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ABSTRACT 

The dawn of Internet of Things (IoT) has opened the opportunity for 

mainstream adoption of machine learning analytics. However, most research in 

machine learning has focused on discovery of new algorithms or fine-tuning the 

performance of existing algorithms. Little exists on the process of taking an 

algorithm from the lab-environment into the real-world, culminating in sustained 

value. Real-world applications are typically characterized by dynamic non-stationary 

systems with requirements around feasibility, stability and maintainability. Not 

much has been done to establish standards around the unique analytics demands of 

real-world scenarios. 

This research explores the problem of the why so few of the published 

algorithms enter production and furthermore, fewer end up generating sustained 

value. The dissertation proposes a ‘Design for Deployment’ (DFD) framework to 

successfully build machine learning analytics so they can be deployed to generate 

sustained value. The framework emphasizes and elaborates the often neglected but 

immensely important latter steps of an analytics process: ‘Evaluation’ and 

‘Deployment’. A representative evaluation framework is proposed that incorporates 

the temporal-shifts and dynamism of real-world scenarios. Additionally, the 

recommended infrastructure allows analytics projects to pivot rapidly when a 

particular venture does not materialize. Deployment needs and apprehensions of the 

industry are identified and gaps addressed through a 4-step process for sustainable 

deployment. Lastly, the need for analytics as a functional area (like finance and IT) 

is identified to maximize the return on machine-learning deployment. 
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The framework and process is demonstrated in semiconductor manufacturing 

– it is highly complex process involving hundreds of optical, electrical, chemical, 

mechanical, thermal, electrochemical and software processes which makes it a 

highly dynamic non-stationary system. Due to the 24/7 uptime requirements in 

manufacturing, high-reliability and fail-safe are a must. Moreover, the ever growing 

volumes mean that the system must be highly scalable. Lastly, due to the high cost 

of change, sustained value proposition is a must for any proposed changes. Hence 

the context is ideal to explore the issues involved. The enterprise use-cases are used 

to demonstrate the robustness of the framework in addressing challenges 

encountered in the end-to-end process of productizing machine learning analytics in 

dynamic read-world scenarios. 
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CHAPTER 1                                                                                         

INTRODUCTION 

1.1 Background 

The Internet of Things efforts have taken predictive analytics from a niche 

academic interest to mainstream visibility across enterprises [1] and even general 

public in the last few years [2].  This has led to an eagerness to deploy big-data 

analytics systems sometimes without much heed to ensuring technical viability or 

economic feasibility [3]. The expectation in industry seems to be that by mere use of 

large quantities of data and “smart” algorithms, valuable results will follow [4]. 

On the other hand, most machine learning undertakings in academia are 

focused on algorithm development to improve accuracy [5]. Typically, after 

identifying a domain, data is gathered, painstakingly cleaned and new algorithms or 

amalgamation of existing ones are fashioned. Their performance is compared to both 

data and algorithm benchmarks and the results are published [6]. However, only a 

small percentage result in viable products that add value as illustrated in Figure 1. 

Figure 1. Small % of “New” ML Algorithms Become Products that Add Value 
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The results of the Netflix Challenge of 2006 are indicative of the state of 

affairs. Over 51,051 contestants from 186 countries competed over a period of two 

years with the goal of identifying a predictive algorithm that would beat the state-of-

art method used by Netflix for movie-rating prediction by more than 10%. The 

organizers concluded: “We evaluated some of the new methods offline but the 

additional accuracy gains that we measured did not seem to justify the engineering 

effort needed to bring them into a production environment.” [7] 

Another headline from a prominent technical online publication in 2016 read, 

“Facebook fires human editors, algorithm immediately posts fake news.”  The article 

was referring to how Facebook promoted a story for 8+ hours on its “Trending” page 

before realizing that the news in question was false (due to a long chain of 

misquotes). Incidents like this breed mistrust and skepticism in machine-learning 

algorithms and are preventable if systematic evaluation and deployment processes 

are followed. 

Figure 2. Gartner Hype-cycle (2016) for Emerging Technologies 
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The dichotomy is clear: whereas both academia and industry focus on the 

algorithm, there is little to show in terms of tangible results [8] [9]. The conundrum 

exists in part due to focus on the algorithms whereas the value lies in building 

deployable validated products [10]. The 2016 Gartner hype cycle for emerging 

technologies shown in Figure 2 puts Machine-Learning at the ‘peak of inflated 

expectations’. Thus while expectations are currently high, soon to follow is the 

‘trough of disillusionment’, which is characterized by reduced funding for projects. 

The technologies that have crossed this chasm to become mainstream, are those 

where the community has collaborated on a common standard investing in the often 

seemingly mundane tasks of stringent evaluation and integration methodologies.  

Computer science went through a similar juncture before reaching its current 

form. In its early days, software development focused on creating programming 

languages. Continuous project planning delays, low productivity, heavy maintenance 

expenses and failure to meet user expectations had led by 1968 to the software 

crisis, the term coined at the first NATO conference on software development. This 

crisis was caused by the fact that there were no formal methodologies. The software 

community began to assimilate ideas from other fields of engineering into software 

project development - this was the origin of software engineering (SE). The field of 

machine-learning needs a similar supporting discipline due to the uniqueness of 

learning systems. The CRISP-DM (Cross Industry Standard Process for Data 

Mining) was proposed in 1999 to guide the industry on large-scale adoption of 

analytics. Although it has been widely employed since, it focuses on knowledge 

extraction and not necessarily value extraction.  There is an urgent need to extended 

the framework to cover the unique demands of real-world scenarios. 
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1.2 Claims 

This work is focused on identifying the challenges, pitfalls and nuances faced 

in taking an algorithm from the lab environment into the real-world. The thesis is 

that unless the many interesting algorithms are put to work outside of the lab and 

research world to serve humanity, the dream of an analytics driven world will 

remain a dream. 

The second claim is that there is lack of a well-defined methodology for 

development, evaluation, deployment and maintenance of machine-learning 

analytics in the industry. Although frameworks like CRISP-DM exist, they were 

developed in an era where knowledge extraction was the primary focus of analytics 

and application of the results into the field was still assumed to be manual. In the 

authors interviews with some of the architects of CRISP-DM, they confirmed that 

the group agreed to declare that mission-critical systems were out of scope of the 

methodology. 

The third claim is that the latter phases of evaluation and deployment of ML 

algorithms are heavily underserved. The current frameworks and methodologies 

focus on the front (business case and data understanding) and middle (data-

precreation and model-development) phases. With the proliferation of cleaning tools 

and algorithm packages, the former phases are headed towards standardization 

with availability of PMML. The latter phases of evaluation and deployment remain 

underserved. The issue is being raised in industry conferences and leaders in large-

scale users of analytics like Google, Facebook, LinkedIn, Netflix, Microsoft and Intel. 

However, there is not much activity in the research community although this is a 

ripe area for research. 
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The fourth claim is that the use of accuracy as a metric and cross-validation 

as a methodology for evaluation and comparison of machine learning algorithms is 

misguided. There could be cases where the accuracy is deceptively high whereas the 

algorithm need not be much better than a guess – in most rare-class scenarios [5] 

pp11. Similarly, cross-validation does not have the mathematical properties of hold-

out validation that ensure the estimate is close to reality. As data-set size decreases, 

the variation of cross-validation skyrockets thus rendering it an unreliable estimate. 

The fifth claim is that evaluations for real-world scenarios require that the 

temporal gaps and shifts be included. There are unavoidable time-gaps and shifts in 

the real-world between model training and prediction that have a large impact on 

algorithm performance. Lab evaluations of without these temporal adjustments are 

overly optimistic thus leading to lofty expectations of machine-learning algorithms. 

The sixth claim is that all models need to be updated, refreshed or retrained 

in real-world scenarios as systems have multiple levels of dynamics that cannot all 

be included in the model realistically. 

The seventh claim is that for successful deployment of machine learning 

algorithms it is critical that attention is paid various deterrents and address them in 

a systematic way using available incentives. 

The eight claim is that machine-learning just like other types of development 

need a strong architecture that results in a happy transplant into the broader 

system and design-patterns that ensure sustainability. 

The ninth claim is that analytics is a permanent function just like finance, 

IT, marketing, sales etc. Without such a function, analytics will never bear the full 

fruit of its potential. 
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1.3 Organization 

The following chapters elucidate the claims made in the previous section and 

then propose solutions to address the same.  The rest of this explains the domain of 

semiconductor manufacturing and why this is a representative case to demonstrate 

the key contributions of this work. 

Chapter 2 starts by justifying why analytics frameworks are necessary in the 

first place. Next the current frameworks are mapped by their suitability for industry 

and academic as well as if they are human centric versus data-centric thus providing 

a mental map of the state of the art in section 2.2. As the idea is to propose a 

framework that incorporates all the good that has already been developed, each of 

the salient frameworks till date are scanned and unique contributions and 

advancements are highlighted in section 2.3. In general, the frameworks evolved by 

focusing on the central algorithm development theme, then expanding into the front-

end business-case and only lately has back-end phases received attention. Thus gaps 

are then identified. Based on the preceding analysis, the design for deployment 

(DFD) framework is proposed in 2.5 with emphasis on continuous validation. The 

framework is then demonstrated in semiconductor manufacturing in section Error! 

Reference source not found. and results are discussed. 

Chapter 3 is dedicated to the evaluation phase of analytics projects. Section 

3.1 explains the problem and section Error! Reference source not found. scans the 

state of the art focusing on the purpose, metrics and methods of evaluation. The next 

section sheds light on the temporal characteristics in real-world that greatly affect 

evaluation results and are not necessarily considered or exist in a lab environment. 

Base the prior analysis, a three-pronged approach is recommended in section 3.2.4 
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for dynamic evaluation of machine learning algorithms such that the results closely 

estimate performance in real-world scenarios. Finally, the evaluation framework is 

demonstrated on the enterprise use-case and results are discussed. 

Chapter 4 is dedicated to the deployment phase of the analytics process. 

Section 4.1 covers the problem statement and current state, hypothesizing the cause 

for the reason for the gap in robust deployment methodologies. Section 4.2, lists the 

real-world challenges, apprehensions and nuances of deploying machine-learning in 

real-world settings. Based on the previous analysis, a systematic four-pronged 

approach is recommended to ensure certain non-negotiables, enable certain 

capabilities, evaluate the important elements and establish processes and practices 

that ensure smooth and sustainable deployment. The approach is demonstrated on a 

deployment in semiconductor manufacturing with impressive results. 

Chapter 5 provides a summary of the work and highlights the key 

contributions. Importantly, it points out areas for further research and cross 

community collaboration towards standards and practices that would benefit the 

analytics community and entire industry as a whole.  
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1.4 Domain 

Semiconductor manufacturing is one of the most complex multi-step 

processes in the world [11]. It is a highly dynamic environment and easily one of the 

largest data-systems on the planet. The manufacturing environment places strict 

constraints on system reliability and stability [12]. Moreover, due to the high cost of 

change, proven value is hard requirement to any proposed changes to the system. 

Hence semiconductor context is ideal to explore industrial deployment issues [13]. 

The research was done in the context of semiconductor manufacturing at Intel. 

A simplified Semiconductor Manufacturing flow is illustrated in Figure 3. 

Fabs “grow” transistors on bare wafers through hundreds of complex photo-

electrochemical process steps. The transistors are arranged to form several-hundred 

die on the wafer – essentially each die ultimately becomes part of a microprocessor. 

At the end of the Fab process is a test step called Sort-Test that ensures the die are 

Figure 3. Simplified Semiconductor Manufacturing Process 
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good and sorts the die into different power buckets, based on the current drawn by 

the die. Power consumption is one of the defining characteristics of a microprocessor 

as it determines the type of market or application the microprocessor is sold into. 

Additionally, other measurements are sampled that help engineers obtain insights 

into the characteristics of the die as well as Fab process health. The sort-test results 

are stored in a database to be used later. Subsequent process steps laser-score and 

saw the die to separate them. Then the die are picked out in multiple sweeps of the 

pick and place robot. Each sweep picks die of the same power bucket (based on sort-

test results from the database) onto a tape which is wrapped around a reel. The reels 

are stored as inventory or sent along (kitted) to the assembly factory based on 

customer orders for parts of certain power and speed bucket. 

In the Assembly factory, die are picked off the reels and placed on substrates 

(AKA packages). Substrates are high density circuit boards that allow the 

semiconductor die to electrically connect to motherboards. The assembly process 

involves several steps like under-fill application, flux application, solder-ball attach, 

and heated in an oven for the solder-ball to reflow and thus establish contact 

between the bumps on the die with pads on the substrate. Thus the die goes through 

physical change during assembly and hence its electrical characteristics have also 

changed. A series of test steps ensure the die are good and the Class-Test step “bins” 

the packaged die (AKA ‘Unit’) into speed bins based on how fast the unit is able to 

run. The average selling price (ASP) of units is highly dependent on the power 

bucket and speed bin of the unit. Most of the Fab, Sort, Assembly and Test steps are 

batch processes that process lots. Multiple tools and chambers can be deployed for 

the production of this device [14]. 
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Due to the variation introduced by material, machines, methods, metrics, 

personnel and environment of the manufacturing flow, the resulting speed and 

power bins of each unit can vary widely from lot to lot, wafer to wafer, within wafer, 

and lastly unit to unit. While process engineers in the factory try to keep this 

variation to a minimum to obtain higher yields [15] (proportion of within spec or 

“good” parts), residual variation is unavoidable especially at the early stages of a 

new process generation. However due to the continual efforts to minimize variation, 

and keep yields high, tests are removed and added and (controlled) process changes 

are being made. This makes the system highly dynamic [16]. 

The whole process can take anywhere from several weeks to a few months. 

The variation in processing times is partly due to inventory and “mix” optimizations 

in the flow. The other reason for the variation is because of the ‘virtual factory’ 

concept. To ensure manufacturing efficiency and efficiency of scale, Intel factories 

are distributed all over the world hence a certain processor could start its journey as 

a die in a Fab/Sort facility at one location in the USA, and then be assembled and 

class-tested in Malaysia. Each site and factory has its own database to store 

manufacturing and test data due to the size of the data involved and given that the 

data is used in subsequent steps of manufacturing which needs 24/7 uptime. 

There is great value in being able to predict behavior of units down the 

manufacturing flow based on current measurements [12]. The predictions can be 

used for optimized processing [15]. There are a few 100 process steps and each step 

can generate several hundred test and monitoring readings. This combined with the 

millions of units manufactured each week results in several Terabytes of data 

generated every week that goes into Peta-Scale data systems. 
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CHAPTER 2                                                                                                        

DESIGN FOR DEPLOYMENT (DFD) 

This starts with illucidating the need for analytic frameworks. This is 

followed by a survey of existing frameworks highlighting the unique contributions of 

each. Lastly the shortcoming of the existing frameworks are discussed in the context 

of current nature of analytics. Thus a case is made for extending the frameworks. 

Finallly a new framework is proposed and then demostrated in a real-world case. 

2.1 Need for Frameworks 

It has been argued that all one needs to engage in data science is data and a 

willingness to “give it a try”. Although this view is attractive from the perspective of 

enthusiastic data-science consultants who wish to expand the use of the technology, 

it can only serve the purposes of one-shot proofs of concept or preliminary studies. It 

is not representative of the reality of deploying data-science within existing business 

processes. In such contexts, one needs two additional ingredients: a framework or 

methodology, and supporting tools [17]. 

With increasing popularity of tools and readily available data, the risk of 

data-dredging still remains – drawing nonsense conclusions from blind application 

of algorithms to data. Standardization leads to higher trust in the results derived 

from proper application of the framework thus helping subside skepticism and 

promote acceptance of machine-learning based systems. Additionally, some analytics 

projects can take months to complete and hence the sponsors need to see milestones 

that can be met to ascertain progress in order to continue sponsorship [18]. This 

becomes especially challenging as data-science is a creative process requiring many 

iterations, skills and knowledge. Without a standard framework, the success or 
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failure of a data mining project is highly dependent on the particular person or team 

carrying it out and successful practice can not necessarily be repeated across the 

enterprise. Data-science needs a standard approach which will help translate 

business problems into data science tasks, suggest appropriate data transformations 

and modeling techniques, and provide means for evaluating the effectiveness of the 

results and documenting the experience [19]. There are several reasons to have a 

standardized framework: 

1. The end product must be useful for the sponsor: A blind, unstructured 

application of machine-learning techniques to input data, called data 

dredging, frequently produces knowledge that, while interesting, may not 

contribute to solving the business problem. Thus leading to the failure of 

the project. Only through the application of well-defined analytic 

frameworks will the end product be valid, novel, useful, and 

understandable [18]. 

2. The sponsor must understand (be comfortable with) the results: Decision 

makers often do not want to devote significant time and resources to the 

pursuit of formal data-analysis methods, but rather prefer to rely heavily 

on the skills and experience of domain experts as their source of 

information. However, because they are ultimately responsible for the 

decision(s), they frequently want to understand (be comfortable with) the 

technology applied to those solutions. A well-defined logical framework 

can be presented to decision-makers who may have difficulty 

understanding the need, value, and mechanics behind analytics thus 

quelling any misgivings they may have. 
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3. The sponsor must see progress of the project to continue funding: Data 

analytics undertakings need significant amount of resources, effort and 

time. Thus they take time to bear fruit. The sponsors need to see 

milestones that can be met to ascertain progress in order to continue 

sponsorship. Without a standard framework, it would be difficult for the 

sponsors to ascertain progress as they are typically not well-versed in 

details of the process or the risks involved. 

4. The sponsor must be made aware of the risks: Not all analytics projects 

result in success. Each phase comes with its own risks. For example, the 

data owned by the enterprise might not have all features needed to build 

a reasonable model. The model may not result in a significantly better 

performance than the incumbent method or may require cost-prohibitive 

changes to the process. Data science practitioners should ensure that the 

potential contributions are not overstated and that users understand the 

true nature along with their limitations [20]. Without a structured, model 

to highlight risks the sponsor could have unrealistic expectations and/or 

hold the data-scientist responsible for the failure.  

5. Data-science projects require project management: Much like any other 

development effort, project-management for data-science effort needs to 

be grounded in a solid framework. Most data-science projects involve 

teamwork and thus require careful planning and scheduling. For most 

project management specialists, data-science is a new realm. Therefore, 

these specialists need a definition of what such projects involve and how 

to carry them out in order to develop a sound project schedule [18]. 
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6. There is a widely recognized need for standardization of data-science: The 

challenge for modern data scientists is to come up with widely accepted 

standards that will stimulate major industry growth. Standardization of 

the frameworks would enable the development of standardized methods 

and procedures, thereby enabling enterprises to deploy their projects 

more easily. It would lead directly to project performance that is faster, 

cheaper, more reliable, and more manageable. The standards would 

promote the development and delivery of solutions that use business 

terminology rather than the traditional language of algorithms, matrices, 

criterions, complexities, and the like, resulting in greater exposure and 

acceptability for the field. 

In its early days, software development focused on creating programming 

languages and algorithms that were capable of solving almost any problem type. The 

software crisis of 1968 was a culmination of evolving hardware, continuous project 

planning delays, low productivity, heavy maintenance expenses, and failure to meet 

user expectations. This crisis was caused by the fact that there were no formal 

methods and methodologies, support tools or proper development project 

management. The software community realized the problem and decided to borrow 

ideas from other fields of engineering. This was the origin of software engineering 

(SE). Process models and methodologies for software development projects began to 

materialize leading to considerably improved projects.  This solved some of its 

earlier problems, and software development grew to be a branch of engineering. The 

shift meant that project management and quality assurance problems were being 

solved. Additionally, it is helping to increase productivity and improve software 
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maintenance. The history of knowledge discovery in databases (KDD), Data Mining 

(DM), now known as Data Science, is not much different [21]. While it is true that 

the number of applied projects in the data-science is expanding rapidly, neither all 

the project results are in use nor do all projects end successfully. The failure rate is 

actually as high as 60% [22]. On the flip-side, standardized frameworks can have 

advantages all-round the value-chain. 

The market, will benefit greatly from a common framework. The framework 

can serve as a common reference point to discuss data analytics and will increase 

the understanding of crucial data analytics issues by all participants, especially at 

the customers’ side. But most importantly, it will help establish data-science as a 

standard engineering practice thus avoiding skepticism around adoption by 

mainstream businesses. Stakeholders can have more reasonable expectations as to 

how the project will proceed and what to expect at the end. It will be much easier to 

compare different tool-providers and consulting offers to pick the best. A common 

framework will also support the dissemination of knowledge and experience within 

the organization [19]. 

Analysts performing data science projects can also benefit in many ways. For 

novices, the framework provides guidance, helps to structure the project, and gives 

advice for each task of the process. Even experienced analysts can benefit from check 

lists for each task to make sure that nothing important has been forgotten. But the 

most important role of a common framework is for recording and sharing of results. 

It helps to link the different tools and different people with diverse skills and 

backgrounds together to form an efficient and effective practice. 
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The vendors will benefit from the increased comfort level of their customers. 

There is less need to educate customers about general issues of data-science. The 

focus shifts from whether data science should be used at all to how it can be used to 

solve the business questions. Vendors can also add values to their products, for 

instance offering guidance through the process or reuse of results and experiences. 

Service providers can train their personnel to a consistent level of expertise. 

Unfortunately, there is very little literature on the process of taking an 

algorithm from the lab-environment to production environment [23]. Figure 4 shows 

articles retrieved by year between 1975 and 2015 for some well-known machine 

learning algorithms and ‘CRISP-DM’ the widely accepted process for data-mining 

endeavors in the real-world [24]. It is clear that research on process is underserved 

by several orders of magnitude. 
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2.2 Classification of Frameworks 

Several frameworks have been created since the dawn of analytics; many 

have found wide acceptance in the analytics community. There have been efforts to 

survey, compare and contrast frameworks, the best of which can be found in [25] and 

[21]. While Kurgan et al. [25], focus on data-mining process-models popularized in 

scientific publications that are subject to peer-review evaluation, Marbán et al. [21] 

pay attention to real-life applications in industry. The latest survey-centric 

publication by Mariscal et al. [26] is the most comprehensive covering all major 

processes including non-analytic methodologies like 6-sigma. Since the initial 

concept of an analytics framework in the early 1990s, several classifications have 

emerged.  

Human-centric vs. Data-centric: The seminal work in [27] led to two major 

types of frameworks: human centric and data centric. The human-centric process 

was defined as a series of knowledge-intensive tasks consisting of complex 

interactions, protracted over time, between a human and a database. On the other 

hand, data-centric models are structured as sequences of steps that focus on 

performing manipulation and analysis of data and information surrounding the 

data, such as domain knowledge and extracted results [25]. For mainstream 

adoption of analytics, they need to be within reach of people not specialized in data-

science which means simpler off-the-shelf tools that can be used across several 

application domains.  With increasing focus on large scale undertakings with big-

data there is a higher need for automation. There are exceptions to this trend in 

domains like medicine and mission-critical systems where due to regulatory or legal 

reasons, the final responsibility of the decision needs to lie with a human [28].  
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 Industrial vs. Academic: The academic oriented methodologies focus on the 

central data-preparation and modeling steps and aim towards knowledge-extraction; 

whereas, the industrial methodologies focus on application starting with a business-

goal and culminating in deployment. The industrial methodologies tend to include 

aspects of resourcing, program-management and integration. 

Tool-agnostic vs. tool-specific: Some of the work in creating standard 

methodologies or framework is invariably driven by tool-vendors due to a strong 

business motivation for several reasons including establishing interoperability, 

Figure 5. Major Analytics Methodologies by Classification 
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talent-pool, and, largely stickiness to the product or service offered. Whereas a big 

part of the analytic community favors tool-agnostic methodologies that can be 

adopted regardless of the tool-choice and adapted to their changing needs. 

Figure 5 shows the methodologies and where they lie in quadrants defined by 

the classification mentioned above. One sees that there is a reasonable proliferation 

of methodologies albeit not as large as algorithms. The earlier methodologies are 

more research focused and as analytics became mainstream, more industry oriented 

methodologies have been developed. Additionally, the lower-half is sparser than the 

upper as the incentive to standardize methodology is not as high in academics. 

Particularly, the lower-left quadrant is the domain of research. The number of tool-

agnostic methodologies exceeds the tool-agnostic. Surprisingly, the tool-specific 

methodologies are more human-centric than the tool-agnostic ones indicating the 

autonomous analytics is still a work in progress. The dotted ‘X’ indicates a 

theoretical goal of a data-centric highly autonomous self-learning system that needs 

minimum human supervision. The dotted ‘O’ shows where the recommendation of 

this research would map to. 
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2.3 Salient Contributions from Literature 

The salient contributions in the evolution of frameworks are covered. Figure 

6 shows the steps of each of the methodologies covered herein - they have either had 

a unique contribution or played a major part in forming the latest thought. 

2.3.1 KDD, Fayyad et al. 1993 

KDD is defined as the non-trivial process of identifying valid, novel, 

potentially useful and ultimately understandable patterns in data. The first 

reported KDD model consists of nine steps and was developed by Fayyad et al. in the 

mid-1990s [27] [29] [30]. KDD refers to the overall process whereas data mining step 

refers to the application of algorithms for extracting patterns from data. This 

methodology was the first to acknowledged that extracting knowledge from data 

involved more than the algorithm itself. It also includes the choice of encoding 

schemes, preprocessing, sampling and projections of the data before the data mining 

step. The KDD process is interactive and iterative with many decisions made by the 

user. Although the role of understanding the domain and data cleaning are 

highlighted, the roles of evaluation and deployment are not mentioned. The method 

is more academic-oriented with knowledge as result. 

There have been many derivatives of the KDD process. Cabena et al., defined  

the process of extracting previously unknown, valid, and actionable information 

from large databases to make crucial business decisions [31]. The key enhancement 

is an emphasis on actionable information geared towards business decision making. 

The human-centered model by Brachman & Anand on the other hand emphasized 

the interactive involvement of a data analyst during the process [32]. The human 

centric model was extended to industrial data by Gertosio and Dussauchoy [33].  
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An example of tool-specific derivative is SEMMA (Sample, Explore, Modify, 

Model, and Assess). SAS Enterprise Miner commercial analytics software platform 

is built around it [34]. SEMMA pays no attention to the business problem or 

deployment [24]. SAS claims SEMMA is a logical organization of the functional tool 

set and not a methodology [35]. However, SEMMA has gained popularity recently 

because of the popularity of the tool and the tool-based step-by-step guidance offered 

to non-data-scientist practitioners of analytics. 

2.3.2 Anand and Buchner, 1999 

This model evolved through a couple of iterations before reaching its final 

stage as the internet/web-enabled knowledge discovery process [36] which consists of 

9 steps as shown in Figure 6. The two major contributions of this model is the 

addition of the ‘Management Problem’ as the driver for data analytics undertakings 

and more importantly, the elaboration of the ‘Knowledge Port-processing’ step. In 

the elaboration, it is made clear that knowledge must be validated before it can be 

used [36]. Additionally, it is acknowledged that as the knowledge discovery process 

is dynamic and prone to updates, the discovered patterns have to be maintained 

[36]. Setting up a knowledge maintenance mechanism consists of re-applying the 

already set up process for the particular problem or using an incremental 

methodology that updates the knowledge as the data logged changes. It does not 

include the needed activities to use the discovered knowledge [26]. The mechanism 

to store and update the knowledge is not necessarily elaborated but the ideas is 

highly relevant to the dynamic environments of today. This contribution formed a 

key ingredient in the creation of the more widely accepted CRISP-DM methodology. 
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2.3.3 Two Crows, 1998 

The Two Crows methodology was initially proposed by Two Crows 

Corporation in 1998 and then refined based on the (pre-release) CRISP-DM model 

[37]. This methodology recognized the iterative nature of the entire process as 

indicated by the return arrows in Figure 6. More notably, it proposed three new 

highly relevant steps for practical analytics well before its time – building and 

maintaining a mining database, exploring the data, model-evaluation and deploying 

the model. Following are details on these three steps. Note not all the steps are 

covered herein and can be found in [37]. 

2.3.3.1 Building a Data Mining Database 

The data to be mined should be collected in a database. In general, it’s not a 

good idea to reuse the corporate data warehouse. Instead, creating a separate data 

mart is recommended for the following reasons: 

 Mining the data will involve highly active use of the data warehouse. 

It will often mean joining many tables together and accessing 

substantial portions of the warehouse. A single trial model may 

require many passes through much of the warehouse. Thus possibly 

causing resource allocation problems. 

  It is often overlooked that mining almost entails modifying the data 

from the data warehouse. One may want to bring in data from outside 

the company to overlay on the data warehouse data or add new fields 

computed from existing fields. Additional data may be gathered 

through surveys. Other projects building different models from the 

data warehouse (some of whom will use the same data) may want to 
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make similar alterations to the warehouse. However, data warehouse 

administrators do not look kindly on having data changed in what is 

unquestionably a corporate resource. 

 One more reason for a separate database is that the structure of the 

corporate data warehouse may not easily support the kinds of 

exploration needed to understand the data. This includes queries 

summarizing the data, multi-dimensional reports (sometimes called 

pivot tables), and many different kinds of graphs or visualizations. 

 Lastly, performance, reliability and other considerations might 

necessitate that this data is stored in a data-store with different 

physical design. 

Creating, loading and maintain the data-mining database is a multi-step 

process and will discussed later in 3.3.1. 

2.3.3.2 Explore the Data 

Before building good predictive models, one must understand the data. The 

goal is to identify the most important fields in predicting an outcome, and determine 

which derived values may be useful. Graphing and visualization tools are a vital aid 

in data preparation and their importance to effective data analysis cannot be 

overemphasized. Data visualization most often provides the Aha! leading to new 

insights and success [37]. In a data set with hundreds or even thousands of columns, 

exploring the data can be as time-consuming and labor-intensive as it is 

illuminating. A good interface and fast computer response are very important in this 

phase because the very nature of the exploration is changed when one has to wait 

even 20 minutes for some graphs, let alone a day [37]. 
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2.3.3.3 Evaluation and Interpretation 

The Two Crows methodology emphasizes the importance of model validation 

based on a few reasons. First, the accuracy rate found during testing (cross-

validation) applies only to the data on which the model was built. In practice, the 

accuracy may vary if the data to which the model is applied differs in important and 

unknowable ways from the original data. More importantly, accuracy by itself is not 

necessarily the right metric for selecting the best model. One needs to carefully 

consider the type of errors and the costs associated with them. The confusion-matrix 

is recommended as means of estimating quality by combining the cost of different 

type of errors. The ‘Lift’ (gain) chart is another suggested tool that shows how 

responses are changed by application of the model versus the status-quo. The 

methodology presses for assessing the value of the model and admonishes that a 

pattern may be interesting, but acting on it may cost more than the revenue or 

savings it generates. Thus highlighting the importance of computing ROI (Return on 

Investment) to provide guidance to decision making by attaching values to the 

response and costs to the program. Lastly it is noted that there may be no practical 

means to take advantage of the knowledge gained [37]. 

As pointed out above, no matter how good the accuracy of a model is 

estimated to be, there is no guarantee that it reflects the real world. A valid model is 

not necessarily a correct model. One of the main reasons for this problem is that 

there are always assumptions implicit in the model. Also, the data used to build the 

model may fail to match the real world in some unknown way, leading to an 

incorrect model. Therefore, it is important to test a model in the real world by 
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running field experiments. The higher the risk associated with an incorrect model, 

the more important it is to construct an experiment to check the model results [37]. 

2.3.3.4 Deploy the model and results 

Once a data mining model is built and validated, it can be used in one of two 

main ways. The first way is for an analyst to recommend actions based on simply 

viewing the model and its results. The second way is to apply the model to different 

data sets. The framework highlights some of the real-world aspects involved in 

deploying the model as part of an existing manufacturing or business process.  

The data mining model is often applied to one event or transaction at a time. 

The amount of time to process each new transaction, and the rate at which new 

transactions arrive, will determine whether a parallelized algorithm is needed. 

While batch scoring might be sufficient for some processes, others might need near 

real-time scoring thus imposing limits on the response-time and hence the 

complexity of the model. 

When delivering a complex application, data mining is often only a small, 

albeit critical, part of the final product. For example, knowledge discovered through 

data mining may be combined with the knowledge of domain experts and applied to 

data in the database and incoming transactions. 

2.3.3.5 Model monitoring 

Over time, all systems evolve. External variables such as inflation rate and 

geopolitical events may change enough to alter the way people behave. Shifts in 

environment or raw-materials could have an impact on manufacturing. Thus, from 

time to time the model will have to be retested, retrained and possibly completely 
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rebuilt. Charts of the residual differences between forecasted and observed values 

are an excellent way to monitor model results. Such charts are easy to use and 

understand, not computationally intensive, and could be built into the software that 

implements the model. Thus, the system could monitor itself. 

Thus the Two Crows framework brought to light several challenges and 

considerations both before the model-building phase and more importantly in the 

post-model phase namely model evaluation, model deployment and lastly model 

monitoring and up-keep. However, some aspects are still lacking like the need for 

support in the post-model phase. 

2.3.4 CRISP-DM, 2000 

The CRISP-DM (CRoss-Industry Standard Process for DM) process model 

includes six steps was proposed in 1999 and published in 2000 by a consortium of 

four companies (Teradata, SPSS (ISL), Daimler- Chrysler and OHRA) that 

developed data mining projects. The model was released (version 1.0) in 2000 [29] 

[30] and it continues to enjoy a strong support among practitioners to this day [12]. 

It consists of a Reference Model and step-by-step User-Guide based on the 

experience and challenges they faced at the time. Whereas the Reference Model 

presents a quick overview of phases, tasks, and their outputs, describing what to do 

in a data mining project, the User Guide gives more details on each task within a 

phase and depicts how to do a data mining project [19]. The CRISP-DM model is 

designed to be a reference model and hence tries to maintain universality while 

ensuring room for adaptation to specific project needs. The methodology is described 

in terms of a hierarchical process model, consisting of sets of tasks described at four 

levels of abstraction, two of which are generic and the other two are specific. 
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The original documents describing the CRISP-DM framework illustrates the 

levels, phases and tasks using three separate diagrams. This has led to confusion in 

the interpretation of the framework and hence spawned apparent innovations that 

tend to reinvent the wheel. In Figure 7 an attempt is made to highlight the true 

contributions of the CRISP-DM model. The iterative nature of the phases, generic 

tasks, specialized tasks is highlighted. Whereas generic tasks tend to be universal, 

not all specialized tasks are relevant to every data-mining undertaking and thus one 

needs to apply contextual judgement to the relative importance of each of the 

specialized tasks. Lastly the process instances are a set of outputs of the data-

mining undertaking that go beyond just the model or prediction [38]. 

The next sections elaborate these key contributions and identify areas where 

CRISP-DM needs to be extended to cover today’s needs. 

Phases

Generic
Tasks

Specialized
Tasks

Business	
Understanding

Determine	
Business	
Objectives

Assess	Situation

Determine	Data	
Mining	Goals

Produce	Project	
Plan

Data	
Understanding

Collect	Initial	
Data

Describe	Data

Explore	Data

Verify	Data	
Quality

Data	
Preparation

Select	Data

Clean	Data

Construct	Data

Integrate	Data

Format	Data

Modeling

Select	Modeling	
Techniques

Generate	Test	
Design

Build	Model

Assess	model

Evaluation

Evaluate	Results

Review	Process

Determine	Next	
Steps

Deployment

Plan	Deployment

Plan	Monitoring	
and	Maintenance

Produce	Final	
Report

Review	Project

Process
Instances

+	Context	=

A record	of	actions,	decisions,	and	results	of	an	actual	data	mining	engagement
i.e,	artifacts	(like	models,	variable	subsets),	reports,	documents	etc.

Figure 7. An Illustrative Presentation of the CRISP-DM Framework 
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2.3.4.1 Data-Mining as a Continuous Iterative Process  

As shown in Figure 7, the first level consists of six general phases that are 

meant to encapsulate the high-level progression of most data-mining engagements. 

The description of phases and tasks as discrete steps performed in a specific order 

represents is an idealized sequence of events. In practice, many of the tasks can be 

performed in a different order and it will often be necessary to backtrack to previous 

tasks and repeat certain actions. Despite the document stating in several places that 

the phases and tasks are not supposed to be strictly sequential, the presentation of 

the process-model phases inevitably creates the sequential impression amongst 

decision makers. Hence the project may be subject to very tight deadlines, which in 

the end leads to sub-optimal solutions [39]. To counter this gap, spiral versions of 

the CRISP-DM model have been recommended like the ‘snail shell’ model in [40]. 

However, the iterative structure of CRISP-DM is already a fertile ground for 

application of Agile development methodology [41]. Thus one of the key contribution 

of the CRISP-DM is that it framed analytics as a long-term undertaking iterating 

through phases and possibly solving different business problems at each iteration. 

2.3.4.2 Universality of Core Data-Mining Tasks 

The second level consists of generic tasks which serve as a checklist to ensure 

all aspects of the analytics project are being considered. The generic tasks were 

intended to be as complete and stable as possible. Complete to cover both the entire 

data mining process as well as data mining applications. Stable to cover yet 

unforeseen developments like new modeling techniques. While this was a good goal, 

it is not practical to cover unforeseen developments and often results in dilution. 

Another major challenge is to put a project management framework around this 



  30 

highly iterative, creative process with many parallel activities [19]. Thus the 

definition of completion of a task usually has a fuzzy answer. 

2.3.4.3 Customizing the Framework to Context 

The third, specialized task level, is the place to describe how actions in the 

generic tasks should be carried out in specific situations. Whereas generic tasks tend 

to be universal, not all specialized tasks are relevant to every data-mining 

undertaking and thus one needs to apply contextual judgement to the relative 

importance of each of the specialized tasks. Applying the context might also result in 

splitting one abstract task into several more concrete tasks [19]. Addition of tasks 

could also occur for example localization is not a task mentioned during deployment 

but might be highly relevant for global contexts. Thus CRISP-DM allowed the 

customization of the tasks to the particular context of application via a seed set of 

specialized task that could then be extended as needed. 

2.3.4.4 More than a Model 

The fourth, the process instance level, is a record of actions, decisions, and 

results of an actual data mining engagement. A process instance is organized 

according to the tasks defined at the higher levels, but represents what actually 

happened in a particular engagement, rather than what happens in general. The 

process instances are a set of outputs of the data-mining undertaking that go beyond 

just the model or prediction. Thus recognizing that the output of a data-mining 

undertaking goes well beyond the model and could give insights into varying aspects 

of the organization, industry or business. Moreover, capturing these artifacts helps 

continue the analytics process instead of an abrupt ending. 
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The CRISP-DM methodology phases and generic tasks are as below [18]: 

1. Business understanding involves grasping objectives and requirements 

from a business perspective and converting these into a DM problem 

definition resulting in a preliminary project plan to achieve the objectives. 

2. Data understanding starts with initial data collection and familiarization 

with the data followed by identification of data quality problems, initial 

insights into the data, and detection of interesting data subsets. 

3. Data preparation covers all activities needed to construct the final 

dataset, which constitutes the data that will be fed into DM tool(s) in the 

next step. It includes Table, record, and attribute selection; data cleaning; 

construction of new attributes; and data transformation. 

4. Modeling usually involves the trial and selection from several modeling 

methods to find a good fit followed by the calibration of their parameters 

to optimal values. The models are then assessed for goodness of fit. Since 

some methods may require a specific format for input data, often 

reiteration into the previous step is necessary. 

5. Evaluation is where the model is evaluated from a business objective 

perspective to determine whether all important business issues have been 

sufficiently considered. At the end of this phase, a decision about the use 

of the data-analytics results should be reached. 

6. Deployment can range from being as simple as generating a report or as 

complex as integrating the model into the current system or business 

process. The latter would involve creating a plan to monitor and maintain 

the system. A final review may be performed to capture key learning. 
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The CRISP-DM methodology is far from perfect – for example, the user-guide 

states that “it will be the customer, not the data analyst, who will carry out the 

deployment steps.”  This is far from the truth in most real-world experiences. 

However, CRISP-DM is a fine foundation on which to build and extend frameworks 

and hence has spawned several offshoots. For example, Cios et al. [42] extended the 

methodology by adding research-oriented description of the steps, introduction of 

explicit feedback mechanisms and a modification of the last step to emphasize that 

knowledge discovered for a particular domain may be applied in other domains. 

RAMSYS (RApid collaborative data Mining SYStem) [43] extends CRISP-DM where 

some of the generic tasks can be carried out in a remote collaborative mode. The 

current best understanding of the problem (set-of-hypothesis) is kept in the 

information vault, where information is shared between the different groups more 

akin to a GIT-repository for open-source software. 

The other three CRISP-DM offshoot methodologies namely DMIE [44], 

Marbán et al. [22] [45] and Mariscal et al. [26] will be covered in more detail. 

2.3.5 DMIE (Solarte), 2002 

The DMIE methodology [44] is divided into five major phases as shown in 

Figure 6. Although it is specifically designed for data-mining projects with 

applications in industrial engineering, some of the steps are highly relevant in any 

industrial application of data-mining. A field application of predictive analytics 

almost always replaces an incumbent process. Hence there is natural organizational 

inertia from the owners of the incumbent process. Thus the 1st phase of ‘Analyze 

Organization’ becomes highly relevant. It is best to have a strategy to include the 

incumbents beforehand else this could easily result in failure of the program.  
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2.3.6 Marbán et al., 2007 

Marbán et al.’s approach is based on the idea that data mining problems are 

taking on the dimensions of an engineering problem. Therefore, the processes to be 

applied should include all the activities and tasks required in an engineering 

process. This methodology enhances CRISP- DM by embedding other current 

standards, as suggested in [25], inspired by software engineering standards and 

practices. Figure 6 shows the general scheme of Marbán et al.’s process model as 

compared to CRISP-DM. The framework has three phases: pre-development, 

development and post-development. 

The core development processes are inherited from CRISP-DM / KDD and the 

rest of management and development processes are based on two software 

engineering standard process models: IEEE 1074 and ISO 12207. This framework 

explicitly recognizes that productizing analytics in the real-world is inherently a 

large undertaking and the core development from data-selection to modeling 

constitutes less than a third of the total work involved. This is important to note 

because many of the analytics initiatives tend to heavily underestimate the time, 

resources and effort needed to achieve success. The same author has hence proposed 

a cost model to estimate the effort of data mining projects named DMCoMo [46]. 

In addition to calling out business understanding in pre-development the 

framework also has a placeholder for system allocation as was highlighted by the 

Two Crows as well as Anand & Buchner. Lastly, the post-development section gives 

the deserved importance to installation, maintenance, operations, support and 

retirement. The retirement phase must not be trivialized as resources can be held up 

if installations are not retired when no longer relevant. 
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2.3.7 Mariscal et al., 2010 

Mariscal et al. have published a great survey of many frameworks that have 

been proposed [26] that also include frameworks from other areas like Six-Sigma 

DMAIC (Define-Measure-Analyze-Improve-Control) framework. They then pick out 

salient steps from each of the frameworks and arrange in a logical order to propose a 

list of steps called Refined Data Mining Process. The proposed process has 3 main 

phases like in Marbán et al. but has 17 sub-steps. However, in doing so, the one-

thirds importance given to the pre-development, development and post-development 

is diluted. 

There are several other process models that made a less significant impact 

and thus are not discussed in in this survey [26].  A six-step KDDM process model 

by Adriaans & Zantinge; a four-step model by Berry & Linoff; a seven-step model by 

Han & Kamber; a five-step model by Edelstein; a seven-step model by Klosgen & 

Zytkow; seven-step model by Haglin et al. 

2.3.8 Frameworks Summary 

KDD and CRISP-DM have been two key turning-points in the history of data-

analytics frameworks each spawning a multitude of frameworks that have adapted 

to changing analytics, domain and business needs. Over the years’ emphasis has 

shifted from the core tasks of data cleaning and algorithm application to the pre-

development activities of planning, stakeholder identification, resource allocation 

and business understanding. Only in the last five years’ focus has shifted to the 

post-development activities of evaluating results against business goals, deployment, 

automation, maintenance, support and retirement. 
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Although numerous frameworks have been proposed, the CRISP-DM tool-

agnostic methodology holds the majority of the mind-share as determined by the 

popular data-analytics community site kdnuggets.com over several years since 

introduction [24].  The survey results are shown in Figure 8. Thus it is clear that 

augmenting one major methodology and campaigning for its wider acceptance is a 

better strategy to establishing a common standard than proposing yet another 

methodology that vies for the mindshare of the data-analytics community. 

Thus the proposal in this research uses the CRISP-DM methodology and 

makes recommendations to augment and improve it in order to make it relevant to 

today’s problems and challenges. Next the key shortcomings are covered. 

  

Figure 8. Popularity of Data Analytics Methodologies in Recent Years 
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2.4 Shortcomings of Current Frameworks 

As DM & KD development projects became more complex, a number of 

problems emerged: continuous project planning delays, low productivity and failure 

to meet user expectations. Neither all the data analytics project results are useful, 

nor do all projects end successfully. Today’s failure rate is well over 50% [21].  

Many of the frameworks were proposed during an era where data-analytics 

and machine-learning were still dominated by research and had not become part of 

the mainstream. Hence the focus was on creating/matching the algorithm to the 

data and fine-tuning predictive performance – the methodology sufficed for the 

needs of those times. However, now with packages available in the programming 

language of choice [47], and vast computing resources at our disposal, the matching 

and tuning steps are not necessarily the most challenging and can be automated. 

Another trend is of recent times have been the use of machine learning in 

online semi-mission-critical applications. Applications range from curating the news 

to self-driven automobiles. When CRISP-DM was envisioned, mission-critical 

applications were simply left out of scope. The Agile Manifesto came into being right 

around the time if CRISP-DM hence, although the methodology recognizes the 

iterative nature, it does not have elements of fast build-test-build cycles. The most 

used analytic process models at the moment (CRISP-DM and SEMMA [24]) have not 

yet been sized for real-world tasks. Concepts of security, privacy, reliability and 

maintainability are just being explored [48]. Although the interest and attention 

given to the evaluation and deployment steps has been increasing as seen by the 

dashed line in Figure 6, incorporating validation in every step of the process has not 

been considered. 
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2.5 Proposed Framework 

Industrial systems and most real-world systems put a high premium on 

reliability. It is one of the biggest deterrents to widespread adoption of machine-

learning systems. The second highest being maintainability. Reliability and 

maintainability however are not new needs; they have always been around in most 

engineering disciplines.  Especially in mission-critical and 24/7 applications, the 

system engineering approach has been adopted to ensure designs are systematically 

validated for performance, quality and value. Concepts of design for test (DFT) and 

design for manufacturing have been thoroughly studied and widely practiced. The V-

model for system development is quite popular in the defense industry and used by 

governments of various nations. The V-model has also been adopted for software 

development especially for mission critical systems. 

This work takes the most effective aspects of data-analytics methodologies till 

date and combines them with system-engineering methodology to recommend a 

framework for data-analytics. The Design for Deployment (DFD) framework is 

shown in Figure 9. The arrows going from every step back to the previous highlight 

the highly iterative nature of the process in general. The phases on the left have 

double-arrows linking them to the validation phases on the right indicating tight a 

coupling between the corresponding phases on the two branches of the ‘V’. The core 

idea being that the validation criteria or step be thought of before beginning on the 

corresponding understanding or building step so as to ‘begin with the end in mind.’ 

[49]. In the reminder of this section the phases are explained one pair at a time to 

keep with the tight coupling mentioned before. 
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2.5.1 Strategy and Sustenance 

These two phases are more part of the business and operations than analytics 

per se. That said, they have a big impact on the success of analytics deployment. The 

strategy and roadmap of the organization determine how critical analytics is to the 

core business sustenance and thus will directly correlate to the investment and 

thrust put into making the analytics deployment a success. Often the analogy of a 

pain-killer versus vitamin is used in tech-startup circles. One cannot sustain much 

longer without immediate pain-relief; however, vitamins although important for 

long-term health, do not have the same sense of immediacy around them. The closer 

the analytics is to addressing an immediate and persistent need, the higher the 

likelihood of success. If the analytics is considered a one-time self-contained (siloed) 

project, it is unlikely to bring that much value to the organization except to check a 

“me-too” box. 

Deployment of analytics is a business and cultural transformation and needs 

longer term commitment. Sustenance requires involvement of multiple stakeholders 

and a well-trained operational team that can upkeep the analytics system for day-to-

day operations as well as make improvements over time and as technology matures. 

Several questions arise: What are the levers and knobs desired? What are the 

indicators that will be monitored? How will the system maintenance and upkeep be 

carried out? How long will the system be in production before being retired? 

The three key actions here are establishing design-patterns, putting 

infrastructure in place for autonomous model deterioration detection and 

update/refresh as well as establishing the analytics function/department. These will 

be elaborated in Section 4.3.4. 
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2.5.2 Business Understanding and Value Validation 

Industrial data-analytics is motivated by the desire to scale or automate the 

discovery process so it can ultimately be used to offer new products and services, 

expand the customer base, generate new revenue or lines of business. The initial 

phase is where expectations are set (or unfortunately assumed). CRISP-DM says, 

this initial phase focuses on understanding the project objectives and requirements 

from a business perspective, then converting this knowledge into a data mining 

problem definition and a preliminary plan designed to achieve the objectives.  

CRISP-DM seems to imply that the data-scientist drives this process and the 

business knows exactly what they want. Often this is not the case – the business has 

a vague idea of ‘leveraging data to gain new-insights’. They do not necessarily 

appreciate the complexity of models, needs for resources and data or expectations or 

limitations of the models. Additionally, the group that commissions the analytics 

projects is usually the leadership and the group that is responsible to provide 

requirements is the incumbent team of analysts (or database team) who might not 

be clear about the objectives themselves. Once the model is built, the incumbent-

team is again responsible to interpret and summarize to leadership. The mismatch 

of expectations can lead to utter dissatisfaction at deployment. Another realization 

that is missed is that deployment of analytics also means that the business itself 

needs to transform in order to work with analytical models. 

Due to the reasons mentioned above, the best strategy would be to envision 

the value validation phase and agree on how the value provided by the final 

deployed system would be ascertained. It involves education of the business parties 

involved on what analytical modeling is, what realistic expectations are from the 
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various approaches and how models can be leveraged in the business. Discussions on 

the business case identification involve topics around data availability, model 

integration complexity, analytical model complexity and model impact on the 

business [50]. Some topics to cover would be: What is the key business problem that 

the system will solve or significant opportunity it will help gain? What will success 

look like and who will need to sign-off? What is the projected ROI of the system? 

How reliable will the system expected to be? How much improvement over the 

incumbent system would be needed to justify a change? What changes would be 

needed to the business process? This is by no means an exhaustive list. From a list 

of identified cases in an area, the one with the best ranking on above mentioned 

criteria should be considered for implementation. The others are put on the 

aforementioned roadmap. 

The core elements to evaluate are relative performance and reliability 

(compared to incumbent system) and return-on-investment (ROI). The three topics 

are covered in Section 4.3.3. By thinking of the value validation, one is forced to 

think in terms of ground realities and the discussion invariably leads to how things 

work currently and who owns those components. Stakeholder identification is next. 

2.5.3 Stakeholder Identification and Field Validation 

Leadership is driven by ROI and once leadership buys in, the rest of the 

company has to. However, in reality, there is still a lot of inertia to continue with the 

status quo. We must be clever in how we embed analytics into the business model 

and force analytics into the existing processes, involving stakeholders as early in the 

process as possible to garner their buy-in [51]. Several stakeholders have a role to 

play in each phase of the analytics process: (higher) management, to ensure the 
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right goal setting, IT for data availability, integration and deployment, the 

concerned receiving department for model relevance checking, data scientists 

building the model and the end users.  

Creating a stakeholder map early in the process ensures that inputs from 

those sectors are not missed and surprises are avoided later in the process. It also 

drives involvement from the entire organization thus using the IKEA effect (where 

one places higher value on something one had a part in building) in favor of the 

machine-learning analytics system instead of against. The map helps identify who 

owns what area and thus controls what decision and/or resource thus time is not 

spent in tracking this down when the need is urgent. The map also helps identify the 

paths of influence which can be highly valuable to obtain the go decision for 

deployment. Lastly it provides a starting point to train the organization to better 

understand, interpret and work with machine-learning analytics. Identifying the 

stakeholders and their requirements will allow analysts to completely recognize the 

critical elements of the project, including true intentions and expected results [44].  

By making note of all the pitfalls and nuances, a validation plan starts to 

emerge on whether the system is ready to be launched. The elements from this 

validation plan are used later to conduct the field validation once integration is 

completed. Field validation is where the machine-learning analytics system is run as 

if it were deployed but without necessarily exposing the results to end customers (or 

doing so in a limited fashion). The run is done in parallel with the incumbent system 

to evaluate the chosen metrics. The objective of the evaluation is more to determine 

any unexpected behavior as well as shortlist the indicators based on their 

effectiveness that will be used to monitor the system in production. 
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2.5.4 Resource Allocation and Integration 

Integration of a newly developed capability into the existing process and 

system requires two types of resources: human (team) and system. Thus when 

thinking from integration point of view, one can easily identify both system as well 

as the team resources needed. To derive the teams and expertise needed, one can 

simply start from the stakeholder map developed in the previous phase and then ask 

for representatives and/or volunteers from each of the major stakeholder groups to 

be part of the effort. While at first this might seem like a huge overhead to manage a 

matrixed team, the advantage in terms of diversity of thought and strong links to 

the incumbent departments ensures that the IKEA effect works in favor of the 

analytics deployment than against it. For the volunteers to be effective contributors, 

some (or most) could need training on interpreting machine-learning results. The 

recent hype around data-science should help with having people willingly invest the 

time into learning. The instruction and guidance however, should be led by the 

analytics team. Knowledge-sharing is a key component in this approach and must be 

addressed proactively through training. More on the three-pronged approach 

(Involvement of teams, Interpretability and Insights) for enabling the incumbent 

team is covered in Section 4.3.2. 

System resource allocation tends to follow once the right individuals are on 

board as they bring along spares from their respective departments to aid the effort. 

However, a formal assessment of resource requirements must be done and presented 

to the budgeting group to ensure that the resources can be procured well before they 

are needed. Additionally, resources like system-nodes need a considerable lead-time 

for procurement and setup and hence should be planned well in advance. 
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2.5.5 System Requirements and Feasibility Validation 

In the system specification phase, the set of conditions are explored that need 

to hold for the model to be permissible and viable in the business process. Topics of 

discussion include constraints and boundary condition handling. The constraints are 

the non-negotiables like security, privacy and any legal considerations. The 

boundary conditions are compatibility conditions: side conditions that need to hold, 

consistency checks that need to hold, handling of unexpected predictions, or 

unexpected input data, requirements about the availability of the scores, the timing 

of scores (and the data) and the frequency of refresh of the scores. Initial ideas 

around model reporting can be explored and finally, ways that the end users would 

like to consume the results of the analytical models [50]. The output of this phase is 

ideally a feasibility validation plan; however, q requirements document would 

suffice. The system is then architected to meet the requirements and/or pass the 

feasibility validation plan. 

One can identify the reviews and gates that any new system or installation 

needs to go through before entering the current production environment. The apt 

analogy is that of an organ transplant – without proper precautions, the likelihood of 

rejection is high. Thus like the medical-team, the analytics team should consider and 

employ all avenues of reducing the likelihood of rejection. Feasibility validation 

would then be the execution of plan that came out of the system requirements 

exercise. The key areas to be considered are outlined in Section 4.3.1. Feasibility 

validation cover the necessary conditions for deployment. Whereas, the subsequent 

phases reviewed before cover the sufficiency. Although the process so far might seem 

validation-heavy the rigor is required for deployable systems in industry. 
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2.5.6 Data Preparation and Simulation 

In the data preparation phase, the discussions revolve around data access, 

data location, data understanding, data validation, and creation of the modeling 

data. This is a phase the data scientist will need help from subject matter experts, 

IT/data administrators/DBA’s to closely work together to prepare the data in a 

format consumable by the data scientist [52]. Preparing the data involves first 

understanding it: how is it stored, where does it originate, how frequently is it 

updated, how often do updates fail; what are the encodings, the relationships and 

data-dependencies; which are the raw versus computed values, what do we know 

about the process that collected the data, what was the measurement algorithm, and 

many more. 

Some of this discovery can happen by careful planning but some of it happens 

as the modeling proceeds. The process is often highly iterative: the data scientist 

tries out various approaches on smaller sets and then may ask IT to perform the 

required transformation in large. Understanding of the operational data required for 

modeling and scoring, both from an availability (cost) and timing perspective are the 

goal. Section 3.2 describes the real-world challenges and Section 3.2.4 makes a case 

for building a simulation infrastructure that includes a data-mart. The 

recommended simulation infrastructure allows one to mimic the realities of the 

production scenario where data is often shifted in time and includes dynamics where 

the relationship between the features and predicted variables can change in more 

ways than one. Thus performance evaluations become representative of the real-

world and hence more credible. The infrastructure allows heavy experimentation 

without disturbing the production system or staff. 



  46 

2.5.7 Algorithm Selection, Model building and Optimization 

The goal of the of algorithm selection phase it to find the model that best 

suits the data for the goals identified. In the model-building phase, an analytical 

model is built and evaluated against available (historic) data for good fit. Then in 

the optimization phase, the model is tuned to suit the characteristics of the data, 

system constraints and business priorities. As one can tell the three phases are 

highly iterative and co-dependent. Several restarts and trips to the proverbial 

drawing-board are to be expected. Hence it is important to communicate the reality 

clearly: it is scientific research, with all its struggles and need for meticulous 

experimentation. Results are not guaranteed, they depend on the quality of the data 

and the (unobservable) knowledge that the data contains about the phenomenon to 

be modelled, the time spent on the creation of the solution, the current state of the 

art of analytical models as well as the quality of the data scientist. 

The data scientist may need to connect to end user to validate initial results, 

or to have discussion to get ideas which can be translated into testable 

hypotheses/model features. The best strategy is to have an infrastructure in place 

and design experiments that facilitate systematic yet rapid learning. In section 

3.2.4, a simulation infrastructure is recommended that would have the data and 

looping abilities in place so the experimenter can simply setup the design and the 

data is ready when the simulation is done.  Additionally, the ability to introduce 

temporal shifts and time-walking ensure the data obtained is realistic and 

representative of the real-world challenges. Design of experiment techniques are 

discussed in Section 3.3.3 so learning happens in the most efficient means possible. 



  47 

Next the said real-world challenges are elaborated and the evaluation infrastructure 

is proposed. 

2.6 Demonstration 

In this section the proposed Design for Deployment (DoD) analytics 

framework is demonstrated in the area of semiconductor manufacturing. 

Semiconductor manufacturing is a multi-step process which takes several weeks 

from sand to silicon to shippable unit – see Figure 3. As one proceeds further in that 

flow, material, time and effort are added to each part and thus the sunk cost into 

that unit keeps rising. Assembly and final-tests account for roughly 50% of the total 

material and manufacturing cost [13]. 

2.6.1 Strategy and Roadmap 

There is great value in being able to predict the behavior of packaged units 

early on in the manufacturing flow based on in-line measurements or Sort-Test 

results [53]. There was a long list of possible applications that were brainstormed. 

The salient ones are listed below: 

1. Tool Anomaly Detection: Use machine learning to back-trace the 

anomalous tool that might have caused the defective pattern [54]. 

2. Statistical Process Control: Use SPC on the predicted values made of 

virtual fab-lots to detect drifts in the fab-process [55], [56]. 

3. Wafer GFA Diagnostics: Detect and classify patterns in gross failure 

analysis at a wafer level [57], [58]. 

4. Test-time Reduction: Use predictive analytics to intelligently alter test-

flow at unit-level to reduce overall test-cost. 
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5. Selective Sampling:  ML models are used to determine a risk level for 

each unit and the system-test sampling-rate is modulated accordingly.  

6. Statistical Bin Limit (SBL) Dispositioning:  Historical baseline data and 

current lot data are used for lots that triggered SBLs to determine the 

signal was caused due to sort/test process issues or upstream processes.   

7. Inventory Management:  Predicted data such as class test bin is used to 

group material for assembly/die prep kitting &/or to expedite in-line 

assembly lots to meet factory out for specific bins/SKUs. 

8. Tool downtime scheduling:  Manufacturing data is input to ML models 

that recommend optimal scheduled tool down time, product conversion, & 

material kitting schedules. 

9. Selective die-kill: Identify die with a high propensity of failing after going 

through assembly and scrap them beforehand to save cost. 

10. Die-matching: Match the speed of die to be paired on the same package. 

As each of these has potential of saving millions of dollars, it resulted in a 

healthy roadmap and hence piqued interest from leadership to explore the 

possibilities.  

2.6.2 Business Case 

Based on preliminary analysis of the data, the selective die-kill project was 

chosen to explore first. Semiconductor manufacturing is a multi-step process which 

takes several weeks from sand to silicon to shippable unit. As one proceeds further 

in that flow, material, time and effort are added to each part and thus the sunk cost 

into that unit keeps rising. Assembly and final-tests account for roughly 50% of the 

total material and manufacturing cost [13]. Not all units pass the final tests, the 
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failing units are scrapped after failure validation and analysis – this is termed yield-

loss. Clearly, yield loss means financial loss – due to sunk cost of manufacturing as 

well as opportunity-cost of a unit that could be sold for profit [15]. However, if one 

could detect a die that has the propensity of failing towards the end of the 

manufacturing flow, the sunk-cost could be saved. Depending on the accuracy of 

detection, the cost-savings could run into millions of dollars. 

The criteria for selection was driven more by the fact that the predicted 

variable was binary and thus the classifier did not have to deal with spatial or 

multi-class data as for the other candidates. In retrospect however, the venture 

would have greatly benefitted from exercising patience to determine the ROI before 

proceeding. The main reason for not using the potential ROI was that financial cost 

and benefit information was not easy to come by. Firstly, the information was not 

centralized and spread across various geographically disperse groups. It existed in 

multiple currencies due to global operations. Tax and other financial considerations 

were at play like proportion attributed to R&D expense versus cost-of-sold-goods 

(COGS). Additionally, unit level financial data is quite revealing especially in 

manufacturing and hence guarded closely. Justifying and obtaining approvals to get 

hold off the data can take a while. This is where identifying the right stakeholders 

and making them part of the effort has huge impact on velocity. 

2.6.3 Stakeholder Identification 

Creating a stakeholder map from the deployment perspective immensely 

helped understand how the decisions were made currently. It also piqued curiosity 

in the representatives interviewed and they ultimately wanted to join the effort. 

They each brought their skills and experience to the table from data-extraction and 
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scripting to factory planning and financial analysis. The mapping exercise itself was 

not trivial and needed full-time focus. However, it did lead the project to the golden 

ratio that determined the ROI – it was > 2:1, true-positive to false-positive. That is 

the instantaneous slope of the ROC curve (see Section 3.1.2) had to be greater than 2 

for the financials to make sense. 

2.6.4 Resource Allocation 

The core needs of the project were well supported: data scientists, 

experimental computing resources although sound justification was needed. 

However, whenever the needs intersected with production flow or existing 

infrastructure like databases, script-hosts, factory resources, the direction from 

leadership insisted on forming partnerships with the existing groups instead of 

designated personnel. This turned out to be a blessing in disguise as it helped the 

team learn about the various processes involved. However, it did contribute to 

slowing the velocity of progress as each new group that got involved needed training 

on machine-learning. Thus the project leads, authored internal coursework on 

machine-learning using generic as well as specific examples [59]. The training 

sessions were immensely helpful for the participants as well as the facilitators as 

they sparked discussions and ideas that led to many breakthroughs in the project. 

2.6.5 System Requirements 

There are strict demands on uptime in semiconductor manufacturing. Any 

system either slowing down the manufacturing flow or that cannot maintain 

24/7/365 uptime is disallowed in factory systems. Designing a 24/7 model-building 

and scoring system would be impractical due to the data-availability constraints, 
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model build-time, as well as the uncertainty around being able to obtain a high-

confidence model every-time. Hence the challenge was being able to design an 

architecture where an off-line (non 24/7 SLA) system would interface with and 

provide decisions to an online (24/7 SLA) system. Shown in Figure 10. “Clutch” 

Architecture to Meet System Requirements. There were 5 overarching system 

integration requirements that had to be resolved in the design prior to receiving 

stakeholder ratification of the system. 

1. Off-line Dependencies: The high level architecture was designed such that 

tool processing and the on-line/mission critical systems are not impacted 

when the off-line portions of the system are not available. When prediction 

data is not available due to anomalies such as network connectivity, off-line 

system downtime, data integrity, etc. the process module will revert to 

legacy/non-ML optimized, processing conditions. 

2. Triggering: The system monitors lot “move-in” and “move-out” transactions 

that are recorded in the manufacturing database. At a configured frequency 

(hourly, daily, etc.) the ML system queries the manufacturing DB and 

initiates predictions for lots that have “moved-out”.  The predictions are 

executed in background and the completed results are loaded into the ULT 

database before the lot reaches the specific process module several hours 

later where the decision can be implemented. 

3. Quality assurance and fail-over: Quality assurance for model performance 

was another requirement for the system. During the model generation 

process training data is divided into distinct observed data (OD) and 

unobserved data (UD) separated in time. The OD data is used to build the 
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model and the UD set is used to generate predictions. These are compared to 

the UD actuals to compute prediction accuracy. The accuracy is checked 

against a configurable limit and only models within spec are released to 

production.  The response for failing models is configurable to allow the 

system to continue to use the previous valid model or disable predictions 

until a valid model is generated. Additionally, there are several anomaly &/or 

exception conditions that can disable predictions for a given lot.  Whenever a 

lot has been disabled, no data for that lot will be loaded to the on-line systems 

and only lot level data will be loaded to the off-line systems. 

4. Validation: As the requirements were defined they were tested with respect 

to potential future prediction use cases.  This was done to ensure that a broad 

set of system configurations, data types, exclusion conditions, etc. are readily 

available and scalable to future applications.  

5. Model/Data Aging:  On-line data volume and retention timeframe concerns 

needed to be addressed in the system design.  Expirations dates can be 

defined for the predictions, models, and training-data since it was generated.  

The expiration windows for these parameters are configurable and can be set 

by the system operator.  When an expiration date for any of these parameters 

is reached the ULT database is able to purge the data. 

Other specific requirements for general manufacturing systems, features 

such as recipe management, off-line analysis, reporting, etc. were extensively 

captured it the system requirements document and have been left out of this 

document for brevity. 
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2.6.6 Data Preparation 

As mentioned before, Intel’s manufacturing operations stretch across the 

globe using the concept of a “virtual factory” for efficiency and cost reasons. Each 

site and factory has its own database to store manufacturing and test data due to 

the size of the data involved and given that the data is used in subsequent steps of 

manufacturing which needs 24/7 uptime. Thus it is impractical to obtain data just in 

time due to dependencies on network speeds and other uncertainties. Hence a data-

mart was built to consolidate the data from multiple sites and data-sources. 

The relationship between a fab-unit and the substrate is established not 

when the die is placed on the substrate but rather when the unit is tested for the 

first time and the DIE_ID is read electronically from a fuse within the die and 

SUBSTRATE_ID is read with a camera and, both are uploaded into the ULT 

database. Thus data for the die is in the fab-sort database, data for the assembly and 

final tests are in the assembly-test database and the link is in the ULT database, all 

three databases could be in different geographical locations. The raw data (Etest, 

Sort, Class etc.) is stored in a data mart that is periodically loaded with data for all 

models by going to all configured sites and collecting any new data. Any necessary 

cleanup or transformation, data validations, and data integrity checks are done. 

It was through this effort that the team noticed that there are significant 

temporal shifts and dynamics in the data-stream used to build the model. Firstly, 

multiple product lines with slightly different manufacturing recipes and/or mix and 

match of die to substrates exist. Additionally, the process and test engineers 

continuously tweak their recipes to eek the last bit of room from the process to 

maximize yield or reduce cost. Hence the process is always changing. 
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CHAPTER 3                                                                                                     

DYNAMIC EVALUATION FRAMEWORK (DEF) 

The importance of design-for-deployment was covered in the previous 

chapter. It is clear that validation or testing cannot be relegated to the end of the 

data analytics process and needs to be incorporated within each step in order to 

improve the likelihood of success. Additionally, by developing an infrastructure that 

aids the discovery of new hypothesis and applications, one ensures that the team can 

pivot instead of declaring failure or disbanding. Thus a solid evaluation framework 

and methodology are critical to ensuring that data-analytics undertakings result in 

value creation for the customer or enterprise. Key challenges exist in how 

evaluations are done today.  

3.1 Problem and Current-state 

An analysis was done by Demsar [60] of the papers accepted at ICML and 

percentage that used accuracy with cross-validation to perform comparative 

evaluation. Table 1 shows part of the findings. It is clear that the majority use 

accuracy and resort to cross-validation. A de facto evaluation culture has pervaded 

experimental verification and comparative evaluation of learning algorithms. The 

approaches utilized to do so proceed along the following lines, with some minor 

variations: 

1. Select an evaluation metric, the most often used one being accuracy without 

much thought put into the selection. 

2. Select a large-enough number of datasets [the number is chosen so as to be 

able to make a convincing case of apt evaluation and the datasets are 
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generally obtained from a public data repository, the main one being the 

University of California, Irvine, (UCI) machine learning repository] 

3. Select the best parameters for various learning algorithms, a task generally 

known as model tuning but mostly inadvertently interleaved with evaluation. 

4. Use a k-fold cross-validation technique for error estimation, often stratified 

10-fold cross- validation, with or without repetition 

5. Apply paired t tests to all pairs of results or to the pairs deemed relevant 

(e.g., the ones including a possibly new algorithm of interest) to test for 

statistical significance in the observed performance difference. 

6. Average the results for an overall estimate of the algorithm’s performance or, 

alternatively, record basic statistics such as win/loss/ties for each algorithm 

with respect to the others [5]. 

There are significant implicit assumptions being made in each of these steps 

that could have an adverse effect on the success in the real-world.  

Table 1. Accuracy and Cross-validation Current De-facto for Evaluation 

 1999 2000 2001 2002 2003 

Total accepted 54 152 80 87 118 

Relevant papers 19 45 25 31 54 

Evaluation Metric (%)      

Accuracy 74 67 84 84 70 

Exclusively Accuracy 68 60 80 58 67 

ROC, AUC 0 4 4 13 9 

Evaluation Method (%)      

Cross validation, k-fold 22 49 44 42 56 

Bootstrapping 11 29 44 32 54 

Separate subset 5 11 0 13 9 
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To illustrate, the trifling role the above de-facto methodology plays in a 

machine learning system, one such typical evaluation setup is shown from Japkowiz 

& Shah [5] in Table 2. At first it seems that there is quite a difference between 

algorithms with the minimum accuracy at 62.1% for Support Vector Machine (SVM) 

on the ‘Glass’ dataset and the maximum is 99.55% with Random Forrest acting on 

the ‘Anneal’ dataset. However, as one goes down the table, it is clear that that the 

accuracy depends more on the dataset than on the algorithm itself. 

Table 2. Accuracy Measurement Across Benchmark Datasets and Algorithms 

Data Set 1NN NB BAG(REP) SVM C45 RIP RF 

Anneal 99.11 96.43 98.22 99.44 98.44 98.22 99.55 

Audiology 75.22 73.42 76.54 81.34 77.87 76.07 79.15 

Balance scale 79.03 72.3 82.89 91.51 76.65 81.6 80.97 

Breat cancer 65.74 71.7 67.84 66.16 75.54 68.88 69.99 

Contact lenses 63.33 71.76 68.33 71.67 81.67 75 71.67 

Pima diabetes 70.17 74.36 74.61 77.08 73.83 75 74.88 

Glass 70.5 70.36 69.63 62.21 66.75 70.95 79.87 

Hepatitis 80.63 83.21 84.5 80.63 83.79 78 84.58 

Hypothyroid 91.52 98.22 99.55 93.58 99.58 99.42 99.39 

Tic-tac-toe 81.63 69.62 92.07 99.9 85.07 97.39 93.94 

Average 77.69 78.14 81.42 82.35 81.92 82.05 83.40 

 

On doing a variance component analysis as shown in Figure 11, we observe 

that only 3% of the variation (as measured by sum-of-squared variance) is 

contributed by the algorithm, the rest 97% is due to the datasets. Thus minor 

difference in algorithm accuracy especially as measured on benchmark datasets by 

accuracy with cross-validation are insufficient to select an algorithm for a production 

machine-learning system. Rather, a comprehensive match-making process is needed 

based on characteristics of the data and the demands of the domain.  
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Other characteristics such as scalability, structure and safety mechanisms 

take priority over small gains in accuracy. Moreover, key differences exist between 

the real-world and lab environment with respect to temporal shifts and distribution 

shifts that quickly make static evaluation results inapplicable to the real-world. This 

comparative study of the current state in evaluation and makes recommendations; 

these are then demonstrated on the enterprise use-cases. 

The following sections start with surveying the current thought on evaluation 

and compares metrics used. The focus of the comparison is to identify unique 

characteristics of the methods and metrics that would be most suitable to evaluation 

at each phase of the recommended data-analytics framework. There are three main 

components of evaluation: purpose, metric and method. The following sections will 

examine current thought along these three vectors, identify gaps and make 

recommendations. 

Figure 11. Variance Component Analysis of Algorithm Accuracy Across Data-sets 
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3.1.1 Purpose of Evaluation 

In most domains evaluation is driven by purpose. For example, the metrics, 

methods and test will be quite different based on if a person is being evaluated for 

general physical fitness versus being evaluated to be admitted on to a sports team. 

Hence it is claimed that the evaluation must be based on purpose. There are a few 

common purposes of evaluation which based on the focus If the focus is the machine-

learning algorithm, following purposes are listed [5]: 

 Comparison of a new algorithm to other (may be generic or application-

specific) classifiers on a specific domain (e.g., when proposing a novel 

learning algorithm) 

 Comparison of a new generic algorithm to other generic ones on a set of 

benchmark domains (e.g. to demonstrate general effectiveness of the new 

approach against other approaches) 

 Characterization of generic classifiers on benchmarks domains (e.g. to 

study the algorithms' behavior on general domains for subsequent use) 

 Comparison of multiple classifiers on a specific domain (e.g. to find the 

best algorithm for a given application task) 

On the other hand, in real world scenarios some form of evaluation exists at 

each phase of the data-analytics process: 

 Feature selection: To choose the subset of attributes or independent 

variables that will be used to build the production model (e.g., select a 

subset of 20 attributes from the available 200 measurements taken of a 

piece of manufactured auto-part so as to predict early-failure) 
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 Algorithm selection: To select the subset of candidate algorithms that 

stand a good chance of meeting the performance requirements of the 

domain and data-set (e.g., select a classifier to be used on a heterogeneous 

sparse dataset of demographics to predict the propensity to buy a product) 

 Model tuning: To determine the optimal setting for parameters of the 

model in order to ensure performance on the data set (e.g., for a decision-

tree algorithm, select the max-tree-depth, minimum-split-size, minimum-

leaf-size and minimal-gain and split-criteria)  

 Stopping criteria: To ensure the model does not over fit the data by 

measuring performance on an independent test dataset (e.g., for finding 

the epoch at which to stop the training – usually when test error stops 

dropping or starts increasing after initial drop) 

 Ensemble selection: To select the subset of candidate models that will 

make it into an ensemble and/or the trial that will be used as the 

production model (e.g., in a random forest, determine the subset of trees 

that will provide input into final decision) 

 Value validation: To ensure that the business or customer objective of the 

data-analytics undertaking has indeed been met or likely to be met (e.g., 

as a result of predictive targeted marketing using analytics, the sales 

projected sales for next quarter are 50% higher than previously expected) 

 Optimization: To ensure that other constraints are not violated due to the 

analytics being introduced into the current system (e.g., to ensure that 

predictive maximization of turnover in a department-store does not lead 

to overall revenue reduction due to drop in advertising revenue) 
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 Field validation: To ensure that the analytics system can function stably 

and reliably in a mission-critical environment (e.g., predictive 

optimization of machine maintenance does not lead to safety issues)  

 Model refresh: To detect if the deployed model is relevant and performing 

as expected after being in the field for some time (e.g., predictive flu 

spread rates differ greatly from actual during the general-election period) 

It clear that Evaluation is a key step in the analytics process. Evaluation is 

where the model is evaluated from a business objective perspective to determine 

whether all important business issues have been sufficiently considered. At the end 

of this phase, a decision about the use of the data-analytics results should be 

reached. Thus this is the step when the sponsors of the analytics project or venture 

see if the investment so far will likely bear fruit. 
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3.1.2 Metrics 

Metrics have received the most attention among all aspects of evaluation. 

Each metric tries to quantify performance of the algorithm. Performance is an often 

overused term that has a different meaning to different stakeholders. For example, 

it may mean resource efficiency to the systems engineer while it means speed 

efficiency to the web-developer. Below are some aspects that come into the picture in 

real-world scenarios: 

 Predictive Accuracy: closeness of the predicted to actual responses 

 Interpretability: output and operations understandable to humans 

 Complexity: how compact (simple) is the learned model 

 Robustness: capability of handling noise, missing values etc. 

 Stability: robustness over time with the changing “world” 

 Efficiency: time and memory needed for the training and test phases 

 Scalability: How much the system’s performance (e.g., speed) is sensitive 

to the size of the data set 

Figure 12 shows an ontology of popular metrics for measuring prediction 

performance. To highlight the fact that there are other aspects of performance 

besides accuracy,  the other aspects of performance mentioned above are shown. As 

most real-world applications of a machine-learning algorithms are for classification, 

determining predictive accuracy is the focus of most evaluations. Hence many 

metrics have emerged in this arena. They can be organized into ones that apply to 

the type of classes: discrete binary, discrete multi-class and continuous. Further, 

classification is based on how the metrics are represented: as a scalar, raw-ratio, 

chance-corrected-ratio, bi-number, graphical or information-theoretic. 
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The prediction performance metrics are best explained using the case of a 

binary class problem. Let us assume a problem with two classes: a positive-class and 

a negative-class. The scoring results are tabulated as shown in Table 3. - aP and aN 

represent the total proportion of positive and negative examples in the test dataset. 

pP and pN are then the predicted positive and negative proportions respectively. 

The two correctly predicted categories are  true positive (tP) and true-negative(tN). 

The other two categories, false positive (fP) and false-negative (fN) form the Type-I 

and Type-II errors respectively. Several ratios can be calculatd as shown in Table 3: 

specificity, sensitivity (aka recall), precision. F-ratio is harmonic-mean of precision 

and sensitivity. Accuracy is ratio of correctly classified to total-tested. Kappa is 

accuracy with correction applied for the proportion of rightly classified by pure 

chance. The positive and negative liklihood ratios are formed from cells below them. 

Table 3. Popular Metrics Illustrated with a Binary-class Problem 

F-score 

2tP / 

(aP + pP) 

Predicted 

Positive 

(pP) 

Predicted 

Negative 

(pN) 

Positive likelihood 

ratio 

pLr=(tPr / fPr) 

Negative likelihood 

ratio 

nLr=(fNr / tNr) 

Actual 

Positive 

(aP) 

True 

Positive 

(tP) 

False 

Negative 

(fN) 

Sensitivity*  

tPr = 

(tP / aP) 

Miss-rate 

fNr= 

(fN / aP) 

Actual 

Negative 

(aN) 

False 

Positive 

(fP) 

True 

Negative 

(tN) 

Fall-out 

fPr = 

(fP / aN) 

Specificity 

tNr= 

(tN / aN) 

Total 

tested 

(aP + aN) 

Precision 

(tP / pP) 

Negative 

Predicted 

(tN / pN) 

Accuracy 

(tP+tN) /  

(aP+aN) 

Kappa 

(Po - Pe) /  

(1 - Pe) 

Pe = ((aP)*(pP) + (aN)*(pN)) / (aP+aN)2;    Po = (tP+tN) / (aP+aN)                                    

*Sensitivity = Recall = Hit-rate  

Informdness = Sensitivity + Specificity - 1 

Markdness = Precision + Negative Predicted -1 
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Accuracy is the most widely used metric for quantitatively assessing the 

classifier predictive performance. Accuracy can be used with continuous as well as 

discrete classes. It is most easily interpreted, however sometimes dangerously so. 

Accuracy suffers from some serious shortcomings as below: 

 Accuracy can be highly misleading when there is class imbalance 

especially if one class is of particular interest like in fraud detection. 

 Accuracy does not take asymmetric misclassification costs into 

consideration. That is the inability to distinguishing between the 

“direction” of misclassification (False-Positive vs. False-negative or Type- 

I vs. Type-II errors).   In most practical scenarios, the direction of 

misclassification matters and there is almost always an unequal 

misclassification cost associated with each class. 

 The other problem with accuracy is that it does not take into account the 

effect of chance i.e., the portion of correct classification that could be 

achieved just based on chance. However, this serious shortcoming is often 

ignored in many machine-learning projects. 

Accuracy is best used for gross-reality check of algorithms in the early stage 

of data exploration. It also is suitable during the development phase to formulate 

algorithm convergence criteria. However, its use to determine the suitability of an 

algorithm for a particular purpose or data set is limited and hence one needs to 

exercise extreme caution in putting too much faith in raw accuracy values [61]. 

Accuracy is certainly not suitable to compare algorithms to one-another as averaging 

across multiple trials or data sets is not meaningful [62]. Table 4 shows a 

comparison of the advantages and shortcomings of popular alternatives to accuracy. 
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Table 4. Comparison of Common Measures of Predictive Performance 

MT ADVANTAGES SHORTCOMINGS USAGE 
A

C
C

U
R

A
C

Y
; 

R
M

S
E

 - Universal - can be used 

for discrete and 

continuous classes and 

scales to multi-class 

problems 

- Easy interpretation 

- Does not discern (uneven) 

costs of misclassification 

- Misleading if class 

imbalance exists 

- Does not discount for 

chance agreements 

- Uniform misclassification-cost 

problems with balanced class 

distribution 

- As a gross reality check 

- Determine convergence of 

algorithm 

P
R

E
C

IS
IO

N
-

R
E

C
A

L
L

 - Gives granular view for 

the particular class of 

importance regardless on 

class-imbalance 

 

- Not a scalar - two numbers 

need to be reported and 

hence not straightforward to 

interpret 

- The other classes are 

ignored 

- Suitable for problems where a 

particular class is of utmost 

interest (like anomaly detection) 

- Not suitable for multi-class 

problems 

- Information retrieval 

F
-M

E
A

S
U

R
E

 - Combines precision and 

recall into one metric 

with relative weighing 

between the two 

- Scalar between 0 and 1 

- easy to compare 

- Easier interpretation 

- Ignores other classes 

- Relative weights are usually 

unknown and uniform weight 

assumption is not 

representational  

- Suitable for problems where a 

particular class is of utmost 

interest and importance of 

precision versus recall is known 

- Not suitable for multi-class 

problems as the other classes 

are ignored 

S
E

N
S

IT
IV

IT
Y

-

S
P

E
C

IF
IC

IT
Y

 - Measure that gives 

recall indication about 

both classes 

- Can be extended to 

multi-class 

- Not a scalar - two numbers 

need to be reported 

- Extending to multi-class 

result in same number of 

measures as classes 

- Suitable for problems where 

the misclassification cost is not 

known beforehand but needs to 

be applied later. 

- Use to compare or tune 

algorithms on a per-class basis 

R
O

C
 C

U
R

V
E

 - Graph that gives a 

trade-off curve between 

sensitivity (tPr) and (fPr 

= 1-specificity) 

- Information-rich over 

operating-range 

- Not prone to class 

imbalance 

- Not a scalar so there is 

interpretation overhead 

- Needs evaluating over the 

operating range 

- Curve resolution limited by 

available data 

- Mainly applied to two-class 

problems 

- Highly useful in tuning and 

optimization of the algorithm to 

"dial-in" optimal performing 

region. 

- Not suitable for multi-class 

problems 

A
U

C
 - Scalar summary of the 

ROC curve 

- Averages performance 

over all cost-ratios 

- Related to Gini index 

- AUC does not correct for 

agreement by chance 

- Misclassification costs and 

direction ignored. 

- Computing is cumbersome 

- Use instead of accuracy. 

- Best when reported with the 

actual AUC curve 

- Not suitable for multi-class 

problems 

K
A

P
P

A
 - Corrects for chance 

agreement - credibility 

- Normalized on a -1 to 1 

scale (almost 0 to 1 for 

larger class imbalance) 

-  Affected aptly by class 

imbalance 

- Relates well to ROC 

- Does not discern (uneven) 

costs of misclassification 

- Experts differ on how to 

compute the chance 

agreement 

- Realistic metric for problems 

with imbalanced class 

- Works well when one class is of 

utmost importance 

- Superior to accuracy as single-

number measure 

- Compare and choose 

algorithms, tuning and costless 

evaluation 
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Precision & Recall restrict focus to one class of interest thus cannot be 

extended to multiple-classes. They can be effectively used to address situations like 

fraud-detection where one class is of utmost interest and costs mainly revolve 

around true-positive and false-positive. This metric is rightly popular in information 

retrieval applications but requires reporting of two-numbers. The F-measure is a 

single-number representation of precision & recall. 

F-measure is the harmonic mean of precision and recall resulting in a scalar 

that can range between 0 and 1 hence allowing easy interpretation: 1 is a perfect 

classifier. A weight can be applied to balance the relative cost of true-positive and 

false-positive although the performance on the negative class is ignored. F-measure 

is not extendable to multi-class problems and focus remains on the particular class. 

Thus again suitable for information retrieval and fraud-detection applications. 

Sensitivity & Specificity separate the correctly classified proportions thus 

allowing one to distinguish the direction of misclassification unlike in accuracy. 

However, the price-paid is in terms of losing the simplistic scalar indicator and 

replacing it with two-numbers that need to be interpreted in unison. The concept 

itself can be extended to multi-class problems essentially reporting the proportion of 

correctly classified of that class. This also means one has to deal with as many 

indicators as classes – can become difficult if used for comparison of algorithms. 

However, effective if used for tuning the performance to favor certain classes 

without needing to know exact misclassification costs beforehand. 

The ROC (Receiver Operating Characteristics) curve is graphical plot of true 

positive rate (sensitivity) against false positive rate (1-specificity) [63]. 

Consequently, a ROC curve is a collection of various confusion matrices over 
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different varying decision thresholds for a classifier. The advantage is that it allows 

characterizing the classifier across its operating range of classification thresholds 

instead of a point estimate like accuracy. The trade-off can be made between the 

true-positive-rate desired and the lowest tolerable false-positive-rate. Once plotted, 

the curve can be used for tuning and trade-off based on relative costs of 

misclassification which can be applied after the fact. However, plotting the ROC at 

finer resolution requires large quantities of test data. The curve itself is not prone to 

class-imbalance as both the axis are normalized ratios to the class-proportion. The 

ROC is well understood in the engineering domain and hence familiar although a 

two-dimensional graph is not convenient for quick comparison of algorithms. The 

area under the ROC curve known as the AUC is the remedy. 

The AUC (Area Under the Curve) has been used as a way to reduce the 

information to a scalar ranging from 0 to 1: perfect classifier has AUC of 1 and an 

AUC of < ½ means it is probably worse than a random guess; because, the 1:1 line 

would represent a random-guess algorithm [64]. Although, an AUC of ½ could be 

due to other reasons. The AUC represents the performance of the classifier averaged 

over all the possible cost ratios. AUC represents the ability of a classifier to rank a 

randomly chosen positive test example higher than a negative one. The AUC is 

closely related to the Gini cost-function as well. The AUC can be used effectively 

instead of accuracy to compare performance of different algorithms due to immunity 

to class-imbalance as compared to accuracy. However, misclassification costs are not 

taken into account. Additionally, AUC does not correct for agreement by pure-

chance. This can be remedied somewhat by only considering the area above the 1:1 

line. However, the problem remains. 
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Kappa corrects for the agreement by chance. Kappa is the ratio of the 

difference between the observed and chance agreements, to the maximum possible 

agreement that can be achieved over and above chance - Table 3 shows the equation 

for Cohen’s Kappa. Alternatives re available around how the chance-agreement is 

computed based on the purpose of evaluation; however, Cohen’s Kappa is most 

commonly used. These measures that correct for change originate in statistics and 

are called agreement measures (or interclass correlation statistics or interrater 

agreement measures). The agreement measures take the marginal probability of 

label assignments into account to correct the estimated accuracy for chance. Like 

accuracy, Kappa can be extended to multi-class problems. Unlike accuracy, Kappa is 

not prone to providing overly optimistic results especially in existence of class 

imbalance where the important class is in minority. Because of these characteristics, 

Kappa should be utilized instead of accuracy to ensure viability of true benefits of 

deploying the ML algorithm based system in the field. 

Kappa is known to be affected by class-imbalance. To examine if this effect is 

meaningful and desired, the relationship between Kappa and ROC space was 

examined. The desired behavior of a metric would be that while, it is not 

overwhelmed with poor performance on the unimportant class, it still shows 

degradation when the performance is poor on that class to indicate the burden of 

false-positives. Kappa was computed over the entire ROC place using a 11x11 at all 

points on a 11x11 grid (resolution of 0.1) for six different (positive to negative) class 

imbalance (skew) ratios. The results are shown in Figure 11 as six 3D gradient 

surfaces over the 2D ROC plane for various class ratios.  
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Figure 13. Kappa Profiles over ROC Space for Class-imbalance Ratios (P:N) 
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For the 1:1 (balanced-class) case, Kappa is seen to be highly representative of 

the ROC space where it is zero along the slope=1 line which represents the random 

classifier. Kappa increases as we progress diagonally towards the (0,1) point which 

is the perfect classifier and hence Kappa takes the maximum possible value of one. 

On the opposite side is the (1, 0) point where Kappa is -1 hence rightly indicating 

poor performance. 

Now when we move the class imbalance to 1:10 – there are 10 times as many 

negative examples as there are positive; the positive being the class of interest. Once 

can observe that this has in-fact affected Kappa. The slope=1 diagonal line still holds 

the Kappa of 0; however, the negative values do not go beyond -0.2. As we would like 

most classifiers to be better than random, this is not too consequential. The positive 

values have taken a concave shape wherein, Kappa values closer to the diagonal are 

much lower than in the balanced-class case but exponentially rise to 1 as we 

approach the (0,1) perfect classifier corner. This thesis proposes that the behavior is 

exactly what is desired in a good metric as explained next. 

Table 5. Two Examples Illustrating the Desired Bias in Kappa 

 predicted 

Positive (pP) 

predicted 

Negative (nP) 

  

Example 1:     

actual Positive 

(aP) = 10 
9 1 tPr = 90% Accuracy = 98% 

actual negative 

(aN) = 100 
1 99 fPr = 1% Kappa =0.89 

Example 2:     

actual Positive 

(aP) = 10 
9 1 tPr = 90% Accuracy = 90% 

actual negative 

(aN) = 100 
10 90 fPr = 10% Kappa =0.57 
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Consider two examples as shown in Table 5. In both examples, the class 

imbalance is 1:10, positive to negative. In the first example, there is exactly one 

example misclassified in each direction with true-positive-rate (sensitivity) at 90% 

and false-positive-rate at 1%. Hence the performance is quite good and 

correspondingly, accuracy is at 98% and Kappa is at 0.89. In the second example, the 

class imbalance remains the same and so does the true-positive-rate (sensitivity). 

However, now the false-positive-rate has increased ten-fold to 10%. The accuracy, 

enamored by the class-imbalance, remains over 90%; however, Kappa has dropped to 

0.57. Given there has been a ten-fold increase in false-positives, the drop is well 

justified especially if the positive class is of utmost importance like in fraud-

detection, cancer-detection and error detection in the industrial space. 

Now we move our attention to the 1:100 imbalance case and observe that 

Kappa goes higher than 0.1 only when the false-positive-rate (fPr) is lower than 

10%. This is apt as any false-positive rate higher than 10% would not be tolerable for 

a 1:100 data set. Once in the region of fPr < 0.1, Kappa rises as the true-positive-rate 

(tPr) goes up, reaching 1.0 at the (0,1) point. In the 1:1000 imbalance case, the 

behavior of “flat” almost zero at all places on the ROC plane except closer to the 

fPr=0 line, becomes highly pronounced. Again, this is the exact behavior desired. In 

semiconductor manufacturing the detect rates are measured in DPM (defects per 

million), similar to PPM in biochemistry. Thus class-imbalance is severe. So is the 

case in many real-world scenarios. As the behavior of Kappa is attuned to reality, it 

is proposed that Kappa is an apropos measure for real-world evaluation of machine 

learning algorithms for discrete classes. Class imbalance in the other direction 

results in similar behavior with respect to the fPr=1 line thus Kappa is symmetric. 
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There are a multitude of measures that have been proposed that are suitable 

to the objective and specific needs of the domain. While Lift Charts (true-positive 

against sample-size) are used in marketing domain, precision-recall curves are used 

in document retrieval and can be more relevant in heavily imbalanced data [65].  

Cost curves plot the error rate (1 - accuracy) against probability of positive class. 

They are point-line duals of ROC curves in that each point on the ROC convex-hull 

is represented by a line. Informedness and Markedness are used in psychology [66]. 

RMSE (Root Mean Square Error) is used as a general purpose performance 

measure where the predicted variable is continuous. RMSE is highly correlated to 

accuracy when a threshold is applied and also correlates with AUC across 

thresholds. It also has the same limitations as accuracy. 

The KL divergence information theoretic measure that quantifies the 

difference in entropy between the learned classifier and true class distribution. 

While valuable in theoretical treatment of classifiers, as true distributions are 

seldom known, it has limited practical values. Bayesian Information Reward (BIR) 

remedies this shortcoming by using the empirical class distribution instead of true 

class distribution and adding a penalty for misclassified classes [67]. Kononenko and 

Bratko’s information score is another information based approach that measures the 

decrease in the information needed to classify the instances as a result of learning 

the classifier [68]. It is analogous to Kappa in that it denotes the effectiveness of the 

learning process over and above the information conveyed by the empirical priors. 

In summary, there is no one-size-fits-all metric and thus it is advisable to put 

thought into selecting a proper metric based on the data set, purpose and phase of 

evaluation. That said, Kappa should be strongly considered instead of accuracy [62]. 
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3.1.3 Methods 

This section is devoted to scan commonly used methods of validation and 

identify shortcoming with respect to real-world scenarios and make 

recommendations. There are a handful of methods and a multitude of derivatives 

used for evaluation of machine-learning algorithms sometimes without a thorough 

understanding of the assumptions and pre-requisites. This section examines the 

popular methods of evaluation and proposes simple guidelines for method selection 

based on size of the dataset. It also identifies the combinations that should be 

refrained from to ensure that false conclusions are not drawn from flawed analysis. 

By following these guidelines once can ensure that evaluations at all phases in the 

analytics process leads to the right decisions thereby improving the chances of 

success and/or indicate early-failure to pivot accordingly. 

The simplest (and cleanest [69]) method for evaluating learning algorithms is 

the hold-out method. The available data-set is divided (randomly) into two sets 

(usually a 2:1 split). One set (usually 2/3rd) is used to train the algorithm and the 

rest is used for testing. While this is the cleanest way, often it is cited that in 

situations marred by lack of data, not using all of the available data for training robs 

the algorithm of its best chance of reducing bias. As academia usually suffers from 

shortage of data, most of the effort in research has gone into proposing clever ways 

to reuse or multi-use the data for training as well as evaluation. Some of these are 

covered below. 

Random-subsampling is where the hold-out method is repeated a certain 

number of times and the resulting metric from all the runs is averaged. Although 

this allows use of a larger amount of data for the learning algorithm, for small data 
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sets, the models during all of the runs turn out to be close to each other thus not 

helping with the bias. Additionally, as the same data samples are being reused, 

false-replication occurs and any measure of variance either high or unreliable. As 

performance is worst on small data sets, it defeats the purpose of using the method. 

Cross-validation attempts to remedy the problem by (randomly) dividing the 

data set into k equal folds (portions). At each run, one of the k folds is held-out for 

testing and the other (k-1) folds are used for training. The process is repeated k 

times and the results are averaged. As distinctly different test-sets are used on each 

run, the bias and variance are tolerable for mid-sized (hundreds) data sets. The most 

popular value for k is 10 due to good balance between bias and cost of multiple runs. 

Below 5, bias tends to be high. Furthermore, if the number of classes is high, the 

variance tends to shoot up. Stratified sampling can be used to control the variance 

and benefits the bias as well. Stratified sampling is where one ensures that each of 

the k folds’ have the same class distribution. 

Leave-one-out is an extreme case of cross-validation where k=N, the number 

of samples in the data. The error estimate is almost unbiased because the training 

takes place on all but one training example of the available data and because the 

testing sets are completely independent. This estimate, however, suffers from high 

variance on small samples because of the extreme behavior of the tested classifiers 

on the one-case test sets. For example, a completely random data set with binary 

classes would result in an accuracy of 0 and a misleading variance of 0. For larger 

sets, the technique gets expensive, for smaller sets, variance is a problem. Thus 

there is little practical use for this method. 



  76 

Bootstrapping is a method where instead of splitting the set randomly, N 

samples are selected with replacement from the data set and the samples that did 

not make the selection are used for testing. Thus the algorithm has the benefit of N 

samples although some are repeated. Probabilistically, 36.8% of the samples will go 

unselected during one and thus 63.2% of the samples are in the training set. The 

process is repeated and the results are averaged. The bias is known to be pessimistic 

and thus an adjustment is applied based on the training error. After the adjustment, 

the bias can become optimistic. Bootstrapping has been shown to perform well in the 

cases in which the sample is too small for cross-validation or leave-one-out 

approaches to yield a good estimate. In such cases, a bootstrap estimate shows less 

variance; however, again this could be due to false-replication. 

Permutation test first creates ‘bogus’ data by taking the genuine samples and 

randomly choosing to either leave their label intact or switch them. Another method 

is to keep the labels as-is and scramble the feature values. Once this ‘bogus’ data set 

is created, the classifier is run on it and its error estimated. This process is repeated 

a very large number of times in an attempt to establish whether the error estimate 

obtained on the actual data is truly different from ones obtained on ‘bogus’ data sets. 

The random-subsampling and leave-one-out have limited use due to poor bias 

and variance respectively on small data-sets. Although in cases of extremely small 

datasets, the k-fold cross-validation often does not perform as well as bootstrapping 

(and using more folds do not help), it does not suffer from drastic problems the way 

bootstrapping does in terms of increased bias or when the true error expectations 

are not met. Moreover, the bias of bootstrapping depends on the algorithm as well 

because some algorithms use duplicate samples but others do not. It has also been 
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shown that the k-fold cross-validation does not estimate the mean of the difference 

between two learning algorithms properly [70].  

Table 6. Bias, Variance and Suitability of Popular Evaluation Methods 

 Description Bias Variance Suitability 

Hold-Out 

Randomly sub-

divide into separate 

training (2/3) and 

test-set (1/3) 

Low 
(high for 

small sets) 

Medium 
(high for 

small sets) 

Large data-sets 

(thousands);  

not-practical for 

small data-sets 

Random 
subsampling 

Hold-out method 

repeated m-times 

High for 

small sets 

High for 

small sets 
Not recommended 

 
k=10, 20 

 
k-fold Cross 

validation 

Sub-divide into k 

distinct "folds"; Do 

k-times: one fold for 

test and other folds 

for training. 

Low if 

stratified 

Medium 
(high for 

multi-class) 

Recommended for 

most cases with 

limited data-size 

(hundreds)  

k≤5 
High, 

pessimistic 
Medium Not recommended 

Leave-one-
out: k=N, 
N/2, N/5  

Each fold has 

exactly one sample 
Low High 

Not recommended 

- Ex. random bi-

class data has 0 

accuracy and 0 

variance 

Boot-
strapping 

Randomly sample N 

with replacement 

for training set; the 

ones not sampled 

are test-set (0.368N) 

High, 

optimistic 

Low 

(due to 

false 

replication) 

Small Data sets 

(tens); 

Memorizer would 

give high accuracy 

on random data 

 

Table 6 shows the bias, variance and suitability of sampling methods. The 

choice of a particular resampling method also affects the bias–variance 

characteristic of the algorithm’s error. This then can have important implications for 

both the error estimation and subsequent evaluation of classifiers (both absolute 

evaluation and with respect to other algorithms) and its future generalization as a 
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result of the impact of this choice on the process of model selection. Thus most 

sampling methods are not appropriate for reliable comparisons. Next, real-world 

implications on evaluation methods are covered. 

3.2 Real-World Challenges 

Key challenges exist in how evaluations are done today mainly due to 

difference in demands and priorities of a lab environments versus industrial real-

world scenarios. These challenges if not understood and addressed lead to the failure 

of data-analytics and machine-learning efforts after much has been sunk in terms of 

resources and time into the previous development phases.  

 The most prominent one is that of time-traveling the lag and leap 

between model-training and prediction that invariably exists in real-

world systems an often overlooked but critical aspect of evaluation. 

 The second is that most evaluations are done in a static environment 

where the test-set is siphoned from a data set that is itself is a snapshot 

in time. Thus making the implicit assumption that the real-world 

application systems are static.  Real-world scenarios are seldom this form.  

 The third is that although there has been a fair coverage of evaluation 

methods and metrics, there is a lack of clarity on their sensitivities. 

Predictions are seldom presented with confidence intervals. Thus it is 

never clear whether the prediction is within the system error tolerance. 

 Lastly, most evaluations are focused on the prediction performance and 

do not pay much attention to the other aspects of performance. 

Each of the challenges are described herein using a simple data science 

application in marketing: propensity modeling. Propensity modeling is an 
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application wherein the machine-learning model is chartered with identifying those 

customers who are most likely to exhibit a certain behavior (like responding to 

marketing material or at risk of churn etc.). 

3.2.1 Prediction Leap 

In many real-world scenarios there is a leap. Leap is the period into the 

future that the machine-learning algorithm needs to predict. In the propensity 

modeling scenario, say the model needs to predict customers likely to churn in the 

next month (a = 30). Whereas the subscriber could cancel anytime between within 

the actualization window (a) anytime between day-one (t1) and last day of the month 

(t30), the predictions need to be available on day zero (t0). Thus, assuming that there 

is no lag in data-collection and models can be built instantaneously, the only data 

available to build the model is from the previous-day and going into the past (t < t0) 

as shown in Figure 14. The actual customer choices are determined only after day-30 

(t > ta) at least for the ones who canceled – this is the actualization window. The 

ones who stayed may very well cancel after day 30; however, this has to be out of 

Figure 14. Actualization Windows and Faithful Recreation During Evaluation 
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scope of the analysis in-order to bound the problem. In reliability engineering, this 

type of data is referred to as ‘right-censored’ data [71]. Data from the actualization 

windows will not be fully available at the time when the model is built (at t=t0).  

Now consider the evaluation scenario to determine the viability of the chosen 

algorithm before deployment to the field (say at time t0). One would need an actual 

test-set where customers have already made their choices over a one-month period. 

Thus for the model evaluation to be true to life, one needs to ensure that the test-set 

is shifted forward (into the future) from the training set by thirty days. As one 

cannot go into the future, instead, the validation-set must be limited prior to thirty 

days into the past (t < t0-a). Furthermore, no data between t0-a and t0 can be used for 

training during validation (as shown by the ‘no-fly zone’ in Figure 14 as this data 

will not be available when the actual model will be built. Using this data for training 

would contaminate the model with information not available to it deployment. Thus 

in this scenario, cross-validation is simply not representational. 

Figure 15. Reaction Time in Addition to Actualization Window 
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There is yet another component that adds to the temporal shift between 

training and test sets for validation as shown in Figure 15. This shift is due to 

possible reaction-time (r) after the prediction has been applied to the system. For 

example, in the propensity model, say we have identified the customers that are 

most-likely to churn. We would like to run a proactive retention campaign to 

determine if that helps in any way. Thus now the time to run the campaign and 

reaction time must be added to the delay between prediction and actualization. This 

results in the no-fly zone extending from (z ≥ a) to (z ≥ a+r) as shown in Figure 15. 

In simple linear regression models the confidence interval around the line 

fans out as we move away from the mean, similarly the confidence in predictions 

from a machine-learning model will decrease as we move into the future. Thus a 

large prediction leap is highly demanding on the algorithm’s abilities whereas a+r=0 

is the simplest case. In real-world scenarios the leap (a+r) is seldom small; yet, most 

evaluations implicitly make the assumption that a+r = 0 by using parts of the same 

dataset for cross-validation. In the propensity example, using cross-validation will 

not make sense as the data is time-sensitive. However, if such a technique it applied, 

it would result in great accuracy. The spectacular results could lead to unrealistic 

expectations which will ultimately not be met in the field. Thus resulting in failure 

of the data-analytics project and loss of confidence in the methods. 

The practice of reusing a fraction of the contiguous data set to perform 

evaluation (like in cross-validation and bootstrapping) perhaps comes from the fact 

that most academic research is marred by the scarcity of datasets [72]. However, 

today both data storage or processing are not cost-drivers and sensors spew more 

data than can be utilized. Thus small data sets are not necessarily the problem. 
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However, it is critically important that evaluations are done in conditions that 

represent reality with high-fidelity. Some assumptions made in lab environments 

might seem trivial but have a huge impact in the field. 

3.2.2 Prediction Lag 

The prediction leap is not the only temporal aspect to be considered in real-

world scenarios. Couple of other temporal shifts exist that are associated with data 

gathering. In real-world scenarios, attributes are assimilated from disparate 

sources, and combined to form the set that has the best predictive power for the 

application of interest. For example, weather data from the NOAA database may be 

combined with data from the building for HVAC optimization. Thus by the very 

nature, delays might exist wherein at the moment the model is being built not all 

data up to that moment is available for consumption as seen in Figure 16. 

In the propensity modeling example, some key attributes for modeling might 

not be available in the database and need to be manually rolled up after field-sales 

Figure 16. Overall Time-shifts in a Prediction System 
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representatives enter their data. As this is a manual process there is bound to be a 

delay in data availability. Thus further adds to the shift between modeling and 

prediction. Additionally, the modeling process might add further delay. It is 

important to note that while the prediction lag can be reduced through system 

improvements, the prediction lead can seldom be affected without changing the 

fundamental business or engineering process. 

 In summary, as real-world scenarios involve non-zero temporal shifts, it is 

highly recommended to perform out-of-time validation in order to ensure that the 

results obtained in the lab environment are in fact going to be realized when the 

model is deployed in the field [73]. 

3.2.3 Window Size 

The previous sections dealt with the temporal-shifts in evaluation of an 

algorithm; however, it is equally important to carefully consider the windows: 

training window and actualization window. 

The actualization window in many cases is strongly influenced by the 

turnover or cycles in the domain of application. For example, financial domain might 

implicitly have a quarter or year as the cycle, while an hourly or daily cycle is 

common in HVAC scenarios [74]. There are significant implications to the model 

which are important to account for and understand. In the churn propensity model, 

too short of an actualization window might mean too-few churn examples resulting 

in imbalanced data. Whereas a large actualization window might mean some of the 

churn is cause by long-term trends and hence consequently, the training window 

needs to be extended to capture those trends. Next, training-window is discussed. 
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 As most are enamored by the challenge of obtaining data, the tendency is to 

use most if not all available data for training. However, this might not always be the 

best choice when it comes to building production-worthy models. In the churn 

propensity model example, although data might be available extending several years 

into the past, all of it may not be relevant to the prediction task at hand.  

Many factors affecting churn might have changed in the recent past. The 

product-profile might have changed, customer-service might have been outsourced, 

new competition might have entered the market. While these factors might be 

relevant to the churn problem as a whole, they do not necessarily apply to the 

immediate task of predicting churn propensity for the next 30 days. Including all 

data in the model may make learning more difficult as the modeling process now 

needs to weed out factors that are not immediately relevant to the task. Another 

illustrative example is overall average reviews of a software app versus the review 

in the last week or month. As software is updated frequently, the past reviews may 

not apply to the product available for download today. Thus many questions arise 

about the training window that need careful consideration and may also require 

experimentations. Some are listed below: 

• What span of time should be used to form training data? 

• What size of training data is acceptable: speed vs. accuracy? 

• Is sampling of the training data tolerable? If so, what rate? 

• Should the sampling be weighted by time (to simulate fading “memory”)? 

• What attributes should be included in the model versus branching into 

categories and building a model per category? 
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The list above is not meant to be exhaustive. However, one is best served by 

thoroughly analyzing the modeling task at hand to ensure all aspects of selecting the 

length and nature of the training window are considered carefully without resorting 

to “default” options. There are aspects specific to the model-building process itself 

like feature-selection, cost-function, parameter-tuning, etc. which are out of scope of 

this dissertation but are important to consider. 

3.2.4 Dynamics 

Real-world systems are mostly dynamic by nature. Characteristics of the 

system change over time, cyclically, in trends, shifts and composition. In the churn 

propensity example, although the demographics of the customers do not by 

themselves change drastically, other influencing facts do, like, product features, 

support-quality, competitive landscape. In the building HVAC optimization, the 

external temperature and humidity change on a daily cycle as well as a seasonally. 

In addition, there could be changes to the characteristics like addition or removal of 

blinds. Thus all models have a shelf-life and based of the application, this can range 

from few minutes to several weeks. Changes can be the following: 

 Change in attribute (x) distribution (cyclic, trends and shifts) – i.e., the 

probability distribution p(x) changes but p(y|x) does not. 

 Change in relationship between attributes and predicted (y) – i.e., the 

probability distribution p(y|x) changes but p(x) does not. 

 Change in attribute set relevant to predictor – i.e., is z is the new 

attribute set and f and g are models, ||𝑦 − 𝑓(𝑥)|| ≫ ||𝑦 − 𝑔(𝑧)|| .  

Another type of drift is caused by the introduction of the machine-learning 

algorithm itself. It is the result of the unintended loops that might occur in machine-
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learning deployments. Let us say a model A is being designed by the media 

placement group to prioritize advertisements. Prior to that, the marketing group 

had setup model B to score customer interest in products based on the length of time 

the customer spends on the page. Creators of the system A find that an ‘interest’ 

score is available in the database and use it as one of the features for their model. 

Thus an unintended loop is formed which could cause the system drift and runaway. 

One approach is to attempt to build a model that would incorporate the cycles 

and drifts and maintain stability over time [75]. However, this approach can only go 

so far and ultimately the model will need to be refreshed. The straightforward 

answer seems to be to setup monitors to detect deterioration. The key question is: 

what to monitor? It can be difficult to establish useful invariants, given that the 

purpose of machine learning systems is to adapt over time. Often a simplistic metric 

like prediction bias can be useful to detect change in relationship between the 

features and predicted variables.  

Many other questions arise around the model-refresh: time-based or 

deterioration-based; if time based, what frequency; if deterioration-based, what is 

the measure of deterioration and what threshold etc. Additionally, it is often 

necessary to pick a decision threshold for a given model to perform some action. The 

threshold is often picked manually to achieve a certain tradeoff between metrics like 

precision and recall. Thus if a model updates on new data, the old manually set 

threshold may be invalid and hence also now needs to be updated. Due to dynamics, 

thus performance must be validated across a long enough time-span to be credible.  
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3.3 Proposed Evaluation Framework 

The evaluation framework proposed is in line with the analytics framework 

shown in the previous chapter. Just as a software development team has a sandbox 

or development environment to try new features and techniques before releasing 

them to production, the evaluation framework must allow experimentation and 

thorough evaluation of the machine-learning solution before deployment to the field. 

The best development environment is typically the one that represents the 

production environment with high-fidelity yet allowing flexibility for experiments. 

Thus it needs to consist of the key elements found in the real-world production 

environment. Three key elements make-up the predictive-analytics flow: data 

gathering and cleaning, data modeling and prediction.  Accordingly, the three key 

elements of an evaluation framework are a data-mart, a time-looping mechanism 

and a way to specify model generation and testing for experiments.  

3.3.1 Build Data-Mart 

It is well known that most of the analytics project time is spent in gathering 

and cleaning the data. If one enters the analysis with the expectation that this is a 

once and done activity, it is bound to lead to disappointment. Because, as the project 

proceeds into the modeling phase, it is most likely that an additional attribute or 

piece of data, aggregation or transformation is needed that will have a much bigger 

impact on the model performance than the algorithm itself. If this new need cannot 

be fulfilled in a reasonable timeframe, it could lead to project delays and ultimate 

failure. Additionally, in order to address the need for a dynamic evaluation, it is 

imperative that both the training and scoring data can be obtained automatically 

with a simple query or import that does not require manual manipulation. Thus a 
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large enough sample of the data should be collected in a purpose-built dedicated 

database. It not a good idea to reuse the corporate data warehouse. Instead, creating 

a separate data mart is recommended for the following reasons [37]: 

 Modeling the data will involve highly active use of the data warehouse. It 

will often mean joining many tables together and accessing substantial 

portions of the warehouse. A single trial model may require many passes 

through much of the warehouse. Thus causing resource allocation issues. 

  It is often overlooked that modeling entails modifying the data from the 

data warehouse. One may want to bring in data from outside the company 

to overlay on the data warehouse data or add new fields computed from 

existing fields. Additional data may be gathered through surveys. Other 

projects building different models from the data warehouse (some of 

whom will use the same data) may want to make similar alterations to 

the warehouse. However, data warehouse administrators do not look 

kindly on having data changed in what is essentialy a corporate resource. 

 One more reason for a separate database is that the structure of the 

corporate data warehouse may not easily support the kinds of exploration 

needed to understand the data. This includes queries summarizing the 

data, multi-dimensional reports (sometimes called pivot tables), and 

many different kinds of graphs or visualizations. 

 Lastly, performance, reliability and other considerations might 

necessitate that this data is stored in a data-mart with different physical 

design. 
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Thus regardless of the actual physical-design, a separate data-mart is essential 

to improve the likelihood of the success of the venture. The steps recommended in 

building a data-mart for analytics are shown in Figure 17. The 1st phase is an 

investigative process followed by a transformative phase 2 and the final realization 

phase 3. Note that these tasks might not be performed in strict sequence and are 

chosen and re-performed as need arises. Phase 1 consists of data collection, 

description, selection and inspection. 

 Data Collection: From the Data-Understanding, the data needed for 

modeling is identified. A data-gathering phase may be necessary because 

some of the data may never have been collected. There may be a need to 

acquire external data from public databases (such as census or weather 

data) or proprietary databases (such as credit bureau data). Special 

security and privacy laws may govern the data and the data-mart may 

inherit those restrictions. For example, many European data sets are 

constrained in their use by privacy regulations that are far stricter than 

those in the United States. Techniques like masking and scrambling may 

be employed to ease restriction. 

Figure 17. Three Phases and Steps in Building a Data-mart for Analytics 
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 Data Definition: Each of the attributes and targets shortlisted for 

modeling must be understood in ‘terms of units, data-type (continuous, 

discrete, nominal), levels, range, frequency, order, coded-meaning (like 

9999 means unknown). It is advisable to document so the whole team is 

on the same page regarding the variables involved. 

 Selection: This is not the same as feature selection. While feature 

selection is specific to the target variable, in this step, two decisions are 

made. The first is the time-span of the data to extract and second is the 

capture of all variables that may be relevant to the main business 

problem at hand. The goal is somewhat opposite to feature-selection in 

that a broad net is cast to ensure comprehensiveness. It can be 

detrimental to discover later that a variable needed for modeling or post-

analysis is not in the data-mart. The decision of time-span mainly 

depends on the longest cycles in the system or business-process being 

modeled.  For a HVAC optimization, one-years data is needed to prove 

seasonal changes are accounted. For propensity-model this may be a 

product revision/release to the next. 

 Inspection: A data quality inspection identifies characteristics of the data 

that will affect the model quality. There are a number of data quality 

problems including missing values, incorrect values, inconsistencies, 

duplicate-values, etc. Most of the inspection and cleaning tools go hand-

in-hand. However, the decision still remains if all data is worth cleaning. 
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Phase 1 forms the planning phase of building the data-mart where most 

decisions about the data are made and a plan is created that is executed in the next 

two phases. Phase 2 consists of cleaning, integration and metadata construction. 

1. Cleaning: Once a decision is made to clean the data, the simplest is to 

exclude the row from modeling. In sparse datasets, this may not be 

feasible. Some common strategies for calculating missing values include 

using the modal value (for nominal variables), the median (for ordinal 

variables), or the mean (for continuous variables). A more complex 

strategy is to build sub-models to predict the missing values. One such 

novel method used in such contexts is that of surrogate variables. Where 

values can be inferred from other attributes based on general covariate 

trends observed. Then two models are built, one that uses the surrogate 

and one that does not – the superior one is chosen. 

2. Integration: The data needed may reside in a single database or in 

multiple databases sometimes spread geographically. The source 

databases may be transaction databases used by the operational systems 

of the company. Other data may be in data warehouses or data marts 

built for specific purposes. Still other data may reside in a proprietary 

database belonging to another company such as a credit bureau. Data 

integration and consolidation combines data from different sources into a 

single mining database and requires reconciling differences in data values 

and granularities from the various sources. For example, there are often 

unit incompatibilities, in data from different countries. While outdoor 

temperature is needed per building, the weather data may be available 
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only by zip-code. A subscriber may have moved thus spanning two sales-

areas. Improperly reconciled data is a major source of quality problems. 

3. Metadata Construction: The information in data description document is 

the basis for the metadata infrastructure. In essence this is a database 

about the database itself. It provides information that will be used in the 

creation of the physical database as well as information that will be used 

by analysts in understanding the data and building the models. The 

metadata is updated with details from the cleaning and integration steps. 

The final phase is that of loading the data-mart and maintaining it. Having 

collected, integrated and cleaned the data, it is now necessary to actually load the 

database itself. 

 Loading the data-mart: In most cases the data should be stored in its own 

database. For large amounts or complex data, flat files are inadequate. 

Latest advancements in data-storage retrieval and processing like HDFS 

should be leveraged. However, a balance should be reached between the 

size requirements and simplicity requirements in making decisions about 

storage mechanisms. High degree of normalization must be avoided to 

ensure extraction speed. Cleaning and integration may be done during 

the loading process itself. Additionally, the loading should be scripted and 

manual steps should be avoided for rollback and replication ease. Many 

ETL tools come with basic mathematical operations and abilities to bolt-

on scripts that allow other complex manipulation. 

 Maintain the data mining database. There are two aspects of 

maintenance – the data and the database. Often, changes in direction or 
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pivoting of the data-analytics effort means capturing additional data. 

When designing the data-mart, updatability and extensibility needs to be 

factored in. In general, the schema chosen must be flexible and scalable. 

Once created, the database needs to be backed up periodically; its 

performance should be monitored; and it may need occasional 

reorganization to improve performance. For large complex databases, the 

maintenance may also require the services of information systems 

professionals. 

By building and maintain a data-mart that encompasses the relevant data 

that is at core as well as periphery of the task at hand allows extensive 

experimentation at all stages of the data-analytics process as proposed in the 

previous chapter. 

3.3.2 Time Walking 

The real-world challenges that affect predictive analytics systems were 

discussed earlier - temporal-shifts and time-variance have a large impact on the 

performance of machine-learning algorithms. Evaluations done in single static 

datasets do not represent the performance to be expected in the field. This section 

proposes a time-walking simulation technique that incorporates the temporal-shifts 

(lead and lag), window-size and time-variance (dynamics) nature of real-world 

applications. Additionally, this technique allows running experiments about other 

variables affecting the performance of the algorithm in the field; namely, training-

window, data-sampling scheme, time-shift sensitivity, test-window sensitivity, 

robustness, stability, hyper-parameters and so on. The experimental methods 

themselves are discussed in the next section. 
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Typically, the development of machine learning algorithms includes several 

nested loops (conceptual or actual) as shown in Figure 18. The inner-most loop 

iterates on the rows of data in the training data set. Around are loops for any 

random initialization, model-selection or ensemble creation, selecting among set of 

hyper-parameters (tuning), and finally, cross-validation.  The process iterates 

through options usually with intent of picking out a best option. This dissertation 

proposes adding a loop for time-walking. 

The concept of time-walking is illustrated in Figure 19Figure 19. Time 

Walking Through the Data to Achieve Representative Evaluation. One of the 

iterations are as a flow-cart to the left. As can be seen it includes all steps of the 

model building and prediction (test/scoring) process. Training data is extracted from 

the data-mart, the model is trained and tuned. Then the test data is extracted such 

that it is time-shifted into the “future” by as much as would be experienced in the 

Figure 18. Conceptual Nested-loops Used in Machine Learning 
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field as described in sections 3.2.1 and 3.2.2. The test-data is scored against the 

model, the performance metrics are recorded and the whole cycle is repeated.  

Note that the time-walk simulation requires large quantities of data across a 

sufficiently long time-span. However, usually in semi-mission critical systems like 

manufacturing lines of 24/7 web-services, much is at stake if things do not go as 

planned. Thus collecting the data and running the time-walk simulation is a 

justifiable expense of time and effort.  

Although the batch training process is assumed in the illustration above, the 

time-walk simulation technique applies equally well to incremental training 

scenarios and even time-series data [76]. The main difference being how the training 

set is constructed and if the model-training starts at each simulation from a blank 

slate or has priors in terms of the previous model and or distribution. 

A key advantage over cross validation is that the test data is truly separate 

from the training data and hence the assumption of independence is better met. Due 

Figure 19. Time Walking Through the Data to Achieve Representative Evaluation 
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to the time-shift applied, the results from the evaluations are highly representative 

of reality. As we obtain multiple trials of training and testing each time with data 

sets that are different, one could compute confidence intervals around the 

performance metrics if overlap is minimized. The time-walk allows the analyst to 

experiment with much more than the model-building process itself. For example, one 

might wish to experiment with the longevity of the model or metrics to use to 

determine model-staleness for more intelligent refresh. Additionally, the analyst 

could use the data over time to prove stability of the system to skeptical decision 

makers. The machine-learning system could be compared to the incumbent systems 

along various metrics by running them side-by-side. ROI could be established over 

time to convince potential clients of the benefits of the system. The next section 

covers how Design of Experiments can be used to get the most from the setup. 

3.3.3 Design of Experiments (DOE) 

Typically, the machine-learning community evaluates algorithms against 

variables either one factor at a time (OFAT) or in the all-permutations on grid 

(APOG) form. In the one factor at a time method, all variables are fixed (typically at 

nominal value) and the one variable being studied is varied over its range of values, 

Figure 20. Three Options to Run Experiments: OFAT, APOG and Factorial 
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typically at least at ten different levels. For example, when studying the 

performance of neural nets, the learning rate is varied while keeping the momentum 

is varied followed by keeping the momentum constant and varying the learning-rate. 

If each is set at 10 different levels, we have 20 readings in all. Continuing with the 

same example, in the all-permutations on grid method, a 10x10 matrix of all 

permutations of the 10 levels of 2 variables is formed and 100 readings are obtained.  

There are issues with either option. As seen in Figure 20, in the one factor at 

a time method (OFAT), the search space is sliced at two locations parallel to the axis 

thus missing out on any data in the rest of the search-space. On the other hand, in 

the all-permutations on grid method (APOG), one is taking 100 readings to study the 

effect of just two variables. What would happen if there are 6 variables – we would 

be need to take a million readings. If one reading took a minute, we would need over 

two-years to complete the study. Fortunately, we do not have to necessarily pick 

from either extreme. An entire area of applied statistics called Design of 

Experiments (DOE) is devoted to the art of characterizing processes. Surely once 

could also treat this as an optimization problem and apply any number of 

optimization algorithms. However, if the intent is to understand the effect of 

variables, DOE is a compelling choice. 

Design of Experiments is a methodology of actively collecting data from the 

process by deliberately varying the process input parameters at certain well-

designed combinations. It is a systematic method of collecting data to build a 

regression model that broadly describes a process or system. The beauty of the 

method lies in the fact that data can be collected in stages without expending all 

effort at once. As more is learned about the nature of the system, the direction of 
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data-collection can be altered. However, it takes careful planning and thought to 

conduct a well-designed experiment. 

If generally smooth behavior can be assumed, there is opportunity for using 

DOE even if a regression model may not be meaningful. The Factorial DOE design is 

shown in Figure 20 labeled ‘Factorial’. In this design, the experimenter can first 

start with just 5 readings denoted by the circular markers. Then a statistical test for 

curvature in behavior is performed. The tests for curvature identify whether 

nonlinear terms are needed. If they are not, it is unnecessary to collect more-data. If 

there is curvature, additional readings can be taken at the permutations denoted by 

the hollow squares and further from at the triangle markers. 

With just 15 readings, one can learn a great deal more about the effect of the 

variables than the 20 readings usually taken with OFAT. The OFAT method also 

misses on capturing the interaction effects that might be present. Interaction effects 

are where the effect of one-variable depends on the setting of another – the factor 

multiplication terms.   

Design of experiment techniques have options for fractional-factorial designs 

that can scale linearly in number of readings needed as number of variables 

increase. By sacrificing precision on higher-order terms, which are seldom 

significant, operational efficiency is achieved. Data is collected to determine the 

terms in the regression model only if the statistical tests indicate that the model is 

insufficient to describe the system – like in step-wise regression. The details of how 

all this is achieved is out of scope of this work. One can refer to the following as a 

starting points [77] pp475, [78] and [79]. 
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With data collected from a DOE, once a satisfactory regression model is 

achieved, the optimal setting for parameters can also be identified by factor 

profiling.   
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3.4 Demonstration 

The evaluation framework described will now be demonstrated on the 

selective die-kill use-case in semiconductor manufacturing from Section 2.6.2: 

identify die with a high propensity of failing after going through assembly and scrap 

them beforehand to save cost.  

3.4.1 Purpose of Evaluation 

The business problem, transformed to the data-analytics problem can be 

stated as follows: 

1. Can we build ML models that are capable of predicting final Pass-Fail 

result such that, sufficient quantities of fails are correctly identified in 

order to make the effort feasible? That is, TP > M; where M is a number 

determined based on die-area, process-flow, volumes/week, average-

selling price and other factors. 

2. Does the ratio of realized opportunity (true-positive, TP) to overkill (false-

positive, FP) put us in the positive ROI region – say greater than 2? The 

ratio also depends on several factors: product-mix, current yield in that 

product-line, assembly/test cost, market-segment etc. 

3. How do we setup the ML engine so that we can achieve sustained ROI? 

With a highly scalable tree ensemble algorithm using bagging and boosting 

[80], the initial experiments with static data sets were promising. As seen in Figure 

21, on most runs, the true-positive percentage (of all tested) denoted by dots (F, F) is 

twice as large as the false-positive percentage (of all tested) denoted by ‘X’ (P, F). 

The training set was fixed and different sizes of test-set were used (50k, 100k, 150k 

and 200k). For each size, the experiment was repeated 19 times. 
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One also notices that the 2:1 ratio of TP to FP is not consistent and there are 

trials where the ratio is 1:1 for the same size of test-set – this was worrisome. The 

purpose of evaluation here was not necessarily to find one dataset where the 

algorithm would give the desired results but to show that sustained ROI was 

possible. Thus one had to demonstrate the performance over time and other process 

dynamics. 

3.4.2 Dynamics 

Note from the data preparation phase the team noticed that there are 

significant temporal shifts and dynamics in the data-stream used to build the model. 

Firstly, multiple product flavors exist with slightly different manufacturing recipes 

and/or mix and match of die to substrates as shown in Figure 22 by different shades 

of gray. As seen, the product volumes ramp across weeks and ultimately ramp-down. 

Product lifecycles may last anywhere from 1.5years for mobile to 7years in IoT. The 

point to note is that the flavor mix evolves every-week – new flavors are introduced 

and some are discontinued. The question for the data-scientist is if models should be 

created by flavor or should flavor be one of the features in the model. Additionally, 

Figure 21. Results with Static Training and Test Sets 
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the process and test engineers continuously tweak their recipes to eek the last bit of 

room from the process to maximize yield or reduce cost, hence the process is always 

changing. As explained in Section 3.2.4, it is not always possible to include every 

variation as a feature and hence ultimately models will need to be updated or 

refreshed. Will the ROI be sustainable across a dynamic evolving process? 

3.4.3 Temporal Shifts 

As mentioned before, semiconductor manufacturing happens in a batch-

process with the lot being the batch – a given process-step processes one lot at a 

time. Each lot at a given step faces a certain queue-time where it is waiting to be 

processed and the actual processing-time. The sum of these two are known as cycle-

time (CT). The delta between the end-time at one step and end-time at another 

subsequent downstream step is known as throughput time (TPT for short). 

For the selective die-kill use-case, the physical removal of the die identified to 

have a high propensity for failure could happen at two possible locations in the 

Figure 22. Multiple Flavors of a Single Product in the Factory 
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manufacturing flow: at TRDS (Tape-Reel-Die System) or at CAM (Chip Attach 

Module). The TRDS step is where the die are picked off the wafer and placed onto a 

reel. The robot arm could be instructed to skip-over and not the ones with high 

propensity for failure as identified by the ML algorithm. The CAM module is the one 

that then picks up the die from the reel and places them onto substrates. Again, the 

robot arm could be instructed to skip-over and not the ones with high propensity for 

failure. The difference between the two locations is an in-between inventory step. 

The TRDI (Tape-Reel-Die Inventory) is where reels are stored and then 

shipped to assembly factory as factory planners determine when and what to “kit” 

based on market demand, factory loading and many other aspects. The material 

sitting in the TRDI is considered unfinished inventory and has tax implications. 

Minimizing the inventory has financial implications thus it would be advantageous 

to remove the failure-prone die before TRDI. Extensive analysis was conducted on 

the TPT and CT between operations and found to have significant variation.  

Figure 23. Temporal Leap and Lag and Time-shift Options 
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The median periods between operations spanned days if not weeks. Although 

specific times cannot be published due to being sensitive trade-secrets, a discussion 

on relative terms is still possible. The temporal lag and lead times (as defined in 

Sections 3.2.1 and 3.2.2) are shown in Figure 23. As shown, temporal-shift-B is more 

than twice as long as temporal-shift-A and it could be as high as 4 or more times 

temporal-shift A. Question is whether the machine- learning model could perform as 

well with these temporal shifts. To validate this question, the simulation framework 

described in the next section was used. 

3.4.4 Simulation/Evaluation Framework 

The overall architecture of the simulation setup is shown in Figure 24. The 

key components are the data-mart, script-host and experiment recipes. The team 

chose to create an offline data-mart by one-time extraction, linking and cleaning of 

relevant data from the Fab, Sort, Assembly, and Test operational databases across 

the globe. One years’ data for a single product line amounted to 20 million units with 

over 200 features or attributes stored in third normal form using a star-schema. 

Figure 24. Simulation Platform Setup for Experimentation 
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The script-host was built to allow setting up of various experiments by simply 

providing a configuration file. The script flow involved extracting training data from 

the data-mart with adjustable sampling schemes and rates. Then the desired 

feature-selection and modeling algorithms are called with adjustable algorithmic 

parameters. Next, an adjustable temporal lag can be applied to mimic the lag in the 

manufacturing flow. Finally, the model is applied to the extracted test data with the 

given lag and adjustable thresholds. Actuals are compared to get true prediction 

performance. The process is setup to loop and “walk” across time to represent real-

world scenarios. The system was designed to be scalable to support a large number 

of simultaneous and disparate applications using predictive models. The 

infrastructure later served as a great template for the production predictive 

analytics system. Preliminary results showed that non-algorithmic variables like the 

duration of training data, sampling strategy, prediction thresholds mattered greater 

than algorithmic hyper-parameters. 

Figure 25. An Example Workflow from the Script-host 
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3.5 Results and Discussion 

Utilizing the infrastructure mentioned in the previous section, several 

experiments were setup and. The training period was set to two-weeks, prediction 

period of 11-day and “walk” across 30-days with the temporal-shift set at 0-days. The 

initial results were promising with the TP/FP ratio close to 2 as shown in Figure 26. 

However, based on the analysis done in section 3.4.3, it was clear that the 

temporal-shift was not zero. Thus more experiments were conducted and the 

temporal shift was set at two different levels. The short 1x corresponding to the 

option to execute the die-kill at CAM and the longer 4x corresponding to the die-kill 

if executed at TRDS. Additionally, the period of the simulation was increased to 180 

days. The results are shown in Figure 27. As can be seen, the performance ratio is no 

longer consistent, reversing in places to where the False-Positive is higher than the 

True-Positive thus contributing negatively to the ROI. Although the result quelled 

the initial optimism, the learning was still timely. One would much rather know the 

true performance beforehand than after the ML solution is deployed. Thus avoiding 

further mistrust in the methods not to mention the financial loss. 

Figure 26. Good Initial Results of TP>FP 
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The inconsistent and undesirable results warranted further analysis to 

determine the root-cause and what could be done to find a solution. A “good” 

performance-day (8/30) was chosen to perform reproducibility test. Training 

duration was fixed to two-weeks, test for 8/30, temporal-shift to 4x. The test was 

repeated for 36 epochs using random-seeds. The results are shown in Figure 28.  

Figure 27. True-Positive and False-Positive for 1x and 4x Temporal-shifts 

Figure 28. Repeatability on the “Good” Performance Day Data 
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The results were surprising: although mostly consistent, there were a couple 

of epochs that had poor performance. This raised a couple of questions: was this 

behavior due to the stochasticity in the algorithm or the fact that the training set 

was sampled? Could the other bad performing days be turned around as well if the 

root-cause was identified? A repeatability test by fixing the training-set revealed 

that the anomaly was not just due to the algorithm as can be seen from Figure 29. 

However, the anomaly was not due to the sampling of the training data 

either. On closer examination of the training sets for epoch 7 and epoch 8, it was 

discovered that both had about 10 samples (see) of the part that was responsible for 

60% of the false-positives. Thus only a handful of samples were available in the 

training set, whereas, the test-set had a large number of samples of this product 

flavor. The shortage of training samples of this flavor with the small degree of 

stochasticity in the algorithm resulted in epoch 7 performing well but epoch 8 being 

adversely affected. Regardless, it was clear that the instability was due to a part 

appearing prominently in the test-set that did not have representation in the 

training-set. The situation as such is unavoidable: the temporal shift is a hard-

reality and new-product-flavors will always be introduced. 

Figure 29. Repeatability Test for the Anomalous Epoch-8 
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The root cause was confirmed by removing the 6023_PART (part number) as 

a feature and let the algorithm learn only based on the measured parametric data. 

When this was done, the anomalous behavior disappeared as seen in Figure 31.  

However, removing the part as a feature is not a permanent option. This 

would cause the performance on other days to deteriorate drastically. 

Figure 30. Unobserved Product Flavor Cause of the Anomalous Behavior 

Figure 31. Performance After Removing Part as a Feature 
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Several other algorithmic and data-transformation options were tried 

without much avail. Note a minimum kill-rate and a minimum ratio of true-positive 

to false-positive are required for viability. Figure 32 shows what happens on a “good” 

week where the curves are convex. During the good week, the training set happens 

to be highly representative of the test set after taking into account the temporal 

shift. However, on a bad-week the TP and FP curves become concave – during this 

week, the challenge is to predict the performance of a test-set that has a new 

product flavor and who’s corresponding temporally-shifted training set does not have 

the new flavor in sufficiently large quantities yet. Further, the highest ROI for 

selective-die-kill is when a new flavor is ramping-up and that is when prediction is 

poorest. Thus a decision was made to move on to a different use-case. As will be seen 

in the next chapter, the evaluation infrastructure aided a fast pivot. 

Figure 32. True-positive, False-positive and Kill-rates by Kill-threshold 
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CHAPTER 4                                                                                                             

DEPLOYMENT FOUR-E (DFE) 

In practical applications it is often the data and human issues which 

ultimately dictate success of failure of a project rather than algorithmic and model 

issues [81]. Even after thorough evaluation that is representative of the field, one 

needs to convince the decision makers that the solution is both feasible, reliable and 

sustainable before it can be deployed. Considerations like privacy, security, 

maintainability have a veto on these decisions. Thus to ensure success it is critically 

important to focus on these aspects of a data-analytics project. This illustrates the 

problem, scans the current state of art and proposes a high-level framework to 

navigate this often ambiguous last mile.    

4.1 Problem and Current-state 

Since the dawn of data-analytics, the research community has largely focused 

on inventing powerful and efficient algorithms to extract knowledge from data albeit 

limited by available data. Limited data has led to techniques around bootstrapping 

and cross-validation. Around the turn of the century, the focus shifted from data 

cleaning and pre-processing to the very front-end of understanding the business 

problem – this allowed much progress. However, several projects have been 

abandoned either just before deployment or even after 1st deployment due to 

evaluation and deployment issues. Very little is available in literature in terms of 

deployment of analytics except in conference presentations [82], and online 

publications [83]. Today, with abundance of distributed storage, processing and 

general availability of data, the focus needs to be turned to evaluation and 

deployment so that the promise of data-science does not remain a promise. 
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Table 7. Contrasts Between Analytics in Research Versus Industry 

LAB / RESEARCH FACTORY / INDUSTRY 

Knowledge extraction Value extraction 

Reproducible results Reliable performance 

Isolate theoretically important ideas Isolate high impact levers 

Novelty highly valued Diligence highly valued 

Generalizable results valued Precise and consistent results valued 

Question driven Metric-driven 

Focus on depth Focus on transparency 

Interactive, flexible Automated, controllable 

Fixed (stationary) data Fluid (non-stationary) data 

Output is a research publication Output is customer-facing decisions 

Constrained by shortage of data Constrained by, budget, time, legality, 

privacy, compatibility, brand etc. 

The lack of attention to the latter steps of analytics in the research domain 

could be traced to the differences in nature of analytics in research versus in the 

industry [23], [84] as shown in Table 7. The goal of research is knowledge extraction 

to isolate important ideas that can be published whereas the goal of industry is 

value extraction by discovering high-impact levers that can lead to profitable 

decisions. Research is driven by open questions that are explored at depth. Hence 

systems need to be interactive and flexible. Whereas the industry runs by 

transparent metrics and KPIs. Research places a high value on reproducible results 

that are novel and generalizable whereas industry desires precise and consistent 

results achieved through diligence. Lastly, research focusing on stationary data 

whereas industry has to deal with fluid evolving data in addition to budget, time, 

legality, privacy and compatibility that have veto-power over projects. 
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4.2 Real-World Challenges 

As mentioned at the start of the chapter, the go/no-go decision to deploy ML 

in the industry falls upon a decision maker – usually a factory-manager, general-

manager or vice-president. Let us examine the key incentives and deterrents for 

adoption of machine-learning in industrial environments from that decision-maker’s 

perspective. The summary of the factors based on [85] and supplemented by the 

authors contributions is shown in Figure 33.  

Figure 33. Key Incentives (+) and Deterrents (-) for Adoption of ML  
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In Figure 33, each of the factors is empirically weighed from 1 through 5. As 

can be seen, the odds are stacked against adoption of machine-learning analytics in 

the field unless one of the factors takes on additional weight due to the situation at 

hand and tips the balance in favor of the adoption as opposed to not. It is important 

to recognize the perceived barriers to machine-learning are not necessarily the 

majority of the deterrent, rather primary deterrent is the incumbent system. 

Incumbent system is the methodology, infrastructure, teams and 

terminologies that currently serve the business purpose that the machine-learning 

system is proposed to replace. Firstly, as the incumbent system is well established, 

most of the flaws have been either fixed or workarounds are in place making the 

system effectively reliable irrespective of its actual reliability. However, the new 

system is expected to be highly reliable out of the box. Secondly, it is important to 

recognize that incumbent system was built by a team that has been serving the 

business for a while and hence has earned the trust of the leaders. Hence, leadership 

seeks their recommendation on adopting anything new. There is a significant 

cognitive bias called IKEA Effect that deters a positive recommendation – the IKEA 

Effect is when we attach greater value to something we make than the same product 

built by others. This is also known as the NIH (Not Invent here) syndrome. 

Additionally, adopting machine-learning also means re-skilling the operational 

teams to be able to sustain and upkeep. The learning-curve is steep and could take 

months to execute even if there is willingness. Most of the current systems have a 

set of checks and balances wrapped in indicators and visualizations that bolster the 

leadership’s confidence in the system. The closer the ML system is to being black-

box, less it will be trusted. 
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 Perceived barriers to machine learning start with interpretability being on 

the top. Whereas, rules and correlations are easier to interpret, confusion matrices 

and F-measures are not. This sword is double-edged: on one hand some measures 

are hard to interpret, measures like accuracy give a false sense of goodness and 

result in high expectations which are then not realized in the field. As covered in the 

previous section, maintainability is a big concern from the skillset perspective but 

also from a technical perspective where if it was such an involved process to build 

the models in the first-place, how could they be kept up to date. It is well known that 

unlike human experts, algorithms do not have peripheral vision. They are limited by 

the data they are exposed to. Thus, there will be patterns that are missed by the 

algorithm. Unless the system is designed to have a watchdog, this could case thee 

solution to lose credibility. 

Skillset is a big concern in any machine-learning deployment given that the 

chief consulting data scientists does not stick around much longer after launch. 

Several have highlighted how this is a hard-to-find skill to find and retain especially 

an intersection of analytics, programming and domain knowledge [1]. As seen in the 

previous sections, skillset is needed to maintain the system and upkeep models. 

However, the upkeep could actually involve building new models or updating the 

existing ones. Hence the skillset needs to encompass ability to implement and 

evaluate machine-learning models as well. 

Costs can be bucketed mainly into the actual implementation costs and the 

cost of misclassification of missed prediction. While the implementation costs tend to 

be non-recurring, they are less of a concern as opposed to recurring costs of 

misclassification or missed patterns which need to be controlled. 
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Fortunately, there are actionable incentives to adopt machine-learning in the 

industry. By careful planning and design for deployment, one can leverage these 

incentives to overcome the deterrents and tip the balance in favor of adoption – it 

goes without mention that the deployment team should ensure that deployment will 

in fact benefit the organization and people at large. 

Pressures and gains of adopting machine-learning and data-analytics at large 

are increasing. In addition to customer demands and the general industry moving in 

that direction, many studies have been published on the advantages of adopting 

analytics by respected consulting firms [86], [87], [4], [9]. Based on a study of 60 

deployments over 3 years, an average ROI of 1200% has been claimed for 

organizations that successfully deploy predictive analytics [86] as shown in Figure 

34. Although ROI claims can be imprecise, most agree that the impetus is greatest 

when predictive analytics provides a clear competitive advantage that is critical to 

the business in the short-term. That is, it addresses a current urgent business need. 

Perceived benefits are the major incentive for adoption of machine-learning 

unlike the deterrents where other factors take over. Hence it is highly important 

that the right expectations are set and these benefits are thoroughly evaluated 

Figure 34. High Return on Investment (ROI) for Predictive Analytics 



  117 

before being promised. Contrary to popular belief it is not the higher accuracy that 

attracts businesses to machine-learning systems, it is the promise of new insights 

that enable new avenues of business and value for example, expanding customer 

base, offering new products and services or gaining a competitive advantage. Most 

business leaders are interested in automating the discovery process. They turn to 

machine-learning when the current system is either too slow or is not scalable to 

either meet the demands of current business or is not giving the expected growth. 

Tools/Support are critical to adoption of machine-learning. As most adoptions 

are driven by urgent business needs, tools and consulting support facilitate a faster 

ramp before leadership loses patience. Compatibility with existing systems and 

processes is also of concern. Thus, standardized tools and processes especially those 

supported by a wider open-source community as well as a responsible support 

organization aid integration as well as maintainability. 

Competency even if restricted to an in-house core team goes a long way in 

easing the adoption of machine-learning. The team should be firstly capable of 

interpreting and translating the results to leadership. Additionally, they should 

possess experience and be well versed with current technology trends. Lastly, they 

must be capable of teaching and upskilling their colleagues on data-science concepts. 

The higher the comfort level among the technology teams around machine-learning 

the easier deployment becomes. 

Note that the veto factors (security, privacy, legality) have not been included 

in the above discussion as these are non-negotiables that any system will have to 

meet before it can be deployed in the field. Thus one cannot emphasize enough the 

importance early of planning for evaluations along these aspects. 
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4.3 Proposed Deployment Framework 

From the above analysis key patterns emerge. There are non-negotiables like 

security and privacy. Following them are concerns about maintainability and 

skillsets required to so. Then, doubts around interpretability, reliability and 

realizing the ROI. Based on these themes, a four step framework shown in Figure 35 

is proposed which when followed should result in higher success. The first step is to 

ensure that the “veto” aspects are definitely taken care of with high diligence so the 

deployment does not trip on them later. The second step systematically evaluates 

and attempts to prove aspects of high importance that ensure that the promised 

incentives for the machine-learning solutions are met. The third step educates and 

involves the incumbent teams so that key deterrents are successfully addressed. The 

fourth and last step establishes processes so that the deployment is sustainable even 

after the implementation team has disbanded. Although the process covers major 

aspects, the influencing factors from Figure 33 must be incorporated as needed. 

Figure 35. Proposed Steps for Sustainable Deployment 
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4.3.1 Ensure 

There are some data scientists that expect that they are bringing cutting-

edge technology to the organization and they will be welcomed with open-arms. 

However, the reality is quite different. The situation is more attune to a new organ 

being transplanted into the organization and it is the responsibility of the initiator 

to ensure it is not rejected. Thus ensuring compatibility security and privacy of data 

does become the responsibility of the deployment team. 

4.3.1.1 Compatibility  

Compatibility of the machine-learning system must be ensured along three 

directions: hardware, software and processes. Hardware changes might be needed 

including additional system resources to store and process data, changes to 

manufacturing equipment and much more. Some changes are not straightforward 

and would need significant development effort and ramp time. Furthermore, they 

could involve capital investment and hence need to be carefully planned sometimes 

much before the deployment stage. Similarly, software changes could involve 

developing large quantities of glue code. It may be surprising to the academic 

community that only a tiny fraction of the code in many machine learning systems is 

actually doing “machine learning” - a mature system might end up being (at most) 

5% machine learning code and (at least) 95% glue code [48]. The amount of glue-code 

could be reduced by use of COTS (commercial of the shelf) systems. However now 

their compatibility with existing systems needs to be ensured [88]. The ultimate goal 

of the deployment is to provide interoperability and compatibility between the 

different software systems and platforms used throughout the process. Integrated 
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and interoperable models would serve the end user in automating, work with data-

analytics systems [18]. More is covered in the maintainability section of this chapter. 

4.3.1.2 Security  

Security of software systems is another non-negotiable that for all systems 

and hence machine-learning component is no exception. Most environments into 

which machine-learning systems are deployed are highly sensitive to breaches. From 

credit-card fraud detection to manufacturing automation, most of the data is 

personal, proprietary, highly-confidential or trade-secret. For example, in the simple 

home HVAC optimization, building occupancy could be a sensitive piece of data that 

needs to be secured. Recent examples have demonstrated that data breaches can 

expose not only personal consumer information and confidential corporate 

information but even national security secrets [4]. With serious breaches on the rise, 

addressing data security through technological and policy tools is essential. While 

the technologies available today can safely house information with a variety of 

security controls in a single system, these policies force special data handling 

considerations including limited retention periods and data access [6]. In the 

literature, the following security and privacy requirements are described [89]: 

 Resilience to attacks: The system has to avoid single points of failure and 

should adjust itself to node failures. 

 Data authentication: As a principle, retrieved address and object 

information must be authenticated. 

 Access control: Information providers must be able to implement access 

control on the data provided. 
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 Client privacy: Measures need to be taken that only the information 

provider is able to infer from observing the use of the lookup system 

related to a customer; at least, inference should be very hard to conduct. 

Machine learning security is a relatively new field and hence COTS are not 

readily available. Some high-level views are outlined here. When a learning 

algorithm succeeds in adversarial conditions, it is an algorithm for secure learning. 

The crucial task is to evaluate the resilience of learning systems and determine 

whether they satisfy requirements for secure learning. A framework for analyzing 

attacks against machine learning systems was proposed in [90]: 

1. They may be Causative in their influence over the training process, or 

they may be Exploratory and take place post-training 

2. They may be attacks on Integrity aimed at false negatives (allowing 

hostile input into a system) or they may be attacks on Availability aimed 

at false positives (preventing benign input from entering a system) 

3. They may be Targeted at a particular input or they may be Indiscriminate 

in which inputs fail. 

Each of these dimensions operates independently, so we have at least eight 

distinct classes of attacks on machine learning systems [90].  

Investigation of security properties of machine learning has to focus on 

quantitative analysis of attacker’s resources needed to subvert a learning process. A 

four step framework has been recommended that enables one to quantitatively 

analyze and compare existing algorithms under identical conditions [91]: 

1. Axiomatic formalization of the learning and attack processes 

2. Specification of attacker’s constraints 
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3. Investigation of an optimal attack policy 

4. Bounding of attacker’s gain under an optimal policy. 

An empirical comparison of basic algorithms can be found in [92]. 

4.3.1.3 Privacy  

Privacy is an issue whose importance, particularly to consumers, is growing 

as the value of analytics becomes more apparent. However, there is more to privacy 

than providing security for personal information. Personal data such as health and 

financial records are often those that can offer the most significant human benefits, 

such as helping to pinpoint the right medical treatment or the most appropriate 

financial product. However, consumers also view these categories of data as being 

the most sensitive [4]. Brands reinforce negative stereotypes when they use data in 

ways that offend the dignity and privacy of consumers. Recently, a big-name retailer 

used data analytics to send discount offers for pregnancy-products to a 16-year-old 

customer even before she had disclosed this to her own family. Intruding on privacy 

was not the intent, however, the incident caused a huge PR black eye for company’s 

data analytics efforts [9]. Thus we must examine the trade-offs between privacy and 

utility (or accuracy/precision). Most methods for privacy preservation use some form 

of transformation on the data resulting in granularity reduction which in turn 

reduces effectiveness of mining algorithms. This is the natural trade-off between 

information loss and privacy. Some examples of such techniques are as follows [93]: 

 Randomization: add sufficiently large quantities of noise so individual 

record values cannot be recovered. Algorithms then work on distributions. 

 k-anonymity model and l-diversity: reduce the granularity of data 

representation by generalization and suppression 
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 Distributed privacy preservation: entities share partial information with 

the use of a variety of protocols that can still be used to create models 

 Downgrading application effectiveness: here precision is deliberately 

downgraded to avoid situations like one mentioned above. 

4.3.2 Enable 

This step focuses on three aspects of the organization that are key to 

acceptance of the machine-learning solution. Most organizations have three layers – 

those who store the data and generate reports (teams), those who summarize the 

reports into key takeaways (influencers) and those who decide (leaders). Each group 

has its apprehensions, needs and priorities. Note that these three function will exist 

even with a high level of automation because those responsible do not like to fly 

blind. As noted earlier, leadership looks for new insights, the influencers look for 

interpretability and teams want to continue to be relevant. 

4.3.2.1 Involvement of Teams  

Typically, there is a team that keeps the incumbent system running - it is 

important to involve them in ML deployment due to several reasons. The top one 

being to avoid resistance for the new machine-learning system. Additionally, with 

team’s involvement, several tasks become smoother and faster. Data extraction and 

setup of the simulation system could be done faster with teams that know the 

current “data piping”. A lot of tribal-knowledge exists that could be used to clean 

data and transform it. The team could also help provide assistance for integration of 

the machine-learning system during deployment and test its reliability with field 

trials. Involving the team uses the IKEA bias for the deployment of the ML system 
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rather than against it. Successful deployment and sustenance of analytics system is 

as much a cultural transformation as it is a technical transformation. Over 62 

percent of the managers responding indicated that organizational and cultural 

factors were the greatest barriers to ROI on analytics. For an analytic capability to 

really succeed, the entire organization needs to value data-based analysis and 

decision making [94].  Hence it is a key advantage to have the teams be participants 

and advocates rather than skeptics. 

For the teams to get involved, they first need to be trained on machine-

learning to startup or build skills. Although several online and other resources for 

learning ML have emerged, there is high value in the ML project team conducting 

training or information sessions. Focused interaction with the team in a learning 

setting builds relationships, sparks discussions and ideas that can be highly 

valuable. It is also a great means for the ML team to learn about the domain. 

4.3.2.2 Interpretability  

Interpretability of machine learning has been debated for as long as the field 

has existed. Dashboards and visualization are critically important for the acceptance 

of the model by the business. The influencers, those who summarize the key 

messages for leadership and have a big say in recommending the go/no-go decision, 

are less concerned with the debate and more concerned with ensuring their 

recommendations are based in fact and valid. Interpretability of algorithms becomes 

much more attainable if one shifts the paradigm from how a result was obtained 

(algorithm details) to why a certain outcome resulted (data characteristics) [82]. For 

example, while the actual results of the algorithm could be based on an ensemble 

like random-forest, one could build a decision tree that is representative of the key 
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variables in play. Showing the model-level feature importance pareto-chart is 

sometimes sufficient to establish trust in the algorithm. The training and education 

mentioned previously also applies to the influencers especially if they are not 

familiar with machine-learning. In analytical aspiring companies, analytical models 

often are reported on by a very technical model report, at the birth of the model in a 

non-repeatable format. In more mature analytical practice, the modeling data is 

used for insight creation is a repeatable way. 

4.3.2.3 Insights 

Insights for the leadership need a deeper kind of analysis especially if the 

expectation is to produce novel perspectives and relationships that have not been 

explored before. Two types of reporting are desired: analytic reporting and 

operational reporting. Analytical reporting refers to any reporting on data where the 

outcome (of the analytical model) has already been observed. This data can then be 

used to understand the performance of the model and the evolution of performance 

over time. Creating structural analytic performance reports also pave the way for 

structural proper testing using control groups. 

Operational reporting refers to any reporting on the data where the outcome 

has not yet been observed. This data can be used to understand what the model 

predicts for the future in an aggregated sense and is used for monitoring purposes. 

For both types of reporting, insights are typically created by looking at behavior of 

subgroups as qualified by the model. By creating a structural reporting facility for 

the insights, it allows deeper insight in changing patterns that can be used by 

business users.  
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This is different from the task of modeling and scoring for an inline 

automated application. The output is a set of visualizations and dashboards that 

provide a clear view on the model effectivity and provide business usable insights. 

To enable the generation of such insights, one needs to establish data-analytics as a 

function and not just a one-time project. In addition to ROI the recommendation is to 

propose to establish a group to provide insights. More is covered on this aspect in 

Section 4.3.4.3. 

4.3.3 Evaluate 

The more diligence the deployment team applies to evaluation, the smoother 

the deployment will be. The last explored evaluation comprehensively while covering 

the temporal and dynamic factors. Establishing a simulation infrastructure was 

recommended. This infrastructure can now be used to collect data that will be used 

to convince the decision makers that the machine-learning based system is ready for 

deployment. The three key vectors for this evaluation are performance relative to 

incumbent system, ascertaining ROI and assessing the system level reliability of the 

solution. Thus putting some of the deterrents to rest. 

4.3.3.1 Relative Performance 

Relative performance assessment with respect to the incumbent system is 

expected. As can be seen from the perceived benefits of deploying ML solutions, 

discovery automation and scalability are highly desired. By demonstrating 

automated model-building, validation and scoring, through the simulation 

infrastructure mentioned earlier, one can demonstrate high degree of automation. 

Thus maintainability without a high cost burden is achieved. 
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The key elements of scalability can be identified as data size, data-

complexity, analytic-complexity, speed, accuracy & precision. Balancing these 

dimensions is usually a zero sum game - an analytic solution is unlikely to 

simultaneously exhibit all five dimensions, but instead must make trades between 

them [6]. For example, there might be a trade-off between speed and accuracy – 

speed of object-detection for avoidance maneuvers in a self-driven vehicle versus 

identifying what it is. Another example is including 100s of in-home sensor 

measurements and weather features to predict room-temperature whereas human 

sensitivity being +/- 2C of that can be achieved by 5 features. In most industrial 

applications, there are financial implication of this tradeoff; however, all costs are 

not necessarily known up-front. The best approach here it to identify the knobs and 

levers in the algorithm to be able to manipulate the behavior so as to tune in the 

desired operating region using the simulation platform recommended earlier. 

Figure 36. Trade-off in Machine Learning Deployments 
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4.3.3.2 Return on Investment  

Return on investment is the immediate tangible that drives industrial 

projects. Although not always easy to compute, have a crisp definition up-front of 

how this will be computed and proved keeps all stakeholders on the same-page. As 

in Lean Six Sigma Projects, it is advisable to start the project with a projected ROI 

with aid of a finance analyst and during deployment validate it using the simulation 

platform. This ensures that the business problem one began with is being addressed. 

Table 8. Variable Costs of Machine Learning Algorithms 

Cost of Due to 

 misclassification errors misses & false-positives 

 test associated with obtaining test-data 

 teacher associated with labeling data 

 intervention / actuation applying the prediction back into the process 

 unintended consequences applying the errors back into the process 

 computation complexity in terms of time / resources 

 human-interaction personnel for tuning and oversight 

Both the benefits and costs of implementing machine-learning can be 

categorized as being either one-time (also known as non-recurring) and sustained 

(recurring). A comprehensive methodology similar to COCOMO or SLIM in software 

development called DMCoMo (DataMining Cost Model) has been proposed to 

compute the cost of a data-mining project itself [46]. The model incorporates the 

trade-offs mentioned above. Whereas the one-time costs are easier to attach 
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quantities to, the sustained costs and benefits involve some degree of estimation. A 

taxonomy of classification costs has been proposed that can serve as a checklist to 

identify these costs and include in the computation [95] – see Table 8. 

Once costs are estimated, a proper experiment needs to be set up to measure 

relative benefits: the analytical model is applied to new data over time in a 

simulation environment and the outcomes are measured in such a way that the 

result can be made financial. If the ROI is positive enough, the business will be 

convinced that they can trust the models; the models are proven to generalize well 

over time, and a decision can be made if the model should be deployed. Topics of 

discussion are around the setup of the experiment, control groups, measuring the 

model effectiveness, computation of the ROI and the success criteria.  

4.3.3.3 Reliability  

Reliability is a term that is used to mean many things. The common 

understanding is that of robustness of the algorithm to noise, perturbations, missing 

values etc. While these are important in the development phase for algorithm 

selection and tuning, during development, stakeholders are concerned about the 

system level reliability. What is the propensity for the system to break-down? What 

happens if predictions are low-confidence? Is there a kill-switch on the predictions? 

Reliability is usually a strength of the incumbent systems and without much 

field-time it is unlikely that stakeholders will trust the system. Hence it falls upon 

the deployment team to analyze the potential failing points of the system, their 

impact, probability, detection and/or mitigation. FMEDA (Failure Mode Effect 

Detection and Analysis) is an industry standard methodology use for this purpose. 
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Each failure mode is identified through a join brainstorming exercise with key 

engineering personnel. Then the owner of each area does a deep analysis on the 

probability of the failure event and the impact (preferably in $$) if it were to realize. 

The probability and impact scores are multiplied to obtain a risk-score and 

sorted in descending order to identify the ones that need most attention. Either 

mitigations are put into place and/or detection mechanisms identified. Mechanisms 

need to be designed around the system to put detection and fail-over systems in 

place. Lastly, these mechanisms need to be field tested and their efficacy 

demonstrated over sufficient duration. Exhaustive testing is sometime cost-

prohibitive so a risk-score based approach could be employed. 

One well known apprehension about machine-learning systems is the 

behavior in case of unknown situations and or edge-cases. To counter this risk, it is 

highly desirable to determine a confidence for each prediction and use that 

prediction if and only if it does not exceed the risk threshold of the process in 

question. If the risk threshold is exceeded, the system simply follows default 

processing without the prediction or proceeds conservatively. The case is flagged for 

further offline analysis. The active indicators, human oversight and analytics 

function covered in next-section elaborate on this aspect. 

4.3.4 Establish 

In the Establish step the deployment is firmly cemented into the organization 

so that machine-learning and analytics can have long-lasting positive impact on the 

organization or business. This steps needs large amount of discipline on part of the 

deployment team as it involves the no so glamorous work that usually happens after 
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the big go decision has been given. It includes establishing design patterns, 

monitoring and updating models and sustaining the deployment [96]. 

4.3.4.1 Active Design Patterns  

Active design patterns ensure that machine-learning deployments are 

maintainable by avoiding superfluous technical debt due to the unique nature of 

machine-learning algorithms. Paying down technical debt may initially appear less 

glamorous than research results usually reported in academic ML conferences. But 

it is critical for long-term system health and enables algorithmic advances and 

improvements thus making deployments sustainable and lucrative [48].  

Erosion of abstraction boundaries makes changes and improvements difficult. 

By their very nature machine learning systems tend to be tightly coupled with the 

inputs thus any change in an input or hyper-parameter changes everything. For 

example, if the inputs are owned by a different engineering group that is making 

continuous improvements, the machine-learning model will be gravely affected by 

the changes. Changing the paradigm of from the model being the “logic” to the model 

being another variable that is allowed to change helps alleviate this situation. 

Correction Cascades create model-dependency debt by using a base model 

and then building a derivative “correction” model to predict something that is only 

slightly different [83]. When proliferated, the net of models become a nightmare to 

change or improve. Instead, it might be better to provide a switch inside the model 

that can be manipulated through input variable, although this is coupling too. 

Pipeline jungle can evolve organically in data preparation, as new signals are 

identified and new information sources added. Pipeline jungles can only be avoided 

by thinking holistically about data collection and feature extraction. Analysis of 
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data-dependencies without tools is highly unrealistic. A feature that is important to 

the model may no longer exist due to cost or time-saving in another engineering 

group. On teams with many engineers, or if there are multiple interacting teams, 

not everyone knows the status of every single feature, and it can be difficult for any 

individual human to know every last place where the feature was used. A tool which 

enables annotation of data sources and features can be helpful as in [97]. Automated 

checks can then be run to ensure all dependencies have the appropriate annotations, 

and dependency trees can be fully resolved. 

Underutilized data-dependencies occur when there are variables in the model 

that are not relevant anymore like old product-codes. These features could be 

removed from the model with little or no loss in accuracy. But because they are still 

present, the model will assign them some weight, and the system is therefore 

vulnerable, sometimes catastrophically so, to changes in these features. A common 

mitigation strategy is to regularly evaluate the effect of removing individual features 

from a given model and act on this information whenever possible. 

Dead code branches can similarly occur when following easy path to 

experimentation in an isolated branch that is then abandoned. Any unintended 

dependencies on these dead path then cause one to maintain backward compatibility 

which further constrains the flexibility of the code. As machine-learning systems are 

more prone of experimentation, these dead paths are rampant. It is recommended 

that experiments are restricted to realistic sandbox environments as far as possible.  

Configuration management is of far higher importance in machine-learning 

systems more-so than other software systems as the core system is primarily defined 

by configuration. The model is built using configured set of features, algorithms and 
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hyper-parameters values. All these settings are subject to change asynchronously. 

As seen earlier, features come and go, models are refreshed and hyper-parameters 

tuned. Hence it is critical that a solid set of tools and standards be used for model 

specification with a tight control around production releases. Using PMML to push 

predictive models into production platforms could mean a less complex overall 

architecture, lower cost and greater scalability [98]. 

Glue code is usually needed to get data into and results out of machine-

learning packages and can sometimes account for 95% of the codebase. Copious 

amounts of glue code often make experimentation with other machine learning 

approaches cost intensive. Real-world machine-learning systems require highly 

engineered solutions to one large-scale problem; whereas, machine-learning 

packages provide a one-stop-shop for multiple algorithms. While packages allow, 

easy interchange of algorithms, the glue code pattern implicitly embeds the problem 

construction space in supporting code. As a result, any experimentation requires 

expensive changes. Glue code can be reduced by choosing to re-implement specific 

algorithms within the broader system architecture. At first, re-implementing a 

machine learning algorithm in C++ or Java that is already available in R or Matlab 

may appear as waste of effort. However, the resulting system will require less 

integration glue code and hence be easier to test, maintain, and allow alternate 

approaches to be tested. Problem-specific machine learning code can be tweaked 

with specific domain knowledge that is hard to support in general packages [48]. 

Unintended loops are another big problem of machine-learning. For example, 

a model to alter use-behavior indirectly has the user-behavior as the input. 

Unintended loops are formed that cause the system to drift. The situation becomes 
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worse if there are undeclared consumers of the model predictions. Hence further 

obscuring the loop formation making detection much harder. 

4.3.4.2 Autonomous Monitoring and Model-refresh  

Autonomous monitoring and model refresh address a major concern of 

machine-learning deployment. Notice that the skillset factor appears more than once 

in the list of key factors influencing ML deployment. This is due to the apprehension 

that if building the initial model was such an involved process, would it not be 

complex (and cost intensive) to upkeep the models? Additionally, it is well known 

that real-world scenarios are not static; hence, these costs would be recurring. 

Having mechanisms to detect when a model is out of date and autonomously update 

or refresh it can be a big confidence building measures for deployment. Additionally, 

it is often necessary to pick a decision threshold for a given model to perform some 

action. The threshold is often picked manually to achieve a certain tradeoff between 

metrics like precision and recall. Thus if a model updates on new data, the old 

manually set threshold may be invalid and hence also now needs to be updated. 

Section 3.2.4 highlighted the various ways in which the system can become 

dynamic and how this needs to incorporated in validation for real-world scenarios. 

However, after deployment, the dynamics do not cease. The system needs to be 

monitored mainly from two conditions: deterioration and runaway. Deterioration in 

predictive performance is relatively straightforward to detect, the main issues being 

choosing of a metric. However, even a simplistic metric like prediction bias is a 

useful to detect change in relationship between the features and predicted variables. 

Runaway on the other hand is trickier – it is the end results of the 

unintended loops that might occur in machine-learning deployments. Let us say a 
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machine-learning system is designed to predict defective units on a manufacturing 

line. Whereas the units classified as ‘good’ might undergo further testing down the 

line, the units predicted to be defective may never be retested. Thus the false-

positive rate might drift undetected. In order to prevent such situations, we need to 

have control samples on which the prediction is made but the actualization is 

withheld to ascertain that the algorithm is not creating a self-fulfilling prophecy. 

Statistical process control methodologies may be applied to the metric of 

choice to detect outliers, cycles, drifts, trends in performance using the western 

electric rules. Based on the severity of the change detected, the model can be 

autonomously retrained. In systems that are used to take actions in the real world, 

trip-limits may be set. If the system hits a limit for a given action, automated alerts 

should fire and trigger manual intervention or investigation. It goes without saying 

that the whole system and process must be validated before deployment. 

4.3.4.3 Analytics function & oversight 

From the previous discussion it is clear that machine-learning deployments 

are not set-it-and-forget-it undertaking, at least not yet. A team is required to 

monitor the health of the system, respond to alerts and notifications, double-check 

model configurations and anything that the autonomous system might have missed. 

Furthermore, there is also the need for continuous improvement as new algorithms 

and technology becomes available. Thus there is a strong case for human oversight 

of the analytics deployment. 

The glue code and pipeline jungles mentioned earlier are symptomatic of 

integration issues that may have a root cause in overly separated “research” and 

“engineering” roles. When machine learning packages are developed in an ivory-
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tower setting, the resulting packages may appear to be more like black boxes to the 

teams that actually employ them in practice. A hybrid research approach where 

engineers and researchers are embedded together on the same teams (and indeed, 

are often the same people) will reduce this source of friction significantly. 

Most of the major factors influencing successful deployment were addressed 

in this section except that for new insights. Note that the prospect of new-insights 

was cited as leadership’s main reason for sponsoring analytics in the organization in 

the hope that it helps capture additional markets, offer new products and services or 

generates new avenues of business. New insights are possible only with long-term 

immersion in the domain and intimate knowledge of the data. Achieve that state, is 

realistic with a permanent team. 

This thesis claims that analytics is not a one-time project and should be 

treated as a permanent function of the organization like finance, IT, marketing etc. 

Furthermore, it has also been reiterated that data-analytics is more than applying 

algorithms to data. It is a way of doing science, engineering and business and hence 

should be practiced by the entire organization not just a small temporary group of 

people. Having an analytics function with data-scientists on staff that work closely 

with other functions to continuously derive insights ensures the highest ROI. 

Finally, machine-learning deployment should be treated just like software 

deployment with, design patterns, RESTful API, language bindings, security, 

privacy, continuous deployment, uptime and other SLAs. In order to make the most 

of their model assets, enterprises must develop the common processes for 

communicating and integrating model deployment practices across multiple 

constituencies in analytics, IT, information security, and other functions [99]. 
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4.4 Demonstration and Results 

A potentially lucrative real-world business case for machine-learning 

deployment was discussed in the previous chapter. And, it was shown that 

sometimes the domain constraints like system dynamics and temporal-shifts can 

render the productivity unfeasible.  However, the knowledge of the data gained can 

be salvaged especially if the right infrastructure for dynamic evaluation have been 

put in place. Additionally, if the uncertain nature of analytics was taken into 

account and a roadmap of possible use-cases were put in place, pivoting on to the 

next use-case is straightforward. Thus the venture does not necessarily have to close 

with failure but just change direction towards avenue for success. Both the elements 

mentioned above were done in this work: Section 2.6.1 described the roadmap and 

Section 3.4.4 illustrated the evaluation framework. Multiple subsequent use-cases 

were picked up by different team-members [54], [56], [57], [100], [101]. 

4.4.1 Use-case 

One of the use-cases is described herein is where the machine-learning 

solution was successfully taken from concept, development and multiple stages of 

validation into production. The case is that of die-matching – this case had the 

additional characteristic that although the ROI was promising, the solution was also 

critical to ensure that the microprocessor product was competitive is the 

marketplace (with respect to products offered by the competition). Thus the case had 

a sense of immediacy of business-need around it. As per the vitamin versus analogy 

mentioned in  2.5.1, this was most definitely a pain-killer – addressing an immediate 

business pain-point. The coopetition had introduced a product that was faster than 

Intel’s offering and it would take a process generation (18 months) to catch-up. 
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To achieve the same speed at comparable power, two-die could be placed on 

the same substrate and run at lower speeds. However, in order to achieve the top-

speed die, both of those die had to be from the same to-speed-bin. To provide context, 

recollect that the semiconductor manufacturing process has inherent variation and 

hence even die on the same wafer could have a wide range power (measured by 

stand-by current drawn, Isb) and speed (measured by the maximum frequency, 

Fmax). Figure 37 shows a plot of Isb versus Fmax as measured at Sort-test when the 

die is still on the wafer in its infancy. The bands are the DLCP (Diel level Cherry 

Picking) categories that the die are divided into as they are picked off in a 

serpentine path as shown in Figure 38. Each DLCP gets its own tape-reel, thus all 

die on a reel are from the same DLCP. Notice that all except the bottom band are 

based purely on Isb. Each DLCP is sold into a specific market segment – the high-

power go into servers, medium into desktops and lower-power into mobile segments. 

Figure 37. Raw Die Power (shown as Isb) and Speed (shown as Fmax) at Sort 
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Observe from Figure 37 that within each DLCP segment i.e., the speed 

variation can be quite large – for instance, in the MP segment, speed can range from 

4200 to 5000MHz. Recollect also that higher-speed die fetches a selling price that is 

upwards of ten-times that of lower-speed die. Additionally, each speed-level (AKA 

speed-bin) spans about 200MHz. Thus a single reel could contain die from 4 different 

speed-bins. In the CAM (Chip Attach Module), die are picked up from the wafer and 

placed on the reel in serial-order. Hence, when two die are placed on a single 

substrate, is it by pure chance that a top-bin (top-speed) part will be paired with 

another top-bin part. Note that the unit has to be sold at the speed of the lowest 

speed die on the substrate. Given that top bin parts are the rare-class, the analysis 

showed that early in the process lifecycle, probabilistically, one would not be left 

with any top-bin units. Thus there was an urgent need to find a better way to 

achieve top-bin units with two-die packaged onto one substrate. Another challenge is 

that as the die undergo physical change between sort-test and final class-test, the 

final speed of the die is only realized later. Hence the final speed and power do not 

have a simple correlation with speed and power at sort as in Figure 39. 

Figure 38. Die from each DLCP on Wafer is Put on a Separate Tape-reel 
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There is one more part to the problem. The manufacturing equipment is a 

large capital-cost hence every minute of the equipment’s life has a dollar-value 

attached to it. The longer it takes to process a unit, the more it costs to manufacture. 

Hence, there is a constraint on the path-length traversed to find the matching die to 

been picked next off the wafer. Thus there are three parts to the problem. The first 

is that the final speed-bin of the die must be predicted based on data collected up-to 

sort-test in the manufacturing flow. Second, is to find the die on the wafer that is the 

closest match in terms of predicted-speed so that two neighboring die have a higher 

likelihood of being from the same speed-bin. Lastly, the total distance traversed to 

pick the closest matching die needs to be minimized like in the travelling salesman 

problem. 

Figure 39. Isb versus Fmax Color-coded by Final Class Speed-bin  
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4.4.2 Solution 

A new method was invented to combine the predictive algorithm and path-

length optimization to provide the needed balance between speed and accuracy. 

Appendix A.1 has details of the algorithm. At a high level, 

1. Historical data that includes all pertinent information is used to build a 

supervised machine learning model to predict the final class-bin. 

2. Use the predicted class-bin probabilities to construct a pair wise 

dissimilarity (not necessarily Euclidian) matrix between units. 

3. The weighted geometric pair-wise XY distance between die on the wafer is 

added to the distance matrix to optimize path-length. 

4. A MDS (multidimensional scaling) algorithm is applied to the 

dissimilarity matrix to find a one-dimensional representation of the data 

such that the sum of distances between neighboring points in the 

sequence is minimal. 

Initial experiments showed promising results with the machine-learning 

based method achieving higher likelihood of finding closer matches than the 

incumbent serpentine way of picking the die off the wafer. As seen in Figure 40, for 

two-die the percentage of matched increases from 40% to 80%. The G1 and G2 are 

processors from two different generations. 

Figure 40. Preliminary Results of ML based Die-matching 
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4.4.3 Compatibility and Security 

Section 4.3.1 covered the importance of ensuring compatibility with existing 

systems to ensure the deployment is successful. One of biggest compatibility issues 

for this problem was that the robotic arm that did the pick and place at the TRDS 

process module was designed to move only in the X and Y directions. Diagonal 

movements were not expected and hence even if the ML solution came up with an 

optimized path the arm could not travel that. The team worked the robotic-arm 

suppliers to drive the changes needed to enable a flexibly programmable path. 

The idea was to minimize changes to the existing wafer map interface of both 

wafer map server and die sort equipment. The interface is standardized according to 

SEMI E5/Stream 12 (Semiconductor Equipment and Materials International) 

definitions [102]. Since there are large pieces of existing software in use to do wafer 

mapping, changes to the defined structure of the wafer map transaction sequences 

were not recommended. Instead, any solution to provide additional data in the wafer 

map would need to be encoded in the current structure or at least integrated into the 

existing message structure such that full compatibility with existing SECS/GEM 

(SEMI Equipment Communication Standards) software is guaranteed. 

Any production deployment of Machine Learning algorithm needs to be 

several fold better than the existing solution or variants thereof that are less-

complex and easier to implement than the ML approach. Note in the Netflix 

example that a superior algorithm was not implemented as the engineering cost and 

complexity outweighed the gain from the superior algorithm.  

In case of Intel, changes (or lack thereof) to manufacturing are strictly 

governed by the ‘Copy Exactly’ mantra (principle) which is described now. To be 
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considered for the next generation of the manufacturing process, proposed changes 

to the previous working process must demonstrate with data that they are 

statistically better. This is ensured through a change control process organized via a 

change control board (CCB) drawn from senior management and technical staff as 

well as a statistician, finance, factory, IT security and legal representatives. 

Proposed changes are documented and presented to the CCB for approval to start 

data collection. The preliminary white-paper details the experiments and data that 

will be collected to prove statistical superiority of proposed change. Once data is 

collected, a final white-paper is written with the result, analysis and 

recommendations; based on data, the CCB then decides. 

Once a manufacturing process under development is demonstrated to meet 

the corporate quality and security standards, it is copied exactly to the other sites 

that will manufacture with the said process. Periodic audits and statistical matching 

activities ensure that all sites work as one ‘virtual factory’. 

4.4.4 Relative Performance, ROI and Reliability 

The importance of proving relative performance was highlighted before. Once 

the robotic arm was improved, the question arose whether the cost and complexity of 

building and maintaining a ML system are justified. There are generally known 

heuristics that could provide an acceptable (good-enough) solution.  

The baseline method is the serpentine TRDS combined with random CAM. 

The spiral method starts at the center and spirals out to the edge of the wafer. It 

relies on the process-engineering heuristic that die at the center of the wafer are 

faster than the edges and, die closest to one another are similar to one another. The 

heuristic arises from domain knowledge that spatial variation is one of the largest 
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contributor to variation in the manufacturing process. The other methods are based 

on raw speed (Fmax) measured at Sort-Test; raw speed and current (ISB); and, 

another heuristic named MCP DLCP derived from Sort-test.  

A set of well-designed experiments helped quell any doubts and establish the 

superiority of the ML system. The simulation framework described earlier was used 

to setup, a loop was set up to span the entire 6-month timeframe, moving ahead one 

day at a time in the following fashion, 

1. Extract training data set for a given time-span or ‘window’ 

2. Construct the predictive model based on training data 

3. Extract test data set from existing sort/test data 

4. Generate the TRDS pick order for the ML and contending methods 

5. Generate the die pairings for each method to construct a virtual unit 

6. For every virtual unit calculate die-to-die variances for Fmax, Isb, and 

speed-bin for POR and ML methods 

7. Move time window ahead by one day and repeat 

The two criteria used are the top-bin percentage and overall match 

percentage across bins. Several stages of validation were performed to obtain final 

approval of the solution: the first two stages were in the lab followed by a factory 

pilot. The first stage (DOE 0) was a preliminary simulation (Section 2.5.6) to ensure 

results warranted further work. DOE 1 was the feasibility validation (Section 2.5.5) 

which includes 120k samples using the dynamic simulation environment as 

described above. DOE 2 is the field validation (Section 2.5.3) that include a factory 

pilot with 4.5 Million units to ensure reliability (Section 4.3.3.3). The results are 

summarized in Error! Reference source not found..  
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Note in DOE 2 the algorithms were tweaked to favor top-bin over die-

matching at every bin level as top-bin was the ROI driver for this particular product, 

factory and market mix; a change in which would necessitate re-tuning. The trade-

off between path-length and die closeness can be seen in Figure 41. As seen the ML 

method is not just superior to alternatives but also provide ability to tune by weight. 
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Baseline Serpentine Random 1 39.2 117474

Sequential Serpentine Sequential 1 69.3 1421952

FMAX Predefined Sequential 1 69.5 1363231

ISB/FMAX Predefined Sequential 1 70.32 1370685

MCP DLCP Serpentine Sequential 5 68.7 1508513

Sequential Serpentine Sequential 4 4.7 77 120000

Spiral Spiral Sequential 4 5.1 77 120000

Predictive Predefined Sequential 4 5.97 85 120000

Sequential Serpentine Sequential 6 16.4 65 4500000

Spiral Spiral Sequential 6 16.5 66 4500000

Predictive Predefined Sequential 6 17.4 68 4500000

DOE 1

DOE 0

DOE 2

Table 9. Results from Multiple Validation of ML Die-matching Solution 

Figure 41. Trade-off Between Path-length and Die Bin-matching 
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An example of a path traversed based on weight is shown in the Figure 42. As seen, 

the higher the weight, the more emphasis is given to path-length optimization and 

smaller weights cause the matching to be better but then the path traversed is long. 

 The machine-learning based ordering resulted in the speed-bin distribution 

shift towards the lucrative side as shown in Figure 43. The speed-bin yield of bin2 

and 3 went up from 4.7% to 6.1% - this might not seem like a large jump but given 

the difference in average selling price and volumes manufactured, it adds up to a lot 

of value. Based on the simulations and the factory pilot, the 5-year Net-Present-

Value ROI computed on this project was to the tune of $33 Million. Furthermore, it 

helped the sponsors deliver a market response to the competitive challenge. The 

resulting US patent filed for this work [103] was cited by 10 Google patents. 

Figure 42. Paths Lengths Traversed Based on Weight 

Figure 43. Yield Improvement Across Speed-bins with ML Ordering 
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CHAPTER 5                                                                                              

CONCLUSION AND FUTURE WORK 

The promise of data science has been around under various names and forms 

for several decades now, statistics, design of experiments, KDD, data mining and 

now data-science. The field has had a large impact on humanity just as agriculture 

had centuries ago on forming early civilizations. The next turning point in 

agriculture that led to human growth came with the exercise of yield improvement 

through modern seeding, growth and harvesting techniques. Instead of scattering 

seeds and let nature take its course, humans started looking at each seed as an 

investment and determined what was needed to improve the yield of that 

investment. Similarly, it is time that data scientists look at what is needed to ensure 

the success of each data-analytics project so it bears fruit. This work is an attempt to 

distill the knowledge so far and extend it to improve the yield of deploying machine-

learning in the real-world. 

5.1 Summary 

This work started with identifying the problem that less than 50% of the 

data-analytics projects today culminate if failure. Lack of a solid framework was 

identified as one of the key causes. The need for frameworks justified and 

shortcoming of existing frameworks illustrated. An analysis of the evolution of data-

analytic frameworks with the objective of extracting unique and valuable 

contributions from each of the prior proposed frameworks followed. Based on the 

analysis a novel Design for Deployment framework was proposed. The proposed 

framework emphasizes the role of continuous validation throughout the exploring, 

development and implementation phases of data-analytics to ensure each step is 
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taking the project closer to deployment and any issues are identified early. Further, 

the work focused on the evaluation and deployment functions within the analytics.  

The state of the art and problem with prevalent methods and metrics used by 

default for evaluating algorithms in machine-learning research and development we 

examined. Next, some challenges that are unique to real-world scenarios, namely, 

system-dynamics and temporal-shifts were identified and their role on impeding 

success of machine-learning deployments was highlighted. Recommendations were 

made to setup a versatile simulation framework. The framework is capable of 

evaluating algorithms in a dynamic environment by applying temporal-shifts and 

walking through time. The proposed methodology and simulation framework were 

demonstrated on a real-world use-case in semiconductor manufacturing – one of the 

most complex industrial environments that exists. Through the demonstration it 

was clear that although each machine-learning project need not end up in a useful 

model, following the recommendation set-forth allows thee team to pivot on to the 

next idea for application of machine learning in that enterprise. 

  Moving to the deployment function, the problem and current state were 

examined and real-world challenges explained. Whereas there are a multitude of 

challenges, they were shown to be dominated by reliability, interpretability, and 

maintainability in addition to the issue of trust and change. A four-pronged 

approach to counter these challenges was proposed with three aspects in each of the 

prongs. The next use-case in semiconductor manufacturing was used to demonstrate 

firstly how the foundations recommended earlier aided a fast pivot and reuse of 

knowledge gained. Additionally, the relevant aspects of deployment challenges were 

successfully overcome using recommendations made earlier.  
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5.2 Significant Contributions 

This thesis is what can be termed as a position-work: highlighting a key area 

for the field that is in need of much research in order for the community to benefit as 

a whole. The area being that of increasing the yield of machine-learning algorithms 

by improving the rigor, framework and ultimately standards for building machine-

learning analytics applications. It has been mentioned before that just as the 

software world lacked software engineering, the analytics world lacks ‘analytics 

engineering’. I hope this work is the leads to the creation of that field. It is already 

drawing attention by the fact that 11 patents by Google around the platform, 

creation, selection, assessment, storage, refreshing and application of models cite the 

patent from this work as shown below. 

Table 10. Google Patents that Cite the Patent from this Work 

Patent 

Number 

Title Publication 

Date 

US9406019B2 Normalization of predictive model scores [104] 8/2/2016 

US9239986B2 Assessing accuracy of trained predictive models [105] 1/19/2016 

US9189747B2 Predictive analytic modeling platform [106] 11/17/2015 

US9070089B1 Predictive model importation [107] 6/30/2015 

US9020861B2 Predictive model application programming interface [108] 4/28/2015 

US8694540B1 Predictive analytical model selection [109] 4/8/2014 

US8595154B2 Dynamic predictive modeling platform [110] 11/26/2013 

US8533222B2 Updateable predictive analytical modeling [111] 9/10/2013 

US8521664B1 Predictive analytical model matching [109] 8/27/2013 

US8443013B1 Predictive analytical modeling for databases [112] 5/14/2013 

US8364613B1 Hosting predictive models [113] 1/29/2013 
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The key contributions of this work can be listed in terms of the claims made 

at the beginning of the document: 

1. A comprehensive Design for Deployment (DFD) framework was proposed 

to conceptualize, build, validate, deploy and sustain machine-learning 

analytics in the real-world. The framework highlighted the role of 

validation and showed how each development step has a higher likelihood 

of success when paired with a validation step in a ‘V’ model. This would 

help channel analytics aspirations of enterprises world-over into tangible 

ROI and thus not have the analytics dram remain a dream. 

2. Attention was drawn to the underserved latter third of analytics projects 

namely, evaluation, deployment and sustenance where much research is 

needs if analytics deployments are to success in the industry. 

3. The fallacy of using the ubiquitous method of accuracy with cross-

validation to compare and select algorithms was expose. Some 

alternatives were charted, with recommendation to use hold-out and 

kappa as the new default. 

4. Two critical realities of the real-world autonomous analytics were 

identified: dynamics and temporal-shifts. Dynamics in the relationship 

between features and predicted values as well as the temporal-shifts 

between model-building and scoring/prediction. The detrimental effect 

these have on viability of machine-learning algorithms was demonstrated. 

5. A Dynamic Evaluation Framework (DEF) was recommended that would 

incorporate simulation of the dynamics as well as the temporal-shift to 

give representative results from running Design of Experiments. 
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that could be trusted.  

6. The need for updating all-models in the field was highlighted and 

techniques were recommended to detect model deterioration as well as 

parameters that need to be considered for refresh like training-window. 

7. A four-pronged approach called Deployment Four-E (DFE) was 

recommended to deploy and sustain machine-learning analytic systems in 

the field. The approach addressed how to overcome common deterrents 

around deploying machine-learning analytics into production systems by 

leveraging the available incentives. Interpretability, maintainability, 

reliability, compatibility, security, privacy, viability, and many-more were 

addressed using the approach. 

8. A “clutch” architecture was recommended that would allow a non 24/7 

uptime SLA machine-learning analytics module to interact and govern 

decisions in a mission-critical 24/7/365 SLA system. 

9. The recommended Design for Deployment (DFD) framework and Dynamic 

Evaluation Framework were used to demonstrate how strategic ROI can 

be maximized by pivoting to other items on the roadmap when faced with 

failure. Thus recommending ‘analytics as a function’ paradigm. 

10. Lastly, the Design for Deployment (DFD) analytics framework, the 

Dynamic Evaluation Framework (DEF) and the Deployment by Four Es 

(DFE) were demonstrated in semiconductor manufacturing with a 

learning experience from a dead-end and pivot towards the successful 

deployment with $33 Million ROI. 
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To summarize, the Design for Deployment (DFD) framework allows treating 

analytics as a function of the enterprise rather than a one-time project. Hence when 

faced with a stubborn roadblock, the team can always pivot on the chosen solution 

path or the direction of exploration thus allowing for agility in the analytics. 

Moreover, with each discovery and development phase married to a corresponding 

validation step, deployment thinking is encouraged in the same spirit as test driven 

development (TDD). 

The Dynamic Evaluation Framework (DEF) provides a simulation 

environment that is capable of “walking” through time to ensure the stability and 

sustainability of the machine-learning solution. A good simulation setup closely 

represents reality while providing expeditious answers to crucial questions by 

allowing the toggling of variables that have the highest influence on the chosen 

metric. The framework allows experimentation with the various parameters 

affecting the model at different phases in the data analytics process. Furthermore, 

decisions can be based on experiments and data instead of intuition and rules of 

thumb. 

The Deployment Four-E (DFE) approach helped addressed many deterrents 

of deploying machine-learning analytics in the field. At the end of the day, a 

machine-learning system is also software and must be subject to the same rigor of 

deployment and maintenance as any other software system. The proposed approach 

allows for this and hopefully draws more interest for further research. 

Note in the Netflix example at the beginning of the document, that a superior 

algorithm was not implemented as the engineering cost and complexity outweighed 

the gain from the algorithm. Thus it is time we focused on ‘analytics engineering’. 
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5.3 Future Work 

As pointed out earlier, this work is considered a positional-thesis – the hope 

is that it will spark further research in analytics engineering – a field that does not 

yet exist. Just as software engineering brought direction to programming languages 

and shifted focus from the excitement of creating new languages and constructs 

towards value generation for the user, analytics engineering should draw attention 

to the evaluation and deployment of machine-learning so they can bring us the 

promised value. There are several avenues for future research: 

1. The methodologies proposed here were demonstrated on two use-cases, 

both is semiconductor manufacturing. The author also used the 

methodology in an energy sustainability startup under the auspices of 

ASU center for entrepreneurship. The results were not included in this 

thesis due to drive focus. As many of the analytics venture today are 

startups, the unique set of challenges created by a startup environment 

deserve more attention. 

2. In general industry shies from using machine-learning in mission critical 

systems due to general mistrust in black-box methods and that even 

researchers believe they can be unpredictable at boundaries. As use of 

analytics becomes pervasive in industry, self-driven cars and such, this 

excuse would not be acceptable any longer. We demonstrated the clutch 

architecture to use a ML system in a 24/7 application. Thus there is lot 

more progress that can be made on using ML in mission-critical systems. 
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3. The clutch architecture proposed was specifically to address the uptime 

problem among others – what are common elements of an architecture 

suitable for analytics? 

4. Design patterns for data-analytics are another ripe area of research. 

Currently they are next to nonexistent with several industry influencers 

trying to grapple with the issue. Research in this area would greatly help 

the industry. 

5. Analytics process-models started appearing only at the turn of the 

century. It has come a long way from waterfall to agile and TDD. 

Similarly, it is would be a worthy topic to experiment vis more case 

studies and research what suites analytics projects what are the 

boundary conditions and caveats. 

6. The CMMI standards exist for software development, some have been 

proposed for physics models as well [114] – what would the corresponding 

standards for analytics look like? Although PMML has been around for a 

few years, it is to analytics like UML is to software-engineering. It is not 

an end-all elixir and there are process questions. 

7. Earlier, a reference was made to DMCoMo – like CoCoMo it is a proposed 

method to estimate costs of a data-analytics project. There is scope for 

further research on the robustness of this model and adoption. 

8. Computer science is aided by the quality assurance (QA) field that has its 

own tools, techniques and expertise in addition to software engineering, 

for efficient value-generation. There is a similar opportunity for analytics  

– how do we address the unique demands of QA for analytics [115]? 
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9. The issues of security and privacy are quite important in software-

development. In analytics, this is further aggravated as information can 

be used in ways that have the potential to unintentionally expose 

vulnerabilities or sensitive information like in the Target example – much 

research is needed on how to put safety mechanisms in place to forecast, 

detect and prevent or contain these effects. 

10. Computer science has seen a recent surge in research around social-media 

that intersects heavily with sociology, and even psychology. There are 

similar opportunities for machine-learning with business [116], finance 

and energy [117] which can be explored with more zeal. 

11. Lastly, the establishment of standards has always benefits growth of any 

industry with great benefit to consumers. Although many tools, packages 

and approaches exist, the analytics industry could use standards that 

govern these aspects. 

It is time machine-learning got out of the lab and started providing value to 

humankind for the years of research that has gone into it. This would be possible 

when we start thinking outside the algorithm and onto the broader aspects of 

analytics engineering. 

 

  



  156 

REFERENCES 

[1] D. J. Patil and M. Loukides, “Building Data Science Teams: The Skills, Tools, 

and Perspectives Behind Great Data Science Groups,” O’Reilly, Sebastopol, 

CA, 2011. 

[2] S. Higginbotham, “Want to ditch your data scientists? Here are 7 startups 

that can help,” Jul-2012. [Online]. Available: 

https://gigaom.com/2012/07/05/want-to-ditch-your-data-scientists-heres-are-7-

startups-that-can-help/. [Accessed: 18-May-2015]. 

[3] J. Joseph, “Using Big Data for Machine Learning Analytics in 

Manufacturing,” Tata Consultancy Services, 2014. 

[4] J. Manyika et al., “Big data: The next frontier for innovation, competition, and 

productivity,” McKinsey & Company, May 2011. 

[5] N. Japkowicz and M. Shah, Evaluating Learning Algorithms, 1st ed. 

Cambridge University Press, 2011. 

[6] M. Herman et al., The Field Guide to Data Science. Booz Allen Hamilton, 

2013. 

[7] X. Amatriain and J. Basilico, “Netflix Recommendations: Beyond the 5 stars 

(Part 1),” The Netflix Tech Blog, Apr-2012. [Online]. Available: 

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-

stars.html. [Accessed: 14-May-2015]. 

[8] M. Fania and J. D. Miller, “Mining Big Data in the Enterprise for Better 

Business Intelligence,” Intel IT, Jul. 2012. 

[9] R. Salkowitz, “From Big Data to Smart Data: Using data to drive personalized 

brand experiences,” Microsoft, 2014. 

[10] D. Gillblad, “On practical machine learning and data analysis,” Doctoral 

Dissertation, KTH School of Computer Science and Communication, 

Stockholm, Sweden, 2008. 

[11] Intel, “Transistors to Transformations - From Sand to Silicon - How Intel 

Makes Chips,” 2012. [Online]. Available: 

http://www.intel.com/content/www/us/en/history/museum-transistors-to-

transformations-brochure.html. 

 



  157 

[12] K. B. Irani, J. Cheng, U. M. Fayyad, and Z. Qian, “Applying machine learning 

to semiconductor manufacturing,” IEEE Expert, vol. 8, no. 1, pp. 41–47, Feb. 

1993. 

[13] J. T. Pfingsten, “Machine Learning for Mass Production and Industrial 

Engineering,” Doctoral Dissertation, Mathematics and Physics, Eberhard 

Karls Universität Tübingen, Germany, 2007. 

[14] Y. Zhu and J. He, “Co-Clustering Structural Temporal Data with Applications 

to Semiconductor Manufacturing,” ACM Trans. Knowl. Discov. Data, vol. 10, 

no. 4, pp. 1–18, May 2016. 

[15] C.-H. Lee, H.-C. Yang, S.-C. Cheng, and S.-W. Tsai, “A Hybrid Big Data 

Analytics Method for Yield Improvement in Semiconductor Manufacturing,” in 

Proceedings of the ASE BigData & SocialInformatics, 2015, p. 9. 

[16] R. J. Baseman, J. He, E. Yashchin, and Y. Zhu, “Run-to-run control utilizing 

virtual metrology in semiconductor manufacturing,” US Patent 9 299 623, 29-

Mar-2016. 

[17] C. Giraud-Carrier and O. Povel, “Characterising Data Mining Software,” 

Intell. Data Anal., vol. 7, no. 3, pp. 181–192, 2003. 

[18] K. Cios, R. Swiniarski, W. Pedrycz, and L. Kurgan, “The knowledge discovery 

process,” in Data Mining: A Knowledge Discovery Approch, Springer, 2007, 

pp. 9–24. 

[19] R. Wirth and J. Hipp, “CRISP-DM : Towards a Standard Process Model for 

Data Mining,” in Proceedings of the Fourth International Conference on the 
Practical Application of Knowledge Discovery and Data Mining, 2000, pp. 29–

39. 

[20] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD process for 

extracting useful knowledge from volumes of data,” Commun. ACM, vol. 39, 

no. 11, pp. 27–34, 1996. 

[21] Ó. Marbán, G. Mariscal, and J. Segovia, “A Data Mining & Knowledge 

Discovery Process Model,” in Data Mining and Knowledge Discovery in Real 
Life Applications, J. Ponce and A. Karahoc, Eds. I-Tech Education and 

Publishing, 2009, pp. 1–16. 

[22] Ó. Marbán, G. Mariscal, E. Menasalvas, and J. Segovia, “An Engineering 

Approach to Data Mining Projects,” Intell. Data Eng. Autom. Learn. - IDEAL 
2007, vol. 4881, pp. 578–588, 2007. 



  158 

[23] J. Wills, “From the Lab to the Factory: Building a Production Machine 

Learning Infrastructure,” 2014. [Online]. Available: 

http://www.infoq.com/presentations/machine-learning-infrastructure. 

[24] G. Piatetsky, “CRISP-DM, still the top methodology for analytics, data 

mining, or data science projects,” 2014. [Online]. Available: 

http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-

mining-data-science-projects.html. 

[25] L. A. Kurgan and P. Musilek, “A survey of Knowledge Discovery and Data 

Mining process models,” Knowl. Eng. Rev., vol. 21, no. 1, pp. 1–24, Jul. 2006. 

[26] G. Mariscal, Ó. Marbán, and C. Fernández, “A survey of data mining and 

knowledge discovery process models and methodologies,” Knowl. Eng. Rev., 
vol. 25, no. 2, pp. 137–166, 2010. 

[27] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 

“Advances in knowledge discovery and data mining,” Feb. 1996. 

[28] S. Ahangama and C. D. Poo, “Designing a Process Model for Health Analytic 

Projects,” PACIS 2015 Proc., 2015. 

[29] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “Knowledge Discovery and 

Data Mining: Towards a Unifying Framework.,” in Int Conf on Knowledge 
Discovery and Data Mining, 1996, pp. 82–88. 

[30] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to 

Knowledge Discovery in Databases,” AI Mag., vol. 17, no. 3, p. 37, 1996. 

[31] P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi, “Discovering 

data mining: from concept to implementation,” Jan. 1998. 

[32] R. J. Brachman and T. Anand, “The Process of Knowledge Discovery in 

Databases: A First Sketch,” in KDD-94 AAAI-94 Workshop on Knowledge 
Discovery in Databases, 1996, pp. 37–57. 

[33] C. Gertosio and A. Dussauchoy, “Knowledge discovery from industrial 

databases,” J. Intell. Manuf., vol. 15, no. 1, pp. 29–37, 2004. 

[34] A. H. Milley, J. D. Seabolt, and J. S. Williams, “Data Mining and the Case for 

Sampling,” SAS Institute Inc, Cary, NC, 1998. 

 



  159 

[35] A. Azevedo and M. F. Santos, “KDD, SEMMA and CRISP-DM: a parallel 

overview,” IADIS Eur. Conf. Data Min., no. January, pp. 182–185, 2008. 

[36] A. G. Buchner, M. D. Mulvenna, S. S. Anand, and J. G. Hughes, “An Internet-

Enabled Knowledge Discovery Process,” Proc. 9th Int. Database Conf. Hong 
Kong, vol. 1999, pp. 13–27, 1999. 

[37] Two Crows Corporation, Introduction to Data Mining and Knowledge 
Disocvery, 3rd ed. 2005. 

[38] S. Sharma and K.-M. Osei-Bryson, “Toward an integrated knowledge 

discovery and data mining process model,” Knowl. Eng. Rev., vol. 25, pp. 49–

67, 2010. 

[39] C. Shearer, “The CRISP-DM model: the new blueprint for data mining,” J. 
data Warehous., vol. 5, no. 4, pp. 13–22, 2000. 

[40] Y. Li, M. A. Thomas, and K. Osei-Bryson, “A snail shell process model for 

knowledge discovery via data analytics,” Decis. Support Syst., 2016. 

[41] G. S. Nascimento and A. A. Oliveira, “An Agile Knowledge Discovery in 

Databases Software Process,” ICDKE, 2012. . 

[42] K. J. Cios and G. W. Moore, “Uniqueness of medical data mining,” Artif. Intell. 
Med., vol. 26, no. 1–2, pp. 1–24, 2002. 

[43] S. Moyle and A. Jorge, “RAMSYS - A methodology for supporting rapid remote 

collaborative data mining projects,” ECML/PKDD01 Work. Integr. Asp. Data 
Mining, Decis. Support Meta-learning, no. 1, 2001. 

[44] J. Solarte, “A proposed data mining methodology and its application to 

industrial procedures,” MS Thesis, Industrial Engineering, University of 

Tennessee, Knoxville, 2002. 

[45] O. Marbán, J. Segovia, E. Menasalvas, and C. Fernández-Baizán, “Toward 

data mining engineering: A software engineering approach,” Inf. Syst., vol. 34, 

no. 1, pp. 87–107, 2009. 

[46] O. Marbán, E. Menasalvas, and C. Fernández-Baizán, “A cost model to 

estimate the effort of data mining projects (DMCoMo),” Inf. Syst., vol. 33, no. 

1, pp. 133–150, 2008. 

 



  160 

[47] J. Misiti, “Awesome Machine Learning,” GitHub. [Online]. Available: 

https://github.com/josephmisiti/awesome-machine-learning#awesome-

machine-learning-. 

[48] D. Sculley et al., “Machine Learning : The High-Interest Credit Card of 

Technical Debt,” NIPS 2014 Work. Softw. Eng. Mach. Learn., pp. 1–9, 2014. 

[49] S. R. Covey, The 7 Habits of Highly Effective People. Free Press, 2004. 

[50] O. Laudy, “Standard methodology for analytical models,” LinkedIn, 2015. 

[Online]. Available: 

http://olavlaudy.com/MediaWiki/index.php?title=Standard_methodology_for_a

nalytical_models. [Accessed: 06-Aug-2016]. 

[51] D. Wetherill, “Broken links Why analytics investments have yet to pay off,” 

The Economist, Intelligence Unit, 2016. 

[52] O. Laudy, “Data Science Data Architecture,” LinkedIn, 2015. [Online]. 

Available: 

http://olavlaudy.com/MediaWiki/index.php?title=Data_Science_Data_Architect

ure. [Accessed: 06-Aug-2016]. 

[53] N. Kupp and Y. Makris, “Integrated Optimization of Semiconductor 

Manufacturing : A Machine Learning Approach,” IEEE Int. Test Conf., pp. 1–

10, 2012. 

[54] A. Borisov, I. Chikalov, E. St. Pierre, and E. Tuv, “Rule Induction for 

Identifying Multilayer Tool Commonalities,” IEEE Trans. Semicond. Manuf., 
vol. 24, no. 2, pp. 197–201, May 2011. 

[55] H. Jing, R. George, and T. Eugene, “Contributors to a Signal from an Artificial 

Contrast,” in Informatics in Control, Automation and Robotics II, J. Filipe, J.-

L. Ferrier, J. A. Cetto, and M. Carvalho, Eds. Springer Netherlands, 2007, pp. 

71–78. 

[56] W. Hwang, G. Runger, and E. Tuv, “Multivariate statistical process control 

with artificial contrasts,” IIE Trans., vol. 39, no. 6, pp. 659–669, Mar. 2007. 

[57] E. R. S. Pierre, E. Tuv, and A. Borisov, “Spatial Patterns in Sort Wafer Maps 

and Identifying Fab Tool Commonalities,” in ASMC (Advanced Semiconductor 
Manufacturing Conference) Proceedings, 2008, pp. 268–272. 

[58] E. R. S. Pierre, E. Tuv, and A. Borisov, “Classification of spatial patterns on 

wafer maps,” US Patent US7 937 234 B2, 2008. 



  161 

[59] R. Goodwin, R. Miller, E. Tuv, A. Borisov, M. Janakiram, and S. Louchheim, 

“Advancements and Applications of Statistical Learning/Data Mining in 

Semiconductor Manufacturing.,” Intel Technol. J., vol. 8, no. 4, 2004. 

[60] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. 
Mach. Learn. Res., vol. 7, pp. 1–30, 2006. 

[61] F. Provost, T. Fawcett, and R. Kohavi, “The Case Against Accuracy 

Estimation for Comparing Induction Algorithms,” Proc. Fifteenth Int. Conf. 
Mach. Learn., pp. 445–453, 1998. 

[62] A. Ben-David, “A lot of randomness is hiding in accuracy,” Eng. Appl. Artif. 
Intell., vol. 20, no. 7, pp. 875–885, 2007. 

[63] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 

27, no. 8, pp. 861–874, Jun. 2006. 

[64] A. P. Bradley, “The use of the area under the ROC curve in the evaluation of 

machine learning algorithms,” Pattern Recognit., vol. 30, no. 7, pp. 1145–1159, 

Jul. 1997. 

[65] J. Davis and M. Goadrich, “The Relationship Between Precision-Recall and 

ROC curves,” in Proceedings of the 23rd international conference on Machine 
learning - ICML ’06, 2006, pp. 233–240. 

[66] D. M. Powers, “Evaluation: from Precision, Recall and F-measure to ROC, 

Informedness, Markedness and Correlation,” J. Mach. Learn. Technol., vol. 2, 

no. 1, pp. 37–63, Dec. 2011. 

[67] L. R. Hope and K. B. Korb, “A Bayesian metric for evaluating machine 

learning algorithms,” AI 2004 Adv. Artif. Intell. Proc., vol. 3339, pp. 991–997, 

2004. 

[68] I. Kononenko and I. Bratko, “Information-Based Evaluation Criterion for 

Classifier ’ s Performance,” Mach. Learn., vol. 6, pp. 67–80, 1991. 

[69] J. Gama, R. Sebastiao, and P. P. Rodrigues, “On evaluating stream learning 

algorithms,” Mach. Learn., vol. 90, no. 3, pp. 317–346, 2013. 

[70] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy 

Estimation and Model Selection,” Int. Jt. Conf. Artif. Intell., vol. 14, no. 12, pp. 

1137–1143, 1995. 



  162 

[71] NIST/SEMATECH, “8.1.3.1 Censoring,” e-Handbook of Statistical Methods, 

2012. [Online]. Available: 

http://www.itl.nist.gov/div898/handbook/apr/section1/apr131.htm. 

[72] N. Japkowicz, “Why Question Machine Learning Evaluation Methods? (An 

illustrative review of the shortcomings of current methods),” AAAI-2006 Work. 
Eval. Methods Mach. Learn., p. 6, 2006. 

[73] O. Laudy, “Data Science Data Logic,” LinkedIn, 2015. [Online]. Available: 

http://olavlaudy.com/MediaWiki/index.php?title=Data_Science_Data_Logic. 

[Accessed: 06-Aug-2016]. 

[74] F. Zamora-Martinez, P. Romeu, P. Botella-Rocamora, and J. Pardo, “On-line 

learning of indoor temperature forecasting models towards energy efficiency,” 

Energy Build., vol. 83, pp. 162–172, Nov. 2014. 

[75] T. R. Hoens and N. V. Chawla, “Learning in non-stationary environments 

with class imbalance,” in Proceedings of the 18th ACM SIGKDD international 
conference on Knowledge discovery and data mining - KDD ’12, 2012, p. 168. 

[76] S. Mitchell, “The application of machine learning techniques to time-series 

data,” 1995. 

[77] E. Alpaydin, Introduction to Machine Learning, second edition. 2010. 

[78] P. S. Science, “Introduction to Design of Experiments,” Penn State Science. 

[Online]. Available: https://onlinecourses.science.psu.edu/stat503/node/5. 

[79] D. C. Montgomery, Design and Analysis of Experiments, 8th ed. Wiley, 2013. 

[80] A. Borisov, I. Chikalov, V. Eruhimov, and E. Tuv, “Performance and 

Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining 

Problems,” Intel Technol. J., vol. 9, no. 2, pp. 143–150, May 2005. 

[81] P. Smyth, “Applying Classification Algorithms in Practice,” Stat. Comput., vol. 

7, pp. 45–56, 1997. 

[82] J. Bloom and H. Brink, “Overcoming the Barriers to Production-Ready 

Machine Learning Workflows,” Strata Conference - Making Data Work, 2014. 

[Online]. Available: 

http://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314. 

 



  163 

[83] X. Amatriain, “Ten Lessons Learned from Building ( real-life impactful ) 

Machine Learning Systems,” Machine Learning Conference (MLconf), 2014. 

[Online]. Available: http://www.slideshare.net/xamat/10-lessons-learned-from-

building-machine-learning-systems. 

[84] T. Dunning, “Which Algorithms Really Matter?,” ACM international 
conference on Information & Knowledge Management. slideshare.net, San 

Francisco, 2013. 

[85] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding, “The 

Adoption of Machine Learning Techniques for Software Defect Prediction: An 

Initial Industrial Validation,” Commun. Comput. Inf. Sci., vol. 466 CCIS, pp. 

270–285, 2014. 

[86] Nucleus Research, “The Stages of an Analytic Enterprise,” Nucl. Res., no. 

March, pp. 1–6, 2012. 

[87] J. Holdowsky, M. Mahto, M. E. Raynor, and M. Cotteleer, “Inside the Internet 

of Things ( IoT ),” Deloitte University Press, 2015. 

[88] N. Lavesson, V. Boeva, E. Tsiporkova, and P. Davidsson, “A method for 

evaluation of learning components,” Autom. Softw. Eng., vol. 21, no. 1, pp. 41–

63, 2013. 

[89] R. H. Weber, “Internet of Things – New security and privacy challenges,” 

Comput. Law Secur., vol. 26, no. 1, pp. 23–30, Jan. 2010. 

[90] M. A. Barreno, “Evaluating the Security of Machine Learning Algorithms,” 

PhD Dissertation, Computer Science, University of California, Berkley, 2008. 

[91] P. Laskov and M. Kloft, “A Framework for Quantitative Security Analysis of 

Machine Learning,” Proc. 2nd ACM Work. Secur. Artif. Intell., pp. 1–4, 2009. 

[92] T. Woods, M. Evans, D. Rust, and B. Podoll, “Security in Machine Learning : 

Measuring the relative sensitivity of classifiers to adversary-selected training 

data.” pp. 1–11. 

[93] C. C. Aggarwal and P. S. Yu, “Chapter 2 A General Survey of Privacy-

Preserving Data Mining Models and Algorithms,” Privacy-preserving data 
Min., pp. 11–52, 2008. 

[94] T. H. Davenport, J. G. Harris, D. W. De Long, and A. L. Jacobson, “Data to 

Knowledge to Results : Building an Analytic Capability,” Calif. Manage. Rev., 
vol. 43, no. 2, pp. 117–138, 2001. 



  164 

[95] P. Turney, P. Turney, and N. R. C. Ca, “Types of Cost in Inductive Concept 

Learning,” in Cost-Sensitive Learning Workshop at the 17th International 
Conference on Machine Learning (ICML), 2000, vol. 6, pp. 1–7. 

[96] M. Gasner, “Design Challenges for Real Predictive Platforms,” Strata 
Conference - Making Data Work, Feb-2014. [Online]. Available: 

http://conferences.oreilly.com/strata/strata2014/public/schedule/detail/31779. 

[97] H. B. Mcmahan et al., “Ad Click Prediction : a View from the Trenches 

Categories and Subject Descriptors,” in The 19th ACM SIGKDD International 
Conference on Knowledge Discovery and DataMining, KDD 2013, 2013. 

[98] J. Taylor, “Standards-based Deployment of Predictive Analytics,” Decision 

Management Solution, 2016. 

[99] R. Way, “Model Deployment: The Moment of Truth - Analytic Model 

Deployment Best Practices & Case Studies,” CORIOS, Portland, OR, 2013. 

[100] M. G. Baydogan, G. Runger, and E. Tuv, “A Bag-of-Features Framework to 

Classify Time Series,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, 

pp. 2796–2802, Nov. 2013. 

[101] H. Deng, G. Runger, and E. Tuv, “Bias of Importance Measures for Multi-

valued Attributes and Solutions,” in ICANN 2011, Part II, Lecture Notes in 
Computer Science, 2011, vol. 6792, pp. 293–300. 

[102] Semiconductor Equipment and Materials International, “SEMI E5-0813 - 

SEMI Equipment Communications Standard 2 (SECS-II),” SEMI E5, 2012. 

[Online]. Available: 

http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductI

D=1948&DownloadID=3110. 

[103] E. Tuv, S. Shahapurkar, and A. Borisov, “Method for selecting a rank ordered 

sequence based on probabilistic dissimilarity matrix,” US Patent 0 239 652 

A1, 2007. 

[104] W.-H. Lin, T. H. K. Green, R. Kaplow, G. Fu, and G. S. Mann, “Normalization 

of predictive model scores,” US Patent 8 370 279 B1, 2013. 

[105] W.-H. Lin, T. Green, R. Kaplow, G. Fu, and G. S. Mann, “Assessing accuracy 

of trained predictive models,” US Patent 8 533 224 B2, 2013. 

[106] G. S. Mann, J. M. Breckenridge, and W.-H. Lin, “Predictive analytic modeling 

platform,” US Patent 8 706 659 B1, 2014. 



  165 

[107] W.-H. Lin, T. H. K. Green, R. Kaplow, G. Fu, and G. S. Mann, “Predictive 

model importation,” US Patent 8 583 576 B1, 2013. 

[108] W.-H. Lin, T. H. K. Green, R. Kaplow, G. Fu, and G. S. Mann, “Predictive 

model application programming interface,” US Patent 8 229 864 B1, 2012. 

[109] W.-H. Lin, T. H. K. Green, R. Kaplow, G. Fu, and G. S. Mann, “Predictive 

analytical model selection,” US Patent 8 694 540 B1, 2014. 

[110] J. M. Breckenridge, T. Green, R. Kaplow, W.-H. Lin, and G. S. Mann, 

“Dynamic predictive modeling platform,” US Patent 8 595 154 B2, 2013. 

[111] J. M. Breckenridge, T. H. K. Green, R. Kaplow, W.-H. Lin, and G. S. Mann, 

“Updateable predictive analytical modeling,” US Patent 8 250 009 B1, 2012. 

[112] W.-H. Lin, T. H. K. Green, R. Kaplow, G. Fu, and G. S. Mann, “Predictive 

analytical modeling for databases,” US Patent 8 443 013 B1, 2013. 

[113] W.-H. Lin, T. H. Green, R. Kaplow, G. Fu, and G. S. Mann, “Hosting predictive 

models,” US Patent 8 364 613 B1, 2013. 

[114] R. G. Hills, W. R. Witkowski, A. Urbina, W. J. Rider, and T. G. Trucano, 

“Development of a Fourth Generation Predictive Capability Maturity Model.,” 

Sandia National Laboratories (SNL-NM), Albuquerque, NM, Sep. 2013. 

[115] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing and 

validating machine learning classifiers by metamorphic testing,” in Journal of 
Systems and Software, 2011, vol. 84, no. 4, pp. 544–558. 

[116] A. I. Dimitras, S. H. Zanakis, and C. Zopounidis, “A survey of business 

failures with an emphasis on prediction methods and industrial applications,” 

Eur. J. Oper. Res., vol. 90, no. 3, pp. 487–513, May 1996. 

[117] C. Cui, “Building Energy Modeling: A Data-Driven Approach,” PhD 

Dissertation, Industrial Engineering, Arizona State University, Tempe, 2016. 

[118] E. Tuv, “Ensemble Learning,” in Feature Extraction, Foundations and 
Applications, vol. 207, I. Guyon, M. Nikravesh, S. Gunn, and L. A. Zadeh, Eds. 

Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 187–204. 

[119] K. Torkkola and E. Tuv, “Ensemble Learning with Supervised Kernels,” in 

Machine Learning: ECML 2005, 2005, vol. 3720, pp. 400–411. 



  166 

APPENDIX A                                                                                               

PREDICTIVE OPTIMIZATION ALGORITHM 
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Sorting entities in the order of a known variable (example: 5-year old’s 

current height) is a trivial problem for which several efficient algorithms are 

available. However, sometimes (in manufacturing and other applications) it is 

desirable to rank-order entities by a variable whose present value is unknown. For 

example, arranging 5-year old’s by how tall they will be when they are 17. In 

addition, it might be desirable to optimize for a cost function associated with 

building the ordered sequence. Say the 5-year old’s need to be arranged along the 

shortest path such that daily pickup to sports coaching is feasible. The Intel 

application that inspired the invention of this algorithm is that of die-paring on 

multi-chip products as described in Section 4.4.1. 

The solution consists of two components: prediction and optimization. The 

prediction approach is covered extensively in [118] and [119]. Any algorithm that 

provides prediction probabilities can be readily adopted. For optimization, a pair-

wise distance matrix is then constructed using explicit partition of the predictor 

space by the learning machine as well as the distance representing the sequence 

cost. A flavor of non-parametric unidimensional scaling is then used to compute an 

optimized sequence. Neighboring members in the sequence have high likelihood of 

being matched on the predicted variable. Moreover, as the similarity matrix 

incorporates distance-cost, the resulting sequence minimizes “path length”. 
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Figure 44 shows the predictive optimization algorithm - it is described below: 

1. An enhanced random subspace algorithm model is built on the most 

recent historical data to learn unknown variable (r classes) using relevant 

measurable attributes. 

2. The model applied to an observation results in a probability vector p of 

length r. We define the similarities between two entities k and m using a 

probabilistic distance 𝑑𝑘𝑚 = 1 − ∑ 𝑝𝑘𝑖𝑝𝑚𝑖
𝑟
𝑖=1  that measures likelihood of 2 

units belonging to the same class defined by probabilities predicted by RF 

classifier. 

3. To optimize the cost (path-length) and overall matching error, the cost 

(spatial distance) is weighted and added to each element of distance 

Build predictive ML model 

START 

Training data: 

Variable Known  

Compute pair-wise dissimilarity matrix using the 

probabilistic model distance New Instance: 

Variable Unknown 

The geometric distance is weighted and added to the 

dissimilarity matrix 

Weight to optimize 

path-length 

Optimize the sequence with a flavor of TSP 

END 

Reduce dissimilarity matrix to single dimension with 

MDS 

Optimized 

Sequence 

Figure 44. Predictive Optimization Algorithm 
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matrix dik: i,k=1,..,N. The weight determines the importance given to the 

cost parameter: when the weight is set to zero, the path length is ignored 

and when weight is large, it amounts to pure cost optimization. 

4. Given the resulting distance matrix dik: i, k=1,…N between N entities we 

search for a one-dimensional ranking (multidimensional scaling along one 

axes) of all points rxi: ri1< ri2 < …< riN to minimize total sequence length, 

𝐿 = ∑ 𝑑𝑖𝑗,𝑖𝑗+1
𝑁
𝑗=1 . The simulated annealing algorithm may be used to solve 

this optimization problem: 

a. Build initial sequence S: 

i. Take point 1 as starting point 

ii. Select point closest to previous, add to sequence and remove 

from eligibility list. 

iii. Repeat (i until all points are organized in a sequence 

iv. Set initial temperature T = 10 * d(S) 

b. Repeat 10*N times 

i. Take random transposition (i, j) 

ii. Calculate decrease in goal function delta(i, j) = d(S’)-d(S) 

iii. If (i, j)<0 accept (i, j) else, accept with probability exp(-(i, j)/T) 

iv. Reduce T: T = T * (1-0.1/N) and continue. 

All parameters, such as temperature decrease rate, number of steps and 

permutations per step are chosen empirically, and the result is not sensitive to a 

choice of the parameters. Moreover, often just the initial step (4 gives the desirable 

sequence, and a very little is gained after running next two steps. 
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