
   

  

Organic Carbon in Hydrothermal Systems: From Phototrophy to Aldehyde 

Transformations 

by 

Kristopher Michael Fecteau 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

Approved October 2016 by the 

Graduate Supervisory Committee: 

 

Everett L. Shock, Chair 

Ian R. Gould 

Hilairy E. Hartnett 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

 

December 2016



   

i 
 

ABSTRACT

Hydrothermal environments are important locales for carbon cycling on Earth and 

elsewhere in the Universe. Below its maximum temperature (~73 °C), microbial 

photosynthesis drives primary productivity in terrestrial hydrothermal ecosystems, which 

is thought to be performed by bacterial phototrophs in alkaline systems and eukaryotic 

algae in acidic systems, yet has received little attention at pH values intermediate to these 

extremes. Sequencing of 16S and 18S rRNA genes was performed at 12 hot springs with 

pH values 2.9-5.6 and revealed that cyanobacteria affiliated with the genus 

Chlorogloeopsis and algae of the order Cyanidiales coexisted at 10 of the sites. 

Cyanobacteria were present at pH values as low as 2.9, which challenges the paradigm of 

cyanobacteria being excluded below pH 4. Presence of the carotenoid β-cryptoxanthin in 

only 2 sites and quantitative PCR data suggest that algae were inactive at many of the sites 

when sampled. Spatial, but perhaps not temporal, overlap in the habitat ranges of bacterial 

and eukaryal microbial phototrophs indicates that the notion of a sharp transition between 

these lineages with respect to pH is untenable.  

 In sedimentary basins, biosphere-derived organic carbon is subjected to abiotic 

transformations under hydrothermal conditions. Benzaldehyde was experimentally 

evaluated as a model to assess the chemistry of aldehydes under these conditions. It was 

first demonstrated that gold, a traditional vessel material for hydrothermal experiments, 

caused catalysis of benzaldehyde degradation. Experiments in silica tubes were performed 

at 250, 300, and 350 °C yielding time-dependent data at several starting concentrations, 

which confirmed second-order kinetics. Therefore, disproportionation was expected as a 

major reaction pathway, but unequal yields of benzoic acid and benzyl alcohol were 
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inconsistent with that mechanism. Consideration of other products led to development of a 

putative reaction scheme and the time dependencies of these products were subjected to 

kinetic modeling. The model was able to reproduce the observed yields of benzoic acid and 

benzyl alcohol, indicating that secondary reactions were responsible for the observed ratios 

of these products. Aldehyde disproportionation could be an unappreciated step in the 

formation of carboxylic acids, which along with hydrocarbons are the most common 

organic compounds present in natural systems. 
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I. INTRODUCTION 

 Water is an ubiquitous chemical compound on Earth and is essential for life. When 

heated, liquid water exhibits properties quite different from those encountered at the 

ambient surface conditions that are most familiar. Heated water leads to hydrothermal 

conditions, which for the purposes of this dissertation shall be broadly defined as any 

system containing water heated in excess of ambient conditions. Natural hydrothermal 

environments, heated geothermally via heat flow from the mantle, exist at Earth’s surface 

in both terrestrial and marine settings, creating conditions conducive to highly specialized 

microbial life known as thermophiles. Thermophiles have evolved biochemically to cope 

with the physical stresses of high temperatures and have temperature optima well above 

ambient conditions. Numerous examples of thermophilic microbial communities exist in 

the thermal features of Yellowstone National Park (YNP; Wyoming, USA) which exceed 

12,000 in number (Nordstrom et al., 2005). In addition to temperature, the chemical nature 

of hot water is relevant to microbes. For example, neutral pH at the boiling point for the 

elevation of YNP (~93 °C) is ~6.2 due to the greater dissociation of water at elevated 

temperatures, meaning that the commonly encountered hot springs with pH values of 7-8 

are actually somewhat alkaline rather than neutral.  

 As water is heated further, conditions are eventually reached that are inconducive 

to life. Such temperatures (> ~150 °C) are reached in sedimentary basins and other 

subsurface environments on Earth. Though life is excluded, these hydrothermal conditions 

have profound effects on the cycling of organic carbon derived from the biosphere. While 

the elevated temperatures facilitate dramatically enhanced kinetics when compared with 

ambient conditions, the properties of water also have important consequences. In addition 



   

  2 
 

to the aforementioned decrease in neutral pH, which reaches a minimum of ~5.6 around 

250 °C, the dielectric constant decreases rapidly as temperature increases. For example, at 

250 °C the dielectric constant is ~30 (Akiya and Savage, 2002), giving it solvent properties 

comparable to ethanol at room temperature. Additionally, hydrogen bonding is less 

prevalent at higher temperatures (Kruse and Dinjus, 2007). Thus, water is a more robust 

solvent for organic compounds at elevated temperatures and may also facilitate acid/base 

chemistry due to the higher activities of hydronium and hydroxide ions.  

 The effects of water on organic compounds under hydrothermal conditions are 

profound. Numerous reactions of organic compounds have been observed in hot water 

((Kuhlmann et al., 1994; Katritzky et al., 1996; An et al., 1997; Savage, 1999; Katritzky 

et al., 2001), yet much remains to be done in order to gain kinetic and mechanistic 

understanding of these reactions. This reactivity has implications for the formation and 

evolution of petroleum and other fossil fuels, as well as for the alteration of biomass for 

biofuel production (Kruse and Dahmen, 2015). Hydrothermal conditions may also 

facilitate abiotic synthesis of organic compounds from inorganic precursors (Shock and 

Schulte, 1998; McCollom and Seewald, 2007), which may support subsurface microbial 

ecosystems. 

 This dissertation tackles several disparate questions regarding organic carbon under 

hydrothermal conditions. First, the transition in primary production via microbial 

photosynthesis between eukaryotes and bacteria is examined in mildly acidic hot springs 

in YNP. Second, catalysis of benzaldehyde reactions by gold in hydrothermal organic 

experiments is demonstrated, contradictory to conventional wisdom that gold offers an 

inert surface for such experiments. Lastly, a thorough investigation of the hydrothermal 
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chemistry of aldehydes is described, using benzaldehyde as a model compound, with 

discussion of implications for transformations of organic carbon in natural systems. 

1.1 Phototrophy in Mildly Acidic Hot Springs 

 Phototrophy in hot spring habitats is traditionally thought to be performed by 

bacterial phototrophs in alkaline systems and by eukaryotic algae in acidic systems, yet has 

received little attention at pH values intermediate to these extremes. Sequencing of 16S 

and 18S rRNA genes was performed at 12 hot springs in Yellowstone National Park 

(Wyoming, USA) with pH values ranging from 2.9 to 5.6 and revealed that cyanobacteria 

affiliated with the genus Chlorogloeopsis and algae of the order Cyanidiales (phylum 

Rhodophyta) coexisted in 10 of the sites. Cyanobacteria were present as low as pH 2.9, 

which challenges the paradigm of cyanobacteria being excluded below pH 4. Sequences 

associated with Chloracidobacterium thermophilum, an anoxygenic phototroph, were also 

observed at 2 of the sites. The carotenoid β-cryptoxanthin, a biosynthetic intermediate, was 

only found in the pigment extracts from 2 sites, suggesting Cyanidiales were only active 

in those sites when sampled. Chlorophyll degradation products were identified at all sites; 

no intact chlorophyll a was observed in 2 of the samples, which also did not exhibit light-

driven carbon fixation at the time of sampling. Quantitative PCR analyses confirmed that 

cyanobacteria were more abundant than Cyanidiales by up to 3 orders of magnitude, with 

algae only approaching cyanobacteria in abundance at the most acidic sites. Collectively, 

these observations show that many of the algal sequences represent populations that were 

no longer active.  

Geochemically, these hot spring fluids are derived from hydrothermal vapor and 

meteoric water and are therefore dilute and weakly buffered. Variability in the supply of 
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meteoric water likely contributes to dynamic conditions at these sites, leading to transitions 

in the phototrophic communities. Spatial, but perhaps not temporal, overlap in the habitat 

ranges of bacterial and eukaryal microbial phototrophs indicates that the notion of a sharp 

transition between these lineages with respect to pH is untenable.  

1.2 Catalysis of the Cannizzaro Reaction by Bulk Gold 

 Though traditionally base-catalyzed, the Cannizzaro reaction of benzaldehyde was 

shown to be catalyzed by bulk gold in superheated water. At 200 °C for ~48 hours, 0.1 

molal solutions of benzaldehyde exhibited conversions that depended linearly on the 

amount of gold present at low amounts of gold, but this trend reversed at the highest gold 

loadings. Ratios of benzoic acid to benzyl alcohol greatly exceeded unity, increasing with 

increasing amounts of gold. These observations were attributed to the reactivity of benzyl 

alcohol in the presence of gold, which was proposed to react via cross-disproportionation 

with benzaldehyde to yield toluene and benzoic acid, transitioning to benzyl alcohol 

disproportionation resulting in toluene and the reformation of benzaldehyde at higher gold 

loadings. Benzene was also formed via gold-catalyzed decarbonylation of benzaldehyde. 

Turnover frequencies for both benzaldehyde (0.00013 s-1) and benzyl alcohol (0.0011 s-1) 

were quite low and attributed to coagulation of the gold powder under the experimental 

conditions. The concentration dependence of the yields of the major products indicated 

aqueous benzaldehyde is involved at the rate-determining step. The gold-catalyzed 

reactivity of organic compounds at conditions typical of hydrothermal experiments implies 

that gold may not always be the most inert choice as an experimental vessel. 

 

 



   

  5 
 

1.3 Kinetics and Chemistry of Aldehydes under Hydrothermal Conditions 

 Aldehydes represent an intermediate redox state of organic carbon and may be the 

precursors to carboxylic acids, which together with hydrocarbons are the most common 

organic compounds in natural systems. A model aldehyde, benzaldehyde, was subjected to 

hydrothermal experiments (250-350 °C, saturation pressure) in clear fused quartz (CFQ) 

autoclaves to assess the kinetics and mechanisms of the reactions leading to carboxylic 

acids. The concentration dependence unequivocally demonstrates the kinetics are second-

order in benzaldehyde, consistent with the putative disproportionation reaction of 

benzaldehyde, which is reminiscent of the base-catalyzed Cannizzaro reaction known at 

lower temperatures. Arrhenius parameters for these rate constants trend well with 

published values for the reaction under supercritical conditions from one study (Tsao et al., 

1992) though the activation energy is larger in the supercritical region. However, the pre-

exponential factor is approximately 4 orders of magnitude smaller than that derived from 

another study under supercritical conditions (Ikushima et al., 2001). Additionally, fitting 

the rate constants from this study with the Eyring equation yields an entropy of activation 

(ΔS‡) of -178 J mol-1 K-1, which is consistent with a bimolecular transition state at the rate-

limiting step. In contrast, the rates of Ikushima et al. (2001) yield a positive value of ΔS‡, 

which is inconsistent with the putative mechanism for the reaction. The change in 

activation energy near the critical point for the decomposition of benzaldehyde indicates 

that experimentally derived rates in subcritical, not supercritical, conditions should be used 

for extrapolation to conditions where diagenesis, alteration, metamorphism, and other 

hydrothermal processes of interest occur in natural systems. 
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 An experiment with benzaldehyde-carbonyl-13C analyzed by 13C-NMR 

demonstrated the production of benzyl alcohol, benzoic acid, and carbon dioxide, though 

the yields of benzoic acid and benzyl alcohol were not equal, as expected for the 

disproportionation reaction. It was therefore necessary to consider secondary reactions that 

would lead to unequal yields of benzyl alcohol and benzoic acid. Benzene and carbon 

dioxide are primarily produced via decarboxylation of benzoic acid, the rates of which were 

measured in separate experiments at 300 °C and 350 °C. Benzyl alcohol undergoes facile 

dehydration to yield the stable benzyl cation, which acts as an effective electrophile in 

electrophilic aromatic substitution reactions. These and other pathways invoked from the 

product suites of the experiments were developed into a plausible reaction scheme and their 

time dependencies were subjected to kinetic modeling. The kinetic model was able to 

reproduce the observed yields of benzyl alcohol and benzoic acid, indicating that 

disproportionation and subsequent secondary reactions were able to explain the observed 

product yields. Experiments at different starting pH values demonstrated that while the 

reaction can be catalyzed by hydroxide, as traditionally understood, at lower pH water 

serves as the nucleophile for hydrate formation, which then donates hydride to another 

benzaldehyde molecule in the rate-limiting step. It is expected that most aldehydes are able 

to undergo disproportionation, and if present in natural systems, could be the precursor to 

carboxylic acids. The formation of aldehydes from an alkane requires oxidation of a 

primary alcohol, which would arise via anti-Markovnikov hydration of the corresponding 

alkene. Though this pathway is less favorable than Markovnikov hydration, which leads to 

a ketone, on geologic time scales it could be a viable pathway toward metastable carboxylic 

acids.  
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II. PHOTOTROPHY IN MILDLY ACIDIC HOT SPRINGS: WHERE BACTERIAL 

AND EUKARYOTIC PHOTOTROPHS MEET AT THE LIMITS OF 

PHOTOSYNTHESIS 

2.1 Introduction 

Microbial photosynthesis is a major contributor to primary production in many 

aquatic environments. To date, photosynthesis is found in two of the three domains of life, 

occurring in the bacteria and eukarya while being absent in the archaea (Blankenship, 

2014). In aquatic systems, microbial phototrophs from both domains commonly exist 

together in the same habitat. For example, diatoms often occur together with 

Prochlorococcus and Synechococcus cyanobacteria in oligotrophic ocean regions (Biller 

et al., 2015). In contrast, terrestrial hot springs are environments that span both 

temperatures and chemical conditions, such as pH, that cross the boundaries of the habitat 

ranges for specific groups of phototrophs. The distribution of hot springs with respect to 

pH exhibits a bimodal distribution (Figure 1), which has been demonstrated in Yellowstone 

National Park (YNP) and elsewhere (Brock, 1971; Brock, 1978; Nordstrom et al., 2009; 

Amenabar et al., 2015). This distribution is a consequence of two prevailing buffering 

systems, with alkaline hot springs being bicarbonate buffered and acidic systems being 

sulfuric acid buffered.  

Recent efforts to catalog the distribution of phototrophic microbes with respect to 

extremes of physical and chemical conditions in YNP hot spring habitats have confirmed 

an upper temperature limit for phototrophy near 73 °C that is reached in alkaline 

environments, while acidic environments exhibit lower temperature maxima (Boyd et al., 

2010; Cox et al., 2011; Boyd et al., 2012; Hamilton et al., 2012). The upper temperature 
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Figure 1. Abundance of thermal features in Yellowstone National Park with respect to their 

pH values. Data were obtained from an extensive survey of Yellowstone hot springs 

(www.rcn.montana.edu). Springs are binned every 0.5 pH units and plotted at the midpoint 

of each pH interval.  
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limit in alkaline locations is reached only by certain strains of cyanobacteria of the genus 

Synechococcus (Brock, 1967; Brock and Brock, 1968; Brock, 1978). Isolates from alkaline 

mats in Yellowstone exhibit several phylotypes, each with highly specialized temperature 

niches (Allewalt et al., 2006). At cooler temperatures that are typically encountered further 

downstream in outflow channels of alkaline hot springs, a variety of other bacterial 

phototrophs flourish. These include other cyanobacteria such as Mastigocladus laminosus 

(Miller et al., 2006; Miller et al., 2009) and green non-sulfur bacteria such as Chloroflexus 

auranticus (Pierson and Castenholz, 1974; Brock, 1978) and Roseiflexus sp. (Boomer et 

al. 2002), which is more abundant than C. auranticus in molecular surveys of these 

communities (van der Meer et al., 2010). A preponderance of evidence suggests that 

anoxygenic bacteria grow photomixotrophically in these systems, inhabiting mat layers 

beneath a thin top layer of cyanobacteria and utilizing light wavelengths in the near-

infrared not used by oxygenic phototrophs (Bauld and Brock, 1973; Brock, 1978; van der 

Meer et al., 2005; Klatt et al., 2007; Klatt et al., 2013). Alkaline springs with high sulfide 

concentrations have been described that harbor populations of anoxygenic phototrophs able 

to employ sulfide as an electron donor, such as Thermochromatium tepidum (Madigan, 

1984; Madigan, 1986). 

 In contrast to alkaline systems, phototrophic communities in acidic environments 

are dominated by eukaryal phototrophs. Doemel and Brock surveyed these systems 

extensively and concluded that one species of red algae (phylum Rhodophyta), Cyanidium 

caldarium, was the only phototroph present above 40 °C at locations below pH 4 (Doemel, 

1970; Doemel and Brock, 1970; Doemel and Brock, 1971; Brock, 1978). This conclusion 

is based on the absence of other algae growing above ~40 °C, together with observations 
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of an apparent lack of cyanobacteria below pH 4 in both thermal and non-thermal 

environments (Brock, 1973). Below ~40 °C a variety of other algae are commonly present, 

including Chlorella, Chlamydamonas, Euglena, and diatoms (Doemel and Brock, 1971). 

With the advent of molecular biology and its application to microbial ecology, it became 

clear the organism studied by Doemel and Brock in Yellowstone aquatic environments was 

Cyanidioschyzon merolae of the order Cyanidiales within the phylum Rhodophyta (Toplin 

et al., 2008), which is the only species of these algae found in aquatic environments 

(Skorupa et al., 2013). The upper temperature limit for these algae, and thus for 

phototrophs in general in acidic conditions, is 56 °C (Doemel and Brock, 1970). 

 This dichotomous view of microbial phototrophs in hydrothermal environments, 

that algae dominate in acidic features and cyanobacteria dominate in circumneutral and 

alkaline features, has been left largely untested in the half-century since the observations 

of Brock and colleagues. Cyanobacteria have been observed under mildly acidic, thermal 

conditions as low as pH 4 (Brock, 1973), while Cyanidiales isolates from Yellowstone can 

grow at pH values approaching 5, above which no growth is observed (Doemel and Brock, 

1971). Based on these observations, the habitat ranges for algae and cyanobacteria in 

thermal environments overlap with respect to pH. Indeed, Brock observed both 

cyanobacteria and algae present between pH 4 and 5 in the mixing zone created when the 

effluent from alkaline springs meets the acidic Obsidian Creek in Yellowstone (Brock, 

1973; Brock, 1978). Nevertheless, studies to date have not yielded adequate data to further 

investigate the potential coexistence of algal and cyanobacterial photosynthesis in thermal 

environments, in spite of including some sample locations within the pH range 4-5. While 

Doemel (1970) noted cyanobacteria in locations where Cyanidiales were absent based on 
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microscopic observation, it is quite possible cyanobacteria could go unnoticed, especially 

at sites where algae were identified. Later studies focusing on Cyanidiales relied on 

sequencing of 18S rRNA and rbcL genes of cultures (Toplin et al., 2008) or amplified and 

sequenced rbcL genes from natural samples using Cyanidiales-specific primers (Skorupa 

et al., 2013). Cyanobacteria present in the natural system likely would not be enriched for 

in culture at the pH used (2.0) and amplification of cyanobacterial rbcL genes was not 

reported. Hamilton et al. (2012) examined the habitat range of phototrophs, yet the gene 

they employed, chlL, is not present in C. merolae, thus they were not able to determine the 

distribution and abundance of Cyanidiales and observations of algae were limited to 

members of the order Bangiales in several acidic locations below 40 °C. Recently, several 

studies have examined the composition of phototrophic communities in Yellowstone hot 

springs using metagenomic techniques or amplification of ribosomal genes using universal 

primers, but these studies did not examine any locations below pH 6.2, nor did they 

investigate eukarya (Ross et al., 2012; Swingley et al., 2012; Klatt et al., 2013).  

 Observations of algae and cyanobacteria at temperatures above 40 °C reported in 

the literature are depicted in pH and temperature space in Figure 2. It is evident that 

separate observations of algae and cyanobacteria have been made between pH 4 and 5, yet 

the data in this pH range is sparse. This paucity of data is exacerbated by the rarity of 

thermal features within this pH range, as illustrated in Figure 1. This study targets 

Yellowstone hot springs with a pH range from approximately 3 to 6 with temperatures 

conducive to photosynthesis, indicated in Figure 2.  Sequencing of 16S and 18S ribosomal 

RNA genes (targeting bacteria and eukarya, respectively) is integrated with pigment and 

geochemical analyses in order to characterize the composition of phototrophic microbial 
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Figure 2. Literature observations of cyanobacteria (filled circles) and algae (open symbols) 

in thermal aquatic locations with respect to in situ temperature and pH. For algae, circles 

indicate sequencing-based confirmation of algae while triangles indicate confirmation via 

microscopy or culturing; all cyanobacteria data are from sequencing. Data are derived 

from: Doemel, 1970; Brock, 1973; Papke et al., 2003; Toplin et al., 2008; Boomer et al., 

2009; Meyer-Dombard et al., 2011; Hamilton et al., 2012; Loiacono et al., 2012; Klatt et 

al., 2013; Schubotz et al., 2013; Skorupa et al., 2013. Red crosses denote samples from 

this study. Empirical ‘fringe’ curves for cyanobacteria (heavy dashes) and algae (light 

dashes) are drawn to encompass the data. The cyanobacteria curve is not extended below 

pH 4 due to lack of evidence for cyanobacteria below this pH in thermal environments. 

The algae fringe is drawn as a line and not extended above pH 4.5 because of the lack of 

data for algae in thermal environments above this pH. In cases where multiple observations 

were made of the same system, such as in outflow channels, only the highest temperature 

observation is plotted. Similarly, the highest temperature is plotted when a temperature 

range is reported for a particular sample location. 
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communities where the habitat ranges of phototrophs from each domain overlap and their 

geochemical setting. Several sites below pH 4 were also included to further examine the 

transition from putatively algae-only phototrophic systems to those also containing 

cyanobacteria, as there is a growing body of observations of cyanobacteria in acidic, low 

temperature environments (Steinberg et al., 1998; Hamilton et al., 2012; Hao et al., 2012; 

Urbieta et al., 2015) that challenge the paradigm of cyanobacteria being excluded below 

pH 4 (Brock, 1973). This study aims to determine under what, if any, conditions both 

thermophilic cyanobacteria and algae coexist, which is a fundamental issue with respect to 

the habitat range of phototrophs that has been nearly completely unaddressed. The 

geochemical processes yielding environments of intermediate pH may have facilitated 

niche differentiation between these two lineages of phototrophs at the edges of their habitat 

ranges, or competition may prevail, as both cyanobacteria and algae fulfil the same niche 

metabolically via the same biochemical pathways. This ecological question undoubtedly 

has evolutionary implications, and could lead to novel insights into the endosymbiotic 

evolution of algae from a cyanobacterial precursor, an event that could have occurred in a 

thermal environment where cyanobacteria and a non-phototrophic eukaryote coexisted. 

2.2 Materials and Methods 

2.2.1 Field Sites and Sample Collection 

The sample sites in this study are located within the Midway Geyser Basin and 

southern portion of the Lower Geyser Basin of YNP.  Though these areas are known to 

harbor primarily alkaline features, several springs have been observed to have pH values 

within the range of interest here (~3-6) and many of these appear to support phototrophic 

communities. Specifically, several pools were sampled adjacent to Imperial and Spray 
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Geysers in the southwest portion of Lower Geyser Basin, as well as many features in the 

area of Rabbit Creek within Midway Geyser Basin between July 2011 and July 2012. In 

total, 12 sites were studied; two locations were sampled in both years to begin to evaluate 

temporal variability. GPS coordinates and sampling dates for each site are reported in Table 

1.  

Samples for DNA, pigment, and elemental analysis were collected with sterilized 

spatulas or forceps, placed in sterile specimen containers and then aliquoted to cryovials 

and immediately frozen in the field by storing them in insulated containers with dry ice. 

Samples designated for DNA extraction contained 0.8 mL of sucrose lysis buffer (Mitchell 

and Takacs-Vesbach, 2008). Upon return from the field each day, DNA and pigment 

samples were transferred to dry shippers charged with liquid nitrogen (approximate 

temperature, -150 °C) and transferred to a -80 °C freezer upon return to the laboratory for 

storage until sample processing. Samples for elemental analysis were stored at -20 °C at 

the end of each sampling day and maintained at that temperature until analysis.  

Water sampling and field measurements were conducted as closely as possible to 

the site of biological sampling and were typically performed immediately prior to 

collection of samples for DNA, pigments, and elemental analysis. Measurements of pH 

were performed with a WTW pH meter (model 3300i or 3110) and temperature-

compensated WTW probes constructed with a gel electrolyte that are calibrated daily at 

ambient temperature with buffered pH solutions. Specific conductivity (i.e., conductivity 

normalized to 25 °C) and temperature were measured using a YSI model 30 meter. 

Dissolved oxygen and total dissolved sulfide were determined colorimetrically (HRDO and 

methylene blue methods, respectively) in the field using Hach 2400 or 2800 portable    



   

15 
 

Table 1. Sample dates, locations, charge balance results, conductivities, and water isotopes 

 

Sample IDa Eastingb Northing 
Field 

pH 

Corrected 

pHc 

% charge 

imbalance 

Specific 

Conductivity 
(µS/cm) 

δ18O vs. 

VSMOW 
(‰) 

δ2H vs. 

VSMOW 
(‰) 

FF1 120720KF 513469 4929044 3.30 3.28 -1.25 462 -4.8 -108.3 

IG1 110918R 509797 4930939 3.78 3.96 2.92 365 -8.5 -123.2 

IG2 120722TE 509794 4930931 3.13 3.32 13.5 606 -5.4 -111.0 

IG3 120722TK 510064 4930948 3.26 2.91 -12.7 914 -14.1 -127.4 

RN1-2011 110708C 515110 4929721 3.94 4.64 22.1 69.5 -14.9 -137.7 

RN1-2012 120718TJ 515110 4929721 4.91 5.10 1.45 96.7 -15.3 -138.2 

RN2 110708D 515110 4929727 4.64 4.57 -0.892 59.0 -12.7 -133.2 

RN3 120718TL 515045 4929810 4.43 4.01 -4.17 351.8 -11.7 -131.0 

RS1 120713TI 515138 4928593 4.80 5.07 2.99 274.4 -9.1 -124.0 

RS2 120713TL 515125 4928566 4.50 4.30 -2.55 171.4 -9.3 -123.4 

RS3 110710Y 515146 4928521 4.87 5.43 9.25 155.3 -12.9 -127.8 

RS4 110710D 515145 4928523 4.24 5.54 39.9 117.1 -15.3 -139.8 

RS5-2011 110720F1 515129 4928550 3.80 3.82 0.908 165.8 -13.5 -134.2 

RS5-2012 120713TJ 515129 4928550 4.52 5.12 14.1 224.3 -13.3 -134.8 
asample codes are in YYMMDD format. bUTM coordinates, all in zone 12T. cfield pH corrected to achieve 

charge balance (see methods).  

 

  



   

16 
 

spectrophotometer and Hach reagents on unfiltered water samples. Hach 

spectrophotometers and reagents were also employed for the measurement of aqueous 

silica (silicomolybdate method) except these analyses were performed on 0.2 micron-

filtered water samples, described below.  

Water samples for laboratory analyses were filtered with a series of Supor (Pall 

Corporation) filters down to 0.2 microns and preserved in bottles designated for various 

analyses. Samples for water isotope determinations were collected in 30 mL Quorpak 

square bottles with polymer-lined caps to ensure gas-tight storage. The bottle were rinsed 

with deionized water and dried prior to use; water isotope samples were stored at room 

temperature until analysis. Samples for ion chromatography (2 per site) were filtered into 

30 mL HDPE Nalgene bottles, which had been thoroughly soaked and rinsed with multiple 

aliquots of deionized water, and frozen at -20 °C at the end of each sampling day and kept 

frozen until analysis. Samples for dissolved inorganic carbon (DIC) were preserved in acid-

washed 40 mL amber glass vials with black butyl rubber septa. The filtering apparatus 

consisted of a 140 mL plastic syringe and caulking gun to facilitate filtering. Sample water 

was collected in 1 L HDPE bottles and loaded into the syringe via plastic tubing and a 3-

way stopcock. The entire apparatus was rinsed with at least 100 mL of sample prior to 

filtering into sample bottles. 

2.2.2 Geochemical Analyses 

Concentrations of major anions (F-, Cl-, SO4
2-, NO3

-) and major cations (Li+, Na+, 

K+, Ca2+, Mg2+, NH4
+) were determined on separate Dionex DX-600 ion chromatography 

systems using suppressed conductivity detection and operated by Chromeleon software 

(version 6.8). The anion system employs a potassium hydroxide eluent generator, a 



   

17 
 

carbonate removal device, and AS11-HC/AG11-HC columns. The hydroxide 

concentration of the eluent is held isocratically at 5 mM for 5 minutes, followed by a non-

linear (Chromeleon curve 8) hydroxide concentration gradient applied over 31 minutes, 

after which the column is reequilibrated at 5 mM hydroxide for 10 minutes before the next 

sample injection. The eluent flow rate is held constant at 1.0 mL/min. The cation system is 

equipped with CS-16 and CG-16 columns and cations are eluted isocratically with 19 mM 

methanesulfonic acid (MSA) at 0.5 mL/min. Samples for cations were acidified with 6 N 

MSA to approximately 19 mM final concentration. Both systems are plumbed with an 

external source of deionized water for suppressor regeneration to improve the signal-to-

noise ratio of the analyses. Injection volumes are 100 µL and 75 µL for anions and cations, 

respectively. Quantification is achieved externally via calibration curves constructed from 

a series of dilutions of mixed ion standards (Environmental Express, Charleston, SC, 

USA). Quantification accuracy is verified daily by analysis of an independent mixed ion 

standard (Thermo Scientific, Waltham, MA, USA). Uncertainties in reported ion 

concentrations are estimated to be +/- 5%.  

Analyses of DIC were conducted using an OI Wet Oxidation TOC analyzer coupled 

to a Thermo Delta Plus Advantage mass spectrometer as previously described (Havig et 

al., 2011). The DIC in each sample was converted to CO2 by addition of phosphoric acid. 

The ion chromatogram for the CO2 molecular ion (44 m/z) was used for quantification of 

CO2 via comparison to calibration curves constructed with sodium bicarbonate standards 

encompassing expected concentrations. Water isotopes were determined on a Los Gatos 

water isotope analyzer that employs cavity ring down spectroscopy. The isotope ratios were 

standardized with isotope standards encompassing the range of the natural samples.  
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2.2.3 Correction of pH and Speciation 

The major ion data and the DIC data were used with the geochemical speciation 

code EQ3/6 (Wolery and Jarek, 2003) to speciate each aqueous fluid and assess charge 

balance using activity coefficients calculated with an extended Debye-Hückel equation and 

equilibrium constants derived from the revised Helgeson-Kirkham-Flowers equation of 

state (Shock et al., 1997; Sverjensky et al., 1997). Several of the samples (particularly 

RN1-2011 and RS4) exhibited charge imbalances (expressed as percent of the mean 

charge, as defined by Nordstrom et al., 2009) in excess of 20%, which is believed to 

indicate faulty pH probes in use at the time of sampling. Since hydrogen ions are nearly at 

the same order of magnitude concentration as the major solutes in these samples, the pH 

measurements were corrected to achieve charge balance, as indicated in Table 1. These 

corrected values are believed to be closer to the actual pH of each hot spring at the time of 

sampling. The DIC concentrations were speciated using the corrected pH values. 

2.2.4 DNA Extraction and Ribosomal Gene Sequencing 

Samples preserved for DNA extraction were thawed and mat material (~0.5 g) was 

transferred aseptically to Lysing Matrix E tubes supplied with the FastDNA Spin Kit for 

Soil (MP Biomedicals, Santa Ana, CA, USA). Extraction was performed according to the 

manufacturer’s instructions except that 250 µL of the phosphate buffer was replaced by 

250 µL of tris-buffered phenol (pH 8; Sigma-Aldrich, St. Louis, MO, USA), which is a 

slight modification of previously described procedures (Boyd et al., 2007). Extracted DNA 

was quantified using the PicoGreen dsDNA assay kit (Invitrogen, Carlsbad, CA, USA) and 

a Mx3005P QPCR System (Agilent Technologies, Inc., Santa Clara, CA, USA) operating 
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in quantitative plate read mode with the FAM filter set (492 nm excitation; 516 nm 

emission). 

Bacterial 16S rRNA and eukaryal 18S rRNA genes were amplified via polymerase 

chain reaction (PCR) from ~5 ng of genomic DNA using primers 1100F/1492R (annealing 

temperature of 55 °C) and A7F/570R (annealing temperature of 42 °C), respectively, as 

previously described (Hamilton et al., 2013). PCRs were subjected to an initial 

denaturation (4 min., 94 °C) followed by 35 cycles of denaturation (1 min., 94 °C), 

annealing (1 min., specified annealing temperature), and extension (1 min., 72 °C). A final 

extension step was performed at 72 °C for 20 min. The PCR was verified via 

electrophoresis using a 1% agarose gel. All 14 DNA extracts yielded eukaryal 18S rRNA 

gene amplicons while 13 of the 14 DNA extracts (exception being RS5-2012) yielded 

bacterial 16S rRNA gene amplicons. Amplicons were purified using the Promega Wizard 

PCR purification system (Madison, WI), quantified via the Qubit DNA Assay kit (Life 

Technologies, Grand Island, NY) and a Qubit 2.0 Fluorometer (Life Technologies), and 

sequenced using an Ion Personal Genome Machine (Life Technologies). 

Post-sequencing processing was performed with Mothur (ver. 1.25.1; Schloss et al., 

2009) as previously described (Hamilton et al., 2013). Raw bacterial 16S rRNA and 

eukaryal 18S rRNA gene libraries were trimmed to a maximum length of 215 and 195 

bases, respectively, and were subjected to a filtering step using the quality scores file to 

remove sequences with anomalous base calls. Unique sequences were aligned using the 

SILVA database and sequences were trimmed using a defined start and end site based on 

inclusion of 75% of the total sequences; those that started before or after these defined 

positions were removed without further consideration. The resulting unique sequences 
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were pre-clustered to remove amplification and sequencing errors and chimeras were 

identified and removed using UCHIME (Edgar et al., 2011). Operational taxonomic units 

(OTUs) were assigned at a sequence similarity of 95% (eukarya) or 97% (bacteria) using 

the furthest-neighbor method. The remaining sequences were randomly sub-sampled in 

order to normalize the total number of sequences in each library. This processing resulted 

in a total library size of 861 bacterial rRNA gene sequences and 3307 eukaryal 18S rRNA 

gene sequences per spring sampled. Sequences were classified using the Bayesian classifier 

(Wang et al., 2007) and the RDP database, with manual verification using BLASTn 

(https://blast.ncbi.nlm.nih.gov). Raw untrimmed sequence and quality score files along 

with a mapping file have been deposited in the NCBI SRA database under the accession 

number SRR2147823. 

2.2.5 Quantitative PCR 

Quantitative PCR was performed with the SsoAdvanced Universal SYBR Green 

Supermix (BioRad, Hercules, CA, USA) according to the manufacturer’s protocol, and 

assayed on a CFX Connect detection system (BioRad) using primers 1100F/1492R 

(annealing temperature of 55 °C) and A7F/570R (annealing temperature of 42 °C). 

Reactions were performed in triplicate, with 500 nM forward and reverse primer, in a final 

reaction volume of 20 μL using the following cycling conditions: initial denaturation at 98 

°C (0.5 min.), followed by 35 cycles of denaturation at 98 °C (0.5 min.), annealing and 

elongation at specified temperature (1 min.), and eventually a melt curve of 65-95 °C in 

0.5 °C steps at 5 seconds/step. Control reactions contained no template DNA. Plasmids 

containing inserts of each amplicon as prepared and reported previously (Hamilton et al., 

2013) were used as standards.   
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2.2.6 Pigment Analyses 

Samples (~1 g) preserved for analysis of pigments were thawed, transferred 

aseptically to Lysing Matrix A tubes (MP Biomedicals), and centrifuged at 21000 x g for 

5 minutes at 4 °C. After removal of the aqueous supernatant, 250 µL of 7:2 

acetone:methanol (v/v) that had been stored over 4 Å molecular sieves (Sigma-Aldrich) 

was added and the samples were subjected to ballistic bead beating (FastPrep 24; 6.5 speed, 

40 s). The samples were subsequently centrifuged and the organic supernatant was 

transferred to a microcentrifuge tube. Additional aliquots of 7:2 acetone:methanol and pure 

methanol were homogenized with the solid sample by additional rounds of bead beating 

and subsequently collected by centrifugation, whereupon the supernatants were pooled. 

This process was continued until the supernatant became clear and no obvious signs of 

methanol-soluble pigments remained in the solid sample, typically requiring ~1.5 mL of 

total solvent. The pooled supernatants were centrifuged and the top 500 µL were 

transferred to Teflon-sealed amber autosampler vials (Agilent) for analysis. To minimize 

pigment degradation, all manipulations were conducted in a cold room (4 °C) without 

direct lighting and the samples were transported on ice in a closed container. 

Pigment samples were analyzed immediately after extraction via high pressure 

liquid chromatography (HPLC) equipped with a photodiode array absorbance detector 

(Thermo Surveyor) coupled with atmospheric pressure chemical ionization mass 

spectrometry (Thermo Quantum Discovery MAX triple-quadrupole) operating in positive 

ion, single quadrupole scanning mode from 200 to 1500 m/z with a scan rate of 1 Hz. 

Parameters for mass spectrometry were based on those employed by van Breemen et al. 

(2012), specifically a corona discharge of 8 µA, vaporizer temperature of 350 °C, and 
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capillary temperature of 300 °C. Samples were injected via a 50 µL sample loop onto a 

YMC Carotenoid C-30 reverse phase column (3 x 250 mm). HPLC conditions were 

modified from those described by Sander et al. (1994). The solvent system was initially 

isocratic at 81:15:4 methanol:methyl tert-butyl ether:water for 30 minutes, followed by a 

linear gradient to 6:90:4 methanol:methyl tert-butyl ether:water at 90 minutes. The solvent 

system was then returned to initial conditions over 5 minutes and held isocratically for 15 

minutes to re-equilibrate the column for the next sample. Chromatograms were obtained at 

360, 475, and 665 nm using the diode array detector to track chlorophylls and carotenoids.  

Pigment analyte peaks were assigned tentative identifications by synergistic 

comparison of visible absorption spectra and molecular ions obtained from the mass 

spectra. These data are reconciled with respect to the retention time of the analyte peaks 

and knowledge of the elution profile for common carotenoids on the C30 stationary phase 

(Sander et al., 1994). In the case of carotenoids, the spectral fine structure, specifically the 

%III/II value and the presence or absence of a cis-peak, are particularly important for 

making identifications (Britton, 1995). In the case of cis-isomers, the relative height of the 

cis-peak is especially useful at distinguishing isomers (Muller et al., 1997). Semi-

quantitative comparison for specific pigments was performed using integrated peak areas 

from the diode array chromatograms and normalized per gram dry mass of the sample after 

extraction and total solvent volume used. These results are then further normalized per µg 

N using the elemental analysis data as a proxy for the amount of biomass present in each 

sample. Quantitative results for chlorophyll a and β-carotene were obtained using response 

factors at 665 nm and 475 nm, respectively, determined using a series of pigment solutions 
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prepared using 7:2 acetone:methanol and authentic samples of each pigment obtained 

commercially (Sigma-Aldrich).  

2.2.7 Elemental Analyses 

Samples designated for analysis of total carbon and nitrogen were processed and 

analyzed as previously described (Havig et al., 2011). Briefly, samples (~5 g) were dried 

at 80 °C for ~3 days and then uniformly powdered using an agate mortar and pestle. 

Aliquots of this homogenous powder were weighed in tin capsules for combustion analysis, 

performed on a Costech model ECS 4010 Elemental Analyzer coupled to a Thermo Delta 

Plus Advantage mass spectrometer. The CO2 and N2 obtained from sample combustion 

were separated via gas chromatography and quantified using the ion chromatograms at 44 

and 28 m/z, respectively. Calibration was based on calibration curves using NIST 2710 

(Montana soil). Results are reported as the mean and standard deviation of at least 3 

replicate analyses. 

2.2.8 Inorganic Carbon Uptake Assays 

Total DIC uptake was assessed using slight modifications to methods described 

previously (Boyd et al., 2009). Microcosms were prepared in pre-sterilized, N2-purged 24 

mL serum bottles. Ten mL of spring water was sampled directly from the spring source 

and added to each serum bottle using a syringe and needle. Mat samples were collected 

aseptically using a sterile spatula and were placed in 50 mL falcon tubes. Twenty mL of 

spring water was added to each tube and it was shaken vigorously to create a homogenized 

slurry. One mL of this slurry was added to each serum bottle. The gas phase of all 

microcosms was equalized to atmospheric pressure using a sterile needle prior to injection 

of 10.0 µCi (20 µM final concentration) of radiolabeled sodium bicarbonate (NaH14CO3). 
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Triplicate microcosms were wrapped in foil (dark) and triplicate microcosms were allowed 

access to light (light). A separate series of triplicate light and dark assays was amended 

with HgCl2 to a final concentration of 500 µM. All microcosms were placed in a sealed 

bag (secondary containment) and incubated in the source of the spring for <60 minutes. 

Microcosms were terminated by freezing on dry ice and were stored at -20 °C until 

processed (described below).   

In the laboratory, sealed microcosm assays were thawed at room temperature for 

approximately 2 hours followed by acidification to pH ~2 by injection of 1.0 mL of 1N 

HCl to volatize unreacted CO2 into headspace. After acidification, microcosms were 

allowed to equilibrate for an additional 2 hours. Acidified samples were filtered onto 0.22 

µm polycarbonate membranes, washed with 5 mL of sterile deionized water, and dried 

overnight at 80 °C. Dried filters were placed in scintillation vials and overlain with 10 ml 

of CytoScint ES™ liquid scintillation fluid. Radioactivity associated with each of the 

samples was measured on a Beckman LS 6500 liquid scintillation counter (Beckman 

Coulter, Inc., Indianapolis, IN). Rates of carbon assimilation based on the 14C tracer were 

determined using the methods of Lizotte et al. (1996). Briefly, uptake rates were calculated 

by multiplying the uptake of 14C-labeled substrate by the total effective concentration of 

the substrate (14C-labeled substrate + native substrate) using an isotopic discrimination 

factor of 1.06.  

2.3 Results and Discussion 

2.3.1 Ribosomal Gene Sequences 

Sequencing of 16S and 18S rRNA gene amplicons from the 14 samples reveals that 

11 of the samples contained OTUs associated both with cyanobacteria and with algae of 
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the order Cyanidiales within the phylum Rhodophyta (Figure 3). In these samples, 

cyanobacteria represented from <1-85% of all 16S rRNA gene sequences, nearly all of 

which were most closely associated (88-100% sequence similarity; most abundant OTUs 

99-100% sequence similarity) with Chlorogloeopsis sp. Greenland 5, an isolate from an 

alkaline, high-salinity hot spring in Greenland (Roeselers et al., 2007). Observations of 

Chlorogloeopsis morphotypes have been briefly reported for springs with pH 4-5 in other 

areas of YNP, but have not been further investigated (Castenholz, 1996). Site RS1 also 

contained an OTU associated with the genus Synechococcus, representing 15% of the 

cyanobacterial sequences (9% of all 16S rRNA gene sequences) in that sample. Nearly all 

Rhodophyta OTUs were most closely related (97-100% sequence similarity) to 

Cyanidioschyzon merolae 10D, which other studies have identified as the most common 

Cyanidiales phylotype in acidic, aquatic environments at YNP (Toplin et al., 2008; 

Skorupa et al., 2012). The relative abundance of C. merolae sequences was quite variable, 

ranging from <1% to nearly 100% of 18S rRNA gene sequences in these samples. 

Surprisingly, very few chloroplast sequences were found in the 16S rRNA gene libraries 

and only in IG2 were they associated with Cyanidiales. 

Of the remaining samples, 2 samples below a pH of 4 (IG1 and FF1) also yielded 

sequences associated with the Cyanidiales but yielded no cyanobacterial sequences. 

Several algal mats dominated by Cyanidiales in Yellowstone with pH values of ~3 have 

received considerable attention including Nymph Creek (Ferris et al., 2005; Boyd et al., 

2012) and Dragon Spring (Lehr et al., 2007; Boyd et al., 2012), thus this study extends 

sequencing observations of Cyanidiales populations higher in pH. Green algae 

(Chlorophyta) were also detected at 8 of the sites, representing <1-35% of 18S rRNA gene 
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Figure 3. Phylum-level diversity of bacterial 16S (A) and eukaryal 18S (B) rRNA gene 

sequences. Data are expressed in percent and arranged left to right by increasing pH. OTUs 

representing less than 0.1% of total OTUs were not included. Sequence data for sample 

RS5-2012 are not shown as no bacterial 16S rRNA gene amplicons were obtained and the 

only eukaryal 18S rRNA gene sequences were affiliated with Streptophyta. Though not 

visible in this depiction, cyanobacteria are present in IG2 and Rhodophyta are present in 

RS4 in low abundance.  
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sequences, rivaling Cyanidiales in abundance in some samples. One sample (RS5-2012) 

lacked OTUs associated with any known microbial phototroph. The amount of DNA 

obtained from this sample was quite low (2.5 ng/µL) and failed to yield any 16S rRNA 

gene amplicons. All 18S rRNA gene sequences associated with this sample were most 

closely affiliated with Ranunculales, an order of angiosperms, rather than microbial 

eukaryotes. 

Fungi represented a significant proportion of the 18S rRNA gene OTUs in most 

samples, with the exception of the three sites near Imperial Geyser. The diversity of the 

fungal OTUs is large, encompassing 6 of the 7 recognized phyla of fungi. Thermotolerant 

fungi are thought to be more abundant in lower pH environments, and likely represent the 

most thermotolerant eukarya, having a temperature maximum of ~60 °C (Tansey and 

Brock, 1972; Brock, 1978). Other 18S rRNA gene sequences are associated with protists, 

arthropods, and land plants; these sequences in many cases may represent exogenous 

surface input of biomass rather than indigenous members of the hot spring community. 

Fungi and protists were also observed in hot spring samples from Lassen, California, again 

with uncertainty regarding to what extent they represent autochthonous organisms (Brown 

and Wolfe, 2006). Mildly acidic hot springs at the photosynthetic fringe are excellent 

targets for further exploration and characterization of the ‘eukaryotic fringe’ and its 

constituents. 

Interestingly, two sites (RS1 and RS4) yielded 16S rRNA gene sequences most 

closely associated with Chloracidobacterium thermophilum (13% and 2% of 16S rRNA 

gene OTUs, respectively), an organism first cultivated from an alkaline hot spring and is 

the only known phototrophic member of the Acidobacteria (Bryant et al., 2007; Tank and 
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Bryant, 2015). Sequence similarity ranged from 86-99%, yet the most abundant OTU 

associated with Cab. thermophilum in both sites was 99% similar to the cultured 

representative. While most samples contained an abundance of OTUs associated with 

phyla containing anoxygenic phototrophs such as Chloroflexi, Proteobacteria, and 

Firmicutes, none of these OTUs were closely associated with cultured representatives of 

these phyla known to be phototrophic. Other abundant phyla in these samples include other 

Acidobacteria, Aquificae, and Deinococcus-Thermus. 

2.3.2 Carbon Fixation Assays 

In order to demonstrate active photosynthesis by the microbial communities 

inhabiting hot springs within this pH range, carbon fixation assays were completed at 4 of 

the study sites at the time of sampling (Figure 4) to measure rates of biological inorganic 

carbon uptake under both light and dark conditions. Statistically significant differences in 

carbon uptake rates between light and dark treatments were observed at RS1 and RS2, 

indicating light-driven carbon uptake (photoautotrophy) was occurring when these springs 

were sampled. In contrast, rates of carbon uptake were low in experiments coinciding with 

samples RS5-2012 and FF1 and the rates were not statistically different between light and 

dark treatments, signifying that light-driven carbon uptake was not occurring when these 

springs were sampled. 

2.3.3 Pigment Compositions of Biofilms 

Analysis of pigment extracts of biofilm samples was performed to complement the 

ribosomal sequence data in assessing the composition of the phototrophic communities at 

each site. Furthermore, the abundances of pigments and their degradation products can 

provide insights into the metabolic state (i.e., likely active or inactive) of specific 
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Figure 4. Rates of DIC incorporation into biomass observed under light and dark conditions 

for 4 of the study sites. The left scale applies to RS1 and RS2, while the scale on the right 

applies to RS5 and FF1. Rates were measured in July 2012. 
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phototrophic populations at the time of sampling. The major chlorophyll type in all samples 

was chlorophyll a, the only chlorophyll found in thermophilic cyanobacteria and 

Cyanidiales. Every sample also had significant quantities of compounds related to 

chlorophyll a, including chlorophyll a’ (epimer at the 132 carbon, using IUPAC 

numbering), pheophytin a and its 132 derivatives, including its epimer, allomer, and 

pyrolyzed product (pyropheophytin a), and pheophorbide a as depicted in Figure 5a. The 

presence or absence of chlorophyllide a, the magnesium-containing analogue of 

pheophorbide a, was more ambiguous, as analyte peaks with retention times and 

absorbance spectra consistent with this compound were often present, but none yielded 

mass spectra expected for chlorophyllide a. In contrast to the other sites, samples FF1 and 

RS5-2012 did not yield any intact chlorophyll a; the major chlorophyll molecules present 

were pheophorbide a and pyropheophytin a, respectively, with smaller amounts of 

pheophytin a and other derivatives. Thus, most of the chlorophyll present at these sites had 

been demetallated and further degraded and likely was not present in active cells at the 

time of sampling. 

Each of the chlorophyll a derivatives observed are likely the result of abiotic 

processes as depicted in Figure 6. Exposure to acid quickly demetallates chlorophyll a to 

yield pheophytin a (reaction 1), which can be further degraded via reactions at the esterified 

carbon (carbon 132) in the E-ring of the macrocycle. Formation of the allomer (reaction 2) 

is believed to occur through a reaction with molecular oxygen via a radical mechanism 

(Hynninen et al., 2002). Decarbomethoxylation (reaction 3) to yield pyropheophytin a 

proceeds via hydrolysis of the methyl ester followed by rapid decarboxylation of the 

resulting β-keto acid (Pennington et al., 1964; Smith, 2013). The phytyl ester was also 



   

31 
 

 

Figure 5. Relative abundances of chlorophyll a and its derivatives (A) and relative 

abundances of major carotenoids (B) in mat samples collected from hot springs in 

Yellowstone National Park, as determined from integrated peak areas in chromatograms 

obtained at 665 nm (chlorophylls) and 475 nm (carotenoids) using the diode array detector. 

As in Figure 3, samples are arranged from left to right by increasing pH. As an 

approximation, the relative abundance of pheophytin and its derivatives (i.e., all 

magnesium-free compounds) were corrected by multiplying by the ratio of molar 

absorptivities of the Qy absorption maxima for chlorophyll a to pheophytin a reported by 

Kobayashi et al. (2006) to reflect the weaker absorbance of demetallated chlorophylls. 

Similarly, the carotenoid relative abundances were corrected by multiplying by the ratio of 

the molar absorptivity for β-carotene to that of each carotenoid using the molar 

absorptivities reported by Britton (1995) using light petroleum as solvent. 
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Figure 6. Structures of chlorophyll a and its derivatives detected in samples from this study 

with putative reaction pathways. Moieties that differ from those of chlorophyll a proper 

are depicted in red.  
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observed to have been hydrolyzed (reaction 4) in some samples resulting in pheophorbide 

a. Enzymatic catabolism of chlorophyll within phototrophic cells or by heterotrophic 

grazers may contribute to the observed quantities of these chlorophyll degradation 

products, or they may also arise as artifacts during the extraction process. However, the 

products of analogous reactions at the 132 carbon of chlorophyll a (i.e., magnesium-

containing analogues of the products of reactions 2 & 3 in Figure 6) were not observed, 

strongly suggesting the observed compounds arise via abiotic processes occurring in the 

hot springs rather than by biological processes or during extraction as described above. 

Moreover, pigment analysis of a non-thermal sample (a green leaf from an oak tree, 

Quercus virginianus) did not yield chlorophyll degradation products except for small 

amounts of pheophytin a, which is known to occur in the reaction centers of photosystem 

II (Blankenship, 2014). Carrying a standard solution of chlorophyll a through the extraction 

process performed with hot spring samples yielded none of the degradation products 

discussed above, offering further evidence that they are not artifacts of the extraction 

method. Thus, it seems that senescent phototrophic cells, having lost the ability to maintain 

intracellular pH, rapidly experience acidification of the cytosol via reaction with the hot 

spring water, leading to demetallation of chlorophyll followed by several slower 

degradation pathways, the rates of which are enhanced by acid and thermal conditions. The 

observed chlorophyll degradation products are consistent with the pathways of early 

pigment diagenesis observed in other systems (Louda et al., 2011). 

The epimerization reactions for both chlorophyll a and pheophytin a, which are 

reversible reactions via an enol intermediate as depicted in Figure 6 (reactions 5 and 6, 

respectively), offer further evidence for abiotic pigment degradation. The observed ratios 
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of epimer pairs for both compounds (chlorophyll a’/chlorophyll a and pheophytin 

a’/pheophytin a) represent the reaction quotients, Q, of the epimerization reactions. These 

ratios can be compared to equilibrium constants, K, for each reaction at the hot spring 

temperature derived from the standard state free energy and reaction enthalpy data reported 

by Mazaki et al. (1992), assuming the reaction enthalpy is constant up to the hot spring 

temperatures (i.e., extrapolating the Van’t Hoff plot). The ratios of Q to K, representing 

the position of the reaction relative to chemical equilibrium, were converted to chemical 

affinities (Shock et al., 2010) according to the equation 

𝐴 =  −𝑅𝑇 ln
𝑄

𝐾
 

where R is the universal gas constant and T represents the Kelvin temperature. The 

affinities are plotted versus hot spring temperature in Figure 7 where it can be seen that at 

each sample site the epimerization reaction for chlorophyll a always has a larger affinity 

than does the reaction for pheophytin a at the same site. This indicates that the 

epimerization reaction of chlorophyll a is further from equilibrium than the corresponding 

reaction for pheophytin a. Active biosynthesis of chlorophyll a likely maintains the 

chlorophyll a’/chlorophyll a ratio far from equilibrium, though small amounts of 

chlorophyll a’ are found in P700 of photosystem I and may arise via enzymatic conversion 

of chlorophyll a (Blankenship, 2014). In contrast, pheophytin a, mostly derived abiotically 

from chlorophyll a in inactive cells, is allowed to approach equilibrium with pheophytin 

a’. Moreover, it is probable that the epimerization reaction is kinetically inhibited for 

chlorophyll a when the molecule is stably bound within proteins or membranes. The 

epimerization reaction for one sample, RS5-2012, has a negative affinity for pheophytin a, 
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Figure 7. Chemical affinity for the epimerization reaction of the 132 carbon of chlorophyll 

a (filled circles) and pheophytin a (open circles) as a function of hot spring temperature. 

The reaction is depicted above with the chirality of each epimer indicated. The horizontal 

dashed line is plotted at an affinity of zero, which corresponds to equilibrium.   
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indicating more pheophytin a’ than would be present at equilibrium and that the reaction 

should proceed toward pheophytin a. It is unclear why pheophytin would exist on this side 

of equilibrium. The high relative abundance of pyropheophytin a in this sample points to 

the possibility that pheophytin a is more susceptible to the pyrolysis reaction than its 

epimer, pheophytin a’, which could maintain the epimerization of pheophytin away from 

equilibrium. Kinetic studies could elucidate the behavior of each epimer in the observed 

degradation reactions. 

Evidence for small amounts of chlorophylls possessing a chlorophyll b 

chromophore was found in 3 of the sites (IG1, IG2, FF1), including pheophytin b. 

Chlorophyll b is found in the Chlorophyta as well as in plants, both of which also synthesize 

chlorophyll a (Blankenship, 2014). There was no evidence of intact chlorophyll b, so it is 

unlikely that these compounds were derived from active cells. While Chlorophyta 18S 

rRNA gene sequences were present in these samples, sequence abundance was very low in 

IG1 and FF1, and no pigment peaks exhibiting a chlorophyll b chromophore were found in 

samples from sites with the highest Chlorophyta abundance. Thus, the observed 

chlorophyll b derivatives do not correlate with Chlorophyta sequence abundance and the 

observed chlorophyll b derivatives may largely be derived from exogenous higher plant 

matter.  

Similarly, small amounts of bacteriochlorophyll a and its derivatives, such as 

bacteriopheophytin a, were found in 4 of the samples (RS1, RS2, RS4, FF1). Found 

exclusively in anoxygenic phototrophs to date, the presence of bacteriochlorophyll a 

chromophores suggests the presence of these bacterial phototrophs at those sites. 

Bacteriochlorophyll a was also reported for other sites in the pH range 3-6 in YNP 
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(Hamilton et al., 2012). Bacteriochlorophyll a proper was found at 2 of these sites (RS1 

and RS4), which are the two sites where Cab. thermophilum sequences were found. 

Bacteriochlorophyll a is present in the reaction centers of Cab. thermophilum and thus may 

be associated with these bacteria at these sites (Tsukatani et al., 2012). Currently, the only 

known acidophilic anoxygenic phototroph that exhibits some degree of thermotolerance is 

Rhodopila globiformis, which was isolated from a high-sulfide, warm spring near the 

Gibbon River in YNP (Pfennig, 1974; Madigan, 2003). R. globiformis expresses distinct 

carotenoid pigments (Schmidt and Liaaen-Jensen, 1973) that were not observed in this 

study, consistent with the low sulfide concentrations of the springs examined here. The 

observation of bacteriochlorophyll a chromophores at other sites (RS2 and FF1) is 

noteworthy because no 16S rRNA gene OTUs from these sites correspond to known 

phototrophic bacteria, suggesting that if anoxygenic phototrophs are present they are quite 

novel. 

In contrast to bacteriochlorophyll a, no bacteriochlorophyll c homologues were 

detected in any of the samples. Cab. thermophilum employs a variety of 

bacteriochlorophyll c structures as the major chlorosome antenna pigments (Garcia-Costas 

et al., 2012) so it is surprising that none were observed in samples where Cab. 

thermophilum sequences were found. While the similar absorbance spectra of 

bacteriochlorophyll c and chlorophyll a make identifying bacteriochlorophyll c compounds 

more ambiguous, a search of unassigned analyte peaks from sample RS1, where Cab. 

thermophilum was most abundant, did not offer any strong evidence for 

bacteriochlorophyll c homologues in the mass spectra. Given the complexity of the mixture 
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of bacteriochlorophyll c species produced by Cab. thermophilum, perhaps each individual 

homologue is below detection in these samples. 

A variety of minor peaks with chlorophyll-like spectra that had Qy maxima of 

approximately 695 nm were observed in many of the samples. These analytes are proposed 

to represent chlorophyll d chromophores. Chlorophyll d is believed to occur only in 

cyanobacteria (Blankenship, 2014) and is synthesized by cells grown under near-infrared 

light (Gan et al., 2013). Chlorophyll d differs from chlorophyll a by substitution of the 

vinyl group with a formyl group at carbon 3, which extends the Qy band into the infrared 

region (Schliep et al., 2013; Chen, 2014). Recently, C. fritschii was demonstrated to 

produce chlorophyll d under natural or near-infrared light (Airs et al., 2014). The 

observation of chlorophyll d in this study suggests that the Chlorogloeopsis sp. present in 

mildly acidic hot springs may produce red-shifted chlorophylls to exploit additional 

wavelengths for photosynthesis, particularly cells growing deeper in the mats. While 

anoxygenic phototrophs are typically believed to use infrared wavelengths, the lack of 

anoxygenic phototrophic gene sequences in many of the sites may point to cyanobacteria 

outcompeting these organisms and thus occupying this niche in these springs. 

Carotenoids are present in photosynthetic microbes as accessory light-harvesting 

pigments and for UV-protection (Blankenship, 2014). The relative abundances of major 

carotenoids in the 14 samples are shown in Figure 5b. The common carotenoids β-carotene 

and zeaxanthin (3R,3’R)-β,β-carotene-3,3’-diol) were present in all samples and are among 

the most abundant carotenoids. Both carotenoids are known to be present in cultures of C. 

merolae (Cunningham et al., 2007) and Chlorogloeopsis fritschii (Evans and Britton, 

1983), close relatives of the major phototrophs in these springs. The majority of the sites 
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exhibited a relatively constant zeaxanthin:β-carotene ratio, while 4 of the most acidic sites 

deviate from this trend with larger relative amounts of zeaxanthin (Figure 8). This deviation 

likely indicates C. merolae synthesizes zeaxanthin to a greater extent than do cyanobacteria 

and these algae are most abundant in these 4 sites.  

 The ketocarotenoid echinenone (β,β-carotene-4-one) was abundant at nearly all 

sample sites where cyanobacterial 16S rRNA gene sequences were found, with the 

exception of IG2, where cyanobacterial OTU abundances were relatively low. Echinenone 

was also absent from pigment analyses from sites without cyanobacteria, suggesting this 

carotenoid is largely derived from the Chlorogloeopsis spp. present at these sample sites 

and not from C. merolae. Smaller amounts of canthaxanthin, a carotenoid similar to 

echinenone where both rings possess 4-keto groups, were present in the same samples, 

suggesting canthaxanthin is also associated with the cyanobacteria at these sites. Indeed, 

echinenone is a major carotenoid in C. fritschii cells, with traces of canthaxanthin present 

as well (Evans and Britton, 1983). The lack of echinenone and canthaxanthin at IG2 may 

indicate that cyanobacteria were not active there when sampled. These two carotenoids, as 

well as β-carotene, are also present in cultures of Cab. thermophilum (Garcia Costas et al., 

2012) and the populations of this phototroph observed at sites RS1 and RS4 likely 

contribute to the observed abundances of these pigments. Other carotenoids synthesized by 

Cab. thermophilum include γ-carotene, lycopene, and deoxyflexixanthin (Garcia Costas et 

al., 2012), however there was insufficient spectral evidence to make confident assignments 

for these carotenoids. 

β-cryptoxanthin, a mono-hydroxylated analog of zeaxanthin and its putative 

biosynthetic precursor, was present at 2 sites (IG1 and IG2) where cyanobacteria were 
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Figure 8. Zeaxanthin versus β-carotene abundance, both expressed as µmol/g N, using data 

reported in Appendix A. Selected samples are labelled.   
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either absent or not very abundant. While β-cryptoxanthin is known to occur as a minor 

carotenoid in both C. merolae (Cunningham et al., 2007) and Chlorogloeopsis fritschii 

(Evans and Britton, 1983), its occurrence at only IG1 and IG2 leads to the hypothesis that 

β-cryptoxanthin is associated with algae in these springs, rather than cyanobacteria. As a 

corollary, the lack of β-cryptoxanthin at the other sites where C. merolae sequences were 

observed likely indicates that algae were inactive at those sites when sampled. In particular, 

β-cryptoxanthin was absent at site FF1, where the only putative phototroph was C. merolae 

yet the chlorophyll composition and lack of light-driven carbon fixation indicate that 

photosynthesis was not occurring under the conditions observed at this site. This 

observation confirms the relationship of inactive algae and a lack of β-cryptoxanthin and 

therefore supports the idea that β-cryptoxanthin may be a sensitive indicator of active C. 

merolae populations. 

In addition to the predominant all-trans-β-carotene, two mono-cis isomers of β-

carotene were observed: 9-Z- and 13-Z-β-carotene. 9-Z-β-carotene occurred in all 14 

samples, while 13-Z-β-carotene was detected in 8 of the 14 samples. While the concerted 

biosynthesis and incorporation of cis-isomers of carotenoids in photosynthetic complexes 

is known (Bialek-Bylka et al., 1995; Yan et al., 2001; Ye et al., 2008), the abundances of 

cis-carotenes observed here lead to the hypothesis that they are derived mainly from abiotic 

processes, either thermally or photochemically. Abiotic isomerization leads to only a few 

sterically unhindered isomers; in the case of β-carotene, 13-Z-β-carotene is the kinetically 

favored product, while 9-Z-β-carotene is more stable thermodynamically (Doering et al., 

1995). Nevertheless, it is unclear precisely to what extent the observed isomerization 

occurs in the hot spring environment and how much may be attributed to the extraction 



   

42 
 

process. Subjecting a β-carotene standard to the extraction process yielded peak area ratios 

of β-carotene to its isomers of 17.2 and 40.4 for the 13-Z- and 9-Z- isomers, respectively, 

whereas the observed ratios in the hot spring pigment extracts ranged from 4.5-9.5 and 1.9-

4.0 for the same isomers, respectively. These ratios indicate that the extraction process 

induces carotenoid isomerization and contributes to the observed quantities of isomers, but 

is insufficient to fully explain the observed quantities. Abiotic isomerization in situ appears 

to represent the most prolific source of carotenoid isomers, particularly in the case of the 

9-Z-isomer. Alternatively, it is also possible that phototrophic cells in hot springs 

biosynthesize 9-Z-β-carotene, which is loosely supported by its ubiquity in the samples and 

its somewhat consistent ratio with all-trans-β-carotene, in contrast to the case of 13-Z-β-

carotene. 

2.3.4 Abundances of Cyanobacteria and Algae 

In order to estimate and compare the abundances of cyanobacteria and Rhodophyte 

algae within the phototrophic communities of each spring, quantitative PCR was performed 

on samples for which sufficient DNA was obtained (Table 2). For these samples, the ratio 

of 16S to 18S rRNA gene templates was used to correct the ratio of cyanobacteria to 

Rhodophyta OTUs, as shown in Figure 9. Since the genomes of both Chlorogloeopsis 

fritschii 9212 (Dagan et al., 2013) and C. merolae 10D (Matsuzaki et al., 2004), which 

represent nearly all the cyanobacterial and Rhodophyta OTUs, respectively, each indicate 

three copies of ribosomal genes within the nucleus, no correction for nuclear copy number 

per cell was employed. Cyanobacteria were more abundant than Rhodophyta in all sites 

analyzed and Rhodophyta only approached the abundance of cyanobacteria in the two most 

acidic sites examined (IG2 and IG3). Yet, even in these sites, cyanobacteria were more 
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Table 2. Quantitative PCR results 

 Bacterial 16S rDNA Eukaryal 18S rDNA 

 copies/ng DNA uncertainty copies/ng DNA uncertainty 

IG1 932380 259017 247250 39037 

IG2 584722 64566 76 28 

IG3 419087 118978 4619 559 

RN1-2012 1208669 228422 4 1 

RS1 768018 32323 228 27 

RS2 570781 146944 5 1 

RS4 397613 62400 131 1 

RS5-2011 1410646 23954 14 1 
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Figure 9. Ratio of cyanobacteria 16S rRNA gene to Rhodophyta 18S rRNA gene 

abundance (plotted on a logarithmic scale) as a function of pH. The ratio was calculated 

using the quantitative PCR copy number results for 16S and 18S genes (Table 2) multiplied 

by the total OTU abundance for each taxonomic group (i.e., those affiliated with 

cyanobacteria and those affiliated with Rhodophyta). Sites are labeled below each point 

and the ratio at each site is indicated above each point. 
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abundant by at least an order of magnitude. Cyanobacteria in the other sites exceeded 

Rhodophyte algae by 3 to 6 orders of magnitude. These results further substantiate 

indications from the pigment and carbon uptake data that Cyanidiales algae were not 

significant contributors to primary production at most sites when these springs were 

studied. 

2.3.5 Geochemistry of Mildly Acidic Hot Springs 

Geochemical sampling and analysis were completed in order to provide a 

geochemical context for the dynamic phototrophic microbial communities described 

above. Major geochemical data are reported in Table 3. The sulfate concentrations of the 

study sites with respect to chloride concentrations appear in Figure 10, along with the 

composition of local meteoric water and compositions of other hot springs throughout 

YNP. Many of the sites are quite dilute and appear in the bottom left portion of the YNP 

data. Evaporation of approximately 80% of the local meteoric fluid (0.7 log units) could 

conceivably lead to the observed chloride compositions of many of the mildly acidic 

springs, which are among the lowest encountered in YNP hot springs, but evaporation 

cannot explain the intermediate sulfate concentrations observed. Thus, a hydrothermal 

vapor-phase component from which most of the sulfate is derived is invoked, with the 

observed chloride concentrations representing a combination of evaporation of the 

meteoric water component and minor amounts of shallow water-rock reactions. Ratios of 

chloride to fluoride are also particularly low in many of the 14 sites (Table 3), likely due 

to a vapor-phase contribution of hydrogen fluoride to these hot spring fluids. Being derived 

from meteoric water and hydrothermal vapor, these hot springs are classified as MG-type 

hot springs under the categorization of Nordstrom et al. (2009) as are many other acidic 



   

46 
 

Table 3. Major geochemical measurements and temperatures of the 14 samples in this study 

Sample pHa Temp. O2 ΣH2S SiO2 F-  Cl-  SO4
2- NO3

- NH4
+ Li+ Na+ K+ Mg2+ Ca2+ 

  oC µM µM mM µM µM µM µM µM µM µM µM µM µM 

FF1 3.28 64.4 22 1.7 2.4 45 150 1488 1.2 128 23.7 1663 442 23 61 

IG1 3.96 57.0 (31)b (0.5) (4.9) 13 10 1255 0.3 113 49.4 1944 252 8.9 21 

IG2 3.32 48.8 56 0.1 5.7 44 30 1218 0.3 4.0 27.8 1214 380 47 95 

IG3 2.91 53.6 84 5.5 2.7 291 378 5089 564 426 117 3902 1567 321 1211 

RN1-2011 4.64 57.4 50 1.6 4.3 22 15 195 3.8 21 3.0 234 131 1.8 8.2 

RN1-2012 4.96 51.6 113 0.1 3.2 27 15 197 1.5 5.1 2.8 260 135 2.1 8.4 

RN2 4.57 55.5 (113) (0.5) 4.6 18 14 276 3.1 26 1.5 325 174 3.8 13 

RN3 4.01 59.8 59 1.2 3.2 89 685 638 0.9 61 46.2 1431 288 14 35 

RS1 5.06 54.0 41 0.6 4.1 84 28 601 0.4 13 2.7 747 445 15 69 

RS2 4.30 49.3 138 5.1 4.4 76 12 533 0.8 7.0 3.9 625 321 11 59 

RS3 5.42 60.8 34 (3.7) 4.8 93 13 476 1.3 27 1.6 844 260 4.9 21 

RS4 5.54 51.0 72 1.1 4.0 101 16 275 1.7 10 1.3 603 257 7.8 31 

RS5-2011 3.82 56.8 109 0.5 3.6 74 15 470 1.1 22 1.5 479 256 8.1 35 

RS5-2012 5.12 70.3 25 2.4 4.0 66 39 379 2.8 35 1.8 562 284 18 50 
acorrected pH. bdata in parentheses were estimated from measurements at the site from other years. 
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Figure 10. Distribution of hot spring sulfate and chloride compositions in samples from 

Yellowstone National Park. The 14 samples included in this study (crosses) are plotted 

along with analyses of 302 other hot spring waters (filled circles) collected from multiple 

areas in YNP in 2011 & 2012. The composition of local meteoric water (open circle) is the 

shown as the mean concentrations of sulfate and chloride reported by the National Trend 

Network of the National Atmospheric Deposition Program for 2012 analyses of 

precipitation at Tower Falls, YNP (http://nadp.sws.uiuc.edu/data/ntn/); the evaporation 

trend for this water is plotted across the diagram as a dashed line.  
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hot springs in YNP. Yet, these sites must be considered extreme cases of this type, as the 

chloride concentrations for many of the springs are below 1 ppm (< 28 μM), sulfate is often 

below 100 ppm (< 1 mM), and they are less acidic than the majority of YNP springs in this 

category.  

 Several sample sites were appreciably higher in chloride concentration than the 

others, indicating contributions in addition to meteoric water and hydrothermal vapor. The 

study sites are all in close proximity to alkaline hot springs, suggesting the possibility that 

mixing of the deep hydrothermal fluid feeding the alkaline springs is contributing small 

amounts of chloride and other solutes to the mildly acidic springs. This deep hydrothermal 

fluid is theorized to have 310-400 ppm chloride, with subsurface processes possibly 

changing chloride concentrations before mixing (Fournier, 2005). It is likely that mixing 

occurs in the shallow subsurface where the plumbing of proximal springs are partially 

connected. For example, site FF1 is approximately 100 meters from a boiling alkaline hot 

spring, while site IG3 is only about 5 meters from the main source of Spray Geyser (pH = 

8.0, unpublished data). In contrast, mixing with fluids enriched in chloride at site RN3 is 

possibly a surface process, as this small pool is adjacent to the outflow channel of a 

circumneutral hot spring with a pH of ~6. Nevertheless, these sample sites are still more 

dilute than sulfidic, mildly acidic springs described elsewhere in YNP (Macur et al., 2013). 

The stable isotopic compositions (δ2H and δ18O) of the hot spring waters in this 

study are depicted in Figure 11. The data trend away from the local meteoric water line 

(Kharaka et al., 2002; Holloway et al., 2011) with a slope of approximately 3, typical of 

other hot springs experiencing non-equilibrium evaporation (Nordstrom et al., 2009). This 

linear trend intercepts the local meteoric water line very close to δ2H = -149 ‰ and δ18O = 
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Figure 11. The isotopic composition of hydrogen in hot spring waters (δ2H) relative to the 

isotopic composition of oxygen (δ18O) in the same waters. The 14 samples in this study are 

plotted as crosses along with data derived from USGS reports (open circles) for samples 

taken throughout YNP from 2003-2013 (Ball et al., 2008; Ball et al., 2010; McCleskey et 

al., 2014). The local meteoric water line is plotted for reference (Holloway et al., 2009) as 

is the putative composition of the meteoric recharge water for YNP as reported by Kharaka 

et al. (2002).  
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-19.9 ‰, which was indicated to be the isotopic composition of meteoric recharge to the 

geyser basins (Kharaka et al., 2002). The δ2H and δ18O values also correlate with sulfate 

concentrations (Figure 12; only δ18O shown), though no analogous correlation exists for 

chloride concentrations. One interpretation of this correlation with sulfate is that the 

isotopic composition depends most strongly on the amount of hydrothermal vapor input, 

with relatively uniform extents of surface evaporation and meteoric water isotopic 

composition. Hydrothermal vapor is predictably isotopically light, but if only a small 

fraction condenses to form hot spring waters then the resulting fluid would be isotopically 

heavy. These waters can then be diluted to varying extents with isotopically light meteoric 

water, concomitantly altering the sulfate and isotopic compositions. This correlation offers 

additional evidence for mixtures of meteoric water and hydrothermal vapor leading to 

mildly acidic hot springs waters. Site IG3 does not follow this trend, indicating a different 

mechanism is required to yield the observed sulfate concentration, which greatly exceeds 

that of the other samples (vide infra). 

2.3.6 Carbon and Nitrogen Compositions of Biofilms and Waters 

The carbon content of dried biofilm samples ranged from 0.29-9.8 weight percent, 

while nitrogen content ranged from 0.038-1.35 weight percent (Table 4). It has been 

demonstrated by analysis of acid-treated samples that the inorganic carbon contents of 

biofilms and sediments from rhyolite-hosted hot spring locations in YNP are negligible 

(Havig et al., 2011), therefore this range reflects variation in the amount of biomass 

between sample sites. Carbon-to-nitrogen ratios were also variable (5.9-12) yet were 

consistent at sample sites that were sampled in both years. 
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Figure 12. Correlation of δ18O of hot spring waters with their sulfate concentrations. Site 

IG3 is indicated with an arrow plotted at its δ18O value, but its sulfate value is off scale. 

The least-squares regression line is shown (R2 = 0.84); IG3 is not included in the regression.   
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Table 4. Carbon and nitrogen composition of biofilms and DIC speciation 

Sample Biofilm SDa Biofilm SD Biofilm DIC SD CO2 HCO3
- CO2/HCO3

- 

 wt. % C wt. % C wt. % N wt. % N C:Nb µM µM µM µM  

FF1 3.37 0.01 0.439 0.001 8.95 573 4 572 0.62 918 

IG1 3.15 0.06 0.45 0.01 8.2 537 NDc 534 2.8 189 

IG2 6.02 0.02 0.707 0.002 9.93 1833 26 1831 2.2 825 

IG3 4.97 0.06 0.859 0.005 6.74 92 3 92 0.05 2020 

RN1-2011 2.87 0.01 0.545 0.001 6.14 145d 27 142 3.4 41 

RN1-2012 6.9 0.1 1.35 0.04 5.9 73 4 69 3.5 20 

RN2 1.08 0.02 0.189 0.003 6.66 183 35 180 3.7 48 

RN3 0.66 0.01 0.106 0.001 7.3 83 5 83 0.49 169 

RS1 1.4 0.2 0.22 0.03 7.4 1125 20 1055 70 15 

RS2 1.57 0.01 0.2080 0.0008 8.80 683 22 676 7.6 89 

RS3 2.89 0.06 0.300 0.003 11.2 1000 5 869 131 7 

RS4 6.1 0.1 0.596 0.008 12 1708 2 1430 278 5 

RS5-2011 9.8 0.3 1.27 0.05 9.0 1317 17 1312 4.9 267 

RS5-2012 0.29 0.01 0.038 0.003 8.9 2058 ND 1919 139 14 

 astandard deviation. bmol:mol ratio. cnot determined; only a single analysis could be completed. dDIC data 

in italics were below the lowest calibration standard. 
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Photoautotrophs employ DIC both as a carbon source and an electron acceptor, but 

do so differently depending on speciation. All sample-site pH values were lower than the 

pKa for carbonic acid, implying that DIC concentrations (Table 4) are dominated by     

aqueous carbon dioxide, as confirmed by speciation calculations. At the highest pH values 

encountered in this study, ratios of aqueous carbon dioxide to bicarbonate approach unity, 

but at lower pH, aqueous carbon dioxide dominates by up to 3 orders of magnitude. While 

it has been suggested that aqueous carbon dioxide may be less bioavailable than 

bicarbonate, particularly for bacterial phototrophs (Hamilton et al., 2012), it seems unlikely 

that populations could sustain significant biomass using only bicarbonate at the acidic sites 

in this study. Indeed, the substrate eventually fixed by RubisCO in the Calvin cycle (i.e., 

the reductive pentose phosphate cycle) is carbon dioxide (Berg, 2011) and acidophilic 

Cyanidiales appear to rely on free membrane diffusion of carbon dioxide which undergoes 

an intracellular accumulation mechanism (Zenvirth et al., 1985). Cyanobacteria in this pH 

regime may also primarily employ aqueous carbon dioxide as an inorganic carbon source 

for photoautotrophy. Nevertheless, it is possible that the ability to more effectively utilize 

one substrate or the other may affect niche differentiation between different groups of 

microbial phototrophs in intermediate pH environments. 

 Microbial communities require a source of nitrogen to sustain growth, along with 

other nutrients. While biological fixation of elemental nitrogen is an important process in 

hot springs (Loiacono et al., 2012; Hamilton et al., 2011a; Hamilton et al., 2011b), this 

energy-intensive process is observed when concentrations of combined nitrogen are 

insufficient to support the microbial community (Zehr et al., 2003). Both ammonium and 

nitrate were detected in all samples, though ammonium exceeded nitrate in all samples 
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except IG3 (Table 3). Ammonium concentrations are generally higher in acidic springs, as 

ammonia partitions with the vapor phase during subsurface phase separation and is ionized 

to ammonium under acidic conditions and is therefore less volatile (Holloway et al., 2011). 

Ammonium is likely the most important biological nitrogen source in these hot springs. 

2.3.7 Dynamics of Mildly Acidic Hot Spring Phototrophic Communities 

As described above, hot springs with slightly acidic pH values are dilute and weakly 

buffered, which is itself a consequence of the derivation of these hot spring fluids largely 

from meteoric water, an important contributor to hydrothermal fluids in YNP (Hurwitz and 

Lowenstern, 2014). It is likely that temporal fluctuations in meteoric water availability, 

perhaps on a seasonal basis, are extensive. Such fluctuations would change the relative 

contributions of meteoric water and hydrothermal vapor to the hot spring, overwhelming 

the limited buffering capacity of the fluid and changing the pH. Moreover, as the vapor-

phase component increases, additional heat may be added to the system, especially at times 

of low meteoric water input, resulting in a higher steady-state temperature that can drive 

additional evaporation, causing lower water levels. It follows that temporal fluctuations in 

the chemical and physical characteristics of such hot springs may be reflected in the 

temporal dynamics of the composition and activity of the microbial communities they host, 

as has been observed in other hot spring systems (Macur et al., 2004; Lacup et al., 2007; 

Schubotz et al., 2013; Briggs et al., 2014; Wang et al. 2014).  

 Observations of these study sites over several years offer preliminary insights into 

the dynamics of mildly acidic hot springs. Of particular interest is site IG3, a small (~20 

cm diameter) pool near Spray Geyser. This site is presumably closely related to the “small 

pool near Spray Geyser” studied by Doemel nearly 50 years ago which had the highest pH 
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reported for an aquatic environment hosting Cyanidiales (Doemel, 1970). Modern 

observations of this site include pH measurements as high as 4.8 (unpublished data), yet at 

the time of sampling the pH was 2.91. A hailstorm occurred just prior to sampling, which 

increased the volume of the hot spring and allowed for collection of a complete 

geochemical sample set. Nevertheless, the aqueous geochemistry indicates the hot spring 

fluid differs considerably from meteoric water, with the highest concentrations of dissolved 

solutes (save for oxygen, chloride, and silica) of all samples in this study. In particular, the 

anomalously high nitrate concentration (564 μM) suggests a significant contribution from 

sediment pore water, where nitrate is likely produced by nitrifying bacteria. Given the 

shallow water depth (~2 cm), it is possible that the sediments were disturbed during 

sampling. Alternatively, it is possible that the hydrology of this hot spring is such that 

recharge of meteoric water during a rain event leads to an increased flow into the hot spring 

from the underlying sediments, much like squeezing the water from a sponge. Extensive 

evaporation due to its especially small volume likely causes the observed enrichments of 

the major solutes, which accumulate in sediment pore water. 

Two of the study sites were sampled in both 2011 and 2012. In 2011, site RS5 

yielded DNA, pigment, and carbon/nitrogen data that were comparable to the other sites in 

the area, while in 2012 the abundances of dissolved oxygen, pigments, and biofilm carbon 

and nitrogen were substantially lower. No intact chlorophyll a was observed, nor was light-

driven carbon fixation, indicating that the site was not photosynthetic in 2012. While 

carbon uptake was not assessed in 2011, the presence of chlorophyll a and other data 

suggest an active phototrophic population at this time. Most notably, the temperature 

increased from 56.8 °C in 2011 to 70.3 °C in 2012, which apparently exceeded the upper 
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temperature limit of the phototrophs observed in 2011. The water level in the spring was 

noticeably lower and the chloride concentration had more than doubled, consistent with a 

change in the extent of evaporation relative to the fluid supply into the hot spring. The 

sulfate concentration was lower in 2012 and the pH had increased, suggesting a weaker 

vapor-phase contribution to the hot spring fluid compared to 2011. A decrease in sulfate 

could also reflect an increased contribution from microbial sulfate reduction. These 

observations suggest that the heat flux and temperature of mildly acidic hot springs may 

not be simply correlated to vapor-phase input as hypothesized above. 

In contrast to site RS5, site RN1 was putatively phototrophic in both years of 

sampling and the water chemistry had not changed appreciably during the year between 

sampling events (Figure 13). The temperature had slightly increased from 51.6 °C in 2011 

to 57.4 °C in 2012, yet in spite of the temperature increase, Rhodophyta represented a larger 

fraction of the eukaryotic sequences in 2012 than in 2011. Chlorophyta were also observed 

in 2012 when the temperature was higher, but not in 2011. Nevertheless, the absence of β-

cryptoxanthin suggests Cyanidiales were not active during either sampling. The 

temperature in 2012 exceeds the known upper temperature limit for these algae, further 

substantiating that these algae were inactive. Yet, the increase in the relative abundance of 

sequences associated with Cyanidiales and the appearance of Chlorophyta suggest that 

these algae may have been active members of the phototrophic community at some point 

during the intervening period between sampling. 

2.3.8 Activity of Phototrophic Populations 

Ribosomal gene sequencing indicated the presence of DNA associated with 

phototrophs from both the Bacteria and the Eukarya in many of the mildly acidic hot 
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Figure 13. Comparison of major solutes at site RN1 for 2011 and 2012 samples. Corrected 

H+ concentrations are shown.   
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springs studied here, yet the preponderance of the other data enables some conclusions 

about the activity of these phototrophic populations. The observation of β-cryptoxanthin at 

only two sites suggests that these may be the only sites where Cyanidiales were active 

when sampling occurred. Site FF1 is particularly noteworthy in that no light-driven carbon 

fixation was observed, proving that the algae here were inactive. Furthermore, very few 

chloroplast sequences were identified in the 16S rRNA gene libraries, suggesting that algal 

chloroplasts had undergone degradation, as illustrated by the observations of chlorophyll 

degradation products. The temperatures at FF1 as well as RN1-2012, RN3, RS3, RS5-2011, 

and IG1 all exceeded 56 °C when sampled, which is the known upper temperature limit for 

Cyanidiales. Curiously, β-cryptoxanthin was observed at IG1, suggesting algae were active 

in spite of the elevated temperature. Perhaps the temperature had only recently, or briefly, 

exceeded the upper temperature limit of the algae and this biosynthetic intermediate was 

still present.  

In addition to temperature, pH and sulfide can constrain the activity of Cyanidiales 

populations. Sulfide concentrations were relatively low at each of the sample sites and 

within the documented sulfide tolerance of YNP phototrophs (Cox et al., 2011). 

Nevertheless, sulfide could at times disfavor algal populations, as Cyanidiales algae were 

found to be less tolerant of sulfide than cyanobacteria (Boyd et al., 2012). The upper pH 

limit for the alga C. merolae exists between a pH of 4 and 5 (Doemel and Brock, 1971), 

thus pH seems to favor cyanobacteria at many of the sites. The pH for samples RS1, RS3, 

RS4, and RS5-2012 all exceed 5, suggesting that the algae were inactive when these sites 

were sampled, as other lines of evidence also indicate. It was observed that Cyanidiales 

isolates are able to lower the ambient pH in culture toward their optimum pH, which was 
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hypothesized to offer advantages in certain natural settings (Lowell and Castenholz, 2013). 

Mildly acidic springs are weakly buffered, often small in size, and likely have low fluid 

fluxes, making them habitats where microbially managed pH may occur in nature. 

However, indications of inactive algae at many of the sites does not support the utility of 

this phenomenon at these sites, which if feasible would offer Cyanidiales a competitive 

advantage over cyanobacteria. 

Cyanobacteria were present at many of the sites and were likely responsible for 

phototrophic activity at these sites except those where algae were hypothesized to be active 

(IG1 and IG2). In contrast to Cyanidiales, cyanobacteria are not likely to be constrained by 

an upper pH limit at these sites and it has been suggested that the upper temperature limit 

for the Chlorogloeopsis spp. present in YNP is near 63 °C (Kallas and Castenholz, 1982; 

Castenholz, 1996), indicating temperature may also favor cyanobacteria at the geochemical 

conditions observed during sampling. Additionally, the presence of cyanobacteria below 

pH 4 at several sites further challenges the validity of this lower pH limit for cyanobacteria. 

In spite of reports of a sharp pH limit for Chlorogloeopsis spp. of 4.5 (Kallas and 

Castenholz, 1982), these cyanobacteria overwhelmingly outnumbered Cyanidiales at site 

RS5 in 2011 when the pH was 3.82. Intriguingly, cyanobacteria exceeded Cyanidiales by 

over an order of magnitude at IG2 and IG3, both of which had pH values well below 4. 

While cyanobacteria may not have been active at IG2 given the lack of echinenone and 

canthaxanthin, IG3 offers an opportunity to assess the extent to which cyanobacteria 

exhibit metabolic activity below a pH of 4. Unfortunately, the lack of phototrophy at RS5 

in 2012 prevented further study of cyanobacteria below pH 4 at this site. Future work 

targeting the activity of specific populations of phototrophs during different seasons would 
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help to address these hypotheses regarding the dynamics of phototrophic communities and 

the activities of their populations.  

In addition to cyanobacteria and Cyanidiales, other phototrophic groups 

encountered in the sequence data are Chlorophyta and Cab. thermophilum. Though 

detected in many of the samples, the upper temperature limit for Chlorophyta is likely close 

to 42 °C, which is the upper temperature limit for a thermotolerant strain of Chlorella 

(Sorokin, 1967). The most thermotolerant strain of Chlamydamonas also has a similar 

upper temperature limit (Gerloff-Elias et al., 2006). Since the ambient spring temperature 

exceeded 42 °C in each location yielding Chlorophyta sequences, Chlorophyta may have 

been inactive at the time of sampling and are instead relics of a time when conditions were 

different, possibly earlier in the year when the temperature was cooler or when the water 

level was lower and they established populations on the moist walls of the hot spring. The 

inactivity of these populations is supported by the lack of intact chlorophyll b. In contrast, 

Cab. thermophilum was identified at only two sites (RS1 and RS4) along with intact 

bacteriochlorophyll a, yet were significant constituents of those two bacterial communities. 

It is therefore hypothesized that these phototrophs were active at the time of sampling. 

Though originally isolated from an alkaline hot spring outflow, Cab. thermophilum 

sequences were also recovered from an acidic, cool location in YNP (Hamilton et al., 

2012), so these phototrophs do not appear to be limited to alkaline habitats.  

2.3.9 Evolutionary Implications of Phototrophy in Mildly Acidic Hot Springs 

The spatial coexistence of cyanobacteria and Cyanidiales instigates interesting 

evolutionary considerations. Indications in this study of inactive algae in the presence of 

putatively active cyanobacteria suggest the two lineages of phototrophs have achieved 
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some degree of niche differentiation, separating their niches temporally in response to the 

physicochemical dynamics of their hot spring habitat, possibly driven largely by seasonal 

variations. More profoundly, spatial overlap between cyanobacteria and algae makes 

mildly acidic hot spring candidates for habitats where algae may have originally evolved 

via endosymbiosis. The endosymbiotic theory for plastid evolution is now widely accepted 

and all plastids are believed to be monophyletic (Rodriguez-Ezpeleta et al., 2005). Three 

lineages of algae appear to comprise the primary symbionts that arose via endosymbiosis 

of a cyanobacterium: the Glaucophyta, Rhodophyta, and Chlorophyta (Gould et al., 2008; 

Archibald, 2009). While there are some indications that Glaucophyta are the most ancestral 

(Moreira et al., 2000; Gould et al., 2008), molecular data are equivocal on this point 

(Rodriguez-Ezpeleta et al., 2005). It is possible that C. merolae, very primitive algae that 

are descendants of the first unicellular Rhodophyta, may have evolved directly via 

endosymbiosis in a hot spring environment rather than via divergence from other algae 

such as the Glaucophyta. The phylogeny of the cyanobacterial endosymbiont is also 

somewhat ambiguous (Criscuolo and Gribaldo, 2011; Falcon et al., 2010, Ochoa de Alda 

et al., 2014). While the Chlorogloeopsis spp. observed in mildly acidic hot springs are 

filamentous (unpublished observations), this morphology could be a derived trait that 

evolved from unicellular ancestors and C. fritschii isolates are known to exhibit a variety 

of morphologies, including unicellular forms amenable to endosymbiosis (Evans et al., 

1976). One possible selective pressure that could have allowed such an endosymbiosis 

event to persist evolutionarily would have been a more stable chemical environment for 

the cyanobacterium once incorporated into the host, perhaps allowing it to withstand more 

acidic conditions. As suggested by Brock (1973; 1978), this enhanced acid tolerance would 
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have offered a significant evolutionary advantage if it enabled phototrophs to colonize 

acidic habitats that were, presumably, previously devoid of phototrophs.  

2.4 Conclusions 

Overall, the observations here illustrate a spatial overlap in the habitat range of 

cyanobacteria and algae of the order Cyanidiales, yet raise questions regarding the extent 

to which active populations overlap temporally. Collectively the data offer snapshots of 

these phototrophic communities and the geochemical conditions in which they live, both 

of which appear to be undergoing continuous and dynamic change. The ubiquity of 

Cyanidiales sequences across the conditions observed raises fundamental questions 

concerning the role these populations have in these communities, given the numerical 

dominance of cyanobacteria. Similarly, the presence of cyanobacterial sequences and 

pigments well below pH 4 suggests an underappreciated role for cyanobacteria in these 

acidic habitats. Together, these observations indicate that the concept of a sharp 

demarcation between eukaryotic and prokaryotic phototrophy with respect to pH is invalid. 
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III.  CATALYSIS OF THE CANNIZZARO REACTION BY BULK GOLD 

3.1 Introduction 

The Cannizzaro reaction (Cannizzaro, 1853) is the base-catalyzed 

disproportionation of aldehydes and is considered a classic reaction in organic chemistry 

(Ashby et al., 1987). The rate-limiting step is believed to be bimolecular hydride transfer 

from the hydrate to another aldehyde equivalent (Swain et al., 1979), though the 

mechanism has also been suggested to include a radical component. (Ashby et al., 1987; 

Chung, 1982) While the synthetic utility of this reaction has been supplanted by the advent 

of metal hydride reducing agents (Swain et al., 1979), it has received renewed interest for 

its occurrence in supercritical or superheated water in the absence of added base, which 

has been investigated with benzaldehyde (Ikushima et al., 2001; Nagai et al., 2004a; Tsao 

et al., 1992), acetaldehyde (Nagai et al., 2003; Nagai et al., 2004b; Nagai et al., 2005; 

Morooka et al., 2008), and formaldehyde (Tsujino et al., 1999; Watanabe et al., 2003; 

Morooka et al., 2005; Morooka et al., 2007; Akgul and Kruse, 2013). Here, we report that 

under hydrothermal conditions the Cannizzaro reaction of benzaldehyde, as well as 

benzaldehyde decarbonylation and the disproportionation of benzyl alcohol, are catalyzed 

by bulk gold powder. 

Gold finds use in the catalysis of CO oxidation as well as the hydrogenation and 

oxidation of organic compounds (Stephen et al., 2006), yet bulk gold is traditionally 

thought to be a poor catalyst (Haruta, 1997; Bond and Thompson, 1999; Bond et al., 2006). 

Nevertheless, bulk gold has been demonstrated to be an active catalyst in a variety of 

reactions (Angelici, 2013), including CO oxidation (Ketchie et al., 2007; Zhu and Angelici, 

2006), reactions involving isocyanides (Lazar and Angelici, 2006; Lazar et al., 2007; 
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Klobukowski et al., 2012b), carbenes (Zhou et al., 2009), and amines (Zhou et al., 2010; 

Zhu and Angelici, 2006; Zhu and Angelici, 2007; Zhu et al., 2008a; Klobukowski et al., 

2012a; Klobukowski et al., 2012b; Klobukowski et al., 2011), as well as alcohol oxidations 

(Ketchie et al., 2007; Guo et al., 2011; Klobukowski et al., 2012a). The current study 

demonstrates that in the absence of added oxidants or acid/base catalysts, bulk gold 

catalyzes disproportionations of benzaldehyde and benzyl alcohol in superheated water.  

Two commercially available gold powders were employed. Bulk powder was 

produced from the precipitation of a gold chloride solution with oxalic acid (Salt Lake 

Metals, Salt Lake City, UT, USA) with particles from ~1 to 1000 microns. A smaller 

powder with 0.5-0.8 micron particles (Alfa Aesar) was also employed, allowing 

comparison with a previous study (Ketchie et al., 2007). Experiments were performed in 

clear fused quartz tubing that was flame sealed under vacuum, analogous to previous work 

(Yang et al., 2014; Yang et al., 2015). Typical reaction conditions were 100 millilmolal 

organic concentration held at 200 °C for ~48 hours. 

3.2 Experimental Procedures 

3.2.1 Materials 

All reagents employed in this study were obtained commercially. Benzene (99.9%), 

toluene (99.9%), benzaldehyde (redistilled, 99.5%), decane (99%), benzyl alcohol 

(99.8%), benzoic acid (99.5%), diphenylmethane (99%), bibenzyl (99%), and benzyl ether 

(99%) were all obtained from Sigma-Aldrich (St. Louis, MO, USA) and used as received. 

4-methyldiphenylmethane (Matrix Scientific, Columbia, SC, USA) and 2-

methyldiphenylmethane (Synquest Laboratories, Alachua, FL, USA) were both obtained 

at 98% purity while 3-methyldiphenylmethane (97%) was obtained from AK Scientific 
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(Union City, CA, USA); all were used as received. Dichloromethane (99.9%) was obtained 

from Fisher Scientific (Pittsburg, PA, USA) and used as received. Deionized water was 

obtained from a Barnstead Diamond water purification system fed with locally produced 

reverse osmosis water to yield a final resistivity of 18.2 MΩ•cm. 

 Bulk gold powder was obtained at 99.995% purity from Salt Lake Metals (Salt Lake 

City, UT, USA). Before use, the powder was rinsed repeatedly with deionized water in a 

fine fritted filter, allowed to air dry, then rinsed with multiple aliquots of dichloromethane 

and allowed to air dry. The powder was then heated overnight at 110 °C before use. For 

reuse, the used gold was collected on the fritted filter under reduced pressure and the same 

cleaning procedure was then employed. Gold powder with 0.5-0.8 micron particle size was 

obtained from Alfa Aesar (Ward Hill, MA, USA) at 99.96% purity. Upon receipt, this 

powder was transferred to a 4 mL silanized vial with a teflon-lined cap, suspended in 

deionized water, and allowed to settle. The water was decanted and the procedure was 

repeated twice. Subsequently, 3 aliquots of methanol (spectroscopy grade) followed by 

dichloromethane were similarly used and the residual dichloromethane was evaporated 

under a gentle stream of nitrogen. The surface area of this powder was determined via 

Brunauer-Emmett-Teller (BET) adsorption of nitrogen using a Micromeritics Tristar 3020 

surface area and porosity system with ~2 g of powder. 

3.2.2 Methods 

All experiments were conducted in clear fused silica tubes (8 mm inner diameter, 

12 mm outer diameter) produced from tubing obtained commercially (GM Associates, 

Oakland, CA, USA). The tubing was cut into ~25 cm lengths, flame-sealed on one end 

using a glass blowing lathe, and annealed. Each tube was weighed empty using a foam 
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holder and then weighed again after addition of an aliquot of gold powder. Benzaldehyde 

(41.0 µL) or benzyl alcohol (41.5 µL) was added dropwise via a 50 µL syringe followed 

by the addition of water (4.00 mL) via syringe that had been purged with argon for at least 

one hour, resulting in final organic concentrations of ~100 millimolal. For ~200 millimolal 

experiments, the volume of organic loaded was doubled. The tube was degassed via 2 

freeze-pump-thaw cycles using liquid nitrogen and then frozen and flame-sealed under 

vacuum with a hydrogen-oxygen flame, resulting in a final experimental tube length of ~14 

cm. The tubes were thawed, thoroughly mixed via vortexing, and placed horizontally in 

the middle of a preheated muffle furnace (Fisher Isotemp) containing a galvanized steel 

pipe as secondary containment, as previously described (Yang et al., 2015). All 

experiments were conducted at 200 °C and the temperature was monitored using a 

thermocouple probe; the variability in temperature over the course of the experiment was 

estimated to be +/- 2 °C. To end the experiment, the tubes were quenched under tap water, 

requiring ~2 minutes to reach ambient temperature. The tubes were then frozen at -20 °C 

until analysis. 

 Dichloromethane-soluble organics were quantified by liquid-liquid extraction and 

gas chromatography-flame ionization detection (GC-FID) analysis. Experiment tubes were 

thawed, scored above the liquid level with a tubing cutter, and broken open, whereupon 

the contents were poured into a 20 mL amber vial containing ~1.4 g of sodium chloride. 

8.00 mL of dichloromethane containing 9.23 mM decane (internal standard) was then 

added to the vial, with a portion of this solution first being added to the open tube to extract 

organics adhered to the inside of the tube, then being combined with the other fluids in the 

vial. Once combined, the vial was sealed with a teflon-lined septum and shaken vigorously 
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for 45 seconds then allowed to stand for several minutes until phase separation had 

occurred. The shaking and standing procedure was repeated twice. A portion of the bottom 

dichloromethane layer was then transferred to 2 mL amber autosampler vials via a Pasteur 

pipet and sealed with a teflon-lined septum. Samples were then analyzed by GC-FID on 

either a Varian CP-3800 or Bruker Scion 456 gas chromatograph, both of which were 

equipped with a Varian CP-8400 autosampler. Injection volumes were 1 µL and all data 

are based on the means of at least 3 injections. The injector (CP-1177) was isothermal at 

275 °C and operated at a split ratio of 15. The carrier gas was helium held constant at 1.5 

mL/minute through a capillary column (Supelco 5% phenyl, 95% polydimethylsiloxane, 

30 m x 0.25 mm, 0.25 µm film thickness). The column oven was initially 40 °C, but upon 

injection was increased to 140 °C over 10 minutes, then raised to 300 °C over 32 minutes, 

after which it was held at 300 °C for 8 minutes. The flame ionization detector temperature 

was held isothermally at 300 °C. 

 Integrated peak area ratios of each analyte relative to that of the decane internal 

standard were expressed in millimolarity units (as dichloromethane solutions) using 

response factors obtained from calibration curves, which were constructed with at least 4 

solutions of known quantities of each analyte and 9.23 mM decane. The response factor of 

4-methyldiphenylmethane, determined as described above, was used for all 3 isomers of 

methyldiphenylmethane. The concentrations of each analyte were then converted to yields 

of each compound in each experiment. Mass balance was determined via comparison of 

the equivalents of aromatic rings added to each experiment to the number of equivalents 

quantified upon analysis, thereby assuming aromatic rings are inert under the experimental 

conditions. 
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 SEM images of the gold powders were obtained using a FEI XL30 Environmental 

SEM-FEG to observe surface morphology and particle sizes. The uncoated powders were 

mounted on 12.7 mm round aluminum pin stubs (Ted Pella, Redding, CA, USA) and 

adhered to the surface of the mounts by carbon tape. Images were collected in secondary 

electron mode at 15.00 to 20.00 kV with spot sizes 3.0 to 4.0.  

3.3 Results and Discussion 

The conversion of benzaldehyde is enhanced by the presence of gold powder 

(Figure 14) and appears linearly correlated with the amount of gold powder at lower gold 

loadings. This linear dependence indicates gold is acting as a catalyst under kinetically 

controlled conditions, which are expected due to the large amount of benzaldehyde relative 

to the surface area of gold. At higher gold loadings, the linear trend is discontinued, and 

net conversion of benzaldehyde develops a negative correlation with the amount of gold 

powder. 

The major products in each experiment were benzyl alcohol and benzoic acid (Table 

5), which are hypothesized to result from the Cannizzaro reaction (Figure 15, Reaction 1). 

However, the ratios of acid to alcohol exceeded unity, particularly at higher gold loadings 

(Figure 16a). Other products observed include benzene and toluene (Figure 17). Benzene 

is believed to arise from decarbonylation of the aldehyde (Figure 15, Reaction 2). 

Decarboxylation of benzoic acid could also contribute to the production of benzene, but 

this reaction is only weakly gold catalyzed (Bell et al., 1994) and its rate is negligible even 

under more extreme reaction conditions than those studied here (Katritzky et al., 1990a). 

Unlike benzene, toluene exhibited an induction effect at lower gold loadings (and hence, 
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Figure 14. Conversion of benzaldehyde (circles) and benzyl alcohol (triangles) as a 

function of the mass of gold powder present. All experiments were conducted at 200 °C 

for a constant time of 2902 minutes. Open symbols indicate the 0.5-0.8 micron powder 

while filled symbols indicate the bulk powder. 
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Figure 15. Reactions catalyzed by bulk gold in the benzaldehyde-benzyl alcohol system 

under hydrothermal conditions. 
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Figure 16. A) The ratio of benzoic acid to benzyl alcohol yield relative to the amount of 

bulk (filled circles) or 0.5-0.8 micron (open circles) gold powder present. B) The same 

ratios corrected to account for cross-disproportionation of the alcohol and uncatalyzed 

reactions.  
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Figure 17. Yields of benzene (black circles) and toluene (red circles) in experiments starting 

with benzaldehyde in the presence of bulk (filled circles) or 0.5-0.8 micron (open circles) 

gold powder.  
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lower conversions) indicating it is not a primary product of benzaldehyde. Therefore, 

toluene is proposed to be a product of benzyl alcohol.  

The observed acid to alcohol ratios could be consistent with the Cannizzaro reaction 

if benzyl alcohol were being depleted via secondary reactions. At low yields of benzyl 

alcohol, the most likely source of toluene is a cross-disproportionation reaction (Figure 15, 

Reaction 3) which in solution likely occurs via a hemiacetal intermediate (Tsao et al., 

1992). To assess this hypothesis, the yield of toluene plus the yield of alcohol were 

compared with the yield of benzoic acid accounted for by the Cannizzaro reaction. In the 

absence of gold, benzaldehyde yielded small amounts of both benzyl alcohol and benzoic 

acid (Figure 18). The yield of benzyl alcohol increased by roughly a factor of 4 for a 

doubling of benzaldehyde concentration, suggesting it is produced via a second-order 

reaction, consistent with the Cannizzaro disproportionation. However, the yield of benzoic 

acid greatly exceeded that of the alcohol and more closely doubled for a doubling of 

concentration. These observations suggest most of the benzoic acid produced in the 

absence of gold arises by a first-order oxidative process, with either residual oxygen or 

water as oxidant, with minor amounts (equivalent to the corresponding yield of benzyl 

alcohol) arising via disproportionation, causing the concentration dependence of the 

benzoic acid yield to exceed a ratio of 2. Thus, the yield of benzoic acid in each experiment 

containing gold was corrected by subtracting this minor amount of benzoic acid derived 

independently of disproportionation. Furthermore, the yield of toluene in experiments with 

gold was subtracted from this corrected amount of benzoic acid, since the yield of toluene 

is stoichiometrically equal to the yield of benzoic acid attributed to the cross-

disproportionation. After correction, the ratios of benzoic acid to benzyl alcohol in 
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Figure 18. Yields of benzyl alcohol and benzoic acid in experiments without gold for 100 

and 200 millimolal initial benzaldehyde concentrations. 
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experiments with gold are approximately 1 (Figure 16b) and confirm that gold is catalyzing 

the Cannizzaro reaction. 

Cross-disproportionation accounts for the unequal yields of benzyl alcohol and 

benzoic acid and could account for deviations from linear behavior at higher loadings of 

gold, since more benzaldehyde would be consumed via cross-disproportionation at the 

expense of the Cannizzaro reaction. However, cross-disproportionation is unable to 

account for the apparent decrease in conversion at the highest gold loadings. Experiments 

were performed starting with benzyl alcohol to further explore its behavior under the 

experimental conditions. The alcohol was even more reactive in the presence of gold 

powder than was benzaldehyde (Figure 14). Toluene and benzaldehyde were the major 

products; other products included benzoic acid, benzene, benzyl ether, 

methyldiphenylmethanes (i.e., benzyltoluenes), diphenylmethane, and bibenzyl (Figure 

19). Yields of all compounds are shown in Table 6. Benzene and benzoic acid putatively 

arise from benzaldehyde and exhibit increased yields with increasing gold. In contrast, the 

other products are likely derived via the alcohol and their production decreases with 

increasing amounts of gold, save for bibenzyl. This decrease, along with their very low 

yields, suggests that these products arise from reactions in the aqueous phase that are not 

gold-catalyzed, as higher gold loadings increase the amount of alcohol that reacts via a 

surface-catalyzed mechanism and decrease the rate of these uncatalyzed pathways. Benzyl 

ether arises from condensation of two equivalents of benzyl alcohol, while benzyl alcohol 

can also dehydrate to yield the stable benzyl cation, which can perform electrophilic 

aromatic substitution upon benzene or toluene to yield diphenylmethane and 

methyldiphenylmethanes, respectively. The yield of each methyldiphenylmethane isomer 
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Figure 19. Yields of minor products in experiments starting with benzyl alcohol and 0.5-

0.8 micron gold. Uncertainties are the standard deviation of duplicate experiments, which 

were completed only with no gold and 0.2 grams of gold. Abbreviations: MeDPM, 

methyldiphenylmethane; DPM, diphenylmethane.  
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(Figure 20) is consistent with ortho/para direction expected for a methyl substituent, with 

the yield of the ortho-isomer being slightly inferior to that of the para-isomer most likely 

due to steric effects. Bibenzyl, most likely, is formed either through a gold-catalyzed 

reaction of benzyl alcohol or from toluene, more of which is available at higher gold 

loadings.  

The production of benzaldehyde and toluene suggests the disproportionation of 

benzyl alcohol, which has been observed on nanoparticulate gold powder on silica, titania, 

and other supports (Meenakshisundaram et al., 2010; Fang et al., 2011; Chen et al., 2014) 

(Figure 15, Reaction 4). Analogous to the experiments starting with benzaldehyde, the ratio 

of benzaldehyde to toluene deviated from unity due to the reactivity of benzaldehyde in the 

presence of gold. Assuming that cross-disproportionation is the dominant mechanism for 

consuming benzaldehyde at low gold loadings, the total benzaldehyde (benzaldehyde + 

benzoic acid + benzene + diphenylmethane) was compared to the toluene derived from 

benzyl alcohol disproportionation (toluene + methyldiphenylmethanes – benzoic acid). 

Benzaldehyde was further corrected by subtracting the amount of benzaldehyde observed 

in the absence of gold, since due to the absence of toluene, this seems to be produced by 

oxidation of benzyl alcohol, again analogous to the situation when beginning with 

benzaldehyde. The ratios of corrected benzaldehyde to corrected toluene are closer to unity 

than the uncorrected ratios, except for the experiment with the lowest amount of gold 

(Figure 21).  

 Disproportionation of benzyl alcohol provides a mechanism for the reformation of 

benzaldehyde, which causes the decrease in net conversion of benzaldehyde at the highest 

gold loadings (Figure 14). Thus, in reactions commencing with benzaldehyde, as gold is
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Figure 20. Yields of each isomer of methyldiphenylmethane as a function of the amount of 

0.5-0.8 micron gold powder present. 
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Figure 21. A) Ratios of benzaldehyde to toluene in experiments starting with benzyl alcohol 

relative to the amount of 0.5-0.8 micron gold powder present. B) The same ratios corrected 

for consumption of benzaldehyde and toluene by secondary reactions and by subtracting 

the small amount of benzaldehyde derived in the absence of gold.  
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increased the system transitions from cross-disproportionation to alcohol 

disproportionation as the dominant secondary reaction. With respect to the ratio of acid to 

alcohol, either reaction serves to correct the observed ratios to those commensurate with 

the Cannizzaro reaction (Figure 22) but it is not possible to directly quantify the 

contribution of each reaction. The total yields of the Cannizzaro reaction (benzyl alcohol 

+ benzoic acid) for the bulk powder experiments for corrections assuming each type of 

secondary reaction are shown in Figure 23. The two corrections are indistinguishable at 

low gold loadings, but deviate at higher loadings where the yield of toluene becomes 

significant. The transition seems to occur around 0.5 grams of gold, resulting in an overall 

trend where, at the highest gold loadings, additional gold becomes less and less effective 

at increasing the rate of the Cannizzaro reaction. This deviation from linear behavior, still 

present after correction for secondary reactions, may be explained by competitive 

inhibition of benzaldehyde on the gold surface. At the highest gold loadings, net conversion 

is near 50% and other compounds likely compete with benzaldehyde for interaction with 

the active loci of the gold.  

Though the surface area of the bulk powder was insufficient for its measurement, 

the surface area of the 0.5-0.8 micron gold was determined via Brunauer-Emmett-Teller 

adsorption of nitrogen to be 0.73 m2/g, which agrees well with the 0.75 m2/g reported for 

this powder by Ketchie and colleagues (Ketchie et al., 2007). The total surface area in each 

experiment with this powder was thereby calculated and converted to the number of surface 

gold atoms using 0.0875 nm2 as an estimate of the surface area of a gold atom (Ketchie et 

al., 2007; Ertl et al., 2008). Turnover per experiment (2902 minutes) was then calculated 

by linear regression of the equivalents of benzaldehyde or benzyl alcohol converted versus   



   

84 
 

 
Figure 22. A) Ratio of benzoic acid to benzyl alcohol observed in experiments starting with 

benzaldehyde relative to the amount of bulk (filled circles) or 0.5-0.8 micron (open circles) 

gold powder present. B) The same ratios corrected by assuming benzyl alcohol 

disproportionation is the source of toluene (i.e., total alcohol = benzyl alcohol + 2 * 

toluene) and also corrected for the small amount of benzoic acid putatively obtained via 

oxidation.  
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Figure 23. Total yield of the Cannizzaro reaction (benzoic acid + benzyl alcohol) in 

experiments with bulk gold powder corrected to account for cross disproportionation 

(circles) and alcohol disproportionation (crosses) reactions.  
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the number of surface gold atoms (Figure 24), resulting in turnover frequencies (TOFs) of 

0.00013 s-1 and 0.0011 s-1 for benzaldehyde and benzyl alcohol, respectively. Only the 

lowest gold loading was used for benzyl alcohol as these data have the smallest 

contribution from other reactions; benzaldehyde exhibits a more linear trend and only the 

highest gold loading was omitted. The TOF for benzyl alcohol is about 3 orders of 

magnitude lower than for aqueous glycerol oxidation using the same powder (Ketchie et 

al., 2007) or for benzyl alcohol oxidation using supported nano powders in organic solvent 

(Chen et al., 2014). Benzyl alcohol oxidation in the absence of O2 is still over an order of 

magnitude faster on supported gold than the TOF observed in this study (Chen et al., 2014). 

While gold-catalyzed benzaldehyde and benzyl alcohol disproportionation may be 

inherently slower than oxidations, the low observed TOFs are probably best attributed to 

coagulation of the 0.5-0.8 micron powder. SEM images of this powder prior to use showed 

some particles smaller than 0.5 microns, though there was no strong evidence for particles 

in excess of ~1 micron (Figure 25a). Prior to each experiment, the vessels were vortexed 

to create a suspension, but at the end of the experiment the gold existed as a cohesive sheet. 

This coagulated gold could be broken up during the extraction process, but SEM images 

of this used powder showed particles greatly in excess of 0.8 microns (Figure 25b). It 

appears that the original particles had fused; indeed, this used powder was reminiscent of 

the bulk powder (Appendix B). No such effect was noted when this gold was employed at 

60 °C in the presence of water (Ketchie et al., 2007) so it is likely a consequence, at least 

in part, of the higher temperature used in this study. As such, coagulation would decrease 

the surface area available for catalysis and the measured surface areas would only be 

available during the earliest stages of the experiment.   
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Figure 24. Total benzaldehyde (circles) or benzyl alcohol (triangles) consumed versus the 

number of surface gold atoms. Regression leads to turnover frequencies calculated using 

the total reaction time (2902 minutes).  
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Figure 25. A) 0.5-0.8 micron powder after processing but prior to use in an experiment. B) 

0.5-0.8 micron powder recovered from an experiment with benzaldehyde (200 °C, 2902 

minutes).  
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To evaluate this hypothesis, several experiments were conducted with 

benzaldehyde for half the normal time (1451 minutes). Most of these experiments exhibited 

conversions on par with those observed for the normal time (2902 minutes) at the same 

gold loading, indicating that nearly all the conversion occurs in the first half of the 

experiment, likely even in the first hours of the experiment before gold coagulation has 

become significant (Figure 26). The conversion of one such half-time experiment greatly 

exceeded that of other experiments, even those conducted for the usual 2902 minutes. The 

origin of this anomalous result is unknown, as the gold in this experiment macroscopically 

appeared coagulated like the others. Presumably due to its larger particle size and 

heterogeneity, the bulk powder did not coagulate and no obvious differences were observed 

in SEM images of used and unused bulk powders (Appendix B). Indeed, the bulk powder 

was recovered, washed, and reused for some experiments, though reuse of this gold more 

than once exhibited a noticeable yet irreproducible decrease in catalytic ability (results not 

shown). The reasons for this loss of catalytic performance is unclear, though 

disproportionate loss of the smallest particles from the bulk gold powder would decrease 

its specific surface area, leading to decreased conversions for a given mass of gold. 

Alternatively, it has been suggested benzoic acid is capable of poisoning gold-based 

catalysts (Abad et al., 2008; Klitgaard et al., 2008; Skupien et al., 2014). 

A slight enhancement in the yields of benzyl alcohol and benzoic acid was observed 

upon a doubling of the starting concentration of benzaldehyde, which indicates a role for 

aqueous species in the rate-determining step (Figure 27). However, no apparent 

concentration dependence exists for toluene. This lack of concentration dependence may 

indicate the rate-determining step leading to toluene formation solely involves surface- 
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Figure 26. Conversion of benzaldehyde in experiments with 0.5-0.8 micron gold powder 

for full-time (2902 minutes) and half-time (1451 minutes) experiments.  
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Figure 27. Yields of major products in experiments with approximately 200 mg of 0.5-0.8 

micron gold for 100 and 200 millimolal starting benzaldehyde concentrations. Results are 

the mean and standard deviation of replicate experiments.  
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bound species. Alternatively, the increased yield of benzyl alcohol at the higher 

benzaldehyde concentration, which would be expected to lead to increased toluene 

production, may be offset by benzyl alcohol interacting less with the gold surface due to 

competition with benzaldehyde. In contrast to toluene, benzene exhibited a concentration 

dependence similar to benzyl alcohol and benzoic acid, again suggesting its rate-

determining step involves an aqueous species. In solution, decarbonylation proceeds via 

protonation of the ipso-carbon (Schubert and Zahler, 1954), but its mechanism in the 

presence of gold is unclear.  

Observations of disproportionations of both benzaldehyde and benzyl alcohol 

suggest gold is capable of catalyzing hydride transfer, which is putatively the rate-

determining step for both reactions. Indeed, substituent effects for gold-catalyzed benzyl 

alcohol oxidation indicate a positively charged transition state at the α-carbon (Abad et al., 

2008; Fristrup et al., 2008; Chen et al., 2014) and abstraction of a hydrogen from this 

carbon has been invoked as rate-determining (Abad et al., 2008; Conte et al., 2009; Shang 

and Liu, 2011; Shylesh et al., 2015).  Direct evidence for bonding of hydrogen to gold was 

obtained via spin-trapping with electroparamagnetic resonance spectroscopy (Conte et al., 

2009) and calculations show this is feasible on pure gold (Shang and Liu, 2011). Under 

oxic conditions, molecular oxygen serves to regenerate the active gold surface by oxidizing 

gold-bound hydride (Abad et al., 2008; Conte et al., 2009; Shang and Liu, 2011) and also 

participates in the regeneration of gold-affiliated hydroxide when base is present (Zope et 

al., 2010; Shang and Liu, 2011), which facilitates formation of alkoxide intermediates (Zhu 

et al., 2008b; Shang and Liu, 2011; Ferraz et al., 2016). Oxidation of benzyl alcohol via 

dehydrogenation in the absence of oxygen has also been studied on gold catalysts with 
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basic supports, such as hydrotalcite (Mitsudome et al., 2009; Fang et al., 2010; Fang et al., 

2011; Chen et al., 2014; Shylesh et al., 2015). In the absence of oxygen or base, 

disproportionation becomes the favored mechanism for gold-bound hydride. In the current 

system, the hydrate of benzaldehyde (i.e., the geminal diol) may also serve as a hydride 

donor, as hydrates have been suggested to interact with gold in a manner similar to other 

alcohols (Zope et al., 2010; Shang and Liu, 2011). Gold is apparently a better hydride 

acceptor than benzaldehyde, thus increasing the rate of the rate-determining step compared 

to the reaction in the absence of gold. Nevertheless, infrared spectral data suggest that 

benzyl alcohol initially interacts with gold without covalent bonding during 

disproportionation, at least to some extent (Nowicka et al., 2013). An additional carbonyl 

band was present at an especially low wavenumber (1655 cm-1) indicative of donation of 

electron density to gold, though its origin is uncertain (Nowicka et al., 2013). Thus, an 

aspect of the surface-catalyzed mechanism may be simply that the rate enhancement is 

derived from the locally higher concentrations of hydride donors and acceptors on the gold 

surface relative to those in solution, regardless of how these molecules bond or interact 

with the surface. 

3.4 Conclusions 

Catalysis of the Cannizzaro disproportionation reaction, as well as the 

disproportionation of benzyl alcohol and decarbonylation of benzaldehyde by bulk gold 

powder, offers novel insights into the catalytic abilities of gold. Catalysis occurs in the 

absence of acids, bases, or any other reagents. The low measured turnover frequencies 

could be substantially improved by use of gold with an inert support to prevent coagulation, 

which would also offer a substantial improvement in atom economy relative to bulk gold. 
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Appreciable rates are likely attainable at lower temperatures than those employed in this 

study, which also may mitigate coagulation. Nonetheless, within the realm of hydrothermal 

experiments that are traditionally performed in gold vessels for their perceived inertness, 

the reactivities of organic compounds in water alone presently observed at modest 

temperature and time may give pause to researchers seeking to mitigate container effects.  
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IV. KINETICS AND CHEMISTRY OF ALDEHYDES UNDER HYDROTHERMAL 

CONDITIONS 

4.1 Introduction 

In sedimentary basins, organic carbon represents as much as 25% of the carbon 

present, which collectively is roughly 4 orders of magnitude more organic carbon than is 

present in the biosphere (Falkowski et al., 2000). There exists great interest in 

understanding the reaction pathways that lead to the complex mixture of organic 

compounds present in such systems, yet the mechanisms of these reactions remain poorly 

characterized. Spurred by evidence for metastable equilibrium states amongst certain 

organic compounds in natural systems (Helgeson et al., 1993; Shock et al., 2013), 

metastability was experimentally demonstrated between ethane and ethene (Seewald, 

1994). Additional experiments demonstrated alkanes could lead to the production of 

carboxylic acids (Seewald, 2001), which are among the most abundant organic compounds 

in natural systems (Willey et al., 1975; Carothers and Kharaka, 1978; Lang et al., 2010). 

 A key intermediate in the proposed transformation of alkanes to carboxylic acids is 

the ketone, which was proposed to undergo C-C cleavage reactions adjacent to the carbonyl 

to yield two carboxylic acids (Seewald, 2001). However, experiments with dibenzylketone 

conducted in water only failed to yield any carboxylic acids (Yang et al., 2012), suggesting 

that the C-C bond breaking step indicated by Seewald (2001) is mineral catalyzed by the 

mineral buffers present in those experiments, or that the carboxylic acids arose via some 

unknown pathway. Ketones are invoked because they result from the dehydrogenation of 

secondary alcohols, the production of which is favored via Markovnikov hydration of 

alkenes due to the higher stability of the secondary carbocation intermediates involved. 
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Nevertheless, evidence from a different experimental system demonstrated that all possible 

(i.e., both Markovnikov and anti-Markovnikov) alcohols were detectable from a starting 

alkane or alkene (Shipp et al., 2013). These observations suggest that aldehydes, arising 

from primary alcohols, could also be produced from alkanes and alkenes under 

hydrothermal conditions. 

 Aldehydes are important constituents in hydrothermal settings (Schulte and Shock, 

1993). They have been identified in diverse samples, ranging from volcanic gases (Tassi 

et al., 2015) to meteorites (Monroe and Pizzarello, 2011; Elsila et al., 2012). In the context 

of meteorites, aldehydes are commonly invoked as intermediates in the abiotic synthesis 

of amino acids via a Strecker mechanism (Schulte and Shock, 1993; Monroe and 

Pizzarello, 2011). Under hydrothermal conditions, aldehydes are thought to undergo 

disproportionation, a bimolecular reaction where two aldehyde molecules yield the 

corresponding alcohol and carboxylic acid, as has been investigated with the common 

aldehydes formaldehyde (Tsujino et al., 1999; Watanabe et al., 2003; Morooka et al., 2005; 

Morooka et al., 2007; Akgul and Kruse, 2013) and acetaldehyde (Nagai et al., 2003; Nagai 

et al., 2004b; Nagai et al., 2005; Morooka et al., 2008).  

 The mechanism for the disproportion reaction, which is reminiscent of the classic 

base-catalyzed Cannizzaro reaction of benzaldehyde (Cannizzaro, 1853), involves 

hydration of the aldehyde followed by rate-determining hydride transfer from the hydrate 

to another aldehyde, as shown in Figure 28 (Swain et al., 1979). The mechanism dictates 

equal yields of carboxylic acid and alcohol and their derived products. Experimental 

evidence for the reaction under hydrothermal conditions is somewhat inconsistent. 

Katritzky and co-workers (1990a) reacted benzaldehyde at 250 °C in water for 5 days, yet  
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Figure 28. Traditional mechanism of the Cannizzaro reaction under basic conditions.  
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observed far more benzoic acid than benzyl alcohol. Tsao and others (1992) similarly 

observed an acid:alcohol ratio greater than unity under supercritical conditions and claimed 

that cross-disproportionation of benzaldehyde with benzyl alcohol led to toluene and 

consumption of some of the alcohol produced. In contrast, Funazukuri and colleagues 

(1997) studied benzaldehyde in supercritical water yet did not detect benzoic acid at all, 

while Nagai et al. (2004a) observed more benzyl alcohol than benzoic acid. In that study, 

the presence of formic acid was invoked to react with benzaldehyde to yield benzyl alcohol 

in addition to that derived from the Cannizzaro reaction (Nagai et al., 2004a). Ikushima 

and others (2001) studied the kinetics of the reaction under supercritical conditions in situ 

via spectroscopic observation of benzyl alcohol, but did not quantify benzoic acid. Here, 

the hydrothermal chemistry of benzaldehyde was experimentally investigated from 250 °C 

to 350 °C with the goal of carefully identifying and quantifying both primary and secondary 

products of benzaldehyde to elucidate reaction pathways that lead to unequal yields of 

benzyl alcohol and benzoic acid.  The role of pH was also investigated to explore the 

mechanism of benzaldehyde disproportionation under hydrothermal conditions and to offer 

additional evidence for the proposed reaction scheme as well as its effect on the kinetics. 

4.2 Materials and Methods 

4.2.1 Materials 

Anthracene (99+%), benzaldehyde (redistilled, 99.5%), benzene (99.9%), benzoic 

acid (99.5%), benzophenone (99%), benzyl alcohol (99.8%), benzyl benzoate (99%), 

benzyl ether (99%), bibenzyl (99%), biphenyl (99.5%), decane (99%), 1,4-

dibenzylbenzene, 9,10-dihydroanthracene (97%), diphenylmethane (99%), 

diphenylmethanol (99%), fluorene (98%), 9-fluorenone (98%), phenylacetic acid (99%), 
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phenylacetophenone (97%), 2-phenylbenzaldehyde (96%), 3-phenylbenzaldehyde (96%), 

4-phenylbenzaldehyde (99%), cis-stilbene (96%), trans-stilbene (96%), and toluene 

(99.9%) were all obtained from Sigma-Aldrich (St. Louis, MO, USA) and used as received. 

2-benzylbenzaldehyde and 3-benzylbenzaldehyde were obtained at 95% purity from 

Aldlab Chemicals (Woburn, MA, USA) and used as received, while 4-benzylbenzaldehyde 

(97%) as well as 4-benzylbiphenyl (98+%) were obtained from Alfa Aesar (Ward Hill, 

MA, USA) and used as received. 2-methyldiphenylmethane (Synquest Laboratories, 

Alachua, FL, USA) and 4-methyldiphenylmethane (Matrix Scientific, Columbia, SC, 

USA) were each obtained at 98% purity, while 3-methyldiphenylmethane (AKScientific, 

Union City, CA, USA) was obtained at 97% purity; all were used as received. 2-

benzylbenzyl alcohol and 3-benzylbenzyl alcohol (95%) were obtained from Aldlab 

Chemicals, whereas 4-benzylbenzyl alcohol (98%) was obtained from Glycopep 

Chemicals (Chicago, IL, USA). Dichloromethane (99.9%) was obtained from Fisher 

Scientific (Pittsburg, PA, USA) and used as received. Deionized water was obtained from 

a Barnstead Diamond water purification system fed with locally produced reverse osmosis 

water to yield a final resistivity of 18.2 MΩ•cm. 

4.2.2 Experimental Procedures 

 All experiments were conducted in autoclaves prepared from clear fused silica 

tubing, synthesized using natural quartz and obtained commercially (GM Associates, 

Oakland, CA, USA or Technical Glass Products, Painesville, OH, USA). Most experiments 

were conducted in tubing with a 6 mm inner diameter and 12 mm outer diameter; the tubing 

was cut into ~25 cm lengths and one end was sealed using a glass-blowing lathe, after 

which the tubes were annealed. Organic reagents that are liquids were then added into the 
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bottom of the tube dropwise via syringe; in the case of benzoic acid, aliquots of benzoic 

acid were individually weighed and then added to the tubes. Most experiments with 

benzaldehyde had 26.0 µL added resulting in final concentrations of ~0.1 molal; half this 

volume was added for ~0.05 molal experiments. Immediately after the addition of organics, 

2.50 mL of deionized water that had been degassed via argon bubbling for at least 1 hour 

was added via syringe. The tube was then attached to a vacuum line equipped with a liquid 

nitrogen trap and subjected to 2 freeze-pump-thaw cycles for degassing via submersion in 

liquid nitrogen. The tube was then flame sealed with a hydrogen-oxygen torch to a final 

length of 14 cm for experiments at 250 °C and 300 °C, while a longer length (16 cm) was 

necessary at 350 °C to allow for the expansion of the solution. The estimated variability in 

the final length is ± 5 mm. The tubes were then maintained at -20 °C until use. Tubes for 

~0.2 molal experiments were prepared similarly except that tubing with an inner diameter 

of 2 mm and an outer diameter of 6 mm was used. Benzaldehyde (6.0 µL) was added via a 

10 µL syringe into the pointed end of a stainless steel luer needle (20 gauge, 10” length) 

and then flushed into the tube with 300 µL of deionized water that had been argon degassed 

for at least 1 hour via a 500 µL luer-tip syringe. The freeze-pump-thaw technique was not 

employed with this size tubing due to strong cohesion of the fluid in the narrow tubes, 

which leads to loss of fluid during degassing.  

 Tubes were thawed and placed in a preheated muffle furnace (Fisher Isotemp) set 

to yield the desired temperature as monitored via thermocouple probes in the center of the 

furnace. For experiments at 250 °C, galvanized iron pipes (~2 cm inner diameter, ~21 cm 

length) were preheated in the center of the furnace and the tubes were placed horizontally 

in the pipes for the duration of the experiment as secondary containment, as previously 
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described (Yang et al., 2015). Experiments conducted at higher temperatures (save for the 

NMR experiment, vide infra) required external pressure to prevent tube failure. For 

experiments with 6 mm by 12 mm tubes, vessels were constructed from Swagelok tubing 

(3/4” outer diameter, 10” length) and capped with Swagelok fittings. Water (10 mL) was 

added to the vessels along with the experimental tube such that the pressure inside the 

vessel and inside the experimental tube would both be approximately equal to the saturation 

vapor pressure for water at the experimental temperature. For experiments with 2 mm by 

6 mm tubes (i.e., ~0.2 molal experiments), vessels constructed with 1/2” outer diameter 

Swagelok stainless steel tubing were used and the amount of water added as a source of 

external pressure was 3.5 mL. Once loaded and sealed, the vessels were placed horizontally 

in the center of the preheated muffle furnace. While there was inevitably a heating lag time, 

the beginning of each experiment is considered to be the time when the vessels are inserted 

into the furnace. To end the experiment, the pipes or vessels were removed at temperature 

and quenched by running under tap water for several minutes, which was sufficient to bring 

the tubes to ambient temperature. Tubes were then generally immediately frozen at -20 °C 

until analysis. 

4.2.3 Analytical Procedures 

 Experimental tubes were allowed to thaw and scored above the liquid level using a 

glass cutter and broken open. For 6 mm by 12 mm tubes, the contents were poured into 20 

mL amber vials containing an amount of sodium chloride sufficient to yield a saturated 

aqueous solution (~0.9 g) to improve extraction efficiencies. Dichloromethane (5.00 mL) 

containing 9.23 mM decane (internal standard) was used to extract organics, with a portion 

of the dichloromethane solution added to the longest part of the experimental tube for 



   

102 
 

rinsing, whereupon it was then added to the 20 mL vial. The vial was then capped with a 

Teflon-lined septum and vigorously shaken for 45 s and allowed to stand for several 

minutes until phase separation had occurred. The shaking and standing sequence was 

repeated twice. A portion of the organic layer was transferred via Pasteur pipet to 2 mL 

amber autosampler vials with Teflon-lined caps. For 2 mm by 6 mm experimental tubes, 

the same procedures were generally followed, except 4 mL silanized clear vials were used 

containing ~0.11 g of sodium chloride. Due to capillary action, the contents could not be 

poured into the vial, so while inverted in the vial, the experimental tube was scored and 

broken open at the opposite end of the initial break. The contents were then pushed into 

the vial via a Pasteur pipet bulb, and then the tube was flushed with the dichloromethane 

solution (3.00 mL). Once all liquids were collected in the vial, the same extraction 

procedure described for the 6 mm by 12 mm tubes was completed.  

 The dichloromethane extracts were then analyzed by gas chromatography-flame 

ionization detection on either a Bruker Scion 456 or a Varian CP-3800 gas chromatograph. 

Both instruments were equipped with a Varian CP-8400 autosampler. All samples were 

injected at least 3 times at an injection volume of 1 µL. The injector (CP-1177) was held 

isothermal at 275 °C and a split ratio of 15 was used. The carrier gas was helium at a 

constant flow of 1.5 mL/minute through a capillary column (Supelco 5% phenyl, 95% 

polydimethylsiloxane, 30 m length by 0.25 mm diameter, 0.25 µm film thickness). The 

column oven was initially 40 °C but upon injection was increased to 140 °C over 10 

minutes then raised to 300 °C over 32 minutes, after which it was held at 300 °C for 8 

minutes. The flame ionization detector temperature was held isothermal at 300 °C. Each 

sample was subjected to at least 3 replicate injections; relative standard deviation was 
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generally less than 5%, though relative standard deviation for analytes of low abundance 

were more typically 5-15% and occasionally higher. These analytical uncertainties are 

considered negligible when compared to the overall experimental variability.  

 Identification of analytes was in most cases completed by comparing their retention 

times with those of authentic samples of each compound. Sample spikes were completed 

with certain compounds on selected samples in order to distinguish closely eluting 

compounds. The only analytes not assigned on this basis were the 1,2- and 1,3-isomers of 

dibenzylbenzene. The assignment of these analytes was based on their retention times 

relative to the 1,4-isomer and their relative abundance in the 3-ring region of the 

chromatogram, particularly in the experiments starting with benzene combined with benzyl 

alcohol, which are putative reactants eventually leading to the dibenzylbenzene isomers. 

Assignment of each analyte peak to a specific isomer was not possible.  

For quantification, the mean of the ratios of the peak areas of each analyte relative 

to the peak area of the internal standard for each injection were converted to millimolar 

concentrations (as dichloromethane solutions) using response factors that were previously 

determined via calibration curves constructed with at least 4 solutions of known amounts 

of authentic samples of each analyte and 9.23 mM decane. In the case of isomers, 

calibration curves were obtained with a selected isomer and its response factor was used 

for the other isomers. The isomers used for this purpose were 4-methyldiphenylmethane, 

4-phenylbenzaldehyde, 3-benzylbenzaldehyde, 2-benzylbenzyl alcohol, and 1,4-

dibenzylbenzene. Unidentified analytes were classified as 2-ring, 3-ring, or 4-ring 

compounds on the basis of their retention times and estimates of the concentrations of 2-

ring and 3-ring compounds were made using the response factors of diphenylmethane and 
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1,4-dibenzylbenzene, respectively. To estimate the abundances of 4-ring compounds, a 

response factor was obtained by extrapolation of an exponential fit of the response factors 

of benzene, diphenylmethane, and 1,4-dibenzylbenzene relative to the number of benzene-

bonded benzyl groups they contain (Figure 29).  

The concentrations of each analyte were then used to calculate total yields of each 

compound in each experiment. Mass balance was calculated on the basis of phenyl rings, 

comparing the total equivalents of phenyl rings added to each experiment to the total 

number of phenyl rings quantified upon analysis, thereby assuming these aromatic rings 

are inert under the experimental conditions. Anthracene, though it contains 3 aromatic 

rings, was considered to represent only 2 rings for the purposes of mass balance, since it is 

putatively derived from dihydroanthracene, which itself represents only 2 rings, 

presumably being formed from 2 benzyl alcohol molecules. Percent conversion is then 

calculated as the total mole percent of compounds measured that are not the starting 

reactant(s). 

4.2.4 13C-NMR Study 

 2 µL of benzaldehyde-carbonyl-13C (99 atom %, Sigma-Aldrich) was injected via 

a 10 µL syringe into the pointed end of a stainless steel luer needle (20 gauge, 10” length) 

and then flushed into a 7” heavy wall precision quartz electron paramagnetic resonance 

(EPR) sample tube (4.97 mm outer diameter, 2.16 mm inner diameter, Wilmad-Labglass, 

Vineland, NJ) by pushing via a 500 µL luer tip syringe 400 µL of deionized H2O that had 

been argon degassed for approximately one hour. An additional experimental tube was 

similarly prepared using D2O (Cambridge Isotopes, Cambridge, MA, USA). The EPR tube   



   

105 
 

 

Figure 29. Response factors of benzene, diphenylmethane, and 1,4-dibenzylbenzene versus 

the number of benzene-bonded benzyl groups they contain (solid circles) fit to an 

exponential function. The extrapolated value for an analogous compound containing 3 

benzyl groups (i.e., 4 aromatic rings) is depicted as an open circle.  



   

106 
 

had a ~5 cm sacrificial glass extension annealed to the open end of the tube to facilitate 

flame sealing the tube to a length (~15 cm) sufficient to accept the spinner of the NMR 

probe at the proper height. NMR spectra were collected on a 400 MHz Bruker Avance III 

spectrometer (Billerica, MA, USA) with a 5 mm Bruker bbfo Z-gradient solutions probe 

for 1H-13C observation and inverse-gated proton decoupling (waltz16 decoupling) at 25 °C. 

The sample was shimmed using a previously saved manual shimming file and 256 scans 

with a 30 degree excitation pulse, an acquisition time of 1.7 seconds, a relaxation delay of 

45 seconds, and a scan width of 20-200 ppm were averaged. A variable relaxation delay 

array experiment, performed on a sample containing 20 mM benzoic acid-carboxyl-13C 

(Cambridge Isotopes), demonstrated a 45 second relaxation delay was adequate to achieve 

nearly quantitative recovery of the carboxyl 13C signal after each pulse, which is expected 

to have the longest longitudinal relaxation (T1) time of the organic analytes (Figure 30). 

Free induction decays were Fourier transformed, integrated, and the concentrations of each 

analyte (benzaldehyde, benzoic acid, benzyl alcohol, and carbon dioxide) were calculated 

by normalizing the total integrations of each spectrum to the moles of 13C initially added 

to the tube, 0.0194 mol (corresponding to ~0.05 molal). After initial (time = 0) NMR 

observation, the tube was heated horizontally in the preheated muffle furnace containing 

galvanized iron pipes as described above. Two pipes were used to create a symmetrical 

thermal environment inside the muffle furnace; the experimental tube was placed in the 

pipe just to the right of center. For each time point, the pipe was quenched as described 

above, NMR spectra were collected, and the tube was either returned to the preheated 

muffle furnace or frozen at -20 °C until the experiment was resumed. 
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Figure 30. The singlet for benzoic acid-carboxyl-13C as a function of relaxation delay 

(labelled in seconds).  
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Some of the 13CO2, as well as other labelled volatiles, such as 13CO, are present in 

the headspace during analysis of the experiment. This 13C is not accounted for in the 

integrations, which introduces some error in the normalization of the integrations to the 

total amount of 13C, but this is considered more equitable when compared to the alternative 

approach of assuming the integration normalization is constant (i.e., external calibration). 

Furthermore, quantitative recovery of the 13CO2 signal may not have been achieved due to 

its extreme T1 relaxation time of 50 seconds (Seravalli and Ragsdale, 2008). 

4.2.5 Benzoic Acid Decarboxylation Experiments 

 The rate constant for the decarboxylation reaction was determined using different 

methods at 300 °C and 350 °C. Experiments at 350 °C (~0.1 molal) were conducted in 6 

mm by 12 mm silica tubes as described above. At 300 °C, experiments were conducted in 

gold capsules (5 mm outer diameter, 0.127 mm wall thickness, ~37.5 mm length) as 

previously described (Yang et al., 2012). Neither fused silica nor gold are thought to 

catalyze decarboxylation to any significant extent (Bell et al., 1994). Individually weighed 

aliquots of benzoic acid (~200 µmol) followed by deionized water that had been argon 

degassed (200 µL) were added to the capsule, the headspace was briefly flushed with ultra-

high purity argon (~2 minutes), and the capsule was welded shut while submerged in a 

methanol:water (1:1) slurry that was chilled using liquid nitrogen. To conduct the 

experiment, the capsules were placed into a 51 cm long cylindrical cold-seal pressure 

vessel (Williams et al., 2001) and pressurized to ~100 MPa with water. The vessel was 

heated in a preheated clamshell reactor furnace and allowed to reach 300 ± 2 °C, as 

monitored via a thermocouple probe inside the pressure vessel. Typically ~2 hours were 

required to nearly reach the desired temperature, during which water was periodically 
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released to maintain the pressure near 100 MPa. Several more hours were required for the 

system to equilibrate at the final temperature. Due to this heating lag time, for kinetics 

purposes the beginning of the experiment was considered to be 2 hours after heating 

commenced. To conclude each experiment, the pressure vessel was removed from the 

furnace and quenched in a room-temperature water bath while maintaining pressure by 

pumping water into the vessel. For analysis, the capsules were solvent-rinsed, punctured 

with a knife while immersed in 3.0 mL of dichloromethane containing 30 mM phenylacetic 

acid (internal standard) and then the vials were capped and vigorously shaken. An aliquot 

of the organic layer was removed and subjected to gas chromatography analysis as 

described above, using separate calibration curves constructed with phenylacetic acid as 

the internal standard. 

4.2.6 Effects of pH 

 Several phosphate solutions were prepared and used in lieu of deionized water for 

a subset of experiments at 300 °C to evaluate the effect of pH. Some experiments were 

conducted in ~0.1 molal phosphoric acid, while others were conducted in solutions 

buffered near the pKa values for the first and second dissociations of phosphoric acid. The 

pH and speciation of these solutions under the experimental conditions (300 °C, 8.58 MPa) 

were evaluated using the EQ3 aqueous speciation code (Wolery and Jarek, 2003), which 

uses an extended Debye-Hückel equation and the revised Helgeson-Kirkham-Flowers 

equation of state (Shock et al., 1989; Shock et al., 1997). A phosphoric acid stock solution 

was prepared by diluting 3.39 mL of 85% phosphoric acid (Sigma-Aldrich) with deionized 

water to a final volume of 50.00 mL in a volumetric flask, resulting in a ~1 molal solution. 

For the pKa1 solution, 305.60 mg of monobasic sodium phosphate monohydrate was 
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dissolved in deionized water in a volumetric flask along with 0.285 mL of the phosphoric 

acid stock solution. This solution was diluted to 25.00 mL with deionized water. The pKa2 

solution was prepared by combining 65.41 mg of monobasic sodium phosphate 

monohydrate and 360.84 mg of dibasic sodium phosphate dihydrate in a volumetric flask, 

dissolving in deionized water, and diluting to 25.00 mL. Both solutions were ~0.1 molal in 

total phosphate. The pKa1 solution was calculated to have a pH of 3.019 at 25 °C and a pH 

of 4.257 at 300 °C, though there is uncertainty in these pH values owing to the uncertainty 

of the concentration of the phosphoric acid solution. The pKa2 solution was calculated to 

have a pH of 7.394 at 25 °C and 8.936 at 300 °C. These pH values at 300 °C are equal to 

the pKa values for the first and second dissociations of phosphoric acid, where the buffering 

capacity is at its maximum. 

 The in situ pH of experiments at 300 °C were estimated at the end of the experiment 

using the EQ3 code taking into account the production of acidic products. Specifically, the 

yield of benzoic acid was included in the speciation model using the thermodynamic 

parameters reported by Shock (1995) as was carbon dioxide, using available 

thermodynamic data for aqueous carbon dioxide (Plyasunov and Shock, 2001) and 

bicarbonate/carbonate (Shock et al., 1997). The yield of carbon dioxide was assumed to 

equal the yield of benzene and the aqueous fraction was estimated by calculating the 

amount of headspace present under the experimental conditions, based on the density and 

vapor pressure of pure water and approximation of the vessel as a cylinder, and partitioning 

the total carbon dioxide using the Henry’s law constant at 300 °C reported by Majer and 

colleagues (Majer et al., 2008).   
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4.2.7 Kinetic Modeling 

 Reaction pathways inferred from the product suites were applied to a kinetic model 

to extract rate constants for individual reactions and assess how well the proposed reaction 

scheme fit the time-dependent data. The selected reactions were combined with the time-

dependent data for benzaldehyde and other compounds in 0.1 molal benzaldehyde 

experiments at 300 °C and 350 °C in a kinetic model using the Copasi software package, 

version 4.15, Build 95 (Hoops et al., 2006). The data were fit numerically using the 

Levenberg-Marquardt algorithm. The longest (453 hours) experiments at 300 °C and the 

two longest (84 and 113 hours) experiments at 350 °C were not included in the fitting to 

avoid complications from unidentified products and the possibility of organic-rich phases. 

4.3 Results and Discussion 

4.3.1 Kinetics of Benzaldehyde Decomposition 

 Experiments beginning with solutions of benzaldehyde were conducted for varying 

times at 250, 300, and 350 °C, which are depicted as second-order kinetic plots in Figures 

31-33, respectively. In all cases, least-squares regression of the data as second-order was 

superior to either first- or zero-order, though the differences between first- and second-

order were not significant due to the low extents of conversion. At 250 °C, conversion of 

0.1 molal solutions were very low, reaching only 3.6% conversion after over 400 hours of 

reaction. At 300 °C, conversion of 0.1 molal solutions reached nearly 35% conversion on 

similar time scales. Time-dependent data were also obtained at 300 °C for 0.05 molal 13C-

benzaldehyde solutions via 13C-NMR which yielded a very similar slope (i.e., rate constant) 

to that for the 0.1 molal data, demonstrating the second-order behavior of benzaldehyde, 

since this concentration dependence cannot be explained via a first-order treatment. The 
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Figure 31. The inverse of the benzaldehyde concentration versus time for experiments 

conducted at 250 °C. The rate constant, coefficient of regression, and percent conversion 

achieved at the longest reaction time are indicated. 
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Figure 32. The inverse of the benzaldehyde concentration versus time for experiments 

conducted at 300 °C for 0.05 molal (black circles) and 0.1 molal (red circles) starting 

benzaldehyde concentrations. Open black circles indicated data derived from GC-FID 

analysis, whereas the other data at 0.05 molal concentration were obtained from 13C-NMR. 

The rate constants, coefficients of regression, and percent conversions achieved at the 

longest reaction times are indicated. 
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Figure 33. The inverse of the benzaldehyde concentration versus time for experiments 

conducted at 350 °C for 0.1 molal (red circles) and 0.2 molal (black circles) starting 

benzaldehyde concentrations. The rate constants, coefficients of regression, and percent 

conversions achieved at the longest reaction times are indicated. 
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concentration dependence is even more evident at 350 °C for 0.1 and 0.2 molal 

concentrations. The concentration dependence may be expressed as the reaction order 

according to the Noyes equation (Moore and Pearson, 1981): 

𝑛 = 1 + 
log 𝑡1

2⁄
′ − log 𝑡1

2⁄

log 𝑎 − log 𝑎′
 

where and 𝑎 and 𝑎′ and 𝑡1
2⁄ and 𝑡1

2⁄
′ are two different starting concentrations of reactant 

and the half-lives at those concentrations, respectively, and n is the reaction order. At 300 

°C the order is 1.8, whereas at 350 °C the order is 2.0. The deviation from pure second-

order at 300 °C is possibly attributed to the larger uncertainties associated with the NMR 

data, or contribution from a first-order process that is a more significant contributor to 

benzaldehyde decay at 300 °C than 350 °C. 

 The observation of benzaldehyde isotopically labelled at the carbonyl carbon 

enabled confirmation of the benzaldehyde kinetics in a single experimental vessel without 

requiring liquid-liquid extraction for analysis. The kinetic isotope effect for the labelled 

benzaldehyde is considered negligible relative to unlabeled benzaldehyde, as there is only 

a ~1 amu difference in molecular mass. Initially present were singlets for the carbonyl 

carbons of benzaldehyde (~196 ppm) and benzoic acid (~170 ppm), which is present in the 

benzaldehyde due to oxidation, which is difficult to prevent in the small volume of labelled 

benzaldehyde. After periods of heating, two other signals appeared in the spectrum. A 

singlet at ~63 ppm was detectable after 200 hours representing the benzylic carbon of 

benzyl alcohol (Figure 34). Another singlet at ~126 ppm appeared earlier, at 129 hours, 

which is consistent with carbon dioxide (Abbott et al., 1982). The presence of carbon 

dioxide suggests that benzene is being produced, which itself is below detection because it 
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Figure 34. 13C-NMR spectrum of the benzaldehyde experiment after 200 total hours of 

heating. Singlets are labelled with their putative structures with the 13C atoms indicated in 

red.  
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is not expected to contain any of the 13C label. Benzene and carbon dioxide could arise 

directly via decarboxylation of benzoic acid, or via decarbonylation of benzaldehyde 

followed by oxidation of the resulting carbon monoxide via the water-gas shift reaction, 

which happens readily under the experimental conditions (Seewald et al., 2006; Picou et 

al., 2014). 

 Study of benzaldehyde via NMR also offered insight into the reactivity of specific 

bonds of benzaldehyde. Benzaldehyde-carbonyl-13C in D2O initially appears identical to 

the analogous spectrum in H2O, yielding a singlet for the carbonyl carbon of benzaldehyde. 

After 14.5 hours at 300 °C, however, the benzaldehyde resonance had become a triplet with 

1:1:1 intensity and a coupling constant of 27 Hz, as shown in Figure 35. This splitting 

pattern is unequivocally due to 13C-D splitting, demonstrating that the formyl hydrogen of 

benzaldehyde had nearly completely exchanged with D2O. While the mechanism for this 

exchange is unknown, the rapid exchange demonstrates to kinetic lability of the aldehyde 

C-H bond in hydrothermal conditions. 

 The rates of benzaldehyde decomposition at the three temperatures are plotted on 

an Arrhenius plot in Figure 36. The present data yield an activation energy for 

benzaldehyde decomposition of 108 kJ mol-1 and a pre-exponential factor of 1.5 x 104 m-1 

s-1. An estimated rate constant extracted from a single experiment for 5 days at 250 °C 

(Katritzky et al., 1990a) was slightly larger than that observed at that temperature in the 

present study. The data trend well with rates obtained in supercritical water reported by 

Tsao and others (Tsao et al., 1992) though the activation energy and pre-exponential factor 

are significantly larger above the critical point. An estimated rate constant derived from 

data obtained at 400 °C from other work (Nagai et al., 2004a) agrees well with the data of 
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Figure 35. Partial 13C-NMR spectrum of 0.05 molal benzaldehyde-carbonyl-13C after 14.5 

hours at 300 °C in D2O. 
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Figure 36. Arrhenius plot for benzaldehyde. The activation energies and pre-exponential 

factors for each data set (circles) are given. Black symbols indicate rates obtained from 

individual experiments and are not included in any of the regressions. Numbers below each 

point indicate the pressure of the experiments in bars. The critical point of water is indicated 

as a vertical line.   
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Tsao et al. (1992). There exist numerous examples of changes in activation energy at or 

near the critical point of water for aqueous reactions of organic compounds, which is 

thought to arise due to ionic pathways being favored in subcritical conditions while radical 

and other mechanisms that do not lead to charged intermediates are more strongly favored 

in supercritical conditions (Krammer and Vogel, 2000; Taylor et al., 2001; Buhler et al., 

2002). 

In contrast, the rates reported by Ikushima and colleagues (Ikushima et al., 2001) 

greatly exceed those from the present study and the rest of the literature. Though similar 

activation energies were obtained in the supercritical region, the pre-exponential factor 

exceeds that of the other data by over 4 orders of magnitude. The reason for this extreme 

difference is not clear. The rates measured by Ikushima were obtained by quantifying the 

production of benzyl alcohol in situ in a flow reactor with a residence time of 6 minutes 

via its C-O stretching band in the infrared region (Ikushima et al., 2001). It’s possible that 

spectral features not present during calibration at lower temperatures affected the 

quantification or that there is an unappreciated temperature dependence for the molar 

absorptivity of this infrared absorption. There is also likely a difference in density 

normalization between the two studies, where the rates of Ikushima et al. (2001) are 

relative to concentrations at the experimental temperatures, while all other data are 

expressed relative to concentrations at ambient conditions (in other words, in units of 

molality). This difference is unable to account for the differences of several orders of 

magnitude, however. Additionally, the rate of one experiment (397 °C, 19.1 MPa) was 

significantly lower than analogous experiments at the same temperature but higher 

pressures. This anomaly is likely due to the subcritical pressure of this experiment, where 
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water is expected to be present as steam. Since benzaldehyde decomposition involves water 

as a reactant, the rate is likely highly sensitive to the phase of the solution. 

The rates were also subjected to fitting with the Eyring equation as shown in Figure 

37, which predictably appears quite similar to the Arrhenius plot. Most notable are the 

entropies of activation. Unlike the other data, the rate constants obtained from Ikushima 

and colleagues (2001) yield a positive entropy of activation. A positive activation entropy 

is inconsistent with a second-order reaction, where a negative entropy change is expected 

for the transition state as two molecules yield a single intermediate at the rate-limiting step. 

This result offers further evidence that the rates reported by Ikushima and others (2001) 

are anomalous.  

4.3.2 Product Suites of Benzaldehyde Experiments 

 While the primary products benzoic acid and benzyl alcohol were detected via 13C-

NMR, as well as the production of benzene in an indirect manner, liquid-liquid extraction 

followed by GC-FID analysis offers an opportunity for a more thorough investigation of 

the suite of organic compounds produced in experiments starting with aqueous solutions 

of benzaldehyde. Comprehensive elucidation of secondary reactions in these experiments 

is essential because while production of benzyl alcohol and benzoic acid is suggestive of 

the Cannizzaro disproportionation reaction, disproportionation of benzaldehyde is not 

consistent with the unequal yields of benzoic acid to benzyl alcohol observed here via 13C-

NMR and in previous studies. At 250 °C, only the alcohol, acid, and benzene were detected 

at the low conversions obtained (Table 7). At 300 °C, however, 27 distinct products were 

identified, with numerous unidentified peaks evident at the longest reaction times (Table 

8). Most of the same products were detected in experiments at 350 °C (Tables 9 and 10). 
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Figure 37. Eyring plot for benzaldehyde. The enthalpies and entropies of activation for 

each data set (circles) are given. Black symbols indicate rates obtained from individual 

experiments and are not included in any of the regressions. Numbers below each point 

indicate the pressure of the experiments in bars. The critical point of water is indicated as 

a vertical line.   
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Table 7. Yields (in µmol) of compounds in 0.1 molal benzaldehyde experiments at 250 °C. 

time (hours) 8.6 21.93̅  36.83̅  72.83̅  96.016̅  406 

benzaldehyde 254.232 253.982 253.543 252.410 251.745 245.951 

benzene <0.01 <0.01 <0.01 <0.01 <0.01 0.209 

benzyl alcohol 0.213 0.325 0.544 1.105 1.446 4.998 

benzoic acid 0.533 0.867 1.087 1.658 1.983 4.015 

% conversion 0.37 0.47 0.64 1.08 1.34 3.61 

% mass balance 100.17 92.72 94.95 94.15 93.09 101.00 
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Table 9. Yields (in µmol) of compounds in 0.1 molal benzaldehyde experiments at 350 °C. 

Blank entries are <0.005 µmol. 

time (hours) 6.5 14.7 24.8 24.8 24.8 44.1 56 84 113 

benzaldehyde 245.962 232.552 220.587 207.418 212.937 206.396 194.544 187.904 161.784 

benzene 0.610 1.791 4.593 5.108 3.663 6.940 10.422 15.535 15.876 

toluene 0.006 0.015 0.022 0.017 0.026 0.071 0.200 0.186 0.864 

benzyl alcohol 1.791 4.075 6.124 6.222 6.061 10.580 12.243 15.991 7.351 

benzoic acid 2.125 3.644 5.228 2.280 4.242 6.025 6.720 3.937 6.437 

biphenyl 0.018 0.051 0.084 0.082 0.097 0.198 0.293 0.441 0.806 

diphenylmethane 0.009 0.043 0.179 0.177 0.157 0.693 1.999 2.665 7.144 

bibenzyl         0.010 

3-methyldiphenylmethane       0.007 0.007 0.126 

2-methyldiphenylmethane       0.029 0.022 0.253 

4-methyldiphenylmethane       0.061 0.038 0.410 

fluorene   0.016 0.015 0.015 0.028 0.045 0.046 0.113 

benzophenone 0.034 0.098 0.147 0.139 0.167 0.315 0.489 0.610 1.102 

9,10-dihydroanthracene   0.033 0.026 0.031 0.149 0.311 0.336 0.118 

3-phenylbenzaldehyde 0.029 0.079 0.116 0.114 0.134 0.247 0.345 0.434 0.706 

trans-stilbene         0.022 

4-phenylbenzaldehyde 0.109 0.303 0.451 0.422 0.511 0.918 1.336 1.651 2.675 

phenylacetophenone   0.009 0.015  0.037 0.057 0.064 0.124 

9-fluorenone 0.013 0.045 0.073 0.072 0.078 0.152 0.226 0.308 0.354 

3-benzylbenzaldehyde  0.012 0.054 0.043 0.046 0.200 0.541 0.513 1.231 

4-benzylbenzaldehyde   0.021 0.019 0.030 0.124 0.364 0.428 0.808 

anthracene   0.014 0.012 0.015 0.043 0.092 0.109 0.204 

dibenzylbenzene-1       0.130 0.148 0.904 

dibenzylbenzene-2       0.093 0.104 0.671 

1,4-dibenzylbenzene       0.176 0.193 1.241 

2-ring unknown 0.016 0.031 0.052 0.062  0.051 0.144 0.067 0.416 

3-ring unknown    0.003   0.181 0.163 0.987 

4-ring unknown       0.007 0.000 0.584 

% conversion 1.90 4.21 7.26 6.70 6.69 11.50 16.00 19.11 25.60 

% mass balance 98.26 95.14 93.21 87.12 89.43 91.40 90.76 91.04 85.22 

% unknown 0.01 0.02 0.04 0.05 0.00 0.04 0.34 0.24 2.40 
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Table 10. Yields (in µmol) of compounds in 0.2 molal benzaldehyde experiments at 350 

°C. Blank entries are <0.005 µmol. 

time (hours) 3.1 8.5 13.8 30 60.25 

benzaldehyde 52.865 50.964 46.202 44.650 35.568 

benzene 0.214 0.568 1.156 2.745 4.552 

toluene 0.008  0.017 0.054 0.227 

benzyl alcohol 0.492 1.112 1.757 3.184 2.991 

benzoic acid 0.707 1.036 1.301 1.422 1.429 

biphenyl 0.004 0.009 0.015 0.083 0.110 

diphenylmethane  0.011 0.069 0.420 0.959 

bibenzyl     0.010 

3-methyldiphenylmethane     0.012 

2-methyldiphenylmethane     0.027 

4-methyldiphenylmethane     0.036 

fluorene   0.003 0.010 0.011 

benzophenone 0.007 0.016 0.029 0.123 0.143 

9,10-dihydroanthracene   0.014 0.043 0.026 

3-phenylbenzaldehyde 0.006 0.013 0.021 0.086 0.092 

trans-stilbene     0.003 

4-phenylbenzaldehyde 0.022 0.046 0.076 0.323 0.332 

phenylacetophenone     0.013 

9-fluorenone  0.006 0.014 0.055 0.057 

3-benzylbenzaldehyde   0.023 0.073 0.128 

4-benzylbenzaldehyde   0.012 0.058 0.109 

anthracene   0.004 0.024 0.030 

dibenzylbenzene-1    0.017 0.058 

dibenzylbenzene-2    0.009 0.040 

1,4-dibenzylbenzene    0.018 0.075 

2-ring unknown 0.009 0.028 0.063 0.186 0.399 

3-ring unknown   0.023 0.090 0.644 

4-ring unknown    0.013 0.467 

% conversion 2.75 5.44 9.56 16.81 29.89 

% mass balance 92.32 91.53 86.75 91.15 86.15 

% unknown 0.02 0.05 0.18 0.49 2.14 
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A putative reaction scheme leading to these products from the starting point of 

benzaldehyde is depicted in Figure 38. With the exception of benzene, which is derived 

from some combination of benzaldehyde (Reaction 17) and benzoic acid (Reaction 2), 

many of the other reactions involve benzyl alcohol. Benzyl alcohol is thought to undergo 

facile dehydration to yield the resonance-stabilized benzyl cation. Other alcohols are 

known to dehydrate readily under hydrothermal conditions, as predicted 

thermodynamically (Shock, 1993), where the involvement of hydronium ions derived from 

the dissociation of water in the mechanism is typically invoked (Xu et al., 1997; Antal et 

al., 1998; Akiya and Savage, 2001; Xu and Qu, 2013). The formation of benzyl cations can 

lead to benzylation of aromatic compounds present in the experiment via electrophilic 

aromatic substitution (EAS), as observed and alluded to in previous work (Katritzky et al., 

1990a). The most abundant secondary product, diphenylmethane (DPM), is formed in this 

manner (Reaction 3). Support for DPM being formed from benzyl alcohol and benzene 

comes from experiments beginning with 0.05 molal benzyl alcohol along with 0.05 molal 

benzene (Table 11) where the yield of DPM is drastically enhanced over experiments with 

0.1 molal benzaldehyde for the same reaction time. The poor mass balance of these 

experiments is most likely attributed to loss of benzene during the freeze-pump-thaw 

degassing of the experiments during their preparation. 

Benzyl cations derived from benzyl alcohol can react with benzaldehyde (Reaction 

4), toluene (Reaction 7), or benzyl alcohol (Reaction 8) to yield isomers of 

benzylbenzaldehyde, methyldiphenylmethane, and benzylbenzyl alcohol, respectively. 

The regioselectivity of these reactions are generally consistent with EAS. The formyl group 

of benzaldehyde is a meta-directing substituent and accordingly 3-benzylbenzaldehyde is 
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Figure 38. Proposed reaction pathways for compounds observed in benzaldehyde 

experiments. Reactions are numbered and referenced in the text. The disproportionation 

reaction of benzaldehyde is outlined in the box. 
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Table 11. Yields of compounds (in µmol) in miscellaneous experiments for 24.8 hours at 

350 °C. Experiments with two reactants listed began with approximately 0.05 molal of 

each compound. Blank entries are <0.005 µmol. Abbreviations are as follows: B-ol, benzyl 

alcohol; Bene, benzene; Bald, benzaldehyde; DPM, diphenylmethane; B-acid, benzoic 

acid; DPMol, diphenylmethanol. 

 

B-ol 

Bene 

B-ol 

Bene 

Bald 

Bene 

Bald 

Bene 

Bald  

Bene  

0.1 m H3PO4 

Bald 

DPM 

Bald 

B-acid 

DPMol 

benzaldehyde 2.738 2.512 111.188 112.413 111.291 105.671 115.861 0.091 

benzene 62.841 53.379 76.031 79.975 85.856 3.395 31.147 0.340 

toluene 1.497 0.988 0.020 0.026 0.030 0.110 0.016 0.010 

benzyl alcohol 14.499 22.795 0.091 0.094 0.041 0.298 1.100 0.141 

benzoic acid   4.523 5.240 5.035 1.824 78.432 0.016 

biphenyl   0.043 0.051 0.060 0.058 0.032  

diphenylmethane 14.398 10.491 2.228 2.306 2.795 85.394 0.424 8.992 

bibenzyl 0.018        

3-methyldiphenylmethane 0.139 0.083    0.048   

2-methyldiphenylmethane 0.192 0.118    0.019   

4-methyldiphenylmethane 0.646 0.470   0.004 0.038   

fluorene   0.015 0.014 0.036 0.070  0.375 

benzophenone   0.019 0.021 0.025 3.081 0.020 8.978 

diphenylmethanol    0.002    115.392 

9,10-dihydroanthracene 1.348 1.334    0.030 0.007 0.010 

3-phenylbenzaldehyde   0.013 0.017 0.017 0.060 0.017  

4-phenylbenzaldehyde   0.045 0.054 0.060 0.236 0.063  

phenylacetophenone      0.012 0.006  

9-fluorenone 0.008 0.016    0.016 0.014 0.011 

3-benzylbenzaldehyde 0.090 0.072 0.030 0.033 0.037 0.019 0.019 0.018 

4-benzylbenzaldehyde 0.084 0.072 0.005 0.006 0.007 0.006   

anthracene 0.117 0.076 0.010 0.011 0.014 0.013 0.006  

3-benzylbenzyl alcohol 0.465 0.693       

4-benzylbenzyl alcohol 0.231 0.384       

dibenzylbenzene-1 1.429 0.978 0.022 0.024 0.026 1.492   

dibenzylbenzene-2 1.270 0.880 0.021 0.023 0.033 1.037   

4-benzylbiphenyl 0.019 0.011    0.065   

1,4-dibenzylbenzene 2.343 1.662 0.035 0.037 0.047 1.729 0.005  

2-ring unknown 0.036 0.055 0.014 0.011 0.045 0.139 0.069 0.039 

3-ring unknown 2.605 2.330 0.013 0.015 0.026 0.209 0.005 0.012 

4-ring unknown 3.742 2.951    0.309  0.576 

% conversion 50.12 44.31 4.95 5.28 5.60 9.24 14.76 14.70 

% mass balance 62.28 54.95 78.47 80.91 83.20 80.87 90.21 99.08 

% unknown 9.18 7.59 0.03 0.03 0.07 0.57 0.06 0.88 
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the most abundant isomer. Nonetheless, significant amounts of 4-benzylbenzaldehyde are 

also produced, yet no 2-benzylbenzaldehyde was detected in any experiment. These results 

suggest that regioselectivity in EAS reactions may be less sensitive at higher temperatures 

and that formation of 2-benzylbenzaldehyde is strongly sterically hindered, possibly due 

to unfavorable interactions between the benzyl cation and the partially positive charge of 

the formyl carbon atom. The yields of methyldiphenylmethane isomers also support an 

EAS mechanism, as the methyl group of toluene is a weakly ortho/para-directing 

substituent and 2-methyldiphenylmethane and 4-methyldiphenylmethane are produced in 

greater yields than 3-methyldiphenylmethane. Steric effects influence the formation of 2-

methyldiphenylmethane, as its yield should be comparable to that of the para-isomer (4-

methyldiphenylmethane) but is instead more intermediate to the other two isomers.  

Benzylbenzyl alcohols were only detected in certain experiments at 300 °C, which 

is likely due to the high reactivity of benzylbenzyl alcohol. The –CH2OH substituent of 

benzyl alcohol is weakly meta-directing, yet the yield 3-benzylbenzyl alcohol was 

generally comparable to that of 4-benzylbenzyl alcohol when observed. 2-benzylbenzyl 

alcohol was never detected per se, yet this isomer is believed to be the precursor to 9,10-

dihydroanthracene (DHA), which is obtained via an intramolecular EAS reaction (Reaction 

9) as previously suggested (Katritzky et al., 1990a). The yields of DHA, combined with its 

fully aromatic analogue, anthracene, exceeded the combined yields of 3-benzylbenzyl 

alcohol and 4-benzyl benzyl alcohol, which is at odds with an EAS mechanism. However, 

3-benzylbenzyl alcohol and 4-benzylbenzyl alcohol react in further reactions to yield 3-

ring and larger unknown structures in reactions where 2-benzylbenzyl alcohol may be more 

sterically affected than the other isomers. Indeed, benzylbenzyl alcohol isomers are 
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proposed to react with benzene to yield dibenzylbenzene (Reaction 11) where the para-

isomer is most abundant. Overall, the regioselectivity of the formation of benzylbenzyl 

alcohol is not as clear as it is for other benzylation reactions.  

Benzene is also proposed to act as an electrophile upon protonation leading to the 

formation of phenylbenzaldehydes (Reaction 5) and biphenyl (Reaction 16). However, 4-

phenylbenzaldehyde was always produced in greater yield than 3-phenylbenzaldehyde, 

which is inconsistent with EAS for a formyl substituent. 2-phenylbenzaldehyde was only 

detected with added acid and at much lower abundances than the other isomers, again 

suggesting an unfavorable charge-dipole interaction for the reaction at the ortho-position. 

It’s possible that reactivity of phenylbenzaldehyde could affect the observed abundances, 

though no products expected from such reactions were identified. Alternatively, a different 

mechanism could be operating in addition to or in lieu of EAS. Though the bond 

dissociation energies for phenyl C-H bonds (112.9 kcal/mol) are quite large (Blanksby and 

Ellison, 2003) it’s possible that homolytic cleavage of these bonds could be involved in the 

formation of biphenyl and/or phenylbenzaldehyde, especially at 350 °C. Experiments 

beginning with 0.05 molal benzaldehyde combined with 0.05 molal benzene produced less 

phenylbenzaldehyde than in 0.1 molal benzaldehyde experiments for the same time (Table 

11) which does not support the proposed reaction and instead suggests that benzaldehyde, 

perhaps via homolytic bond cleavage and subsequent radical coupling, is itself the 

precursor to phenylbenzaldehydes. Additionally, the presence of phosphoric acid in such 

an experiment (Table 11) did not noticeably enhance the yield of phenylbenzaldehydes or 

biphenyl, which would be expected if protonated benzene were acting as an electrophile. 

Yet, if benzaldehyde radicals were forming, coupling would be expected to produce some 
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bibenzaldehydes, which were not identified. Yields of biphenyl in experiments beginning 

with benzene were lower than experiments beginning with benzaldehyde, or in some cases 

absent, raising doubt that benzene is involved in biphenyl production. Additional 

experiments probing the mechanism of the production of biphenyl and 

phenylbenzaldehyde would allow stronger conclusions regarding their formation. 

The formation of toluene is proposed to arise via a cross-disproportionation reaction 

between benzaldehyde and benzyl alcohol (Reaction 6), which has been previously 

proposed in other experimental studies (Katritzky et al., 1990a; Tsao et al., 1992). 

Nucleophilic attack of the benzyl alcohol oxygen upon the carbonyl carbon of 

benzaldehyde leads to a hemiacetal intermediate, which may then undergo intramolecular 

hydride transfer in a rate-limiting step, analogous to the Cannizzaro mechanism. It’s also 

possible that toluene may arise via a reduction pathway, which is supported by the strong 

induction period observed for toluene, such that the yield of toluene is dramatically higher 

at the longest reaction times. One possible reductive scheme involves benzyl cations being 

reduced to toluene via hydride transfer from an appropriate hydride donor, though there is 

little independent evidence available to support such a mechanism. Molecular hydrogen, 

expected as a product of several reactions, could also serve as a reducing agent, particularly 

at longer reaction times, yet the presence of a headspace allowed most of the hydrogen to 

be present outside of the solution, which would have hampered the rates of such reactions. 

Evidence for the origin of benzophenone via consecutive disproportionation 

reactions is offered in Table 11. The yield of benzophenone was greatly enhanced in an 

experiment beginning with 0.05 molal benzaldehyde and 0.05 molal DPM, indicating that 

DPM is involved in the formation benzophenone. DPM is an excellent hydride donor, 
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owing to the resonance stabilization of the resulting carbocation. The resulting carbocation 

would readily be hydrated by water to yield diphenylmethanol via Reaction 12. In the 

proposed reaction, hydride is donated to benzaldehyde to yield benzyl alcohol, though in 

the present system other hydride acceptors are possible, including hydronium, which would 

formally be an oxidation of DPM rather than a disproportionation. While diphenylmethanol 

was typically not detected, it is known to disproportionate rapidly to yield equal amounts 

of DPM and benzophenone in supercritical water (Hatano et al., 2002). This 

disproportionation (Reaction 13) was confirmed under the present conditions (Table 11) 

with equal yields of DPM and benzophenone. 

A variety of minor products were also detected that apparently arise via 

dehydrogenation reactions, including anthracene, 9-fluorenone, and fluorene (Reactions 

10, 14, and 15, respectively). In the case of fluorene and 9-fluorenone, this results in 

formation of a planar molecule via formation of a C-C bond, whereas the formation of 

anthracene results in an additional aromatic ring. The mechanism of dehydrogenation is 

unclear, and may be different in each case. Since a concerted mechanism involving 

homolytic or heterolytic C-H bond cleavage on two separate rings simultaneously seems 

strongly kinetically inhibited, a step-wise ionic mechanism for C-C bond formation is more 

plausible. One hydrogen may leave as hydride, reacting with hydronium ions to yield 

molecular hydrogen and a phenyl cation. Alternatively, hydride could be donated to 

another hydride acceptor, such as benzaldehyde. Intramolecular electrophilic attack of the 

phenyl cation would result in formation of the C-C bond and formation of another 

carbocation on the other ring, which would rapidly reform the aromatic system upon 

removal of a proton by water. In the case of anthracene, while a step-wise homolytic 
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mechanism is conceivable due to resonance, again a step-wise ionic mechanism seems 

more likely.  

4.3.3 pH Dependence of Product Distributions 

The pH of a subset of experiments was controlled by the addition of phosphoric 

acid or phosphate-buffered solutions to yield additional evidence for the reactions proposed 

above and to offer insights into the role of pH on such reactions in natural settings. The 

calculated pH for experiments at 300 °C both with and without buffers are depicted versus 

reaction time in Figure 39. In the high pH buffered experiments, the pH at the experimental 

conditions is initially near 9, but the high conversion of these experiments causes the buffer 

to become overwhelmed and reach a final in situ pH near 7, which is still well above 

neutrality. The buffered experiments at lower pH have lower conversions and the pH 

changes negligibly over the course of the experiment. Unbuffered experiments begin near 

the pH of pure water at 300 °C (~5.65) but rapidly become acidified to pH ~4 due to the 

production of acidic compounds. The pH then slowly continues to decline as conversion 

increases. Notably, the pH of the unbuffered experiments is close to that of the experiments 

buffered near the first pKa of phosphoric acid.  

 The yields of products in experiments conducted for 161 hours at 300 °C are shown 

as a function of starting pH in Figures 40-42 and tabulated in Table 12. At high pH, the 

yield of the primary products benzoic acid and benzyl alcohol are greatly enhanced relative 

to the other pH conditions, which is due to the disproportionation of benzaldehyde being 

catalyzed by hydroxide ions according to the traditional Cannizzaro mechanism (Swain et 

al., 1979). Two yields of benzoic acid are shown in Figure 40. At the pH of the experiment, 

benzoic acid is speciated primarily as benzoate, which does not extract well into the organic  
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Figure 39. Calculated in situ pH as a function of time for benzaldehyde experiments at 300 

°C. Experiments in pure water are shown as filled circles and are detailed in the inset. 

Buffered experiments (open circles) are connected with tie lines. 
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Figure 40. Yields of benzoic acid and benzyl alcohol in experiments starting with 0.1 molal 

benzaldehyde conducted for 161 hours at 300 °C as a function of starting pH. The yield of 

benzoic acid corrected for extraction efficiency at high pH is shown as an open bar, while 

the measured yield is shown in blue, as it is for other pH values. Error bars represent +/- 

one standard deviation of replicate experiments, except for the corrected yield of benzoic 

acid, which also propagates uncertainties associated with the assumptions of that 

correction. 
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Figure 41. Yields of major products in experiments starting with 0.1 molal benzaldehyde 

conducted for 161 hours at 300 °C as a function of starting pH. Error bars represent +/- one 

standard deviation of replicate experiments. 
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Figure 42. Yields of minor products in experiments starting with 0.1 molal benzaldehyde 

conducted for 161 hours at 300 °C as a function of starting pH. Error bars represent +/- one 

standard deviation of replicate experiments. 
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Table 12. Yields of compounds (in µmol) in benzaldehyde experiments for 161 hours at 

300 °C with phosphate solutions or in water at 0.05 molal starting concentration. Blank 

entries are <0.005 µmol. 

 

0.1 molal 

H3PO4 

0.1 molal 

H3PO4 

pKa1 

buffer 

pKa1 

buffer 

pKa2 

buffer 

pKa2 

buffer 

0.05 

molal 

0.05 

molal 

benzaldehyde 203.569 203.500 211.802 208.723 23.485 23.515 112.173 111.038 

benzene 3.988 3.601 2.968 3.592 4.134 4.430 0.943 1.180 

toluene 1.513 1.329 0.092 0.101 0.107 0.123 0.009 0.012 

benzyl alcohol 0.311 0.298 14.335 13.990 105.786 104.490 2.926 2.810 

benzoic acid 14.265 14.326 13.830 15.247 63.655 60.896 3.614 4.233 

biphenyl 0.034 0.034 0.007 0.007     

diphenylmethane 0.743 0.782 0.360 0.409 0.158 0.154 0.025 0.033 

bibenzyl 0.005 0.005       

3-methyldiphenylmethane 0.162 0.176       

2-methyldiphenylmethane 0.215 0.231 0.005 0.005     

4-methyldiphenylmethane 0.319 0.338 0.023 0.024     

fluorene 0.049 0.049 0.008 0.007     

2-phenylbenzaldehyde 0.006 0.007       

benzophenone 0.090 0.091 0.023 0.023 0.034 0.032   

benzyl ether     0.149 0.140   

9,10-dihydroanthracene   0.186 0.174   0.022 0.023 

3-phenylbenzaldehyde 0.058 0.058 0.013 0.012     

trans-stilbene         

4-phenylbenzaldehyde 0.189 0.192 0.038 0.034    0.006 

phenylacetophenone     0.017 0.018   

9-fluorenone 0.017 0.017 0.023 0.020     

3-benzylbenzaldehyde 0.745 0.747 0.276 0.267 0.015 0.014 0.032 0.034 

4-benzylbenzaldehyde 0.123 0.123 0.201 0.190 0.015 0.014 0.012 0.012 

anthracene 0.040 0.040 0.043 0.046   0.007 0.008 

3-benzylbenzyl alcohol   0.024 0.012     

4-benzylbenzyl alcohol   0.018 0.008     

dibenzylbenzene-1 0.077 0.081 0.016 0.018     

dibenzylbenzene-2 0.089 0.095 0.013 0.014     

4-benzylbiphenyl 0.006 0.006       

1,4-dibenzylbenzene 0.131 0.138 0.024 0.026     

2-ring unknown 0.043 0.050 0.076 0.071 0.126 0.116 0.006 0.006 

3-ring unknown 0.637 0.649 0.158 0.154 0.006 0.005   

4-ring unknown 0.194 0.217 0.005 0.007     

% conversion 12.60 12.55 14.01 14.78 88.15 87.91 6.42 7.06 

% mass balance 91.28 91.20 96.53 95.99 77.68 76.20 93.95 93.64 

% unknown 1.09 1.14 0.25 0.25 0.11 0.11 0.01 0.01 
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layer during the liquid-liquid extraction step, causing poor mass balance and a yield of 

benzoic acid significantly less than that of benzyl alcohol. If the assumption is made that 

deviation from typical mass balances in these experiments is caused solely by the poor 

recovery of benzoic acid, the benzoic acid may be corrected by increasing the observed 

yield to achieve an appropriate mass balance. This correction results in a corrected benzoic 

acid yield quite close to the observed yield of benzyl alcohol. 

The yields of benzoic acid and benzyl alcohol at lower pH values are roughly 10% 

of that achieved under basic conditions and do not significantly vary with pH (Figure 40). 

The yields are quite similar between unbuffered experiments and those buffered at the first 

pKa of phosphoric acid (4.26). The yield of benzoic acid is indistinguishable between 

starting pH values of 2.54 and 4.26, while the yield of benzyl alcohol is strongly inhibited 

at the lower pH. This pH dependence suggests that the total yield of benzaldehyde 

disproportionation is equal at these two pH values, but benzyl alcohol is much more rapidly 

depleted in acid-catalyzed reactions at the lower pH. This pH dependence rules out the 

possibility that benzaldehyde disproportionation may be acid-catalyzed via a mechanism 

where the hydrate of benzaldehyde is formed via protonation of the carbonyl by hydronium 

ions. This result is consistent with the theory of microscopic reversibility which in this case 

dictates that the equilibrium of hydrate formation cannot be affected by the presence of an 

acid catalyst. Even more importantly, nearly identical yields of benzaldehyde 

disproportionation spanning more than 3 pH units indicates that hydroxide ions are not 

involved in the formation of the hydrate in this pH regime and instead that water acts as 

the nucleophile in hydrate formation, as shown in Figure 43, which is very similar to the 

more familiar hydroxide mechanism. Water acting as a nucleophile (i.e., Lewis base) is an 
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Figure 43. Mechanism of benzaldehyde disproportionation with water acting as the 

nucleophile.  
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example of general acid-base catalysis that has been postulated for other reactions in 

superheated water, in contrast to specific acid-base catalysis afforded by the greater 

dissociation of water at elevated temperatures (Hunter and Savage, 2004). 

 The yields of secondary reactions in benzaldehyde experiments are also affected by 

pH. The yield of toluene (Figure 41) is significantly enhanced at the lowest pH, though the 

reason for this enhancement is not completely clear. Acid catalysis of hemiacetal formation 

cannot affect the equilibrium concentration of hemiacetal for the same reasons 

benzaldehyde hydrate formation is unaffected by acid. One hypothesis is the greater 

toluene yield is due to greater reduction of benzyl cations, the concentration of which is 

enhanced by lower pH. The greater abundance of benzyl cations is also observed in the 

enhanced yields of DPM, methyldiphenylmethanes, and benzylbenzaldehydes. 

Conversely, the yields of these compounds under basic conditions is significantly retarded 

due to the absence of specific catalysis by hydronium ions.  

 The pH dependence of minor products is shown in Figure 42. Only benzophenone, 

benzyl ether, and phenylacetophenone were observed at the highest pH, whereas the other 

products are derived directly or indirectly via an acid-catalyzed EAS mechanism and are 

inhibited by basic conditions. Benzyl ether was only observed under basic conditions which 

is most likely due to the significantly greater concentrations of benzyl alcohol present in 

these experiments. Benzophenone is unaffected by high pH, but its yield is slightly 

enhanced under the most acidic conditions due to more facile protonation of 

diphenylmethanol, which increases the rate of the rate-limiting nucleophilic hydride 

transfer where water is the leaving group. Benzylbenzyl alcohol was only detected at 

intermediate starting pH. Like other benzylation reactions, its formation is inhibited by 
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high pH. Its absence at low pH is the result of its reactivity under acidic conditions, which 

leads to the significantly enhanced yield of dibenzylbenzene. Benzylbenzyl alcohol also is 

the precursor to 9,10-dihydroanthracene, which similarly was only detected at intermediate 

pH. Under acidic conditions its dehydrogenation to anthracene is putatively enhanced, yet 

this does not result in an increased yield of anthracene. Apparently, a decrease in pH directs 

more benzylbenzyl alcohol toward intermolecular benzylation, resulting in 

dibenzylbenzene and other large compounds, at the expense of the intramolecular 

benzylation pathway. Phenylbenzaldehyde and biphenyl yields are strongly enhanced by 

low pH and inhibited by basic conditions, in support of the hypothesized EAS mechanism 

yet in conflict with the lack of a pH dependence observed in experiments beginning with 

benzaldehyde in the presence of benzene discussed above. The dehydrogenation product 

fluorene shows the expected dependence on pH, being absent at high pH and enhanced at 

the lowest pH studied, while its analogue 9-fluorenone is similarly absent under basic 

conditions but its production is not affected by the addition of acid.  

4.3.4 Kinetic Model for the Benzaldehyde System 

As portrayed above, experiments starting with aqueous solutions of benzaldehyde 

are clouded in the complexity of secondary reactions. In order to evaluate the kinetics of 

benzaldehyde itself, the time dependence of many of the products were numerically fitted 

to rate constants for the reactions in the proposed reaction scheme (Figure 38) using freely 

available software at 300 °C and 350 °C. Only experiments with 16% conversion or less 

were used in the model in order to avoid complications of the production of unknown 

products that becomes significant at long reaction times, thereby adhering to the method of 

initial rates. The rate constants are given in Table 13, numbered according to the reactions 
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Table 13. Estimated rate constantsa for reactions in the kinetic model at 300 °C and 350 

°C. 

# in Figure 37 k at 300 °C k at 350 °C units type 

1 1.87E-06 7.72E-06 m-1 s-1 disproportionation 

2 4.48E-07 1.02E-05 s-1 decarboxylation 

3 4.13E-04 1.29E-03 m-1 s-1 EASb (benzylation) 

4 3.31E-06 1.21E-05 m-1 s-1 EAS (benzylation) 

5 3.01E-06 4.36E-05 m-1 s-1 phenylation 

6 9.76E-07 4.09E-06 m-1 s-1 disproportionation 

7 1.06E-03 4.01E-03 m-1 s-1 EAS (benzylation) 

8 7.69E-05 3.18E-04 m-1 s-1 EAS (benzylation) 

9 1.71E-05 3.91E-03 m-1 s-1 EAS (benzylation) 

10 1.11E-06 4.59E-06 s-1 dehydrogenation 

11 7.97E-03 1.62E+00 m-1 s-1 EAS (benzylation) 

14 4.89E-06 9.82E-06 s-1 dehydrogenation 

15 1.90E-07 4.84E-07 s-1 dehydrogenation 

16 5.19E-05 3.91E-03 m-1 s-1 phenylation 

17 5.41E-09 1.37E-07 s-1 decarbonylation 

18 2.45E-08 < 2.45E-08 s-1 oxidation 
arate constants do not include water and assume its concentration does not 

change.belectrophilic aromatic substitution. 
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in Figure 38. Rate constants for Reactions 12 and 13 are not reported because the model 

fitted an aggregate rate constant for the two reactions combined. Importantly, the rate 

constants at 350 °C are greater than those for the same reaction at 300 °C, obeying 

statistical mechanics and other kinetic theory. The only exception is reaction 18, the 

oxidation of benzaldehyde by water. This reaction has the smallest rate constant at 300 °C 

but was smaller than plausible constraints at 350 °C. This result suggests that oxidation of 

benzaldehyde is a minor, if not absent, process. At 300 °C, the model may have benefited 

from the inclusion of this reaction to account for the slight amount of oxidation of 

benzaldehyde due to oxygen contamination, yet at 350 °C where conversions are higher it 

likely had no effect on the numerical fitting.  

 Generally, the magnitudes of the rate constants are consistent with the proposed 

reactions. As indicated above, an important reaction pathway is the depletion of benzyl 

alcohol in electrophilic aromatic substitution reactions. At both temperatures, the rate 

constants follow the expected trend with respect to the inductive effects of the ring 

substituents involved, such that the rate constants follow the trend k7 > k3 > k8 >> k4. The 

formyl group of benzaldehyde is strongly deactivating toward EAS and thus the rate 

constant for Reaction 4 is approximately two orders of magnitude less than that for EAS 

involving benzene (Reaction 3). That significant yields of benzylbenzaldehydes were 

observed is a consequence of the large abundance of benzaldehyde relative to other 

substrates for benzylation. The –CH2OH substituent of benzyl alcohol is only slightly 

deactivating and Reaction 8 yields a rate constant only slightly lower than that for the 

analogous reaction with benzene. The methyl substituent of toluene is instead weakly 

activating and the rate constant for Reaction 7 is somewhat larger than that for Reaction 3. 
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Similarly, the rate constant for Reaction 11 is greater than that for Reaction 3 because the 

benzyl substituent of benzylbenzyl alcohol affords somewhat enhanced stability of the 

resulting electrophilic carbocation compared to benzyl alcohol. The rate constant at 350 °C 

is likely anomalously high because there is no concentration data for benzylbenzyl alcohol 

at this temperature to constrain the fitting of this reaction. Nevertheless, the concentrations 

of benzylbenzyl alcohol predicted by the model at 350 °C are below the detection limits of 

the GC analysis, consistent with isomers of benzylbenzyl alcohol not being observed in 

experiments at that temperature. The rate constants for phenylbenzaldehyde and biphenyl 

production offer additional insight into these reactions, as they are the most mechanistically 

inconclusive. For an EAS mechanism, the rate constant for formation of 

phenylbenzaldehyde should be noticeably less than that for biphenyl. This expectation 

holds true at both temperatures, supporting the tentative assignment of an EAS mechanism 

to these compounds in spite of conflicting lines of evidence. 

 An important aspect of the model is the relative rates of decarbonylation and 

decarboxylation reactions to yield benzene. Decarbonylation of aromatic aldehydes is 

thought to proceed via protonation of the ipso-carbon (Schubert and Zahler, 1954). 

Decarboxylation of carboxylic acids has been studied with a variety of acids, where the 

mechanism is likely quite dependent on structure (Palmer and Drummond, 1986; Li and 

Brill, 2003; McCollom and Seewald, 2003; Fu et al., 2009; Glein, 2012). The model 

demonstrates that most of the benzene may be accounted for via decarboxylation of benzoic 

acid, as the decarboxylation rate constant is approximately two orders of magnitude larger 

than that of decarbonylation at both temperatures. Because decarboxylation is the only 

major reaction pathway expected for benzoic acid, an opportunity exists to independently 
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evaluate the strength of the model by experimentally evaluating decarboxylation rate 

constants of benzoic acid. Time courses for benzoic acid decomposition and the resulting 

first-order rate constants at 300 °C and 350 °C are shown in Figure 44 and tabulated in 

Table 14. In previous work, benzoic acid showed negligible conversion for 5 days at 250 

°C (Katritzky et al., 1990a) or for 1 hour at 350 °C (Dunn et al., 2003). The rate determined 

at 300 °C is less than that extracted from experiments in the presence of minerals 

(McCollom et al., 2001), suggesting that decarboxylation may be subject to mineral 

catalysis. The measured rate constants exceed those determined in the kinetic model by 

factors of ~2.5 (300 °C) and ~3.5 (350 °C). This suggests that the model may be overly 

favoring the decarbonylation pathway and that more of the benzene may be accounted for 

via decarboxylation. Nevertheless, attempts to fit benzene yields in the benzaldehyde 

model with the experimentally measured decarboxylation rate constants yielded an excess 

of benzene, even when decarbonylation was removed from the model. Thus, these 

discrepancies are the result of relatively large uncertainties that arise in a kinetic model 

with 17 independent variables. Decarboxylation does appear to be the major pathway to 

yield benzene in the benzaldehyde system. 

The goodness of fit of the model to the time-dependent yields of compounds it 

includes are depicted in Figures 45 and 46 for 300 °C and 350 °C, respectively. The model 

fits the major products benzyl alcohol, benzoic acid, and benzene quite well at both 

temperatures, suggesting that the suite of reactions included in the model are reflective of 

pathways that lead to the non-unity ratios of benzoic acid to benzyl alcohol. Many of the 

minor products are also fit well with the model, yet there are notable discrepancies in some. 

Products of dehydrogenation reactions, such as fluorene, fluorenone, and anthracene have
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Figure 44. The natural logarithm of the ratio of measured benzoic acid concentration to 

initial benzoic acid concentration as a function of time for experiments at 300 °C (filled 

circles) and 350 °C (open circles). Rate constants derived from linear regression are 

reported with their uncertainties, which is the uncertainty of the slope of the best-fit line. 

Measured benzoic acid concentrations are based on analyses of benzene, the yield of which 

is assumed to equal the amount of benzoic acid consumed. Traces of biphenyl were also 

detected and assumed to represent the yield of two equivalents of benzene for the purposes 

of the kinetic analysis. 
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Table 14. Starting amounts and yields (in µmol) in benzoic acid experiments at 300 °C and 

350 °C. Blank entries are less than 0.010 µmol. 

time 

(hours) 

benzoic acid 

(initial) 

benzoic acid 

(measured) 

benzene biphenyl 

300 °C     
0 205 205 1.82  

21 198 186 13.7  
70 213 156 55  

168.5 209 107 100.4  
360 203 40.1 156 0.22 

350 °C     
5.5 247.789 229.526 18.768 0.006 

21.8 246.233 165.974 60.351 0.014 

24 247.625 149.337 51.563 0.010 

80 245.578 51.493 139.063 0.032 
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Figure 45. Yields (expressed as mol %) of selected products of 0.1 molal benzaldehyde 

experiments at 300 °C as a function of time. Curves represent the time dependence of 

product yields based on the kinetic model.   
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Figure 46. Yields (expressed as mol %) of selected products of 0.1 molal benzaldehyde 

experiments at 350 °C as a function of time. Curves represent the time dependence of 

product yields based on the kinetic model.   
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modeled time dependencies that exhibit an induction period not supported by the analytical 

data. One possibility for this discrepancy is that these reactions may be reversible. 

Reversibility would allow the forward reaction to possess a relatively large rate constant to 

account for the appearance of the dehydrogenation products at early times, yet not build up 

to significant concentrations due to the reverse reaction. Allowing these reactions to be 

reversible in the model, however, did not noticeably alter the goodness of fit to the data for 

these compounds. Though the reactions are written in terms of molecular hydrogen, 

mechanistically this is likely an oversimplification that may not allow the model to 

adequately represent these reactions. In any case, these compounds are far less abundant 

than the major products and therefore have a negligible effect on their fit.  

The rate constants for reaction 1, the disproportionation of benzaldehyde, are 

among the smallest of all the reactions considered. This observation is not surprising, as 

the relative rates of the secondary reactions allow for a great deal of complexity to be 

reached even before benzaldehyde has come close to its first half-life. Complexity at low 

conversions of initial reactants is a common occurrence in hydrothermal experiments 

(Yang et al., 2012; Shipp et al., 2013). While reaction 1 may be rate-limiting, the 

appearance of other products opens new pathways to benzaldehyde degradation, which can 

be seen in comparison to kobs on an Arrhenius plot (Figure 47), where kobs is the rate 

constant obtained solely from benzaldehyde regression. The two rate constants are assumed 

to be equal at 250 °C because there is insufficient data at this temperature to determine k1. 

The rate constant for disproportionation possesses a slightly smaller activation energy and 

a much smaller pre-exponential factor than kobs. In reality, k1 is an aggregate rate constant:  

𝑘1 = 𝐾ℎ𝑦𝑑𝑟𝑎𝑡𝑒 ∗ 𝑘𝐻𝑇 
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Figure 47. Arrhenius plot comparing the rate constants for the disproportionation reaction 

of benzaldehyde obtained via kinetic modeling (filled circles; solid regression line) with 

the observed rate constants for benzaldehyde decomposition (open circles; dashed 

regression line). Activation energies and pre-exponential factors obtained by regression are 

indicated.  
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where 𝐾ℎ𝑦𝑑𝑟𝑎𝑡𝑒 is the equilibrium constant for formation of the hydrate of benzaldehyde 

and 𝑘𝐻𝑇 is the rate constant of the rate-limiting hydride transfer step between the hydrate 

and another benzaldehyde molecule. While the rate constant for the rate-limiting step 

should increase with increasing temperature, increasing temperature disfavors hydrate 

formation, though it has not been investigated in the temperature regime presently 

considered (Kurz, 1967; Pocker and Dickerson, 1969; Matubayasi et al., 2007; Nakazawa 

and Takahashi, 1999). This situation could potentially lead to non-linear Arrhenius 

behavior, yet there is no strong evidence of this over the temperature range studied here, 

given the uncertainties in the rate constants. In comparison with kobs, k1 and its Arrhenius 

parameters offer a more useful depiction of the kinetics of benzaldehyde itself, as a portion 

of benzaldehyde decomposition in experiments is due to secondary reactions. 

4.3.5 Implications for Natural Systems 

The experiments depicted here have allowed for new light to be shed on the 

behavior of benzaldehyde under hydrothermal conditions and its kinetics, yet also allow 

for insights regarding aldehydes in natural systems. Particularly illuminating is the time-

dependence of the hydrogen and oxygen contents of the benzaldehyde system as shown in 

Figure 48. At 300 °C, both hydrogen and oxygen are increasingly incorporated into the 

organics present in the experiment, except at the longest reaction time, where oxygen 

begins to decrease while hydrogen continues to increase. This addition of hydrogen and 

oxygen is reflective of water reacting with benzaldehyde. At 350 °C, oxygen content 

initially increases but quickly begins to decrease to levels well below the initial oxygen 

content of the benzaldehyde, whereas hydrogen increases. This loss of oxygen, even via 

reaction with water, combined with a steady increase in the H:C ratio, is reminiscent of the 
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Figure 48. Percent mole abundance of hydrogen (filled symbols) and oxygen (open 

symbols) in quantified organic compounds as a function of reaction time for 0.1 molal 

benzaldehyde experiments relative to the number of moles present in benzaldehyde at the 

beginning of each experiment. Experiments at 300 °C (circles) and 350 °C (squares) are 

both shown.  
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evolution of petroleum, which pushes the system toward the composition of methane. 

While poly-aromatic structures also are formed, these represent in most cases coupling of 

existing aromatic rings, where there is no increase in aromaticity. The only exception is the 

formation of anthracene from two equivalents of benzyl alcohol. Thus, on geologic time 

scales, aldehydes may act as reactive, oxygenated intermediates that lead to carboxylic 

acids, connecting them with hydrocarbons via decarboxylation. 

 It is worthwhile to consider to what extent the hydrothermal chemistry of 

benzaldehyde is reflective of aldehydes in general. Benzaldehyde lacks α-hydrogens that 

most aldehydes possess, which precludes any chemistry via enol intermediates, such as the 

Aldol condensation. Nevertheless, unless other reaction pathways kinetically inhibit it, 

most aldehydes should be capable of the disproportionation reaction, which is likely the 

major mechanism for the formation of carboxylic acids from aldehydes. Indeed, an 

analogue of benzaldehyde containing α-hydrogens, phenylacetaldehyde, underwent both 

disproportionation and Aldol reactions (Katritzky et al., 1990b). Being a bimolecular 

reaction, however, means that the high concentrations of a single reactant present in 

experiments may not reflect the situation in nature, which contains a plethora of 

compounds each at individually minute concentrations. Instead, cross-disproportionations 

may be more common, where hydride donors donate hydride to any suitable hydride 

acceptor. There are hints of this behavior in benzaldehyde experiments, for example where 

the formation of toluene becomes more and more favorable at longer reaction times as 

more benzyl alcohol is formed and the organic mixture becomes more complex.  

 The complexity of benzaldehyde experiments, especially at long reaction times, is 

due to the capabilities of the alcohol formed, benzyl alcohol. Being benzylic, benzyl 
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alcohol forms an anomalously stable carbocation upon dehydration, which allows for the 

abundance of benzylation reactions observed, which are the primary mode of C-C bond 

formation in these experiments. The alcohol of other aldehydes would lack this capability, 

but for an aldehyde possessing α-hydrogens the resulting alcohol could form the alkene, 

opening other reaction pathways. Additionally, as with disproportionation, benzylation is 

a bimolecular reaction that is favored in experiments with large concentrations of amenable 

reactants. These would likely be significantly retarded in nature, yet on geologic time 

scales, could still be a significant process when benzylic alcohols are present.  

4.4 Conclusions 

The present study offers novel insights into the chemistry of benzaldehyde under 

hydrothermal conditions. The concentration dependence on the rate confirmed overall 

second-order kinetics, yet inconsistent ratios of benzoic acid to benzyl alcohol raised doubt 

regarding the primary mechanism of benzaldehyde decomposition. Kinetic modeling of 

secondary reactions was able to explain the observed trends in benzoic acid and benzyl 

alcohol, confirming the validity of the Cannizzaro disproportionation reaction. 

Experiments with varied pH demonstrate that while the reaction is catalyzed by hydroxide 

ions under basic conditions, below neutrality water acts as the nucleophile for hydrate 

formation and its rate is not enhanced by acidic conditions. Arrhenius parameters were 

obtained over the temperature range 250-350 °C that differ from those derived from data 

in the supercritical region, meaning the present parameters are more useful for 

extrapolation of the rate of aldehyde decomposition to temperatures of geologic relevance, 

such as those found in sedimentary basins.  
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 It is likely that disproportionation is a reaction pathway of most aldehydes under 

hydrothermal conditions. While their formation is less favorable than ketones, on geologic 

time scales aldehydes may be formed from alkanes and alkenes via anti-Markovnikov 

hydration to primary alcohols and subsequent dehydrogenation. While ketone C-C bond 

cleavage may be a pathway leading to carboxylic acids in nature, particularly if naturally 

catalyzed by mineral surfaces, aldehyde disproportionation could be an equally or more 

important pathway resulting in the formation of carboxylic acids.  
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V. FUTURE WORK 

Biomolecular and geochemical analysis of YNP hot springs in the pH range of ~3-

6 have painted a dynamic picture of these hot springs and the microbial communities that 

inhabit them. Meteoric water supply is hypothesized to be an important control on hot 

spring conditions and is thought to vary on seasonal and other time scales. Thus, future 

work should focus on the temporal study of selected hot springs with sampling on a 

monthly basis. In order to more clearly evaluate the activity of Cyanidiales and 

cyanobacteria, sequencing of ribosomal RNA genes from mRNA rather than genomic 

DNA should be attempted. These results will indicate under what conditions Cyanidiales 

are active in these systems that also contain cyanobacteria. Analysis of RNA will also be 

able to unequivocally demonstrate simultaneous activity of both Cyanidiales and 

cyanobacteria if it were to occur. It is also of interest to look for and study similar hot 

springs in other parts of YNP and beyond to see how the transition between eukaryal and 

bacterial phototrophs plays out in a geographically separate area. Intriguing locales to 

search for such hot springs include Hot Springs Basin in YNP and the thermal areas of 

New Zealand.   

The gold catalysis results, while a compelling demonstration of catalysis, were 

hindered by the apparent coagulation of the 0.5-0.8 micron gold powder, which prevented 

the measurement of meaningful turnover frequencies. While the bulk powder did not seem 

to coagulate, its specific surface area was too small to determine via BET analysis. Future 

work could test other gold powders with particle sizes larger than 0.5-0.8 microns that may 

not coagulate yet still possess enough surface area for its determination. Turnover 
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frequencies on bulk gold are essential in order to compare the efficacy of bulk gold in 

comparison with other catalysts.  

The observation that gold is able to effectively heterogeneously catalyze the 

Cannizzaro reaction, which is traditionally catalyzed homogenously in solution, suggests 

that the chemistry of benzaldehyde under hydrothermal conditions can be influenced by 

the presence of solid phases. While gold is unlikely to interact with organic carbon in most 

natural hydrothermal systems, minerals are ubiquitously present in such situations. Future 

efforts involving benzaldehyde should build on the comprehensive understanding of its 

behavior in water alone by systematically testing the effect of common mineral surfaces. 

Preliminary results involving minerals are depicted in Figure 49. All experiments were 

completed for 55 hours at 250 °C with 0.1 molal benzaldehyde and 2.45 m2 of mineral, as 

determined via BET, using methods described in Chapter 4. Hematite (Fe2O3), sphalerite 

(ZnS), and corundum (Al2O3) all yield benzene, either by catalyzing decarbonylation or 

decarboxylation, the latter of which is somewhat more favorable due to the higher yields 

of benzoic acid in the presence of these minerals. Hematite and corundum enhance overall 

conversion but yield more benzoic acid than benzyl alcohol. The similarities in their effects 

are interesting because these minerals have identical crystal structures. Sphalerite seems to 

catalyze the cross-disproportionation of benzaldehyde and benzyl alcohol, which yields 

toluene and benzoic acid. Diphenylmethane is also produced in the presence of sphalerite 

under these conditions. Magnetite (Fe3O4), in contrast, does not overly affect 

disproportionation but does cause an increased yield of benzyl alcohol, possibly via 

reduction coupled to the oxidation of magnetite to hematite. 
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Figure 49. Yields of compounds (as mol %) in experiments with 0.1 molal benzaldehyde 

conducted at 250 °C for 55 hours in the presence of various mineral powders (total surface 

area of 2.45 m2). An analogous experiment without any minerals is shown for comparison. 

Yields with minerals are shown as the mean of duplicate experiments with uncertainties of 

+/- one standard deviation.  



   

162 
 

 The hypothesis that aldehydes could be an important intermediate in the production 

of carboxylic acids in natural systems warrants rigorous testing. Benzaldehyde is not robust 

for this purpose because of the unique reactivity of its alcohol and the lack of an analogous 

alkene. Phenylacetaldehyde is potentially an excellent candidate to test functional group 

interconversions involving aldehydes while directly building on existing knowledge 

involving benzaldehyde. First, secondary reactions should be categorized in comparison 

with those for benzaldehyde. New pathways are expected through mechanisms involving 

the α-hydrogens, while EAS reactions should be less significant compared to 

benzaldehyde. Second, it is essential to evaluate reversibility between functional groups. 

Based on an understanding of benzaldehyde, experiments commencing with 

phenylacetaldehyde should yield the corresponding alkane (ethylbenzene), alkene 

(styrene), alcohol (2-phenylethanol), and carboxylic acid (phenylacetic acid), yet 

reversibility amongst these functional groups should be evaluated by conducting 

experiments beginning with each to assess which of the other compounds can be obtained 

from each starting point, as has been done in other systems (e.g., Shipp et al., 2013). The 

alkene, styrene, presents a potential challenge to this goal, however. Styrene may be quite 

reactive and thus not be observed in phenylacetaldehyde experiments; more importantly, 

styrene may tend toward polymerization under certain conditions, which is not conducive 

to the current analytical approaches. Styrene is also expected to yield 1-phenylethanol 

much more readily than 2-phenylethanol, which may obfuscate the interconversions 

through the aldehyde. Given these challenges, hydrocinnamaldehyde could be a more 

appropriate aldehyde to look for reversibility between all functional groups through an 

aldehyde intermediate.   
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ABUNDANCE DATA, SAMPLE CHROMATOGRAMS, AND SPECTRA OF 

PIGMENT ANALYSES  
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Table A1. Semi-quantitative abundance data for chlorophyll a and its derivatives.a 

Assignment chl. a chl. a' phe. a phe. a' 
phe. a 

allomer 
pyrophe. a phede. a 

Peak numberb B2 B3 B6 B5 B4 B7 B1 

Soret band (nm) 431 432 409 409 409 410 408 

Qy band (nm) 665 665 666 666 666 666 665 

molecular ion (m/z) 893.4 893.5 871.5 871.5 887.5 813.5 593.2 

FF1 ndc nd 20674 2898 3872 10418 28521 

IG1 30452 396 1214 174 231 157 6180 

IG2 62118 2475 1766 325 nd 572 3328 

IG3 90981 1707 35160 5301 5152 586 2388 

RN1-2011 12749 144 528 65 817 1894 nd 

RN1-2012 93304 1479 2747 515 2494 286 nd 

RN2 100392 3310 33731 6256 22130 15701 3863 

RN3 223066 2857 14790 2512 9688 5654 nd 

RS1 144631 4956 9389 2041 3534 3000 4786 

RS2 41007 1158 7702 1435 5461 3388 nd 

RS3 73171 1806 16080 2516 15697 3344 2303 

RS4 83014 980 3615 385 1265 172 nd 

RS5-2011 73321 1193 7088 1303 1259 1288 3115 

RS5-2012 nd nd 446 199 307 999 nd 
adata from observation at 665 nm. bfigure A1. cnot detected. 
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Table A4. Quantitative abundances for selected pigments expressed as µmol/g N. 
 chlorophyll a β-carotene zeaxanthina β-cryptoxanthina 

FF1 ndb 2.2 3.5 nd 

IG1 16.7 2.2 7.2 0.6 

IG2 34.0 4.8 20.2 1.6 

IG3 49.7 6.4 5.2 nd 

RN1-2011 7.0 2.3 0.5 nd 

RN1-2012 51.0 10.8 4.0 nd 

RN2 54.9 12.8 4.3 nd 

RN3 122.0 26.2 6.2 nd 

RS1 79.1 59.3 12.9 nd 

RS2 22.4 3.2 1.1 nd 

RS3 40.0 3.8 1.7 nd 

RS4 45.4 5.2 2.1 nd 

RS5-2011 40.1 8.8 2.5 nd 

RS5-2012 nd 0.2 0.2 nd 
aquantified using the response factor for β-carotene and not corrected for slight differences in molar 

absorptivity. bnot detected. 
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Figure A1. Typical chromatograms recorded at 475 nm (A) and 665 nm (B) with major 

peaks numbered (sample RS1 shown) as well as baseline-corrected diode array spectra for 

selected major pigments. The chromatogram and peak number are indicated in the upper 

left of each spectrum. Peak A7 is hypothesized to be lycopene (spectrum and data not 

shown).  
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Figure A2. Baseline-corrected diode-array spectra of other chlorophylls. The sample from 

which each spectrum arises is indicated in the upper right corner.   
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APPENDIX B 

SCANNING ELECTRON MICROGRAPHS OF NEW AND USED GOLD POWDERS  
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SEM of new 0.5-0.8 micron powder 

 

Figure B1. New 0.5-0.8 micron gold powder.  
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Figure B2. New 0.5-0.8 micron gold powder.  
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Figure B3. New 0.5-0.8 micron gold powder.  



   

195 
 

 

Figure B4. New 0.5-0.8 micron gold powder.  
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Figure B5. New 0.5-0.8 micron gold powder.  
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Figure B6. New 0.5-0.8 micron gold powder.   
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SEM of used 0.5-0.8 micron powder 

 

Figure B7. Used 0.5-0.8 micron gold powder (broad view with regions indicated).   



   

199 
 

 

Figure B8. Used 0.5-0.8 micron gold powder (region A).  
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Figure B9. Used 0.5-0.8 micron gold powder (region A; boxed area in Figure B8).   
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Figure B10. Used 0.5-0.8 micron gold powder (region A; zoomed in).   
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Figure B11. Used 0.5-0.8 micron gold powder (region B).   
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Figure B12. Used 0.5-0.8 micron gold powder (region B; boxed area in Figure B11).   
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Figure B13. Used 0.5-0.8 micron gold powder (region B; boxed area in Figure B12).   
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Figure B14. Used 0.5-0.8 micron gold powder (region B; zoomed in).   



   

206 
 

 

Figure B15. Used 0.5-0.8 micron gold powder (region C).   
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Figure B16. Used 0.5-0.8 micron gold powder (region C; boxed area in Figure B15).   
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Figure B17. Used 0.5-0.8 micron gold powder (region C; zoomed in).   
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Figure B18. Used 0.5-0.8 micron gold powder (region C; zoomed in).   
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Figure B19. Used 0.5-0.8 micron gold powder (region C; zoomed in).   



   

211 
 

 

Figure B20. Used 0.5-0.8 micron gold powder (region D).   
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Figure B21. Used 0.5-0.8 micron gold powder (region D; boxed area in Figure B20).   
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Figure B22. Used 0.5-0.8 micron gold powder (region D; boxed area in Figure B21).   
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SEM of new bulk gold 

 

Figure B23. New bulk gold powder (broad view with regions indicated).   
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Figure B24. New bulk gold powder (region A).   



   

216 
 

 

Figure B25. New bulk gold powder (region A; boxed area in Figure B24).   
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Figure B26. New bulk gold powder (region A; particle 1).   
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Figure B27. New bulk gold powder (region A; particle 2).   
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Figure B28. New bulk gold powder (region A; particle 3).   
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Figure B29. New bulk gold powder (region B).   
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Figure B30. New bulk gold powder (region B; particle 1).   
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Figure B31. New bulk gold powder (region B; particle 1, zoomed in).   
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Figure B32. New bulk gold powder (region B; area 2).   
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Figure B33. New bulk gold powder (region B; area 2, zoomed in).   
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SEM of used bulk gold 

 

Figure B34. Used bulk gold powder (broad view with selected particles indicated).   
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Figure B35. Used bulk gold powder (particle 1 in Figure B34).   
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Figure B36. Used bulk gold powder (particle 1 in Figure B34, zoomed in).   
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Figure B37. Used bulk gold powder (particle 2 in Figure B34).   
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Figure B38. Used bulk gold powder (particle 2 in Figure B34, zoomed in).   
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APPENDIX C 

SAMPLE CHROMATOGRAM FROM BENZALDEHYDE EXPERIMENTS 

(300 °C, 453 HOURS) 
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Figure C1. Typical chromatogram from benzaldehyde experiments (300 °C, 0.1 molal 

starting concentration, 453 hours). Selected peaks are labelled with the structure of the 

analyte; isomers of dibenzylbenzene are labelled as dibenzylbenzene-1, dibenzylbenzene-

2, or para-dibenylbenzene (i.e., 1,4-dibenzylbenzene) corresponding to Table 8. 

Approximate three-ring and four-ring regions are indicated with horizontal bars. 



   

233 
 

  



   

234 
 

Figure C2. Two-ring region of chromatogram in Figure C1 with the structure of identified 

analytes indicated. Isomers are labelled as ortho, meta, or para. Numbered peaks are as 

follows: 1, bibenzyl; 2, trans-stilbene; 3, phenylacetophenone; 4, 9-fluorenone.  
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