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ABSTRACT

Modern software and hardware systems are composed of a large number of compo-

nents. Often different components of a system interact with each other in unforeseen

and undesired ways to cause failures. Covering arrays are a useful mathematical tool

for testing all possible t-way interactions among the components of a system.

The two major issues concerning covering arrays are explicit construction of a cov-

ering array, and exact or approximate determination of the covering array number—

the minimum size of a covering array. Although these problems have been investigated

extensively for the last couple of decades, this thesis presents significant improvements

on both of these questions using tools from the probabilistic method and randomized

algorithms.

First, a series of improvements is developed on the previously known upper bounds

on covering array numbers. An estimate for the discrete Stein-Lovász-Johnson bound

is derived and the Stein-Lovász-Johnson bound is improved upon using an alteration

strategy. Then group actions on the set of symbols are explored to establish two

asymptotic upper bounds on covering array numbers that are tighter than any of the

presently known bounds.

Second, an algorithmic paradigm, called the two-stage framework, is introduced

for covering array construction. A number of concrete algorithms from this framework

are analyzed, and it is shown that they outperform current methods in the range of

parameter values that are of practical relevance. In some cases, a reduction in the

number of tests by more than 50% is achieved.

Third, the Lovász local lemma is applied to covering perfect hash families to obtain

an upper bound on covering array numbers that is tightest of all known bounds. This

bound leads to a Moser-Tardos type algorithm that employs linear algebraic compu-

tation over finite fields to construct covering arrays. In some cases, this algorithm
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outperforms currently used methods by more than an 80% margin.

Finally, partial covering arrays are introduced to investigate a few practically rel-

evant relaxations of the covering requirement. Using probabilistic methods, bounds

are obtained on partial covering arrays that are significantly smaller than for cover-

ing arrays. Also, randomized algorithms are provided that construct such arrays in

expected polynomial time.

ii



ACKNOWLEDGMENTS

First and foremost, I would like to thank my adviser Dr. Charles Colbourn, with-

out whom this thesis would not have been possible. What started as a class project

has today turned into a dissertation due to his constant encouragement, support, and

guidance. He gave me the freedom to work on whatever idea that was most interest-

ing to me and often rescued me when those were leading me nowhere. I am extremely

grateful to him for the confidence that he has shown in me.

Second, I would like to thank my dissertation committee members—Dr. Andrzej

Czygrinow, Dr. Andrea Richa and Dr. Violet Syrotiuk. Not only were they always

accommodating for my last minute requests in spite of their busy schedules, but also,

as my teachers for a number of courses, they were responsible for my intellectual

development at ASU in many ways.

I would like to thank Dr. Hari Sundaram, Dr. Marco A. Janssen, and Dr. K.

Selcuk Candan for their initial support of me at ASU. I would like to thank CIDSE

for giving me this opportunity of pursuing my Ph.D. at ASU.

I would like to thank Dr. Arijit Bishnu and Dr. Rana Barua from my masters’

days at Indian Statistical Institute for kindling my interest in theory. I would like

to thank Dr. Palash Sarkar for giving me the opportunity to pursue research for my

masters’ thesis under his guidance and always being a source of inspiration.

I would also like to thank my friends—Shruti Gaur, Tien Le, Joydeep Banerjee,

Tathagata Chakraborti, Suhas Ranganath, Soumajyoti Sarkar, Lydia Monikonda,

Shubhadip Senapati, Suratna Hazra, Shatabdi Roy Chowdhury, Anasuya Pal, Akanksha

Singh, Soumyottam Chatterjee, Rajarshi Guha, Rakesh Banerjee and Riddhi Bhowmick—

who made my stay at Tempe fun and enjoyable.

Finally, I am forever indebted to my family without whom I would not be where I

am today. My parents were always very supportive of all my decisions and stood by

iii



me through thick and thin. My wife Poulami not only endured me during these five

years of my Ph.D. but also agreed to marry me. She played the role of an emotional

center in my life during a period which was basically an emotional roller-coaster ride.

Special thanks go to her for proof-reading several chapters of this thesis. Without

her, this thesis would have many more misplaced articles than I would otherwise like

to have.

The material in this thesis is based in part upon work supported by the National

Science Foundation under Grant No. 1421058.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Interaction Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Covering Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 CAN(t, k, v) Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The Lovász Local Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Group Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 IMPROVING THE STEIN-LOVÁSZ-JOHNSON BOUND . . . . . . . . . . . . . . 23

3.1 The Discrete Stein-Lovász-Johnson Bound . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Completing a Partial Array: The Two-stage Bound . . . . . . . . . . . . . . . 27

3.2.1 Group Action and the Two-stage Bound . . . . . . . . . . . . . . . . . . . 30

4 ALGORITHMIC CONSTRUCTION OF COVERING ARRAYS . . . . . . . . 33

4.1 A Brief Review of Algorithms for Covering Array Construction . . . . . 33

4.2 The Density Algorithm for Covering Array Construction . . . . . . . . . . . 35

4.3 The Biased Density Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



CHAPTER Page

4.3.1 A New Randomized Algorithm for Covering Array Con-

struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Strategy for Derandomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.3 The Derandomized Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.4 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.5 Improving the Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 TWO-STAGE FRAMEWORK FOR COVERING ARRAY CONSTRUC-

TION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Why Does a Two Stage Based Strategy Make Sense? . . . . . . . . . . . . . . 53

5.2 Two-stage Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 One Row Per Uncovered Interaction in the Second Stage . . . . 56

5.2.2 The Density Algorithm in the Second Stage . . . . . . . . . . . . . . . . 61

5.2.3 Coloring in the Second Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.4 Using Group Action in the Second Stage. . . . . . . . . . . . . . . . . . . 67

5.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Choosing a Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 GROUP ACTION AND LIMITED DEPENDENCE . . . . . . . . . . . . . . . . . . . 81

6.1 Group Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Limited Dependence and the Moser-Tardos Algorithms . . . . . . . . . . . . 87

6.2.1 A Moser-Tardos Type Algorithm for the First Stage . . . . . . . . 89

6.2.2 The Lovász Local Lemma Based Two-stage Bound . . . . . . . . . 92

7 COVERING PERFECT HASH FAMILIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Permutation Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Covering Perfect Hash Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



CHAPTER Page

7.3 Asymptotic Upper Bounds on CAN(t, k, v) . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 A Moser-Tardos Type Construction Algorithm for Covering Perfect

Hash Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 PARTIAL COVERING ARRAYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Partial Covering Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Almost Partial Covering Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.1 Key Ideas and Main Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Open Problems and Future Research Directions . . . . . . . . . . . . . . . . . . . 125

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

APPENDIX

A NOTATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B THE BIASED DENSITY ALGORITHM: NAÏVE DERANDOMIZATION134
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Chapter 1

INTRODUCTION

This thesis is about covering arrays—a type of combinatorial object that finds

important application in software and hardware interaction fault testing. In this

thesis, we investigate a number of construction algorithms and upper bounds for

covering arrays. To obtain a better appreciation of the context, we begin this chapter

with an informal discussion of the problem of interaction fault testing and covering

arrays. A more formal introduction to the topic is presented in the next chapter on

background material (Chapter 2). We conclude this chapter with a brief summary of

the main contributions and an outline of the thesis.

1.1 Interaction Faults

Any sufficiently complicated engineered system is composed of a number of com-

ponents. Although individual components are usually tested exhaustively, often faults

occur due to undesired or unforeseen interactions among components. Consider the

following conversation between two browser developers after a crash is reported:

“Did you see the bug report on the bookmark sync module crash?”

“Yes. It says that to replicate you first need to go to the private browsing mode,

and then enable the add-on option from the settings menu.”

“Hmm... That is interesting! We tested the sync module in private browsing

mode.”

“And I remember writing test cases for the module where I set the add-on attribute

to “enabled”.”

“But did we test the module under both the conditions simultaneously?”

1



“Probably not. That’s why we did not detect this crash during testing.”

Empirical studies on software faults show that 70% of all reported bugs in deployed

software result from interactions between at most 2 components, and 90% of all

reported bugs occur due to interactions among at most 3 different components [40].

These results are fairly consistent across different domains of software [41]. Given the

preponderance of interaction faults in deployed software it becomes a high priority

for the software tester to find these faults during the testing phase.

However, given k components where each component can have only two different

initial configurations, there are 2k different combinations to check, an exponential

number. If it were indeed the case that faults can occur due to the interaction among

all k components in the system, then software testers may be condemned to checking

all 2k different combinations — a gigantic and often impractical task. Fortunately, the

same empirical studies show that virtually no faults occur due to interactions among

more than 6 different components. Therefore, testing up to all 6-way interactions is

called pseudo-exhaustive testing [38]. In this thesis, we investigate a mathematical

structure that facilitates pseudo-exhaustive interaction testing of complex engineered

systems.

1.2 Covering Arrays

A covering array is a type of combinatorial array that is helpful in planning and

automating the testing of all possible t-way interactions. Suppose the system under

consideration has k different components, and each component has v different possible

initial settings. A choice of any t factors and assignment of t initial settings to them

constitute a t-way interaction. There are vt different t-way interactions involving

any specific set of t components. So there are
(
k
t

)
vt different t-way interactions. A

covering array for such a system is denoted by CA(N ; t, k, v) and is an N ×k array A

2



Component

Role Interface Database Language

Admin. PC MongoDB English

Blogger Tablet Cassandra Spanish

Reader Mobile Postgres Bengali

Table 1.1: 4 different components of a blogging platform, each with 3 different

initial configurations.

in which each entry is from a v-ary alphabet Σ, such that for every t-set of columns,

each of the vt tuples is covered in at least one row of the array. The rows of a covering

array correspond to test cases, and all the rows taken together constitute a test suite

that tests all possible t-way interactions among the k components.

Suppose you have developed a new blogging platform. It supports three different

roles: administrator, blogger, and reader. For each role, depending on the type of

the device, it has three different interfaces: PC, tablet, and mobile phone. Also, it

can be configured to use any of the following modern database engines: MongoDB,

Cassandra, and Postgres. Furthermore, the platform can be customized to display

in any of the three languages: English, Spanish, and Bengali. Taken together, the

platform can support 81 different role-interface-database-language combinations. In

the parlance of covering arrays, for this system, we have k = 4 and v = 3. The system

is summarized in Table 1.1.

In this case, it may be possible to test the software under all these 81 combinations

separately. However, we can see why this exhaustive test strategy is a hopeless

enterprise in more complicated situations due to the combinatorial explosion in the

number of testing scenarios. Therefore, we resort to t-way interaction testing for

different values of t in the range 2 ≤ t ≤ 6 using covering arrays. For example, using

3



Test Case Role Interface Database Language

1 Admin. PC MongoDB English

2 Admin. Mobile Postgres Spanish

3 Admin. Tablet Cassandra Bengali

4 Blogger PC Postgres Bengali

5 Blogger Tablet MongoDB Spanish

6 Blogger Mobile Cassandra English

7 Reader PC Cassandra Spanish

8 Reader Mobile MongoDB Bengali

9 Reader Tablet Postgres English

Table 1.2: Test suite to cover all 2-way interactions for the system shown in

Table 1.1.

covering arrays we can determine that 9 different scenarios are sufficient for testing

all possible 2-way interactions in this example [17]. Table 1.2 shows a collection of 9

such test cases that cover all 2-way interactions among the 4 components. Similarly,

45 different scenarios are sufficient for testing all possible 3-factor combinations [17].

The difference between the number of scenarios in exhaustive testing and t-way

interaction testing becomes more pronounced as the number of factors and the number

of options available under each factor increase. For example, if we have 10 different

factors with 4 different levels available under each factor, the number of different

scenarios that needs to be tested under the exhaustive strategy is 410 or 1, 048, 576.

However, using covering arrays one would require 24 different scenarios for testing all

possible 2-factor combinations, 100 different scenarios for testing all possible 3-factor

combinations, and 8176 scenarios for testing all possible 6-factor combinations [17].

Covering arrays have uses in interaction testing in complex engineered systems.

To ensure that all possible combinations of options of every t components function
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together correctly, one needs to examine all possible t-way interactions. When the

number of components is k, and the number of different options available for each

component is v, each row of CA(N ; t, k, v) represents a test case. The N test cases

collectively test all t-way interactions.

Apart from software interaction testing, covering arrays find important applica-

tion in hardware testing (see [38] and references therein). Applications of covering

arrays also arise in experimental testing for advanced materials [9], inference of inter-

actions that regulate gene expression [50], fault-tolerance of parallel architectures [28],

synchronization of robot behavior [31], drug screening [53], and learning of boolean

functions [21]. Covering arrays have been studied using different nomenclature, as

qualitatively independent partitions [26], t-surjective arrays [10], and (k, t)-universal

sets [35], among others. Covering arrays are closely related to hash families [18] and

orthogonal arrays [16].

1.2.1 Research Problems

The cost of testing is directly related to the number of test cases. Therefore,

one is interested in covering arrays with the fewest rows. The smallest value of N

for which CA(N ; t, k, v) exists is denoted by CAN(t, k, v). Efforts to determine or

bound CAN(t, k, v) have been extensive; see Colbourn [16, 18], Kuhn et al. [38], Nie

and Leung [46] for example. Naturally one would prefer to determine CAN(t, k, v)

exactly. Katona [36] and Kleitman and Spencer [37] independently showed that for

t = v = 2, the minimum number of rows N in a CA(N ; 2, k, 2) is the smallest N for

which k ≤
(
N − 1

dN
2
e

)
. Exact determination of CAN(t, k, v) for other values of t and v

has remained open. Therefore, there is a huge theoretical interest in determining an

asymptotic upper bound on CAN(t, k, v). Some progress has been made in determin-

ing upper bounds for CAN(t, k, v) in the general case; for recent results, see Francetić
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and Stevens [23]. In this thesis, we address this problem at great lengths and present

a number of improvements on the currently best known results.

However, for practical applications, such bounds are often unhelpful because one

needs explicit covering arrays to use as test suites. Explicit constructions can be

recursive, producing larger covering arrays using smaller ones as ingredients (see Col-

bourn [18] for a survey), or direct. Direct methods for some specific cases arise from

algebraic, geometric, or number-theoretic techniques; general direct methods are com-

putational in nature. Indeed when k is relatively small, the best known results arise

from computational techniques [17], and these are in turn essential for the success

of the recursive methods. Unfortunately, for larger values of k that are relevant for

some practical applications, existing computational methods do not scale very well.

Typically such difficulties arise either as a result of storage or time limitations or by

producing covering arrays that are too big to compete with those arising from simpler

recursive methods.

Cohen [14] discusses commercial software where the number of factors often ex-

ceeds 50. Aldaco et al. [1] analyze a complex engineered system having 75 factors,

using a variant of covering arrays. Android [3] uses a Configuration class to describe

the device configuration; there are 17 different configuration parameters with 3− 20

different levels.

In each of these cases, while existing techniques are effective when the strength is

small, these moderately large values of k pose concerns for larger strengths. In this

thesis, we present a number of computational construction techniques for covering

arrays that are helpful when the number of factors is moderately large (e.g., k in the

range 30− 100) and the strength of the interactions to be covered is also large (e.g.,

t ∈ {5, 6}).
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1.3 Summary of Contributions

Asymptotic upper bounds for CAN(t, k, v) have earlier been established using the

Stein-Lovász-Johnson strategy and the Lovász local lemma. A series of improve-

ments on these bounds is developed in this thesis. First, an estimate for the dis-

crete Stein-Lovász-Johnson bound is derived. Then using an alteration strategy, the

Stein-Lovász-Johnson bound is improved upon, leading to a two-stage construction

algorithm. A similar two-stage bound is derived that employs the Lovász local lemma

and the conditional Lovász local lemma distribution. Finally, group actions on the

set of symbols are explored to establish two asymptotic upper bounds on CAN(t, k, v)

that are tighter than the known bounds.

On the algorithmic side, a generic two-stage framework, with a number of concrete

algorithms, is developed for efficient construction of covering arrays. In the first stage,

a time and memory efficient randomized algorithm covers most of the interactions. In

the second stage, a more sophisticated search covers the remainder in relatively few

tests. In this way, the storage limitations of the sophisticated search algorithms are

avoided; hence the range of the number of components for which the algorithm can be

applied is extended, without increasing the number of tests. Many of the framework

instantiations can be tuned to optimize a memory-quality trade-off so that fewer tests

can be achieved using more memory. These algorithms outperform the currently best

known methods when the number of factors ranges from 20 to 60, the number of levels

for each factor ranges from 3 to 6, and t-way interactions are covered for t ∈ {5, 6}.

In some cases, a reduction in the number of tests by more than 50% is achieved.

Next, we apply the Lovász local lemma in conjunction with permutation vectors

to obtain an asymptotic upper bound on CAN(t, k, v) that is tighter than any other

known bound. This bound leads to a Moser-Tardos type randomized algorithm that
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employs linear algebraic computation over finite fields to construct covering arrays.

For t ∈ {5, 6}, and v ≥ 3 this algorithm provides the best known covering arrays

when k ranges between 20 and 200. A reduction in the number of tests by more than

80% is often achieved for high values of k.

Finally, we introduce and investigate a few variants of covering arrays that are

known as partial covering arrays. Sensible and practically relevant relaxations of

the covering requirement arise when (1) the set {1, 2, . . . , v}t need only be contained

among the rows of at least (1− ε)
(
k
t

)
of the N × t subarrays and (2) the rows of every

N× t subarray need only contain a (large) subset of {1, 2, . . . , v}t. Using probabilistic

methods, we obtain significant improvements on the covering array upper bound for

both relaxations, and for the conjunction of the two. In each case, we provide a

randomized algorithm that constructs such arrays in expected polynomial time.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 introduces all the neces-

sary notation and concepts and summarizes best known results on CAN(t, k, v) upper

bounds prior to this thesis. This chapter also outlines the key tools and techniques

used extensively throughout the thesis.

Chapter 3 discusses two results that improve upon the Stein-Lovász-Johnson

bound. The first bound utilizes the idea of discretization. The second bound uses a

familiar technique from the probabilistic method — called alteration — to prove a

tighter bound. Also, we see the first application of group action that improves the

alteration based bound.

Chapter 4 serves as an introduction to the density algorithm in the framework

of conditional expectation based derandomization of randomized algorithms. The

density algorithm was introduced in Bryce and Colbourn [6] and its variants [7, 19] are
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probably the most successful computational method for covering array construction.

It plays an important role in the next chapter on the two-stage algorithmic framework.

Also, we present an original randomized algorithm and its derandomized version called

the biased density algorithm in this chapter.

Chapter 5 introduces the two-stage algorithmic framework for covering array con-

struction. We define a number of concrete algorithms within this framework and

analyze them. Also, we provide extensive computational results that compare these

algorithms against the currently known best results.

Chapter 6 delves deeper into the question of asymptotic upper bounds on CAN(t, k, v).

We apply the Lovász local lemma in conjunction with different transitive group ac-

tions to obtain asymptotically tighter upper bounds. The chapter also describes a

Moser-Tardos type randomized algorithm for covering array construction. Also, we

investigate a Moser-Tardos type algorithm for the first stage of our two-stage frame-

work and derive an upper bound on CAN(t, k, v) based on this strategy.

Chapter 7 describes permutation vectors and covering perfect hash families. We

describe the necessary and sufficient conditions for a set of permutation vectors to

be covering and based on this characterization derive an upper bound on the size

of covering arrays by applying the Lovász local lemma. We compare this upper

bound to the presently known bounds and show that this bound turns out to be the

tightest of all the known bounds. Then we describe a Moser-Tardos type construction

algorithm based on permutation vectors and present computational results comparing

this algorithm against the best known results.

Chapter 8 introduces two variants of partial covering arrays. In this chapter,

we derive upper bounds on the size of such partial covering arrays by applying the

Lovász local lemma and other probabilistic methods. We also provide polynomial

time randomized construction algorithms for such arrays. Finally, we present a result
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that tells us that a very small relaxation in coverage requirement leads to partial

covering arrays that are substantially smaller than covering arrays.

Chapter 9 concludes the thesis. There we provide a comprehensive table of differ-

ent general CAN(t, k, v) upper bounds and summarize the main themes of the thesis.

Finally, we end with a discussion of some open issues and future research ideas.
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Chapter 2

BACKGROUND

In this chapter, first we establish the formal terminology that is useful for talking

about covering arrays. Then we summarize the known general upper bounds on

covering array numbers for easy reference and comparison in later chapters. In the

last section of the chapter, we introduce a few tools and techniques from discrete

probability theory and combinatorics, e.g., the Lovász local lemma, the Moser-Tardos

algorithm, and group action. These tools will be applied a number of times in the

later chapters to derive the main results of this thesis.

2.1 Terminology

When k is a positive integer, we use [k] to denote the set {1, . . . , k}. Let N, t, k,

and v be positive integers such that k ≥ t ≥ 2 and v ≥ 2. A covering array

CA(N ; t, k, v) is an N × k array A in which each entry is from a v-ary alphabet

Σ, and for every N × t sub-array B of A and every x ∈ Σt, there is a row of B that

equals x. The parameter t is called the strength, k is called the number of factors,

and v is called the number of levels of the covering array. The smallest value of N

for which CA(N ; t, k, v) exists is denoted by CAN(t, k, v).

A t-way interaction is defined as the set {(ci, ai) : 1 ≤ i ≤ t, ci ∈ [k], ci 6=

cj for i 6= j, and ai ∈ Σ}. Basically, an interaction is an assignment of values from

Σ to t of the k columns. An N × k array A covers the interaction ι = {(ci, ai) :

1 ≤ i ≤ t, ci ∈ [k], ci 6= cj for i 6= j, and ai ∈ Σ} if there is a row r in A such that

A(r, ci) = ai for 1 ≤ i ≤ t. When there is no such row in A, ι is not covered in

A. Hence a CA(N ; t, k, v) covers all the t-way interactions involving k factors each
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having v levels.

Let Ct,k be the set of all subsets of size t of [k], i.e. Ct,k =

(
[k]

t

)
. Let It,k,v denote

the set of all
(
k
t

)
· vt different t-way interaction among the k factors, each having v

levels. We adopt a canonical representation for any t-subset of [k] as an increasing

sequence of t values from [k]. Define c : It,k,v → Ct,k as follows: For ι ∈ It,k,v,

c(ι) = (c1, . . . , ct) where (ci, ai) ∈ ι for some ai ∈ Σ, and ci < cj for 1 ≤ i < j ≤ t. We

use c(ι)i to denote the ith element of c(ι), i.e., ci. Similarly, define s : It,k,v → Σt as

follows: For an interaction ι ∈ It,k,v, define s(ι) = (a1, . . . , at) where (c(ι)i, ai) ∈ ι for

1 ≤ i ≤ t. We use s(ι)i to denote the ith element of the t-tuple s(ι). A bijection from

It,k,v to Ct,k × Σt maps ι→ (c(ι), s(ι)). Therefore, the interaction ι can be described

by the ordered pair (c(ι), s(ι)) as well.

In this thesis, we primarily focus on situations where every factor has the same

number of levels. These cases have been most extensively studied, and hence provide

a basis for making comparisons. In practice, however, different components often have

different number of levels, which is captured by extending the notion of a covering

array. A mixed covering array MCA(N ; t, k, (v1, v2, . . . , vk)) is an N×k array in which

the ith column contains vi symbols for 1 ≤ i ≤ k. Given any subset of t columns

{i1, . . . , it} ⊆ {1, . . . , k}, the N × t subarray, obtained by selecting columns i1, . . . , it

of the MCA, contains each of the
∏t

j=1 vij distinct t-tuples as a row at least once.

Although we examine the uniform case in which v1 = · · · = vk, the many of the

methods developed this thesis (e.g., the two-stage algorithms from Chapter 5) can be

directly applied to mixed covering arrays as well.

2.1.1 CAN(t, k, v) Upper Bounds

Given the interpretation of CAN(t, k, v) as the minimum number of required test

cases to test all possible t-way interaction among k factors, each having v different
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levels, it is natural that one would prefer to determine CAN(t, k, v) exactly. Katona

[36] and Kleitman and Spencer [37] independently showed that for t = v = 2, the

minimum number of rows N in a CA(N ; 2, k, 2) is the smallest N for which

k ≤
(
N − 1

dN
2
e

)
.

So far it has not been possible to determine the exact value of CAN(t, k, v) as a

function of k for any other values of t > 2 or v > 2.

In light of this, the asymptotic determination of CAN(t, k, v) has been of substan-

tial interest. For fixed t and v, it is well-known that CAN(t, k, v) is Θ(log k); the lower

bound can be established by observing that all columns are distinct, and the upper

bound is a simple probabilistic argument (see Theorem 1, for example). When t = 2

and v ≥ 2, Gargano et al. [26] establish the much more precise statement that

CAN(2, k, v) =
v

2
log k {1 + o(1)} . (2.1)

(Throughout the thesis, we write log for logarithms base 2, and ln for natural loga-

rithms.) However, when t > 2, even the coefficient of the highest order term is not

known precisely.

The first general upper bound on CAN(t, k, v) was obtained by specializing the

method of Stein [52], Lovász [42], and Johnson [34] to the case of covering arrays.

Because the ideas used here are essential for the rest of the thesis, we provide a

complete proof of this known result.

Theorem 1. [34, 42, 52](Stein-Lovász-Johnson (SLJ) bound) Let t, k, v be integers

with k ≥ t ≥ 2, and v ≥ 2. Then as k →∞,

CAN(t, k, v) ≤ t

log
(

vt

vt−1

) log k(1 + o(1))

Proof. Let A be an N × k array in which each entry is chosen independently and

uniformly at random from an alphabet Σ of size v. The probability that a specific
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interaction of strength t is not covered in A is
(
1− 1

vt

)N
. By the linearity of ex-

pectations, the expected number of uncovered interactions in A is
(
k
t

)
vt
(
1− 1

vt

)N
.

If this expectation is less than 1, because the number of uncovered interactions is

an integer, there is an array with N rows that covers all the interactions. Solving(
k
t

)
vt
(
1− 1

vt

)N
< 1, we get CAN(t, k, v) ≤ log (k

t)+t log v

log
(

vt

vt−1

) . Simplifying further,

CAN(t, k, v) ≤
log
(
k
t

)
+ t log v

log
(

vt

vt−1

)
≤

t log
(
ke
t

)
+ t log v

log
(

vt

vt−1

)
=

t log k

log
(

vt

vt−1

) (1 +
1

log k
− log t

log k
+

log v

log k

)
=

t

log
(

vt

vt−1

) log k(1 + o(1))

This completes the proof.

Because it is already known that CAN(t, k, v) = Θ(log k), for asymptotic compar-

ison one is interested in more accurate determination of the coefficient of the highest

order term as k approaches infinity. To simplify this comparison we define

d(t, v) = lim sup
k→∞

CAN(t, k, v)

log k
.

Using this notation, Theorem 1 can be restated as: For k ≥ t ≥ 2, and v ≥ 2,

d(t, v) ≤ t

log
(

vt

vt−1

) .

The first asymptotic improvement over the Stein-Lovász-Johnson bound in the

general case was obtained by Godbole et al. [27] by accounting for the limited de-

pendence using the Lovász local lemma:

Theorem 2. [27](Godbole, Skipper and Sunley (GSS) bound) Let t, v be integers with

t, v ≥ 2. Then

d(t, v) ≤ t− 1

log
(

vt

vt−1

) .
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The next improvement in the general case was obtained by Francetić and Stevens

[23] using the entropy compression method and balanced columns:

Theorem 3. Let t, v be integers with t, v ≥ 2. Then

d(t, v) ≤ v(t− 1)

log
(

vt−1

vt−1−1

) .
In Chapter 6 we obtain the same bound using a much simpler argument and then

improve upon it. In Chapter 7 we derive CAN(t, k, v) upper bounds that are the

tightest known asymptotic upper bounds in the general case at the moment.

2.2 Techniques

Next, we introduce a few techniques from probabilistic methods and combinatorics

that we use a number of times in this thesis.

2.2.1 The Lovász Local Lemma

When events are independent it is quite easy to compute the probabilities and

analyze the situation. However, that is rarely the case. On the other hand, it is also

rare to find oneself in a situation where all the events are interdependent. In between

these extremes lies the situation where the dependence among different events is

limited. The Lovász local lemma is great tool under these circumstances.

Lemma 4. (Lovász local lemma; general case) (see [2]) Let A1, A2, . . . , An be events in

an arbitrary probability space. A directed graph D = (V,E) on the set of vertices V =

{1, 2, . . . , n} is called a dependency digraph for the events A1, A2, . . . , An if for each

i, 1 ≤ i ≤ n, the event Ai is mutually independent of all the events {Ai : (i, j) /∈ E}.

Suppose that D = (V,E) is a dependency digraph for {A1, . . . , An} and suppose there

are real numbers x1, x2, . . . , xn such that 0 ≤ xi < 1 and Pr[Ai] ≤ xi
∏

(i,j)∈E(1− xj)
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for all 1 ≤ i ≤ n. Then

Pr
[
∧ni=1Ai

]
≥

n∏
i=1

(1− xi).

In particular, with positive probability, no event Ai holds.

To apply the Lovász local lemma successfully, the problem of interest needs to be

modeled as a situation where we are trying to avoid occurrence of a set of “bad” events.

The dependency digraph provides us the dependency structure among these “bad”

events. Then the Lovász local lemma tells us that if the probabilities of the “bad”

events are bounded from above, with positive probability we can find an outcome

where all the “bad” events are avoided.

Often it is the case that the “bad” events are of the same type and have the same

upper bound. Under such circumstances we may apply the following version of the

lemma, which can be easily derived from Lemma 4.

Lemma 5. (Lovász local lemma (LLL); symmetric case) (see [2]) Let A1, A2, . . . , An

be events in an arbitrary probability space. Suppose that each event Ai is mutually

independent of a set of all other events Aj except for at most d, and that Pr[Ai] ≤ p

for all 1 ≤ i ≤ n. If ep(d+ 1) ≤ 1, where e is the base of the natural logarithm, then

Pr[∩ni=1Āi] > 0.

The symmetric version of Lovász local lemma provides an upper bound on the

probability of a “bad” event in terms of the maximum degree of a bad event in a

dependence graph so that the probability that all the “bad” events are avoided is

non-zero.

We apply the symmetric version of the Lovász local lemma in Sections 6.1, 6.2.2,

7.3, and 8.1.
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The Moser-Tardos Algorithm and a Constructive Version of Lovász Local

Lemma

In its original form the Lovász local lemma is a non-constructive result. It just

guarantees that the desired object exists with non-zero probability. However, the

probability may be vanishingly small to allow a uniform random sampling algorithm

to efficiently construct such objects in a polynomial time. Fortunately, due to Moser

and Tardos [45] we have a constructive version of the local lemma. Moser and Tardos

[45] describe a randomized polynomial time algorithm that constructs the desired

object whenever the sufficient condition in the Lovász local lemma is satisfied.

First, we describe the setting. Let X = {X1, X2, . . . , Xm} be a finite set of

mutually independent random variables in a fixed probability space Ω. Let A be an

event in the same space Ω that is determined by the values of the random variables

in a subset S ⊆ X . If a particular assignment of values of the variables in S makes

A happen, then we say that the assignment realizes A. If A is determined by X then

there is a unique minimal set S ⊆ X that determines A. We denote that minimal

set of random variables that determines A by vbl(A).

Consider a finite set of events A = {A1, A2, . . . , An} in Ω that are determined by

the random variables in X . An event Ai ∈ A is mutually independent of all other

events Aj ∈ A such that vbl(Ai)∩vbl(Aj) = φ. Therefore, we can define a dependency

digraph D = (V,E) with the vertex set V = {1, 2, . . . , n} such that (i, j) ∈ E if and

only if vbl(Ai) ∩ vbl(Aj) 6= φ.

Consider Algorithm 1. It starts with a random assignment of values to the vari-

ables in X . Then it sequentially checks all the events until it finds an event that is

realized under the current assignment. It “resamples” only the random variables that

determine the realized event, and restarts the checking from the beginning. If the
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checking loop that starts at line 4 terminates, the algorithm outputs an assignment of

values to the random variables in X such that none of the events in A are realized.

The following theorem by Moser and Tardos [45] tells us that if the probabilities

and the dependence among the events in X are such that the sufficient conditions

of the Lovász local lemma are met, then Algorithm 1 terminates within expected

polynomial amount of time.

Lemma 6. (see [45]) Let X = {X1, X2, . . . , Xm} be a finite set of mutually inde-

pendent random variables in a fixed probability space Ω, and A = {A1, A2, . . . , An}

be a finite set of events in Ω that are determined by the random variables X . Let

D = (V,E) be the dependency digraph for the events in A . If there exists reals

x1, x2, . . . , xn such that 0 ≤ xi < 1 and Pr[Ai] ≤ xi
∏

(i,j)∈E(1 − xj) for 1 ≤ i ≤ n,

then there exists an assignment of values to the random variables in X that does not

realize any of the events in A . Moreover, Algorithm 1 resamples an event Ai ∈ A

at most an expected xi/(1 − xi) times before it finds such an assignment. Thus, the

expected total number of resampling steps is at most
∑n

i=1
xi

1−xi

When we can apply the symmetric version of the Lovász local lemma, the expected

number of resampling steps in Algorithm 1 is simply n/d. We will design Moser-

Tardos type algorithms in Sections 6.2 and 7.4 for covering array construction, and

in Section 8.1 for construction of partial m-covering arrays.

2.2.2 Group Action

Group action on the symbols of a covering array plays an important role in much of

the development in this thesis. To be able to talk about such group actions precisely,

here we define some of the basic terminology and discuss a few important examples

that play a crucial role in the later development.
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Algorithm 1: A randomized algorithm for obtaining an assignment of values

to the random variables in X such that none of the events in A are realized.
Input: X : the set of random variables, A : a set of events that are

determined by the random variables in X , and for each A ∈ A we

know vbl(A)

Output: An assignment of values to the random variables in X such that

none of the events in A is realized.

1 forall X ∈X do

2 Let vX be a random evaluation of X;

3 end

4 repeat

5 Set covered := true;

6 forall event A ∈ A do

7 if A is realized then

8 Set covered := false;

9 Set offending-variables := vbl(A);

10 break;

11 end

12 end

13 if covered = false then

14 forall X ∈ offending-variables do

15 Set vX to be a new random evaluation of X;

16 end

17 end

18 until covered = true;

19 Output (vX)X∈X ;
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Let X be a set and Γ be a group. An action of Γ on X is defined as a map

ϕ : X × Γ → X such that: (1) ϕ(x, e) = x for all x ∈ X, e is the identity element

of Γ, and (2) ϕ(x, g1g2) = ϕ(ϕ(x, g1), g2) for all x ∈ X and all g1, g2 ∈ Γ. If such an

action exists then X is called a Γ-set. For example, let n be a positive integer, X be

the set {0, 1, . . . , n − 1}, and Γ be the group of all permutations on n symbols, i.e.,

Γ = Sn. For σ ∈ Sn, and x ∈ {0, 1, . . . , n − 1}, let us define ϕ in the following way:

ϕ(x, σ) = σ(x), i.e., ϕ maps the member x to the corresponding member σ(x) under

the permutation. It is easy to show that ϕ defines an action of Sn on {0, 1, . . . , n−1}.

From now on we will shorten ϕ(x, g) to g(x) for g ∈ Γ and x ∈ X.

For any positive integer m, whenever X is a Γ-set, Xm is a Γ-set as well. We can

extend the action of Γ on X to Xm in the natural way: For χ = (x1, x2, . . . , xm) ∈ Xm

and g ∈ Γ, define g(χ) as the tuple (g(x1), g(x2), . . . , g(xm)). This defines a group

action on Xm.

We can define a relation ∼ on a Γ-set X in the following way: x1 ∼ x2 for

x1, x2 ∈ X if there exists g ∈ Γ such that g(x1) = x2. Then ∼ defines an equivalence

relation on X, whose equivalence classes are called orbits. If the orbits are finite then

the length of an orbit refers to the number of elements in the orbit. For x ∈ X, the

orbit of x refers to the equivalence class to which x belongs.

We often focus on covering arrays that are invariant under the action of a group.

More precisely, we consider the action of different subgroups of Sv over Σt and Σk

where, as usual, v is the number of levels, t is the strength of interaction, k is the

number of factors and Σ = {0, 1, . . . , v − 1}.

The action of a group Γ on Σ is sharply transitive if for every x, y ∈ Σ there is

exactly one σ ∈ Γ that maps x to y. In such cases |Γ| = |Σ| = v. For example, the

action of the cyclic group Cv on Σ is sharply transitive. Under the action of a sharply

transitive group Γ, Σ forms only one orbit of length v that includes all the members.
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However, for t ≥ 2, any sharply transitive group action partitions Σt into vt−1 orbit

of length v each.

Similarly, the action of a group Γ on Σ is called sharply `-transitive if for all

pairwise distinct x1, . . . , x` ∈ Σ and pairwise distinct y1, . . . , y` ∈ Σ there is exactly

one σ ∈ Γ that maps xi to yi for 1 ≤ i ≤ `. For ` ≤ t, a sharply `-transitive group

action on Σt forms orbits of length v, v(v − 1), up to v(v − 1) . . . (v − `+ 1).

When v is a prime power, let Γ be the Frobenius group, defined on the finite field

Fv in the following way: Γ = {g : Fv → Fv : g(x) = ax + b, x, a, b ∈ Fv, a 6= 0}. Γ

is an efficiently constructible group that acts sharply 2-transitively on F. It has been

used for the practical construction of covering arrays [19]. When v = q + 1, where q

is a prime power, the projective general linear (PGL) group is a sharply 3-transitive

group of order v(v − 1)(v − 2).

For the v-symbol alphabet Σ = {0, 1, . . . , v−1} and a permutation group Γ on the

v symbols, we can extend the action of Γ to the set of all t-way interactions among

the k factors in a similar manner: For σ ∈ Γ and ι = {(ci, ai) : 1 ≤ i ≤ t, ci ∈

[k], ci 6= cj for i 6= j, and ai ∈ Σ}, σ maps ι to {(ci, σ(ai)) : 1 ≤ i ≤ t}.

In the computational techniques and constructions that apply group action the key

idea is to construct an array A that covers all the orbits of t-way interactions under

the action of some group Γ. To be precise, let A be an n× k array with entries from

Σ. We would like A to have the following property: For every orbit of interaction,

there is a row in A that covers at least an interaction from this orbit. The rows of

A, when developed over Γ provides an array that covers all t-way interactions, and

therefore is a covering array. Group action here essentially works as a search space

reduction technique.

The strategy of covering orbits of interactions under the action of the permutation

group Γ on the symbols has been used in direct and computational methods [11, 44],
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and in randomized and derandomized methods [19]. In Colbourn [19] it is noted

that using a group action appears to construct covering arrays with fewer rows than

using similar methods on the covering array directly. We apply group action based

techniques in Sections 3.2.1, 5.2.4, 6.1 and 8.2.
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Chapter 3

IMPROVING THE STEIN-LOVÁSZ-JOHNSON BOUND

In this chapter we provide two improvements over the basic Stein-Lovász-Johnson

bound established in Theorem 1. The first improvement is obtained by applying a

discretization idea. The second improvement — the two-stage bound — is obtained by

applying a well known strategy, called alteration, from probabilistic methods. Apart

from providing an improved estimate, this bound gives the theoretical justification

for the two-stage algorithmic framework introduced in Chapter 5.

The basic probabilistic construction of a covering array analyzed in Theorem 1

is quite näıve. We just construct a random N × k array and hope that it covers all

the interactions. Although this randomly constructed covering array does not require

asymptotically more rows than the smallest possible covering array, from the practical

point of view there are a number of issues to consider. First, the probability that a

random array of a specified size is a covering array may be very small, requiring a

high number of samples. Also to know that a given N × k array is a CA(N ; t, k, v)

we need to check whether each of the
(
k
t

)
· vt interactions are covered in the array.

That is a lot of checking to do, especially, considering that we may have to do this

checking multiple times.

One may wonder if for practical purposes, it makes more sense to construct small

portions of the array at a time, instead of constructing the full array. For each

part one may want to choose the rows that maximize the number of newly covered

interactions. However, this problem is NP-hard [20]. Instead, in this chapter, we

consider two strategies where the goal is to construct the parts with “good enough”

coverage using random methods. We analyze these strategies and provide quantitative
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guarantees on how well they perform in comparison to the näıve random method.

The results presented in this chapter are reported in Sarkar and Colbourn [48].

3.1 The Discrete Stein-Lovász-Johnson Bound

The Stein-Lovász-Johnson bound (Theorem 1 in Chapter 2) was obtained by con-

sidering an N × k array where each of the entries was chosen independently and

uniformly at random. Rather than choosing the N rows at random, we can build the

covering array one row at a time. To select a row, compute the expected number of

uncovered interactions that remain when we choose the next row uniformly at random

from Σk. There must be a row whose selection leaves at most that expected number

of interactions uncovered. Indeed except when the first row is selected, some row

must leave a number that is strictly less than the expectation, because previously

selected rows cover no interaction that is not yet covered. Add such a row to the

covering array and repeat until all the interactions are covered. The number of rows

employed by this method yields an upper bound on CAN(t, k, v). If at each stage the

row selected left uncovered precisely the expected number of uncovered interactions,

we recover Theorem 1. However, after each row selection, the number of uncovered

interactions must be an integer no larger than the expected number, improving on

the basic SLJ bound. This better upper bound is the discrete Stein-Lovász-Johnson

(discrete-SLJ) bound.

A row that leaves no more than the expected number uncovered can be computed

efficiently when t and v are fixed, so the discrete-SLJ bound can be efficiently de-

randomized; this is the basis of the density algorithm [6, 7]. The density algorithm

works well in practice, providing the smallest known covering arrays in many cases

[17]. Although Theorem 1 provides an easily computed upper bound on the array

sizes produced by the density algorithm, it is a very loose bound.
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We analyze the discrete Stein-Lovász-Johnson bound in order to establish a better

estimate.

Theorem 7. The number of rows N in A obtained by the discrete-SLJ bound satisfies

log
{(

k
t

)
+ 1
}

log
(

vt

vt−1

) < N ≤
log
{(

k
t

)
+ ε
}
− log ε

log
(

vt

vt−1

)
for some 0 < ε < 1 (log stands for logarithms base 2).

Proof. Let y =
(
1− 1

vt

)
and x = 1/y. Let r(i) denote the number of uncovered

interactions that remain after i rows are chosen. Suppose that when row i is chosen,

it leaves

r(i) =

 byr(i− 1)c when i = 1 or r(i− 1) 6≡ 0 (mod vt)

yr(i− 1)− 1 when i > 1 and r(i− 1) ≡ 0 (mod vt)

uncovered interactions.

Write ε(i − 1) = yr(i − 1) − r(i) for i ≥ 1. Then expanding the recurrence

r(i) = yr(i− 1)− ε(i− 1),

r(n) = ynr(0)−
n−1∑
i=0

yn−1−iε(i).

Rewriting in terms of x,

xnr(n) = r(0)−
n−1∑
i=0

xi+1ε(i).

Now r(0) =
(
k
t

)
vt and r(n) = 0, so(

k

t

)
vt = xnε(n− 1) +

n−2∑
i=0

xi+1ε(i).

Because r(n) = 0, y ≤ ε(n− 1) < 1. Then because 0 ≤ ε(i) ≤ 1,

xn−1 +
n−2∑
i=0

xi+1ε(i) ≤
(
k

t

)
vt < xn +

n−2∑
i=0

xi+1ε(i) <
n∑
i=1

xi =
x(xn − 1)

(x− 1)
.
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Simplify
(
k
t

)
vt < x(xn−1)

(x−1)
to obtain

(
k
t

)
+ 1 < xn. Take logarithms to establish that

n >
log{(k

t)+1}
log
(

vt

vt−1

) . If we select each row so that r(n) = byr(n− 1)c, we cannot cover all

interactions in log
{(

k
t

)
+ 1
}
/ log

(
vt

vt−1

)
rows. This establishes the lower bound.

Note that ε(0) = 0. Let ε = min{ε(k) : 1 ≤ k < n− 1}. Then 1
vt
≤ ε ≤ 1, because

every row selected after the first covers more than the expected number of previously

uncovered interactions. Then for sufficiently large k

εx(xn−1−1)
(x−1)

= ε
∑n−1

i=1 x
i ≤ xn−1 + ε

∑n−2
i=2 x

i

< xn−1 + ε
∑n−2

i=2 x
i + ε(xn−1 − x)

≤ xn−1 +
∑n−2

i=0 x
i+1ε(i) ≤

(
k
t

)
vt

.

The strict inequality follows from the fact that x > 1. Hence ε(xn − 1) <
(
k
t

)
, so

n <
log{(k

t)+ε}−log ε

log
(

vt

vt−1

) + 1, and because n is an integer the upper bound follows.

Consequently log
{(

k
t

)
+ 1
}
/ log

(
vt

vt−1

)
can be used to estimate the discrete Stein-

Lovász-Johnson bound. Figure 3.1 compares the estimate to the discrete Stein-

Lovász-Johnson bound and the Stein-Lovász-Johnson bound from Theorem 1 when

t = 6 and v = 3. For a wide range of values of k, the reduction in the number of rows

is substantial.

The density algorithm [6, 7] enables one to produce covering arrays of sizes at most

those given by the bound efficiently. Despite their efficiency in theory, in practice the

methods are limited by the need to store information about all t-way interactions;

even when t = 6, v = 3, and k = 54, there are 18,828,003,285 6-way interactions,

so the storage requirements are limiting. Moreover, as shown in the analysis, rows

added towards the end of the process account for relatively few of the interactions.

For these reasons, we explore a two-stage approach using alteration.
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Figure 3.1: Comparison of the Stein-Lovász-Johnson bound, the discrete Stein-

Lovász-Johnson bound, and the estimate for the discrete Stein-Lovász-Johnson

bound. t = 6, v = 3.

3.2 Completing a Partial Array: The Two-stage Bound

Alteration is an important strategy in probabilistic methods [2]. The idea is to

consider “random” structures that have a few “blemishes,” in that they do not have

all the desired properties. Such “partial” structures are then altered to obtain the

desired property. To apply this technique to covering arrays, in stage 1 we construct a

random n× k array with each entry chosen from the v-ary alphabet Σ independently

and uniformly at random. The number of uncovered interactions after stage 1 can be

computed using the SLJ or discrete-SLJ bounds. In stage 2, we add one new row for

each uncovered interaction to obtain a covering array.

For example, when t = 6, k = 54 and v = 3, Theorem 1 gives CAN(6, 54, 3) ≤

17, 236. Using the alteration approach, Figure 5.2 plots an upper bound on the size

of the completed covering array against the number n of rows in a partial array that
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Figure 3.2: Plot of n+
⌊(

k
t

)
vt
(
1− 1

vt

)n⌋
against n, the size of a partial array,

for t = 6, k = 54, and v = 3.
(
k
t

)
vt
(
1− 1

vt

)n
is the expected number of

uncovered interactions in a random n × k array. The minimum number of

rows in the final covering array is 13, 162, achieved when the initial random

array has n = 12, 402 rows. The Stein-Lovász-Johnson bound requires 17, 236

rows, and the best known covering array has 17, 197 rows.

covers at least the expected number of interactions. The smallest covering array is

obtained when n = 12, 402, which when completed yields CAN(6, 54, 3) ≤ 13, 162. At

least in this case, our alteration provides a much better bound. Next, we explore this

strategy in general.

Theorem 8. Let t, k, v be integers with k ≥ t ≥ 2, and v ≥ 2. Then

CAN(t, k, v) ≤
log
(
k
t

)
+ t log v + log log

(
vt

vt−1

)
+ 1

log
(

vt

vt−1

) .

Proof. In an n × k array with each entry chosen independently and uniformly at

random from an alphabet Σ of size v, the expected number of uncovered t-way in-

teractions is
(
k
t

)
vt
(
1− 1

vt

)n
. Let P be an n× k array with at most b

(
k
t

)
vt
(
1− 1

vt

)nc
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uncovered interactions. Let Q contain b
(
k
t

)
vt
(
1− 1

vt

)nc new rows, each covering a

different interaction not covered in P . Then A =
(
P
Q

)
, where P is vertically concate-

nated with Q, is a covering array with n+ b
(
k
t

)
vt
(
1− 1

vt

)nc rows. So an upper bound

on the number of rows in A is n+
(
k
t

)
vt
(
1− 1

vt

)n
. Applying elementary calculus, the

smallest number of rows is

log
(
k
t

)
+ t log v + log log

(
vt

vt−1

)
+ 1

log
(

vt

vt−1

) ,

obtained when P has n =
log (k

t)+t log v+log log
(

vt

vt−1

)
log
(

vt

vt−1

) rows.

For v, t ≥ 2, log log
(

vt

vt−1

)
< 0. Hence, Theorem 8 gives a tighter bound on

CAN(t, k, v) than that of Theorem 1. Using the Taylor series expansion of log(1− x),

it can be shown that 1/ log
(

vt

vt−1

)
≤ vt. In fact, in the range of values of v and t

of interest, 1/ log
(

vt

vt−1

)
≈ vt. So Theorem 8 guarantees the existence of a covering

array with N ≈ log (k
t)+1

log
(

vt

vt−1

) ≈ vt log
(
k
t

)
+ vt rows.

The argument in the proof of Theorem 8 can be made constructive. It underlies

an efficient randomized construction algorithm for covering arrays: In the first stage,

construct a random n× k array with n ≈ vt log
(
k
t

)
rows; then check if the number of

uncovered interactions is at most vt. If not, randomly generate another n × k array

and repeat the check. In the second stage add at most vt rows to the partial covering

array to cover the remaining interactions. Neither stage needs to store information

about individual interactions because we need only count the uncovered interactions

in the first stage. The second stage is deterministic and efficient. The first stage has

expected polynomial running time; it could be efficiently derandomized in principle

using the methods in [6, 7], at the price of the storage of the status of individual

interactions.

The proof of Theorem 8 suggests a general “two-stage” construction paradigm, in
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Figure 3.3: Comparison of the Stein-Lovász-Johnson bound, the discrete Stein-

Lovász-Johnson bound and the two-stage based bound from Theorem 8. t = 6,

v = 3.

which the first stage uses one strategy to cover almost all of the interactions, and the

second uses another to cover the relatively few that remain.

Figure 3.3 compares the two-stage based bound with the Stein-Lovász-Johnson

bound and the discrete Stein-Lovász-Johnson bound. In the cases shown, the two-

stage bound is much better than the Stein-Lovász-Johnson bound, and not much

worse than the discrete Stein-Lovász-Johnson bound. Therefore a purely randomized

method (with much smaller memory requirements) produces covering arrays that are

competitive with the guarantees from the density algorithm.

3.2.1 Group Action and the Two-stage Bound

We may apply the alteration based two-stage strategy from Section 3.2 to con-

struct covering arrays that are invariant under the action of a permutation group on
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the set of symbols.

Let Γ be a permutation group on the set of symbols. As discussed in Section

2.2.2, the action of this group partitions the set of t-way interactions into orbits. We

construct an array A such that for every orbit, at least one row covers an interaction

from that orbit. Then we develop the rows of A over Γ to obtain a covering array

that is invariant under the action of Γ. Effort then focuses on covering all the orbits

of t-way interactions, instead of the individual interactions.

If Γ acts sharply transitively on the set of symbols (for example, if Γ is a cyclic

group of order v) then the action of Γ partitions
(
k
t

)
vt interactions into

(
k
t

)
vt−1 orbits

of length v each. Following the lines of the proof of Theorem 8, there exists an n× k

array with n =
log (k

t)+(t−1) log v+log log
(

vt−1

vt−1−1

)
+1

log
(

vt−1

vt−1−1

) that covers at least one interaction

from each orbit. Therefore,

CAN(t, k, v) ≤ v
log
(
k
t

)
+ (t− 1) log v + log log

(
vt−1

vt−1−1

)
+ 1

log
(

vt−1

vt−1−1

) . (3.1)

We can employ a sharply 2-transitive group action like the action of the Frobenius

group when v is a prime power to obtain even smaller covering arrays. Recall that

for a prime v, the Frobenius group is the group of permutations of Fv of the form

{x 7→ ax + b : a, b ∈ Fv, a 6= 0}. The action of the Frobenius group partitions the

set of t-tuples on v symbols into vt−1−1
v−1

orbits of length v(v − 1) (full orbits) each

and 1 orbit of length v (a short orbit). The short orbit consists of tuples of the form

(x1, . . . , xt) where x1 = . . . = xt. Therefore, we can obtain a covering array by first

constructing an array that covers all the full orbits, and then developing all the rows

over the Frobenius group and adding v constant rows. Using the two stage strategy

in conjunction with the Frobenius group action we obtain:
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Figure 3.4: Comparison of the simple two-stage bound with the cyclic and the

Frobenius two-stage bounds. t = 6, v = 3 and 50 ≤ k ≤ 75. Group action

reduces the required number of rows slightly.

CAN(t, k, v) ≤ v(v − 1)
log
(
k
t

)
+ log

(
vt−1−1
v−1

)
+ log log

(
vt−1

vt−1−v+1

)
+ 1

log
(

vt−1

vt−1−v+1

) + v. (3.2)

Figure 3.4 compares the simple two-stage bound with the cyclic and Frobenius

two-stage bounds. For t = 6, v = 3 and 12 ≤ k ≤ 100, the cyclic bound requires form

7 to 21 (on average 16) fewer rows than the simple bound. In the same range, the

Frobenius bound requires from 17 to 51 (on average 40) fewer rows.
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Chapter 4

ALGORITHMIC CONSTRUCTION OF COVERING ARRAYS

In this chapter, we discuss a number of algorithms for covering array construction.

We begin with a short review of most commonly used computational techniques for

covering array construction. Then we examine a randomized construction algorithm

based on the discrete Stein-Lovász-Johnson paradigm which was introduced in Section

3.1. Conditional expectation based derandomization of this algorithm naturally leads

to the density algorithm [6, 7], which is probably the most successful technique for

practical construction of covering arrays.

Unlike other practical covering array construction algorithms, we can obtain an

upper bound on the size of the covering arrays produced by the density algorithm.

An understanding of the strengths and weaknesses of the density algorithm help us

to appreciate the motivation of the two-stage framework introduced in Chapter 5.

Also, the density algorithm is used as one of the methods in the second stage of a

two-stage algorithm discussed in Chapter 5.

In the last section of this chapter, we introduce a new covering array construction

technique that is called the biased density algorithm. Similar to the density algorithm,

it is a conditional expectation based derandomized version of a randomized algorithm.

It is shown that the biased density algorithm performs at least as well as the density

algorithm.

4.1 A Brief Review of Algorithms for Covering Array Construction

Available algorithms for the construction of covering arrays are primarily heuris-

tic in nature; indeed exact algorithms have succeeded for very few cases. Compu-
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tationally intensive metaheuristic search methods such as simulated annealing, tabu

search, constraint programming, and genetic algorithms have been employed when

the strength is relatively small or the number of factors and levels is small. These

methods have established many of the best known bounds on sizes of covering arrays

[17], but for larger problems of practical size their time and storage requirements are

prohibitive.

For larger problems, the best available methods are greedy. The In Parameter

Order (IPO) family of algorithms [38] repeatedly adds one column at a time, and

then adds new rows to ensure complete coverage. In this way, at any point in time,

the status of vt
(
k−1
t−1

)
interactions may be stored. Automatic Efficient Test Generator

(AETG) [13] pioneered a different method, which greedily selects one row at a time

to cover a large number of as-yet-uncovered interactions. They establish that if a row

can be chosen that covers the maximum number, a good a priori bound on the size

of the covering array can be computed.

Unfortunately selecting the maximum is NP-hard, and even if one selects the

maximum there is no guarantee that the covering array is the smallest possible [8].

So AETG resorts to a good heuristic selection of the next row by examining the stored

status of vt
(
k
t

)
interactions.

None of the methods so far mentioned therefore guarantee to reach an a priori

bound. An extension of the AETG strategy, the density algorithm [6, 7, 19], stores

additional statistics for all vt
(
k
t

)
interactions in order to ensure the selection of a good

next row, and hence guarantees to produce an array with at most the precomputed

number of rows. Variants of the density algorithm have proved to be most effective

for problems of moderately large size.
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Algorithm 2: A randomized algorithm for covering array construction.

Input: t : strength of the covering array, k : number of factors, v : number of

levels for each factor

Output: A : a CA(N ; t, k, v)

1 Set N :=

⌊
log (k

t)+t log v

log
(

vt

vt−1

)
⌋

;

2 repeat

3 Construct an N × k array A where each entry is chosen independently and

uniformly at random from a v-ary alphabet;

4 Set covered := true;

5 for each interaction ι ∈ It,k,v do

6 if ι is not covered in A then

7 Set covered := false;

8 break;

9 end

10 end

11 until covered = true;

12 Output A;

4.2 The Density Algorithm for Covering Array Construction

To obtain a better understanding of the density algorithm we begin by contrast-

ing it with a basic randomized algorithm. Algorithm 2 shows a simple randomized

algorithm for covering array construction. The algorithm constructs an array of a

particular size randomly, checks whether all the interactions are covered and repeats

until it finds an array that covers all the interactions.

We have already encountered this construction in the proof of Theorem 1. There
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we have shown that CA(N ; t, k, v) with N =
log (k

t)+t log v

log
(

vt

vt−1

) is guaranteed to exist. In

fact, the probability that the N × k array constructed in line 3 of Algorithm 2 is a

valid covering array is high enough that the expected number of times the loop in

line 2 is repeated is a small constant.

An alternative strategy is to add rows one by one instead of constructing the full

array at the outset. We start with an empty array, and whenever we add a new

row, we ensure that it covers at least the expected number of previously uncovered

interactions for a randomly chosen row. The probability that an uncovered interaction

is covered by a random row is 1/vt. If the number of uncovered interactions is u, then

by linearity of expectation, the expected number of newly covered interactions in a

randomly chosen row is uv−t. If each row added covers exactly this expected number,

we obtain the same number of rows as the SLJ bound, realized in Algorithm 2. But

because the actual number of newly covered interactions is always an integer, each

added row covers at least duv−te interactions. This is especially helpful towards the

end when the expected number is a small fraction.

Algorithm 3 follows this strategy. Again the probability that a randomly chosen

row covers at least the expected number of previously uncovered interactions is high

enough that the expected number of times the row selection loop in line 6 of Algorithm

3 is repeated is bounded by a small constant.

We can obtain an upper bound on the size produced by Algorithm 3 by assuming

that each new row added covers exactly duv−te previously uncovered interactions.

This bound is the discrete Stein-Lovász-Johnson (discrete SLJ) bound. Figure 4.1

compares the sizes of covering arrays obtained from the SLJ and the discrete SLJ

bounds for different values of k when t = 6 and v = 3. Consider a concrete example,

when t = 5, k = 20, and v = 3. The SLJ bound guarantees the existence of a covering

array with 12, 499 rows, whereas the discrete SLJ bound guarantees the existence of
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Algorithm 3: A randomized algorithm for covering array construction using

the discrete SLJ strategy.

Input: t : strength of the covering array, k : number of factors, v : number of

levels for each factor

Output: A : a CA(N ; t, k, v)

1 Let A be an empty array;

2 Initialize a table T indexed by all
(
k
t

)
vt interactions, marking every interaction

“uncovered”;

3 while there is an interaction marked “uncovered” in T do

4 Let u be the number of interactions marked “uncovered” in T ;

5 Set expectedCoverage := d u
vt
e;

6 repeat

7 Let r be a row of length k where each entry is chosen independently

and uniformly at random from a v-ary alphabet;

8 Let coverage be the number of “uncovered” interactions in T that are

covered in row r;

9 until coverage > expectedCoverage;

10 Add r to A;

11 Mark all interactions covered by r as “covered” in T ;

12 end

13 Output A;
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Figure 4.1: Comparison of covering array sizes obtained from the Stein-Lovász-

Johnson bound and the discrete Stein-Lovász-Johnson bound for different val-

ues of k, when t = 6 and v = 3.

a covering array with only 8, 117 rows.

The density algorithm (Algorithm 4) replaces the loop at line 6 of Algorithm 3

by a conditional expectation based derandomized method (see Bryce and Colbourn

[6, 7], Colbourn [16] for more details). For fixed v and t the density algorithm selects a

row efficiently (time polynomial in k) and deterministically. The row is guaranteed to

cover at least duv−te previously uncovered interactions. In practice, for small values

of k the density algorithm works well, often covering many more interactions than the

minimum. Many of the currently best known CAN(t, k, v) upper bounds are obtained

by the density algorithm in combination with various post-optimization techniques

[17].

However, the practical applicability of Algorithm 3 and the density algorithm is
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Algorithm 4: The density algorithm for selection of a row.

Input: X : the set of uncovered interactions, Σ : the alphabet of symbols with

|Σ| = v, t : strength of the covering array, k : number of factors.

Output: r : the next row of the covering array.

1 Let r := (∗, . . . , ∗);

2 for i = 1 to k do

3 Choose a j such that rj = ∗;

4 Let maxExpCov := 0, and σ∗ = null;

5 foreach σ ∈ Σ do

6 Let z := r, zj := σ, and expCov := 0;

7 foreach c = {c1, . . . , ct} with cl < cl+1 for 1 ≤ l ≤ t and j ∈ c do

8 Let F := {γ ∈ c : zγ = ∗}, F := c \ F , and count := 0;

9 foreach s ∈ Σk do

// ι = (c, s) agrees with z if cl ∈ F implies zcl = sl.

10 if ι = (c, s) agrees with z and ι ∈ X then

11 Set count := count+ 1;

12 end

13 end

14 Set expCov := expCov + count/|Σ||F |;

15 end

16 if expCov > maxExpCov then

17 Set maxExpCov := expCov, and σ∗ = σ;

18 end

19 end

20 Set rj := σ∗;

21 end
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limited by the storage of the table T , representing each of the
(
k
t

)
vt interactions. Even

when t = 6, v = 3, and k = 54, there are 18,828,003,285 6-way interactions. This

huge memory requirement renders the density algorithm impractical for rather small

values of k when t ∈ {5, 6} and v ≥ 3. We present an idea to circumvent this large

requirement for memory and develop it in full in Chapter 5.

4.3 The Biased Density Algorithm

In this section, we present an algorithm for construction of covering arrays, called

the biased density algorithm. This method, like the density algorithm, belongs to

the same discrete Stein-Lovász-Johnson bound paradigm. However, it differs from

the density algorithm in the way it fixes the entries in a row. The biased density

algorithm is guaranteed to construct covering arrays that are no bigger than the

ones constructed by the density algorithm. Although under certain circumstances

the biased density algorithm does produce smaller covering arrays than the density

algorithm, it is not suited for the practical construction of covering arrays with higher

k values due to its quadratic running time. Therefore, the interest in this method is

primarily theoretical in nature.

First, we introduce a new randomized algorithm that guarantees a better expected

coverage than Algorithm 3. The biased density algorithm is basically the conditional

expectation based derandomized version of this randomized algorithm. While select-

ing a row of a covering array, the derandomized version selects the next interaction

to cover in the row, instead of the next entry, by maximizing the conditional expec-

tation of the number of newly covered interactions. This derandomization strategy is

described in detail in Section 4.3.2.
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4.3.1 A New Randomized Algorithm for Covering Array Construction

Algorithm 3 chooses each row r ∈ Σk with equal probability. We call this method

uniform random row selection strategy. Note that the probability of choosing a row

that has already been chosen is not zero in this case. But such a choice results in zero

new coverage. We can improve the expected number of newly covered interactions

by restricting our choice only to those rows that provide new coverage. In fact, if the

rows with higher number of uncovered interactions are chosen with higher probability

then the expected number of newly covered interactions would be higher than the

uniform random case. We design a sample space that achieves exactly this objective.

We construct the rows of the covering array sequentially. Suppose a number of

rows have been already constructed and let X 6= φ be the set of interactions that are

not yet covered. To construct a row we start with an empty row and then fix symbols

for different entries in a certain sequence. Let ρ be the set of entries that have been

fixed; initially ρ = φ.

For each interaction ι = (c, s) ∈ X, where c ∈
(

[k]
t

)
and s ∈ Σt, let N(ι) denote

the set of rows that may cover this interaction, and let n(ι) := |N(ι)|. Let us define

M :=
∑

ι∈X n(ι). Initially, when ρ = φ, we have n(ι) = vk−t, and M = |X| · vk−t.

Similarly, let m(r) denote the number of new interactions that are covered if the row

r ∈ Σk is selected next. We have
∑

r∈Σk m(r) =
∑

ι∈X n(ι) = M . Algorithm 5 selects

the row r with probability m(r)/M .

The probability that a row r ∈ Σk is chosen by Algorithm 5 is given by

∑
ι∈X : r∈N(ι)

1

|X|
× 1

vk−t
=
m(r)

M
.

The expected number of new interactions that are covered by a row chosen by

this algorithm is
∑

r∈Σk m(r).m(r)
M
≥
∑

r∈Σk
m(r)
vk

. Therefore, the expected coverage of
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Algorithm 5: A randomized algorithm for the selection of a row.

Input: X : the set of uncovered interactions, Σ: the alphabet of symbols with

|Σ| = v, t : strength of the covering array, k : number of factors.

Output: r : the next row of the covering array.

1 Let r := (∗, . . . , ∗);

2 Choose an interaction ι = (c, s) uniformly at random from the set of uncovered

interactions X;

3 for i = 1 to t do

4 Set rci := si;

5 end

// This step essentially samples r uniformly at random from N(ι).

6 Select the remaining entries in r uniformly at random from Σ;

this algorithm is better than the uniform random row selection method. We call this

method the biased randomized row selection method because it is biased in the favor

of the rows that cover a higher number of new interactions.

4.3.2 Strategy for Derandomization

Derandomizing Step 2 of the biased randomized algorithm (Algorithm 5) is straight-

forward. To derandomize Step 6 we may apply the usual technique of fixing each

individual entry, but instead we define an alternative random process for Step 6 with

provably better performance.

Let r′ be the new row and ρ be the set of entries of r′ for which the symbols have

been fixed. Suppose we have ρ 6= φ. Instead of picking a row uniformly at random

from the set of rows that agree with the choice of symbols for ρ, we pick a row with

probability proportional to the number of newly covered interactions.
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Let X ′ denote the set of interactions that agree with the choice of symbols for

ρ, but are not already covered. For each interaction ι = (c, s) ∈ X ′, as before, let

N(ι) denote the set of rows that agree with ρ and cover ι, and let n(ι) := |N(ι)|. So

n(ι) = vk−|ρ∪c|. Let M :=
∑

ι∈X′ n(ι). Now, n(ι) is not same for all interactions as

was the case previously.

Let r be a row that agrees with the choice of symbols for ρ. For such a row r let

m(r) denote the number of new interactions covered by it. For any other row r that

does not agree with the choice of symbols for ρ, let us set m(r) = 0. Once again, we

have
∑

r∈Σk m(r) =
∑

ι∈X′ n(ι) = M . The following randomized algorithm picks a

row r, that agrees with the choice of symbols for ρ, with probability m(r)/M .

1. Choose an interaction ι ∈ X ′ with probability n(ι)/M . Fix r′ci = si for all

ci ∈ c\ρ.

2. Among all the rows that agree with the choice of symbols for ρ ∪ c, choose one

uniformly at random.

In this method, the probability that a row r that agrees with choice of symbols for ρ

is chosen is given by

∑
ι∈X′ : r∈N(ι)

n(ι)

M
× 1

n(ι)
=
m(r)

M
.

We can replace Step 6 of Algorithm 5 by recursively applying this new randomized

selection method until all the entries in r′ are fixed (or X ′ becomes empty). Algorithm

6 presents the full recursive version of the row selection algorithm. The expected

coverage of this recursive randomized algorithm is at least as good as Algorithm

5. However, in the next section we provide a derandomized version of Algorithm

5, and not the recursive version discussed above. The subtle difference is that for
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derandomizing Step 2 of Algorithm 5 we assume Step 6 of Algorithm 5, not the

recursive version. It is only while derandomizing step 6 we replace it by this recursive

process.

Algorithm 6: A recursive randomized algorithm for the selection of a row.

Input: X : the set of uncovered interactions, Σ: the alphabet of symbols with

|Σ| = v, t : strength of the covering array, k : number of factors.

Output: r : the next row of the covering array.

1 Let r := (∗, . . . , ∗);

2 while X 6= φ do

3 Choose an interaction ι = (c, s) from the set of uncovered interactions X

with probability n(ι)/M ;

4 for i = 1 to t do

5 Set rci := si;

6 end

7 foreach ι′ = (c′, s′) ∈ X do

8 if ι′ does not agree with r then

// i.e., there is an i such that rc′i 6= s′i.

9 Delete ι′ from X;

10 end

11 end

12 end

13 Fix the remaining entries of r, if there are any, with symbols from Σ drawn

uniformly at random;
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4.3.3 The Derandomized Algorithm

In this section we present a conditional expectation based derandomized version of

the biased randomized row selection algorithm (Algorithm 5). As mentioned before,

this algorithm is called the biased density algorithm.

A näıve derandomization of Algorithm 5 would result in an exponential time

algorithm (See Algorithm 15 and 16 in Appendix B). To obtain a polynomial time

algorithm we need to avoid extra counting. We present a way of achieving that in

Algorithm 7.

Computational Results

Table 4.1 compares the size of the covering arrays produced by the uniform random

(Algorithm 2), the biased random (Algorithm 6), the density (Algorithm 4), and the

biased density (Algorithm 7) row selection algorithms for t = 6, v = 2 and 7 ≤ k ≤ 10.

We run the randomized algorithms 10, 000 times independently on each instance, and

choose the smallest covering arrays. As the results show, the biased density produces

shorter arrays than the density algorithm when k = 9, 10. More results are presented

in Table C.1 of Appendix C.

4.3.4 Runtime Analysis

The while loop at line 3 of the biased density algorithm is executed at most

(k − t + 1) times (the first selected interaction fixes t entries, and each subsequent

selection of interactions fixes at least one new entry). The for loop at the line 5 is

executed |X| ≤ vt
(
k
t

)
times.

An upper bound on the execution of the loop at the line 2 of Algorithm 8 is

|X|. So the time complexity of the algorithm is of the order of (k − t + 1) · |X|2 ≤
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Algorithm 7: The biased density algorithm for the selection of a row.

Input: X : the set of uncovered interactions, Σ: the alphabet of symbols with

|Σ| = v, t : strength of the covering array, k : number of factors.

Output: r : the next row of the covering array.

1 Let r := (∗, . . . , ∗);

2 Let ρ denote the set of entries in r that have been fixed. Initially, ρ = φ;

3 while X 6= φ do

4 Let maxExpCov := 0, and ι∗ := (null, null);

5 foreach ι = (c, s) ∈ X do

6 Let expCov store the conditional expected coverage computed by

Algorithm 8;

7 if expCov > maxExpCov then

8 Set maxExpCov := expCov, and ι∗ := ι, i.e., set c∗ = c and s∗ = s;

9 end

10 end

11 for i = 1 to t do

12 Set rc∗i := s∗i ;

13 end

14 foreach ι′ = (c′, s′) ∈ X do

15 if ι′ does not agree with r or is already covered by r then

16 Delete ι′ from X;

17 end

18 end

19 end

20 Fix the remaining entries of r, if there are any, randomly from Σ;
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Algorithm 8: Computation of conditional expected coverage for the biased

density algorithm.

Input: X : the set of uncovered interactions, ι = (c, s): the interaction that is

selected next, ρ : the set of entries that have been fixed in the current

row, Σ: the alphabet of symbols with |Σ| = v, t : strength of the

covering array, k : number of factors.

Output: The conditional expected coverage if the interaction ι is selected

next.

1 Let count := 0;

2 foreach ι′ = (c′, s′) ∈ X do

3 if ι′ agrees with ι then

// i.e. for all 1 ≤ i, j ≤ t, ci = c′j implies si = s′j.

4 Set count := count+ |Σ|k−|ρ∪c∪c′|;

// ι and ι′ together with current assignment ρ is covered by

|Σ|k−|ρ∪c∪c′| different rows.

5 end

6 end

7 Return count/|Σ|k−|ρ∪c|;

(k − t + 1) ·
(
vt
(
k
t

))2
. Therefore, the time complexity of constructing a row using

the biased density algorithm is approximately k · |X|2 where X is the set of as yet

uncovered interactions.

A similar estimate for the density algorithm provides a time complexity that is

approximately k · v ·
(
k−1
t−1

)
· vt−1 = k · vt ·

(
k−1
t−1

)
≤ k · |X|. So in terms of the time

complexity, the biased density algorithm is not as efficient as the density algorithm.

In fact, as k grows it quickly becomes infeasible to run the biased density algorithm
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k Uniform Random Biased Random Density Biased Density

7 218 92 86 88

8 280 136 114 117

9 362 176 145 143

10 431 214 172 161

Table 4.1: Comparison of the uniform random (Algorithm 2), the biased ran-

dom (Algorithm 6), the density (Algorithm 4), and the biased density (Algo-

rithm 7) row selection algorithms. t = 6, v = 2. 10, 000 independent runs of

the randomized algorithm are used, and the best result is reported.

to construct complete covering arrays. However, when relatively smaller number of

interactions are left, the biased density algorithm runs reasonably fast and hence has

some practical value. Section 4.3.5 discusses a few variants of the biased density

algorithm that exploit this observation.

4.3.5 Improving the Running Time

The biased density algorithm produces shorter arrays than the density algorithm

in practice, but also takes more time and becomes impractical as k grows larger. To

circumvent its quadratic running time, we introduce two new variations of the biased

density algorithm: the method of pessimistic estimators, and a hybrid two stage

algorithm where the density algorithm in the first stage is followed by the biased

density algorithm in the second stage. Next, we develop these ideas and compare

these methods with the density algorithm.
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The Method of Pessimistic Estimation

Instead of computing the exact value of the conditional expected coverage for each

remaining interaction, we may compute a lower bound, a pessimistic estimate of the

conditional expectation, and use this lower bound to make the greedy interaction

selection. The method works as follows: we maintain a table of dimension |It,k,v| ×

(t+1), where each row is indexed by the interactions from the set of all possible t-way

interactions It,k,v. For ι ∈ It,k,v and 0 ≤ i ≤ t, A(ι, i) maintains a lower bound on

the number of interactions which share exactly i columns with ι and agree with it.

After each new row is added, we update this table by over-counting the number of

interactions that share i columns with ι, agree with it, and are covered in the most

recently added row.

Table 4.2 compares the size of the covering arrays obtained from the density

algorithm and the biased density algorithm with pessimistic estimates for 3 different

combination of t and v values. We observe that for higher values of k, the method

of pessimistic estimations produces marginally smaller covering arrays compared to

density algorithm. The running time of this variation of the biased density algorithm

is comparable to that of the density algorithm.

The Hybrid Method

In this variation, we start by adding rows to an array using the density algorithm.

Once the number of uncovered interactions falls below a certain threshold we switch

over to the biased density algorithm. The switchover threshold is set in such a way

that the running time of the biased density is within a constant factor of the running

time of the density algorithm.

This hybrid strategy often performs better than the density algorithm. Table 4.3
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k D PE

15 306 306

16 318 320

17 332 331

18 344 341

19 355 352

20 365 363

21 378 375

22 385 385

23 394 392

25 401 402

(a) t = 4, v = 3

k D PE

11 814 804

12 884 877

13 955 948

14 1018 1007

15 1073 1067

16 1136 1131

17 1193 1178

18 1239 1234

19 1287 1282

20 1340 1324

(b) t = 5, v = 3

k D PE

10 2166 2148

11 2485 2490

12 2778 2766

13 3054 3045

14 3313 3309

15 3559 3540

16 3785 3788

17 4015 3995

18 4238 4215

19 4439 4417

(c) t = 6, v = 3

Table 4.2: Comparison of the covering array sizes constructed by the density

algorithm (D) and the biased density algorithm with pessimistic estimates

(PE).

compares the density algorithm against the hybrid strategy for t = 6, v = 3 and k

in the range 15− 19. In this range the presently best known results are obtained by

running post optimization methods on the covering arrays constructed by the density

algorithm. Because the hybrid strategy constructs smaller arrays compared to the

density algorithm for all the k values in this range, it is not unreasonable to expect

that the covering arrays produced by running post-optimization on these arrays may

eventually beat the presently best known results.
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k density hybrid best-known

15 3410 3379 3223

16 3652 3597 3435

17 3855 3812 3654

18 4072 4026 3846

19 4273 4222 4051

Table 4.3: Comparison of the covering array sizes obtained by the density and

the hybrid algorithm for t = 6, v = 3. In the density algorithm each row is

selected from multiple candidate rows generated using the conditional expec-

tation. All the best known results are obtained by running post-optimization

on the arrays generated by the density algorithm.
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Chapter 5

TWO-STAGE FRAMEWORK FOR COVERING ARRAY CONSTRUCTION

In this chapter, we describe a new algorithmic framework for covering array con-

struction, called the two-stage framework. When k > max(t + 1, v + 2), a covering

array must cover some interactions more than once, for if not they are orthogonal

arrays [33]. Treating the rows of a covering array in a fixed order, each row covers

some number of interactions not covered by any earlier row. For a variety of known

constructions, the initial rows cover many new interactions, while the later ones cover

very few [8]. Comparing this rate of coverage for a purely random method and for one

of the sophisticated search techniques, one finds little difference in the initial rows,

but very substantial differences in the final ones. This suggests strategies to build the

covering array in stages, investing more effort as the number of remaining uncovered

interactions declines. This observation forms the core of the ideas investigated in this

chapter.

In the first stage of our two-stage framework, a randomized row construction

method builds a specified number of rows to cover all but a small number of in-

teractions. As we see later, by dint of being randomized this stage uses very little

memory. The second stage is a more sophisticated search that adds a few rows to

cover the remaining uncovered interactions. We choose search algorithms whose time

and space requirements depend on the number of interactions to be covered, to profit

from the fact that only few interactions remain uncovered. By mixing randomized

and deterministic methods, we hope to retain the fast execution and small storage

of the randomized methods while gaining the efficiency of the deterministic search

techniques.
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We introduce a number of algorithms within this two-stage framework. Here

our focus is on practical consequences. The two-stage algorithms are indeed quite

efficient for higher strengths (t ∈ {5, 6}) and relatively smaller number of levels

(v ∈ {3, 4, 5, 6}), when the number of factors k is moderately high (approximately in

the range of 20−80 depending on the value of t and v). In fact, for many combinations

of t, k and v values the two-stage algorithms beat the previously best known bounds.

Torres-Jimenez et al. [54] explore a related two-stage strategy. In their first

stage, an in-parameter-order greedy strategy (as used in ACTS [38]) adds a column

to an existing array; in their second stage, simulated annealing is applied to cover the

remaining interactions. They apply their methods for t = v = 3, when the storage

and time requirements for both stages remain acceptable. In addition to the issues

in handling larger strengths, their methods provide no a priori bound on the size of

the resulting array. In contrast with their methods, ours provide a guarantee prior to

execution with much more modest storage and time.

The discussion in this chapter is based on the presentation in Sarkar and Colbourn

[47].

5.1 Why Does a Two Stage Based Strategy Make Sense?

Compare the two extremes: The density algorithm and Algorithm 2. On one hand,

Algorithm 2 does not suffer from any substantial storage restriction, but appears to

generate many more rows than the density algorithm. On the other hand, the density

algorithm constructs fewer rows for small values of k but becomes impractical when

k is moderately large. One wants algorithms that behave like Algorithm 2 in terms

of memory, but yield a number of rows competitive with the density algorithm.

For t = 6, k = 16, and v = 3, Figure 5.1 compares the coverage profile for the

density algorithm and Algorithm 2. We plot the number of newly covered interactions
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Figure 5.1: For t = 6, k = 16 and v = 3, the actual number of newly covered

interactions of the density algorithm and the expected number of newly covered

interactions in a random array.

for each row in the density algorithm, and the expected number of newly covered

interactions for each row for Algorithm 2. The qualitative features exhibited by this

plot are representative of the rates of coverage for other parameters.

Two key observations are suggested by Figure 5.1. First, the expected coverage in

the initial random rows is similar to the rows chosen by the density algorithm. In this

example, the partial arrays consisting of the first 1000 rows exhibit similar coverage,

yet the randomized algorithm needed no extensive bookkeeping. Secondly, as later

rows are added, the judicious selections of the density algorithm produce much larger

coverage per row than Algorithm 2. Consequently, it appears sensible to invest few

computational resources on the initial rows while making more careful selections in the

later ones. This forms the blueprint of our general two-stage algorithmic framework
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shown in Algorithm 9.

Algorithm 9: The general two-stage framework for covering array construction.

Input: t : strength of the required covering array, k : number of factors, v :

number of levels for each factor

Output: A : a CA(N ; t, k, v)

1 Choose a number n of rows and a number ρ of interactions;

// First Stage

2 Use a randomized algorithm to construct an n× k array A′;

3 Ensure that A′ covers all but at most ρ interactions;

4 Make a list L of interactions that are not covered in A′ (L contains at most ρ

interactions);

// Second Stage

5 Use a deterministic procedure to add N − n rows to A′ to cover all the

interactions in L;

6 Output A;

A specific covering array construction algorithm results by specifying the random-

ized method in the first stage, the deterministic method in the second stage, and the

computation of n and ρ. Any such algorithm produces a covering array, but we wish

to make selections so that the resulting algorithms are practical while still providing

a guarantee on the size of the array. In Section 5.2 we describe different algorithms

from the two-stage family, determine the size of the partial array to be constructed

in the first stage, and establish upper bound guarantees. In Section 5.3 we explore

how good the algorithms are in practice.
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5.2 Two-stage Framework

For the first stage we consider two methods:

Rand the basic randomized algorithm,

MT the Moser-Tardos type algorithm.

We defer the development of method MT until Section 6.2. Method Rand uses a

simple variant of Algorithm 2, choosing a random n× k array.

For the second stage we consider four methods:

Naive the näıve strategy, one row per uncovered interaction,

Greedy the online greedy coloring strategy,

Den the density algorithm,

Col the graph coloring algorithm.

Using these abbreviations, we adopt a uniform naming convention for the algorithms:

TS 〈A,B〉 is the algorithm in which A is used in the first stage, and B is used in

the second stage. For example, TS 〈MT,Greedy〉 denotes a two-stage algorithm where

the first stage is a Moser-Tardos type randomized algorithm and the second stage is

a greedy coloring algorithm. Later when the need arises we refine these algorithm

names.

5.2.1 One Row Per Uncovered Interaction in the Second Stage

In the second stage, each of the uncovered interactions after the first stage is

covered using a new row. Algorithm 10 describes the method in more detail.

This simple strategy improves on the basic randomized strategy when n is chosen

judiciously. For example, when t = 6, k = 54 and v = 3, Algorithm 2 constructs

a covering array with 17, 236 rows. Figure 5.2 plots an upper bound on the size of

the covering array against the number n of rows in the partial array. The smallest
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Algorithm 10: Näıve two-stage algorithm (TS 〈Rand,Naive〉).
Input: t : strength of the covering array, k : number of factors, v : number of

levels for each factor

Output: A : a CA(N ; t, k, v)

1 Let n :=
log (k

t)+t log v+log log
(

vt

vt−1

)
log
(

vt

vt−1

) ;

2 Let ρ = 1

log
(

vt

vt−1

) ;

3 repeat

4 Let A be an n× k array where each entry is chosen independently and

uniformly at random from a v-ary alphabet;

5 Let uncovNum := 0 and unCovList be an empty list of interactions;

6 Set covered := true;

7 for each interaction ι ∈ It,k,v do

8 if ι is not covered in A then

9 Set uncovNum :=uncovNum+1;

10 Add ι to unCovList ;

11 if uncovNum > ρ then

12 Set covered := false;

13 break;

14 end

15 end

16 end

17 until covered= true;

18 for each interaction ι ∈uncovList do

19 Add a row to A that covers ι;

20 end

21 Output A;
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Figure 5.2: An upper bound on the size of the covering array against n, the

size of the partial array constructed in the first stage when t = 6, k = 54,

and v = 3, with one new row added per uncovered interaction in the second

stage. The minimum size of 13, 162 is obtained when n = 12, 402. Algorithm 2

requires 17, 236 rows, and the currently best known covering array has 17, 197

rows.

covering array is obtained when n = 12, 402 which, when completed, yields a covering

array with at most 13, 162 rows—a big improvement over Algorithm 2.

Theorem 8 from Chapter 3 tells us the optimal value of n for this strategy in

general: n =
log (k

t)+t log v+log log
(

vt

vt−1

)
log
(

vt

vt−1

) . The expected number of uncovered interactions

is exactly ρ = 1/ log
(

vt

vt−1

)
.

Figure 5.3 compares SLJ, discrete SLJ and two-stage bounds for k ≤ 100, when

t = 6 and v = 3. The two-stage bound does not deteriorate in comparison to the

discrete SLJ bound as k increases; it consistently takes only 307–309 more rows. Thus
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Figure 5.3: Comparison of covering array sizes obtained from the Stein-Lovász-

Johnson bound, the discrete Stein-Lovász-Johnson bound and the two-stage

bound for k ≤ 100, when t = 6 and v = 3. For this range of k, the two-stage

bound requires 307–309 more rows than the discrete SLJ bound, that is, 2–6%

more rows.

when k = 12 the two-stage bound requires only 6% more rows and when k = 100

only 2% more rows than the discrete SLJ bound.

To ensure that the loop in line 7 of Algorithm 10 does not repeat too many times

we need to know the probability with which a random n × k array leaves at most ρ

interactions uncovered. Using Chebyshev’s inequality and the second moment method

developed in [2, Chapter 4], we next show that in a random n×k array the number of

uncovered interactions is almost always close to its expectation, i.e.,
(
k
t

)
vt
(
1− 1

vt

)n
.

Substituting the value of n from line 1, this expected value is equal to ρ, as in line

2. Therefore, the probability that a random n × k array covers the desired number
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of interactions is constant, and the expected number of times the loop in line 7 is

repeated is also a constant (around 2 in practice).

Because the theory of the second moment method is developed in considerable

detail in Alon and Spencer [2], here we briefly mention the relevant concepts and

results. Suppose that X =
∑m

i=1Xi, where Xi is the indicator random variable for

event Ai for 1 ≤ i ≤ m. For indices i, j, we write i ∼ j if i 6= j and the events

Ai, Aj are not independent. Also suppose that X1, . . . , Xm are symmetric, i.e., for

every i 6= j there is a measure preserving mapping of the underlying probability

space that sends event Ai to event Aj. Define ∆∗ =
∑

j∼i Pr [Aj|Ai]. Then by [2,

Corollary 4.3.4]:

Lemma 9. [2] If E[X]→∞ and ∆∗ = o(E[X]) then X ∼ E[X] almost always.

In our case, Ai denotes the event that the ith interaction is not covered in a n×k

array where each entry is chosen independently and uniformly at random from a v-ary

alphabet. Then Pr[Xi] =
(
1− 1

vt

)n
. Because there are

(
k
t

)
vt interactions in total, by

linearity of expectation, E[X] =
(
k
t

)
vt
(
1− 1

vt

)n
, and E[X]→∞ as k →∞.

Distinct events Ai and Aj are independent if the ith and jth interactions share no

column. Therefore, the event Ai is not independent of at most t
(
k
t−1

)
other events Aj.

So ∆∗ =
∑

j∼i Pr [Aj|Ai] ≤
∑

j∼i 1 ≤ t
(
k
t−1

)
= o(E[X]) when v and t are constants.

By Lemma 9, the number of uncovered interactions in a random n×k array is close to

the expected number of uncovered interactions. This guarantees that Algorithm 10

is an efficient randomized algorithm for constructing covering arrays with a number

of rows upper bounded by Theorem 8.

In keeping with the general two-stage framework, Algorithm 10 does not store

the coverage status of each interaction. We only need store the interactions that

are uncovered in A, of which there are at most ρ = 1

log
(

vt

vt−1

) ≈ vt. This quantity

60



0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
x 10

4

k

N
 −

 n
um

be
r 

of
 r

ow
s

 

 
Best known
Two−stage (simple)
GSS bound

(a) t = 6, v = 3

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
x 10

6

k

N
 −

 n
um

be
r 

of
 r

ow
s

 

 
Best known
Two−stage (simple)
GSS bound

(b) t = 6, v = 6

Figure 5.4: Comparison of the GSS bound and the two-stage bound with the

currently best known results

depends only on v and t and is independent of k, so is effectively a constant that is

much smaller than
(
k
t

)
vt, the storage requirement for the density algorithm. Hence

the algorithm can be applied to a higher range of k values.

Although Theorem 2 provides asymptotically tighter bounds than Theorem 8, in

a range of k values that are relevant for practical application, Theorem 8 provides

better results. Figure 5.4 compares the bounds on CAN(t, k, v) with the currently

best known results.

5.2.2 The Density Algorithm in the Second Stage

Next, we apply the density algorithm in the second stage. Figure 5.5 plots an

upper bound on the size of the covering array against the size of the partial array

constructed in the first stage when the density algorithm is used in the second stage,

and compares it with TS 〈Rand,Naive〉. The size of the covering array decreases as

n decreases. This is expected because, with smaller partial arrays, more interactions

remain for the second stage to be covered by the density algorithm. In fact, if we
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Figure 5.5: Comparison of covering array sizes from two-stage algorithms with

Den and Naive in the second stage. With Den there is no minimum point in

the curve; the size of the covering array keeps decreasing as we leave more

uncovered interactions for the second stage.

cover all the interactions using the density algorithm (as when n = 0) we would get

an even smaller covering array. However, our motivation was precisely to avoid doing

that. Therefore, we need a ”cut-off” for the first stage.

We are presented with a trade-off. If we construct a smaller partial array in the first

stage, we obtain a smaller covering array overall. But we then pay for more storage

and computation time for the second stage. To appreciate the nature of this trade-off,

look at Figure 5.6, which plots an upper bound on the covering array size and the

number of uncovered interactions in the first stage against n. The improvement in the

covering array size plateaus after a certain point. The three horizontal lines indicate

ρ (≈ vt), 2ρ and 3ρ uncovered interactions in the first stage. (In the näıve method
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of Section 5.2.1, the partial array after the first stage leaves at most ρ uncovered

interactions.) In Figure 5.6 the final covering array size appears to plateau when the

number of uncovered interactions left by the first stage is around 2ρ. After that we

see diminishing returns — the density algorithm needs to cover more interactions in

return for a smaller improvement in the covering array size.

Let r be the maximum number of interactions allowed to remain uncovered after

the first stage. Then r can be specified in the two-stage algorithm. To accommodate

this, we denote by TS 〈A,B; r〉 the two-stage algorithm where A is the first stage

strategy, B is the second stage strategy, and r is the maximum number of uncovered

interactions after the first stage. For example, TS 〈Rand,Den; 2ρ〉 applies the basic

randomized algorithm in the first stage to cover all but at most 2ρ interactions, and

the density algorithm to cover the remaining interactions in the second stage.

5.2.3 Coloring in the Second Stage

Now we describe strategies using graph coloring in the second stage. Construct

a graph G = (V,E), the incompatibility graph, in which V is the set of uncovered

interactions and there is an edge between two interactions exactly when they share

a column in which they have different symbols. A single row can cover a set of

interactions if and only if it forms an independent set in G. Hence the minimum

number of rows required to cover all interactions of G is exactly its chromatic number

χ(G), the minimum number of colors in a proper coloring of G. Graph coloring is an

NP-hard problem, so we employ heuristics to bound the chromatic number. Moreover,

G only has vertices for the uncovered interactions after the first stage, so it is size is

small relative to the total number of interactions.

The expected number of edges in the incompatibility graph after choosing n rows

uniformly at random is γ =
(

1
2

) (
k
t

)
vt
∑t

i=1

(
t
i

)(
k−t
t−i

)
(vt−vt−i)

(
1− 1

vt

)n (
1− 1

(vt−vt−i)

)n
.
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Figure 5.6: Final covering array size against the number of uncovered inter-

actions after the first stage. As the size n of the partial array decreases, the

number of uncovered interactions in the first stage increases. Den is used in

the second stage. From bottom to top, the green lines denote ρ, 2ρ, and 3ρ

uncovered interactions.

Using the elementary upper bound on the chromatic number χ ≤ 1
2
+
√

2m+ 1
4
, where

m is the number of edges [22, Chapter 5.2], we can surely cover the remaining inter-

actions with at most 1
2

+
√

2m+ 1
4

rows.

The actual number of edges m that remain after the first stage is a random

variable with mean γ. In principle, the first stage could be repeatedly applied until

m ≤ γ, so we call m = γ the optimistic estimate. To ensure that the first stage is

expected to be run a small constant number of times, we increase the estimate. With

probability more than 1
2

the incompatibility graph has m ≤ 2γ edges, so m = 2γ is

the conservative estimate.
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Figure 5.7: Size of the partial array vs. size of the complete covering array.

t = 6, k = 56, v = 3. The Stein-Lovász-Johnson bound requires 17, 403 rows,

and the discrete Stein-Lovász-Johnson bound requires 13, 021 rows. The simple

estimate for the two stage algorithm is 13, 328 rows, the conservative estimate

assuming m = 2γ is 12, 159 rows, and the optimistic estimate assuming m = γ

is 11, 919 rows. Even the conservative estimate beats the discrete Stein-Lovász-

Johnson bound.

For t = 6, k = 56, and v = 3, Figure 5.7 shows the effect on the minimum

number of rows when the bound on the chromatic number in the second stage is

used, for the conservative or optimistic estimates. The näıve method is plotted for

comparison. Better coloring bounds shift the minima leftward, reducing the number

of rows produced in both stages.

Thus far we have considered bounds on the chromatic number. Better estimation

of χ(G) is complicated by the fact that we do not have much information about the
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structure of G until the first stage is run. In practice, however, G is known after

the first stage and hence an algorithmic method to bound its chromatic number can

be applied. Because the number of vertices in G equals the number of uncovered

interactions after the first stage, we encounter the same trade-off between time and

storage, and final array size, as seen earlier for density. Hence we again parameterize

by the expected number of uncovered interactions in the first stage.

We employ two different greedy algorithms to color the incompatibility graph.

In method Col we first construct the incompatibility graph G after the first stage.

Then we apply the commonly used smallest last order heuristic to order the vertices

for greedy coloring: At each stage, find a vertex vi of minimum degree in Gi, order

the vertices of Gi − vi, and then place vi at the end. More precisely, we order the

vertices of G as v1, v2, . . . , vn, such that vi is a vertex of minimum degree in Gi, where

Gi = G−{vi+1, . . . , vn}. A graph is d-degenerate if all of its subgraphs have a vertex

with degree at most d. When G is d-degenerate but not (d − 1)-degenerate, the

coloring number col(G) is d + 1. If we then greedily color the vertices with the first

available color, at most col(G) colors are used.

In method Greedy we employ an on-line, greedy approach that colors the interac-

tions as they are discovered in the first stage. In this way, the incompatibility graph

is never constructed. We instead maintain a set of rows. Some entries in rows are

fixed to a specific value; others are flexible to take on any value. Whenever a new

interaction is found to be uncovered in the first stage, we check if any of the rows is

compatible with this interaction. If such a row is found then entries in the row are

fixed so that the row now covers the interaction. If no such row exists, a new row

with exactly t fixed entries corresponding to the interaction is added to the set of

rows. This method is much faster than method Col in practice.
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5.2.4 Using Group Action in the Second Stage

Application of group action to the TS 〈Rand,Naive〉 type methods was discussed

in Section 3.2.1. Group action can be applied to the other methods for the second

stage as well. Colbourn [19] incorporates group action into the density algorithm,

allowing us to apply method Den in the second stage.

Greedy extends easily to use group action, as we do not construct an explicit

incompatibility graph. Whenever we fix entries in a row to cover an uncovered orbit,

we commit to a specific orbit representative.

However, applying group action to the incompatibility graph coloring for Col is

more complicated. We need to modify the definition of the incompatibility graph for

two reasons. First the vertices no longer represent uncovered interactions, but rather

uncovered orbits of interactions. Secondly, and perhaps more importantly, pairwise

compatibility between every two orbits in a set no longer implies mutual compatibility

among all orbits in the set.

One approach is to form a vertex for each uncovered orbit, placing an edge be-

tween two when they share a column. Rather than the usual coloring, however, one

asks for a partition of the vertex set into classes so that every class induces an acyclic

subgraph. Problems of this type are generalized graph coloring problems [4]. Within

each class of such a vertex partition, consistent representatives of each orbit can be

selected to form a row; when a cycle is present, this may not be possible. Unfortu-

nately, heuristics for solving these types of problems appear to be weak, so we adopt

another approach. As we build the incompatibility graph, we commit to specific orbit

representatives. When a vertex for an uncovered orbit is added, we check its com-

patibility with the orbit representatives chosen for the orbits already handled with

which it shares columns; we commit to an orbit representative and add edges to those
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with which it is now incompatible. Once completed, we have a (standard) coloring

problem for the resulting graph.

Because group action can be applied using each of the methods for the two stages,

we extend our naming to TS 〈A,B; r,Γ〉, where Γ can be Trivial (i.e. no group action),

Cyclic, or Frobenius.

5.3 Computational Results

Figure 5.4 indicates that even a simple two-stage bound can improve on the best

known covering array numbers. Therefore we investigate the actual performance of

our two-stage algorithms for covering arrays of strength 5 and 6.

First we present results for t = 6, when v ∈ {3, 4, 5, 6} and no group action is

assumed. Table 5.1 shows the results for different v values. In each case we select the

range of k values where the two-stage bound predicts smaller covering arrays than the

previously known best ones, setting the maximum number of uncovered interactions

as ρ = 1/ log
(

vt

vt−1

)
≈ vt. For each value of k we construct a single partial array and

then run the different second stage algorithms on it consecutively. In this way, all the

second stage algorithms cover the same set of uncovered interactions.

The column tab lists the best known CAN(t, k, v) upper bounds from [17]. The

column bound shows the upper bounds obtained from the two-stage bound (8).

The columns näıve, greedy, col and den show results obtained from running the

TS 〈Rand,Naive; ρ,Trivial〉, TS 〈Rand,Greedy; ρ,Trivial〉, TS 〈Rand,Col; ρ,Trivial〉 and

TS 〈Rand,Den; ρ,Trivial〉 algorithms, respectively.

The näıve method always finds a covering array that is smaller than the two-stage

bound. This happens because we repeat the first stage of Algorithm 10 until the array

has fewer than vt uncovered interactions. (If the first stage were not repeated, the al-

gorithm would still produce covering arrays that are not too far from the bound.) For
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v = 3 Greedy and Den have comparable performance. Method Col produces covering

arrays that are smaller. However, for v ∈ {4, 5, 6} Den and Col are competitive.

Table 5.1: Comparison of different TS 〈Rand,−; ρ,Trivial〉 algorithms.

k tab bound näıve greedy col den

t = 6, v = 3

53 13021 13076 13056 12421 12415 12423

54 14155 13162 13160 12510 12503 12512

55 17161 13246 13192 12590 12581 12591

56 19033 13329 13304 12671 12665 12674

57 20185 13410 13395 12752 12748 12757

t = 6, v = 4

39 68314 65520 65452 61913 61862 61886

40 71386 66186 66125 62573 62826 62835

41 86554 66834 66740 63209 63160 63186

42 94042 67465 67408 63819 64077 64082

43 99994 68081 68064 64438 64935 64907

44 104794 68681 68556 65021 65739 65703

t = 6, v = 5

31 233945 226700 226503 213244 212942 212940

32 258845 229950 229829 216444 217479 217326

33 281345 233080 232929 219514 219215 219241

34 293845 236120 235933 222516 222242 222244

35 306345 239050 238981 225410 226379 226270

36 356045 241900 241831 228205 230202 229942

t = 6, v = 6

17 506713 486310 486302 449950 448922 447864

Continued on the next page
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Table 5.1 – continued from the previous page

k tab bound näıve greedy col den

18 583823 505230 505197 468449 467206 466438

19 653756 522940 522596 485694 484434 483820

20 694048 539580 539532 502023 500788 500194

21 783784 555280 555254 517346 516083 515584

22 844834 570130 569934 531910 530728 530242

23 985702 584240 584194 545763 544547 548307

24 1035310 597660 597152 558898 557917 557316

25 1112436 610460 610389 571389 570316 569911

26 1146173 622700 622589 583473 582333 582028

27 1184697 634430 634139 594933 593857 593546

Table 5.2 shows the results obtained by the different second stage algorithms when

the maximum number of uncovered interactions in the first stage is set to 2ρ and 3ρ

respectively. When more interactions are covered in the second stage, we obtain

smaller arrays as expected. However, the improvement in size does not approach

50%. There is no clear winner.

Table 5.2: Comparison of TS 〈Rand,−; 2ρ,Trivial〉 and TS 〈Rand,−; 3ρ,Trivial〉

algorithms.

k 2ρ 3ρ

greedy col den greedy col den

t = 6, v = 3

53 11968 11958 11968 11716 11705 11708

Continued on the next page
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Table 5.2 – continued from the previous page

k 2ρ 3ρ

greedy col den greedy col den

54 12135 12126 12050 11804 11787 11790

55 12286 12129 12131 11877 11875 11872

56 12429 12204 12218 11961 12055 11950

57 12562 12290 12296 12044 12211 12034

t = 6, v = 4

39 59433 59323 59326 58095 57951 57888

40 60090 60479 59976 58742 58583 58544

41 60715 61527 60615 59369 59867 59187

42 61330 62488 61242 59974 61000 59796

43 61936 61839 61836 60575 60407 60393

44 62530 62899 62428 61158 61004 60978

t = 6, v = 5

31 204105 203500 203302 199230 198361 197889

32 207243 206659 206440 202342 201490 201068

33 210308 209716 209554 205386 204548 204107

34 213267 212675 212508 208285 - 207060

35 216082 215521 215389 211118 - 209936

36 218884 218314 218172 213872 - 212707

t = 6, v = 6

17 425053 - 420333 412275 - 405093

18 443236 - 438754 430402 - 423493

19 460315 - 455941 447198 - 440532

20 476456 - 472198 463071 - 456725

21 491570 - 487501 478269 - 471946

Continued on the next page
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Table 5.2 – continued from the previous page

k 2ρ 3ρ

greedy col den greedy col den

22 505966 - 502009 492425 - 486306

23 519611 - 515774 505980 - 500038

24 532612 - 528868 518746 - 513047

25 544967 - 541353 531042 - 525536

26 556821 - 553377 542788 - 537418

27 568135 - 564827 554052 - 548781

Next, we investigate the covering arrays that are invariant under the action of a

cyclic group. In Table 5.3 the column bound shows the upper bounds from Equation

(3.1). The columns näıve, greedy, col and den show results obtained from running

TS 〈Rand,Naive; ρ,Cyclic〉, TS 〈Rand,Greedy; ρ,Cyclic〉, TS 〈Rand,Col; ρ,Cyclic〉 and

TS 〈Rand,Den; ρ,Cyclic〉, respectively.

Table 5.3: Comparison of different TS 〈Rand,−; ρ,Cyclic〉 algorithms.

k tab bound näıve greedy col den

t = 6, v = 3

53 13021 13059 13053 12405 12405 12411

54 14155 13145 13119 12489 12543 12546

55 17161 13229 13209 12573 12663 12663

56 19033 13312 13284 12660 12651 12663

57 20185 13393 13368 12744 12744 12750

t = 6, v = 4

Continued on the next page
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Table 5.3 – continued from the previous page

k tab bound näıve greedy col den

39 68314 65498 65452 61896 61860 61864

40 71386 66163 66080 62516 62820 62784

41 86554 66811 66740 63184 63144 63152

42 94042 67442 67408 63800 63780 63784

43 99994 68057 68032 64408 64692 64680

44 104794 68658 68556 64988 64964 64976

t = 6, v = 5

31 226000 226680 226000 213165 212945 212890

32 244715 229920 229695 216440 217585 217270

33 263145 233050 233015 219450 221770 221290

34 235835 236090 235835 222450 222300 222210

35 238705 239020 238705 225330 225130 225120

36 256935 241870 241470 228140 229235 229020

t = 6, v = 6

17 506713 486290 485616 449778 448530 447732

18 583823 505210 504546 468156 467232 466326

19 653756 522910 522258 485586 490488 488454

20 694048 539550 539280 501972 500880 500172

21 783784 555250 554082 517236 521730 519966

22 844834 570110 569706 531852 530832 530178

23 985702 584210 583716 545562 549660 548196

24 1035310 597630 597378 558888 557790 557280

25 1112436 610430 610026 571380 575010 573882

26 1146173 622670 622290 583320 582546 582030

27 1184697 624400 633294 594786 598620 597246

73



Table 5.4 presents results for cyclic group action based algorithms when the num-

ber of maximum uncovered interactions in the first stage is set to 2ρ and 3ρ respec-

tively.

Table 5.4: Comparison of TS 〈Rand,−; 2ρ,Cyclic〉 and TS 〈Rand,−; 3ρ,Cyclic〉

algorithms.

k 2ρ 3ρ

greedy col den greedy col den

t = 6, v = 3

53 11958 11955 11958 11700 11691 11694

54 12039 12027 12036 11790 11874 11868

55 12120 12183 12195 11862 12057 12027

56 12204 12342 12324 11949 11937 11943

57 12276 12474 12450 12027 12021 12024

t = 6, v = 4

39 59412 59336 59304 58076 57976 57864

40 60040 59996 59964 58716 58616 58520

41 60700 61156 61032 59356 59252 59160

42 61320 62196 61976 59932 59840 59760

43 61908 63192 62852 60568 61124 60904

44 62512 64096 63672 61152 61048 60988

t = 6, v = 5

31 204060 203650 203265 199180 198455 197870

32 207165 209110 208225 202255 204495 203250

33 207165 209865 209540 205380 204720 204080

34 213225 212830 212510 208225 207790 207025

35 216050 217795 217070 211080 213425 212040

Continued on the next page
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Table 5.4 – continued from the previous page

k 2ρ 3ρ

greedy col den greedy col den

36 218835 218480 218155 213770 213185 212695

t = 6, v = 6

17 424842 422736 420252 411954 409158 405018

18 443118 440922 438762 430506 427638 423468

19 460014 457944 455994 447186 456468 449148

20 476328 474252 472158 463062 460164 456630

21 491514 489270 487500 478038 486180 479970

22 505884 503580 501852 492372 489336 486264

23 519498 517458 515718 505824 502806 500040

24 532368 530340 528828 518700 515754 512940

25 544842 542688 541332 530754 538056 532662

26 543684 543684 543684 542664 539922 537396

27 568050 566244 564756 553704 560820 555756

For the Frobenius group action, we show results only for v ∈ {3, 5} in Table 5.5.

The column bound shows the upper bounds obtained from Equation (3.2).

Table 5.6 presents results for Frobenius group action algorithms when the number

of maximum uncovered interactions in the first stage is 2ρ or 3ρ.

Next we present a handful of results when t = 5. In the cases examined, using

the trivial group action is too time consuming to be practical. However, the cyclic or

Frobenius cases are feasible. Tables 5.7 and 5.8 compare two stage algorithms when

the number of uncovered interactions in the first stage is at most 2ρ.

All code used in this experimentation is available from the GitHub repository
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k tab bound näıve greedy col den

t = 6, v = 3

53 13021 13034 13029 12393 12387 12393

54 14155 13120 13071 12465 12513 12531

55 17161 13203 13179 12561 12549 12567

56 19033 13286 13245 12633 12627 12639

57 20185 13366 13365 12723 12717 12735

t = 6, v = 5

31 233945 226570 226425 213025 212865 212865

32 258845 229820 229585 216225 216085 216065

33 281345 232950 232725 219285 219205 219145

34 293845 235980 234905 222265 223445 223265

35 306345 238920 238185 225205 227445 227065

36 356045 241760 241525 227925 231145 230645

Table 5.5: Comparison of different TS 〈Rand,−; ρ,Frobenius〉 algorithms.

https://github.com/ksarkar/CoveringArray

under an open source GPLv3 license.

5.3.1 Choosing a Method

In section 5.3 we presented computational results for different combinations of the

parameter values t, k, and v and compared the four different second stage methods

under different group actions and different values of r. In almost all cases there is no

clear winner among the three second stage methods—Greedy, Den, and Col. However,

in practical applications, while applying the two-stage framework for covering array

construction one needs to decide how to properly parameterize the framework, i.e.,
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which specific two-stage algorithm to use. In this section we provide general guidelines

to users to help them choose the right method for their applications.

Assuming that the basic randomized method is used in the first stage, to ob-

tain a specific two-stage algorithm one needs to make the following three choices:

(1) What group action to use? (2) how many interactions to leave for the second

stage? and (3) what method to use in the second stage? These choices are dictated

chiefly by the values of t, k and v for which a covering array is sought. Additionally,

available computing resources (computing time, RAM, parallelism etc.) figure in the

consideration.

Of the three choices the most straightforward is deciding the group action. If v

is a prime power then one should use Frobenius group action, otherwise Cyclic should

be chosen. They produce shorter covering arrays than the Trivial group action, and

they also run faster.

The choice of r—the number of interaction to leave for the second stage—is inter-

related with the choice of the second stage method, and is determined by the values

of t, k and v. As mentioned earlier, in general, the higher the value of r, the smaller

the final covering array is in size. At the same time, for higher values of r, all other

things being equal, the second stage method takes more time (and space) to complete

the covering array. Therefore, for smaller values of t, k and v (t ≤ 4, k ≤ 100, and

v ≤ 10) it is advisable to set r = 3ρ (where ρ ≈ vt). For higher values of the inputs

(t ≥ 5, k ≥ 100, and v ≥ 5), the computation time in the second stage is too high

for most practical purposes unless r is set to ρ. In the ranges in between one should

start by setting r = 2ρ and then should choose a smaller value if the computation

time is prohibitively large for the purpose.

The space complexity of the Col method is O(r2) because it needs to store the

dense incompatibility graph for the remaining uncovered interactions. For the Den
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method, the space complexity is O(r), and for the Greedy method it is constant and

almost negligible for all practical purposes. Also in terms of the running time Greedy

is the fastest, Col takes the maximum time, and Den is in between. However, in terms

of the size of constructed covering arrays Greedy and Den are comparable, while Col

often produces arrays which are slightly smaller. So, if the values of v, and t are

relatively high and r is set to a higher value then Greedy is the best choice in most

scenarios. On the other hand, if v and t are relatively smaller and r is set to ρ then

one may consider employing Col in the second stage.
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k 2ρ 3ρ

greedy col den greedy col den

t = 6, v = 3

53 11931 11919 11931 11700 11691 11694

54 12021 12087 12087 11790 11874 11868

55 12105 12237 12231 11862 12057 12027

56 12171 12171 12183 11949 11937 11943

57 12255 12249 12255 12027 12021 12024

70 13167 13155 13179 - - -

75 13473 13473 13479 - - -

80 13773 13767 13779 - - -

85 14031 14025 14037 - - -

90 14289 14283 14301 - - -

t = 6, v = 5

31 203785 203485 203225 198945 198445 197825

32 206965 208965 208065 201845 204505 203105

33 209985 209645 209405 205045 209845 207865

34 213005 214825 214145 208065 207545 206985

35 215765 215545 215265 210705 210365 209885

36 218605 218285 218025 213525 213105 212645

50 250625 250365 250325 - - -

55 259785 259625 259565 - - -

60 268185 268025 267945 - - -

65 275785 275665 275665 - - -

Table 5.6: Comparison of TS 〈Rand,−; 2ρ,Frobenius〉 and

TS 〈Rand,−; 3ρ,Frobenius〉 algorithms.
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k tab greedy col den

67 59110 48325 48285 48305

68 60991 48565 48565 48585

69 60991 48765 49005 48985

70 60991 49005 48985 49025

71 60991 49245 49205 49245

Table 5.7: Comparison of TS 〈Rand,−; 2ρ,Frobenius〉 algorithms. t = 5, v = 5

k tab greedy col den

49 122718 108210 108072 107988

50 125520 109014 108894 108822

51 128637 109734 110394 110166

52 135745 110556 110436 110364

53 137713 111306 111180 111120

Table 5.8: Comparison of TS 〈Rand,−; 2ρ,Cyclic〉 algorithms. t = 5, v = 6
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Chapter 6

GROUP ACTION AND LIMITED DEPENDENCE

When k ≥ 2t, some interactions have no columns in common. The events of

coverage of such interactions are independent. Neither Theorem 1 nor Theorem 8

takes advantage of this fact. Consider an N × k array A with each entry chosen

independently and uniformly at random from Σ. Let Aι denote the event that the

interaction ι ∈ It,k,v is not covered in A. Aι depends on all events {Aρ : ρ ∈ It,k,v, c(ι)∩

c(ρ) 6= ∅}, and only on those events. Hence when k ≥ 2t, there are events Aρ of which

Aι is independent. Godbole et al. [27] exploits this limited dependence by applying

the Lovász local lemma to prove Theorem 2 which is asymptotically tighter than

Theorem 1. In this chapter we employ an additional technique — group action,

together with the Lovász local lemma to obtain a number of powerful upper bounds

on CAN(t, k, v). The results in this chapter are based on the work reported in Sarkar

and Colbourn [48].

6.1 Group Action

We begin by considering sharply transitive group actions on the rows of a covering

array together with limited dependence. We consider only the covering arrays that are

invariant under such group action, thereby concentrating on covering orbits of inter-

action instead of each interaction individually. First, we prove a result that was first

reported by Francetić and Stevens [23]. However, our proof is considerably simpler

than their proof. Recall that d(t, v) is defined as d(t, v) = lim sup
k→∞

CAN(t, k, v)

log k
.
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Theorem 10. Let t, v be integers with t, v ≥ 2. Then

d(t, v) ≤ v(t− 1)

log
(

vt−1

vt−1−1

) .
Proof. Let Γ be a group that acts sharply transitively on Σ. Let Ct =

(
[k]
t

)
, and

τ ∈ Ct be a collection of t columns. The action of Γ partitions the set of interactions

involving the columns in τ into vt−1 orbits of length v each. We consider an n × k

array A with each entry chosen independently and uniformly at random from the

alphabet Σ . We want to cover all the orbits for every τ ∈ Ct. The probability that

there is at least one orbit involving τ that is not covered is at most vt−1
(
1− 1

vt−1

)n
.

For τ ∈ Ct , let Aτ denote the event that not all the orbits involving the columns

in τ are covered in A. So Pr[Aτ ] ≤ vt−1
(
1− 1

vt−1

)n
for all τ ∈ T . The event Aτ is

not independent of event Aρ if and only if τ and ρ share a column. So d ≤
(
t
1

)(
k−1
t−1

)
<

t
(
k
t−1

)
< tkt−1

(t−1)!
. By the Lovász local lemma (Lemma 5), if evt−1

(
1− 1

vt−1

)n tkt−1

(t−1)!
< 1,

there exists an n× k array that covers every orbit on every t-column combination of

A. Solving for n, and then developing A over the group Γ, we obtain a covering array

of size N , where

N = vn

> v
1 + log

(
vt−1t k

t−1

(t−1)!

)
log
(

vt−1

vt−1−1

)
=

v(t− 1) log k

log
(

vt−1

vt−1−1

) {1 +
1

(t− 1) log k
+

log v

log k
+

log t

(t− 1) log k
− log((t− 1)!)

log k

}
=

v(t− 1) log k

log
(

vt−1

vt−1−1

) {1 + o(1)}

This yields the required bound on d(t, v).

If we compare the bounds from Theorems 2 and 10 using the Taylor series expan-
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sion of log(1− x) = −x− x2

2
−O(x3), we find that

t−1

log
(

vt

vt−1

) = t−1

− log(1− 1
vt )

≈ t−1

( 1
vt

+ 1
2.v2t

)
= vt(t−1)

1+ 1
2vt

, and

v(t−1)

log
(

vt−1

vt−1−1

) = v(t−1)

− log(1− 1
vt−1 )

≈ v(t−1)

( 1
vt−1 + 1

2v2t−2 )
= vt(t−1)

1+ 1
2vt−1

.

Hence the bound of Theorem 10 is tighter than that of Theorem 2.

Next, we present an even tighter bound that utilizes a larger permutation group:

Theorem 11. Let t ≥ 2 be an integer and v be a prime power. Then

d(t, v) ≤ v(v − 1)(t− 1)

log
(

vt−1

vt−1−v+1

) . (6.1)

Proof. Let Γ be a group that is sharply 2-transitive on v symbols. Consider the action

of Γ on the set of interactions involving the columns τ ∈
(

[k]
t

)
. Under the action of

Γ the v interactions {(ci, vi) : ci ∈ τ, 1 ≤ i ≤ t} with v1 = . . . = vt (the constant

interactions) form a single orbit of length v. The remaining vt − v interactions form

vt−1−1
v−1

orbits, each of length v(v−1). So the probability that a full length orbit is not

covered in a n× k random array is
(
1− v−1

vt−1

)n
, and the probability that at least one

of these orbits is not covered in the random array is at most
(
vt−1−1
v−1

) (
1− v−1

vt−1

)n
by

the union bound.

Using the Lovász local lemma (Lemma 5), when e
(
vt−1−1
v−1

) (
1− v−1

vt−1

)n
t k

t−1

(t−1)!
< 1,

there exists an n×k array that covers all the full orbits of interactions on all t-column

combinations. Developing this array over Γ and adding v additional rows to cover

the short orbit, we obtain a covering array that has N rows, with

N = v(v − 1)n+ v

> v(v − 1)
1 + log

(
t k

t−1

(t−1)!

)
+ log

(
vt−1−1
v−1

)
log
(

vt−1

vt−1−v+1

) + v

=
v(v − 1)(t− 1) log k

log
(

vt−1

vt−1−v+1

) {1 + o(1)}
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This proves the theorem.

Again, using the Taylor series expansion we find that the bound obtained in

Theorem 11 is tighter than that of Theorem 10, since

v(v − 1)(t− 1)

log
(

vt−1

vt−1−v+1

) =
v(v − 1)(t− 1)

− log
(
1− v−1

vt−1

) ≈ v(v − 1)(t− 1){
v−1
vt−1 + (v−1)2

2v2t−2

} =
vt(t− 1)

1 + v−1
2vt−1

.

As mentioned in Chapter 2, the Frobenius group defined on the finite field Fv as

G = {g : Fv → Fv : g(x) = ax+ b, x, a, b ∈ Fv, a 6= 0} is an example of an efficiently

constructible group that acts sharply 2-transitively on the set of v symbols and can

be used for practical construction of covering arrays [19].

It is natural to consider the action of larger groups in seeking further improve-

ments. One simple but important idea in Theorem 11 is to treat full length orbits

using the Lovász local lemma, affixing a small number of additional rows to cover the

short orbits. Thus far we have treated a sharply 1-transitive group (the cyclic group)

and a sharply 2-transitive group (the Frobenius group). In order to generalize, the

next natural choice is the projective general linear (PGL) group for v = q + 1 where

q is a prime power, which is a sharply 3-transitive group of order v(v − 1)(v − 2).

Let Γ be the PGL group on v symbols. The action of Γ on t-way interactions forms

orbits of lengths v, v(v−1), and v(v−1)(v−2). Constant interactions lie in orbits of

length v, interactions involving precisely two distinct symbols lie in orbits of length

v(v − 1), and the r = vt−1−(v−1)(2t−1−1)−1
(v−1)(v−2)

others lie in full length orbits. Constant

orbits can be handled as in Theorem 11, and full length orbits can be treated using

the Lovász local lemma.

Unlike constant orbits, orbits of length v(v− 1) cannot be covered with a number

of rows that is independent of k. If we cover the orbits of length v(v − 1) as we

covered full length orbits, we see no improvement over Theorem 11. Instead we adapt
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a method from Cohen et al. [15] to gain occasional improvements.

Theorem 12. Let t ≥ 2 be an integer and v − 1 be a prime power. Then

d(t, v) ≤ v(v − 1)(v − 2)(t− 1)

log
{

vt−1

vt−1−(v−1)(v−2)

} +
v(v − 1)(t− 1)

log
(

2t−1

2t−1−1

) .

Proof. Let Γ be the PGL group acting on v symbols.

Covering orbits of length v(v−1)(v−2): The probability that at least one orbit of

length v(v−1)(v−2) is not covered in an array with n rows is p ≤ r
(

1− (v−1)(v−2)
vt−1

)n
.

As shown before, d < t
(
k
t−1

)
≤ t k

t−1

(t−1)!
. Using the Lovász local lemma (Lemma 5), if

ep(d+1) ≤ 1 there is an array with n rows that covers all orbits of length v(v−1)(v−2).

Developing over Γ we obtain an array of the size

v(v − 1)(v − 2)
1 + log

{
t k

t−1

(t−1)!

}
+ log r

log
{

vt−1

vt−1−(v−1)(v−2)

}
=v(v − 1)(v − 2)

1 + (t− 1) log k + log t+ log r − log((t− 1)!)

log
{

vt−1

vt−1−(v−1)(v−2)

}
=
v(v − 1)(v − 2)(t− 1)

log
{

vt−1

vt−1−(v−1)(v−2)

} log k {1 + o(1)}

Using the Taylor series expansion:

v(v − 1)(v − 2)(t− 1)

log
{

vt−1

vt−1−(v−1)(v−2)

} ≈ vt(t− 1)

1 + (v−1)(v−2)
2vt−1

.

Covering orbits of length v(v − 1): Use a binary covering array on every pair

of symbols, adding
(
v
2

)
CAN(t, k, 2) rows to cover all interactions in orbits of length

v(v − 1). Applying Theorem 10 to bound CAN(t, k, 2), in this way we add(
v

2

)
2(t− 1)

log
(

2t−1

2t−1−1

) log k {1 + o(1)} =
v(v − 1)(t− 1)

log
(

2t−1

2t−1−1

) log k {1 + o(1)}
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rows.

So d(t, v) ≤ v(v−1)(v−2)(t−1)

log
{

vt−1

vt−1−(v−1)(v−2)

} + v(v−1)(t−1)

log
(

2t−1

2t−1−1

) .

In the bound of Theorem 12, the first term dominates the second. However, only

when t ∈ {3, 4} and v is sufficiently large does Theorem 12 give a tighter bound on

d(t, v) than that given by Theorem 11. Moreover, Theorem 11 gives a tighter bound

in many situations, e.g., for t = 5, it is tighter than Theorem 12 as long as v ≤ 29.

For larger t, Theorem 11 gives tighter bounds than Theorem 12 for even larger values

of v. Hence the natural avenue of generalization to larger groups does not appear to

be fruitful.

So far in our discussion of group action we have emphasized only the aspect of

search space reduction. Now we mention a side benefit inherent to sharply transitive

group actions that further validates their role. By using sharply transitive (or sharply

l-transitive) group actions we can further reduce the dependence among different bad

events.

Consider the cyclic group used in Theorem 10. For any set of t columns τ , if we fix

the symbols in a specific column c and select symbols in the remaining t− 1 columns

independently and uniformly at random, the probability of a “bad event” (i.e., at

least one orbit not being covered) remains unchanged. This suggests that all the

“bad events” on the t-set of columns that share only the column c with τ are mutually

independent of the “bad event” on τ . Therefore, we can set d ≤ t
(
k−1
t−1

)
−
(
k−t
t−1

)
. A

similar reduction in dependence may be obtained when we apply the Lovász local

lemma to cover the full length orbits under sharply l-transitive group actions in

Theorem 11 and Theorem 12.

The storage requirements are quite modest; in order to determine whether resam-

pling is necessary, one maintains a single list indexed by the orbits of Σt. A set of t
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columns can be treated without regard to the coverage in other sets of t columns.

6.2 Limited Dependence and the Moser-Tardos Algorithms

The guarantee of existence of covering arrays of a certain size that are required

to prove Theorem 2, as well as Theorem 10 and 3 are derived using the Lovász local

lemma (Lemma 5) which is a non-constructive result. However, as we have discussed

in Section 2.2.1 whenever we can guarantee the existence of a combinatorial object

using the Lovász local lemma we can design a Moser-Tardos type algorithm that

constructs such objects efficiently.

Specializing Algorithm 1 to covering arrays, we obtain Algorithm 11. With the

specified value of N from Theorem 2, it is guaranteed that the expected number of

times the loop in line 3 of Algorithm 11 is repeated is linearly bounded in k.

Godbole et al. [27] presents Theorem 2 as a non-constructive result. Indeed no

previous construction algorithms appear to be based on it. However the Moser-Tardos

method of Algorithm 11 does provide a construction algorithm that runs in expected

polynomial time. For sufficiently large values of k Algorithm 11 produces smaller

covering arrays than Algorithm 3.

But the question remains: Does Algorithm 11 produce smaller covering arrays

than the best known results to date within the range that it can be effectively com-

puted? Surprisingly, we show that the answer is affirmative. In Algorithm 11 we

do not need to store the coverage information of individual interactions in memory

because each time an uncovered interaction is encountered we re-sample the columns

involved in that interaction and start the check afresh (checking the coverage in in-

teractions in the same order each time). Consequently, Algorithm 11 can be applied

for larger values of k than the density algorithm.

Smaller covering arrays can be obtained by exploiting a group action using Lovász

87



Algorithm 11: Moser-Tardos type algorithm for covering array construction.

Input: t : strength of the covering array, k : number of factors, v : number of

levels for each factor

Output: A : a CA(N ; t, k, v)

1 Let N :=
log{(k

t)−(k−t
t )}+t. log v+1

log
(

vt

vt−1

) ;

2 Construct an N × k array A where each entry is chosen independently and

uniformly at random from a v-ary alphabet;

3 repeat

4 Set covered := true;

5 for each interaction ι ∈ It,k,v do

6 if ι is not covered in A then

7 Set covered := false;

8 Set missing-interaction := ι;

9 break;

10 end

11 end

12 if covered = false then

13 Choose all the entries in the t columns involved in missing-interaction

independently and uniformly at random from the v-ary alphabet;

14 end

15 until covered = true;

16 Output A;
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local lemma, as shown in Theorem 10 and 11. Table 6.1 shows the sizes of the

covering arrays constructed by a variant of Algorithm 11 that employs cyclic and

Frobenius group actions. While this single stage algorithm produces smaller arrays

than the currently best known ones [17], these are already superseded by the two-stage

algorithms (Chapter 5).

k Best MT

56 19033 16281

57 20185 16353

58 23299 16425

59 23563 16491

60 23563 16557

(a) Frobenius. t = 6, v = 3

k Best MT

44 411373 358125

45 417581 360125

46 417581 362065

47 423523 363965

48 423523 365805

(b) Frobenius. t = 6, v = 5

k Best MT

25 1006326 1020630

26 1040063 1032030

27 1082766 1042902

28 1105985 1053306

29 1149037 1063272

(c) Cyclic. t = 6, v = 6

Table 6.1: Comparison of covering array sizes from Algorithm 11 (MT) with

the best known results [17] (Best).

6.2.1 A Moser-Tardos Type Algorithm for the First Stage

All the two-stage algorithms in Chapter 5 employ the näıve randomized algorithm

in the first stage. Can we apply a Moser-Tardos type algorithm in the first stage and

still obtain a similar guarantee on the size of the constructed covering array? The

linearity of expectation arguments used in the SLJ bounds permit one to consider

situations in which a few of the “bad” events are allowed to occur, a fact that we

have exploited in the first stage of the algorithms. However, the Lovász local lemma

does not address this situation directly. The conditional Lovász local lemma (LLL)

distribution, introduced in Haeupler et al. [30], is a very useful tool.
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Lemma 13. (Conditional LLL distribution; symmetric case) (see [2, 30]) Let A =

{A1, A2, . . . , Al} be a set of l events in an arbitrary probability space. Suppose that

each event Ai is mutually independent of a set of all other events Aj except for at

most d, and that Pr[Ai] ≤ p for all 1 ≤ i ≤ l. Also suppose that ep(d + 1) ≤ 1

(Therefore, by LLL (Lemma 5) Pr[∩li=1Āi] > 0). Let B /∈ A be another event in the

same probability space with Pr[B] ≤ q, such that B is also mutually independent of a

set of all other events Aj ∈ A except for at most d. Then Pr[B| ∩li=1 Āi] ≤ eq.

We apply the conditional LLL distribution to obtain an upper bound on the size

of partial array that leaves at most log
(

vt

vt−1

)
≈ vt interactions uncovered. For a

positive integer k, let I = {j1, . . . , jρ} ⊆ [k] where j1 < . . . < jρ. Let A be an n × k

array where each entry is from the set [v]. Let AI denote the n × ρ array in which

AI(i, `) = A(i, j`) for 1 ≤ i ≤ N and 1 ≤ ` ≤ ρ; AI is the projection of A onto the

columns in I.

Let M ⊆ [v]t be a set of m t-tuples of symbols, and C ∈
(

[k]
t

)
be a set of t columns.

Suppose the entries in the array A are chosen independently from [v] with uniform

probability. Let BC denote the event that at least one of the tuples in M is not covered

in AC . There are η =
(
k
t

)
such events, and for all of them Pr[BC ] ≤ m

(
1− 1

vt

)n
.

Moreover, when k ≥ 2t, each of the events is mutually independent of all other events

except for at most ρ =
(
k
t

)
−
(
k−t
t

)
−1 < t

(
k
t−1

)
. Therefore, by the Lovász local lemma,

when eρm
(
1− 1

vt

)n ≤ 1, none of the events BC occur. Therefore, when

n ≥ log(eρm)

log
(

vt

vt−1

) (6.2)

there exists an n× k array A over [v] such that for all C ∈
(

[k]
t

)
, AC covers all the m

tuples in M . In fact, we can use a Moser-Tardos type algorithm to construct such an

array.

Let ι be an interaction whose t-tuple of symbols is not in M . Then the probability
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that ι is not covered in an n × k array is at most
(
1− 1

vt

)n
when each entry of the

array is chosen independently from [v] with uniform probability. Therefore, by the

conditional LLL distribution the probability that ι is not covered in the array A where

for all C ∈
(

[k]
t

)
, AC covers all the m tuples in M is at most e

(
1− 1

vt

)n
. Moreover,

there are η(vt−m) such interactions ι. By the linearity of expectation, the expected

number of uncovered interactions in A is less than vt when η(vt−m)e
(
1− 1

vt

)n ≤ vt.

Solving for n, we obtain

n ≥
log
{
ηe
(
1− m

vt

)}
log
(

vt

vt−1

) . (6.3)

Therefore, there exists an n×k array with n = max

{
log(eρm)

log
(

vt

vt−1

) , log{ηe(1−m
vt )}

log
(

vt

vt−1

)
}

that

has at most vt uncovered interactions. To compute n explicitly, we must choose m.

We can select a value of m to minimize n graphically for given values of t, k and v. For

example, Figure 6.1 plots Equations 6.2 and 6.3 against m for t = 3, k = 350, v = 3,

and finds the minimum value of n.

0 5 10 15 20 25 30
340

360

380

400

420

440

460

m

n 
−

 n
um

be
r 

of
 r

ow
s 

in
 th

e 
pa

rt
ia

l a
rr

ay

 

 
Equation (3)
Equation (4)

(a) Equations 6.2 and 6.3 against m.
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(b) Maximum of the two sizes against m.

Figure 6.1: Determination of the size of the partial array. The minimum is at

n = 422, when m = 16. t = 3, k = 350, v = 3.

We compare the size of the partial array from the näıve two-stage method (Al-
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gorithm 10) with the size obtained by the graphical methods in Figure 6.2. The

Lovász local lemma based method is asymptotically better than the simple random-

ized method. However, except for the small values of t and v, in the range of k values

relevant for practical applications, the simple randomized algorithm requires fewer

rows than the Lovász local lemma based method.
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(b) t = 4, v = 3.

Figure 6.2: Comparison of the size of the partial array constructed in the first

stage. The size of the partial array specified in Algorithm 10 in Section 5.2.1

is compared against the size derived in Section 6.2.1.

6.2.2 The Lovász Local Lemma Based Two-stage Bound

We can apply the techniques from Section 6.2.1 to obtain a two-stage bound

similar to Theorem 8 using the Lovász local lemma and conditional LLL distribution.

Theorem 14 extends a result from Sarkar and Colbourn [48].

Theorem 14. Let t, k, v be integers with k ≥ t ≥ 2, v ≥ 2 and let η =
(
k
t

)
, and

ρ =
(
k
t

)
−
(
k−t
t

)
. If

ηvt log
(

vt

vt−1

)
ρ

≤ vt Then

CAN(t, k, v) ≤
log
(
k
t

)
+ t log v + log log

(
vt

vt−1

)
+ 2

log
(

vt

vt−1

) − η

ρ
.
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Proof. Let M ⊆ [v]t be a set of m t-tuples of symbols. Following the arguments of

Section 6.2.1, when n ≥ log(eρm)

log
(

vt

vt−1

) there exists an n× k array A over [v] such that for

all C ∈
(

[k]
t

)
, AC covers all m tuples in M .

At most η(vt −m) interactions are uncovered in such an array. Using the condi-

tional LLL distribution, the probability that one such interaction is not covered in A

is at most e
(
1− 1

vt

)n
. Therefore, by the linearity of expectation, we can find one such

array A that leaves at most eη(vt−m)
(
1− 1

vt

)n
= η

ρ

(
vt

m
− 1
)

interactions uncovered.

Adding one row per uncovered interaction to A, we obtain a covering array with at

most N rows, where

N =
log(eρm)

log
(

vt

vt−1

) +
η

ρ

(
vt

m
− 1

)
.

The value of N is minimized when m =
ηvt log

(
vt

vt−1

)
ρ

. Because m ≤ vt, we obtain

the desired bound.

When m = vt this recaptures the bound of Theorem 2.

Figure 6.3 compares the LLL based two-stage bound obtained in Theorem 14 to

the standard two-stage bound (Theorem 8), the Godbole et al. bound (Theorem

2), and the SLJ bound (Theorem 1). Although the LLL based two-stage bound is

tighter than the LLL based Godbole et al. bound, even for quite large values of k the

standard two-stage bound is tighter than the LLL based two-stage bound. In practical

terms, this specific LLL based two-stage method does not look very promising, unless

the parameters are quite large.
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Figure 6.3: Comparison of constructed covering array sizes among the Lovász

local lemma based two-stage bound (Theorem 14), the standard two-stage

bound (Theorem 8), the Godbole et al. bound (Theorem 2), and the Stein-

Lovász-Johnson Bound bound (Theorem 1).
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Chapter 7

COVERING PERFECT HASH FAMILIES

In the last chapter, we saw that as we graduate from the cyclic group to a larger

group like the Frobenius group we obtain smaller covering arrays. However, the

improvement obtained using the PGL group is not substantial when compared to

that of the smaller Frobenius group. Are there any other groups and related group

actions that would result in tighter bounds? It appears that the general linear group

plays an important role in the further improvement of the CAN(t, k, v) upper bounds

in a very interesting way.

In this section, we introduce permutation vectors and covering perfect hash fami-

lies. We use covering perfect hash families to construct covering arrays. The general

linear group plays an important role in the construction of covering perfect hash fam-

ilies. The role of the general linear group can be understood as a group acting on

t-sets of columns instead of individual symbols which has been the case thus far.

7.1 Permutation Vectors

We consider only the case when v is a prime power and the symbols are elements

of the field GF(v). Let b(i) = (b
(i)
0 , b

(i)
1 , . . . , b

(i)
t−1) be the base v representation of

i ∈ {0, 1, . . . , vt− 1}, i.e., i = b
(i)
0 + v1b

(i)
1 + . . .+ vt−1b

(i)
t−1 where b

(i)
j ∈ {0, 1, . . . , v− 1}

for 0 ≤ j ≤ t − 1. Let A be a vt × t matrix where the ith row is b(i). Let h =

(h0, h1, . . . , ht−1)ᵀ be a vector of length t with hj ∈ {0, 1, . . . , v − 1}. A permutation

vector
−→
h corresponding to the vector h is a vector of length vt and is defined as

−→
h = Ah where the addition and the multiplications are over GF(v).

Next, let h = (h1, h2, . . . , ht−1)ᵀ be a vector of length t−1 with hj ∈ {0, 1, . . . , v−
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1}, and h+ = (1, h1, . . . , ht−1)ᵀ. A Sherwood permutation vector
−→
h+, corresponding

to the vector h, is a permutation vector corresponding to the vector h+, i.e., a vector

of length vt that is defined as
−→
h+ = Ah+ where the addition and the multiplications

are over GF(v).

Consider a set of t different permutation vectors
−−→
h(1),

−−→
h(2), . . . ,

−→
h(t) corresponding

to the vectors h(1),h(2), . . . ,h(t) of length t. Let H be a t × t matrix such that its

ith column is h(i), for 1 ≤ i ≤ t. Then AH is a vt × t matrix which has
−→
h(i) as its

ith column. This set of t permutation vectors is covering if AH is a CA(vt; t, t, v),

i.e., each of the t-tuples from {0, 1, . . . , v − 1}t occurs exactly once as a row of AH.

Otherwise, the set of t permutation vectors is called non-covering. Next we provide

a useful characterization of a set of covering permutation vectors. This result is a

generalization of the corresponding result from Sherwood et al. [51]:

Lemma 15. A set of t different permutation vectors
−−→
h(1),

−−→
h(2), . . . ,

−→
h(t) corresponding

to the vectors h(1),h(2), . . . ,h(t), each of length t, is covering if and only if H (as

defined above) is invertible (i.e., non-degenerate or non-singular).

Proof. Let i, j ∈ {0, 1, . . . , vt − 1} such that b(i)H = b(j)H. Setting a = b(i) − b(j),

we obtain the following system of t linear equations in t unknowns a0, a1, . . . , at−1

over GF(v)

aH = 0. (7.1)

If Equation 7.1 has a non-trivial solution then the ith and jth rows of AH represent

the same t-tuple from {0, 1, . . . , v − 1}t. Therefore, the set of t permutation vectors

is non-covering if and only if Equation 7.1 has a non-trivial solution. Hence, the

conclusion follows.

Now consider a set of t different Sherwood permutation vectors
−−−→
h(1)+,

−−−→
h(2)+, . . . ,

−−→
h(t)+

corresponding to the vectors h(1),h(2), . . . ,h(t) of length t−1. Let H+ be a t×t matrix
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such that its ith column is h(i)+, for 1 ≤ i ≤ t. Then AH+ is a vt× t matrix that has
−−→
k(i)+ as its ith column. This set of t permutation vectors is called covering if AH+

is a CA(vt; t, t, v), i.e., each of the t-tuples from {0, 1, . . . , v − 1}t occurs exactly once

as a row of AH+. Otherwise, the set of t permutation vectors is called non-covering.

We have the following corollary of Lemma 15:

Corollary 16. [51] A set of t different Sherwood permutation vectors
−−−→
h(1)+,

−−−→
h(2)+, . . . ,

−−→
h(t)+

corresponding to the vectors h(1),h(2), . . . ,h(t) of length t − 1 is covering if and only

if H+ (as defined above) is invertible (i.e. non-degenerate or non-singular).

7.2 Covering Perfect Hash Families

A covering perfect hash family, CPHF(n; t, k, v) is an n×k array where each entry

is chosen from {0, 1, . . . , vt−1} such that for any combination of t columns there is at

least one row so that the t permutation vectors, corresponding to the entries (when

interpreted as vectors of length t given by their base-v representations) in this set of

columns, is covering.

Similarly, a Sherwood covering perfect hash family, SCPHF(n; t, k, v) is an n × k

array where each entry is chosen from {0, 1, . . . , vt−1−1} such that for any combination

of t columns there is at least one row so that the t Sherwood permutation vectors,

corresponding to the entries (when interpreted as vectors of length t − 1 given by

their base-v representations) in this set of columns, is covering.

Every permutation vector has 0 as its first entry. If we replace each entry of a

CPHF(n; t, k, v) by the permutation vector corresponding to the entry then we obtain

a CA(n · vt; t, k, v) that has n all-0 rows of which n− 1 can be deleted. Therefore, we

actually obtain a CA(n · (vt− 1) + 1; t, k, v) from a CPHF(n; t, k, v). Notice that every

Sherwood permutation vector has the same v symbols (0, 1, . . . , v − 1)ᵀ in the first v

positions. Therefore, we employ a shortened permutation vector that consists of the
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last vt−v entries. We can obtain a CA(n·(vt−v)+v; t, k, v) from a SCPHF(n; t, k, v) by

replacing each entry by the corresponding shortened Sherwood permutation vector.

7.3 Asymptotic Upper Bounds on CAN(t, k, v)

We apply Lovász local lemma once again to obtain an upper bound on the size

of covering perfect hash families. To that end, we need to count the t × t invertible

matrices H (and H+). The following result was first obtained by Galois in 1832 and

communicated in the last letter of his life.

Lemma 17. [24] Let v be a prime power. Then the number of invertible t×t matrices

over GF(v) is
t−1∏
s=0

(vt − vs).

Proof. In an invertible t × t matrix the ith column is linearly independent of the

previous i− 1 columns. But the previous i− 1 columns span a subspace of size vi−1.

Therefore, there are vt − vi−1 choices for the ith column.

We have a similar result for H+.

Lemma 18. Let v be a prime power. Then the number of invertible t × t matrices

over GF(v) that has all 1s in the first row is
t−1∏
s=1

(vt − vs).

Proof. The argument from the previous lemma can be applied to the t rows, noting

that there is a single fixed choice for the first row instead of vt−1 different choices.

Next we provide improved upper bounds on CAN(t, k, v).

Theorem 19. Let t, k, v be integers with kt ≥ 2, k ≥ 2t and v is a prime power.

Then

CAN(t, k, v) ≤ (vt − 1) ·
⌈

1 + log d

log(1/q)

⌉
+ 1 (7.2)
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and

CAN(t, k, v) ≤ (vt − v) ·
⌈

1 + log d

log(1/q′)

⌉
+ v (7.3)

where d =
(
k
t

)
−
(
k−t
t

)
, q = 1−

t−1∏
i=1

(vt−vi)

(vt−1)t−1 and q′ = 1−
t−1∏
i=1

(1− 1
vi

).

Proof. Let A be an n×k array with entries chosen independently from {1, 2 . . . , vt−1}

with uniform probability. Each entry can be represented by a vector of length t

corresponding to its base v representation. Therefore, with t such entries we can

construct a matrix whose jth column corresponds to the jth entry, 1 ≤ j ≤ t. (We

do not consider 0 as an entry because a matrix containing an all zero column is always

singular.) Let τ ∈
(

[k]
t

)
be a set of t columns. Let Hτ,i be the t× t matrix constructed

with the t entries from the ith row of A that are indexed by the columns in τ . By

Lemma 17, the probability that Hτ,i is invertible is

t−1∏
s=0

(vt − vs)

(vt − 1)t
=

t−1∏
s=1

(vt − vs)

(vt − 1)t−1 .

Let Bτ denote the event that none of the matrices Hτ,i, 1 ≤ i ≤ n is invertible. Since

the entries are chosen independently, it is easy to see that

Pr[Bτ ] =

1−

t−1∏
s=1

(vt − vs)

(vt − 1)t−1


n

.

Then, by the Lovász local lemma (Lemma 5) and Lemma 15, we obtain that when

n ≥ 1+log d
log(1/q)

A is a CPHF(n; t, k, v) where d =
(
k
t

)
−
(
k−t
t

)
and q = 1−

t−1∏
i=1

(vt−vi)

(vt−1)t−1 . Now

the upper bound 7.2 follows from the natural construction of a covering array from a

covering perfect hash family described earlier.

Similarly, if we consider an n×k array A′ where each entry is chosen independently

from {0, 1, . . . , vt−1− 1} with uniform probability, then each entry can be interpreted
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as a vector of length t−1 given by its base v representation. Let Hτ,i be the (t−1)× t

matrix constructed with the t entries from the ith row of A such that the t entries

are indexed by the columns in τ . Let H+
τ,i denote the t× t matrix obtained from Hτ,i

by adding a row that consists of all ones at the beginning. If Cτ denotes the event

that none of the H+
τ,is is invertible for 1 ≤ i ≤ n, then by Lemma 18 we have

Pr[Cτ ] =

(
1−

t−1∏
i=1

(
1− 1

vi

))n

.

Once again, applying the Lovász local lemma and Corollary 16, we obtain that

when n ≥ 1+log d
log(1/q′)

, where d =
(
k
t

)
−
(
k−t
t

)
and q′ = 1 −

t−1∏
i=1

(1 − 1
vi

), A′ is an

SCPHF(n; t, k, v). The upper bound in (7.3) follows from the natural construction of

a covering array from a Sherwood covering perfect hash family described earlier.

Now q′ > q, because

t−1∏
s=1

(vt − vs)

(vt − 1)t−1 >

t−1∏
s=1

(vt − vs)

(vt)t−1 =
t−1∏
s=1

(
1− 1

vs

)
. (7.4)

Therefore, asymptotically, the bound in (7.2) is tighter than the bound in (7.3).

In Figure 7.1 we compare the Frobenius group action based bound derived in

Theorem 11 against (7.3). We show two different combinations of t and v values:

t = 4, v = 4 and t = 6, v = 5. The permutation vector based bounds are much

tighter than the Frobenius group action based bound.

We compute upper bounds on d(t, v) from the bounds in (7.2) and in (7.3) to

make an asymptotic comparison with the Frobenius bound (Theorem 11) —

d(t, v) ≤ (vt − 1)(t− 1)

log(1/q)
, (7.5)

and

d(t, v) ≤ (vt − v)(t− 1)

log(1/q′)
, (7.6)
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(a) t = 4, v = 4.
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(b) t = 6, v = 5.

Figure 7.1: Comparison of CAN(t, k, v) upper bounds obtained from the Frobe-

nius group action based method (Theorem 11) and the Sherwood permutation

vector based method (Equation 7.3)

.

where q and q′ are as defined in Theorem 19.

For t = 2, the inequalities (6.1) and (7.6) give the same upper bound. For t = 3,

we obtain from (6.1)

d(3, v) ≤ 2v(v − 1)

log
(

v2

v2−v+1

) , (7.7)

and from (7.6) we obtain

d(3, v) ≤ 2v(v − 1)(v + 1)

log
(

v3

v2+v−1

) , (7.8)

because for t = 3, q′ = 1 −
(
1− 1

v

) (
1− 1

v2

)
= 1

v
+ 1

v2
− 1

v3
. Ignoring 2v(v − 1) from
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the numerator of the inequality (7.7) we obtain

1

log
(

v2

v2−v+1

) > 1

log
(

v2

v2−v

)
=

1

− log
(
1− 1

v

)
=

1
1
v

+ 1
2v2

+ 1
3v3

+ . . .

>
1

1
v

+ 1
v2

+ 1
v3

+ . . .

= v − 1.

Similarly, ignoring 2v(v − 1) from the numerator of the inequality (7.8) we obtain

v + 1

log
(

v3

v2+v−1

) < v + 1

log
(

v3

v2+v

)
=

v + 1

log v − log
(
1 + 1

v

)
=

v + 1

log v − 1
v

+ 1
2v2
− 1

3v3
+ . . .

<
v + 1

log v − 1
v

.

Because v − 1 > v+1
log v− 1

v

for sufficiently large v (v > 5), (7.8) is tighter than (7.7).

Therefore, for t = 3 the Sherwood bound provides approximately a log v factor of

reduction in the d(t, v) upper bound for sufficiently large values of v.

Because of the complicated form of the denominators in the bounds in (7.4) and

(7.6), it requires quite a cumbersome computation to show that they are indeed tighter

bounds than (6.1) for t > 3. Figure 7.2 compares the three upper bounds on d(t, v)

obtained from (6.1), (7.5) and (7.6). For t = 2, bounds in (6.1) and (7.6) give the

same result, as was already verified by substituting t = 2 in these bounds. Both of

them are tighter than the bound in (7.5). However, for t ≥ 3 the bounds in (7.5) and

(7.6) are tighter than (6.1) when v > 3. The bound in (7.5) is tighter than the bound

in (7.6) which is not surprising in light of the inequality (7.4).
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Figure 7.2: Comparison of three d(t, v) upper bounds—Frobenius (6.1), Gen-

eral Linear (7.5), and Sherwood (7.6) for t = 2, 3, 4, 6.

Figure 7.3 plots the ratio of the d(t, v) upper bounds obtained from the Frobenius

bound (6.1) and the Sherwood bound (7.6) against different values of v (prime power).

It is evident from the figure that for t ≥ 3 this ratio is approximately log v for

sufficiently large values of v.

To extend our results to values of v that are not prime powers, choose the smallest

prime p with p ≥ v. Then construct the CPHF or SCPHF over the field of order p.

When expanding the result into a covering array, treat any p − v of the symbols as
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(b) t = 5.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

v

R
at

io
 o

f d
(t

,v
) 

va
lu

es
 

 

 

Frobenius / Sherwood
log(v)

(c) t = 6.
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Figure 7.3: Ratio of d(t, v) upper bounds obtained by the Frobenius bound

(6.1) and the Sherwood bound (7.6) plotted against different (prime power) v

values. For comparison log v is also plotted.

“don’t care” positions to obtain a covering array on v symbols. Although the increase

in the array size may make the result poor for small values of v, asymptotically the

increase is negligible. This can be seen by using the Prime Number Theorem to

provide an upper bound on p in terms of v.
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7.4 A Moser-Tardos Type Construction Algorithm for Covering Perfect Hash

Families

The bounds obtained in Theorem 19 are not only asymptotically the best known,

but also they beat the computationally constructed best known covering arrays for

relatively small values of k. Figure 7.4 compares the bound in (7.3) against the best

known upper bounds reported in Colbourn [17] for t = 6, v = 5 and t = 6, v = 7. As

we can see, permutation vector based bounds beat the best known results to date by

quite a margin when k ≥ 25. This happens whenever t = 6 and v ≥ 5.
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Figure 7.4: Comparison of the upper bounds derived from Equation 7.3 and

the currently best known upper bounds compiled at Colbourn [17]

.

Therefore, the important question is: Can we construct the covering arrays that

are guaranteed by Theorem 19 efficiently? Once again, because the Lovász local

lemma forms the core of the probabilistic existence argument, we can easily obtain

a Moser-Tardos type construction algorithm that finds covering perfect hash families

of the required size (see Section 2.2.1). Algorithm 12 presents the method for con-

structing a Sherwood covering perfect hash family. This algorithm is quite fast in
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practice and has been used to obtain covering arrays for k values of up to 200 when

t = 6 and v ∈ {5, 7}.

Table 7.1 presents the computational results obtained from Moser-Tardos type

construction algorithms for CPHF and SCPHF. As expected, these algorithms start

to outperform all known methods for covering array construction even for fairly small

values of k (in the range 17-26 depending on the value of v).
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Algorithm 12: Moser-Tardos type algorithm for SCPHF construction.
Input: t : strength, k : number of columns, v : number of levels

Output: A : an SCPHF(n; t, k, v)

1 Let d :=
(
k
t

)
−
(
k−t
t

)
, q′ := 1−

t−1∏
i=1

(1− 1
vi ), and n :=

⌈
1+log d
log(1/q′)

⌉
;

2 Construct an n× k array A where each entry is chosen independently and uniformly at

random from the set {0, 1, . . . , vt−1 − 1};

3 repeat

4 Set covered := true;

5 for each t-set of columns τ ∈
(
[k]
t

)
do

6 Set degenerate := true;

7 for each i, 1 ≤ i ≤ n do

8 Construct H+
τ,i with the entries in the ith row of A indexed by the columns in τ ;

9 if H+
τ,i is invertible then

10 Set degenerate := false;

11 break;

12 end

13 end

14 if degenerate = true then

15 Set covered := false;

16 Set violated := τ ;

17 break;

18 end

19 end

20 if covered = false then

21 Resample all the entries in the t columns of the set violated ;

22 end

23 until covered = true;

24 Output A;
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k CPHF SCPHF Best-known

13 93745 93725 63835

16 109369 109345 80406

19 124993 124965 98994

24 140617 140585 119500

26 156241 156205 160408

31 156241 156205 233945

39 171865 171825 380039

51 187489 187445 493879

66 203113 203065 730000

113 234361 234305 1043198

114 234361* 249925 1043198

149 249985 249925 1074535

150 249985* 265545 1074535

197 265609 265545 1096907

198 265609* 281165 1097427

199 281233 281165 1101245

(a) t = 6, v = 5

k CPHF SCPHF Best-known

13 588241 588217 521017

14 588241 521017 521017

17 588241 588217 738871

18 705889 705859 926149

24 823537 823501 1497979

32 941185 941143 2113678

44 1058833 1058785 3819650

61 1176481 1176427 5132527

85 1294129 1294069 7227943

121 1411777 1411711 8179848

171 1529425 1529353 8454598

172 1647073 1646995 8454598

(b) t = 6, v = 7

Table 7.1: Comparison of covering array sizes obtained from the Moser-Tardos

type algorithm for CPHF construction (CPHF), SCPHF construction, i.e., Al-

gorithm 12 (SCPHF) and the best known results from Colbourn [17] (Best-

known). To find the size of the covering array for a missing k value in the

range, first locate the k value that is at least as large as the given value.

The size of the covering array constructed by the algorithm is the same for

both these values. The * entries indicate the instances where CPHF method

produces smaller covering arrays.
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Chapter 8

PARTIAL COVERING ARRAYS

In this chapter, we consider a few variants of covering arrays. Our focus is on

finding reasonable relaxations of the covering requirement and establishing upper

bounds on the size of the arrays that fulfill such relaxed covering requirements. One

of the main results of this chapter tells us that with a minimal relaxation we can

construct arrays that are asymptotically smaller in size than covering arrays.

We have seen a number of upper bounds on the CAN(t, k, v) so far. An (essentially)

equivalent but more convenient form of the upper bound in Theorem 2 is:

CAN(t, k, v) ≤ (t− 1)vt log k(1 + o(1)). (8.1)

A lower bound on the CAN(t, k, v) results from the inequality CAN(t, k, v) ≥ v ·

CAN(t − 1, k − 1, v) obtained by derivation, together with (2.1), to establish that

CAN(t, k, v) ≥ vt−2 · CAN(2, k − t + 2, v) = vt−2 · v
2

log(k − t + 2)(1 + o(1)). When

t
k
< 1, we obtain:

CAN(t, k, v) = Ω(vt−1 log k). (8.2)

Because (8.2) ensures that the number of rows in covering arrays can be consider-

able, researchers have suggested the need for relaxations in which not all interactions

must be covered [12, 32, 39, 43] in order to reduce the number of rows. The practical

relevance is that each row corresponds to a test to be performed, adding to the cost

of testing.

For example, an array covers a t-set of columns when it covers each of the vt

interactions on this t-set. Hartman and Raskin [32] consider arrays with a fixed

number of rows that cover the maximum number of t-sets of columns. A similar
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question was also considered in Maximoff et al. [43]. In Kuhn et al. [39] and Maximoff

et al. [43] a more refined measure of the (partial) coverage of an N × k array A is

introduced. For a given q ∈ [0, 1], let α(A, q) be the number of N × t submatrices of

A with the property that at least qvt elements of [v]t appear in their set of rows; the

(q, t)-completeness of A is α(A, q)/
(
k
t

)
. Then for practical purposes one wants “high”

(q, t)-completeness with few rows.

In these works, no theoretical results on partial coverage appear to have been

stated; earlier contributions focus on experimental investigations of heuristic con-

struction methods. Our purpose is to initiate a mathematical investigation of arrays

offering “partial” coverage. More precisely, we address:

• Can one obtain a significant improvement on the upper bound (8.1) if the set [v]t

is only required to be contained among the rows of at least (1− ε)
(
k
t

)
subarrays

of A of dimension N × t, for 0 < ε < 1?

• Can one obtain a significant improvement if, among the rows of every N × t

subarray of A, only a (large) subset of [v]t is required to be contained?

• Can one obtain a significant improvement if the set [v]t is only required to be

contained among the rows of at least (1 − ε)
(
k
t

)
subarrays of A of dimension

N × t, and among the rows of each of the ε
(
k
t

)
subarrays that remain, a (large)

subset of [v]t is required to be contained, for 0 < ε < 1?

We answer these questions both theoretically and algorithmically in the following

sections.

The results presented in this chapter are based on the work reported in Sarkar,

Colbourn, De Bonis and Vaccaro [49].
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8.1 Partial Covering Arrays

Let [n] denote the set {1, 2, . . . , n}. Let N, t, k, and v be integers such that k ≥

t ≥ 2 and v ≥ 2. Let A be an N × k array where each entry is from the set [v]. For

I = {j1, . . . , jρ} ⊆ [k] where j1 < . . . < jρ, let AI denote the N × ρ array in which

AI(i, `) = A(i, j`) for 1 ≤ i ≤ N and 1 ≤ ` ≤ ρ; AI is the projection of A onto the

columns in I.

When 1 ≤ m ≤ vt, a partial m-covering array, PCA(N ; t, k, v,m), is an N × k

array A with each entry from [v] so that for each t-set of columns C ∈
(

[k]

t

)
, at least

m distinct tuples x ∈ [v]t appear as rows in AC . Hence a covering array CA(N ; t, k, v)

is precisely a partial vt-covering array PCA(N ; t, k, v, vt).

Theorem 20. For integers t, k, v, and m where k ≥ t ≥ 2, v ≥ 2 and 1 ≤ m ≤ vt

there exists a PCA(N ; t, k, v,m) with

N ≤
ln
{(

k
t

)(
vt

m−1

)}
ln
(

vt

m−1

) . (8.3)

.

Proof. Let r = vt − m + 1, and A be a random N × k array where each entry is

chosen independently from [v] with uniform probability. For C ∈
(

[k]
t

)
, let BC denote

the event that at least r tuples from [v]t are missing in AC . The probability that

a particular r-set of tuples from [v]t is missing in AC is
(
1− r

vt

)N
. Applying the

union bound to all r-sets of tuples from [v]t, we obtain Pr[BC ] ≤
(
vt

r

) (
1− r

vt

)N
. By

linearity of expectation, the expected number of t-sets C for which AC misses at least

r tuples from [v]t is at most
(
k
t

)(
vt

r

) (
1− r

vt

)N
. When A has at least

ln
{
(k
t)(

vt

m−1)
}

ln
(

vt

m−1

) rows

this expected number is less than 1. Therefore, an array A exists with the required

number of rows such that for all C ∈
(

[k]
t

)
, AC misses at most r − 1 tuples from [v]t,

i.e., AC covers at least m tuples from [v]t.
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Theorem 20 can be improved upon using the Lovász local lemma (Lemma 5 in

Chapter 2).

Theorem 21. For integers t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt there

exists a PCA(N ; t, k, v,m) with

N ≤
1 + ln

{
t
(
k
t−1

)(
vt

m−1

)}
ln
(

vt

m−1

) . (8.4)

Proof. When k ≥ 2t, each event BC with C ∈
(

[k]
t

)
(that is, at least vt − m + 1

tuples are missing in AC) is independent of all but at most
(
t
1

)(
k−1
t−1

)
< t
(
k
t−1

)
events

in {BC′ : C ′ ∈
(

[k]
t

)
\ {C}}. Applying Lemma 5, Pr[∧

C∈([k]
t )BC ] > 0 when

e

(
vt

r

)(
1− r

vt

)N
t

(
k

t− 1

)
≤ 1. (8.5)

Solve (8.5) to obtain the required upper bound on N .

When m = vt, apply the Taylor series expansion to obtain ln
(

vt

m−1

)
≥ 1

vt
, and

thereby recover the upper bound (8.1). Theorem 21 implies:

Corollary 22. Given q ∈ [0, 1] and integers 2 ≤ t ≤ k, v ≥ 2, there exists an N × k

array on [v] with (q, t)-completeness equal to 1 (i.e., maximal), whose number N of

rows satisfies

N ≤
1 + ln

{
t
(
k
t−1

)(
vt

qvt−1

)}
ln
(

vt

qvt−1

) .

Rewriting (8.4), setting r = vt −m + 1, and using the Taylor series expansion of

ln
(
1− r

vt

)
, we get

N ≤
1 + ln

{
t
(
k
t−1

)(
vt

r

)}
ln
(

vt

vt−r

) ≤ vt(t− 1) ln k

r

{
1− ln r

ln k
+ o(1)

}
. (8.6)

Hence when r = v(t − 1) (or equivalently, m = vt − v(t − 1) + 1), there is a par-

tial m-covering array with Θ(vt−1 ln k) rows. This matches the lower bound (8.2)
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asymptotically for covering arrays by missing, in each t-set of columns, no more than

v(t− 1)− 1 of the vt possible rows.

The dependence of the bound (8.4) on the number of v-ary t-vectors that must

appear in the t-tuples of columns is particularly of interest when test suites are run

sequentially until a fault is revealed, as in Bryce et al. [5]. Indeed the arguments here

may have useful consequences for the rate of fault detection.

As discussed in Section 2.2.1, we can obtain a randomized algorithm that con-

structs partial m-covering arrays with the number of rows N guaranteed by Theorem

21. Patterned on Algorithm 1, Algorithm 13 constructs a partial m-covering array

with exactly the same number of rows as in (8.4) in expected polynomial time. Indeed,

for fixed t, the expected number of times the resampling step (line 13) is repeated is

linear in k (see Moser and Tardos [45] and Section 2.2.1 for more details).

8.2 Almost Partial Covering Arrays

For 0 < ε < 1, an ε-almost partial m-covering array, APCA(N ; t, k, v,m, ε), is an

N × k array A with each entry from [v] so that for at least (1 − ε)
(
k
t

)
column t-sets

C ∈
(

[k]
t

)
, AC covers at least m distinct tuples x ∈ [v]t. Again, a covering array

CA(N ; t, k, v) is precisely an APCA(N ; t, k, v, vt, ε) when ε < 1/
(
k
t

)
. Our first result

on ε-almost partial m-covering arrays is the following.

Theorem 23. For integers t, k, v,m and real ε where k ≥ t ≥ 2, v ≥ 2, 1 ≤ m ≤ vt

and 0 ≤ ε ≤ 1, there exists an APCA(N ; t, k, v,m, ε) with

N ≤
ln
{(

vt

m−1

)
/ε
}

ln
(

vt

m−1

) . (8.7)

Proof. Parallelling the proof of Theorem 20 we compute an upper bound on the

expected number of t-sets C ∈
(

[k]
t

)
for which AC misses at least r tuples x ∈ [v]t.

When this expected number is at most ε
(
k
t

)
, an array A is guaranteed to exist with at
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Algorithm 13: Moser-Tardos type algorithm for partial m-covering arrays.

Input: Integers N, t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt

Output: A : a PCA(N ; t, k, v,m)

1 Let N :=
1+ln

{
t( k

t−1)(
vt

m−1)
}

ln
(

vt

m−1

) ;

2 Construct an N × k array A where each entry is chosen independently and

uniformly at random from [v];

3 repeat

4 Set covered := true;

5 for each column t-set C ∈
(

[k]
t

)
do

6 if AC does not cover at least m distinct t-tuples x ∈ [v]t then

7 Set covered := false;

8 Set missing-column-set := C;

9 break;

10 end

11 end

12 if covered = false then

13 Choose all the entries in the t columns of missing-column-set

independently and uniformly at random from [v];

14 end

15 until covered = true;

16 Output A;
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least (1− ε)
(
k
t

)
t-sets of columns C ∈

(
[k]
t

)
such that AC misses at most r− 1 distinct

tuples x ∈ [v]t. Thus A is an APCA(N ; t, k, v,m, ε). To establish the theorem, solve

the following for N : (
k

t

)(
vt

r

)(
1− r

vt

)N
≤ ε

(
k

t

)
.

When ε < 1/
(
k
t

)
we recover the bound from Theorem 20 for partial m-covering

arrays. In terms of (q, t)-completeness, Theorem 23 yields the following.

Corollary 24. For q ∈ [0, 1] and integers 2 ≤ t ≤ k, v ≥ 2, there exists an N × k

array on [v] with (q, t)-completeness equal to 1− ε, with

N ≤
ln
{(

vt

m−1

)
/ε
}

ln
(

vt

m−1

) .

When m = vt, an ε-almost covering array exists with N ≤ vt ln
(
vt

ε

)
rows. Im-

provements result by focussing on covering arrays in which the symbols are acted on

by a finite group. In this setting, one chooses orbit representatives of rows that col-

lectively cover orbit representatives of t-way interactions under the group action; see

Colbourn [19], for example. Such group actions have been used in direct and compu-

tational methods for covering arrays [11, 44], and in randomized and derandomized

methods [19, 47, 48].

We employ the sharply transitive action of the cyclic group of order v, adapting

the earlier arguments using methods from Sarkar and Colbourn [48]:

Theorem 25. For integers t, k, v and real ε where k ≥ t ≥ 2, v ≥ 2 and 0 ≤ ε ≤ 1

there exists an APCA(N ; t, k, v, vt, ε) with

N ≤ vt ln

(
vt−1

ε

)
. (8.8)
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Proof. The action of the cyclic group of order v partitions [v]t into vt−1 orbits, each of

length v. Let n = bN
v
c and let A be an n×k random array where each entry is chosen

independently from the set [v] with uniform probability. For C ∈
(

[k]
t

)
, AC covers the

orbit X if at least one tuple x ∈ X is present in AC . The probability that the orbit X

is not covered in A is
(
1− v

vt

)n
=
(
1− 1

vt−1

)n
. Let DC denote the event that AC does

not cover at least one orbit. Applying the union bound, Pr[DC ] ≤ vt−1
(
1− 1

vt−1

)n
.

By linearity of expectation, the expected number of column t-sets C for which DC

occurs is at most
(
k
t

)
vt−1

(
1− 1

vt−1

)n
. As earlier, set this expected value to be at most

ε
(
k
t

)
and solve for n. An array exists that covers all orbits in at least (1−ε)

(
k
t

)
column

t-sets. Develop this array over the cyclic group to obtain the desired array.

As in Sarkar and Colbourn [48], further improvements result by considering a

group, like the Frobenius group, that acts sharply 2-transitively on [v]. When v is

a prime power, the Frobenius group is the group of permutations of Fv of the form

{x 7→ ax+ b : a, b ∈ Fv, a 6= 0}.

Theorem 26. For integers t, k, v and real ε where k ≥ t ≥ 2, v ≥ 2, v is a prime

power and 0 ≤ ε ≤ 1 there exists an APCA(N ; t, k, v, vt, ε) with

N ≤ vt ln

(
2vt−2

ε

)
+ v. (8.9)

Proof. The action of the Frobenius group partitions [v]t into vt−1−1
v−1

orbits of length

v(v − 1) (full orbits) each and 1 orbit of length v (a short orbit). The short orbit

consists of tuples of the form (x1, . . . , xt) ∈ [v]t where x1 = . . . = xt. Let n =
⌊

N−v
v(v−1)

⌋
and let A be an n× k random array where each entry is chosen independently from

the set [v] with uniform probability. Our strategy is to construct A so that it covers

all full orbits for the required number of arrays {AC : C ∈
(

[k]
t

)
}. Develop A over the

Frobenius group and add v rows of the form (x1, . . . , xk) ∈ [v]t with x1 = . . . = xk

to obtain an APCA(N ; t, k, v, vt, ε) with the desired value of N . Following the lines of
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the proof of Theorem 25, A covers all full orbits in at least (1 − ε)
(
k
t

)
column t-sets

C when (
k

t

)
vt−1 − 1

v − 1

(
1− v − 1

vt−1

)n
≤ ε

(
k

t

)
.

Because vt−1−1
v−1

≤ 2vt−2 for v ≥ 2, we obtain the desired bound.

Using group action when m = vt affords useful improvements. Does this im-

provement extend to cases when m < vt? Unfortunately, the answer appears to

be no. Consider the case for PCA(N ; t, k, v,m) when m ≤ vt using the action

of the cyclic group of order v on [v]t. Let A be a random n × k array over [v].

When vt − vs + 1 ≤ m ≤ vt − v(s − 1) for 1 ≤ s ≤ vt−1, this implies that

for all C ∈
(

[k]
t

)
, AC misses at most s − 1 orbits of [v]t. Then we obtain that

n ≤
(

1 + ln
(
t
(
k
t−1

)(
vt−1

s

)))
/ ln

(
vt−1

vt−1−s

)
. Developing A over the cyclic group we

obtain a PCA(N ; t, k, v,m) with

N ≤ v
1 + ln

{(
k
t−1

)(
vt−1

s

)}
ln
(

vt−1

vt−1−s

) . (8.10)

Figure 8.1 compares (8.10) and (8.4). In Figure 8.1(a) we plot the size of the

partial m-covering array as obtained by (8.10) and (8.4) for vt− 6v+ 1 ≤ m ≤ vt and

t = 6, k = 20, v = 4. Except when m = vt = 4, 096, the covering array case, (8.4)

outperforms (8.10). Similarly, Figure 8.1(b) shows that for m = vt− v = 4, 092, (8.4)

consistently outperforms (8.10) for all values of k when t = 6, v = 4. We observe

similar behavior for different values of t and v.

Next we consider even stricter coverage restrictions, combining Theorems 21 and

25.

Theorem 27. For integers t, k, v,m and real ε where k ≥ t ≥ 2, v ≥ 2, 0 ≤ ε ≤ 1

and m ≤ vt + 1− ln k
ln(v/ε1/(t−1))

there exists an N × k array A with entries from [v] such

that
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(b) t = 6, v = 4, m = vt − v

Figure 8.1: Comparison of (8.10) and (8.4). Figure (a) compares the sizes

of the partial m-covering arrays when vt − 6v + 1 ≤ m ≤ vt. Except for

m = vt = 4, 096 the bound from (8.4) outperforms the bound obtained by

assuming group action. Figure (b) shows that for m = vt − v = 4, 092, (8.4)

outperforms (8.10) for all values of k.

1. for each C ∈
(

[k]
t

)
, AC covers at least m tuples x ∈ [v]t,

2. for at least (1− ε)
(
k
t

)
column t-sets C, AC covers all tuples x ∈ [v]t, and

3. N = O(vt ln
(
vt−1

ε

)
).

Proof. We vertically juxtapose a partial m-covering array and an ε-almost vt-covering

array. For r = ln k
ln(v/ε1/(t−1))

and m = vt − r + 1, (8.6) guarantees the existence of a

partial m-covering array with vt ln
(
vt−1

ε

)
{1 + o(1)} rows. Theorem 25 guarantees

the existence of an ε-almost vt-covering array with at most vt ln
(
vt−1

ε

)
rows.

Corollary 28. There exists an N × k array A such that:

1. for any t-set of columns C ∈
(

[k]
t

)
, AC covers at least m ≤ vt + 1 − v(t − 1)

distinct t-tuples x ∈ [v]t,
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2. for at least
(

1− vt−1

k1/v

) (
k
t

)
column t-sets C, AC covers all the distinct t-tuples

x ∈ [v]t, and

3. N = O(vt−1 ln k).

Proof. Apply Theorem 27 withm = vt+1− ln k
ln(v/ε1/(t−1))

. There are at most ln k
ln(v/ε1/(t−1))

−

1 missing t-tuples x ∈ [v]t in the AC for each of the at most ε
(
k
t

)
column t-sets C

that do not satisfy the second condition of Theorem 27. To bound from above the

number of missing tuples to a certain small function f(t) of t, it is sufficient that

ε ≤ vt−1
(

1
k

) t−1
f(t)+1 . Then the number of missing t-tuples x ∈ [v]t in AC is bounded

from above by f(t) whenever ε is not larger than

vt−1

(
1

k

) t−1
f(t)+1

. (8.11)

On the other hand, in order for the number N = O
(
vt−1 ln

(
vt−1

ε

))
of rows of A

to be asymptotically equal to the lower bound (8.2), it suffices that ε is not smaller

than

vt−1

k
1
v

. (8.12)

When f(t) = v(t − 1) − 1, (8.11) and (8.12) agree asymptotically, completing the

proof.

Once again we obtain a size that is O(vt−1log k), a goal that has not been reached

for covering arrays. This is evidence that even a small relaxation of covering arrays

provides arrays of the best sizes one can hope for.

Next we consider the efficient construction of the arrays whose existence is ensured

by Theorem 27. Algorithm 14 is a randomized method to construct an APCA(N ; t, k, v,m, ε)

of a size N that is very close to the bound of Theorem 23. By Markov’s inequality

the condition in line 9 of Algorithm 14 is met with probability at most 1
2
. Therefore,

the expected number of times the loop in line 2 repeats is at most 2.
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To prove Theorem 23, t-wise independence among the variables is sufficient.

Hence, Algorithm 14 can be derandomized using t-wise independent random variables.

We can also derandomize the algorithm using the method of conditional expectation.

In this method, we construct A by considering the k columns one by one and fixing

all N entries of a column. Given a set of already fixed columns, to fix the entries in

the next column we consider all possible vN choices, and choose one that provides the

maximum conditional expectation of the number of column t-sets C ∈
(

[k]
t

)
such that

AC covers at least m tuples x ∈ [v]t. Because vN = O(poly(1/ε)), this derandomized

algorithm constructs the desired array in polynomial time. Similar randomized and

derandomized strategies can be applied to construct the array guaranteed by Theo-

rem 25. Together with Algorithm 13 this implies that the array in Theorem 27 is also

efficiently constructible.

8.3 Final Remarks

We have shown that by relaxing the coverage requirement of a covering array

somewhat, powerful upper bounds on the sizes of the arrays can be established.

Indeed the upper bounds are substantially smaller than the best known bounds for a

covering array; they are of the same order as the lower bound for the CAN(t, k, v). As

importantly, the techniques not only provide asymptotic bounds but also randomized

polynomial time construction algorithms for such arrays.

Our approach seems flexible enough to handle variations of these problems. For

instance, some applications require arrays that satisfy, for different subsets of columns,

different coverage or separation requirements [16]. In Gravier and Ycart [29] several

interesting examples of combinatorial problems are presented that can be unified and

expressed in the framework of S-constrained matrices. Given a set of vectors S each

of length t, an N × k matrix M is S-constrained if for every t-set C ∈
(

[k]
t

)
, MC
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Algorithm 14: Randomized algorithm for ε-almost partial m-covering arrays.

Input: Integers N, t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt, and

real 0 < ε < 1

Output: A : an APCA(N ; t, k, v,m, ε)

1 Let N :=
ln
{

2( vt

m−1)/ε
}

ln
(

vt

m−1

) ;

2 repeat

3 Construct an N × k array A where each entry is chosen independently and

uniformly at random from [v];

4 Set isAPCA:= true;

5 Set defectiveCount := 0;

6 for each column t-set C ∈
(

[k]
t

)
do

7 if AC does not cover at least m distinct t-tuples x ∈ [v]t then

8 Set defectiveCount := defectiveCount + 1;

9 if defectiveCount > bε
(
k
t

)
c then

10 Set isAPCA:= false;

11 break;

12 end

13 end

14 end

15 until isAPCA = true;

16 Output A;
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contains as a row each of the vectors in S. The parameter to optimize is, as usual,

the number of rows of M . One potential direction is to ask for arrays that, in every

t-tuple of columns, cover at least m of the vectors in S, or that all vectors in S are

covered by all but a small number of t-tuples of columns. Exploiting the structure of

the members of S appears to require an extension of the results developed here.
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Chapter 9

CONCLUSION

In this chapter, we summarize the key contributions of this thesis and point out

the main themes that emerge out of it. In Section 9.2, we discuss a number of open

problems that still remain unresolved. Some of these problems may lead to interesting

and fruitful research directions.

9.1 Key Ideas and Main Themes

In this thesis, we have established a successive series of upper bounds on the

CAN(t, k, v), each bound being tighter than the previous one. The probabilistic meth-

ods have played an important role. A unifying thread among the various methods

used to obtain these bounds is the strategy of exploiting the limited dependence struc-

ture among the coverage events using the Lovász local lemma. Although the strategy

of applying the Lovász local lemma to covering arrays was pioneered by Godbole et

al. [27], this thesis has made extensive use of it. We have seen successful application

of this strategy in Chapter 6 (covering arrays), 7 (covering perfect hash families) and

8 (partial covering arrays).

Another important theme underlying a number of strategies developed in this the-

sis is search space reduction, a technique that reduces the solution space by assuming

some kind of symmetry. In Chapter 6, we have achieved search space reduction by

considering only those covering arrays that are invariant under the action of differ-

ent permutation groups on the symbols. In Chapter 7, we have achieved substantial

search space reduction by considering covering perfect hash families. In terms of group

action, this can be understood as the general linear group acting on the t-tuples of
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columns instead of individual symbols.

Overall, the combination of these two ideas—limited dependence and search space

reduction—has proven to be quite powerful. Not only have we been able to provide

a much shorter proof of the previous best result that was proved using a complicated

entropy compression argument [23] but also we have proved an even stronger result.

The power of our strategy can be appreciated from this result. In the context of cov-

ering perfect hash families, our method provides an upper bound on the CAN(t, k, v)

that is not only the tightest known asymptotic upper bound in the general case but

also outperforms many computationally derived upper bounds in the practical range

of k values. Table 9.1 lists all the bounds and their asymptotically equivalent forms.

This thesis has made a number of major contributions in the area of practical con-

struction algorithms for covering arrays as well. We have introduced the two-stage

algorithmic framework for covering array construction. Individual algorithms from

this framework surpassed a number of currently best known results. Also, this frame-

work is flexible enough to be quite effective for mixed covering arrays, which are more

important from a practical point of view. Our experimental evaluation shows that

TS 〈Rand,Greedy; 2ρ〉 and TS 〈Rand,Den; 2ρ〉 with cyclic or Frobenius group action

achieve the ideal trade-off in terms of the running time and the size of the constructed

covering array. A key idea in this paradigm is an intelligent allocation of resources.

This requires dividing the covering array construction process into number of stages

and applying an algorithm in each stage that achieves the best trade-off between

resource consumption (running time and memory) and quality of the solution.

Covering perfect hash family based Moser-Tardos type algorithms appear to be

the most effective construction method for higher strength covering arrays. Although

their applicability is limited to covering arrays with a constant level for all factors,

they outperform all the known construction methods in this category. It has often
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been the case that the best asymptotic bounds do not translate to the best practical

construction method for covering arrays. However, this algorithm has proven to

be an important exception to this pattern. Not only do they provide the tightest

known asymptotic bounds, but also in certain cases, they provide the best known

construction methods as well.

9.2 Open Problems and Future Research Directions

We have not been able to provide a completely satisfactory answer to a few ques-

tions that are pertinent to this thesis. We believe these questions open up a number

of exciting directions for future research. In this section, we briefly mention some

these open issues and future research ideas.

On the theoretical side, establishing tighter bounds on the coloring based methods

of Section 5.2.3 is a challenging problem. Further improvement may ensue from a more

careful estimation of the chromatic number of the incompatibility graph. However,

this task is complicated by the fact that the structure of the incompatibility graph is

dependent on the random row selection and interaction coverage process of the first

stage.

Coming up with a more efficient randomized algorithm for the first stage is an

important problem from both theoretical as well as practical point of view. In Section

6.2.1 and 6.2.2 we have explored the possibility of Moser-Tardos type algorithm for

the first stage. As mentioned already, those methods have severe practical limitations.

However, one may still be hopeful that a different approach of reducing the number

of “bad” events to be avoided explicitly may lead to a better algorithm. A potentially

fruitful approach may look as follows: Bad events would denote non-coverage of an

interaction over t-sets of columns. We would select a set of column t-sets such that

the dependency graph of the corresponding bad events has a bounded maximum
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degree (less than the original dependency graph). We would devise a Moser-Tardos

type algorithm for covering all the interactions on our chosen column t-sets, and then

apply the conditional LLL distribution to obtain an upper bound on the number of

uncovered interactions.

However, the difficulty lies in the fact that “all vertices have degree ≤ ρ” is a

non-trivial, “hereditary” property for induced subgraphs, and for such properties

finding a maximum induced subgraph with the property is an NP-hard optimization

problem [25]. There is still hope for a randomized or “nibble” type strategy that may

find a reasonably good induced subgraph with a bounded maximum degree. Further

exploration of this idea seems to be a promising research avenue.

In general, one need not restrain oneself within only two stages. One can definitely

think of more than two stages in a covering array construction algorithm. However

establishing the benefit or the lack thereof of having more than two stages is also an

interesting open problem.

Probably the most underexplored topic in this thesis is the practical construction

of covering arrays from covering perfect hash families using Moser-Tardos type meth-

ods. Although the basic method beats a number of currently best known results,

there are enough reasons to believe that this method is not yet pushed to its limits.

One obvious idea is to think about removing redundancy of coverage. This idea ties

back to the technique of post-optimization. It is conceivable that once the covering

array has been produced by the Moser-Tardos algorithm, we can remove a few rows

of the array and still maintain full coverage. Otherwise, we may repeat Moser-Tardos

type resampling on the smaller array itself. This and related ideas are ripe for further

investigation, and we plan to pursue them in subsequent work.
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[3] Android, “Android configuration class”, Http://developer.android.com/reference
/android/content/res/Configuration.html (2016).

[4] Brown, J. I., “The complexity of generalized graph colorings”, Discrete Appl.
Math. 69, 3, 257–270, URL http://dx.doi.org.ezproxy1.lib.asu.edu/10.
1016/0166-218X(96)00096-0 (1996).

[5] Bryce, R. C., Y. Chen and C. J. Colbourn, “Biased covering arrays for progressive
ranking and composition of web services.”, Int. J. Simulation Process Modelling
3, 1/2, 80–87 (2007).

[6] Bryce, R. C. and C. J. Colbourn, “The density algorithm for pairwise interaction
testing”, Software Testing, Verification, and Reliability 17, 159–182 (2007).

[7] Bryce, R. C. and C. J. Colbourn, “A density-based greedy algorithm for higher
strength covering arrays”, Software Testing, Verification, and Reliability 19, 37–
53 (2009).

[8] Bryce, R. C. and C. J. Colbourn, “Expected time to detection of interaction
faults”, Journal of Combinatorial Mathematics and Combinatorial Computing
86, 87–110 (2013).

[9] Cawse, J. N., “Experimental design for combinatorial and high throughput ma-
terials development”, GE Global Research Technical Report 29, 769–781 (2002).

[10] Chandra, A. K., L. T. Kou, G. Markowsky and S. Zaks, “On sets of boolean n-
vectors with all k-projections surjective”, Acta Informatica 20, 1, 103–111, URL
http://dx.doi.org/10.1007/BF00264296 (1983).

[11] Chateauneuf, M. A., C. J. Colbourn and D. L. Kreher, “Covering arrays of
strength 3”, Des. Codes Crypt. 16, 235–242 (1999).

[12] Chen, B. and J. Zhang, “Tuple density: a new metric for combinatorial test
suites”, in “Proceedings of the 33rd International Conference on Software Engi-
neering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011”, pp. 876–879
(2011), URL http://doi.acm.org/10.1145/1985793.1985931.

128

http://doi.acm.org/10.1145/2723872.2723878
http://dx.doi.org.ezproxy1.lib.asu.edu/10.1002/9780470277331
http://dx.doi.org.ezproxy1.lib.asu.edu/10.1002/9780470277331
http://dx.doi.org.ezproxy1.lib.asu.edu/10.1016/0166-218X(96)00096-0
http://dx.doi.org.ezproxy1.lib.asu.edu/10.1016/0166-218X(96)00096-0
http://dx.doi.org/10.1007/BF00264296
http://doi.acm.org/10.1145/1985793.1985931


[13] Cohen, D. M., S. R. Dalal, M. L. Fredman and G. C. Patton, “The AETG system:
An approach to testing based on combinatorial design”, IEEE Transactions on
Software Engineering 23, 437–44 (1997).

[14] Cohen, M. B., Designing test suites for software interaction testing, Ph.D. thesis,
The University of Auckland (2004).

[15] Cohen, M. B., C. J. Colbourn and A. C. H. Ling, “Constructing strength three
covering arrays with augmented annealing”, Discrete Math. 308, 2709–2722
(2008).

[16] Colbourn, C. J., “Combinatorial aspects of covering arrays”, Le Matematiche
(Catania) 58, 121–167 (2004).

[17] Colbourn, C. J., “Covering array tables”,
Http://www.public.asu.edu/∼ccolbou/src/tabby (2005-2016).

[18] Colbourn, C. J., “Covering arrays and hash families”, in “Information Security
and Related Combinatorics”, NATO Peace and Information Security, pp. 99–136
(IOS Press, 2011).

[19] Colbourn, C. J., “Conditional expectation algorithms for covering arrays”, Jour-
nal of Combinatorial Mathematics and Combinatorial Computing 90, 97–115
(2014).

[20] Colbourn, C. J., D. M. Cohen and R. C. Turban, “A deterministic density algo-
rithm for pairwise interaction coverage”, in “IASTED Proc. of the Intl. Confer-
ence on Software Engineering (SE 2004)”, pp. 345–352 (2004).

[21] Damaschke, P., “Adaptive versus nonadaptive attribute-efficient learning”,
Machine Learning 41, 2, 197–215, URL http://dx.doi.org/10.1023/A:
1007616604496 (2000).

[22] Diestel, R., Graph Theory, Graduate Texts in Mathematics (Springer, 2010),
fourth edn.
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[k] : The set {1, 2, . . . , k} for a positive integer k (page 11).

CA(N ; t, k, v) : A covering array with N rows, k factors, v levels and strength t (page
11).

CAN(t, k, v) : The minimum N for which a CA(N ; t, k, v) exists. (page 11).

Ct,k : The set of all t-sets of [k] (page 12).

It,k,v : The set of all possible t-way interactions among k factors, each having v levels
(page 12).

MCA(N ; t, k, (v1, v2, . . . , vk)) : A mixed covering array withN rows, k columns having
v1, . . . , vk levels and strength t (page 12).

d(t, v) : The limiting value of the least upper bound of the ratio of CAN(t, k, v) and
log k as k →∞ (page 14).

TS 〈A,B; r,Γ〉 : A two-stage algorithm where A is the method used in the first stage,
B is the methods used in the second stage, r is the maximum number of inter-
actions that remain uncovered at the end of the first stage, and Γ is the group
that acts on the rows (page 68).

CPHF(n; t, k, v) : A covering perfect hash family with n rows and k columns with
parameters t and v (page 97).

SCPHF(n; t, k, v) : A Sherwood covering perfect hash family with n rows and k columns
with parameters t and v (page 97).

PCA(N ; t, k, v,m) : A partial covering array with N rows, k columns and parameters
t, v and m (page 111).

APCA(N ; t, k, v,m, ε) : A ε-almost covering array with N rows, k columns and pa-
rameters t, v, m and ε (page 111).
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Algorithm 15: The biased density algorithm for selection of a row.

Input: X : the set of uncovered interactions, Σ: the alphabet of symbols with
|Σ| = v, t : strength of the covering array, k : number of factors.

Output: r : the next row of the covering array.
1 Let r := (∗, . . . , ∗);
2 Let ρ denote the set of entries in r that have been fixed. Initially, ρ = φ;
3 while X 6= φ do
4 Let maxExpCov := 0, and ι∗ := (null, null);
5 foreach ι = (c, s) ∈ X do
6 Let expCov store the conditional expected coverage computed by

Algorithm 16;
7 if expCov > maxExpCov then
8 Set maxExpCov := expCov, and ι∗ := ι, i.e., set c∗ = c and s∗ = s;
9 end

10 end
11 for i = 1 to t do
12 Set rc∗i := s∗i ;
13 end
14 foreach ι′ = (c′, s′) ∈ X do
15 if ι′ does not agree with r or is already covered by r then
16 Delete ι′ from X;
17 end
18 end
19 end
20 Fix the remaining entries of r, if there are any, randomly from Σ;
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Algorithm 16: Computation of conditional expected coverage.

Input: X : the set of uncovered interactions, ι = (c, s): the interaction that is
selected next, ρ : the set of entries that have been fixed in the current
row, Σ: the alphabet of symbols with |Σ| = v, t : strength of the
covering array, k : number of factors.

Output: The conditional expected coverage if the interaction ι is selected
next.

1 Let count := 0;

// The following loop runs for |Σ|k−|ρ∪c| times; therefore, takes
exponential time

2 foreach r′ ∈ Σk do
3 if r′ agrees with the symbols selected for the entries in ρ and ι then
4 Set count := count+m(r′);
5 end
6 end

// The probability that r′ is chosen is 1/|Σ|k−|ρ∪c|.
7 Return count/|Σ|k−|ρ∪c|;
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k Uniform Random Biased Random Density Biased Density

t = 2, v = 3

4 15 12 11 9
5 18 15 14 13
6 21 16 15 15
7 25 18 16 15
8 26 21 17 16
9 28 22 18 17
10 31 23 17 17

t = 3, v = 3

4 62 35 32 34
5 85 48 42 40
6 104 60 50 46
7 119 72 56 51
8 125 81 58 57
9 139 91 62 61
10 149 98 64 62
14 - - 80 73

Table C.1: Comparison of different covering array construction algorithms—
the uniform random (Algorithm 2), the biased random (Algorithm 6), the
density (Algorithm 4), and the biased density (Algorithm 7) row selection
algorithms. t = 2, v = 3 and t = 3, v = 3. 10, 000 independent runs of the
randomized algorithm are used, and the best result is reported.
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