
Logistical Planning of Mobile Food Retailers Operating Within  

Urban Food Desert Environments  

by 

Christopher Wishon 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved October 2016 by the 

Graduate Supervisory Committee:  

 

Jesus René Villalobos, Chair 

John Fowler 

Pitu Mirchandani 

Christopher Wharton 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

December 2016  



  i 

ABSTRACT 

Mobile healthy food retailers are a novel alleviation technique to address disparities 

in access to urban produce stores in food desert communities. Such retailers, which tend 

to exclusively stock produce items, have become significantly more popular in the past 

decade, but many are unable to achieve economic sustainability. Therefore, when local 

and federal grants and scholarships are no longer available for a mobile food retailer, they 

must stop operating which poses serious health risks to consumers who rely on their 

services. 

To address these issues, a framework was established in this dissertation to aid mobile 

food retailers with reaching economic sustainability by addressing two key operational 

decisions. The first decision was the stocked product mix of the mobile retailer. In this 

problem, it was assumed that mobile retailers want to balance the health, consumer cost, 

and retailer profitability of their product mix. The second investigated decision was the 

scheduling and routing plan of the mobile retailer. In this problem, it was assumed that 

mobile retailers operate similarly to traditional distribution vehicles with the exception 

that their customers are willing to travel between service locations so long as they are in 

close proximity. 

For each of these problems, multiple formulations were developed which address 

many of the nuances for most existing mobile food retailers. For each problem, a 

combination of exact and heuristic solution procedures were developed with many 

utilizing software independent methodologies as it was assumed that mobile retailers 

would not have access to advanced computational software. Extensive computational 



  ii 

tests were performed on these algorithm with the findings demonstrating the advantages 

of the developed procedures over other algorithms and commercial software. 

The applicability of these techniques to mobile food retailers was demonstrated 

through a case study on a local Phoenix, AZ mobile retailer. Both the product mix and 

routing of the retailer were evaluated using the developed tools under a variety of 

conditions and assumptions. The results from this study clearly demonstrate that 

improved decision making can result in improved profits and longitudinal sustainability 

for the Phoenix mobile food retailer and similar entities. 



  iii 

ACKNOWLEDGMENTS  

I am incredibly thankful to my fiancé Julianne for her patience and commitment 

throughout my graduate education. I couldn’t have survived this process without her and 

I am especially glad she agreed to extend her stay in the desert on my behalf. I couldn’t 

have fallen in love with a better person. I also have to thank my parents for their support 

and open arms for the last six years. I am so thankful that they were always there to listen 

and guide me whenever I got lost and I hope I can repay their kindness for years to come. 

I would like to thank Dr. J. René Villalobos for all of his support and advice 

throughout my doctoral research. He provided the perfect combination of guidance and 

freedom allowing me to push my boundaries while still providing a crucial safety net 

during my early years. His feedback and open door policy were essential to the 

completion of my research and the experiences he provided that extended beyond my 

dissertation were crucial to my development as a scholar. I must also thank Dr. 

Christopher Wharton and Dr. Pitu Mirchandani for serving on my committee and 

providing critical advice and feedback to improve my research. I would also like to 

especially thank Dr. John Fowler for serving on my committee and his trust and support 

to allow me to serve as an instructor for the past three years. His guidance and advice 

have been essential to advancing my teaching abilities and the opportunities he provided 

were crucial to sparking my interest in an academic career. 

A large thank you also goes to all my friends who supported me throughout this 

process and made the past six years more bearable. A special thanks goes to Hector 

Flores, Patrick James, Corey Balint, Sarah Conte, Jonathan Adler, Nicholas Mason, and 

Phillip Howard.



  iv 

TABLE OF CONTENTS 

          Page 

LIST OF TABLES ................................................................................................................ viii  

LIST OF FIGURES ................................................................................................................. xi  

CHAPTER 

1 INTRODUCTION ...................................................................................................1 

1.1 Mobile Food Retailer Background...............................................................7 

1.2 Mobile Food Retailer Product Mix ............................................................12 

1.3 Mobile Food Retailer Scheduling and Routing .........................................13 

1.4 Conclusion .................................................................................................14 

2 LITERATURE REVIEW ......................................................................................16 

2.1 Extent and Effect of Food Deserts .............................................................16 

2.2 Mobile Food Retailer Product Mix Literature ...........................................21 

2.2.1 Supermarket Product Mix and Healthy Meal Plan Literature .21 

2.2.2 Forward and Reserve Warehouse Allocation Literature ..........22 

2.2.3 Knapsack Problem Literature ..................................................23 

2.3 Mobile Food Retailer Scheduling and Routing Literature .........................28 

2.4 Conclusion .................................................................................................40 

3 THE GENERIC MOBILE RETAILER PRODUCT MIX PROBLEM ................44 

3.1 Efficiency Measures for MDMKPs ...........................................................45  

3.2 Preliminary Tests for MDMKP Efficiency Measures ...............................50 

3.3 MDMKP Solution Algorithms ...................................................................53 

3.3.1 Fixed-Core MDMKP Algorithm..............................................56 



  v 

CHAPTER Page 

3.3.2 MDMKP Kernel Search Algorithm .........................................62 

3.3.3 MDMKP Genetic Algorithm ...................................................68 

3.4 Discussion ..................................................................................................73 

3.5 Conclusion .................................................................................................80 

4 THE TWO CONSTRAINT MOBILE RETAILER PRODUCT MIX 

PROBLEM .............................................................................................................82 

4.1 The DKP and DKP Relaxations .................................................................83 

4.1.1 DKP Lagrangian Relaxations ..................................................84 

4.1.2 DKP Surrogate Relaxation .......................................................87 

4.1.3 DKP Continuous Relaxations ..................................................87 

4.2 DKP Upper Bounds ...................................................................................89 

4.2.1 Optimal DKP Dual Values.......................................................89 

4.2.2 DKP Integer Relaxations .........................................................97 

4.3 DKP Reduction Procedure .........................................................................98 

4.4 DKP Expanding Core Procedure .............................................................103 

4.5 DKPSOLVE Algorithmic Improvements ................................................107 

4.5.1 CDKPSOLVE Improvements ................................................107 

4.5.2 EXPCORE Improvements .....................................................110 

4.6 DKPSOLVE Computational Tests ..........................................................111 

4.7 Discussion ................................................................................................119 

4.8 Conclusion ...............................................................................................124 

 



  vi 

CHAPTER Page 

5 AN EXACT SOLUTION ALGORITHM FOR THE MOBILE RETAILER 

ROUTING PROBLEM ........................................................................................126 

5.1 The Set Covering CCVRP .......................................................................127 

5.2 Linear Set Covering Solution Methodology for the CCVRP ..................132 

5.2.1 Column Generation Upper Bound .........................................134 

5.2.2 Branch-and-Bound Linear Procedure ....................................137 

5.3 Binary Set Covering Solution Methodology for the CCVRP ..................142 

5.4 Algorithmic Improvements for Solving the CCVRP Optimally..............144 

5.4.1 Initial Routes for the CCVRP ................................................145 

5.4.2 Estimating Initial Prices .........................................................146 

5.4.3 TSP Procedure and Subtour Constraints ................................148 

5.4.4 Optimal TSP Routes ..............................................................150 

5.5 Computational Experiments.....................................................................151 

5.6 Discussion ................................................................................................159 

5.7 Conclusion ...............................................................................................161 

6 HEURISTIC SOLUTION ALGORITHMS FOR THE MOBILE RETAILER 

ROUTING PROBLEM ........................................................................................163 

6.1 Classic Routing Heuristics .......................................................................163 

6.1.1 Greedy Heuristic ....................................................................166 

6.1.2 Sweep Heuristic .....................................................................168 

6.1.3 Savings Heuristic ...................................................................168 

6.2 Ant Colony Heuristic ...............................................................................169 



  vii 

CHAPTER Page 

6.3 Computational Tests ................................................................................174 

6.3.1 ACS Heuristic Tuning............................................................175 

6.3.2 Small Test Instances ..............................................................181 

6.3.3 Large Test Instances ..............................................................187 

6.4 Discussion ................................................................................................193 

6.5 Conclusion ...............................................................................................195 

7 OPERATIONAL MOBILE FOOD RETAILER DECISIONS: A CASE 

STUDY ................................................................................................................197 

7.1 Phoenix Mobile Fresh Food Retailer .......................................................197 

7.2 Designing a Simple Product Mix .............................................................201 

7.3 Designing a Complex Product Mix..........................................................209 

7.4 Fresh Express Routing and Scheduling ...................................................217 

7.4.1 Fresh Express Routing Model ................................................218 

7.4.2 Fresh Express Routing Model Solution Algorithm ...............226 

7.4.3 Fresh Express Routing Data...................................................230 

8 CONCLUSIONS AND FURTHER RESEARCH ...............................................246 

REFERENCES ................................................................................................................254 

APPENDIX 

A DKPSOLVE PSUEDOCODE ..........................................................................268 

 



  viii 

LIST OF TABLES 

Table Page 

1. Count of Instances where the Fixed-Core Procedure Equals or Outperforms the 

Base Case (Count of Feasible Fixed-Core Test Instances if Less than 10) .......58 

2. Average Ratio of the Fixed-Core Solution Value over the Base Case Solution 

Value .................................................................................................................59 

3. Average Ratio of the Fixed-Core Solution Time over the Base Case Solution 

Time ...................................................................................................................59 

4. Kernel Search Solution Objective and Time Results ........................................66 

5. EWGA Solution Objective and Time Results ...................................................72 

6. Average Ratio of the Efficiency Measures Based Solution Values over the 

ACT Solution Values ........................................................................................75 

7. Average Ratio of the Efficiency Measures Based Solution Times over the ACT 

Solution Times ..................................................................................................76 

8. Count of Instances Each Solution Method Identified the Best Solution (Count 

of Instances Not Solved by Efficiency Based Methods which Were Solved by 

ACT if Greater than 0 in Parentheses) ..............................................................76 

9. The Count of Test Instances DKPSOLVE Terminated Simultaneously or Prior 

to CPLEX. .......................................................................................................114 

10. The Ratio of the Average Algorithmic Termination Time for CPLEX over the 

Average Algorithm Termination Time for DKPSOLVE. ...............................115 

11. The Ratio of the Median Algorithmic termination Time for CPLEX over the 

Median Algorithm Termination Time for DKPSOLVE. ................................116 



  ix 

Table Page 

12. The Average Absolute Difference between the Known Optimal/Best Solution 

and the Solution upon Termination of the Reduction Phase. ..........................117 

13. The Average Time Ratio of the Reduction Phase of DKPSOLVE over the 

Complete DKPSOLVE Time. .........................................................................118 

14. Radii Criteria for Test Instances ......................................................................152 

15. CCVRP Computational Results (* No Linear Solution was Obtained with One 

Hour) ...............................................................................................................154 

16. Igap Based on Case Type and One Hour Solution Status ...............................158 

17. ACS Tuning Parameter Designed Experiments Results for α, αc, q0, and β. All 

Results Reported as the Average Percentage Deviation from the Best Identified 

Solution for Each Instance and Radius Combination. .....................................178 

18. Solution Quality and Solution Time Results from Test Instances with Strictly 

Less than 50 Customers ...................................................................................182 

19. Solution Quality and Solution Time Results from Test Instances with 50 or 

More Customers (*Excludes Time Results from Augerat Set P Test Instance 

with 4 Vehicles and 100 Customers) ...............................................................188 

20. Sample Simple Fresh Express Product Mix for P = $250 .............................208 

21. Partitioning and Counts of Possible Produce Items for Fresh Express ...........210 

22. Sample Complex Fresh Express Product Mix for P = $250 ..........................213 

23. Time Windows and Service Windows for Sample Service Network and 

Routing Plan ....................................................................................................222 

 



  x 

Table Page 

24. Summary of Routing Plan Statistics Assuming 0 Meter Covering Distance for 

Fresh Express ..................................................................................................238 

25. Summary of Routing Plan Statistics Assuming 400 Meter Covering Distance 

for Fresh Express .............................................................................................239 

26. Summary of Routing Plan Statistics Assuming 800 Meter Covering Distance 

for Fresh Express .............................................................................................240 

27. Fresh Express Routing Plan Excluding Service Locations Based on School 

Income and Supermarket Access for all Covering Radius Options ................242 

 



  xi 

LIST OF FIGURES 

Figure Page 

1. Map of Current and Former Mobile Healthy Food Retailers ..............................5 

2. Core Variable Frequency by Efficiency Measure Value ...................................52 

3. Efficiency Measure Frequency by Objective Coefficient Sign .........................52 

4. Flowchart of REDUCE Procedure ....................................................................99 

5. Flowchart of EXPCORE Procedure ................................................................107 

6. NEVAL(θ̅, π̅, V, D, A, LB) Pseudocode Flowchart ............................................139 

7. Christofides and Eilon 30 customer, 4 Vehicle Solutions ...............................156 

8. Average Deviation from the Minimal Observed Solution for Each M, Instance, 

and Radius Combination. ................................................................................180 

9. Average Deviation from the Minimal Observed Solution Across all Instances 

and Radius Combinations for Each M and Average Deviation from the 

Minimal Observed Solution Across all Instances. ..........................................180 

10. Heuristic and Exact Solutions for the Christofides and Eilon 30 location, 4 

Vehicle, and Radius Case A Test Instance. .....................................................185 

11. Heuristic Solutions for the Augerat Set P 55 location, 7 Vehicle, and Radius 

Case A Test Instance. ......................................................................................191 

12. Discovery Triangle Region of Phoenix, AZ ....................................................198 

13. Product Mix Efficient Frontiers for Simple Fresh Express Product Mix ........205 

14. Product Mix Efficient Frontiers for Complex Fresh Express Product Mix ....211 

15. Efficient Frontier Differences Between the Simple and Complex Fresh Express 

Product Mixes ..................................................................................................214 



  xii 

Figure Page 

16. Sample Service Network with Time Windows. ..............................................221 

17. West and South Phoenix Operational Area for Fresh Express ........................232 

18. Fresh Express Routing Plan Assuming a 400 Meter Covering Radius and 

Excluding Service Locations Based on School Income and Supermarket 

Access ..............................................................................................................241 

 



  1 

CHAPTER 1 

INTRODUCTION 

One of the greatest health challenges currently facing the U.S. is the increasing rates 

of diet-related diseases and issues. Since 1980, obesity, as measured by the body mass 

index (BMI), has increased by more than 15 percentage points with no statistically 

significant decreases in the rate of obesity over that time period (Flegal et al. 2012). As of 

2010, this increase in BMI has resulted in the U.S. having the highest estimated 

prevalence of overweight adult men and women, defined as a BMI greater than or equal 

to 25, among the top economically developed 50 countries. Recent research has also 

demonstrated that only 40% of adults in the U.S. maintain a healthy weight, defined as a 

BMI between 18.5 and 25.0, and only 23% consume the recommended 5 servings of 

fruits and vegetables (Reeves and Rafferty 2005). Further complicating this issue is that 

the rate of food insecurity has drastically increased in recent years. As of 2012, low or 

very-low food insecurity rates for households, defined as not having or unable to obtain 

enough food for all members of the household due to insufficient resources, has risen to 

14.5% of all U.S. household which represents over a 6 million household increase from 

2000 (Coleman-Jensen et al. 2012).  

These diet related diseases and issues have significant negative outcomes both at the 

individual and population level. As of 2005, it was estimated 17% of all preventable 

deaths can be attributed to dietary risk factors which include but is not limited to high 

dietary trans fatty acids, high dietary salts, low intake of fruits and vegetables, and low 

dietary omega-3 fatty acids (Danaei et al. 2009). Furthermore, it was shown that obesity, 

which is not directly attributable to dietary risk factors, accounts for an additional 11% of 



  2 

the preventable deaths in 2005. While this inability to maintain a healthy diet and weight 

is generally only considered to have effects at the individual level, the cumulative effect 

of the inability for U.S. citizens to maintain a healthy diet has drastically increased 

medical expenditures, decreased productivity, and reduced potential length of life. 

Specifically, by analyzing five of the health conditions for which diet is a major risk 

factor (coronary heart disease, cancer, stroke, diabetes, and osteoporotic hip fractures), it 

was estimated that consuming a healthier diet would save the U.S. population $114.5 

billion per year in 2012 as measured by decreasing healthcare expenditures and 

increasing productivity and lifespan (Anekwe and Rahkovsky 2013). This evidence 

demonstrates that a high percentage of Americans are unable to maintain a healthy diet 

and this inability has severe repercussions at both the individual and societal level.  

While diets are generally conceived to be based on an individual’s choices, recent 

evidence has shown that there may be external factors which influence a person’s ability 

to maintain a healthy diet and weight. One such influence is the local food environment. 

Generally, the local food environment for an individual is characterized by the quantity 

and type of food retailers or establishment (hereafter referred to collectively as food 

providers) in the surrounding areas around that person’s place of residence. However, this 

environment can also be expanded to include the food options around a person’s 

workplace as well as along frequently traveled transit routes. The concept of the local 

food environment has only recently become the focus of academic research with results 

demonstrating that the type and quantity of food providers is correlated with obesity 

(Robert and Reither 2004; Lopez 2007; Rundle et al. 2007), food intake (Diez Roux et al. 

1999), physical activity (Nelson et al. 2006), and overall health (Stimpson et al. 2007).  



  3 

Coinciding with this increased focus on the local food environment by academic 

researchers, government agencies have also started to recognize that the quantity and 

assortment of food providers around an individual’s work and residence can influence 

that person’s health. To address this issue, the United States Department of Agriculture's 

(USDA) 2008 farm bill defined a “food desert” as an “area in the United States with 

limited access to affordable and nutritious food, particularly such an area composed of 

predominantly lower income neighborhoods and communities” (Food, Conservation, and 

Energy Act of 2008 2008). As part of the legislation passed in the 2008 farm bill, the 

USDA developed a set of criteria which specify which communities are food deserts, thus 

allowing priority to be given to food access projects in those areas. As is common with 

most food desert research, the USDA uses U.S. census tracts as proxies for 

neighborhoods. By definition, census tracts are generally contiguous, statistical 

subdivisions of counties which follow visible or identifiable features such that the tract 

has a population between 1,200 and 8,000 people. 

Furthermore, the USDA, as well as the majority of other research efforts, uses access 

to a traditional supermarket as a proxy for access to a nutritional food provider. The 

purpose is that most food desert studies do not verify the existence of healthy food 

options at the stores, but use supermarkets as they are most likely to have the broadest 

mix of healthy food options (Larson, Story, and Nelson 2009). Hence, the USDA uses 

supermarkets, supercenters, and large grocery stores to determine the availability of food 

retailers for food desert residents (Ver Ploeg and Dutko 2013). 

Given these considerations, the USDA identifies a food desert if it meets both of the 

following criteria (Ver Ploeg and Dutko 2013):  



  4 

 Low-Income Census Tract 

o Tract’s poverty rate is greater than or equal to 20%, or 

o Tract’s median family income is 80% or less of the state’s median family 

income, or 

o An urban tract’s median family income is 80% or less of the 

metropolitan’s median family income 

 Low-Access Census Tract 

o For an urban census tract, at least 500 people or 33% of the tract’s 

population live more than 1 mile from the nearest supermarket 

o For a rural census tract, at least 500 people or 33% of the tract’s 

population live more than 10 miles from the nearest supermarket 

Using these criteria, the USDA have identified that there are nearly 9,000 urban and 

rural food desert census tracts which represent 12.3% of all nation-wide census tracts. 

Furthermore, urban census tracts, tracts whose population-weighted centroids are located 

in an area with more than 2,500 people (Ver Ploeg and Dutko 2013), comprise a majority 

of U.S. food desert tracts as over 7,500 urban census tracts qualify as food deserts which 

represents 13.6% of all urban U.S. tracts. These urban census tracts also tend to favor 

those with higher populations as there are nearly 33 million people living in urban food 

deserts which represents 13.8% of all urban residents. This provides clear evidence that 

food access is a systemic problem in many urban U.S. communities and therefore 

improving access to healthy and affordable food providers should be a priority within the 

afflicted neighborhoods. 



  5 

One proposed methodology to alleviate food desert conditions within an afflicted 

urban community is to introduce new food retailers within that community (Rose et al. 

2009). However, research has demonstrated that the number of supermarkets per resident 

purchasing power is the same within a food desert community as within a non-afflicted 

community (Alwitt and Donley 1997). Hence, a successful food desert intervention must 

be able to aggregate demand within a community using a different approach than 

traditional brick-and-mortar stores. One such intervention is to use a mobile retailer. This 

mobile retailer is typically a large vehicle (e.g. a repurposed bus or a large trailer pulled 

by a truck) which is stocked with healthy food items that are sold within food desert 

communities at specific locations according to a predetermined schedule. Even though 

this retail format for healthy foods did not exist 15 years ago, examples of these retailers 

can currently be found in over a dozen US cities as shown in Figure 1. 

 

Figure 1. Map of current and former mobile healthy food retailers 



  6 

In spite of the growing popularity of this retail format, mobile retailers have yet to 

demonstrate that they can be an effective alleviation technique since they have had 

minimal success at becoming economically sustainable. Most, if not all, existing mobile 

retailers receive a significant portion of their funding from federal or local grants and 

even long serving mobile retailers experience difficulties in obtaining sufficient income 

to offset their operational costs. Such a strategy is clearly unsustainable for any 

permanent alleviation remedy.  

This initial inability for mobile retailers to reach economic sustainability has created 

significant concerns regarding the efficacy and longevity of the mobile retail format in 

alleviating food desert conditions. To address these concerns, this dissertation research 

was conducted to study the operational decision making capabilities of such a retailer. 

Specifically, mathematical models were developed which mimic the operational 

decisions faced by mobile fresh food retailers. Given these tools, the optimal operational 

decisions can be determined for a community and the results can be analyzed to 

determine the revenue potential for these types of retailers in their service neighborhood.  

Two specific operational decisions will be investigated in this dissertation: the retailer 

product mix decision and the retailer routing/scheduling decision. The motivation for 

investigating these decisions, the key considerations for each decision, and the nuances of 

mobile food retailers are provided in the remaining sections of this chapter. The 

remainder of the dissertation is split into six main chapters. Chapter 2 will discuss all 

relevant literature including the motivation for addressing disparities in food access as 

well as the theoretical literature which will serve as the basis for the developed 

mathematical models. Chapter 3 will introduce the mathematical model and foundation 



  7 

for solving the product mix problem based on a general retailer which may have any 

number of constraints and requirements. Chapter 4 will continue this discussion by 

providing a specific, high quality method for determining the optimal product mix for 

those retailers whose only requirement is that the stocked product meets a given revenue 

threshold. Chapter 5 introduces the retailer routing and scheduling problem and provides 

a solution methodology to solve the problem optimally. Chapter 6 continues this 

discussion by providing faster but approximate techniques to determine a routing plan. 

Within each of the aforementioned chapters, computational experiments are performed 

for each of the developed solution methodologies and the results from these experiments 

will be discussed in the appropriate chapter. Chapter 7 introduces and provides the results 

from a detailed case study using the developed decision making tools, along with an 

additional routing tool which can incorporate time window constraints, using data from a 

Phoenix, AZ fresh food retailer.  

 

1.1 Mobile food retailer background 

Prior to discussing mobile food retailers in detail, it should be noted that other 

interventions exist which seek to address the disparities in food access in urban 

environments. The purpose of this section is to provide a cursory discussion of these 

techniques and to discuss the strengths and weaknesses of each in order to motivate the 

use of mobile food retailers.  

One of the most popular and self-evident alleviation strategies is to introduce a new, 

traditional food retailer into the community. Since food desert communities lack such 

retailers by definition, introducing a new retailer should remedy the food desert 



  8 

conditions. This approach has been promoted as a possible solution by nearly all major 

food desert studies including the main study from the USDA (Ver Ploeg et al. 2009). This 

approach is further supported by market forces as numerous food store chains have been 

created which are specifically designed to satisfy low-income demand as demonstrated 

by Save-A-Lot, ALDI, and Food-4-Less (Ver Ploeg et al. 2009). Further support for this 

strategy is that introducing supermarkets into underserved communities has received 

significant national and local funding. For instance, numerous funding opportunities exist 

at the federal level including New Market Tax Credits, Community Development Block 

Grants, and the Empowerment Zone Program (Ver Ploeg et al. 2009).  

Even with this support, there is limited research demonstrating the societal impact 

from introducing new, traditional food retailers as only two studies have been performed 

which documented the longitudinal effects of such interventions. The first research was 

by Wrigley, Warm, and Margetts (2003) whose principal observation was that residents 

who had poor diets prior to the retailers introduction increased their fruit and vegetable 

intake by a half portion while those with the worst diets increased their intake by a full 

portion on average. The second research study was by Cummins et al. (2005) whose 

major finding is that there was no statistical evidence that the new supermarket increased 

consumption of healthy foods or improved physiological health but they did find that the 

community self-reported improved psychological health.  

This research, albeit limited, does indicate that introducing a supermarket is not 

guaranteed to be an effect alleviation strategy. This is further supported by supplemental 

research such as that performed by Alwitt and Donley (1997) who found that 

supermarkets in Chicago, IL, a city in which disparities in access are typically found, are 



  9 

evenly distributed with respect to purchasing power within the community. Hence, new 

supermarkets may be infeasible as there is insufficient demand for them to remain within 

the community. Further supporting this finding is the Low Supermarket Access (LSA) 

areas identified by The Reinvestment Fund (TRF) (Califano et al. 2012). TRF noted that 

over half of the LSA areas do not have the sufficient income to support a new food 

retailer. The study by Rose et al. also support this observation as they state, “all 

neighborhoods cannot support a supermarket, nor are supermarkets the only way to 

assure access to healthy food.” (Rose et al. 2009). 

In addition to introducing new food retailers, one of the other alleviation 

methodologies which has become popular is to improve the supply or incentivize the 

purchasing of healthy and affordable foods within non-traditional food retailers. 

Examples of such retailers include convenience stores, gas stations, and local corner 

stores. This strategy is supported by numerous sources including the USDA (Ver Ploeg et 

al. 2009) and Rose et al. (2009) and is supported by federal programs such as the Healthy 

Bodega Initiative which incentivizes bodegas in New York City to increase the quantity 

of low-fat milk, fruits, and vegetables offered in their stores. While some research has 

investigated this strategy, such as Weatherspoon et al. (2013) who found that food desert 

residents in Detroit, MI increased their purchases of healthy food items when such items 

were made more available, there are clear barriers to this alleviation strategy. First and 

foremost, the fixed and operational costs of installing freezers and coolers to supply fresh 

and healthy foods are often too costly for smaller stores. These stores also frequently sell 

unhealthy foods and increasing the demand for healthy food in such stores may increase 



  10 

the cross-selling of unhealthy food items. Finally, such an approach is not feasible if 

these retailers are not already prevalent within the afflicted community.  

The final alleviation strategy which is common within communities with food access 

disparities is community-driven solutions such as introducing farmers’ markets and/or 

community gardens or facilitating access to existing food providers by improving the 

urban infrastructure or public transport. Examples of these strategies include 

incentivizing Supplemental Nutrition Assistance Program (SNAP) purchases at farmers’ 

markets within Arizona which increased both SNAP and general purchases (Bertmann et 

al. 2012) and offering discounted bus passes for SNAP members in Madison, WI to 

facilitate access to existing food retailers (Ver Ploeg et al. 2009). While these approaches 

have shown tremendous success within certain communities, there still remain significant 

barriers. Principally, low-income shoppers perceive farmers’ market and similar efforts as 

higher priced shopping alternatives compared with supermarkets (Balsam, Webber, and 

Oehlke 1994; Zepeda 2009; Flamm 2011) even though such a difference typically does 

not exist (Flamm 2011; McGuirt et al. 2011). This is further complicated if the market 

does not accept nutritional assistance vouches as low-income shoppers frequently cite 

this issue as a common barrier (Flamm 2011; Leone et al. 2012). Additionally, many low-

income shoppers state they have poor physical access to local markets (Grace et al. 2007; 

Racine, Smith Vaughn, and Laditka 2010; Ruelas et al. 2012) or do not even know a 

market exists in their areas (Racine, Smith Vaughn, and Laditka 2010; Leone et al. 2012).   

This research demonstrates that all of the standard alleviation strategies face 

significant challenges when attempting to alleviate food desert conditions within an urban 

community. For instance, the community may not have the requisite purchasing power to 



  11 

support a traditional retailer while existing farmers’ markets may not be a viable option 

as they may not support SNAP purchases or food desert residents may believe the 

produce items are not priced competitively. In comparison, a mobile food retailer 

naturally addresses many of these issues, such as being able to aggregate dispersed 

demand, indicating it could be a successful food desert alleviation strategy. However, 

existing mobile retailers have experienced significant challenges when attempting to 

become economically sustainable as most, if not all, existing mobile retailers receive a 

significant portion of their funding from federal or local grants and many have ceased 

operations due to a lack of funds. Such a strategy is clearly unsustainable which indicates 

research into mobile retailers is necessary to determine if they can become lasting 

intervention within the communities they serve. 

To best study mobile food retailers, the decision making capabilities of the retailers 

will be investigated for two reasons. First and foremost, developing mathematical models 

which simulate the decision making of mobile retailers will allow for robust tests to be 

conducted which simulate mobile food retailer profits under a variety of community 

conditions and assumptions. Secondly, the developed mathematical models can be 

provided to mobile retailers to assist them with their decision making capabilities.  

In particular, two decision making epochs were identified as the most significant to 

current and future mobile retailers: the product mix problem and the vehicle 

routing/scheduling problem. These operational level decisions were identified as they are 

the decisions which are the most within the control of current mobile retailer. Other 

decisions such as the strategic level distribution, operating region, and warehouse 

selection problems and the tactical level vehicle selection and vehicle quantity decisions 



  12 

are important, but are not fully within the control of most modern mobile retailers. For 

instance, most retailers arise as a result of a direct need within a given community which 

implies the retailer cannot independently select their operating region. The following 

subsections detail both the product mix and vehicle routing problems to motivate the 

literature review in Chapter 2 and the developed mathematical models and solution 

methods detailed in the remaining chapters. 

 

1.2 Mobile food retailer product mix 

The first operational decision is to determine the product mix which is stocked on the 

mobile retailer. To date, the most common approach for stocking healthy mobile retailers 

is to exclusively sell fresh fruits and vegetables. The advantage of this approach is that 

these items are always considered to be healthy and they are generally the foods which 

are lacking in food desert communities. However, some mobile retailers decide to offer a 

more diverse array of foods including fruits, vegetables, low-fat milks, and whole grain 

breads. This mix requires more space and infrastructure, but the diverse offerings more 

closely match the product types found in traditional food retailers. Hence, a robust 

modeling methodology is needed to encompass all of these possibilities. 

In particular, the developed mathematical model must be able to consider a wide 

variety of produce and grocery items. Given these food items, one of the goals for most 

mobile food retailers is to select a product mix such that the overall nutritional value of 

the mix is as high as possible or meets certain criteria. This is especially important if the 

mobile food retailer wishes to balance healthy and unhealthy food items in order to 

increase the earning potential of the mix. Similarly, the model must consider the overall 



  13 

consumer price of the mix as many of the retailers serve low-income populations. Finally, 

the model must allow the retailer to specify either a required profit margin for the product 

mix or allow the retailer to require the profit margin to serve as the objective which 

should be maximized. Given these goals, the literature review of possible modelling 

approaches will be provided in Chapter 2 while Chapters 3 and 4 discuss two modeling 

approaches and solution methodologies which are able to address all possible product 

mix needs for any mobile food retailer type. 

 

1.3 Mobile food retailer scheduling and routing  

The other operational decision for mobile food retailers is the locations and times 

when the retailer stops within their community. In most cases, the retail stops are 

locations in which it is presumed that low-income, underserved people visit with relative 

frequency at the time of service. However, it is unclear which of these location should be 

selected, if more options are provided than can possibly be serviced, and in which order 

they should be visited. In addition, it is possible that some of the retailer’s customers 

would be willing to travel to a nearby visited location if the retailer does not directly 

travel to that customer’s ideal location. Typically, the distance a customer would be 

willing to travel would have to be small, but such customer travel is plausible in an urban 

setting.  

Hence, the mathematical model must incorporate numerous considerations to make 

the developed solutions applicable to mobile food retailers. Specifically, the model must 

be able to develop feasible vehicle routes which stop and start at a central depot, only 

visit a subset of locations within certain time frames, and not attempt to visit more 



  14 

locations than it can possible service given its stocked product mix in one trip. In 

addition, an ideal solution methodology would also factor in the ability for customer 

travel between locations as visiting centralized customer locations may yield higher 

quality routes. Given these objective, the literature review of feasible vehicle routing 

modelling approaches will be provided in Chapter 2 while Chapters 5 and 6 discuss 

multiple modeling approaches and solution methodologies based on the balance of 

solution quality and speed desired by the mobile food retailer. An additional model is 

also provided in Chapter 7 which is specifically designed for the retailer which serves as 

the basis for the Phoenix, AZ case study. 

 

1.4 Conclusion 

In summary, one of the factors which has been identified as driving diet-related and 

nutrition-related diseases is an individual’s local food environment. To remedy disparities 

in the food environment, numerous strategies have been recommended or trialed which 

include adding new full-service traditional retailers, improving existing small non-

traditional retailers (e.g. corner stores), improving low-income access to farmers’ markets 

and equivalent community driven initiatives, and improving urban infrastructure. In 

addition to these techniques, one novel strategy has been to introduce mobile food 

retailers which sell fresh fruits and vegetables by traveling through communities while 

stopping at participating locations according to a predetermined schedule. The advantage 

of this format is mobile retailers are able to aggregate dispersed demand as it is assumed 

these communities cannot support traditional full-service supermarkets. The disadvantage 

of this format is that many of the existing mobile retailers have stopped their operations 



  15 

as they were unable to become economically sustainable. Instead, they were able to 

operate as long as they were continually supported through grants and sponsorships. Such 

a strategy is clearly unsustainable and the goal of this dissertation is to develop 

techniques to improve the economic sustainability of the mobile retail format. 

Two key issues were identified which are within the control of most modern mobile 

food retailers while also having the greatest impact on their economic sustainability: the 

mobile food retailer product mix decision and the mobile food retailer routing and 

scheduling problem. For the product mix decision, the goal of the mobile retailer is to 

stock a healthy, profitable mix which also has a low cost for their customers. For the 

routing and scheduling decision, the goal of the mobile retailer is to efficiently serve as 

many low-income, food desert customers as possible while minimizing the cost of 

routing. For the remainder of this dissertation, it will be assumed that all low-income, 

food desert customers are equivalent and therefore the goal of the routing and scheduling 

decision is to earn a maximum profit which is a function of customer revenue less 

transportation costs.  

The goal of this dissertation is to address these two key issues by developing 

mathematical formulations which model the product mix and routing decisions. With 

these models, the current performance of mobile retailers can be measured against the 

optimal decisions thereby allowing conclusions regarding the economic sustainability of 

mobile food retailers. Additionally, these models can be developed such that they can 

utilized by mobile food retailers to aid in their logistical and operational planning.  

Parts of this introduction chapter were included in Wishon and Villalobos (2016a). 



  16 

CHAPTER 2 

LITERATURE REVIEW 

This chapter addresses the existing research and literature related to the operational 

decisions of mobile healthy food retailers which service urban, underserved 

neighborhoods and communities. First, the motivations for addressing the operational 

decisions of mobile healthy food retailers will be discussed with specific emphasis on the 

extent and effect of food deserts. These motivations were briefly summarized in Chapter 

1, but the breadth of literature on food deserts requires a separate and more thorough 

analysis. Following this summary, the potential modeling and solution approaches for the 

product mix and vehicle routing operational decisions will be discussed. Within each 

section, the chosen model and solution approach will be provided which reflects the 

algorithms and analyses which are detailed in the remaining chapters. 

 

2.1 Extent and effect of food deserts 

Considerable effort has been undertaken to determine the prevalence of food desert 

communities by researchers across numerous disciplines and organizations. Since 

summarizing all of this research is outside of the scope of this discussion, the following 

section presents the most recent research into statistically significant disparities in food 

access. For readers interested in further food desert research, summaries of existing 

literature are provided by Caspi et al. (2012), Walker, Keane, and Burke (2010), 

McKinnon et al. (2009), and Beaulac, Kristjansson, and Cummins (2009).   

The key issue with current research into the existence of food deserts is that there is 

little consistency when defining the community, healthy food, and access criteria required 



  17 

for an area to be classified as a food desert. For instance, Ver Ploeg et al. (2009), the 

study accompanying the USDA’s definition of a food desert, used 1 km. grids as proxies 

for communities while defining poor access to healthy foods as living more than a half 

mile (or full mile) away from the nearest supermarket with additional requirements 

including the resident being low-income and possibly not having access to personal 

transportation. In comparison, Rose et al. (2009) used census tracts to define a 

community and measured disparity based on access to all food retailer types within a 1 

(or 2) km. radius while considering the actual shelf space dedicated to fruits and 

vegetables in these stores. While it is not the focus of this dissertation, this important 

shortcoming is mentioned because these differences in parameters are pervasive 

throughout food desert literature and hinder a concise conclusion on the existence and 

extent of food deserts. Readers interested in a thorough discussion of this and other issues 

within food desert literature are recommended to read Bitler and Haider (2011).  

Given this shortcoming, existing food desert studies are still useful in identifying 

local statistical disparities in access. For instance, numerous studies into the existence of 

food deserts indicate that at-risk demographic groups have statistically less access to 

supermarkets then their reference groups. This applies to low-income versus high-income 

(Baker et al. 2006; Block and Kouba 2007; Larsen and Gilliland 2008), Black versus non-

Hispanic White (Baker et al. 2006; Bader et al. 2010; Powell, Slater, et al. 2007), and 

Hispanic versus non-Hispanic White (Moore and Diez Roux 2006; Bader et al. 2010). 

However, the opposite is true for access to smaller or independent food retailers since it 

appears that most at-risk groups have better access to these types of stores (Morland et al. 

2002; Moore and Diez Roux 2006; Powell, Slater, et al. 2007). For the purposes of this 



  18 

summary, smaller stores include independent grocery stores, fruit and vegetable markets, 

meat markets, farmers’ markets, or similar independent food retailers.  

These results demonstrate that even if urban, at-risk groups may be underserved by 

traditional retailers, smaller retailers could fill this gap. For instance, when the proportion 

of Mexican-Americans started to increase in the southwest US, small ethnic grocery 

stores called Carnicerias naturally arose as a method to address the need for community-

specific foods (Duran 2007). Hence, it appears that natural economic development favors 

smaller food retailers within the urban food desert environment. Such a result is not 

surprising, but it is often overlooked by community developers seeking to alleviate food 

desert conditions and supports the use of mobile food retailers as an alleviation strategy. 

Given these disparities, significant research has been undertaken to quantify the 

potential effects of having poor access to healthy foods. With respect to supermarket 

access, numerous studies have investigated if having poor access to supermarkets implies 

that at-risk communities pay more for their healthy food purchases. These studies have 

unanimously found that low-income citizens do not spend more on food items. In many 

instances, low-income urban populations have statistically less food expenditures than 

high-income shoppers even though studies have demonstrated that the stores more 

frequently located nearby low-income populations tend to have higher food prices 

(Kaufman et al. 1997; Andreyeva et al. 2008). 

One theory for this phenomenon is that lower-income shoppers are more likely to rely 

on lower quality food items as measured by the look and freshness of the food. In support 

of this theory, Block and Kouba (2007) and Andreyeva et al. (2008) found that low-

income shoppers have worse access to high-quality fruits and vegetables as opposed to 



  19 

high-income shoppers. Another factor is that low-income shoppers are extremely price 

sensitive with respect to food purchases (Caraher et al. 1998; Ohls et al. 1999; Clifton 

2004; Alkon et al. 2013; Haynes-Maslow et al. 2013) and will therefore be more likely to 

travel further for bigger cost savings. Both of these theories demonstrate that any 

intervention must be very cost-conscious if the goal is to serve low-income communities. 

Besides the financial effects, research has been conducted on the health implications 

of living within a food desert community. Numerous studies have identified that having 

statistically better access to supermarkets is either positively associated or has no effect 

on healthy eating habits (Rose and Richards 2004; Zenk et al. 2009) or on health 

outcomes such as obesity and disease (Morland, Wing, and Diez Roux 2002; Zenk et al. 

2009; Bodor et al. 2010). While these results are not definitive, no statistically-based 

study was identified which indicated better access was associated with decreases in 

healthy food consumption or health outcomes. 

Likewise, better access to smaller food retailers, applying the same definition used for 

identifying disparities in access, showed the same trend for diet quality/consumption 

(Lopez 2007; Gustafson et al. 2013) but had mixed correlations with obesity. Three out of 

the five studies which investigated the correlation between small store access and obesity 

found no relationship (Morland, Wing, and Diez Roux 2002; Bodor et al. 2008; Zenk et 

al. 2009) while two others found that better access was correlated with increased obesity 

(Powell, Auld, et al. 2007; Bodor et al. 2010). While this could be a causal relationship, 

these results can also be explained within the context of the prior findings since low-

income and minority populations (especially Black Americans) tend to have better access 



  20 

to smaller food retailers and these groups are much more likely to be obese (Flegal et al. 

2012).  

It should also be noted that most of the studies investigating the effects of food 

deserts suffer from the same inconsistencies as the research which study the existence of 

disparities since there is no standard definition of a food desert. Therefore, comparing the 

results between two studies is challenging since different measures may have been 

employed. This disparity also prohibits precise, global measurements on the effects of 

food deserts since the definition differences between studies imply that the scale of the 

effects is incomparable. 

In summary, the results on the extent and effect of food deserts is far from conclusive 

but numerous studies were able to identify statistically significant disparities in access 

across multiple communities and no studies identified that an increase in access to fresh 

and healthy foods had negative health impacts. This evidence demonstrates that seeking 

to address identified disparities in access is a justifiable use of local and federal funding 

and resources. However, it is recommended that researchers seeking to identify 

disparities in access and the effect of such disparities develop standard definitions so 

inter-community measurements can be conducted in future research. 

This literature also indicates some of the key considerations which must be included 

when developing a mobile food retailer. For instance, research into food deserts have 

identified that low-income residents do not pay more for food on average (Kaufman et al. 

1997; Andreyeva et al. 2008) even though their neighborhoods can have less availability. 

This demonstrates that low-income consumers are cost-conscious and will not buy 

expensive grocery items even if they are healthier. In addition, this literature also 



  21 

demonstrates the unhealthy food items may outsell healthy food items in smaller food 

stores thereby creating a rise in overall obesity. Hence, a mobile food retailer must limit 

the availability of such goods or completely eliminate them if they wish to positively 

affect the communities they serve.  

 

2.2 Mobile food retailer product mix literature 

Four separate approaches were considered as potential modeling techniques to 

address the mobile food retailer product mix problem: the supermarket product mix 

problem, healthy meal plan selection, the forward/reserve warehousing problem, and the 

knapsack problem. The key research from each of these areas is discussed in subsections 

2.2.1 through 2.2.3. Subsection 2.2.3 concludes with a discussion of the final modeling 

approach and methodology using in this dissertation in Chapters 3 and 4.   

 

2.2.1 Supermarket product mix and healthy meal plan literature 

Research into how supermarkets determine their product mix and allocate space to 

their selected products share clear similarities with the mobile food retailer product mix 

problem as they both are constrained by floorplan availability, they both desire to offer a 

diverse product mix, and they both wish to stock grocery items to ensure an adequate 

profit margin. Literature into this topic include item substitution policies from Grashof 

(1970) and Heeler, Kearney, and Mehaffey (1973) who developed methodologies to 

determine the ideal item to aid to an existing product mix based on the attributes of the 

candidate items and the available shelf space. Such research eventually became more 

advanced as pseudo-knapsack problem models were developed which were able to stock 

an entire shelf/store given a list of candidate items. Examples of such research include 



  22 

Zufryden (1986) whose models considered minimum stocking limits and geometry 

considerations and were solved via dynamic programming, Reyes and Frazier (2007) 

whose models considered item demand and were solved via goal programming, and 

Hansen and Heisbroek (1979) whose models considered shelving space and 

replenishment costs and were solved via Lagrangian relaxation.  

While these models neither factor in the cost of the items for customer nor the health 

of the stocked food items, the model developed by the USDA for the Thrifty Food Plan 

(TFP) incorporates both (Carlson et al. 2007). Specifically, the TFP is based on a 

knapsack optimization model whose goal is to determine a minimum cost food plan 

which meets all dietary requirements and needs while not significantly deviating from 

customer preferences. The dietary requirements are incorporated as additional constraints 

in the optimization model and they include limits or requirements on carbohydrates, fiber, 

sodium, calories, protein, calcium, etc. The USDA uses this model to determine the 

lowest cost food plan which serves as the basis for federal SNAP reimbursement levels. 

 

2.2.2 Forward and reserve warehouse allocation literature 

Another research area which has potential applications to determining the mobile 

retailer product mix is the forward and reserve warehouse allocation problem. The 

forward and reserve allocation problem is to determine which and how many of each 

stock keeping unit (SKU) within a warehouse should be allocated to the forward storage 

area and the reserve storage area. The forward area, located closer to the central picker 

location, is the storage area for highly requested SKUs such that they are readily 

available and require little retrieval time. The reserve area stores less popular SKUs and 



  23 

generally in higher volumes (Bartholdi III and Hackman 2011). This is similar to the 

mobile retailer product mix problem since the supermarket can be modeled as the reserve 

area while the mobile retailer is the forward area. Popular food items, as measured by 

demand and health measures, are stocked in the mobile retailer which increases 

convenience and minimizes the picking time while less popular food items are only sold 

in traditional food retailers.  

The seminal work into the forward/reserve allocation problem is from Hackman, 

Rosenblatt, and Olin (1990) who was the first to formulate the problem and solve it with 

a heuristic while Hackman and Platzman (1990) developed a better, near-optimal solution 

methodology of the same formulation. Gu, Goetschalckx, and McGinnis (2010) expand 

Hackman’s and Platzman’s solution technique by developing a branch-and-bound 

procedure which guarantees an optimal solution. Other research into the forward/reserve 

allocation problem typically focuses on special conditions to the initial formulation. 

Some examples include only allowing unit-load replenishments of the forward area (van 

den Berg et al. 1998), optimally determining the size of each zone in the warehouse 

simultaneously as the forward/reserve allocation problem (Heragu et al. 2005), and 

designing the forward/reserve area according to Lean principles (Kong and Masel 2008). 

 

2.2.3 Knapsack problem literature 

The final set of literature which was reviewed for its application to the mobile food 

retailer product mix problem is knapsack problem (KP) optimization models. Since KPs 

are one of the most well-studied NP-Hard problems, the review in this dissertation cannot 

cover the full breadth of the existing research. Instead, interested readers are 



  24 

recommended to refer to existing literature reviews such as one of the first KP reviews by 

Salkin and De Kluyver (1975), a review of exact solution methodologies by Dudziński 

and Walukiewicz (1987) and Martello, Pisinger, and Toth (2000), and a review of 

heuristics of KP variants by Wilbaut, Hanafi, and Salhi (2008).  

Given that existing KP literature covers multiple variants, algorithms, and modeling 

methodologies, the mobile food retailer product mix problem was preliminarily modeled 

to determine the type of KP models which are most applicable to the current problem. 

From this preliminary modeling, it was determined that any mathematical model for a 

mobile food retailer would at least have to incorporate one demand constraint in the 

formulation. Within KP literature, a demand constraint is an additional requirement 

imposed on the model which requires that a weighted summation of the decision 

variables meets or exceeds a given, independent positive threshold (Wilbaut, Hanafi, and 

Salhi 2008). This differs from the typical knapsack constraint which requires a different 

weighted summation of the decision variables to meet or not exceed a given, independent 

positive threshold. KP problem which incorporate a knapsack constraint and a demand 

constraint are commonly referred to as demand-constrained KPs (DKPs). A DKP is 

needed for the mobile food retailer product mix problem as these retailers will require 

their stocked product mix to exceed a given nutritional threshold or to exceed a given 

profit/revenue threshold. It is not always necessary that both of these be included as 

constraints, as they can be modeled as objectives in some circumstances, but a majority 

of retailers will have one or both requirements. Hence, existing DKP and similar 

literature will be reviewed followed by solution algorithms for the DKP and related KPs 

whose solution algorithms may be applicable to the DKP.  



  25 

To date, there are is no technical literature on specialized solution methods for 

solving the DKP. Instead, most research focuses on the DKP variant called the multi-

demand, multidimensional knapsack problem (MDMKP) where multiple knapsack 

constraints and multiple demand constraints can be included in one model. Examples of 

applied MDMKPs include the project selection problem from Beaujon, Marin, and 

McDonald (2001), the obnoxious facility location problem from Cappanera, Gallo, and 

Maffioli (2004), and the sea cargo mix problem from Ang, Cao, and Ye (2007). Due to 

the size of these problems, no exact solution methods exist and any heuristic solution 

algorithms typically only focus on small to average sized problems. Such work includes 

the Tabu Search procedures from Cappanera and Trubian (2005) and Arntzen, Hvattum, 

and Løkketangen (2006), the Scatter Search procedure from Hvattum and Løkketangen 

(2007), the Alternating Control Tree procedure from Hvattum et al. (2010), and the 

dominance procedure from Balachandar and Kannan (2011). Of these algorithms, only 

the Alternating Control Tree procedure by Hvattum and Løkketangen can guarantee 

optimality but commercial solvers must be used to solve the procedure’s subproblem. 

Given this limited research, research on modern solution algorithms for the KP and 

similar variants was also reviewed to see if solution algorithms for these problems could 

be applied to solve the DKP or the MDMKP. This research identified that the most 

advanced modern KP and KP variant solution methods utilize the concept of a ‘core’ set 

of variables. This concept was first introduced by Balas and Zemel (1980) who identified 

that there are only a small subset of KP decision variables whose optimal solution values 

differ between the binary solution and the relaxed linear solution. This subset of variables 

are hereafter referred to as the core or core variables. Furthermore, Balaz and Zemel 



  26 

identified that when all of the variables are sorted according to their objective-to-

constraint coefficient ratios (hereafter referred to as efficiency measures), these core 

items are likely to be listed closer to those item(s) whose linear solution value(s) is non-

binary (hereafter referred to as the break item(s)). The break items are therefore included 

in the core set of variables as they are likely non-binary. 

Numerous solution algorithms have utilized this property to solve the binary KP. 

Most notably, Pisinger (1995a) developed a depth-first, branch-and-bound procedure 

which prioritized branching at variables close to the break item as measured by the 

variable’s efficiency measures. This methodology of prioritizing branching according to 

the break item is referred to as the Expanding Core technique. This algorithm was later 

updated to the breadth-first Expanding Core procedure which proved to be more efficient 

(Pisinger 1997). Given the addition of cardinality constraints by Martello and Toth 

(1997) which restricted the feasible region to ensure that at least and at most a certain 

number of variables are included, Martello, Pisinger, and Toth (1999) introduced the best 

binary KP solution algorithm to date which combines the cardinality constraints with the 

Expanding Core procedure. Other modern solution methods are summarized by Martello, 

Pisinger, and Toth (2000).  

Other recent advances have focused on expanding the concept of core variables and 

efficiency measures to KP variants. The greatest contribution of such research is in the 

development of efficiency measures for problems with multiple knapsack constraints. 

These types of measures were first introduced by Dobson (1982) who used a measure 

which was the ratio of the objective coefficient over the sum of the constraint 

coefficients. These measures have since been updated to feature a weighted sum of the 



  27 

constraint coefficients, typically weighted by the optimal dual variables, as demonstrated 

by Puchinger, Raidl, and Pferschy (2010), Angelelli, Mansini, and Speranza (2010), and 

Della Croce and Grosso (2012). In addition, either the efficiency measure for MKPs or 

the measure for standard KPs have been used to solve other KP variants including an 

equality KP (Volgenant and Marsman 1998), bounded KP (Pisinger 2000), unbounded 

KP (Martello and Toth 1990), multiple-choice KP (Pisinger 1995b), multiple-choice 

MKP (Ghasemi and Razzazi 2011), and multi-objective KP (Gomes da Silva, Clímaco, 

and Rui Figueira 2008; Mavrotas, Rui Figueira, and Florios 2009; Lust and Teghem 

2012). For those interested in more information, concise reviews exist for solving KPs or 

their variants using core approaches, either exactly (Dudziński and Walukiewicz 1987; 

Martello, Pisinger, and Toth 2000) or heuristically (Wilbaut, Hanafi, and Salhi 2008). 

Based on the aforementioned literature, I selected to model the mobile food retailer 

product mix decision as a either a DKP or MDMKP. Modeling the mobile food retailer 

product mix problem similar to the models used in the supermarket product mix literature 

would be difficult given the nuances of the mobile food retailer with respect to customer 

costs and the grocery item health. Similarly, the numerous constraints used in the TFP for 

each type of nutrient are more than what is required for mobile food retailers and 

moderate to large sized problems modeled using this technique may be difficult to solve 

efficiently. Finally, the warehousing literature was discarded as a feasible approach for 

modeling the mobile retailer product mix problem because defining the cost of having to 

visit the supermarket, e.g. reserve area, as opposed to the mobile retailer, e.g. forward 

area, would be highly subjective and may vary based on the retailer location. These 

challenges make all of the aforementioned techniques poor modeling choices.  



  28 

Instead, the MDMKP was initially selected as the ideal choice for modeling the 

mobile food retailer product mix problem due to its flexibility to model any KP variant so 

long as it had a single linear objective function and linear constraints of any quantity and 

type. This flexibility is especially desirable for the mobile food retailer product mix 

problem as not all retailers will have the same needs and requirements due to differences 

in their communities and vehicle. Hence, improved solution methods for the MDMKP 

were first developed as the existing algorithms do not incorporate many of the modern 

advances in KP solution methods such as the use of core variables and efficiency 

measures. These developed solution methodologies are detailed in Chapter 3. 

Given these solutions, the DKP was also selected as a possible model for the mobile 

food retailer product mix problem. The DKP would be suitable for those retailers whose 

only limitations are the size of the vehicle and the need for a sufficient profit margin or 

the need for the stocked product mix to meet a given ‘healthiness’ threshold. In such a 

case, having a dedicated DKP solution method is advantageous as an algorithm 

developed specifically for the DKP will likely provide higher quality solutions in less 

time compared with applying a MDMKP solver to DKP instances. The first exact DKP 

solution method was therefore developed as part of this research effort and is detailed in 

Chapter 4.   

 

2.3 Mobile food retailer scheduling and routing literature 

To date, the mobile food retailer scheduling and routing problem is the sole aspect of 

this dissertation which has been addressed within technical literature. For example, 

Algert, Agrawal, and Lewis (2006) identified potential areas to service by clustering 



  29 

demand, but provided no discussion to the routing aspect of the problem. Additionally, 

only the residential location of the population was considered and which subset of 

clustered locations should be served was never addressed. The other primary research on 

this topic is from Widener, Metcalf, and Bar-Yam (2012; 2013) who identified which 

customers lack access to supermarkets and which of these groups should be served in an 

optimal solution. Again, no discussion is given to routing the vehicle and only a subset of 

the visitable locations are considered in their formulation. Hence, more research is 

needed to assist a mobile food retailer coordinator in making the optimal routing 

decision. 

Prior to discussing additional literature relevant to the mobile food retailer scheduling 

and routing problem, it is important to summarize the key requirements and 

considerations when constructing the ideal routing plan. One of the most important 

requirements is that feasible routes have to be constructed. This implies the vehicles must 

stop and start at a centralized depot or warehouse, a vehicle can only service locations so 

long as it has sufficient inventory, and the vehicle must return to the depot by the close of 

business. In addition, the routes should be designed such that the maximum revenue is 

captured. For these applications it is assumed that serving the maximum revenue is 

equivalent to serving the demand of as many food desert residents as possible.  

In addition to these requirements, there are additional considerations which may be 

valid based on the community served by the retailer. For instance, it is not valid to 

assume that the retailer is capable of serving the entire candidate set of locations as the 

cumulative demand of all of these locations may exceed the capacity of the retailer(s). 

Instead, the developed solution methodology must be able to only serve the ideal subset 



  30 

of these customers if required. These locations may also have strict time windows for 

service which the retailer must satisfy if it is to service demand. Finally, it may be 

possible for customers to travel between locations if its direct location is not serviced.  

Based on requirements, the mobile food retailer scheduling and routing problem is 

modeled as the Covering Capacitated Vehicle Routing Problem (CCVRP) which is 

variant of the traditional Capacitated Vehicle Routing Problem (CVRP). The CCVRP 

includes all of the traditional model elements of the CVRP with the sole exception that it 

is assumed that the vehicle in the CCVRP can satisfy demand at a service location by 

stopping at a different service location so long as the two locations are within an 

established distance threshold. The motivation for using the CCVRP to model the mobile 

food retailer scheduling and routing problem is that the covering mechanic of the CCVRP 

is equivalent to customers traveling between service locations to travel to a nearby 

mobile food retailer assuming that such a retailer does not directly service that customer’s 

initial location. It is even possible to extend this variant by adding assumptions which 

state that not all locations must be serviced (in the case where more demand exists than 

can be satisfied by all of the developed routes) and that all locations have restrictive time 

windows.  

Given this modeling approach, the literature on CVRP variants similar to the CCVRP 

employed in this research will be discussed next. Following this will be a summary of 

solution algorithms for these variants as well as solution algorithms for general CVRPs 

which are relevant to the solution methods for the CCVRPs discussed in Chapters 5 and 

6. 



  31 

One set of literature which has problems that resemble the CCVRP is routing 

literature on public service vehicles such as city buses, city trains, and school buses. With 

respect to the two former areas of literature, Schöbel (2012) provides a recent overview 

of relevant literature for the planning of all public transportation systems which is 

recommended for readers who are interested in a thorough discussion of the topic. 

Literature into these topics can be categorized into two categories: cost-oriented models 

and passenger-oriented models. With respect to the routing problem faced by mobile food 

retailers, literature on cost-oriented models is the most applicable as the passenger-

oriented approaches typically introduce additional considerations such as minimizing 

transfers, minimizing traveling time (time which includes penalties for transfers), or other 

considerations which are not necessary for mobile healthy food retailers. The discussion 

that follows will therefore omit passenger-oriented modeling approaches.  

With respect to the planning of railway public transportation systems, one the earlier 

modern solution methods for solving the problem is from Bussieck, Kreuzer, and 

Zimmermann (1996) who utilized relaxations and cutting planes to determine heuristic 

solutions for the ideal rail network. Additional literature on the routing of public rail lines 

includes Claessens, van Dijk, and Zwaneveld (1998) who incorporated train length into 

their decision making process and solved the problem to optimal using a Branch-and-

Bound procedure, Goossens, van Hoesel, and Kroon (2004) who developed a Branch-

and-Cut procedure, Bussieck, Lindner, and Lübbecke (2004) who created a fast heuristic 

algorithm based on relaxations and variable fixing, and Laporte et al. (2005) who 

developed several heuristics for the creation of a new rapid transit line. With respect to 

the planning of bus routes, the literature is again extensive. Most modern literature 



  32 

focuses on metaheuristics for the problem as demonstrated by Euchi and Mraihi (2012) 

who developed an ant colony algorithm, Pattnaik, Mohan, and Tom (1998) who 

developed a genetic algorithm, and Fan and Mumford (2010) who developed a simulated 

annealing algorithm. Other noteworthy modern research into this topic is from Soumis, 

Desrosiers, and Desrochers (1984) who developed an exact algorithm (which was only 

tested on one example) and Yan and Chen (2002) who utilized Lagrangian relaxation and 

flow decomposition algorithms. 

While these cited examples are only a small subset of the literature on the planning of 

public transit routes, it was enough of a review to demonstrate that this literature is not 

related to the problems faced by mobile food retailers. For instance, a major aspect of the 

planning of urban public transit lines is the frequency the line is travelled. Since mobile 

food retailers do not have to place the same emphasis on how frequently any one route is 

traveled, it was determined that most of this literature is not applicable to the current 

research. However, it can be argued that the frequency that a route is serviced is 

potentially relevant to mobile food retailers as it may be possible for a mobile retailer to 

have a set plan of routes which are revisited every week, bi-weekly, or once a month. 

This level of tactical planning is currently out of scope for this research. In addition, 

many retailers do not keep adhere to one route consistently over time as new stops are 

frequently introduced and trialed. This approach would therefore not be relevant to such 

retailers which includes the retailer that serves as the basis of the case study in Chapter 7. 

In comparison to this research, literature on urban school bus planning does not have 

the same ‘frequency’ considerations as the developed routes are only used once per day 

(or twice to drop students off). Hence, literature from this area, specifically for urban bus 



  33 

routes where it is assumed that children’s houses will not be directly visited but nearby 

sites will be utilized, is summarized. A review of this literature is provided by Park and 

Kim (2010) who cite that most of the literature on urban school bus routing does not 

consider the assignment of children to bus stops and the routing of the buses in one 

model. Instead, most of this literature solves these problems in two separate phases, as 

demonstrated by one of the earliest works in this area by Bodin and Berman (1979), 

which leads to suboptimality. The subset of this literature which addresses both problems 

simultaneously is therefore summarized next. 

One of the first examples of such research is from Bowerman, Hall, and Calamai 

(1995) who developed a multi-objective approach for this problem which seeks to 

minimize the number of routes and total route length while also balancing the loads and 

lengths of the routes. Bowerman, Hall, and Calamai adapt the commonly used 

Allocation-Routing-Location (ARL) heuristic, which clusters students and potential bus 

stops prior to developing routes through each cluster, by performing the clustering using 

an adapted VRP heuristic and then perform the routing through the cluster using an 

adaptation of the COVTOUR algorithm from Current and Schilling (1989). A similar 

approach is used earlier by Chapleau, Ferland, and Rousseau (1985) with the exception 

that during the routing phase, it is assumed students are already assigned to a specific bus 

stop (compared to the algorithm by Bowerman, Hall, and Calamai where students are not 

yet assigned to stops at the end of the clustering phase). The next major approach for this 

problem is from Schittekat, Sevaux, and Sörenson (2006) who introduced a method to 

generate test instances and solved their instances by using commercial integer 

programming solvers by relaxing the subtour constraints and adding them as necessary. 



  34 

The issue with this approach is that only small problems were solvable and most were not 

solvable within a reasonable amount of time. A more technical approach was introduced 

by Riera-Ledesma and Salazar-González (2012) who utilized a Branch-and-Cut 

algorithm to solve instances with up to 100 stops and users but many took up to and over 

2 hours to solve. Schittekat et al. (2013) later revisited the problem by developing a 

parameter-free metaheuristic which can solve problems with up to 800 students and 80 

stops.  

While many of these problems are similar to the problem faced by mobile food 

retailers, they are not directly applicable. With respect to the two exact algorithms, 

Schittekat, Sevaux, and Sörenson (2006) can only solve small problems and is rather 

inefficient due to its basic approach while the algorithm from Riera-Ledesma and 

Salazar-González (2012) is applicable but splits the visitable locations from the customer 

locations. With respect to the heuristic approaches, they feature components which are 

not applicable to mobile retailers such as multiple objectives based on the travel time of 

the students or load balancing between the buses (Bowerman, Hall, and Calamai 1995). 

Given these issues, problems which are similar to the CCVRP but do not focus on a 

specific application were investigated and are summarized next. 

The CCVRP combines elements from two classical problem: the CVRP and the set 

covering problem assuming that all customers can be serviced. If it is impossible to 

service all customers than the CCVRP is a combination of the CVRP and the maximal 

covering problem. Similar combinations of routing and covering problem have been 

addressed by numerous prior researchers. These include the set covering shortest path 

problem by Current, ReVelle, and Cohon (1984), the bi-maximal coverage shortest path 



  35 

problem by Current, ReVelle, and Cohon (1985), the p-median shortest path problem by 

Current, ReVelle, and Cohon (1987), the maximal coverage Traveling Salesman Problem 

(TSP) by Current and Schilling (1989; 1994), and the p-median TSP by Current, Pirkul, 

and Rolland (1994). Other examples which are similar to the CCVRP include the 

application focused research from Boffey and Narula (1998) who developed a multi-path, 

maximal covering formulation to plan subway routes, research from Wu and Murray 

(2005) who developed a maximal coverage shortest path problem to reroute an existing 

transit system, and research from Mohaymany and Pirnazar (2007) who routed vehicle 

covering paths to assist in emergency evacuation routes after an earthquake.  

None of the aforementioned research is directly applicable to the CCVRP as they all 

incorporate different routing and/or covering problems. Instead, the most similar research 

comes from two separate research studies. The first is from Akinc and Srikanth (1992) 

who developed a model which is identical to the CCVRP except that it required all 

customers to be serviced (therefore it is not applicable to mobile food retailers who 

cannot service all their demand) and it introduced a penalty for serving demand from a 

distance. The second research study is from Halper and Raghavan (2011) who developed 

a CCVRP in which service rewards were modeled as a continuous function. This is not 

applicable to the CCVRP as it can only capture demand once upon arrival/service to any 

location. Hence, new research is needed to develop models and solution algorithms for 

the CCVRP applied to mobile food retailers.  

Given the development of the mathematical models for the CCVRP (provided in 

Chapter 5 and 6), new solution algorithms need to be developed as commercial solvers 

cannot easily solve routing problem. In general, there is no preferred techniques to 



  36 

solving the CCVRP and similar problems. For example, all of the aforementioned 

problems are solved exactly or heuristically via combinations of Lagrangian relaxation of 

the covering constraints, linear relaxation, branch-and-bound, graph transformation, local 

search procedures, and/or problem separation where the covering problem and routing 

problem were solved separately to obtain a heuristic approximation. Hence, general 

CVRP literature was reviewed for both exact and heuristic solution procedures which 

may provide insight into preferred solution strategies.  

With respect to the exact solution methodologies, there are three primary techniques 

employed to solve the CVRP to optimality: branch-and-bound, branch-and-cut, and 

column generation/set covering algorithms. The latter two of these techniques are 

preferred in modern solution methods. An overview of these three techniques is provided 

in a historical context by Semet, Toth and Vigo (2014) while Poggi and Uchoa (2014) 

updates these methods with modern advances.  

Of these methodologies, the column generation technique was implemented as it the 

most readily adaptable to the CCVRP. For this approach, the CCVRP (or CVRP in the 

case of the cited literature) is transformed into an equivalent set-covering problem such 

that each variable represents a feasible vehicle route and covering plan. In the case of the 

CVRP, each variable only represents a feasible vehicle route. The problem is initially 

solved over a small set of these routes, but more are generated as needed until an optimal 

solution is obtained. There are numerous methodologies to generate these routes 

including the technique from Agarwal, Mathur, and Salkin (1989) who generated routes 

through branch-and-bound, Bixby, Coullard, and Simchi-Levi (1997) who calculated a 

lower bound via a prize-collecting TSP and Desrochers, Desrosiers, and Solomon (1992) 



  37 

who developed a dynamic programming algorithm. Ultimately, the technique from 

Agarwal, Mathur, and Salkin (1989) was implemented to solve the CCVRP exactly and 

the exact procedure and results are shown in Chapter 5.  

With respect to solving the CCVRP via heuristics, there are three main 

methodologies: clustering-based heuristics, improvement-based heuristics, and 

metaheuristics. For the clustering-based heuristics, a two phase approach is typically 

employed. Commonly, the first phase clusters customers together and the second phase 

develops routes through these sets of clustered customers. One such technique is from 

Fisher and Jaikumar (1981) who first clustered locations using a generalized assignment 

problem prior to solving a TSP through the clustered locations. Similar approaches 

include the Sweep heuristic (Gillett and Miller 1974) which is described in detail in 

Chapter 6 as well as the Petal heuristic (Renaud, Boctor, and Laporte 1996) and 

Taillard’s heuristic (Taillard 1993) which are advancements on the basic Sweep 

algorithm as they permit more flexibility with respect to location partitioning. Note that it 

is also possible to first generate routes (i.e. a large tour through all customers) in the first 

phase and then cluster in the second phase by separating this tour into separate routes, but 

the approach is not commonly found in literature. 

The improvement-based heuristics are focused on developing an initial set of routes, 

and then performing a set of operations which aim to improve the routes until some 

stopping condition is reached. The most popular algorithm is the Savings algorithm by 

Clarke and Wright (Clarke and Wright 1964) where the problem is initialized by creating 

a route for each location. These routes are then merged together in a greedy manner such 

that the routes which result in the greatest cost savings are merged together first. This 



  38 

process continues until all possible mergers have been evaluated. These routes are then 

enhanced using inter-route improvement exchanges which transfer a location or a set of 

locations between created routes. It is also common to complete intra-route improvement 

operations which are common to TSP heuristics such as the 2-opt algorithm which tests 

all possible swaps of two edges in a TSP route. If the swap would result in a shorter 

route, it is completed and the process is restarted. These improvements terminate once all 

possible swaps have been investigated and no shorter routes are possible. 

The final set of common heuristics for the CVRP are metaheuristics such as the Ant 

Colony System (ACS), Tabu Search, or Genetic Algorithm procedure. For this 

implementation of the CCVRP, it was decided that the ACS procedure is the most 

relevant to the CCVRP. The full motivation for this decision is provided in Chapter 6. 

The remaining discussion in this section only serves to summarize the ACS approach and 

the relevant literature.  

The ACS procedure is motivated by the foraging behavior of ants in a colony. When 

an ant leaves the colony in search of food, they do so by following the pheromone trails 

of ants which foraged previously. The more frequently this trail is followed, the more 

likely an ant is to travel along this path as the pheromones become stronger from all of 

the prior ants. The ACS procedure simulates this behavior by assigning a pheromone 

level to every edge in the network. Then a set of ants are allowed to visit all locations in 

the network such that edges with a greater pheromone level are more likely to be 

traversed by the ants. These paths are then split to create vehicle routes. The edges along 

the path followed by the best ant(s) have their pheromone levels increased while all 

others have their levels evaporated (i.e. returned to their starting values). This process is 



  39 

repeated until a stopping criterion is met and the best set of vehicle routes found by an ant 

is returned as the solution. 

This general procedure of routing the ants, creating vehicle routes, and updating 

pheromones is common to all CVRP ACS applications. However, there is a variety of 

methodologies which are employed for each of these steps. For instance, the early Ant 

Colony Optimization (ACO) procedure by Bullnheimer, Hartl, and Strauss (1999) only 

used a probabilistic function when determining the next location for the ant while Bell 

and McMullen (2004) use a two level approach which probabilistically decides between 

the probabilistic approach and selecting the path with maximum pheromone value (which 

defines the difference between the ACS approach and the ACO approach). Furthermore, 

recent ACS procedures have incorporated elements from other heuristics such as a 

genetic modification procedure as demonstrated by Bin, Zhong-Zhen, and Baozhen 

(2009) or scatter search procedures as demonstrated by Zhang and Tang (2009). The ACS 

has also been applied to CVRP variants such as the VRP with time windows (Ding et al. 

2012), the time dependent VRP (Donati et al. 2008), the VRP with multiple time 

windows (Favaretto, Moretti, and Pellegrini 2007), and the VRP with pickup/delivery 

(Gajpal and Abad 2009), but never to a CVRP with the capability to cover customers 

from nearby locations. 

Given the quantity of heuristic solution methods, multiple heuristic solution methods 

were developed to solve the CCVRP: a Greedy procedure, Savings procedure, Sweep 

procedure, and ACS procedure. These methods are discussed in Chapter 6. The 

advantage of these procedures, in comparison to the exact procedure developed for 

Chapter 5, is that they are able to solve larger problems in a much shorter amount of time. 



  40 

This disadvantage of these methodologies is that the solution cannot guaranteed to be 

optimal, but the results in Chapter 6 will demonstrate the identified routing solutions are 

still of high quality.  

 

2.4 Conclusion 

The objective of this chapter was to demonstrate the need for addressing issues 

related to mobile food retailers and to provide justification on how to address two key 

operational issues for mobile food retailers. With respect to the former, there are clear 

issues with food desert research due to the noted inter-study differences. However, the 

quantity of studies which have identified statistical disparities in food access among 

different demographic groups provide a strong argument that providing better food access 

for traditional food desert residents is a justifiable use of funds and resources. 

Furthermore, studies investigating the effects of poor food access (which suffer from the 

same inter-study differences as the studies investigating disparities in access) have all 

identified that having better access to healthy and affordable foods does not worsen 

health outcomes. In fact, numerous studies have identified that improving access can 

improve health outcomes for at-risk demographics. Hence, intervention techniques, such 

as mobile retailers, can have a significant and important effect on the communities they 

serve.  

As stated in Chapter 1, two operational decisions will be the main focal points of this 

dissertation. The first operational decision is determining the optimal product mix to 

stock on a mobile retailer. After a review of applicable modeling techniques, it was 

determined that a knapsack optimization model would be the ideal modeling choice so 



  41 

long as demand constraints were included. Demand constraints (which require a weight 

summation of the variables to exceed a given threshold) are necessary as many retailers 

are expected to require their product mix to meet or exceed given thresholds on nutrition 

or profits. To date, solution methods for demand constrained knapsack problems, both 

DKPs and MDMKPs, are limited and none of the existing procedures feature modern KP 

solution methodologies such as core variables or efficiency measures. The theoretical 

contributions of this dissertation are to expand these concepts to demand constrained 

knapsack problems. Specifically, three heuristic procedures for MDMKPs are discussed 

in Chapter 3 and an exact solution procedure for DKPs is discussed in Chapter 4.  

For all of the solution procedures provided in Chapters 3 and 4, specific emphasis is 

placed on solution algorithms which do not require commercial software. The rationale 

for this goal is that these procedures can be provided to mobile food retailers to assist 

with the planning of their product mix with minimal need for external aid or software. 

Through such tools, mobile retailers will be able to balance their competing objectives of 

health, consumer cost, and retailer profit to determine a plan which is best meets their 

current operating conditions. To demonstrate how a mobile retailer could use such tools, 

the case study in Chapter 7 shows example analyses using both DKP and MDMKP 

formulations based on real operational data provided by a mobile food retailer. Such 

work has never before been completed and it demonstrates how mobile food retailers can 

increase their profits thereby better ensuring their economic sustainability.  

The second operational decision which serves as the focal point of this dissertation is 

the mobile food retailer routing and scheduling problem. As discussed, this is the sole 

area of the mobile food retailer problem which has been addressed by technical literature 



  42 

but prior research solely focused on clustering methodologies to determine possible 

service locations and none address the routing of the mobile retailer. Based on existing 

technical literature, it was determined that a CCVRP model best represents the decisions 

faced by mobile food retailers. To date, research on this VRP variant has been limited as 

only one research effort has been identified which solves the problem exactly through 

Lagrangian relaxation (Akinc and Srikanth 1992) and no algorithms were identified 

which are dedicated heuristic procedures for the CCVRP. The theoretical contributions of 

this dissertation are to address these shortcomings by expanding the existing literature on 

the CCVRP.  Specifically, a new exact algorithm based on column generation is 

discussed in Chapter 5 and four heuristic solution procedures for the CCVRP are 

discussed in Chapter 6.  

Similarly to the research into the product mix decision, the emphasis of the research 

into the scheduling and routing problem is on the development of procedures which are 

readily available for any practitioner. Specifically, the techniques in Chapter 6 are 

designed such that no commercial software is needed while still providing efficient 

routing plans. Furthermore, the algorithms presented in this dissertation will be the first 

procedures for the design of mobile food retailer routes which simultaneously determine 

the clustering of service points and the routing of a vehicle through those service points. 

To demonstrate how a mobile retailer could use such tools, the case study in Chapter 7 

develops routes through underserved south and west Phoenix communities using 

operational and collected data. The results from these tests demonstrate how mobile 

retailers can improve their economic sustainability through better route planning. 



  43 

Parts of this literature review chapter were included in Wishon and Villalobos 

(2016a; 2016b). 



  44 

CHAPTER 3 

THE GENERIC MOBILE RETAILER PRODUCT MIX PROBLEM 

Within this chapter, the solution algorithms for the generic mobile retailer product 

mix problem will be discussed. For this version of the problem, there are no assumptions 

on the number of requirements or restrictions on the product mix of a given retailer. 

Instead, the mobile food retailer is permitted to have as many constraints of any type so 

long as the retailer is deciding whether or not to stock a specific food item (but the 

quantity to stock is predetermined) and the objective is able to be formulated as a linear 

equation. Such an approach is needed as different retailers will have different 

requirements and restrictions on their product mix. For instance, one retailer may be 

concerned with ensuring their product mix is not too expensive for their customers while 

another may want to limit the number of substitutable goods which are simultaneously 

stocked on the retailer. Hence, solution algorithms applicable to all types of mobile 

retailer product mix problems is preferred. 

As discussed in Chapter 2, the generic mobile retailer product mix problem can be 

modeled as a MDMKP. However, MDMKP literature is limited as it doesn’t incorporate 

many of the most recent advances in solving KPs such as the concept of efficiency 

measures and core variables. Within this chapter, these concepts will be expanded to 

MDMKPs. Specifically, robust efficiency measures are presented which are now 

applicable to MDMKPs and bounded MDMKPs. A bounded MDMKP is a variant of the 

MDMKP where each variable is no longer binary but is instead a nonnegative integer 

which is less than a given upper bound. Based on these new measures, three new 

heuristic solution procedures will be presented: Fixed-Core algorithm, Kernel Search 



  45 

algorithm, and a Genetic algorithm. Computational tests are performed using these 

solution algorithms and the applicability of the techniques to the retailer product mix 

problem are discussed based on the results. 

 

3.1 Efficiency measures for MDMKPs 

The first step to developing new MDMKP solution algorithms was to expand the 

concept of efficiency measures to MDMKP. Currently, efficiency measures have only 

been developed for KP variants which do not include any demand constraints. To provide 

the MDMKP efficiency measures, consider the formulation for the general bounded 

MDMKP given below.  

(MDMKP) Maximize: 𝑧 = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  (3-1) 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖      ∀𝑖 ∈ {1, … , 𝑚} (3-2) 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖      ∀𝑖 ∈ {𝑚 + 1, … , 𝑚 + 𝑞} (3-3) 

𝑥𝑗 ∈ {0, … , 𝑑𝑗}      ∀𝑗{1, … , 𝑛} (3-4) 

In total, there are 𝑛 decision variables denoted by 𝑥𝑗 and the objective given by (3-1) 

is to maximize the summation of these variables weighted by 𝑐𝑗. The MDMKP is 

constrained by 𝑚 knapsack constraints given as constraint set (3-2) and 𝑞 demand 

constraints given as constraint set (3-3). Finally, each variable is bounded such that it can 

have any integer value between 0 and 𝑑𝑗 as denoted by (3-4). The bounded form is used 

in this formulation since it is a more robust variant and the binary MDMKP is a special 

case where 𝑑𝑗 = 1 for all 𝑗. 

In this formulation, the only assumption is that 𝑏𝑖 ≥ 0 for all 𝑖 ∈ {1, … , 𝑚 + 𝑞}. 

Hence, 𝑐𝑗 and 𝑎𝑖𝑗 for all 𝑖 and 𝑗 are unrestricted in sign which differs from prior knapsack 



  46 

problem research. If some 𝑏𝑖 is negative, the constraint can be negated and substituted to 

the other constraint set. Furthermore, well-stated MDMKPs assume that ∑ 𝑑𝑗𝑎𝑖𝑗 >𝑛
𝑗=1

𝑏𝑖 ∀𝑖 ∈ {1, … , 𝑚 + 𝑞} since a violation for any 𝑖 ∈ {1, … , 𝑚} would imply that some 

knapsack constraint would never be violated and that a violation for any 𝑖 ∈

{𝑚 + 1, … , 𝑚 + 𝑞} would indicate that the problem is infeasible.  

To develop the efficiency measures, the LP relaxation of the bounded MDMKP 

(LMDMKP) is required. The LMDMKP formulation is the same as the MDMKP except 

all integer variables are replaced with their linear counterparts, 𝑥𝑗
𝐿𝑅, and constraint set (3-

4) is replaced with the set of constraints given in (3-5) and (3-6).  

𝑥𝑗
𝐿𝑅 ≤ 𝑑𝑗      ∀𝑗 ∈ {1, … , 𝑛} (3-5) 

𝑥𝑗
𝐿𝑅 ∈ ℝ+      ∀𝑗 ∈ {1, … , 𝑛} (3-6) 

Finally, the following formulation represents the dual formulation of the LMDMKP.  

(DLMDMKP) Minimize: 𝑧𝐷
𝐿𝑅 = ∑ 𝑏𝑖𝑢𝑖

𝐿𝑅𝑚
𝑖=1 − ∑ 𝑏𝑖𝑢𝑖

𝐿𝑅𝑚+𝑞
𝑖=𝑚+1 + ∑ 𝑑𝑗𝑣𝑗

𝐿𝑅𝑛
𝑗=1  (3-7) 

∑ 𝑎𝑖𝑗𝑢𝑖
𝐿𝑅𝑚

𝑖=1 − ∑ 𝑎𝑖𝑗𝑢𝑖
𝐿𝑅𝑚+𝑞

𝑖=𝑚 + 𝑣𝑗
𝐿𝑅 ≥ 𝑐𝑗      ∀𝑗 ∈ {1, … , 𝑛} (3-8) 

𝑢𝑖
𝐿𝑅 ∈ ℝ+       ∀𝑖 ∈ {1, … , 𝑚 + 𝑞}  (3-9) 

𝑣𝑗
𝐿𝑅 ∈ ℝ+      ∀𝑗 ∈ {1, … , 𝑛} (3-10) 

The DLMDMKP is defined by two sets of decision variables. The first set is denoted as 

𝑢𝑖
𝐿𝑅 for all 𝑖 ∈ {1, … , 𝑚, 𝑚 + 1, … , 𝑚 + 𝑞} where the first 𝑚 variables are associated with 

the knapsack constraints while the final 𝑞 variables are associated with the demand 

constraints. The other set of dual variables is denoted as 𝑣𝑗
𝐿𝑅 for all 𝑖 ∈ {1, … , 𝑚} which 

are associated with constraint set (3-5). All other coefficients are the same as the 

LMDMKP.  



  47 

Given these formulations, the efficiency measures 𝑒𝑗 for any decision variable 𝑗 can 

be calculated as  

𝑒𝑗 = {

∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚

𝑖=1 − ∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚+𝑞

𝑖=𝑚+1 𝑐𝑗⁄ 𝑐𝑗 > 0

∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚

𝑖=1 − ∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚+𝑞

𝑖=𝑚+1 + 1 𝑐𝑗 = 0

∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚+𝑞

𝑖=𝑚+1 − ∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚

𝑖=1 𝑐𝑗⁄ + 2 𝑐𝑗 < 0

 (3-11) 

where 𝑢𝑖
∗𝐿𝑅

 is the optimal solution value for the dual variable 𝑢𝑖
𝐿𝑅. 

Prior to demonstrating that these measures rank the decision variables according to 

their likelihood of being a core variable, other properties will first be demonstrated. First 

and foremost, the new robust efficiency measures provide an equivalent ranking of the 

decision variables as compared to existing measures for both standard KPs and MKPs. To 

demonstrate this equivalence, note that for either of these problems it is commonly 

assumed that all objective coefficients are positive in which only the first case in (3-11) 

must be considered. In addition, the second summation in the numerator of this 

calculation can be removed as there are no demand constraints in these formulations. This 

makes the new efficiency measures the inverse of the measures presented by Puchinger, 

Raidl, and Pferschy (2010) which therefore provide the same rankings but in the reversed 

order.  

Furthermore, observe that the measures partition the variables according their optimal 

solutions values for the LMDMKP. This property is given in Theorem 1.  

Theorem 1. For any 𝑗 ∈ {1, … , 𝑛}, let 𝑥𝑗
∗𝐿𝑅

 represent the optimal LMDMKP solution 

value. The following facts hold: 

(i) If 𝑥𝑗
∗𝐿𝑅

= 𝑑𝑗 , then 𝑒𝑗 ≤ 1 

(ii) If 𝑥𝑗
∗𝐿𝑅

= 0, then 𝑒𝑗 ≥ 1 



  48 

(iii) If 0 < 𝑥𝑗
∗𝐿𝑅

< 𝑑𝑗, then 𝑒𝑗 = 1 

Proof: To prove Theorem 1, the following properties from complementary slackness 

of the LMDMKP and its dual formulation are required: 

(∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚

𝑖=1 − ∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚+𝑞

𝑖=𝑚 + 𝑣𝑗
∗𝐿𝑅

− 𝑐𝑗)𝑥𝑗
∗𝐿𝑅

= 0, (3-12) 

(𝑥𝑗
∗𝐿𝑅

− 𝑑𝑗)𝑣𝑗
∗𝐿𝑅

= 0.  (3-13) 

Consider any variable 𝑗 such that 𝑐𝑗 < 0. The other possible values for 𝑐𝑗 will not be 

explicitly proven but can be easily demonstrated using similar reasoning. In the case of 

(i), 𝑥𝑗
∗𝐿𝑅

= 𝑑𝑗 and (3-12) implies that  

∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚

𝑖=1 − ∑ 𝑎𝑖𝑗𝑢𝑖
∗𝐿𝑅𝑚+𝑞

𝑖=𝑚 + 𝑣𝑗
∗𝐿𝑅

− 𝑐𝑗 = 0. (3-14) 

Since 𝑐𝑗 < 0, algebraic manipulation and 𝑣𝑗
∗𝐿𝑅

≥ 0 demonstrates that 𝑒𝑗 ≤ 1. In the case 

of (ii), 𝑥𝑗
∗𝐿𝑅

= 0 and (3-13) implies that 𝑣𝑗
∗𝐿𝑅

= 0. By substituting 𝑣𝑗
∗𝐿𝑅

 in (3-8) along 

with 𝑐𝑗 < 0, algebraic manipulation demonstrates that 𝑒𝑗 ≥ 1. Finally in the case of (iii),  

𝑥𝑗
∗𝐿𝑅

≠ 𝑑𝑗 and (3-13) implies that 𝑣𝑗
∗𝐿𝑅

= 0. Since 𝑥𝑗
∗𝐿𝑅

≠ 0, then (3-14) must also hold 

in this case. After substituting 𝑣𝑗
∗𝐿𝑅

 in (3-14), algebraic manipulation along with 𝑐𝑗 < 0 

demonstrates that 𝑒𝑗 = 1. ∎ 

Note that there is no biconditional equivalent to Theorem 1 due to the possible 

scenarios in which 𝑒𝑗 = 1. However, it is possible to prove that if 𝑒𝑗 > 1 then 𝑥𝑗
∗𝐿𝑅

= 𝑑𝑗 

and that if 𝑒𝑗 < 1 then 𝑥𝑗
∗𝐿𝑅

= 0 by using similar construction methods as Theorem 1 and 

statements (3-7) through (3-13).  

The purpose of Theorem 1 is to demonstrate that (3-11) partitions the variables into 

three categories based on the solution to the LMDMKP. Observe that this is the same 



  49 

approach used by Dantzig (1957) for solving the linear KP. The most critical of these 

categories are those variables for which 𝑒𝑗 = 1 as these variables are nearly guaranteed to 

be in the set of core variables as they are typically non-integer for the solution of 

LMDMKP. In KP terminology, these values are called the break items and serve as the 

starting point for many core-based solution methodologies.  

Besides these break items, the other two sets from Theorem 1 partition the variables 

of a MDMKP based on their solution values. Within these partitions, the variables are 

ordered such that the further the variable’s efficiency measure is from one, the more 

likely that variable will not be in the set of core variables. This can be practically 

demonstrated by varying the parameters in each efficiency measure such that the measure 

becomes smaller or larger. In every possible case, the changes coincide with making that 

variable more desirable in the solution (larger objective coefficient, smaller knapsack 

weights, and larger demand weights) if the measure value decreases or it makes the 

variable less desirable in the solution if the measure value increases. The clear advantage 

of this behavior is that more effort should be spent investigating variables whose measure 

value are near one as opposed to those which are further away. This concept serves as the 

fundamental basis for the conceptual tests that follow.  

These measures can also be used as a simple test when there are new variables to 

consider in the formulation. For instance, assume an MDMKP has been solved but a new 

item is potentially introduced. Without solving the problem again, the item’s efficiency 

measure can be estimated using the optimal multipliers from the prior tests. Since 

introducing this item, assuming the MDMKP instance is at least of moderate size, will 

not drastically change these multipliers, this estimate will indicate whether the item will 



  50 

heavily be considered for inclusion or exclusion or whether it will be similar to the break 

items. In the case it is likely to be excluded, the MDMKP instance does not have to be 

solved again as the solution will likely not change. In the case it is likely to be included, it 

is clearly recommended to solve the MDMKP instance again to observe the new solution. 

In the case where the item is similar to the break items, it is recommended the 

practitioners decide whether or not the instance should be re-solved since the item’s 

inclusion may not be optimal. Even in the situation where including the item is optimal, it 

will not provide a large improvement to the solution value. Hence, these measures can be 

used as a screening mechanism for possible future items. 

 

3.2 Preliminary tests for MDMKP efficiency measures 

To demonstrate that the newly developed robust efficiency measures perform at least 

as well as the existing efficiency measures for KPs and MKPs, a set of small MDMKPs 

were solved such that the core variables could be identified. The results from similar tests 

can be seen in the efficiency measure tests outlined by Puchinger, Raidl, and Pferschy 

(2010) for MKPs and by Pisinger (1997) for KPs.  

To test these measures, 1,000 binary MDMKPs were solved to obtain both the linear 

and integer solution for each test instance. Each instance included 200 variables (𝑛), 10 

knapsack constraints (𝑚), and 10 demand constraints (𝑞). The objective coefficients (𝑐𝑗) 

were randomly sampled from an integer uniform distribution with range [−10, 10] for all 

𝑗. These coefficients were chosen such that all three cases of (3-11) would be well 

represented in the results. The constraint coefficients (𝑎𝑖𝑗) were randomly sampled from 

[1, … ,10] for all 𝑖 and 𝑗. The constraint thresholds were calculated as 



  51 

𝑏𝑖 = 𝛼 ∗ ∑ 𝑎𝑖𝑗
𝑛
𝑗=1   (3-15) 

with 𝛼 = 0.50 for all 𝑖. Finally, 𝑑𝑗 = 1 as each instance is a binary MDMKP. This 

random generation procedure extends similar uncorrelated test instance generation 

methods from Chu and Beasley (1998) who developed random MKP test instances. All 

instances were solved to optimality in CPLEX version 12.6. Identifying the optimal 

solution was possible due to the problem’s small size and limited coefficient ranges.  

The principal result from these tests is shown in Figure 2 which plots the frequency of 

observing a variable being in the core based on the variable’s efficiency measure. The 

plot demonstrates that as a variable’s efficiency measure deviates from one, it is less 

likely to be included in the core of the problem. Hence, these measures are an effective 

tool for clustering likely core variables around the set of break items. The same pattern 

occurs in all prior efficiency measures techniques for KP (Pisinger 1997) and MKP 

variants demonstrating that the new measures provide the same utility as the measures for 

traditional KPs. 

 



  52 

 

Figure 2. Core variable frequency by efficiency measure value 

 

 

Figure 3. Efficiency measure frequency by objective coefficient sign 

 

The advantage of the robust efficiency measures is further strengthened by Figure 3 

which shows the frequency of observing a specific efficiency measure in the test 

problems based on the sign of 𝑐𝑗. In Figure 2, the efficiency measures of the core 



  53 

variables were clustered tightly around one and Figure 3 shows that the distribution of 

observed efficiency measures is bimodal with peaks at zero or two. Note there is a large 

spike at the efficiency measures associated with the break items (1.0), but this is to be 

expected as these are the only measures which are guaranteed to be observed in every 

problem. Hence, Figure 2 shows that nearly all of the observed core variables have 

efficiency measures between 0.5 and 1.5 while Figure 3 shows that observing such 

measures is not overly common with respect to all of the variables in the problem. This 

indicates that search techniques starting at the break items are likely to be efficient as 

there is not a significant quantity of variables with these measures. It should also be noted 

that the results shown in Figure 2 and Figure 3 are problem-dependent due to the nature 

of the random data generation and the simplicity of the problem. Hence, there is no 

guarantee that all MDMKPs will display this property but these tests indicate that such 

instances are possible. 

 

3.3 MDMKP solution algorithms 

To demonstrate the utility of the new efficiency measures, they have been applied to 

three solution algorithms for solving MDMKPs. Specifically, the measures will be 

employed in a Fixed-Core procedure, a Kernel Search procedure, and a Genetic 

Algorithm procedure. These solution methodologies were selected for two primary 

reasons. Principally, all three solution techniques were selected as they are heuristic 

procedures which have been applied to solve traditional KPs and MKPs, but never 

MDMKPs. Secondly, the efficiency measures will be employed in novel ways thereby 

expanding the state of the art for some of these heuristics. Specifically, the Kernel Search 



  54 

procedure, as far as I am aware, has never previously utilized efficiency measures for 

solving KP variants while a Genetic Algorithm has never had a mutation rate which is 

dependent on a variable’s efficiency measure. Details of these modifications will be 

given in the appropriate sections.  

Each of these techniques will be tested using a more robust data set than the data used 

in subsection 3.2. Specifically, randomly generated binary MDMKPs test instances were 

created with 𝑛 ∈ {250,500,1000} and (𝑚, 𝑞) ∈ {(5,5 ), (10,10 ), (25, 25)}. All possible 

combinations of these values were used to generate test instances except for 𝑛 = 1000 

and (𝑚, 𝑞) = (25,25) which was excluded due to the complexity of the problem and the 

time required to solve the instances. For each instance, 𝑎𝑖𝑗 was randomly sampled from 

an integer uniform distribution over the range [1,100] for all 𝑖 and 𝑗. Likewise, 𝑐𝑗 was 

randomly sampled from an integer uniform distribution over the range 

[∑ 𝑎𝑖𝑗
𝑚+𝑞
𝑖=1 (𝑚 + 𝑞)⁄ − 50, ∑ 𝑎𝑖𝑗

𝑚+𝑞
𝑖=1 (𝑚 + 𝑞)⁄ + 50] for all 𝑗. This data generation 

implies the objective coefficients will be slightly correlated with the constraint 

coefficients. Each 𝑏𝑖 for 𝑖 ∈ {1, … , 𝑚 + 𝑞} is calculated according to (3-15). For each 𝑖 ∈

{𝑚 + 1, . . , 𝑚 + 𝑞}, 𝛼 = 0.50 in (3-15) while 𝛼 = 0.40 for each 𝑖 ∈ {1, . . , 𝑚} when 

(𝑚, 𝑞) = (5,5) and 𝛼 = 0.47 for each 𝑖 ∈ {1, … , 𝑚} for all other values of (𝑚, 𝑞). These 

values for 𝛼 differ based on the number of constraints due to feasibility challenges when 

𝑚 and 𝑞 increase. In total, ten test instances were created for each of the parameter 

settings. This data generation methodology is similar to those employed by Puchinger, 

Raidl, and Pferschy (2010) but future research and tests are recommended to test 

application-based data as well as to test other data generation techniques such as negative 



  55 

values for 𝑎𝑖𝑗, differing levels of coefficient correlation, and larger test instances with 

respect to both 𝑛 and (𝑚, 𝑞). 

To establish a benchmark, each test instance will be solved using two existing 

methodologies. The first is CPLEX which was selected as it is assumed commercial 

software is available to most practitioners. Hence, the results from CPLEX are hereafter 

referred to as the ‘base case’ results. CPLEX was given the whole instance to solve and 

terminated once the difference between the best global integer solution and the linear 

relaxation of the best remaining node was less than 0.15% or until eight hours had 

elapsed. 

The second benchmark methodology is the Alternating Control Tree (ACT) 

procedure from Hvattum et al. (2010). The ACT methodology was selected as it is 

currently the best approach for solving MDMKPs in the literature. For summary, the 

ACT procedure is an iterative process which continually solves the MDMKP linear 

relaxation and then solves a reduced binary subproblem based on this solution. This 

binary problem updates the current lower bound if possible and introduces cuts to the 

linear relaxation. This process is continued until the linear relaxation solution is less than 

the current lower bound. For this implementation, CPLEX was used as the technique to 

solve the binary subproblem. The algorithm was terminated after eight hours if the 

terminating condition was not met and all other parameters were set as recommended by 

Hvattum et al. It should be noted that the results from Hvattum et al. identified that the 

best subproblem solution method is to use a combination of CPLEX and their Scatter 

Search heuristic. CPLEX was selected in this research as it is easier to implement and 

provided results which are only slightly worse than the Scatter Search methodology as 



  56 

reported by Hvattum et al. I do not believe this shortcoming drastically alters the 

conclusions found in subsection 3.4 but future research may seek to compare the methods 

in this section with the improved subproblem solver. The full results of this methodology 

are shown in subsection 3.4 as the remainder of the current section will introduce the 

heuristics and compare their results solely to the base case. 

Finally, the computational tests performed in the following subsections were not 

conducted with the aim to exhaustively study all tuning parameters in each of the 

presented heuristics. Specifically, no tuning parameters are studied for the Genetic 

Algorithm, the impact of varying the Fixed-Core size is tested in the Fixed-Core 

algorithm, and the number of buckets is tested in the Kernel Search algorithm. This is a 

clear shortcoming of the presented work, but the impact of varying tuning parameters is 

discussed when appropriate. Since varying most of these tuning parameters will have an 

obvious impact on the solution procedure (i.e. higher solution quality at the cost of longer 

solution times) and problems will have to be re-tuned if any of the data parameters are 

changed (𝑛, 𝑚, 𝑞, coefficient correlations, 𝛼, etc.), I believe the impact of this 

shortcoming on the discussed conclusions is minimal since future researchers would have 

to perform computational tests to set tuning parameters based on their problem instances 

regardless of the values recommended in this research.  

 

3.3.1 Fixed-Core MDMKP algorithm 

The first application of the new measures is to the Fixed-Core solution methodology. The 

Fixed-Core solution method is motivated by the observation that knowing the true core 

variables of a knapsack prior to solving the binary/integer model is impossible, but 



  57 

sorting the variables according to their efficiency measures (as was done in Figure 2) 

groups the most likely core variables together. By assuming that the core variables are 

within a specifically selected subset of the sorted variables, the problem can be reduced 

by setting all variables outside of this subset to their linear solution values. If the true 

core is within this subset, then an optimal solution for the reduced problem is optimal for 

the full problem. Otherwise, the solution to the reduced problem is near-optimal for the 

full problem. 

To outline the Fixed-Core algorithm, assume that there are 𝑏 break items and the size 

of the desired fixed core is 𝛿. After solving the linear relaxation of the MDMKP and 

calculating all of the efficiency measures for each variable, sort the variables according to 

these measures. The fixed core is then created from the 𝑏 break items and the sets of 

⌊(𝛿 − 𝑏) 2⁄ ⌋ items to the left and right of the break items. All other variables are fixed to 

their linear solution values and the reduced MDMKP is solved via CPLEX using the 

same stopping criteria as the base case. In this application, 7 core sizes were tested: 𝛿𝐴 =

0.1𝑛, 𝛿𝐵 = 0.15𝑛, 𝛿𝐶 = 0.2𝑛, 𝛿𝐷 = 0.1𝑛 + 0.1(𝑚 + 𝑞), 𝛿𝐸 = 0.2𝑛 + 0.1(𝑚 + 𝑞), 𝛿𝐹 =

0.1𝑛 + 0.2(𝑚 + 𝑞), and 𝛿𝐺 = 0.2𝑛 + 0.2(𝑚 + 𝑞). This procedure is similar to 

techniques applied to KPs and MKPs as demonstrated by Puchinger, Raidl, and Pferschy 

(2010). 

The results with respect to solution quality from the Fixed-Core experiments are 

shown in Table 1 and Table 2. Specifically, both tables show two quality measures 

aggregated over the 10 test instances for each value of 𝑛, 𝑚, 𝑞, and 𝛿. Table 1 displays 

the count of test cases in which the Fixed-Core approach found an equal or better solution 

than the base case. If any of the test instances were not solvable for the Fixed-Core test 



  58 

instance, the number of instances that were solved is given in parenthesis. An instance 

being unsolvable could either be a function of having no feasible region or could be a 

result of CPLEX not identifying any feasible solution within the eight hour limit. Table 2 

shows the ratio of the Fixed-Core objective value over the base case objective value 

averaged over all of the solvable Fixed-Core and base case instances. 

 

Table 1. Count of instances where the fixed-core procedure equals or outperforms the 

base case (Count of feasible fixed-core test instances if less than 10) 

(𝑛, 𝑚, 𝑞)  𝛿𝐴  𝛿𝐵  𝛿𝐶  𝛿𝐷  𝛿𝐸  𝛿𝐹  𝛿𝐺  

(250, 5, 5) 2 5 6 2 6 3 6 

(250, 10, 10) 7 7 9 6 8 8 8 

(250, 25, 25) 1 (1) 3 (3) 2 (4) 2 (5) 2 (7) 3 (3) 2 (7) 

(500, 5, 5) 8 6 9 10 9 8 6 

(500, 10, 10) 6 9 5 7 6 8 4 

(500, 25, 25) 6 (9) 7 8 6 (8) 6 6 7 

(1000, 5, 5) 4 5 3 3 7 4 6 

(1000, 10, 10) 4 3 6 5 4 7 4 

 

 

 

 

 

 

 

 



  59 

Table 2. Average ratio of the fixed-core solution value over the base case solution value 

(𝑛, 𝑚, 𝑞)  𝛿𝐴 𝛿𝐵 𝛿𝐶 𝛿𝐷 𝛿𝐸 𝛿𝐹 𝛿𝐺 

(250, 5, 5) 0.999 1.000 1.000 0.999 1.000 0.999 1.000 

(250, 10, 10) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(250, 25, 25) 1.002 1.006 1.005 1.002 0.997 1.004 0.996 

(500, 5, 5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(500, 10, 10) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(500, 25, 25) 1.002 1.001 1.003 1.002 1.001 1.002 1.002 

(1000, 5, 5) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(1000, 10, 10) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

The results from the Fixed-Core experiments with respect to solution time are shown 

in Table 3. The measures are reported as the average time ratio to solve the Fixed-Core 

test instances over the time required to solve the base case instance. Hence, values less 

than 100% indicate that the time required to solve the Fixed-Core problem were less on 

average than the time required to solve the base case. 

 

Table 3. Average ratio of the fixed-core solution time over the base case solution time 

(𝑛, 𝑚, 𝑞) 𝛿𝐴 𝛿𝐵 𝛿𝐶 𝛿𝐷 𝛿𝐸 𝛿𝐹 𝛿𝐺 

(250, 5, 5) 0.116 0.233 0.631 0.153 0.719 0.150 0.660 

(250, 10, 10) 0.120 0.334 0.354 0.117 0.411 0.172 0.399 

(250, 25, 25) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(500, 5, 5) 0.424 0.657 0.719 0.398 0.654 0.369 0.859 

(500, 10, 10) 0.622 0.564 0.877 0.633 0.778 0.782 0.822 

(500, 25, 25) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(1000, 5, 5) 0.564 0.542 0.488 0.460 0.747 0.413 0.595 

(1000, 10, 10) 0.659 0.851 0.713 0.669 0.732 0.713 0.828 

 



  60 

The results from Table 1 and Table 2 demonstrate that the solutions obtained from the 

Fixed-Core experiments are competitive when compared with the base case. With respect 

to Table 1, a vast majority of the problem instances and core sizes found that the Fixed-

Core algorithm identified an equal or better solution than the base case as shown by all of 

the entries which are 5 or greater. Also observed in Table 1 is that the quality of the 

identified solution increased as the core size grew which is expected as larger core sizes 

place less restrictive assumptions on the feasible region of the full problem. 

With respect to specific test instances, when 𝑛 = 250 and there are 10 total 

constraints, the procedure did not perform well with small core sizes according to Table 

1. This is likely because these core sizes contained the smallest count of variables across 

all tested instances and therefore had the least flexibility if all of the true core variables 

were not within the fixed core. The only other instances which performed poorly in Table 

1 are those which had 50 combined constraints. This is clearly because the fixed core was 

too restrictive in some of these instances and made the problem infeasible. However, the 

results from Table 2 demonstrate that when feasible solutions were identified in these 

cases, the Fixed-Core methodology greatly outperformed the base case solution. Hence, 

so long as the highly constrained problem is not rendered infeasible by a smaller core 

size, reducing the problem is advantageous since it focuses the solution effort. It should 

also be noted that the base case methodology had feasibility issues on some of the more 

constrained instances. For instance, when 𝑛 = 250 and there are 50 total constraints, the 

base case only identified feasible solutions in 4 out of the 10 instances. Hence, the largest 

core sizes for this test combination were able find feasible solutions in instances which 

were deemed infeasible in the base case. 



  61 

The only other cases which provided poor results in Table 2 are when 𝑛 = 250 and 

there were only 10 total constraints. This is likely because the problem was relatively 

easier to solve in the base case (i.e. the time limit stopping criteria was not reached) and a 

small fixed core has a higher likelihood of missing key core variables. Hence, if the 

problem is smaller, a larger fixed core may be advisable to avoid such issues. 

While the results from Table 1 and Table 2 demonstrate that there are not drastic 

quality differences between the base case and the Fixed-Core algorithm outside of the 

feasibility challenges from the (250,5,5) instances, Table 3 demonstrates that the Fixed-

Core methodology reports significant time savings in comparison to the base case. 

Specifically, other than for the most highly constrained instances, the average Fixed-Core 

time savings is 55% over the base case. The only instances where time savings were not 

observed are during the most constrained problems as all of the instances with 50 

combined constraints terminated at eight hours for both the base case and for the Fixed-

Core algorithm. Even though this does not represent a time savings, the results from 

Table 2 show that the Fixed-Core methodology is more efficient at finding high quality 

solutions in these situations. 

Overall, the Fixed-Core algorithm can find equivalent or better solutions compared 

with solving the full problem using commercial software and frequently in a shorter 

amount of time as it can more efficiently focus the solution procedure. With respect to 

problems with a small amount of constraints and variables, it is recommended that a 

larger fixed core is employed as these small problems may be too constrained by a 

smaller core. For all larger problems which are not highly constrained, the smallest fixed 

core size is highly competitive with respect to solution quality. Finally, highly 



  62 

constrained problem should first be approached with small fixed core sizes and if 

preprocessing identifies the problem is infeasible, the fixed core size should be increased 

until the problem can be solved. 

 

3.3.2 MDMKP Kernel Search algorithm 

The second application of the robust efficiency measures is to expand the work of 

Angelelli, Mansini, and Speranza (2010) to be applicable to solving MDMKPs. In their 

work, Angelelli, Mansini, and Speranza developed a procedure, called the Kernel Search, 

which is used to solve MKPs. The solution procedure starts by identifying a set of 

promising decision variables, analogous to the set of core variables, which are referred to 

as the kernel. This kernel is then expanded based on the results from small, integer 

programming subproblems. Once all subproblems have been completed, a final heuristic 

solution is obtained. 

The adaption of Angelelli, Mansini, and Speranza’s algorithm to solve MDMKPs is 

straightforward as the initial algorithm only needs minor changes. The adapted Kernel 

Search procedure for MDMKPs is outlined below and the same notation will be used to 

maintain consistency between the approaches. The differences between the Kernel Search 

for the MDMKP and the algorithm presented by Angelelli, Mansini, and Speranza are 

discussed later. Those interested in a more in-depth discussion of the original approach 

are referred to the original publication by Angelelli, Mansini and Speranza (2010). 

To define the Kernel Search algorithm, let 𝑁 represent the set of decision variables 

and let 𝑇𝑚𝑎𝑥 represent the user-defined maximum computational time. Let 𝒙∗ and 𝑧∗ 

store the best identified solution and solution value respectively. Let {𝐵𝑖} represent a set 



  63 

of pairwise independent buckets containing all variables excluding the break items. The 

construction methodology for the buckets is explained shortly. Finally, let Λ (hereafter 

referred to as the kernel) represent a subset of 𝑁 and let 𝑀𝐷𝑀𝐾𝑃(Λ) represent solving 

the MDMKP instance assuming that all 𝑁 ∉ Λ are fixed to their linear relaxation solution 

values and all variables in Λ are constrained to be binary. 

Using these definitions, the Kernel Search algorithm for solving the MDMKP is as 

follows: 

MDMKP Kernel Search 

Solve LMDMKP  

Sort 𝑁 according to 𝑒𝑗 

Construct the following: 

If 𝑒𝑗 = 1, then 𝑥𝑗 ∈ Λ  

Split 𝑁\Λ into a sequence of pairwise independent buckets {𝐵𝑖} 

Let 𝑡 = 𝑇𝑚𝑎𝑥 (|{𝐵𝑖}| + 1)⁄    
Solve 𝑀𝐷𝑀𝐾𝑃(Λ) with time limit 𝑡 and update 𝒙∗ and 𝑧∗ if feasible 

For all 𝐵𝑖 in {𝐵𝑖} 

Let Λ𝑖 = Λ ∪ 𝐵𝑖 

Solve 𝑀𝐷𝑀𝐾𝑃(Λ𝑖) with time limit 𝑡 and added constraints: 

If 𝑒𝑗 > 1 for all 𝑗 ∈ 𝐵𝑖, then ∑ 𝑥𝑗𝑗∈𝐵𝑖
≥ 1 

If 𝑒𝑗 < 1 for all 𝑗 ∈ 𝐵𝑖, then ∑ 𝑥𝑗𝑗∈𝐵𝑖
≤ |𝐵𝑖| − 1 

𝑧 ≥ 𝑧∗ 

If a feasible solution to 𝑀𝐷𝑀𝐾𝑃(Λ𝑖) has been identified, then 

Update 𝒙∗ and 𝑧∗ according to 𝑀𝐷𝑀𝐾𝑃(Λ𝑖) 

Let Λ̅𝑖 ⊆ 𝐵𝑖 represent any items whose solution differs between 

𝑀𝐷𝑀𝐾𝑃(Λ𝑖) and LDMKP 

Λ = Λ ∪ Λ̅𝑖 
End if 

End for 

 

This procedure has two key differences from the algorithm employed by Angelelli, 

Mansini and Speranza (2010). Most importantly, the Kernel Search for the MDMKP sorts 

the variables according to their efficiency measures while the algorithm used by 

Angelelli, Mansini and Speranza uses the reduced cost of the variable. The other 



  64 

difference is that Λ was initialized by Angelelli, Mansini and Speranza such that it 

contained all the items which were included in the solution to the linear relaxation. 

Testing the impact of these differences is outside of the scope of this work and future 

research could be conducted to understand the repercussions of these changes.  

To construct {𝐵𝑖}, let 𝑁𝐵 be a user-defined even number that represents the total 

number of buckets. Since all 𝑗 ∈ 𝑁 are already sorted according to 𝑒𝑗 at this phase of the 

Kernel Search procedure, assign all 𝑗 ∈ 𝑁 such that 𝑒𝑗 < 1 into 𝑁𝐵 2⁄  buckets where 

each bucket contains pairwise independent groupings of variables which are adjacent in 

the ordering. The same should be performed for all 𝑗 ∈ 𝑁 such that 𝑒𝑗 > 1 for the other 

𝑁𝐵 2⁄  buckets. Within the Kernel Search procedure, these buckets can be investigated in 

any order, but this implementation analyzed buckets by selecting the next bucket such 

that its elements had efficiency measures closest to one compared with the remaining 

buckets which have yet to be analyzed. 

In this research, two methodologies were tested for the size of each 𝐵𝑖 ∈ {𝐵𝑖}. The 

first methodology is that all buckets had a uniform size which is similar to the initial 

algorithm by Angelelli, Mansini and Speranza. The other is that the buckets whose 

variables had measures closest to one were smaller than those buckets whose variables 

had measures which were further from one. Specifically, an exponential approach was 

taken such that the buckets whose variables had measures which were one step further 

from one were twice the size as compared with the buckets whose variables had measures 

which were one step closer to one. For example, if there were only seven items whose 

measures exceeded one and six buckets were desired in total (three buckets would be 

allocated to contain these items), then the first tested bucket would contain the one item 



  65 

whose measure is closest to one, the next bucket would contain the two items whose 

measures are next closest to one, and the final bucket would contain the last four items 

whose measures are the furthest from one. This strategy was hypothesized to be better 

than the uniform approach as buckets which had variables whose efficiency measures 

were further from one were less likely to contain core variables. Hence, making these 

buckets larger could improve the efficiency of the Kernel Search approach as more of 

these unlikely core variables would be investigated at one time. 

The Kernel Search was implemented in MATLAB 2013, all subproblems were solved 

via CPLEX, and all test instances described at the start of subsection 3.3 were tested. 

Each instance was solved for 𝑁𝐵 ∈ {12, 14, … , 28, 30} in order to draw conclusions on 

ideal bucket sizes and 𝑇𝑚𝑎𝑥 was set to 2,880 seconds for all test instances. This setting 

was used as the total computational time to solve all ten bucket sizes for one test instance 

would be eight hours. Therefore, if there is no clear dominance with respect to bucket 

size and all buckets must be investigated for the best solution, the computational burden 

of the Kernel Search procedure is equivalent to the time limit for the Fixed-Core and base 

case experiments. 

The results from these tests instances are summarized in Table 4. Specifically, the 

results are reported for all tested combinations of 𝑛, 𝑚, and 𝑞 and bucket construction 

methodologies (uniform vs. exponential). For each test instance, the objective value as a 

percentage of the base case objective value was calculated and then averaged over all 

values of 𝑁𝐵. The grand average of these values for all ten test instances at each 

combination of (𝑛, 𝑚, 𝑞) is listed in Table 4. In addition, the maximum ratio over all 

values of 𝑁𝐵 was identified for each test instance and the grand average of these ratios 



  66 

over all test ten instances at each combination of (𝑛, 𝑚, 𝑞) is presented in the parentheses. 

The average best 𝑁𝐵 to use over all ten instances is also reported. Finally, the time to 

solve the exponential bucket implementation divided by the time to solve the uniform 

bucket implementation averaged over all instances and values for 𝑁𝐵 is provided in the 

last column of Table 4. 

 

Table 4. Kernel search solution objective and time results 

(𝑛, 𝑚, 𝑞) 

Uniform Buckets Exponential Buckets Exp. over  

Unif. Time 

Ratio 
Ave Obj Ratio  

(Max Obj Ratio) 

Best   

NB 

Ave Obj Ratio  

(Max Obj Ratio) 

Best   

NB 

(250, 5, 5) 0.999 (1.000) 18 0.999 (0.999) 20 0.651 

(250, 10, 10) 1.000 (1.000) 20 0.999 (1.000) 20 0.495 

(250, 25, 25) 0.962 (0.986) 24 0.970 (0.987) 24 0.766 

(500, 5, 5) 1.000 (1.000) 22 0.999 (1.000) 20 0.331 

(500, 10, 10) 1.000 (1.000) 22 1.000 (1.000) 20 0.545 

(500, 25, 25) 0.991 (1.000) 20 0.991 (1.000) 22 0.822 

(1000, 5, 5) 1.000 (1.001) 22 1.000 (1.001) 18 0.650 

(1000, 10, 10) 1.000 (1.000) 26 1.000 (1.000) 22 0.757 

 

The results in Table 4 demonstrate that the Kernel Search method applied to 

MDMKPs is an effective solution technique. Specifically, all instances except those with 

fifty combined constraints were solvable with a high level of accuracy on average. 

Furthermore, if only the best bucket sizes are considered as shown in the parenthesis in 

Table 4, the average solution quality is equal to or better than the base case in a majority 

of the test instances regardless of the bucket strategy. In addition, eight out of the ten 

(250, 25, 25) instances were solved for at least one value of 𝑁𝐵. This is better than the 

base case where only four of these instances were solved and better than the Fixed-Core 



  67 

approach where the largest core sizes only solved seven of these instances. Hence, the 

Kernel Search methodology appears to be a better approach for finding feasible solutions.  

With respect to the ideal value for 𝑁𝐵, the results in Table 4 do not permit clear 

conclusions. In general, if the value for 𝑛 is constant, the best value for 𝑁𝐵 increases as 

the number of constraints increases. This pattern is observed for nearly all values of 𝑛 

and bucket construction methodologies. Furthermore, as 𝑛 increases, the best value for 

𝑁𝐵 increases if the number of constraints and bucket construction methodologies are 

kept constant except for the sole outlier using exponential buckets and 10 total 

constraints. Outside of these trends, knowing the best bucket size prior to solving the 

problem would be challenging to identify without extensive computational testing on a 

variety of problem types and parameters. Since such testing is not the singular objective 

of this research, it is advised that the implemented approach (using multiple values for 

𝑁𝐵 and retaining the best) be followed until such work can be performed. Therefore, the 

discussion of the results to follow focuses solely on the numbers in parentheses from 

Table 4. 

With respect to solution quality, either bucket construction methodology is preferred 

as they each provide competitive results. However, it should be noted that if another digit 

were to be shown in Table 4, the results favor the uniform bucket strategy in a majority of 

the cases. With respect to computational time, the last column of Table 4 clearly shows 

that the exponential bucket strategy is preferred for all test instances. Hence, unless 

solution quality is the sole factor in selecting a solution method, the exponential bucket 

strategy is recommended as it is significantly faster than using uniform buckets and finds 

the same or nearly the same results. The uniform bucket approach is therefore only 



  68 

recommended in those situations when a 0.01% or less improvement in the final solution 

value is more important than a 50% average time improvement.  

 

3.3.3 MDMKP Genetic algorithm 

The final demonstration of the applicability of the new efficiency measures is within 

a Genetic Algorithm (GA). GAs are a common methodology for solving both KPs and 

MKPs, but they have never been applied to the MDMKP. GAs for solving MKPs have 

specifically been well studied in recent years with the most noteworthy advancement 

from Chu and Beasley (1998) who utilized efficiency measures within the repair phase to 

encourage better evolution towards optimality.  

The GA which follows, hereafter referred to as the Efficiency-Weighted GA 

(EWGA), is developed as evidence that GAs can be applied to MDMKPs as well as proof 

of concept that efficiency measures can be applied to the mutation phase of GAs. To 

outline the EWGA, let 𝐾𝑙 represent the population at the 𝑙th iteration of the EWGA. 

Assume that there are 𝑝 individuals during each iteration. Let 𝑘 ∈ 𝐾𝑙 represent an 

individual of this population which is defined by the binary array 𝒙𝑘. This array 

represents a solution vector for the MDMKP which is not necessarily feasible.  

The most unique component of the EWGA is that each gene 𝑗 ∈ 𝑁 (i.e. each decision 

variable) has a specific mutation rate 𝑟𝑗 which represents the probability that a gene will 

mutate whenever the mutation procedure is performed. Specifically, the mutation 

procedure generates a continuous random number between zero and one for each gene. If 

this random number is less than 𝑟𝑗, the binary value for that gene is flipped. This mutation 

operation occurs at two points within the EWGA. 



  69 

The first occurrence is after the initial population is created. To demonstrate the 

mutation rates at this phase, assume there is an MDMKP instance with 100 variables 

which are sorted according to their efficiency measures. Furthermore, assume there is 

only one break item which is the 50th item in this sorting. Within the EWGA, an initial 

population of 𝑝 individuals is created by rounding the optimal linear solution value for 

the MDMKP instance. Hence, all 𝑝 individuals represent the same solution to the binary 

MDMKP prior to mutation. With respect to the aforementioned example, let 𝑟50 = 0.50. 

Any break item has this mutation rate which represents an equal likelihood of being a 

zero or one in the initial population. Next, let 𝑟49 = 𝑟51 = 0.05 + exp(−1 − 1 ∗

(1 16⁄ )), 𝑟48 = 𝑟52 = 0.05 + exp(−1 − 2 ∗ (1 16⁄ )), and so forth. In general, 𝑟𝑗 =

0.05 + exp(−1 − 𝑗̂ ∗ (1 16⁄ )) where 𝑗̂ represents the sorted distance to the break item set 

for variable 𝑗 ∈ 𝑁 and 𝑟𝑗 = 0.50 if 𝑗 is a break item. This methodology makes the 

mutation rate for a variable exponentially decrease as the variable becomes less likely to 

be in the set of core variables until the mutation rates asymptotically approach 0.05 for 

those items furthest from the break items. The specific approach was implemented as 

early computational tests found it outperformed other techniques and parameters. 

Note that these rates only apply when mutating the starting population. The other 

mutation procedure occurs after a new offspring is created. In this case, the mutation rate 

is scaled such that one gene is flipped on average in each offspring. Specifically, let 𝑅 =

∑ 𝑟𝑗
𝑛
𝑗=1  and then the new mutation rate for any variable 𝑗 is 𝑟𝑗

′ = 𝑟𝑗 𝑅⁄ . By using the same 

mutation methodology as before (i.e. generating random variables for each variable), the 

new mutation rate will ensure that one gene is flipped on average for each offspring. 



  70 

Outside of this mutation procedure, the EWGA is similar to existing Genetic 

Algorithms seen in literature. Specifically, each individual 𝑘 is scored based on its fitness 

measure  

𝑓𝑘 = ∑ 𝑐𝑗𝑥𝑗
𝑘𝑛

𝑗=1 + 𝑀[∑  𝑢𝑖
∗𝐿𝑅

min(0, 𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
𝑘𝑛

𝑗=1 )𝑚
𝑖=1 +

∑  𝑢𝑖
∗𝐿𝑅

min(0, ∑ 𝑎𝑖𝑗𝑥𝑗
𝑘𝑛

𝑗=1 − 𝑏𝑖)
𝑚+𝑞
𝑖=𝑚+1 ]  (3-16) 

which is a summation of the objective function value for 𝑘 penalized by the weighted 

violation of all knapsack and demand constraints respectively. These violations are 

individually weighted by the optimal dual solution values corresponding to each 

constraint and globally weighted by a large value 𝑀. This penalty is required as there is 

no simple repair procedure possible for individuals who are infeasible for MDMKP 

problems.  

For the parent selection methodology, a tournament method is employed which 

randomly selects two pairs of individuals from the current population. The best 

individuals, as measured by their fitness, from each of these pairs is then selected as the 

parents. The offspring is created by randomly selecting a parent to pass along their 

information for each gene. Once this is completed, the offspring is mutated by utilizing 𝑟𝑗
′ 

as described previously. This process is completed to create 𝑝 offspring. If an offspring is 

created which is feasible and better than the current best feasible solution identified thus 

far, 𝑧∗ and 𝒙∗ are updated. Then, the best 𝑝′ offspring are selected and joined with the 

best 𝑝 − 𝑝′ parents to create a new population and the process is repeated. This is 

continued until 𝐼 populations have been created without an improvement in 𝑧∗. The full 

EWGA procedure is given next. 



  71 

Efficiency-Weighted Genetic Algorithm 

Solve LMDMKP  

Let 𝑙 = 0, 𝑧∗ = −∞, and 𝒙∗ = ∅ 

Initialize 𝐾0 of 𝑝 individuals by rounding solution of linear MDMKP relaxation 

Mutate 𝐾0 using initial mutation rate 𝑟𝑗 

For each 𝑗 ∈ 𝑁, let 𝑟𝑗
′ = 𝑟𝑗 ∑ 𝑟𝑗

𝑛
𝑗=1⁄  

While 𝑙 ≤ 𝐼 

For ℎ = 1 to 𝑝 

Select two pairs of individual from 𝐾𝑙 

Set the best individuals from each pair as the parents 

Create the ℎth offspring by randomly selecting genes from each parent 

Mutate the ℎth offspring according to 𝑟𝑗 

End for 

Create 𝐾𝑙+1 by selecting the best 𝑝 − 𝑝′ individual from 𝐾𝑙 and selecting the best 

𝑝′ individuals from the offspring population 

Let 𝑧′ = max
𝑘∈𝐾𝑙+1

{∑ 𝑐𝑗𝑥𝑗
𝑘𝑛

𝑗=1 |𝒙𝑘 is a feasible solution} 

If 𝑧′ > 𝑧∗, then 𝑙 = 0 and update 𝑧∗ and 𝒙∗ 

End while 

 

The EWGA was implemented in MATLAB 2013 and was tested on each of the test 

instances described at the start of subsection 3.3. For this implementation 𝑝 = 100 and 

𝑝′ = 30 which implies that 30% of each generation is comprised of the best offspring 

from all of parents from the prior generation with the remainder being the best parents 

from the prior generation. Additionally, 𝐼 = 1000 which implies that the EWGA will 

terminate after an improved feasible offspring is not found after 1,000 consecutive 

generations. For each test instance, the EWGA was conducted 100 times to avoid 

initialization bias. These values were employed because they performed well in 

preliminary testing and they provided some computational parity with the other 

heuristics. This parity is demonstrated in subsection 3.4.  

Finally, a comparison methodology was developed which is a Genetic Algorithm that 

assumed 𝑟𝑗 = 0.50 for each gene. Hence, this represents traditional GAs which start with 

completely random individuals at the start of the procedure and assume that each gene 



  72 

has an equal likelihood to mutate throughout the entire algorithm. This procedure will 

hereafter be referred to as the ‘Standard GA’ and is subject to the same parameters as the 

EWGA except for the differences in 𝑟𝑗 for each 𝑗 ∈ 𝑁.  

The results from these tests are shown in Table 5. For each of the 100 GA procedures 

conducted on each test instance, the best feasible solution was recorded. The ratio of this 

value over the base case objective value was calculated and the average of these ratios is 

shown in Table 5. Additionally, the maximum feasible solution over all of the 100 GA 

procedures was identified and the ratio of this value over the base case objective value is 

given in the parentheses. Also provided in Table 5 is the average percentage of the GA 

tests which found a feasible solution for each test case along with the value of 𝑀 in (3-

16) used for that test. The values of 𝑀 were determined through experimentation and are 

a function of 𝑛, 𝑚, and 𝑞. Finally, the last column in Table 5 shows the average ratio of 

the computational time required to solve the EWGA over the computational time to solve 

the uniform weighted mutation rate GA.  

 

Table 5. EWGA solution objective and time results 

(𝑛, 𝑚, 𝑞) 𝑀 

EWGA  Standard GA EWGA 

over  Stand. 

Time Ratio 
Ave Obj Ratio  

(Max Obj Ratio) 

Feas. 

Ratio 

Ave Obj Ratio  

(Max Obj Ratio) 

Feas. 

Ratio 

(250, 5, 5) 3000 0.983 (0.993) 1.000 0.948 (0.978) 0.984 0.624 

(250, 10, 10) 6000 0.982 (0.995) 0.963 0.941 (0.983) 0.781 0.823 

(250, 25, 25) 15000 0.942 (0.973) 0.070 0.833 (0.851) 0.022 0.901 

(500, 5, 5) 6000 0.990 (0.995) 1.000 0.946 (0.971) 1.000 0.521 

(500, 10, 10) 12000 0.990 (0.996) 0.985 0.949 (0.981) 0.696 0.638 

(500, 25, 25) 30000 0.965 (0.987) 0.204 0.850 (0.884) 0.046 0.792 

(1000, 5, 5) 12000 0.993 (0.997) 1.000 0.934 (0.958) 1.000 0.401 

(1000, 10, 10) 24000 0.993 (0.997) 0.997 0.941 (0.976) 0.631 0.576 

 



  73 

The results in Table 5 clearly demonstrate that across all measures and instances, the 

EWGA methodology is preferred in comparison to the Standard GA. With respect to 

solution quality, initializing the GA with the linear solution and making mutation less 

likely for those variables whose efficiency measures most deviate from one clearly 

improves the solution quality. As this is the first instance of such a mutation procedure, it 

is hypothesized that similar results would also occur for other KP variants, but additional 

research is needed to test such a theory. With respect to solution time, the EWGA again 

performs significantly better. These results demonstrate that the EWGA is able to find 

better, feasible solutions in a shorter amount of time than the Standard GA.  

With respect to the different problem instances, the EWGA clearly performs better 

for less constrained problems. This result is hypothesized to be a result of the EWGA not 

featuring a repair operation which can turn infeasible offspring into feasible MDMKP 

solutions. While such operators are present in GAs applied to KPs and MKPs, there is no 

simple mechanism to guarantee feasible MDMKP solutions. Hence, the EWGA is not 

recommended in highly constrained instances. However, assuming the number of 

constraints is held constant, the results in Table 5 show that EWGA performance 

increases as the problem size grows. Future research is therefore recommended to test if 

larger instances continue to result in better performance for the EWGA.  

 

3.4 Discussion 

The discussion of each technique in subsection 3.3 solely compared the 

computational results against the test options within the algorithm and against the base 

case (solving the problems solely with CPLEX). However, this discussion did not 



  74 

compare the results against one another or against other developed MDMKP solution 

methods. The purpose of this section is to present and discuss such results as well as to 

discuss future research opportunities for each of the developed techniques. 

In addition to using CPLEX as a comparison solution methodology, the ACT method 

developed by Hvattum et al. (2010) was employed to solve each test instance. As 

previously stated, the subproblem solver used in this ACT implementation was CPLEX 

which is reported to be outperformed by a combination of CPLEX and Scatter Search. 

CPLEX alone was chosen for this implementation as it is easier to implement and 

provided equivalent or only slightly worse results than the problems solved with both 

methodologies. In this implementation, all parameters were kept the same as those 

recommended by Hvattum et al. and a total of eight hours was given as the maximum 

processing time. Note that it is also possible for the ACT algorithm to terminate early if 

the linear problem (which has cuts continually added to it by the suproblem) returns an 

answer less than best feasible solution identified thus far. 

The results in Table 6 through Table 8 compare the ACT solutions against the 

techniques described in subsection 3.3. Note that the Standard GA is omitted in each 

table since it was dominated by the EWGA for each test instance. Furthermore, the 

results for the Kernel Search assume each bucket size was tested for each instance and 

the final solution was selected as the maximum value over all of the buckets as the results 

from Table 4 demonstrate there is no ideal bucket strategy. Each column in Table 6 

through Table 8 lists a different solution method and each row shows a different test 

combination. The values presented in Table 6 are the average objective value ratios for 

the efficiency measure techniques over the ACT methodology while the values in Table 7 



  75 

are the average solution time ratios for the efficiency measure techniques over the ACT 

solution method. The values in Table 8 show the count of instances in which the solution 

method identified the best known solution. In the case where multiple techniques 

identified the best solution, they are both included in Table 8. Shown in parenthesis in 

Table 8 is the count of instances in which the ACT solution method identified a feasible 

solution when the indicated efficiency measure based solution method could not. Those 

instances where they both identified the same number of feasible solutions are omitted. 

 

Table 6. Average ratio of the efficiency measures based solution values over the ACT 

solution values 

(𝑛, 𝑚, 𝑞) EWGA 
Kernel Fixed-Core 

Unif. Exp. 𝛿𝐴  𝛿𝐵  𝛿𝐶  𝛿𝐷  𝛿𝐸  𝛿𝐹  𝛿𝐺  

(250, 5, 5) 0.993 1.000 0.999 0.999 1.000 1.000 0.999 1.000 0.999 1.000 

(250, 10, 10) 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(250, 25, 25) 0.980 0.997 0.987 1.008 1.013 1.020 1.019 1.020 1.011 1.018 

(500, 5, 5) 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(500, 10, 10) 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(500, 25, 25) 0.985 1.003 1.006 1.008 1.007 1.008 1.009 1.007 1.008 1.007 

(1000, 5, 5) 0.996 1.000 1.000 0.999 1.000 0.999 0.999 1.000 0.999 1.000 

(1000, 10, 10) 0.997 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 

 

 

 

 

 

 

 



  76 

Table 7. Average ratio of the efficiency measures based solution times over the ACT 

solution times 

(𝑛, 𝑚, 𝑞) EWGA 
Kernel Fixed-Core 

Unif. Exp. 𝛿𝐴  𝛿𝐵  𝛿𝐶  𝛿𝐷  𝛿𝐸  𝛿𝐹  𝛿𝐺  

(250, 5, 5) 0.056 0.042 0.016 0.006 0.018 0.507 0.009 0.636 0.009 0.415 

(250, 10, 10) 0.265 0.083 0.030 0.014 0.097 0.108 0.017 0.139 0.024 0.148 

(250, 25, 25) 0.044 0.183 0.111 0.995 0.995 0.995 0.995 0.995 0.995 0.995 

(500, 5, 5) 0.087 0.189 0.041 0.334 0.479 0.512 0.290 0.467 0.190 0.640 

(500, 10, 10) 0.086 0.241 0.109 0.419 0.502 0.568 0.382 0.612 0.477 0.616 

(500, 25, 25) 0.040 0.291 0.239 0.996 0.996 0.996 0.996 0.996 0.997 0.996 

(1000, 5, 5) 0.156 0.289 0.186 0.001 0.002 0.001 0.001 0.003 0.001 0.002 

(1000, 10, 10) 0.161 0.294 0.221 0.002 0.016 0.035 0.002 0.005 0.007 0.041 

  

Table 8. Count of instances each solution method identified the best solution (Count of 

instances not solved by efficiency based methods which were solved by ACT if greater 

than 0 in parentheses) 

(𝑛, 𝑚, 𝑞) ACT EWGA 
Kernel Fixed-Core 

Unif. Exp. 𝛿𝐴  𝛿𝐵  𝛿𝐶  𝛿𝐷  𝛿𝐸  𝛿𝐹  𝛿𝐺  

(250, 5, 5) 9 0 6 3 3 6 7 3 7 4 7 

(250, 10, 10) 9 0 9 7 7 7 9 6 8 8 8 

(250, 25, 25) 2 2 (1) 1 1 0 (7) 1 (5) 1 (4) 0 (3) 4 (1) 0 (5) 1 (1) 

(500, 5, 5) 8 0 7 6 5 2 4 6 6 6 2 

(500, 10, 10) 2 0 2 2 1 4 1 4 3 2 1 

(500, 25, 25) 0 0 (2) 0 0 0 (1) 1 5 3 (2) 0 1 0 

(1000, 5, 5) 4 0 5 3 0 0 1 0 0 0 0 

(1000, 10, 10) 6 0 3 2 0 0 0 0 0 0 0 

 

First, one of the key results from Table 6 and Table 8 is that the EWGA is not 

competitive when compared to the other solution methods. While this may be partly 

explained by the non-time based stopping criteria, the results in Table 7 show that the 

EWGA had solution times where were on the same scale with the other methods. It is 



  77 

hypothesized that the EWGA (and Genetic Algorithms in general) are not well suited for 

solving MDMKP instances due to the lack of a repair operation. As previously stated, this 

operation was not included as there is no easy procedure which can guarantee feasibility 

for the generic MDMKP. Hence, this often results in instances in which long stretches of 

populations have no feasible individuals. The EWGA is therefore not recommended for 

future research unless a suitable repair operation is developed. 

With respect to all of the other solution methods from subsection 3.3, the results in 

Table 6 demonstrate that the efficiency measure based solution methods are highly 

competitive on average compared with the ACT solution methodology, but the 

recommended solution method differs based on the test instance type. For example, the 

ACT generally performs better on average compared with the other solution methods for 

the (250,5,5) instances. Note that the Kernel Search with uniformly sized buckets and 

some of the fixed core sizes are equally as competitive in these instances. Otherwise, the 

most constrained problem (e.g. those with 50 total knapsack and demand constraints) 

demonstrate the advantages of the efficiency-based techniques compared with the ACT 

procedure. During these instances, all fixed cores sizes outperform the ACT method for 

𝑛 = 250 and all fixed core sizes and both Kernel Search techniques outperform the ACT 

method for 𝑛 = 500. Hence, the results in Table 6 appear to favor the ACT method for 

simpler, less constrained problems, but larger and more constrained problems are better 

solved using either the Kernel Search or Fixed-Core methods. 

The results from Table 8 further confirm these findings. With respect to smaller and 

simpler problems, the ACT method is the superior solution method as a majority of the 

highest quality solutions are a result of this methodology. However, it should be noted 



  78 

that Fixed-Core and Kernel Search methods also find a high percentage of the same 

solutions for these instances. With respect to the larger and most constrained problems, 

the ACT does not perform as well. In these instances, the Fixed-Core tests often are the 

sole solution methods which find the highest quality solutions, even in comparison to the 

Kernel Search methods which did report promising findings in Table 6. The clear 

disadvantage of the Fixed-Core methods is that they frequently result in infeasible 

solutions in these instances, especially compared with the ACT procedure and the Kernel 

Search procedures, as observed by the values in parentheses. 

Finally, the results from Table 7 demonstrate the true advantages of the efficiency 

measure based solution methods. For nearly all of the solution methods and test 

instances, the efficiency measure based solution techniques terminated significantly faster 

on average than the ACT solution methodology. This is especially true for the Kernel 

Search method which reported high quality average solutions in typically 20% or less of 

the computational time. While this technique did not frequently determine the best 

solution as shown in Table 8, it is highly recommended if solution time is of major 

importance. In comparison, the Fixed-Core solution method frequently solved problems 

much faster for all but the most constrained instances in which both the ACT method and 

the Fixed-Core solution methods needed the complete allotted time.  

In summary, the developed efficiency measures can be applied to numerous solution 

methods such that MDMKP test instances can be solved in an efficient manner. Three 

such solution methods were created and compared with a commercial solver and an 

existing MDMKP solution heuristic. The results demonstrated that for simpler and less 

constrained problems, the ACT solution method is only slightly preferred with respect to 



  79 

solution quality, but is greatly outperformed with respect to solution time by the Fixed-

Core and Kernel Search methods. Therefore the ACT method is recommended only if 

solution time is not a factor. For the larger problems, the best technique is to use the 

Fixed-Core methodology, but this may result in feasibility issues. Hence, it is 

recommended that the Fixed-Core be tested first and if a feasible solution is not identified 

quickly, the ACT procedure can be performed. If time is a factor in such solution 

methods, than the Kernel Search method should be substituted for the ACT procedure. 

In regards to the methodologies themselves, the EWGA technique is not currently 

recommended unless future research can identify a reliable repair operator for infeasible 

solutions or practitioners do not have access to commercial software. For the Kernel 

Search, the exponential approach is recommended for constructing buckets unless slight 

improvements in solution quality are more important than drastic time savings. At this 

moment, no strategy is recommended for the number of buckets to employ other than to 

test a range of buckets and retain the best solution from those tests. Future research for 

the Kernel Search could be conducted to make the procedure iterative as similarly 

completed by Angelelli, Mansini and Speranza (2010). Also, it could be possible to solve 

the Kernel Search subproblems with solution methods other than CPLEX to observe the 

impact on both solution quality and time. Finally, the Fixed-Core technique is highly 

recommended to solve MDMKPs heuristically due to its ease of implementation and high 

quality results for most problems. The recommended core size based on this research is 

𝛿𝐵 = 0.15𝑛 due to the results shown in Table 1, Table 6, and Table 8, but other problem 

instances may find other core sizes provide better results. Ultimately, it is recommended 

that a small core size is first tested and if the results are not satisfactory, the core size is 



  80 

increased. Future research into the Fixed-Core technique includes testing new core sizes 

as well as testing either exact or heuristic solvers in lieu of using CPLEX.  

 

3.5 Conclusion 

With respect to the mobile retailer product mix problem, the best MDMKP heuristic 

for implementation depends on the mobile retailer. For instance, the EWGA heuristic is 

the sole technique which does not require commercial software so it can be used by any 

practitioner even though it performed the worst in comparison to the other techniques. By 

comparison, the Kernel Search and Fixed-Core heuristics performed the best with respect 

to solution quality, but both of these techniques require commercial solvers which are 

unlikely to be available to most mobile retailers. Therefore, mobile retailers who seek to 

have access to the best techniques are recommended to partner with local research 

institutions and universities to assist with their operational planning. If such partnerships 

are not possible, the EWGA is the recommended approach to addressing their product 

mix decision. If enough mobile retailers were to implement this approach, future research 

should be performed to identify a repair operator which is expected to drastically improve 

the EWGA technique. 

The solution times for these algorithms should also be addressed with respect to the 

mobile retailer product mix problem. As discussed, each of the solution algorithms 

frequently needed upwards of eight hours to solve the tested MDMKP instances. This 

was especially true for instances with 1000 variables and 20 combined constraints. This is 

equivalent to a mobile retailer who is choosing their ideal product mix among 1000 

different items and they have 20 or more requirements or restrictions on this mix. In these 



  81 

cases, the retailer is not recommended to continually change and resolve their product 

mix due to the long solution times. However, such retailers are likely the exception as 

most mobile retailers will not have a high quantity of possible items to stock nor will they 

have that many requirements or limitations. In these cases, the mobile retailer can 

continually modify their product mix on a weekly basis to take advantage of fluctuations 

in item costs from their suppliers. This system will not only benefit the retailer by 

increasing their profit margins, but it may also benefit customers as the product 

variability will maintain customer interest in the retailer so long as some staple goods are 

continuously stocked. 

Regardless of the chosen heuristic, each of the developed solutions are applicable to 

the generic mobile retailer product mix decision. These problems are referred to as 

generic as any product mix decision can be modeled by an MDMKP assuming that the 

objective and all constraints can be expressed as linear functions. The advantage of this 

formulation is it permits a wide array of scenarios with respect to the objectives and 

constraints. For instance, one retailer may wish the profit of the product mix to be 

expressed as a constraint while another may wish it to be an objective. Regardless of 

these differences, a mobile retailer can use the MDMKP to increase the profitability or 

nutritional quality of their product mix or they can use the MDMKP to decrease the 

consumer cost of their product mix. An example of how the MDMKP formulation and 

the developed solution algorithms from this chapter can be used to accomplish all three of 

these improvements is demonstrated in subsection 7.3 through a case study using 

operational data from a mobile retailer.  

This chapter was included in Wishon and Villalobos (2016b). 



  82 

CHAPTER 4 

THE TWO CONSTRAINT MOBILE RETAILER PRODUCT MIX PROBLEM 

Within this chapter, the solution algorithm for the two constraint mobile retailer 

product mix problem will be discussed which is modeled as a DKP. For this version of 

the problem, it is assumed that the product mix of a mobile retailer can be modeled with a 

single linear objective function, one linear knapsack constraint, one linear demand 

constraint, and decision variables which only determine whether or not to include a 

grocery item on the retailer (the quantity to stock is predetermined). While these 

assumptions are more restrictive than the type of product mix decisions discussed in 

Chapter 3, the described scenario is still common within mobile retailers. For instance, a 

mobile retailer may require a stocked mix to earn a maximum revenue, not exceed the 

space on the retailer, and meet a minimum nutritional content or, for another example, a 

retailer may want the stocked mix to be as affordable as possible for its customers, not 

exceed the space on the retailer, and meet a minimum profit margin. These scenarios, and 

many more combinations, can all be modeled as a DKP and a dedicated solution 

algorithm for these problems has been developed. 

The motivation for creating a specialized algorithm for the DKP is two-fold. First and 

foremost, a solution algorithm developed specifically for the DKP will be able to develop 

higher quality solutions in less time since a dedicated DKP solver should be able to 

exploit the simplicity of DKP formulation. Secondly, the best MDMKP heuristics from 

Chapter 3 required the use of commercial solvers. The simplicity of the DKP formulation 

permits high quality, exact algorithms which do not required commercial software.  



  83 

The first exact solution algorithm for the DKP is presented in this chapter and is 

hereafter called DKPSOLVE. Multiple types of tests instances were developed and 

solved with both DKPSOLVE and commercial solvers. This chapter concludes with a 

discussion of the computational results between the two solution methods (commercial 

software versus DKPSOLVE) as well as a discussion regarding the applicability of the 

solver for mobile retailers. 

 

4.1 The DKP and DKP relaxations 

To formulate the DKP, assume there are 𝑛 items such that each item 𝑖 ∈ {1, … , 𝑛} is 

defined by a profit 𝑝𝑖, knapsack weight 𝑤𝑖, and demand weight 𝑣𝑖. Assume the knapsack 

limit is denoted by 𝐶 and the demand requirement is denoted by 𝑅. The objective of the 

DKP is to select a subset of items such that the total profit is as large as possible while 

the total knapsack summation does not exceed 𝐶 and the total demand summation is at 

least 𝑅. Hence the demand-constrained KP is formulated as the following binary problem 

(DKP) Maximize: ∑ 𝑝𝑖𝑥𝑖
𝑛
𝑖=1 ,  (4-1) 

∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ≤ 𝐶,  (4-2) 

∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1 ≥ 𝑅,  (4-3) 

𝑥𝑖 ∈ {0,1}   (𝑖 = 1, … , 𝑛), (4-4) 

where 𝑥𝑖 takes the value 1 if and only if item 𝑖 is selected for inclusion.  

Unlike traditional KP problems, the DKP can have looser assumptions with respect to 

the coefficients. For an item 𝑖, 𝑝𝑖 is only assumed to be integer while 𝑤𝑖 and 𝑣𝑖 are 

nonnegative integers. Negative profit coefficients are permitted since inclusion of such an 



  84 

item may be necessary to satisfy the demand constraint. In addition, it is assumed that the 

knapsack and revenue thresholds are positive integers as well as 

∑ 𝑤𝑖
𝑛
𝑖=1 ≥ 𝐶,  (4-5) 

∑ 𝑣𝑖
𝑛
𝑖=1 ≥ 𝑅,  (4-6) 

and max
𝑖

(𝑤𝑖) ≤ 𝐶. (4-7) 

Knapsack and revenue thresholds are assumed to be positive integers since negative 

values would cause infeasibility and zero values could either create an infeasible problem 

or one which could be solved using existing binary KP techniques. If (4-5) is violated, the 

knapsack constraint can be removed and the problem can be solved using binary KP 

solution techniques as documented in subsection 4.1.1. If (4-6) is violated, the problem is 

infeasible. If (4-7) is violated, the associated item can be removed from consideration in 

the problem.  

Solving the DKP requires the use of the Lagrangian, surrogate, and continuous 

relaxations. These will be employed throughout the solution algorithm to obtain strong 

upper bounds. For the following, let 𝑃 be a given problem and let 𝑧(𝑃) represent its 

optimal solution value. 

 

4.1.1 DKP Lagrangian relaxations 

There are three possible Lagrangian relaxations for the DKP. The Lagrangian 

relaxation of demand constraint (4-3) using the nonnegative Lagrangian multiplier 𝜆 is 

formulated as follows: 

𝐿𝑅(𝐷𝐾𝑃, 𝜆) Maximize: −𝜆𝑅 +  ∑ (𝑝𝑖 + 𝜆𝑣𝑖)𝑥𝑖
𝑛
𝑖=1 , (4-8) 

∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ≤ 𝐶, (4-9) 



  85 

𝑥𝑖 ∈ {0,1}   (𝑖 = 1, … , 𝑛). (4-10) 

𝐿𝑅(𝐷𝐾𝑃, 𝜆) is a binary KP with unrestricted objective coefficients. While not solvable in 

polynomial time, it can be solved quickly in most practical instances as demonstrated by 

Martello, Pisinger, and Toth (1999). For any nonnegative multiplier 𝜆, 𝐿𝑅(𝐷𝐾𝑃, 𝜆) 

provides the upper bound  

𝐿𝑈𝑅(𝜆) = ⌊𝑧(𝐿𝑅(𝐷𝐾𝑃, 𝜆))⌋ 

for the DKP where the floor function is a result of the non-integrality of 𝜆. Hence the 

tightest upper bound based on 𝐿𝑅(𝐷𝐾𝑃, 𝜆) is 

𝐿𝑈𝑅(𝜆∗) = min
𝜆≥0

𝐿𝑈𝑅(𝜆). (4-11) 

Similarly, the Lagrangian relaxation of the knapsack constraint (4-2) using the 

nonnegative multiplier 𝜇, is formulated as follows: 

𝐿𝐶(𝐷𝐾𝑃, 𝜇) Maximize: 𝜇𝐶 +  ∑ (𝑝𝑖 − 𝜇𝑤𝑖)𝑥𝑖
𝑛
𝑖=1 , (4-12) 

∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1 ≥ 𝑅, (4-13) 

𝑥𝑖 ∈ {0,1}   (𝑖 = 1, … , 𝑛).  (4-14) 

While 𝐿𝐶(𝐷𝐾𝑃, 𝜇) does not have a knapsack constraint, the relaxation can be solved as a 

standard, binary KP. To demonstrate this property, consider the disjoint sets of the 

variables 𝐼′ and 𝐼′′ where 𝑖 ∈ 𝐼′ if 𝑝𝑖 − 𝜇𝑤𝑖 ≥ 0 and 𝑖 ∈ 𝐼′′ otherwise. Thus, solving 

𝐿𝐶(𝐷𝐾𝑃, 𝜇) is equivalent to solving the following binary problem: 

𝐿𝐶
̅̅ ̅(𝐷𝐾𝑃, 𝜇) ∑ (𝑝𝑖 − 𝜇𝑤𝑖)

𝑛
𝑖=1 + 𝜇𝐶 + max[∑ −(𝑝𝑖 − 𝜇𝑤𝑖)𝑥𝑖𝑖∈𝐼′′ ], (4-15) 

∑ 𝑣𝑖𝑥𝑖𝑖∈𝐼′′ ≤ (∑ 𝑣𝑖𝑖∈𝐼′ + ∑ 𝑣𝑖𝑖∈𝐼′′ ) − 𝑅,  (4-16) 

𝑥𝑖 ∈ {0,1}   (𝑖 ∈ 𝐼′′),  (4-17) 



  86 

where 𝑧(𝐿𝐶(𝐷𝐾𝑃, 𝜇)) = 𝑧(𝐿𝐶
̅̅ ̅(𝐷𝐾𝑃, 𝜇)). An item 𝑖 is included in the optimal solution to 

𝐿𝐶(𝐷𝐾𝑃, 𝜇) if 𝑝𝑖 − 𝜇𝑤𝑖 ≥ 0 or it is excluded from the optimal solution of 𝐿𝐶
̅̅ ̅(𝐷𝐾𝑃, 𝜇). 

This equivalence is based on two cases: ∑ 𝑣𝑖𝑖∈𝐼′ ≥ 𝑅 and ∑ 𝑣𝑖𝑖∈𝐼′ < 𝑅. For the former, 

(4-16) will permit all 𝑖 ∈ 𝐼′′ to be placed in the knapsack which is equivalent to only 

selecting the positive profit items for 𝐿𝐶(𝐷𝐾𝑃, 𝜇). For the later, 𝐿𝐶
̅̅ ̅(𝐷𝐾𝑃, 𝜇) attempts to 

find the most negative subset of items 𝑖 ∈ 𝐼′′  to place in the knapsack such that those left 

over are the least negative subset of items whose demand sum must exceed 𝑅 − ∑ 𝑣𝑖𝑖∈𝐼′ . 

Given a solution to 𝐿𝐶(𝐷𝐾𝑃, 𝜇), an upper bound on the DKP for any nonnegative 

multiplier 𝜇 is 

𝐿𝑈𝐶(𝜇) = ⌊𝑧(𝐿𝐶(𝐷𝐾𝑃, 𝜇))⌋ 

where the floor function is a result of the non-integrality of 𝜇. The tightest upper bound 

based on 𝐿𝐶(𝐷𝐾𝑃, 𝜇) is therefore 

𝐿𝑈𝐶(𝜇∗) = min
𝜇≥0

𝐿𝑈𝐶(𝜇).  (4-18) 

In addition to these two Lagrangian relaxations, it is also possible to relax both 

constraints (4-2) and (4-3) with nonnegative multipliers 𝜇̂ and 𝜆̂ respectively. This results 

in the problem 𝐿𝐶,𝑅(𝐷𝐾𝑃, 𝜇̂, 𝜆̂) defined by  

𝜇̂𝐶 − 𝜆̂𝑅 + max ∑ (𝑝𝑖 − 𝜇̂𝑤𝑖 + 𝜆̂𝑣𝑖)𝑥𝑖
𝑛
𝑖=1 ,  (4-19) 

subject only to (4-4). This problem is easily solved in 𝑂(𝑛) time since an item 𝑖 is 

selected only if 𝑝𝑖 − 𝜇̂𝑤𝑖 + 𝜆̂𝑣𝑖 ≥ 0, even if constraint set (4-4) is relaxed to its linear 

equivalent. Hence, 𝐿𝐶,𝑅(𝐷𝐾𝑃, 𝜇̂, 𝜆̂) has the integrality property so the floor of the 

minimum value for this relaxation, 𝐿𝑈𝐶,𝑅(𝜇̂∗, 𝜆̂∗), is equivalent to the floor of the 



  87 

continuous relaxation of the DKP. Furthermore, 𝐿𝑈𝐶,𝑅(𝜇̂∗, 𝜆̂∗) is a looser upper bound 

than (4-11) and (4-18) since it is a relaxation of both Lagrangian relaxations. 

 

4.1.2 DKP surrogate relaxation 

Similar to the two-constraint KP from Martello and Toth (2003), the surrogate 

relaxation can also provide an upper bound for the DKP. Consider two nonnegative 

multipliers 𝛼 and 𝛽. The surrogate relaxation 𝑆(𝐷𝐾𝑃, 𝛼, 𝛽) is formulated as:  

𝑆(𝐷𝐾𝑃, 𝛼, 𝛽) Maximize: ∑ 𝑝𝑖𝑥𝑖
𝑛
𝑖=1 , (4-20) 

∑ (𝛼𝑤𝑖 − 𝛽𝑣𝑗)𝑥𝑖
𝑛
𝑖=1 ≤ 𝛼𝐶 − 𝛽𝑅,  (4-21) 

𝑥𝑖 ∈ {0,1}   (𝑖 = 1, … , 𝑛).  (4-22) 

Similar to the Lagrangian relaxations, 𝑆(𝐷𝐾𝑃, 𝛼, 𝛽) is a binary KP with possibly 

negative volumes and capacity. After preprocessing, 𝑆(𝐷𝐾𝑃, 𝛼, 𝛽) can be solved as a 

binary KP such that the following upper bound is obtained: 

𝑆𝑈(𝛼, 𝛽) = 𝑧(𝑆(𝐷𝐾𝑃, 𝛼, 𝛽)). 

Hence the best upper bound is  

𝑆𝑈(𝛼∗, 𝛽∗) = min
𝛼,𝛽≥0

𝑆𝑈(𝛼, 𝛽).  (4-23) 

It should be noted that there is no dominating relationship between upper bounds (4-11), 

(4-18), and (4-23).  

 

4.1.3 DKP continuous relaxations 

The continuous relaxations can also provide an upper bound on the DKP. For 

notation, consider any problem 𝑃 and let 𝐶(𝑃) represent the continuous relaxation of that 

problem. The continuous relaxation of the DKP, 𝐶(𝐷𝐾𝑃), is formulated as the linear 



  88 

program of (4-1) - (4-3) and 0 ≤ 𝑥𝑖 ≤ 1 for all 𝑖 ∈ {1, … , 𝑛}. This provides the following 

upper bound for the DKP 

𝐶𝑈 = ⌊𝑧(𝐶(𝐷𝐾𝑃))⌋.  (4-24) 

Given this bound, four separate upper bounds now exist for the DKP: (4-11), (4-18), (4-

23), and (4-24). Note, 𝐿𝑈𝐶,𝑅(𝜇̂∗, 𝜆̂∗) is not a unique upper bound as it is equal to 𝐶𝑈 as 

stated previously. 

In addition to these bounds, the continuous relaxations of Lagrangian and surrogate 

relaxations will be computationally important for solving the DKP. Specifically, define 

the two continuous Lagrangian relaxation upper bounds as 𝐶𝐿𝑈𝑅(𝜆̃) =

min
𝜆≥0

⌊𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)))⌋ and 𝐶𝐿𝑈𝐶(𝜇̃) = min
𝜇≥0

⌊𝑧 (𝐶(𝐿𝐶(𝐷𝐾𝑃, 𝜇)))⌋ and define the 

continuous surrogate relaxation upper bound as 𝐶𝑆𝑈(𝛼̃, 𝛽) =

min
𝛼,𝛽≥0

⌊𝑧 (𝐶(𝑆(𝐷𝐾𝑃, 𝛼, 𝛽)))⌋. As similarly demonstrated by Martello and Toth (2003) for 

the two-constraint KP, the DKP has the following relationship between the continuous 

upper bounds: 

𝐶𝑈 = 𝐶𝐿𝑈𝑅(𝜆̃) = 𝐶𝐿𝑈𝐶(𝜇̃) = 𝐶𝑆𝑈(𝛼̃, 𝛽).  (4-25) 

To demonstrate (4-25), the proof for 𝐶𝑈 = 𝐶𝐿𝑈𝐶(𝜇̃) is provided. The remaining 

equalities are then immediately obtained using the same reasoning. First, for any 

nonnegative 𝜆 and 𝜇, 𝑧(𝐶(𝐷𝐾𝑃)) ≤ 𝑧 (𝐶(𝐿𝐶(𝐷𝐾𝑃, 𝜇))) since 𝐶(𝐿𝐶(𝐷𝐾𝑃, 𝜇)) is a 

relaxation of 𝐶(𝐷𝐾𝑃). Secondly, because the feasible region of 𝐶(𝐿𝐶(𝐷𝐾𝑃, 𝜇)) is a 

subset of 𝐶 (𝐿𝐶,𝑅(𝐷𝐾𝑃, 𝜇, 𝜆)) and (4-12) is less than (4-19) for any solution satisfying (4-

13), then: 



  89 

𝐶𝑈 = 𝐿𝑈𝐶,𝑅(𝜇̂∗, 𝜆̂∗) ≥ 𝐶𝐿𝑈𝐶(𝜇̂∗) ≥ 𝐶𝐿𝑈𝐶(𝜇̃) ≥ 𝐶𝑈. 

Hence 𝐶𝑈 =  𝐶𝐿𝑈𝐶(𝜇) with the remainder of (4-25) being proven through similar 

reasoning.  

 

4.2 DKP upper bounds 

The purpose of the upper bounds presented in this section is to provide tight limits on 

the optimal binary solution during both the Reduction and Expanding Core phases of the 

solution procedure (introduced in subsections 4.3 and 4.4 of this chapter). Since these 

upper bounds may have to be calculated multiple times during the Expanding Core 

procedure, only the strongest upper bounds should be used and they must be computed 

efficiently. As demonstrated by (4-25), all of the continuous relaxations and 

𝐿𝐶,𝑅(𝐷𝐾𝑃, 𝜇̂∗, 𝜆̂∗) provide the same bound. Hence, only (4-11), (4-18), and (4-23) need to 

be computed since no dominance exists between these bounds and they are all tighter 

than the continuous relaxation. The disadvantage of these bounds is that optimally 

solving the multipliers for these problems is computationally expensive. Instead, it is 

recommended that the optimal 𝜆̃, 𝜇, 𝛼̃, and 𝛽 from the continuous relaxations of these 

bounds be used as substitutes since it is expected these values will still provide a high 

quality upper bound. The remainder of this section demonstrates how to solve for these 

values in polynomial time. 

 

4.2.1 Optimal DKP dual values 

The analysis which follows demonstrates that only one of the continuous relaxations 

must be solved, specifically 𝐶𝐿𝑈𝑅(𝜆̃), such that all of the continuous multipliers can be 

calculated. Furthermore, a 𝑂(𝑛2) algorithm is presented to find 𝜆̃. While this is not as fast 



  90 

as the multidimensional search technique presented by Megiddo and Tamir (1993), the 

implemented approach, motivated by the similar technique demonstrated by Martello and 

Toth (2003) for their two-constraint KP, is simpler to implement and provides extremely 

competitive results as demonstrated in subsection 4.6.  

For any given 𝜆, 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)) is a continuous KP which can be solved by ordering 

the items such that  

(𝑝𝑖 + 𝜆𝑣𝑖)/𝑤𝑖 ≥ (𝑝𝑖+1 + 𝜆𝑣𝑖+1)/𝑤𝑖+1          (𝑖 = 1, … , 𝑛 − 1)  (4-26) 

which provides the optimal decision variables values, 𝑥𝑖
∗, of  

𝑥𝑖
∗     = 1              (𝑗 = 1, … , 𝑏(𝜆) − 1),  

𝑥𝑏(𝜆)
∗ = {(𝐶 − ∑ 𝑤𝑖

𝑏(𝜆)−1
𝑖=1 ) 𝑤𝑏(𝜆)⁄

0

if 𝑝𝑖 + 𝜆𝑣𝑖 ≥ 0 
otherwise

  (4-27) 

𝑥𝑖
∗      = 0              (𝑗 = 𝑏(𝜆) + 1, … , 𝑛),  

where 𝑏(𝜆) is the break item defined by  

𝑏(𝜆) = min{𝑗: ∑ 𝑤𝑖
𝑗
𝑖=1 > 𝐶  or  𝑝𝑖 + 𝜆𝑣𝑖 < 0}.  

While sorting the variables according to (4-26) allows for easy computation of (4-27) and 

the associated solution value, Balas and Zemel (1980) provide a 𝑂(𝑛) median finding 

algorithm which solves the problem without sorting. It is this approach which will be 

implemented to solve 𝐶𝐿𝑈𝑅(𝜆̃) in 𝑂(𝑛2) time as shown in Theorem 2.  

To demonstrate the possible values for 𝜆̃, assume that the items are ordered according 

to (4-26) and ties are broken according to non-increasing demand-to-knapsack constraint 

coefficient ratios. Furthermore, let 𝐵(𝜆) represent a set of items such that 𝑏 ∈ 𝐵(𝜆) if and 

only if (𝑝𝑏 + 𝜆𝑣𝑏)/𝑤𝑏 = (𝑝𝑏(𝜆) + 𝜆𝑣𝑏(𝜆))/𝑤𝑏(𝜆) where 𝑏(𝜆) represents the index of the 



  91 

first element in 𝐵(𝜆). Hence 𝐵(𝜆) is the set of possible break items for a given 𝜆. Finally, 

let  

𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) = ∑ 𝑣𝑖
𝑏(𝜆)−1 
𝑖=1 +

min{∑ 𝑣𝑏𝑥𝑏𝑏∈𝐵(𝜆) | ∑ 𝑤𝑏𝑥𝑏𝑏∈𝐵(𝜆) ≤ 𝐶 − ∑ 𝑤𝑖
𝑏(𝜆)−1 
𝑖=1 , 0 ≤ 𝑥𝑏 ≤ 1   for 𝑏 ∈ 𝐵(𝜆)}  

and  

𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) = ∑ 𝑣𝑖
𝑏(𝜆)−1 
𝑖=1 +

max{∑ 𝑣𝑏𝑥𝑏𝑏∈𝐵(𝜆) | ∑ 𝑤𝑏𝑥𝑏𝑏∈𝐵(𝜆) ≤ 𝐶 − ∑ 𝑤𝑖
𝑏(𝜆)−1 
𝑖=1 , 0 ≤ 𝑥𝑏 ≤ 1   for 𝑏 ∈ 𝐵(𝜆)}  

represent the minimum and the maximum possible values respectively for the left-hand 

side of the relaxed constraint (4-3) in the optimal solution of 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)). Observe 

that the corresponding solution implied by 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) and 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) result in the same 

value for 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆))) as all 𝐵(𝜆) have the same efficiency measure values.  

Lemma 1. 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) and 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) are monotonically nondecreasing as 𝜆 

increases. 

Proof: Consider either 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) or 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆). Let 𝑎 and 𝑏 be two items and 

assume 𝜆′ is strictly less than 𝜆′′. Observe that 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) or 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) can only 

change values if two items were to exchange places in ordering (4-26). Therefore, assume 

(𝑝𝑎 + 𝜆′𝑣𝑎) 𝑤𝑎⁄ ≥ (𝑝𝑏 + 𝜆′𝑣𝑏) 𝑤𝑏⁄  and (𝑝𝑎 + 𝜆′′𝑣𝑎) 𝑤𝑎⁄ ≤ (𝑝𝑏 + 𝜆′′𝑣𝑏) 𝑤𝑏⁄ . By 

subtracting the second inequality from the first, 𝑣𝑎(𝜆′ − 𝜆′′) 𝑤𝑎⁄ ≥ 𝑣𝑏(𝜆′ − 𝜆′′) 𝑤𝑏⁄  

which results in 𝑣𝑎 𝑤𝑎⁄ ≤ 𝑣𝑏 𝑤𝑏⁄ . 

Observe that as 𝜆 increases, the objective coefficient 𝑝𝑖 + 𝜆𝑣𝑖 can only increase. 

Hence ∑ 𝑤𝑖𝑥𝑖
∗𝑛

𝑖=1  as defined in (4-27) cannot decrease as 𝜆 increases. Since items with a 

greater demand-to-knapsack constraint coefficients ratios move forward in the ordering 



  92 

as 𝜆 increases, then it is clear that 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆′′) ≥ 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆′) and 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆′′) ≥

𝐿𝐻𝑆𝑀𝐴𝑋(𝜆′). ∎ 

Lemma 2. The optimal multiplier for 𝐶𝐿𝑈𝑅(𝜆̃) is one of the following values: 

(a) 𝜆̃ = 0 

(b) 𝜆̃ = −𝑝𝑖 𝑣𝑖⁄  if 𝑝𝑖 < 0 and 𝑣𝑖 > 0 for 𝑖 = 1, … , 𝑛 

(c) 𝜆̃ = (𝑝𝑖𝑤𝑗 − 𝑝𝑗𝑤𝑖) (𝑣𝑗𝑤𝑖 − 𝑣𝑖𝑤𝑗)⁄  for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that 𝜆̃ > 0 

Proof: Assume that for any given 𝜆, the optimal solution for 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)) has been 

determined using the median finding algorithm by Balas and Zemel (1980). Three cases 

are possible: 

1) 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) ≤ 𝑅 and 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) ≥ 𝑅: Since the decision variables are continuous, 

then there exists an optimal solution vector, 𝒙∗, such that 𝐿𝐻𝑆(𝜆) = 𝑅 where 𝐿𝐻𝑆(𝜆) =

∑ 𝑣𝑖𝑥𝑖
∗𝑛

𝑖=1 . By complementary slackness, 𝜆 = 𝜆̃. 

2) 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) > 𝑅: Given this case, the objective is to find the minimum multiplier 

𝜆′ such that 𝜆′ < 𝜆 where the optimal solution 𝒙∗ is the same for both 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)) 

and 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆′)), but 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆))) ≥ 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆′))). Since the solution 

vectors defining 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) and 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) simply represent alternate optima with 

respect to 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)), the general definition of 𝐿𝐻𝑆(𝜆) will be employed to 

represent any of these alternate options.  

For the first case, consider the situation where 𝑝𝑏 + 𝜆𝑣𝑏 is nonnegative for all 𝑏 ∈

𝐵(𝜆). 𝜆 and 𝜆′ will provide the same optimal solution vector if two conditions are met. 

First, the objective coefficient for the break items remains nonnegative. The second is 

that 𝜆′ provides the same partition as 𝜆 when the variables are grouped based on their 



  93 

efficiency measures compared to the break item. Therefore, 𝜆 and 𝜆′ are the same 

assuming the following conditions are met: 

𝑝𝑏 + 𝜆′𝑣𝑏 ≥ 0     𝑏 ∈ 𝐵(𝜆),  (4-28) 

(𝑝𝑖 + 𝜆′𝑣𝑖) 𝑤𝑖⁄ ≥ (𝑝𝑏(𝜆) + 𝜆′𝑣𝑏(𝜆)) 𝑤𝑏(𝜆)⁄      𝑗 = 1, … , 𝑏(𝜆) − 1,  (4-29) 

(𝑝𝑖 + 𝜆′𝑣𝑖) 𝑤𝑖⁄ ≤ (𝑝𝑏(𝜆) + 𝜆′𝑣𝑏(𝜆)) 𝑤𝑏(𝜆)⁄      𝑗 = 𝑏(𝜆) + |𝐵(𝜆)|, … , 𝑛.  (4-30) 

Since 𝜆′ and 𝜆 result in the same partition, then the objective function for 

𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆′)) can be rewritten as ∑ 𝑝𝑖𝑥𝑖
∗ − 𝜆′(𝑅 − 𝐿𝐻𝑆(𝜆′))𝑛

𝑖=1 . Since 𝜆′ is selected 

such that 𝐿𝐻𝑆(𝜆) = 𝐿𝐻𝑆(𝜆′), then the minimum 𝜆′ satisfying (4-28) - (4-30) is desired. 

The minimum 𝜆′ satisfying criteria (4-29) and (4-30) is 𝜆′̅ =

max{(𝑝𝑖𝑤𝑏(𝜆) − 𝑝𝑏(𝜆)𝑤𝑖) (𝑣𝑏(𝜆)𝑤𝑖 − 𝑣𝑖𝑤𝑏(𝜆))⁄ } for any 𝑖 < 𝑏(𝜆) where 𝑣𝑖 𝑤𝑖⁄ >

𝑣𝑏(𝜆) 𝑤𝑏(𝜆)⁄  or 𝑖 > 𝑏(𝜆) + |𝐵(𝜆)| where 𝑣𝑖 𝑤𝑖⁄ < 𝑣𝑏(𝜆) 𝑤𝑏(𝜆)⁄ . To demonstrate the 

conditions for 𝜆′̅, observe that (4-29) is satisfied automatically in the case where 

𝑣𝑏(𝜆) 𝑤𝑏(𝜆)⁄ ≥ 𝑣𝑖 𝑤𝑖⁄  using a similar observation from the proof of Lemma 1 that two 

items will only swap places due to a change in 𝜆 based on their demand-to-knapsack 

ratios. Similar reasoning applies to (4-30) in the case where 𝑣𝑏(𝜆) 𝑤𝑏(𝜆)⁄ ≤ 𝑣𝑖 𝑤𝑖⁄ . 

Finally, the minimum 𝜆′ satisfying (4-28) - (4-30) can be calculated as  

𝜆′ = max{𝜆′̅, (−𝑝𝑏(𝜆) 𝑣𝑏(𝜆)⁄  |𝑝𝑏(𝜆) < 0 and 𝑣𝑏(𝜆) > 0)}. 

In the case where 𝑝𝑏 + 𝜆𝑣𝑏 is negative for all 𝑏 ∈ 𝐵(𝜆), it is sufficient to impose that 

none of the objective coefficients changes sign based on the solution (4-27). Hence, the 

best (i.e. minimum) 𝜆′ is max{−𝑝𝑖 𝑣𝑖⁄ | 𝑖 > 𝑏(𝜆) and 𝑣𝑖 > 0}. 

3) 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) < 𝑅: Given this case, the objective is to find the maximum multiplier 

𝜆′ such that 𝜆′ > 𝜆 where the optimal solution 𝒙∗ is the same for both 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)) 



  94 

and 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆′)), but 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆))) ≥ 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆′))). When 𝑝𝑏 + 𝜆𝑣𝑏 is 

nonnegative for all 𝑏 ∈ 𝐵(𝜆), similar reasoning as case 2 only imposes bounds (4-29) and 

(4-30) since increasing 𝜆 can’t create the left hand side of (4-28) to become negative. 

This provides the following rule where 𝜆′̅ =

min{(𝑝𝑖𝑤𝑏(𝜆) − 𝑝𝑏(𝜆)𝑤𝑖) (𝑣𝑏(𝜆)𝑤𝑖 − 𝑣𝑖𝑤𝑏(𝜆))⁄ } for any 𝑖 < 𝑏(𝜆) where 𝑣𝑖 𝑤𝑖⁄ <

𝑣𝑏(𝜆) 𝑤𝑏(𝜆)⁄  or 𝑖 > 𝑏(𝜆) + |𝐵(𝜆)| where 𝑣𝑖 𝑤𝑖⁄ > 𝑣𝑏(𝜆) 𝑤𝑏(𝜆)⁄ .  

When 𝑝𝑏 + 𝜆𝑣𝑏 is negative for all 𝑏 ∈ 𝐵(𝜆), the only consideration is that the 

objective coefficient for any 𝑖 < 𝑏(𝜆) does not change sign. Hence, 𝜆′ =

min{−𝑝𝑖 𝑣𝑖⁄ |𝑖 < 𝑏(𝜆) and 𝑣𝑖 > 0}. 

These three cases demonstrate that the optimal 𝜆̃ is one out of a set of finite, 

calculable values. Specifically, if 𝐿𝐻𝑆𝑀𝐼𝑁(0) ≥ 𝑅, then 𝜆̃ = 0 is the clear dominating 

solution. Otherwise 𝜆̃ = −𝑝𝑖 𝑣𝑖⁄  assuming 𝑝𝑖 < 0 and 𝑣𝑖 > 0 or 𝜆̃ =

(𝑝𝑖𝑤𝑗 − 𝑝𝑗𝑤𝑖) (𝑣𝑗𝑤𝑖 − 𝑣𝑖𝑤𝑗)⁄  assuming 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that 𝜆̃ > 0 where the 

restriction 𝑖 < 𝑗 is a result of the calculation remaining unchanged if 𝑖 and 𝑗 are switched. 

∎ 

Solving 𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆)) for all of the possibilities listed in Lemma 2 provides a 

𝑂(𝑛3) time solution method. However, employing a median finding technique similar to 

Balas and Zemel (1980) results in the relaxation being solved in 𝑂(𝑛2) time. This 

algorithm is motivated by the similar approach of Martello and Toth (2003).  

Theorem 2. The optimal multiplier 𝜆̃ can be determined in 𝑂(𝑛2) time. 

Proof: Consider the following procedure titled CDKPSOLVE. The purpose of 

CDKPSOLVE is to optimally solve 𝐶𝐿𝑈𝑅(𝜆̃), thereby calculating 𝐶𝑈 and the optimal 



  95 

multiplier 𝜆̃. For input, CDKPSOLVE requires 𝑛, 𝐶, 𝑅, 𝒑 = {𝑝1, 𝑝2, … , 𝑝𝑛}, 𝒘 =

{𝑤1, 𝑤2, … , 𝑤𝑛}, and 𝒗 = {𝑣1, 𝑣2, … , 𝑣𝑛} as well as Λ which is the storage for all possible 

multiplier values from Lemma 2. 

procedure CDKPSOLVE(𝑛, 𝒑, 𝒘, 𝒗, 𝐶, 𝑅, Λ) 

(a) Calculate Λ if needed 

(b) Compute 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 0))), 𝐿𝐻𝑆𝑀𝐼𝑁(0), and 𝐿𝐻𝑆𝑀𝐴𝑋(0) 

(c) If 𝐿𝐻𝑆𝑀𝐼𝑁(0) ≥ 𝑅 or 𝐿𝐻𝑆𝑀𝐴𝑋(0) ≥ 𝑅 and 𝐿𝐻𝑆𝑀𝐼𝑁(0) ≤ 𝑅 THEN 𝜆̃ = 0, 

𝐶𝐿𝑈𝑅(𝜆̃) = 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 0))) and STOP 

(d) Determine median 𝜆 of Λ 

(e) Compute 𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆))), 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆), and 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) 

(f) IF 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) ≥ 𝑅 and 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) ≤ 𝑅 THEN 𝜆̃ = 𝜆, 𝐶𝐿𝑈𝑅(𝜆̃) =

𝑧 (𝐶(𝐿𝑅(𝐷𝐾𝑃, 𝜆))) and STOP 

(g) IF 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆) < 𝑅 THEN remove all values greater than or equal to 𝜆 from 

Λ ELSE remove all values less than or equal to 𝜆 from Λ 

(h) Go to (d) 

Within CDKPSOLVE, it is assumed that the median finding technique is used in (b) 

and (e) with which has a complexity of 𝑂(𝑛). Furthermore, it is assumed that the 

technique proposed by Blum et al. (1973) is used to find the median in an unsorted list in 

(d) which has a complexity of 𝑂(|Λ|). Note that the guarantee that CDKPSOLVE will 

terminate with the correct value for 𝜆̃ and 𝐶𝐿𝑈𝑅(𝜆̃) is a direct result of Lemma 1 and 

Lemma 2. 



  96 

Since (a) through (c) are only performed once, the total complexity of these steps is at 

least 𝑂(𝑛2) due to the number of calculations necessary to determine set Λ according to 

Lemma 2. To determine the total complexity of the remaining steps, note that Lemma 2 

demonstrates that |Λ| is at most 𝑛(𝑛 + 1) 2⁄  and it is halved at each iteration. Hence, the 

total complexity of (d) and (g) is at most bounded by 𝑂(𝑛(𝑛 + 1) 2⁄ + 𝑛(𝑛 + 1) 4⁄ +

𝑛(𝑛 + 1) 8⁄ + ⋯ ) = 𝑂(𝑛2). This halving also demonstrates that the total complexity of 

(e) is 𝑂(𝑛 log 𝑛) and the total complexity of (f) is 𝑂(log 𝑛). Therefore, (a) through (c) are 

computed once with worst-case complexity of 𝑂(𝑛2) while (d) through (h) have a total 

worst-case complexity of 𝑂(𝑛2). Hence, CDKPSOLVE can be solved in 𝑂(𝑛2) time. ∎ 

Since this technique only provides one of the optimal continuous multipliers, a 

similar approach could be developed to determine 𝜇, 𝛼̃, and 𝛽. However, Theorem 3 

demonstrates how these values can be calculated based on the solution corresponding to 

𝐶𝐿𝑈𝑅(𝜆̃). 

Theorem 3. Assume the optimal multiplier and solution corresponding to 𝐶𝐿𝑈𝑅(𝜆̃) 

are known. The optimal multiplier 𝜇 for minimizing 𝐶(𝐿𝐶(𝐷𝐾𝑃, 𝜇)) is 𝜇 =

(𝑝𝑏(𝜆̃) + 𝜆̃𝑣𝑏(𝜆̃)) 𝑤𝑏(𝜆̃)⁄ . The optimal multipliers 𝛼̃ and 𝛽 for minimizing 

𝐶(𝑆(𝐷𝐾𝑃, 𝛼, 𝛽)) are 𝛼̃ = 𝜆̃ and 𝛽 = 𝜇. 

Proof: Consider the dual formulation of 𝐶(𝐷𝐾𝑃) given as  

𝑧̃ = min (𝜇𝐶 − 𝜆𝑅 + ∑ 𝜋𝑖
𝑛
𝑖=1 |

𝜇𝑤𝑖 − 𝜆𝑣𝑖 + 𝜋𝑖 ≥ 𝑝𝑖 (𝑖 = 1, … , 𝑛),

𝜆, 𝜇, 𝜋𝑖 ≥ 0 (𝑖 = 1, … , 𝑛)
).  (4-31) 

In the optimal solution to 𝐶(𝐷𝐾𝑃), let 𝐼∗ represent the items for which 𝑥𝑖
∗ = 1 in the 

optimal solution. Since the optimal dual values for a continuous problem are equal to the 



  97 

optimal multipliers in a Lagrangian or surrogate relaxations, complimentary slackness of 

𝐶(𝐷𝐾𝑃) and its dual implies 𝑧̃ = 𝜇𝐶 − 𝜆̃𝑅 + ∑ (𝑝𝑖 − 𝜇𝑤𝑖 + 𝜆̃𝑣𝑖)𝑖∈𝐼∗  and (4-25) plus the 

optimality of 𝐶 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃)) implies 𝑧̃ = −𝜆̃𝑅 + ∑ (𝑝𝑖 + 𝜆̃𝑣𝑖)𝑖∈𝐼∗ + 𝑥𝑏(𝜆̃)
∗ (𝑝𝑏(𝜆̃) +

𝜆̃𝑣𝑏(𝜆̃)). 

Using algebraic manipulation and the value for 𝑥𝑏(𝜆̃)
∗  defined in (4-27), it can be 

demonstrated that 𝜇 = (𝑝𝑏(𝜆̃) + 𝜆̃𝑣𝑏(𝜆̃)) 𝑤𝑏(𝜆̃)⁄ . In regards to implementation, it is 

important to observe that 𝜇 is the ratio of the objective to constraint coefficients for the 

break item in 𝐶 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃)) which is easily obtained from the solution procedure 

outlined by Balas and Zemel (1980).  

The proof for the optimal surrogate multipliers is immediate since the optimal dual 

values for a continuous problem are equal to the optimal multipliers in a Lagrangian or 

surrogate relaxations. ∎ 

 

4.2.2 DKP integer relaxations 

Using these theorems, the continuous relaxation for DKP can be solved in 𝑂(𝑛2) time 

which provides the optimal Lagrangian and surrogate multipliers. These multipliers can 

be used to calculate ⌊𝑧 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃))⌋, ⌊𝑧(𝐿𝐶(𝐷𝐾𝑃, 𝜇))⌋, and 𝑧 (𝑆(𝐷𝐾𝑃, 𝛼̃, 𝛽)). Even 

though this requires the solution of three binary KPs which are NP-hard, solution 

algorithms such as those by Martello, Pisinger, and Toth (1999) can solve the problems 

extremely efficiently. The only challenge with this approach is that some of the 

coefficients in each problem must be scaled to ensure the integrality assumption of 

Martello, Pisinger, and Toth. 



  98 

While these values do not guarantee the lowest possible upper bounds (they utilize 

the optimal multipliers from their continuous counterparts), they provide extremely 

competitive bounds as demonstrated in the computational experiments in subsection 4.6. 

Since, no dominance relationship exists between these bounds, all three must be 

calculated and the best bound is given as  

𝑈∗ = min (⌊𝑧 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃))⌋ , ⌊𝑧(𝐿𝐶(𝐷𝐾𝑃, 𝜇))⌋, 𝑧 (𝑆(𝐷𝐾𝑃, 𝛼̃, 𝛽))). (4-32) 

Implementation of (4-32) in the algorithm that follows also provides a potential starting 

solution for the DKP. Therefore, ties in the minimum bound are broken first by feasibility 

of the bound’s solution and then by (4-1). 

 

4.3 DKP reduction procedure 

The full DKPSOLVE algorithm follows a two phase approach. The first phase, the 

Reduction procedure, is presented in this section while the second phase, the Expanding 

Core procedure, is presented in subsection 4.4. The Reduction procedure, hereafter 

referred to as REDUCE, commences by calculating 𝑈∗ in (4-32) to determine an upper 

bound on the current DKP instance. Then four procedures titled IMP, REMREPL, 

REMREPL2, and FEAS are performed to determine a feasible binary lower bound. These 

procedures are outlined next. Finally, a reduction test is completed for each variable in 

the problem to determine if the value for that variable can be fixed in the optimal solution 

and therefore removed prior to performing the computationally complex Expanding Core 

procedure. This full process is demonstrated in Figure 4 and the pseudocode for these 

procedures is provided in Appendix A. 



  99 

 

Figure 4. Flowchart of REDUCE procedure 

 

The first procedure to determine a lower bound on the current DKP instance is titled 

IMP (Improve) and is designed such that the problem is first made feasible with respect 

to the knapsack constraint. Items are then added in a greedy manner with the highest 

priority of first inducing complete feasibility if possible and then with improving the 

solution quality. Specifically, the best solution vector, 𝒙 = (𝑥1, … , 𝑥𝑛), from (4-32) is 



  100 

sorted in a non-descending order according to each variable’s efficiency measure. If 𝒙 is 

infeasible with respect to the knapsack constraint, variables are greedily removed from 

the solution starting at the end of the list until knapsack feasibility is obtained. Given this 

sorted, knapsack feasible vector, excluded variables are added given two cases. If the 

current vector is not feasible with respect to (4-3), then add that variable regardless of its 

objective coefficient assuming the solution would still be knapsack feasible. If the current 

vector is feasible with respect to (4-3), then add that variable only if its objective function 

coefficient is positive assuming the solution would still be knapsack feasible. The total 

time complexity of IMP is therefore 𝑂(𝑛) excluding sorting. If 𝒙 now represents a 

feasible solution to the DKP, update the best lower bound and let its objective value be 𝑃. 

Given the vector from IMP, the procedure REMREPL (Remove and Replace) is 

performed which sequentially tests the removal of included items and then greedily fills 

the remainder of the solution. To outline REMREPL, assume the variables are still sorted 

according to IMP and let 𝑘 be the smallest index of the variable that is excluded in the 

current solution. Define the solution vector 𝒙′ = (𝑥1
′ , … , 𝑥𝑛

′ ) such that 𝑥𝑖
′ = 1 for 𝑖 =

1, … , 𝑘 − 1 and 𝑥𝑖
′ = 0 for 𝑖 = 𝑘, … , 𝑛. Starting with 𝑘 − 1, remove 𝑥𝑘−1

′  from 𝒙′ and 

attempt to fill the vector starting with 𝑥𝑘
′  according to the same logic given at the end of 

IMP. Once complete, retain the vector if it is the best feasible solution identified thus far. 

Next, complete the same process by starting with the original vector 𝒙′ and removing 

𝑥𝑘−2
′  and filling the remainder starting with 𝑥𝑘

′  as detailed in IMP. Continue this removal 

and filling until 𝑥1
′  or until a global parameter 𝑎 items have been tested for removal and 

subsequent filling. If the best 𝒙′ is feasible and better than 𝒙, update the best solution and 

𝑃. The time complexity of REMREPL is therefore 𝑂(𝑛2). 



  101 

The procedure REMREPL2 (Remove and Replace 2) is identical to REMREPL 

except that pairs of items are removed prior to the filling the solution in the manner 

detailed in IMP. Specifically, REMREPL2 defines the initial solution vector 𝒙′ the same 

as REMREPL. Then, all possible pairs of items whose indices are between 

max{1, 𝑘 − 𝑎′}, where 𝑎′ is another global parameter, are removed from 𝒙′ prior to filling 

the remainder of the solution starting with 𝑥𝑘
′  as described in IMP. In this 

implementation, 𝑎′ = √𝑎 and therefore REMREPL2 has 𝑂(𝑛2) complexity.  

The final procedure, FEAS, is used solely in the case where all of the three 

aforementioned procedures did not identify a feasible solution with respect to both 

constraints. Specifically, sort all variables according to their non-increasing values of 

𝑣𝑖 𝑤𝑖⁄  with ties broken according to 𝑝𝑖. Initially add sorted variables to the solution 

vector regardless of the value of 𝑝𝑖 until feasibility of both constraints is achieved. After 

feasibility, continue to add a variable 𝑥𝑖 only if 𝑝𝑖 > 0 and adding the variable does not 

violate the feasibility of the knapsack constraint. Ignoring the sorting, the time 

complexity of FEAS is 𝑂(𝑛). If FEAS does not find a feasible solution, the entire 

algorithm can be stopped as the current instance is infeasible. If FEAS does identify a 

feasible solution, it is likely of low quality based on the construction method so it is 

recommended that IMP, REMREPL, and REMREPL2 are conducted again to possibly 

improve the solution. 

After these procedures are completed, the optimal solution has been identified and 

REDUCE (and the DKPSOLVE) is complete if 𝑃 equals 𝑈∗. Otherwise, let 𝐼0 and 𝐼1 

store the indices of variables which the procedure has identified as fixed to 0 and 1 

respectively for any solution which must exceed 𝑃. These are initialized as empty and let 



  102 

𝑗 represent the index of the item currently under investigation.  Starting with 𝑗, the 

continuous upper bound ⌊𝑧 (𝐶 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃)))⌋ is solved assuming 𝑥𝑗 = 0 if 𝑗 is included 

in the linear solution of the DKP or 𝑥𝑗 = 1 if 𝑗 is excluded in the linear solution of the 

DKP. Let the solution to these problems be denoted as ⌊𝑧 (𝐶 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃)))⌋
𝑥𝑗=0

 and 

⌊𝑧 (𝐶 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃)))⌋
𝑥𝑗=1

 respectively. Observe that 𝜆̃ may not be the optimal multiplier 

for these problems given the fixed variable, but they should be close enough to the 

correct multiplier to provide competitive results without the computational burden to 

correctly determine the true multiplier. If 𝑥𝑗 is a break item in the linear solution, both of 

these values are calculated. If the solution to these problems are less than 𝑃, then 𝑗 should 

be added to the appropriate storage 𝐼𝑜 or 𝐼1. This process continues until the cumulative 

size of these two lists exceeds 𝑛 25⁄  or all variables have been investigated.  

If the intersection of these lists is non-empty, the process is terminated as the 

procedure identified that there is no binary value for the break item(s) which will ever 

result in a solution better than 𝑃. Additionally, the process is terminated if fixing the 

variables according to 𝐼0 and 𝐼1 will result in a problem which cannot be made feasible. 

Otherwise, if both lists are empty, the problem is fully reduced and EXPCORE is called 

which is the second phase of the DKPSOLVE procedure. If either list is non-empty, the 

problem is reduced by fixing all elements of 𝐼0 and 𝐼1 and REDUCE is called with the 

reduced set of variables (i.e. all those which have yet to be fixed). Observe that REDUCE 

starts investigating the variables starting where the prior procedure terminated so that all 

variables are investigated equally. 



  103 

 

4.4 DKP expanding core procedure 

Once the problem is reduced, the remainder of the problem is solved through a 

breadth-first Expanding Core procedure, hereafter referred to as EXPCORE, similar to 

the technique first presented by Pisinger (1997). In EXPCORE, a branch-and-bound tree 

is investigated in a breadth-first manner such that each branch represents the 

inclusion/exclusion of items in the reduced DKP solution. It is referred to as the 

Expanding Core as this branching starts with the break items and then expands to the 

items which are most likely to be included in the true core of the problem. Both the 

breadth-first and depth-first Expanding Core approaches were tested. The breadth-first 

approach performed significantly better and is presented in this section. This differs from 

the approach used by Martello and Toth (2003) for the two-constraint KP as they used a 

depth-first branch-and-bound procedure without giving branching priority to the likely 

core items.  

To demonstrate the procedure, assume that the problem has been reduced and there 

are 𝑛′ ≤ 𝑛 items for consideration. EXPCORE commences by sorting all 𝑛′ items 

according to their non-decreasing efficiency measures as defined in Chapter 3. The 

values needed to calculate these measures (i.e. the optimal Lagrangian multipliers) are 

identified during the last calculation of 𝑈∗ from the Reduction phase. Let 𝑏 be the index 

of the first sorted item whose efficiency measure equals one (i.e. one of the possible two 

break items for the DKP) and let 𝑃 be inherited from the last REDUCE procedure. 

Let 𝑁(𝑠, 𝑡) represent the set of non-fathomed nodes in the tree where the pair 𝑠 and 𝑡 

represents the depth of the current tree. Specifically, 𝑠 and 𝑡 are the inclusive start and 



  104 

end of the subset of items which have already been branched. For example, 

𝑁(𝑏 − 1, 𝑏 + 1) represents the third level of the tree which has at most eight elements if 

no nodes have been fathomed in prior levels of the tree. For any 𝑗 ∈ 𝑁(𝑠, 𝑡), the node 

represents the DKP solution such that 𝑥𝑖 = 1 for all 𝑖 ∈ [1, 𝑠 − 1], 𝑥𝑖 = 0 for all 𝑖 ∈

[𝑡 + 1, 𝑛′], and 𝑥𝑖 for all 𝑖 ∈ [𝑠, 𝑡] are set based on the path in the tree leading to node 𝑗. 

Let the vector be noted as 𝒙𝑗 = {𝑥1
𝑗
, … , 𝑥

𝑛′
𝑗

} and let 𝑃𝑗 , 𝑊𝑗, and 𝑉𝑗 represent the 

objective value, knapsack constraint left hand side, and demand constraint right hand side 

corresponding with vector 𝒙𝑗 respectively. Additionally, let 𝑈𝑗 represent the upper bound 

on the optimal binary solution of node 𝑗 assuming that 𝑥𝑖 for all 𝑖 ∈ [𝑠, 𝑡] are fixed to 

their branched values for the node. The methodology to calculate 𝑈𝑗 is presented shortly 

and let 𝜆̃𝑗 and 𝜇𝑗 represent the multipliers used to calculate 𝑈𝑗. 

To assist in fathoming nodes in the branch-and-bound tree, 𝑁(𝑠, 𝑡) is kept ordered 

such that dominated nodes can be easily identified. A node 𝑗 ∈ 𝑁(𝑠, 𝑡) is dominated by 

𝑘 ∈ 𝑁(𝑠, 𝑡) if 𝑃𝑘 ≥ 𝑃𝑗 , 𝑊𝑘 ≤ 𝑊𝑗 , and 𝑉𝑘 ≥ 𝑉𝑗 as the future branches leading from 𝑗 

can be shown to never provide a better solution than 𝑘 or one of its future branches. 

Hence, 𝑗 is listed before 𝑘 in 𝑁(𝑠, 𝑡) if 𝑃𝑗 > 𝑃𝑘 or 𝑃𝑗 = 𝑃𝑘 and 𝑊𝑗 < 𝑊𝑘 or 𝑃𝑗 = 𝑃𝑘 

and 𝑊𝑗 = 𝑊𝑘 and 𝑉𝑗 > 𝑉𝑘. A dominance test for a node 𝑗 ∈ 𝑁(𝑠, 𝑡) therefore requires 

comparing 𝑗 to only the preceding nodes in 𝑁(𝑠, 𝑡). 

To evaluate each level of the Expanding Core branch-and-bound tree, a procedure 

MERGE is performed which sorts, analyzes, and fathoms applicable nodes in the current 

level of the tree. On input, MERGE receives the current list of possible nodes for that 

level in the tree partitioned into two sets 𝑁′(𝑠, 𝑡) and 𝑁′′(𝑠, 𝑡). Let 𝑁′(𝑠, 𝑡) equal the 



  105 

final set of non-fathomed nodes from the prior level of the tree. Hence, 𝑁′(𝑠, 𝑡) 

represents branching on 𝑥𝑠 = 1 if the prior set of nodes is 𝑁(𝑠 + 1, 𝑡) or 𝑁′(𝑠, 𝑡) 

represents branching on 𝑥𝑡 = 0 if the prior set of nodes is 𝑁(𝑠, 𝑡 − 1). Let 𝑁′′(𝑠, 𝑡) 

represent the set of nodes for the opposite branches. 𝑁′′(𝑠, 𝑡) is therefore the same as the 

parent set of nodes with only minor modifications to 𝒙𝑗, 𝑃𝑗 , 𝑊𝑗, and 𝑉𝑗. In addition, let 

𝑈𝑗, 𝜆̃𝑗, and 𝜇𝑗 be inherited from the parent node. Observe that if the list of parent of 

nodes is correctly sorted, 𝑁′(𝑠, 𝑡) and 𝑁′′(𝑠, 𝑡) will each be sorted correctly. 

Given these lists, a node 𝑗 is selected from the start of 𝑁′(𝑠, 𝑡) or 𝑁′′(𝑠, 𝑡) and is 

evaluated for addition to 𝑁(𝑠, 𝑡) through five fathoming tests. Specifically, the node is 

selected from either list such that 𝑁(𝑠, 𝑡) is ordered correctly if the node is not fathomed 

and added to the current end of 𝑁(𝑠, 𝑡). Since 𝑁′(𝑠, 𝑡) and 𝑁′′(𝑠, 𝑡) are sorted correctly 

by construction, this only requires comparing the first non-analyzed entries in either list. 

Once 𝑗 ∈ 𝑁′(𝑠, 𝑡) ∪ 𝑁′′(𝑠, 𝑡) is determined, the first fathoming test is if 𝑈𝑗 ≤ 𝑃. At this 

phase, 𝑈𝑗 is inherited from the parent node which was unfathomed, but 𝑃 may have 

increased since the parent node was tested. The second fathoming test validates that 𝑗 or 

one of its eventual children can be feasible. Specifically, 𝑗 is fathomed if 𝑊𝑗 −

∑ 𝑤𝑖
𝑠−1
𝑖=1 > 𝐶 or 𝑉𝑗 + ∑ 𝑣𝑖

𝑛′

𝑖=𝑡+1 < 𝑅. The third fathoming test is to test whether 𝑗 is 

dominated by any of the non-fathomed nodes already added to 𝑁(𝑠, 𝑡). If a dominating 

node is identified, then 𝑗 is fathomed. 

If 𝑗 is not yet fathomed, the remaining two tests update the inherited 𝑈𝑗. For each of 

these tests, it is assumed that 𝑥𝑖 for all 𝑖 ∈ [𝑠, 𝑡] are fixed according to the node’s path in 

the tree. The fourth fathoming test is to let 𝑈𝑗 = ⌊𝐶𝐿𝑈𝑅(𝜆̃)⌋ using CDKPSOLVE and to 



  106 

fathom the node if 𝑈𝑗 ≤ 𝑃. This procedure is necessary as it updates the inherited 𝜆𝑗 and 

𝜇𝑗 which is needed for the next test. Finally, the last fathoming test is to let 𝑈𝑗 =

min (⌊𝑧 (𝐿𝑅(𝐷𝐾𝑃, 𝜆𝑗))⌋ , ⌊𝑧 (𝐿𝐶(𝐷𝐾𝑃, 𝜇𝑗))⌋ , 𝑧 (𝑆(𝐷𝐾𝑃, 𝜆𝑗, 𝜇𝑗))) still assuming that 𝑥𝑖 

for all 𝑖 ∈ [𝑠, 𝑡] are fixed accordingly. The node is again fathomed if 𝑈𝑗 ≤ 𝑃.  

If the node passes all five fathoming tests, two operations are completed. First, the 

node is added to the end of 𝑁(𝑠, 𝑡) to maintain the proper ordering of the list. Second, the 

value of 𝑃 is updated if the solution vector represented by the node (i.e. 𝑥𝑖 = 1 for all 𝑖 <

𝑠, 𝑥𝑖 = 0 for all 𝑖 > 𝑡, and 𝑥𝑖 is fixed for all 𝑖 ∈ [𝑠, 𝑡] based on the node’s path) is 

feasible and 𝑃𝑗 > 𝑃 or if the solution vector associated with 𝑈𝑗 is feasible and exceeds 𝑃. 

In such a situation, the new solution vector is tested for improvement by FEAS, 

REMREPL, and REMREPL2 to see if the lower bound can be improved further. 

The MERGE procedure terminates once all nodes in 𝑁′(𝑠, 𝑡) and 𝑁′′(𝑠, 𝑡) have been 

analyzed, fathomed, and added to 𝑁(𝑠, 𝑡). If MERGE terminates and 𝑁(𝑠, 𝑡) = ∅ or 𝑠 =

1 and 𝑡 = 𝑛′, then EXPCORE is complete as all possible paths within the tree have been 

fathomed or have reached their final leaf nodes. A graphical representation of EXPCORE 

and MERGE is shown in Figure 5 and the pseudocode for the procedure is provided in 

Appendix A along with the pseudocode for the procedures outlined in REDUCE. 



  107 

 

Figure 5. Flowchart of EXPCORE procedure 

 

4.5 DKPSOLVE algorithmic improvements 

While the presented DKPSOLVE procedure fully solves a DKP to optimality, several 

algorithmic improvements were added to improve the computational performance. These 

improvements are described in the next two subsections. 

 

4.5.1 CDKPSOLVE improvements 

When performing CDKPSOLVE, the proof in Theorem 2 calculated the median value 

in the remaining set Λ using the method from Blum et al. (1973). However, this method 



  108 

proved unsatisfactory with respect to overall solution time. Instead, each 𝜆 ∈ Λ was 

assigned to a storage bin based on its value rounded down to the nearest hundredth. 

Storage was allocated for rounded values from 0.00 to 100.00 and any 𝜆 ∈ Λ greater than 

100 was assigned to the last bin. Since fully sorting all elements of Λ into these bins 

would be inefficient, a doubly linked list was used to identify all of the elements of Λ in 

each bin. To best utilize this storage, (d) in CDKPSOLVE was replaced such that 

elements of Λ were tested until the true value of 𝜆̃ was known within a maximum range 

of ±0.5 (i.e. increasing/decreasing tested elements of Λ by 1.00 during each call). Once 

this range was determined, elements of Λ were tested until the true value of 𝜆̃ was known 

within a maximum range of ±0.01. This was accomplished by testing values at the 

midpoint of the current range until only two bins remained which were known to hold the 

true value of 𝜆̃. While computational complexity is difficult to determine for this process, 

this new procedure significantly improved performance in preliminary tests.  

To best track the maximum range on the true value of 𝜆̃ using this bin strategy, 

CDKPSOLVE was modified such that step (g) no longer removed elements from Λ. 

Instead, the maximum and minimum possible value for 𝜆̃ were tracked based on the 

returned values of 𝐿𝐻𝑆𝑀𝐼𝑁(𝜆) and 𝐿𝐻𝑆𝑀𝐴𝑋(𝜆). These limits were initialized as 0 and ∞ 

at the start of CDKPSOLVE. Furthermore, once the two bins were identified which held 

the true value for 𝜆̃, the median of the first three values in the bins which were between 

the current limits were tested next within CDKPSOLVE. Such an approach is similar to 

the technique used by Balas and Zemel (1980). 



  109 

After implementing this approach, preliminary computational tests identified that the 

repeated searches through Λ in CDKPSOLVE comprised a majority of the solution time 

for simpler test cases. To avoid such computational burden, all elements of Λ which were 

based on a variable 𝑖 were removed whenever 𝑖 was permanently discarded or fixed 

within the procedure. This occurred when an item was selected for reduction during 

REDUCE and when an item served as the branching criteria in EXPCORE. To ensure 

this removal was efficient, the location of each element in Λ based on each decision 

variable was tracked using doubly linked lists.  

To further improve the performance of CDKPSOLVE, elements of Λ were calculated 

and added as needed. Specifically, if all possible values within both aforementioned bins 

were tested and the optimal value had yet to be identified (only possible when all 

elements of Λ have not be added), then more values were added according to Lemma 2. 

To implement this procedure, Λ was initialized with 0 and all elements of (b) in Lemma 

2. To ensure that the most likely multipliers were added to Λ as early as possible, the 

decision variables were reordered such that the pair of elements for the optimal 

calculation of (c) in Lemma 2 were at the beginning of this ordering prior to the first call 

of CDKPSOLVE. This is equivalent to identifying the two break items from the optimal 

CDKPSOLVE solution as these variables can be shown to provide the necessary (c) in 

Lemma 2.  

To identify these variables, the optimal 𝜆̃ and 𝜇 were estimated by alternatingly 

solving 𝐿𝑈𝑅(𝜆) and 𝐿𝑈𝐶(𝜇) where the ratio of the objective coefficient over the 

knapsack constraint coefficient of the break item from 𝐿𝑈𝑅(𝜆) was used as the next 

multiplier when solving 𝐿𝑈𝐶(𝜇) and the ratio of the objective coefficient over the 



  110 

demand constraint coefficient of the break item from 𝐿𝑈𝐶(𝜇) was used as the next 

multiplier when solving 𝐿𝑈𝑅(𝜆). This alternating process was started by solving 𝐿𝑈𝑅(0). 

The estimates obtained during this process will approach the optimal 𝜆̃ and 𝜇. Within this 

implementation, this alternating procedure was stopped once the pair of break items 

identified in the current solution of  𝐿𝑈𝑅(𝜆) and 𝐿𝑈𝐶(𝜇) equaled the same break items in 

the prior pair of solutions. With these estimates of 𝜆̃ and 𝜇, the efficiency measures for 

each variable were estimated and were sorted such that those which were closest to 1 

were listed first. Hence, if 𝜆̃ and 𝜇 were estimated exactly, the break items will be the 

first two items in this list and the first element added to Λ will be the optimal multiplier 

needed for the first call to CDKPSOLVE. This reordering only occurs once prior to the 

first call of REDUCE. 

The final improvement to the CDKPSOLVE procedure was in regards to step (b) 

which recommends solving 𝐿𝑈𝑅(𝜆) by initializing 𝜆 = 0. However, it was more efficient 

to initialize 𝜆 to the last known optimal multiplier if one was available. During the 

Reduction phase, this was equal to the optimal 𝜆̃ identified from the prior call to 

CDKPSOLVE. During the Expanding Core phase, the optimal multiplier 𝜆𝑗 for a node 𝑗 

is specific to the node. Hence, CDKPSOLVE initialized 𝜆 equal to the optimal multiplier 

of the parent node. This tends to be efficient as a child node will often share the same or 

similar multiplier value as the parent node. 

 

4.5.2 EXPCORE improvements 

The only Expanding Core procedure improvement made was to avoid the fathoming 

tests which require duplicate calculations. For instance, assume that for any node in the 



  111 

branch-and-bound tree, the fourth fathoming test, solving CDKPSOLVE with items 𝑠 

through 𝑡 fixed, and the fifth fathoming test, calculating all binary Lagrangian and 

surrogate relaxations, identified that item 𝑥𝑠−1 = 1 in all four solutions and the node is 

unfathomed. Assuming that item 𝑠 − 1 is branched in the next level of the tree, 

completing the fourth and fifth fathoming tests for the child node in 𝑁′(𝑠, 𝑡) of this 

parent node will result in the same solutions. To avoid these duplicate calculations, each 

time an unfathomed node passes the fourth and fifth fathoming tests, each of the four 

solutions are analyzed and the largest index 𝑠′ < 𝑠 for which 𝑥𝑠′ ≠ 1 in any of the four 

solutions is recorded as well as the smallest index 𝑡′ > 𝑡 for which 𝑥𝑡′ ≠ 0. These values 

are then inherited by the offspring nodes in 𝑁′(𝑠, 𝑡) such that the fourth and fifth 

fathoming tests were only completed if 𝑠′ or 𝑡′ were the most recent branched items in the 

tree. 

 

4.6 DKPSOLVE computational tests 

DKPSOLVE was tested using randomly generated test cases since benchmark cases 

do not exist for the DKP. The algorithm was implemented in C++ and run on a 2.2 GHz 

processor with 8 GB of RAM. All test cases were also solved using commercial software, 

specifically IBM CPLEX version 12.6, as a comparison solution method. In total, seven 

different data Cases were generated for testing. These Cases were developed by applying 

common methodologies for generating test instances as seen in the two-constraint KP 

(Martello and Toth 2003) and binary KPs (Balas and Zemel 1980; Pisinger 1997; 

Martello, Pisinger, and Toth 1999). The seven data Cases were designed to test different 

levels of correlation between the constraint and objective coefficients: 



  112 

A: 𝑝𝑖, 𝑤𝑖, and 𝑣𝑖 are integer uniform random in [1, 𝑈], 

B: 𝑤𝑖, and 𝑣𝑖 are integer uniform random in [1, 𝑈] and 𝑝𝑖 is integer uniform random 

in [𝑤𝑖 − 𝑣𝑖 − 𝑈 5⁄ , 𝑤𝑖 − 𝑣𝑖 + 𝑈 5⁄ ] 

C: 𝑤𝑖, and 𝑣𝑖 are integer uniform random in [1, 𝑈] and 𝑝𝑖 is integer uniform random 

in [𝑤𝑖 − 𝑣𝑖 − 𝑈 20⁄ , 𝑤𝑖 − 𝑣𝑖 + 𝑈 20⁄ ] 

D: 𝑤𝑖, and 𝑝𝑖 are integer uniform random in [1, 𝑈] and 𝑣𝑖 is integer uniform random 

in [𝑈 − 𝑤𝑖, 𝑈 − 𝑤𝑖 + 𝑈 5⁄ ] 

E: 𝑤𝑖, and 𝑝𝑖 are integer uniform random in [1, 𝑈] and 𝑣𝑖 is integer uniform random 

in [𝑈 − 𝑤𝑖, 𝑈 − 𝑤𝑖 + 𝑈 20⁄ ] 

F: 𝑤𝑖, is integer uniform random in [1, 𝑈], 𝑣𝑖 is integer uniform random in 

[𝑈 − 𝑤𝑖, 𝑈 − 𝑤𝑖 + 𝑈 5⁄ ], and 𝑝𝑖 is integer uniform in [𝑤𝑖 − 𝑣𝑖 − 𝑈 5⁄ , 𝑤𝑖 − 𝑣𝑖 +

𝑈 5⁄ ] 

G: 𝑤𝑖, is integer uniform random in [1, 𝑈], 𝑣𝑖 is integer uniform random in 

[𝑈 − 𝑤𝑖, 𝑈 − 𝑤𝑖 + 𝑈 20⁄ ], and 𝑝𝑖 is integer uniform in [𝑤𝑖 − 𝑣𝑖 − 𝑈 20⁄ , 𝑤𝑖 −

𝑣𝑖 + 𝑈 20⁄ ]. 

Hence, Case A feature no coefficient correlations, Cases B and C have correlation 

between one constraint and the objective, Cases D and E have correlation between the 

constraints only, and Cases F and G have correlation between all coefficients.  

For these Cases, seven values of 𝑛 were tested (100, 500, 1000, 5000, 10000, 

50000, and 100000) and two values for 𝑈 were tested (100 and 1000). For each of 

these combinations, the constraint limits were calculated as 𝐶 = 𝑀 ∑ 𝑤𝑖
𝑛
𝑖=1  and 𝑅 =

0.5 ∑ 𝑣𝑖
𝑛
𝑖=1 . For all test combinations, three possible values of 𝑀 were tested (0.25, 0.45, 

and 0.65). The combinations of Case, 𝑛, 𝑈, and 𝑀 are hereafter referred to as the test 



  113 

combinations. For each test combination, 10 data instances were generated. Each instance 

had a time limit of 600 seconds for both solution methods. The only other parameter is 𝑎 

which was set to 1000 for all test combinations as preliminary testing identified this 

setting provided satisfactory results.  

The results from these tests are shown in Table 9 through Table 13. For the first three 

of these tables, any entries in bold represent test combinations in which DKPSOLVE 

outperformed CPLEX for the indicated measure. Table 9 provides a pairwise comparison 

between CPLEX and DKPSOLVE by counting the number of instances in which 

DKPSOLVE terminated equal to or faster than CPLEX within the timing tolerances. If all 

of the ten test instances were not solved within the time limit by either solution technique, 

the quantity of instances whose optimal solution is guaranteed is indicated in parentheses. 

Table 10 and Table 11 show the average and median solution time for each test 

combination solved by DKPSOLVE respectively. The same measures for CPLEX are 

shown in both tables in parentheses. Note that the instances which terminated due to the 

time limit are also included in the measures for Table 10 and Table 11. Finally, Table 12 

provides the average absolute difference between the solution at the end of the Reduction 

phase (i.e. 𝑃) and the optimal solution while Table 13 provides the average percentage of 

the total time DKPSOLVE required for the Reduction phase for each test combination. If 

the optimal solution is not guaranteed (as noted by the count of instances in Table 9 

shown in parentheses), the calculations in Table 12 use the best known solution at 

termination. This is likely the optimal or near optimal solution, but it cannot be 

guaranteed. 

  



  114 

Table 9. The count of test instances DKPSOLVE terminated simultaneously or prior to 

CPLEX. 

𝐶𝑎𝑠𝑒, 𝑈, 𝑀\𝑛  100 500 1000 5000 10000 50000 100000 

(A, 100, 0.25) 10 10 10 10 10 6 8 

(B, 100, 0.25) 10 10 10 10 10 5 6 

(C, 100, 0.25) 10 10 10 6 6 10 9 

(D, 100, 0.25) 8 9 9 8 8 3 2 

(E, 100, 0.25) 9 10 10 3 (6) 3 (7) 2 (7) 0 (9) 

(F, 100, 0.25) 6 9 6 8 8 3 0 

(G, 100, 0.25) 10 3 (3) 2 (3) 0 (8) 0 (8) 1 0 

(A, 100, 0.45) 10 10 10 9 10 10 10 

(B, 100, 0.45) 10 10 10 9 7 6 7 

(C, 100, 0.45) 9 10 9 7 8 9 10 

(D, 100, 0.45) 10 10 9 10 6 4 8 

(E, 100, 0.45) 10 10 9 9 9 6 2 (7) 

(F, 100, 0.45) 8 8 9 4 7 2 1 

(G, 100, 0.45) 4 (4) 4 (9) 1 (3) 1 (8) 0 (9) 0 0 

(A, 100, 0.65) 10 10 10 10 10 10 10 

(B, 100, 0.65) 10 10 10 10 7 7 8 

(C, 100, 0.65) 10 10 10 6 8 7 7 

(D, 100, 0.65) 10 10 10 10 10 10 10 

(E, 100, 0.65) 10 10 10 8 9 10 10 

(F, 100, 0.65) 9 9 6 4 2 2 3 

(G, 100, 0.65) 8 (8) 6 (7) 5 (6) 3 (6) 2 (8) 0 0 

(A, 1000, 0.25) 10 10 10 10 10 10 2 

(B, 1000, 0.25) 9 10 10 10 8 9 5 

(C, 1000, 0.25) 10 10 9 9 10 9 5 

(D, 1000, 0.25) 9 4 6 9 (9) 7 (7) 4 (9) 3 (9) 

(E, 1000, 0.25) 10 10 6 (7) 3 (3) 2 (2) 2 (3) 0 (3) 

(F, 1000, 0.25) 10 8 10 8 (9) 10 7 (8) 6 (9) 

(G, 1000, 0.25) 1 (2) 2 (2) 4 (4) 3 (4) 2 (3) 2 (4) 0 (4) 

(A, 1000, 0.45) 10 9 9 9 10 2 0 

(B, 1000, 0.45) 9 9 10 10 9 9 6 

(C, 1000, 0.45) 9 10 10 10 10 9 7 

(D, 1000, 0.45) 10 8 9 5 7 2 0 

(E, 1000, 0.45) 9 8 7 6 (7) 2 (2) 0 (4) 1 (4) 

(F, 1000, 0.45) 6 9 8 (9) 10 9 (9) 5 (7) 4 (9) 

(G, 1000, 0.45) 2 (2) 2 (3) 1 (1) 5 (5) 2 (2) 2 (2) 1 (5) 

(A, 1000, 0.65) 10 10 10 10 10 10 10 

(B, 1000, 0.65) 10 10 10 10 10 9 5 

(C, 1000, 0.65) 8 9 10 10 8 8 8 

(D, 1000, 0.65) 10 10 10 10 10 10 10 

(E, 1000, 0.65) 10 10 10 10 10 10 10 

(F, 1000, 0.65) 6 9 9 (9) 9 (9) 8 (9) 5 (7) 2 (6) 

(G, 1000, 0.65) 5 (5) 4 (4) 1 (1) 4 (4) 3 (4) 0 (0) 0 (0) 

 



  115 

Table 10. The ratio of the average algorithmic termination time for CPLEX over the 

average algorithm termination time for DKPSOLVE. 

𝐶𝑎𝑠𝑒, 𝑈, 𝑀\𝑛  100 500 1000 5000 10000 50000 100000 

(A, 100, 0.25) 12.71 5.21 4.95 4.13 3.00 0.31 0.50 

(B, 100, 0.25) 3.81 6.45 4.78 4.50 4.05 0.47 0.13 

(C, 100, 0.25) 5.60 10.63 5.66 0.68 0.02 12.01 0.72 

(D, 100, 0.25) 1.33 6.70 1.39 0.76 1.18 0.39 0.10 

(E, 100, 0.25) 1.45 3.53 5.15 1.10 1.22 0.78 0.29 

(F, 100, 0.25) 0.76 2.45 0.28 1.61 0.03 0.03 0.02 

(G, 100, 0.25) 1.83 1.07 1.12 0.41 0.65 0.01 0.01 

(A, 100, 0.45) 11.12 10.62 4.88 2.04 2.85 32.68 13.55 

(B, 100, 0.45) 3.18 4.76 7.78 1.70 0.44 0.05 0.10 

(C, 100, 0.45) 2.50 5.52 4.29 0.31 0.82 3.55 17.00 

(D, 100, 0.45) 10.69 2.01 1.28 6.77 0.71 0.40 0.52 

(E, 100, 0.45) 17.39 2.18 17.66 43.22 6.20 3.89 0.93 

(F, 100, 0.45) 1.22 0.97 1.47 0.09 0.31 0.02 0.02 

(G, 100, 0.45) 1.25 0.94 0.89 0.46 0.15 0.01 0.00 

(A, 100, 0.65) 806.00 206.50 303.33 64.90 66.76 67.85 94.37 

(B, 100, 0.65) 3.23 6.75 5.63 2.57 1.00 0.25 0.09 

(C, 100, 0.65) 3.90 7.73 4.67 0.20 0.21 0.03 0.05 

(D, 100, 0.65) 708.00 150.80 110.38 84.81 68.56 70.70 89.82 

(E, 100, 0.65) 229.67 789.00 217.25 1.57 0.57 79.50 73.91 

(F, 100, 0.65) 1.25 1.75 0.30 0.42 0.11 0.01 0.02 

(G, 100, 0.65) 1.50 1.38 1.00 0.75 0.62 0.01 0.00 

(A, 1000, 0.25) 6.49 3.37 2.69 3.53 2.98 2.38 0.94 

(B, 1000, 0.25) 1.60 3.34 3.90 9.37 3.40 2.87 1.22 

(C, 1000, 0.25) 2.19 3.99 4.12 8.04 11.54 2.87 0.90 

(D, 1000, 0.25) 0.85 0.68 1.89 1.09 1.08 1.02 1.50 

(E, 1000, 0.25) 2.78 9.94 1.59 1.00 1.01 1.12 0.87 

(F, 1000, 0.25) 1.59 1.36 2.50 1.18 5.92 1.60 1.11 

(G, 1000, 0.25) 1.07 1.02 1.02 1.06 1.02 0.96 0.87 

(A, 1000, 0.45) 17.78 2.71 2.03 1.85 2.07 0.64 0.24 

(B, 1000, 0.45) 2.00 2.55 3.27 6.94 5.40 3.38 1.46 

(C, 1000, 0.45) 2.67 5.60 4.51 12.55 10.38 2.75 1.83 

(D, 1000, 0.45) 12.09 1.35 2.26 0.99 0.61 0.88 0.18 

(E, 1000, 0.45) 3.93 1.06 2.36 1.32 1.04 0.99 0.97 

(F, 1000, 0.45) 1.59 1.48 1.23 7.88 1.82 1.05 0.78 

(G, 1000, 0.45) 1.06 0.96 1.00 1.25 1.00 1.10 0.86 

(A, 1000, 0.65) 843.00 762.00 122.38 46.38 21.14 7.67 9.54 

(B, 1000, 0.65) 2.20 2.52 4.17 8.09 4.62 2.70 0.94 

(C, 1000, 0.65) 2.72 3.49 5.37 7.48 11.04 4.59 1.71 

(D, 1000, 0.65) 813.00 207.50 112.50 45.71 43.94 10.11 8.14 

(E, 1000, 0.65) 183.25 147.00 139.40 49.34 20.15 24.57 7.75 

(F, 1000, 0.65) 0.77 1.05 1.27 1.62 1.10 1.12 0.88 

(G, 1000, 0.65) 1.13 1.02 1.00 1.19 0.95 1.00 1.00 

 



  116 

Table 11. The ratio of the median algorithmic termination time for CPLEX over the 

median algorithm termination time for DKPSOLVE. 

𝐶𝑎𝑠𝑒, 𝑈, 𝑀\𝑛  100 500 1000 5000 10000 50000 100000 

(A, 100, 0.25) 13.94 5.96 4.85 3.70 2.68 2.35 19.35 

(B, 100, 0.25) 5.53 9.04 5.83 4.44 2.92 1.22 32.75 

(C, 100, 0.25) 8.41 11.53 8.53 7.75 2.02 28.67 18.04 

(D, 100, 0.25) 2.91 3.66 1.71 2.39 1.31 0.30 0.16 

(E, 100, 0.25) 2.28 2.22 2.58 1.78 0.91 0.09 0.01 

(F, 100, 0.25) 1.00 1.00 2.32 2.87 1.20 0.04 0.01 

(G, 100, 0.25) 3.89 1.00 1.00 0.09 0.02 0.01 0.00 

(A, 100, 0.45) 6.13 9.03 5.23 2.48 2.77 35.97 35.13 

(B, 100, 0.45) 4.15 6.93 8.32 3.31 1.43 7.89 34.59 

(C, 100, 0.45) 3.08 6.34 6.80 7.12 27.63 35.98 35.95 

(D, 100, 0.45) 10.50 6.39 3.91 2.11 1.93 0.35 25.45 

(E, 100, 0.45) 78.50 7.57 1.36 0.56 37.69 0.32 0.27 

(F, 100, 0.45) 1.09 9.42 4.54 0.22 0.98 0.05 0.01 

(G, 100, 0.45) 1.00 0.63 1.00 0.01 0.01 0.00 0.00 

(A, 100, 0.65) 8.15 8.15 8.90 127.00 87.20 73.38 96.15 

(B, 100, 0.65) 4.33 11.91 6.18 3.04 1.64 5.90 32.98 

(C, 100, 0.65) 5.54 11.25 7.66 3.86 8.50 2.37 40.50 

(D, 100, 0.65) 6.95 147.00 87.50 135.00 73.60 83.82 89.36 

(E, 100, 0.65) 6.85 4.60 8.40 30.14 71.67 83.64 73.22 

(F, 100, 0.65) 8.61 4.05 3.83 0.55 0.46 0.01 0.01 

(G, 100, 0.65) 3.16 4.55 0.22 0.62 0.20 0.01 0.00 

(A, 1000, 0.25) 6.47 3.99 2.32 4.84 3.67 1.99 0.68 

(B, 1000, 0.25) 2.15 3.16 4.50 15.57 5.10 2.61 1.61 

(C, 1000, 0.25) 3.87 4.88 4.86 8.15 12.34 4.48 1.03 

(D, 1000, 0.25) 8.49 0.87 0.79 3.2 1.32 0.98 0.51 

(E, 1000, 0.25) 3.88 11.61 1.80 1.00 1.00 1.00 1.00 

(F, 1000, 0.25) 2.47 5.42 2.23 5.33 24.39 4.85 1.36 

(G, 1000, 0.25) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

(A, 1000, 0.45) 98.33 5.75 2.56 1.92 2.48 0.54 0.26 

(B, 1000, 0.45) 2.26 4.01 3.36 10.52 6.75 3.43 1.71 

(C, 1000, 0.45) 2.24 4.50 8.65 19.99 9.70 2.79 1.62 

(D, 1000, 0.45) 7.90 8.50 4.22 0.80 1.73 0.41 0.19 

(E, 1000, 0.45) 12.36 3.82 0.95 1.56 1.00 1.00 1.00 

(F, 1000, 0.45) 0.48 5.65 1.55 7.18 3.84 1.01 1.80 

(G, 1000, 0.45) 1.00 1.00 1.00 1.54 1.00 1.00 0.95 

(A, 1000, 0.65) 8.20 7.60 89.50 34.88 25.21 9.08 8.04 

(B, 1000, 0.65) 1.97 4.33 6.16 11.45 5.21 2.80 0.83 

(C, 1000, 0.65) 3.12 4.51 12.40 5.08 12.00 4.62 1.36 

(D, 1000, 0.65) 7.30 7.65 95.50 43.00 57.40 12.90 9.51 

(E, 1000, 0.65) 7.25 5.85 140.00 38.50 19.06 31.72 10.00 

(F, 1000, 0.65) 1.25 2.15 1.65 7.58 20.66 2.47 0.65 

(G, 1000, 0.65) 1.21 1.00 1.00 1.00 1.00 1.00 1.00 

 



  117 

Table 12. The average absolute difference between the known optimal/best solution and 

the solution upon termination of the Reduction phase. 

𝐶𝑎𝑠𝑒, 𝑈, 𝑀\𝑛  100 500 1000 5000 10000 50000 100000 

(A, 100, 0.25) 6 4 5 1 1 0 0 

(B, 100, 0.25) 7 7 6 2 2 1 1 

(C, 100, 0.25) 8 4 1 1 1 0 2 

(D, 100, 0.25) 4 4 8 5 5 5 3 

(E, 100, 0.25) 2 3 1 3 3 6 7 

(F, 100, 0.25) 33 23 18 17 17 18 18 

(G, 100, 0.25) 13 24 26 24 24 33 55 

(A, 100, 0.45) 2 1 1 1 0 0 0 

(B, 100, 0.45) 10 6 6 1 2 0 0 

(C, 100, 0.45) 4 4 2 1 0 0 0 

(D, 100, 0.45) 1 1 1 1 1 0 0 

(E, 100, 0.45) 2 0 0 0 0 0 1 

(F, 100, 0.45) 22 19 13 16 14 14 25 

(G, 100, 0.45) 12 17 29 19 24 40 32 

(A, 100, 0.65) 0 0 0 0 0 0 0 

(B, 100, 0.65) 6 5 4 1 0 0 3 

(C, 100, 0.65) 6 3 3 0 0 9 3 

(D, 100, 0.65) 0 0 0 0 0 0 0 

(E, 100, 0.65) 0 0 0 0 0 0 0 

(F, 100, 0.65) 18 18 18 15 10 9 15 

(G, 100, 0.65) 7 15 17 28 46 83 31 

(A, 1000, 0.25) 101 47 69 37 28 21 11 

(B, 1000, 0.25) 126 78 49 24 22 16 12 

(C, 1000, 0.25) 86 44 32 25 15 12 7 

(D, 1000, 0.25) 47 90 89 56 80 53 47 

(E, 1000, 0.25) 48 20 26 44 61 54 64 

(F, 1000, 0.25) 201 147 299 74 73 167 137 

(G, 1000, 0.25) 142 196 201 217 214 151 152 

(A, 1000, 0.45) 25 19 16 10 9 5 4 

(B, 1000, 0.45) 139 66 51 31 21 12 14 

(C, 1000, 0.45) 63 38 32 18 17 9 7 

(D, 1000, 0.45) 7 5 9 17 8 16 8 

(E, 1000, 0.45) 19 3 6 7 6 8 6 

(F, 1000, 0.45) 185 248 209 131 121 211 105 

(G, 1000, 0.45) 102 198 223 150 262 200 144 

(A, 1000, 0.65) 0 0 0 0 0 0 0 

(B, 1000, 0.65) 151 57 52 29 22 14 14 

(C, 1000, 0.65) 68 50 30 19 16 10 6 

(D, 1000, 0.65) 0 0 0 0 0 0 0 

(E, 1000, 0.65) 0 0 0 0 0 0 0 

(F, 1000, 0.65) 146 137 204 156 92 118 167 

(G, 1000, 0.65) 79 167 273 204 162 203 197 



  118 

Table 13. The average time ratio of the Reduction phase of DKPSOLVE over the 

complete DKPSOLVE time. 

𝐶𝑎𝑠𝑒, 𝑈, 𝑀\𝑛  100 500 1000 5000 10000 50000 100000 

(A, 100, 0.25) 0.28 0.29 0.35 0.83 0.85 0.25 0.36 

(B, 100, 0.25) 0.09 0.29 0.29 0.63 0.85 0.39 0.15 

(C, 100, 0.25) 0.08 0.53 0.37 0.08 0.01 1.00 0.59 

(D, 100, 0.25) 0.05 0.00 0.01 0.04 0.51 0.26 0.30 

(E, 100, 0.25) 0.06 0.01 0.00 0.00 0.00 0.02 0.09 

(F, 100, 0.25) 0.00 0.00 0.00 0.19 0.01 0.04 0.09 

(G, 100, 0.25) 0.00 0.00 0.00 0.00 0.00 0.03 0.12 

(A, 100, 0.45) 0.54 0.85 0.70 0.98 0.99 1.00 1.00 

(B, 100, 0.45) 0.05 0.20 0.39 0.31 0.13 0.04 0.13 

(C, 100, 0.45) 0.03 0.19 0.25 0.04 0.15 0.88 1.00 

(D, 100, 0.45) 0.57 0.12 0.06 0.17 0.33 0.99 0.97 

(E, 100, 0.45) 0.65 0.13 0.02 0.15 0.01 0.11 0.13 

(F, 100, 0.45) 0.00 0.00 0.00 0.00 0.02 0.06 0.12 

(G, 100, 0.45) 0.00 0.00 0.00 0.00 0.00 0.02 0.10 

(A, 100, 0.65) 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

(B, 100, 0.65) 0.09 0.26 0.41 0.63 0.28 0.21 0.10 

(C, 100, 0.65) 0.04 0.33 0.27 0.03 0.04 0.03 0.09 

(D, 100, 0.65) 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

(E, 100, 0.65) 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

(F, 100, 0.65) 0.00 0.00 0.00 0.03 0.02 0.04 0.14 

(G, 100, 0.65) 0.00 0.00 0.00 0.00 0.00 0.04 0.12 

(A, 1000, 0.25) 0.06 0.15 0.08 0.08 0.13 0.77 0.92 

(B, 1000, 0.25) 0.03 0.03 0.02 0.10 0.10 0.56 0.61 

(C, 1000, 0.25) 0.01 0.01 0.01 0.06 0.17 0.43 0.27 

(D, 1000, 0.25) 0.02 0.00 0.00 0.00 0.00 0.05 0.31 

(E, 1000, 0.25) 0.11 0.00 0.00 0.00 0.00 0.02 0.06 

(F, 1000, 0.25) 0.00 0.00 0.00 0.00 0.05 0.07 0.24 

(G, 1000, 0.25) 0.00 0.00 0.00 0.00 0.00 0.02 0.08 

(A, 1000, 0.45) 0.60 0.21 0.22 0.71 0.56 0.97 0.98 

(B, 1000, 0.45) 0.01 0.01 0.01 0.06 0.12 0.75 0.65 

(C, 1000, 0.45) 0.00 0.01 0.01 0.10 0.12 0.31 0.59 

(D, 1000, 0.45) 0.70 0.07 0.31 0.01 0.09 0.05 0.63 

(E, 1000, 0.45) 0.21 0.07 0.02 0.00 0.00 0.02 0.07 

(F, 1000, 0.45) 0.00 0.00 0.00 0.02 0.00 0.04 0.18 

(G, 1000, 0.45) 0.00 0.00 0.00 0.00 0.00 0.02 0.09 

(A, 1000, 0.65) 1.00 1.00 1.00 0.97 1.00 1.00 1.00 

(B, 1000, 0.65) 0.04 0.02 0.03 0.12 0.16 0.72 0.76 

(C, 1000, 0.65) 0.00 0.01 0.01 0.08 0.19 0.52 0.42 

(D, 1000, 0.65) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

(E, 1000, 0.65) 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

(F, 1000, 0.65) 0.00 0.00 0.00 0.00 0.01 0.08 0.16 

(G, 1000, 0.65) 0.00 0.00 0.00 0.00 0.00 0.02 0.10 



  119 

It is important to note that not all elements of Λ were stored when 𝑛 = 50000 or 𝑛 =

100000 due to memory limitations. During these tests, as many elements of Λ were 

stored as possible, but if additional values were needed for investigation in 

CDKPSOLVE, they were recalculated as necessary but not permanently stored. This lead 

to repeated calculations which worsened algorithmic performance. Hence, the results 

from these values of 𝑛 are expected to provide poor results and are likely to not be fully 

competitive with CPLEX. The only method to address this issue is to increase the 

availability memory on the computer implementing DKPSOLVE.  

 

4.7 Discussion 

The results from Table 9 demonstrate that DKPSOLVE outperforms CPLEX in a 

majority of the test combinations. Specifically, 84.4% of all test combinations from Table 

9 indicate that DKPSOLVE is the preferred solution method as opposed to using CPLEX. 

(indicated by the bolded test combinations in Table 9). If all of the test combinations with 

50000 or 100000 variables are excluded, this performance increases to 94.3%. These 

results clearly demonstrate DKPSOLVE is preferred for problems where all element of Λ 

can be stored.  

Also shown in Table 9 is that 80.3% of the 𝑈 = 100 test combinations had a majority 

of their test instances solved faster with DKPSOLVE while 88.4% of the 𝑈 = 1000 test 

combinations were solved faster with DKPSOLVE. Furthermore, if the test combinations 

with 50000 or 100000 variables are excluded, 99.1% of the 𝑈 = 1000 test combinations 

outperformed CPLEX. Hence, DKPSOLVE’s performance over CPLEX improved as the 

coefficient range increased. This result is most likely because larger coefficient ranges 



  120 

imply the elements of Λ are more diverse. Therefore, there are less elements per bin 

(rounded to the nearest hundredth) for CDKPSOLVE to analyze which improves overall 

performance. Larger values of 𝑈 are recommended for future testing to determine if this 

trend continues.  

With respect to coefficient correlations, 84.9% of the test combinations for test Cases 

B, D, and F had a majority of their test instances solved faster with DKPSOLVE while 

only 81.0% of the test combinations for test Cases C, E, and G had a majority of their test 

instances solved faster with DKPSOLVE. Hence, as the coefficient correlation increases, 

DKPSOLVE performance degrades. The likely cause of this performance is because less 

coefficient correlation implies less variability in the elements of Λ which requires more 

values to be tested within each call of CDKPSOLVE. Furthermore, all 100% of the test 

combinations for test Cases B and C, 82.1% of the test combinations for tests Cases D 

and E, and 66.7% of the test combinations for test Cases F and G were solved faster with 

DKPSOLVE than with CPLEX as measured by a pairwise comparison. Hence, 

DKPSOLVE is recommended for all but the most correlated test combinations. With 

respect to 𝑀, 82.7% of the test combinations where 𝑀 = 0.25, 80.6% of the test 

combinations where 𝑀 = 0.45, and 89.8% of the test combinations where 𝑀 = 0.65 had 

a majority of the test instances solved faster with DKPSOLVE than with CPLEX as 

measured by a pairwise comparison. These results demonstrate that once the knapsack 

constraint becomes easy to satisfy, the performance of DKPSOLVE improves. 

In Table 10 and Table 11, the aforementioned trends observed in Table 9 with respect 

to 𝑛, 𝑀, 𝑈, and Case are similarly demonstrated which further support the previously 

discussed findings and conclusions. The additional observation from Table 10 and Table 



  121 

11 is that DKPSOLVE is more likely to experience outliers with respect to solution time 

than CPLEX. Specifically, only 72.4% of the test combinations observed instances in 

which the average solution times from DKPSOLVE outperformed the average solution 

time from CPLEX. Note this percentage increases to 82.9% if the test combinations with 

𝑛 = 50000 and 𝑛 = 100000 are excluded. Comparatively, 84.4% of test combinations 

observed DKPSOLVE outperforming CPLEX in Table 9 (94.3% of the test combinations 

excluding 𝑛 = 50000 and 𝑛 = 100000) and 83.3% of the test combinations observed 

DKPSOLVE outperforming CPLEX with respect to median solution time in Table 11 

(90.5% of the test combinations excluding 𝑛 = 50000 and 𝑛 = 100000). Hence, 

DKPSOLVE is much more likely to experience outliers which negatively affect average 

solution times in comparison to CPLEX. The most likely cause of these outliers is that 

some instances are not able to determine a high quality value for 𝑃 (the lower bound) 

during the REDUCE procedure. If a loose value for 𝑃 is observed, than few of the 

variables will be reduced in that problem and more of the branch-and-bound tree will 

have to be investigated until this bound can be improved.  

The values in Table 12 provide the average absolute difference between 𝑃 at the end 

of the REDUCE Procedure and the best known solution. The absolute difference is 

utilized as the performance measure because the optimal objective values, especially for 

the highly correlated instances, are frequently negative. Test instances whose optimal 

solutions are close to zero will therefore have a higher percentage gap between these two 

values even though 𝑃 and the optimal solution are similar. Hence, average absolute 

difference is used so the results for a given 𝑈 and 𝑛 are directly comparable and avoid 

situations where the optimal objective is near zero. Note that the average percentage gap 



  122 

(not shown in any of the provided tables) is 2.01% for 𝑛 = 100, 0.30% for 𝑛 = 500, 

0.13% for 𝑛 = 1000, and 0.02% or less for all larger values of 𝑛. Hence, stopping the 

procedure after REDUCE is an extremely effective heuristic according to this measure.  

These percentage based results, as well as the absolute difference results shown in 

Table 12, demonstrate that as 𝑛 increases, the accuracy of REDUCE improves. With 

respect to 𝑀, the average absolute solution gap of 𝑃 at the end of the REDUCE phase is 

45.5 when 𝑀 = 0.25, 36.4 when 𝑀 = 0.45, and 32.7 when 𝑀 = 0.65. Hence, the 

performance of the REDUCE phase improves as the feasible region becomes larger. With 

respect to the different Cases, REDUCE performs worst under high levels of coefficient 

correlation as the average absolute gap is 96.8 for Case F and G test combinations 

compared with 20.5 for Case B and C test combinations and 11.6 for Case D and E test 

combinations. The good performance of the Case D and E test combinations are driven 

by the 𝑀 = 0.65 test combinations as all of these test instances were optimally solved 

within the REDUCE phase. 

Finally, the results from Table 13 show that 30% of the overall time is spent in the 

REDUCE phase on average. This further demonstrates the strength of using REDUCE as 

a heuristic. However, it should be noted that certain test combinations do require higher 

percentages of the overall time in the REDUCE phase. Specifically, as 𝑛 grows, the 

percentage of time spent in REDUCE increases. For instance, when 𝑛 = 50000 or 𝑛 =

100000, the average percentage of the overall time in the REDUCE phase is 40% and 

45% respectively while only 23% to 25% of the overall time is spent in the REDUCE 

phase for 𝑛 ≤ 1000. Similarly, for test combinations with Case D and E, an average 44% 

of the overall time is spent in the REDUCE procedure. This is significantly higher than 



  123 

Case B and C test combinations where only an average 24% of the overall time is spend 

in the REDUCE procedure and Case F and G test combinations where only an average 

3% of the overall time is spent in the REDUCE procedure. These results, along with 

those from Table 12, demonstrate that the REDUCE procedure is an extremely effective 

heuristic for the DKP which I believe to be one of the significant contributions of the 

work presented in this chapter. 

In summary, the DKPSOLVE procedure outperforms CPLEX on all measures for 

nearly all small to moderate size problem (i.e. 𝑛 ≤ 10000) when coefficient correlation 

is not severe. In all other situations, CPLEX is preferred, but DKPSOLVE is extremely 

competitive. The only challenge with DKPSOLVE is that it is much more sensitive to 

outliers which worsens average solution time. However, it is recommended that those 

seeking to solve any type of DKP implement DKPSOLVE on their systems as different 

implementation environments or hardware may improve DKPSOLVE’s performance.  

Furthermore, three avenues of future work are recommended. The first is to 

implement new test combinations such as using larger values of 𝑈 to observe if the trend 

of improving results continues with larger coefficient ranges. Secondly, new 

implementation and data structure techniques may further improve performance and 

should be investigated. Finally, it is recommended that new heuristic techniques be 

investigated to improve IMP, REMREPL, and REMREPL2. If these techniques are 

improved to find better lower bounds, the time required to solve DKP instances will 

decrease as more variables can be removed in the REDUCE procedure and the branch-

and-bound tree will be smaller in the EXPCORE procedure.  

 



  124 

4.8 Conclusion 

With respect to mobile retailers, the DKPSOLVE procedure is directly applicable 

assuming the retailer can model their product mix problem as a DKP. In that case, using 

DKPSOLVE is highly recommended, especially as it does not require the use of 

commercial software and can be provided as a ‘black box’ whose inputs can be easily 

provided by any basic user.  

Furthermore, a mobile food retailer may be able to simplify their product mix 

decision in the case that they cannot initially model it as a DKP. For instance, a retailer 

may want to require their stocked mix to meet a required profit margin and to exceed a 

given nutritional threshold. This would require two demand constraints and an MDMKP 

formulation. However, it may be advisable to instead use a multi-objective approach 

where one of the demand constraints becomes a second objective function. By testing 

multiple convex combinations of the two objectives, a solution which is feasible to the 

initial two demand constraint problem can be identified which is likely to be close to the 

optimal solution. The advantage of this approach is that it will still provide a high quality 

solution while utilizing a more accessible solution technique. This type of approach will 

be shown as one part of the case study detailed in Chapter 7.  

In summary, the DKP and the DKPSOLVE procedure can aid a mobile food retailer 

plan their product mix to make better stocking decision. Furthermore, depending on the 

goals of the retailer, the DKP can be tailored to increase the profitability of the mobile 

retailer thereby increasing their economic sustainability as shown by the case study in 

Chapter 7. The disadvantage of the DKP, in comparison to the MDMKP, is that it places 

much more stringent requirements on the mobile retailer with respect to what they can 



  125 

include in the DKP model. However, if the mobile retailer is able to utilize the DKP, the 

DKPSOLVE procedure provides a guaranteed optimal solution faster than using 

MDMKP solution algorithms and DKPSOLVE does not need commercial software.  



  126 

CHAPTER 5 

AN EXACT SOLUTION ALGORITHM FOR THE MOBILE RETAILER ROUTING 

PROBLEM 

Within this chapter, a solution procedure is provided to determine the optimal routing 

and scheduling plan for a mobile food retailer. This operational decision is modeled as a 

CCVRP based on the discussion in Chapter 2. In this problem, it is assumed that the 

retailer manages any number of vehicles which must start and end their routes at a given 

depot and the vehicles makes connected cycles through the service network. The possible 

stop locations and the demand at each location is known when scheduling the vehicles 

and each vehicle has a homogeneous limit on the demand it can serve. The unique 

element of this problem is that it is assumed that demand/customers at one location may 

be willing to travel to a nearby location so long as the distance or time required to travel 

that distance is below a given threshold. For an urban mobile food retailer, this is a valid 

assumption as potential service locations for the vehicle may be within close proximity 

(e.g. within 400 meters) of one another. This is especially relevant for food desert 

communities as low-income customers are price conscious (Kaufman et al. 1997; 

Andreyeva et al. 2008) and would be willing to travel small distances assuming the 

mobile food retailer has grocery items which are priced competitively compared with 

traditional grocery stores.  

Unique solution algorithms are needed for the CCVRP as this type of problem has 

rarely been addressed. As discussed in Chapter 2, problems similar to the CCVRP have 

only been solved twice. The first was only able to solve instances up to 35 customers 

exactly and the second modeled demand as a continuous function. Hence, the latter is not 



  127 

directly applicable to the issues faced by mobile food retailers while the former may be 

outperformed by an improved algorithm. The purpose of this chapter is to introduce a 

new exact solution algorithm for the CCVRP. A large set of computational experiments 

are conducted and the results from these tests are discussed along with recommended 

uses of the exact solution algorithm for mobile food retailers. 

 

5.1 The set covering CCVRP 

The formulation of the CCVRP is as follows. Let the indexed set of 𝑛 customers and 

the depot be denoted as 𝑉 = {0,1,2, … , 𝑛} where 0 denotes the vehicle depot. Let the set 

of 𝑛 customers, excluding the depot, be denoted as 𝑉′ = 𝑉\{0}. For each customer 𝑖 ∈

𝑉′, let 𝑑𝑖 ≥ 0 indicate the demand which must be serviced and let 𝑏𝑖𝑗 ∈ {0,1} be the 

binary indicator if customer 𝑖 can have their demand serviced from a vehicle visiting 

customer 𝑗 ≠ 𝑖. For each pair (𝑖, 𝑗) ∈ 𝑉, let 𝑡𝑖𝑗 be the cost of traveling between the two 

locations. This cost is typically defined by the network or Euclidean distance, but can be 

altered to factor in costs such as fuel and roadway charges. It is assumed there are 𝐾 

vehicles, indexed as 1 through 𝐾, which have to be used and each vehicle is homogenous 

with a demand capacity of 𝐶. Clearly 𝑑𝑖 ≤ 𝐶 since any violation makes the problem 

infeasible. 

The CCVRP requires two sets of decision variables. Specifically, let 

𝑥𝑖𝑗𝑘 = {
1 if vehicle 𝑘 traverses between location 𝑖 and location 𝑗,
0 otherwise

 

for each customer pair (𝑖, 𝑗) ∈ 𝑉 and each vehicle 𝑘 ∈ 𝐾. Additionally, let  

𝑦𝑖𝑘 = {
1 if customer 𝑖 has demand serviced from vehicle 𝑘,
0 otherwise

 



  128 

for each customer 𝑖 ∈ 𝑉′ and each vehicle 𝑘 ∈ 𝐾. Given these variables, the standard 

CCVRP formulation (hereafter referred to as 𝑃) seeks to  

(𝑃) Minimize: ∑ (𝑡𝑖𝑗 ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾 )(𝑖,𝑗)∈𝑉   (5-1) 

subject to 

∑ 𝑥𝑗𝑖𝑘
𝑖−1
𝑗=0 + ∑ 𝑥𝑗𝑖𝑘

𝑛
𝑗=𝑖+1 = ∑ 𝑥𝑖𝑗𝑘

𝑖−1
𝑗=0 + ∑ 𝑥𝑖𝑗𝑘

𝑛
𝑗=𝑖+1         ∀ 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾,  (5-2) 

∑ 𝑥0𝑗𝑘𝑗∈𝑉′ = 1        ∀ 𝑘 ∈ 𝐾, (5-3) 

∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 ≤ |𝑆| − 1        ∀ 𝑆 ⊆ 𝑉′, 𝑘 ∈ 𝐾,  (5-4) 

𝑦𝑖𝑘 ≤ ∑ 𝑏𝑖𝑗(∑ 𝑥𝑗𝑖′𝑘
𝑗−1
𝑖′=0 + ∑ 𝑥𝑗𝑖′𝑘

𝑛
𝑖′=𝑗+1 )𝑗∈𝑉′         ∀ 𝑖 ∈ 𝑉′, 𝑘 ∈ 𝐾,  (5-5) 

𝑦𝑖𝑘 = ∑ 𝑥𝑖𝑗𝑘
𝑖−1
𝑗=0 +  ∑ 𝑥𝑖𝑗𝑘

𝑛
𝑗=𝑖+1        ∀ 𝑖 ∈ 𝑉′, 𝑘 ∈ 𝐾,  (5-6) 

∑ 𝑑𝑖𝑦𝑖𝑘𝑖∈𝑉′ ≤ 𝐶        ∀ 𝑘 ∈ 𝐾,  (5-7) 

∑ 𝑦𝑖𝑘𝑘∈𝐾 ≥ 1        ∀ 𝑖 ∈ 𝑉′,  (5-8) 

𝑥𝑖𝑗𝑘 ∈ {0,1}        ∀ (𝑖, 𝑗) ∈ 𝑉, 𝑘 ∈ 𝐾,  (5-9) 

𝑦𝑖𝑘 ∈ {0,1}        ∀ 𝑖 ∈ 𝑉′, 𝑘 ∈ 𝐾.  (5-10) 

The goal of 𝑃 is to minimize the total routing cost of all vehicles as expressed by (5-1). 

This is constrained by the traditional VRP constraint sets (5-2) through (5-4) which 

respectively ensures that vehicle flow is conserved, that all vehicles must leave the depot, 

and that complete routes which omit the depot are not permitted (i.e. subtours are not 

permitted). Constraint set (5-5) ensures that a vehicle cannot satisfy the demand of a 

customer unless it stops at another location in the service radius of that customer. 

Constraint set (5-6) forces any vehicle which stops at a customer to service that 

customer’s demand. This requirement was added to the CCVRP as a customer which has 

a vehicle visit its location, but not service its demand is unrealistic with respect to typical 



  129 

operating conditions. Applications where this is not true can remove these constraints 

without heavy modifications to the solution procedure. Constraint sets (5-7) and (5-8) 

respectively guarantee no vehicle’s capacity is exceeded and that all customers are served 

while constraint sets (5-9) and (5-10) ensure that all variables are binary. 

To solve this problem optimally, a column generation technique was implemented. 

This approach was selected because incorporating the covering mechanic into the route 

generation procedure would be algorithmically simple and it would be easy to modify the 

approach to fit the needs of any mobile food retailer such as retailers which cannot satisfy 

all community demand or retailers who want to penalize sales if they are served at a 

distance. To use column generation, the CCVRP (or CVRP in the case of the cited 

literature) is transformed into an equivalent set-covering problem such that each variable 

represents a feasible vehicle route and covering plan. In the case of the CVRP, each 

variable only represents a feasible vehicle route. The problem is initially solved over a 

small set of these routes, but more are generated as needed until an optimal solution is 

obtained. Within the presented algorithm, routes are generated using a branch-and-bound 

approach similar to Agarwal, Mathur, and Salkin (1989). 

Using this framework to create routes, optimality for the integer problem can be 

achieved via a branch-and-price methodology. In this approach, some aspect of the 

problem (e.g. an edge in the network) serves as the branching criteria and a relaxed 

version of the problem, typically the linear relaxation given the current branching, is 

solved. During this solution process, more routes are generated as needed. If this 

relaxation has a higher objective than the current best binary problem, the node is 

fathomed. The binary problem is solved via branch-and-price once all nodes are 



  130 

fathomed and the best binary solution identified is therefore optimal. This method was 

made most popular by Desrochers, Desrosiers, and Solomon (1992) who solved a CVRP 

with time windows via this methodology. 

To solve the CCVRP using a column generation approach, 𝑃 must be transformed 

into an equivalent set-covering formulation. Let ℛ = {1,2, … , 𝑅} represent the complete 

set of feasible routes. These routes must start and end at the depot and included the 

complete routing and covering plan such that the covering does not exceed 𝐶 and all 

customers directly visited on the route are serviced in the covering plan. For all 𝑟 ∈ ℛ, let 

𝑇𝑟 ⊆ 𝑉 represent the ordered set of customers and the depot along the routing plan for 

route 𝑟 and let 𝑆𝑟 ⊆ 𝑉′ represent the customers in the covering plan for route 𝑟. Clearly 

𝑇𝑟\{0} ⊆ 𝑆𝑟 due to constraint set (5-6). Let 𝑐𝑟 be the cost of route 𝑟 which is the 

summation of edge costs 𝑡𝑖𝑗 for traveling along the cycle indexed by 𝑇𝑟. In addition, 

define 

𝛽𝑖𝑟 = {
1 if customer 𝑖 is covered by route 𝑟,
0 otherwise

 

for each customer 𝑖 ∈ 𝑉′ and each route 𝑟 ∈ ℛ and define 

𝑧𝑟 = {
1 if route 𝑟 in the optimal solution,
0 otherwise

 

for each route 𝑟 ∈ ℛ. 

The goal of the set-covering formulation (hereafter referred to as 𝑆𝐶) is to select a set 

of routes such the total cost of the routes is minimal but all customers have their demand 

satisfied. The formulation is 

(SC) Minimize: ∑ 𝑐𝑟𝑧𝑟𝑟∈ℛ   (5-11) 

subject to 



  131 

∑ 𝛽𝑖𝑟𝑧𝑟𝑟∈ℛ ≥ 1        ∀ 𝑖 ∈ 𝑉′,  (5-12) 

∑ 𝑧𝑟𝑟∈ℛ = 𝐾,  (5-13) 

𝑧𝑟 ∈ {0,1}        ∀ 𝑟 ∈ ℛ.  (5-14) 

Constraint set (5-12) of 𝑆𝐶 ensures that all customers are included at least once among 

the selected routes, similar to constraint set (5-8) in 𝑃, while constraint (5-13) requires all 

𝐾 vehicles to be used for routing. Constraint set (5-14) ensures that all variables are 

binary. It is clear that 𝑆𝐶 and 𝑃 will provide the same optimal solution assuming the 

triangle inequality holds for all 𝑡𝑖𝑗.  

The challenge with solving the 𝑆𝐶 problem is that including all possible routes in ℛ is 

impossible. Instead, columns are generated as needed using a branch-and-price approach 

similar to Agarwal, Mathur, and Salkin (1989) within a branch-and-price tree. This 

complete process works as follows. Initially, the lower bound of the root node in the 

branch-and-price tree is calculated as the solution to the linear relaxation of the 𝑆𝐶 

problem. If this solution is binary, the 𝑆𝐶 problem is optimally solved. Otherwise, a 

starting binary solution is obtained which serves as the first upper bound in the branch-

and-price tree. Furthermore, the cumulative travel along some edge 𝑒 ∈ 𝐸, where 𝐸 is the 

set of all edges in the network, must be fractional and the branch-and-price tree 

commences by branching upon the respective inclusion/exclusion of some fractional edge 

in the optimal 𝑆𝐶 solution.  

For each node in the branch-and-price tree, the linear relaxation of 𝑆𝐶 is solved 

assuming the edge requirements/restrictions are enforced. Hence, denote the linear 

relaxation problem as 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) (Relaxed Linear Set Covering) where 𝐸1 ⊆ 𝐸 and 

𝐸0 ⊆ 𝐸  are the edges in the network which are forced to be included and excluded 



  132 

respectively in the relaxed optimal solution for that node. This notation also applies to the 

root node but 𝐸1 = 𝐸0 = ∅. For any node in the branch-and-price tree, 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is 

solved via column generation. This technique is shown in subsection 5.2 for the root node 

(i.e. no edge restrictions are employed) and the necessary changes to solve this lower 

bound at other points in the branch-and-price tree are discussed in subsection 5.3. Given 

the solution to 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) for any non-root node, the node is fathomed if it is greater 

than the best 𝑆𝐶 upper bound solution. Otherwise, branching continues by selecting some 

non-binary edge assuming the solution is non-binary. If 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) returns a binary 

solution for a node, the best binary solution is updated if applicable and the node is then 

fathomed. The process is complete, and the current best 𝑆𝐶 solution is the optimal 

solution when all nodes are fathomed in the branch-and-price tree. 

 

5.2 Linear set covering solution methodology for the CCVRP 

Consider the 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) problem at the root node of the branch-and-price tree 

which is formulated with objective (5-11) and constraints (5-12) through (5-14) except 

constraint set (5-14) is relaxed such that each decision variable can take any non-negative 

real value between zero and one. As previously stated, 𝐸1 = 𝐸0 = ∅ at the root node 

which is assumed throughout the remainder of this section. To determine the optimal 

solution for this problem, a starting set of feasible routes is needed. Let ℛ′ ⊂ ℛ be such a 

subset and let 𝑧(ℛ′, 𝐸1, 𝐸0) be the optimal solution of 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) over subset ℛ′. 

Additionally, let 𝜃̅ and 𝜋̅ = {𝜋̅1, 𝜋̅2, … , 𝜋̅𝑛} be the corresponding optimal dual solutions 

associated with constraint (5-13) and constraint set (5-12) respectively. Clearly  𝜃̅ is 

unbounded in sign while all elements of 𝜋̅ must be nonnegative. 



  133 

Given these values, the goal is to determine if 𝑧(ℛ′, 𝐸1, 𝐸0) = 𝑧(ℛ, 𝐸1, 𝐸0). Such a 

condition holds if all constraints are satisfied in 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) and its dual equivalent 

over all routes ℛ. For 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0), each constraint is clearly satisfied over all ℛ if they 

are satisfied over the subset ℛ′. However, the dual formulation of 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) defined 

over all routes ℛ contains the constraint set  

∑ 𝛽𝑖𝑟𝜋𝑖 + 𝜃𝑖∈𝑉′ ≤ 𝑐𝑟  (5-15) 

for all 𝑟 ∈ ℛ. For all routes ℛ′, (5-15) is clearly satisfied by duality theory. However, 

there may exist some 𝑟 ∈ 𝑅\ℛ′ which violates (5-15). If this is the case, then adding the 

violating route 𝑟 to ℛ′ may lower the future value of 𝑧(ℛ′, 𝐸1, 𝐸0) thereby implying ℛ′ 

does not necessarily contain all of the routes necessary for the optimal solution of 

𝑅𝐿𝑆𝐶(𝐸1, 𝐸0). 

Hence, the goal of the column generation procedure is to find a feasible route 𝑟 ∈

𝑅\ℛ′ such that the reduced cost of the route 𝑐𝑟̅ = ∑ 𝛽𝑖𝑟𝜋̅𝑖 + 𝜃̅ − 𝑐𝑟𝑖∈𝑉′  is strictly positive 

given the current solution of 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) over the route set ℛ′. If such a route is 

identified, then it is added to ℛ′ and 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is resolved over the expanded set of 

routes. If no such route is identified, than 𝑧(ℛ′, 𝐸1, 𝐸0) = 𝑧(ℛ, 𝐸1, 𝐸0) and the optimal 

solution to the linear 𝑆𝐶 problem has been identified. 

The technique implemented to identify such routes is a branch-and-bound procedure 

which is guaranteed to find the route with the maximum, strictly-positive reduced cost 

given the current solution of 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0). The technique employed is similar to that of 

Agarwal, Mathur, and Salkin (1989), but with modifications which improve the solution 

procedure. Specifically, the technique branches on the inclusion and exclusion of certain 

customers being physically visited by the vehicle. Once a leaf node has been reached in 



  134 

the tree (i.e. all customers have been known to be included or excluded), a traveling 

salesman problem (TSP) and a knapsack problem (KP) can be solved to determine the 

optimal route and service plan for customers along that route. Since both of these 

problems are NP-hard, a strong upper-bound calculation procedure is needed for each 

node such that nodes which will not lead to routes with positive reduced costs can be 

fathomed. This upper-bound calculation is demonstrated in subsection 5.2.1. The 

complete column generation procedure is then outlined in subsection 5.2.2. 

 

5.2.1 Column generation upper bound 

The objective of the branch-and-bound approach is to develop a route of maximum 

reduced cost such that it has a feasible with respect to both vehicle capacity and routing. 

Since branching occurs by including and excluding a particular customer from direct visit 

by the vehicle, the customers can be partitioned using two methodologies. The first is 

based on whether or not a customer is in the routing plan of the vehicle. Let 𝑉1 ⊆ 𝑉′ 

represent those customers who must be visited based on the branching, let 𝑉0 ⊆ 𝑉′ 

represent those customers who cannot be visited based on the branching, and let 𝑉𝑥 =

𝑉′\(𝑉1 ∪ 𝑉0)  represent those customers who have yet to be branched. The second 

partition is based on whether or not the customer is covered due to the aforementioned 

sets. Let 𝐷2 = 𝑉1 represent customers who must be covered as required in (5-6), let 𝐷1 ⊆

𝑉′\𝐷2 represent customers which are not directly visited by the vehicle but some element 

of 𝑉1 is within their service radius (i.e. they can be serviced), let 𝐷0 ⊆ 𝑉′ represent 

customers whose demand cannot be serviced as all customers in their service radius 

belong to 𝑉0, and let 𝐷𝑥 = 𝑉′\(𝐷2 ∪ 𝐷1 ∪ 𝐷0) represent customers who are not 



  135 

serviceable from any customer in 𝑉1 but can be serviced by visiting some customer in 𝑉𝑥. 

Let the two partitions be denoted as 𝑽 = {𝑉1, 𝑉0, 𝑉𝑥} and 𝑫 = {𝐷2, 𝐷1, 𝐷0, 𝐷𝑥}. 

To calculate the upper bound at each node, let 𝑐(𝑆, 𝑇) represent the shortest tour that 

at least covers all customers 𝑇 ⊆ 𝑉′ and must at least visit all customers 𝑆 ⊆ 𝑉′. For any 

customer 𝑖 ∉ 𝑆, let 𝑓𝑖(𝑆) = min
𝑗,𝑘∈𝑆

{𝑡𝑖𝑗 + 𝑡𝑖𝑘 − 𝑡𝑗𝑘} and for any customer 𝑖′ ∉ 𝑇, let 

𝑞𝑖′(𝑆) = min
𝑗∉𝑆 

{𝑓𝑗(𝑆): 𝑏𝑖𝑗 = 1}. It is simple to demonstrate that for any 𝑇 ⊆ 𝑉′, any 𝑆 ⊆ 𝑇, 

and any 𝑖 ∉ 𝑇 that 

𝑐(𝑆, 𝑇 ∪ {𝑖}) ≥ 𝑐(𝑆, 𝑇) + 𝑞𝑖(𝑆)  (5-16) 

as 𝑓 greedily inserts some location which is not visited into the existing optimal route 

without regards to the current or future route feasibility and 𝑞 finds the minimal such 

insertion such that 𝑖 is covered.  

Given any 𝑁 ⊆ 𝑉′\𝑇, a clear extension of (5-16) is  

𝑐(𝑆, 𝑇 ∪ 𝑁) ≥ 𝑐(𝑆, 𝑇) + ∑ 𝑞𝑖(𝑆) |𝑁|⁄𝑖∈𝑁   (5-17) 

using the same logic as for (5-16) except all 𝑞𝑖(𝑆) must be divided by |𝑁| to protect 

against the case where all elements of 𝑁 are coverable from the same minimal insertion 

point. Therefore, given any node in the branch-and-bound column generation tree (i.e. 

any 𝑽 and 𝑫) and any 𝐷′ ⊆ 𝐷𝑥, then 

𝑐(𝑉1, 𝐷2 ∪ 𝐷1 ∪ 𝐷′) ≥ 𝑐(𝑉1, 𝐷2 ∪ 𝐷1) + ∑ 𝑞𝑖(𝑉1) 𝑛′⁄𝑖∈𝐷′   (5-18) 

where 𝑛′ represents the maximum number of customers which can be added to the 

covering plan. (5-18) therefore provides a lower bound on the routing cost to service the 

set of customers 𝐷′ which have yet to be covered by 𝑉1.  



  136 

Lastly, define 𝑤𝑖 = 𝜋̅𝑖 − 𝑞𝑖(𝑉1) 𝑛′⁄  for each 𝑖 ∈ 𝐷𝑥 and let 𝑥𝑗 be a binary decision 

variable for all 𝑖 ∈ 𝐷1 ∪ 𝐷𝑥 such that 𝑥𝑖 = 1 if that customers demand is serviced and 

𝑥𝑖 = 0 otherwise. An upper bound on the maximum reduced cost at any given node in the 

column generation branch-and-bound tree is determined by solving the following 

optimization problem: 

(UB) Maximize: [∑ 𝜋̅𝑖𝑥𝑖𝑖∈𝐷1
+ ∑ 𝑤𝑖𝑥𝑖𝑖∈𝐷𝑥

] + ∑ 𝜋̅𝑖𝑖∈𝐷2
+ 𝜃̅ − 𝑐(𝑉1, 𝐷2 ∪ 𝐷1)  (5-19) 

subject to 

∑ 𝑑𝑖𝑥𝑖𝑖∈𝐷1∪𝐷𝑥
≤ 𝐶 − ∑ 𝑑𝑖𝑖∈𝐷2

,  (5-20) 

𝑥𝑖 ∈ {0,1}        ∀ 𝑖 ∈ 𝐷1 ∪ 𝐷𝑥.  (5-21) 

𝑈𝐵 is a knapsack problem which seeks to select the customers from 𝐷1 and 𝐷𝑥 which 

maximizes the reduced cost of the route such that the vehicles capacity is not exceeded. 

Note that 𝑈𝐵 assumes all 𝐷2 must be included in the route by definition. Clearly any 

node for which 𝑈𝐵 is less than or equal to zero can be fathomed as no further branching 

will lead to a covering route with positive reduced cost. Furthermore, any node for which 

𝑈𝐵 is less than the reduced cost of the best route identified thus far can be fathomed as 

the principal goal of the column generation procedure is to identify the route with the 

maximum reduced cost. 

Calculating 𝑈𝐵 for any node requires the solution of a binary knapsack problem. 

Even though such a problem is NP-Hard, extremely efficient algorithms exist for solving 

such problems (Martello, Pisinger, and Toth 1999). Furthermore, since only an upper 

bound is required, (5-21) can be relaxed to make 𝑈𝐵 a linear knapsack problem which 

can be solved extremely efficiently in polynomial time (Balas and Zemel 1980). While 



  137 

such a relaxation results in a looser upper bound, experimentation found this approach is 

preferred with respect to overall solution time.  

Calculating 𝑛′ at any node is completed by ranking the demands in increasing order 

for all customers in 𝐷1 ∪ 𝐷𝑥 and then determining the largest index 𝑘 such that the sum 

of the first 𝑘 values does not exceed 𝐶 − ∑ 𝑑𝑖𝑥𝑖𝑖∈𝐷2
. Calculating 𝑐(𝑉1, 𝐷2 ∪ 𝐷1) for any 

node is significantly harder as it would require solving a TSP problem over 𝑉1 ∪ {0} as 

these locations are guaranteed to cover all customers in 𝐷2 ∪ 𝐷1 by construction. 

However, it is recommended that this value be estimated from the prior node in the tree. 

To demonstrate this estimate, let 𝑖 ∈ 𝑉′ be the customer who was branched from the 

parent node. If 𝑖 ∈ 𝑉1 in the current node, then the TSP tour can be estimated based on 

the TSP tour estimate from the parent node plus 𝑓𝑖(𝑉1\{𝑖}). If 𝑖 ∈ 𝑉0 in the current node, 

then the TSP tour estimate is the same as that from the parent node. This clearly 

underestimates 𝑐(𝑉1, 𝐷2 ∪ 𝐷1) at a node, but this still allows 𝑈𝐵 to serve as a valid upper 

bound. 

 

5.2.2 Branch-and-bound linear procedure 

In addition to being able to calculate an upper limit on 𝑐𝑟̅ to fathom unpromising 

nodes, the column generation procedure should also have the ability to add any route with 

a positive reduced cost, not just the route with maximum reduced cost. Such a capability 

drastically decreases the solution time of solving 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) as the computationally 

intensive column-generation procedure can be called less frequently (Agarwal, Mathur, 

and Salkin 1989). However, the calculation of 𝑈𝐵 does not provide a valid covering, 

since the linear relaxation is solved, nor does it provide a valid routing plan to complete 



  138 

that covering. Since both of these problems are NP-hard (i.e. a binary knapsack problem 

and a TSP problem respectively), they must solved only when needed, using efficient 

techniques, and approximated at other times. 

To calculate both 𝑈𝐵 and generates routes as possible, 𝑁𝐸𝑉𝐴𝐿 (Node Evaluation) is 

called at every node in the branch-and-bound tree. For input, 𝜃̅ and 𝜋̅ are the current 

optimal solutions from the dual equivalent of 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) over the current set of routes 

ℛ′ and 𝑽 and 𝑫 are the two partitions of customers. In addition, let 𝐴 represent a Boolean 

input which is true if the current node possibly contains a new route for addition to ℛ′ 

and false otherwise. Equivalently, if 𝑖 ∈ 𝑉′ is the customer which was branched from the 

parent node, then 𝐴 = 1 if 𝑖 ∈ 𝑉1 in the current node and 𝐴 = 0 if 𝑖 ∈ 𝑉0 in the current 

node. This logic allows computationally intensive procedures to only be called when a 

previously unchecked route combination has been encountered. Finally, let 𝐿𝐵 equal the 

maximum reduced cost of any feasible route encountered thus far. A graphical summary 

of 𝑁𝐸𝑉𝐴𝐿 is given in Figure 6. 



  139 

 
 

Figure 6. 𝑁𝐸𝑉𝐴𝐿(𝜃̅, 𝜋̅, 𝑽, 𝑫, 𝐴, 𝐿𝐵) pseudocode flowchart 

 

The first step of 𝑁𝐸𝑉𝐴𝐿 is to calculate 𝑈𝐵 and if this value is less than zero or the 

highest reduced cost observed thus far in the tree, then the node is fathomed as no future 

branching will ever lead to a route which can be added to ℛ′. Otherwise, a check is 



  140 

performed to see if no future branching will be performed because a leaf node is reached 

(i.e. 𝑉𝑥 = ∅) and the Boolean value 𝐵 is set based on this check. If 𝐵 is true or a new 

route can be evaluated (i.e. 𝐴 = 1), then a feasible covering and routing plan will be 

constructed for this node so it can possibly be added to ℛ′.  

First, the procedure 𝐶𝑂 (Combo) is called which solves a binary knapsack problem 

over 𝐷2 and 𝐷1 where 𝜋̅𝑖’s are the objective coefficients, 𝑑𝑖’s are the knapsack 

coefficients, and 𝐶 is the knapsack volume assuming that all customers in 𝐷2 must be 

selected. The solution of this problem determines the optimal covering if a vehicle were 

to visit all points in 𝑉1. In this implementation, the binary KP algorithm by Martello, 

Pisinger, and Toth (1999) was utilized since it is the fastest binary knapsack solver to-

date and proved to be extremely efficient in preliminary computational experiments. The 

solution to 𝐶𝑂 is combined with 𝜃̅ and 𝑐(𝑉1, 𝐷2 ∪ 𝐷1) to calculate 𝐾𝑃 which provides an 

upper bound on the reduced cost of a route which only stops at all customers in 𝑉1. 

Hence, if this upper bound is less than zero or the reduced cost of the current best route, 

then such a route should not be further evaluated for addition to ℛ′, but the node is not 

necessarily fathomed as it can still lead to promising nodes in the future. 

If the current node is still promising for addition, then all that remains is to determine 

a feasible route through customers in 𝑉1 such that the route can be added to ℛ′ if its 

reduced cost is positive. If the current node does not represent a leaf node (i.e. 𝑉𝑥 ≠ ∅), 

then a feasible route is constructed via a two-opt heuristic (Laporte and Semet 2014) as 

indicated by the function 2𝑂𝑃𝑇(𝑉1). This heuristic is completed since the alternative is to 

solve a TSP, indicated by the function 𝑇𝑆𝑃(𝑉1), which is optimal, but significantly 

harder to calculate and is therefore only done when necessary (i.e. when the current node 



  141 

is a leaf node). Once a feasible route distance is found, 𝑈𝐵′ is calculated which is an 

updated version of 𝐾𝑃 except it now has a feasible covering and routing plan. If the 

reduced cost of the route is strictly positive, it is added to ℛ′. Furthermore, if the reduced 

cost is greater than 𝐿𝐵, then the lower bound is updated. 

If the node was not fathomed, the final phase is to continue the branching process by 

first selecting some 𝑖 ∈ 𝑉𝑥. For this implementation, 𝑖 was determined such that it is the 

most frequently selected, minimal unvisited location (i.e. the argument which provides 

the minimal value in the function 𝑞) for the customers in 𝐷𝑥 selected in 𝑈𝐵. For instance, 

if three customers in 𝐷𝑥 were non-zero in the solution to 𝑈𝐵 and location 𝐴 was the 

unvisited point with minimum insertion distance which covered two of those customers 

while location 𝐵 was the unvisited point with minimum insertion distance covering the 

third customer, then 𝐴 would be the next customer selected for branching. This 

methodology provides a strong branching procedure as it allows the most rewarding 

elements of 𝐷𝑥 to be added to 𝐷1 or 𝐷2 thereby providing a tighter upper bound on the 

actual reduced cost when calculating 𝑈𝐵 in future nodes. In the case where no customers 

from 𝐷𝑥 were selected in 𝑈𝐵, then 𝑖 ∈ 𝑉𝑥 with the maximum 𝜋̅𝑖 is selected for branching. 

Given 𝑁𝐸𝑉𝐴𝐿, the procedure for solving 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) at the root node of the 

branch-and-price tree is as follows. First, a set of routes is used to initialize ℛ′. The 

methodology used to determine these routes is given in subsection 5.4.1. Next, 

𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) defined over the current set of routes ℛ′ is solved to obtain the values for 𝜋̅ 

and 𝜃̅ such that columns (i.e. covering routes with positive reduced cost) are generated. 

The column generation procedure is started by identifying 𝑖 ∈ 𝑉′ such that 𝑖 =



  142 

argmin
𝑖∈𝑉′ (∑ 𝜋̅𝑗𝑗∈𝑉′,𝑏𝑖𝑗=1 − 2𝑑𝑜𝑖) which serves as the first branching option. Once all 

nodes are fathomed, the current 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) solution is optimal over all routes ℛ if no 

columns were added to ℛ′. Otherwise, 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is resolved over the updated set of 

routes and columns are again generated for inclusion if possible.  

 

5.3 Binary set covering solution methodology for the CCVRP 

As stated in subsection 5.1, the binary solution of the 𝑆𝐶 problem is determined via a 

branch-and-price tree in which the inclusion/exclusions of edges in 𝐸 serve as the 

branching criteria. This technique is similar to the methodology employed by Desrochers, 

Desrosiers, and Solomon (1992) for the VRP problem with time windows. At each node 

in the branch-and-price tree, 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is solved via column generation where 𝐸1 and 

𝐸0 respectively represent the edges which are required and restricted in the optimal 

routing plan for that node. This technique was demonstrated for the root node of the 

branch-and-price tree in subsection 5.2 and the changes necessary to solve 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) 

at other nodes is as follows.  

After 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) for the root node is solved, a starting binary upper bound solution 

for the 𝑆𝐶 problem is determined by solving the 𝑆𝐶 problem over the final set of routes 

ℛ′ generated during the root node. To solve this problem, a commercial IP solver is 

employed and the maximum time allotted is at most five times the time required to solve 

𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) at the root node. Computational testing demonstrated that this limit was 

never reached, but it is recommended to safeguard against instances where lengthy 

solution times are possible.  



  143 

Given this binary upper bound, the branching process is started by selecting any edge 

𝑒 ∈ 𝐸\{𝐸1 ∪ 𝐸0} in which the cumulative vehicle travel is not integer in the current 

parent 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) solution and alternatively adding this edge to 𝐸1 and 𝐸0 and 

evaluating each child node. The first task in each child node is to prohibit those routes in 

ℛ′ which violate the new edge requirements. If 𝑒 ∈ 𝐸1, then any route in ℛ′ which visits 

either vertex incident to 𝑒 but does not include 𝑒 is prohibited from selection as well as 

any route in  ℛ′ which covers any customer vertex incident to 𝑒 but does not actual visit 

the vertex. If 𝑒 ∈ 𝐸0, then any route in ℛ′ which travels along 𝑒 is prohibited from 

selection. 

𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is then solved for any particular non-root node by using the same 

technique as solving the root node problem in subsection 5.2.2 with only minor 

modifications. Specifically, the network data is modified such that any customers which 

are forced to be visited in order by edges in 𝐸1 are treated as one vertex. Hence, some 

vertices will represent a single customer while other represent a preset path of customers 

depending on the elements of 𝐸1. Let 𝑉(𝐸1, 𝐸0) represent the set of these paths, including 

those ‘paths’ which are a single customer. For each pair (𝑖, 𝑗) ∈  𝑉(𝐸1, 𝐸0), calculate the 

four distances representing all possible edge distances connecting the start/end of each 

customer path 𝑖 and 𝑗. Clearly if 𝑖 and 𝑗 represent single customers, these four distances 

are the same. Such increases in data are necessary since some of these edges may be 

present in 𝐸0 and therefore not permitted in any route. In addition, for any 𝑖 ∈ 𝑉(𝐸1, 𝐸0), 

update the demand of that vertex such that it is the sum of the demand for all customers 

represented by the customer path 𝑖. Also update all four distances between 𝑖 and any 𝑗 ∈

𝑉(𝐸1, 𝐸0)\{𝑖} such that it is the travel distance plus one half of the customer path distance 



  144 

implied by 𝑖. For each 𝑒 ∈ 𝐸0, simply update the distance, if applicable, between the 

appropriate elements of 𝑉(𝐸1, 𝐸0) containing the vertices incident 𝑒 to be a large number.  

Given these changes, 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) at any non-root node can be solved by generating 

columns as needed. Specifically, 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is solved over the set of restricted routes 

in ℛ′ and 𝜋̅ and 𝜃̅ are obtained. Using these prices, the column generation procedure 

commences by branching on the inclusion/exclusion of customer in 𝑉(𝐸1, 𝐸0) and 

evaluating each node using a similar procedure to 𝑁𝐸𝑉𝐴𝐿. Changes to 𝑁𝐸𝑉𝐴𝐿 include 

modifying the calculation of 𝑓𝑖(𝑉1) within 𝑈𝐵 to determine the minimum insertion 

distance of each 𝑖 ∈ 𝑉𝑥 between any two elements of 𝑉1 testing to all possible orientations 

of the customer path represented by 𝑖. Otherwise, calculating 𝑈𝐵 is the same as shown in 

subsection 5.2.1. Likewise, 𝐶𝑂 is unchanged. The sole remaining differences to 𝑁𝐸𝑉𝐴𝐿 

is that both 2𝑂𝑃𝑇 and 𝑇𝑆𝑃 must adhere to the limitations imposed by 𝐸1 and 𝐸0. For 

both of these procedures, all restrictions in 𝐸0 can be enforced by changing the distance 

for that edge to a large value. For the 2𝑂𝑃𝑇 procedure, the heuristic can be easily 

modified to ensure that any edges in 𝐸1 are included by restricting the edges which can be 

switched. For the 𝑇𝑆𝑃 procedure, enforcing the requirements of 𝐸1 is more challenging, 

but the TSP solution methodology in subsection 5.4.3 simplifies this process. If no 

columns with a positive reduced cost were generated during this modified 𝑁𝐸𝑉𝐴𝐿 

procedure, then the current solution for 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is optimal. Otherwise, 

𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) is solved over the expanded set of routes, the updated prices are obtained, 

and new columns are generated for inclusion. 

 

5.4 Algorithmic improvements for solving the CCVRP optimally 



  145 

While the methodology in subsections 5.2 and 5.3 determine the optimal solution to 

the CCVRP, numerous algorithmic improvements improve the solution times for solving 

problem instances. These improvements focus specifically upon generating an initial set 

of routes, estimating and bounding the pricing values of 𝜋̅ and 𝜃̅, and improving the TSP 

procedure. For the latter, this includes tracking known subtour constraints as well as 

known optimal routes.  

 

5.4.1 Initial routes for the CCVRP 

To start solving 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) at the root node of the branch-and-price tree, an initial 

set of routes is required. To generate these routes, a savings heuristic is employed to 

group customers together. A discussion on the savings heuristic for TSP is given by 

Laporte and Semet (2014). For this application, a list of customers pairs 𝑖, 𝑗 ∈ 𝑉′ were 

ordered based on their savings value 𝑠𝑖𝑗 = 𝑡0𝑖 + 𝑡0𝑗 − 𝑡𝑖𝑗 from largest to smallest. 𝑛 

routes were then created such that each route visits one customer and then returns to the 

depot. The list of savings values is then analyzed in order and if the two customers are the 

start/end of current routes, these routes are merged together so long as the route’s 

capacity is not violated. This process is continued until all 𝑠𝑖𝑗 have been analyzed. If this 

does not result in at most 𝐾 routes, the process is restarted but the list of savings values is 

reordered such that the first value is placed at the end of the list. 

Once a suitable grouping of customers has been identified, each subset of customers 

is passed to the column generation procedure to determine an efficient covering route for 

the customers in question. Let 𝑉̅ represent any such grouping. Specifically, the 

inclusion/exclusion of 𝑖 ∈ 𝑉̅ along a vehicle route is analyzed by a branch-and-bound tree 



  146 

and each node is evaluated by a simplified version of 𝑁𝐸𝑉𝐴𝐿. These simplifications 

include updating the calculation of 𝑈𝐵 such that it no longer includes (5-20) as the 

customers in 𝑉̅ will never violate the constraint and changing (5-19) such that it is solely 

comprised of distance function 𝑐 as there are no rewards for visiting customers in this 

procedure. In addition, 𝐶𝑂 is never called since all customers in 𝑉̅ can be included by 

construction. Calls to the 𝑇𝑆𝑃 procedure are also replaced by simply completing a two-

opt heuristic as a near optimal route is sufficient.  

 

5.4.2 Estimating initial prices 

As noted by Agarwal, Mathur, and Salkin (1989), the values of 𝜋̅ and 𝜃̅ during the 

first initial column generation branch-and-bound trees are typically much larger in 

absolute value than their final values. Therefore, routes generated during these initial 

column generation procedures are unlikely to be included in the final, optimal solutions. 

This observation motivates approximating and restricting the values of 𝜋̅ and 𝜃̅ during 

the start of each column generation phase and slowly relaxing these bounds during each 

pass of the procedure. 

Specifically, let 𝜋′ = {𝜋1
′ , 𝜋2

′ , … , 𝜋𝑛
′ } be the limit on 𝜋̅𝑖 for each 𝑖 ∈ 𝑉′ and let 𝜃′ be 

the absolute value of the limit on 𝜃̅. The modified 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) problem, which restricts 

the value of dual prices is as follows. 

Minimize: ∑ 𝑐𝑟𝑧𝑟𝑟∈ℛ + ∑ 𝜋𝑖
′𝜇𝑖

𝑛
𝑖=1 + 𝜃′(𝜈1 + 𝜈2)  (5-22) 

subject to 

∑ 𝛽𝑖𝑟𝑧𝑟𝑟∈ℛ + 𝜇𝑖 ≥ 1        ∀ 𝑖 ∈ 𝑉′,  (5-23) 

∑ 𝑧𝑟𝑟∈ℛ + 𝜈1 − 𝜈2 = 𝐾,  (5-24) 



  147 

0 ≤ 𝑧𝑟 ≤ 1        ∀ 𝑟 ∈ ℛ′,  (5-25) 

0 ≤ 𝜇𝑖, 𝜈1, 𝜈2        ∀ 𝑖 ∈ 𝑉′. (5-26) 

The modified 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) defined over a set of routes ℛ′ is solved as a replacement to 

𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) in all nodes of the branch-and-price tree from subsections 5.2 and 5.3. 

Given an initial solution to this modified formulation, the column generation procedure is 

employed to add any applicable routes. If 𝜇𝑖 for any 𝑖 ∈ 𝑉′, 𝜈1, or 𝜈2 are strictly greater 

than zero in the current solution to the modified 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0), all limits are increased by 

a multiplier value 𝛼 and the problem is resolved regardless of the number of columns 

generated. If columns were generated but all non-route variables were equal to zero, then 

the problem is resolved with the new routes, but the limits are not increased. If no 

columns were generated and all non-route variables were equal to zero, then the solution 

is optimal for 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0). This procedure is identical to the methodology employed by 

Agarwal, Mathur, and Salkin (1989) to solve the traditional CVRP and similar time 

savings were observed when solving the CCVRP as was seen for the CVRP.  

All that remains is to determine how to set the initial values for the limits 𝜋′ and 𝜃′. 

For solving the modified 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) at the root node, the limits are estimated in a 

similar manner as recommended by Agarwal, Mathur, and Salkin (1989). In their 

technique, Agarwal, Mathur, and Salkin estimated these limits by assuming the initial 

heuristic route solutions (from the savings heuristics in this implementation) will be close 

to the optimal solution. Hence, the reduced cost of these routes will be zero. Assume that 

a route 𝑟 ∈ ℛ′ from the initial heuristic solution serves customers 𝑉̅ ⊆ 𝑉′ and has route 

cost 𝑐𝑟. Hence, it is assumed that 

𝑐𝑟 = ∑ 𝜋̂𝑖𝑖∈𝑉̅ − 𝜃  (5-27) 



  148 

where 𝜋̂𝑖 is the estimate of the optimal 𝜋̅𝑖 and 𝜃 is the estimate of the optimal 𝜃̅. Each 𝜋̂𝑖 

is therefore estimated as 

𝜋̂𝑖 = (1 (𝑐𝑟 − 𝜃)⁄ ) (𝛽1(𝑡0𝑖 ∑ 𝑡0𝑗𝑗∈𝑉̅⁄ )  + 𝛽2(𝑑𝑖 ∑ 𝑑𝑗𝑗∈𝑉̅⁄ ) + 𝛽3(𝑞𝑖 ∑ 𝑞𝑗𝑗∈𝑉̅⁄ ))  (5-28) 

where 𝑞𝑖 = min
𝑗,𝑘∈𝑉′

{𝑡𝑗𝑖 + 𝑡𝑖𝑘 − 𝑡𝑗𝑘}. The initial pricing estimates for a given customer is 

therefore a linear combination of the depot distance for that customer, the demand for 

that customer, and the minimum insertion distance from that customer compared with all 

other customers along that route.  

Based on the results observed by Agarwal, Mathur, and Salkin, 𝛽1 = 0.50, 𝛽2 =

0.40, and 𝛽3 = 0.10 are close to the weights which provide the best results for these 

estimates. In this application, 𝜃 was calculated as the average value over all 𝜋̂𝑖, but future 

testing could be conducted to determine a better approximation method. To avoid using 

overly restrictive values, the initial values for 𝜋′ and 𝜃′ were set as 120% of the 

calculations for 𝜋̂𝑖 and 𝜃. For any 𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) not at the root node of the branch-and-

price tree, the initial values for  𝜋′ and 𝜃′ were set as 101% of the final values of  𝜋̅ and 𝜃̅ 

from the parent node. Since these prices were optimal for a similar problem, it is 

estimated these limits are an effective starting point for the current problem.  

 

5.4.3 TSP procedure and subtour constraints 

The most time-intensive component of evaluating each node in the branch-and-price 

tree is solving the TSP problem. Hence, an efficient but simple method should be 

employed to solve the problem. In addition, it should be able to incorporate any edge 

restrictions/requirements imposed by the branch-and-price tree without significant 

modification. Furthermore, observe that the 𝑇𝑆𝑃 procedure will only have to solve 



  149 

shorter route problems as the covering mechanic frequently minimizes the number of 

stops along a route in comparison to the equivalent VRP.  

To demonstrate the 𝑇𝑆𝑃 procedure employed in this implementation, let 𝑉̅ ⊆ 𝑉 

represent a set of customers and the depot. Define 𝑥𝑖𝑗
′  for each 𝑖, 𝑗 ∈ 𝑉̅ such that 𝑥𝑖𝑗

′ = 1 

if the vehicle travels from 𝑖 to 𝑗 in the solution and 𝑥𝑖𝑗
′ = 0 otherwise. The 𝑇𝑆𝑃 

formulation is as follows: 

Minimize: ∑ 𝑡𝑖𝑗𝑥𝑖𝑗
′

(𝑖,𝑗)∈𝑉̅   (5-29) 

subject to 

∑ 𝑥𝑖𝑗
′

𝑗∈𝑉̅\{𝑖} = 1        ∀ 𝑖 ∈ 𝑉̅,  (5-30) 

∑ 𝑥𝑗𝑖
′

𝑗∈𝑉̅\{𝑖} = 1        ∀ 𝑖 ∈ 𝑉̅,  (5-31) 

∑ 𝑥𝑖𝑗
′

(𝑖,𝑗)∈𝑆 ≤ |𝑆| − 1        ∀ 𝑆 ⊂ 𝑉̅,  (5-32) 

𝑥𝑖𝑗
′ ∈ {0,1}        ∀ 𝑖, 𝑗 ∈ 𝑉̅.  (5-33) 

As was the case with solving the CCVRP, the challenge with solving the 𝑇𝑆𝑃 is the 

subtour elimination constraint set (5-32) which grow exponentially as |𝑉̅| increases. 

There are multiple techniques to address this problem. On one extreme is to employ 

complex, but efficient, techniques which utilize combinations of cutting planes and 

relaxations to solve the binary problem. The most efficient such method is the Concorde 

solver which has solved the largest TSP problems thus far. An opposing methodology is 

to directly employ a standard MIP solver and add subtour constraints only as needed. As 

noted by Pferschy and Staněk (2014), modern MIP solvers have significantly increased in 

efficiency which makes this approach appealing, especially for smaller problems. Since 

TSPs in the CCVRP are typically over small sets of customers, this method is preferred 



  150 

due to its simplicity, efficiency, and ability to easily integrate any edge 

restrictions/requirements.  

In this implementation, the latter approach was employed such that (5-29) was solved 

subject to (5-30), (5-31), and (5-33) over a customer set 𝑉̅. After the TSP is solved, the 

solution is scanned for violated subtour constraints. If no subtour is identified, the 

solution is optimal. Otherwise, the violated subtour constraint(s) is added and the 

problem is resolved. In addition, a list of violated subtour constraints is saved after each 

call to the 𝑇𝑆𝑃 procedure. If future calls of the 𝑇𝑆𝑃 procedure contain a subset of 

customers for which a subtour constraint existed, that constraint is added at the start of 

the 𝑇𝑆𝑃 procedure. While this requires more initial time to scan the list for applicable 

subsets of customers, the savings in solving the 𝑇𝑆𝑃 problem outweighed this search time 

based on preliminary computational testing. 

 

5.4.4 Optimal TSP routes 

The final algorithmic improvement was motivated by the observation that calls to the 

𝑇𝑆𝑃 procedure were frequently over the same subset of customers. Specifically, one 

instance identified that over 75% of the TSP routes generated were routes which were 

previously found in prior TSP solutions. Hence, significant computational effort could be 

saved if known TSP routes were stored and searched prior to calling the 𝑇𝑆𝑃 procedure. 

This storage was implemented by saving both the ordering of customers along that 

specific route along with any edge restrictions/requirements enforced when constructing 

the route. This latter storage is necessary during the branch-and-price tree since a 

customer over the same customer set without those restrictions (i.e. a different place in 



  151 

the tree) may be better served by a shorter, less restricted path. These stored routes are 

then searched prior to any call to the 𝑇𝑆𝑃 procedure for both customers and existing 

restrictions/requirements regarding travel over that subset of customers. If a match is 

found, the identified route is the optimal route. Otherwise, the 𝑇𝑆𝑃 procedure is called 

and the identified route is added to the stored list. 

The issue with this approach is that the list of routes can often grow quickly and 

searching the entire list is time-intensive. Therefore, it is highly recommended that routes 

which are likely to not be used be removed from the list. Such routes are those with edge 

restrictions/requirements which are no longer needed as all nodes enforcing such limits 

have been fathomed. Therefore, if a node is fathomed or all nodes below it are fathomed 

within the branch-and-price tree from subsection 5.3, the list of stored routes is searched 

for any route which contains the edge restriction/requirement for that node. If such a 

route is found, it is removed from the list. 

 

5.5 Computational experiments 

Numerous computational experiments were conducted to test the efficiency of the 

branch-and-price methodology for solving the CCVRP. These tests were completed on 

CVRP data instances from Set A and Set P by Augerat et al. as well as from Christofides 

and Eilon for any problem instances which had geographical coordinates for at most 50 

customers. Copies of these benchmark cases are maintained by the Networking and 

Emerging Optimization Research Group (2013). These three data sets were selected as 

they contained the highest quantity of benchmark cases with up to 50 customers. This 

customer cutoff was selected as problems with 50 or more customers frequently exceeded 



  152 

memory limitations on the tested hardware. If more customers are to be analyzed, 

hardware must be increased or techniques to reduce memory usage must be introduced 

such as not storing subtours or known TSP optimal routes. 

In addition to the data provided for each test instance, a coverage policy was 

established for all customers in each instance. To keep this policy simple, three uniform 

coverage radii were determined for each problem instance. This was conducted in order 

to observe the effect of coverage matrix sparsity on solution efficiency.  Specifically, 

three cases were developed (𝐴, 𝐵, and 𝐶) per problem. Each case is assigned a coverage 

radius for each test instance based upon the minimum value of the two alternative shown 

in Table 14. These service radii were applied to each customer such that if customer 𝑋 is 

within the service radius of customer 𝑌, then customer 𝑌 can be serviced by a vehicle 

stopping at customer 𝑋 and vice versa. Clearly test case 𝐴 has the sparsest coverage 

matrix while test case 𝐶 has the densest coverage matrix for each problem instance. 

These thresholds were developed as they provided a wide range of problems in 

preliminary testing. 

 

Table 14. Radii criteria for test instances 

Case Single Customer Coverage Multi-Customer Coverage 

𝐴 

Max. distance such that at 

most 1 cust. is covered by 

15% of other customers 

Min. distance such that at least 

75% of customers are covered 

by at least 1 other cust. 

𝐵 

Max. distance such that at 

most 1 cust. is covered by 

25% of other customers 

Min. distance such that at least 

75% of customers are covered 

by at least 2 other cust. 

𝐶 

Max. distance such that at 

most 1 cust. is covered by 

35% of other customers 

Min. distance such that at least 

75% of customers are covered 

by at least 3 other cust. 



  153 

All procedures were coded in C++ and all tests were conducted using a single 2.2GHz 

processor with 8 GB of RAM on a Windows 10 PC. CPLEX v.12 was used as the linear 

and binary solver. However, 𝑈𝐵 and 𝐶𝑂 were solved using a quicksort procedure and the 

algorithm outlined by Martello, Pisinger, and Toth (1999) respectively. All test instances 

were terminated after one hour if the branch-and-price procedure was not completed and 

the best solution identified thus far was recorded as a heuristic solution.  

All computational results are shown in Table 15. Specifically, there is a row for each 

instance and three sets of columns representing the results from test cases 𝐴, 𝐵, and 𝐶. 

Each test instance is given by a two number combination indicating the number of 

customers and the number of vehicles respectively. ‘LP’ indicates how long it took to 

solve the linear CCVRP in minutes (i.e. the root node solution) while ‘BP’ indicates how 

long it took to solve the binary CCVRP in minutes if the problem was solved optimally. 

The measure ‘Igap’ represents the percentage difference between the linear solution and 

the initial integer solution found at the root node. The measure ‘Fgap’ is the final 

integrality gap which is the percentage difference between the best integer solution found 

while evaluating the branch-and-price tree and the objective function value of 

𝑅𝐿𝑆𝐶(𝐸1, 𝐸0) for the node closest to the root node which has yet to have both child nodes 

evaluated. Hence, Fgap is 0 for instances which were solved optimally in 60 minutes. 

Finally, the measure ‘Hgap’ is the percentage difference between the heuristic CCVRP 

from subsection 5.4.1 and the best binary solution when the branch-and-price tree 

terminates. 

  



  154 

Table 15. CCVRP Computational Results (* no linear solution was obtained with one 

hour) 

  𝐴 𝐵 𝐶 

 Instance LP BP Igap Fgap Hgap LP BP Igap Fgap Hgap LP BP Igap Fgap Hgap 

A
u
g

er
at

 S
et

 A
 

32/5 0.3 4.2 1.7 0.0 10.8 0.1 60.0 5.3 4.0 5.0 0.0 60.0 8.4 8.4 3.7 

33/5 0.1 2.4 0.8 0.0 12.1 0.0 0.2 0.2 0.0 16.9 0.0 9.4 4.2 0.0 26.1 

33/6 0.0 17.4 2.4 0.0 4.5 0.0 11.7 1.8 0.0 7.6 0.0 1.9 1.4 0.0 10.7 

34/5 0.1 60.0 5.1 5.1 7.1 0.0 60.0 5.8 5.8 12.1 0.1 19.2 3.1 0.0 21.0 

36/5 1.4 60.0 1.0 1.0 7.1 0.4 60.0 4.2 4.2 3.7 0.4 1.6 1.4 0.0 6.9 

37/5 1.5 60.0 1.0 0.3 7.5 0.6 0.6 0.0 0.0 9.1 0.1 3.0 0.8 0.0 13.3 

37/6 0.2 20.3 0.9 0.0 5.9 0.1 60.0 2.2 2.1 9.1 0.1 0.1 0.0 0.0 16.9 

38/5 0.1 60.0 2.8 2.8 6.7 0.3 7.0 0.9 0.0 9.8 0.1 7.7 3.8 0.0 10.6 

39/5 0.8 40.1 1.0 0.0 15.9 0.9 60.0 1.9 1.9 16.1 0.1 21.2 1.7 0.0 24.9 

39/6 0.4 60.0 3.4 3.4 6.2 0.2 60.0 5.1 3.8 5.6 0.1 0.1 0.0 0.0 15.0 

44/7 0.7 60.0 2.2 2.2 4.4 0.4 0.4 0.0 0.0 3.8 0.1 12.5 2.0 0.0 6.2 

45/6 0.6 60.0 2.9 2.9 11.1 0.4 60.0 4.5 4.5 14.3 0.2 60.0 6.1 6.1 20.1 

45/7 0.2 60.0 2.1 2.1 6.7 0.1 60.0 2.5 2.5 11.6 0.2 45.0 1.5 0.0 14.4 

46/7 0.9 17.8 0.1 0.0 2.7 0.2 39.1 0.8 0.0 8.8 0.1 17.3 1.3 0.0 16.3 

48/7 7.4 60.0 3.1 3.1 4.0 0.9 60.0 3.3 3.3 4.9 0.1 60.0 5.3 5.3 5.3 

A
u
g
er

at
 S

et
 P

 

16/8 0.0 0.0 2.3 0.0 12.1 0.0 0.0 0.0 0.0 16.4 0.0 0.0 2.9 0.0 17.0 

19/2 0.1 0.1 0.0 0.0 9.6 0.0 4.3 4.5 0.0 15.7 0.0 0.0 0.0 0.0 16.0 

20/2 0.2 0.2 0.0 0.0 17.7 0.1 3.1 3.3 0.0 22.9 0.0 0.0 0.0 0.0 25.8 

22/8 0.0 0.0 0.5 0.0 50.4 0.0 0.0 0.0 0.0 57.1 0.0 0.1 2.5 0.0 54.9 

40/5 0.6 10.8 0.7 0.0 17.7 0.4 60.0 3.2 3.2 25.1 0.2 60.0 2.2 1.8 15.4 

45/5 1.2 60.0 1.1 1.1 22.0 0.6 60.0 1.8 1.8 22.1 0.7 60.0 1.1 1.1 33.1 

50/7 0.3 60.0 4.1 4.1 4.3 0.2 23.4 1.2 0.0 13.1 0.1 9.0 0.5 0.0 10.4 

50/8 0.3 60.0 3.5 3.5 30.1 0.2 6.4 1.1 0.0 41.0 * * * * * 

C
h

ri
st

o
p
fi

d
es

 

22/4 0.0 0.6 5.6 0.0 3.6 0.0 0.0 0.0 0.0 10.8 0.0 0.4 3.7 0.0 6.0 

23/3 19.0 60.0 0.9 0.9 3.6 1.6 1.6 0.0 0.0 4.1 0.1 0.1 0.0 0.0 16.1 

30/3 27.8 60.0 12.1 12.1 30.5 3.2 60.0 12.3 12.3 32.3 0.1 60.0 12.4 12.4 42.4 

30/4 0.2 9.7 1.4 0.0 0.5 0.0 0.5 0.9 0.0 1.3 0.0 2.6 2.3 0.0 2.7 

33/4 * * * * * * * * * * 32.3 60.0 0.8 0.8 1.1 

 

A graphical depiction of the solutions for all three cases of the Christofides and Eilon 

30 customer, 4 vehicles test instance is shown in Figure 7. Each panel includes the 

routing solution indicated by solid lines as well as the covering solution (if the customers 

is not directly visited) by dashed lines. Note that the customer demands are not shown in 

the figure. The service radius for each customer is also given in each panel as a reference. 



  155 

In addition to demonstrating the solution to the CCVRP, Figure 7 also shows that the 

Christofides and Eilon test instances are not uniformly dispersed over the network. 

However, the test instances by Augerat are more evenly dispersed. This has a significant 

effect on the results in Table 15 as the Christofides and Eilon instances tended to be much 

harder to solve for equal size problems. Therefore, CCVRP problems with uniformly 

distributed customers appear to be easier to solve than problems whose customers are 

clustered together. 



  156 

 

Figure 7. Christofides and Eilon 30 customer, 4 vehicle solutions 

 



  157 

The results in Table 15 demonstrate that column generation technique can be used to 

successively solve many types of problem instances of the CCVRP. Specifically, 48 out 

of 84 test instances were solved to optimality within the 60 minute time limit. All other 

problems could be solved given more time to obtain such solutions. Additionally, the 

column generation method appears more efficient for solving test instances with a denser 

covering matrix since 13 case A problems were solved optimally, 15 case B problems 

were solved optimally, and 20 case C problems were solved optimally. The linear 

relaxation was also solved in all but three of the test instances and many of those 

solutions, specifically 72 out of 84, were obtained within one minute. Hence, the column 

generation technique is an efficient solution method whenever the relaxation is needed.  

The binary solution obtained after the branch-and-price root node is evaluated, i.e. by 

solving the integer problem over the columns generated during the solution of the root 

node problem, has a strong influence on the ability to solve the binary problem. 

Specifically, the results in Table 16 show the average initial gap for all problems which 

were optimally solved within one hour compared with the average initial gap for all 

problems which were not optimally solved with the time limit. Also given in parenthesis 

are the same averages excluding problems whose linear solution is equal to the binary 

solution as well as the Christofides and Eilon instance of 30 customers and 3 vehicles as 

the initial gap in each of these cases is significantly higher than all the others. Regardless 

of the calculation, problems which were optimally solved within the time limit have a 

smaller initial gap than those problems which were not solved. While this result is 

obvious, it indicates that methods which may lower this gap, even at the cost of increased 

solution time at the start of the branch-and-price process, may be beneficial as it could 



  158 

reduce the overall solution time. This is especially true for problems with a denser 

coverage matrix as the initial gap for case A test instances is 2.32%, for case B test 

instances is 2.47%, and for case C test instances is 2.57%. 

 

Table 16. Igap based on case type and one hour solution status 

 Case 𝐴 Case 𝐵 Case 𝐶 

Test instances solved 

optimally within 60 min. 

1.33% 

(1.58%) 

0.98% 

(1.63%) 

1.66% 

(2.21%) 

Test instances not solved 

optimally within 60 min. 

3.24% 

(2.55%) 

4.34% 

(3.62%) 

5.19% 

(3.98%) 

 

Table 15 also demonstrates that the implemented method is not effective in reducing 

the gap between the best known binary solution and the linear solution. Specifically, 28 

test instances demonstrated no improvement in the gap during the branch-and-price tree. 

This is principally a result of the branch-and-price process investigating the tree in a 

depth first manner. This technique was selected since it is easier to implement and can 

more quickly lead to improved binary solutions. Studies which are interested in lowering 

this gap should modify this technique such that the branch-and-price tree is investigated 

in a breadth-first manner. 

Finally, the quality of the heuristic savings method utilized to obtain an initial binary 

solution prior to solving the linear relaxation appears to be a function of the sparsity of 

the coverage matrix. This is demonstrated by the average gap between the best integer 

solution and the solution from the savings method adaptation from subsection 5.4.1 

which is 11.7% for case A test instances, 14.8% for case B test instances, and 17.4% for 

case C test instances. Given that the saving method places higher priority on the routing 



  159 

component of the problem, this result is not surprising as a denser coverage matrix 

implies that the routes will be shorter and less customers will be directly visited. Hence, a 

different methodology for developing initial routes may be recommended for instances 

with a dense covering matrix as this will provide a better heuristic solution and may 

improve the solution times for solving the initial linear relaxation.  

 

5.6 Discussion 

The purpose of this chapter was to outline the exact solution procedure for the 

CCVRP which models the mobile food retailer routing and scheduling problem. The 

procedure in this chapter utilized a column generation approach which is a new solution 

method for this CVRP variant. Specifically, the CCVRP was transformed into a set 

covering problem in which each variable represents a feasible covering route with respect 

to both vehicle capacity and vehicle routing. This set covering formulation was solved via 

a branch-and-price methodology where the inclusion/exclusion of edges in the network 

serve as the branching criteria. At each node in the tree, the linear relaxation of the 

CCVRP was solved via column generation such that all edge requirements are satisfied. 

These columns were generated using a branch-and-bound approach. The binary problem 

was solved once all nodes in the branch-and-price tree were fathomed. 

To test the performance of the developed procedure, 84 computational experiments 

were conducted by employing three difference service radii for 28 test instances. In total, 

48 of the experiments were solved to binary optimality within the 60 minute time limit 

and all but 3 of the 84 experiments were able to have their linear relaxation solved with a 

majority being solved in less than a minute. The results demonstrate that problems with a 



  160 

denser coverage matrix are easier to solve but the gap between the linear relaxation and 

the initial binary solution tends to be worse in such problems. Since problems which were 

not solved had a higher such gap on average, other techniques may be investigated to find 

an improved, initial binary solution. Furthermore, the heuristic savings solution for case 

C test instances had a larger gap on average compared with the best binary solution. This 

implies that other heuristics could be investigated to see if they provide better initial 

solutions.  

Additional research into solving the CCVRP includes investigating alternative 

solution methods. In this chapter, only a column generation technique was employed. 

However, other common CVRP solution methods could be investigated including 

branch-and-cut techniques. The column generation solution method employed in this 

chapter can also be investigated to see if improvements are possible. Specifically, the 

branch-and-bound tree from Agarwal, Mathur, and Salkin (1989) was adapted to generate 

columns, but other techniques are possible including those by Bixby, Coullard, and 

Simchi-Levi (1997) and Desrochers, Desrosiers, and Solomon (1992) with the latter 

being extremely successful for most CVRP solutions.  

With respect to the employed column generation method, further improvements and 

tests may be possible. These include testing larger test instances, but the approach must 

be modified such that hardware limitations are not encountered. Additionally, it may be 

possible to find a more efficient branch-and-bound procedure by determining a tighter 

bounding process, specifically with respect to determining the lower bound on the routing 

cost (i.e. 𝑐(𝑆, 𝑇)) as this value can significantly underestimate the minimum routing 

distance for certain test instances. Other improvements include utilizing a more efficient 



  161 

TSP solver, determining a more efficient branching methodology (i.e. which customers 

should be branched upon when building routes or which edge should be branched upon 

during the branch-and-price phase), and determining new techniques to identify optimal 

TSP routes without having to utilize a computationally intensive TSP solver.  

 

5.7 Conclusion 

With respect to mobile food retailers. The exact solution algorithm for the CCVRP 

has limited applicability. First and foremost, the solution requires the use of commercial 

solvers which limits its wide spread adoption. Second, the exact solution method requires 

a large time limit to develop optimal solutions, especially for most instances in which 

there are more than 30 customers. Since most mobile food retailers will have at least this 

many potential stops, the exact solution method will likely require too much time to 

identify the true optimal solution. Furthermore, a mobile retailer likely does not require 

the optimal solution as a routing plan which is near optimal will suffice. Therefore, 

heuristic solution algorithms are more applicable to the mobile food retailer routing and 

scheduling problem. While the column generation procedure can be utilized as a heuristic 

by terminating the procedure early, dedicated CCVRP heuristics are expected to provide 

more efficient solutions. These heuristic procedures are presented in the next chapter and 

the results in this chapter serve as a benchmark for solution quality for the developed 

heuristics. 

However, some mobile retailers can utilize an exact CCVRP solution method if they 

are able to partner with the appropriate practitioners and if their customer network is 

small enough to be solved within a reasonable time. Under such conditions, the mobile 



  162 

retailer can determine the optimal routes through their customer network such that they 

minimize their transportation costs thereby increasing their economic sustainability. In 

addition, the advantage of the column generation procedure is that it is relatively simple 

to factor in any nuances a mobile retailer may require. For instance, it is relatively easy to 

modify the problem such that not all customers must be served in the case the retailer 

does not have enough capacity to satisfy all customer demands. Also, it is easy to factor 

in penalties for serving customers at a distance to model any losses in profits from 

customers who may be unwilling to travel if their direct location is not served. 

 



  163 

CHAPTER 6 

HEURISTIC SOLUTION ALGORITHMS FOR THE MOBILE RETAILER ROUTING 

PROBLEM 

Within this chapter, four heuristic solution procedures are provided for the CCVRP 

which is equivalent to the mobile food retailer routing and scheduling problem. An exact 

solution method to address this problem was presented in Chapter 5, but due to the 

complexity of the problem, it is only practical for smaller test instances. Hence, heuristic 

solution procedures are necessary to solve problem instances with a realistic number of 

customers. In particular, four heuristic solution procedures have been developed: a 

Greedy heuristic, a Sweep heuristic, a Savings heuristic, and an ACS heuristic. The test 

instances used in Chapter 5 were solved by each of these heuristics in order to observe 

the differences in solution quality and solution time between the approximate and exact 

procedures. An additional set of test instances with a larger quantity of customers was 

also tested to observe the performance of the heuristics for large test instances. The 

results from these tests and the applicability of the heuristics to the mobile food retailer 

routing and scheduling problem are discussed. 

 

6.1 Classic routing heuristics 

The motivation for adapting classical vehicle routing heuristics such as the Sweep 

heuristic and the Savings heuristic to the CCVRP is three-fold. First and foremost, 

numerous commercial applications which requires quick solution algorithms still rely 

heavily on these techniques as the underlying optimization methodology. Secondly, the 

CCVRP is much more difficult than the standard VRP as the solution space is much 



  164 

larger due to the covering mechanic. Therefore, the performance of the Greedy, Sweep, 

and Savings heuristics are unknown and the results from this chapter provide the first 

documented performance results. Finally, all of these developed heuristics would be 

easily accessible to mobile food retailers as none require commercial software, in 

comparison to the methodology developed in Chapter 5, and it is assumed that mobile 

food retailers would be satisfied with the near optimal solutions generated by these 

heuristics. 

Prior to outlining these heuristics, two key details of the developed procedures must 

be addressed. First, it is assumed that the formulation for the CCVRP in this chapter is 

identical to the model defined in (5-1) through (5-10) in Chapter 5. Second, a key 

element of all the techniques is that they utilize a covering route building procedure 

which develops a near optimal covering route through a set of locations. A covering route 

is defined as a cycle through a set of locations such that all locations are visited or the 

cycle visits a location 𝑗 ∈ 𝑉′ which can service the demand at an unvisited location 𝑖 ∈

𝑉′ (i.e. 𝑏𝑖𝑗 = 1). This procedure is hereafter called COVROUTE (Covering Route 

Builder). Note that this is a simplified version of the branch-and-bound procedure 

𝑁𝐸𝑉𝐴𝐿 presented in subsection 5.2.1 and it is identical to the simplification of 𝑁𝐸𝑉𝐴𝐿 

first discussed in subsection 5.4.1. Since COVROUTE is essential to the heuristics in this 

chapter, it will be explained in detail alongside the pseudocode for the procedure. 

Let 𝑆 ⊆ 𝑉′ be a subset of customer locations such that ∑ 𝑑𝑖𝑖∈𝑆 ≤ 𝐶. Hence, including 

all customers in 𝑆 on a covering route is guaranteed to not violate the capacity constraint 

of a vehicle. The goal of COVROUTE is to find a high quality covering route through 

𝑆 ∪ {0} via a branch-and-bound approach. Specifically, the algorithm branches on the 



  165 

inclusion/exclusion of elements of 𝑆 along the physical route of the vehicle. To do so, the 

procedure utilizes sets 𝑆1 and 𝑆0 which are the customers which are included and 

excluded along the physical route respectively. Additionally, let 𝑆∗ store the ordered list 

of physically visited stops in the best route, 𝑧∗ store the route distance of the best route 

identified thus far, and 𝑧𝐿𝐵 track the lower bound on any feasible route through 𝑆1. 

Hence, initialization starts with 𝑆∗ and 𝑆0 as empty, 𝑆1 = {0} (i.e. must visit the depot), 

𝑧∗ = ∞, and 𝑧𝐿𝐵 = 0. 

COVROUTE (𝑆, 𝑆∗, 𝑆1, 𝑆0, 𝑧∗, 𝑧𝐿𝐵) 

Let 𝑣𝑖 = min𝑗,𝑘∈𝑆1
{𝑡𝑗𝑖 + 𝑡𝑖𝑘 − 𝑡𝑗𝑘} for all 𝑖 ∈ 𝑆\(𝑆1 ∪ 𝑆0) 

Let 𝑣𝑖 = 0 for all 𝑖 ∈ 𝑆1 

Initialize 𝑐𝑖 = ∞ and let 𝑐𝑖 = min𝑗∈𝑆\𝑆0
{𝑣𝑗  | 𝑏𝑖𝑗 = 1} for all 𝑖 ∈ 𝑆\𝑆1 

If 𝑐𝑖 = ∞ for some 𝑖 ∈ 𝑆\𝑆1, then RETURN 

If ∑ 𝑐𝑖 |𝑆\𝑆1|⁄𝑖∈𝑆\𝑆1
+ 𝑧𝐿𝐵 > 𝑧∗, then RETURN 

If max 𝑗∈𝑆1
{𝑏𝑖𝑗} = 1 for all 𝑖 ∈ 𝑆\𝑆1, then 

Let 𝑧 be a near-optimal tour through 𝑆1 

If 𝑧 < 𝑧∗, update 𝑧∗ and 𝑆∗ 

Else 

 Select some 𝑗∗ ∈ 𝑆\(𝑆1 ∪ 𝑆0)  

 COVROUTE (𝑆, 𝑆∗, 𝑆1 ∪ {𝑗∗}, 𝑆0, 𝑧∗, 𝑧𝐿𝐵 + 𝑣𝑗∗) 

COVROUTE (𝑆, 𝑆∗, 𝑆1, 𝑆0 ∪ {𝑗∗}, 𝑧∗, 𝑧𝐿𝐵) 

End if 

 

The COVROUTE procedure starts by calculating the minimum insertion distance 𝑣𝑖 

for all locations which have yet to be branched. These values assist in providing a lower 

bound on total tour distance if that location were to be inserted in the tour as 

demonstrated Chapter 5 and by Agarwal, Mathur, and Salkin (1989). Next, 𝑐𝑖 is 

calculated for any currently uncovered location which represents the minimum insertion 

distance for some nearby location which can cover location 𝑖. Two fathoming tests are 

then performed. The first ensures that all uncovered stops can still be covered by some 

unbranched location. The second calculates a lower bound on the current covering route 



  166 

which must at least visit all stops in 𝑆1. This lower bound’s validity is demonstrated in 

Chapter 5. If this lower bound is more than the current best feasible route, the branch can 

be fathomed.  

If the branch cannot be fathomed, two possibilities remain. The first is that all of 𝑆 is 

covered by the locations in 𝑆1 in which case no more branching is needed. In such a 

situation, a cycle is created through 𝑆1 and if this cycle provides a better covering route 

than the current best route, 𝑆∗ and 𝑧∗ are updated. For this implementation, a cycle was 

created during this phase by employing the 2-opt heuristic as it provided a high quality 

solution with only a small computational effort. The other possibility is that some 

location in 𝑆 has yet to be covered. In this case, some unbranched location 𝑗∗ must be 

selected for branching. For this implementation, 𝑗∗ was selected such that it was the most 

frequent minimum insertion point that covered the most uncovered locations. In other 

words, each 𝑗 ∈ 𝑆\(𝑆1 ∪ 𝑆0) was tallied as the solution for argmin𝑗∈𝑆\(𝑆1∪𝑆0){𝑣𝑖  | 𝑏𝑖𝑗 =

1} for all 𝑖 ∈ 𝑆′ where 𝑆′ are the set of locations which are not currently covered by some 

location in 𝑆1. This procedure was completed such that solutions were encountered 

quickly within the branch-and-bound tree in hopes that a high quality upper bound 𝑧∗ 

could be identified early in the procedure. Given 𝑗∗, the branch-and-bound tree was 

expanded by including 𝑗∗ in 𝑆1 and 𝑆0 respectively and the process is continued. The 

COVROUTE procedure terminates once all paths are fathomed.  

 

6.1.1 Greedy heuristic 

The Greedy heuristic is the simplest approach to solving the CCVRP. In summary, 

the methodology starts with an empty set of covering routes and sequentially builds 



  167 

routes in a greedy manner. A route is started by finding the closest location to the depot 

which has yet to be serviced and assigning this location as the first stop and assigning it 

to be covered as required by constraint set (5-6). At this stop, any location which has yet 

to be served and is coverable by the current stop is assigned to be covered so long as the 

cumulative capacity served by the route does not exceed 𝐶. In this implementation, 

coverable stops were investigated based on the order of their indices in 𝑉. The route is 

then continued by finding the closest location which has yet to be served such that adding 

the location to the route does not exceed 𝐶. This stop is added to the route and is assumed 

to be covered. Coverable locations from this new stop are then investigated as previously 

stated. 

This process of building a route is continued until the vehicle seeks to travel to a new 

location and finds no location exists that can be serviced from the current route without 

exceeding the vehicle’s capacity. The route is therefore considered to be complete and the 

travel distance from the last stop to the depot is added to the route. The complete list of 

customers covered by this route is then sent to COVROUTE to determine if an improved 

route can be identified which services all of these customers. If so, the greedy route is 

updated. Once this route is completed and assuming all locations have yet to be serviced, 

a new route is started. This process continues until all locations are serviced and the 

cumulative sum of all route costs is recorded if 𝐾 or less routes are used. The process is 

then repeated by resetting the algorithm and having the first route visit the second closest 

location first. The routes are then built as previously described. This process of resetting 

the algorithm is continued after building all routes until the first route visits the farthest 



  168 

point during initialization. The best feasible set of routes from this process is maintained 

as the heuristic solution. 

 

6.1.2 Sweep heuristic 

The Sweep heuristic utilizes a two stage approach. First, 𝑉′ is partitioned into 

pairwise independent clusters using the same sweep mechanic as employed in traditional 

VRPs. Specifically, a location in 𝑖 ∈ 𝑉′ is selected as the start of the sweep and is added 

to the first cluster. A graphical ray which is fixed at the depot is then swept clockwise 

starting at 𝑖. As the ray encounters a new location, it is added to the current cluster if the 

cumulative demand of all locations in that cluster does not exceed the current capacity of 

the vehicle. If demand is exceeded, the current cluster is complete and the current 

location starts the next cluster. The ray is swept clockwise until all locations are added to 

clusters. If this creates 𝐾 or less clusters, than the set of stops in each cluster is given to 

COVROUTE and a set of feasible covering routes are returned as the heuristic solution.  

In this implementation, the Sweep heuristic is conducted 𝑛 times such that each 

location in 𝑉 serves as the initialization point of the heuristic. The best set of routes out of 

these 𝑛 options is returned as the solution. Note that it may be possible the Sweep 

heuristic identifies no feasible set of routes if none of the 𝑛 initialization criteria are able 

to partition 𝑉 into 𝐾 or less clusters.  

 

6.1.3 Savings heuristic 

The Savings heuristic is similar to the Sweep heuristic for the CCVRP in that a two 

stage approach is used where the first stage partitions 𝑉′ into pairwise independent 

clusters. However, this stage utilizes the Savings heuristic which is applied to traditional 



  169 

VRPs to generate service routes. Specifically, for each pair (𝑖, 𝑗) ∈ 𝑉′ where 𝑖 ≠ 𝑗, 

calculate 𝑠𝑖𝑗 = 𝑡𝑜𝑖 + 𝑡𝑜𝑗 − 𝑡𝑖𝑗 which is the savings value if two separate routes, assuming 

𝑖 and 𝑗 were either the first or last customer visited, were joined into one route. Next, sort 

all 𝑠𝑖𝑗 in a decreasing manner and create an initial set of 𝑛 routes such that each route 

only visits one unique customer in 𝑉′ and returns to the depot. The list of sorted 𝑠𝑖𝑗 are 

then analyzed in order as follows. For any 𝑠𝑖𝑗, if 𝑖 is either the first or last customer 

visited in one of the current routes and if 𝑗 is either the first or last customer visited in a 

different route, then those two routes are merged together maintaining the proper 

ordering of stops (assuming the newly created route will not exceed the capacity 

threshold of the vehicle). This process is complete once all 𝑠𝑖𝑗 have been investigated and 

the final set of routes is returned. If this process terminates with 𝐾 or fewer routes, the set 

of customers in each route are passed to COVROUTE and a set of feasible covering 

routes are returned as the heuristic solution.  

To keep the Savings heuristic approach equivalent to the prior heuristics, the Savings 

algorithm is conducted 𝑛 times. The first pass is conducted as described previously. Each 

subsequent pass resorts the list of 𝑠𝑖𝑗 such that the first element in the prior call to the 

Savings heuristic becomes the last element in the current call and all others elements are 

moved one entry forward in the list. Hence, each call of the heuristic can return a unique 

set of covering routes and the set with the shortest distance is retained as the solution.  

 

6.2 Ant colony heuristic 

The final heuristic is an adaptation of the ACS metaheuristic applied to the CCVRP. 

The motivation to adapt the ACS procedure for the CCVRP, in comparison to the other 



  170 

metaheuristic approaches, is based on the use of the route building procedure 

COVROUTE which was developed to be used in all of the presented CCVRP heuristics. 

The advantage of COVROUTE is that it is able to efficiently consider all possible 

combinations of visiting/covering locations for building a route through a set of demand 

points. Its disadvantage is that the algorithm, when performed repeatedly as will be the 

case in many metaheuristics, is computationally complex when the ratio of customers per 

truck increases as demonstrated by the computational results in subsection 6.3.3. The 

ACS procedure was therefore selected as it will require less calls to COVROUTE in 

comparison to other metaheuristics such as a Tabu Search or Simulated Annealing 

procedure which may call COVROUTE to measure every insertion/deletion operation. 

Hence, the discussion that follows solely focuses on the use of the ACS for the CCVRP. 

The feasibility and use of COVROUTE, as well as the adaptation of other metaheuristics 

to solve CCVRP instances, is revisited in subsection 6.4.  

 To simulate the foraging behavior of ants in the ACS, let each ant represent a set of 

vehicles. Each ant then starts at the depot (i.e. the colony) and moves through the network 

until all demand is satisfied. This path is then transformed to represent feasible vehicle 

routes by forcing the ant to visit the depot if the cumulative demand of serviced locations 

since the ant’s last visit to the depot would exceed a vehicle’s capacity. To demonstrate 

how these paths are built, let 𝜏𝑖𝑗 for each pair (𝑖, 𝑗) ∈ 𝑉 represent the amount of current 

pheromone on the edge connecting those two locations. Furthermore, let 𝑉̇ ⊆ 𝑉′ 

represent all of the current customers who have yet to have their demand serviced and let  

𝑉̈ ⊆  𝑉̇ represent the final subset of visitable customers. The method used to construct 𝑉̈ 

is discussed at the end of this section.  



  171 

Assuming the ant is currently at location 𝑖, the ant can select the next location as 

𝑗 = arg max
𝑗∈ 𝑉̈

{(𝜏𝑖𝑗)(𝜂𝑖𝑗)
𝛽

}    𝑖𝑓 𝑞 ≤ 𝑞0 (6-1)  

where 𝜂𝑖𝑗 is the inverse of the distance between 𝑖 and 𝑗, 𝛽 > 0 is a user defined parameter 

defining the importance of distance over pheromone strength, 𝑞0 ∈ [0,1] is a user defined 

parameter, and 𝑞 ∈ [0,1] is a random variable which is defined each time the ant seeks to 

travel to a new location. If 𝑞 > 𝑞0, then the ant travels from 𝑖 to a random location in  𝑉̈ 

where the probability that 𝑗 ∈  𝑉̈ is selected is 

(𝜏𝑖𝑗)(𝜂𝑖𝑗)
𝛽

(∑ (𝜏𝑖𝑘)(𝜂𝑖𝑘)𝛽
𝑘∈𝑉̈ )⁄ .  (6-2) 

Hence, by adjusting 𝑞0, the ant can either have more emphasis on selecting a random 

location as expressed by probability (6-2) or more emphasis on selecting the ‘closest’ 

location as measured by (6-1). If traveling to the next location 𝑗 would exceed the current 

capacity of a vehicle, the current amount of demand serviced by the ant is reset to zero to 

represent the vehicle returning to the depot before traveling to 𝑗. 

The novel aspect of the ACS procedure applied to the CCVRP is how the covering 

mechanism is modeled within the ACS framework. Specifically, a second pheromone 

mechanic is employed which is separate from the pheromones used to model the physical 

travel of the ants. To demonstrate this procedure, define the covering pheromone 𝜏𝑖𝑗
𝑐 ∈

[0,1] for each pair (𝑖. 𝑗) ∈ 𝑉′ which represents the probability that an ant visiting 𝑖 will 

service the demand at location 𝑗. To ensure only feasible coverings occur, define 𝜏𝑖𝑗
𝑐 = 0  

for any (𝑖, 𝑗) pair where 𝑏𝑖𝑗 = 0.  Hence, each time an ant visits a new location, all 

unserved coverable locations are sequentially tested for coverage based on 𝜏𝑖𝑗
𝑐  so long as 

servicing that location will not exceed the capacity of that vehicle route.  If servicing such 



  172 

a location would exceed the capacity of the current vehicle route, then that location is not 

investigated for coverage from the current stop.  

Given these mechanisms, define an ACS phase as the complete processing of 𝑁 ants. 

Hence, a phase starts by spawning 𝑁 ants at the depot. One at a time, each ant is allowed 

to create a covering path which is then split into a set of vehicle covering routes such that 

the vehicle returned to the depot whenever the cumulative demand served along the ant’s 

path exceeded the vehicle’s capacity. At the end of each phase, the set of 𝑁′ ants whose 

vehicle routes have the shortest total distance are retained as the best and each of their 

routes are tested for improvement using COVROUTE. If one of these improved ant paths 

results in 𝐾 or less vehicle routes whose total distance is less than the best solution found 

thus far, then the global best is updated. All ants are then reset. In total, the ACS 

algorithm continues until 𝑀 total phases have been completed. The routes defining the 

global best solution at this point are then returned as the final solution. 

The remaining key detail of the ACS approach is the updating of pheromones 

between the phases. Once a phase is completed, pheromones are first evaporated to 

represent the natural dissipation of scent. For the travel pheromones, evaporate the 

pheromones as 

𝜏𝑖𝑗 = (1 − 𝛼)𝜏𝑖𝑗 + (𝛼)𝜏̅    (6-3) 

where 𝛼 ∈ [0,1] is a user defined value determining the rate of pheromone dissipation 

and 𝜏̅ is the initial pheromone for each edge in the network. Evaporate the covering 

pheromones as 

𝜏𝑖𝑗
𝑐 = (1 − 𝛼𝑐)𝜏𝑖𝑗

𝑐 + (𝛼𝑐)𝜏̅𝑖𝑗
𝑐      (6-4) 



  173 

where 𝛼𝑐 ∈ [0,1] is a user defined value determining the rate of covering pheromone 

dissipation and  𝜏𝑖̅𝑗
𝑐  is the initial covering pheromone which is unique to each edge in the 

network. After all pheromones are evaporated, those edges which define the best ant path 

and covering plan found during that ACS phase are updated. Specifically, if edge (𝑖, 𝑗) ∈

𝑉 are traveled by the best ant from the phase, then let 

𝜏𝑖𝑗 = (1 − 𝛼)𝜏𝑖𝑗 + (𝛼)𝐿−1    (6-5) 

where 𝐿 is the total distance covered by the vehicles which are represented by the ant’s 

path. With respect to the covering pheromones, for any 𝑗 ∈ 𝑉′ which is covered by the 

best ant stopping at any 𝑖 ∈ 𝑉′, let  

𝜏𝑖𝑗
𝑐 = {

(1 − 𝛼𝑐)𝜏𝑖𝑗
𝑐 + (𝛼)2𝜏̅𝑖𝑗

𝑐  if 𝐿 ≤ 𝐿̅

(1 − 𝛼𝑐)𝜏𝑖𝑗
𝑐 otherwise

      (6-6) 

where 𝐿̅ is the distance of the best known set of covering routes at the start of the ACS 

algorithm. By defining 𝜏̅ = 𝐿̅−1, observe that both (6-5) and (6-6) increase pheromones 

associated with the best ant path and covering plan only if that plan is better than the best 

non-ACS route while the pheromones are decreased otherwise. This is advantageous as it 

protects against rewarding ants that find vehicle routes which are worse than the best 

known solution at the start of the ACS procedure.  

Furthermore, (6-6) is partially motivated by the initialization of 𝜏𝑖̅𝑗
𝑐 . For each 𝑗 ∈ 𝑉′, 

let 𝑓𝑗 = ∑ 𝑏𝑖𝑗𝑖∈𝑉′  which indicates the number of locations for which it is possible to 

satisfy the demand of 𝑗. This implementation of the ACS then initializes all 𝜏𝑖̅𝑗
𝑐 = 1 𝑓𝑗⁄  

for any (𝑖, 𝑗) ∈ 𝑉′ pair where 𝑏𝑖𝑗 = 1. Hence, a location has an equal probability of being 

serviced from any location at the start of the ACS procedure. Additionally, if a location 

can have its demand serviced from a nearby location (i.e. it can be covered and does not 



  174 

have to be directly visited), then the pheromones in (6-6) will never exceed 1.0 as the 

highest value for 𝜏𝑖̅𝑗
𝑐  is 1 2⁄ . 

Even though the prior description suffices to completely define the ACS procedure, 

one algorithmic enhancement was included to improve the results. Specifically, the 

subset 𝑉̈ used for (6-1) and (6-2) was restricted to only be the closest (𝑛 + 1) 7⁄  unserved 

locations to the current position of the ant. This improvement is motivated by Bell and 

McMullen (2004) who implemented the same technique for the ACS applied to the 

CVRP. Bell and McMullen tested various denominators for determining the size of  𝑉̈ 

with the general results finding larger denominator values (up to 9.0 was tested) 

improved the results for two of the cases while a denominator of 5 was the best choice in 

the other case. Hence, a value of 7 was selected as it was only slightly worse than the best 

in all of the test cases and is therefore a good compromise. Further research could 

investigate if a different value is preferred, but preliminary testing on some of the test 

cases in subsection 6.3 identified restricting the size of  𝑉̈ improved the quality of the 

results.  

 

6.3 Computational tests 

To test the developed heuristics as well as to perform tuning experiments on the 

developed ACS procedure, a set of existing CVRP benchmark test instances were 

expanded to incorporate the covering concept. Specifically, all of set A and set P test 

instances from Augerat and all test instances from Christofides and Eilon with coordinate 

data were selected for testing and all customer locations, demands, and vehicle quantities 

were unchanged. Copies of these benchmark cases are maintained by the Networking and 



  175 

Emerging Optimization Research Group (2013). These not only include the test instances 

used in subsection 5.5, but also the test instances which were excluded in Chapter 5 due 

to the number of customers. For each of these instances, the definitions used to generate 

the radius cases described in Table 14 were employed.  

For these test instances, the computational results are split into two sections based on 

problem size. The results from problems with strictly less than 50 customers will be 

presented first followed by the remaining results from larger test instances. This split is 

necessary since optimal solutions exist only for the smaller test instances based on the 

results from Chapter 5. Hence, the first set of results can be compared with the known 

best results while the second set of results can only be compared against the other 

heuristics in this chapter. Prior to showing these results, parameter setting for the ACS 

heuristic will be discussed.  

 

6.3.1 ACS heuristic tuning 

For this implementation, some of the ACS parameters were assumed to be fixed 

based on the results identified in the existing literature. Specifically, 𝑁 = 25 ants were 

simulated at each phase of the ACS procedure and 𝑁′ was set to 5 as similarly 

implemented by Bell and McMullen (2004). Increasing 𝑁 or 𝑁′ will only improve the 

results, but it will also slow the procedure. Future research is recommended to study the 

effect of changing 𝑁 or 𝑁′ to find an ideal tradeoff. Additionally, the size of 𝑉̈ was fixed 

based on the discussion at the end of subsection 6.2.  

To determine the remaining parameters for the ACS heuristic, two experiments were 

conducted. In those experiments, three problem instances were selected for testing. Those 



  176 

instances are the 32 location, 5 vehicle case from Augerat’s set A, the 51 location, 5 

vehicle case from Christofides and Eilon, and the 76 location, 4 vehicle case from 

Augerat’s set P. These three instances were selected as they represent one case from each 

of the three sets of data and three levels of locations which are reasonable samples from 

the set of full test instances (which range from 16 to 101 locations). For each of these 

instances, all three radius cases were tested from Table 14. 

A response surface experimental design was conducted to establish the values of 𝛼, 

𝛼𝑐, 𝛽, and 𝑞0. For these experiments it is assumed 𝑀 = 5000 which is revisited later. 

Initially a four factor (one for each tested parameter) full factorial central composite 

design was created with 0 ≤ 𝛼, 𝛼𝑐, 𝑞0 ≤ 1, 1 ≤ 𝛽 ≤ 5, axial runs on the edges of the 

cube, and a center run with one duplication (Montgomery 2012). The initial settings for 

the four parameters are based on the findings from Bell and McMullen (2004). This 

experiment has 26 parameter combination settings and each of the 9 test instance and 

radius combinations were solved 10 times at each setting combination to minimize the 

effect of outliers. For each of the 9 test instance and radius combinations, the average 

solution value over the 10 obtained solutions was calculated for each parameter 

combination setting and the lowest observed solution value was recorded regardless of 

the parameter settings. The average percentage above the minimum observed value was 

then calculated and averaged across all 9 of the test instance and radius combinations to 

determine the singular output from these experiments for each of the parameter 

combination settings (see Table 17 for an example).  

The results from this initial experiment identified that the minimum value was well 

outside of this experimental region. A steepest descent methodology was employed to 



  177 

move the experimental region until decreasing values were no longer observed. An 

identical experiment was then conducted over this new region with 0 ≤ 𝛼, 𝛼𝑐, 𝑞0 ≤ 1 and 

8 ≤ 𝛽 ≤ 12. The results from these tests are shown in Table 17 where the average 

percentage above the minimum observed solution value is calculated for each test 

instance, radius, and parameter setting combination. The average of these values for each 

parameter setting combination (shown in the right-most column) were the final values 

used to determine the ideal settings for the four parameters by fitting a full second order 

response surface model. The minimum value from this model identified the ideal settings 

to be approximately (rounded for convenience) 𝛼𝑐 = 0.6, 𝑞0 = 0.2, and 𝛽 = 11. Within 

the model, no terms containing 𝛼 were identified as significant so 𝛼 was set the same as 

𝛼𝑐 for convenience. Confirmation experiments were conducted at these settings which 

identified the average percentage above the minimum observed value as 1.20% which is 

within the predicted tolerances. If such thorough tuning experiments are not feasible for 

future practitioners, general tuning procedures can be performed such as Irace or SMAC. 

 

 

 

 

 

 

 



  178 

Table 17. ACS tuning parameter designed experiments results for 𝛼, 𝛼𝑐, 𝑞0, and 𝛽. All 

results reported as the average percentage deviation from the best identified solution for 

each instance and radius combination. 

Run (𝛼, 𝛼𝑐, 𝑞0, 𝛽) 

Augerat set A Christofides and 

Eilon 

Augerat set P 

Ave. 
A B C A B C A B C 

1 (0,0,0,8) 0.01 0.02 1.35 2.25 1.73 0.3 2.2 1.09 2.72 1.30 

2 (0,0,0,12) 0.01 0.00 1.35 2.03 1.83 0.19 2.29 1.29 2.93 1.33 

3 (0,0,1,8) 8.59 3.93 1.59 10.28 2.78 0.81 4.33 1.59 2.84 4.08 

4 (0,0,1,12) 8.59 3.93 1.59 10.28 3.09 0.81 4.03 1.11 2.43 3.98 

5 (0,0.5,0.5,10) 0.02 0.04 1.37 3.18 1.26 0.50 2.74 1.00 2.53 1.40 

6 (0,1,0,8) 0.01 0.00 1.52 2.08 1.08 0.24 2.38 1.68 2.92 1.32 

7 (0,1,0,12) 0.01 0.04 1.59 2.06 0.87 0.30 2.10 1.05 1.95 1.11 

8 (0,1,1,8) 8.59 3.93 1.8 10.28 2.07 0.52 3.96 2.11 2.17 3.94 

9 (0,1,1,12) 8.59 3.93 2.72 10.28 2.03 0.58 4.18 1.40 2.31 4.00 

10 (0.5,0,0.5,10) 0.04 0.02 1.35 3.18 2.42 0.59 2.78 1.53 2.80 1.64 

11 (0.5,0.5,0,10) 0.01 0.02 1.35 1.84 1.24 0.29 2.09 1.16 2.56 1.17 

12 (0.5,0.5,0.5,8) 0.02 0.06 1.35 2.69 1.35 0.33 3.04 1.32 2.43 1.40 

13 (0.5,0.5,0.5,10) 0.02 0.04 1.35 3.32 1.34 0.38 2.38 1.36 2.02 1.36 

14 (0.5,0.5,0.5,10) 0.01 0.06 1.35 2.82 1.39 0.46 2.56 1.01 2.87 1.39 

15 (0.5,0.5,0.5,12) 0.02 0.02 1.35 2.58 0.89 0.17 2.94 1.45 2.55 1.33 

16 (0.5,0.5,1,10) 8.59 3.93 1.62 10.28 2.39 0.64 3.86 1.15 2.35 3.87 

17 (0.5,1,0.5,10) 0.05 0.11 1.59 3.11 1.53 0.48 2.73 1.32 2.60 1.50 

18 (1,0,0,8) 0.02 0.00 1.35 1.66 1.71 0.31 1.85 1.43 2.85 1.24 

19 (1,0,0,12) 0.01 0.00 1.35 1.94 1.57 0.51 2.40 0.93 2.42 1.24 

20 (1,0,1,8) 8.59 3.93 1.59 10.28 3.24 0.67 3.93 1.20 2.20 3.96 

21 (1,0,1,12) 8.59 3.93 1.59 10.28 2.92 0.79 3.88 1.19 3.20 4.04 

22 (1,0.5,0.5,10) 0.02 0.06 1.35 3.17 1.25 0.31 2.49 1.10 2.93 1.41 

23 (1,1,0,8) 0.02 0.00 1.47 1.71 1.00 0.72 3.22 1.24 3.18 1.39 

24 (1,1,0,12) 0.02 0.02 1.49 1.99 1.38 0.25 1.85 0.83 2.34 1.13 

25 (1,1,1,8) 8.59 3.93 3.12 10.28 1.88 0.73 4.11 1.29 2.32 4.03 

26 (1,1,1,12) 8.59 3.93 2.15 10.28 1.85 0.67 4.25 1.47 2.14 3.92 

Ave.  2.98 1.38 1.60 5.16 1.77 0.48 3.02 1.28 2.56  

 

Next the value for 𝑀 was determined given these settings. This was excluded from 

the prior experiment as the ideal setting for 𝑀 which provides the lowest solution value is 

impossible to determine as larger values of 𝑀 are always expected to improve solution 

quality. Hence, the goal of determining the ideal setting for 𝑀 is to identify a balance 



  179 

between solution quality and solution time which cannot be established from a designed 

experiment. For each of the 9 test instance and radius combinations, values for 𝑀 from 

100 to 10,000 were tested and each was solved 10 times to minimize the effect of 

outliers. The minimum observed solutions for each of the 9 test instance and radius 

combinations were recorded from these experiments and the average percentage above 

this minimum was calculated for each combination of 𝑀, test instance, and radius 

combination.  

These values are graphed in Figure 8 and various averages of these values are shown 

in Figure 9 which were used to identify two key settings for 𝑀. The first setting is 𝑀 =

4000 which is the setting prior to the first increase in the overall average percentage over 

the observed minimum (from 1.07% to 1.19% when 𝑀 = 5000). Hence, 𝑀 = 4000 will 

be used as it represents a reasonable balance between solution quality and time. The 

second setting is 𝑀 = 7000 which is the first instance where the lowest overall average 

percentage over the minimum (0.86%) is observed. Hence 𝑀 = 7000 will also be tested 

as this represents the scenario where algorithmic time is not an issue. 



  180 

 

Figure 8. Average deviation from the minimal observed solution for each 𝑀, instance, 

and radius combination. 

 

 

Figure 9. Average deviation from the minimal observed solution across all instances and 

radius combinations for each 𝑀 and average deviation from the minimal observed 

solution across all instances. 

 

 



  181 

6.3.2 Small test instances 

Given these settings, computational experiments were conducted on all test instances 

from Set A and Set P by Augerat as well as all test instances from Christofides and Eilon 

with strictly less than 50 customers. The results from the 32 location, 5 vehicle Augerat’s 

set A test instance are excluded to avoid overtuning. For each of these test instances, 

three radius cases were created based on Table 14.  

The solution quality and solution time results are reported in Table 18. Specifically, 

each column in Table 18 reports the indicated statistic for a test case and radius 

combination. The first row indicates the number of test instances for each set of test 

combinations. The next set of rows shows the count of test instances in which the 

heuristic was able to identify a feasible solution. The results from the ACS approach 

when 𝑀 = 4000 and 𝑀 = 7000 are denoted in the table as ACS4000 and ACS7000 

respectively. All reference to the ACS results in the discussion to follow will refer to the 

ACS7000 results unless otherwise specified. Next are the average ratios of the heuristic 

solution values over the solution values from the exact solution method from Chapter 5. 

A subset of this average is shown in parenthesis for only those instances in which the 

optimal solution value is guaranteed to be identified by the algorithm in Chapter 5. The 

next set of rows shows the count of test instances in which the heuristic found the best 

solution value compared with all other heuristics while the final set of rows provides the 

average and maximum solution times in seconds. 

 

 



  182 

Table 18. Solution quality and solution time results from test instances with strictly less 

than 50 customers 

Measure Method 

Augerat Set A Augerat Set P Christofides and 

Eilon 

A B C A B C A B C 

Test 

Instances 
N/A 

14 14 14 8 8 8 5 5 5 

Count of 

Feasible 

Solution 

Identified 

Greedy 14 14 14 8 8 8 5 5 5 

Sweep 12 12 12 6 6 6 5 5 5 

Savings 14 14 14 7 7 7 4 4 4 

ACS4000 14 14 14 7 8 8 5 5 5 

ACS7000 14 14 14 7 8 8 5 5 5 

Ave. 

Heuristic 

Sol. over 

Exact Sol. 

(Only Opt. 

Sols) 

Greedy 
1.23 

(1.22) 

1.26 

(1.30) 

1.31 

(1.32) 

1.15 

(1.12) 

1.18 

(1.16) 

1.16 

(1.18) 

1.11 

(1.14) 

1.13 

(1.17) 

1.15 

(1.20) 

Sweep 
1.14 

(1.12) 

1.18 

(1.20) 

1.24 

(1.24) 

1.10 

(1.10) 

1.09 

(1.12) 

1.11 

(1.15) 

1.08 

(1.12) 

1.06 

(1.08) 

1.09 

(1.12) 

Savings 
1.06 

(1.07) 

1.07 

(1.08) 

1.12 

(1.13) 

1.07 

(1.10) 

1.10 

(1.13) 

1.14 

(1.18) 

1.03 

(1.02) 

1.06 

(1.06) 

1.08 

(1.11) 

ACS4000 
1.02 

(1.01) 

1.02 

(1.03) 

1.02 

(1.02) 

1.01 

(1.00) 

1.04 

(1.06) 

1.05 

(1.06) 

1.00 

(1.00) 

1.01 

(1.02) 

1.02 

(1.04) 

ACS7000 
1.02 

(1.01) 

1.02 

(1.03) 

1.01 

(1.02) 

1.00 

(1.00) 

1.04 

(1.06) 

1.04 

(1.05) 

1.00 

(1.00) 

1.01 

(1.02) 

1.02 

(1.04) 

Count Best 

Heuristic 

Sol. 

Identified 

Greedy 0 0 0 1 0 1 0 0 0 

Sweep 0 0 0 0 0 0 0 1 0 

Savings 1 0 0 0 0 0 0 1 1 

ACS4000 8 11 10 5 6 5 4 5 4 

ACS7000 13 14 14 7 8 8 5 5 4 

Avg. Sol. 

Time (Max 

Sol. Time) 

Greedy 
0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.1) 

0.0 

(0.0) 

0.0 

(0.0) 

Sweep 
0.0 

(0.1) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.1) 

0.0 

(0.0) 

Savings 
0.2 

(0.5) 

0.2 

(0.5) 

0.2 

(0.5) 

0.2 

(0.4) 

0.1 

(0.4) 

0.1 

(0.3) 

0.0 

(0.1) 

0.0 

(0.1) 

0.0 

(0.1) 

ACS4000 
9.9 

(13.9) 

9.6 

(13.7) 

8.9 

(12.4) 

9.6 

(16.2) 

8.5 

(15.8) 

7.8 

(13.8) 

10.1 

(16.0) 

9.3 

(16.9) 

6.8 

(10.6) 

ACS7000 
17.4 

(24.2) 

16.8 

(24.0) 

15.6 

(21.7) 

16.7 

(28.2) 

14.9 

(27.6) 

13.6 

(24.1) 

17.7 

(28.1) 

16.3 

(29.7) 

11.8 

(18.7) 

 

The first rows of results from Table 18 demonstrate that only the Greedy solution 

methods was able to identify feasible solutions for all of the tests instances while the 



  183 

ACS procedure (at both values of 𝑀) was able to find feasible solutions for all but 1. The 

Savings algorithm was slightly worse as it was not able to identify feasible solutions in 6 

of the 81 test instances while the Sweep algorithm performed the worst by not identifying 

feasible solutions in 12 of the 81 test instances. With respect to the Sweep heuristic, the 

inability to identify feasible solution is not surprising since it is the least ‘greedy’ of the 

different heuristics as it is solely based on network layout without the ability to fill nearly 

full routes with small capacity locations. Hence, the Sweep heuristic is not recommended 

to solve problems which have limited flexibility with respect to the combinations of stops 

which can be serviced by one vehicle.  

With respect to the heuristic results compared with the exact solution method from 

Chapter 5, Table 18 indicates that the worst to best solution techniques are the Greedy, 

Sweep, Savings, and ACS solution methods for nearly all radius and test combinations. 

The only exceptions in this ordering are for the Augerat Set P test instances with radius 

cases B and C in which the Sweep method performed better on average than the Savings 

method.  

The clear best solution method for these small test instances is the ACS as it finds a 

solution which is less than 4% greater on average compared with the exact solution 

method. This decreases to a gap of 2% or less on average if the radius case B and C 

instances from Augerat Set P are excluded. Furthermore, the ACS finds a better solution 

on average for the Christofides and Eilon radius case A test instances than the exact 

solution method from Chapter 5 (as some of these instances terminated at the 60 minute 

time limit). Table 18 reports these as even with a value of 1.00, but including more digits 

in the table would demonstrate that the ACS finds a solution value which is 99.87% of 



  184 

the exact solution method on average. Furthermore, when only the guaranteed optimal 

solutions are considered, as shown in parenthesis, the ACS finds the optimal solution in 

all of the Christofides and Eilon radius case A test instances.  

With respect to the different radius cases, the heuristics generally perform better with 

a sparser coverage matrix. The possible cause of this performance is that the sparser 

matrix implies there are less feasible routes/solutions that can be generated. With respect 

to the different test instance sets, the results demonstrate that the heuristics find better 

solutions on average for the Christofides and Eilon instances as compared to both of the 

Augerat instances. The hypothesis for this difference is based on comparing Figure 10 

which shows the solutions for the Christofides and Eilon 30 customer, 4 vehicle, and 

radius case A solutions with Figure 11 in subsection 6.3.3 which shows the solutions for 

the Augerat Set P 55 customer, 7 vehicle, and radius case A solutions. In general, the test 

instances from Augerat are more uniformly dispersed compared with the cases from 

Christofides and Eilon. Hence, it is hypothesized that the heuristic solutions are better on 

average for more clustered test instances compared with the more uniformly dispersed 

test instances. The justification for this hypothesis is that the developed heuristics place a 

significant emphasis on neighboring locations to create clusters (especially for the 

Savings and Sweep heuristics) which can benefit those instances in which natural clusters 

already exist. 



  185 

 

Figure 10. Heuristic and exact solutions for the Christofides and Eilon 30 location, 4 

vehicle, and radius case A test instance. 

 

Also demonstrated in Figure 10 is the advantages and disadvantages of the different 

solution techniques. For instance, the Greedy method clearly provides the weakest 

solution method as there are multiple long travel arcs and crossing vehicle routes. By 

comparison, the routes generated by the Sweep and Savings method are clearly superior 

to the Greedy routes even though they are not optimal. In addition, these two solutions 

share numerous similarities to the known optimal routes identified by the algorithm in 

Chapter 5 and the ACS heuristic. For instance, each of the solution methods identified 

that a vehicle always stops at one of the upper left most points in the network and at least 

serves three other coverable locations in its vicinity. It may be possible to use such 



  186 

information to further improve the solution methodologies by limiting the possible 

routing/covering combinations and focus the search techniques. However, further 

research is needed to investigate if such improvements are possible and whether or not 

they improve the solution quality. 

The second to last rows of results in Table 18 demonstrate that the ACS solution 

method is able to find the best heuristic solution in all but 3 of the 81 test instances 

further implying that it is the best solution method for these small problems. The sole 

outliers are two test instances where the Savings method (2nd best solution method for 

small problem instances with respect to solution quality) identifies the best solution and 

one test instance where the Greedy method identifies the best solution. With respect to 

the latter, this situation only occurred because all of the other heuristics were unable to 

identify feasible solutions for this test instance. In addition, the differences in values 

between the ACS4000 and the ACS7000 show a subset of the total number of test 

instances which benefited from the larger value of 𝑀. Specifically, 58 out of the 78 test 

instances where ACS7000 identified the best solution already identified the same solution 

when 𝑀 = 4000. The remaining 20 instances benefited from the longer running time. 

The clear disadvantage of the ACS and the Savings methods is that the ACS 

methodology is the most computationally intensive while the Savings method is the 

second most computationally intensive as reported in the final rows of Table 18. While 

these times are still very small, they are significant in comparison to the Sweep method 

which was able to identify nearly as competitive of solutions in comparison to the 

Savings heuristic in a much shorter amount of time. Note that this advantage is 

potentially negated by the feasibility challenges of the Sweep methodology. Therefore, 



  187 

the ACS methodology is recommended for all small test instances unless computational 

time is of major concern. In such a case, either a smaller value for 𝑀 can be employed (as 

was done for the ACS4000 results) or the Sweep/Savings methods can be used if 

algorithmic results are needed within a second. 

 

6.3.3 Large test instances  

The results shown in this section are for the test instances from Set A and Set P by 

Augerat and the test instances from Christofides and Eilon for any problems with 50 or 

more customers. The results from the 51 location, 5 vehicle Christofides and Eilon test 

instance and the 76 location, 4 vehicle Augerat’s set P test instance are excluded to avoid 

overtuning. For each of the remaining test instances, three cases were created based on 

the radius options in Table 14.  

The results from these tests are shown in Table 19 which has the same statistics as 

Table 18 with two exceptions. The first difference is that the second set of statistics in 

Table 19 calculate the average ratios of the heuristic solutions over the best solutions 

identified across all of the heuristics. This difference from Table 18 is required as these 

large test instances have yet to be solved optimally. The second difference is that the 

solution times shown in the last set of rows exclude the Augerat Set P test instance with 4 

vehicles and 100 customers. This instance is excluded as its time results are a significant 

outlier which drastically alter the values shown in Table 19. The time results from this 

instance will be addressed in depth later in the section. 

 

 



  188 

Table 19. Solution quality and solution time results from test instances with 50 or more 

customers (*excludes time results from Augerat Set P test instance with 4 vehicles and 

100 customers) 

Measure Method 

Augerat Set A Augerat Set P Christofides and 

Eilon 

A B C A B C A B C 

Test 

Instances 
N/A 

12 12 12 11 11 11 6 6 6 

Count of 

Feasible 

Solution 

Identified 

Greedy 12 12 12 10 10 10 6 6 6 

Sweep 6 6 6 6 6 6 4 4 4 

Savings 12 12 12 11 11 11 6 6 6 

ACS4000 12 12 12 10 10 10 6 6 5 

ACS7000 12 12 12 10 10 10 6 6 6 

Ave. 

Heuristic 

Sol. over 

Best 

Heuristic 

Sol. 

Greedy 1.21 1.25 1.23 1.18 1.20 1.25 1.26 1.26 1.32 

Sweep 1.13 1.16 1.16 1.06 1.09 1.11 1.05 1.09 1.11 

Savings 1.08 1.09 1.09 1.05 1.07 1.09 1.01 1.02 1.01 

ACS4000 1.00 1.00 1.00 1.01 1.00 1.01 1.03 1.03 1.01 

ACS7000 
1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.02 1.01 

Count Best 

Heuristic 

Sol. 

Identified 

Greedy 0 0 0 0 0 0 0 0 0 

Sweep 0 0 0 0 0 0 1 0 0 

Savings 0 0 0 2 2 1 2 4 3 

ACS4000 11 8 9 5 5 2 2 2 1 

ACS7000 12 12 12 9 9 10 4 2 3 

Avg. Sol. 

Time (Max 

Sol. Time)* 

Greedy 
0.0 

(0.1) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.2) 

0.1 

(0.6) 

0.1 

(0.6) 

0.2 

(0.6) 

0.2 

(0.7) 

0.2 

(0.6) 

Sweep 
0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.1 

(0.2) 

0.1 

(0.4) 

0.1 

(0.4) 

0.1 

(0.4) 

0.1 

(0.4) 

0.2 

(0.5) 

Savings 
2.0 

(6.8) 

2.0 

(6.8) 

2.0 

(6.8) 

1.1 

(2.3) 

1.1 

(2.6) 

1.1 

(2.5) 

5.1 

(11.1) 

5.1 

(11.1) 

5.2 

(10.8) 

ACS4000 
20.8 

(34.9) 

20.0 

(35.4) 

19.3 

(35.5) 

21.5 

(61.9) 

26.0 

(110) 

25.5 

(113) 

49.1 

(102) 

48.5 

(107) 

52.3 

(105) 

ACS7000 
36.5 

(62.1) 

35.2 

(62.6) 

33.3 

(62.1) 

39.4 

(108) 

47.7 

(193) 

47.5 

(198) 

85.7 

(178) 

85.0 

(188) 

82.2 

(184) 

 

The results from Table 19 continue to reinforce the observations from Table 18 that 

the Sweep heuristic is outperformed by all other heuristics as measured by the quantity of 

identified feasible solution. This is again theorized to be caused by the lack of a greedy 



  189 

mechanic in the Sweep algorithm. Unlike the results for the small test instance, the sole 

technique which was able to identify feasible solutions for all of the test instances was the 

Savings algorithm. Both the Greedy and ACS7000 solution methods were unable to find 

feasible solutions in 3 out of the 87 test instances while the ACS4000 solution method 

was unable to find feasible solutions in 4 out of the 87 test instances. Hence, by 

combining the results of Table 18 with those from Table 19, the Greedy and ACS 

algorithms perform the best with respect to finding feasible solutions while the Savings 

algorithm is second best. 

The second set of results from Table 19 show that the Greedy heuristic is the worst 

heuristic regardless of the test instance set and the Sweep heuristic is the third worst 

heuristic. For nearly all of the test instances, the ACS procedure is the best performing 

heuristic while the Savings algorithm is the second best with the sole exception of the 

Christofides and Eilon radius case A test instances in which the Savings algorithm is able 

to outperform the ACS procedure by 2% on average. However, the ACS procedure is still 

recommended with respect to solution quality as it is able to outperform the Savings 

algorithm for all of the Augerat test instances by 5% on average in the worst case 

(Augerat Set P radius case A) and by as much as 9% on average in the best cases (a tie 

between three data set and radius combinations).  

The split in results between the ACS procedure and the Savings procedure for the 

Augerat test instances compared with the Christofides and Eilon test instances are 

hypothesized to be caused by the differences in the test instances. For example, by 

comparing Figure 10 with Figure 11 (which shows the solutions obtained from the 

heuristics for the Augerat Set P 55 location, 7 vehicle, and radius case A test instance), 



  190 

the Christofides and Eilon test instances are more geographically clustered than the 

Augerat test instances. The effect of this clustering is that the techniques which place 

greater emphasis on the deterministic network location of two points (such as the Savings 

and Sweep method) are more likely to have success in such instances compared with the 

ACS technique which is a more stochastic methodology. This hypothesis is supported by 

Table 18 and Table 19 as the Sweep and Savings methods are much more competitive 

with the ACS procedure for the Christofides and Eilon instances compared with the 

Augerat instances. However, this effect is not large enough to recommend the Savings 

algorithm over the ACS procedure as the Savings algorithm outperforms the ACS 

procedure on average for only the Christofides and Eilon radius case A instances with 50 

or more customers. In all other cases, the Savings algorithm performs as well as the ACS 

procedure on average or it performs significantly worse.  



  191 

 

Figure 11. Heuristic solutions for the Augerat Set P 55 location, 7 vehicle, and radius 

case A test instance. 

 

Recommending the ACS procedure is further validated by the count of test instances 

in which each solution heuristic identified the best solution. For instance, the ACS7000 

procedure identified the best solution in 73 out of the 87 test instances (45 of these 73 

instances had the best solution identified in the ACS4000 procedure as well) while the 

Savings procedure identified the best solution in 14 of the 87 instances. This 



  192 

demonstrates the dominance of the ACS procedure in these tests. Furthermore, even in 

the Christofides and Eilon radius case A instances where the Savings procedure 

outperformed the ACS procedure with respect to average solution quality, the ACS 

procedure identified 4 of the best solutions out of 6 of the test instances while the Savings 

procedure was able to identify the best solution in the other 2 instances. This 

demonstrates that the average case results discussed previously are driven by a sole 

outlier (specifically the Christofides and Eilon radius case A instance with 76 locations 

and 14 vehicles) where the ACS procedure terminated with a solution 16% higher than 

the Savings algorithm. 

The final results shown in Table 19, the average solution times, again demonstrate 

that the ordering of the heuristics from least to most time intensive are the Greedy, 

Sweep, Savings, and ACS heuristics. In general, the solution times for all but the ACS 

heuristic are minimal. For the ACS7000 heuristic, the solution times are drastically larger 

with the maximum solution times of 3.3 minutes while the ACS4000 heuristic had a 

maximum time of 1.9 minutes. Note that the Augerat Set P test instance with 4 vehicles 

and 100 customers was omitted from these time results since its ACS7000 average 

solution time was 13 hours (ACS4000 average solution time was 8 hours), the average 

solution times for the Savings heuristic was 1.9 minutes, and the average solution times 

for the Sweep heuristic was 2.6 minutes. These poor results are caused by the large 

number of locations in combination with the low number of vehicles. Hence, the branch-

and-bound tree investigated in COVROUTE is significantly larger for this problem than 

in any of the other test instances. These results demonstrate that larger instances will need 

to modify the route construction operation if competitive solution times are desired. 



  193 

 

6.4 Discussion 

Four heuristic solution methods were presented in this chapter (Greedy, Sweep, 

Savings, and ACS heuristics) and extensive computational tests were performed on all 

adapted test instances from Set A and Set P by Augerat and all test instances by 

Christofides and Eilon. The results demonstrated that the ACS heuristic is preferred for 

all instances with the sole exception of large problems where the network is not 

geographically dispersed and the coverage matrix is sparse as the Savings technique is 

able to perform better on average for these cases. However, the poor average case 

performance in this scenario is solely motivated by one test instance whose results are an 

outlier when compared to the rest of the instances. After the ACS procedure, the Savings 

heuristic is the second best technique for nearly all cases. With respect to solution time, 

the ACS algorithm was the most computationally complex while the Savings heuristic 

provided the second worst results but most instances still terminated within seconds. For 

practitioners where a balance between solution quality and time is required, the ACS 

procedure is still recommended, but with a smaller value of 𝑀 such as 4000 or less as the 

results from these experiments identified the same solution as the experiments when 𝑀 =

7000 in 68% of the test instances. 

Future research is recommended on numerous aspects of the presented algorithms. 

The most important recommendation is to investigate different route 

improvement/construction techniques. In these implementations, COVROUTE was 

developed to improve routes using a branch-and-bound methodology. COVROUTE was 

selected as it is a simplified version of the column generation procedure 𝑁𝐸𝑉𝐴𝐿 used in 



  194 

the exact algorithm from Chapter 5. While it demonstrates that it can generate high 

quality covering routes, it was the principal reason why running time started to increase 

as the number of vehicles remained low and the number of customers increased. Hence, a 

simpler process should be investigated if larger CCVRP instances are to be solved or if 

other metaheuristics are to be tested such as Tabu Search or Simulated Annealing which 

may require more uses of a route construction/improvement technique. Similarly, a more 

complex version of COVROUTE can be beneficial for improving the solution quality of 

the smaller results without significant impact on overall solution time. For instance, the 

2-opt heuristic used to create feasible cycles could be replaced with more advanced 

techniques such as an optimal route solver or the 3/4-opt heuristics. 

An additional improvement is to apply common advances for the adapted heuristics to 

their CCVRP implementations. For instance, the Greedy algorithm can potentially be 

improved in two methods. The first is to improve how covered locations are assigned to 

stops. As opposed to an index-based method, it may be possible to solve a knapsack 

problem or consider which locations are not coverable from other locations and give 

priority to covering such locations. Additionally, a distance threshold can be applied such 

that the Greedy heuristic does not travel further than a given distance unless necessary. 

This will stop the heuristic from greedily filling the end of the routes with small capacity 

locations and creating the long arcs observed in Figure 10 and Figure 11. The Sweep and 

Savings heuristics also have numerous advancements which could be applied to the 

CCVRP heuristics. Practitioners interested in such advancements are referred to Laporte 

and Semet (2014) who summarize a majority of the recent modifications to these 

algorithms. Finally, numerous ACS improvements are possible including using a multi-



  195 

ant colony approach (Bell and McMullen 2004) or incorporating additional heuristic 

components such as a scatter search methodology (Zhang and Tang 2009) or genetic 

mutations (Bin, Zhong-Zhen, and Baozhen 2009). Finally, it may also be possible to 

adapt other common CVRP heuristics to the CCVRP. For instance, numerous 

metaheuristics have been applied to the CVRP including the Genetic Algorithm, Tabu 

Search, and Simulated Annealing. Those interested in such techniques are referred to 

Gendreau, Laporte, and Potvin (2001) who summarizes these additional techniques and 

their applications to the CVRP. Research is recommended to see how these techniques 

can be adapted to the CCVRP and to test their solution quality against the heuristics 

presented in this article. 

 

6.5 Conclusion 

With respect to the mobile food retailer routing and scheduling problem, any of the 

developed heuristics can be employed by a mobile food retailer as none of the solution 

procedures require the use of commercial software. In fact, each procedure only needs the 

specification of the customer network and a few details regarding the vehicles such as the 

vehicle’s capacity. With respect to choosing between the different approaches, the 

recommendations are the same as those for the general practitioners. In general, the ACS 

algorithm is recommended except in the case where there are a large number of stops per 

route as the Savings algorithm provides competitive results in considerably less time. 

In summary, the advantage of the heuristics developed in this chapter is that they 

scale well with respect to the customer network assuming that the number of stops per 

route does not become too large. Therefore these heuristics are a more robust route 



  196 

building heuristic, compared with the exact algorithm from Chapter 5, which can assist 

mobile food retailers with improving their economic sustainability by increasing their 

revenues while decreasing their transportation costs. Furthermore, the ACS algorithm is 

particularly well suited for mobile food retailers as it can incorporate nuances which may 

exist in particular mobile retailer implementations. For instance, it can easily build a set 

of routes which do not serve all customers in the situation the retailer does not have the 

requisite capacity and/or vehicles or the ACS can be adapted to add additional constraints 

such as limiting the number of stops at certain types of service locations. Making such 

modifications require mobile food retailers to partner with the appropriate technical staff 

and practitioners, but the ability to generate custom routes for a specific retailer outweigh 

these challenges. 



  197 

CHAPTER 7 

OPERATIONAL MOBILE FOOD RETAILER DECISIONS: A CASE STUDY 

The four prior chapters of this dissertation detailed multiple operational tools to 

address the mobile food retailer product mix problem and the mobile food retailer routing 

and scheduling problem. The purpose of this chapter is to discuss a case study using 

collected operational data to demonstrate how these tools can be used effectively by an 

actual mobile healthy food retailer as well as demonstrate that these tools can lead to a 

more successful intervention methodology by increasing the economic sustainability of 

the mobile retailer. In particular, two approaches will be utilized for determining the 

optimal product mix. The first will utilize the two constraint version of the problem (i.e. 

the DKP) while the second will feature more constraints (i.e. the MDMKP) to ensure that 

multiple substitutable products are excluded. Following these problems, the routing and 

scheduling of the retailer will be addressed based on the particular requirements of the 

case study retailer. To properly address this application, an additional solution 

methodology will be presented which is able to incorporate multiple time windows for 

each possible stop. The results from these tests with respect to both the specific mobile 

food retailer which serves as the basis of this case study and general mobile retailers will 

be discussed. 

 

7.1 Phoenix mobile fresh food retailer 

The mobile retailer which serves as the basis of this case study is called Fresh 

Express and operates in the metropolitan Phoenix area. Specifically, Fresh Express’ main 

area of operation is the Discovery Triangle region of Phoenix (shown in Figure 12). The 



  198 

Discovery Triangle region is a classic food desert as many of the residents in these 

neighborhoods are low income and there are only 7 full service supermarkets in the area 

(and only 2 full service supermarkets if Tempe is excluded). Fresh Express was started in 

April 2014 and in 2015 has completed almost 7,500 transactions which include selling 

nearly 80,000 units of fresh fruits and vegetables (Discovery Triangle 2016).  

 

Figure 12. Discovery Triangle region of Phoenix, AZ 

 

Operationally, Fresh Express uses a single retrofitted City of Phoenix bus which has 

all interior seats and structures removed. In their place are removable racks which are 

stocked with up to 45 bins. These bins hold a variety of fresh fruits and vegetables which 

are stocked at or below the prices offered by supermarkets. Currently, Fresh Express’ 

only physical installation is a large walk-in cooler which it stores on the grounds of the 

not-for-profit corporation UMOM. Fresh Express parks its bus at a City of Phoenix 

transit facility and its driver is typically a City of Phoenix bus driver whose employment 

is subsidized by the city. The only other permanent employees associated with the retailer 



  199 

are an Executive Director who manages all operational decisions and two to three retail 

employees who travel with the bus and handle all transactions and manage the bus while 

in transit. 

Fresh Express currently has two suppliers who exclusively provide the fresh fruits 

and vegetables which are stocked on the retailer. The first and principal supplier is 

Peddler’s Son which is a local Arizona wholesaler of fresh fruits and vegetables. The 

secondary supplier is a local grower who has just started to supply locally grown produce 

when it is in season. The produce stocked on Fresh Express includes seasonally stocked 

goods such as pumpkins and sweet potatoes, locally-desired goods such as jalapenos and 

avocados, and staple good such as apples and lettuce. For the convenience of customers, 

these items are typically priced at values rounded to the nearest quarter. In addition, 

SNAP purchases are also accepted on Fresh Express which research has shown is crucial 

for food desert residents. Furthermore, Fresh Express typically offers matching funds for 

SNAP purchases where every one dollar spent using SNAP dollars qualifies for 

purchasing two dollars worth of food.  

Fresh Express has over 35 potential service locations within the Phoenix area. The 

most common types of stops are elementary schools, older adult housing communities, 

and community centers. However, Fresh Express also stops at locations which are not 

necessarily targeted at low-income populations such as downtown Phoenix and the 

Arizona State University downtown campus. These stops serve as marketing 

opportunities to increase the visibility of the retailer which is crucial to ensure continued 

sponsor support. Some of the aforementioned stops also have specific time periods when 

Fresh Express wishes to stop.  For instance, elementary schools are typically only visited 



  200 

at the start or end of the school day to coincide with the times when parents would likely 

be visiting the schools.  

Fresh Express typically has the time and resources to visit four stops per route with 

the exception of routes which service downtown Phoenix which only service three stop 

per route. Each stop is typically for one hour with some exceptions such as downtown 

Phoenix which is a two hour stop. As of September 2016, Fresh Express has three routes 

scheduled per week in the Discovery Triangle region but some weeks have an additional 

route to test the service of Fresh Express in the south and west Phoenix area. These routes 

are scheduled a month at a time and posted online. Some stops are visited every week 

while some are only visited once a month. This rate of service is typically based on the 

level of demand at each stop so that those with more demand are visited more frequently. 

In addition to these details which influence the case study, there are other key details 

which impact the success of Fresh Express. While these are not the focus of this 

dissertation, they should be acknowledged as any successful mobile food retailer must 

include similar techniques. For instance, Fresh Express stocks recipes which utilize the 

ingredients they sell. This not only increases the appeal of such items on the retailer, but 

it also teaches low-income consumers how items can be prepared as many low-income 

shoppers frequently cite they do not know how to prepare less common produce items. 

Similarly, Fresh Express has partnered with a local chef to prepare cooking 

demonstrations which serve the same purpose as the recipes. Finally, Fresh Express 

requires any organization which serves as a service location to advertise that Fresh 

Express will be stopping at their location thereby increasing the visibility, popularity, and 

revenue of Fresh Express.  



  201 

 

7.2 Designing a simple product mix 

The first component of this case study is the development of a product mix for Fresh 

Express which can be modeled as a simple DKP. For this problem, one of the key 

constraints is that the space of the retailer cannot be exceeded. The other constraint is 

motivated by the crucial issue for Fresh Express: the inability to meet a given profit 

margin. Currently, Fresh Express is only able to cover the cost of its produce. This is 

clearly not a sustainable strategy, especially if Fresh Express were to lose sponsorships or 

grants which cover other operational and labor costs. Hence, a demand constraint is 

added to the model which requires the stocked mix to meet a stated profit threshold.  

In addition, Fresh Express would ideally like to address two issues with this product 

mix. The first is that the mix should be as healthy as possible while the second is that the 

mix should be as low cost as possible. Hence, the model for this section of the case study 

is to  

Maximize: ∑ ℎ𝑖𝑥𝑖𝑖∈𝐼 , (7-1) 

Minimize: ∑ 𝑐𝑖𝑥𝑖𝑖∈𝐼 ,` (7-2) 

subject to  

∑ 𝑣𝑖𝑥𝑖𝑖∈𝐼 ≤ 𝑉,  (7-3) 

∑ 𝑝𝑖𝑥𝑖𝑖∈𝐼 ≥ 𝑃,  (7-4) 

𝑥𝑖 ∈ {0,1}   ∀ 𝑖 ∈ 𝐼.  (7-5) 

In this multi-objective model, the set 𝐼 represents the complete set of possible produce 

items which can be stocked and 𝑥𝑖 represents the binary decision to include or exclude an 

item from being stocked in Fresh Express. For each item 𝑖 ∈ 𝐼, ℎ𝑖 represents the 



  202 

‘healthiness’ of item 𝑖, 𝑐𝑖 represents the customer cost of item 𝑖, 𝑣𝑖 represents the amount 

of space each item occupies on the Fresh Express, and 𝑝𝑖 represents the profit earned 

from selling an average bin of item 𝑖. Finally, 𝑉 represents the space available on Fresh 

Express while 𝑃 represents the required profit from the stocked product mix. 

To develop set 𝐼, approximately three months of data was collected from Fresh 

Express including the total number of units sold for each produce item. The 44 items 

which were stocked with the most regularity were selected for inclusion in set 𝐼 as it was 

assumed the data for these items would be less influenced by outliers. To add more 

potential items to 𝐼, a local supermarket chain (specifically Bashas) provided a year of 

produce shipment data from its warehouses to each of its stores. From this data, an 

additional 51 items were added to 𝐼 which represent the items which were most 

frequently shipped by Bashas which are not currently stocked with regularity by Fresh 

Express.  

For each 𝑖 ∈ 𝐼, it is assumed 𝑣𝑖 = 1 as this would represent Fresh Express stocking 

one bin of food with that item. Since Fresh Express can stock 45 such bins, it was 

assumed 𝑉 = 45. To determine 𝑐𝑖 for all 𝑖 ∈ 𝐼, two methods were employed. If the item 

is stocked by Fresh Express, 𝑐𝑖 was set to the price of one serving of the item as sold 

Fresh Express and if the item is not stocked by Fresh Express, the value of 𝑐𝑖 was set to 

the non-sale price of one serving of that item as sold by Bashas. A similar methodology 

was used to calculate 𝑝𝑖 for all 𝑖 ∈ 𝐼. If an item 𝑖 was sold by Fresh Express, the average 

profit per week is used as 𝑝𝑖. If an item 𝑖 is not sold by Fresh Express, then Bashas data 

was used to determine the expected profits/week if the item were to be sold by Fresh 

Express. This was completed by comparing the overlapping foods (i.e. those sold by both 



  203 

Fresh Express and by Bashas) and then determining a scaling ratio to apply to other 51 

food items.  

To determine the healthiness scores of each item (i.e. ℎ𝑖), a nutritional profiling 

system, such as the commercially available NUVAL system, was initially considered. 

However, these systems will normally score fresh fruits and vegetables at the highest 

level which allows for little differentiation for the items in the current study. Instead, 

nutritional data per serving was acquired for each of the food items. The nutritional data 

points were selected such that they match those utilized by the USDA to create the 

Thrifty Food Plan (Carlson et al. 2007). These categories include protein, thiamin, 

riboflavin, niacin, folate, calcium, phosphorus, potassium, magnesium, iron, zinc, fiber, 

cholesterol, sodium, and fat as well as vitamins A, B6, B12, C, and E. Each food item’s 

nutritional data was normalized and summed to form one score. Any nutrient which has a 

positive health benefit (e.g. calcium) had a positive influence on the score and any 

nutrient which has a negative health benefit (e.g. fat) had a negative influence. 

The remaining key issue is that the DKP model which best describes the simple 

mobile retailer product mix decision for Fresh Express is multi-objective as demonstrated 

by (7-1) and (7-2). Since the solution methodology for the DKP only has a single 

objective, a convex combination of (7-1) and (7-2) was calculated such that  

Maximize: 𝜆 ∑ ℎ𝑖𝑥𝑖𝑖∈𝐼 − (1 − 𝜆) ∑ 𝑐𝑖𝑥𝑖𝑖∈𝐼  

was the new objective for the DKP. By varying 𝜆 to a fine degree, the efficient frontier 

for the optimal product mix was approximated. Based on the opinions of Fresh Express in 

regards to the acceptable balance between health and customer cost, the implemented 

product mix can be selected from this frontier. 



  204 

In total, values of 𝑃 were tested from $150 to $300 in increments of $25. The lowest 

value was selected as the next lowest increment, $125, provided nearly the same 

solutions across all values of 𝜆 compared to 𝑃 = $150. These varying values for 𝑃 were 

conducted to demonstrate the effect of profit requirements on the identified solution. For 

each level of 𝑃, 𝜆 was varied between 0 and 1 and each instance was solved using 

DKPSOLVE from Chapter 4. The graphical representation of these frontiers is shown in 

Figure 13 where each labeled line represents a different profit requirement. The vertical 

axis represents the consumer cost if a customer were to purchase one of each item while 

the horizontal axis is the sum of the health scores for each selected item. Specifically, 

each line corresponds to a different setting for 𝑃 and every point where two line segments 

meet represent a unique product mix. The product mixes along the line which are further 

to the right side of Figure 13 correspond to solutions when 𝜆 approached one (i.e. the 

healthiness of the mix was the dominant concern) while those to the left side correspond 

to solutions when 𝜆 approached zero (i.e. the consumer cost of the mix was the dominant 

concern).  



  205 

 

Figure 13. Product mix efficient frontiers for simple Fresh Express product mix 

 

To better demonstrate the meaning of the cumulative health scores, consider a 

hypothetical product mix which has a cumulative health score of 250. Since Fresh 

Express stocks 45 bins of food items, this is equivalent to stocking items who have an 

average health score of 5.56. This value implies that the average grocery item stocked in 

this product mix has a cumulative nutritional value which is 5.56 standard deviations 

above the average. One possible example of this number is that this hypothetical average 

item has a 1.00 standard deviations better value for protein, thiamin, riboflavin, niacin, 

and folate, a 0.56 standard deviations better value for iron, and all of the other 14 

nutrients are at the average value calculated across all of the potential 95 items. One clear 

flaw of this approach is that the stocked product mix may be deficient in one or more 

nutrients. Since the mobile retailer only represents a subset of the grocery purchases for a 

consumer (as many staple items such as bread and milk are not stocked), such potential 



  206 

nutritional deficits are not expected to have significant health impacts which would 

require a more nuanced approach to building the product mix. 

The results shown in Figure 13 demonstrate that the variety in feasible product mixes 

for Fresh Express depends upon the required profit margin. For instance, when the 

required profit margin is minimal (such as $150 or $175), the lines nearly overlap. This 

demonstrates that Fresh Express can increase its required profit from $150 without 

significantly effecting either the health or consumer cost of its product mix. In addition, 

both of these profit margin requirements result in frontiers which span a majority of 

Figure 13 therefore implying that there is a high variety of possible product mixes if the 

retailer maintains a low profit margin requirements. Similarly, the $200 profit margin 

frontier overlaps with only the middle sections of the $150 and $175 frontiers. That 

indicates that if Fresh Express desires a balance between consumer cost and health, a 

profit margin of $200 results in competitive mixes (with respect to the multiple 

objectives) compared with mixes which have required profit margins of $150 or $175. 

However, as one of the objective becomes the dominant focus, the $200 mix either 

becomes less healthy or less cost friendly compared with the product mixes at $150 or 

$175 as demonstrated by the growing distance between the three lines towards the left 

and right sides of the figure respectively. 

For the remaining required profit margins, the lines no longer overlap which indicates 

that requiring profit margins of $225 or above starts to have an impact on the healthiness 

and consumer cost of the mix regardless of the balance between the competing 

objectives. Initially, the impact of this growing requirement is minimal as demonstrated 

by the distance between the $200 and $225 frontiers, but this distance grows between 



  207 

each increment in 𝑃. For example, the identified optimal plan when 𝑃 was $300 and 𝜆 =

0 (i.e. the healthiness of the product mix is inconsequential) had a consumer cost of 

$30.51 which represents how much it would cost to buy one unit of every item on Fresh 

Express. This is does not compare favorably to the product mixes when the required 

profit margin was $275, $250, and $225 which had consumer costs of $25.69, $23.04, 

and $21.54 respectively. In fact, the cumulative consumer cost when the required profit 

margin was $150 was $19.24. Hence the increase in consumer costs between profit 

margin levels of $275 and $300 is almost as large as the consumer cost increase between 

profit margin levels of $150 and $275. Therefore, the mix which requires the highest 

margin is not advisable as this greatly increases the costs payed by all consumers. A 

similar trend occurs when 𝜆 = 1 (i.e. the consumer cost of the product mix is 

inconsequential) as the healthiness score decreases from 360.4 when the required profit 

margin is $150 to healthiness scores of 341.7, 289.9, and 147.7 when the required profit 

margin is $200, $250, and $300 respectively.  

By using this approach, Fresh Express can select the product mix which best meets 

the modeled objectives based on their desired tradeoffs between profit margin, consumer 

cost, and health or they can select between the developed mixes based on any non-

modeled criteria. Currently, Fresh Express’ weekly profits are in the lower range of the 

values tested. The specific values are discussed in the next subsection. This not only 

provides validation of the data, but also demonstrates that Fresh Express may be able to 

become economically stronger if they were to alter their product mix.  

It should also be noted that this methodology can return practical product mixes. For 

example, when 𝑃 = $250, the product list shown in Table 20 is along the efficient 



  208 

frontier. This mix’s total health offering is 287.4 (average over all optimal offerings in 

this frontier is 270.9) and the total cost to customers is $43.26 (average over all optimal 

offerings in this frontier is $40.69). This mix is particularly practical as it does not feature 

many substitutable products (i.e. products where if one item is not offered, then the other 

product would be considered a viable substitute) and it represents an even balance 

between health and consumer costs. Hence, the employed formulation, even though it is 

relatively simple, is useful without adding additional constraints which could complicate 

simple solution methodologies. This is important since mobile retailers would not have 

access to sophisticated software packages. 

 

Table 20. Sample simple Fresh Express product mix for 𝑃 = $250 

Gala Apples 
Broccoli 

Crowns 
Coconut 

Sunflower 

Seeds 

Yukon Gold 

Potatoes 

Plantains Green Cabbage Kiwi Green Onion 
Spinach Salad 

Mix 

Bananas 
Regular 

Carrots 
Papaya Navel Oranges 

Butternut 

Squash 

Green Beans Bi-Color Corn Artichoke 
Valencia 

Oranges 
Grey Squash 

Pinto Beans White Corn Asparagus 
Gold Bell 

Pepper 
Yellow Squash 

Snap Peas Cucumber Bean Sprouts 
Red Bell 

Pepper 
 

Blackberries Red Grapes 
Brussel 

Sprouts 
Anaheim Chili  

Raspberries Collard Greens 
White 

Mushrooms 
Red Plums  

Strawberries 
Iceberg 

Lettuce 
Grapefruit 

Russet 

Potatoes 
 

Broccoli 

Florets 
Kale Lemon Sweet Potatoes  

 



  209 

However, Table 20 and the methodology used to select the mix represented in the 

table does highlight one of the flaws in using a DKP to model the mobile food retailer 

product mix problem. As shown in Table 20, there are three (out of a possible four) types 

of berries stocked on the retailer in this plan and both types of corn are also included in 

the stocked mix. In fact, the product mix shown in Table 20 is one of the mixes which 

feature the least quantity of substitutable items compared with all of the other identified 

product mixes. The next section within this chapter discusses an approach to address this 

issue. 

 

7.3 Designing a complex product mix 

One of the major issues with the prior approach is that some of the identified product 

mixes were not practical. For instance, some of the mixes along the approximated 

efficient frontiers in Figure 13 included multiple copies of substitutable goods such as 

two types of corn and all four types of possible berries. While stocking these goods is not 

an issue in traditional supermarkets, the smaller space of mobile retailers requires a more 

efficient use of available resources. To avoid these types of issues, additional constraints 

were added to limit the number of substitutable goods. This new model is  

Maximize: 𝜆 ∑ ℎ𝑖𝑥𝑖𝑖∈𝐼 − (1 − 𝜆) ∑ 𝑐𝑖𝑥𝑖𝑖∈𝐼  (7-6) 

subject to  

∑ 𝑣𝑖𝑥𝑖𝑖∈𝐼 ≤ 𝑉,  (7-7) 

∑ 𝑝𝑖𝑥𝑖𝑖∈𝐼 ≥ 𝑃,  (7-8) 

∑ 𝑏𝑖𝐽𝑥𝑖𝑖∈𝐼 ≤ 𝐵𝐽   ∀𝐽 ∈ 𝒥  (7-9) 

𝑥𝑖 ∈ {0,1}   ∀ 𝑖 ∈ 𝐼.  (7-10) 



  210 

In this updated approach, which is now an MDMKP, the set 𝒥 represents a 

partitioning of 𝐼 into pairwise mutually exclusive subsets. Each 𝐽 ∈ 𝒥 represents a set of 

items which consumers would consider as substitutable. For instance, one 𝐽 contains 

three elements which represent three different varieties of apples (specifically gala, 

golden delicious, and granny smith) and it is assumed that a customer would be willing to 

buy a gala apple if a granny smith were not offered. A summary of the elements of 𝒥 and 

the number of elements represented by each 𝐽 are shown in Table 21.  

 

Table 21. Partitioning and counts of possible produce items for Fresh Express 

Apple (3) Collard Green (1) Kale (1) Pineapple (1) 

Artichoke (1) Corn (2) Kiwi (1) Plantain (1) 

Asparagus (1) Crouton (1) Leaf Lettuce (4) Plum (1) 

Avocado (1) Cucumber (1) Leek (1) Potato (3) 

Banana (1) Eggplant (1) Lemon (1) Radish (1) 

Beet (1) Garlic (1) Lime (1) Rice (1) 

Berries (4) Grapefruit (1) Mango (1) Spaghetti Squash (1) 

Broccoli (2) Grapes (2) Melon (3) Sprout (e.g. Alfalfa) (2) 

Brussel Sprout (1) Green Bean (2) Mushroom (1) Summer Squash (3) 

Butternut Squash (1) Green Onion (1) Pinto Bean etc. (2) Sunflower Seed (1) 

Cabbage (2) Guacamole (1) Onion (3) Sweet Pepper (3) 

Carrot (2) Herb (4) Orange (4) Sweet Potato (1) 

Cauliflower (1) Hot Pepper (4) Papaya (1) Tomatillo (1) 

Celery (1) Jicama (1) Peach (1) Tomato (2) 

Coconut (1) Juice (1) Pear (1)  

 

For each 𝐽 ∈ 𝒥, 𝑏𝑖𝐽 = 1 if item 𝑖 ∈ 𝐽 and 𝑏𝑖𝑗 = 0 otherwise. The value for 𝐵𝐽 depends 

on the number of product items in set 𝐽. If there is either one or two items in 𝐽, then 𝐵𝐽 =

1 (i.e. the retailer can stock at most one of the substitutable items), otherwise 𝐵𝐽 = 2 (i.e. 

the retailer can stock at most two of the substitutable items). Hence, constraint set (7-9) 



  211 

will ensure that the product mix features a wide variety of food similar to the offerings 

found in traditional grocery stores.  

The computational tests for the presented MDMKP model were conducted using the 

same approach as the DKP model. Specifically, values between 0 and 1 were 

incrementally tested for 𝜆 to approximate the efficient frontier and values for 𝑃 were 

tested between $150 and $275 in increments of $25. This latter range differs slightly from 

the approach used for the DKP model as the MDMKP has no feasible solutions when 

𝑃 = $300. These problem instances were solved using the MDMKP Fixed-Core 

procedure using the largest core size 𝛿𝐺 tested from Chapter 3. The Fixed-Core procedure 

was selected due to the simplicity of the implementation and the simplicity of the test 

instances (95 variables) which permitted larger core sizes without a large effect on 

solution times. The approximated efficient frontiers from these test instances are shown 

in Figure 14 which follow the same conventions as Figure 13.  

 

Figure 14. Product mix efficient frontiers for complex Fresh Express product mix 



  212 

Figure 14 demonstrates that there is a minimal loss in the healthiness of the mix or the 

consumer cost of the mix if the mobile retailer required $150, $175, or $200 in profit 

from the stocked mix as these lines overlap for a majority of their frontiers. Hence, the 

retailer can safely stock a more profitable product mix (up to $200) without significantly 

impacting the health or consumer cost of the stocked product mix. This trend even 

continues for the $225 profit product mix if the healthiness of the product mix is 

deemphasized as the $225 frontier overlaps with the previously mentioned frontiers 

towards the left side Figure 14. Finally, there is only a sizeable effect on both the health 

and consumer cost of the product mix when a profit margin exceeding $250 is required. 

This is especially significant for mixes with a profit margin exceeding $275 as these 

mixes have noticeably higher consumer costs and lower healthiness ratings across all 

values of 𝜆. 

The advantage of including constraints (7-9) is that all of the identified product mixes 

represent consumer friendly solutions. For instance, Table 22 shows the updated solution 

when 𝑃 = $250 and 𝜆 equals the same value used to generate the plan in Table 20. While 

the initial plan shown in Table 20 had a low number of substitutable goods, the upgraded 

plan in Table 22 is superior as at most two of any substitutable items are now 

recommended for being stocked on the retailer. 

 

 

 

 

 



  213 

Table 22. Sample complex Fresh Express product mix for 𝑃 = $250 

Gala apples Whole Carrots Artichoke 
Valencia 

Oranges 

Butternut 

Squash 

Plantains White Corn Asparagus Gold Peppers Grey Squash 

Bananas Cucumbers Bean Sprouts Red Peppers Tomatillos 

Green Beans Red Grapes 
Brussel 

Sprouts 
Green Chilis Yellow Squash 

Pinto Beans Collard Greens 
White 

Mushrooms 
Jalapeños 

Spaghetti 

Squash 

Blackberries 
Iceberg 

Lettuce 
Grapefruit Plums  

Raspberries Kale Lemon 
Russet 

Potatoes 
 

Cauliflower Coconut 
Sunflower 

Seeds 

Yukon Gold 

Potatoes 
 

Broccoli Kiwi Green Onion Sweet Potatoes  

Cabbage Papaya Navel Oranges 
Spinach Salad 

Mix 
 

 

The clear disadvantage of this approach is that adding restrictions to the product mix 

model results in solutions which feature lower objective values. For instance, the plan in 

Table 22 has a healthiness score of 270.6 and a consumer cost of $41.46 (combined 

objective value of 92.7) which are together worse in comparison to the less restricted plan 

shown in Table 20 which had a healthiness score of 277.4 and a consumer cost of $43.26 

(combined objective value of 98.9).  

To better demonstrate the effects of constraint set (7-9) on the solution performance, a 

graphical summary of the differences between a subset of the frontiers from Figure 13 

and Figure 14 is shown in Figure 15. In particular three profit requirements are shown in 

Figure 15 ($150, $200, and $250) and the frontiers from both Figure 13 and Figure 14 are 

included. For the two smaller values of 𝑃, there is a large difference between solving the 



  214 

DKP and MDMKP versions of this problem which indicates that the product mixes 

identified for the DKP with small values of 𝑃 are likely to feature a large number of 

substitutable goods and are therefore more impractical. However, the frontier gap 

decreases between the DKP and MDMKP solutions when 𝑃 = $250 therefore implying 

that the solutions obtained for this profit value for the DKP (such as the solution Table 

20) are more likely to be practical stocking options. 

 

Figure 15. Efficient frontier differences between the simple and complex Fresh Express 

product mixes 

 

To determine how these solutions (both in subsection 7.2 and subsection 7.3) 

compare with Fresh Express, the 45 items which were stocked the most frequently on 

Fresh Express was determined from the operational data. Based on the same coefficients 



  215 

used in the DKP and MDMKP in this case study, the cumulative consumer cost of these 

items is $41.01, the healthiness score of this mix is 16.3, and the profit of this mix is 

$174.53. With respect to the DKP portion of this case study, this product mix is far off 

even the $175 efficient frontier. For instance, at the same profit margin and healthiness 

score, Fresh Express could lower the consumer cost of its mix to at least $19.24. For the 

same profit margin and consumer cost, Fresh Express could increase the nutritional score 

of their mix to 345.2. Finally, for the same healthiness score and consumer cost, Fresh 

Express could increase their profit margin to $275. In fact, a mix on the $275 efficient 

frontier has a better healthiness score, 233.6, and consumer cost, $37.56, than Fresh 

Express’ current product mix.  

However, these DKP solutions may not be practical as they feature substitutable 

product. Therefore, the current Fresh Express product mix is also compared to the 

MDMKP efficient frontiers. For the same profit margin and healthiness score, Fresh 

Express could lower the consumer cost of its mix to at least $24.04. For the same profit 

margin and consumer cost, Fresh Express could increase the nutritional score of their mix 

to 306.7. Finally, for the same healthiness score and consumer cost, Fresh Express could 

increase their profit margin to $275. In fact, a mix on the $275 efficient frontier has a 

better healthiness score, 219.6, and consumer cost, $38.16, than Fresh Express’ current 

product mix. Hence, Fresh Express can increase their daily profits by $100 (an increase 

of over 150% of the current profits) even in the most conservative estimates which will 

greatly increase their chances of achieving economic sustainability. 

In summary, Fresh Express can use either methodology to develop a product mix, but 

the MDMKP model is recommended as it develops mixes which feature greater item 



  216 

variety which more closely resembles the mix of grocery items found in traditional 

supermarkets. An additional advantage of using the MDMKP approach is that it is 

possible to add additional constraints to the model based on the needs of Fresh Express or 

similar retailers. The clear disadvantage is that only the poorest performing solution 

method for MDMKPs from Chapter 3 can solve the problem without commercial 

software. For smaller problems, this is not expected to significantly affect solution quality 

or time, but interested mobile retailers are recommended to pursue partnerships with 

practitioners to gain access to higher quality solution methods. 

Within the solutions obtained from the MDMKP model, selecting the final product 

mix is at the discretion of Fresh Express. However, it is recommended that Fresh Express 

select the minimum profit margin which would satisfy its needs and then determine an 

adequate balance between health and consumer cost based on the approximate frontiers 

displayed in Figure 14. Using this methodology, it is nearly guaranteed that Fresh 

Express would not be able to identify a better product mix meeting this criterion. Fresh 

Express is also welcome to select a product mix which it prefers based on some criteria 

which was not included in the model. For instance, all of the developed MDMKP product 

mixes could be provided which meet a certain profit margin and Fresh Express could 

select the mix which includes the most staple items for that region. This consideration 

could either be included in further iterations of the model as a constraint/objective or this 

consideration could continue to be used as a decision making criteria to select between 

different generated solutions. Regardless of their selected mix, the case study 

demonstrated that Fresh Express is able to increase the profits of their product mix by 



  217 

nearly $100/day with no impact to consumer costs or health thereby greatly increasing 

their chances at achieving economic sustainability.  

 

7.4 Fresh Express routing and scheduling 

Given a product mix, the remaining issue is to design a feasible routing and 

scheduling plan for Fresh Express. As discussed at the start of this chapter, Fresh Express 

operates in the Discovery Triangle region of Phoenix but they are currently testing routes 

in the south Phoenix and west Phoenix areas. These areas are similar to the Discovery 

Triangle region as they have a large number of low-income residents and full service 

supermarkets are sparse. The purpose for testing these routes is that Fresh Express is 

contemplating adding full time routes in these areas either on additional days of the week 

with their current bus or adding a second bus which exclusively serves these regions. To 

assist in this work, Fresh Express would like advice on designing these routes. The 

purpose of this section is to demonstrate how this issue can be addressed. 

In particular, the routing and scheduling model which was designed specifically for 

Fresh Express will be discussed first. A new model is needed, which expands on the 

models developed in Chapters 5 and 6, as Fresh Express requires specific time windows 

for service at its stops. Since the prior models do not include such considerations, a new 

model was added. This model is introduced in this chapter, as opposed to having its own 

chapter, as theoretical experiments and extensive computational results have yet to be 

performed on the model. Following this model, the data used in the model is described 

prior to discussing the results and recommendations for Fresh Express. 

 



  218 

 

7.4.1 Fresh Express routing model 

The CCVRP model presented in Chapter 5 serves as the basis of the model for Fresh 

Express. However, Fresh Express’ location have strict time window requirements which 

must be met for service. Specifically, each location typically has two possible time 

windows when service can occur. Every elementary school service location has time 

windows associated with the start and end of the school day while every other location 

has two time windows which correspond to the morning period and afternoon period. 

These latter two windows are needed as Fresh Express does not operate between Noon 

and 1 PM with the sole exception of the downtown Phoenix stop, but this stop will not be 

included in this portion of the case study as it is not geographically in the study zone. 

To formulate the model for a generic mobile food retailer scheduling model with 

multiple time windows, the following sets are required: 𝐽 which is the set of vehicles, 𝑀 

which is the set of demand locations and the vehicle depot (which is indexed by 0), and 

𝑊𝑚 which represents the set of time windows for location 𝑚 ∈ 𝑀. For the decision 

variables, let 𝑦𝑚𝑛𝑗 = 1 signify that vehicle 𝑗 ∈ 𝐽 travels from location 𝑚 ∈ 𝑀 to 𝑛 ∈ 𝑀 

and let 𝑦𝑚𝑛𝑗 = 0 otherwise. Also let 𝜔𝑚𝑛𝑗𝑖 = 1 signify that location 𝑚 ∈ 𝑀 is served 

during time window 𝑖 ∈ 𝑊𝑚 by vehicle 𝑗 ∈ 𝐽 stopping at location 𝑛 ∈ 𝑀 and 𝜔𝑚𝑛𝑗𝑖 = 0 

otherwise. Finally, let 𝑑𝑚𝑗 represent the time when vehicle 𝑗 ∈ 𝐽 starts service at location 

𝑚 ∈ 𝑀 and let 𝑤𝑚𝑗 represent the waiting time of vehicle 𝑗 ∈ 𝐽 at location 𝑚 ∈ 𝑀 which 

includes the time to service 𝑚 and any other applicable locations covered by a vehicle at 

𝑚.  

 



  219 

Given these sets and variables, the Fresh Express model is to  

Maximize: ∑ ∑ ∑ ∑ 𝑝𝑚𝜔𝑚𝑛𝑗𝑖𝑖∈𝑊𝑚𝑗∈𝐽𝑛∈𝑀𝑚∈𝑀 − ∑ ∑ 𝜏𝑚𝑛𝑦𝑚𝑛𝑗𝑛∈𝑀
𝑛≠𝑚

𝑚∈𝑀  (7-11) 

subject to 

∑ 𝑦𝑚𝑛𝑗𝑚∈𝑀
𝑚≠𝑛

− ∑ 𝑦𝑛𝑜𝑗𝑜∈𝑀
𝑜≠𝑛

= 0      ∀ 𝑛 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-12) 

∑ 𝑦0𝑛𝑗𝑛∈𝑀\{0} = 1      ∀𝑗 ∈ 𝐽, (7-13) 

𝑡𝑚𝑎𝑥(1 − ∑ 𝑦𝑚𝑛𝑗𝑚∈𝑀 ) ≤ 𝑑𝑛𝑗    ∀𝑛 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-14) 

𝑤𝑚𝑗 ≥ 𝐼𝑚𝑗       ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-15) 

𝑑𝑚𝑗 + 𝑤𝑚𝑗 + 𝑡𝑡𝑚𝑛 − 𝑑𝑛𝑗 ≤ (1 − 𝑦𝑚𝑛𝑗)𝑁      ∀𝑚 ∈ 𝑀\{0}, 𝑛 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-16) 

𝑑𝑚𝑗 ≤ 𝑡𝑚𝑎𝑥       ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-17) 

𝑑𝑚𝑗 ≥ 𝑡𝑡0𝑚      ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-18) 

∑ 𝑦𝑚𝑛𝑗𝑚∈𝑀 ≥ ∑ 𝜔𝑛𝑛𝑗𝑖𝑖∈𝑊𝑛
      ∀𝑛 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-19) 

𝜔𝑚𝑛𝑗𝑖 ≤ 𝑏𝑚𝑛 [1 −
1

𝑡𝑚𝑎𝑥 (𝑑𝑛𝑗 − 𝑙𝑚𝑖)]      ∀𝑚 ∈ 𝑀, 𝑛 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝑊𝑚, (7-20) 

𝜔𝑚𝑛𝑗𝑖 ≤ 𝑏𝑚𝑛 [1 −
1

𝑡𝑚𝑎𝑥 (𝑒𝑚𝑖 − [𝑑𝑛𝑗 + 𝑤𝑛𝑗])]      ∀𝑚 ∈ 𝑀, 𝑛 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝑊𝑚, (7-21) 

∑ ∑ ∑ 𝜔𝑚𝑛𝑗𝑖𝑖∈𝑊𝑚𝑗∈𝐽𝑛∈𝑀 ≤ 1      ∀𝑚 ∈ 𝑀, (7-22) 

∑ ∑ ∑ 𝑢𝑚𝜔𝑚𝑛𝑗𝑖𝑖∈𝑊𝑚𝑛∈𝑀𝑚∈𝑀 ≤ 𝐶𝑗       ∀𝑗 ∈ 𝐽, (7-23) 

𝑑𝑚𝑗 ≥ 0      ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽, (7-24) 

𝑦𝑚𝑛𝑗 , 𝜔𝑚𝑛𝑗𝑖 ∈ 𝔹      ∀𝑚 ∈ 𝑀, 𝑛 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝑊𝑚. (7-25) 

The goal of this model is to maximize the profit of the routing plan which is a function of 

the profit (𝑝𝑚) earned from serving each location 𝑚 ∈ 𝑀 less the cost of traveling (𝜏𝑚𝑛) 

between every pair of locations 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑀. This is constrained by 14 sets of 

constraints. Constraint set (7-12) ensures that cycles are constructed in the service 



  220 

network while constraint set (7-13) ensures that each cycle contains the depot. Constraint 

set (7-14) sets all 𝑑𝑛𝑗 variables to exceed 𝑡𝑚𝑎𝑥 (the time limit indicating when the vehicle 

must be returned to the depot) if a location 𝑛 ∈ 𝑀 is not serviced by a vehicle while 

constraint set (7-15) sets the waiting time at location 𝑚 ∈ 𝑀 to at least exceed the 

required time to service that location (𝐼𝑚𝑗) for vehicle 𝑗 ∈ 𝐽.  

Constraint set (7-16) ensures that if a vehicle 𝑗 ∈ 𝐽 travels between locations 𝑚 ∈ 𝑀 

and 𝑛 ∈ 𝑁 that the arrival at location 𝑛 is at least the sum of the arrival at location 𝑚 plus 

the waiting/servicing time at location 𝑚 and the travel time between locations 𝑚 and 𝑛 

(𝑡𝑡𝑚𝑛). 𝑁 is a large constant. Constraint sets (7-17) and (7-18) ensure that 𝑑𝑚𝑗 does not 

exceed 𝑡𝑚𝑎𝑥 (in combination with (7-14) this will ensure any location not serviced by 

vehicle 𝑗 will have 𝑑𝑚𝑗 = 𝑡𝑚𝑎𝑥) and is at least greater than the travel time required to 

travel from the depot to location 𝑚. Constraint set (7-19) ensures that if a vehicle stops at 

a given location, it must service the demand at that location during one of its time 

windows. This constraint can be excluded from other applications, but it is included for 

Fresh Express as it is assumed that customers would be unsatisfied being served by a 

vehicle at a distance if another vehicle were to actually stop at their location but not 

service the customers at that location.  

Constraint sets (7-20) and (7-21) are the most complicated constraints and ensure the 

covering logic is maintained in the developed solution. To better demonstrate the 

function of these constraints, a subset of an example network is provided in Figure 16. In 

this figure, the seven points represent possible demand points which are indexed as 2 

through 8. The points which are shaded as yellow represent points which are physically 

visited by the mobile retailer. These points are referred to as “visited” locations. Hence, 



  221 

the retailer visits demand points 3, 5, and 7 in order as indicated by the set of arrows. The 

points shaded green represent locations within the service radius of a visited location 

which are represented by the red circles. These points are referred to as “serviced” 

locations. In Figure 16, demand points 2, 4, 5, 6, and 8 are potential serviced locations as 

they are within the service radius of visited point 5.  

 

Figure 16. Sample service network with time windows. 

 

Also provided in Figure 16 are the time windows for each location provided in 

parentheses above each circle. The first number is the start of the time window while the 

second number is the end of the time window. For this demonstration of the constraints, it 

is assumed that each stop only has one time window. If the retailer starts service within 

this window, the demand at that location can be captured. Also provided in the figure are 

the travel times between each visited location (listed along the arcs) as well as the time of 

arrival at each visited location given as the underlined number and it is assumed that it 

takes 0.50 hours to service each possible location.  

To better explain the figure, service location 5 will be used as an example. The 

mobile retailer started servicing location 5 at 1200 and since it took 0.25 hours to travel 



  222 

between serviced locations 3 and 5, the retailer stayed at location 3 for 2.75 hours. Using 

this same logic, the retailer stayed at location 5 for 1.75 hours prior to traveling to 

location 7. A summary of the schedule is provided in Table 23 which shows the schedule 

for the retailer (shown by the diagonal lines) along with the service time windows (shown 

by the shading). 

 

Table 23. Time windows and service windows for sample service network and 

routing plan. 

Location 
Time of Day 

0800 0900 1000 1100 1200 1300 1400 1500 1600 

2                                     

3                                     

4                                     

5                                     

6                                     

7                                     

8                                     

 

Based on Table 23 and Figure 16, the vehicle is at location 5 from 1200 to 1345 in 

which time it can possibly service locations 2, 4, 5, 6, and 8 (as indicated by the red circle 

around location 5 in Figure 16) so long as the visit is within the appropriate time 

windows for each location. Since the time windows for locations 2, 5 and 8 coincide with 

the time when the retailer is visiting location 5, locations 2, 5 and 8 can have their 

demand satisfied. Since location 6 has a time window which ends prior to location 5 

being visited, its demand cannot be serviced. Likewise, location 4’s time window starts 

after the retailer leaves location 5, so its demand cannot be serviced.  



  223 

Constraint sets (7-20) and (7-21) are designed to determine if serviced location 𝑚’s 

time windows (green circles in Figure 16) are satisfied by a visit to a demand location 𝑛 

over a specific time interval. Specifically, constraints (7-20) determine if the start of a 

visit to location 𝑛 is after serviced location 𝑚’s service window 𝑖 ∈ 𝑊𝑚, signified by 𝑙𝑚𝑖, 

while constraints (7-21) determine whether the end of a visit to location 𝑛 is before 

serviced location 𝑚’s service window 𝑖 ∈ 𝑊𝑚, signified by 𝑒𝑚𝑖. Both of these constraints 

feature three key elements. The first is the “normalizing constant” which is the fractional 

value (𝑡𝑚𝑎𝑥)−1 in both constraint sets. Secondly, each have a “time window calculation” 

which is expressed as (𝑑𝑛𝑗 − 𝑙𝑚𝑖) and (𝑒𝑚𝑖 − [𝑑𝑛𝑗 + 𝑤𝑛𝑗]) in constraints (7-20) and (7-

21) respectively. Finally, both have the binary parameter 𝑏𝑚𝑛 which indicates if location 

𝑚 can be serviced from a vehicle stopping at location 𝑛. 

To demonstrate these constraints, consider the visit to location 5 and the service of 

location 8. Location 5 is visited from 1200 until 1345 while the time window of location 

8 is 1300 to 1400. Hence, location 8’s demand can be satisfied and it should be possible 

for 𝜔85𝑗1 = 1 as this would indicate location 8 can be serviced from location 5. For some 

vehicle 𝑗, a constraint (7-20) is 

𝜔85𝑗1 ≤ 𝑏85 [1 −
1

𝑡𝑚𝑎𝑥 (𝑑5𝑗 − 𝑙81)]  

for visiting location 5 and servicing location 8. Note that 𝑏85 = 1 as this covering is 

possible so if 𝜔85𝑗1 = 1 is possible, then 
1

𝑡𝑚𝑎𝑥
(𝑑5𝑗 − 𝑙81) ≤ 0. Since 𝑑5𝑗 = 12 (start of 

visit to location 5) and 𝑙81 = 14 (last possible start of service for location 8), then the 

time window calculation is strictly negative. In the general case, this time window 



  224 

calculation will be non-positive so long as 𝑑𝑛𝑗 ≤ 𝑙𝑚𝑖 (i.e. the start of a visit occurs before 

the end of the service time window). Therefore,  

1

𝑡𝑚𝑎𝑥 (𝑑5𝑗 − 𝑙81) < 0  

which implies 𝜔85𝑗1 is not restricted to be 0.  

Likewise, a constraint (7-21) is  

𝜔85𝑗𝑑 ≤ 𝑏85 [1 −
1

𝑡𝑚𝑎𝑥 (𝑒81 − [𝑑5𝑗 + 𝑤5𝑗])]  

for visiting location 5 and servicing location 8. Note that 𝑏85 = 1 as this covering is 

feasible so if 𝜔85𝑗1 = 1 is possible, then 
1

𝑡𝑚𝑎𝑥 (𝑒81 − [𝑑5𝑗 + 𝑤5𝑗]) ≤ 0. Additionally 

observe that 𝑤5𝑗 (the time spent at location 5 by vehicle 𝑗) is bounded below by 𝐼5𝑗 from 

constraint set (7-15) and is bounded above by 𝑤5𝑗 ≤ 𝑑7𝑗 − 𝑑5𝑗 − 𝑡𝑡57 from constraint set 

(7-16) (note that 𝑦57𝑗 = 1 based on the routing from Figure 16). Since 𝑑7𝑗 = 14, 𝑑5𝑗 =

12, and 𝑡𝑡57 = 0.25, then 0 ≤ 𝐼5𝑗 ≤ 𝑤5𝑗 ≤ 1.75. Given this bound and that 𝑑5𝑗 = 12 

and 𝑒81 = 13, then 𝑒81 − [𝑑5𝑗 + 𝑤5𝑗] is at most 1 − 𝐼5𝑗 = 0.5 and is −0.75 at a 

minimum. This implies the term can be non-positive if necessary. Therefore, it is possible 

for 
1

𝑡𝑚𝑎𝑥 (𝑒81 − [𝑑5𝑗 + 𝑤5𝑗]) ≤ 0 thereby permitting 𝜔85𝑗1 to either be 0 or 1. 

In conclusion, when the time windows of a serviced location overlap with a visited 

location, as was demonstrated with locations 8 and 5 respectively, neither constraints (3-

26) or (3-27) restrict 𝜔𝑚𝑛𝑗𝑖 to be strictly less than 1. Hence, it is possible to satisfy the 

demand at location 𝑚 from location 𝑛. 

Consider the opposite case such as servicing location 6 from visited location 5 in 

Figure 16. Since the time window of location 6 completely occurs before location 5 is 



  225 

visited, as demonstrated in Table 23, the demand at location 6 should not be captured for 

vehicle 𝑗. To demonstrate this logic, consider constraint (7-20) which is  

𝜔65𝑗𝑖 ≤ 𝑏65 [1 −
1

𝑡𝑚𝑎𝑥 (𝑑5𝑗 − 𝑙61)]  

for visiting location 5 and servicing location 6. Note that 𝑏65 = 1 as this covering is 

possible so if 𝜔85𝑗1 = 1 is forbidden, then 
1

𝑡𝑚𝑎𝑥 (𝑑5𝑗 − 𝑙61) > 0. Since 𝑑5𝑗 = 12 and 

𝑙61 = 10, then the time window calculation is strictly positive. Therefore, 

1

𝑡𝑚𝑎𝑥 (𝑑5𝑗 − 𝑙61) is strictly positive thereby indicating location 6 cannot be serviced from 

location 5 by vehicle 𝑗. Additionally, the normalizing constant (𝑡𝑚𝑎𝑥)−1 will ensure 

1

𝑡𝑚𝑎𝑥 (𝑑𝑛𝑗 − 𝑙𝑚𝑖) ≤ 1 in these cases. Hence, 𝜔65𝑗1 will never be restricted from being 0 

by constraints (7-20) which is necessary given that it is a binary variable. 

To demonstrate another case, consider servicing location 4 from visited location 5 in 

Figure 16. Since the time window of location 4 completely occurs after location 5 is 

visited, as demonstrated in Table 23, the demand at location 4 should not be captured for 

vehicle 𝑗. To demonstrate this logic, consider constraint (7-21) which is 

𝜔45𝑗1 ≤ 𝑏45 [1 −
1

𝑡𝑚𝑎𝑥 (𝑒41 − [𝑑5𝑗 + 𝑤5𝑗])]  

for visiting location 5 and servicing location 4. Note that 𝑏45 = 1 as this covering is 

possible so if 𝜔45𝑗1 = 1 is forbidden, then 
1

𝑡𝑚𝑎𝑥 (𝑒41 − [𝑑5𝑗 + 𝑤5𝑗]) > 0. As was 

demonstrated previously, 𝑤5𝑗 is bounded such that 𝐼5𝑗 ≤ 𝑤5𝑗 ≤ 1.75. Since, 𝑒41 = 15 

and 𝑑5𝑗 = 12, then the time window calculation is at most 3-𝐼5𝑗 = 2.5 and is 1.25 at a 

minimum. Hence, 
1

𝑡𝑚𝑎𝑥 (𝑒41 − [𝑑5𝑗 + 𝑤5𝑗]) is strictly positive thereby indicating location 

4 cannot be serviced from location 5 by vehicle 𝑗. Additionally, the normalizing constant 



  226 

(𝑡𝑚𝑎𝑥)−1 will ensure 
1

𝑡𝑚𝑎𝑥 (𝑒𝑚𝑖 − [𝑑𝑛𝑗 + 𝑤𝑛𝑗]) ≤ 1 in these cases. Therefore, 𝜔45𝑗1 will 

never be restricted from being 0 by constraints (7-21) which is necessary given that it is a 

binary variable. 

The final major constraints sets are (7-22) and (7-23) which ensure that at most one 

vehicle services a location and that the capacity of vehicle 𝑗 ∈ 𝐽 (𝐶𝑗) is not exceeded 

based on the cumulative sum of served demand at locations 𝑚 ∈ 𝑀 (𝑢𝑚), respectively. 

The remaining two constraints ensure all 𝑑𝑚𝑗 are nonnegative and that the remaining 

variable sets are binary. 

 

7.4.2 Fresh Express routing model solution algorithm 

With the inclusion of time windows in this model, the prior solution models 

developed for the generic mobile retailers in Chapters 5 and 6 are no longer applicable. 

Hence, a new solution methodology was developed specifically for solving the Fresh 

Express routing model and similar models with time window constraints. This solution 

methodology is discussed as part of the case study, as opposed to having its own 

dedicated methodological discussion, because full algorithmic testing and 

experimentation has yet to be performed. The lack of these tests, which is recognized as a 

shortcoming at this time, are discussed in Chapter 8.  

To solve this time window variant of the CCVRP specifically developed for Fresh 

Express, a Tabu Search heuristic was developed similar to the heuristic from Cordeau, 

Laporte, and Mercier (2001). The Tabu Search developed by Cordeau, Laporte, and 

Mercier was initially designed as a unified heuristic that could solve a variety of CVRP 

variants including those with time windows. Specifically, Cordeau, Laporte, and Mercier 



  227 

developed the approach for the periodic and the multi-depot CVRP with time windows. 

This approach was selected due to its flexibility to incorporate all of the nuances present 

in the Fresh Express CCVRP problem. The heuristic’s simplicity is an additional 

advantage as it can be readily adapted to develop routes for CCVRPs with nuances 

different than those detailed for Fresh Express.  

Prior to outlining the full details for the Tabu Search used to solve the Fresh Express 

routing model, the general heuristic details will be provided which apply to traditional 

CVRPs assuming vehicles cannot satisfy demand from a distance and a service location 

has a single time windows. These assumptions, and all others which do not apply to Fresh 

Express, will be revisited once the general Tabu Search heuristic is outlined.  

During every phase of the Tabu Search procedure, a solution 𝑠 ∈ 𝑆 represents a set of 

|𝐽| routes such that every customer belongs to exactly one route. Note that this solution 

may violate various constraints such as the cumulative load serviced by the vehicle, the 

time windows for service at a stop, or the total time of travel for the vehicle. Therefore, 

for any 𝑠 ∈ 𝑆, let 𝑞(𝑠) represent the total load violation of the routes (servicing more 

demand than possible across all vehicles), let 𝑑(𝑠) represent the duration violation of the 

routes (cumulative time returning to the depot after 𝑡𝑚𝑎𝑥 for all vehicles), and let 𝑤(𝑠) 

represent the time window violation of the routes. The calculation for 𝑤(𝑠) is 

∑ ∑ (𝑑𝑛 − 𝑙𝑛)+
𝑚∈𝑀𝑗𝑗∈𝐽  where 𝑀𝑗 ⊆ 𝑀 is the subset of location serviced by vehicle 𝑗. 

Each solution 𝑠 is then scored according to a function 𝑓(𝑠) = 𝑝(𝑠) − 𝛼𝑞(𝑠) −

𝛽𝑑(𝑠) − 𝛾𝑤(𝑠) where 𝑝(𝑠) is the profit earned by solution 𝑠 which is a function of the 

reward for demand serviced minus the cost of the routing. In 𝑓(𝑠), 𝛼, 𝛽, and 𝛾 are all 

positive parameters which are dynamically adjusted based on the current solutions 



  228 

identified within the Tabu Search. These parameters therefore control how the algorithm 

traverses the solution space.  

Within the Tabu Search procedure, each solution 𝑠 is defined based on an attribute set 

𝐵(𝑠) = {(𝑚, 𝑗)} which indicates location 𝑚 is serviced by vehicle 𝑗 in solution 𝑠. The 

Tabu Search proceeds by exploring the direct neighborhood of 𝑠 (i.e. 𝑁(𝑠)) by removing 

some (𝑚, 𝑗) ∈ 𝐵(𝑠) and replacing it with attribute (𝑚, 𝑗′) where 𝑗 ≠ 𝑗′. Customer 𝑚 is 

inserted in the route of vehicle 𝑗′ by placing it in between the two consecutive stops 

which maximizes the value of 𝑓(𝑠) and route 𝑗 is reconnected by having 𝑗 travel directly 

from the predecessor of customer 𝑚 to the successor of customer 𝑚. When this occurs, 

the attribute (𝑚, 𝑗) is made Tabu for 𝜃 iterations which forbids customer 𝑚 from being 

added back to vehicle 𝑗 for a given duration. It is possible to revoke this Tabu status in 

the case where adding 𝑚 to 𝑗 would result in a better feasible solution than the best 

solution containing that attribute thus far in the algorithm. This logic is commonly 

referred to as the short-term memory of the Tabu Search heuristic. 

The long-term memory of the Tabu Search heuristic tracks the frequency of an 

attribute in a solution 𝑠 to further increase the diversity of the identified solutions. 

Specifically, if 𝑓(𝑠′) < 𝑓(𝑠) for some solution 𝑠′ ∈ 𝑁(𝑠), then 𝑓(𝑠′) is penalized in 

proportion to the long-term memory multiplied by a scaling factor. To define this long-

term memory, let 𝑝𝑚𝑗 store the number of times attribute (𝑚, 𝑗) has been added during 

the Tabu Search procedure. Hence, if 𝑓(𝑠′) < 𝑓(𝑠) then subtract 𝑑(𝑠′) =

𝜆𝑝(𝑠′)√|𝑀| ∗ |𝐽|𝑝𝑚𝑗 from 𝑓(𝑠′). This additional term penalizes 𝑓(𝑠′) in proportion to 

the size of the customer network and vehicle set as well as in proportion to the solution 



  229 

reward. Also included in this penalty is a scaling parameter 𝜆 > 0 which can be used to 

control the intensity of the penalty. If 𝑓(𝑠′) ≥ 𝑓(𝑠), then let 𝑑(𝑠′) = 0. The impact of 

this penalty is that the algorithm explores unvisited areas of the solution space when a 

local optima is identified 

Given these definitions, the full Tabu Search procedure can be detailed below 

assuming that 𝑠∗ stores the best feasible solution identified at that point in the heuristic: 

CVRP Tabu Search Heuristic 

Initialize first solution 𝑠 and 𝛼, 𝛽, 𝛾, and 𝜆. 

If 𝑠 is feasible, then let 𝑠∗ = 𝑠 and 𝑝(𝑠∗) = 𝑝(𝑠), else let 𝑝(𝑠∗) = −∞. 

For 𝜅 = 1, … , 𝜂, do 

Select 𝑠′ ∈ 𝑁(𝑠) which maximizes 𝑓(𝑠′) + 𝑑(𝑠′) that is not Tabu (i.e. the 

added attribute has been added in the past 𝜃 iterations) unless 𝑠′ is the best 

feasible solution identified thus far with that attribute.  

If 𝑠′ is feasible and 𝑝(𝑠′) < 𝑝(𝑠∗), then 𝑝(𝑠∗) = 𝑝(𝑠′) and 𝑠∗ = 𝑠′.  

Update 𝛼, 𝛽, and 𝛾. 

Let 𝑠 = 𝑠′. 

Improve 𝑠∗ if possible. 

To determine the initial 𝑠 in the Tabu Search heuristic, numerous methodologies are 

possible. Within this implementation, a specific methodology is used based on the 

nuances of Fresh Express which will be detailed later. Readers interested in a more 

general approach for determining 𝑠 are recommended to refer to Cordeau, Laporte, and 

Mercier (2001)j. Furthermore, 𝛼, 𝛽, and 𝛾 are initialized to 1 at the start of the algorithm 

(but this can be modified at the discretion of the practitioner) and they are updated 

throughout the procedure by a factor of 1 + 𝛿 where 𝛿 > 0. Specifically, 𝛼 is multiplied 

by 1 + 𝛿 if 𝑞(𝑠′) > 0 and 𝛼 is divided by 1 + 𝛿 if 𝑞(𝑠′) = 0, 𝛽 is multiplied by 1 + 𝛿 if 

𝑑(𝑠′) > 0 and 𝛽 is divided by 1 + 𝛿 if 𝑑(𝑠′) = 0, and 𝛾 is multiplied by 1 + 𝛿 if 

𝑤(𝑠′) > 0 and 𝛾 is divided by 1 + 𝛿 if 𝑤(𝑠′) = 0. 



  230 

This procedure is sufficient for the general CVRP, but not for the Fresh Express 

model. First and foremost, not all customers are expected to be served by at once. To 

address this difference, the number of routes created for each 𝑠 ∈ 𝑆 represent |𝐽| + 1 

routes where the last route is a ‘dummy’ route. This dummy route does not factor into the 

calculation of 𝑞(𝑠), 𝑑(𝑠), and 𝑤(𝑠) and serves as storage for all of the unserved 

customers. The second major modification is to incorporate the ‘covering’ mechanic by 

modifying the rules on how 𝑁(𝑠) is explored. Specifically, whenever a customer 𝑚 is 

removed from 𝑗, it is first checked to see if it can be covered by any customer in each 

route 𝑗′ ≠ 𝑗 and if so, 𝑓(𝑠′) is calculated. 𝑚 is then tested for insertion and direct 

visitation into each 𝑗′ and 𝑓(𝑠′) is again calculated for each possibility. The insertion 

which results in the highest value for 𝑓(𝑠′), either directly being visited or being served 

from a distance, is retained as one possible option for 𝑠′ ∈ 𝑁(𝑠). In addition, a customer 

𝑚 which is directly visited and serves as a central site for serving other nearby customers 

in 𝑠 cannot be a removed attribute in this step of the Tabu Search heuristic. Instead, all 

customers which are served at a distance by vehicle 𝑗 from location 𝑚 must first be 

removed from vehicle 𝑗 prior to removing service location 𝑚. Other, more complicated, 

methodologies could be employed in this scenario, but this approach was selected due to 

its ease of interpretation and implementation. 

 

7.4.3 Fresh Express routing data 

Given this routing model and solution methodology, data was collected and 

aggregated regarding potential customers in the west and south Phoenix neighborhoods. 

According to the service area defined by Fresh Express, the south Phoenix community is 



  231 

bounded by Buckeye Rd., Baseline Rd., 24th St., and 35th Ave. while the west Phoenix 

community is two separate zones with the more southerly zone bounded by Buckeye Rd., 

Camelback Rd., Central Ave., and 67th Ave. and the northerly zone bounded by 

Camelback Rd., Northern Ave., Central Ave., and 43rd Ave. These regions are shown in 

Figure 17. The first step in estimating the demand for Fresh Express in these areas was to 

identify all possible service locations within these communities. To complete this 

process, aerial photography was utilized to identify all possible stopping locations by 

scanning each block within the service area. Any structure with a parking lot with 

adequate space for a bus to stop was noted and specific attention was given to elementary 

schools, day cares, college campuses, vocational schools, community centers, parks, and 

older adult living facilities as these are the traditional types of service locations for Fresh 

Express. In total, this resulted in 71 total elementary or similar schools, 14 housing 

complexes, and 18 other types of locations. 

 

 



  232 

 

Figure 17. West and south Phoenix operational area for Fresh Express 

 

Given these possible locations, data was collected regarding each stop in order to help 

estimate demand at each location. This data uses Fresh Express’ current product mix as it 

is assumed all locations have the same demand profile for grocery items. The specific 

data collected depended on the type of stop. For instance, for every public school, data 

was obtained about the number of students in kindergarten through 4th grade, the number 

of students on free or reduced lunch, and the number of students who are English as a 

Second Language (ESL). If the school was not publicly listed, the school was either 

directly contacted or visited to obtain enrollment figures. For any applicable housing 



  233 

centers (typically low-income or older adult), the number of units were obtained either 

through listings or direct verification. For all other types of stops, general usage numbers 

were obtained through direct contact/interviews such as the number of visitors to a 

community center at peak times, etc. In addition, the distance to the nearest full-service 

supermarket was recorded for every potential stop. 

To estimate demand at these locations, four months of operational data (March – 

June) were obtained for 2016 from Fresh Express. Matching data was then collected for 

each of these stops such as the size of the school or housing complex. In total, there are 

41 observations of Fresh Express serving housing complexes, 17 observations of Fresh 

Express serving schools or day cares, and 86 observations of Fresh Express serving other 

types of stops. Based on data records, distributions were fit to the average revenue earned 

for every housing unit, for every child, and at every non-housing/non-school stop. In 

addition, stops which are currently in the south or west Phoenix areas (as Fresh Express is 

trialing some routes in these communities) had separate distributions fit to their specific 

data if enough data points existed for the service location. Given these distributions, it 

was assumed that south and west Phoenix would have experience the same revenue per 

child (in the case of schools), revenue per unit (in the case of housing complex), and 

revenue per site (in the case of all other locations without their own fitted distribution) as 

the locations already serviced by Fresh Express.  

With these distributions, a stochastic optimization approach was conducted to identify 

a high-quality routing plan for Fresh Express. Specifically, 31 total test scenarios were 

created by sampling a variety of cases from each of the 103 potential service locations in 

the west and south Phoenix communities. The first test scenario represented the average 



  234 

from each distribution for each service location. For each of the next 25 test scenarios, a 

set of 50 samples were generated for each service location and the average revenue for 

each possible customer location was calculated across these 50 samples. This sampling 

and averaging procedure was repeated 25 times to obtain the 25 test scenarios. This 

procedure was motivated by two primary concerns: the possible sampled revenues for 

each site had high variability and it was assumed Fresh Express’ primary concern was 

maximizing their expected earnings. Hence, generating 50 samples and calculating the 

average for each service location would reduce the effect of outlier cases and also better 

meet the anticipated goal of Fresh Express. The final 5 test scenarios were created by 

generating five 50 samples revenues for each location from the bottom 10% of each 

distribution and then calculating the average of each 50 sample group. These tests were 

generated as another goal of Fresh Express is to generate reliable routes. Hence, the 

routes generated based on these samples are designed to protect against worst case 

performance in the scenario where all of the service locations experience poor short-term 

demand.  

Using these test scenarios, 12 different customer scenarios were tested and routes 

were built for each. Specifically, 4 customer scenarios were conducted under each of the 

following assumptions: Fresh Express cannot satisfy demand at a distance, Fresh Express 

can satisfy demand up to 400 meters away from their stopping location, and Fresh 

Express can satisfy demand up to 800 meters away from their stopping location. These 

different distances (0 meters, 400 meters, and 800 meters) are hereafter referred to as 

service radii. For each of the radii, different subsets of the service locations were 

considered:  



  235 

 

 All service locations (103 service locations),  

 All service locations except schools where less than 50% of students receive free 

or reduced meals (96 service locations), 

 All service location except those with a full service supermarket within 800 

meters (75 service locations), 

 All service locations except schools where less than 50% of students receive free 

or reduced meals and those with a full service supermarket within 800 meters (67 

service locations). 

In summary, 12 different customer scenarios were tested which assume a service radius 

and a specific subset of customers. Within each customer scenario, 31 different routing 

plans were generated using the Tabu Search procedure based on the different test 

scenarios as previously described.  

To assist Fresh Express in deciding between these 31 different routing plans per 

scenario, a simulation approach was conducted to obtain a better understanding of the 

potential for each of the routing solutions. Specifically, 10,000 samples were taken for 

each of the 103 service locations and the profit/sample was calculated for each of the 31 

routing plans for each of the 12 customer scenarios. Over these samples, the maximum 

potential profit, minimum potential profit, and average profit were calculated as well as 

the percentage of samples where the routing plan profit exceeded an established 

threshold. These values will be cited in the results. 

The remaining details refer to settings for the Tabu Search procedure. First, it was 

assumed that two weeks of routes were to be created as Fresh Express does not frequently 



  236 

visit the same location in consecutive weeks. In addition, it was assumed that each week 

would have three service days similar to their current operating plan in the Discovery 

Triangle community. Hence, |𝐽| = 6 for these tests. It was assumed that Fresh Express 

can start operating at 7 AM and must be back to the depot by 6 PM. Also, every school 

has two time windows defining when service can start, 7:30 AM to 8:30 AM and 2 PM to 

3 PM, while every other location can have serviced started from 7 AM to 11 AM and 1 

PM to 4 PM. For each location, Fresh Express must stop for 1 hour to fully service the 

demand. These time requirements match the current operating conditions of Fresh 

Express. 

Since Fresh Express rarely encounters capacity issues, constraint set (7-23) was 

redefined to represent the limit on the number of stops Fresh Express typically makes 

during one day. Specifically, Fresh Express only makes four physical stops per day so 

𝐶𝑗 = 4 and 𝑢𝑚 = 1 for all 𝑗 and 𝑚. Furthermore, since serving a stop at a distance is not 

a separate stop, any stop whose demand was serviced at a distance does not factor into 

constraint set (7-23) within the Tabu Search heuristic. However, it was assumed that 

Fresh Express would only be able to capture 25% of the revenue from covered locations 

which serves as an estimate for the loss in customers who would not be willing to 

walk/travel to the vehicle. The travel time between each location was calculated using 

Manhattan distances assuming an average travel time of 35 mph and then rounded up to 

the nearest 30 minute interval. This was completed to adhere to the current system used 

by Fresh Express and to also build in setup and teardown time for Fresh Express at each 

stop. The cost of travel was based on the distance between all pairs of location and the 



  237 

average fuel cost per mile for CFG buses (Lowell, Chernicoff, and Lian 2007) as the city 

of Phoenix provides all other minor maintenance costs for free. 

 The final details are the specific parameters and initialization steps used in the Tabu 

Search heuristic. For these tests, it was assumed that that 𝜆 = 0.015 and 𝜂 = 10000 

based on preliminary tests of the algorithm. The lack of extensive testing of these 

parameters is a clear flaw of this research which will be discussed in Chapter 8. Similar 

to Cordeau, Laporte, and Mercier (2001), 𝜃 was set to ⌊0.5 + 7.5 ∗ log(|𝑀|)⌋ so that it 

scales with problem size. To generate the initial routes a simple sweep heuristic was 

employed similar to the technique used in Chapter 7. Specifically, the service locations 

were sorted based on their radial angle with the depot and the one service location was 

selected as the starting point at random. Points were sequentially added to the routes 

starting at this random service location until every route visited four service locations. 

Finally, the Tabu Search heuristic was restarted 5 times with 𝜂 = 10000 for each test and 

the routing plan with the highest profit was retained as the final solution for a given test 

and customer scenario. 

A summary of the results for each covering radii are provided in Table 24 through 

Table 26. For each row, the routing plan which best satisfied the indicated decision 

criteria (based on the results from the 10000 sample simulation) is provided for each 

customer scenario. The four decision criteria used in this study are the greatest maximum, 

greatest minimum, greatest average, greatest percentage of profit observations above 

$2100. The limit $2100 was determined as it is the average two week profit for Fresh 

Express from the data period. Note this average excludes any fuel costs which are 



  238 

included in the profits reported by the model. The largest observation for each statistic 

within each subset of customers is highlighted in bold. 

Table 24. Summary of routing plan statistics assuming 0 meter covering distance for 

Fresh Express 

Cust. 

Exclusion 

Decision 

Criteria 

Maximum 

Profit 

Minimum 

Profit 

Average 

Profit 

% Trials Over 

$2100 

None 

Max. $4357 $1154 $2355 73.7% 

Min. $4010 $1264 $2450 81.5% 

Ave. $4010 $1264 $2450 81.5% 

Percent.  $4010 $1264 $2450 81.5% 

Schools 

Max. $4257 $1182 $2383 76.5% 

Min. $4074 $1266 $2343 72.7% 

Ave. $4127 $1249 $2418  78.5% 

Percent.  $4127 $1249 $2418 78.5% 

Grocery 

Vicinity 

Max. $4439 $1206 $2313 70.2% 

Min. $4331 $1276 $2323 70.8% 

Ave. $4331 $1276 $2323 70.8% 

Percent.  $4331 $1276 $2323 70.8% 

Both 

Max. $3969 $1130 $2247 64.3% 

Min. $3821 $1255 $2258 64.9% 

Ave. $3950 $1215 $2289 68.3% 

Percent.  $3950 $1215 $2289 68.3% 

 

 

 

 

 

 

 

 

 



  239 

Table 25. Summary of routing plan statistics assuming 400 meter covering distance for 

Fresh Express 

Cust. 

Exclusion 

Decision 

Criteria 

Maximum 

Profit 

Minimum 

Profit 

Average 

Profit 

% Trials Over 

$2100 

None 

Max. $4503 $1283 $2440 80.8% 

Min. $4448 $1294 $2489 83.9% 

Ave. $4448 $1294 $2489 83.9% 

Percent.  $4448 $1294 $2489 83.9% 

Schools 

Max. $4411 $1208 $2407 78.7% 

Min. $4204 $1325  $2488 83.9% 

Ave. $4204 $1325 $2488 83.9% 

Percent.  $4204 $1325 $2488 83.9% 

Grocery 

Vicinity 

Max. $4134 $1339 $2377 76.0% 

Min. $4134 $1339 $2377 76.0% 

Ave. $4134 $1339 $2377 76.0% 

Percent.  $4134 $1339 $2377 76.0% 

Both 

Max. $4069 $1222 $2303 70.2% 

Min. $3878 $1307 $2299 69.3% 

Ave. $3918 $1247 $2320 71.2% 

Percent.  $3979 $1236 $2318 71.5% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  240 

Table 26. Summary of routing plan statistics assuming 800 meter covering distance for 

Fresh Express 

Cust. 

Exclusion 

Decision 

Criteria 

Maximum 

Profit 

Minimum 

Profit 

Average 

Profit 

% Trials Over 

$2100 

None 

Max. $4477 $1429 $2506 86.2% 

Min. $4477 $1429 $2506 86.2% 

Ave. $4428 $1296 $2562 89.0% 

Percent.  $4428 $1296 $2562 89.0% 

Schools 

Max. $4581 $1233 $2481 84.1% 

Min. $4281 $1442 $2545 88.6% 

Ave. $4281 $1442 $2545 88.6% 

Percent.  $4281 $1442 $2545 88.6% 

Grocery 

Vicinity 

Max. $4354 $1308 $2404 78.9% 

Min. $4142 $1355 $2412 79.7% 

Ave. $4016 $1281 $2416  79.8% 

Percent.  $4016 $1281 $2416 79.8% 

Both 

Max. $4179 $1213 $2374 76.2% 

Min. $4134 $1337 $2344 74.1% 

Ave. $4142 $1306 $2376  76.6% 

Percent.  $4142 $1306 $2376 76.6% 

 

Shown in Figure 18 is the routing plan which provided the highest average profit for 

the scenario with a 400 meter covering radius and the subset of service locations which 

exclude schools where less than 50% of students receive free or reduced meals and those 

with a full service supermarket within 800 meters. These routes are divided into two 

panels to reduce the number of overlapping lines. Any service location which was not 

selected for service in these panels are grey while those which are serviced are black. 

Any service location serviced at a distance has no lines going to the location, but it is in a 

filled circle with a visited location which is less than 400 meters away. Also provided is 

Table 27 which shows the routing plan which had the greatest average profit for each 

different service radii. The routes in Table 27 assume that the set of potential service 

locations exclude schools where less than 50% of students receive free or reduced meals 



  241 

and exclude locations with a full service supermarket within 800 meters. Locations which 

are serviced in all three plans are in bold and locations which are serviced for only one 

plan are in italics. The first four stops listed for each route are those which are directly 

visited by Fresh Express while any remaining customers are those which are covered at a 

distance. 

 

Figure 18. Fresh Express routing plan assuming a 400 meter covering radius and 

excluding service locations based on school income and supermarket access 

 

 

 

 

 

 

 

 

 

 

 

 



  242 

Table 27. Fresh Express routing plan excluding service locations based on school income 

and supermarket access for all covering radius options 

 0 M 400 M 800 M 

R
o

u
te

 1
 

Orangewood Sc. 7:30 Orangewood Sc. 7:30 Sevilla West Sc. 7:30  

Helen Drake  9:00  Helen Drake  9:00  Helen Drake  9:00  

Sevilla West Sc. 2:00 Glenn Downs Elem  2:00  Catalina Ventura  2:00  

St. Vincent DePaul 3:30  Urban League Man. 3:30  Coffelt Housing 3:30  

  Kids Country Club 9:00  Kids Country Club 9:00  

    Lemon Grove Apart 9:00  

R
o

u
te

 2
 

Alhambra Trad.  7:30 Catalina Ventura  7:30  Charles W Harris  7:30  

Kiddie’s Kingdom 9:00 Phoenix Snr Opt.  9:00 Maryvale Comm 9:00 

Alta E Butler Sch  2:00 Marcos de Niza 10:30  Justine Spitalny Sch  2:00 

Coffelt Housing 3:30 JB Sutton Elem  2:00 Phoenix Snr Opt. 3:30 

  Henson Village 9:00 Glenn Downs Elem 2:00 

    Henson Village 3:30 

R
o
u
te

 3
 Joseph Zito Elem  7:30 Joseph Zito Elem 7:30 Alta E Butler Sch 7:30 

B&G Clubs-Colan 9:00 Kiddie’s Kingdom 9:00 B&G Clubs-Colan 9:00 

JB Sutton Elem 2:00 B&G Clubs-Colan 10:30 PT Coe Elem 10:30 

Victory Place 3:30 Alta E Butler Sch 2:00 Phoenix Day 2:00 

R
o
u
te

 4
 Westwood Prim 7:30 PT Coe Elem 7:30 Granada Primary 7:30 

MarcAtkinson Rec 9:00 MarcAtkinson Rec 9:00 MarcAtkinson Rec 9:00 

Granada Primary 2:00 Westwood Prim 2:00 JB Sutton Elem 2:00 

Phoenix Snr Opt. 3:30 Coffelt Housing 3:30 St. Vincent DePaul 3:30 

R
o
u
te

 5
 James W Rice 7:30 James W Rice 7:30 Westwood Prim 7:30 

Maryvale Comm 9:00 Maryvale Comm 9:00 Urban League Man. 9:00 

Charles W Harris 2:00 Granada Primary 2:00 James W Rice 2:00 

Maricopa Skills 3:30 St. Vincent DePaul 3:30 Kiddie’s Kingdom 3:30 

    Andalucia Middle 2:00 

R
o
u
te

 6
 

CO Greenfield 7:30 Charles W Harris 7:30 Sabis International 7:30 

Phoenix Day 9:00 Phoenix Day 9:00 Victory Place 9:00 

Marcos de Niza 10:30 CO Greenfield 2:00 CO Greenfield 2:00 

PT Coe Elem 2:00  Maricopa Skills 3:30  Marcos de Niza 3:30 

  Amy Houston 2:00 Amy Houston 2:00 

  JFK Elementary 2:00 JFK Elementary 2:00 

 

Based on Table 24 through Table 26, it is evident that this solution methodology can 

develop a wide variety of recommended routing plans. Specifically, the rows in these 

tables comprise 29 different routing plan within the south and west Phoenix area. Within 

each table, the performance of the retailer decreases due to the fact that the quantity of 

excluded customers increase. This result is expected but it demonstrates that the solutions 



  243 

identified by the Tabu Search procedure are likely near the optimal routing plan. The 

other primary observation is that the factor which has the biggest impact on the profit 

statistics within each table is whether or not customers who are too close to a 

supermarket should be excluded. For instance, the difference between the routing plan 

with all customer available and those which exclude all customers within 800 meters of a 

supermarket results in $100 average loss across all tables. Hence, Fresh Express should 

determine their revenue requirements prior to eliminating the service of such customers 

as they may not be able to meet their goals without servicing these customers.  

Table 24 through Table 26 also provide specific observations for Fresh Express. First 

and foremost, the average profit for each developed routing plan exceeds the current two-

week average profit of $2100 reported by Fresh Express. This average even excludes fuel 

costs, as Fresh Express does not track these costs, thereby implying the developed routes 

are even better than the current routing plan of Fresh Express. Therefore, by making 

different routing decisions, it is possible for Fresh Express to increase its economic 

sustainability.  

To recommend a plan from Table 24 through Table 26, Fresh Express must first 

determine the subset of customers they would like to serve. Clearly the more restrictions 

Fresh Express wishes to place on its customer base, the less profitable their routes will be 

but they will be able to better address those most in need. Based on this study, it is highly 

recommended to only serve those customers which are most in need (i.e. both exclusions 

are enforced). This is recommended as service locations which are within 800 meters of a 

supermarket likely feature customers who would prefer to use the supermarket than Fresh 

Express and service locations which are schools where a majority of students are not low-



  244 

income are not the target demographic of Fresh Express. For the routes generated within 

this customer subset, the 400 meter covering radius is recommended for consideration as 

it is important to consider nearby walking-distance locations when designing Fresh 

Express service locations, but it is unlikely that customer 800 meters away would be 

loyal customers. Hence, a 400 meter service radius is a satisfactory balance. Finally, any 

of the plans within this service radius and customer subset are competitive but selecting 

the plan which provides the greatest average profit (i.e. the routing plan shown in Figure 

18) is recommended as this will provide the greatest longitudinal impact. 

The purpose of Figure 18 is three-fold. First, it provides a graphical representation of 

the recommended routing plan for Fresh Express. Secondly, it provides an example of the 

routes developed by the Tabu Search procedure. Upon first inspection, the set of six 

routes in Figure 18 do not appear to represent optimal routes due to the numerous 

crossings of arcs. However, such crossings are necessary for this case study due to the 

strict time windows which must be met. Finally, Figure 18 serves to provide an example 

of the service area and the distribution of possible Fresh Express service locations within 

the service area. The noticeable gaps in Figure 18 are due to the subset of customers 

which are excluded as they are too close to supermarkets or due to the Salt River which 

separates the southerly most 17 service locations from the rest of the network.  

Finally, Table 27 shows a subset of routing plans based on the actual serviced (or 

covered) locations and includes the recommended routing plan. The goal of this table is 

to demonstrate that the selected covering radius does not have a large effect on the subset 

of serviced customers. For instance, when a 0 meter service radius is assumed (i.e. the 

retailer must directly visit a location to service its customers), 18 of the 24 total visited 



  245 

locations are still served in the routing plan from the 400 meter service radius and 800 

meter service radius while only 1 of the visited locations is exclusive to the 0 meter 

service radius. This observation demonstrates that even if the wrong assumption is made 

regarding the covering radius, it will not drastically effect the solution. Hence, the 400 

meter covering radius routing plan was chosen for Fresh Express as it does not drastically 

differ from the 0 meter covering radius routing plan but it does include the consideration 

that Fresh Express could pull demand from nearby locations through targeted flyers and 

advertising. 

 



  246 

CHAPTER 8 

CONCLUSIONS AND FURTHER RESEARCH 

The goal of this dissertation was to address the economic sustainability of mobile 

healthy food retailers. Such retailers are becoming a popular methodology to alleviate 

food desert conditions within urban environments, but many are struggling to earn 

enough revenue to covering their operational and overhead costs. To study these issues, 

the operational decision making of mobile retailers was addressed by focusing on two 

problems: the mobile food retailer product mix problem and the mobile food retailer 

scheduling and routing problem. Models were formulated for these decisions and solution 

methodologies were developed with specific emphasis on techniques usable by any 

practitioner. A subset of these tools were then demonstrated using a case study based on a 

local Phoenix, AZ mobile retailer called Fresh Express. 

The conclusions in this section with regards to Chapters 3 through 6 are limited as the 

end of each chapter featured a summary of future research goals regarding the developed 

models. Hence, a summary of each of these discussions will be provided in this chapter. 

More importantly, the findings from the case study will be summarized and future goals 

with respect to Fresh Express will be discussed. Also discussed in detail are future 

recommendations for the Tabu Search heuristic which was introduced in Chapter 7.  

The purpose of Chapter 3 was to introduce solution methodologies for the MDMKP 

as this is one modeling approach for the mobile food retailer product mix decision. 

Specifically, the goal of this chapter was to apply the most advanced KP solver concepts, 

such as efficiency measures and core variables, to KP variants which had demand 

constraints. Hence, new efficiency measures were developed which are applicable to any 



  247 

KP variant with a single linear objective function and linear constraints of any type and 

quantity. After it was demonstrated that these measures provide the same applicability as 

traditional efficiency measures, three heuristic solution procedures were presented: a 

Fixed-Core heuristic, a Kernel Search heuristic, and a Genetic Algorithm heuristic. Each 

of these techniques have never before applied to the MDMKP and the latter two featured 

new methodologies for the application of efficiency measures. Future research is 

recommended to improve each heuristic, especially the Genetic Algorithm with respect to 

a repair operator, and future research is also recommended to identify new heuristics 

which may provide superior solutions. With respect to mobile retailers, only the Genetic 

Algorithm is accessible by all practitioners as it does not require commercial software. 

However, mobile retailers are recommended to partner with local practitioners who could 

provide the necessary technical skills to use the higher quality solution methods. 

The purpose of Chapter 4 was to introduce a new exact solution methodology for the 

DKP which is applicable to mobile food retailers who are able to formulate their product 

mix decision as a two-constraint optimization model. In this chapter, the solution 

algorithm DKPSOLVE was presented which combines two subroutines for solving the 

DKP. First, the DKP instance is reduced where variables whose values can be fixed to 

one of two binary values are removed from the problem. Given these smaller instances, 

an expanding core procedure is performed which is a depth-first, branch-and-bound 

process used to determine the final optimal solution. Numerous algorithmic 

improvements were then detailed for DKPSOLVE prior to extensive computational tests. 

While DKPSOLVE was already able to outperform commercial software except for the 

most extreme test instances, numerous research improvements are possible such as 



  248 

improving the data storage techniques and improving the solution heuristics performed 

inside the reduction procedure. With respect to mobile food retailers, DKPSOLVE is 

highly applicable as it does not require commercial software, can be provided as a black 

box program, and has limited data requirements assuming the retailer can formulate their 

product mix decision using a simplified model. 

The purpose of Chapter 5 was to introduce the CCVRP which is used in this 

dissertation to model the mobile food retailer scheduling and routing problem. Within 

Chapter 5, the CCVRP formulation is initially provided and an exact solution algorithm is 

provided which relies on column generation. For this approach the model is transformed 

into an equivalent set covering formulation and a branch-and-price methodology is used 

to determine the optimal solution. Columns are generated as needed in this algorithm 

using a branch-and-bound tree. Extensive computational tests were performed using this 

algorithm on adapted benchmark cases and problems with up to 50 customers were 

solved within one hour. Future research is recommended to improve the current column 

generation procedure by using more advanced subprocedures, such as better TSP solvers, 

and to develop new approaches such as branch-and-cut algorithms which have shown 

success for similar problems. With respect to mobile food retailers, the algorithm from 

this chapter is not directly applicable as it is only useful for small to medium sized 

problem instances. Instead, the main benefit of this chapter is from serving as a 

benchmark for the heuristics developed in Chapter 6. 

The purpose of Chapter 6 was to outline four heuristics for solving the CCVRP: the 

Greedy heuristic, the Sweep heuristic, the Savings heuristic, and the ACS heuristic. In 

this chapter, a route improvement/construction procedure, COVROUTE, was first 



  249 

introduced and then each of the four heuristics were outlined in detail. Thorough tuning 

tests were then outlined for the ACS heuristic prior to extensive computational tests 

based on adapted benchmark cases. These results were compared amongst the developed 

heuristics in Chapter 6 as well as against the exact solution procedure from Chapter 5 

when appropriate. With respect to mobile food retailers, each of the developed algorithms 

are usable by mobile retailers as none require commercial solvers. However, the ACS or 

Savings heuristic are recommended based on the quality of the tests results.  

One of the major contributions from the prior 4 chapters which has yet to be 

addressed is that these models are applicable to many other types of problems outside of 

mobile healthy food retailers. For instance, many of the developed techniques are 

applicable to other mobile retailers such as street trucks and vendors who operate under 

conditions similar to mobile healthy food retailers. With respect to the developed models, 

the MDMKP is applicable to a wide array of applications including the project selection 

problem (Beaujon, Marin, and McDonald 2001), the obnoxious facility location problem 

(P. Cappanera, Gallo, and Maffioli 2004), and the sea cargo mix problem (Ang, Cao, and 

Ye 2007). The DKP also has wide ranging applications but the greatest strength of 

DKPSOLVE is serving as an efficient subprocedure within solution algorithms for more 

complicated optimization formulations. Finally, the CCVRP also has numerous 

applications including the routing of mobile signal towers, disaster emergency vehicles, 

public transportation vehicles, urban school buses, and distribution vehicles servicing 

smaller secondary distribution hubs from a major centralized facility. The CCVRP can 

also be used to model evacuation planning in which evacuees can be moved short 

distances to feasible points where emergency vehicles, such as helicopters, can land and 



  250 

transport patients. The CCVRP can also be used to route objects which are not vehicles. 

For instance, the CCVRP can be used it to determine the optimal pathing for online visual 

inspections systems which use cameras to capture details on manufactured circuit boards.  

One aspect of the models developed in Chapters 3 through 6 which has not been 

addressed is that solving the mobile retailer product mix problem and the mobile retailer 

routing and scheduling problem separately can lead to suboptimal solutions. For instance, 

it is likely that the demand for items is stop dependent based on the types of customers 

which live or work around each location. In this research, these problems are treated 

separately as solving them together is out of scope. However, future research is 

recommended to investigate whether the models can be combined and solved 

simultaneously.  

Furthermore, it is possible that a hierarchical solution framework can be utilized to 

develop a heuristic approach to simultaneously optimize both problems. For instance, the 

product mix problem could be solved given an assumed customer subset. With this 

solution, the customer demands at each location could be determined for this subset and 

the routing problem can be solved. With this new routing solution, the product mix can 

again be addressed given this new customer subset. This problem can be repeated until 

the solutions converge or a suitable time limit is reached. While this will not optimally 

solve the problem, the solution will likely be suitable for most mobile retailers.  

The purpose of Chapter 7 was to provide a detailed case study, using the Phoenix, AZ 

retailer Fresh Express, to demonstrate how the operational tools can be employed by 

mobile retailers as well as to determine whether or not it is possible for such retailers to 

increase their economic sustainability. Two approaches were utilized to develop a 



  251 

product mix for the mobile retailer. A DKP formulation was used first which was limited 

only by retailer space and a minimum profit margin while a MDMKP formulation was 

employed second which factored in constraints to increase the variety of the product mix. 

Within each approach, the goal of the formulation was to observe the trade-offs between 

health and consumer costs based on various profit requirements. Data for these tests came 

from operational data provided by Fresh Express was well as data on additional grocery 

items from Bashas supermarkets. The results highlighted that numerous product mixes 

were possible based on the needs of Fresh Express and even conservative mixes could be 

identified to increase Fresh Express’ profits by $100/day with no impact on consumer 

cost or product healthiness. 

The second focus of Chapter 7 was to determine and optimal routing and scheduling 

plan for Fresh Express through underserved west and south Phoenix locations. To best 

address the needs of Fresh Express, a new mathematical model was introduced which 

featured time windows for customer service. A Tabu Search heuristic was then outlined 

to solve this model and extensive computational experiments were performed to develop 

Fresh Express routing plans given various restrictions on the customers which could be 

served and the distance it was assumed customers would travel for service. Data for his 

study came from Fresh Express routing data for its current customers and all new 

locations were verified electronically or by in-person interviews. The findings 

demonstrated that a wide array of routing plans are possible and they all result in average 

profits which exceed Fresh Express’ current earnings. Ultimately, a routing plan was 

recommended for Fresh Express which served only the most at-risk customers assuming 

that customers would be willing to travel 0.25 miles at most for service. 



  252 

In regards to this case study, significant work is recommended with respect to three 

topics: implementing the product mix recommendations, implementing the routing 

recommendations, and improving the Tabu Search heuristic. With respect to the Tabu 

Search heuristic, additional research is recommended on two major issues. Primarily, 

extensive computational tests have yet to be performed on the Tabu Search heuristic so 

the ability to measure its performance is not well documented outside of this case study. 

Secondly, tuning experiments should be performed to determine the ideal settings for the 

heuristics parameters. 

 With respect to the product mix, the results from Chapter 7 demonstrated that it is 

possible to stock a better product mix which earns greater profits for Fresh Express. 

However, no product mix is necessarily recommended as part of this dissertation as the 

recommended product mix is at the discretion of Fresh Express and can be determined 

based on external factors such as required profit margins or similar criteria. Meetings are 

currently planned with the Executive Director of Fresh Express once the retailer has 

resumed operations during October as they are currently undergoing maintenance work 

on the bus. Once the results are disseminated, new supplier options may have to be 

developed to stock some of the potential items. While waiting for such relationships to be 

developed, it is expected that new items will be ordered from Peddler’s Son and stocked 

on Fresh Express to validate the data used in this case study. 

With respect to the routing plan developed in Chapter 7, the results will again be 

disseminated with Fresh Express during a meeting planned later in the year. Based on the 

findings, it will be recommended that some of the recommended routes be trialed with 

the current bus for either Monday or Friday service (i.e. a fourth day). To complete this 



  253 

work, new partnerships will have to be developed based on the new service locations. 

However, as part of this case study, many of the south and west Phoenix were personally 

contacted and many have already expressed great interest in hosting Fresh Express at 

their site. Given the ability to trial new routes, data will again be collected from these 

trials to verify the results from the case study. Based on these results, the data used in the 

case study can be updated and the routes can be adjusted based on the findings. Once a 

second bus is added to their system or once new service days are permanently added to 

their schedule, the developed routes from Chapter 7 can be permanently implemented. 

 



  254 

REFERENCES 

Agarwal, Y., K. Mathur, and H. Salkin. 1989. “A Set-Partitioning-Based Exact 

Algorithm for the Vehicle Routing Problem.” Networks 19 (7): 731–49. 

Akinc, Umit, and Kizhanatham Srikanth. 1992. “Optimal Routing and Process 

Scheduling for a Mobile Service Facility.” Networks 22 (2): 163–83. 

Algert, Susan, Aditya Agrawal, and Douglas Lewis. 2006. “Disparities in Access to Fresh 

Produce in Low-Income Neighborhoods in Los Angeles.” American Journal of 

Preventive Medicine 30 (5): 365–70. 

Alkon, Alison Hope, Daniel Block, Kelly Moore, Catherine Gillis, Nicole DiNuccio, and 

Noel Chavez. 2013. “Foodways of the Urban Poor.” Geoforum 48 (1): 126–35. 

Alwitt, Linda, and Thomas Donley. 1997. “Retail Stores in Poor Urban Neighborhoods.” 

The Journal of Consumer Affairs 31 (1): 139–64. 

Andreyeva, Tatiana, Daniel Blumenthal, Marlene Schwartz, Michael Long, and Kelly 

Brownell. 2008. “Availability and Prices of Foods Across Stores and 

Neighborhoods: The Case of New Haven, Connecticut.” Health Affairs 27 (5): 

1381–88. 

Anekwe, Tobenna, and Ilya Rahkovsky. 2013. “Economic Costs and Benefits of Healthy 

Eating.” Current Obesity Reports 2 (3): 225–34. 

Ang, James, Chengxuan Cao, and Heng-Qing Ye. 2007. “Model and Algorithms for 

Multi-Period Sea Cargo Problem.” European Journal of Operational Research 180 

(3): 1381–93. 

Angelelli, Enrico, Renata Mansini, and M. Grazia Speranza. 2010. “Kernel Search: A 

General Heuristic for the Multi-Dimensional Knapsack Problem.” Computers & 

Operations Research 37 (11). Elsevier: 2017–26. 

Arntzen, Halvard, Lars M. Hvattum, and Arne Løkketangen. 2006. “Adaptive Memory 

Search for Multidemand Multidimensional Knapsack Problems.” Computer 33 (9): 

2508–25. 

Bader, Michael, Marnie Purciel, Paulette Yousefzadeh, and Kathryn Neckerman. 2010. 

“Disparities in Neighborhood Food Environments: Implications of Measurement 

Strategies.” Economic Geography 86 (4): 409–30. 

Baker, Elizabeth, Mario Schootman, Ellen Barnidge, and Cheryl Kelly. 2006. “The Role 

of Race and Poverty in Access to Foods That Enable Individuals to Adhere to 

Dietary Guidelines.” Preventing Chronic Disease 3 (3): A76. 

Balachandar, S., and K. Kannan. 2011. “A New Heuristic Approach for 



  255 

Knapsack/covering Problem.” International Journal of Mathematical Sciences and 

Applications 1 (2): 593–606. 

Balas, Egon, and Eitan Zemel. 1980. “An Algorithm for Large Zero-One Knapsack 

Problems.” Operations Research 28 (5): 1130–54. 

Balsam, Alan, David Webber, and Bonita Oehlke. 1994. “The Farmers’ Market Coupon 

Program for Low-Income Elders.” Journal of Nutrition for the Elderly 13 (4): 35–

42. 

Bartholdi III, John, and Steven Hackman. 2011. “Layout of a Piece-Pick-from-Carton 

Area.” In Warehouse & Distribution Science, 97–136. Atlanta, GA: The Supply 

Chain and Logistics Institute. 

Beaujon, George, Samuel Marin, and Gary McDonald. 2001. “Balancing and Optimizing 

a Portfolio of R & D Projects.” Naval Research Logistics 48 (1): 18–40. 

Beaulac, Julie, Elizabeth Kristjansson, and Steven Cummins. 2009. “A Systematic 

Review of Food Deserts , 1966-2007.” Preventing Chronic Disease 6 (3): 1–10. 

Bell, J, and P McMullen. 2004. “Ant Colony Optimization Techniques for the Vehicle 

Routing Problem.” Advanced Engineering Informatics 18 (1): 41–48. 

Bertmann, Farryl M W, Punam Ohri-Vachaspati, Matthew P Buman, and Christopher M 

Wharton. 2012. “Implementation of Wireless Terminals at Farmers’ Markets: 

Impact on SNAP Redemption and Overall Sales.” American Journal of Public 

Health 102 (7): e53–55. 

Bin, Y, Y Zhong-Zhen, and Y Baozhen. 2009. “An Improved Ant Colony Optimization 

for Vehicle Routing Problem.” European Journal of Operational Research 196: 

171–76. 

Bitler, Marianne, and Steven Haider. 2011. “An Economic View of Food Deserts in the 

United States.” Policy Retrospectives 30 (1): 153–76. 

Bixby, A., C. Coullard, and D. Simchi-Levi. 1997. “The Capacitated Prize-Collecting 

Traveling Salesman Problem.” Evanston, IL. 

Block, Daniel, and Joanne Kouba. 2007. “A Comparison of the Availability and 

Affordability of a Market Basket in Two Communities in the Chicago Area.” Public 

Health Nutrition 9 (7): 837–45. 

Blum, Manuel, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. 

1973. “Time Bounds for Selection.” Journal of Computer and Systems Sciences 7 

(4): 448–61. 

Bodin, Lawrence D., and Lon Berman. 1979. “Routing and Scheduling of School Buses 



  256 

by Computer.” Transportation Science 13 (2): 113–29. 

Bodor, J Nicholas, Janet C Rice, Thomas A Farley, Chris M Swalm, and Donald Rose. 

2010. “The Association Between Obesity and Urban Food Environments.” Journal 

of Urban Health 87 (5): 771–81. 

Bodor, J Nicholas, Donald Rose, Thomas Farley, Christopher Swalm, and Susanne Scott. 

2008. “Neighbourhood Fruit and Vegetable Availability and Consumption: The Role 

of Small Food Stores in an Urban Environment.” Public Health Nutrition 11 (4): 

413–20. 

Boffey, Brian, and Subhash Narula. 1998. “Models for Multi-Path Covering-Routing 

Problems.” Annals of Operations Research 82 (1): 331–42. 

Bowerman, Robert, Brent Hall, and Paul Calamai. 1995. “A Multiobjective Optimization 

Approach to Urban School Bus Routing: Formulation and Solution Method.” 

Transportation Research Part A: Policy and Practice 29 (2): 107–23. 

Bullnheimer, B, R Hartl, and C Strauss. 1999. “An Improved Ant System Algorithm for 

the Vehicle Routing Problem.” Annals of Operations Research 89: 319–28. 

Bussieck, Michael R., Peter Kreuzer, and Uwe T. Zimmerman. 1996. “Optimal Lines for 

Railway Systems.” European Journal of Operational Research 96: 54–63. 

Bussieck, Michael R., Thomas Lindner, and Marco E. Lübbecke. 2004. “A Fast 

Algorithm for near Cost Optimal Line Plans.” Mathematical Methods of Operations 

Research 59: 205–20. 

Califano, Catherine, Kennen Gross, Lance Loethen, Scott Haag, and Ira Goldstein. 2012. 

“Searching for Markets: The Geography of Inequitable Access to Healthy & 

Affordable Food in the United States.” The Reinvestment Fund and Opportunity 

Finance Network. 

Cappanera, P., G. Gallo, and F. Maffioli. 2004. “Discrete Facility Location and Routing 

of Obnoxious Activities.” Discrete Applied Mathematics 133 (1): 3–28. 

Cappanera, Paola, and Marco Trubian. 2005. “A Local-Search-Based Heuristic for the 

Demand-Constrained Multidimensional Knapsack Problem.” INFORMS Journal on 

Computing 17 (1): 82–98. 

Caraher, Martin, Paul Dixon, Tim Lang, and Roy Carr-Hill. 1998. “Access of Healthy 

Foods: Part I. Barriers to Accessing Healthy Foods: Differentials by Gender, Social 

Class, Income and Mode of Transport.” Health Education Journal 57 (3): 191–201. 

Carlson, Andrea, Mark Lino, WenYen Juan, Kenneth Hanson, and P. Peter Basiotis. 

2007. “Thrifty Food Plan, 2006.” United States Department of Agriculture, Center 

for Nutrition Policy and Promotion. 



  257 

Caspi, Caitlin, Glorian Sorensen, S V Subramanian, and Ichiro Kawachi. 2012. “The 

Local Food Environment and Diet: A Systematic Review.” Health & Place 18 (5). 

Elsevier: 1172–87. 

Chapleau, Luc, Jacques Ferland, and Jean-Marc Rousseau. 1985. “Clustering for Routing 

in Densely Populated Areas.” European Journal of Operational Research 20: 48–

57. 

Chu, P.C., and J.E. Beasley. 1998. “A Genetic Algorithm for the Multidimensional 

Knapsack Problem.” Journal of Heuristics 4 (1): 63–86. 

Claessens, M. T., N. M. van Dijk, and P. J. Zwaneveld. 1998. “Cost Optimal Allocation 

of Rail Passenger Lines.” European Journal of Operational Research 110: 474–89. 

Clarke, G., and J.W. Wright. 1964. “Scheduling of Vehicles from a Central Depot to a 

Number of Delivery Points.” Operations Research 12: 568–81. 

Clifton, Kelly. 2004. “Mobility Strategies and Food Shopping for Low-Income Families: 

A Case Study.” Journal of Planning Education and Research 23 (4): 402–13. 

Coleman-Jensen, Alisha, Mark Nord, Margaret Andrews, and Steven Carlson. 2012. 

“Household Food Security in the United States in 2011.” 

Cordeau, J-F, G Laporte, and A Mercier. 2001. “A Unified Tabu Search Heuristic for 

Vehicle Routing Problems with Time Windows.” The Journal of the Operational 

Research Society 52 (8): 928–36. 

Cummins, Steven, Mark Petticrew, Cassie Higgins, Anne Findlay, and Leigh Sparks. 

2005. “Large Scale Food Retailing as an Intervention for Diet and Health: Quasi-

Experimental Evaluation of a Natural Experiment.” Journal of Epidemiology and 

Community Health 59 (12): 1035–40. 

Current, John, Hasan Pirkul, and Erik Rolland. 1994. “Efficient Algorithms for Solving 

the Shortest Covering Path Problem.” Transportation Science 28 (4): 317–27. 

Current, John, Charles ReVelle, and Jared Cohon. 1984. “The Shortest Covering Path 

Problem: An Application of Locational Constraints to Network Design.” Journal of 

Regional Science 24 (2): 161–83. 

———. 1985. “The Maximum Covering/shortest Path Problem: A Multiobjective 

Network Design and Routing Formulation.” European Journal of Operational 

Research 21 (2): 189–99. 

———. 1987. “The Median Shortest Path Problem: A Multiobjective Approach to 

Analyze Cost vs. Accessibility in the Design of Transportation Networks.” 

Transportation Science 21 (3): 188–97. 



  258 

Current, John, and David Schilling. 1989. “The Covering Salesman Problem.” 

Transportation Science 23 (3): 208–13. 

———. 1994. “The Median Tour and Maximal Covering Tour Problems: Formulations 

and Heuristics.” European Journal of Operational Research 73 (1): 114–26. 

Danaei, Goodarz, Eric Ding, Dariush Mozaffarian, Ben Taylor, Jürgen Rehm, 

Christopher Murray, and Majid Ezzati. 2009. “The Preventable Causes of Death in 

the United States: Comparative Risk Assessment of Dietary, Lifestyle, and 

Metabolic Risk Factors.” PLoS Medicine 6 (4): e1000058. 

Dantzig, George. 1957. “Discrete-Variable Extremum Problems.” Operations Research 5 

(2): 266–88. 

Della Croce, F., and A. Grosso. 2012. “Improved Core Problem Based Heuristics for the 

0/1 Multi-Dimensional Knapsack Problem.” Computers & Operations Research 39 

(1). Elsevier: 27–31. 

Desrochers, Martin, Jacques Desrosiers, and Marius Solomon. 1992. “A New 

Optimization Algorithm for the Vehicle Routing Problem with Time Windows.” 

Operations Research 40 (2): 342–54. 

Diez Roux, Ana, F. Javier Nieto, Laura Caulfield, Hermann Tyroler, Robert Watson, and 

Moyses Szklo. 1999. “Neighbourhood Difference in Diet: The Atherosclerosis Risk 

in Communities (ARIC) Study.” Journal of Epidemiology and Community Health 

53 (1): 55–63. 

Ding, Q, X Hu, L Sun, and Y Wang. 2012. “An Improved Ant Colony Optimization and 

Its Application to Vehicle Routing Problem with Time Windows.” Neurocomputing 

98: 101–7. 

Discovery Triangle. 2016. “Fresh Express.” http://www.discoverytriangle.org/fresh-

express/. 

Dobson, Gregory. 1982. “Worst-Case Analysis of Greedy Heuristics for Integer 

Programming with Nonnegative Data.” Mathematics of Operations Research 7 (4): 

515–31. 

Donati, A, R Montemanni, N Casagrande, A E Rizzoli, and L M Gambardella. 2008. 

“Time Dependent Vehicle Routing Problem with a Multi Ant Colony System.” 

European Journal of Operational Research 185 (3): 1174–91. 

Dudziński, Krzysztof, and Stanisław Walukiewicz. 1987. “Exact Methods for the 

Knapsack Problem and Its Generalizations.” European Journal of Operational 

Research 28 (1): 3–21. 

Duran, Cristina. 2007. “Panaderias, Peluquerias, Y Carnicerias: Re-Mexicanizing the 



  259 

Urban Landscapes of a Southwest City.” The University of New Mexico. 

Euchi, Jalel, and Rafaa Mraihi. 2012. “The Urban Bus Routing Problem in the Tunisian 

Case by the Hybrid Artificial Ant Colony Algorithm.” Swarm and Evolutionary 

Computation 2: 15–24. 

Fan, Lang, and Christine L. Mumford. 2010. “A Metaheuristic Approach to the Urban 

Transit Routing Problem.” Journal of Heuristics 16 (3): 353–72. 

Favaretto, D, E Moretti, and P Pellegrini. 2007. “Ant Colony System for a VRP with 

Multiple Time Windows and Multiple Visits.” Journal of Interdisciplinary 

Mathematics 10 (2): 263–84. 

Fisher, M.L., and R. Jaikumar. 1981. “A Generalized Assignment Heuristics for Vehicle 

Routing.” Networks 11: 109–24. 

Flamm, Laura. 2011. “Barriers to EBT Use at Farmers’ Markets: Lessons in 

Empowerment Evaluation from Rural Ohio.” Journal of Hunger & Environmental 

Nutrition 6 (1): 54–63. 

Flegal, Katherine, Margaret Carroll, Brian Kit, and Cynthia Ogden. 2012. “Prevalence of 

Obesity and Trends in the Distribution of Body Mass Index Among US Adults, 

1999-2010.” Journal of the American Medical Association 307 (5): 491–97. 

Food, Conservation, and Energy Act of 2008. 2008. H.R. 2419. 

Gajpal, Y, and P Abad. 2009. “An Ant Colony System (ACS) for Vehicle Routing 

Problem with Simultaneous Delivery and Pickup.” Computers & Operations 

Research 36 (12): 3215–23. 

Gendreau, Michel, Gilbert Laporte, and JY Potvin. 2001. “Metaheuristics for the 

Capacitated VRP.” In The Vehicle Routing Problem, edited by Paolo Toth and 

Daniele Vigo, 129–54. Philadelphia: Society for Industrial and Applied 

Mathematics. 

Ghasemi, Taha, and Mohammadreza Razzazi. 2011. “Development of Core to Solve the 

Multidimensional Multiple-Choice Knapsack Problem.” Computers & Industrial 

Engineering 60 (2): 349–60. 

Gillett, B, and L Miller. 1974. “A Heuristic Algorithm for the Vehicle Dispatch 

Problem.” Operations Research 22: 340–49. 

Gomes da Silva, Carlos, João Clímaco, and José Rui Figueira. 2008. “Core Problems in 

Bi-Criteria {0, 1}-Knapsack Problems.” Computers & Operations Research 35 (7): 

2292–2306. 

Goossens, Jan-Willem, Stan van Hoesel, and Leo Kroon. 2004. “A Branch-and-Cut 



  260 

Approach for Solving Railway Line-Planning Problems.” Transportation Science 38 

(3): 379–93. 

Grace, Christina, Thomas Grace, Nancy Becker, and Judy Lyden. 2007. “Barriers to 

Using Urban Farmers’ Markets: An Investigation of Food Stamp Clients’ 

Perceptions.” Journal of Hunger & Environmental Nutrition 2 (1): 55–75. 

Grashof, John. 1970. “Supermarket Chain Product Mix Decision Criteria: A Simulation 

Experiment.” Journal of Marketing Research 7 (2): 235–42. 

Gu, J., M. Goetschalckx, and L.F. McGinnis. 2010. “Solving the Forward-Reserve 

Allocation Problem in Warehouse Order Picking Systems.” Journal of the 

Operational Research Society 61 (6): 1013–21. 

Gustafson, Alison, Sarah Lewis, Kate Moore, and Stephanie Jilcott. 2013. “Food Venue 

Choice, Consumer Food Environment, but Not Food Venue Availability within 

Daily Travel Patterns Are Associated with Dietary Intake Among Adults, Lexington 

Kentucky 2011.” Nutrition Journal 12 (1): 17. 

Hackman, Steven, and Loren Platzman. 1990. “Near-Optimal Solution of Generalized 

Resource Allocation Problems with Large Capacities.” Operations Research 38 (5): 

902–10. 

Hackman, Steven, Meir Rosenblatt, and John Olin. 1990. “Allocating Items to an 

Automated Storage and Retrieval System.” IIE Transactions 22 (1): 7–14. 

Halper, Russell, and Srinivasa Raghavan. 2011. “The Mobile Facility Routing Problem.” 

Transportation Science 45 (3): 413–34. 

Hansen, Pierre, and Hans Heinsbroek. 1979. “Product Selection and Space Allocation in 

Supermarkets.” European Journal of Operational Research 3 (6): 474–84. 

Haynes-Maslow, Lindsey, Sarah Parsons, Stephanie Wheeler, and Lucia Leone. 2013. “A 

Qualitative Study of Perceived Barriers to Fruit and Vegetable Consumption Among 

Low-Income Population, North Carolina, 2011.” Preventing Chronic Disease 10 

(E34). 

Heeler, Roger, Michael Kearney, and Bruce Mehaffey. 1973. “Modeling Supermarket 

Product Selection.” Journal of Marketing Research 10 (1): 34–37. 

Heragu, S.S., L. Du, R.J. Mantel, and P.C. Schuur. 2005. “Mathematical Model for 

Warehouse Design and Product Allocation.” International Journal of Production 

Research 43 (2): 327–38. 

Hvattum, Lars, Halvard Arntzen, Arne Løkketangen, and Fred Glover. 2010. “Alternating 

Control Tree Search for Knapsack/covering Problems.” Journal of Heuristics 16 (3): 

239–58. 



  261 

Hvattum, Lars M., and Arne Løkketangen. 2007. “Experiments Using Scatter Search for 

the Multidemand Multidimensional Knapsack Problem.” In Metaheuristics: 

Progress in Complex System Optimization, edited by Karl Doerner, Michel 

Gendreau, Peter Greistorfer, Walter Gutjahr, Richard Hartl, and Marc Reimann, 3–

24. New York, NY: Springer Science+Business Media. 

Kaufman, Phillip, James MacDonald, Steve Lutz, and David Smallwood. 1997. “Do the 

Poor Pay More for Food? Item Selection and Price Differences Affect Low-Income 

Household Food Costs.” Monographs of the Society for Research in Child 

Development. Food and Rural Economics Division, Economic Research Service. 

Kong, Chenying, and Dale Masel. 2008. “Methods for Design and Management of a 

Fast-Pick Area in a Warehouse.” In Proceedings of the 2008 Industrial Engineering 

Research Conference, edited by J. Fowler and Mason S., 1367–72. Vancouver, 

Canada. 

Laporte, Gilbert, Juan A. Mesa, Francisco A. Ortega, and Ignacio Sevillano. 2005. 

“Maximizing Trip Coverage in the Location of a Single Rapid Transit Alignment.” 

Annals of Operations Research 136: 49–63. 

Laporte, Gilbert, and Frédéric Semet. 2014. “Classical Heuristics for the Capacitated 

VRP.” In Vehicle Routing: Problems, Methods, and Applications, edited by Paolo 

Toth and Daniele Vigo, 2nd ed., 109–28. SIAM. 

Larsen, Kristian, and Jason Gilliland. 2008. “Mapping the Evolution of ‘Food Deserts’ in 

a Canadian City: Supermarket Accessibility in London, Ontario, 1961-2005.” 

International Journal of Health Geographics 7 (16). 

Larson, Nicole, Mary Story, and Melissa Nelson. 2009. “Neighborhood Environments: 

Disparities in Access to Healthy Foods in the U.S.” American Journal of Preventive 

Medicine 36 (1). American Journal of Preventive Medicine: 74–81. 

Leone, Lucia A, Diane Beth, Scott B Ickes, Kathleen Macguire, Robert Andrew Smith, 

Deborah F Tate, and Alice S Ammerman. 2012. “Attitudes Toward Fruit and 

Vegetable Consumption and Farmers’ Market Usage Among Low-Income North 

Carolinians.” Journal of Hunger & Environmental Nutrition 7 (1): 64–76. 

Lopez, Russ. 2007. “Risk Factors and Chronic Disease Neighborhood Risk Factors for 

Obesity.” Obesity 15 (8): 2111–19. 

Lowell, Dana, William Chernicoff, and F. Scott Lian. 2007. “Fuel Cell Bus Life Cycle 

Cost Model: Base Case & Future Scenario Analysis.” 

Lust, Thibaut, and Jacques Teghem. 2012. “The Multiobjective Multidimensional 

Knapsack Problem: A Survey and a New Approach.” International Transactions in 

Operational Research 19 (4): 495–520. 



  262 

Martello, Silvano, David Pisinger, and Paolo Toth. 1999. “Dynamic Programming and 

Strong Bounds for the 0-1 Knapsack Problem.” Management Science 45 (3): 414–

24. 

———. 2000. “New Trends in Exact Algorithms for the 0-1 Knapsack Problem.” 

European Journal of Operational Research 123 (2): 325–32. 

Martello, Silvano, and Paolo Toth. 1990. “An Exact Algorithm for Large Unbounded 

Knapsack Problems.” Operations Research Letters 9 (1): 15–20. 

———. 1997. “Upper Bound and Algorithms for Hard 0-1 Knapsack Problems.” 

Operations Research 45 (5): 768–78. 

———. 2003. “An Exact Algorithm for the Two-Constraint 0-1 Knapsack Problem.” 

Operations Research 51 (5): 826–35. 

Mavrotas, George, José Rui Figueira, and Kostas Florios. 2009. “Solving the Bi-

Objective Multi-Dimensional Knapsack Problem Exploiting the Concept of Core.” 

Applied Mathematics and Computation 215 (7). Elsevier Inc.: 2502–14. 

McGuirt, Jared T, Stephanie B Jilcott, Haiyong Liu, and Alice S Ammerman. 2011. 

“Produce Price Savings for Consumers at Farmers’ Markets Compared to 

Supermarkets in North Carolina.” Journal of Hunger & Environmental Nutrition 6 

(1): 86–98. 

McKinnon, Robin, Jill Reedy, Meredith Morrissette, Leslie Lytle, and Amy Yaroch. 

2009. “Measures of the Food Environment: A Compilation of the Literature, 1990-

2007.” American Journal of Preventive Medicine 36 (4 Suppl): S124–33. 

Megiddo, Nimrod, and Arie Tamir. 1993. “Linear Time Algorithms for Some Separable 

Quadratic Programming Problems.” Operations Research Letters 13 (4): 203–11. 

Mohaymany, A. Shariat, and N. Pirnazar. 2007. “Critical Routes Determination for 

Emergency Transportation Network Aftermath Earthquake.” In Proceedings of the 

2007 IEEE IEEM, edited by Andrew Nee, Hans-Otto Guenther, Robert Grubbstrom, 

Kien Ming Ng, Aarnout Brombacher, and Way Kuo, 817–21. Singapore. 

Montgomery, Douglas. 2012. Design and Analysis of Experiments. 8th ed. Hoboken, 

New Jersey: Wiley. 

Moore, Latetia, and Ana Diez Roux. 2006. “Associations of Neighborhood 

Characteristics with the Location and Type of Food Stores.” American Journal of 

Public Health 96 (2): 325–31. 

Morland, Kimberly, Steve Wing, and Ana Diez Roux. 2002. “The Contextual Effect of 

the Local Food Environment on Residents’ Diets: The Atherosclerosis Risk in 

Communities Study.” American Journal of Public Health 92 (11): 1761–67. 



  263 

Morland, Kimberly, Steve Wing, Ana Diez Roux, and Charles Poole. 2002. 

“Neighborhood Characteristics Associated with the Location of Food Stores and 

Food Service Places.” American Journal of Preventive Medicine 22 (1): 23–29. 

Nelson, Melissa, Penny Gordon-Larsen, Kari North, and Linda Adair. 2006. “Body Mass 

Index Gain, Fast Food, and Physical Activity: Effects of Shared Environments over 

Time.” Obesity 14 (4): 701–9. 

Network and Emerging Optimization Research Group. 2013. “Capacitated VRP 

Instances.” http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/. 

Ohls, James, Michael Ponza, Lorenzo Moreno, Amy Zambrowski, and Rhoda Cohen. 

1999. “Food Stamp Participants ’ Access to Food Retailers.” Princeton, NJ: 

Mathematica Policy Research, Inc. 

Park, Junhyuk, and Byung-In Kim. 2010. “The School Bus Routing Problem: A Review.” 

European Journal of Operational Research 202: 311–19. 

Pattnaik, S. B., S. Mohan, and V. M. Tom. 1998. “Urban Bus Transit Route Network 

Design Using Genetic Algorithm.” Journal of Transportation Engineering 124 (4): 

368–75. 

Pferschy, Ulrich, and Rostislav Staněk. 2014. “Generating Subtour Constraints for the 

TSP from the Pure Integer Solutions.” Graz, Austria. 

Pisinger, David. 1995a. “An Expanding-Core Algorithm for the Exact 0-1 Knapsack 

Problem.” European Journal of Operational Research 87 (1): 175–87. 

———. 1995b. “A Minimal Algorithm for the Multiple-Choice Knapsack Problem.” 

European Journal of Operational Research 83 (2): 394–410. 

———. 1997. “A Minimal Algorithm for the 0-1 Knapsack Problem.” Operations 

Research 45 (5): 758–67. 

———. 2000. “A Minimal Algorithm for the Bounded Knapsack Problem.” INFORMS 

Journal on Computing 12 (1): 75–82. 

Poggi, Marcus, and Eduardo Uchoa. 2014. “New Exact Algorithms for the Capacitated 

Vehicle Routing Problem.” In Vehicle Routing: Problems, Methods, and 

Applications, edited by Paolo Toth and Daniele Vigo, 2nd ed., 59–86. SIAM. 

Powell, Lisa, M. Christopher Auld, Frank Chaloupka, Patrick O’Malley, and Lloyd 

Johnston. 2007. “Associations Between Access to Food Stores and Adolescent Body 

Mass Index.” American Journal of Preventive Medicine 33 (Suppl): S301–7. 

Powell, Lisa, Sandy Slater, Donka Mirtcheva, Yanjun Bao, and Frank Chaloupka. 2007. 

“Food Store Availability and Neighborhood Characteristics in the United States.” 



  264 

Preventive Medicine 44 (3): 189–95. 

Puchinger, Jakob, Günther R. Raidl, and Ulrich Pferschy. 2010. “The Multidimensional 

Knapsack Problem: Structure and Algorithms.” INFORMS Journal on Computing 

22 (2): 250–65. 

Racine, Elizabeth F, Ashley Smith Vaughn, and Sarah B Laditka. 2010. “Farmers’ 

Market Use Among African-American Women Participating in the Special 

Supplemental Nutrition Program for Women, Infants, and Children.” Journal of the 

American Dietetic Association 110 (3). Elsevier Inc.: 441–46. 

Reeves, Mathew, and Ann Rafferty. 2005. “Healthy Lifestyle Characteristics Among 

Adults in the United States, 2000.” Archives of Internal Medicine 165 (8): 854–57. 

Renaud, J, F Boctor, and G Laporte. 1996. “An Improved Petal Heuristic for the 

Symmetric Routing Problem.” Journal of the Operational Research Society 47: 

329–36. 

Reyes, Pedro, and Gregory Frazier. 2007. “Goal Programming Model for Grocery Shelf 

Space Allocation.” European Journal of Operational Research 181 (2): 634–44. 

Riera-Ledesma, Jorge, and Juan-José Salazar-González. 2012. “Solving School Bus 

Routing Using Multiple Vehicle Traveling Purchaser Problem: A Branch-and-Cut 

Approach.” Computers & Operations Research 39: 391–404. 

Robert, Stephanie, and Eric Reither. 2004. “A Multilevel Analysis of Race, Community 

Disadvantage, and Body Mass Index Among Adults in the US.” Social Science & 

Medicine 59 (12): 2421–34. 

Rose, Donald, J. Nicholas Bodor, Chris Swalm, Janet Rice, Thomas Farley, and Paul 

Hutchinson. 2009. “Deserts in New Orleans? Illustrations of Urban Food Access and 

Implications for Policy.” Ann Arbor, MI: University of Michigan National Poverty 

Center/USDA Economic Research Service Research. 

Rose, Donald, and Rickelle Richards. 2004. “Food Store Access and Household Fruit and 

Vegetable Use Among Participants in the US Food Stamp Program.” Public Health 

Nutrition 7 (8): 1081–88. 

Ruelas, Valerie, Ellen Iverson, Preston Kiekel, and Anne Peters. 2012. “The Role of 

Farmers’ Markets in Two Low Income, Urban Communities.” Journal of 

Community Health 37 (3): 554–62. 

Rundle, Andrew, Ana Diez Roux, Lance Freeman, Douglas Miller, Kathryn Neckerman, 

and Christopher Weiss. 2007. “The Urban Built Environment and Obesity in New 

York City: A Multilevel Analysis.” American Journal of Health Promotion 21 (4): 

326–34. 



  265 

Salkin, Harvey, and Cornelis De Kluyver. 1975. “The Knapsack Problem: A Survey.” 

Naval Research Logistics 22 (1): 127–44. 

Schittekat, Patrick, Joris Kinable, Kenneth Sörenson, Marc Sevaux, Frits Spieksma, and 

Johan Springael. 2013. “A Metaheuristic for the School Bus Routing Problem with 

Bus Stop Selection.” European Journal of Operational Research 229: 518–28. 

Schittekat, Patrick, Marc Sevaux, and Kenneth Sörenson. 2006. “A Mathematical 

Formulation for a School Bus Routing Problem.” In 2006 International Conference 

on Service Systems and Service Management, 1552–57. IEEE. 

Schöbel, Anita. 2012. “Line Planning in Public Transportation: Models and Methods.” 

OR Spectrum 34: 491–510. 

Semet, Frédéric, Paolo Toth, and Daniele Vigo. 2014. “Classical Exact Algorithms for 

the Capacitated Vehicle Routing Problem.” In Vehicle Routing: Problems, Methods, 

and Applications, edited by Paolo Toth and Daniele Vigo, 2nd ed., 37–57. SIAM. 

Soumis, Francois, Jacques Desrosiers, and Martin Desrochers. 1984. “Optimal Urban Bus 

Routing with Scheduling Flexibilities.” In System Modelling and Optimization, 155–

65. Springer Berlin Heidelberg. 

Stimpson, Jim, Hyunsu Ju, Mukaila Raji, and Karl Eschbach. 2007. “Neighborhood 

Deprivation and Health Risk Behaviors in NHANES III.” American Journal of 

Health Behavior 31 (2): 215–22. 

Taillard, E. 1993. “Parallel Iterative Search Methods for Vehicle Routing Problems.” 

Networks 23: 661–73. 

van den Berg, Jeroen, Gunter Sharp, A.J.R.M. Gademann, and Yves Pochet. 1998. 

“Forward-Reserve Allocation in a Warehouse with Unit-Load Replenishments.” 

European Journal of Operational Research 111 (1): 98–113. 

Ver Ploeg, Michele, Vince Breneman, Tracey Farrigan, Karen Hamrick, David Hopkins, 

Phillip Kaufman, Biing-Hwan Lin, et al. 2009. “Access to Affordable and Nutritious 

Food: Measuring and Understanding Food Deserts and Their Consequences Report 

to Congress.” USDA Economic Research Service. 

Ver Ploeg, Michele, and Paula Dutko. 2013. “Food Access Research Atlas 

Documentation.” U.S. Department of Agriculture, Economic Research Service. 

http://www.ers.usda.gov/data-products/food-access-research-

atlas/documentation.aspx#.UyNg-vmwI0q. 

Volgenant, A., and S. Marsman. 1998. “A Core Approach to the 0-1 Equality Knapsack 

Problem.” Journal of the Operational Research Society 49 (1): 86–92. 

Walker, Renee, Christopher Keane, and Jessica Burke. 2010. “Disparities and Access to 



  266 

Healthy Food in the United States: A Review of Food Deserts Literature.” Health & 

Place 16 (5). Elsevier: 876–84. 

Weatherspoon, Dave, James Oehmke, Assa Dembélé, Marcus Coleman, Thasanee 

Satimanon, and Lorraine Weatherspoon. 2013. “Price and Expenditure Elasticities 

for Fresh Fruits in an Urban Food Desert.” Urban Studies 50 (1): 88–106. 

Widener, Michael, Sara Metcalf, and Yaneer Bar-Yam. 2012. “Developing a Mobile 

Produce Distribution System for Low-Income Urban Residents in Food Deserts.” 

Journal of Urban Health 89 (5): 733–45. 

———. 2013. “Agent-Based Modeling of Policies to Improve Urban Food Access for 

Low-Income Populations.” Applied Geography 40 (1). Elsevier Ltd: 1–10. 

Wilbaut, Christophe, Said Hanafi, and Said Salhi. 2008. “A Survey of Effective 

Heuristics and Their Application to a Variety of Knapsack Problems.” IMA Journal 

of Management Mathematics 19 (3): 227–44. 

Wishon, Christopher, and J. Rene Villalobos. 2016a. “Alleviating Food Disparities with 

Mobile Retailers: Dissecting the Problem from an OR Perspective.” Computers & 

Industrial Engineering 91: 154–64. 

———. 2016b. “Robust Efficiency Measures for Linear Knapsack Problem Variants.” 

European Journal of Operational Research 254: 398–409. 

Wrigley, Neil, Daniel Warm, and Barrie Margetts. 2003. “Deprivation, Diet, and Food-

Retail Access: Finding from the Leeds ‘Food Deserts’ Study.” Environment and 

Planning A 35 (1): 151–88. 

Wu, Changshan, and Alan Murray. 2005. “Optimizing Public Transit Quality and System 

Access: The Multiple-Route, Maximal Covering/shortest-Path Problem.” 

Environment and Planning B: Planning and Design 32 (2): 163–78. 

Yan, Shangyao, and Hao-Lei Chen. 2002. “A Scheduling Model and a Solution 

Algorithm for Inter-City Bus Carriers.” Transportation Research Part A: Policy and 

Practice 36 (9): 805–25. 

Zenk, Shannon, Amy Schulz, Srimathi Kannan, Laurie Lachance, Graciela Mentz, and 

William Ridella. 2009. “Neighborhood Retailer Food Environment and Fruit and 

Vegetable Intake in a Multiethnic Urban Population.” American Journal of Health 

Promotion 23 (4): 255–64. 

Zepeda, Lydia. 2009. “Which Little Piggy Goes To Market? Characteristics of US 

Farmers’ Market Shoppers.” International Journal of Consumer Studies 33 (3): 

250–57. 

Zhang, X, and L Tang. 2009. “A New Hybrid Ant Colony Optimization Algorithm for 



  267 

the Vehicle Routing Problem.” Pattern Recognition Letters 30: 848–55. 

Zufryden, Fred. 1986. “A Dynamic Programming Approach for Product Selection and 

Supermarket Shelf-Space Allocation.” The Journal of the Operational Research 

Society 37 (4): 413–22. 

 

 



  268 

APPENDIX A 

DKPSOLVE PSUEDOCODE 

  



  269 

The pseudocode for the IMP procedure follows. As input, 𝒙 = {𝑥1, … , 𝑥𝑛} is a 

solution for the current DKP which is not necessarily feasible, 𝑊 and 𝑉 are the current 

left hand side values for (4-2) and (4-3) respectively, and 𝑓 is a Boolean indicator of 

feasibility. Note that the variables in 𝒙 are sorted according to their efficiency measures. 

As output, 𝒙, 𝑊, 𝑉, and 𝑓 are updated and 𝒙 is at least feasible with respect to (4-2) and 

possibly is feasible with respect to (4-3). The objective of IMP is to take the current 

vector 𝒙 and first ensure feasibility with respect to (4-2) prior to greedily filling the 

remainder of the solution with emphasis first on obtaining feasibility of (4-3) and second 

on solution quality. 

procedure IMP(𝒙, 𝑊, 𝑉, 𝑓) 

𝑗 = 𝑛 + 1; 

if 𝑓 = 0 and 𝑊 > 𝐶 then 

while 𝑊 > 𝐶 do 

𝑘 = largest index < 𝑗 such that 𝑥𝑘 = 1; 

𝑥𝑘 = 0, 𝑊 = 𝑊 − 𝑤𝑘, 𝑉 = 𝑉 − 𝑣𝑘, 𝑗 = 𝑘; 

end while 

if 𝑉 ≥ 𝑅 then 𝑓 = 1; 

end if 

for 𝑗 = 1 to 𝑛 do 

if 𝑥𝑗 = 0 then 

if 𝑓 = 0 and 𝑊 + 𝑤𝑗 ≤ 𝐶 then  

𝑥𝑗 = 1, 𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 + 𝑣𝑗; 

if 𝑊 ≤ 𝐶 and 𝑉 ≥ 𝑅 then 𝑓 = 1; 

else if 𝑓 = 1, 𝑊 + 𝑤𝑗 ≤ 𝐶, and 𝑝𝑗 > 0 then  𝑥𝑗 = 1, 𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 +

𝑣𝑗; 

end if 

end for 

end 

 

The pseudocode for the REMREPL procedure follows. As input, 𝒙 = {𝑥1, … , 𝑥𝑛} is a 

solution for the current DKP which is guaranteed to be feasible with respect to (4-2), 𝑊 

and 𝑉 are the current left hand side values for (4-2) and (4-3) respectively, 𝑃 is the value 



  270 

of (4-1), 𝑓 is a Boolean indicator of feasibility, and 𝑎 is a global parameter. Note that the 

variables in 𝒙 are sorted according to their efficiency measures. As output, 𝒙, 𝑊, 𝑉, 𝑃, 

and 𝑓 are updated and 𝒙 is at least feasible with respect to (4-2) and possibly is feasible 

with respect to (4-3). The objective of REMREPL is to sequentially test the separate 

removal of up to 𝑎 included items from the solution prior to greedily filling the remainder 

of the solution with emphasis first on obtaining feasibility of (4-3) and second on solution 

quality. 

procedure REMREPL(𝒙, 𝑃, 𝑊, 𝑉, 𝑓, 𝑎) 

𝑃′ = 𝑃, 𝑊′ = 𝑊, 𝑉′ = 𝑉, 𝑘 = smallest index such that 𝑥𝑗 = 0, 𝑓′ = 𝑓; 

for 𝑗 = 𝑘 + 1 to 𝑛 do if 𝑥𝑗 = 1 then 

𝑃′ = 𝑃′ − 𝑝𝑗, 𝑊′ = 𝑊′ − 𝑤𝑗, 𝑉′ = 𝑉′ − 𝑣𝑗; 

𝑛′ ≔ min(𝑘 − 1, 𝑎), 𝑧 ≔ 0, 𝑖′ = ∅; 

for 𝑗 = 𝑘 − 1 down to 𝑘 − 𝑛′ do 

𝑃′′ = 𝑃′ − 𝑝𝑗, 𝑊′′ = 𝑊′ − 𝑤𝑗, 𝑉′′ = 𝑉′ − 𝑣𝑗; 

for 𝑙 = 𝑘 to 𝑛 do 

if 𝑊′′ + 𝑤𝑙 ≤ 𝐶 and 𝑉′′ < 𝑅 then  

𝑃′′ = 𝑃′ + 𝑝𝑙, 𝑊
′′ = 𝑊′ + 𝑤𝑙, 𝑉

′′ = 𝑉′ + 𝑣𝑙; 

else if 𝑊′′ + 𝑤𝑙 ≤ 𝐶, 𝑉′′ ≥ 𝑅 and 𝑝𝑙 > 0 then   

𝑃′′ = 𝑃′ + 𝑝𝑙, 𝑊
′′ = 𝑊′ + 𝑤𝑙, 𝑉

′′ = 𝑉′ + 𝑣𝑙; 

end for 

if 𝑓 = 0 and 𝑉′′ ≥ 𝑅 then 𝑧 = 𝑃′′ − 𝑃, 𝑖′ = 𝑗, 𝑓 = 1; 

else if 𝑓 = 1 and 𝑉′′ ≥ 𝑅 and 𝑃′′ − 𝑃 > 𝑧 then 𝑧 = 𝑃′′ − 𝑃, 𝑖′ = 𝑗; 

end for 

if 𝑧 ≠ 0 or 𝑓′ ≠ 𝑓 then  

𝑓 = 1, 𝑃 = 𝑃 + 𝑧, 𝑊 = 𝑊′ − 𝑤𝑖′, 𝑉 = 𝑉′ − 𝑣𝑖′; 

𝑥𝑖′ = 0; 

for 𝑗 = 𝑘 to 𝑛 do 

𝑥𝑗 = 0; 

if 𝑊 + 𝑤𝑗 ≤ 𝐶 and 𝑉 < 𝑅 then  

𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 + 𝑣𝑗, 𝑥𝑗 = 1; 

else if 𝑊 + 𝑤𝑗 ≤ 𝐶, 𝑉 ≥ 𝑅 and 𝑝𝑗 > 0 then   

𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 + 𝑣𝑗, 𝑥𝑗 = 1; 

end for 

end if 

end 

 



  271 

The pseudocode for the REMREPL2 procedure follows. As input, 𝒙 = {𝑥1, … , 𝑥𝑛} is 

a solution for the current DKP which is guaranteed to be feasible with respect to (4-2), 𝑊 

and 𝑉 are the current left hand side values for (4-2) and (4-3) respectively, 𝑃 is the value 

of (4-1), 𝑓 is a Boolean indicator of feasibility, and 𝑎′ is a global parameter. Note that the 

variables in 𝒙 are sorted according to their efficiency measures. As output, 𝒙, 𝑊, 𝑉, 𝑃, 

and 𝑓 are updated and 𝒙 is at least feasible with respect to (4-2) and possibly is feasible 

with respect to (4-3). The objective of REMREPL2 is to sequentially test the separate 

removal of included pairs of items from the solution prior to greedily filling the 

remainder of the solution with emphasis first on obtaining feasibility of (4-3) and second 

on solution quality. 

procedure REMREPL2(𝒙, 𝑃, 𝑊, 𝑉, 𝑓, 𝑎′) 

𝑃′ = 𝑃, 𝑊′ = 𝑊, 𝑉′ = 𝑉, 𝑘 = smallest index such that 𝑥𝑗 = 0, 𝑓′ = 𝑓; 

for 𝑗 = 𝑘 + 1 to 𝑛 do if 𝑥𝑗 = 1 then 

𝑃′ = 𝑃′ − 𝑝𝑗, 𝑊′ = 𝑊′ − 𝑤𝑗, 𝑉′ = 𝑉′ − 𝑣𝑗; 

𝑛′ ≔ min(𝑘 − 1, 𝑎′), 𝑧 ≔ 0, 𝑖′ = ∅, 𝑖′′ = ∅; 

for 𝑗 = 𝑘 − 1 down to 𝑘 − 𝑛′ + 1 do 

for 𝑗′ = 𝑗 − 1 down to 𝑘 − 𝑛′ do 

𝑃′′ = 𝑃′ − 𝑝𝑗 − 𝑝𝑗′ , 𝑊′′ = 𝑊′ − 𝑤𝑗 − 𝑤𝑗′ , 𝑉′′ = 𝑉′ − 𝑣𝑗 − 𝑣𝑗′ ; 

for 𝑙 = 𝑘 to 𝑛 do 

if 𝑊′′ + 𝑤𝑙 ≤ 𝐶 and 𝑉′′ < 𝑅 then  

𝑃′′ = 𝑃′ + 𝑝𝑙, 𝑊
′′ = 𝑊′ + 𝑤𝑙, 𝑉

′′ = 𝑉′ + 𝑣𝑙; 

else if 𝑊′′ + 𝑤𝑙 ≤ 𝐶, 𝑉′′ ≥ 𝑅 and 𝑝𝑙 > 0 then   

𝑃′′ = 𝑃′ + 𝑝𝑙, 𝑊
′′ = 𝑊′ + 𝑤𝑙, 𝑉

′′ = 𝑉′ + 𝑣𝑙; 

end for 

if 𝑓 = 0 and 𝑉′′ ≥ 𝑅 then 𝑧 = 𝑃′′ − 𝑃, 𝑖′ = 𝑗, 𝑖′′ = 𝑗′, 𝑓 = 1; 

else if 𝑓 = 1 and 𝑉′′ ≥ 𝑅 and 𝑃′′ − 𝑃 > 𝑧 then 𝑧 = 𝑃′′ − 𝑃, 𝑖′ = 𝑗, 𝑖′′ = 𝑗′; 

end for 

end for 

if 𝑧 ≠ 0 or 𝑓′ ≠ 𝑓 then  

𝑓 = 1, 𝑃 = 𝑃 + 𝑧, 𝑊 = 𝑊′ − 𝑤𝑖′ − 𝑤𝑖′′ , 𝑉 = 𝑉′ − 𝑣𝑖′ − 𝑣𝑖′′; 

𝑥𝑖′ = 0, 𝑥𝑖′′ = 0; 

for 𝑗 = 𝑘 to 𝑛 do 

𝑥𝑗 = 0; 

if 𝑊 + 𝑤𝑗 ≤ 𝐶 and 𝑉 < 𝑅 then  



  272 

𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 + 𝑣𝑗, 𝑥𝑗 = 1; 

else if 𝑊 + 𝑤𝑗 ≤ 𝐶, 𝑉 ≥ 𝑅 and 𝑝𝑗 > 0 then   

𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 + 𝑣𝑗, 𝑥𝑗 = 1; 

end for 

end if 

end 

 

The pseudocode for the FEAS procedure follows. As input, 𝒙 = {𝑥1, … , 𝑥𝑛} is a 

solution for the current DKP which is guaranteed to be feasible with respect to (4-2), 𝑊 

and 𝑉 are the current left hand side values for (4-2) and (4-3) respectively, 𝑃 is the value 

of (4-1), and 𝑓 is a Boolean indicator of feasibility. Note that the variables in 𝒙 are sorted 

according to non-increasing values of 𝑣𝑖 𝑤𝑖⁄  with ties broken according to 𝑝𝑖. As output, 

𝒙, 𝑊, 𝑉, 𝑃, and 𝑓 are updated and 𝒙 is guaranteed to be feasible so long as such a 

solution exists. 

procedure FEAS(𝒙, 𝑃, 𝑊, 𝑉, 𝑓) 

𝑃 = 0, 𝑊 = 0, 𝑉 = 0; 

for 𝑗 = 𝑖 to 𝑛 do 

𝑥𝑗 = 0; 

if 𝑊 + 𝑤𝑗 ≤ 𝐶 and 𝑉 < 𝑅 then  

𝑃 = 𝑃 + 𝑝𝑗 𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 + 𝑣𝑗, 𝑥𝑗 = 1; 

else if 𝑊 + 𝑤𝑗 ≤ 𝐶, 𝑉 ≥ 𝑅 and 𝑝𝑗 > 0 then   

𝑃 = 𝑃 + 𝑝𝑗 𝑊 = 𝑊 + 𝑤𝑗, 𝑉 = 𝑉 + 𝑣𝑗, 𝑥𝑗 = 1; 

end for 

if 𝑉 ≥ 𝑅 then 𝑓 = 1; 

end 

 

The pseudocode for the REDUCE procedure follows. As input, 𝒙 = {𝑥1, … , 𝑥𝑛} is 

storage for the best solution for the current DKP, 𝐶 and 𝑅 are the limits of (4-2) and (4-3) 

respectively, and 𝑛𝑠 is an integer indicating the index of the first variable to be 

investigated.  

procedure REDUCE(𝒙, 𝐶, 𝑅, 𝑛𝑠) 

initialize 𝒙, 𝑃, 𝑊, 𝑉, and 𝑓; 



  273 

𝑈∗ = min (⌊𝑧 (𝐿𝑅(𝐷𝐾𝑃, 𝜆̃))⌋ , ⌊𝑧(𝐿𝐶(𝐷𝐾𝑃, 𝜇))⌋, 𝑧 (𝑆(𝐷𝐾𝑃, 𝛼̃, 𝛽))); 

IMP(𝒙, 𝑊, 𝑉, 𝑓), REMREPL(𝒙, 𝑃, 𝑊, 𝑉, 𝑓, 𝑎), REMREPL2(𝒙, 𝑃, 𝑊, 𝑉, 𝑓, 𝑎′); 

if 𝑓 = 0 then  

FEAS(𝒙, 𝑃, 𝑊, 𝑉, 𝑓); 

if 𝑓 = 0 then break; 

IMP (𝒙, 𝑊, 𝑉, 𝑓), REMREPL (𝒙, 𝑃, 𝑊, 𝑉, 𝑓, 𝑎), REMREPL2(𝒙, 𝑃, 𝑊, 𝑉, 𝑓, 𝑎′); 

end if 

if 𝑈∗ = 𝑃 then break; 

else 

 𝑗 = 𝑛𝑠; 

 do 

if (𝑝𝑗 + 𝜆̃𝑣𝑗)/𝑤𝑖 ≥ (𝑝𝑏(𝜆̃) + 𝜆̃𝑣𝑏(𝜆̃)) /𝑤𝑏(𝜆̃) then  

if ⌊𝐶𝐿𝑈𝑅(𝜆̃)⌋
𝑥𝑗=0

≤ 𝑃 then 𝐼1 = 𝐼1 ∪ {𝑖}; 

if (𝑝𝑗 + 𝜆̃𝑣𝑗)/𝑤𝑖 ≤ (𝑝𝑏(𝜆̃) + 𝜆̃𝑣𝑏(𝜆̃)) /𝑤𝑏(𝜆̃) then  

if ⌊𝐶𝐿𝑈𝑅(𝜆̃)⌋
𝑥𝑗=1

≤ 𝑃 then 𝐼0 = 𝐼0 ∪ {𝑖}; 

𝑖𝑓 𝑗 = 𝑛 then 𝑗 = 1;  

else 𝑗 = 𝑗 + 1; 

while |𝐽0 ∪ 𝐽1| < 𝑛 25⁄  and 𝑗 ≠ 𝑛𝑠; 

if 𝐽0 ∩ 𝐽1 ≠ ∅ or ∑ 𝑤𝑖𝑖∈𝐼1
> 𝐶 or ∑ 𝑣𝑖

𝑛
𝑖=1 − ∑ 𝑣𝑖𝑖∈𝐼0

< 𝑅 then break; 

if 𝐽0 ∪ 𝐽1 = ∅ then 𝑃′ = EXPCORE(𝒙, 𝐶, 𝑅, 𝜆̃, 𝜇 );  

else 

for 𝑘 = 1 to 𝑛 do  

𝐶′ = 𝐶, 𝑅′ = 𝑅; 

if 𝑘 ∉ 𝐽0 ∪ 𝐽1 then 𝑥′ = 𝑥′ ∪ {𝑘};  

else  

if 𝑘 ∈ 𝐽1 then 𝐶′ = 𝐶′ − 𝑤𝑗 and 𝑅′ = 𝑅′ − 𝑣𝑗; 

if 𝑘 < 𝑗 then 𝑗 = 𝑗 − 1; 

end for 

𝑃′ = REDUCE(𝑥′, 𝐶′, 𝑅′, 𝑗); 

end if 

return max(𝑃, 𝑃′); 

end if 

end 

 

The pseudocode for the MERGE procedure follows. As input, 𝑁′(𝑠, 𝑡) is storage for 

the half of the nodes in the current level of the tree (those nodes which are equal to the 

unfathomed parent nodes), 𝑁′′(𝑠, 𝑡) is storage for the other half, and 𝑁(𝑠, 𝑡) is empty 

storage. Note that 𝑁(𝑠, 𝑡) will store all unfathomed nodes at the procedure termination 



  274 

and 𝑠 and 𝑡 indicate the current depth of the tree. The goal of merge is to select the node 

from either list which when added to the current end of 𝑁(𝑠, 𝑡) will preserve the proper 

ordering. Prior to this addition, the node must pass five fathoming criteria. The sole 

output is the sorted list 𝑁(𝑠, 𝑡) of unfathomed nodes for that level of the tree. 

procedure MERGE(𝑁′(𝑠, 𝑡), 𝑁′′(𝑠, 𝑡), 𝑁(𝑠, 𝑡)) 

𝑘′ = 0, 𝑘′′ = 0, 𝑁(𝑠, 𝑡) = ∅;   

while 𝑘′ ≤ |𝑁′(𝑠, 𝑡)| and 𝑘′′ ≤ |𝑁′′(𝑠, 𝑡)| do 

select either 𝑘′𝑡ℎ item from 𝑁′(𝑠, 𝑡) or 𝑘′′𝑡ℎ item from 𝑁′′(𝑠, 𝑡) such that if the 

node is added to the end of 𝑁(𝑠, 𝑡), it will satisfy ordering (4-36); 

let the selected node be referred to as 𝑘 and increase 𝑘′ or 𝑘′′ as appropriate; 

𝑖𝑛𝑑 = 0; 

if 𝑈𝑘 ≤ 𝐿𝐵 then 𝑖𝑛𝑑 = 1;  

if 𝑖𝑛𝑑 ≠ 1 then 

for all 𝑗 ∈ 𝑁(𝑠, 𝑡) test if 𝑗 dominates 𝑘 and let 𝑖𝑛𝑑 = 1 if true; 

if 𝑖𝑛𝑑 ≠ 1 then 

if 𝑊𝑘 − ∑ 𝑤𝑖
𝑠−1
𝑖=1 > 𝐶 or 𝑉𝑘 + ∑ 𝑣𝑖

𝑛
𝑖=𝑡+1 < 𝑅 then 𝑖𝑛𝑑 = 1; 

if 𝑖𝑛𝑑 ≠ 1 then 

Calculate 𝑈𝑘 = 𝐶𝐿𝑈𝑅(𝜆̃), let 𝜆𝑘 = 𝜆̃ and if 𝑈𝑘 ≤ 𝐿𝐵 then 𝑖𝑛𝑑 = 1; 

if 𝑖𝑛𝑑 ≠ 1 then 

Calculate 𝑈𝑘 =

min (⌊𝑧 (𝐿𝑅(𝐷𝐾𝑃, 𝜆𝑗))⌋ , ⌊𝑧 (𝐿𝐶(𝐷𝐾𝑃, 𝜇𝑗))⌋ , 𝑧 (𝑆(𝐷𝐾𝑃, 𝜆𝑗, 𝜇𝑗)))  

if 𝑈𝑘 ≤ 𝐿𝐵 then 𝑖𝑛𝑑 = 1; 

if 𝑖𝑛𝑑 = 0 then  

𝑁(𝑠, 𝑡) = 𝑁(𝑠, 𝑡) ∪ {𝑘}; 

if 𝑃𝑘 > 𝐿𝐵 and 𝑊𝑘 ≤ 𝐶 and 𝑉𝑘 ≥ 𝑅 then update 𝑃; 

end if 

end while 

 


