods of 

widely different magnitudes during the same rain event, which should differentially 

influence patterns of denitrification in downstream wetlands. 

Potential denitrification in accidental urban wetlands compared with other locations 

My results have shown that accidental urban wetlands have the capacity for 

denitrification, but this capacity does not appear to be greater than has been found in 

other green infrastructures in Phoenix, Arizona (Table	2.3). For example, retention basins 

are features of urban landscapes intended to capture water during storms, which 
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subsequently remove nitrogen from stormwater (Hale et al. 2014). Retention basins are 

typically not flooded between storms, but they have potential rates of denitrification that 

are similar to the perennial wetlands in my study (Zhu et al. 2005). Indian Bend Wash is 

another designed green flood-management feature in Scottsdale, Arizona. Rather than 

retention basins, Indian Bend Wash is designed with a series of permanently flooded 

shallow lakes and streams surrounded by grassy floodplains, more similar to perennial 

wetlands in this study. However, potential denitrification in these lakes is more than four 

times higher than potential denitrification in the accidental perennial wetlands 

downstream of the Wash (Roach and Grimm 2011). The one advantage of accidental 

urban wetlands is that they do not require design or maintenance investments, saving time 

and money for city managers.  

I also found that potential denitrification in accidental urban wetlands was higher 

than has been reported for nearby non-urban desert river wetlands (Table	2.3). 

Interestingly, despite the fact that potential denitrification in accidental urban ephemeral 

wetlands did not increase after monsoon floods, these wetlands had higher post-flood 

potential denitrification than nearby desert riverine wetlands (Harms et al. 2009). This 

suggests that urban ephemeral wetlands have an increased capacity for denitrification, 

possibly due to resource subsidies of organic carbon and nitrogen supply from the urban 

environment. Other studies have found that nitrogen deposition from urban areas can 

modify substrate limitation and increase denitrification in lakes (Elser et al. 2009; 

McCrackin and Elser 2010), and can increase microbial processes, such as soil 

respiration, in deserts (McCrackin et al. 2008). 
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CONCLUSION 

Urbanization is often associated with increases in downstream N export (Shields 

et al. 2008; Kaushal et al. 2011); however, certain landscape features have been shown to 

mediate this downstream N supply (Passeport et al. 2012; Koch et al. 2014). This study 

demonstrated that accidental urban wetlands are another feature of the urban landscape 

that can help reduce nitrogen export, with the added benefit of having minimal 

management investments. However, accidental wetlands are also at risk of disappearing 

because their “unmanaged” status largely precludes them from consideration in city 

planning and management schemes. As Phoenix (and many cities) implements policies to 

become more efficient with water use (Gober et al. 2010), less urban baseflow will likely 

be generated. This will almost certainly reduce the area and number of accidental 

wetlands in the Salt River. While reducing urban baseflow is generally considered to be 

positive from a sustainability standpoint, the results of my study suggest an unexpected 

trade-off: the subsequent reduction in accidental wetland area, which may have negative 

consequences for NO3
– removal from the surface waters of Phoenix. Excess NO3

– could 

then contribute to downstream pollution or infiltrate groundwater posing risks for human 

health and the health of downstream ecosystems (Nolan et al. 1997; Vitousek et al. 1997; 

Townsend et al. 2003). The findings in this study suggest that if accidental urban 

wetlands are inundated less frequently (i.e. shift from functioning as intermittent and 

perennial wetlands to functioning as ephemeral wetlands), NO3
– removal during storm 

events will likely decrease. 
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FIGURES AND TABLES 

Table 2.1. Season and plant patches sampled at each site. Bolded plant patches indicate 
patches that were not sampled during winter sampling effort. 

Site ID 
(abbreviation) Season sampled Plant patches sampled 

Ephemeral 1 
(E1) 

Pre-monsoon 
Post-monsoon 
Winter 

Open 
Rumex dentatus 
Grass (Cynodon dactylon) 

Ephemeral 2 
(E2) 

Pre-monsoon 
Post-monsoon 
Winter 

Open 
Amaranthus sp. 
Tribulus terrestris 

Ephemeral 3 
(E3) 

Pre-monsoon 
Post-monsoon 

Open  
Grass (Schismus sp.) 

Intermittent 1 
(I1) 

Pre-monsoon 
Post-monsoon 
Winter 

Open 
Ludwigia peploides 
Typha sp. 
Grass (Paspalum distichum) 

Intermittent 2 
(I2) 

Pre-monsoon 
Post-monsoon 
Winter 

Open 
Ludwigia peploides 
Typha sp. 
Grass (Paspalum distichum) 

Intermittent 3 
(I3) 

Pre-monsoon 
Post-monsoon 

Open 
Typha sp. 
Grass (Paspalum distichum) 

Perennial 1 
(P1) 

Pre-monsoon 
Post-monsoon 
Winter 

Open 
Typha sp. 
Grass (Paspalum distichum) 

Perennial 2 
(P2) 

Pre-monsoon 
Post-monsoon 
Winter 

Open 
Ludwigia peploides 
Typha sp. 

Perennial 3 
(P3) 

Pre-monsoon 
Post-monsoon 

Open 
Ludwigia peploides 
Typha sp. 
Grass (Paspalum distichum) 
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Table 2.2. F statistic for ANOVA comparisons of potential denitrification rates. Degrees 
of freedom are in parentheses. Interactions include hydroperiod * season (H*S), 
hydroperiod * patch (H*P), season * patch (S*P) and hydroperiod * season * patch 
(H*S*P). Dashes indicate factors or interactions not included in model.  
 
 Hydro-

period 
Season Patch H*S H*P S*P H*S*P 

Three-way 
ANOVA            
for all sites 

31.29** 
(2,208) 

1.76 
(2,208) 

2.84** 
(6,208) 

2.13 
(4,208) 

2.64* 

(4,208) 
1.47 

(12,208) 
1.89 

(7,208) 

Two-way 
ANOVA for 
ephemeral 
sites 

-- 
3.77* 

(2,57) 
3.28* 

(4,57) 
-- -- 

0.88 
(8,57) 

-- 

Three-way 
ANOVA for 
“wet” sites 

6.74* 

(1,151) 
0.17 

(2,151) 
16.06** 

(3,151) 
4.03* 

(2,151) 
4.22* 

(3,151) 
0.91 

(6,151) 
2.80 

(5,151) 

* P ≤ 0.05 
** P ≤ 0.001 
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Table 2.3. Comparisons of literature values of potential denitrification. All measurements 
of potential denitrification are by denitrification enzyme activity (DEA). 
 
Ecosystem type 
Location 

DEAs 
(µg N2O-N g soil-1 h-1) Reference 

Urban features in Phoenix, 
Arizona 

  

Accidental urban wetlands; 
Phoenix, Arizona 

Ephemeral: 0.10 
Intermittent: 0.44 
Perennial: 0.65 

This study 

Modified urban stream; 
Phoenix, Arizona 

Lake: 4.77 
Stream: 1.07 
Floodplain: 1.54 

Roach and Grimm 
2011 

Retention basins;  
Phoenix, Arizona 

0.73 Zhu et al. 2005 

Residential yards;  
Phoenix, Arizona 

Xeriscaped yards: 1.5 
Lawns: 2.7 

Hall et al. 2009 

Deserts and streams in 
Arizona 

  

Sonoran desert; 
Phoenix, Arizona 

Inter-plant spaces: 0.04 
Under plants: 0.20 

Hall et al. 2009 

Desert stream; 
Sycamore Creek; Arizona 

Parafluvial: 0.015 
River bank: 0.06 – 0.08 

Holmes et al. 1996 

Desert stream riparian area;  
San Pedro River, Arizona 

Xeric pre-monsoon: 0.00045 
Xeric post-monsoon: 0.0045 
Mesic pre-monsoon: 0.014 
Mesic post-monsoon: 0.25 

Harms et al. 2009 

Urban or agriculture 
wetlands in other regions 

  

Restored urban riparian area; 
Baltimore, Maryland 

0.28, 0.77  
(two different restored sites) 

Gift et al. 2010 

Constructed wetland; 
Columbus, Ohio 

Emergent macrophytes: ~0.07 
Open water: ~0.05 
Forested edge: ~0.02 

Hernandez and 
Mitsch 2007a 

Restored agriculture ditch; 
Shatto Ditch, Indiana 

Vegetation removed: ~0.5 
Vegetated: ~0.7 

Roley et al. 2012 

Riparian area;  
Baltimore, Maryland 

Forested reference: 0.46 
Urban: 2.2 

Groffman and 
Crawford 2003 
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Figure 2.1. Presence of inundated conditions and precipitation record at nine sites. 
Precipitation record for gage at site P2 during sampling period 
(http://www.fcd.maricopa.gov/Weather/Rainfall/ALERT/ssdata.aspx). P=perennial 
wetlands, I=intermittent wetlands, E= ephemeral wetlands. Red line represents the 
precipitation record. Presence of gray line represents inundation at give date. 
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Figure 2.2. Images of site locations. (A) Images of wetlands of different hydroperiods 
across seasons. (B) Map of nine selected sites along Salt River. Red triangles represent 
ephemeral sits, orange triangles represent intermittent sites, and blue triangles represent 
perennial sites. White x’s represent examples of patch types. 
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                      Ephemeral                     Intermittent          Perennial 

 

 
Figure 2.3. Arithmetic means of soil variables for ephemeral, intermittent, and perennial 
wetlands across seasons. Pre indicates pre-monsoon, and post indicates post-monsoon 
season. Note scale differences. Error bars indicate ±1 SE. 
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        Ephemeral                    Intermittent       Perennial 
 

  

 

 
 
Figure 2.4. Arithmetic means of soil variables for plant patches at ephemeral, 
intermittent, and perennial wetlands. O=open, G=grass, R=Rumex dentatus, 
A=Amaranthus sp,, Tr=Tribulus terrestris; L=Ludwigia peploides, T=Typha sp. Note 
scale differences. Significance levels are P < 0.05. Error bars indicate ±1 SE. 
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Figure 2.5. Estimated marginal means of three-way ANOVA comparing potential 
denitrification (DNP) for season and hydroperiod for all sites. (A) DNP across seasons; 
(B) DNP across hydroperiods. Error bars indicate ±1 SE. 
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Figure 2.6. Effect of the presence and absence of vegetation on potential denitrification 
for each hydroperiod. Asterisks denote significant differences within a hydroperiod at P < 
0.05. Error bars indicate ±1 SE. 
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Figure 2.7. Average RR-N/RR-C for plant patches at different hydroperiods. Asterisks 
denote plant patches significantly different than open patches at P < 0.05. Values above 
one indication greater nitrate limitation, values below one indication greater carbon 
limitation. Note scale differences. Bars represent 95% confidence interval. 
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Figure 2.8. Average relative responses (RR) of denitrification limitation experiments. (A) 
additions of nitrate; (B) additions of carbon; and (C) additions of nitrate and carbon. (D) 
Relative response of nitrate additions to carbon additions (RR-N/RR-C). Values above 
one indication greater nitrate limitation, values below one indication greater carbon 
limitation. Note scale differences: graphs A,C,D are log scale, graph B is not. E= 
ephemeral; I= intermittent; P= perennial. Bars represent 95% confidence interval. 
 
 
 
 
 
 
 
 
 
 

0.1 

1.0 

10.0 

100.0 
R

R
-N

 
A 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

R
R

-C
 

B 

0.1 

1.0 

10.0 

100.0 

1000.0 

R
R

-N
C

 

C 

0.1 

1.0 

10.0 

100.0 

R
R

-N
/R

R
-C

 

D 

    E            I             P     E            I             P 

    E            I             P     E            I             P 

a 

b 
c 

a 

b b 

a 
a 

b 
c b 

c 



 54 

 
 
 

 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.9. Changes in response ration (RR) of nitrogen relative to carbon (RR-N/RR-C) 
as a function of hydroperiod (%inundated days per year). Values greater than one 
indication greater nitrate limitation, values below one indication greater carbon 
limitation. Perennial sites show only two markers because two of the three perennial sites 
were inundated for the same period of time—100% of the year. Y-axis is log scale. Bars 
represent 95% confidence interval. 
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Figure 2.10. Estimated marginal means of potential denitrification (DNP) for main effects 
for two-way ANOVA for ephemeral sites. (A) DNP across seasons; (B) DNP among 
plant patches. Error bars indicate ±1 SE. 
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Figure 2.11. Estimated marginal means of three-way ANOVA for intermittent and 
perennial wetlands. (A) Interaction plot between hydroperiod and season; (B) Interaction 
plot between plant patches and season for perennial wetlands; (C) Interaction plot 
between plant patches and season for intermittent wetlands. Note scale differences. Error 
bars indicate ±1 SE. 
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Figure 2.12. Coefficients of variation (CV) for each site. Circles represent pre-monsoon 
CVs. Squares represent post-monsoon CVs. Different shades of gray represent 
hydroperiod categories. P = 0.06 for difference between pre- and post-monsoon. 
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Chapter 3  

DIRECT AND INDIRECT EFFECTS OF PLANT TRAITS ON POTENTIAL 

DENITRIFICATION  

 

ABSTRACT 

In wetlands, denitrification is an important ecosystem process that permanently 

removes reactive nitrogen from systems. Much research has examined how vegetation 

and different plant species affect denitrification in wetlands; however, few studies 

address the mechanisms by which plants affect denitrification. Plant functional traits are 

one method to mechanistically link plant species to ecosystem functions. In this study, I 

tested hypothesized indirect relationships between plant traits and denitrification through 

their effect on soil organic matter and soil nitrate. 

I collected plant trait data and soils from nine urban wetlands located at storm 

drain outfalls in Phoenix, AZ. Wetlands were inundated between 10% and 100% of the 

year. Samples were taken from two to three plant patch types within each wetland. 

Potential denitrification (DNP), soil organic matter, and extractable nitrate were 

measured on soil samples. Measured plant traits were above- and belowground biomass, 

above- and belowground C:N ratios, and rooting depth. Hypothesized relationships 

between plant traits and DNP were modeled a priori using two different models: one 

model including only direct relationships between plant traits and DNP, and another 

model including indirect relationships between plant traits and DNP through soil 

conditions. Structural equation modeling was used to determine which model better fit 

the data and what plant traits significantly predicated DNP. 
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Modeling indirect effects of plant traits on DNP better fit the data than modeling 

plant traits as having direct effects only. Soil organic matter had greatest total effect on 

denitrification (0.67). Belowground biomass, belowground C:N ratio, and rooting depth 

had significant indirect relationships with DNP through soil organic matter. While above- 

and belowground C:N ratios and rooting depth had significant indirect relationships with 

DNP through soil nitrate. The model also identified residual direct paths from 

aboveground biomass, rooting depth, and aboveground C:N ratios to DNP. Residual 

direct paths indicate that the mechanisms by which these plant traits affected DNP were 

not identified in the model. Overall, this study shows that while we have an 

understanding how some plant traits, such as belowground biomass, increase 

denitrification, our overall knowledge about the mechanistic links between plant traits 

and DNP needs improvement.  

 

INTRODUCTION 

Wetlands are widely recognized as key ecosystems for mitigating widespread 

anthropogenic nitrogen pollution largely because wetlands are important sites of 

denitrification (Vitousek et al. 1997; Schlesinger 2009). Denitrification is a microbial 

process in which nitrate is reduced to N2 gas and consequently is permanently removed 

from ecosystems. Wetland soils are effective sites for denitrification because inputs of 

carbon and nitrate provide necessary substrates for denitrifying bacteria, and because 

flooded soils produce anoxic conditions that are necessary for denitrification (Seitzinger 

et al. 2006). Wetlands also are characterized by hydrologic regimes that cycle wetlands 

between wet and dry stages, which can couple the aerobic process of nitrification 
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(oxidation of NH4 to NO3
-) to the anaerobic process of denitrification (Seitzinger et al. 

2006), creating conditions that remove both NH4 and NO3
-. 

Denitrification studies often focus on how soil resources and conditions, such as 

labile carbon, nitrate, and moisture, affect denitrification (Drury et al. 1991; Seitzinger 

1994; Groffman et al. 1996; Ettema et al. 1999; Pinay et al. 2000; Lowrance and Hubbard 

2001; Groffman and Crawford 2003). Vegetation can modify the soil resources that affect 

denitrification (Hobbie 1992; Eviner and Chapin 2003). Specific plant traits (e.g., rooting 

depth, biomass) and processes (e.g. maintenance of an oxic microrhizosphere) can alter 

the soil environment through litter deposition, sediment trapping, oxygen availability, and 

connectivity between surface and soil waters (Chapin et al. 2000; Lavorel and Garnier 

2002; Wardle et al. 2004; Zedler and Kercher 2004). A comparison of plant functional 

traits has been proposed as a way to mechanistically ascertain how plants may affect 

ecosystem processes such as denitrification (Diaz et al. 2004; Wardle et al. 2004). For 

this study, I asked: Do plant traits affect denitrification indirectly through changes in soil 

conditions? 

Very few studies have examined the relative importance of functional plant traits 

and environmental variables for predicting denitrification (see but Sutton-Grier et al. 

2012). One challenge in disentangling the effects of plant traits and soil environmental 

variables is that such variables tend to be correlated (Diaz et al. 2004). Structural 

equation modeling (SEM) is an analytic technique that accounts for correlation among 

variables. Further, SEM not only tests relationships among variables, but also allows for 

the testing of hypotheses about how those variables are related by specifying a model a 

priori. It also allows for the modeling of indirect relationships among variables. 



 61 

Therefore, one can test not only which plant traits and soil conditions are important for 

predicting denitrification (evaluating model parameterization), but also whether 

hypothesized relationships among plant traits, soil conditions, and denitrification are 

correct (evaluating model structure). 

The importance of labile soil carbon, nitrate, and anoxic conditions for 

denitrification are well documented (Drury et al. 1991; Ettema et al. 1999; Pinay et al. 

2000; Lowrance and Hubbard 2001; Groffman and Crawford 2003), but how plants 

control denitrification by modifying soil conditions is not well understood. Previously, 

studies examining how plants affect denitrification focused on either the 

presence/absence of vegetation, or specific species effects. A recent meta-analysis of 419 

studies examining the effects of wetland vegetation on denitrification found that, on 

average, the presence of plants increased denitrification by 55% (Alldred and Baines 

2016). Other studies suggest that the presence of vegetation can alleviate carbon 

limitation on denitrifying bacteria in carbon-poor environments (Schade et al. 2001; 

Heffernan and Fisher 2012). Contradictory results have been obtained from studies of 

effects of various plant species on denitrification: some have shown an effect of plant 

species identity (Windham and Ehrenfeld 2003; Hernandez and Mitsch 2007a; Pinay et 

al. 2007), while others have not (Groffman et al. 1996; Otto et al. 1999; Clément et al. 

2002; Roley et al. 2012; Song et al. 2014). Species comparisons do not inherently take 

into account the mechanisms by which different species might affect denitrification, 

potentially explaining the contradictory findings. 

Plant traits have the potential to provide mechanistic explanations for how 

different species affect denitrification. Traits such as biomass, tissue chemistry, and 
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rooting depth can modify soil conditions consequently affecting denitrification. Plants 

provide organic carbon sources through plant litter (Gift et al. 2010) and root exudation 

(Farrar et al. 2003; Bais et al. 2006). Further, the stoichiometry of plant litter or root 

exudates (C:N of tissues) affects decomposition rates and nitrogen mineralization, thus 

affecting the availability of soil carbon and nitrate (Craine et al. 2002; Cornwell et al. 

2008). Roots can loosen soils, increasing infiltration and extending the depth to which 

denitrification occurs (Angers and Caron 1998; Rotkin-Ellman et al. 2004; Gift et al. 

2010). Further, roots deliver oxygen to the soil altering redox conditions, at least locally 

around the roots, and affecting denitrification in one of two ways. (1) Denitrification 

could increase by creating aerobic zones that promote nitrification increasing nitrate 

available to denitrifiers (Reddy et al. 1989). (2) Denitrification could decrease because 

oxygen inhibits denitrification, an outcome more likely when nitrate is not a limiting 

substrate for denitrification (Hernandez and Mitsch 2007b). 

For this study, I selected five plant traits that I hypothesized were most likely to 

affect denitrification in urban wetlands and used SEM to examine the relative importance 

of plant traits and soil conditions for explaining potential denitrification. Specifically, I 

compared two different models: one with direct paths between individual plant traits or 

soil conditions and potential denitrification, and one where plant traits were indirectly 

linked to denitrification via soil conditions (Figure	3.1). I determined which model better 

fit the data and then asked the following questions: (1) What plant traits are important for 

predicting potential denitrification? (2) Are plant traits or soil conditions more important 

for predicting potential denitrification? 
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METHODS 

Study Area 

This study was conducted in accidental urban wetlands located in a 30 kilometer 

reach of the Salt River in Phoenix, Arizona USA. Because these wetlands were not 

designed or planned by the City of Phoenix, and are not managed, I refer to them as 

“accidental.” The historically perennial Salt River is now a mostly dry riverbed as it 

bisects downtown Phoenix. In this reach of the Salt River, the floodplain has been highly 

modified and engineered for flood management, and in places it is mined for gravel. 

However, these accidental urban wetlands have formed at storm drain outfalls. These 

outfalls not only discharge stormwater during storm events, but some also discharge 

urban baseflow during dry periods into the Salt River bed. I identified nine study 

wetlands receiving storm drain discharges that differed in their hydroperiod ranging from 

inundation from 10% to 100% of the year. A large range of hydroperiods were included 

in this study to identify plant traits and soil conditions that promote denitrification over 

the full range of flooding conditions experienced by accidental urban wetlands of the 

Salt River. 

Plant trait selection 

I selected five plant traits that I hypothesized could affect denitrification via their 

effect on soil conditions known to affect denitrification (soil organic matter and soil 

nitrate; Seitzinger et al. 2006): (1) aboveground biomass (AG); (2) belowground biomass 

(BG); (3) aboveground C:N ratio of plant tissues (CNAG); (4) belowground C:N ratio of 

plant tissues (CNBG); and (5) rooting depth (RD; Table	3.1). I expected that 

aboveground biomass and belowground biomass would affect potential denitrification by 
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affecting the quantity of carbon available to denitrifiers, with increases in biomass 

resulting in increases in soil organic matter (Ehrenfeld 2003; Wardle et al. 2004; Gift et 

al. 2010). I expected C:N ratios of above- and belowground biomass would affect both 

soil organic matter and soil nitrate. The C:N ratio of plant tissues affects how easily plant 

tissues are decomposed and how much nitrogen is mineralized (Craine et al. 2002; 

Wardle et al. 2004; Cornwell et al. 2008; Cotrufo et al. 2013). Lower C:N ratios denote 

“higher quality” tissues that are more easily decomposed. I expected decreasing C:N 

ratios to result in increases in soil organic matter and soil nitrate. Rooting depth could 

also affect potential denitrification by increasing the depth that nitrate was able to 

infiltrate into the soil. Roots have the potential to loosen soils, increasing infiltration; 

therefore, I expected increases in rooting depth result in increases in soil nitrate.  

Plant trait measurements 

One to three dominant plant patches were identified in each study wetland, 

vegetated by a total of eight different species and species groups (Table	3.2). The two 

species groups were patches of Typha sp. and Amaranthus sp. Patches of Typha sp. 

contained either Typha latifolia or Typha domingensis. Patches of Amaranthus sp. 

contained either Amaranthus palmeri or Amaranthus albus. In general, these species did 

not occur in mixtures, but rather in monotypic patches as are commonly found in 

wetlands (Spence 1982). 

Measurements of plant traits were made in the field three times between June 

2013 and March 2014 to capture seasonal variation. Notably, only six of the nine sites 

were sampled during the third sampling period because of sampling constraints. In each 

patch, aboveground and belowground biomass was harvested from three 100 cm2 
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quadrats. Additionally, rooting depth was measured in each quadrat. Biomass samples 

were brought to the lab, rinsed to remove soil, dried at 60 °C for a week, and weighed. 

After weighing, plants were ground using a Wiley mill and a subsample was analyzed to 

determine C:N ratios of plant tissues using a PE2400 CHN elemental analyzer. The 

triplicate quadrat data from each patch were averaged to designate the trait measurements 

for each particular patch, at each site (n=9), and in each season (n=3). These patch, site, 

and season-specific trait measurements allowed me to more accurately assess links 

between plant traits and denitrification, as plant traits vary with season and in response to 

a variety of environmental conditions (Callaway et al. 2003).  

Soil sampling 

Soil cores were also collected three times between June 2013 and March 2014. I 

collected two to four soil cores for each plant patch type at each site (n = 164). Soil cores 

of the same patch type were taken from different patches when possible. If only a single 

large contiguous plant patch occurred at a site, cores were taken at least 5 meters apart. 

Soil cores were taken to a maximum depth of 10 cm to encompass the most active part of 

the soil (Groffman et al. 1999). Cores were stored on ice in the field and then refrigerated 

in the lab until processing (usually within 24 hours). For this processing, soil cores were 

homogenized and analyzed for soil organic matter, soil nitrate, and potential 

denitrification. Soil organic matter was determined by mass loss on ignition at 550°C for 

4 hours. Soil nitrate was extracted by shaking 10 grams of sample with 50mL 2M KCl for 

1 hour, filtering through pre-leached Whatman 42 ashless filters, and analyzed on a 

Lachat QC8000 flow-injection analyzer. 
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Denitrification was measured in the lab as potential denitrification. Potential 

denitrification is a measurement of denitrification under optimal conditions (excess labile 

carbon, excess nitrate, and anaerobic soils; Groffman et al. 1999). While potential 

denitrification does not give actual rates of denitrification, it reflects activity of soil 

denitrifier microorganisms, is related to long term patterns of environmental conditions 

such as carbon availability, and allows for the processing of many samples necessary for 

complex statistical models (Groffman et al. 2006). Potential denitrification was measured 

using denitrification enzymes assays (Groffman et al. 1999). Fifty grams of soil and 50 

mL of media were added into a 125 ml Wheaton bottle. To ensure neither nitrate nor 

carbon were limiting, the media was amended with NO3
- (100 mg NO3-N kg soil-1 as 

KNO3) and carbon (40 mg glucose-C kg soil-1 as glucose). Headspace in the bottles was 

replaced with N2 gas to ensure anaerobic conditions, and 10ml of acetylene gas was 

added to inhibit the reduction of N2O to N2. Samples were incubated at room temperature 

and shaken at 140 rpm for 4 hours. Gas samples were taken from the headspace at 30 

minutes and 4 hours, and analyzed on a Varian 3800 gas chromatograph for N2O 

concentration. 

Statistical analyses 

In this study, I proposed 2 models to compare whether a more parsimonious direct 

effects model or a model that included hypothesized indirect effects (see Table	3.1) 

better fit the data. In Model 1, plant traits and soil condition variables (soil organic matter 

and soil nitrate) were included with only direct paths to potential denitrification (Figure	

3.1a). In Model 1, soil organic matter and soil nitrate were modeled as correlated, and 

plant traits were modeled as correlated. In Model 2, hypothesized relationships among 
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plant traits, soil conditions, and potential denitrification were modeled with indirect paths 

to potential denitrification through soil conditions (Figure	3.1b). 

I used structural equation modeling (SEM) to test if Model 1 or Model 2 better fit 

the data and to test for how plant traits are related to denitrification. Bivariate plots were 

examined for deviations from linearity. Potential denitrification and soil nitrate data were 

log transformed to conform to assumptions of linearity (Kline 2015). To test if the 

proposed model fit the data, chi-square goodness of fit was used. For SEM, a non-

significant p-value means that the proposed model and the data were not significantly 

different (i.e. a non-significant model indicates good fit). If the proposed model was not a 

good fit, STATA suggested modification indices, which are paths or correlations that 

would improve model fit if added. Suggested modification indices were included to 

respecify the proposed model. Modification indices were only included if they were 

theoretically justified, and not for the sole purpose of improving model fit (Kline 2015). 

In addition to chi-square, I report three other indices of model fit: Comparative Fit Index 

(CFI); Standardized Root Mean Square Residual (SRMR); and Root Mean Square Error 

of Approximation (RMSEA). Good-fitting models have CFI ≥ 0.95, SRMR ≤ 0.08, and 

RMSEA ≤ 0.05 (Kline 2015). After a final model was selected, Satorra-Bentler 

correction for chi-square and other model fit indices was applied to account for potential 

non-normality of data. All analyses were completed in Stata v14. 

 

RESULTS 

The model including indirect effects of plant traits on potential denitrification 

(Figure 3.1b) fit the data better than the model including only direct paths (Figure 3.1a). 
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In the following section, I provide descriptive statistics of the plant trait data for each 

species, the bivariate relationships among variables included in the model, and results of 

Model 1 and Model 2. 

Plant traits 

Plant traits, soil conditions, and potential denitrification measurements 

encompassed a wide range of values. This suggests that the eight species patches I 

selected represented a variety of plant traits and soil conditions experienced by 

denitrifiers (See Table	3.2). 

Bivariate relationships 

Potential denitrification (DNP) showed significant correlations with soil organic 

matter, soil nitrate, aboveground biomass, and belowground biomass ( r = 0.71, P < 

0.001; r = -0.34, P < 0.001; r = 0.23, P = 0.003; r = 0.23, P = 0.003 respectively; Figure	

3.2). Rooting depth, aboveground C:N ratios, and belowground C:N ratios were not 

significantly correlated with DNP. However, all three were significantly correlated with 

soil organic matter (r = -0.16, P = 0.04; r = 0.18, P = 0.02; r = -0.15, P = 0.05 

respectively), and above- and belowground C:N ratios were significantly correlated with 

soil nitrate (r = -0.23, P = 0.003; r = -0.15, P =0.05 respectively). This justifies their 

inclusion in the proposed models. 

Model 1: direct effects only  

Several modification indices (pathways or correlations that would improve the fit 

of the proposed model to the data) were identified using the estat mindices command in 

STATA. Suggested modification indices were included in the final Model 1 compared to 
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the proposed model (Figure	3.1a and Figure	3.3), and consisted of correlations between 

soil conditions and different plant traits (Table	3.4). 

After including the suggested correlations in Model 1, the structure of Model 1 

still was not a good fit to the data (χ2 = 15.44, df = 5, P = 0.009; CFI = 0.947, 

SRMR=0.073, RMSEA = 0.113). Significant predictors of DNP were soil organic matter 

(β = 0.68, P < 0.001), soil nitrate (β = -0.21, P < 0.001), aboveground biomass (β = 0.29; 

P < 0.001), C:N ratio of aboveground biomass (β = -0.20, P < 0.001), C:N ratio of 

belowground biomass (β = 0.15, P < 0.03), and rooting depth (β = -0.22, P < 0.005) 

(Table	3.3, Figure	3.3). Many correlations between predictor variables were significant 

(Table	3.4). Specifically, all plant traits were positively correlated with each other. Soil 

organic matter was correlated with aboveground biomass, belowground biomass, and 

C:N ratio of aboveground biomass. Further, soil nitrate was negatively correlated with 

C:N ratio of aboveground biomass, and positively correlated with rooting depth. 

Model 2:indirect effects included 

Several suggested modification indices were included in the final Model 2 

compared to the proposed model (Figure	3.1b and Figure	3.4), and consisted of direct 

paths from aboveground biomass, C:N ratio of aboveground biomass, and rooting depth 

to DNP, and a path from rooting depth to soil organic matter. 

After including these modification indices in Model 2, the model structure was a 

good fit for the data and had better model fit than Model 1 (χ2 = 10.09, df = 5, P = 0.07; 

CFI = 0.979, SRMR=0.033, RMSEA = 0.079). In Model 2, I found three types of 

significant relationships (P ≤ 0.05) among predictor variables and DNP: (1) predictors 

related to DNP via direct paths only; (2) predictors related to DNP via indirect paths 
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only; and (3) predictors related to DNP via both direct and indirect paths (Figure	3.4). 

Variables with only direct paths to DNP were soil organic matter (positive predictor), soil 

nitrate (negative predictor), and aboveground biomass (positive predictor). Belowground 

biomass and belowground C:N ratios affected DNP via indirect paths only. Belowground 

biomass positively predicted soil organic matter resulting in a positive total effect (sum of 

all paths) on DNP. Belowground C:N ratios negatively predicted soil organic matter and 

soil nitrate resulting in a overall negative effect on DNP. Variables with both indirect and 

direct paths to DNP were rooting depth and aboveground C:N ratios. Rooting depth had a 

negative effect on soil organic matter, a positive effect on soil nitrate, and a negative 

direct effect on DNP. The total effect of rooting depth on DNP was negative. 

Aboveground C:N ratio had a negative effect on soil nitrate, and a negative direct effect 

on DNP. 

By examining the total effect of variables on DNP (sum of all path coefficients to 

DNP), I found soil organic matter and rooting depth had the strongest influence on DNP 

(0.67, -0.38 respectively). Aboveground biomass (0.29), belowground biomass (0.27) and 

soil nitrate (-0.23) had moderate influences on DNP. Aboveground C:N (-0.06), and 

belowground C:N ratios (-0.08) had only minor influences DNP (Table	3.3). 

 

DISCUSSION 

Plant traits were significantly related to DNP, particularly when indirect paths 

between plant traits and DNP were modeled. While many of the hypothesized 

relationships among plant traits, soil conditions and DNP were supported, many plant 

traits also retained significant direct paths to DNP (i.e. residual direct paths;Figure	3.4). 
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Residual direct paths reveal that the final model is missing important relationships among 

these variables. In the following section, I discuss substantive findings regarding direct 

and indirect paths between plant traits and denitrification, and other important 

considerations when examining the relationship among plant traits, soil conditions, and 

denitrification. 

Importance of modeling indirect paths 

I found that Model 1 (direct paths) did not adequately fit the structure of the data. 

Model 1 does include several correlations among soil variables and plant traits similar to 

significant indirect paths in Model 2. This suggests correlations can convey important 

information about relationships among plant traits and soil variables (Sutton-Grier et al. 

2012). However, explicitly modeling indirect paths better fit the data. This is not 

surprising as the effect of plant traits on DNP is not often discussed as direct effects, but 

rather as mediated by soil conditions (Sutton-Grier et al. 2012; Alldred and Baines 2016). 

The importance of modeling hypothesized indirect effects is highlighted in the change in 

the significance of the relationship between belowground biomass and DNP in Model 1 

versus Model 2. In Model 1, belowground biomass showed no significant relationship 

with DNP, but Model 2 showed a significant indirect relationship between belowground 

biomass and DNP through soil organic matter- as hypothesized. Given that soil organic 

matter is typically derived from root litter, this indirect relationship is expected (Puget 

and Drinkwater 2001; Eviner and Chapin 2003; Gift et al. 2010). However, if only Model 

1 was used to determine which plant traits were important for increasing DNP, 

belowground biomass would have been excluded, ignoring an important mechanism by 

which plants can increase DNP.  
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Effect of soil conditions on DNP 

Soil conditions are important predictors of denitrification (Boyer et al. 2006; 

Seitzinger et al. 2006; Wallenstein et al. 2006). In line with these studies, I hypothesized 

that DNP would increase as soil organic matter and soil nitrate (substrates necessary for 

denitrification) increased. These hypotheses were partially supported: I found that DNP 

did increase with increasing soil organic matter; however, DNP decreased with increasing 

soil nitrate. This unexpected relationship could be due to the range of inundation 

durations experienced by the study wetlands. On one hand, drier wetlands have lower 

potential denitrification, but have more extractable soil nitrate due to aerobic conditions 

that promote nitrification (Groffman and Crawford 2003). Permanently flooded wetlands, 

on the other hand, have lower soil nitrate as anaerobic conditions promote denitrification. 

Hernandez and Mitsch (2007a) found similar results: permanently flooded wetlands had 

lower soil nitrate concentrations, but higher denitrification rates than wetlands that dried 

out periodically. When examining wetlands that range in their inundation durations, a 

more comprehensive measurement such as total N loading would likely be more 

appropriate (Seitzinger et al. 2006) 

Effect of plant traits on DNP 

Several hypothesized plant traits were important predictors of DNP via their 

relationship with soil conditions. Similar to other studies on the effects of plant traits on 

microbial processes such as decomposition (Chapin 2003; Cornwell et al. 2008) and 

nitrogen mineralization (Wedin and Tilman 1990; Orwin et al. 2010), I found that plant 

biomass and tissue chemistry were related to DNP by influencing soil organic matter and 

soil nitrate. Increases in belowground biomass resulted in increased DNP via increased 
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soil organic matter. This is similar to a study by Gift et al. (2010), which did not model 

indirect relationships, but found root biomass was positively correlated to soil organic 

matter, and soil organic matter was positively correlated to DNP. Interestingly, Sutton-

Grier et al. (2012) found  belowground biomass did not significantly affect DNP, but was 

positively correlated to soil organic matter when using an SEM model with direct paths 

only (similar to Model 1). These studies, in combination with this study, provides 

evidence that belowground biomass is an important plant trait for increasing DNP; 

however, it also highlights the importance of including indirect effects in models as 

discussed in the previous section. 

Belowground C:N was negatively related to DNP through soil organic matter, 

supporting my hypothesis that more decomposable tissues (i.e. lower C:N) will increase 

soil organic matter and consequently increase DNP. However, this relationship warrants 

further investigation since the increase in soil organic matter associated with lower C:N 

may by a byproduct of decomposition processes and not the primary mechanism 

increasing denitrification. Similar to this study, previous denitrification studies have 

found that denitrification increases when litter has lower C:N due to increased 

decomposability of tissues (Hume et al. 2002). However, previous decomposition studies 

have found that plant tissues with lower C:N have greater fractions that do not 

decompose and remain as soil organic matter (Berg 2000; Cotrufo et al. 2013). Thus, 

increases in denitrification associated with lower C:N may be driven by increases in the 

labile carbon pool rather than increases in soil organic matter itself.  

I also found support for hypothesized relationships between plant traits and DNP 

via soil nitrate. However, the direction of these relationships should be considered 
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cautiously given that inundation duration is likely influencing the relationship between 

soil nitrate and DNP as discussed previously. Inundation duration may be overwhelming 

the relationship of plant traits to DNP via soil nitrate, but it is still reasonable to examine 

plant-trait effects on soil nitrate. As predicted, increases in rooting depth were related to 

increased soil nitrate. I hypothesized that this would be due to increased infiltration of 

nitrate into soils. While depth of nitrate infiltration was not measured, this finding offers 

support for increased infiltration as a potential mechanism. I also found that increases in 

soil nitrate were associated with decreases in C:N of above- and belowground tissues, 

supporting my hypothesis. This relationship is likely driven by increases in N 

mineralization in tissues with lower C:N (Bragazza et al. 2007; Orwin et al. 2010) 

In addition to the relationships among plant traits and DNP that supported my 

hypotheses, rooting depth and aboveground biomass had unexpected associations with 

DNP (Figure	3.4). Rooting depth was also related to DNP not only via the indirect path 

through soil nitrate discussed above, but also via a negative indirect relationship with soil 

organic matter, and a residual negative direct path to DNP. The negative relationship 

between soil organic matter and rooting depth was surprising, as I would typically expect 

increases in rooting depth to lead to increased soil organic matter (Gift et al. 2010). 

Further, rooting depth was negatively associated with DNP via a residual direct path. 

Residual direct paths reveal that there is a relationship between two variables, but the 

model does not explain the mechanism by which those variables are related (Grace and 

Keeley 2006). Therefore, rooting depth is negatively related to DNP, but the mechanism 

of this effect is not clear. It is also possible that rooting depth is correlated to another, 

unmeasured plant trait that is decreasing DNP. For example, roots can exude oxygen, 
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increasing the redox potential of soils (Ehrenfeld et al. 2005). While this can increase 

denitrification in nitrate limited systems via coupling of nitrification to denitrification, 

urban wetlands receive water with high nitrate concentrations that could result in soils 

where coupled nitrification denitrification is not as important for increasing 

denitrification (Hernandez and Mitsch 2007b). Consequently, increased oxygenation of 

soils could decrease denitrification. It is possible that rooting depth was a proxy 

measurement for the amount of oxygen reaching soils. However, if this were the case, I 

would also expect belowground biomass to perhaps be negatively related to DNP as well. 

Notably, rooting depth has been suggested as a potential plant trait important for 

predicting DNP (Alldred and Baines 2016); however, these results suggest that either 

rooting depth is a poor choice for a plant trait or there needs to be further research on the 

mechanism by which rooting depth affects denitrification. 

Another curious residual direct path was modeled between aboveground biomass 

and DNP (Figure	3.4). This is of particular note, as there was not a significant path from 

aboveground biomass to soil organic matter as I hypothesized. Less aboveground 

biomass is typically incorporated into soil organic matter than belowground biomass so 

aboveground biomass likely is affecting denitrification through another mechanism 

(Puget and Drinkwater 2001). Aboveground biomass can contribute to available 

dissolved organic carbon (Park and Matzner 2003) and the labile carbon pool (Wedin and 

Pastor 1993; Eviner and Chapin 2003). The residual direct path from aboveground 

biomass to DNP in addition to the residual direct path from C:N for aboveground 

biomass to DNP suggest that aboveground plant traits could be affecting DNP through 
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dissolved organic carbon or labile carbon pools that were not measured in this study 

(Duan et al. 2014). 

Relative importance of plant traits and soil conditions 

Both soil conditions and plant traits were important predictors of DNP and many 

of the variables have similar total effects on DNP (Table	3.3). Soil organic matter had by 

far the strongest effect on DNP. This is similar to many studies that have found soil 

organic matter to be an important predictor of DNP (Hernandez and Mitsch 2007a; Gift et 

al. 2010; Sutton-Grier et al. 2012). Rooting depth, aboveground biomass, belowground 

biomass, and soil nitrate all had moderate effects on DNP. While soil organic matter 

retained the strongest effect on DNP, several plant traits had significant total effects on 

DNP. Overall, I found stronger effect of plant traits on DNP than Sutton-Grier et al. 

(2012) who found that soil characteristics were much more important than plant traits for 

explaining DNP. This could be because they modeled plant traits as directly affecting 

DNP; however, it could also result from differences between study sites or methods. For 

example, I measured plant traits in the field, compared to traits measured on plants grown 

in a greenhouse, which could result in a stronger association between plant traits and 

DNP. 

Other considerations 

Environmental variables such as inundation duration or nitrate loading could 

potentially affect how plant traits affect denitrification. For example, wetlands that do not 

flood frequently, or have high nitrate loads, may rely less on coupled nitrification–

denitrification in plant rhizospheres for increasing denitrification. Consequently, plant 

traits linked to oxygen exudation my not be important in wetlands with these 
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environmental conditions (Sutton-Grier et al. 2012). In the study wetlands, hydroperiod 

likely influenced how plant traits affected DNP. This is highlighted by the negative 

relationship between soil nitrate and DNP that was likely due to the inclusion of wetlands 

with a variety of flooding conditions. Varying hydroperiods are characteristic of wetland 

ecosystems and can greatly influence nitrogen cycling due to oscillations between 

anaerobic and aerobic conditions. Therefore, when examining how plant traits affect 

denitrification it will be important to consider to what extent hydrology is also affecting 

these relationships. For this study, I was limited by sample size from parsing out sites by 

hydroperiod and exploring relationship among plant traits, soil conditions, and DNP at 

these sites separately.  

 

CONCLUSION 

As we face a world of rapid environmental change and shifting species 

distributions and abundances, plant traits may be an essential way for us to predict how 

changing community compositions could affect ecosystem processes. Despite the call for 

using plant traits to examine the relationship among plants and ecosystem processes, I am 

aware of only one other study that examines the effect of plant traits on denitrification 

(Sutton-Grier et al. 2012). Further, this is the only study I am aware of to explicitly model 

indirect effects of plant traits on denitrification. Overall, this study provides evidence that 

plant traits indirectly affect denitrification through soil conditions. However, several 

unexplained residual paths highlight our lack of a mechanistic understanding of how 

these plant traits affect denitrification, despite their inclusion in lists of plant traits that 

could affect denitrification (Sutton-Grier et al. 2012; Alldred and Baines 2016). This 
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study also highlights the challenge of disentangling whether plant traits or environmental 

conditions are driving ecosystem processes, a unique challenge in wetlands that are 

characterized by fluctuating inundation levels. Effectively linking plant traits to 

ecosystem functions, such as denitrification, could inform the restoration of degraded 

wetlands, or management of wetlands in urban landscapes where specific services, such 

as nitrate removal, may be desired. 
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TABLES AND FIGURES 
 
Table 3.1. Hypothesized independent variables that could affect potential denitrification 
(DNP). Measured variables could affect potential denitrification either directly (soil 
conditions), or indirectly (plant traits) by affecting soil conditions. 

 
Variables Justification and predicted effect 

Soil conditions   

Soil organic matter 
(SOM) 

Carbon is a required substrate for denitrification (Seitzinger 
et al. 2006; Wallenstein et al. 2006); therefore, increases in 
organic matter will increase carbon sources for denitrifiers. 

Soil NO3 – 

(NO3 –) 
Nitrate is a required substrate for denitrification (Seitzinger 
et al. 2006; Wallenstein et al. 2006); therefore, increases in 
available nitrate will increase potential denitrification. 

Plant traits   

Aboveground biomass 
(AG) 

The more aboveground biomass a plant generates the more 
plant litter will enter the soil (Ehrenfeld 2003; Wardle et al. 
2004); therefore, increases in aboveground biomass will 
result in increases in soil organic matter. 

Belowground biomass 
(BG) 

The more belowground biomass a plant generates more 
carbon will be available through root turnover (Eviner and 
Chapin 2003; Gift et al. 2010); therefore, increases in 
aboveground biomass will result in increases in soil organic 
matter. 

Aboveground C:N 
(CNAG) 

Plant litter with lower C:N ratios is more easily decomposed 
by microbes increasing available carbon for microbes and 
nitrogen mineralization (Craine et al. 2002; Wardle et al. 
2004); therefore, decreases in aboveground C:N ratios will 
result in increases in soil organic matter and soil nitrate. 

Belowground C:N 
(CNBG) 

Plant roots with lower C:N ratios are more easily 
decomposed by microbes increasing available carbon for 
microbes and nitrogen mineralization (Craine et al. 2002; 
Wardle et al. 2004);therefore, decreases in belowground 
C:N ratios will result in increases in soil organic matter and 
soil nitrate. 

Rooting depth 
(RD) 

Roots loosen compacted soils resulting in increased 
infiltration of water and substrates into soil (Gift et al. 
2010); therefore, increases rooting depth will result in 
increases in soil nitrate. 
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Table 3.3.  Standardized and unstandardized path coefficients for Model 1 (direct effects 
only) and Model 2 (indirect effects included). For Model 2, path coefficients reported are 
for total effects. Bolded values are significant at P < 0.05.  
 

 Standardized path coefficients Unstandardized path coefficients 
Paths Model 1 Model 2 Model 1 Model 2 

SOM à DNP 0.68 0.67 11.32 10.96 

NO3 – à DNP -0.21 -0.23 -0.12 -0.13 

AG à DNP 0.29 0.29 0.02 0.02 

BG à DNP -0.05 0.28 -0.005 0.03 

CNAG à DNP -0.20 -0.06 -0.008 -0.002 

CNBG à DNP 0.15 -0.08 0.008 -0.004 

RD à DNP -0.22 -0.38 -0.04 -0.79 
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Table 3.4. Standardized correlations and unstandardized covariates for Model 1. All 
values are significant at P < 0.05, except italicize result for SOM à NO3 –.  

+ Indicate correlations not present in the proposed model. 
 
 
 
 
 
 
 

Paths 

Standardized 
correlations 

Model 1 

Unstandardized 
covariates 
Model 1 

 SOM à NO3 – -0.10 -0.01 
+SOM à AG 0.21 0.32 
+SOM à BG 0.29 0.23 
+SOM à CNAG 0.23 0.42 
+NO3 – à CNAG -0.14 -7.33 
+NO3 – à RD 0.11 1.21 
 AGà BG 0.81 203.89 
 AG à CNAG 0.45 267.62 
 AG à CNBG 0.55 267.70 
 AG à RD 0.60 73.65 
 BG à CNAG 0.44 134.38 
 BGà CNBG 0.57 142.98 
 BG à RD 0.60 38.26 
 CNAG à CNBG 0.25 149.30 
 CNAG à RD 0.32 48.09 
 CNBG à RD 0.70 85.39 
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Figure 3.1. Proposed models for SEM. (A) Model 1 with direct paths and correlations 
only, and (B) Model 2 with indirect paths. Solid lines represent direct paths and dashed 
lines represent correlations. Pluses (+) and minuses (-) represent hypothesized direction 
of effects. 

A 

B 
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Figure 3.2. Bivariate plots of DNP, and soil conditions and plant traits. Note DNP is 
natural log transformed. AG is aboveground and BG is belowground. 
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Figure 3.3. Final model structure and standardized path coefficients for Model 1. Solid 
lines represent direct paths and dashed lines represent correlations. Thickness of lines 
denotes each parameter’s relative influence with thicker lines indicating stronger 
influence. Non-significant paths are indicated by gray lines and italicized coefficients. 
 
 

χ2 = 15.44 
df = 5 
P = 0.009 
R2 = 0.61 
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Figure 3.4. Final model structure and standardized path coefficients for Model 2. 
Thickness of lines denotes each parameter’s relative influence with thicker lines 
indicating stronger influence. Non-significant paths are indicated by gray lines and 
italicized coefficients.

χ2 = 10.09 
df = 5 
P = 0.07 
R2 = 0.59 
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Chapter 4  

NITRATE RETENTION AND DENITRIFICATION AS AFFECTED BY WETLAND 

PLANT PATCH RICHNESS AND EDGE INTERACTIONS 

 

ABSTRACT 

How ecosystem function relates to species richness has been a central debate in 

ecology for the past two decades. However, despite the hundreds of studies in grasslands, 

relatively few have been conducted in wetlands and even fewer have examined how 

species richness in wetlands affects denitrification. Wetland plants often grow in 

monotypic patches, a configuration very different than mixtures typical of grasslands. 

Consequently, wetland plants may only interact at plant patch edges, which could result 

edge interactions being important for increasing ecosystem functions such as 

denitrification. The objectives of this study were to (1) determine if increasing species 

richness increases nitrate retention and denitrification when wetland plants are configured 

as patches and (2) determine if belowground interactions between species at patch edges 

increase nitrate retention and denitrification. 

To test how plant patch richness affects denitrification, I conducted a greenhouse 

experiment with 45 wetland mesocosms planted with one, two or three different patches 

of wetland plants. I measured whole mesocosm nitrate retention, in situ denitrification 

rates and potential denitrification. To test if belowground interactions at plant patch edges 

affected mesocosm nitrate retention and denitrification, an additional 12 mesocosms 

planted with 3 species had a barrier inserted between plant patches to prevent 
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belowground interactions. A field study was conducted to determine if there was spatial 

variation in denitrification between plant patch edges and centers under field conditions. 

I found that increased plant patch richness did not increase whole mesocosm 

nitrate retention, in situ denitrification rates, or potential denitrification; rather, increased 

species richness decreased aboveground biomass. The presence of Typha domingensis 

increased whole mesocosm nitrate retention, in situ denitrification rates and potential 

denitrification. When Paspalum distichum was present in a mesocosm, nitrate retention 

and in situ denitrification rates were lower than when it was absent. The field study 

revealed spatial variation in plant patches where plant patch edges had higher potential 

denitrification than plant patch centers. Interestingly, the greenhouse study did not reveal 

similar patterns of denitrification between plant patch centers and edges. The addition of 

a barrier to block belowground interactions between plant patches increased belowground 

biomass and in situ denitrification rates. 

 

INTRODUCTION 

How ecosystem functions relate to species richness has been a central debate in 

ecology for the past two decades (Dı́az and Cabido 2001; Balvanera et al. 2006; 

Cardinale et al. 2011). Many studies in grasslands have shown that as plant richness 

increases so do certain functions, such as nutrient retention and primary productivity 

(Loreau et al. 2001; Balvanera et al. 2006). Wetlands provide many ecosystem services, 

such as nutrient removal, that could be improved by understanding how plant richness 

affects wetland ecosystem functions. Only a few studies, however, have been conducted 

to assess how species richness affects ecosystem function in wetlands (Engelhardt and 
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Ritchie 2001; Callaway et al. 2003; Bouchard et al. 2007; McGill et al. 2010) compared 

to the hundreds conducted in grasslands (Balvanera et al. 2006; Cardinale et al. 2011). 

Wetlands are often dominated by large monotypic patches of vegetation resulting in a 

configuration of plant patches different than species mixtures and distributions seen in 

grasslands (Spence 1982), resulting in patches of plants that only interact with other 

species at the patch edges. If increased species interactions are driving increased 

ecosystem functions, as work in grasslands suggest (Cardinale et al. 2007), then the 

different configuration of wetland plants could have two consequences for the 

relationship between plant richness and ecosystem function: (1) plant richness may not 

increase ecosystem functions because species are not interacting; and (2) edges of plant 

patches where different species interact could be “hotspots” of microbial processes that 

drive certain ecosystem functions such as denitrification. For this study, I examined if 

wetland patch richness and edge interactions increase nitrate retention and denitrification. 

I used a multicomponent greenhouse experiment to examine how wetland patch richness 

affects wetland mesocosm nitrogen retention and denitrification, and a field study, in 

addition to the greenhouse experiment, to examine how wetland patch edge interactions 

affect denitrification. 

Several hypotheses have been put forward regarding the mechanisms by which 

species richness affects ecosystem functions (Hooper et al. 2005). Three of the most 

common hypotheses are the sampling effect, the insurance effect, and the 

complementarity effect (Tilman 1999; Yachi and Loreau 1999). The sampling effect and 

insurance effect explain the observed relationship between species richness and 

ecosystem function largely as an artifact of the number of species present (Tilman 1999). 
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Specifically, the sampling effect suggests that with greater plant richness the odds 

increase that a functionally superior species will occur in the mixture. The insurance 

effect states species that differ in phenology or responses to environmental variables will 

maintain ecosystem functions at different times (Yachi and Loreau 1999). In contrast, the 

complementarity effect attributes the increase in ecosystem function with increased 

species richness to the synergistic effect of species interactions where species perform 

better when in mixtures than when in monocultures. Complementarity effects can occur 

as the result of either niche differentiation (Tilman 1999) or facilitation (Brooker et al. 

2008), but these processes are difficult to disentangle and are often considered together 

(Fornara and Tilman 2008).  

Plants affect nitrogen retention in wetlands via two pathways: (1) directly, by 

assimilating nitrogen into tissues; and (2) indirectly, by affecting soil conditions through 

leaf litter, root exudates, dead roots, and oxygen exudation (which couples nitrification to 

denitrification) that promote denitrification (Reddy et al. 1989; Callaway et al. 2003; 

Rotkin-Ellman et al. 2004; Wardle et al. 2004; Bais et al. 2006; Gift et al. 2010). Much 

research has been conducted on how species richness affects primary production in 

grasslands (Tilman 2000; Hooper et al. 2005; Cardinale et al. 2011); concluding that the 

complementarity effect is largely driving the observed increase in primary production 

with increased species richness (Cardinale et al. 2007). Increased primary production 

affects the amount of nitrogen retain in systems because as biomass increases, more 

nitrogen is sequestered into tissues of plants (Callaway et al. 2003). Therefore, if the 

complementarity effect drives the relationship among species richness and ecosystem 

functions, I would expect that increased species richness would not affect nitrogen 
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retention via assimilation into plant tissues in wetlands dominated by monotypic patches 

due to the lack of interspecific interactions among monotypic patches.  

Plant richness has also been shown to affect belowground microbial processes and 

consequently could affect denitrification (Hooper et al. 2000; Zak et al. 2003). 

Denitrification is a microbial process that reduces NO3
- into N2 gas, permanently 

removing biologically reactive nitrate from ecosystems. Denitrification occurs when three 

conditions occur, including low oxygen, available labile carbon, and available nitrate 

(Boyer et al. 2006; Seitzinger et al. 2006). Increasing plant richness has also been shown 

to increase N mineralization, which could increase the amount of nitrate available for 

denitrifiers (Zak et al. 2003). Also, increased biomass associated with increased plant 

richness could increase the availability of soil organic matter and thus available soil 

carbon for denitrifiers (Hooper et al. 2000; Fornara and Tilman 2008; Steinauer et al. 

2015). Further, mixed litter and greater chemical diversity of litter has been shown to 

increased decomposition (Bardgett and Shine 1999; Gartner and Cardon 2004; Meier and 

Bowman 2008; Stoler et al. 2016), potentially increasing denitrification. For wetlands 

dominated by monotypic plant patches, this means that denitrification could be greater at 

edges of plant patches where different species are interacting and different litter types or 

belowground carbon sources are available to denitrifying bacteria (Bais et al. 2006). 

For this study, I asked: How do wetland plant patch richness and edge interactions 

between plant patches affect nitrate retention and denitrification? To address this 

question, I conducted both a greenhouse experiment and a field study. To determine how 

wetland plant patch richness affects nitrogen retention and denitrification, I conducted a 
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greenhouse experiment where I planted mesocosms with one, two, or three species 

planted as monotypic patches rather than mixtures. The objectives of this study were: 

1) Determine if increasing wetland patch richness increased whole mesocosm biomass, 

nitrate retention and denitrification. 

2) Determine if specific wetland species are associated with increased whole mesocosm 

nitrate retention and denitrification. 

3) Determine if interactions between certain species at edges of plant patches either 

increase or decrease whole mesocosm nitrate retention and denitrification. 

To determine how species interactions between wetland plant patches affect 

nitrogen retention and denitrification, I conducted a field study, in addition to the 

greenhouse experiment, with the following objectives: 

4) Determine if there is any spatial variation in denitrification between plant patch centers 

and edges in both study wetlands and greenhouse mesocosms. 

5) Determine if interactions among belowground resources increased nitrogen removal 

and denitrification in greenhouse experiment by interrupting belowground interactions. 

This will be the first study to test if increasing the richness in wetlands increases 

ecosystem functions, when wetland plants are configured in patches as observed in most 

wetlands. This study further addresses if changes in ecosystem functions are explained by 

interactions between species by looking for spatial variation within patches at study 

wetlands, and by physically preventing belowground interactions between species in a 

greenhouse experiment.  
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METHODS 

Greenhouse: experimental design 

I conducted a greenhouse experiment in a closed greenhouse on the Arizona State 

University campus in Tempe, Arizona from July 2015 to May 2016. I filled 57 plastic 

bins (87.9 cm x 47.6 cm x 32.1 cm) with 15 cm of a mixture of 90% washed sand and 

10% silt. The soil mixture mimicked unvegetated soils of local wetlands and was low in 

soil organic matter (< 0.001%) to better assess how the addition of plants affected 

denitrification. Bins were outfitted with a drip irrigation system that maintained a 

constant flow through of water with a target flood depth of 4 cm and target water 

residence time of 36 hours (Figure	4.2). The concentration of the inflow of nutrients was 

the same for all mesocosms (Table	4.1) and was generated by dosing DI water with a 

solution of salts in similar concentrations to the Salt River wetlands where the field study 

was conducted (See “Field study” for description of Salt River wetlands). A target 

concentration of 1ppm NO3
- - N was chosen as this represents concentrations typical of 

baseflows into the Salt River wetlands (Palta, unpublished). 

I chose four emergent macrophytes commonly found in monotypic patches in 

wetlands around Phoenix, Arizona: Typha domingensis, Ludwigia peploides, Paspalum 

distichum, and Schoenoplectus americanus. All four species are perennial, emergent 

macrophytes that reproduce vegetatively and are found growing in shallow water of 

wetlands around Phoenix, Arizona. However, they differ in morphologies that could 

affect nitrate retention and denitrification. Typha domingensis is a high-biomass, erect 

emergent macrophyte and has greater rooting depth than the other three species (Grace 

and Wetzel 1982; Boutin and Keddy 1993). Ludwigia peploides is a creeping emergent 
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macrophyte that is shallowly rooted, can quickly grow into dense mats of vegetation in 

the water column, and decomposes rapidly (Rejmánková 1992). Paspalum distichum is a 

creeping, wetland grass with similar biomass to Ludwigia peploides. Schoenoplectus 

americanus is another erect emergent macrophyte, but generates less biomass than Typha 

domingensis (Boyd 1970). Mesocosms were planted with grown plants of similar size 

between June 22nd and July 10th, 2015. Typha domingensis and Ludwigia peploides were 

collected from wetlands in the Salt River in Phoenix, Arizona (33°25'16.44"N, 112° 

3'56.76"W). Schoenoplectus americanus and Paspalum distichum were collected from 

Sycamore Creek, a desert stream near Phoenix, Arizona (33°43'54.08"N, 

111°30'52.65"W). 

Mesocosms were planted with one, two, or three species with three replicates for 

each species combination. Species were not planted in mixture, but rather in distinct 

patches to more closely represent how these species are typically configured in emergent 

wetlands (Figure	4.2Figure	4.3). Amount of individuals planted was adjusted for the 

treatment so the density of plants in a patch was the same across treatments. I also 

maintained three control mesocosms with no plantings throughout the course of the 

experiment for a total of 45 mesocosms. To test whether belowground interactions 

between plant patches affected denitrification, an additional 12 mesocosms planted with 

three species had a plastic belowground barrier inserted into the soil between plant 

patches to prevent belowground interactions (Figure	4.3). 

In addition to measurements of nitrate retention and denitrification discussed 

below, aboveground and belowground biomass was harvested at the end of the 
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experiment in June 2016. Biomass samples were brought to the lab, rinsed to remove soil, 

dried at 60°C for a week, and weighed. 

Greenhouse: whole mesocosm nitrate retention 

Whole mesocosms nitrate retention was measured on three occasions: once at the 

end of the fall in October 2015 (T1), and twice during the spring in April 2016 (T2) and 

May 2016 (T3). Measurements were not taken between these times because plants were 

either senesced or in early stages of growth. To measure whole system nitrate retention, 

inflows and outflows were closed and each mesocosms was spiked with nitrate for a 

target concentration of 1 mg NO3
- - N l-1 in fall and 3 mg NO3

- - N l-1 in spring. Samples 

were taken at 1 and 18 hours after addition of spike for the fall sampling. In the spring, 

samples were taken at 1 and 6 hours after the addition of the nitrate spike. The spike was 

increased and sampling period shortened in the spring due to increased rates of nitrate 

uptake, likely due to increases in denitrifying bacteria (discussed below). Surface water 

samples were collected with a syringe, filtered through GF/F Whatman filter, and frozen 

until analyzed colorimetrically for nitrate on a Lachat QC8000 flow-injection analyzer.  

Greenhouse: denitrification 

I measured denitrification at the end of the study in May 2016 using two methods: 

in situ measurements of denitrification rates and laboratory measurements of 

denitrification potentials. I measured denitrification only once at the end of the study as 

early tests revealed undetectable denitrification in during October 2015 sampling. 

Denitrification was not detected until March 2016 and the microbial community was left 

to develop until the end of the study. To test for the effect of species interactions I took 

denitrification samples from the center and the edges of the patches (Figure	4.4). 
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Denitrification rates were measured in situ using the acetylene block technique 

(Groffman et al. 2006). Acetylene inhibits the reduction of N2O to N2. When this step is 

inhibited, the final product of denitrification becomes the trace gas N2O, which is more 

easily measured than changes in N2, which is abundant in the atmosphere (Groffman et 

al. 2006). A PVC pipe, 3 cm in diameter, was inserted fully into the mesocosms soil and 

allowed to rest for one hour. The water in the pipe was spiked with nitrate to bring the 

background concentration to at least 1 mg NO3
- - N l-1. I did this to prevent nitrate 

limitation that could result from the pipe blocking the diffusion of nitrate into the soils. I 

then injected 15 ml acetylene (10% of the headspace) directly into the surface water to 

facilitate diffusion into the soils (Ryden and Dawson 1982; Hernandez and Mitsch 2007) 

and then capped the pipe with a well cap fitted with a septum. Gas samples were taken 

from the headspace immediately after capping and after 20 hours, and analyzed on a 

Varian 3800 gas chromatograph for N2O concentration.  

Potential denitrification was measured in the lab using denitrification enzymes 

assays (DEAs; Groffman et al. 1999). Potential denitrification is a measurement of 

denitrification under optimal conditions (excess carbon, excess nitrate, and anaerobic 

soils). While potential denitrification does not give rate measurements, it may allow for 

clearer comparisons among treatments, as potential denitrification is sensitive to changes 

in environmental conditions (Groffman et al. 2006). For DEAs, 50 grams of soil and 50 

ml of media were added into a 125 ml Wheaton bottle. To ensure neither nitrate nor 

carbon were limiting, media was amended with NO3
- (100 mg NO3-N kg-1 soil as KNO3) 

and carbon (40 mg glucose-C kg-1 soil as glucose). Headspace of samples was replaced 

with N2 gas to create anaerobic conditions, and 10ml of acetylene gas was added to 
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inhibit the reduction of N2O to N2. Samples were incubated at room temperature and 

shaken at 140 rpm for 4 hours. Gas samples were taken from the headspace at 30 minutes 

and 4 hours, and analyzed on a Varian 3800 gas chromatograph for N2O concentration. 

Whole mesocosm denitrification estimates were calculated by scaling in situ or DEA 

measurements by patch area.  

Field study 

To examine if denitrification differed spatially between the edge and centers of 

wetlands plant patches, soil and water samples were collected from different plant 

patches in two wetlands located in the Salt River in Phoenix, Arizona in April 2016. 

These wetlands received water from storm drains that discharge urban baseflow during 

dry periods and consequently remained inundated for much of the year. The wetlands are 

dominated by patches of Typha domingensis and Ludwigia peploides as well as open, 

unvegetated areas (Figure	4.2). At each wetland, I established transects (four at one 

wetland, seven at the other) perpendicular to bank that crossed different plant patches and 

open areas. Along each transect, I collected soil cores, surface water samples, and water 

depth measurements at patch edges and at patch centers (Figure	4.5). Soil cores were 

taken to a maximum depth of 10 cm to encompass the most active part of the soil 

(Groffman et al. 1999). Soil cores were stored on ice in the field and then stored at 4 °C 

in the lab until processed (within 24 hours). Surface water, when present, was filtered 

through a GF/F Whatman filter, and frozen until analyzed colorimetrically for nitrate and 

ammonium on a Lachat QC8000 flow-injection analyzer.  

Soil cores were homogenized and analyzed for soil moisture, soil organic matter, 

soil texture, and denitrification potential. Soil moisture was determined gravimetrically 
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by drying soils for 48 hours at 105 °C. Soil organic matter was determined by mass loss 

on ignition for 4 hours at 550 °C. Denitrification was measured using denitrification 

enzymes assays, the same method described in the section “Greenhouse: denitrification” 

(Groffman et al. 1999).  

Statistical analyses 

Linear regression was used determine if diversity treatment (number of species) 

affected final above- and belowground biomass, whole mesocosm nitrate retention, and 

whole mesocosm denitrification (objective 1). Control mesocosms were excluded from 

regression to ensure results were comparisons of different richness treatments and not 

planted versus unplanted treatments. Multiple regression was also used to assess if the 

presence/absence of a species or of a particular species interaction affected mesocosm 

nitrate retention and denitrification (objective 2 and 3). For whole mesocosm nitrate 

retention, the starting concentration of nitrate in each mesocosm was included in the 

regression as a covariate, because the starting concentration of nitrate in each mesocosm 

was not exactly the same. Multiple regressions were run for each sampling date 

separately. In situ denitrification rates and potential denitrification were log transformed 

to conform to rules of normality for regressions. 

To determine if species interactions affected denitrification in the greenhouse 

experiment, paired t-tests were use to test if there were differences between the centers 

and edges of patches for mesocosms planted with two or three species (objective 4). 

ANOVA with Tukey’s HSD post hoc tests was use to test if particular species 

interactions affected the magnitude of difference between patch centers and edges 

(calculated as center - edge). 
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For the field study, ANOVA with Tukey’s HSD post hoc tests were used to test if 

there were between patch differences and spatial variability within patches of potential 

denitrification. Sampling locations within a patch were put into three categories: patch 

centers, patch edges, and patch bank. Patch bank was a sampling location in a plant patch 

at the outer edge of the wetland. These sampling locations were different than patch 

edges because at bank locations plants patches were not clearly interacting with another 

wetland patch type (Figure	4.5).  

To test if belowground interactions affected mesocosm nitrate retention, 

denitrification, and above- and belowground biomass (objective 5), paired t-tests were 

used to compare bins with and without barriers. Test bins were “paired” in the 

greenhouse such that they were on the same irrigation line and spatially adjacent to 

account for any environmental factors (e.g. duration or timing of sun exposure) in the 

greenhouse that could affect plant growth. All statistical analyses were conducted in 

SPSS v19. 

 

RESULTS 

Overall, the greenhouse study revealed species richness was less important for 

explaining nitrate retention and denitrification than the presence of particular species in a 

mesocosm. Further, field study revealed patch edges had higher potential denitrification 

than patch centers, but this pattern was not reflected in the greenhouse experiment. The 

following section describes the specific results for each study objective of the greenhouse 

experiment and field study. 
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Objective 1: Effect of plant patch richness on biomass, nitrate retention and 

denitrification 

Plant patch richness significantly decreased aboveground biomass (β =- 0.36, P = 

0.02; Figure	4.6a), and did not have a significant effect on belowground biomass (Figure	

4.6b). Plant patch richness also did not affect whole mesocosm nitrate uptake in any 

sampling period (Figure	4.7), in situ denitrification rate (Figure	4.8a), or potential 

denitrification (Figure	4.8b). When mesocosms were lumped as monotypic mesocosm 

versus multiple patch mesocosms, there was a significant increase in whole mesocosm 

nitrate retention in October 2015 (T1; t-test: t = -2.20, df = 40, P = 0.03), but not in April 

or May 2016 (T2 and T3; t-test: t = 1.36, df = 40, P = 0.18; t = -0.94, df = 40, P = 0.35 

respectively). 

Objective 2:Effect of individual species on whole mesocosm nitrate retention and 

denitrification 

To better understand how plant patch richness affected ecosystem function, I used 

multiple linear regression to examine the individual effect of each of the four species on 

mesocosm nitrate retention and denitrification. 

The presence of certain plant species affected whole mesocosms nitrate retention, 

but which species affected nitrate retention changed across sampling periods. In October 

2015 (T1), no individual species affected nitrate retention. In April 2016 (T2), nitrate 

retention was reduced by 33% in mesocosms with Paspalum distichum compared to 

when it was absent (P = 0.009; Table	4.2). This trend continued into May 2016 (T3), 

where nitrate retention was reduced by 51% in mesocosms with Paspalum distichum 

compared to when it was absent (P = 0.02; 4.2). Further, during T3, mesocosms with 
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Typha domingensis removed 77% more nitrate than mesocosms without it (P = 0.02; 

Table	4.2). 

The presence of Paspalum distichum and Typha domingensis also affected 

denitrification measurements, but the presence of the other two species did not. In situ 

denitrification rates were reduced by 60% in mesocosms with Paspalum distichum 

compared to mesocosms without it (P = 0.003; Table	4.3). In mesocosms with Typha 

domingensis, in situ denitrification rates doubled (P = 0.02; Table	4.3). Paspalum 

distichum did not have an effect on potential denitrification (DEAs), but mesocosms with 

Typha domingensis had 60% greater potential denitrification than mesocosms in which it 

was absent (P = 0.03; Table	4.3).  

Objective 3: Effect of species edge interactions on mesocosm nitrate retention and 

denitrification 

Species interactions could also affect nitrate retention and denitrification, so I 

used multiple linear regression to examine the effect of the presence of particular species 

interactions. Species interactions are defined as two patches that are adjacent to each 

other.  

Species interactions did not affect mesocosm nitrate retention in October 2015 

(T1). In April 2016 (T2), two species interactions decreased mesocosm nitrate retention. 

Interactions between Ludwigia peploides/Paspalum distichum (LP) and Paspalum 

distichum/Schoenoplectus americanus (PS) reduced mesocosm nitrate uptake by 37% and 

42% respectively compared to mesocosms without those interactions (P = 0.01, P = 0.03 

respectively; Table	4.4). In May 2016 (T3), LP remained significant, reducing mesocosm 

nitrate retention by 19% (P = 0.05; Table 4.4). Ludwigia peploides/Typha domingensis 
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(LT) interaction significantly increased nitrate retention in mesocosms by 61% (P = 0.05; 

Table	4.4). 

Similar to whole mesocosm nitrate retention, LP interaction decreased in situ 

mesocosm denitrification rates by 50% (P = 0.02; Table	4.5). Species interactions did not 

affect mesocosm potential denitrification (Table	4.5). 

Objective 4: Spatial variation between plant patch centers and edges 

In the field study, I examined how potential denitrification varied within patches 

by sampling in different locations: patch centers, patch edges, and bank locations (Figure	

4.5). Location had a significant effect (i.e. center, edge, bank; ANOVA: F2,78 = 5.92, P = 

0.004) with potential denitrification at patch edges being significantly greater than patch 

centers and bank locations (Figure	4.9a). Patch type (i.e. Ludwigia peploides, Typha 

domingensis, or open) also significantly affected potential denitrification (ANOVA: F2,78 

= 7.30, P = 0.001) with Ludwigia peploides patches having the greatest potential 

denitrification (Figure	4.9b). Potential denitrification was not different between patch 

centers of different species (ANOVA: F2,30 = 2.43, P = 0.115; Figure	4.10), but was 

different among different types of edge locations (ANOVA: F6,40 = 5.17, P = 0.001; 

Figure	4.10). This suggests the differences observed among patch types were driven by 

differences only at edge locations. There also were not differences among soil organic 

matter, soil moisture, surface water nitrate concentrations, or %silt/clay among patch 

centers, edges and banks (ANOVA: F2,78 = 1.74, P = 0.07; F2,78 = 1.36, P = 0.26; F2,78 = 

0.18, P = 0.83; F2,78 = 1.23, P = 0.30 respectively). These soil and water conditions are 

often important predictors of denitrification (Boyer et al. 2006; Seitzinger et al. 2006). 
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Consequently, this suggests that spatial variation in these soil and water conditions are 

not explaining the observed spatial variation in potential denitrification at these wetlands. 

In the greenhouse study, there was no spatial variability within patches (i.e. no 

differences between plant patch centers and edges) for both in situ rates of denitrification 

(paired t-test: t = 1.5, df = 83, P = 0.14) and potential denitrification (paired t-test: t = 

0.90, df = 83, P = 0.37). Further, there was no effect of type of edge interaction on the 

difference between plant patch edges and centers for in situ rates (ANOVA: F5,78 = 0.41, 

P = 0.84) and potential denitrification (ANOVA: F5,78 = 0.29, P = 0.92). 

Objective 5: Effect of belowground interactions on whole mesocosm nitrate removal and 

denitrification 

To test if belowground interactions affected nitrate retention and denitrification, 

belowground barriers were added into some mesocosms to prevent belowground 

interactions. The addition of belowground barriers significantly increased total mesocosm 

belowground biomass, total mesocosm nitrate retention during April 2016 (T2) sampling 

period, and in situ denitrification rates (paired t-test: t = -2.61, df = 11, P = 0.02; t = -

3.37, df = 11, P = 0.006; and t = -2.34, df = 11, P = 0.04 respectively; Figure	4.11). The 

increase in total mesocosm belowground biomass in mesocosms with barriers was 

reflected in the increase in total belowground biomass of Typha domingensis only (paired 

t-test: t = -2.90, df = 8, P = 0.02). The addition of belowground barriers also increased the 

difference between center and edges of patches for in situ rates of denitrification (paired 

t-test: t = -2.53, df = 44, P = 0.02; Figure	4.12). This difference was driven by a 

significant increase of in situ rates of denitrification in patch centers in barrier treatments 

(t-test: t = -2.89, df = 94, P = 0.005; Figure	4.13). 
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DISCUSSION 

Five main conclusions can be drawn from the results. (1) Species richness affects 

biomass, but (2) does not affect nitrate retention or denitrification. (3) Individual species, 

rather than species richness, are more important for explaining nitrate retention and 

denitrification. (4) Wetlands in the field show spatial variation in potential denitrification 

in plant patches, but this pattern is not reflected in greenhouse experiment. (5) Blocking 

belowground interactions between species increases belowground biomass and in situ 

denitrification rates. 

 Species richness and biomass 

In this study, aboveground biomass decreased with increasing richness, while 

belowground biomass remained unchanged. Previous studies have found different 

relationships among species richness and biomass. Of the few studies manipulating 

species richness in wetlands, researchers have found both no effect on above- or 

belowground biomass with increasing species richness (Engelhardt and Ritchie 2001), 

and increasing total and belowground biomass with increasing richness (Callaway et al. 

2003; Bouchard et al. 2007). Notably, these studies examined different wetland 

community types. Engelhardt and Ritchie (2001) examined submerged clonal 

macrophytes that often grow in monotypic patches but were planted in mixtures for the 

experiment. Bouchard et al. (2007) specifically excluded clonal dominants from their 

study (they were included in my study) and Callaway et al. (2003) examined a wetland 

halophyte community. Further, in these studies species were grown in mixtures, a 

configuration similar to grassland studies. Field studies have also found either a lack of 

correlation between species richness and biomass in wetlands, or higher biomass 
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associated with fewer species (Moore and Keddy 1989; García et al. 1993). Taken 

together, this suggests the relationship between species richness and productivity in 

wetlands is not as clear as it is in grasslands (Cardinale et al. 2011) and more studies are 

necessary to elucidate the relationship between the two. One key difference between 

wetlands and grasslands is wetlands are characterized by fluctuations in inundation. How 

frequently wetlands inundate partially dictates the zonation of wetland functional groups 

and these different groups may respond differently to the presence of other species (van 

der Valk 1981; Boutin and Keddy 1993). Therefore, it is possible the direction of the 

relationship between species richness and biomass could be dependent on the 

environmental context, such as inundation duration, in wetlands (Casanova and Brock 

2000).  

Whole mesocosm nitrate removal and denitrification did not increase with increasing 

species richness 

Increasing species richness had no effect on whole mesocosm nitrate retention or 

denitrification. Again, the studies examining this relationship in wetlands are limited, and 

produced mixed results. Callaway et al. (2003) found increasing species richness 

increased retention of nitrogen in plant biomass, but did not measure microbial processes 

such as denitrification. Similar to this study, Engelhardt and Ritchie (2001) found no 

effect of species richness in whole mesocosm nitrogen retention. Of the two studies 

examining the relationship between species richness and potential denitrification in 

wetlands, no relationship was found (Bouchard et al. 2007; McGill et al. 2010). It is clear 

that more studies need to be conducted on how species richness affects nitrogen retention 

in wetlands before any generalizations can be made. One important consideration in 
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future studies should be distinguishing between the two mechanisms of nitrogen retention 

in wetlands: assimilation into plant tissues and denitrification. These might be affected 

differently by species richness, muddling correlations between species richness and 

whole system nitrogen retention in wetlands. In grasslands, increases in nitrogen 

retention with increases in species diversity are attributed to increased assimilation of 

nitrogen into plant tissues. Because grasslands are not frequently saturated, conditions are 

not conducive for denitrification and plant uptake accounts for more nitrogen retention 

than denitrification (Scherer-Lorenzen et al. 2003; Palmborg et al. 2005). However, 

wetland soils are frequently inundated, creating conditions more conducive to 

denitrification. This results in a situation where both plant uptake and denitrification are 

contributing to nitrogen retention. Increased species richness could still result in wetland 

plant tissues assimilating more nitrate (Callaway et al. 2003), but denitrifiers could use 

remaining available soil nitrate, masking the effect of plant uptake on whole mesocosm 

nitrogen retention experiments (Bachand and Horne 1999). My study did find patterns 

suggestive of such a masking effect. In October 2015 sampling (T1), I could not detect 

denitrification with DEAs suggesting the first sampling period was representative of only 

plant assimilation of nitrate. At T1, there was a significant increase in whole mesocosm 

nitrate retention in mesocosm planted with multiple species, versus mesocosms planted 

with one species. After the denitrifying microbes established, there no longer were such 

differences between mesocosms with single and multiple species. This certainly is not 

conclusive, as I did not intend to test the effects of plant species richness on nitrate 

retention before and after denitrifying microbes were established. However, it does 

suggest that studies parsing out the effects of plant assimilation and denitrification could 
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offer better insight into the mechanisms by which species richness affects nitrate 

retention in wetlands. 

Individual species are more important for nitrate retention and denitrification 

The results of the greenhouse experiment suggest that the presence of certain 

species were more important for whole mesocosm nitrate retention and denitrification 

than species richness. Typha domingensis and Paspalum distichum had the greatest, but 

opposite, effects on nitrate retention and denitrification. Similar to other studies, the 

presence of Typha domingensis increased both whole mesocosm nitrate retention and 

denitrification (Davis 1991; Bachand and Horne 1999; Maltais-Landry et al. 2009). 

Typha domingensis also has the greatest biomass of the four experimental species so it is 

likely to accumulate more nitrogen in plant tissues contributing to greater mesocosm 

nitrate retention (Tanner 1996). Further, increasing plant biomass often increases 

denitrification likely due to increased availability of organic matter; another mechanism 

by which Typha domingensis could affect nitrate retention and denitrification (Sutton-

Grier et al. 2012). Interestingly, the presence of Paspalum distichum decreased nitrate 

retention and in situ denitrification rates compared to mesocosms in which it was absent, 

but did not affect potential denitrification rates. It is not clear why this is the case. 

Paspalum distichum did not have the lowest biomass of the four species so it likely 

another unmeasured plant effect on soil conditions, such as oxygenation of the 

rhizosphere or labile carbon availability (Reddy et al. 1989), limited denitrification in situ 

but did not affect potential denitrification measurements which are taken under optimal 

conditions for denitrifiers (low oxygen, high carbon, and high nitrate; Alldred and Baines 

2016). Plants affect denitrification by changing the soil environment that denitrifiers 
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experience (Zak et al. 2003; Wardle et al. 2004). How plants change the soil environment 

will depend on the specific morphology and physiology (i.e plant traits) of the species. 

Before we can understand how species richness affects denitrification, we need a better 

understanding of the mechanistic link between plant species and denitrification. 

Spatial variation 

The field study revealed spatial variation within plant patches such that edge 

locations within plant patches were higher than centers. I hypothesized that patch edges 

that were interacting with other plant patches would have higher potential denitrification 

due to diversity of litter or belowground carbon sources available at those locations 

(Meier and Bowman 2008); however, even edges adjacent to open (unvegetated areas) 

had higher potential denitrification than patch centers. This result could still be due to 

increased diversity of carbon sources, as algae often colonize open areas at these 

particular study sites; however, this pattern could also be the result of another, 

unmeasured mechanism, such as hydrodynamics, because other common predictors of 

denitrification (soil organic matter, soil texture) did not show spatial variation within 

patches. 

The hypothesis that plant interactions at edges of patches would increase 

denitrification was further tested in the greenhouse experiment. Interestingly, plant 

patches in the greenhouse lacked of spatial variation. Given the short duration of the 

experiment (less than one year), it is possible greenhouse mesocosms were not given 

enough time to develop substantial interactions among patches that could affect 

denitrification. Barriers were placed in a subset of greenhouse mesocosms to further test 

if diversity of belowground carbon sources would increase denitrification. If this 
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hypothesis is correct, then denitrification would decrease in the presence of barriers, and 

edges and centers would be more similar to each other. Instead, the presence of a 

belowground barrier increased belowground biomass and in situ denitrification rates, but 

did not increase potential denitrification. This seems to imply that interacting edges of 

patches were inhibiting in situ denitrification rates resulting in higher rates in mesocosms 

with barriers. Interestingly, this was not the case as there were no differences between 

centers and edges of patches in mesocosms without barriers. Rather, the addition of 

barriers created a significant gradient between centers and edges of patches that was 

largely driven by an increase in in situ denitrification rates at patch centers. It is possible 

that the increase in denitrification rates was driven by an increase in biomass in 

mesocosms with barriers; however, it is not clear why this was not reflected in potential 

denitrification as well. 

Synthesis 

This study was the first to examine the relationships between species richness and 

ecosystem function using the patch configurations of clonal plants typical of many 

wetlands. Only a few studies have examined how species diversity affects ecosystem 

functions in wetlands, and each has been conducted in wetlands with different plant 

communities and with different hydroperiods as discussed earlier. The varying results 

from these studies, including this one, suggests that wetlands cannot be lumped into one 

category, but rather plant community type, hydroperiod, and configuration of plants in 

wetlands need to be considered when examining relationships among biodiversity and 

ecosystem functions. This study further highlights the need to parse out the effects of 

plant assimilation and denitrification in nitrogen retention, an important distinction as 
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denitrification often accounts for a significant portion of nitrate removal in wetlands 

(Bachand and Horne 1999).  

Notably, greenhouse experiment and field study results were not in agreement. 

Different species have the highest potential denitrification in greenhouse experiment and 

field study (Typha domingensis and Ludwigia peploides respectively). Field study also 

shows strong positive effect of edge interactions, while greenhouse experiment suggests 

no effect of edge interactions on denitrification. The short duration of this experiment 

could explain some disagreement between studies as greenhouse mesocosms were newly 

established and denitrifying microbes took several months to develop. Running a 

multiyear greenhouse experiment could reveal changes in patterns of denitrification as 

wetlands develop.  

Belowground interspecific interactions among plants result in competition that 

can lead to changes in biomass (Casper and Jackson 1997; Bais et al. 2006). The 

combined effect of increased belowground biomass in mesocosms with barriers, and 

increased aboveground biomass in mesocosm with one species, suggest that competition 

among these wetland species decrease biomass when more than one species is present, 

rather than increase biomass as commonly observed in grasslands. 

 

CONCLUSION 

Generalizable relationships between species richness and ecosystem functions 

may be challenging in wetlands given the various hydrologic environments (e.g. standing 

water vs no standing water) and growth forms of plants (e.g. submerged vs emergent; 

clonal vs. not clonal) that can influence ecosystem functions (van der Valk 1981; Boutin 
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and Keddy 1993). For example, denitrification could be an important pathway of loss for 

nitrate in permanently saturated wetlands, where as plant uptake could be more important 

in wetlands with fluctuating water levels (Hernandez and Mitsch 2007). Given the 

diversity of wetland types, a mechanistic understanding of what plant traits increase 

nitrogen assimilation and denitrification is needed to fully understand how changing 

hydrology could mediate the relationship between species richness and nitrate retention 

in wetlands. 
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TABLES AND FIGURES 
 
Table 4.1. Target concentrations of water used in greenhouse experiment. 
 
Solute Added as Target concentration 
NO3

-
 -N KNO3 1 mg-N l-1 

PO4-P NaH2PO4  1 mg-P l-1 
K+ Instant ocean and KNO3 10 mg l-1 
Cl- Instant ocean 306 mg l-1 
Na+ Instant ocean 250 mg l-1 
Fe2+ FeSO4   0.01 mg l-1 
Mg2+ Instant ocean 27 mg l-1 
Mn2+ Instant ocean 0.003 mg l-1 
SO4

2- Instant ocean 30 mg l-1 
Ca2+ Instant ocean and CaCl2 17 mg l-1 
Si Instant ocean 5 mg l-1 
DOC Glucose 7 mg l-1 
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Table 4.2. Mean mesocosm nitrate removal (mg NO3
--N h-1) for the presence and absence 

of each species. Parentheses contain 95% confidence interval. Results of multiple 
regression for each sampling period presented as standardized beta coefficient and P-
value. Significant results are bolded. L = Ludwigia peploides; P = Paspalum distichum; S 
= Schoenoplectus americanus; T = Typha domingensis.  
 

 Present Absent 
Std beta 
coefficient P 

T1 (October 2015)    
L 0.1 (0.1, 0.2) 0.1 (0.0, 0.2) 0.21 0.11 
P 0.1 (0.1, 0.2) 0.1 (0.0, 0.1) 0.13 0.32 
S 0.1 (0.1, 0.2) 0.1 (0.1, 0.2) -0.02 0.91 
T 0.1 (0.1, 0.2) 0.1 (0.1, 0.1) 0.009 0.95 
starting conc   0.635 <0.001 

T2 (April 2016)    
L 2.4 (1.8, 2.9) 2.6 (2.1, 3.2) -0.15 0.32 
P 2.0 (1.5, 2.5) 3.0 (2.5, 3.5) -0.42 0.009 
S 2.4 (1.9, 2.8) 2.6 (2.0, 3.2) -0.15 0.33 
T 2.9 (2.3, 3.4) 2.1 (1.6, 2.7) 0.18 0.24 
starting conc   0.05 0.81 

T3 (May 2016)    
L 4.0 (2.9, 5.0) 2.1 (1.0, 3.3) 0.02 0.87 
P 2.0 (1.0, 3.0) 4.1 (2.9, 5.3) -0.23 0.02 
S 2.8 (1.7, 3.8) 3.4 (2.1, 4.6) -0.14 0.16 
T 3.9 (2.8, 5.0) 2.2 (1.1, 3.4) 0.22 0.02 
starting conc   0.70 <0.001 
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Table 4.3. Mean mesocosm in situ denitrification rates (mg N2O-N m-2 h-1) and potential 
denitrification (mg N2O-N m-2 h-1) the presence and absence of each species. Parentheses 
contain 95% confidence interval. Results of multiple regression for each sampling period 
presented as standardized beta coefficient and P-value. Significant results are bolded. L = 
Ludwigia peploides; P = Paspalum distichum; S = Schoenoplectus americanus; T = 
Typha domingensis.  
 

 Present Absent 
Std beta 
coefficient 

P 

In situ rates     
L 0.3 (0.2, 0.5) 0.3 (0.2, 0.5) -0.08 0.60 
P 0.2 (0.2, 0.3) 0.5 (0.3, 0.7) -0.46 0.003 
S 0.3 (0.2, 0.4) 0.3 (0.2, 0.5) -0.13 0.35 
T 0.4 (0.3, 0.6) 0.2 (0.2, 0.4) 0.25 0.02 
Potential denitrification    
L 5.1 (3.6, 7.3) 6.9 (5.6, 8.4) -0.15 0.32 
P 5.3(4.3, 6.5) 5.3 (4.3, 6.5) -0.11 0.47 
S 6.9 (5.5, 8.6) 5.1(3.7, 7.2) 0.23 0.14 
T 7.5 (6.0, 9.4) 4.7 (3.4, 6.4) 0.35 0.03 
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Table 4.4. Mean mesocosm nitrate removal (mg NO3

--N h-1) for the presence or absence 
of species interactions. Parentheses contain 95% confidence interval. Results of multiple 
regression for each sampling period presented as standardized beta coefficient and P-
value. Significant results are bolded. LP = Ludwigia peploides/Paspalum distichum; LS = 
Ludwigia peploides/Schoenoplectus americanus; LT = Ludwigia peploides/Typha 
domingensis; PS = Paspalum distichum/ Schoenoplectus americanus; PT = Paspalum 
distichum/ Typha domingensis; ST = Schoenoplectus americanus/Typha domingensis. 
 

 Present Absent 
Std beta 
coefficient P 

T1 (October 2015)    
LP 0.1 (0.1, 0.2) 0.1 (0.1, 0.1) 0.15 0.31 
LS 0.1 (0.1, 0.1) 0.1 (0.1, 0.2) 0.14 0.33 
LT 0.1 (0.1, 0.2) 0.1 (0.1, 0.1) 0.06 0.69 
PS 0.2 (0.0, 0.3) 0.1 (0.1, 0.1) -0.02 0.90 
PT 0.2 (0.1, 0.4) 0.1 (0.1, 0.1) 0.14 0.38 
ST 0.1 (0.0, 0.1) 0.1 (0.1, 0.2) -0.17 0.24 
starting conc   0.61 <0.001 
T2 (April 2016)    
LP 1.7 (0.9, 2.6) 2.7 (2.3, 3.1) -0.45 0.01 
LS 2.6 (2.1, 3.2) 2.4 (2.0, 2.9) 0.11 0.51 
LT 2.8 (1.7, 3.9) 2.4 (2.0, 2.9) 0.18 0.27 
PS 1.5 (0.5, 2.6) 2.6 (2.2, 3.0) -0.38 0.03 
PT 2.3 (1.8, 2.8) 2.5 (2.1, 3.0) 0.06 0.73 
ST 2.8 (1.9, 3.7) 2.4 (2.0, 2.9) -0.05 0.78 
starting conc   0.08 0.60 
T3 (May 2016)    
LP 2.6 (1.4, 3.8) 3.2 (2.2, 4.2) -0.22 0.05 
LS 3.7 (2.5, 4.9) 2.9 (1.9, 3.9) -0.02 0.90 
LT 4.5 (2.5, 6.5) 2.8 (1.9, 3.7) 0.22 0.05 
PS 1.3 (-0.2, 2.9) 3.3 (2.4, 4.2) -0.14 0.21 
PT 2.5 (0.2, 4.8) 3.2 (2.3, 4.0) 0.07 0.54 
ST 5.0 (3.0, 6.9) 2.7 (1.9, 3.6) 0.05 0.67 
starting conc   0.74 <0.001 
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Table 4.5. Mean mesocosm in situ denitrification rates (mg N2O-N m-2 h-1) and potential 
denitrification (mg N2O-N m-2 h-1) for the presence and absence of species interactions. 
Parentheses contain 95% confidence interval. Results of multiple regression for each 
sampling period presented as standardized beta coefficient and P-value. Significant 
results are bolded. LP = Ludwigia peploides/Paspalum distichum; LS = Ludwigia 
peploides/Schoenoplectus americanus; LT = Ludwigia peploides/Typha domingensis; PS 
= Paspalum distichum/ Schoenoplectus americanus; PT = Paspalum distichum/ Typha 
domingensis; ST = Schoenoplectus americanus/Typha domingensis. 
 
 

 Present Absent 
Std beta 
coefficient P 

In situ rates     
LP 0.2 (0.2, 0.3) 0.4 (0.3, 0.5) -0.40 0.02 
LS 0.3 (0.2, 0.5) 0.3 (0.2, 0.4) -0.04 0.82 
LT 0.5 (0.3, 0.8) 0.3 (0.2, 0.4) 0.26 0.12 
PS 0.2 (0.1, 0.3) 0.3 (0.3, 0.5) -0.25 0.14 
PT 0.3 (0.1, 0.5) 0.3 (0.3, 0.4) -0.02 0.90 
ST 0.5 (0.3, 0.9) 0.3 (0.2, 0.4) 0.16 0.32 
Potential denitrification    
LP 4.6 (3.2, 6.7) 6.4 (5.0, 8.1) -0.29 0.11 
LS 7.9 (5.4, 11.4) 5.5 (4.3, 7.0) 0.32 0.07 
LT 6.8 (4.1, 11.1) 5.8 (4.6, 7.3) 0.25 0.15 
PS 5.1 (3.7, 7.0) 6.1 (4.8, 7.7) -0.12 0.51 
PT 6.8 (4.8, 9.7) 5.8 (4.6, 7.3) 0.19 0.28 
ST 7.7 (4.6, 12.7) 5.7 (4.5, 7.1) 0.06 0.73 
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Figure 4.1. Image of greenhouse experiment setup. 
  



 127 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2. Wetland in Salt River highlighting monotypic patches typical of emergent 
wetlands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3. Image of barriers in mesocosm planted with three patches. 
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Figure 4.4. Denitrification sampling locations in mesocosms for each richness treatment. 
Different patterns represent different patch type. Solid circles represent center of patch 
sampling locations. Solid squares represent edge of patch sampling locations. 
  

One patch Two patches Three patches 
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Figure 4.5. Field sampling locations. Different patterns represent different patch types. 
Solid circles represent center of patch sampling locations. Solid squares represent edge of 
patch sampling locations. Triangles represent bank sampling locations. 
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Figure 4.6. Effects of mesocosm plant patch richness on biomass. (A) Aboveground 
biomass, and (B) belowground biomass. Solid circles represent treatments included in 
regression. Line represents simple regression. Open circles represent unplanted control 
mesocosms not included in regression. 
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Figure 4.7. Effects of mesocosm plant patch richness on whole mesocosm nitrate 
removal. Sampling periods are (A) T1 in October 2015, (B) T2 in April 2016, and (C) T3 
in May 2016. Solid circles represent treatments included in regression. Line represents 
simple regression. Open circles represent unplanted control mesocosms not included in 
regression. Note scale differences. 
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Figure 4.8. Effects of mesocosm plant patch richness on denitrification. (A) In situ 
denitrification rates, and (B) denitrification potential. Solid circles represent treatments 
included in regression. Line represents simple regression. Open circles represent 
unplanted control mesocosms not included in regression. 
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Figure 4.9. Mean potential denitrification (DNP) of different sampling locations in field 
study. (A) Patch centers, edges, and banks, and (B) patch types. Significance level P < 
0.05. Bars represent ±1 SE.  
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Figure 4.10. Mean potential denitrification (DNP) of different patch interactions in field 
study. Center locations are: O=open (unvegetated) patches; L=Ludwigia peploides; 
T=Typha domingensis. Edge locations use two letter codes using the same patch codes 
plus B=bank. The first letter indicates the patch the sample was taken in and the second 
letter indicate the adjacent patch. Therefore, LT indicates a sample collected at the edge 
of a Ludwigia peploides patch that was adjacent to a Typha domingensis patch. While TL 
indicates a samples take in a Typha domingensis patch that was adjacent to a Ludwigia 
peploides patch. See legend for visual depiction of sampling locations. Center locations 
compared with ANOVA and edge locations compared with ANOVA. Significance level 
P < 0.05. Bars represent ±1 SE.   
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Figure 4.11. Mean differences between mesocosms without and with a belowground 
barrier. (A) Aboveground biomass, (B) belowground biomass, whole mesocosm nitrate 
uptake at (C) T1, (D) T2, and (E) T3, (F) in situ denitrification rates, and (G) potential 
denitrification. Bars represent ±1 SE. Note scale differences. 
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Figure 4.12. Difference between in situ denitrification rates at patch centers and edges 
(calculates as center – edge) for treatments without and with a barrier. A value below 
zero represents a gradient where denitrification is lower at patch centers than edges. A 
value equal to zero represents no gradient where patch centers and edges are equal. A 
value above zero represents a gradient where denitrification is higher at patch centers 
than edges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13. Mean in situ denitrification rates for patch edges in treatments without and 
with a barrier, and patch centers with and without a barrier.

-0.1 

-0.05 

0 

0.05 

0.1 

0.15 

0.2 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

no barrier 

barrier 

no barrier                     barrier 

edge                        center 

m
g 

N
2O

-N
 m

-2
 h

-1
 

 

ce
nt

er
 - 

ed
ge

 
m

g 
N

2O
-N

 m
 -2

 h
-1

 

 

P = 0.005  

* 
 

* 
 

P = 0.02  



 137 

Chapter 5  

SYNTHESIS 

Humans have greatly altered the nitrogen cycle by nearly doubling the amount of 

available biologically reactive nitrogen (NO3
-, NH4; Galloway et al. 2004). Excess nitrate 

can cause eutrophication, harmful algal blooms, and hypoxia, negatively affecting 

economies and human health (Vitousek et al. 1997; Townsend et al. 2003; Howarth et al. 

2011). Cities are often sources of nitrate to downstream ecosystems; therefore, several 

solutions have been proposed to mitigate nitrate pollution, such as incorporating 

stormwater retention basins, swales, and wetlands into urban landscapes (Zhu et al. 2005; 

Shields et al. 2008; Kaushal et al. 2011; Bettez and Groffman 2012; Hale et al. 2014). In 

addition to these features, the urban environment has several features that are not 

managed, but have the potential to reduce nitrate loads. One such feature is accidental 

urban wetlands–wetlands that results from human activities, but are not designed or 

managed for any specific outcome. 

To effectively reduce nitrate loads, these systems need to permanently remove 

nitrate via the microbial process of denitrification. Great strides have been made in 

understanding what abiotic conditions promote the process of denitrification, yet clear 

links between community structure and denitrification have not been established (Hooper 

et al. 2005; Boyer et al. 2006; Seitzinger et al. 2006). Additionally, understanding what 

biotic and abiotic conditions promote denitrification is further complicated in urban 

environments as hydrology, soils, and biota can be dramatically altered relative to non-

urban counterparts (Ehrenfeld 2000; Windham and Ehrenfeld 2003; Stander and 

Ehrenfeld 2008).  
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In this dissertation, I used an understudied feature of urban landscapes–accidental 

urban wetlands–to examine if frequently identified drivers of denitrification remain 

important for these wetlands. Further, data collected from accidental urban wetlands were 

used to advance our understanding of how plants affect denitrification, addressing two 

ecological questions: (1) What is the relationship between plant traits and denitrification? 

(2) What is the relationship between species richness and denitrification? Here, I 

summarize the key findings from these studies and discuss the implications of this 

research for management of urban wetlands. 

Unexpected patterns of denitrification in accidental wetlands (Chapter 2) 

 Accidental urban wetlands have the capacity to remove nitrate via denitrification, 

but that the urban landscape was likely influencing drivers of patterns of denitrification in 

these wetlands. Hydroperiod was an important driver of denitrification for all wetlands as 

increases in hydroperiod increased potential denitrification. Interestingly, hydroperiod 

also was related to whether nitrate or carbon limited denitrification. Wetlands that 

flooded for more than 45% of the year exhibited nitrate limitation of denitrification, while 

wetlands that flooded less than 45% of the year showed no clear limitation. Interestingly, 

plants did not alleviate carbon limitation of denitrification as they do in nearby desert 

streams. This result could be explained by differences in land-use of the stormwater pipe-

sheds that supplied water to each wetland. Wetlands that flooded for more than 45% of 

year had pipe-sheds that consisted of more commercial and residential land, while 

wetlands that flooded less than 45% of the year had pipe-sheds with more industrial and 

agricultural land use. Differences between these land-use types could affect the amount 

of nitrate, and amount and quality of dissolved organic carbon that enter wetlands, 
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potentially affecting what limits denitrification (Newcomer et al. 2012). This study, 

however, did not examine differences in water quality from pipe-sheds with different 

land-uses, an important question to help us better understand drivers of denitrification in 

accidental urban wetlands. 

 Monsoon floods, important for increasing denitrification at non-urban desert 

riverine wetlands, were not an important driver of denitrification in accidental urban 

wetlands. Ephemeral wetlands should have had the greatest proportional increase in 

denitrification after monsoon floods because of the dramatic increase in soil moisture 

from the pre- to post-monsoon season. However, I found no significant difference 

between the two, and a trend of decreasing denitrification after monsoon floods. This 

could have negative implications for nitrate removal, as the monsoon season is when 

ephemeral wetlands receive the most water with high nitrate concentrations. If monsoon 

flooding does not increase denitrification, then the nitrate in this water will end up in 

downstream ecosystems, or filter into the groundwater that already has high nitrate 

concentrations (Rosen and Kropf 2009). Denitrification in ephemeral wetlands could be 

affected by a build-up of dust in storm drains during dry season preceding monsoon 

rains–a dynamic unique to desert cities (City of Phoenix Stormwater Services, personal 

communication). This dust is flushed out with storms and creates a layer of fresh 

sediment in ephemeral wetlands that may not harbor a substantial community of 

denitrifying microbes. This explanation for my results is speculative and future research 

should therefore examine what mechanisms are causing reduced denitrification at 

ephemeral wetlands after monsoon floods.  
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 Plants also influence denitrification across many wetland types (Alldred and 

Baines 2016). The presence of plants increased denitrification at intermittent and 

perennial wetlands, but did not have as substantial an effect at ephemeral wetlands. This 

is interesting, as ephemeral wetlands had low organic matter, and plants are often 

important for providing resources, such as carbon, in resource poor environments such as 

ephemeral wetlands. In sum, it is not clear what is driving patterns of denitrification in 

ephemeral urban wetlands. Future studies of accidental urban wetlands should explicitly 

examine links between stormwater pipe-shed land use, flood magnitudes, water 

chemistry, and denitrification to identify specific aspects of the urban landscape affecting 

denitrification. 

Challenges in linking plants to denitrification 

Identifying how ecosystem structure relates to ecosystem function has been a goal 

of ecologists for decades (Hooper et al. 2005). Despite the recognition that plants can 

have considerable influence on denitrification by changing abiotic soil conditions, such as 

labile carbon and redox potential, little effort has been made to incorporate plants into 

models of denitrification (Boyer et al. 2006). This could be because generalities about 

mechanistic links between plants and denitrification remain elusive. While there is ample 

research on how plant traits and species diversity are related to ecosystem functions, 

relatively few studies have been conducted in wetlands, particularly on denitrification.  
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Plant traits (Chapter 3) 

 Two important findings emerged from the examination of plant traits related to 

denitrification: (1) plant traits were more effectively modeled as indirectly influencing 

denitrification through soil conditions; and (2) several plant traits were related to greater 

potential denitrification. The few previous studies examining how plant traits relate to 

denitrification used statistical methods that accounted for only a direct relationship 

between plant traits and denitrification. However, my study demonstrated that modeling 

only direct relationships excludes plant traits that strongly influence denitrification 

indirectly by changing soil conditions. I found that belowground biomass, rooting depth, 

and tissue chemistry indirectly influenced denitrification through either soil organic 

matter or soil nitrate. The model also revealed several direct paths between plant traits 

(aboveground biomass, aboveground C:N ratios, and rooting depth) and denitrification, 

but not through the hypothesized indirect paths through soil organic matter or soil nitrate. 

This means these plant traits are affecting another aspect of soil conditions not included 

in the model. For example, aboveground biomass and tissue chemistry did not affect 

potential denitrification through organic matter. Rather, these plant traits may affect the 

quantity or quality of dissolved organic carbon, soil conditions not included in the model, 

available to denitrifiers.  

Species richness (Chapter 4) 

 Previous studies examining the relationship between species richness and 

ecosystem functions in wetlands grew plant species in mixtures, similar to studies 

conducted in grasslands (Engelhardt and Ritchie 2002; Callaway et al. 2003; Bouchard et 
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al. 2007). However, several wetland species grow in monotypic patches that interact with 

other species only at edge of patches. When accounting for this configuration of wetland 

plants in my study, species richness did not affect nitrate retention or denitrification, but 

rather individual species had a greater effect on nitrate retention and denitrification. 

Further, I found that patch edges had greater potential denitrification than patch centers in 

urban wetlands, but this pattern was not replicated in the greenhouse. Consequently, it is 

unclear what drives the increase in potential denitrification at edges of patches observed 

in the study wetlands. 

Future challenges 

A key challenge for understanding how plant traits and richness affects 

denitrification is how they interact with environmental controls of denitrification (Hooper 

et al. 2005; Alldred and Baines 2016). In wetlands, hydrology not only affects what 

community of plants will be present, but also whether aerobic (e.g, nitrification) or 

anaerobic (e.g. denitrification) microbial processes will occur (van der Valk 1981; Boutin 

and Keddy 1993; Mitsch and Gosselink 2007). Consequently, plant traits and species 

richness may affect denitrification differently in wetlands that are permanently inundated 

compared to wetlands that are more frequently dry. 

Implications for nitrate management 

 The Southwest is rapidly growing and therefore confronted with providing a 

sustainable water supply for future populations; consequently, cities are implementing 

policies to increase water use efficiency. While increasing efficiency of water use is 

positive from a sustainability standpoint, such policies could, unintentionally, reduce 
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wetland areas in urban environments such as in the Salt River. These wetlands provide 

much needed habitat to various wetland species (White and Stromberg 2011; Bateman et 

al. 2015), and also mitigate nitrate pollution. If accidental urban wetlands are inundated 

less frequently (i.e. shift from functioning as intermittent and perennial wetlands to 

functioning as ephemeral wetlands), nitrate removal during storm events will likely 

decrease. Accidental urban wetlands are unique features of the urban landscape that can 

mitigate nitrate pollution, but also are vulnerable to changes in policy as their 

“unmanaged” status largely precludes them from consideration in city planning and 

management schemes. Recognition of the value of accidental urban wetlands by city 

planners could help maintain wetland habitat within cities and mitigate nitrate export to 

downstream ecosystems.  

Further, elucidating how plants improve denitrification or other ecosystem 

functions is important not only for accidental urban wetlands, but also for any projects 

seeking to improve the functioning of restored or degraded wetlands. Linking plant traits 

to denitrification can guide decisions about what plants to include in wetlands to optimize 

nitrate removal. Understanding how species diversity affects nitrate retention via plant 

assimilation and denitrification will also inform managers on what type of plant 

community may best suit their restoration or management goals. 

Overall, the results of this dissertation suggest that accidental urban wetlands can 

effectively remove nitrate via denitrification; however, the urban environment alters 

drivers of this process. Further, plant traits offer a mechanism by which we can 

understand how plant communities affect denitrification, but out knowledge of these 
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mechanisms need improvement before they can be effectively applied in management 

scenarios to improve denitrification. 
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