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ABSTRACT 

Water resource systems have provided vital support to transformative growth in 

the Southwest United States; and for more than a century the Salt River Project (SRP) has 

served as a model of success among multipurpose federal reclamation projects, currently 

delivering approximately 40% of water demand in the metropolitan Phoenix area.  

Drought concerns have sensitized water management to risks posed by natural variability 

and forthcoming climate change. 

Full simulations originating in climate modeling have been the conventional 

approach to impacts assessment.  But, once debatable climate projections are applied to 

hydrologic models challenged to accurately represent the region’s arid hydrology, the 

range of possible scenarios enlarges as uncertainties propagate through sequential levels 

of modeling complexity.  Numerous issues render future projections frustratingly 

uncertain, leading many researchers to conclude it will be some decades before 

hydroclimatic modeling can provide specific and useful information to water 

management. 

Alternatively, this research investigation inverts the standard approach to 

vulnerability assessment and begins with characterization of the threatened system, 

proceeding backwards to the uncertain climate future.  Thorough statistical analysis of 

historical watershed climate and runoff enabled development of (a) a stochastic 

simulation methodology for net basin supply (NBS) that renders the entire range of 

droughts, and (b) hydrologic sensitivities to temperature and precipitation changes.  An 

operations simulation model was developed for assessing the SRP reservoir system’s 

cumulative response to inflow variability and change.  After analysis of the current 
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system’s drought response, a set of climate change forecasts for the balance of this 

century were developed and translated through hydrologic sensitivities to drive 

alternative NBS time series assessed by reservoir operations modeling. 

Statistically significant changes in key metrics were found for climate change 

forecasts, but the risk of reservoir depletion was found to remain zero.  System outcomes 

fall within ranges to which water management is capable of responding.  Actions taken to 

address natural variability are likely to be the same considered for climate change 

adaptation.  This research approach provides specific risk assessments per unambiguous 

methods grounded in observational evidence in contrast to the uncertain projections thus 

far prepared for the region. 
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CHAPTER 1 

INTRODUCTION 

“Look deep into nature, and then you will understand everything better.” 

- Albert Einstein 

The semi-arid Colorado River Basin (CRB) is a critical water resource spanning 

parts of seven western states of the United States and portions of northwestern Mexico.  

The highly dammed Colorado River and its tributaries provide municipal water supply to 

rapidly growing populations approaching 40 million people, irrigation water to more than 

4 million acres of land, and hydroelectric power generation in excess of 4200 megawatts 

(U.S. Bureau of Reclamation 2012).  Dammed rivers and large surface water reservoirs 

are important in the basin due to the semi-arid climate of the region, the high inter-annual 

variation in precipitation and runoff, the propensity for multi-year drought, and an 

increasing demand for water by a rapidly growing population.  These factors combined 

with over-allocation of Colorado River water (Reisner 1986) and recent drought episodes 

have sensitized water management in the region to the threats that pose a challenge to 

water management strategies. 

At the center of the Lower Basin of the CRB (LCRB) in central Arizona lie the 

Verde River, Tonto Creek, and Salt River sub-basins, encompassing approximately 

33,000 square kilometers of watershed.  Their surface water flows are managed by the 

Salt River Project (SRP) as they pass through a parallel series of reservoirs on the Salt 

and Verde Rivers and on to an extensive distribution system of canals and irrigation 

laterals in the Phoenix metropolitan area.  Supplemented by groundwater wells, the SRP 

system provides water to a 248,200 acre service area within major portions of the 
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Phoenix area (Fig. 2.1.1) – satisfying approximately 40% of raw water demand for 

irrigation and municipal treatment purposes.  SRP has been managing this water resource 

system for over a century through the utility cooperative ‘Salt River Valley Water Users’ 

Association’, which operates alongside the public utility ‘Salt River Project Agricultural 

Improvement and Power District’ that provides electricity – a portion of which is 

hydroelectrically generated on the Salt River (SRP-c).  SRP is the first and oldest 

multipurpose federal reclamation project in the United States, serving as a model of 

success for U.S. Reclamation Service projects in the arid West.  The National 

Reclamation Act was passed in 1902 and implemented in the Progressive Era of United 

States history, originating in the conservation movement which stressed efficient 

development of America’s natural resources while avoiding wasteful exploitation.  The 

bill sought to make the desert bloom through wise management of precious water 

resources, turn the rivers of the West to useful purpose, and open the region for 

settlement.  It inserted the federal government into the building of major engineering 

projects for water storage through financial assistance measures and provision of 

engineering expertise (Smith 1986).  The SRP system has been one of the most formative 

physical influences on the geographic evolution of south-central Arizona, having 

supported the Phoenix metropolitan area’s growth to the sixth (almost fifth) largest city in 

the United States over the last century. 

 

1.1 Literature Review 

(Note: In addition to the following discussion, literature reviews specific to each 

methodology employed in this study can be found in those sections of this document.) 
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As for many watersheds around the world, SRP management has been sensitized 

to the threats which climate issues pose to water resources in the future.  Droughts within 

the past century of SRP system operation have had significant effects on water supply 

(Phillips et al. 2009).  Paleo-climate records suggest that deeper and more prolonged 

droughts in the region are possible (Hirschboeck and Meko 2005, 2008).  Climate 

projections indicate that a warmer and drier climate in many subtropical regions is 

forthcoming over the next several decades, exacerbating drought concerns (Kundzewicz 

et al. 2008; Ellis et al. 2008; Dominguez et al. 2010; Dominguez et al. 2012).  

Understanding the impacts of climate variability and change on a reservoir system is 

therefore essential to effective planning for the future.  Thorough characterization of a 

water resource system to present and future climate stresses provides the insights 

necessary for short-term operational and long-term risk assessment and investment 

planning, ensuring water resource sustainability. 

During the past several years climate change modeling studies have brought 

indications of an increasingly arid future for the western United States to the attention of 

the water community (Christensen et al. 2004; Seager et al. 2007; Christensen and 

Lettenmaier 2007; Hoerling and Eischeid 2007; Barnett et al. 2008).  Two dozen general 

circulation models (GCMs) generally project increasing aridity driven by the pole-ward 

expansion of the subtropical dry zones, increasing lower atmosphere temperatures, and 

reductions in the all-important winter season precipitation (Intergovernmental Panel on 

Climate Change (IPCC) 2007, 2013; Seager and Vecchi 2010).  The models indicate that 

drying should be underway (Milly et al. 2005; Seager et al. 2007; Hoerling and Eischeid 

2007; Barnett and Pierce 2009; Hoerling et al. 2009).  Research focused on reconciling 
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and narrowing the range of modeling projections (Hoerling et al. 2009) shows increasing 

surface air temperatures across the CRB of 2
o
C or more by mid-century with some of this 

having already occurred.  However, precipitation modeling has yielded a wide spread of 

projections from small gains up to a 15% reduction with substantial regional trend 

variations, poor representation of seasonal cycles, and findings that changes are more 

complex and less certain than those for temperature alone (IPCC 2007, 2013; Milly et al. 

2005; Dominguez et al. 2010; Stephens et al. 2010).  Gutzler et al. (2012) concluded that 

although temperature trends are evident in the Southwest United States and are 

reasonably well-represented in GCMs, any model-projected trends in precipitation are 

small relative to natural modes of variability, and therefore caution should be exercised in 

the attribution of drying to anything other than elevated temperature.   

Once climate projections are applied to hydrologic models that are challenged to 

respond with accurate representations of an arid hydrology, the range of possible 

outcomes enlarges as uncertainties propagate through sequential levels of modeling 

complexity (Wilby and Dessai 2010; Vano et al. 2014).  Salas et al. (2012) stated: 

“Although general circulation models have had success in the attribution of warming 

global temperatures to anthropogenic causes, their credibility and utility in reproducing 

variables that are relevant to hydrology and water resources applications is less clear.”  

Such observations have lead Kundzewicz and Stakhiv (2010) to inquire whether the 

models are “ready for prime time” in direct application to water management issues.  

They point out that over the years climate modeling attention has shifted from concerns 

with climate effect mitigation options and policies for greenhouse gases (GHG) to a 

different set of users in search of information for developing adaptation strategies on the 
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local scale – the hydrologists and water managers.  These users have raised pragmatic 

concerns about how useful downscaled GCMs can really be for specific decisions at their 

scale of interest.  Kundzewicz and Stakhiv state: “Simply put, the current suite of climate 

models were not developed to provide the level of accuracy required for adaptation-type 

analysis. … To expect more from these models is simply unrealistic at this time.”   

While progress is made with each successive generation of models, Trenberth 

(2010) anticipated that the uncertainty in climate projections of the Fifth Assessment 

Report (AR5) of the IPCC would be greater than in previous modeling.  This does appear 

to be the case for the CRB.  While understanding of certain dynamics does increase, so 

does the realization that there are factors not previously accounted for which contribute 

cascading complexity.  “Adding complexity to a modeled system when the real system is 

complex is no doubt essential for model development.  It may, however, run the risk of 

turning a useful model into a research tool that is not yet skillful at making predictions.” 

(Trenberth 2010).  Meanwhile, and very importantly, as pointed out by Brown and Wilby 

(2012) there is a mistaken tendency for some stakeholders to perceive and treat model 

projections as forecasts.  Pielke and Wilby (2012) remind us that “downscaling has 

practical value but with the very important caveat that it should be used for model 

sensitivity experiments and not as predictions.”  “It is inappropriate to present 

downscaled results to the impacts community as reflecting more than a subset of possible 

future climate risks.” 

Among a number of reasons that GCM-based modeling is unsatisfactory are: 

there are a variety of models and numerous scenario assumptions used, there are various 

downscaling methods used to translate coarse-scale model scenarios to a region of 
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interest with differing results, the coarse spatial resolutions do not adequately resolve 

hydrologic processes in key runoff regions, precipitation dynamics which are the main 

driver to runoff production are poorly represented, divergence between modeled and 

observed temperature changes at various levels of the atmosphere have emerged, 

sensitivities of surface hydrology to temperature and precipitation changes are often 

poorly understood, models do not represent important modes of natural variability (e.g. 

El Niño Southern Oscillation (ENSO), Atlantic Multi-decadal Oscillation (AMO), Pacific 

Decadal Oscillation (PDO) ), and the number of sub-processes and their representations 

continue to expand.  These result in climate model complexity struggling to replicate past 

climatology coupled to challenging hydrologic modeling of the semi-arid Southwest 

United States, yielding ranges of outcomes that do not reduce uncertainty of future 

projections.  These problems render future risk projections for a water delivery system 

frustratingly uncertain (Gober et al. 2010; Galloway 2011; Gober 2013).  A recent review 

by Vano et al. (2014) of the sources of uncertainty in future projections of Colorado 

River stream flow has reiterated many of these same modeling issues identified when the 

Water Utility Climate Alliance (2009) concluded, as did others (Seager and Vecchi 

2010), that it will be some decades before models can provide accurate and detailed 

simulations of all the important regional dynamics correctly coupled into the global 

climate system and eventually provide useful projections to water management. 

Beven (2011) notes that the path towards realistic models appears long and 

tortuous even with major coordinated international modeling efforts.  While successive 

model generations will improve, in the meantime a lot of time, effort, and money are 

being invested in impact studies that can be questioned for whether they are fit for 



7 
 

adaptation management purposes.  He echoes the concern that current generation 

projections are not entirely credible, but counsels water management against doing 

nothing and instead find alternative paths to adaptive solutions.  Stakhiv (2011) considers 

adaptive management to be a superior and more practical alternative to the cascading 

uncertainties inherent in GCM-based assessments.  He describes adaptation as a 

continuous process of vulnerability investigation which can and should deal explicitly 

with probabilistic threat assessments as part of operational management.  Rogers (2008) 

argues that an adaptation path brings focus to policies and technologies that should be 

considered anyhow, regardless of hypotheses about the origins of forthcoming change.  

Those change arguments don’t have to all be resolved to make progress; and regardless, 

decisions are likely to be the same. 

 

1.2 Problem Statement and Alternative Investigative Approach 

The conventional top-down, full-simulation approach to assessing climate change 

impacts on surface water supply involves three general steps for end-to-end modeling: 

1) statistically or dynamically downscale air temperature and precipitation 

projections from a set of global climate models chosen to span the range of 

possible outcomes for the watersheds, 

2) translate air temperature and precipitation projections yielded by the downscaled 

GCMs through land surface hydrology models (LSHMs) to establish runoff in the 

form of stream flow, and then 

3) assess how surface water flows replenishing a managed reservoir system would 

be threatened by the projected runoff change under the climate change scenario. 



8 
 

Much of modeling research has centered on the first two steps with little attention yet 

given to step 3, due in part to the uncertainties generated by steps 1 & 2.  Wilby and 

Dessai (2010) point out that there are few tangible examples of anticipatory adaptation 

decisions arising from this approach, as the envelope of uncertainty expands at each 

modeling step such that the resulting wide range of potential impacts and implied 

response are not practically useful.  It can be noted from an analysis standpoint that a full 

simulation must be executed for each climate scenario.  The rigor demanded in modeling 

a specific regional representation over multiple decades demands massive computational 

resources, potentially taking months to execute.  Assumption modifications or 

assessments of alternative climate scenarios become a daunting challenge. 

Given this state of the science, viable alternative approaches to risk assessment 

can make valuable contributions to water resource management while conventional 

modeling more fully develops in the years ahead.  The research reported herein inverts 

the above sequence to a bottom-up approach for vulnerability analysis.  Resource risk 

assessment can begin with the threatened system in question and proceed backwards to 

the uncertain climate future.  It starts with diagnosis of the sensitivity of an impacted 

system to variability and change without confining the exercise to any specific climate 

change projection, the likelihood of which remains highly uncertain.  Analysis is focused 

at the resource level and relies on sufficiently lengthy historical observations to assess the 

frequency and magnitude of threatening events and system response.  And, since 

projections of the future are never really deterministic, the probabilistic nature of 

outcomes is addressed.  This is consistent with practices in hydrologic engineering and 

quantifies the full range of future risks rather than dwelling on a limited set of scenarios.  
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Climate conditions relevant to decision sensitivity are then identified and linked to what 

is credible from available climate research and evidence.  Impact models quantitatively 

analyze effects of change and, as indicated, motivate the search for more resilient options.  

Adaptation then involves coping with or reducing exposure to the identified threats 

through a set of feasible actions.  This is where primary attention should be paid rather 

than dwelling on uncertain climate scenarios (Wilby and Dessai 2010; Brown and Wilby 

2012; Brown et al. 2012; Pielke and Wilby 2012; Wilby et al. 2013).  The products of this 

approach are more directly interpretable for risk characterization, system stress tests, 

evaluation of adaptation plan alternatives, planning strategies, and decision support.  At 

the outset of this investigation limited examples from the implementation of this 

approach had been reported in the literature.  As its utility has been recognized, some 

case studies have emerged such that at the 2015 American Geophysical Union Fall 

Meeting about a half dozen were reported, including this one.  This investigation 

demonstrates the alternative investigative approach with a case study of the Salt River 

Project watersheds and reservoir system, thereby filling a void and demonstrating a path 

to applicable hydroclimate knowledge.  Findings provide more specific meaning for the 

SRP system in contrast to the rather broad range of projections that have thus far been 

prepared for the region. 

The various research components employed for this investigation have been 

developed in response to the contrasts that have emerged between the hydrological 

science perspective on implications of climate change (Koutsoyiannis et al. 2009) versus 

the climate change research outlook detailed in Chapter 3 from Working Group 2 in AR4 

(and now AR5) from the IPCC (Kundzewicz et al. 2008; Kundzewicz et al. 2009).  
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Hydrologists challenge the idea that uncertainty is epistemic rather than structural; that is, 

whether it can be significantly reduced by increasing complexity in models.  Rather, they 

suggest the structural character of uncertainty in climate and hydrologic behavior may 

have been under-rated and the magnitude of uncertainties is underestimated by the IPCC.  

The hydrology community views climate modeling as subscribing to a deterministic 

approach, while they instead approach natural processes with a pragmatic statistical 

description.  These are different paradigms in modeling and understanding of natural 

processes.  The hydrologist’s stochastic representation does not seek to reduce a 

phenomenon to a series of cause-effect relationships coming to a single prediction; but 

instead accepts that complete end-to-end representations of all the involved dynamic 

processes may not be possible and instead seeks to quantify the uncertainties surrounding 

them through observational data.  Stochastic representations may thereby provide an 

explanation for a natural variation in a time series which might otherwise appear as an 

exceptional non-stationarity (Koutsoyiannis et al. 2009). 

Data are of primary importance within hydrology which embraces the premise 

that geosciences are by nature induction-based rather than deduction-based and therefore 

rely to a greater extent on historical data as the key to the future.  Data play a crucial role 

in understanding past climatic and hydrological changes and provide primary guidance in 

tracing possible futures.  Not that the future will mirror the past, but that the dynamic 

character of past climate needs to be fully explored to estimate future uncertainty.  Data 

are indispensable to model building in the hydrological community.  It guides model 

development, and data are employed for model validation using hold-out methods.  It is 

established practice within the hydrology community (and in forecasting science) to test 



11 
 

model performance against observed data in an objective fashion.  They note the lack of a 

validation process for IPCC models, which contributes to questioning their reliability.  

Independent efforts to do so (Koutsoyiannis et al. 2008; Anagnostopoulos et al. 2010; 

Fildes and Kourentzes 2011; Suckling and Smith 2013) indicate poor performance, 

resulting in strong reactions and tense exchanges between the communities (Galloway 

2011).  As an example, Koutsoyiannis et al. (2009) state that just using more un-validated 

models to produce ensembles of climate projections, as is IPCC climate modeling 

practice, does not provide a scientific basis for uncertainty estimation.  If dispute over 

what constitutes “a scientific basis” can be set aside, useful points of advice for validation 

methods and rigorous uncertainty quantification should not be ignored.  Entrenched 

adherence to a limited toolkit and refusal to embrace constructive criticism will not serve 

the stakeholders who await useful information.  This study develops a methodology 

which employs tool sets from different disciplines and responds to justifiable critiques 

from differing perspectives to arrive at a vulnerability assessment for a key water 

resource system.  As a transferable example built for the case of the Salt River Project, it 

can also serve the needs of other communities confronting similar, challenging adaptation 

planning. 

In overview, this investigation consists of: 

1. Establishment of a thorough baseline understanding of the envelope of natural 

climatic variability in net basin water supply (NBS) based on historical evidence.  

Use it to statistically generate long seasonal time series representative of the 

current dual-watershed system through stochastic simulation that yields the full 

range of possible drought and excess. 



12 
 

2. Quantification of the hydrologic sensitivity to climate of the Salt-Tonto and Verde 

watersheds and reservoirs in winter and summer, based upon empirical evidence 

from historical response.  Specifically, development of algorithms for temperature 

sensitivity and precipitation elasticity as a function of NBS for each watershed-

season and reservoir-season. 

3. Development of a reservoir management simulation model that incorporates all 

aspects of the water delivery system and the web of operational guidelines used 

by SRP in its management, validated against the historical record and with SRP. 

4. Assessment of baseline implications of the current NBS probability distribution to 

system vulnerability and resilience by exercising the reservoir operations 

simulation model with long stochastic simulation time series. 

5. Development of a set of climate change projections across the 21
st
 century for the 

SRP system which include (i) a most-likely forecast based in current 

understanding of forthcoming change and (ii) a higher stress-test of climate 

conditions based on the World Climate Research Program’s Coupled Model 

Intercomparison Project (CMIP), a multi-model dataset developed to inform the 

IPCC. 

6. Development of modified stochastic simulation time series by translation of a 

climate projection to modified NBS probability distributions according to the 

watersheds’ and reservoirs’ hydrologic sensitivity functions. 

7. Assessment of the implications of the climate-modified simulation time series by 

processing them through the reservoir operations model. 
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8. Comparative statistical analyses of NBS and reservoir system outcomes between 

the baseline and climate change results. 

 

Development of the most likely temperature forecast became a major sub-project 

of this investigation.  It was motivated by the observation that CMIP projections are 

inconsistent with empirical evidence at the global and regional levels and by the absence 

of forecasting science best practices in IPCC methods. 

 

1.3 Research Questions 

The central research questions addressed by this investigation are: 

What are the probabilities of drought of various severities (duration and depth) in 

the SRP watersheds due to baseline natural climate variability, as evidenced by 

the historical record? 

How do the drought probability distributions change under a set of climate 

changes for a future timeframe? 

Under existing system operating guidelines, what are the differences in reservoir 

system response and vulnerability between current baseline climate variability 

and the change projections?  What differences in adaptation responses might be 

indicated? 

Impacts are measured by the primary statistical parameters of the output probability 

distributions for drought, water delivery reduction thresholds, and reservoir system 

depletion.  Hypothesis testing is conducted for changes in probability distributions 

relative to the baseline case and in comparison to the 127 year historical record. 
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o The Null Hypothesis: there are no statistically significant differences in key 

impact parameters. 

o The Alterative Hypothesis: statistically significant differences for key parameters 

can be demonstrated. 

 

At the outset of the investigation it was anticipated that results would include: 

 A probabilistic characterization of the range of drought duration and depth under 

which the SRP reservoir system has been operating, with an analysis of system 

vulnerability and resilience under current operating guidelines. 

 A multi-decadal forecast of the Salt and Verde watersheds’ net basin water 

supply, with anticipated performance metrics (i.e. error) and supported by climate 

change assumptions, including temperature and precipitation projections with 

consequent runoff response. 

 A probabilistic characterization of long-term drought vulnerability with 

implications to sustainability and adaptive response of the SRP reservoir system 

over the next century, to both the forecasted and stress-test climates. 

 A methodology which can be applied to various other issues of consequence to 

water management such as pluvial events, conditional reservoir depletion 

analysis, growth in water demand, or spillage to the main stem of the Colorado 

River. 

 A discussion of considerations lying outside the methodology, together with the 

theoretical contributions of the work and how it could be applied to other 

watersheds. 
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And, of primary interest, do climate change outcomes fall within a range that 

management practices are capable of responding to?  And, if not, what quantification of 

SRP system stress can be provided for considerations of threat response for this critical 

water resource?  
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CHAPTER 2 

DATA SOURCES AND PREPARATION 

2.1 Study Area and Time Horizon 

Descriptions of the Salt River Project watersheds and reservoirs in central 

Arizona are available at http://www.srpnet.com/water/dams (SRP-a).  The Tonto Creek 

watershed lies south of Payson between the Salt River and Verde River watersheds (Fig. 

2.1.1; Appendix B).  Tonto Creek enters the northwest side of Roosevelt Lake; and since 

its surface water supplements the Salt River at that reservoir, their data are combined for 

this study and generally referred to as the Salt side of the system.  Throughout this 

document any reference to the ‘Salt’ also includes the Tonto watershed, unless 

specifically identified otherwise.  The Salt and Verde basins adjoin one another, resulting 

in seasonal correlations in stream flow captured at two parallel series of downstream 

reservoirs.  The C.C.Cragin reservoir, located just east of the Verde watershed is not 

included in this investigation due to its small size and uncertainties over how much of its 

water passes to the Verde River.  Total storage capacity of the system’s six reservoirs is 

2.3 million acre-feet of water (Table 2.1.1), with most of it (88%) on the Salt side of the 

system, where Roosevelt Lake accounts for 71% of the total.  Water releases from the 

Salt and Verde sides of the reservoir system to the Phoenix metropolitan area combine 

just upstream of the Granite Reef Dam.  Water is diverted at the dam into a delivery 

system of canals bounding the north and south sides of SRP’s service area.  Total water 

delivery had been approximately 900,000 acre-feet/year for the several years preceding 

initiation of this study (Fig. F1), and that value is held fixed for the purposes of this 

investigation, following a representative seasonal cycle provided by SRP (Table F1).  

http://www.srpnet.com/water/dams
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While annual reservoir inflows are highly variable, long-term median flow from the 

watersheds has been close to delivery demand over the past several years.  Reservoir 

inflows are typically proportioned between seasons and watersheds as given in Table 

3.2.2. 

 

 

Figure 2.1.1.  Salt River Project Watersheds, Reservoir System, and Service Area in 

Central Arizona (from SRP-a). 

Maps courtesy of SRP 
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Table 2.1.1.  The SRP Central Arizona Watersheds, USGS Gages and Reservoir System. 

 
 

 
 

Water management is concerned with two long-term planning horizons: a few 

decades ahead for operational issues, and a century into the future for major infrastructure 

investments and risk assessment.  Many climate modeling exercises have reported change 

expectations at mid-century, now just a few decades away, as well as for the year 2100.  

The SRP system began operation over 100 years ago with the dedication of Roosevelt 

Dam, and a continuation of service through the rest of this century is expected.  As 

discussed below, 118 years of climate data and 127 years of runoff history has been used 

Median Drainage Area

Watershed Elevation (m) (km
2
)

Salt & Tonto 1,771 13,416

Verde 1,649 15,265

Gage # Elevation (m) Data Record

USGS Gage, above reservoirs (inflow)

Salt River near Roosevelt 09498500 664 Oct-1913 to present

Tonto Creek near Roosevelt 09499500 Oct-1913 to Dec-1940

Tonto Creek above Gun Creek 09499000 769 Jan-1941 to present

Verde River at Bartlett Reservoir 09509000 Oct-1938 to Dec-1945

Verde River below Tangle Creek 09508500 618 Sep-1945 to present

USGS Gage, below reservoirs (discharge)

Salt River below Stewart Mountain Dam 09502000 418 Oct-1934 to present

Verde River below Bartlett Dam 09510000 479 Oct-1913 to present

SRP Reservoirs' Capacity  (acre-feet) pre-1996 post-1996

Roosevelt Lake 1,348,314 1,653,043 built 1905-1911, expanded 1996

Apache Lake, Horse Mesa Dam 245,138 245,138 built 1924-1927

Canyon Lake, Mormon Flat Dam 57,852 57,852 built 1923-1925

Saguaro Lake, Stewart Mountain Dam 69,765 69,765 built 1928-1930

Salt Sub-Total 1,721,069 2,025,798

Bartlett Lake 178,186 178,186 built 1936-1939

Horseshoe Lake 109,217 109,217 built 1944-1946, spillway added 1949

Verde Sub-Total 287,403 287,403

Total System 2,008,472 2,313,201 (1 acre-foot = 325,000 gallons)

No sedimentation of the reservoirs over time has been considered in this study.
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for this investigation, sufficient to capture about two cycles of major climate indices such 

as the AMO and PDO.  As discussed below, drought risk statistics are typically expressed 

per a standardized time interval, such as per-century and the analyses within this 

investigation are performed on that basis.  Applicability of findings is considered for the 

next few decades and the later part of this century. 

 

2.2 Watershed and Reservoir Temperature and Precipitation 

Fine-resolution gridded climate data sets suitable to matching the spatial 

boundaries of each watershed are available from the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) (Daly et al. 1994; 2002).  The resolution of PRISM 

grid cells is 0.0416 degrees of latitude and longitude (approximately 4 km).  PRISM 

generates monthly estimates of temperature and precipitation for each grid cell using 

station data, spatial data sets, and expert guidance.  A set of rules, decisions, and 

calculations are used to weigh station data for use in linear regression analyses to create 

the temperature and precipitation grids.  Factors in the weighting method include distance 

from a station, elevation, clustering of stations, topographic characteristics (to account for 

local inversions and rain shadow effects), and proximity to coastlines (Daly et al. 2002).  

The grid cells of each sub-basin draining unregulated flow to the United States 

Geological Survey (USGS) gages at reservoir input were identified by Ellis et al. (2008) 

using hydrologic unit code (HUC) boundaries and the PRISM digital elevation model 

(DEM).  In cases where the HUC boundary extended beyond the drainage area of a 

particular gage, the PRISM DEM was used to delineate a revised drainage divide.  The 

PRISM data periods of record are from 1895 to the present, with no missing records.  



20 
 

Data for 1895-2013 was used for most of this investigation’s analyses, with 2014-2015 

later appended for ancillary statistics. 

Using PRISM air temperature values, mean monthly temperature was calculated 

by the average of the mean monthly maximum and minimum for each grid cell, and then 

a total sub-basin monthly value was calculated by weighting per the area of each 

constituent grid cell.  The PRISM database provides a monthly precipitation depth for 

each grid cell. The total precipitation depth for each sub-basin was calculated by 

weighting the precipitation values per the area of each constituent grid cell.  The area of 

each grid cell was multiplied by its monthly precipitation value to produce a volume of 

precipitation, which was then summed for total monthly volume of precipitation falling 

onto a watershed converted to acre-feet, the familiar unit of measurement for U.S. water 

management professionals. 

Additionally, the PRISM grid cell nearest each of the six dams in the Salt and 

Verde reservoir system was identified and their historical series of mean monthly air 

temperature and monthly precipitation were extracted for each dam location.  The data 

were weighted per reservoir capacities to arrive at monthly temperature and precipitation 

data series for each side of the dam complex. 

 

2.3 Global Temperature 

Global monthly temperature anomalies, HadCRUT.4.4.0.0, were obtained from 

the Met Office Hadley Centre (Morice et al. 2012), available for 1850-2015, which are 

expressed relative to a 1961-1990 reference period.  For this analysis the time series was 

uniformly reset to a zero pre-industrial (19
th
 century) baseline by the cumulative average 
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level of the time series before its rise (0.339
o
C).  In mid-2015 the T.4.3.0.0 data set was 

superseded by the T.4.4.0.0 data set.  The differences between them are minor and have 

no influence on analysis conducted for this investigation. 

 

2.4 Atmospheric CO2 

Monthly mean atmospheric CO2 data were obtained from the NOAA Earth 

System Research Laboratory Global Monitoring Division (Dlugokencky and Tans).  The 

globally averaged marine surface monthly mean data were utilized for 1980 to present, 

appended to Mauna Loa data for 1958 to 1979, and supplemented with South Pole station 

data for the 1958 water year (Keeling et al. 1976). 

 

2.5 Runoff 

Runoff volume data were sourced from the archive of the USGS daily stream 

flow data (USGS-NWIS).  These gages (Table 2.1.1) are located just above the first point 

of interception in each river as input at a reservoir, capturing the flow originating in 

upstream grid cells.  Data acquisition began in 1913 for the Salt and Verde Rivers and for 

Tonto Creek (USGS-NWIS; SRP-b).  Flow rates reported by the USGS were converted to 

acre-feet of water within monthly time intervals.  For the purpose of this study the Salt 

River and Tonto Creek inflows to Roosevelt Lake are combined to one data series for the 

Salt side of the system.  Tonto Creek contributes approximately 15% supplemental 

inflow, and other small creeks are of no consequence.  The Salt and Tonto watersheds’ 

climate data are also combined and thereafter titled as the Salt.  Some missing monthly 



22 
 

data for the Verde gage were completed by interpolation with partial gage information 

and by input-output balance calculations from reservoir storage data. 

Additionally, SRP produced a reconstruction of monthly stream flow data at the 

position of the USGS reservoir inflow gages back to 1889 (Phillips et al. 2009; provided 

in personal communication).  The extended record includes the severe drought of 1898-

1904 on the Salt and Verde basins and therefore has been included for the fullest 

characterization of the range of hydrologic conditions on the basins. 

Reconstruction of pre-historic stream flows for the Salt and Verde rivers using 

tree-ring analysis was completed in 2005 by paleoclimate scientists at the University of 

Arizona (Hirschboeck and Meko 2005).  Their monthly runoff estimates date from 1361 

to 2005.  Those data broaden the range of evidentiary hydrological conditions on the 

basins by revealing extended periods of drought larger than occurred during the 

instrumental record.  Comparative statistical analyses were performed for the period of 

data overlap with USGS stream gages.  While runoff patterns generally aligned, markedly 

different behavior was found on a year-by-year basis, casting doubt whether tree-ring 

data could accurately inform runoff probability distributions, which is a central objective 

of this investigation.  The comparisons were shared with D. Meko who acknowledged 

statistical biases and constrained minimum and maximum flows, indicating they are 

attributable to data transformation methods used for the tree-ring study.  Therefore, the 

tree-ring data set was set aside for the analyses conducted during this investigation.  It 

was noted that similar periods of drought indicated by the tree-ring analysis were also 

revealed by the stochastic simulation conducted for this study. 
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2.6 Reservoir Releases 

USGS daily stream flow data are available for positions below Bartlett Dam and 

Stewart Mountain Dam (USGS-NWIS; SRP-b) from the dates at which the reservoirs 

went into service by which reservoir discharge can be measured for the Verde and Salt 

sides of the reservoir system, respectively. The data begin from the dates at which the 

reservoirs went into service (Table 2.1.1). 

 

2.7 Reservoir Storage 

SRP maintains the historical series of daily water volume stored in each of the six 

reservoirs beginning in 1931 on the Salt system and 1946 on the Verde system (SRP-a; 

supplemented in personal communication).  The data series extends through the present 

day with no gaps. 

 

2.8 Miscellaneous Loss (and Gain) 

Exploratory data analysis revealed that there are important miscellaneous losses 

and gains of water at the reservoirs which affect water balances driving reservoir system 

operation and affecting water supplies for fulfillment of contractual water delivery 

requirements.  Losses may be due to evapotranspiration and interactions between surface 

and sub-surface water in the proximity of the reservoirs.  As well, during some periods of 

high precipitation and runoff the reservoirs experience gains larger than the loss 

mechanisms, possibly due to combinations of direct precipitation on reservoirs, overland 

flow bypassing a stream gage, streambed modifications, or gage calibration performance.  

The net loss or gain is quantified by the difference between reservoir inflows and releases 
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compared to storage changes over a time period.  The imbalance is termed ‘miscellaneous 

loss’ because it is expected to be ‘missing’ and is entered as a positive value in system 

balancing.  A negative miscellaneous loss term denotes a gain in reservoir storage that is 

not supported by the difference between inflow and discharge.  Net basin supply of 

available surface water is equivalent to runoff measured at the reservoir input gages less 

the miscellaneous loss (NBS=RO-ML). 

The climatic dependencies of miscellaneous loss for each watershed-season were 

examined using PRISM data-derived air temperature and precipitation data at the 

reservoir locations over the period 1946 through 2010 (Verde reservoir system period of 

record).  The relationships were applied to PRISM data to estimate miscellaneous loss 

from 1895 through 1945, and analogous-year sequences were used to estimate values for 

the period 1889-1894.  The earlier-year estimates were appended to post-1945 actuals to 

obtain a data series of miscellaneous loss for the Salt and the Verde reservoirs for each 

winter and summer season, 1889 to the present.  Full series were used in most analyses of 

this investigation.  But, when precise miscellaneous loss values were important, only 

direct-calculation values were used.  For example, NBS probability distribution estimates 

utilized all data since 1889 while portions of the hydroclimatic sensitivity analyses 

employed post-1935 (Salt) and post-1945 (Verde) data. 

 

2.9 Deseasonalization of Data 

Analyses in this study have been performed on an annual basis and per two 

climatically and hydrologically distinct runoff seasons.  A winter runoff season 

containing the wetter and cooler period of fall through winter into spring is driven by 
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large-scale synoptic systems which are crucial to replenishment of surface water storage 

not only due to the large precipitation event volumes, but also much lower 

evapotranspiration (ET), allowing flows to reach the reservoirs with modest runoff 

efficiency.  The warmer, drier summer runoff season involves the spatially diverse 

convective dynamics of the North American monsoon and high ET such that runoff 

efficiencies are small.  Water managers of the western United States utilize a ‘water year’ 

calendar which is defined as beginning October 1
st
, the point at which summer and heavy 

customer demand has passed but winter precipitation has usually not yet begun, thereby 

defining the end of the summer season and start of the winter season.  May 1
st
 is a key 

management date in SRP’s transition from winter to summer operations and for water 

delivery planning, although some winter snow melt in the Salt watershed occasionally 

extends into May.  Although operational management of the SRP reservoir system occurs 

on a daily basis, the key guiding decisions are well-represented on a seasonal basis.  

Analyses were therefore performed for the two seasons and on a water year basis by 

aggregation of monthly data to the winter season of October 1 through April 30 and 

summer season of May 1 through September 30, as well as for the full water year.  As an 

example, the 1914 water year encompasses the 1914 winter (1-Oct-1913 to 30-Apr-1914) 

and the 1914 summer (1-May-1914 to 30-Sep-1914). 

 

2.10 Validity Considerations 

As discussed above regarding miscellaneous loss and gain, high runoff events 

were identified when USGS stream gage measurements might not have accurately 

reported total flow.  It is therefore possible that high runoff data values could be under-
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reported.  These events have been reconciled by examining reservoir storage history for 

seasonal input-output flow balance to assess any understatements.  This method also 

quantifies all water losses which occur at the reservoirs so that net basin supply of surface 

water for the system is represented as accurately as possible. 

The primary variable of interest for this investigation is the difference of runoff 

and net miscellaneous loss, or net basin supply (NBS=RO-ML).  The distinction between 

runoff and net basin supply is important because their probability distributions are 

different.  NBS extends to a lower bound at the minimum side due to net losses and 

extends farther to the high side due to net gains.  Droughts are therefore exacerbated 

when multiple years occur from the low side while reservoir refresh rate is enhanced by 

net gains. 

The 127 years of NBS data available for this study are one of the longest such 

series for a watershed in the western United States.  To the extent that sufficient 

characterization data dictate feasibility of the proposed investigative approach, study of 

the Salt and Verde is a good test case.  To ensure a valid analysis, characterization data 

should capture as much natural variability as possible for the best assessment of all parts 

of probability distributions.  It can be noted that the Salt & Verde data encompass 

approximately two cycles of the AMO-PDO and a large variety of ENSO events, so a 

range of climate influences are embodied in the data used in this investigation. 

Much of the methodology to be employed in this investigation was preliminarily 

tested and its validity established.  The models and characterization methods have been 

found to constitute a feasible approach for the motivating research question.  However, 

validity concerns arise when results fall outside the bounds of expected outcomes.  
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Therefore, comparisons to the observational record were periodically employed to 

confirm that simulation results provide time series sequences consistent with historical 

evidence. 

The deterministic reservoir operations simulation model, ResSim, was built based 

upon an understanding of SRP operating guidelines as of 2011.  It provides outcomes 

based on what should transpire when the specific rules built into the model are followed.  

Of course, it is always possible that in specific future situations alternate decisions might 

be taken.  The model cannot deal with those digressions; nor can it anticipate whether 

decades from now the guidelines will have been superseded.  But, ResSim can adequately 

serve as the basis to identify most-likely outcomes for key variables under the currently 

defined set of operating rules and to generate comparative results. 

Validity of forecasts of the future can be assessed through examination of the 

assumptions used in their construction until there is a future outcome against which to 

measure forecast accuracy, which is the ultimate validity test.  To achieve this, best 

practices of forecasting science require an assessment of how the forecast methodology 

would have performed against the historical record using only data available at the time 

the forecast was made.  This analysis is performed in the climate change forecast section 

(Sec.3.6).  That, together with all detailed assumptions, is the current basis for forecast 

validity assessment. 

In considering internal validity, it should be noted that explorations of all causal 

relationships affecting quantitative outcomes lies beyond the scope of this research.  But, 

this study explores those that are most important to establishing the analytical 
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assumptions employed; and a number of avenues for follow-on research can be identified 

from this investigation. 
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CHAPTER 3 

METHODOLOGY 

 

The successful completion of this research depends on the development of five 

methodological components, that their underlying assumptions are internally consistent 

and supportive, data interfaces are effective, and findings are interpretable and useful to 

water management and the hydroclimate scientific community.  The major components 

are: 

(i) an assessment of the stationarity of climate and stream flow which supports a 

manageable set of assumptions for the following components, 

(ii) a stochastic simulation methodology for generating multi-year, representative 

flows from joint watershed-season probability distributions,  

(iii) a diagnosis of hydrologic sensitivity to climate with two heuristics: 

temperature sensitivity (ST) and precipitation elasticity (εp) of runoff, 

(iv) climate forecasts that can be translated to modifications of the probability 

distributions for generating time series of alternative flows. 

(v) and, a reservoir operations model through which impacts can be assessed. 

 

The methods development for these research components are described below, preceded 

by the introduction of smoothing methods applied in analyses and some system 

characterizations. 
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An evaluation of the feasibility of this investigative approach was sequentially 

explored in parts.  The reservoir simulation model was developed and tested in 

cooperation with SRP.  Stationarity assessment methods were developed and findings 

published in the Journal of Hydrology (Murphy and Ellis 2014).  The stochastic 

simulation methodology was developed and demonstrated with generation of a 10,000-

year NBS time series, and some modifications were identified and implemented (Ellis 

and Murphy 2012).  Challenging parts of this investigation were the development of 

climate sensitivity algorithms (presented at the AGU 2014 and AMS 2015 conferences) 

and forecasts of future temperature and precipitation (presented at the ISF 2015, ISF 

2016, and AMS 2016 conferences).  All the above are grounded in empirical evidence.  

These components draw from a breadth of climate research findings and are new, 

alternative outlooks necessitated by shortcomings of climate-hydrologic modeling which 

motivated this alternative investigative approach. 

 

3.1 Low-Pass Filter Smoothing of Time Series 

The most useful analytic tool for understanding the behavior of a time series is a 

graphical portrayal of its trend-cycle, particularly in situations of high natural variability 

that can disguise the evolution of underlying behavior.  A variety of smoothing methods 

can be employed to achieve a graphical portrayal of the underlying trend-cycle behavior 

of a time series (Burt and Barber 1996).  These range from simple moving averages to 

decomposition by autoregressive integrated moving average algorithms to complex filters 

with specific weighting functions used to suppress specific constituent frequencies while 

passing those which provide insight to underlying periodicities of the time series.  For 
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this study a low-pass Lanczos filter design was adopted (Burt and Barber 1996, 531), 

with the objective of revealing decadal and longer patterns in the temperature, 

precipitation, and runoff data series.  A decadal cutoff filter will have an amplitude 

response that drops to 50% at a cutoff frequency,  fcut , of one cycle in 10 years, or 0.1 

cycles per observation.  The Lanczos filter’s preliminary coefficients were calculated 

from: 

    c0 = 2 fcut , the central coefficient   (3.1) 

 

𝑐𝑘 =  
sin (2𝜋 𝑓𝑐𝑢𝑡𝑘)

𝜋𝑘
 .  

sin (𝜋𝑘/(𝑚 + 1))

𝜋𝑘/(𝑚 + 1)
 

           (3.2) 

for  k = 1, 2, 3, …, m ;   and  𝑐−𝑘 =  𝑐𝑘   

where: 

fcut is the chosen cutoff frequency, in cycles per observation 

and the filter length, L = 2m +1 

 

The filter coefficients are symmetric around a center point and should sum to 1.0.  If 

preliminary coefficients do not sum to 1.0, they are simply normalized to arrive at the 

final coefficients: 

𝐶𝑘 = 𝑐𝑘/ ∑ 𝑐𝑘

𝑚

𝑘=−𝑚

 

           (3.3) 

The suitability of this low pass filter design was evaluated using highly variable 

time series, which are the precipitation and runoff data.  Through examination of the 

response to various combinations of filter length, L, and cutoff frequency, fcut, the design 

parameters in Table 3.1.1 were identified which provided good smoothing for all data.  

All calculations in this study are displayed at the center of the data interval evaluated, so 

a 15-year filtered value contains ±7 years from the center point.  As the end of a series is 
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approached the shorter filter lengths can be sequentially applied to continue the smoothed 

curve to within a few years of the end of a series, although with some sub-decadal 

response.  As future data become available, application of longer filters may adjust the 

trend-cycle’s tail position.  The smoothing filters (Table 3.1.2) have been consistently 

applied for all variables, seasons, and watersheds graphically reported in this study. 

 

Table 3.1.1.  Lanczos Smoothing Filter Design Parameters. 
      

filter length, L    cutoff frequency, fcut 

        (years)    (cycles/observation) 

15  0.1 

13  0.1 

11  0.1 

  9  1/L 

  7  1/L   

 

Table 3.1.2.  Lanczos Smoothing Filter Coefficients. 
 

 
 

 

 

3.2 System Characterization 

The semi-arid Salt & Verde River watersheds occupy a geographically, 

geologically, and climatologically diverse region of central Arizona with a hydrology 

unlike those of other water resource systems that have been studied, even within the 

CRB.  It would be a mistake to apply specific research conclusions from the Upper Basin  

of the CRB (UCRB) to these LCRB watersheds, although the general methods described 

herein can be applied elsewhere.  Simplifying assumptions of normality in various 

variables do not apply to the Salt and Verde.  Seasonal climate shifts are extreme, natural 

Center Point

L f cut -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

15 0.100 -5.88E-03 -9.14E-03 3.58E-18 2.91E-02 7.73E-02 1.33E-01 1.78E-01 1.95E-01 1.78E-01 1.33E-01 7.73E-02 2.91E-02 3.58E-18 -9.14E-03 -5.88E-03

13 0.100 -4.96E-03 2.68E-18 2.51E-02 7.22E-02 1.30E-01 1.79E-01 1.98E-01 1.79E-01 1.30E-01 7.22E-02 2.51E-02 2.68E-18 -4.96E-03

11 0.100 1.53E-18 1.98E-02 6.59E-02 1.28E-01 1.83E-01 2.05E-01 1.83E-01 1.28E-01 6.59E-02 1.98E-02 1.53E-18

9 0.111 6.72E-03 4.89E-02 1.25E-01 2.02E-01 2.34E-01 2.02E-01 1.25E-01 4.89E-02 6.72E-03

7 0.143 1.44E-02 1.03E-01 2.34E-01 2.98E-01 2.34E-01 1.03E-01 1.44E-02
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variability is prevalent, and hydroclimate distributions are highly skewed.  These 

characteristics were apparently known and incorporated to the SRP system design over a 

century ago at a time when the instrumental record was in its infancy.  Now, at more than 

120 years of data, the Salt-Verde system has one of the longest data records for a water 

resource system in the western United States.  A thorough characterization of many 

variables is therefore feasible, with many ways in which they can be reported.  Much of 

this is provided in the methodology development sections of this document, since the 

algorithms needed to link methods are grounded in the empirical evidence.  What follows 

are some characterizations not provided in subsequent document sections. 

3.2.1 Monthly to Seasonal Characterization 

 Typical monthly precipitation and runoff on the Salt-Tonto and Verde watersheds 

are shown in Figures 3.2.1 & 3.2.2.  It is readily apparent that monthly precipitation is 

dual-moded, with maximums in January and August.  However, runoff from winter 

precipitation is generally delayed to late-winter-early-spring through snowpack 

accumulation and melting.  Despite cool winter-spring temperatures, the runoff efficiency 

is typically only 15% on the Salt and 11% on the Verde.  In part this is due to 

intermittency of precipitation events necessitating soil re-saturation before the next 

runoff-yielding event occurs.  The large monsoonal summer rains yield very low runoff 

(7% Salt, 4% Verde) due to high summer evapotranspiration on the watersheds.  It 

quickly becomes apparent that replenishment of the reservoirs is primarily dependent on 

large winter precipitation events and/or their continuity, as summer precipitation yield 

cannot make up for large winter deficiencies. 
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Figure 3.2.1.  Typical Monthly Precipitation and Runoff Cycle of the Salt Watershed. 

 
Figure 3.2.2.  Typical Monthly Precipitation and Runoff Cycle of the Verde Watershed. 



35 
 

The cumulative runoff from the watersheds as a proportion of a typical water 

year’s total is shown in Figure 3.2.3.  Runoff in the fall months is below an equal 

monthly average.  Then, as most runoff follows winter precipitation, about 80% of the 

year’s yield is complete by the end of April on the Verde and the end of May on the Salt.  

The inflection points at those times indicate when winter runoff is largely complete and 

the natural hydroclimate transition into summer is occurring.  Salt runoff is delayed 

relative to the Verde due its higher elevation terrain and cooler climate where more 

precipitation falls as snow with a later melt.  The watershed and reservoir conditions are  

known to SRP water management by late-winter, and corresponding decisions are taken 

by May 1
st
.  That date was therefore taken as the demarcation point for the seasonally-  

 

 
Figure 3.2.3.  Typical Cumulative Monthly Proportion of Runoff Through the Water 

Year. 
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based analyses of this investigation even though not all Salt runoff will have occurred  

during a wet year.  As discussed in the stochastic simulation section of this document 

(Sec.3.4), Salt runoff carryover into May increases winter-to-summer correlation which is 

exploited in that methodology. 

Typical monthly runoff to the reservoirs is shown in Figure 3.2.4 to occur earlier 

than water deliveries to customers are required.  About 60% of annual deliveries occur 

over the 5 months of summer, with 40% taking place over the 7 winter months.  The 

purpose of the reservoirs is thereby fulfilled, retaining the resource until it is needed in 

mid-summer, as well as buffering against high year-to-year variability. 

 

 
Figure 3.2.4.  Typical Monthly Runoff to Reservoirs and Monthly Water Delivery 

Schedule. 
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3.2.2 30-Year Climate Normals 

 Climate-normal temperature and precipitation are often used as reference values 

for various comparison purposes.  They are calculated from the trailing 30 years of data 

at a decadal time-step (1901-1930, 1911-1940, …, 1981-2010) and used for comparative 

purposes until again updated.  If persistent climate variability or trends are present 

comparisons with climate normals may have questionable informative validity.  For 

example, only climate-normal temperature values from 1960 to 1990 remained 

approximately consistent within the historical record (Figs. 3.2.5 & 3.2.6).  Adjacent 

calculations were strongly influenced by warming trends that should instead be compared 

to other, earlier reference periods.  That approach is taken in the climate change forecast 

section (Sec. 3.6) of this document. 

Similarly, 30-year trailing average precipitation values for each watershed-season 

are given in Figures 3.2.7 & 3.2.8 where extended periods of natural variability are 

evident, particularly in winter.  Figure 3.2.9 combines the watersheds for a calculation of 

each season’s variability in proportion to the long-term average.  The historical periods of 

drought and excess are evident, and 30-year trailing averages vary by about ±5% in 

summer and -10% to +15% in winter.  As will be shown in the results chapter (Chap. 4) 

of this document, such variability may be sufficient to offset anticipated warming impacts 

on runoff such that future elevated temperature effects may not be resolvable amidst 

precipitation variability. 
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Figure 3.2.5.  30-Year Climate-Normal Winter Temperatures. 

 
Figure 3.2.6.  30-Year Climate-Normal Summer Temperatures. 
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Figure 3.2.7.  30-Year Climate-Normal Winter Precipitation. 

 
Figure 3.2.8.  30-Year Climate-Normal Summer Precipitation. 
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Figure 3.2.9.  Variation in Climate-Normal Precipitation Relative to the Long-Term 

Average. 

 

 

 

3.2.3 Importance of Winter Precipitation 

 The information above is indicative of the importance of winter precipitation as 

the primary governing influence on reservoir system sustainability.  Tables 3.2.1 & 3.2.2 

compare the proportions of precipitation and runoff among each watershed-season.  

While summer precipitation is 43% of what falls in a water year, it only accounts for 25% 

of reservoir system inflows due to low runoff efficiency amidst high evapotranspiration.  

Summer effects are most pronounced on the Verde basin where warming has been 

highest and streamflows reduced for a variety of reasons, as reviewed in subsequent 

chapters of this document. 
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Table 3.2.1.  Proportions of Typical Annual Precipitation on Watersheds. 
 

 
 

 

Table 3.2.2.  Proportions of Typical Annual Reservoir System Inflows. 
 

 

 

The winter precipitation time series in Figure 3.2.10 will be tested and found to be 

stationary over the instrumental record.  Nevertheless, as can be seen, that does not 

preclude the series from having periods both above and below the long-term mean.  

Pluvial periods are notable following the 1890s drought and again from the mid-1970s to 

mid-1990s with intervening drought-prone periods.  Such natural variability becomes 

accentuated by low runoff efficiencies so that precipitation coefficients of variation of 

0.40 are amplified to 0.87 for runoff (Table 3.3.5, Fig. 3.2.18).  It is noted that the Salt 

and Verde precipitation series are highly correlated (Fig. 3.2.11), and that Verde 

precipitation tended to be slightly higher than the Salt before 1950, but lower thereafter.  

This is a small but interesting observation whose investigation was outside the scope of 

this research. 

 

Winter Summer Annual

Salt-Tonto 29% 23% 52%

Verde 28% 20% 48%

Total 57% 43%

Winter Summer Annual

Salt-Tonto 43% 17% 60%

Verde 32% 8% 40%

Total 75% 25%
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Figure 3.2.10. Time Series of Winter Precipitation on the Watersheds. 

 
Figure 3.2.11. High Correlation of Salt and Verde Precipitation Time Series. 
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3.2.4 Runoff Efficiency of Precipitation 

Comparative time series of precipitation and runoff are shown in Figures 3.2.12 to 

3.2.15, along with runoff efficiency observations.  Wet years tend to have higher 

efficiency while dry ones are lower, again highlighting the importance of wet winters.  

Verde summer R/P has remained very low since 1928 when a step-change in the runoff 

series occurred.  This is explored further in the stationarity section (Sec.3.3) of this 

document.  The important dependency of runoff efficiency on precipitation level will be 

explored in the hydroclimate sensitivity section (Sec. 3.5) of this document. 

 

 
Figure 3.2.12. Time Series of Salt Winter Precipitation, Runoff, and Runoff Efficiency. 
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Figure 3.2.13. Time Series of Verde Winter Precipitation, Runoff, and Runoff Efficiency. 

 
Figure 3.2.14. Time Series of Salt Summer Precipitation, Runoff, and Runoff Efficiency. 
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Figure 3.2.15. Time Series of Verde Summer Precipitation, Runoff, and Runoff 

Efficiency. 

 

 

 

3.2.5 Net Basin Supply 

 Net basin supply of water is defined as runoff less any miscellaneous losses which 

result in reservoir storage different from what would be expected per the gaged inflows 

and outflows.  Figures 3.2.16 & 3.2.17 provide some insight to the influence of 

miscellaneous loss factors as a function of runoff level.  If there were no losses NBS 

should equal runoff along the equivalence line.  At low runoff levels during dry years, 

during both winter and summer, there are small losses.  These are most notable on the 

Salt side of the system where the largest reservoirs are located, and NBS tends to be 

lower than runoff.  However, at levels in the upper tail of the runoff distribution NBS  
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tends to be higher than runoff where there are net storage gains not captured by the 

stream gages.  These are important water supplements during wet winters.  The time 

series of NBS, which is the central variable of interest for this investigation, is shown in 

Figure 3.2.18.  Drought-free periods correspond to the pluvial precipitation eras, and 

droughts of the past 127 years are noted (drought is defined in Sec. 4.2.1).  These will be 

compared to simulation results later in this document.  It can also be noted that the recent 

2011-2015 drought may not yet be ended, as 2016 data is incomplete at the time of this 

writing. 

 

 
Figure 3.2.16. Net Basin Supply Compared to Watersheds’ Runoff in Winter. 

 



47 
 

 
Figure 3.2.17. Net Basin Supply Compared to Watersheds’ Runoff in Summer. 

 
Figure 3.2.18. Time Series of Water-Year Net Basin Supply. 
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3.2.6 Time Series Analyses 

A historical perspective on how the important variables addressed in this 

investigation have evolved over time helps to inform the analyses.  A number of time 

series are reported in various sections of this document, so a summary table is provided 

here to assist the reader in referencing them. 

 

Table 3.2.3.  Reference Table, Hydroclimate Variable Time Series. 

    Temperature Precipitation Runoff  NBS 
 

Salt watershed, Winter Fig. 3.3.1 Fig. 3.3.3 Fig. 3.3.2 

    Fig. E2  Fig. 3.2.10 

      Fig. 3.2.12 Fig. 3.2.12 

Salt watershed, Summer Fig. E4    Fig. 3.3.6 

      Fig. 3.2.14 Fig. 3.2.14 

Salt watershed, Water Year       Fig. 3.2.18 

Verde watershed, Winter Fig. E1  Fig. 3.2.10 

      Fig. 3.2.13 Fig. 3.2.13 

Verde watershed, Summer Fig. E3  Fig. 3.3.4 Fig. 3.3.5 

      Fig. 3.2.15 Fig. 3.2.15 

Verde watershed, Water Year       Fig. 3.2.18 

Water Year, both watersheds Fig. 3.6.17     Fig. 3.2.18 

    Fig. E9 

Salt reservoirs, Winter Fig. E6 

Salt reservoirs, Summer Fig. E8 

Verde reservoirs, Winter Fig. E5 

Verde reservoirs, Summer Fig. E7 

Water Year, all reservoirs Fig. E10 
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3.3 Stationarity of Climate and Streamflow 

3.3.1 Abstract 

Several studies drawing upon general circulation models have investigated the 

potential impacts of future climate change on precipitation and runoff to stream flow in 

the Southwest United States, suggesting reduced runoff in response to increasing 

temperatures and less precipitation.  With the hydroclimatic changes considered to be 

underway, water management professionals have been (erroneously) counseled to 

abandon historical assumptions of stationarity in the natural systems governing surface 

water replenishments.  Stationarity is predicated upon an assumption that the generating 

process is in equilibrium around an underlying mean and that variance remains constant 

over time.  Stationarity assumptions for each hydroclimate variable are central to the 

stochastic methodology and multi-decadal forecasts developed for this investigation. 

To examine the evidence of forthcoming change, the long-term records of surface 

temperature and precipitation in the Salt and Verde watersheds along with corresponding 

gage records were evaluated with time series analysis methods and testing criteria 

established per statistical definitions of stationarity.  Statistically significant temperature 

increases were found, with persistently non-stationary time series in the recent record 

relative to the earlier historical record.  However, tests of precipitation and runoff did not 

reveal persistent reductions, indicating that they have remained stationary processes.  

They display transitions through periods of drought and excess, with recent precipitation 

and stream flows found to be close to the long-term averages.  The analysis has been 

extended with the Hurst-Kolmogorov methodology, and there are emerging indications of 

summer runoff and miscellaneous loss effects from elevated temperature.  Those are 
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further explored in the hydrologic sensitivities to climate section (Sec. 3.5) of this 

document. 

The central Arizona hydroclimate does not appear to have exited the envelope of 

natural variability which would threaten the effective range of the SRP infrastructure.  As 

has been noted by Stakhiv (2011), there have been very few failures of the nation’s water 

management infrastructure within its design capacity.  Abandonment of stationarity 

assumptions for precipitation and runoff is not necessarily supported by the evidence, 

making it premature to discard its historical records as an instrument by which to assess 

sustainability of the water resource system.  A supportable case can still be made for 

stationarity-based analysis, and it would be more appropriate to conduct adaptation 

analyses with application of evidence-based stationary or non-stationary assumptions as 

warranted, followed by an assessment of decision risk sensitivity to hydroclimate 

scenarios consistent with understandings of the region under study, as suggested by 

Wilby and Dessai (2010), Lins and Cohn (2011), Stakhiv (2011), Matalas (2012), Salas et 

al. (2012), and Brown and Wilby (2012). 

3.3.2 Questioning Stationarity 

Amidst the complexities and the challenge of incorporating uncertain 

hydroclimatic trends into water resource forecasts, the attention of the water management 

community was heightened by the assertions made by Milly et al. (2008) who stated that 

the concept of stationarity, “the idea that natural systems fluctuate within an unchanging 

envelope of variability – a foundational concept in water-resource engineering”, should 

be abandoned; and that, since “it cannot be revived”, only non-stationary models should 

henceforth be used in water resource planning.  As they explained,  
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“For a time, hydroclimate had not demonstrably exited the envelope of natural 

variability and/or the effective range of optimally operated infrastructure.” 

But, that “In view of the magnitude and ubiquity of the hydroclimatic change 

apparently now underway, we assert that stationarity is dead” … “because 

substantial anthropogenic change of Earth’s climate is altering the means and 

extremes of precipitation, evapotranspiration, and rates of discharge of rivers.”  

“The global pattern of observed annual streamflow trends is unlikely to have 

arisen from unforced variability and is consistent with modeled response to 

climate forcing.” 

 

The stationarity question is not only important because of hypothesized climate 

change impact to stream flow, but also because it raised the question whether important 

statistical analysis tools employed by hydrologists will remain valid in the coming 

decades.  As will become evident through this investigation, the stationarity behavior of 

hydrologic processes has a direct bearing on how the system can be modeled, understood, 

and forecast for future water management purposes.  Considerable debate over 

stationarity has ensued and it remains an ongoing question (Galloway 2011).  The 

hydrologist’s perspective remains distinctly different from the climatologist’s for reasons 

originating in definitions and analytic methodology, which has contributed to the 

hesitancy by water management to embrace climate modeling outcomes.  Confirming the 

role of stationarity as a foundational concept in system analysis, Nelson (1995) pointed 

out that, “… the concept of stationarity underlies much of stochastic modeling.”  

Knowledge of whether or not a process generating sequential outcomes is stationary is 

particularly important to probabilistic representations of the process because non-
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stationary modeling is significantly more complex.  That is not to say that what might be 

identified by a climatologist or a statistician as nonstationary behavior cannot be 

adequately represented in hydrologic modeling.  Employment of the stationarity concept 

within hydrology distinguishes between whether or not changing time series can be 

modeled with a substantiated set of probabilistic assumptions historically and going 

forward.  If it can, then the series is considered stationary.  So, what might at first appear 

nonstationary can instead conceptually be stationary to the hydrologist.  On the other 

hand, the hydrologist must guard against unsubstantiated stationarity assumptions that 

can expose model outcomes to understatements of the real risks in the system 

(Koutsoyiannis et al. 2009).  This investigation employs exhaustive stationarity 

assessments and explicitly defines stationarity assumptions made for the future, 

grounding them in empirical evidence and current research findings. 

An analysis was conducted and published in the Journal of Hydrology (Murphy 

and Ellis 2014) to confirm whether or not hydrologic variables in the CRB have become 

non-stationary in their time series per statisticians’ definition.  Following are extracts 

from that paper. 

3.3.3 Definitions 

Some clarification and specificity in the definition of “stationarity” is instructive 

for an objective and quantifiable assessment.  Nelson (1995, 38,185) provides a statistical 

definition: 

“When the distribution of a process that evolves over time does not depend on 

time, the process is time stationary.”     “The time-stationarity property in 

continuous time is:  Pr{Yt+∆t = j | Yt = i} is the same for all t ≥ 0 “ 
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So, for any time lag, ∆t, between observation intervals the probability distribution for any 

observation given the (same) probability distribution for another observation elsewhere in 

the series will be the same for all points in the time series – making a stationary 

probability distribution equivalent across time, t. 

Characterization of stationarity is also of fundamental importance in the 

application of various forecasting methods, as noted by Makridakis et al. (1998, 136): 

“… stationary, meaning that the process generating the data is in equilibrium 

around a constant value (the underlying mean) and that the variance around the 

mean remains constant over time.” 

  

This is supported in a number of statistics texts, including Burt and Barber (1996, 505):  

“A stochastic process is stationary if its statistical moments are invariant over time.”  

Additionally, they state: 

“Note that varying degrees, or order, of stationarity are possible.  For example, a 

process might be stationary in the mean, but not in the variance.  ….. stationarity 

at a given order requires stationarity at all lower orders.’ 

 

Shumway and Stoffer (2010) also distinguish between orders of stationarity, clarifying 

with a distinction between strictly stationary and weakly stationary time series.  They 

define a time series as strictly stationary if all moments of its probability function are 

identical across time, while a weakly stationary time series is constant in just its mean 

and covariance functions.  In general, researchers have acknowledged that in practice it is 

typically feasible to test just the first and second moments (mean and variance) of a  

series, and that this is considered sufficient in practice to evaluate whether or not a time 

series is stationary for most purposes.  Therefore, while multiple methods are employed 
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for the study reported below, the most rigorous assessments through hypothesis testing 

are focused on the mean and variance of the time series across the historical record. 

3.3.4 Autocorrelation and Graphical Analysis 

Makridakis et al. (1998) provide some useful guidance about methods to ascertain 

whether or not a time series is stationary: 

“The visual plot of a time series is often enough to convince a forecaster that the 

data are stationary or non-stationary.  The autocorrelation plot can also readily 

expose non-stationarity in the mean.  The autocorrelations of stationary data drop 

to zero relatively quickly, while for a non-stationary series they are significantly 

different from zero for several time lags.” 

 

Autocorrelation functions (ACFs) were examined in the preliminary screening for 

stationarity of each time series of this study.  All statistically significant ACFs are 

reported in the results below, and thorough graphical analyses provide insight to the 

behavior indicated by ACFs. 

3.3.5 Statistical Testing of the First Moment: Mean 

The primary approach employed in the stationarity testing study involves a 

comparison of intervals in the time series against earlier parts of the historical record to 

ascertain whether the probability distribution within the sampled window is different 

from the distribution of earlier observations.  Among the methods available for statistical 

significance testing, nonparametric methods are often applied when the nature of the 

underlying population distribution is unknown or the requirements of a parametric test  

cannot be met.  However, a nonparametric alternative is almost always less powerful than 

a comparable parametric procedure, provided the parametric test’s assumptions are not 

violated (Burt and Barber 1996; DeGroot and Schervish 2012).  Sufficient data exist for  
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this study from which the distribution of the analyzed variables can be reasonably 

assessed.  This study therefore utilizes parametric testing methods, validly applied in 

conformance with their requirements considering the characteristic nature of the variable 

under consideration. 

The most common test utilized for parametric statistical inference is the t-test.  

The methodology for its use in classical hypothesis testing is well-documented (Burt and 

Barber 1996).  Standard two-sample difference-of-means testing between distinct 

intervals in the time series has been utilized to test for stationarity in the first moment of 

the probability distributions.  The central limit theorem states that, regardless of the 

nature of the distribution of observations, with a sufficiently large sample size the sample 

mean is approximately normally distributed.  So, even with skewed distributions, t-testing 

of the mean can remain robust.  A sample containing at least thirty observations is 

commonly considered to be sufficient for valid testing (Burt and Barber 1996, 268-271), 

and this is the minimum used for this analysis. 

 There are two formulations of the t-test under assumptions of either equal or non-

equal sample population variances.  Since it was not a-priori known whether the 

variances from different intervals in the time series would be equivalent, both testing 

formulations were applied.  Subsequently, testing for equality of variances provided the 

information needed to adopt one or the other computation for each specific point of 

hypothesis testing in the time series.  Variances were usually found to be consistent 

across a series. 

 

 



56 
 

3.3.6 Statistical Testing of the Second Moment: Variance 

The F-test is the common parametric test for equality of variance between two 

populations, whose test statistic is the ratio of sample variances (Burt and Barber 1996; 

DeGroot and Schervish 2012).  However, the test is sensitive to departures from 

normality in population distributions.  A case can be made for normality of 

deseasonalized temperature, but the test will not be reliable when applied to the skewed 

distributions of Salt and Verde runoff and precipitation.  Therefore this study employed 

the Levene test for equality of variances as an alternative that has been shown to have 

both good robustness and power with heavily tailed and skewed variables (NIST 2012).  

It can be applied using the mean, the median, or a trimmed mean of subgroups for 

statistical significance testing using F-statistic tables.  The formulation based on the 

median was used for all variables, while the F-test was also performed for temperature. 

3.3.7 Hypothesis Testing, Confidence Levels 

Knowledge of whether a generating process is stationary is particularly important 

because modeling of non-stationary processes involves more sophisticated models.  This 

is readily apparent by the observation that, if persistently non-stationary, each time step 

in a series is dependent upon the history of all preceding time steps.  The probability 

functions generating sequential time steps must therefore incorporate more variables and 

establish complicated time-dependent parameterizations of how they will evolve  (e.g., 

trend and cyclicality), while it may not even be exactly clear how they have changed in 

the historical series.  Such complexity will not serve to reduce uncertainty of findings, but 

rather are likely to complicate and obscure them.  So, while the suggestion that water 

managers should embrace non-stationary modeling may be appropriate if non-stationary 
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behavior of the time series can be proven, the complexities and expense in doing so are 

clearly sufficient to force the planner to examine his assumptions with great scrutiny.  

Furthermore, water infrastructure investments are expensive, involve very long lead-time 

planning, and entail decision-making processes that scrutinize every assumption, which 

will include questions of stationarity.  For these reasons the hypothesis testing 

formulations employed in this assessment are constructed such that the null hypothesis of 

stationarity must be rejected to a reasonable level of statistical confidence before 

accepting the alternative hypothesis that the time series is non-stationary.  So, the 

research question and the hypotheses for this assessment are: 

Are temperature, precipitation, and runoff stationary in the Salt and Verde 

watersheds – with particular attention to the recent record relative to the earlier 

record where less anthropogenic influences were at work?  And, more specifically 

as regards the first moment, have there been persistent temperature increases and 

decreases in precipitation and runoff? 

Null Hypothesis, Ho:  No statistically significant difference in sample mean or 

variance versus the historical record can be established. 

Alternative Hypothesis, HA:  The difference in sample mean or variance versus 

the historical record is statistically significant. 

A standard α-value of 5% was used for all statistical hypotheses testing.  It is readily 

apparent from graphical analyses whether a sampled interval is above or below a 

reference mean, therefore making a test in one direction of change as the research 

question requires.  Testing of the sample mean is thereby conducted to a 95% confidence 

level.  Testing for a change of variance was also conducted to a 95% confidence level. 
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3.3.8 Reference Sample Population for Hypothesis Testing 

To address the research question, interest lies in hypothesis testing of recent data 

against the earlier historical record to ascertain whether the probability distribution of 

observations within the recent sample window is different from the distribution of prior 

observations.  The test sample and earlier reference period should each be composed of a 

contiguous data interval with the minimum thirty year sample size.  A test sample of 31 

years was used so that its position is recorded as the center year of the time interval.  For 

example, a test sample centered on 1997 spans the years 1982 to 2012, inclusive.  This 

could be tested against the earlier record extending from the first year of record through 

1981. 

Two approaches for a reference time segment were used in this study: the first 

thirty years of the historical record, and all cumulative years preceding the test sample 

interval.  The first thirty years is farther back in time and therefore less affected by the 

evolution of anthropogenic forcings.  If the first thirty years of record happened to fall at 

a period of generally high or low values in the early record, then tests must be evaluated 

with that taken into consideration.  The use of more years subsequent to the first thirty 

increases the degrees of freedom for statistical significance testing, thereby increasing the 

power of the test to resolve changes in mean and variance.  With hypothesis testing 

conducted against those two reference time periods, many hundreds of hypothesis tests 

were performed in the assessment of the three hydroclimate variables for each watershed-

season at every possible test year for mean and variance.  While there were some slight 

differences between the first-30-years reference method and the cumulative-years 

method, findings were found to be essentially the same.  Better parameter estimations 
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from a larger sample size along with avoiding some vagaries of the first-30-years era lead 

to the cumulative-years method being the preferred approach.  Those are the results 

reported below to simplify the summaries. 

3.3.9 Results, Temperature 

Statistically significant ACF values are tabulated in Table 3.3.1, and some useful 

indications of non-stationarity in temperature are apparent.  Positive autocorrelations with 

coefficients in the range of 0.3-0.6 persist in most of the temperature time series out to a 

lag of several years, indicating non-stationary means.  All the time series were 

graphically analyzed in the manner shown in Figure 3.3.1.  The historical data series is 

shown along with the filter-smoothed series.  The cumulative mean is plotted along with 

the mean of the entire population of observations which, of course, are equivalent at the 

end of the series.  The first complete water year of data is 1896, so 30-year reference 

statistics are first available in 1925, after which 31-year test samples can be evaluated.  

The sliding 31-year test sample mean is shown as the bold-dashed curve, beginning with 

1941 (spanning 1926-1956 data) and extending to 1997 (spanning 1982-2012 data).  

Hypothesis testing is performed by comparison of the statistics of each test sample 

interval to the cumulative statistics of all data through the point 16 years prior.  In Figure 

3.3.1 the difference-of-means is statistically significant across all years. 
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Table 3.3.1.  Autocorrelations of Hydroclimate Variables for Each Watershed, by Water 

Year. 
 

 
       only statistically significant values are shown 

 

 
Figure 3.3.1.  Average Temperature of the Salt Watershed in the Winter Season. 

 

Lag: 1 2 3 4 5 6 7 8 9 10 11 12

Temperature

Salt 0.47 0.50 0.57 0.58 0.42 0.49 0.47 0.41

Verde 0.40 0.43 0.53 0.53 0.37 0.40 0.40 0.38

Precipitation

Salt no statistically significant ACF

Verde no statistically significant ACF

Runoff

Salt no statistically significant ACF

Verde no statistically significant ACF
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 Each temperature trend-cycle was found to have its own unique pattern, but they 

all display some similar characteristics which reveal when non-stationary behavior 

emerged.  Average temperature increased during two periods: the 1930s, and from about 

1980 to the 2000s.  The 1930s increase was generally sufficient to reject the null 

hypothesis for tests of the mean for all watershed-seasons (Table 3.3.2).  Rising 

temperatures raise the cumulative mean over time, which is another method by which to 

detect non-stationarity.  Average temperature ceased to rise or declined slightly after the 

1930s before rising again in recent decades.  For the Verde watershed in winter this 

resulted in a narrowing in the difference-of-means sufficient for the null hypothesis to not 

be rejected in some intermediate years; but the recent rise caused it to be rejected again.  

As well, there were some periods of changing variability which resulted in rejection of 

the null hypothesis for variance tests.  But, those are of less consequence than 

assessments of the mean for overall conclusions of non-stationary average temperature. 

 

Table 3.3.2.  Stationarity of Temperature, Hypothesis Test Results. 
 

 
A symbol indicates when the null hypothesis was rejected:  ↑ = test-sample mean was 

higher than reference population mean, ↓ = test-sample mean was lower than reference 

population mean, Ṛ = unequal variances. 

 

 

 

Year:

Salt Winter Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance Ṛ Ṛ Ṛ

Summer Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ

Water Year Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance Ṛ

Verde Winter Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance

Summer Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ

Water Year Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance

19951940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990
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3.3.10 Results, Precipitation and Runoff 

 The autocorrelations for Salt and Verde precipitation and runoff essentially 

indicate stationarity in their means (Table 3.3.1).  Runoff hypothesis tests for difference-

of-means briefly reject the null hypothesis during the 1950s drought for the Salt (Fig. 

3.3.2) watershed, but across more years for the Verde (Table 3.3.4).  There are notably 

fewer rejections of the null hypothesis for precipitation (Table 3.3.3, Fig. 3.3.3), 

attributable to the different coefficient of variation of the variables as well as the scaling 

of runoff elasticity with precipitation level.  The wet winters of the 1980s-1990s result in 

rejection of the null hypothesis across those years to the high side, which ended as the 

LCRB transitioned into the 2000s drought from which there is recovery to the mean in 

recent years. 

 

Table 3.3.3.  Stationarity of Precipitation, Hypothesis Test Results. 
 

 
A symbol indicates when the null hypothesis was rejected:  ↑ = test-sample mean was 

higher than reference population mean, ↓ = test-sample mean was lower than reference 

population mean, Ṛ = unequal variances. 

 

 

Year:

Salt Winter Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ

Summer Mean

Variance

Water Year Mean ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Variance

Verde Winter Mean ↓ ↑

Variance Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ

Summer Mean

Variance

Water Year Mean ↑

Variance Ṛ Ṛ Ṛ

19951940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990
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Figure 3.3.2.  Runoff from the Salt Watershed in the Winter Season. 

 

 

Table 3.3.4.  Stationarity of Runoff, Hypothesis Test Results. 
 

 
A symbol indicates when the null hypothesis was rejected:  ↑ = test-sample mean was 

higher than reference population mean, ↓ = test-sample mean was lower than reference 

population mean, Ṛ = unequal variances. 

 

 

Year:

Salt Winter Mean ↓ ↓ ↑ ↑ ↑ ↑

Variance Ṛ

Summer Mean ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Variance Ṛ Ṛ Ṛ Ṛ

Water Year Mean ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑

Variance Ṛ Ṛ

Verde Winter Mean ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Variance Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ

Summer Mean ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Variance Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ

Water Year Mean ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Variance Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ Ṛ

19551930 1935 1940 1945 1950 1990 19951960 1965 1970 1975 1980 1985
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Figure 3.3.3.  Precipitation on the Salt Watershed in the Winter Season. 

 

So, a distillation of hundreds of hypothesis tests reveals that the watersheds 

exhibit periods of winter precipitation and hence runoff both above and below the long-

term mean.  These temporal transitions over periods of a couple decades invariably return 

to the long-term average.  The cumulative mean curves remain relatively consistent over 

time, indicating stationarity of the aggregate mean of the underlying generating 

processes.  One might question whether such transitory trend-cycle variations can 

originate from a stationary probability distribution.  To answer this, best-fit probability 

distributions to the history of the Salt and Verde flows were derived as described in the 

stochastic simulation section (Sec. 3.4) of this document.  The distributions were used to  
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generate long time series of random outcomes from stationary representations of the 

watersheds’ fixed means, variances and skewness.  A 500-year generated sequence of 

total flow by water year is shown in Figure 3.4.17 compared to the historical series to 

reveal similarities in trend-cycle behavior (e.g., amplitude and temporality).  It therefore 

appears feasible that excursions around the long-term historical mean are transitory 

presentations of the underlying generating process, supporting conclusions of stationarity 

for precipitation and runoff. 

 

 
Figure 3.3.4.  Precipitation on the Verde Watershed in the Summer Season. 

 

 Summer results are distinctly different from the winter season in the LCRB.  The 

Verde basin’s precipitation example of this is shown in Figure 3.3.4.  The null hypothesis 
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was not rejected for any mean or variance hypothesis tests conducted on this series (Table 

3.3.3).  It would be expected that a similarly consistent history would be reflected in the 

runoff time series; but this was not entirely the case.  Rather, a change in the watershed’s 

runoff data series is evident in the late 1920s (Fig. 3.3.5).  At that time the running rate of 

approximately 100,000 acre-feet/summer descended to around 70,000 acre-feet/summer.  

As can be seen in the figure, test samples are thereafter sufficiently low relative to the 

reference time period that the null hypothesis is rejected in testing of the mean.  

Variability of the series is also much reduced, so that variance tests also reject the null 

hypothesis.  Differences are large enough that this test result persists through the ensuing 

 

 
Figure 3.3.5.  Runoff from the Verde Watershed in the Summer Season. 
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several decades of data.  The Salt watershed also had a summer runoff transition in the 

late 1920s; but unlike the Verde, it returned to its earlier level (Fig. 3.3.6).  For the Salt, 

rejection of the null hypothesis only persisted until a near-equilibration of the cumulative 

mean in the mid-1960s.  The average levels of Salt and Verde summer runoff data series 

have remained relatively constant since the 1920s, although it appears the Verde’s may 

have commenced a further decline since the 1990s. 

The Verde summer runoff time series was also tested without pre-1928 data, so 

that a reference mean is established from the 1928-57 average.  Test samples from 1958 

to present are not statistically different from that reference timeframe, confirming 

 

 
Figure 3.3.6.  Runoff from the Salt Watershed in the Summer Season. 
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stationarity across recent decades.  So, what led to the change in Verde summer runoff 

levels in the 1920s?  The lack of transition features in the coincident precipitation and 

temperature series indicate it is not driven by climate.  The history of population growth 

and consequent water consumption along this Arizona river pose the hypothesis that 

introduction of water diversions and groundwater pumping have impaired flows, 

particularly to serve high water demand in summer.  Winter consumption is significantly 

less at a much lower proportion of flow and therefore its impact is not evident in the 

winter runoff series.  Ongoing studies and controversies over water usage and rights in 

reaches of the Verde River basin lend credence to this hypothesis (Alam 1997; Garner 

and Bills 2012).  This example serves as a counter-argument to the suggestion that once 

changed, stationarity is lost forever.  In this case it was re-established at a level around 

which hydrologic planning has been conducted for decades.  This changed time series is 

instructive to detection of an anthropogenic influence, albeit not the one anticipated.  

3.3.11 Discussion 

The decadal variations revealed in this analysis illustrate why the application of 

trend calculations to intermediate historical intervals is limited in the challenge of 

identifying whether a change is something other than a temporal effect arising from 

natural variability.  Random selections of numbers from a stationary distribution can 

readily generate periods in a time series which falsely portray a trend several times more 

often than expected (Percival and Rothrock 2005).  Trend identification results have been 

found to depend on the methodology used (Baillie and Chung 2002; Mills 2010), with the 

primary challenge being a low signal-to-noise ratio of emerging trends in a climate time 

series.  The temporary rejection rates of the null hypothesis in this assessment are 
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consistent with those warnings which motivate the use of the longest available records for 

comparisons (WMO 1966). 

There are multiple possible origins of non-stationarity that can arise in the time 

series of a hydroclimate variable: landscape interventions changing the precipitation-

runoff relationships, various natural events (e.g., fire, floods) that change surface 

behavior, variations in ocean-atmosphere couplings, and anthropogenic global warming 

affecting the hydrologic cycle (Salas et al. 2012).  The effect of landscape interventions is 

seen in the Verde summer runoff data, resulting in a shift to lower volumes and resetting 

at a new, stationary level for several subsequent decades.  The pluvial periods of heavy 

precipitation and the historical drought intervals are often attributed to sea surface 

temperature (SST) variations affecting ocean-atmosphere coupling, although they provide 

only a partial explanation of variability and remain a difficult basis from which to make 

predictions of precipitation and runoff (Balling and Goodrich 2007; Thomas 2007; 

McCabe and Wolock 2012; Nowak et al. 2012).  While the observed temperature 

increases may be attributable, at least in part, to anthropogenic global warming, 

manifestations of its effects on the hydrologic cycle remain elusive.  No persistent 

impairment of precipitation and runoff has been found through this method of analysis, 

and it is difficult to identify any emerging trends in those variables.  Statistically, they 

remain stationary while temperature is persistently non-stationary. 

The absence of change in the precipitation and runoff  time series when an 

expectation of nonstationarity has been promulgated through modeling research raises 

questions about causal mechanisms and detectability of changes should they occur.  

Expectations of enhanced precipitation yield are often predicated upon the increasing 
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moisture carrying capacity of warmer air.  The expression of this relationship in terms of 

saturation vapor pressure (the Clausius-Clapeyron equation) quantifies the maximum 

holding capacity of air as an exponential function of temperature.  One degree’s change 

of capacity at low temperatures is therefore much smaller than at high temperatures and is 

approximately 7%/
o
K at average temperature (10

o
C).  This relationship only quantifies 

the maximum carrying capacity, but not the actual water vapor which is taken up by an 

air mass – which is a function of the evaporative dynamics where the air mass originated.  

Actual water vapor content in the Southwest United States is typically much less than 

capacity as evidenced in higher lifting condensation levels than are found in other regions 

of North America.  Climate modeling is often conducted under an assumption that 

relative humidity remains constant with temperature over large spatial scales; and so 

proportionally more water vapor is assumed to be present, which would enhance 

precipitation and change its spatial distribution.  However, at regional scales of interest, 

such assumptions must be examined carefully.  Moisture recycling within the CRB is 

estimated to only contribute a few percent of total atmospheric water vapor, with most of 

it originating in maritime climates that is advected into the western United States.   The 

dominant maritime-polar air masses originate in the northern Pacific Ocean.  During 

summer lower portions of the CRB are affected by maritime-tropical monsoon air masses 

originating in the Gulf of California and Gulf of Mexico.  The near-surface temperature 

changes reviewed earlier in this paper do not apply to those maritime regions, and their 

long-term relative humidity changes have not been closely analyzed, in large part due to 

the absence of an observation network in those regions. 
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Runoff is obviously linked to seasonal precipitation dynamics, as the primary 

contributor to the hydrologic process.  Once on the ground, the energy budget as reflected 

in temperature along with surface dynamics determine the yield to runoff measured as 

stream flow.  Surface water resource systems are most dependent upon runoff during the 

winter season.  Evapotranspiration is at a minimum during that time of year due to 

dormant vegetation and low temperatures.  Potential evapotranspiration (PE) has an 

exponential temperature dependence often represented by the Hamon equation, going as 

e
0.062T

 (Ellis et al. 2008).  As such, PE is small at low temperatures, increasing at 6.4%/
 

o
K.  This allows for soil moisture recharge and the subsequent overland flow of surplus 

water.  Maintenance of cool near-surface temperature maximizes yield during the runoff 

season.  Maritime-polar air masses arrive in the CRB accompanied by colder transient 

temperatures during and shortly after precipitation events, whether occurring as rain or 

snow.  Assuming soil moisture recharge has occurred, short overland transit times 

minimize surface water exposure to evapotranspiration.  The stream gages examined in 

this study are typically within a couple days of the points of precipitation while depressed 

temperatures are still present.  Even in the warm watersheds of the LCRB summer 

temperatures can readily drop several degrees during a monsoon precipitation event that 

results in a flash flood once near-surface soil moisture recharge has occurred.  However, 

summer soil moisture deficits and PE are often so high that little surplus is available and 

summer runoff efficiencies are much lower than in winter.  The temperature changes 

noted in this stationarity assessment are an order of magnitude smaller than the 

temperature depression occurring on meteorological time scales, whether winter or 

summer. 
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Table 3.3.5.  Coefficients of Variation (standard deviation divided by mean). 
                  

      Temperature   Precipitation    Runoff           

  Winter   Summer      Winter   Summer      Winter    Summer 

Salt & Tonto   0.91    0.72  0.40        0.24          0.89         0.55 

Verde    0.90    0.90  0.41        0.28          0.84         0.52  

 

A review of the time series analyzed in this assessment reveals that detectability 

of a persistent change in the mean of a hydroclimate variable depends upon the series’ 

inherent variability.  As has been seen, temperature changes of 1.0
o
 to 1.5

o
C are 

resolvable when standard deviations are in the range of 0.7
o
 to 1.0

 o
C.  However, ability 

to resolve changes in precipitation and runoff in the watersheds are more challenging, 

depending on their coefficients of variation (Table 3.3.5).  Empirical validation of a 

single-digit runoff change is unlikely amidst coefficients of variation an order of 

magnitude larger.  Resolving changes must therefore await more years’ data for larger 

sample sizes to reduce uncertainty of the estimated mean.  Detection of any changed level 

of the series must also then be questioned for whether it is a persistent change or another 

of the transients generated by an underlying stationary process.  Multiple decades of 

evidence will therefore be required before change validation is feasible by the methods 

employed above. 

While hypothesis testing of a time series may conclude it has remained stationary, 

that finding does not preclude the possibility that very small changes lie within the 

evidence but have not yet emerged enough to reject the null hypothesis.  It is noted that 

limited data over recent years is available at the elevated post-2000 temperature level; 

and yet the recent hydroclimatic condition is what has been speculated to impair runoff.  

Temperature dependence of evapotranspiration is well-known from other research (Ellis 
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et al. 2008, Vano et al. 2012) and would be expected to affect watershed runoff and 

miscellaneous losses at the reservoirs.  Therefore further analysis using Hurst-

Kolmogorov methods was conducted subsequent to publication of the Murphy and Ellis 

(2014) paper to investigate whether some persistent change may be emerging but is not 

yet fully revealed. 

3.3.12 Hurst-Kolmogorov Behavior 

Hurst-Kolmogorov (HK) behavior can be viewed as the clustering in time of 

similar natural outcomes different than would occur with purely random events.  The 

influence upon stochastic outcomes was investigated by English hydrologist H.E. Hurst 

who studied persistence in natural processes (particularly long-term Nile River flows) 

and Russian mathematician A.N. Kolmogorov who devised its stochastic representation 

as a mathematical tool for turbulence research.  Important characteristics of HK behavior 

include long and potentially large excursions from an average level (Koutsoyiannis et al. 

2008), with important implications to stationarity considerations (Koutsoyiannis 2011).   

The temporal persistence is quantified through the HK statistic, H.  If a process is 

purely random around a consistent mean with fixed variance, then it is known that the 

sample variance of the sample mean, Save
2
, is inversely proportional to sample size, n – 

Save
2
 = Sx

2
 /n   or Save = Sx /n

1/2 
    (3.4) 

where Sx
2 

is the population variance 

If the mean or variance of the generating process is changing in time the exponent does 

not hold, but can be characterized using the HK statistic, H – 

Save = Sx /n
1-H 

       (3.5) 

where H = 0.5 for a stable, purely random process 
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A series persistently changing in time has an exaggerated Save in a manner proportional to 

H ranging upwards to 1.0 where the sample variance of the mean is indistinguishable 

from the population variance.  Therefore a solution for H based upon historical data to 

date provides insight to whether a persistent change might be emerging.  The calculation 

is derived as follows: 

Save = Sx /n
1-H 

       (3.6) 

n
1-H

 = Sx / Save        (3.7) 

taking log of both sides and reducing … 

(1-H) ln(n) = ln(Sx / Save)     (3.8) 

H = 1- [ln(Sx / Save) / ln(n)]      (3.9) 

which can be rewritten for the purpose of graphical analysis as … 

(1-H) ln(n) = ln(Sx) - ln(Save)      (3.10) 

ln(Save) = (H-1) ln(n) + ln(Sx)      (3.11) 

which is now in a form to be linearly plotted as  y = mx + b. 

 

The population standard deviation, Sx, is taken for the entire series and its natural 

log is the intercept value of the plot.  Multiple sample mean calculations can be made for 

every possible value of n and the standard deviation of each of those is Save (as a function 

of n).  Its natural log is plotted per log of sample size, n, and the resulting slope of the 

curve is 1-H as shown in Figures 3.3.7 to 3.3.12.  When sample size becomes large in 

proportion to population size the curve becomes less representative of the temporal 

evolution of the series, and local slope becomes less informative, and H values fall below 

0.5 as seen at the right side of the plots.  Short interval estimates of H are made leading 
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up to that point in the graphic analysis and those cumulative assessments are given in 

Table 3.3.6 for the hydroclimate variables by watershed-season. 

 

Table 3.3.6.  H-Value Estimates from Hurst-Kolmogorov Analyses. 

      

 

H-values for temperature data are in the range of 0.72 to 0.85 and are distinctly 

different than 0.5, confirming the persistent nonstationarity of those time series.  

Precipitation H-values are around 0.5, confirming the stationarity findings above by other 

methods for those series.  H-values for winter runoff and winter RO-ML are in the range 

of 0.5 to 0.56, and stationarity can still be assumed.  However, slightly higher values are 

found for the summer season.  For our key variable, NBS=RO-ML, Salt summer H=0.60 

and Verde summer H=0.59.  These values are slightly higher than those for runoff alone. 

Salt Verde

Temperature

Winter 0.79 0.72

Summer 0.84 0.85

Precipitation

Winter 0.55 0.46

Summer 0.39 0.45-0.49

Runoff

Winter 0.54 0.56

Summer 0.59

Summer, post-1928 0.53

NBS = RO-ML

Winter 0.53 0.55

Summer 0.60

Summer, post-1928 0.59

Values larger than ~0.55 may indicate persistent nonstationarity.
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Two observations, though not conclusive, can be drawn from the HK analysis:  

(1) there may be some summer runoff impairment emerging with recent elevated 

temperatures which cannot yet be identified by hypothesis testing between time intervals, 

and (2) a further contribution to summer miscellaneous loss may also be emerging in the 

time series.  As will be reported in the hydrologic sensitivities section (Sec. 3.5) of this 

document, these are where important hydroclimate dependencies were found. 

 

 
Figure 3.3.7.  Hurst-Kolmogorov Analysis, Salt Watershed Winter Temperature. 
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Figure 3.3.8.  Hurst-Kolmogorov Analysis, Verde Watershed Summer Temperature. 

 
Figure 3.3.9.  Hurst-Kolmogorov Analysis, Salt Watershed Winter NBS. 
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Figure 3.3.10. Hurst-Kolmogorov Analysis, Verde Watershed Winter NBS. 

 
Figure 3.3.11. Hurst-Kolmogorov Analysis, Salt Watershed Summer NBS. 
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Figure 3.3.12. Hurst-Kolmogorov Analysis, Verde Watershed Summer NBS. 
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3.4 Stochastic Simulation of Net Basin Supply 

3.4.1 Abstract 

Risk assessment of the SRP system, as currently configured and managed, must 

thoroughly address the naturally high hydroclimate variability before considerations of 

climate change can be addressed.  The short, historical streamflow record was but one of 

many possible outcome sequences that could have occurred, and a fuller exploration of 

the possible range beyond those evident in the instrumental record can facilitate 

sustainability planning and adaptation to climate change scenarios.  Methods were 

developed in this study to generate long seasonal time series of net basin water supply by 

Monte Carlo simulations of the Salt and Verde watersheds that can be analyzed for 

probabilistic insights.  Other efforts to generate stochastic flow representations have been 

limited by normality distribution assumptions, inability to represent the covariance of 

flow contributions from multiple watersheds, complexities of different seasonal origins of 

precipitation and runoff dependencies, and constraints from spectral properties of the 

observational record.  Those were overcome in this study through stationarity 

assessments and development of joint probability distributions with highly skewed 

discrete density functions characteristic of the different watershed-season behaviors 

derived from a 127 year record.  As well, methods of introducing season-to-season 

correlations owing to antecedent precipitation-runoff efficiency enhancements have been 

incorporated. 

Representative 10,000-year time series have been stochastically generated which 

reflect a full range of temporal variability in flow volume distributions.  Extreme value 

statistical analysis methods can then be employed to characterize periods of flow deficit 
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per specific definitions of a drought.  Of concern for water resources are periods of net 

flows lower than those necessary to maintain reservoirs without sequential depletions.  

The analysis has yielded risk representations of the full range of drought in both duration 

and severity, providing useful quantitative guidance to management.  Similarly, the risks 

of extremely high flows can be quantified. 

Future climate change can then be translated to adjustments of the stochastic 

simulation probability functions to generate alternative 10,000-year sequences.  

Hypothesis testing between the baseline and changed cases serves as the basis upon 

which research questions are answered.  This methodology demonstrates that the 

instrumented historical record, once fully characterized and probabilistically represented, 

can yield many more insights to threatening periods of both hydrologic deficit and excess 

than is often assumed. 

Funding support was provided by the Salt River Project for development of this 

stochastic simulation methodology (Ellis and Murphy 2012). 

3.4.2 Introduction 

A shortcoming of various other hydrologic analyses of surface water systems 

conducted to date is that existing datasets, whether instrumental or paleoclimate, are a 

limited temporal representation of natural climate variability.  We cannot expect the 

historical runoff record to exactly repeat itself again in the future.  Other approaches 

dwelling solely on history therefore may not necessarily incorporate the full range of 

possible temporal evolution with the high year-to-year variability that characterizes 

precipitation and runoff in the Southwest United States.  While the Salt-Verde system has 

one of the longest instrumented records in the western United States at 127 years, it 
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nevertheless contains only a very limited sample of the full range of drought and excess 

which are possible in the region.  Analysis of tree-ring records indicates that longer and 

deeper drought have occurred in the past (Hirschboeck and Meko 2005, 2008).  But, 

while providing more insight, those data cover only a handful of centuries and are still a 

limited representation of possible outcomes.  What has occurred in the past is but one 

rendition from a broad probability distribution which must be thoroughly characterized 

for alternative outcomes that could have occurred.  Consideration should be given not just 

to the historical record but to all possible alternative sequences expressed in a rigorous 

probabilistic manner.  To establish current system vulnerabilities the objective therefore 

becomes identifying a probability distribution function (pdf) of NBS derived from the 

empirical evidence which represents the baseline characteristics of the SRP system.  

Then, to assess a future climate change scenario, that pdf (or a time series rendered from 

the pdf) can be modified according to the hypothesized projections translated through 

hydrologic sensitivity algorithms derived in the next section of this document (Sec. 3.5).  

Hypothesis testing between the baseline and change case then serves as the basis upon 

which the research questions with regard to climate change are answered.  There is high 

value in diagnosing system sensitivity to variability and change without confining the 

exercise to one specific climate change projection, since each is afflicted with 

uncertainty.  A quickly executable methodology is therefore desired which can translate 

alternative projections to a modified pdf and NBS time series. 

A solution lies in employing a simulation model for study purposes to generate 

very long synthetic runoff time series of feasible although artificial representations which 

capture all possible outcome sequences, especially those with low probability.  To ensure 
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that event sequences within a generated series are indeed feasible and occur with an 

accurate probabilistic representation, the model must embody the complex statistical 

relationships that represent the watersheds’ behavior, including cross-watershed seasonal 

correlations and between-season runoff dependencies.  Any year-to-year autocorrelations 

should be incorporated in the methodology, but stationarity analysis of the Salt and Verde 

has shown those to be zero (Sec. 3.3.4).  Annual runoff has been determined to be 

independent and identically distributed (i.i.d.), although season-to-season dependencies 

have been identified in the watersheds.  As described below, year-to-year independence 

readily facilitates employment of Monte Carlo simulation methods using probability 

distributions derived from empirical evidence.  Season-to-season and cross-watershed 

dependencies can be represented through dual-watershed joint-seasonal probability 

distributions derived per the historical record.  The 127 year documented history of the 

Salt and Verde was thoroughly assessed to conclude that it provides sufficient data from 

which to establish the baseline behavior of the watersheds and develop a frequentist 

methodology, while it was not clear how to employ a Bayesian approach.  (Frequentist = 

standard interpretation of probability used for scientific modeling experiments wherein 

underlying probabilities are fixed and observational variations are due to the sampling 

process; Bayesian = probabilities are uncertain and change as data are acquired, updating 

prior assumptions.) 

During a pilot project study conducted for development and proof-of-method 

(Ellis and Murphy 2012), a thorough analysis was conducted, and probability functions 

were developed and built into a complete stochastic modeling process that generates 

flows for each watershed in the two seasons.  An initial 10,000-year runoff sequence was 
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generated having characteristics comparing favorably to the historical runoff record.  The 

simulation model results convinced investigators that the full range of possible drought 

can be generated that is representative of the behavior of the watersheds in both seasons.  

A few improvements were identified from that work and have been incorporated in the 

methodology described below such that it renders the current characteristics of the 

watersheds. 

3.4.3 Simulation Sample Size 

Very long time series for the four watershed-seasons can be stochastically 

generated by the simulation model.  Since analysis of results will be considered on a per-

century basis, at least 100 centuries are desired to enable assessment of small probability 

(~1%) outcomes.  Therefore time series with a simulation length of 10,000 years have 

been employed, which are manageable within a spreadsheet analysis toolkit.  It was noted 

during the 2012 study (Ellis and Murphy 2012) that there might be variability in resultant 

10,000-year summary statistics that should be assessed to address the research questions.  

Hypothesis test confidence levels are dependent on sample size, so assessments will 

statistically benefit from analysis of multiple 10,000-year series.  The 2012 study also 

revealed a few long-duration droughts that require more sampling for better small-

probability statistics.  About 11 such series was estimated to be required.  This 

investigation proceeded to develop a library of twelve time series, a biblical number 

representing completeness.  A total of 120,000 years of simulation data was thereby 

generated which are sufficient to assess the statistics of interest.  This much data provide 

a robust, baseline assessment against which hypothesized future changes may be 

analyzed with confidence through comparative statistics. 
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3.4.4 Probability Distribution Development 

Findings of stationarity for precipitation and runoff in the Salt and Verde 

watersheds demonstrate that, in general, the entire historical record can be used for the 

probabilistic characterizations required for stochastic simulation model development.  

The one exception is Verde runoff in summer.  As explained in Murphy and Ellis (2014) 

and in the stationarity section of this document (Sec. 3.3.10), it is believed that water 

diversions on the Verde River subsequent to the mid-1920s resulted in a step-change in 

the time series to a re-established level which has tested stationary since that time, 

although the recent 15-20 year pattern should be questioned.  Therefore only 

observational data since 1928 have been used to characterize the Verde summer season 

and develop its probability distributions.  Since that time Verde summer inflows account 

for a single digit percentage of annual NBS for the reservoir system (Table 3.2.2), so it is 

not a major influence on overall reservoir system sustainability.  The highest Verde 

runoff values in summer are notably lower since the 1920s, so the maximum level of its 

probability distribution (150,000 acre-feet) was limited below what occurred in the early 

record.  The HK analysis provided further indication of recent warming effects on 

summer runoff.  There are limited years yet available by which to quantify a runoff 

distribution shift, but the hydrologic sensitivities to climate analysis (Sec. 3.5) was used 

for guidance in distribution modification owing to the 1990s warming period.  The Salt 

summer runoff distribution was similarly scrutinized. 

The finding that all historical NBS time series have negligible and statistically 

non-significant autocorrelations supports an assumption that their outcomes are i.i.d., 

which is a fortuitous result since it simplifies algorithm development for the stochastic 
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numerical generating methodology.  And, as discussed further below for the drought 

characterization and impact analysis methodologies, i.i.d. findings at the annual level 

enable an i.i.d. assumption over multi-year intervals, so that Poisson and exponential 

probability distribution descriptions can be employed for drought events. 

Each sample distribution of a watershed-season was first examined to ascertain 

whether it can be represented by a parametric function – in particular whether it could be 

fit by an exponential probability distribution.  Exploratory data analysis quickly revealed 

that the distributions are bounded on the low side and highly asymmetric with a long tail 

to the high side, which is characteristic of the exponential function.  But because of a 

non-zero low-end limit due to base flow from the watersheds and some structure in 

inflection points it could not be concluded that an exponential fit was appropriate; so it 

was instead decided to derive discrete pdfs.  The process for doing so utilized the 

following constraints and guidelines: 

 Examine the full sample to determine reasonable minimum and maximum bounds 

based upon the evidence and expected watershed behavior. 

 Partition the distribution into small enough interval spacing for a near-continuous 

distribution.  It was found that approximately 300 cells between the minimum and 

maximum bounds would be sufficient. 

 Calculate the cumulative probability curve (CumProb) of the sample distributions.  

The pdf is the slope function of the cumulative probability.  The CumProb 

provides a good visual representation of the distribution to reveal structure and 

assess fit. 
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 Examine the histogram of the sample at a variety of bin intervals to note the 

position of modes and any characteristic shape of the distribution which can be 

identified. 

 Develop step-wise best-fit approximations to the CumProb curve. 

 Approximately match key probability levels in the sample distribution at the 

mode, median, inflection points, and any extreme events. 

 The pdf should monotonically increase approaching the mode and monotonically 

decrease away from the mode. 

 Apply careful attention to the low and high ends of the distribution.  The low side 

represents probabilities of drought and the small probabilities in the high-end tail 

are instrumental to periodic fast reservoir replenishments that also provide a key 

cumulative reservoir impact. 

 The pdf and CumProb curves should be smooth, continuous, and make sense. 

 

The Salt watershed in winter provides the largest inflow to the reservoirs, and its 

discrete CumProb and pdf functions are shown in Figure 3.4.1.  The discrete CumProb 

and pdf functions developed for the Salt watershed in summer are shown in Figure 3.4.2.  

The structure of the summer function differs from winter due to the different origins of 

precipitation and dramatically different evapotranspiration.  The discrete CumProb and 

pdf functions derived for the Verde watershed are shown in Figure 3.4.3 (winter) and in 

Figure 3.4.4 (summer).  Comparison of the four pdfs in Figure 3.4.5 shows the 

importance of periodic high winter flows for system replenishment. 
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It can be noted that the general shape of the winter Salt and Verde pdfs are similar 

and nearly exponential.  The summer pdfs for the two basins are similar to each other; but 

there are distinguishable differences between winter and summer.  During the pilot 

project study (Ellis and Murphy 2012) some potential structure in the shape of the 

summer pdfs above the modes was noted.  This was analyzed to find no explanatory 

influence of any monsoon dynamic or seasonal timing.  Instead, it was due to fitting 

uncertainty with the small sample of high events and periodic winter runoff carryover on 

the Salt beyond the May 1
st
 delineation of seasons.  Hence, the summer pdfs now exhibit 

the continuity as shown in Figures 3.4.2 and 3.4.4 and have larger relative breadth in 

comparison to winter. 

 

 
Figure 3.4.1.  Salt Winter NBS Probability Distribution Function and Cumulative 

Probability. 
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Figure 3.4.2.  Salt Summer NBS Probability Distribution Function and Cumulative 

Probability.  The fit has been slightly adjusted for an estimate of the current, post-1990s 

distribution. 
 

 
Figure 3.4.3.  Verde Winter NBS Probability Distribution Function and Cumulative 

Probability. 
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Figure 3.4.4.  Verde Summer NBS Probability Distribution Function and Cumulative 

Probability.  The fit has been downward-adjusted for an estimate of the current, post-

1990s distribution. 
 

 
Figure 3.4.5.  Comparison of Watershed-Season NBS pdfs. 
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3.4.5 Correlation Between Watersheds 

A comparison among the watershed gage records reveals seasonal covariance 

between the Salt and Verde watersheds.  This is expected considering their spatial 

proximity to one another.  Large, organized synoptic-scale storms drive winter 

precipitation which can overspread both watersheds.  Summer precipitation originates in 

more irregular patterns of monsoon outbreaks.  Hence runoff correlation between 

watersheds is expected to be stronger in winter, and this was found to be the case.  Winter 

correlation among the 127-year observations is 0.934 and summer correlation across the  

past 85 years is 0.647, and both are statistically significant (Table 3.4.1). 

Scatterplots reveal the interrelationship between the watersheds that must be 

incorporated in the methodology for generating a random sequence of water-years (see 

Figs. 3.4.6 and 3.4.7).  The methodology to generate an outcome from this joint 

probability relationship must account for the slope as well as the distribution of residuals 

around the trend between the watersheds.  The process used to arrive at statistical 

relationships describing the joint probability distributions was: 

 With a linear correlation (transformed as necessary), calculate the slope and 

intercept of the relationship. 

 De-trend the sample data by the linear fit and calculate the residuals. 

 Examine the distribution of residuals for a probability function which can be 

applied to it (as further described below).  If possible, parameterize the function 

and use it to describe the joint probability distribution. 

 Asymmetries were often found so that positive residuals were distributed 

differently than negative ones.  In such cases identify the median of the residual’s 
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population, apply a median-adjustment, and repartition the median-adjusted 

residuals into positive and negative sample sets. 

 Analyze the positive median-adjusted residuals separately from the negative 

group.  Assess whether their distribution varies with scale of the abscissa variable.  

If it does, partition the samples accordingly (but beware of reducing sample size 

to such an extent that parameter estimations will be prone to uncertainty). 

 Symmetrize the residual population (clones of the opposite sign) and perform 

normality tests.  If it is normal, calculate the sample standard deviation and 

conclude that the distribution is described by N(0, standard deviation) with 

mean=0.  In some cases the sample standard deviation may scale with the abscissa 

variable. 

 If not normal, assess whether the residuals can be described by an exponential 

distribution, Exp(lambda), where lambda is the inverse of both the mean and the 

standard deviation.  Near-equivalence of the sample mean and standard deviation 

make it readily apparent whether the residuals are exponentially-distributed. 

 If the residuals cannot be described as either normal or exponential, consider 

alternative functions or develop a discrete pdf as previously described for pdf 

development. 

 

Descriptions of the joint probability distributions that were derived for Verde vs 

Salt in winter and in summer are shown in Figures 3.4.6 and 3.4.7.  Further details of the 

algorithms are provided in Appendix C.  To generate a random outcome, a residual value 

is generated according to the parameterization shown.  The choice of whether a positive 
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or negative residual will be used is made by random number generation per the binomial 

distribution B(1,p), where p=0.5.  Once the residual is median-adjusted and the trend 

component added, the result is checked to assure it does not fall below the minimum pdf 

bound.  If it does, it is simply regenerated. 

 

 
Figure 3.4.6.  The Correlation of Verde and Salt Winter NBS and Their Joint Probability 

Algorithms. 

 

The algorithms describing the joint probability distribution shown in Figure 3.4.6 

are used to generate correlated outcomes for the Verde in winter from a Salt-winter NBS 

series that has been generated from the Salt-winter pdf.  Similarly, the joint probability 

distribution described in Figure 3.4.7 is used to generate correlated outcomes for the 
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Verde in summer from a Salt-summer NBS series.  It is important to note that the Salt-

summer series must be generated as described in the next section to reflect the winter-to-

summer correlation on the Salt (0.613, statistically significant), that arises in part due to 

incomplete winter flows by May 1
st
 carrying over into the beginning of summer. 

The Verde-winter, Salt-summer, and Verde-summer correlated series that are 

generated must be compared to and reconciled against their characteristic pdf.  This 

process is discussed in the section below describing the method for generating a complete 

random sequence. 

 

 
Figure 3.4.7.  The Correlation of Verde and Salt Summer NBS and Their Joint 

Probability Algorithms. 
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3.4.6 Season-to-Season Effects 

Small antecedent seasonal effects have been noted during investigations of 

watershed behavior in the Colorado River Basin.  Residual soil moisture, or lack thereof, 

can affect runoff behavior in the next season.  This can contribute a season-to-season 

correlation in the range of 0.2 to 0.3, a modest although sometimes statistically 

significant value.  The weak dependency might tempt one to ignore this effect for some 

analyses, but considering the uncertain importance they might lend to cumulative drought 

or reservoir effects, this study incorporated them where necessary. 

A large Salt winter-to-summer correlation of 0.613 (Table 3.4.1, Fig. 3.4.8), due 

in part to the May 1
st
 season transition, necessitates it being explicitly incorporated in the 

random series generation process.  The correlation is fortuitous, as it introduces desirable 

strength in the joint probability functions.  The algorithms describing the joint probability 

distribution for Salt winter-summer were developed per the same procedure outlined 

above for between-watershed distributions and is given in Figure 3.4.8. 

 

Table 3.4.1.  Watershed-to-Watershed and Season-to-Season Correlation Coefficients 

(r) of the Historical NBS Data Series for the Salt and Verde Watersheds.  
            

    r (1889-2014) p-value r (1928-2014) p-value 

Winter, Salt-Verde     0.934 0.000     0.935 0.000 

Summer, Salt-Verde     0.620 0.000     0.647 0.000 

Salt winter-to-summer    0.613 0.000     0.640 0.000 

Salt summer-to-winter    0.271 0.002     0.099 0.364 

Verde winter-to-summer    0.256  0.004     0.296  0.005 

Verde summer-to-winter    0.340 0.000      0.067 0.539  

 bolded values are the correlations targeted for simulation algorithm development  
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Figure 3.4.8.  The Correlation of Salt Summer NBS with Prior Winter Salt NBS and the 

Joint Probability Algorithms. 

 

A similar analysis was conducted for the Verde winter-to-summer joint 

distribution.  However, it was found unnecessary to explicitly incorporate it in the 

random sequence generation process outlined below because linkages among the other 

joint distributions were sufficient to introduce a Verde correlation between winter and 

summer in generated sequences. 

The methodology development described thus far has been within a single water-

year, with each water-year a separately generated record having no relationship to 

adjacent years.  Now, however, it should be noted that summer-to-winter correlations are 

a linkage from the summer of one water-year to the winter of the following water-year.  
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Creating linkage between adjacent water-years was a challenging part of the pilot study 

(Ellis and Murphy 2012) that involved resequencing of similar years.  However, after 

further analysis of the correlation’s evolution over time, it was noted that the pre-

instrumental data reconstruction (1889-1912) was contributing to a correlation while the 

instrumental record was not.  Summer-to-winter correlations are small (<0.1) and not 

statistically significant when calculated over just the instrumental period (Table 3.4.1).  

Without knowledge of how the data reconstruction might have adopted this characteristic, 

it was decided to assume no statistically significant summer-to-winter relationship as the 

more recent data indicate. 

3.4.7 Generation of 10,000-Year Sequences 

The first step towards construction of a 10,000-year series is the generation of 

10,000 outcomes from each of the four discrete pdfs depicted in Figures 3.4.1 to 3.4.4.  

Many statistical software programs can accomplish this and the random number 

generator functions in Excel2010 were used to generate a dozen such series for each pdf.  

Distributions of the 120,000 generated years are shown compared to their target pdf in 

Figures 3.4.9 to 3.4.12.  As can be seen, generated series have small variations 

converging to the pdf curve. 

The series in Figures 3.4.9 to 3.4.12 will be completely independent of each other 

as-generated and not have the required correlations between watersheds or seasons.  The 

first step towards introducing those applies the algorithms given in Figure 3.4.6 to each 

10,000-year series generated from the Salt winter pdf to generate an accompanying, 

correlated Verde winter series.  Those Verde outcomes could be used as-is; but it was 

found that while they were close to the desired distribution, an improvement could be  
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Figure 3.4.9.  The Salt Watershed Winter NBS p.d.f. and Distribution of 120,000 

Generated Outcomes. 

 

made by reconciling them with the Verde winter series independently generated for 

Figure 3.4.11.  The reconciliation procedure sorts each of the Verde winter series in 

ascending order and then substitutes the pdf-generated values for the correlation- 

generated values.  The substitution is therefore essentially occurring on a nearest-

outcome basis between the two Verde series.  The year and Salt winter values accompany 

the sort-and-substitute process so that the joint series can be returned to the original year 

sequence by sorting on it.  The result was Salt-Verde winter correlations shown in Table 

3.4.2 versus the target of 0.934. 
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Figure 3.4.10. The Salt Watershed Summer NBS p.d.f. and Distribution of 120,000 

Generated Outcomes. 

 

The next step introduces a Salt winter-to-summer correlation by applying the 

algorithms given in Figure 3.4.8 for Salt summer to each 10,000-year series generated 

from the Salt winter pdf.  The process is conducted in a similar manner to what was 

described above for the Verde winter.  A reconciliation procedure sorts the correlation-

generated and the pdf-generated Salt summer values and substitutes the later for the 

former.  The dual winter series and year have accompanied the sort so that all are 

returned to the original year sequence.  The result was the Salt winter-to-summer 

correlations shown in Table 3.4.2 versus the target of 0.613. 
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Figure 3.4.11.  The Verde Watershed Winter NBS p.d.f. and Distribution of 120,000 

Generated Outcomes. 

 

Similarly, a correlated series for Verde in summer is introduced from the Salt in 

summer with the correlation algorithms described in Figure 3.4.7.  Following the 

reconciliation procedure with the pdf-generated series and a re-sorting, the summer 

correlations between watersheds are as given in Table 3.4.2.  While correlations are 

close, results could be modified by slope-tuning the linear relationship depicted in the 

figures.  However, this method was not employed in any of the algorithms for creation of 

correlated random sequences used in this study. 

The remaining correlation of interest within a water-year is the Verde winter-to-

summer.  As previously mentioned, it was found that the correlation algorithms already  
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Figure 3.4.12.  The Verde Watershed Summer NBS p.d.f. and Distribution of 120,000 

Generated Outcomes. 

 

applied generated a linkage between these seasons on the Verde.  The correlation results 

are documented in Table 3.4.2 where it can be seen that the Verde winter-to-summer 

correlation has been more than achieved and all others are close to the target values. 

The scatterplot positions of a 10,000 year sequence of values generated for the 

winter season between the Salt and Verde watersheds is shown in Figure 3.4.13 along 

with the historical observations.  As can be seen, the generated values overlay the field of 

observations reasonably well.  The watersheds’ scatterplot in summer is shown in Figure 

3.4.14.  It was found that the correlation algorithm to the high-side of the trend follows an 
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exponential distribution.  This high-side exponential behavior was found for both the Salt 

and Verde in summer, and results in a long high-side tail of generated values. 

 

 
Figure 3.4.13. Salt and Verde in Winter; 10,000-Years of Stochastically Generated NBS 

Values in Comparison to Historical Observations. 
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Table 3.4.2.  Salt-to-Verde and Season-to-Season NBS Correlation Coefficients for the 

Dozen 10,000-Year Stochastic Series Compared to the Historical Data Series. 

 

 
Figure 3.4.14. Salt and Verde in Summer; 10,000-Years of Stochastically Generated NBS 

Values in Comparison to Historical Observations. 

Median Mean Winter Summer Salt Verde Salt * Verde *

Historical Record 835,681 1,184,014 0.93 0.65 0.61 0.30 0.10 0.07

10,000-Year Stochastic

Sequence A 850,500 1,159,526 0.92 0.67 0.61 0.38 -0.03 -0.02

Sequence B 830,500 1,159,741 0.92 0.67 0.63 0.39 0.01 0.02

Sequence C 851,500 1,170,977 0.93 0.68 0.62 0.38 0.00 0.01

Sequence D 848,500 1,155,608 0.92 0.67 0.61 0.38 -0.01 -0.02

Sequence E 850,500 1,166,511 0.93 0.68 0.62 0.39 0.01 0.00

Sequence F 866,500 1,168,955 0.92 0.67 0.62 0.38 -0.01 0.00

Sequence G 845,000 1,157,149 0.93 0.66 0.63 0.39 0.01 0.00

Sequence H 848,500 1,161,951 0.92 0.67 0.61 0.38 -0.02 -0.01

Sequence I 857,000 1,171,184 0.93 0.67 0.62 0.39 0.01 -0.01

Sequence J 846,000 1,168,140 0.92 0.67 0.61 0.38 0.00 0.00

Sequence K 856,500 1,169,523 0.92 0.67 0.61 0.39 0.01 0.00

Sequence L 848,500 1,158,858 0.93 0.66 0.61 0.37 0.00 0.01

All 120,000 years 849,500 1,164,010 0.92 0.67 0.62 0.38 0.00 0.00

* = not statistically significant

ANNUAL NBS CORRELATIONS

(acre-feet/year) Salt-to-Verde Winter-to-Summer Summer-to-Winter *
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Figure 3.4.15. Salt in Summer vs Salt in Winter; 10,000-Years of Stochastically 

Generated NBS Values in Comparison to Historical Observations.  

 

The scatterplot of generated values representing the Salt watershed’s winter-to-

summer seasonal dependency (r=0.613) is shown in Figure 3.4.15.  The generated values 

overlay the field of historical observations reasonably well and extend to the high-side in 

summer due to their exponential distribution above the trend.  The scatterplots for the 

other seasonal correlations are not included here (Salt summer-to-winter, Verde for each) 

because at their low correlations there no evidence of relationships in scatterplot patterns. 

A comparison of the simulated NBS probability distribution to the historical record at the 

aggregate level is shown in Figure 3.4.16 with close alignment of the cumulative  

distribution functions.  It is satisfying to observe that at the aggregate level the 
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cumulative probability of generated values is in close agreement with the historical 

series, indicating that the random generation methodology is hierarchically representative 

top-down as well as bottom-up. 

 

 
Figure 3.4.16. Probability Distributions of the Historical Record and 120,000 Years of 

Stochastically Generated Annual NBS. 

 

An example of temporal variability in a generated series is shown in Figure 

3.4.17.  All 120,000 years cannot be displayed in one graphic, so just one 500-year 

sample segment of model output is shown.  The data have been smoothed with the 

Lanczos filter to suppress high-frequency components so that decadal variability of the  

underlying trend-cycle is revealed.  The filter-smoothed historical series is also overlaid 

for comparison purposes.  Roughly similar periodicity and amplitude variations between  
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the generated and historical series can be observed.  Every portion of the series is unique 

in its particular pattern of variability, but all cycle in one fashion or another around the 

long-term median.  The generated series contains periods similar to what has been 

historically experienced but also reveals higher and lower extremes of shorter and longer 

temporal duration, as suggested by tree ring data.  The historical series is but one 

manifestation of all possible outcomes that the climatically-driven watersheds can yield  

for net inflows to the reservoir system.  The dozen 10,000-year generated series provide a 

more thorough, detailed exploration of many characteristics and impacts – enabling a 

complete assessment of system vulnerability and resilience once passed through the 

reservoir operations model. 

 
Figure 3.4.17. A 500-Year Sample from the Stochastically Generated 120,000 Years, 

Compared to the 127-Year Historical Record. 
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3.5 Hydrologic Sensitivities to Climate 

3.5.1 Abstract 

Once forecasts of future precipitation and temperature changes are developed, the 

influence of those climate conditions must be translated to forecasts of change in net 

basin water supply (NBS) from the watersheds.  Quantification of the sensitivity of runoff 

to climate change has been reported in the literature through modeling studies of 

hydrologic processes that entail considerable rigor but often with uncertain, 

unsatisfactory, and incomplete results.  These have typically been pursued by 

computationally-intensive land surface hydrology models (LSHMs) involving complex 

parameterizations (Schaake 1990; Risbey and Entekhabi 1996; Vano et al. 2012).  

Findings are often specific to the watershed studied, and a watershed is chosen in part for 

well-behaved hydrologic response (Gaussian, constrained, seasonal simplicity).  The Salt 

and Verde watersheds are uniquely noncompliant in these regards, with limited 

quantification of land-atmosphere dynamics in the region.  For this investigation, not only 

precision but accuracy of results is important to investigative validity.  And, 

interpretations must be applicable to the key probability distributions underlying the 

stochastic simulation methodology so that alternative NBS sequences can be generated 

and passed to reservoir operation simulations.  The literature indicates that a satisfactory 

LSHM solution is elusive in these regards. 

An alternative approach was demonstrated by Vano and Lettenmaier (2013, 2014) 

employing a pair of heuristic runoff dependency parameters that have been central to 

many research investigations.  They showed that calculations applying a precipitation 

elasticity (ratio of %-runoff change to %-precipitation change) and temperature 
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sensitivity (%-runoff change per 1
o
C temperature change) yielded sufficiently 

comparable results to variable infiltration capacity (VIC) land surface hydrology 

modeling of Colorado River watersheds to provide viable assessments of water resource 

impact.  The heuristics can be derived empirically from the observational record in 

keeping with the overall approach of this investigation.  Regression analyses and kriging 

methods have been employed to develop seasonal heuristics for each watershed and at the 

SRP reservoirs. 

While results align with expectations at the mean, non-linear trends were revealed 

across key variables, posing important stream flow implications depending on relative 

position within probability distributions.  Winter temperature sensitivity is nearly 

indistinguishable at low evapotranspiration response, while it is significant in summer 

with overland flow impairment and reservoir losses.  It is lessened by an active monsoon 

season, which also dilutes the loss contributions at reservoirs.  Precipitation elasticity of 

runoff in semi-arid regions is often assumed to be approximately 2.0, but this study 

revealed higher values in winter and lower ones in summer, with smaller elasticity when 

approaching the base flow level and in the upper range of precipitation and runoff.  

Descriptive algorithms have been derived that can be readily applied to NBS distribution 

functions with any climate change assumption to assess stream flow impact and water 

resource sustainability for the region. 

3.5.2 Literature Review 

Risbey and Entekhabi (1996) pointed out the large uncertainties in climate model 

simulated precipitation fields (which persist today) that create a basic weakness in the 

approach of coupling climate with hydrologic models.  This can be significant at the 
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basin level, particularly with the orographic character of the western United States.  

Nonlinearities in elasticity response noted by all researchers further weaken confidence in 

that approach.  Sankarasubramanian et al. (2001) reported that most prior hydrology 

research used conceptual watershed models for climate sensitivity studies and that model 

validation has been an ongoing challenge.  Application of different models to the same 

watershed was leading to significantly different results.  And, quite remarkably, analyses 

of the same basin using the same model could also lead to different results due to 

differing model parameter estimates and calibration differences resulting in altered model 

sensitivities.  They observed that, if the correct form of the hydrologic model is unknown, 

then the accuracy of elasticity estimations derived from them are questionable.  Vano et 

al. (2012) came to the same finding upon conducting simulations of the CRB with five 

LSHMs.  They reported streamflow outcomes at Lees Ferry with a wide span of 

precipitation elasticities, ranging from 2 to 6.  And, differences in annual temperature 

sensitivities between models were revealed, with ST  ranging from -2% to -9% per 
o
C.  

There were substantial seasonality and streamflow magnitude differences among the 

models along with varying and highly nonlinear sensitivity responses.  Differences 

among the LSHMs were larger than the precision required for valid application to this 

investigation. 

Elasticity of runoff in proportion to precipitation is a concept borrowed from the 

field of economics and introduced to hydrology by Schaake (1990).  Elasticity is a 

quantification of the proportional change in one variable relative to the proportional 

change in another.  For the case of runoff relative to precipitation –  
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ΔR/R = εp (ΔP/P)        (3.12) 

where R = runoff, P = precipitation, 

ΔR = marginal change in runoff, ΔP = marginal change in precipitaiton,  

and εp = precipitation elasticity of runoff  (unitless) 

The changes, ΔR/R and ΔP/P, are typically expressed in percentage terms.  So, for 

example, an elasticity, εp = 2.0, indicates that a 10% change in precipitation will result in 

a 20% change in runoff.  With the recognition that temperature also influences the 

relationship, runoff response to both variables is often graphically represented with iso-

contours of percentage runoff change according to percentage precipitation change on the 

abscissa and temperature on the ordinate axes (Risbey and Entekhabi 1996; Fu et al. 

2007a).  An example from this investigation is given in Figure 4.1.5 of Chapter 4.  When 

the graph is examined in the vertical direction, a percentage change of runoff for one 

degree of temperature change is defined as temperature sensitivity of runoff, ST  (Fu et al. 

2007a) –   

ST  = (ΔR/R) / ΔT  (units: % per 
o
C)    (3.13) 

Vano et al. (2012) examined the interaction of the εp and ST  terms in LSHM 

simulations of the CRB and found their combined effect to be additive within modest 

ranges of temperature and precipitation change.  The interactive term was quite small, 

and the heuristics may be assumed orthogonal and simply additive when considered in 

combination. 

Conceptual hydrological models and observational studies of the Sacramento 
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River basin of California conducted by Risbey and Entekhabi (1996) came to some 

general findings subsequently confirmed by other researchers.  Streamflow amounts are 

strongly sensitive to precipitation but relatively insensitive to mean seasonal temperature.  

This is consistent with many regression analyses that show most runoff variance 

explained by precipitation with only modest additional variance explained by 

temperature, although this can be seasonally dependent.  Response to precipitation 

exhibits substantial nonlinearity in that it depends on the precipitation volume change and 

the mean climate state.  There are greater changes in streamflow response during very 

wet years so that a larger precipitation change results in a greater nonlinear streamflow 

response.  Higher soil moisture and larger snowpack increases the amount of runoff 

relative to precipitation.  During dry years a weak linear to nonlinear relationship can be 

present.  They found that the seasonal climate cycle in the Sacramento basin is typically 

strong enough to essentially re-initialize the basin’s hydrology every year by erasing 

long-term surface moisture storage that would provide hydrologic memory.  The Salt and 

Verde basins behave similarly if even more so considering their higher potential ET 

throughout the summer season. 

Risbey and Entekhabi also observed that streamflow timing is sensitive to 

temperature.  Interestingly, this leads to a buffering effect that reduces streamflow 

volume sensitivity to temperature.  Losses from sublimation of snowpack and 

evapotranspiration are typically the main temperature effect, but in marginal snow 

regions an earlier melt will tend to occur when it is cooler and energetic potential for 

those effects are closer to their annual minimum.  If runoff occurred later in spring the 

energetic potential would be higher.  This was also noted by Jeton et al. (1996).  Either 
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streamflow timing or amount, but not usually both, are sensitive to changing mean 

temperatures.  Vano et al. (2012) also reported that some sub-basins in their LSHM 

simulations showed increasing winter-spring runoff with increasing temperature, and the 

mechanism seemed most prevalent in transitional locations with a temperature-sensitive 

snowpack.  As will be noted below (Fig. 3.5.5), some manifestation of this effect appears 

in analysis of the Salt River watershed. 

Sankarasubramanian et al. (2001) pointed out that since elasticity is a function of 

runoff & precipitation, elasticity findings can be expected to be complex across the span 

of runoff and precipitation regimes.  That complexity makes inter-basin comparisons 

challenging, and they simplified doing so by just examining the mean precipitation level 

for basins having Gaussian variability (Sankarasubramanian and Vogel 2003) and 

skirting acknowledged nonlinearity issues. 

Fu et al. (2007a) reminds us that full climate elasticity of streamflow is really a 

conditional precipitation elasticity accounting for the effects of temperature.  To 

accommodate that, they introduced the two-parameter indices defined earlier: 

precipitation elasticity and temperature sensitivity.  In a comparative study of these with a 

VIC hydrologic model applied to the UCRB, Vano and Lettenmaier (2014) confirmed 

that these heuristics provide viable estimates of climate sensitivity that avoid LSHM 

simulation complexities and allows the influence of temperature and precipitation to be 

segregated for a better understanding of the drivers of hydrologic change.  Fu et al. 

explored how to reflect the complicated non-linear relationship among runoff, 

precipitation, and temperature for assessment of future climate scenarios.  This included 

various methods by which to graphically and parametrically express climate elasticity  
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(Fu et al. 2007a; Fu et al. 2007b), and they searched for those which have the best fitting 

error to observational data records.  They found that kriging methods were best at 

providing multivariate interpolations with observational data from which functional 

expressions of elasticity and sensitivity can be calculated.  This methodology was 

employed for this investigation along with guidance from prior research, as will be 

explained below.  Fu et al. concluded that important but complicated nonlinear response 

is not easily captured in a single elasticity value, and multi-dimensional representations 

must be employed, often with seasonal differences specific to the watershed.  And, they 

warn that while exploration of temperature and precipitation changes at the margin may 

illuminate a watershed’s climate response, results are a function of the data set explored.  

More data is better, limited data leads to low confidence in results, and care should be 

exercised in extrapolations too far beyond the range for which data records are available. 

3.5.3 Temperature Sensitivity 

While temperature increases are readily observed in the historical record, 

manifestations of effects on the hydrologic cycle have remained elusive to-date (Murphy 

and Ellis 2014).  However, temperature-induced changes might have been small and as-

yet unresolvable in their effects.  The Hurst-Kolmogorov analysis in Section 3.3.12 was 

conducted to further examine the possibility of recent subtle impairments.  It provided 

little indication of winter effects but did show the possibility of emerging summer runoff 

impairment and some contributions to miscellaneous loss coinciding with recently 

elevated temperatures.  While Vano et al. (2012) deduced a general temperature 

sensitivity from LSHM modeling of the UCRB of  -6.5±3.5%/ 
o
C, further work by Vano 

and Lettenmaier (2014) revealed the seasonal dependence of temperature sensitivity (and 
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for precipitation elasticity as well).  Summer values were several times what were found 

for the coolest winter months.  They also observed slightly higher sensitivity once 

temperature had been elevated.  Their aggregate finding of ST = -6.5%/ 
o
C is similar to 

results of water budget runoff modeling of LCRB watersheds by Ellis et al. (2008), which 

averaged 6%/
o
K.  These values are close to expectations from PE relationships such as 

the Hamon equation which has exponential temperature dependence, going as e
0.062T

 

(Ellis et al. 2008).  As such, PE is small at low temperatures, but increasing at 6.4%/
 o
K.  

Assuming an annual value similar to these and small winter sensitivity, then the balance 

of summer sensitivity could be a double digit percentage. 

If this has emerged in the Salt and Verde watersheds with rising temperatures 

during the 1980s-90s, then a comparative calculation between pre- and post-rise periods 

can provide a bounding estimate to the sensitivity assessment.  Instrumented 

miscellaneous loss data has only been available since the reservoirs were placed in 

service, so the pre-rise period for the Salt side of the system is 1935-1979 and for the 

Verde it is 1946-1979.  Temperatures appear to have paused since 2000 (Fig. 3.3.1).  

Comparative calculations are shown in Table 3.5.1, coming to a summer temperature 

sensitivity estimate of approximately -20%/
o
C.  However, the short recent period has 

been relatively dry with an ongoing drought, and this calculation is not controlled for 

precipitation.  It therefore provides only a maximum estimate of summer ST.  The kriging 

analysis below rectifies this deficiency.  The calculations in Table 3.5.1 also reveal a 

larger miscellaneous loss increase on the Salt side of the system than the Verde, probably 

attributable to relative reservoir sizes.  Further examination of ML time series (not  
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shown) does show that average ML levels appear slightly elevated in recent years.  The 

Verde exhibits no recent ML trend while there may be some for the Salt.  Elevated ML 

emerged as the runoff and NBS curves appear to undergo slight declines and average ML 

between periods was found to have a statistically significant difference for both the Salt 

and Verde sides of the system. 

 

Table 3.5.1.  Comparison of Recent to Early Periods for Estimates 

of Maximum Expected Temperature Sensitivity. 

 

 

Similar calculations were performed for the winter season.  HK analyses were 

essentially equivalent between runoff and NBS at low values, and ML distributions 

between time periods are not statistically different, indicating negligible temperature 

sensitivity of runoff and no evidence of changing ML contributions in winter. 

Salt Verde

Early period 1931-1979 1946-1979

Recent period 2000-2015 2000-2015

 ΔT between periods ~ +1.3
o
C ~ +1.5

o
C

Runoff (RO)

mean, Early 161,900 68,700

mean, Recent 115,000 49,000

ΔRO between periods -46,900 -19,700

-29% -29%

Temperature Sensitivity, S T : -22% -19% per 
o
C

MiscLoss (ML)

mean, Early 13,600 -500

mean, Recent 44,100 5,500

ΔML between periods 30,500 6,000

NBS (=RO-ML)

mean, Early 148,300 69,200

mean, Recent 70,900 43,500

ΔNBS between periods -77,400 -25,700

of which, ΔRO is: 61% 77%

of which, ΔML is: 39% 23%

*These are maximum expectations only, a bounding calculation.*

Summer Season
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Regression analyses of runoff and miscellaneous loss also show no temperature 

dependence of those variables in winter.  81% of Salt winter runoff variance is explained 

just by in-season precipitation, with an additional 5% explained by antecedent season 

precipitation and runoff.  84% of Verde winter runoff variance is explained just by in-

season precipitation, with another 1% explained by antecedent season runoff.  

Temperature does not enter the step-wise winter regression relationships and its 

correlation with both runoff and miscellaneous loss are small and statistically 

insignificant. 

 This is not the case in summer when temperature effects are evident.  Explained 

variances are smaller than seen for the winter season (40% Salt, 55% Verde); and 

although precipitation explains most of the variance, temperature does enter the step-wise 

regression relationship for both watersheds.  It was noted, however, that when Salt 

summer runoff is above about 200,000 acre-feet in the season, temperature is absent from 

the regression relationship.  Those are typically wet years when there is carry-over 

streamflow from April into May and temperature effects appear dampened.   

Correlations of summer temperature with runoff and miscellaneous loss were found to be 

statistically significant.  Runoff impairment dynamics occur on the watershed, but it is 

believed that most miscellaneous loss mechanisms in summer are at the reservoirs.  

Therefore the analysis of summer NBS temperature sensitivity was conducted for those 

variables separately as well as in combination. 

 The regression equations for summer runoff can be differentiated with respect to 

temperature for a sensitivity estimate applicable at the center of the runoff distribution (in 
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the vicinity of the mean/median/mode).  These were calculated for comparison to other 

results and found to be: 

 Salt-Summer ST  = ~ -11%/
o
C  Verde-Summer ST  = ~ -10%/

o
C 

These estimates align well with the nominal sensitivity (~ -10%/
o
C) found by Vano and 

Lettenmaier (2014) for the UCRB in May-September.  However, such values only apply 

at the average; and with so much of the research literature indicating nonlinear response, 

a more sophisticated analysis methodology is required. 

Following the guidance of Fu et al. (2007a; 2007b) and other hydrologists 

(personal communications), kriging methods were employed to explore the three-

dimensional space of runoff response (z) to temperature (y) and precipitation (x).  

Kriging is an optimal interpolation method that gives the best linear unbiased estimate of 

intermediate values within a domain of irregularly sampled data.  Interpolating methods 

based on other methods’ criteria have been shown to not necessarily yield the most likely 

intermediate values.  The technique is also known as Wiener–Kolmogorov prediction and 

was originally developed based on the Masters thesis work of Daniel G. Krige who 

sought to estimate the most likely distribution of gold ore based upon data from a limited 

set of boreholes.  Different types of kriging may apply depending on the properties of the 

data examined, and for this investigation ordinary kriging was employed as coded in 

Python by Murphy (2015).  Specific runoff interpolation points were not of interest since 

ST and εp are relative metrics assessed by orthogonal slopes within the 3-dimensional 

field.  Therefore the temperature-precipitation space was examined granularly with 

100x100 cells for slope analysis, and cell size did not affect results.  The krige solution 
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for Salt runoff in winter is given on Figure 3.5.1 and for summer in Figure 3.5.3.  The 

Verde solutions are given in Figures 3.5.2 & 3.5.4.  Some variability due to contributions 

of individual years can be seen, but the general patterns reveal the major difference 

between winter and summer.  Little vertical trend with temperature is evident in winter 

while it is clearly present in summer. 
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Figure 3.5.1.  Kriging Solution for Salt Watershed Runoff Response in Winter. 

 
Figure 3.5.2.  Kriging Solution for Verde Watershed Runoff Response in Winter. 
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Figure 3.5.3.  Kriging Solution for Salt Watershed Runoff Response in Summer. 

 
Figure 3.5.4.  Kriging Solution for Verde Watershed Runoff Response in Summer. 
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A maximum amount of observational data is desired for assessing hydrologic 

response.  But, it must be acknowledged that across the ~120 years of data, various 

changes both transitory and transformative may have occurred on the watersheds aside of 

temperature and precipitation and that those might show up in hydrologic response.  

Examples include land cover changes with settlement, agriculture expansion or 

retirement, cessation of logging and reforestation, fires, one-time meteorological events, 

etc.  Where data indicated such a possibility, kriging was conducted with and without 

anomalous observations and among data subsets to assess their influence on temperature 

sensitivity and precipitation elasticity estimates.  The goal was quantification of typical 

climate elasticity that represents a watershed-season’s current behavior. 

Evapotranspiration dynamics are different when water traverses a land surface 

before finding its way into a protected streamflow channel.  Thereafter, larger channels 

sustain riparian areas that influence evapotranspiration, and reservoir evaporative losses 

are different still.  Water passing a reservoir input gage will have originated either in 

baseflow from spring-fed groundwater sources or overland flow from precipitation.  The 

relative contributions among all these differences are reflected in nonlinear sensitivity.  In 

the limit as precipitation approaches zero only baseflow is subject to temperature 

impairment which is smaller than effects on overland flow.  Regression relationships 

show inverse collinearity of temperature with precipitation.  Large precipitation events 

are not only cooler but large runoff volumes across fully saturated soils experience 

diminished temperature sensitivity towards some minimal value in the limit of high 

precipitation.  All the above considerations were evaluated with the expectation that 

temperature sensitivity will be a minimum at baseflow without precipitation, rising to its 
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maximum effect in typical runoff regimes, and then diminish towards high precipitation 

and runoff levels. 

Once a kriging solution is calculated, precipitation level can be controlled to 

explore temperature sensitivity by vertical iso-precipitation cuts through the krige 

surface.  Multiple curves were extracted and plotted for runoff vs temperature.  

Temperature levels were examined for difference of slope, and sensitivities were 

calculated using various slope segments.  In most cases continuity of behavior could be 

identified across the sample temperature range, and the recent upper temperature range 

was of primary interest since it is the basis from which future temperature changes will  

 

 
Figure 3.5.5.  Salt-Winter Temperature Sensitivities by Precipitation Level per Krige 

Solutions. A uniform 0%/
o
C was adopted . 
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occur.  Sensitivity by precipitation level (and corresponding average runoff level) is then 

plotted and a pattern across levels is identified.  Some Salt-winter krige results are shown 

in Figure 3.5.5.  There is variability around an average +1%/
o
C sensitivity, but with 

indeterminate statistical significance.  This positive sensitivity was mentioned in the 

literature review above, and reverses to a negative sensitivity if winter season definition 

is extended through May to include late-season runoff and warmer temperatures.  No 

trend by precipitation level is evident and for the purposes of this investigation a uniform 

0% or +1% could be applied.  A zero value was adopted.  Verde results are shown in 

Figure 3.5.6 with small sensitivities of unclear statistical significance.  Upon various  

 

 
Figure 3.5.6.  Verde-Winter Temperature Sensitivity by Precipitation Level per Krige 

Solutions. A uniform -3%/
o
C was adopted for NBS below 182,000 acre-feet/season 

(P<2.5E06) and 0%/
o
C above that level. 
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analyses of the data, it appeared that a nominal -3%/
o
C could be assumed for 

precipitation below 2,500,000 acre-feet/season (NBS<182,000) and 0%/
o
C above that 

level. 

 Very different krige results were obtained for the summer season.  Iso-

precipitation curves display diminishing runoff with increasing temperature.  Sensitivity 

calculations had to be made with various data subsets and combinations of variables to 

resolve a pattern, in part because summer runoff efficiencies are very low so that 

precipitation-dependent findings only weakly translate to runoff levels.  The Salt-summer 

curve in Figure 3.5.7 was derived for runoff in its upper distribution and baseflow 

 

 
Figure 3.5.7.  Salt-Summer Temperature Sensitivities by Runoff Level per Krige 

Solutions. 
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sensitivity was estimated, allowing the intermediate portions of the curve to be identified.  

Comparative analyses also revealed temperature dependence for miscellaneous loss of 

10,000 acre-feet/
o
C, a significant but understandable value considering the surface area of 

Lake Roosevelt susceptible to evaporative loss.  This was smaller for the Verde side of 

the system as shown in Figure 3.5.8 where it is a function of NBS level.  Verde ST   

follows a similar inverted-triangle pattern as the Salt.  Nominal temperature dependence 

in the center of the runoff probability distribution is close to the -10%/
o
C estimate from 

the regression analysis above.  Now that the seasonally distinct and nonlinear temperature 

dependencies are revealed, it is clear that the result of their pairings with NBS probability 

 

 
Figure 3.5.8.  Verde-Summer Temperature Sensitivities by Runoff Level per Krige 

Solutions. 
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distributions will result in significant differences from what might be assumed by a naïve, 

homogeneous sensitivity assumption.  All of the temperature sensitivity algorithms 

derived from this analysis are tabulated in Appendix D. 

3.5.4 Precipitation Elasticity 

As discussed earlier, precipitation elasticity of runoff is defined as the marginal 

change of runoff in proportion to the marginal change of precipitation for the 

hydroclimate R-P regime being examined: 

εp = (ΔR/R) / (ΔP/P)        (3.14) 

which can be rearranged to 

εp = (ΔR/ΔP) / (R/P)        (3.15) 

and we see that this is the slope of the runoff-vs-precipitation relationship divided by 

runoff efficiency.  An aggregate elasticity estimate can therefore be made by an overall 

R-vs-P slope calculation divided by average runoff efficiency.  These are shown for the 

Salt and Verde watersheds in winter in Figures 3.5.9 and 3.5.10, with aggregate εp = 2.39 

for the Salt in winter and 2.01 for the Verde.  It is also evident that the relationship has 

changed over time, with higher runoff and efficiency in wetter times than dry.  

Nonlinearities are therefore expected, and this calculation is not controlled for 

temperature, so it is only a preliminary estimate. 

Estimates were also attempted for the summer season, but runoff efficiencies and 

slopes from R-vs-P scatterplots are very small with weak correlations (not shown).  Slope 

and efficiency were approximately equal so that εp appeared close to 1.0.  But at such 

low runoff levels baseflow constitutes an important portion of the streamflow that is 
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Figure 3.5.9.  Salt-Winter Aggregate Elasticity by Precipitation-Runoff Slope and 

Efficiency. 

 

uninfluenced by precipitation.  It became clear that overland flow elasticity can only be 

accurately assessed by subtracting a baseflow estimate from runoff data before the 

elasticity calculation is made.  Baseflow was estimated from minimum levels in the 

stream gage record and checked at low precipitation in kriging solutions.  At the opposite 

extreme, at high runoff, net gain contributions from heavy precipitation have been 

documented that are not captured by the stream gage.  Runoff efficiency might therefore 

be under-estimated and influence the elasticity calculation in those regimes.  Multiple 

versions of each dataset were therefore evaluated – with and without baseflow, with and 

without net gains – to best identify the precipitation-dependent streamflow. 
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Figure 3.5.10. Verde-Winter Aggregate Elasticity by Precipitation-Runoff Slope and 

Efficiency. 

 

 Analyses of the kriging solutions (modified Figs. 3.5.1 – 3.5.4) were examined by 

horizontal iso-temperature cuts of the interpolated surface.  Consistency of the curves 

across temperature levels was examined and those from higher temperature levels used if 

trends were apparent.  Local slopes, efficiencies, and elasticities were calculated across 

the range of precipitation and runoff.  At the low and high limits of precipitation, R/P 

efficiency should approach minimum and maximum values (see Figs. 3.5.11, 3.5.12).  

With baseflow subtracted, elasticity starts at 1.0 in the limit of zero precipitation and 

increases towards a maximum value mid-range at typical precipitation-runoff levels.  It  
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Figure 3.5.11. Salt-Winter Runoff Efficiency by Precipitation Level, Adjusted for 

Baseflow and Net Gains. 

 

then declines towards high precipitation levels as runoff efficiency approaches a 

maximum value and incremental runoff occurs in equal proportion to further increases of 

precipitation.  It was discovered that efficiencies at the high end calculated from the krige 

solution were sometimes inconsistent with observational data, probably due to too few 

observations for kriging at the edge of the interpolation space. The ends of efficiency 

curves for the solutions were therefore re-estimated where needed such that elasticity did 

approach 1.0 rather than droop as shown at the high-ends in Figures 3.5.13, 3.5.14.  The 

triangular shape of the elasticity curve became apparent across all data sets examined.  

And, as shown in Figures 3.5.13 and 3.5.14, low- and high-end segmented linear fits were 
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Figure 3.5.12. Verde-Winter Runoff Efficiency by Precipitation Level, Adjusted for 

Baseflow and Net Gains. 

 

calculated using data from the portions where there was confidence in krige results.   

These fits are the algorithm solutions used for this investigation.  Aggregate elasticity 

was re-calculated from data modified for baseflow and net gains, and those values 

correspond well to the peak values of the triangular winter curves as noted in Figures 

3.5.13 and 3.5.14. 

 Summer season elasticity proved to be a more tenuous challenge.  Runoff 

efficiency is very low on both watersheds in summer and even lower when baseflow is 

subtracted from the data.  ET is so high in summer that little precipitation is translated to 

NBS (Salt ~2.5%, Verde ~1%).  As can be seen in Figures 3.5.15 and 3.5.16, there is 
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Figure 3.5.13. Salt-Winter Precipitation Elasticity of Runoff, by Runoff Level Adjusted 

for Baseflow. 

 

nearly no relationship of efficiency with precipitation.  In the case of the Salt, watershed  

aggregate elasticity can essentially not be estimated (Fig. 3.5.15).  The addition of a few 

new data points could readily change the estimate of ~1.0.  Fortunately, kriging was able 

to identify more of a relationship and a solution was found in Figure 3.5.17.  But, the 

elasticity curve is lower than for other watershed-seasons.  The Verde summer krige 

solution (Fig. 3.5.18) shows high variability due to the wide and variable scatter of 

efficiency with precipitation (Fig. 3.5.16), but a fitted solution was derived and an 

aggregate value was calculated (see Fig. 3.5.18). 

The elasticity solutions thus far are a function of the level of watershed runoff less 
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Figure 3.5.14. Verde-Winter Precipitation Elasticity of Runoff, by Runoff Level Adjusted 

for Baseflow. 

 

baseflow.  In addition, net basin supply change also includes any marginal contribution to 

miscellaneous loss from precipitation change at the reservoirs.  This was examined to 

find no incremental ML at precipitation below the average level, but small net gain  

contributions were evident above the mean precipitation level.  To develop the 

relationship of ML change to marginal precipitation change, a couple simple relationships 

can be examined. 

First, a simple regression is performed with data above the mean value, and its 

solution can be differentiated to get –  ΔML/ΔP = c   or   ΔP = ΔML/c (3.16) 



133 
 

When NBS is plotted as a function of precipitation at the reservoirs a linear relationship 

is found that can be expressed as – 

  NBS = m P + b     or     P = (NBS – b)/m   (3.17) 

And, we can define marginal precipitation change as ΔP/P = δ, a fractional value.  

Combining these, 

   δ  = ΔP/P = (ΔML/c) / ((NBS – b)/m)    (3.18) 

And, upon rearranging obtain – 

   ΔML = δ c (NBS - b) / m   *     (3.19) 

(*only applicable above mean precipitation or corresponding NBS) 

 

The constants c, b, and m are empirically derived from the data set for a 

watershed-season.  The incremental ΔML per precipitation change, δ, is then added to 

baseflow (assumed fixed) and change of runoff (δxεpxR) to arrive at a new NBS value in 

total response to the precipitation change.  Although the ΔML net gain mechanism 

applies mostly in winter, small contributions were also identified for the summer season.  

All of the precipitation elasticity algorithms derived from this analysis are tabulated in 

Appendix D. 
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Figure 3.5.15. Salt-Summer Runoff Efficiency by Precipitation Level, Adjusted for 

Baseflow. 
 

 
Figure 3.5.16. Verde-Summer Runoff Efficiency by Precipitation Level, Adjusted for 

Baseflow. 
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Figure 3.5.17. Salt-Summer Precipitation Elasticity of Runoff, by Runoff Level Adjusted 

for Baseflow. 
 

 
Figure 3.5.18. Verde-Summer Precipitation Elasticity of Runoff, by Runoff Level 

Adjusted for Baseflow. 
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3.6 Multi-Decadal Climate Change Forecasts 

“…; a simple model with well-understood flaws may be preferable to a sophisticated model whose 

  correspondence to reality is uncertain.”        - Lins & Cohn, 2011 

 

Water operations management is concerned with two long-range planning time 

horizons: 30 years ahead for operational issues, and 100 years for infrastructure 

investments.  If a case could be made that the climate and stream flow distributions in the 

Salt and Verde watersheds will remain unchanged over those timeframes, then the 

baseline statistical characterization would provide a sufficient vulnerability assessment.  

However, this is not expected.  Considerable uncertainties persist about exactly how 

climate changes might evolve over the coming decades and modify expectations of net 

basin water supply.  The climate modeling community has been resistive to describing 

their model results as a forecast, asserting that their findings are only a set of possible 

‘projections’ of the future (Kundzewicz 2009; Trenberth 2010).  Pielke and Wilby (2012) 

remind us that “downscaling has practical value but with the very important caveat that it 

should be used for model sensitivity experiments and not as predictions.”  “It is 

inappropriate to present downscaled results to the impacts community as reflecting more 

than a subset of possible future climate risks.”  If the water management community had 

identified and endorsed a projection it could serve as a forecast.  But, this has not been 

the case (WUCA 2009) and uncertainties surrounding downscaled results persist (Vano et 

al. 2014). 

The thrust of this research has been to develop an alternative to shortcomings 

inherent in the standard top-down climate modeling approach for assessment of change 

projections and impacts.  While the alternative methodology is not confined to any 
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specific climate change projection, the objective of this research is the analysis of a 

limited, manageable and relevant number of projections.  To that end, this investigation 

assesses (1) a most-likely forecast of future climate in the watersheds based in empirical 

statistical forecasting methods and (2) a higher projection based upon mean temperature 

changes cited in IPCC AR5. 

3.6.1 Literature Review and Forecast, Precipitation 

As is demonstrated by the runoff characterizations conducted for this study, the 

majority of runoff variance is explained by precipitation.  Without it, hydrologic 

processes have little to work with.  Expectations of precipitation change therefore 

dominate forecasts of net basin water supply.  Assessment of precipitation time series 

was conducted for watersheds of the CRB to confirm whether or not they have become 

non-stationary (Murphy and Ellis 2014).  Non-stationary temperature was revealed but 

stationary precipitation was concluded through analysis against statistical criterion.  

Subsequent to that work, further study performed under hydrologist considerations of 

stationarity reinforces findings of highly variable but stationary precipitation in the Salt 

and Verde watersheds.  This is consistent with a similar conclusion by Hoerling (2014) 

for California that “… it can be said with high confidence that there is no trend toward 

either wetter or drier conditions for statewide average precipitation since 1895 …”.  This 

is not to say that pluvial periods of heavy precipitation and historical drought intervals are 

absent from the historical record and should not be expected to occur again.  They will, as 

are reflected in the stochastic simulations employed in this study.  However, temporal 

determinism is fleeting amidst no long-term trend.  Particular periods of excess or deficit 

are often attributed to sea surface temperature (SST) variations affecting ocean-
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atmosphere coupling, although they provide only a partial explanation of variability and 

remain a difficult basis from which to make precipitation predictions (Balling and 

Goodrich 2007; Thomas 2007; McCabe and Wolock 2012; Nowak et al., 2012). 

The primary attribution of drying in CRB watersheds as projected by climate 

models is an expectation of broadening Hadley cell circulation resulting in a pole-ward 

expansion of the subtropical dry zones and a northward forcing of the average storm 

track, thereby resulting in altered precipitation patterns (Seager and Vecchi 2010).  GCM-

based analyses for the 21st century are predicated upon the assumption of strengthening 

mean flow moisture divergence accompanied by reductions in transient eddy moisture 

convergence per the projected pole-ward shift of storm tracks under global warming.  The 

critical reliance of surface water resources in Southwest North America (SWNA) on the 

transient eddies is well-known in the form of major Pacific winter storm systems tapping 

atmospheric river moisture that provide major contributions to surface runoff.  While 

these transient events have been characterized meteorologically (Ralph et al. 2011), their 

climatic dependencies remain poorly understood beyond recognition of a relationship 

with SSTs and expectations of increasing moisture delivery capacity proportional to 

increasing temperatures (per the Clausius-Clapeyron relationship).  Acknowledging the 

SST dependency, Seager and Vecchi (2010) state that aside of warming contributions to 

drying “the future hydroclimate of SWNA will also depend, to an important extent, on 

the pattern of SST change”, which has been shown to drive natural modes of variability.  

They go on to state: “… the severity of drying of SWNA that will occur in the near-term 

future will depend on tropical Pacific climate change, but the current generation of 

climate models simulates the tropical Pacific very poorly.  We have little confidence in 
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their widely varying projections of how the tropical Pacific climate system will respond 

to radiative forcing.” 

The extent of Hadley cell widening and its attribution is an ongoing subject of 

research, with researchers noting the lack of a unified theory of Hadley cell circulation.  

Recent empirical evidence does not agree well with climate model simulations (Hoerling 

and Quan 2012) and assessments indicate that any changes observed to date are not 

statistically significant, remaining within the envelope of natural variability originating in 

SST transients.  Recent modeling research by Hoerling and Quan (2012) has identified 

extra-tropical SST change to be the strongest potential driver to Hadley cell circulation 

change.  Acknowledging the low detectability of such change against the background of 

natural variability and considering the oceanic heat sink’s long response time, Hoerling 

indicates that detectability of a persistent Hadley cell circulation change is low and 

probably lies beyond the end of this century. 

The total precipitation upon and runoff out of the watersheds of the CRB occurs 

primarily during the winter season when evapotranspiration is at a minimum due to 

dormant vegetation and low temperatures.  In efforts to better represent the topographic 

complexity and small-scale interactions in the CRB, the use of higher-resolution regional 

climate models (RCMs) bounded by constraints originating in large-scale GCMs has 

revealed some instructive findings.  Spatial and seasonal differences were seen resulting 

in lower temperatures, colder headwaters, higher precipitation with more of it as snow, 

larger snowpacks, higher soil saturation conditions, and less precipitation sensitivity to 

climate change effects (Gao et al. 2011; Dominguez et al. 2012; Vano et al. 2014).  

Relative to their host GCMs, RCMs resulted in smaller, single digit percentage decreases 
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in LCRB winter precipitation by mid-century accompanied by increases in extreme 

precipitation event intensity, while statistically insignificant changes were found for the 

interior west.  Single-digit precipitation reductions are unresolvable against coefficients 

of variation an order of magnitude larger.  Even if the commonly-estimated global change 

of precipitation with temperature of about 2%/
o
K is applied, it is readily evident that, 

even with the temperature changes of the past century, a corresponding change of 

precipitation is unresolvable from natural variability. 

Questions of detectability of precipitation changes at regional scales amidst 

interannual variability have been investigated by Mahlstein et al. (2012) using GCMs to 

estimate the global temperature change required for a precipitation change signal to 

emerge above natural variability.  Their analysis focused on regional wet seasons because 

detectability was found to be more challenging in the dry season.  They found that 

emergence of the precipitation change signal is not generally anticipated in the near 

future.  At least a 1.4
o
C warmer overall climate relative to early 20

th
 century temperatures 

was found to be required for detectability in any climate region of the world, which is 

approximately twice the global warming experienced to date.  Their results for the 

western United States indicate that a global temperature increase in excess of 3.5
 o
C is 

required before a precipitation change might be detected, leading the researchers to 

conclude no emergence of a signal in the region before the year 2100. 

Specific to the Salt and Verde watersheds, Ellis et al. (2008) developed a water 

budget runoff model for these basins and used several GCM outputs to estimate mid-

century runoff.  When only GCM temperature changes for the region were applied, 

modeled runoff reductions fell within a sufficiently small standard deviation that 
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statistical significance testing could demonstrate a difference from zero.  When the 

widely variable precipitation changes were then applied, substantial runoff uncertainties 

were introduced, broadening the range of outcomes, leaving the average essentially the 

same and placing statistical significance in question.  This inability to conclude a 

definitive role for precipitation change many decades in the future is also reflected in 

other studies which employ even larger numbers of scenarios for estimating ensemble 

averages.  If ensemble members were independently generated, each outcome would 

contribute to narrowing the confidence limits of a change expectation.  However, Knutti 

et al. (2013) have traced the genealogy of CMIP5 and earlier models, revealing 

significant common ancestry and cross-pollination.  Outcome independence is therefore 

hard to establish beyond the handful of independent originators which limits the extent to 

which statistical significance testing of ensemble averages can conclude a forthcoming 

change different from zero.  Knutti and Tebaldi’s (2013) review of CMIP5 findings 

concludes that there is a low confidence in any indication of modeled precipitation 

change for the Southwest United States.  This is evident in downscaled climate model 

data passed through hydrologic models (Gangopadhyay et al. 2011) in support of the U.S. 

Bureau of Reclamation’s Colorado River Basin Water Supply & Demand Study (2012).  

The CMIP5 projections contain new emissions scenarios and many more model 

simulations than previous iterations. While the CMIP5 model projections embody 

significantly greater complexity, they have not yet incorporated evolving understandings 

of important physical processes such as clouds and aerosols which play a key role in 

climate feedback mechanisms (Boucher et al. 2013).  While it has been noted that, in 

general, CMIP5 results are not significantly different than CMIP3 (Knutti and Sedlacek 
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2013), expectations of precipitation change have shifted in some regions, including the 

Southwest United States and the Salt & Verde watersheds.  While CMIP3 models on 

average indicated small reductions in precipitation, CMIP5 results now depict no change 

(Reclamation 2013).  Such a shift is indicative of the inability to conclude any 

precipitation change in the future.  This conclusion was echoed by Trenberth (2014) 

during a AGU Falling Meeting presentation.  To paraphrase his comment: ‘Given the 

wide range of precipitation representation and projections in the models, I don’t see why 

anyone would use them to make assertions about future precipitation.’ 

Drawing upon the scientific forecasting knowledge base can provide instructive 

guidance to constructing a forecast for this investigation.  Several decades of forecasting 

research has identified those practices which have been shown to result in better forecast 

outcomes.  That is not to say that by their implementation the forecast will be perfect (as 

none are) – but it is more likely to result in lower forecast error than would have 

otherwise been the case.  Much of the research literature was compiled by Armstrong 

(2001), and has been made available to practitioners through the International Institute of 

Forecasters (IIF) at www.forecastingprinciples.com.  Two principles are particularly 

relevant to this study: (1) how to forecast in situations of high uncertainty, and (2) the 

importance of forecast validation.  

In situations of high uncertainty the principles recommend forecasting 

conservatively.  In climatology this is termed a persistence forecast while in forecast 

science it is called a naive forecast.  The principle recommends that if there is not a clear 

and supportable basis on which to apply a forecast trend, then none should be used.  As 

discussed above, there has been no long-term trend in precipitation over the Salt and 

http://www.forecastingprinciples.com/
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Verde watersheds and research into driving mechanisms indicate that if an influence does 

evolve it will not do so before the end of this century.  As has been concluded by 

Guntzler et al. (2012), caution should be exercised in the attribution of projected SWNA 

drying to anything other than temperature, as precipitation considerations are too 

uncertain.  A precipitation forecast of persistence is therefore appropriate and quite 

straightforward, although the timing of pluvial and drought periods should be considered.  

But, for the purpose of future-state probability distributions for stochastic simulation 

study, precipitation contributions can be held constant through the balance of this century 

with no NBS probability modifications forced by precipitation change. 

3.6.2 Literature Review, Temperature 

As reported by Murphy and Ellis (2014), temperature was found to be persistently 

nonstationary in both winter and summer on the Salt and Verde watersheds.  Increases 

have been non-monotonic with statistically significant trend-cycle behavior which must 

be incorporated to the construction of forecasts.  Cyclicality can be considered once the 

overall trend is accurately assessed.  As was shown, average temperature in the Salt and 

Verde watersheds increased approximately 1
o
C between 1979 and 2000 (Fig. 3.3.1).  

Since then average temperatures have remained essentially level without further increase.  

The rate of increase during the 1980s-90s was temporarily at its highest, at 0.5
o
C/decade, 

while it was 0.155
o
C/decade over the full instrumented history.  Assuming the high rate 

of increase immediately commences again, a projection ahead to the year 2050 calculates 

to a total temperature rise of 2.8°C since 1979.  This aggressive assumption is at the 

lower bound of GCM-based projections.  A linear extrapolation using all long-term data 

places average 2050 temperature just 1.4°C higher than 1979 values, well below the 
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GCM-based range.  When Ellis et al. (2008) applied downscaled GCM model-scenario 

combinations to their Salt-Verde water budget runoff model the mean temperature rise 

for the study area was projected to range from 2.4° to 5.6°C with an average of 3.7°C for 

the year 2050.  These ranges lie well above indications from the empirical evidence and 

thereby infuse uncertainty to identification of future temperature changes for use in this 

investigation. 

This divergence of climate model projections from outcome has been 

demonstrated in other studies, often assessed at the global level.  Fyfe et al. (2013; 2014) 

reported that “recent observed global warming is significantly less than that simulated by 

climate models”.  They studied trends in global mean surface temperature from 117 

climate simulations by 37 CMIP5 models to find that the average modeled rate of 

temperature increase is twice the observed global warming rate over 1993-2012.  The 

observed warming rate was even lower from 1998-2012 at one-quarter the average 

modeled trend and not significantly different from zero, suggesting a temporary ‘hiatus’ 

in global warming.  Statistical significance testing rejected the null hypothesis that 

observed and modeled trends are equal over the past 20 years, with the divergence 

beginning in the early 1990s.  They speculate that the difference might be explained by 

some combination of unaccounted external forcings such as stratospheric aerosols or 

water vapor, inaccurate model response of which transient climate sensitivity is one 

possibility, or an unusual period of internal climate variability.  From a forecasting 

perspective, it appears unlikely that an offsetting period of climate variability might arise 

by 2050 to align outcomes with modeled temperature change.  For global warming to 

reach levels suggested by the IPCC (2013), it would need to resume at rates in excess of 
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Figure 3.6.1.  History of Global Annual Surface Air Temperature Anomalies. 

 

0.25
o
C/decade on a sustained basis for the next 35 years and beyond.  There is no 

historical precedent for that rate over long durations.  Global surface temperature 

anomalies reported by the U.K. Met Office Hadley Centre (Morice et al. 2012) are shown 

in Figure 3.6.1, where anomalies are calculated relative to a stable cumulative average 

level in the pre-industrial era (0.339
o
C offset vs 1961-1990).  As seen in Figure 3.6.2, a 

sustained warming rate of about 0.26
o
C/decade is required to attain the future IPCC 

RCP4.5 or RCP6.0 temperature projections, while RCP8.5 requires 0.45
o
C/decade.  An 

analysis of the data set for all warming rates by duration since 1895 using linear 

regressions is shown in Figure 3.6.3.  The rate-durations required to attain the mean 

temperature increases projected by AR5 are well outside the historical envelope. 
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Figure 3.6.2.  Global Temperature Anomaly Projections. 

 
Figure 3.6.3.  All Historical Global Warming Rates by Duration, 1895-2015. 

The rates required to attain IPCC AR5 projected average warming levels are indicated. 
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Privalsky and Yushkov (2015) studied the statistical properties of 47 CMIP5 

model simulations of average annual surface temperature for the continental United 

States, 1889-2005, and compared them to the HadCRUT4 observational record.  If a 

simulated time series has the same basic statistical properties as the observed time series, 

one may regard the climate model as reliable at the spatial scale examined.  And, 

conversely, a model generating data whose major statistical properties differ significantly 

from the observed record may be considered inadequate.  They found that most CMIP5 

models adequately reproduce the time and frequency domain behavior of the observed 

time series, which is close to a white noise sequence (frequencies > 0.05/yr).  However, 

the more fundamental statistical characteristics, and those most relevant to the 

investigative objectives of this dissertation, were found to be unsatisfactory.  Mean 

temperature values for the model-simulated data varied up to 6.8
o
C and were all 

statistically different from the observed historical mean annual temperature.  Temperature 

trend rates of the models ranged from zero to 0.15
o
C/decade and were generally biased 

high, exceeding the observed rate by as much as 220%.  25 of the 47 model trend rates 

fell beyond a 95% confidence interval for the estimate of observed warming.  So, if all 

models cannot correctly assess the level of the historical time series, and the majority of 

them cannot reproduce the historical warming rate, the basic parameters upon which to 

base a forecast into the future are absent.  The situation cannot be expected to be better 

for CMIP5 simulations of the smaller-scale Salt and Verde watersheds considering the 

statistical benefit bestowed by spatial aggregation to the continental scale.  There might 

be some subset of CMIP5 simulations whose statistics fortuitously average to a closer 

representation of watershed history, but there is little basis upon which to scientifically 
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identify that group, thereafter leaving the investigator with no assurance that the subset 

does not suffer the same deficiencies identified by Privalsky and Yushkov. 

3.6.3 Most Likely Temperature Forecast 

Considering the uncertainties identified above, this investigation chose to take on 

the development of an evidence-based multi-decadal temperature forecast model that 

incorporates current research findings for the key components of the temperature record 

which are: (a) climate sensitivity to anthropogenic forcing and (b) the primary modes of 

natural internal variability.  As articulated by Koutsoyiannis (2011), for hydrologic 

modeling to incorporate nonstationarity information, change(s) must be described by a 

deterministic function(s), which reduces uncertainty by explaining part of observed 

variability.  He states that: 

“a claim of nonstationarity is justified and, indeed, reduces uncertainty, if the 

deterministic function of time is constructed by deduction, and not by induction 

(direct use of data).  Thus to claim nonstationarity, we must: (1) establish a 

causative relationship, (2) construct a quantitative model describing the change as 

a deterministic function of time, and (3) ensure applicability of the deterministic 

model into the future.”   

 

He then concludes, based on previous analyses (Kousoyiannis et al 2008; 

Anagnostopoulos et al 2010), that climate models have been unable to reproduce known 

statistical characteristics of past climate important to hydrology and are unable to provide 

validated predictions for the future.  In contrast, the deterministic forecast model 

described below does meet their criteria.  The model development is first applied to the 
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HadCRUT4 global temperature record for proof-of-concept and then employed for the 

Salt and Verde watersheds and reservoirs. 

As can be seen in Figure 3.6.1, the data indicate modulation of an anthropogenic 

trend by internal variability that can be modeled and is likely to continue into the future.  

An explanatory model incorporates time series methods as outlined by forecasters (e.g., 

Makridakis et al. 1998).  A data time series pattern is composed of (i) the level of the 

series, (ii) a long-term trend, (iii) cyclicality, (iv) seasonality, and (v) irregular 

components (error).  These components align with the additive temperature anomaly 

model proposed by Lovejoy (2014) 

  T(t) = Tanth(t) + Tnat(t) + ε(t)     (3.20) 

 

where 

T(t) is the measured temperature anomaly at time, t, 

Tanth(t) is the anthropogenic contribution forcing an up-trend, 

Tnat(t) is natural variability composed of spectrally identifiable cycles, 

and ε(t) is the error term. 

 

The anthropogenic term is considered deterministic and monotonically increasing 

as greenhouse gas (GHG) concentrations rise. It is the forcing element to the trend and 

elevated level of the time series. The natural variability term is often assumed to be 

stochastic; however, research into its role in the warming hiatus reveals at least one and 

possibly two predictable low frequency components.  Those with demonstrated timing 

and amplitude can be incorporated into a forecast model while other modes of variability 

are relegated to the error term. 

Temperature variability scales widely with time, and the objective is to assess it 

climatologically, therefore seeking to suppress sub-decadal weather and macro-weather 
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components (Lovejoy 2013). The band-pass filter described in Section 3.1 is applied for 

this purpose to filter-smooth the data series (Fig. 3.6.1). 

3.6.3.1 Natural Variability 

Multi-decadal temperature variations have been thoroughly analyzed over the past 

few decades.  Using spectral analysis methods, Schlesinger and Ramankutty (1994) 

identified non-random 65-70 year oscillations in multiple data records.  Their analysis 

found it strongest in the North Atlantic and suggested it arises from predictable internal 

variability of the ocean-atmosphere system.  Delworth and Mann (2000) compared the 

instrumental record with proxy-based reconstructions and coupled ocean-atmosphere 

models to show a distinct oscillatory mode centered in the North Atlantic Ocean  

operating on a ~70 year timescale over the past 330 years.  They identified thermohaline 

circulation variability as the driving mechanism and noted the links between the North 

Atlantic and Pacific Oceans through atmospheric bridging via teleconnection patterns.  

Kerr (2000) published a review of the evidence for a 60-year temperature oscillation in 

the climate system, stating that “some researchers suspect that oscillations in the heat-

carrying currents of the North Atlantic are to blame for this natural mode”.  He noted “the 

challenge of disentangling greenhouse warming from natural warming”.  Schlesinger and 

Ramankutty (2000) responded to Kerr’s article, referring to their previous and ongoing 

research by stating 

“We found that while the anthropogenic effect has steadily increased in size 

during the entire 20
th
 century, such that it presently is the dominant external 

forcing factor of the climate system, there is a residual factor at work within the 
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climate system. This residual factor is quite likely the 65- to 70-year oscillation of 

the North Atlantic Ocean. “ 

 

Gray et al. (2004) developed a tree-ring reconstruction of the Atlantic 

Multidecadal Oscillation (AMO) index which demonstrated that strong, low-frequency 

variability similar to the recent instrumental record has been a consistent climate feature 

for the past five centuries.  Knudsen et al. (2011) examined a set of high-resolution 

climate proxy records from the region bounding the North Atlantic Ocean to show that a 

quasi-persistent 55- to 70-year oscillation characterizes North Atlantic ocean-atmosphere 

variability over the past 8000 years, corresponding to the AMO in instrumental records.  

Knight et al. (2005) came to the conclusions that the AMO pattern lends predictability to 

temperatures several decades into the future and has been large enough to modify 

anthropogenic warming rate estimates. 

Zhen-Shan and Xian (2007) decomposed temperature data at the global, Northern 

Hemisphere, and China levels and identified four oscillation modes on an underlying 

trend.  Two operate on sub-decadal time scales while the others have ~20-year and ~60-

year periodicity.  The trend plus 60-year mode dominate the lower strength 20-year 

mode.  Having also observed non-uniform warming in the global temperature record, 

Tung & Zhou conducted an attribution study using empirical mode decomposition and 

multiple regression analysis – coming to the observation of a recurrent multi-decadal 

oscillation likely related to the AMO (Zhou and Tung 2013; Tung and Zhou 2013).  They 

conclude that this low-frequency component of internal variability accounts for 40% of 

the recent warming trend, it is superimposed on an underlying GHG warming rate since 
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1910, and that previously-deduced GHG warming rates should be substantially revised 

downwards.  Their finding is similar to what was reported by Wu et al. (2011), who 

conducted an enhanced empirical mode decomposition study to also conclude that the 

late-20
th
 century high warming rate was a consequence of an upward swing of multi-

decadal variability in combination with a GHG warming trend.  They estimate that as 

much as one-third of the warming reported by the IPCC may have been due to multi-

decadal variability. 

Yao et al (2016) similarly applied empirical mode decomposition methods to 

three global temperature anomaly data sets and identified a quasi-60 year oscillatory 

mode on a monotonically increasing trend, along with a weaker mode with 24 year mean 

periodicity and four weak high frequency modes.  They found multi-decadal fluctuations 

of the AMO to be largely in phase with the 60-year variability while the Pacific Decadal 

Oscillation (PDO) index was found to lead the cycle by about 16 years.  Considering the 

findings, they conclude that the hiatus is likely to extend for several more years.  Li et al 

(2013) came to a similar conclusion for northern hemisphere temperatures, indicating the 

hiatus will extend to 2027 before North Atlantic cooling weakens relative to 

anthropogenic-induced warming.  The combination of a secular warming trend and 

internal oscillatory variability has now been thoroughly characterized by a number of 

researchers to conclude that natural variability contributions have been underestimated, 

resulting in over-estimation of the anthropogenic contribution to the warming trend in the 

late 20
th
 century, although debate persists about the driving mechanisms (e.g., Zhang et 

al. 2013). 
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From their decomposition analysis Zhen-Shan and Xian (2007) projected a 

continued 20 year cooling period using a combined temperature mode extrapolation.  

Keenlyside et al. (2008) anticipated a pause in global temperature rise as North Atlantic 

and tropical Pacific cooling dynamics offset anthropogenic warming.  This has come to 

pass with numerous investigations into the ongoing hiatus, widely attributed to cooling of 

the eastern tropical Pacific with ongoing investigations of the role of the trade winds, 

increasing subsurface heat uptake, the role of deep-water and upper-ocean thermal 

exchanges, and cyclical phase reversals (Balmaseda et al. 2013; Meehl et al. 2013; 

Kosaka and Xie 2013; Xie and Kosaka 2013; Held 2013; Hu et al. 2013; Trenberth and 

Fasullo 2013; England et al. 2014; Kosaka 2014; Trenberth et al. 2014; Watanabe et al. 

2014; Dai et al. 2015; Trenberth 2015; Fyfe et al. 2016; Meehl et al. 2016).  However, 

Chen and Tung (2014) do not support the Pacific-centric view, recalling the primary 

location of multi-decadal variability in the North Atlantic and secondarily the Pacific 

with atmospheric bridging between.  Barcikowska et al. (2015) find that Pacific cooling 

is a leading phase of an overall 66-year global pattern which precedes the major cooling 

mode by about 16 years, similar to the Yao et al. (2016) finding.  The lagged 

synchronicity of climate indices was explored in instrumental and 300 years of proxy 

data by Wyatt et al. (2012) to show an AMO signal propagation through the northern 

hemisphere via a sequence of atmospheric and lagged oceanic teleconnections which they 

term the “stadium wave”.  Wyatt and Curry (2014) identified the Eurasian Arctic shelf-

sea region as a strong contender for generating and sustaining propagation of a northern 

hemisphere climate signal with further stabilization of the oscillatory system by co-

varying Pacific Ocean atmospheric circulations.  Analyses by Mazzarella and Scafetta 
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(2012) confirm natural temperature variability from a dominant ~60-year climate cycle 

since 1650, and they suggest a linkage to solar-astronomical origins.  Even weak 

astronomical influences are sufficient to drive a resonant frequency in the earth system, 

which Kurtz (2014) has calculated by modeling the Atlantic meridional overturning 

circulation (AMOC) as a thermosyphon loop cooler.  He developed the governing 

equations for North Atlantic heat flow and, by analogy with an electrical LRC circuit, 

calculated the natural frequency at which the system oscillates in response to a 

disturbance (perhaps astronomical).  The AMOC flow oscillation period was calculated 

to be approximately 65 years, in close agreement with the observed AMO frequency.  

Based upon the first principles employed in his derivation, Kurtz emphasizes that the 

oscillation is a permanent feature of the Earth’s climate system due to the specific 

configuration of the Atlantic basin, and not simply stochastic variability. 

In summary, the cumulative literature has clarified that the cyclical variability is 

deterministic, and there are indications of causative relationships.  These are two 

prerequisites stipulated by Koutsoyiannis (2011) for modeling of nonstationary 

phenomena.  It remains then to construct a quantitative model as a function of time (and 

ensure its applicability into the future, done below in Sec. 3.6.3.5, Model Structure and 

Validation). 

The low frequency temperature variability is often evident in a filter-smoothed 

anomaly curve (Fig. 3.6.1) where local minima and maxima occur around 1879, 1909, 

1943, 1974, and 2005.  An oscillatory cycle approximation can be made with the simple 

sinusoidal expression –  
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   Tnat(t) = (A/√2) cos[2π(t-to)/P]     (3.21) 
  

where 

A is the peak amplitude of local minima and maxima, 

P is the cycle period, 

and to sets the temporal phase of the function at one of the local maxima. 

 

A can be calculated from the average of identified minima and maxima.  Cycle strength is 

A/√2, the average power (RMS value) of the sinusoidal function.  A is set negative or 

positive per sign of the last minima or maxima.  Periodicity, P, is twice the average of 

intervals between all minima and maxima (typically 63±3 years).  to is a chosen 

minima/maxima year setting the phase relationship of the forecast to the historical series. 

 Preliminary estimates of A, P, and to (for de-cycling the anomaly series) are calculated 

relative to linear regressions of the historical series.  Final values (Fig. 3.6.4) are 

calculated from the filter-smoothed de-trended series once the anthropogenic trend is 

identified. 

 
Figure 3.6.4.  Sinusoidal Cycle Fit to Primary Mode of Natural Variability. 
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3.6.3.2 Anthropogenic Trend 

Radiative forcing by atmospheric carbon dioxide has been recognized since the 

time of Arrhenius (1896) to be proportional to the logarithm of the gas concentration 

relative to an unperturbed state (Hartmann 1994, 337-340), which is typically taken to be 

the pre-industrial concentration level of 278±5ppm (IPCC 2013).  Climate sensitivity to 

CO2 doubling from this level is a key question around which future warming trends have 

been vigorously debated.  Transient climate response (TCR) is a practical sensitivity  

measure that can be observationally assessed after several decades of CO2 forcing. 

Chylek et al. (2007) studied empirical climate sensitivity through observed rates 

of change in aerosol optical depth, global surface temperature, and GHG concentrations.  

They found climate sensitivity is reduced by half when observed decreases of aerosol 

optical depth are included in radiative forcing calculations.  Their estimates of TCR fall 

in the range of 1.1 to 1.8
o 
C

 
per doubling of atmospheric CO2 concentration.  TCR 

analyses by other researchers have been conducted through global energy budget 

approaches using forcing estimates for all components.  Otto et al. (2013) reported a best-

estimate of 1.3
o
C (5-95% c.l. range: 0.9-2.0

o
C); the mean estimate by Skeie et al. (2014) 

is 1.4
o
 C (range: 0.8-2.2

o
C); and Lewis and Curry’s (2015) median estimate is 1.33

o
 C 

(range: 0.9-2.5
o
C).  These researchers note that observation-based estimates are moving 

lower as sequential data are acquired and CO2 forcing becomes larger relative to 

uncertainties.  IPCC GCM-based estimates are generally higher than observational 

findings, and research continues into forcing uncertainties (e.g., Shindell 2014).  The 

IPCC 5
th
 Assessment Report stated the range of possible values is from 1.0

o
 to 3.0

o
, but 

declined to provide a definitive value “because of a lack of agreement on the best 
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estimate across lines of evidence” (IPCC 2013).  The mean TCR embodied in CMIP 

models is 1.8
o
C per CO2 doubling. 

The divergence between observational estimates of long-term equilibrium climate 

sensitivity (ECS) from CMIP models is even more pronounced.  Otto et al. report a most 

likely estimate of 2.0
o
C (range: 1.2-3.9

o
C); Skie et al. report 1.8

o
C (range: 0.9-3.2

o
C); 

and Lewis and Curry’s median ECS estimate is 1.64
o
C (range: 1.05-4.05

o
C).  IPCC AR5 

states that the likely range is 1.5-4.5
o
C, while CMIP models typically reflect the common 

ECS assumption (Hansen 2013) of 3
o
C per doubling (range: 2.2-4.7

o
C).  The difference 

between models and observational estimates creates projections with very different 

temperature change expectations later in this century.  The narrowing of ECS versus TCR 

values also indicates a faster climate response time than assumed in models, which is 

consistent with the observation of fast transient response (a few years) to volcanic and 

ENSO events. 

If climate sensitivity has been over stated then it is more likely closer to a direct 

CO2 warming contribution without feedback effects (~1.0
o
C/2xCO2).  Climate models do 

not explicitly implement climate sensitivity, but rather do so through parameterization of 

mechanisms which act to amplify the warming.  A central one is enhanced counter-

radiation from the increased water vapor holding capacity of the atmosphere with rising 

temperature per the Clausius-Clapeyron relationship.  This is implemented in climate 

modeling through an assumption of constant relative humidity through upper layers of the 

atmosphere which amplifies upper layer counter-radiative warming.  Douglass et al. 

(2008) examined temperature trends for the satellite era to find that since 1979 there is no 

significant long-term amplification factor in the troposphere relative to the surface.  
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Paltridge et al (2009) examined tropospheric humidity using NCEP reanalysis data to find 

negative trends in specific humidity in the upper troposphere for the period 1993-2007.  

Specific humidity trends were positive below 850mb as might be expected in a mixed 

layer over a moist surface with rising temperatures.  They note that “…increases in total 

column water vapor in response to global warming do not necessarily indicate positive 

water vapor feedback, since very small decreases of water vapor in the mid-to-upper 

troposphere can negate the effect of large increases in the boundary layer.”  Their 

tentative conclusions suggest the possibility that water vapor feedback might reduce 

rather than positively amplify climate system response to increasing GHG, in opposition 

to common assumptions and what is parameterized in models.  To examine how well 

water vapor at high altitudes is understood, Jiang et al. (2015) have compared satellite 

observations over 2004-2014 to three reanalysis data sets which provide climate modelers 

with estimations of upper troposphere and lower stratosphere water and its dynamics.  

They found the reanalyses overestimated the amount of annual global mean water in the 

upper troposphere by up to ~150% compared to observations.  Substantial differences 

were also found in water vapor transport, both vertically and horizontally.  The 

researchers conclude: “Significant H2O biases in the upper troposphere and lower 

stratosphere produced by the reanalyses could complicate efforts to improve the 

representation of moist processes and humidity transport in climate models and thus 

affect the accuracy of climate projections.” 

Since past temperature change is the manifestation of all forcings, and 

temperature data are more certain than current forcing estimates, direct analysis of the 

temperature record is a viable approach to forecast model development.  However, other 
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anthropogenic effects besides CO2 are represented in the record, including other long-

lived GHGs, aerosols, land cover changes, and climate feedbacks; and some of those vary 

regionally.  As has been analyzed by Lewis and Curry (2015) and Lovejoy (2014), key 

anthropogenic effects are functions of economic activity correlated with CO2 levels, so 

that CO2 concentration provides a useful variable for evaluating the temperature trend.  

To distinguish a climate response inclusive of all anthropogenic effects from TCR with 

CO2 alone, an effective climate response (ECR) to CO2 doubling is defined and employed 

for Tanth(t).  Its logarithmic relationship is 

   Tanth(t) = ECR x log2[CO2(t)/CO2(pre-ind)]   (3.22) 

 

Any two or more points in a temperature-CO2 response curve can, in principle, 

identify ECR.  While a regression slope after log-CO2 transformation could readily serve 

this purpose, data cyclicality obscures the relationship and results in highly variable 

estimates (see Fig. 3.6.5).  De-cycling and smoothing the time series is therefore 

necessary, and steps in identifying the underlying anthropogenic trend’s ECR then 

become 

a) filter-smooth the anomaly time series, 

b) relative to a trend estimate (starting with a linear approximation), identify 

cycle parameter estimates of A, P, and to, 

c)  subtract the cycle (Fig. 3.6.4), from the anomaly series, 

d) filter-smooth the decycled series, 

e) apply sequential linear regressions of length P to the series and extract fitted 

temperature at the year corresponding to phase 3π/2 (Fig. 3.6.6), 

f) match the years’ CO2 with fitted temperatures, 
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g) identify ECR as suggested above and map the data to iso-ECR curves (Fig. 

3.6.5), 

h) repeat from step (b) using a trend calculated from the updated ECR solution. 

 

 
Figure 3.6.5.  Identification of Global Effective Climate Response (ECR). 

 

In step (e) the linear regressions of length P are intended to capture one cycle of 

natural variability.  The underlying exponential trend is higher than a linear fit at the ends 

of the regression and below it at midpoint.  However, they intersect at approximately the 

π/2 and 3π/2 positions (points 16 and 48 in a 64-point regression), so that is where an 

anthropogenic temperature estimate can be extracted (Fig. 3.6.6) and matched to that 

year’s CO2 concentration.  Convergence to an ECR solution is quickly found, along with 
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final cycle parameters once the identified ECR trend is subtracted from the temperature 

anomaly series and it is filter-smoothed. 

 

 
Figure 3.6.6.  Identification of AGW Temperature Contribution by Sequential 

Regressions. 

 

3.6.3.3 Model Results 

Exploratory data analysis (Fig. 3.6.1) has revealed the ‘stair-step’ fashion in 

which temperatures have risen with low frequency natural variability and anthropogenic 

forcing, and their relative contributions can now be graphically displayed as shown in 

Figure 3.6.7.  The ECRs per increasing CO2 level are identified (Fig. 3.6.5), and a best 

estimate of 1.45
o
C/2xCO2 is found.  A global ECR of 1.45

o
C is at the low end of climate 

model estimates and just a few tenths of a degree higher than what could be expected 
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solely from a CO2 radiative response, indicating small net additions from other 

anthropogenic forcing and feedbacks in the climate system.  This indicates through 

observational evidence that climate models are “running too hot” in the manner in which 

forcing and feedbacks are internalized within the models. 

 

 
Figure 3.6.7.  Global Temperature Anomaly History and 2-Component Model Fit. 

 

 As revealed in Figure 3.6.7, a 63-year cycle has been present throughout the 

instrumental record, superimposed upon the underlying anthropogenic global warming 

(AGW) trend.  The cycle is shown in Figure 3.6.4 where the average cycle amplitude, 

A=0.17
o
 over the instrumental record; at an average period, P=63 years; and to can be set 

to the last local maxima in 2005.  The anthropogenic warming trend emerged early in the 



163 
 

20
th
 century which combined with a rising phase of the cycle, resulting in an accentuated 

1920s-30s temperature increase.  The down-slope of the cycle was sufficient to offset the 

anthropogenic contribution into the 1970s, explaining the discussions of global cooling in 

that decade.  The cycle slope reversed again and contributed to accelerate warming in the 

1980s-90s.  While the warming rate in those decades has been widely attributed solely to 

anthropogenic origin, this deconvolution of the data record places that in dispute and 

clarifies the relative contributions of AGW and natural variability (Fig. 3.6.7).  The 

current warming hiatus has ensued due to another reversal of cycle slope shortly after 

2000 while the AGW trend continues to monotonically rise, nearly offsetting each other. 

 

 
Figure 3.6.8.  Residuals of 2-Component Model Fit to Historical Series. 
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Residual errors of the model versus HadCRUT4 history are normally distributed 

with a standard deviation of 0.10
o
 for the anomaly series and 0.045

o
 for the filter-

smoothed series (Fig. 3.6.8).  These are 21% and 48% reductions versus a trend-only 

model not including the cycle.  Model residuals versus the filter-smoothed series (Fig. 

3.6.8) reveal the second natural variability cycle indicated by spectral analyses reported 

in the literature.  It has a periodicity of approximately 20 years and is ~30% the strength 

of the primary cycle.  The ECR derivation was re-run using both the primary and 

secondary cycles, and an ECR=1.43
o
C/2xCO2 was calculated.  This is not very different 

from the 1.45
o
C solution using only the primary 63-year cycle. 

3.6.3.4 CO2 Forecast 

The application of any temperature forecast method is dependent upon a forecast 

of future CO2 emissions and atmospheric concentration.  While CO2 concentration 

appears to be rising exponentially, a close examination reveals notable consistency in its 

rate-of-change, increasing from zero in pre-industrial times to a 0.75ppm/year rate in the 

late-1950s, to a recent 2.1ppm/year (Fig. 3.6.9).  This can be fit and extrapolated with a 

logistic function, as is often applied in technology diffusion studies (Armstrong 2001).  

The logistic formulation by Fisher and Pry (1971) has been applied with its parameters 

calculated from recent data, preferably of the last 30 years, and with exploratory 

sensitivity evaluation of the logistic solution.  It is assumed that the logistic curve’s 

central inflection point has not been reached as of 2015 and will not be in the near-term, 

which is mathematically accommodated by a high limiting rate value. 
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Figure 3.6.9.  Annual Net Additions to Atmospheric CO2 Concentration. 

 

The best-fit logistic curve yields a CO2 concentration extrapolation in the year 

2100 which closely approximates the representative concentration pathway (RCP) 

scenario RCP6.0 concentration in the IPCC AR5 report (Fig 3.6.10).  The result is very 

consistent to mid-century regardless of logistic equation parameterization.  Potential 

demographic, economic, and technological changes could readily modify the CO2 rate of 

increase in upper portions of the logistic curve, eventually slowing or reversing it in 

coming decades.  Possible rate reversals in future years might slow CO2 evolution to a 

long-term RCP4.5 concentration (Figs. 3.6.9, 3.6.10).  A concentration pathway midway 

between RCP4.5 and RCP6.0 is used in this study for the most-likely forecast, and 

sensitivity results are provided. 
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Figure 3.6.10. History and Forecasts of Atmospheric CO2 Concentration. 

 

It was found that the RCP2.6 and RCP8.5 scenarios for future CO2 concentrations 

are mathematically improbable.  With the current rate-of-increase >2ppm/year, it will 

take less than a decade to exceed the CO2 levels of RCP2.6 (421ppm in 2100).  An 

examination of the growth rate of annual CO2 increments reveals that the rate has, on 

average, been declining and is currently in the range of 1.0 to 1.5%/year as shown in 

Figure 3.6.11.  This was recognized by other researchers and served as their basis for CO2 

forecasts (e.g., Hansen et al. 1988).  Such growth rates place CO2 projections well below 

the 936ppm of RCP8.5 at the end of this century.  It would require a sustained 

2.25%/year growth rate of the annual increment to mathematically reach that level, which 

is inconsistent with the demonstrated trend over recent decades.  A ‘business as usual’ 
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description of RCP8.5 is therefore illogical, and the term more appropriately applies to 

RCP6.0.  While RCP2.6 and RCP8.5 can serve as research test cases for climatological 

investigations at extreme limits, they should clearly not be considered in a forecasting 

context. 

 

 
Figure 3.6.11. Growth Rate of Annual Additions to Atmospheric CO2 Concentration. 

 

3.6.3.5 Model Structure and Validation 

 From the earlier discussion, the form of the temperature forecast model is 

composed of the anthropogenic contribution, one or two natural variability cycles, and 

error.  The first of these is the most important for positioning the trend of a long-range 

forecast, while the cycles provide a decadal modulation which may be important 
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depending on relevance of its features to the investigative purpose.  The forecasting 

science literature (Armstrong 2001) counsels practitioners to not forecast cycles due to 

the lack of research evidence that it improves accuracy, unless there is knowledge based 

on physical laws that they will occur and good information about them is available.  

Small uncertainties can accumulate to large error over the forecast time horizon if the 

forecasted cycle gets out of phase with the actual cycle.  So, there should be good 

confidence in cycle length and fairly sure knowledge of cycle amplitude if it is to be 

employed.  The period estimation for the primary temperature cycle over the instrumental 

record is approximately 63 years ±5%, while the 20-year secondary cycle’s period can be 

estimated to approximately ±20%.  The amplitude of the primary cycle appears consistent 

within the instrumental record, although there is debate over data from the paleoclimate 

record.  There is more amplitude variability in the secondary cycle which is just 30% the 

strength of the primary cycle.  The mid-century lies just 2/3
rds

 of a primary cycle into the 

future, and the relevant late-century 2081-2100 window is 1.2 primary cycles ahead.  

Secondary cycle forecasts would entail three times the number of primary cycles 

involved.  As indicated in the natural variability literature review above, a significant 

amount of research has investigated the origins of the primary cycle while there is less 

knowledge of the secondary cycle.  The primary cycle explains most of the relevant trend 

modulation, and ECR with it alone is very close to ECR calculated with both cycles.  

Compliance with forecasting principles therefore indicates that while there may be a 

sound basis upon which to include the primary cycle in a forecast, the secondary one 

should be set aside.  This is the approach used for the 2-component (AGW+63yrCycle) 

temperature forecasts used in this study. 
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Now that the methodology has been developed by which to identify the key 

components of an empirical model, we must assess its applicability for temperature 

forecasting into the future.  As mentioned earlier, forecast validation is a central tenet of 

forecasting principles (Armstrong 2001) and is a chief concern for the application of 

models to predictive climate purposes (Schneider 1992).  Model residuals alone are an 

incomplete assessment of expected forecast error that should instead be calculated 

through a validation analysis employing hold-out forecasts measured against historical 

outcomes (Makridakis 1998; Armstrong 2001; Fildes and Kourentzes 2011).  As stated 

by Pielke (2008), “Forecast verification can provide a valuable test of knowledge and 

predictive capabilities.”  He recommends that the IPCC clearly define the key variables 

which are important for projection assessments and the corresponding verification 

(observational) datasets.  Validation analyses were reported from the standpoint of the 

hydrology community by Koutsoyiannis et al. (2008) and by Anagnostopoulos et al. 

(2010) for a selection of regional watersheds – finding that IPCC models perform poorly 

for hydrologic projections.  Fildes and Kourentzes (2011) took a forecaster’s perspective 

in a validation study conducted at global and regional levels using a Hadley Center GCM 

model projection together with a set of statistical time series models they constructed and 

evaluated in comparison to the GCM.  They concluded that climate simulation-based 

forecasts could benefit by being combined with statistical models.  Their work also 

indicated a climate sensitivity half of that estimated through GCMs.  Similar conclusions 

were reached in an analysis by Suckling and Smith (2013) –  

“… that empirical forecasts can improve decadal forecasts for climate services, …  

It is suggested that the direct comparison of (climate) simulation models with 
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empirical models becomes a regular component of large model forecast 

evaluations. Doing so would clarify the extent to which state-of-the-art simulation 

models provide information beyond that available from simpler empirical models 

and clarify current limitations in using simulation forecasting for decision 

support.” 

 

 Forecast validation by hold-out analysis objectively constructs a suite of 

parameterized forecasts positioned across the historical record using only the information 

available at the point in time that the forecast is made.  The structural form of our 

empirical model is parameterized by analysis of the data available at the hold-out year.  

The forecast is constructed and errors per time horizon are measured against the actual 

historical outcomes.  Forecast errors can be compared to other methods applied from the 

same starting year.  There will always be some non-reducible forecast error even with the 

best of methods, so the objective is comparative error assessment of methods and 

quantification of expected error for a forecast horizon.  For our purposes absolute forecast 

error ( |Actual-Forecast| ) is of secondary importance to mean forecast error over long 

time horizons, which captures bias.  Cumulative mean error provides an assessment of a 

model’s accuracy of trend representation – the important metric, since it is the long-term 

trend that determines cumulative climate change impacts.  The objective is to examine 

whether mean forecast error has been minimized more with the model under evaluation 

than by alternative methods.  This is often evident in graphical comparisons. 
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Figure 3.6.12. Hold-Out Forecasts with 2-Component Empirical Model, Using Only the 

Data Available at the Year in Which Forecast Is Made. 

 

 Long-range forecasts were constructed by the 2-component empirical model 

starting with 1972 when sufficient instrumental data were available to assess ECR, P, and 

A, and make a CO2 forecast.  Others were then made from 1973 and every subsequent 

year, as shown in Figure 3.6.12.  Forecast error can be evaluated out to a 42-year horizon, 

and their spread is shown.  The ECR estimate is consistent over the chronology, and 

estimates of period and amplitude are only updated after additional minima or maxima 

occur in the filter-smoothed series (mid-‘70s and mid-‘00s).  The spread in hold-out 

forecasts is therefore due largely to CO2 forecast variability with each additional year’s 

CO2 record.  As can be seen, the forecasts cluster reasonably well within evolution of the  
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Figure 3.6.13. Hold-Out Forecast Mean Error by Horizon for the 2-Component Empirical 

Model Forecasts (CO2 error-corrected) and Persistence Forecasts. 

 

actual anomaly series.  Mean forecast error is essentially zero by time horizon 

(Fig.3.6.13) and cumulatively with the forecasted years (Fig. 3.6.14). 

Also reported in Figure 3.6.12 is the temperature anomaly forecast produced by the 

Goddard Institute for Space Studies climate model with data as of 1987 and published by 

Hansen et al. (1998).  The authors identified their emissions Scenario-B as the most-

likely outcome, which was the case.  This is the oldest available climate model forecast 

of global warming that can be evaluated for multi-decade forecasting accuracy against 

actual outcomes.  It is well-documented and served as the basis for J. Hansen’s June 1988 

congressional testimony (Hansen 1988), once it had become clear that AGW was forcing  
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Figure 3.6.14. Hold-Out Forecast Mean Error by Year of Observation for the  

2-Component Empirical Model Forecasts (not CO2 error-corrected) and Persistence 

Forecasts. 

 

temperature anomalies above natural variability.  The divergence from actual 

observations is seen to emerge in the early 2000s.  Error in the Hansen et al. forecast 

arises from a combination of CO2 forecast error and internal climate model error.  It is 

straightforward to correct for CO2 forecast error by examination and adjustment of 

adjacent years’ CO2 and temperature.  This was done and the remaining forecast error 

attributable to the climate model is shown in Figure 3.6.15.  The 1998 El Niño 

temperature transient caused the temporary drop in all errors that year, and a Scenario-B 

error trend becomes obvious around 2005.  CO2 error correction removes approximately 

20% of the rising forecast bias.  Total forecast error has been increasing at approximately  



174 
 

 
Figure 3.6.15. Comparison of Three Forecast Methods from 1987. Only the empirical 2-

component method has minimal mean forecast error and no error trend. 

 

0.15
o
/decade, but at 0.12

o
/decade once CO2 error correction is applied.  Such model-only  

error can accumulate substantially over long time horizons.  Persistence forecast error 

from 1987 is also shown in Figure 3.6.15.  It has an error bias trend as well, but in the 

opposite direction to Hansen et al. since it under-forecasts rather than over-forecasts. 

A 2-component empirical forecast is constructed from the Hansen et al. 1987 data 

and its error is also shown in Figure 3.6.15.  Annual errors lie within approximately 

±0.1
o
C over time, and cumulative mean error is a miniscule -0.003

o
C.  In conclusion, the 

empirical model is demonstrably better than a climate model and better than persistence, 

and its multi-decade error expectations have been quantified. 
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3.6.3.6 Global Temperature Anomaly Forecast 

 The global temperature anomaly forecast using the current estimates of 

CO2(preind)=274ppm, ECR=1.45
o
C, A=0.17

o
C, P=63yrs, to=2005 applied to the model 

equations is shown in Figure 3.6.16.  The CO2 forecasts of Figure 3.6.10 corresponding 

to late-century RCP4.5 and RCP6.0 concentrations are used to bracket the most-likely 

temperature anomaly forecast, and roughly correspond to 95% confidence limits derived 

from hold-out forecast errors.  The anthropogenic contribution is predicted to continue its 

monotonic upward trend, modulated by natural variability.  The forecast range is notably 

more constrained than the wide range of AR5 projections, dissipating the large 

 

 
Figure 3.6.16. 2-Component Global Temperature Anomaly Forecasts Compared to AR5 

Change Projections. 
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uncertainties suggested by the IPCC.  The forecasts are at the low end of the ranges 

indicated by IPCC climate model simulations, both at mid-century and at end-century.  

About half of AGW that is expected by end-century has already occurred.  The forecast 

reveals how relative contributions of the Tanth(t) and Tnat(t) terms evolve over time.  

During the 1920s-30s and 1980s-90s the warming was emphasized by the rising phase of 

cycles in Tnat(t).  The reverse prevailed during the cooling period into the 1970s and at the 

present time.  The current down-cycle in Tnat(t) is forecasted to counteract rising Tanth(t) 

for most of the next two decades.  When the error term is taken into consideration, a 

rising temperature ramp may not be detectable again until the mid-2030s when another 

significant warming period similar to the 1980s-90s ensues into the 2060s.  CO2 

concentration will have doubled from its preindustrial level by 2070, at which time 

another hiatus is forecasted that persists through the end of the century.  A 1.45
o
 ECR 

maintains global temperature change below 2
o
C through this century, which is IPCC’s 

critical limit beyond which significant impacts may occur.  Uncertainties in the CO2 rate-

of-change later in this century are the most sensitive long-term assumption of the forecast 

model within reasonable parameterizations, although they only contribute about 0.15
o
 to 

0.25
o
C in uncertainty.  The next temperature rise two decades away provides decision 

makers more time for adaptation planning and implementation, which is fortuitous 

because all impacts of the last warming have not yet been fully assessed amidst all other 

climate and meteorological variability.  Those should clarify with time, enabling 

informed preparatory actions in anticipation of the next temperature increase. 
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3.6.3.7 Salt-Verde Temperature Anomaly Forecast 

Chylek et al. (2013) examined the past century’s temperature and precipitation in 

the Southwest United States for the purpose of identifying major drivers of regional 

climate change.  They found that early 20
th

 century warming was dominated by 

transitions in the AMO while the late part of the century was influenced by both the 

AMO (concurrent with the PDO) and increasing greenhouse gas concentrations.  They 

attribute regional warming of the past few decades equally between the AMO-PDO and 

GHG drivers and thereby reach the conclusion that CMIP model sensitivity to GHG has 

been overestimated by approximately a factor of two.  The climate conditions predicted 

for the Southwest by CMIP simulations are supported in their analysis only in the case of 

the climate indices returning to their late-20
th 

century rate of change and sustaining that 

mode.  They consider this highly unlikely considering the long-term AMO-PDO 

cyclicality imprint on the region. 

All elements of the 2-component empirical model can be readily derived 

regionally to support applicability of the methodology to the Salt and Verde River 

watersheds and reservoirs utilizing their instrumental records.  Climate sensitivity and 

response to large-scale circulation dynamics differ between global and regional data sets 

but reflect similar periods of warming and cooling in temperature trend-cycles, including 

the 1970s cooling period and the current hiatus.  This can be seen in Figure 3.6.17 where 

ECR=2.89
o
C/2xCO2 for the combined watersheds has been calculated for the forecast.  

ECR is generally expected to be higher over land than the global value.  Uniqueness of a 

regional ECR is expected and due to localized influence of aerosols, land cover 

interactions, and feedbacks.  Similarly, the unique imprint of multi-decadal variability in 
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the Southwest United States (Nowak et al. 2012; Chylek et al. 2014) is reflected in local 

effects of large-scale circulation dynamics, although consistency of cycle period is 

evident in the watersheds. 

 

 
Figure 3.6.17. Temperature Anomaly Forecasts of Combined Salt and Verde River 

Watersheds Compared to Downscaled Climate Model Change Projections. 

 

Since the central Arizona climate sensitivity is twice the global value, the current 

and future hiatus periods will occur at temperature anomaly levels twice what is seen at 

the global level.  The hiatus intervals provide a convenient temperature differential over 

which to calculate a single-number temperature change forecast for analysis of the SRP 

system.  As can be seen in Figure 3.6.17, the temperature change to arrive at the future 

hiatus (2065-2095 average) relative to the current level (2000-2030 average) is 
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approximately 1.5
o
C.  But, if there is a unique regional ECR there may also be unique 

ECRs for each watershed-season and the reservoirs, and this was found to be the case.  

They are summarized in Table 3.6.1, along with the temperature differentials that are the 

most likely forecasts of future temperature change applied for this research investigation.  

Among the forecasts, it is noted that the Verde watersheds and reservoirs in summer have 

a climate sensitivity and hence a temperature change forecast notably larger than other 

watershed-seasons.  The reason for this is unclear and merits further investigation.  

Nevertheless, the identified temperature forecast values are used for this research, and 

conclusions are not very sensitive to Verde summer values due to the relatively small 

summer runoff contributions from the Verde River. 

 

Table 3.6.1.  Effective Climate Response (ECR) and Temperature Change 

from the Current Hiatus (2000-2030) to the Future Hiatus (2065-2095). 

 

 

AR5 Projection

future future

ECR temperature temperature

(
o
C/2xCO2) change change

Global Water-Year 1.45 0.6 
o
C 1.57 

o
C

Salt & Verde Water-Year 2.89 1.5 
o
C 3.1 

o
C

Salt Winter 2.87 1.34 
o
C 3.1 

o
C

Verde Winter 2.20 1.02 
o
C 3.1 

o
C

Salt Summer 2.90 1.35 
o
C 3.1 

o
C

Verde Summer 3.97 1.86 
o
C 3.1 

o
C

Salt Winter 1.80 0.82 
o
C 3.1 

o
C

Verde Winter 2.95 1.37 
o
C 3.1 

o
C

Salt Summer 2.55 1.18 
o
C 3.1 

o
C

Verde Summer 3.97 1.85 
o
C 3.1 

o
C

Most Likely Forecast

Watershed-Season

Reservoir-Season
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3.6.4 Temperature Projection Based in IPCC AR5 

The climate modeling community, globally and regionally, has been resistive to 

providing what can be relied upon as a forecast, asserting that their findings are only 

possible ‘projections’ of the future.  As previously discussed, those projections over-state 

temperature trends compared to current observational analyses and span an irreducibly 

wide and uncertain range of expectations.  Nevertheless, a succinct temperature change 

originating in AR5 models is desired for this investigation of the SRP system to explore 

what those implications might be.  This was derived based upon – 

1) AR5 global mean temperature changes, 2046-2065 & 2081-2100, for RCP4.5 and 

RCP6.0   

2) regional climate sensitivity at twice global sensitivity 

3) current regional hiatus at ~1.8
o
C relative to preindustrial 

4) trend calculation to identify temperature changes in the same comparative time 

interval as the empirical forecast 

The calculation yields an AR5-derived temperature change projection of 3.1
o
C for late-

century, as compared to the empirical model’s ~1.5
o
C forecast (Table 3.6.1).  The 3.1

o
C 

change has been uniformly applied to the watersheds and reservoirs in both seasons for 

an AR5 temperature change projection. 
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3.7 Reservoir System Operations Simulation Model 

3.7.1 Abstract 

Successful water management outcomes are largely a function of the design and 

operation of a reservoir system matched to the hydroclimate of its watersheds.  Such 

systems are built to buffer against hydroclimatic variability and differentials between 

supply and demand, thereby assuring continuity in water delivery and flood protection.  

The cumulative interaction of runoff variability with reservoir system design and 

operation greatly affect the response and status of the system at any point in time.  The 

interplay is essential to understanding impacts on water availability, which is the bottom-

line measure of resilience. 

 To perform that assessment, a reservoir system operation simulation model 

(ResSim) was developed with the cooperation of the Water Resource Operations group at 

SRP.  The model incorporates a customer water demand schedule, system replenishment 

through climate-driven runoff from the Salt and Verde watersheds and losses at the 

reservoirs, and the web of decision rules used to manage an integrated six-reservoir 

system with groundwater backup and operating protocols.  A wide range of NBS time 

series scenarios can be efficiently exercised through the model which reports status of all 

key variables at seasonal time steps for the very long time series needed for detailed 

probabilistic assessments of key performance metrics.  System implications of climate 

change in the NBS series can then be readily assessed from the system response 

differentials and findings can inform adaptation measures. 
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3.7.2 ResSim Model in FORTRAN 

Some analysis of the SRP reservoir system capabilities was previously performed 

by SRP’s Water Resource Operations group (Phillips et al. 2009).  Using their Long-

Term Drought Planning Model (LTDPM) and monthly data in 50 year intervals they 

analyzed the effect of long-term drought on the reservoir system if managed under 

current operational guidelines.  Flow reductions in fixed percentages of the historical 

median were analyzed to determine what it would take to deplete reservoir storage.  As 

well, extended periods of drought from the historical record were tested with percentage 

reductions in runoff to assess effects on storage.  The findings provide important insights 

to the resilience of the SRP reservoir system as well as its vulnerability in periods of 

drought.  However, results were incomplete because they dealt only with established 

runoff time series without consideration of alternative temporal variability.  The historical 

runoff record is unlikely to exactly repeat itself in the future, so consideration should be 

given to the full range of other possible sequences.  Since droughts occur in the 

Southwest United States with multi-decadal return frequency, very long time series must 

be studied to thoroughly assess them in a statistically rigorous manner, and this can be 

performed by passing stochastic simulation series (from Sec. 3.4) through a reservoir 

operations model.  Modeling at seasonal or annual rather than monthly time steps is more 

computationally efficient for the long, repeat executions required to explore numerous 

scenarios, and the LTDPM did not lend itself to this purpose. 

Consequently, this investigator developed full flowcharting of a seasonal, 

deterministic reservoir operations simulation model to enable evaluation of the 

cumulative impact of numerous watershed flow sequences on SRP water storage, 
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groundwater pumping requirements, and management action thresholds.  Investigator’s 

advisor, A.W. Ellis, programmed the model in FORTRAN, and it was tested to 

demonstrate accurate and representative outcomes.  The web of decision rules within 

ResSim were established from SRP’s operational information (SRP-a, SRP-b) and 

published research work (Phillips et al. 2009).  It was found that, although the system is 

managed day-to-day, the key operational decisions can be well-represented in modeling 

on a seasonal basis.  ResSim was therefore built on a winter-summer basis, simplifying 

calculations into two seasons per water year and making it feasible to quickly execute a 

nearly infinite string of years for estimates of statistics from very large sequence 

outcomes.  The model’s configuration of operating rules and parameterizations of the 

reservoir system were reviewed with SRP Water Resource Operations personnel for 

representativeness and completeness, and inputs from those consultations were 

incorporated to the final version of ResSim which was used for this investigation.  

Complete details of the model and flowcharts are documented in Appendix F. 

The main features of the ResSim model can be summarized as: 

 Water year start date of October 1
st
 and winter-to-summer runoff transition on 

May 1
st
. 

 Six Salt and Verde reservoirs, rated per current storage capacities (Table 2.1.1). 

 Fixed water delivery schedule of 900,000 acre-feet/year (representative monthly 

customer demand schedule provided by SRP, Appendix F). 

 Groundwater pumping per SRP storage planning diagram, which is a function of 

reservoir storage status (Appendix F). 
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 Model inputs as runoff and miscellaneous loss, or as net basin supply (NBS=RO-

ML). 

 Miscellaneous loss directly input or calculated per localized climate at the 

reservoirs. 

 Priority to water supply for the Salt reservoirs’ hydroelectric generation. 

 Seasonal depletion and replenishment sequences per balance of surface water 

demand versus net basin supply. 

 Reservoir positioning rules for winter runoff. 

 Defined depletion/replenishment sequences within and between the Salt and 

Verde sides of the reservoir system. 

 Spillage monitoring and correction between the Salt and Verde sides of the 

system. 

 Reduced water allocation rules (2/3
rds

 of season demand) implemented below 

600,000 acre-feet of total remaining reservoir storage. 

 Reservoir system depletion shutdown at 50,000 acre-feet remaining storage which 

persists until Salt reservoir storage recovers to 450,000 acre-feet, with user-

defined recovery options. 

 

The ResSim model outputs 28 characteristics of the reservoir system per season, 

including all volumes of water in and out of the system, water stored in each of the six 

reservoirs, the customer water demand and the amount of demand that is met, the amount 

of groundwater pumped to supplement surface water, and coded messages associated 

with significant thresholds (e.g., reduced allocation, system depletion).  Surface and 
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groundwater deliveries are identified in ResSim by season, but the downstream water 

distribution agreements between SRP and the various water users are not.  For this 

investigation a baseline assumption of 367,000 acre-feet of water delivery in winter (over 

7 months) and 533,000 acre-feet in summer (over 5 months) is used, which was typical in 

the several years (2003-2011) preceding initiation of this study (delivery history in 

Appendix F).  To the extent that actual water deliveries do not follow this assumption, 

cumulative modeled results will deviate accordingly.  The implications of larger or 

smaller deliveries, while an interesting question that can be explored with the toolset 

developed for this investigation, is an analysis outside the scope of this report. 

3.7.3 Model Evaluation 

Verification testing of the ResSim model was conducted and reported to SRP by 

Ellis and Murphy in 2012.  This included replicating Phillips et al.’s (2009) analyses, an 

assessment of the model’s ability to replicate the recent historical progression of reservoir 

storage, and model execution with the full historical NBS record since 1889 to assess 

how the system would have responded if it had been in place with the current 

configuration and operating rules.  The model effectively reproduced anticipated 

behaviors and confirmed the suitability of ResSim for the anticipated purposes of this 

research investigation (Ellis and Murphy 2012). 

Model evaluation intends to test the model’s ability to replicate operational 

outcomes using the stream gage and climate data records for the years since the SRP 

system was fully in operation.  However, ResSim is built according to current system 

configuration and operating rules, and many of those have changed appreciably over 

time, making comparisons inexact.  For example, upon examination of the historical 



186 
 

storage record it is evident that there were significant ongoing modifications of reservoir 

operations into the early 1970s.  In particular, water storage in the smaller Salt reservoirs 

was inconsistent with what would now be expected under current operating guidelines.  

As well, there have been documented changes in SRP’s storage planning guidelines since 

1971 (Phillips et al. 2009), and simulation of the historical record is complicated by other 

changes, including: 

 Expansion of Roosevelt Lake reservoir capacity by 305,000 acre-feet in 

1996 (simulations use post-1996 storage capacity throughout). 

 Revision of operational safety-of-dams rules that accompanied the 

extension of Roosevelt dam. 

 Revision of groundwater pumping guidelines in the mid-1990s and again 

in 2006 (simulations use the current algorithm). 

 Revision of water allocation reduction rules in 2006 (simulations use 

current rules). 

 SRP’s purchase of approximately 500,000 acre-feet of water from the 

Central Arizona Project (CAP) in the early 2000s (simulations consider no 

outside water sourcing). 

 Delivery of water to a changing demand schedule through time, including 

a decline in deliveries over the past few years (simulations use a constant 

annual 900,000 acre-feet). 

 

Nevertheless, as can be seen in Figure 3.7.1, ResSim renders a seasonal storage series 

reflecting the historical progression, although with attributable periods of offset.  Co- 
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Figure 3.7.1.  Observed and ResSim-Modeled Total Reservoir Storage at End-of-Seasons 

(April 30, September 30) Since 1971. 

 

variability of simulated and observed reservoir storage is evident with a systematic offset 

owing to the use of the larger post-1996 storage capacity (at Roosevelt Lake) in ResSim 

with updated operational rule revisions.  This results in a continuing offset until the 

drought of 2002-2003.  That threatening drought period triggered reduced water 

allocation deliveries to customers and water sourcing outside the system from CAP, 

which closes the bias between modeled and observed results.  After the depth of that 

drought period, simulated storage is consistently less than observed storage, which is in 

part a product of the carryover effect of the CAP water purchase.  Then, more recently, a 
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sequence of deliveries below modeled demand (Fig. F1 in Appendix F) has kept storage 

at higher levels than would be expected. 

The only full system replenishment since the 1996 Roosevelt Dam extension 

occurred in the winter of 2010, so only since then should ResSim modeling be expected 

to align with observed outcomes.  But, the differential of lower actual water deliveries 

than 900,000 acre-ft/yr has left the system with a cumulative storage benefit of 

approximately 500,000 acre-ft at the end of 2015.  As discussed in Chapter 4 (Results) of 

this document, the SRP system is well-matched to its watersheds’ NBS for delivery of 

900,000 acre-ft/yr.  Any reduction in water delivery readily benefits reservoir storage 

because the probability of reservoir inflows sufficient to sustain the system is readily 

enhanced when withdrawals are below the median of the skewed NBS probability 

distribution (Fig. 3.4.16).  In other words, there is a significant enhancement of system 

resilience during drought periods by even modest delivery demand reductions, as has 

been demonstrated over the last five years. 

The modeled storage response to the entire historical NBS series is shown in 

Figure 3.7.2.  Total system storage is maximized during periods of high inflows and 

depleted during cumulative deficits.  The NBS time series has a high coefficient of 

variation with periodic high flows which quickly refresh the reservoir system.  The sharp 

and deep 1890s drought is readily apparent, briefly resulting in total remaining storage 

below 600,000 acre-feet, which would call for reduced water deliveries under 

conservation measures.  It ended abruptly with a very wet 1905 followed by the pluvial 

1910s-20s period during which the system would have been repeatedly topped off and 

spilled excess water.  A shallower but longer dry period is seen across the 1950s followed 



189 
 

 
Figure 3.7.2.  Modeled Total System Storage Response to Historical Watershed Inflows 

for the Period 1889-2015. 

 

by another pluvial period centered in the 1980s.  The model renders a couple seasons of 

storage below 600,000 acre-feet at the beginning of the 2000s which did trigger changes 

in water allocation and the purchase of CAP water.  Although drought relief came briefly 

with the El Niño winters of 2005, 2008, & 2010, below-median NBS over the last five 

years places modeled storage again at the 600,000 acre-feet storage threshold.  But, as 

discussed above, declining demand over the same period has made the imposition of 

allocation reductions moot. 

No depletion of the reservoirs was found in this ResSim analysis of the historical 

record.  The reduced allocations and groundwater pumping would have buffered against 
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the reservoirs reaching a depleted condition during dry periods within the past 127 years.  

Furthermore, it seems that if only a few hundred thousand acre-feet of conservation or 

other water is sourced at the opportune time, total storage can be kept above 600,000 

acre-feet until larger inflows return for reservoir replenishment.  Alternatively, if 

additional reservoir capacity were available, some spillage could have been captured 

during periods of high flow.  This would essentially raise the curve in Figure 3.7.2 away 

from the trigger level for reduced allocations. In this sense the 1996 modification of 

Roosevelt Dam was a wise storage capacity addition.  Another similar capacity addition 

could further reduce chances of triggering allocations in the future, which is an option to 

consider if realistic climate change scenarios raise probabilities of deeper or longer 

droughts to an unacceptable level of recurrence that cannot be addressed by conservation 

measures. 

To perform a further stress test of the system, a uniform percentage NBS 

reduction can be applied to the historical series and assessed by ResSim (Ellis and 

Murphy 2012).  This is a coarse method by which to analyze the system; but, such a 

practice raises a persisting divergence of opinion among practitioners over whether it is 

sufficient to assess changes through such simple adjustments to an overall probability 

distribution or whether resilience is more reliably assessed through detailed statistical 

constructs (Katz 2010).  An entire distribution shift may be appealing in its simplicity but 

it leaves unresolved concerns whether there may be different drivers to different parts of 

the NBS distribution.  This is an important distinction in hydrologic modeling with 

potentially significant differences for results.  This investigation took the choice of 
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examining effects as a function of NBS distribution; and important implications to 

analysis findings were found as will be discussed in Chapter 4. 

As illustrated by the above analysis, the ResSim reservoir simulation model 

provides a key tool by which to assess cumulative impacts of highly variable inflows of 

seasonal NBS from dual, correlated watersheds.  While examination of historical record 

effects are instructive, they are not the complete story – which can now be completed by 

passing very long time series generated by the stochastic simulation methodology 

through the ResSim model. 
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CHAPTER 4 

RESULTS 

 
Figure 4.0.1.  Integration of the Components of this Research Investigation. 

 

The methodological components described in the last chapter provide the tools 

necessary to conduct an integrated analysis of the SRP system based in its long historical 

data record.  Interfacing of the analytical components is diagrammatically outlined above 

in Figure 4.0.1.  A full system characterization (Sec. 3.2) enabled the development of the 

stochastic simulation methodology (Sec. 3.4) and calculations of the hydrologic 

sensitivities of the watersheds and reservoir system (Sec. 3.5).  Details of the stochastic 

simulation algorithms are documented in Appendix C, from which a dozen 10,000-year 

time series were generated for this investigation, for a total of 120,000 years of dual-

season, dual-watershed NBS.  The resultant distribution of total annual NBS is given in 

Figure 3.4.16.  Any transformation of that pdf due to forthcoming climate change is 

translated according to the hydrologic sensitivity algorithms documented in Appendix D.  

Two climate change forecasts for the later part of this century (2065-2095 vs 2000-2030) 

were developed (Sec. 3.6).  These are the author’s most likely forecast and a projection 
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based in AR5 from the IPCC (Table 3.6.1).  The latter is approximately double the 

average temperature change of the former.  The 120,000 years of simulation data were 

transformed for each of the two change cases per ST findings.  εp algorithms were not 

applied for the change cases as no precipitation trend is anticipated within those 

temperature ranges, but they were applied for the sensitivity analyses described below. 

While there are numerous questions about the three 120,000-year time series that 

can be examined, the central ones regarding differences in net basin water supply and 

drought occurrence are analyzed and reported below.  All generated series and the 

historical record were passed through the reservoir operations model that was developed 

(Sec. 3.7; details in Appendix F), and system response in key respects is also reported 

below. 

 

4.1 Net Basin Supply 

 The NBS probability distribution function previously shown in Figure 3.4.16 is 

reproduced in Figure 4.1.1 in comparison to the resultant pdfs for the temperature change 

cases (summary statistics are documented in Table G1 of Appendix G).  The annual 

median NBS of the current system’s generated series is 849,500 acre-feet, which, when 

combined with a nominal 50,000 acre-feet of groundwater, matches the 900,000 acre-feet 

of annual water deliveries from the SRP system around which the ResSim model is 

exercised.  In this regard the watersheds are well-matched to the rest of the system.  As 

can be seen in Figure 4.1.1, the effect of the temperature changes is a downward shift of 

the pdfs.  The degree of NBS change is nonlinear and a function of position examined  
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Figure 4.1.1.  Annual NBS Probability Distribution Functions for the Current System and 

the Two Temperature Change Cases. 

 

 

Table 4.1.1.  Change of Annual NBS as a Function of Position within the NBS 

Probability Distribution.  The most likely temperature change is about 1.5
o
C; the AR5 

change is 3.1
o
C. 

           
 

Most Likely Forecast IPCC AR5 Projection
vs vs

Current System Current System

10
th

 percentile -13% -28%

25
th

 percentile -9% -19%

Median -5% -10%

Mean -3% -7%

75
th

 percentile -2% -5%

90
th

 percentile -1% -3%
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within the pdf.  Some quantification of this is provided in Table 4.1.1.  The most likely 

temperature case results in about a 4% reduction in the vicinity of the median and mean 

NBS, while the larger AR5 temperature change induces about double that reduction. 

However, more illuminating is what occurs in very low and high flow regimes.  

Recall that temperature sensitivity was found to be minimal in winter but with 

discernable summer effects upon flows from the watersheds and losses at the reservoirs.  

The system is primarily dependent on winter precipitation for reservoir refresh; so, if that 

is deficient, annual NBS is comprised more of the summer flows and losses that are 

temperature sensitive.  If, instead, winter runoff is the dominant portion of annual NBS 

and subject to minimal temperature sensitivity, summer effects are diluted within the 

annual impairment.  Productive El Niño winters can result in upper-quartile NBS, and 

their annualized temperature sensitivity is only ~1% to 2%/
o
C.  With non-productive 

winters, annual NBS impairment is expected to be in the range of 6% to 10%/
o
C.  

Previous research (Fu et al. 2007b; Vano and Lettenmaier 2014) has identified seasonal 

dependence of temperature sensitivity and hinted at nonlinear response.  But the findings 

of this investigation are the first specific quantification of those for any watershed based 

in observational evidence, and it reveals a more detailed expectation of only modest 

streamflow impairment. 

 The differentials between temperature cases were examined to identify the origin 

of NBS reductions, and their average apportionment is shown in Table 4.1.2.  Only a few 

percent is due to winter runoff impairment, which can be readily lost amidst high year-to-

year precipitation variability.  It is during the summer season that future temperature 

changes will have an effect; and, of those NBS impairments, roughly half of it occurs 
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during runoff to streamflow and half of it as additional miscellaneous loss at the 

reservoirs (52%/45% in most likely forecast, 45%/51% for AR5 projection).  So, 

evaporative water loss from the reservoirs is as important as what will happen on the 

watersheds, and it becomes a larger percentage with more elevated temperatures.  This 

finding might be expected, and it is difficult to envision a manner in which to suppress 

such natural loss. 

 

Table 4.1.2.  Origins of NBS Reductions at Typical NBS Levels. 
 

 
 

 The nonlinear reductions in annual NBS due to future temperature change are 

composed of unique nonlinearities for each watershed-season (not shown), and any NBS 

level can be comprised of varying watershed-season contributions per the stochastic 

constructs (developed in Sec. 3.4).  Consequently, their changes are also stochastically 

distributed in a nonlinear fashion across NBS level.  This can be seen in Figure 4.1.2 for 

the most likely temperature forecast and in Figure 4.1.3 for the IPCC AR5 projection.  

NBS impacts are clearly more pronounced at low levels where summer contributions are 

more heavily weighted, as was discussed above.  There is also a broad probabilistic 

distribution of potential outcomes at low levels.  At high NBS levels, which are due to 

Most Likely IPCC AR5

Forecast Projection

Winter 3% 4%

Summer

Salt Runoff 20% 20%

Verde Runoff 32% 25%

Salt MiscLoss 32% 40%

Verde MiscLoss 13% 11%
(at reservoirs)
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wetter winters, reductions are much smaller and the distribution is more constrained.  It 

becomes clear that the totality of nonlinear interactions becomes difficult to encapsulate 

in simple expressions or graphical display. 

 

 
Figure 4.1.2.  Distribution of NBS Reductions from Current Levels for the Most Likely 

Temperature Forecast. 

 

The effects of precipitation variability are also nonlinear as was clear from the 

findings for precipitation elasticity of runoff, εp (Sec. 3.5.4).  A given percentage 

precipitation change is amplified by nonlinear elasticity (although typically around 2.0) to 

create a runoff change as a component of total NBS.  The amount of precipitation 

increase required to offset average temperature-induced NBS reductions at any level (or 
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Figure 4.1.3.  Distribution of NBS Reductions from Current Levels for the IPCC AR5 

Temperature Projection. 

 

any point in the distributions) can be solved for, and this was done at median NBS for the 

most likely temperature forecast, and is displayed in Figure 4.1.4.  A uniform and modest 

2.5% precipitation increase is sufficient to establish an equalizing offset.  The effect of 

the temperature change on NBS from Figure 4.1.2 is reproduced in dark gray in Figure 

4.1.4, and changes from a +2.5% precipitation change alone are shown in light gray.  The 

net of the two acting together is shown in combination, which has a new and different 

nonlinear distribution.  NBS levels below median tend to still show reductions, although 

with a widened distribution of outcomes.  NBS levels above median, and certainly above 

the mean (~1.16MM), show an NBS increase up to a ceiling of about +3%.  The same 
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analysis was conducted for the IPCC AR5 temperature change which can be offset at the 

median for ΔNBS=0 by a precipitation increase of approximately 5%.  The scatter of 

those distributions is widened in both directions but of similar shapes to Figure 4.1.4. 

 

 
Figure 4.1.4.  Change in NBS Due to the Most Likely Temperature Forecast (reduction), 

Due to an Offsetting +2.5% Precipitation Change (increase), and from the Temperature 

and Precipitation Changes in Combination. 

  

One way that hydrologic research findings are sometimes reported is to identify 

lines of equivalent streamflow change across a field of temperature and precipitation 

changes.  An example is reluctantly provided in Figure 4.1.5 with the caution that it is an 

incomplete over-simplification.  The findings of this investigation make it readily 

apparent that doing so in a single plane at one NBS level is inadequate to the evidence. 
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Multiple planes in a third axis are required to capture the complexity, and each of those is 

a probabilistic function scaling with NBS having distribution breadth which can overlap 

the change examined. 

 

 
Figure 4.1.5.  Lines of Constant NBS Change per Changes of Temperature and 

Precipitation. These apply ONLY relative to median NBS and at the center of the 

stochastic distribution. 

 

Multiple ΔT-ΔP combinations are now available for ΔNBS=0 at the median 

which provides a quantification of offsetting average effects at one point in the 

distribution.  These amounts of precipitation change which range only up to 5% can be 

compared to natural variability that was quantified in Figure 3.2.9 (30-year climate-

normal precipitation).  While there has been no long-term trend in precipitation, there 
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have been periods of temporal variability both above and below the long-term average.  It 

was above early in the 20
th

 century, below at mid-century, significantly above in the 

1980s-90s, and now again below.  The precipitation climate-normal values have ranged 

from -5% to +10%, with winter ranges being even wider.  If and when above-normal 

levels again return, the precipitation change will be more than sufficient to offset the 

temperature change cases across most of the NBS distribution.  Only at the lowest NBS 

and precipitation levels will a ΔP change be insufficient to offset temperature impacts.  

This is consistent with the explained variances from regression analyses using these 

climate variables.  It therefore appears very likely that anticipated temperature changes of 

the future may be unresolvable and in question for their impact amidst natural 

precipitation variability. 

 

4.2 Drought 

The research questions motivating this investigation deal primarily with drought 

occurrence and its statistical properties.  Multi-year periods of low flow within an NBS 

time series below a criterion level are of primary interest because they represent 

threatening time periods for the reservoir system that require detailed impact assessment.  

The following section provides a definition of drought relevant to the SRP system, 

identifies drought occurrences within the 120,000 years of stochastic simulation time 

series, and analyzes key drought characteristics before their impacts are interpreted 

through ResSim modeling. 
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4.2.1 Drought Definitions 

In general, the onset and the end of a drought are notoriously difficult to 

determine specifically and, in retrospect, are usually defined relative to a particular 

impact.  A wide variety of impacts arise due to drought, making it difficult to establish a 

single working definition having universal meaning.  Consequently, a variety of criteria 

can often be applied to an instance, each having relevance for the specific impact under 

consideration.  For this study consideration is only given to hydrologic drought relevant 

to the SRP system, referring to a period with deficient net basin supply of surface water 

that challenges ongoing management operations of the system.  And, rather than simply 

conceptual, an operational definition is required if quantified comparisons are to be made 

for metrics such as drought frequency, severity, and duration (Mishra and Singh 2010).  

The basic element required for assessing drought metrics is a threshold level for the key 

relevant variable.  With large natural variability inherent in NBS history and in expected 

simulation series, an explicit and consistent threshold is needed against which 

comparisons can be conducted.  While thresholds may conceptually be a function of time 

or other changing conditions, the SRP system circumstances (fixed deliveries and 

operating rules) call for a fixed criterion to highlight periods of interest with an objective 

standard. 

The total water delivery requirement of 900,000 acre-feet/year modeled in this 

study is satisfied by a mix of surface water and groundwater.  The minimum groundwater 

pumping rate is 50,000 acre-feet/year when reservoir storage is full (Phillips et al. 2009), 

which is essentially the rate when pumping is at near-idle.  This condition leaves the 

850,000 acre-feet balance of delivery requirements to be satisfied by surface water.  If 
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NBS is consistently 850,000 acre-feet/year or larger, then the reservoir system maintains 

or increases storage, surface water delivery requirements are met, and there is no drought.  

A drought threat exists if NBS remains below this level for a multi-year period over 

which reservoir storage would progressively decline.  As noted in Table 3.4.2, the 

historical median annual NBS has been 836,000 acre-feet and the stochastic simulation 

10,000-year medians range from 830,500 to 866,500 with an overall 120,000-year 

median of 849,500 acre-feet.  When median supply approximately equals demand the 

system is well-matched to the watersheds supporting it.  The analyses conducted for this 

report have therefore used an 850,000 acre-feet/year NBS criterion for drought threshold 

assessments.   

The high year-to-year variability of the NBS time series (Figs. 3.4.17, 4.2.1) 

brings into question how to treat individual years above (or below) the threshold amidst a 

clustering below (or above) threshold.  Should such occurrences define the end of a 

period to be evaluated or somehow averaged into adjacent years?  Simple trailing 

averages could be applied, but those are length-dependent and still contain elements of 

variability affecting drought identification.  This is particularly problematic when the 

threshold is in the middle of a highly skewed probability distribution, which is the case 

for the SRP system.  Application of a decadal smoothing filter removes length-dependent 

variability and provides a smoothed series within which threshold crossings can be 

identified.  This method was utilized in Ellis and Murphy (2012) with satisfactory results.  

However, the chosen frequency response of the filter can influence the temporal and 

amplitude character of the smoothed series and hence how a drought is categorized.  A 

review of the drought literature did not reveal uses of averaging or smoothing methods, 
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instead finding run theory to be the commonly applied method for drought identification.  

It simply identifies sequences with all adjacent values in a time series below (or above) a 

critical threshold level (Mishra and Singh 2010).  Therefore the analyses below use 

continuous runs-of-years below 850,000 acre-feet/year to identify a drought, which 

makes calculations from time series straightforward. 

Once a run of years in drought is identified, the key parameters to be calculated 

are: 

o Initiation time (first year of shortage). 

o Termination time (first year after initiation that NBS is again above 

threshold). 

o Duration, time during which NBS is below the threshold criteria 

(Termination time minus Initiation time). 

o Severity: cumulative deficiency below the threshold level. 

o Intensity: average value below the threshold level (severity divided by 

duration). 

o Depth: minimum value below the threshold criteria in the duration. 

 

The history of NBS by water-year is shown in Figure 4.2.1 where drought periods 

below the threshold criteria are indicated.  Their height position is average NBS 

(intensity) during a drought.  While 2016 water-year data is incomplete at the time of this 

writing, it appears annual NBS will be approximately 600,000 acre-feet if a typical 

summer occurs, and the current drought will have extended to its 6
th
 year.  Over the 128 

year instrumental record there will have been one 7-year, one 5-year, and two 6-year 
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droughts, for an occurrence rate of 3.125 droughts per century.  No 4-year drought 

occurred, and 3-year droughts are not identified in Figure 4.2.1.  SRP water operations  

staff has indicated that 3-year events are of little consequence, but they begin to be 

concerned after 4 years (personal communication).  The analyses below are therefore 

concerned with drought durations 4 years and longer. 

 

 
Figure 4.2.1.  Droughts ≥4 years Duration and Their Intensity in the NBS Historical 

Record. 

 

 

4.2.2 Drought Characterization 

Probabilistic characterization is very important to any consideration of drought 

risk.   Risk is typically defined as the probability of one or more defined events during a 
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stipulated timeframe, such as a decade, century or lifetime (Mishra and Singh 2011).  

Drought’s probabilistic behavior can really only be analytically derived from long 

simulations assuming a certain stochastic structure of the underlying hydrologic system, 

since the historical record usually lacks sufficient occurrences of the phenomena of 

interest from which to make substantiated probability statements. 

Drought is a multivariate event characterized by its duration, intensity, and depth 

which can be correlated in some fashion (Mishra and Singh 2011; Katz 2010).  Portrayal 

of their joint characteristics is therefore an informative analytical tool as shown in 

Figures 4.2.2 and 4.2.3.  All droughts from the 120,000-year simulation of the current 

system are shown, in comparison to those from the historical record.  It is readily 

apparent that the instrumental record is a limited random sample from what could have 

occurred.  The longest drought found in the stochastic simulation of the current system 

was 16 years in duration, but its probability of occurrence is a vanishingly small 

0.083%/century.  Most drought durations are ≤ 11 years, similar to the longest identified 

in the tree ring record (Hirschboeck and Meko 2005, 2008).  The simulation of a long 

120,000-year series has enabled the assessment of very small probability events.  It is 

interesting to note that the intensity and depth of long droughts are consistent with 

asymptotes identifiable from probability distributions in shorter drought data.  The next 

sections of this document quantify the probability distributions of drought duration, 

intensity and depth. 
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Figure 4.2.2.  Duration and Intensity of Historical and Stochastically Generated Droughts 

(current system case). 
 

 
Figure 4.2.3.  Duration and Depth of Historical and Stochastically Generated Droughts 

(current system case). 
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4.2.2.1 Probability Functions, Duration 

Statistical modeling methods from extreme value theory can be applied to 

illuminate the probabilistic character of drought parameters (Gumbel 1958; Coles 2001; 

Katz 2010; Mishra and Singh 2011; DeGroot and Schervish 2012).  A review of 

examples in the literature comes to the central observation that the probability of the 

number of drought occurrences within a time interval is described by the Poisson 

distribution, which is related to the exponential distribution that describes the probability 

distribution of time until a drought occurrence. 

Three conditions of a random variable must be met for these probability functions 

to apply: 

1) The number of occurrences in any two disjoint intervals of time must be 

independent of each other.  (This condition is satisfied by noting that there is zero 

autocorrelation in the historical runoff time series and outcomes are i.i.d. 

(independent and identically distributed).  There is no memory in the system, and 

a drought period can be expected to occur independently of other droughts.) 

2) The probability of an occurrence during any particular very short interval of time 

must be approximately proportional to the length of that interval.  (The chance of 

a drought occurrence is clearly lessened as one considers smaller and smaller time 

frames.) 

3) The probability of two or more occurrences in any particular very short interval of 

time must be of a smaller order of magnitude than the probability of just one 

occurrence.  (A drought is rarer as the time period under consideration is 

shortened, and the chance of more than one occurrence is significantly rarer still.) 
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This application of the Poisson distribution to phenomena occupying a finite time 

interval of several years is unique, but valid, so long as drought occurrence is i.i.d and 

sufficiently infrequent within a 100-year timeframe that droughts do not influence one 

another.  The i.i.d. conclusion at the annual level based upon stationarity analysis and as 

embodied in the stochastic simulation methodology is sufficient to establish that a 

sequence of drought years is also i.i.d.  Sample statistics compiled to date are sufficient to 

demonstrate the relatively low occurrence frequencies for the hydrologic droughts of 

interest (Fig. 4.2.1).  The probability of one occurrence is independent of all others and 

therefore of where in the series it is considered; so, the statistics analyzed here apply at 

any point in the time series.  To confirm that the findings of this investigation do conform 

to this assumption, statistics of all drought occurrences that arose across the 120,000 year 

simulation of the current system are compared to theoretical expectations from the NBS 

p.d.f. (Fig. 4.1.1).  Each sequential simulation year is generated from the p.d.f. having a 

median matching the drought threshold (850,000 acre-feet).  So, theoretically, the 

probability of the next year being in drought is 0.50, the probability of two more years in 

drought is 0.50
2
, three more years is 0.50

3
 , …, to 0.50

n
 for n years ahead.  As can be seen 

in Figure 4.2.4, the simulation outcomes closely track this expectation, confirming i.i.d. 

drought outcomes.  Water management may employ this simple calculation to assess the 

probability of a continuing drought based upon any drought definition in comparison to 

the NBS p.d.f. 
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Figure 4.2.4.  Expected Probability of a Continuing Drought Compared to Statistics from 

Stochastically Generated Droughts; Drought Threshold and NBS Median = 850,000 acre-

feet. 

 

A Poisson process is distributed as: 

 f(x|λ) = e
-λ

 λ
x
 / x!     for positive integers x = 0, 1, 2, …   (4.1) 

where it can be shown that the mean, E(x), and the variance, Var(x), are equal to 

the parameter, λ. 

 

The exponential distribution is:  

 f(x|β) = βe
-βx

      for all x > 0       (4.2) 

where it can be shown that the mean, E(x), and the standard deviation StDev(x) 

are equal to the inverse of the parameter, 1/β.  By an integral of this equation from 

any time, t, to ∞ it can be shown that the probability distribution of time until an 

occurrence is described by   Pr(x≥t) = e
-βt

    for all t > 0   (4.3) 
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The Poisson and exponential probability functions are closely related through λ 

and β, each of which is essentially a representation of average time until occurrence of a 

drought.  Values for these parameters were derived from the drought population in the 

current system’s stochastically generated time series.  λn as a function of two expressions 

of duration are shown in Figure 4.2.5.  λn can be calculated from the data for a specific 

duration, n, or it can be calculated for all droughts of duration ≥ n.  They are additive in n 

and have a similar functional relationship.  To simplify presentation of results, obtain 

larger sample sizes for statistical testing, and align with how drought is often considered, 

most calculations herein are presented in terms of duration ≥ n years. 

 

 
Figure 4.2.5.  Current System Poisson Parameter, λ (average number of droughts per 

century), as a Function of a Specific Duration and as ≥ Duration. 
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 All drought parameters were calculated from the 120,000-year current system 

simulation and then were recalculated for simulations of the most likely temperature 

forecast and the IPCC AR5 temperature projection.  The calculated Poisson parameters 

are tabulated in Table 4.2.1.  The Poisson parameter curves for the three cases are given 

in Figure 4.2.6, showing marginal increases in the average number of droughts per 

century as temperature increases. 

 

Table 4.2.1.  Poisson and Exponential Distribution Drought Parameters: λn (average 

number of occurrences per century) and 1/βn (average time to occurrence), Calculated 

from the Three 120,000-Year Stochastic Simulation Cases. 

 
 

With values of λn for all durations having been identified, the Poisson process 

probability function was applied to the three simulation cases to calculate the probability 

of any number of drought occurrences of any duration in a century (Table 4.2.2).  Longer 

droughts are likely to occur more rarely within a century relative to the shorter ones and 

the Poisson formulation allows this to be quantified.  Table 4.2.2 can be employed by 

water management for drought risk decision-making.  For example, if the decision is 

taken to accept a 5% drought risk level over the coming century then the system should  

Mean Number of Droughts per Century
Drought Duration (yrs) ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 ≥11 ≥12

Current System 6.33 3.14 1.58 0.78 0.39 0.19 0.11 0.05 0.03 0.01

Most Likely Forecast 6.86 3.53 1.87 0.96 0.50 0.27 0.14 0.08 0.04 0.02

IPCC AR5 Projection 7.39 3.99 2.18 1.17 0.62 0.34 0.19 0.11 0.06 0.03

Mean Time to Drought Occurrence (years)
Drought Duration (yrs) ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 ≥11 ≥12

Current System 16 32 63 128 260 519 952 1875 3529 9231

Most Likely Forecast 15 28 54 104 200 377 719 1290 2308 5455

IPCC AR5 Projection 14 25 46 85 160 293 533 938 1690 3429
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Figure 4.2.6.  Drought Poisson Parameter, λn, from the 120,000-Year Stochastic 

Simulation; for the Current System, the Most-Likely Temperature Forecast, and the IPCC 

AR5 Temperature Projection. 

 

be managed in anticipation of any combination of six droughts ≥4-years, four (of the 6) 

≥5-years, two (of the 6) ≥7-years, and one drought (of the 6) ≥ 10-years.  When 

considering a future temperature increase, the probabilities increase by 1% to 4% across 

the matrix of Table 4.2.2 for the most likely temperature change forecast.  Similar 

marginal increases occur for the AR5 temperature change projection relative to the most 

likely forecast.  Using this risk matrix, water management can adopt a climate 

expectation of their choosing and plan for the number of drought occurrences by duration 

per their risk comfort level.  But, since temperature change forecasts contribute only  
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small incremental probability differences, a planning guideline is relatively insensitive to 

temperature expectations.  The same set of decisions would probably be taken regardless 

of temperature forecast.  For example, the decision might simply reduce to planning for a 

5% chance of a 10- or 11-year drought over the next century along with an expectation of 

a few 5- to 8-year droughts. 

 

Table 4.2.2.  Probability of the Number of Drought Occurrences in a Century by 

Duration; for the Current System, the Most Likely Temperature Forecast, and the IPCC 

AR5 Temperature Projection. 
 

 
 

The differences in Poisson parameters among the two temperature change cases 

and the current system can be tested for statistical significance to ascertain whether the 

methodology has, in fact, revealed an impact to the number of drought occurrences.  

# Occurrences Drought Duration (years)

per Century ≥ 4 Yrs ≥ 5 Yrs ≥ 6 Yrs ≥ 7 Yrs ≥ 8 Yrs ≥ 9 Yrs ≥ 10 Yrs ≥ 11 Yrs ≥ 12 Yrs

CURRENT 0 4% 21% 46% 68% 82% 90% 95% 97% 99%

SYSTEM 1 14% 33% 36% 26% 16% 9% 5% 3% 1%

2 21% 26% 14% 5% 2% 0% 0% 0% 0%

3 22% 14% 4% 1% 0%

4 18% 5% 1% 0%

5 11% 2% 0%

6 6% 0%

7 3%

8 1%

MOST LIKELY 0 3% 15% 38% 61% 77% 87% 93% 96% 98%

FORECAST 1 10% 29% 37% 30% 20% 12% 7% 4% 2%

2 18% 27% 18% 8% 3% 1% 0% 0% 0%

3 21% 17% 6% 1% 0% 0%

4 19% 8% 1% 0%

5 13% 3% 0%

6 8% 1%

7 4% 0%

8 2%

IPCC AR5 0 2% 11% 31% 54% 71% 83% 90% 94% 97%

PROJECTION 1 7% 25% 36% 33% 24% 16% 10% 6% 3%

2 15% 27% 21% 10% 4% 1% 1% 0% 0%

3 20% 19% 8% 2% 0% 0% 0%

4 20% 11% 2% 0%

5 16% 5% 1%

6 10% 2% 0%

7 6% 1%

8 3% 0%
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While this could be done on the basis of λn values for each of the dozen 10,000-year 

sequences, a normality assumption is important when sample size is just 12.  λn values 

are small and bounded by zero which places normality in question.  The test is therefore 

instead conducted for the mean number of droughts in a 10,000-year sequence so that t-

statistic hypothesis testing may be applied.  The number of droughts for all dozen  

sequences by duration and for the three temperature cases is given in Table G2 of 

Appendix G.  The table shows the t-statistics that were calculated for hypothesis tests of 

whether the mean number of droughts is different between temperature cases.  The null 

hypothesis is rejected for drought durations out to approximately ≥11 years (95% 

confidence level).  Droughts longer than this from the stochastic simulation are so few in 

number (<30 in 120,000 years) that it is not possible to test whether their mean rate of 

occurrence has changed between climate cases.  But, as discussed above, the risk of those 

droughts to water operations is sufficiently small that they are not a major issue.  The 

higher-risk drought events (up to ~11 years) are shown by the hypothesis tests to occur 

with greater frequency under the most likely temperature forecast and the IPCC AR5 

temperature projection.  Their differences in Poisson parameter values may therefore be 

considered statistically significant. 

 As discussed above, another way to examine drought occurrence statistics is by 

the time between droughts, which is exponentially distributed.  The corresponding 

exponential parameter values (average time to a drought occurrence, 1/β) are given in 

Table 4.2.1.  Some probability distributions are calculated per 1/βn and displayed in 

Figure 4.2.7 with average time to occurrence noted.  As can be seen, the average time to 

occurrence alone is an incomplete representation of possible outcomes because, for any n, 
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the probability of occurrence within a shorter time interval is higher than at the average 

periodicity.  This is accentuated for the shortest duration droughts, but long duration 

droughts have lower and more uniform probability distributions in time, resulting in an 

increasingly longer average return period. 

 

 
Figure 4.2.7.  Exponential Probability Distributions of Time to Occurrence of Various 

Duration Droughts. 

 

 As for the Poisson parameter, exponential distribution parameters were also 

calculated for simulations of the most-likely temperature forecast and the IPCC AR5 

temperature projection.  The probability distribution results for duration ≥5 and ≥9 years 

are shown in Figure 4.2.8.  While average time to occurrence shortens with increasing 
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Figure 4.2.8.  Exponential Probability Distributions of Time to Occurrence of a Drought 

≥5 and ≥9 Years for the Current System, the Most-Likely Temperature Forecast, and the 

IPCC AR5 Temperature Projection. 

 

temperatures, the shifts in probability distribution are non-uniform.  Shorter horizon 

probabilities rise, but longer horizon probabilities fall.  This characteristic diminishes 

with long-duration, rarer drought such that their probability by time horizon is uniformly 

small with weak temperature dependence.  All values of λn and 1/βn for the three 

temperature cases are given in Table 4.2.1 and graphically compared in Figure 4.2.9.  By 

examination of Figure 4.2.9 at any level of either λn or 1/βn the sensitivity of duration 

between the temperature curves is seen to be small.  At most, the impact is a difference of 

only one year in drought duration.  Taken together with the observations above on risk  
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data in Table 4.2.2, the variability in actual drought outcomes over the course of a 

century is likely to be similar to or even larger than the change induced by increasing 

temperatures.  Managing for variability will therefore also address the drought impact of 

any future temperature increase. 

 

 
Figure 4.2.9.  Poisson and Exponential Distribution Parameters: λn (average number of 

occurrences per century) and 1/βn (average time to occurrence), for the Three 

Temperature Cases. 

 

4.2.2.2 Probability Functions, Intensity and Depth 

The preceding analyses on the basis of duration in Figures 4.2.6 to 4.2.9 are 

representations for all severities of drought.  Katz (2010) suggests that severity can also 

be analyzed simultaneous with duration to achieve a full, dual-variable characterization 
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of drought events.  The dozen 10,000-year series were developed in this study to have 

sufficient simulation data to achieve such a characterization.  The severity dimension of 

drought is mathematically represented by intensity (average NBS below the threshold 

level; intensity times duration = severity), and it can also be instructive to examine 

drought depth (minimum annual value below threshold).  The distributions of drought in 

these dimensions were shown above in Figures 4.2.2 and 4.2.3 for the current system 

case.  It is readily apparent that drought intensity is symmetrically distributed about a 

common central value at all durations and a narrowing variance with increasing duration 

(Fig. 4.2.2).  Drought depth variance also declines with duration (Fig. 4.2.3), but the 

distribution is upwardly skewed with a low bounding value.  Mean/median depth declines 

with increasing duration.  There is sufficient structure evident that these distributions 

were analyzed to identify their functional forms.  Their key statistics are compiled in 

Table G3 of Appendix G and graphically displayed in Figures 4.2.10 (intensity) and 

4.2.11 (depth). 

The drought intensity data distributions were tested and found to be, for the most 

part, normally distributed.   The only exceptions are in the low tail of the distributions for  

short duration droughts.  Those tails are bounded so that normality is slightly distorted in 

the lowest 5
th

 percentile.  The longer duration drought distributions do not display this 

effect.  Means of the distributions across duration were tested to find them all statistically 

equivalent.  There is, however, a downward trend in standard deviation with duration as 

can be seen in Figure 4.2.10 that can be readily described by a linear fit.  Considering the 

behavior across duration, it is very feasible to assign a parameterized normal distribution, 

N(mean, Sx(D)), to the intensity variable. 
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Figure 4.2.10.  Distribution of Drought Intensity as a Function of Duration.  Mean 

intensities are also shown for the most likely temperature forecast and the IPCC AR5 

temperature projection. 

 

The drought depth data distributions were also tested but found to not be normally 

distributed.  As shown in Figure 4.2.11 (and Fig. 4.2.3), the distributions are skewed 

upwards and their behavior can be represented by a gamma distribution, a two-parameter 

family of continuous probability distributions.  The two descriptive parameters for the 

gamma function, shape and scale, can be established by fit to empirical distributions.  

Those will also be a function of duration as indicated by Figure 4.2.11.  So, as for 

intensity, the depth probability distribution can be readily parameterized.  The stochastic 

linkage between intensity and depth is then all that remains to have established a 

complete statistical characterization of drought in its key dimensions. 
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Figure 4.2.11.  Distribution of Drought Depth as a Function of Duration.  Mean depths 

are also shown for the most likely temperature forecast and the IPCC AR5 temperature 

projection. 

 

4.2.2.3 Discussion 

There is a temperature dependence of severity which is shown in Figures 4.2.10 

and 4.2.11 for the most likely and IPCC AR5 cases in comparison to the current system 

behavior.  The intensity and depth distributions shift downwards with increasing 

temperature.  The hypothesis testing for the difference-of-mean between cases is 

documented in Table G3 of the appendix, and changes are shown to be statistically 

significant.  An interesting result occurs when the offsetting precipitation change 

discussed in Section 4.1 is also applied (+2.5% with +1.5
o
C, +5% with +3.1

o
C).  Drought 

occurrences by duration return to numbers similar to the current system case before 



222 
 

temperature changes were applied, such that changes in Poisson parameter are no longer 

statistically significant.  However, drought intensity and depth are still adversely affected.  

Even with complex nonlinear effects, the increased risk of drought occurrence from ΔT 

can be reversed by an offsetting ΔP.  But, when a drought does occur it will still be a 

more severe one.  This result can be traced to the way the offsetting values interact.  The 

offsetting values were calculated to balance at the median as shown in Figure 4.1.4.  

Temperature impairment primarily has its impact on the NBS distribution below the 

median, its effect diminishing at higher NBS.  Precipitation change effects occur with an 

opposite influence, enhancing NBS above the median.  Hence, each sequential year has a 

50/50 chance of being either more influenced by ΔT or by ΔP.  Since the drought 

threshold criteria has the same value as median NBS the stochastic outcomes for runs of 

years returns to probabilities as they were before ΔT was applied, and drought risks 

return to the current system case.  When a stochastically generated year is from the lower 

part of the distribution it will be impaired by the temperature change with less 

precipitation change influence.  Hence the same runs of drought years will occur 

(although perhaps at different locations in the time series) but with lower NBS.  So, 

droughts will be more severe than for the current system case.  ΔT-ΔP combinations 

balancing each other at other positions in the distribution obviously have different 

implications, and the choice of what constitutes a drought also bears upon the results.  

These are not stochastic simulation artifacts.  The methodology and the specific 

hydrologic sensitivities are representing the variable nature of the watersheds and 

illuminating natural complexities of the system. 
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For the purpose of assessing hydrologic impacts of climate change, the 

relationships of the key drought descriptors – duration, intensity, depth – to rising 

temperatures can now be statistically expressed upon a set of underlying deterministic 

assumptions.  Whether then, from a hydrological science standpoint, temperature impacts 

should be considered nonstationary can be answered in the negative.  As Koutsoyiannis 

and others have pointed out (Koutsoyiannis et al. 2009), theirs is a more sophisticated 

interpretation of the stationarity concept than simply a change in a time series.  What 

matters is whether temperature’s effects can be expressed and studied in a statistical 

manner relevant to its impact, and this analysis has demonstrated a path to doing so for 

drought vulnerability of the SRP system.  Let there be no lingering doubt, stationarity is 

not dead in the relevant sense of the word. 

 

4.3 Reservoir System Response 

4.3.1 Depletion Risk 

 All stochastically-generated time series of net basin supply by watershed-season 

were successfully passed through the ResSim model to evaluate reservoir system 

response.  Response to the historical series was previously examined in Section 3.7 with 

the evolution of reservoir water storage given in Figure 3.7.2.  There are two important 

storage thresholds to be examined.  The first is reservoir depletion and shutdown (at 

50,000 acre-feet of remaining storage), and the second is when total remaining storage 

reaches 600,000 acre-feet and subsequent water deliveries follow a reduced allocation 

protocol (1/3
rd

 reduction).  Reduced allocations are discussed in the next section below. 
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There were no depletions of the reservoir system across all 120,000 years of the 

current system simulation.  The minimum storage level reached was at 11% of system 

capacity and storage replenishment quickly followed.  At the modeled level of customer 

demand (900,000 acre-feet/year), it appears that the system is sufficiently robust to 

remain operable even through some very severe drought periods.  This is made feasible 

by reduction of customer water allocations with conservation measures when called for 

and the utilization of groundwater pumping which scales up with declining storage.  It 

appears that SRP’s reservoir system design and operating rules are well-matched to 

climate outcomes, and surface water depletion is highly unlikely when demand matches 

nature’s supply. 

 Future elevated temperatures result in NBS reductions as previously quantified, 

and therefore the severest droughts are expected to result in lower minimum storage 

levels.  This was found to be the case for the most likely forecast as shown in Table 4.3.1.  

Nevertheless, there were no system depletions under the most likely future temperature 

expectations.  For the case of the IPCC AR5 projection, two depletions did occur over the 

120,000 years for an average rate of one in 600 centuries.  The Poisson process 

assumption can be applied to this rate to calculate the depletion probabilities given in 

Table 4.3.1.  As can be seen, the probability of system depletion is negligible, and the 

small modeled probability of an occurrence can be readily addressed.  In fact, it already 

has.  Recent actual deliveries by the SRP system below modeled demand has shown that 

resulting cumulative incremental storage (Fig. 3.7.1) can be significant enough to further 

buffer minimum storage relative to critical thresholds.  One of the depletion examples is 

examined in detail in Section 4.4.1 (Examples of Drought and System Response) to find 
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that a ~50,000 acre-feet/year delivery reduction is sufficient to counter the small 

depletion risk.  This has already been more than attained in recent deliveries.  This 

research therefore concludes that the SRP system is not endangered by depletion risk. 

 

Table 4.3.1.  System Depletions and Minimum Total Remaining Water Storage for the 

Current System, the Most Likely Forecast, and the IPCC AR5 Projection. 

 

 

4.3.2 Reduced Water Allocations 

The SRP system is, in part, resilient because conservation measures are an 

important part of management operations.  As total remaining reservoir storage 

approaches 1/4
th
 of system capacity (600,000 acre-feet) the protocol is stated to be a 1/3

rd
 

reduction in water delivery allocations (Phillips et al. 2009).  In practice those measures 

will not be taken lightly by management and reductions might be phased in or in other 

ways subject to staggered or sustained actions.  Nevertheless, for the purposes of ResSim 

modeling, water deliveries are reduced by 1/3
rd

 in the season after which the 600,000 

threshold is crossed.  When total storage is again above threshold at season’s end the 

delivery rate is returned to the modeled 900,000 acre-feet/year level for the next season. 

Current Most Likely IPCC AR5

System Forecast Projection

# System Depletions: 0 0 2 in 120,000 years

Poisson parameter, λ 1.67E-03 per century

probability of 0 depletions in a century: 99.8%

probability of 1 depletion in a century: 0.166%

probability of ≥2 depletions in a century: ~ 0%

Minimum Storage: 248,402 156,833 < 50,000 acre-feet

11% 7%

of capacity of capacity
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ResSim modeling also encountered rare instances (< once per thousand years) 

when reduced allocations had not yet been implemented and a dry season’s water 

delivery requirement from Lake Roosevelt was not yet balanced with the other three full 

reservoirs on the Salt side of the system (for hydroelectric generation).  ResSim was built 

seasonally and so does not capture finer timescale actions that would balance Lake 

Roosevelt with the full reservoirs and prevent its depletion.  For modeling purposes these 

instances are treated as a reduced allocation season and the reduction is the shortfall of 

what Lake Roosevelt did not deliver.  The next season balances all reservoirs on the Salt 

side of the system and again checks status of the system against the reduced allocations 

threshold. 

As mentioned, in practice management is unlikely to intermittently implement 

and withdraw conservation measures as storage hovers near the threshold level.  Rather, 

such actions might be planned with the outlook for a few seasons in advance.  

Consequently, actual reduced allocation periods would be longer than modeled although 

fewer in numbers.  Instances would essentially be concatenations of clustered short 

intervals below threshold.  Therefore two methods were applied to quantify reduced 

allocation results.  The first is as-modeled by ResSim.  The second method identifies one 

or more seasons below threshold within a sliding 6-season window to be reduced 

allocation period along with a criteria that total storage return again to ~50% of capacity 

(1.2MM acre-feet) before the period is considered over.  This is the preferred analytic 

method because its statistics are more reflective of likely management situations.  Similar 

definitions to those for characterization of drought periods (duration, intensity, depth) 

were applied to total storage data during periods of reduced water allocations. 
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Reduced allocation periods were assessed for their number of occurrences per 

century and the percentage of time that the system delivered less than full modeled 

volume.  The two analysis methods did show the expected difference in these measures.  

As-modeled by ResSim, the current system’s 120,000-year stochastic series had 1.1 

reductions per century and the system was in a reduced allocation mode 1.2% of the time.  

The second method resulted in 0.65 reductions per century and reduced allocation mode 

1.7% of the time.  The differences were statistically significant although the data set is 

the same, which reinforces the importance of specific definitions when statistically 

assessing these outcomes.  The rest of the results reported below are calculated from the 

second method which is more relevant to management action. 

Once the reduced allocations data was compiled for the historical series and the 

three stochastic temperature cases it was readily evident that its analysis can follow what 

was previously performed for drought occurrences.  The occurrence statistics are 

compliant with the criteria for the Poisson and exponential probability functions, so rate 

parameters were calculated and are given in Figure 4.3.1 and Table 4.3.2.  Reduced 

allocation periods can begin and end with either season (although most of the time after 

summer and winter, respectively).  So, with that seasonal resolution the percentage of 

time on reduced allocation can be calculated and is also tabulated.  As would be 

expected, the mean number of occurrences and the time on reduction increase with 

warming temperatures, and those differences are statistically significant (data in Table 

G.4 of Appendix G). 
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Figure 4.3.1.  Poisson Parameter, λn, for Reduced Allocation Periods from the 120,000-

Year Stochastic Simulation; for the Current System, the Most-Likely Temperature 

Forecast, and the IPCC AR5 Temperature Projection. 

 

 

Table 4.3.2.  Summary Statistics for Reduced Allocation Periods, Historically and for the 

Three Stochastic Series Cases. 

 

% of the time Mean #

on reduced occurrences

allocations per century Median 99
th

 %-tile Median 99
th

 %-tile

per Historical Data 5% 2.3 697,000  - - - 520,000  - - - 

per Stochastic Series

Current System 1.7% 0.65 687,536 434,290 463,451 367,892

30% 19% 20% 16%

Most Likely Forecast 3.5% 1.28 665,871 416,270 426,068 244,391

29% 18% 18% 11%

IPCC AR5 Projection 6.4% 2.23 637,492 356,673 405,809 167,663

28% 15% 18% 7%

Storage During Reduced Allocation Periods

Intensity (ave storage) Depth (min storage)

Total reservoir capacity = 2,313,000 acre-feet
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It is interesting to note, however, the comparative response of the historical data 

series.  There have been three periods in system history with reduced allocations per 

ResSim model analysis: (a) 1902-1904 during the 1890s drought, (b) 2002-2004 when 

conservation measures were actually imposed, and (c) in the current period of 2014 to 

present when reduced allocations have been averted owing to lower water demand.   

These incidents calculate to a mean occurrence rate (2.3/century) similar to the average 

anticipated for the AR5 projection (2.2/century).  Historical time on reduction would 

have been 5%, midway between the most likely forecast value (3.5%) and AR5 

projection (6.4%).  The historical values are perhaps slightly overstated because the 

incidents have fallen at the beginning and end of the historical period without more 

periods of higher storage in the data to balance the calculation.  But nevertheless, the 

system has been managed through periods analogous to what may be encountered in a 

warmer future by the same application of conservation measures when required, 

depletion risk is avoided, and water services are sustained. 

 

Table 4.3.3.  Probability of the Number of Reduced Allocation Occurrences in a Century 

of any Duration for the Current System, the Most Likely Temperature Forecast, and the 

IPCC AR5 Temperature Projection. 
 

 
 

Table 4.3.3 applies the Poisson function to calculate probabilities for any number 

of reduced allocation occurrences of any duration within a century.  Similar to drought 

risk results, this information provides management with risk assessments for threatening 

# per century: 0 1 2 3 4 5 6 7

Current System 52% 34% 11% 2% 0% 0% 0% 0%

Most Likely Forecast 28% 36% 23% 10% 3% 1% 0% 0%

IPCC AR5 Projection 11% 24% 27% 20% 11% 5% 2% 1%
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periods of low reservoir storage.  As indicated by the data, consideration should be given 

to the risks in the current system of ~2 occurrences/century, which increases to ~3 or 4 

with the most likely forecast and ~5 with the AR5 projection.  So, while the actions that 

would be taken are similar, indications are that they may need to be applied more 

frequently in the warming future. 

Reservoir storage levels during reduced allocation periods have been also 

characterized and are shown in Figures 4.3.2 and 4.3.3 for the current system case.  

Storage intensity (Fig. 4.3.2) is typically higher than the 600,000 acre-feet threshold due 

to storage fluctuations that can exceed threshold during a reduced allocation period.  The 

 

 
Figure 4.3.2.  Storage Intensity During Reduced Allocation Periods as a Function of 

Duration. 
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Figure 4.3.3.  Storage Depth During Reduced Allocation Periods as a Function of 

Duration. 

 

lowest storage levels during the periods (Fig. 4.3.3) are, of course, below the threshold.  

Those also become lower with warming temperatures as given in Table 4.3.2 and 

constitute depletion risk as the low tail of their distribution approaches zero.  As was 

previously discussed, there were no depletions in the most likely forecast, and two in the 

AR5 projection for a very low risk of occurrence.  The lowest modeled storage for the 

historical series is 520,000 acre-feet as shown in Table 4.3.2, which is not far below 

threshold and sufficient to maintain hydroelectric generation. 
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4.3.3 Groundwater Pumping 

 As previously discussed and as built into the ResSim model, the SRP system 

relies upon groundwater to supplement surface water deliveries and this supports 

sustainability of the system when reservoir storage is progressively depleted.  The 

algorithm by which this occurs (Phillips et al. 2009) is given in Table F2 of Appendix F.  

Even when reservoirs are full some nominal amount of groundwater pumping takes 

place.  That rate is ~50,000 acre-feet/year or 5.6% of the modeled 900,000 acre-feet 

annual water deliveries.  Total pumping capacity probably exceeds the maximum 

annualized rate of 325,000 acre-feet/year; but, assuming that maximum limit is followed, 

36% of deliveries could be from groundwater as reservoir system storage falls below 

~800,000 acre-feet.  Then, when storage falls below the 600,000 acre-feet reduced-

allocation threshold, conservation measures are imposed to reduce water deliveries by 

1/3
rd

.  In that rare circumstance the maximum pumping rate would then constitute 54% of 

water deliveries.  The 120,000-year simulations provide data by which to calculate the 

probability of a pumping level as a percentage of deliveries and those are plotted in 

Figure 4.3.4.  As can be seen, the probability of higher pumping rates exponentially 

diminishes to low levels.  When the historical NBS series was passed through ResSim, 

groundwater made up an average of 10.9% of deliveries.  The current system simulation 

series result was 10.6% on average.  Because elevated temperatures result in some NBS 

impairment and lower storage levels, the most likely forecast indicates that groundwater 

will increase to a mean of 12.2 % and the IPCC AR5 projection to 14.2% of deliveries.

 So, a warmer future calls for incrementally more groundwater to balance 

diminished surface water, and the extra amount required in the future can be readily 
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Figure 4.3.4.  Probabilistic Representation of the Percentage of Annual Water Deliveries 

Sourced from Pumped Groundwater. 

 

calculated.  The most likely forecast differential is 1.6%, and the differential for the AR5 

projection relative to the most likely case is another 2%.  At deliveries of 900,000 acre-

feet/year these differentials clarify that an extra 14,400 acre-feet/year (or another 18,000 

for AR5) of groundwater will be required later in this century.  Groundwater banking for 

future withdrawal has been conducted on an ongoing basis for many years with surplus 

water when it is available.  The calculated differentials for extra withdrawal requirements 

provide water management with the banking planning data by which to balance  

groundwater input-output and maintain safe yield in a warmer future.  The author is 

unfamiliar with the capacity of banking infrastructure; but, relative to ongoing water 



234 
 

flows through the system, including spillage (discussed below), it would seem that many 

years of these extra groundwater requirements can be accommodated. 

4.3.4 Pluvial Events and Spillage 

 This investigation was initiated with the goal of assessing current and future 

sustainability of the SRP system over concerns of drought and consequent threats to 

water deliveries.  But, in addition to potential water shortages, the research methodology 

also provides information for pluvial events that may threaten to overwhelm system 

infrastructure.  Within recent memory, the winter of 1993 was such an event that 

challenged water management with its excessive flows.  That year and all others are 

shown in Figure 4.3.5 for their actual winter NBS and how the ResSim model responds 

had the present reservoir system been in place at the time.  1993 winter NBS was 

approximately twice total reservoir system capacity and most of that water did spill, 

doubtlessly with some of it reaching the main stem of the Colorado River.  The stochastic  

simulation time series were examined for winter NBS levels similar to what occurred that 

year.  Winter NBS >4,000,000 acre-feet (annual >4.5MM) has an average return rate of 

1.44 times per century for the current system, or ~1.4% chance of happening in any year 

as indicated off-scale in Figure 4.3.6.  If lesser pluvial levels are of concern, they can be 

examined in Figure 4.3.5, and spillage probability can be evaluated by Figure 4.3.6.  For 

example, the labeled historical years in Figure 4.3.5 would have spilled more than 

~1.5MM acre-feet, with an annual probability under 7% (return rate = 6.19/century).  The 

average rates decrease slightly with future elevated temperatures as shown in Figure 4.3.6 

(average spillage reduction ~6% for a future temperature increase).  These average return 

rates are the Poisson process parameters for pluvial events, allowing the probability of 
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Figure 4.3.5.  Historical Winter NBS and Expected Discharge and Spillage Volumes as 

Assessed by ResSim for the Present System Configuration and Operating Conditions. 

 

any number of occurrences to be calculated as was previously performed for droughts. 

 Observational data for extreme precipitation events are rare by nature, so that 

expectations of how they will change in a warmer future are unclear and challenging to 

verify.  But, the data revealed by this study provides a basis on which to conduct 

sensitivity analyses in two parts: return frequency and intensity.  For example, return 

rates for the pluvial thresholds suggested above can be modified according to an 

assumption that extremes will occur more frequently.  Using the example above, the 

1.44/century average occurrence rate (69-year average return) could be modified to 

alternative values such as 2.0/century (50-year return), and then the consequences to 
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Figure 4.3.6.  Probability of Winter Spillage from the Reservoir System. 

 

preparedness assessed therefrom.  Such an assumption acts, of course, in opposition to 

the curve shift identified in Figure 4.3.6.  The low and relatively insensitive probabilities 

of extreme occurrences would very likely result in similar preparedness measures.  In 

practice, actions taken in anticipation of a 50-year event are likely to be the same taken 

when it had a 69-year expectation. 

 Intensity considerations might be assessed as anticipated enhancements of 

precipitation yield that is predicated upon the increasing moisture carrying capacity of 

warmer air.  This is quantified by the Clausius-Clapeyron equation, which is an 

exponential function of temperature approximating 7%/
o
K at average temperature as 

discussed in Section 3.3.11.  With this and the precipitation elasticity and runoff 
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efficiency results shown in Figures 3.5.11 to 3.5.14, feasible ranges of NBS increase can 

be calculated at high NBS levels where elasticity is low and efficiency high. 

Figure 4.3.6 also provides information for the probability that spillage from the 

SRP reservoir system might pass down the Salt River, join the Gila River, fill any 

holding systems such as Painted Rock Dam, and eventually deliver water to the main 

stem of the Colorado River.  It is outside the scope of this research, but an examination of 

historical spillage events might identify the spillage threshold at which this can happen.  

Figure 4.3.6 then readily provides the probability of that occurring in the future. 

 

4.4 Additional Results and Discussion 

4.4.1 Examples of Drought and System Response 

The reservoir system’s response to specific droughts of interest within an NBS 

sequence can be examined for insight to system resilience and vulnerability, providing 

guidance to management operations and adaptation considerations.  Of course, there are 

hundreds of these from the simulations that can be examined.  One would expect the 

longest and deepest droughts to more likely trigger a period of reduced allocations as 

total system storage drops below 600,000 acre-feet.  This was generally found to be the 

case, but how each situation evolved was unique because outcomes are subject to the 

cumulative effects of prior years.  Total storage may have been gradually depleted before 

a short drought occurs which is sufficient to trigger reduced allocations; or an extended 

shallow drought may begin when storage is high enough to sustain the system through the 

dry times without adversely affecting customer deliveries.  Some very long, although 

shallow, dry periods can be endured without reducing water deliveries.  This was the case 



238 
 

during the actual 1950s drought.  The periods of greatest concern are droughts which are 

either deep or of long duration, or both.  Two examples of this which provide some 

insight are given in Figures 4.4.1 and 4.4.2 where alternating winter-summer values for 

total NBS and total storage are plotted for each of the temperature simulation cases. 

In Figure 4.4.1 the sequence begins with a very wet winter which fills reservoirs 

to capacity, followed by a few weak NBS years and then a 6-year drought (indicated by 

the ‘DDD…’s).  In general, as can be seen, winter NBS is larger than summer NBS 

(same for storage), and temperature impairments of NBS are most evident in summer.  

The temperature impairments in the most likely and AR5 cases are sufficient to cause the 

drought to begin two years earlier, making it an 8-year drought.  Total storage is 

progressively depleted; but, since it began from a full condition, reduced allocations are 

not implemented until late in the drought (indicated by the ‘RRR…’s).  Only 3 seasons of 

reduction result for the current system and most likely forecast cases, which extends to 5 

seasons in the AR5 case.  The drought is then ended by three wet winters that fully refill 

the reservoirs and relieve the reduced allocation period.  As can be seen, remaining 

system storage responds on a lagged delay to declining inflows and will tend to “bottom 

out” with more groundwater pumping and reduced allocations until flows recover (seen 

more completely in Fig. 4.4.2).  In other examples (not shown) an occasional year of 

slightly-above-average inflow was sufficient to sustain the system until a complete 

reservoir refill was eventually attained.  Storage recovery can be seen to occur with a 

much faster response time than the decline.  Given the similar scale of storage capacity to 

potential high winter NBS, this makes for a fast-refresh system when a wet winter does 

occur. 
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Figure 4.4.1.  An Example of a Pluvial-to-Drought-to-Pluvial Period from the 

Simulations Having a Short Interval of Reduced Allocations. 

 

The example in Figure 4.4.2 is one of the two instances in 120,000 years of 

simulation where reservoir depletion occurred for the AR5 temperature projection.  The 

sequence begins with storage at about 80% of capacity when a 9-year drought occurs.  

Reduced allocations are implemented four years into the drought and last 11 seasons.  

Winter NBS becomes so repeatedly weak that when summer NBS contributions are 

impaired by elevated temperatures the reduced allocation period begins earlier (13 

seasons for the most likely case, 15 seasons for the AR5 case), and the drought extends to 

10 years.  The depletion at ~35,000 acre-feet of remaining end-of-summer storage only 

occurs in the case of the AR5 projection (large black diamond in Fig. 4.4.2), and only 
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Figure 4.4.2.  A Worst-Case Example from the Simulations of a Long Drought with an 

Extended Period of Reduced Allocations. Reservoir depletion occurs only for the case of 

the IPCC AR5 temperature projection. 

 

because summer inflows are repeatedly impaired amidst high evaporative losses at the 

reservoirs and no assistance from five sequential years of unusually low winter inflows.  

The NBS impairments in the most likely forecast case are not as severe which manages to 

keep the remaining storage at around 400,000 acre-feet until recovery begins.  The NBS 

differential between the AR5 and most likely cases averages 53,000 acre-feet/year over 

the 10 drought years.  One anticipatory action water management could take to avoid 

reservoir depletion is more groundwater pumping than the self-imposed rate limit of 

325,000/year.  If 378,000/year is technically feasible then surface water storage would  
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remain at the most likely levels of Figure 4.4.2.  Alternatively, as previously discussed in 

Section 4.3.1 (Depletion Risk), water delivery reductions like those of the past few years 

are more than sufficient to counter any depletion risk. 

4.4.2 Decadal Variability 

 An important assumption underlying the entirety of this research investigation has 

been the demonstrated assumption that annual net basin supply outcomes are independent 

and identically distributed.  The stationarity investigation showed this to be the case, as 

there were no autocorrelations across all time horizons.  The stochastic simulations 

employed this fortuitous result for the methodology used to generate sequential years in 

long time series.  An i.i.d. assumption at the annual level establishes validity of extending 

the concept to the statistics of multi-year droughts, reduced allocations, and pluvial 

periods that can be expressed on a per-century basis.  It was shown in Figure 3.4.17 that 

the resultant NBS time series demonstrate periods of clustered variations above and  

below the long-term mean very similar to the historical record, assuring confidence in 

methods.  But what can be said of those variations above and below the long-term mean 

that are highlighted by filter-smoothing the time series?  They are, by definition, 

stochastic events by the way they have been generated.  But the historical series may 

reflect more than that. 

 There is a significant body of research into drought and pluvial periods in the 

CRB (Balling and Goodrich 2007; Thomas 2007; McCabe and Wolock 2012; Nowak et 

al. 2012), with general findings that ENSO, the PDO, and the AMO play a role not only 

for temperature, as discussed in the forecast development section of this document, but 

perhaps also for precipitation and streamflow.  Nowak et al. (2012) identified the low-
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frequency 64-year mode of variability in Lees Ferry streamflow and linked it primarily to 

the AMO as was suggested by other research.  Balling and Goodrich (2007) found that 

the PDO explained more variance for a drought index than did ENSO or the AMO, but 

found all to play some role in explaining LCRB precipitation.  Explained variances in 

their analysis were modest at best, leaving ample uncertainties for drought forecasting.  It 

is generally believed that higher probabilities for a wet winter in the lower CRB are 

aligned with the occurrence of an El Niño in a consistent positive phase of the PDO.  It is 

not the purpose of this discussion to incorporate that in the results of this investigation, 

which would regardless not be possible in a rigorous forecasting sense since only two 

ambiguous precipitation cycles are present in the observational record.  These can be seen 

in Figure 3.2.18 where generally elevated NBS was present from 1905 into the early 

1920s and then again from the mid-1970s into the early 1990s, the eras separated by 

about 65 years in time.  When examined in comparison to cyclicality in historical 

temperature records (global in Fig. 3.6.1, Salt-Verde in Fig. 3.6.17), temperature cycle 

minimums can be seen to occur near the outset of these wet periods (~1909, ~1974).  The 

onsets correlate with the temperature cycle switch to a warming phase. 

 So, if one were to extrapolate these observations, the current drought might abate 

by the early 2030s if timing is correlated to a phase reversal of the AMO.  If a warming 

rate switch is more related to a Pacific phase shift there are suggestions it may come 

sooner (Trenberth 2015; Meehl et al. 2016).  It would appear that wetter years could 

accompany the forthcoming warming period portrayed in the most likely forecast.  That 

would last for no more than a couple decades while an elevated temperature level would 

persist thereafter.  As was discussed in Section 4.1, this would disguise temperature-
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induced NBS impairments until perhaps they become more evident during the ensuing 

drought period in the next hiatus after mid-century.  Of course, these are somewhat 

speculative at this time but do integrate the various research contributions to a possible 

outlook that can be considered when addressing the temporal decadal variability question 

raised above. 
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CHAPTER 5 

CONCLUSIONS 

Large natural climate variability and expectations of climate change have raised 

serious questions about the vulnerability and resilience of surface water resources in the 

Southwest United States.  A number of research investigations have worked to address 

these concerns.  The investigation reported in this dissertation was motivated by the 

observation that over the last several years the predominant assessment path based in 

climate modeling scenarios has not provided satisfactory results suitable for water 

management facing complex risk-based decisions.  In the face of climate variability 

masking uncertain findings and unsettled conclusions over forthcoming changes in 

climate forcing mechanisms, the research paradigm of GCM downscaling with 

hydrologic translation is not reducing uncertainty for water managers despite application 

of exhaustive efforts.  Such research often does not reach the stage of specific impact 

assessment when any projection within a wide span of possibilities cannot be supported 

with convincing and useful guidance.  This study responds to the challenge by inverting 

the investigative approach, placing primary attention on the system under consideration, 

and developing an integrated toolset to assess climate risks. 

The Salt River Project system is endowed with one of the longest hydrologic data 

records in the western United States.  This facilitated a thorough characterization 

resulting in a stochastic simulation methodology used to generate long, synthetic time 

series of net basin water supply from highly skewed distributions of the dual-watershed 

system in winter and summer seasons.  A dozen 10,000-year series were generated for a 

total simulation sample size of 120,000 years.  This is sufficient to enable detailed 
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probabilistic risk assessments per relevant management criteria.  The data record was also 

employed to establish two key measures of hydrologic response to climate: temperature 

sensitivity and precipitation elasticity of runoff.  These dual heuristics enable translation 

of any climate change scenario to a modified time series of net basin supply.  While 

many future scenarios could be evaluated, two were developed and investigated in detail: 

(1) a most likely forecast using empirical statistical methods rooted in forecasting science 

and climate research findings, and (2) a projection based in AR5 of the IPCC.  All three 

dual-watershed, dual-season time series cases (current system, most likely, AR5) were 

passed through the ResSim reservoir operations model developed for this investigation to 

assess impacts on operational metrics.  All the methodological components required for 

completion of this research investigation were successfully developed with effective data 

interfaces and internally consistent assumptions.  Their basis in prior research and the 

underlying assumptions have been articulated in this report.  This successful integration 

of multidisciplinary methods yielding specific findings demonstrates that immediate 

progress can be made in response to the needs of water management aside of 

inconclusive hydroclimate modeling while that approach matures. 

 The results reported in Chapter 4 are a subset of analyses that could be conducted 

on the data available from this investigation.  Exploratory data analysis readily revealed 

that natural variability plays a significant role in the SRP system’s outcomes and that the 

region has endured periodic drought over the entirety of its instrumental and paleoclimate 

record.  While many definitions of drought are possible, the one relevant to this study 

looks for runs of years below the annual NBS required to sustain surface water delivery 

requirements.  Deliveries have been taken to be the 2003-2011 average of 900,000 acre-
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feet/year, which requires 850,000 from surface reservoirs when groundwater pumping is 

at its minimum rate.  By coincidence, the median of the highly-skewed NBS distribution 

is also approximately 850,000 acre-feet/year.  An important measure of long-term system 

sustainability is whether water withdrawals are below median NBS, and this system 

meets that criteria.  When the most likely climate change scenario is applied the median 

NBS shifts to 809,000 acre-feet/year and water deliveries of 859,000 acre-feet/year are 

supportable over the long-term (816,000 in the AR5 case).  Actual delivery requirements 

have continued a long-term decline and are now below the 900,000 acre-feet/year 

modeled in this study and so are already positioned for the most likely forecast and the 

AR5 projection.  By this measure the reservoir and delivery system is well-matched to 

the watersheds supporting it. 

Studies of tree ring data previously provided some evidence of decade-long 

drought in the pre-instrumental era of these watersheds.  This study confirmed that those 

are indeed possible and provides a detailed risk assessment for the current state of the 

system, answering one of the central research questions of this investigation.  Analysis of 

simulation series revealed droughts up to 16 years duration but those have a vanishingly 

small probability of occurrence.  Most are ≤ 11 years, similar to the longest identified in 

the tree ring record.  Drought that long is rare but possible.  Results from the long 

simulation time series indicate that there is a 99% probability of a drought ≥ 12 years not 

occurring in a century (1% that it will), and 95% probability for droughts  ≥ 10 years.  A 

complete risk matrix has been calculated for the number of occurrences of drought of any 

duration in a century.  The probabilities increase by 1% to 4% across the matrix when 

each future temperature increase scenario is considered.  These marginal risk changes are 
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probably smaller than the risk level water management might want to consider (10%, 5%, 

other?), so a planning guideline might be relatively insensitive to future temperature 

expectations.  The decision could reduce to planning for a 5% chance of one decade-long 

drought over the next century along with an expectation of a few 5- to 8-year droughts.  

The severity statistics accompanying such droughts have also been revealed by this 

investigation. 

A drought might result in the imposition of conservation measures where water 

allocations to the user service area must be reduced.  The operational protocol calls for 

this when reservoirs fall below 600,000 acre-feet of total remaining storage.  These 

instances have been quantified from the ResSim operations model output.  Again, the 

results provide quantitative risk assessments and indicate that at least 2 such periods 

should be planned for within a century.  This increases to 3 or 4 under the most likely 

temperature change forecast and up to 5 periods with the AR5 projection.  These are not 

average expectancies, which are lower, but rather outcomes having a risk just large 

enough to deserve attention for planning purposes.  Whether total reservoir storage falls 

to the 600,000 acre-feet threshold is a sensitive function of the cumulative balance of 

system inflows and outflows.  ResSim modeling of the recent historical record indicates 

the system should have fallen to that threshold and be in reduced allocations at the 

present time.  But this is not what happened, and mid-summer 2016 storage is twice that 

level.  This is attributable to declining water deliveries while ResSim was run at constant 

900,000 acre-feet/year deliveries, resulting in a large cumulative differential which is also 

sufficient to buffer against the future climate change cases which were modeled.  So, one 

possible adaptation response was demonstrated in practice before this investigation was 
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completed.  Another response might be the addition of a few hundred thousand acre-feet 

of storage capacity to the system as was done at Lake Roosevelt in the mid-1990s.  This 

would increase the minimum remaining storage levels revealed by this study, as starting 

storage would have begun at a higher level and storage depths would be less likely to 

cross the reduced allocation threshold.  This study has revealed that current operational 

protocols result in a slow progression of storage reduction and a fast refresh when inflows 

do rebound.  Measures which have the effect of extending the progression before 

thresholds are crossed provide more time for replenishments to reoccur. 

The risk of reservoir system depletion under current management guidelines is 

zero.  There were no depletions across all 120,000 years of the current system simulation 

and none for the most likely climate change forecast.  There were two depletions in 

120,000 years for the AR5 projection, calculating to a 0.17% probability of depletion in a 

century.  This goes to zero when the lower level of recent water deliveries is taken into 

consideration.  The conservation measures and groundwater pumping protocols have 

their desired effects, and it appears the system design and operating rules are well-

matched to climate outcomes.  This research concludes that the SRP system is not 

endangered by depletion risk now or in the future under the assumption set used in this 

study.  The system can be managed through periods of climate risk, provided that no 

constraints are imposed which would compromise resilience and limit flexibility of the 

protocols modeled in this analysis. 

The SRP system has been in operation for more than a century with the 

vulnerabilities that this simulation methodology has revealed in detail.  The examined 

risks are present in the current system and climate change will act to increase those, but 
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only marginally.  Planning assumptions therefore only need be adjusted to take those into 

account, provided, of course, they are being adequately addressed in the first place.  

Perhaps some of the expressed concerns are that current risks have not been thoroughly 

examined so that climate change might expose those vulnerabilities.  If so, data from this 

analysis can close that gap. 

As Matalas (1990, 149) stated, “Though the matter of climate change is not to be 

taken lightly, climate variability has perhaps greater bearing on the uncertainties in water 

management.”  After examining the interacting sensitivities of climate with streamflow 

and reservoir safe yield, Schaake (1990, 201) wrote “Two general conclusions can be 

drawn about the sensitivity of safe yield to climate change.  First, safe yield is less 

sensitive to climate change than is the average annual runoff or measures of low flow.  

Second, storage reservoirs built to buffer climate variability also provide a buffer against 

the effects of climate change.”  The findings of this investigation confirm those 

statements of 25 years ago in Climate Change and U.S. Water Resources.  In another 

chapter Rogers and Fiering (1990, 218) evaluated sensitivities within a stochastic basin 

model coming to the observation that “… (simulation) outcomes are relatively more 

sensitive to residual errors in estimating the basin model parameters than to changes … 

induced by climate change.  In others words, model error masks the “real” effects of 

climate change.”  This investigator observed the same in many discussions of water 

resources in the Southwest when mis-parameterized models or over-simplifications 

exaggerate uncertainties and confuse decision makers.  This investigation has rigorously 

developed all methods, assumptions, and intermediate findings required to arrive at the 

reported results and reveal system vulnerability and resilience in specific detail rather 
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than vague generalities.  Minimum complexity has been employed sufficient for complete 

representation but also comprehension by the user who will be informed and may 

confidently challenge some assumptions and findings.  The methodology is available to 

evaluate alternative assumptions.  Some might address the stationarity, hydrologic 

sensitivity, and forecast assumptions employed in this investigation. 

The stationarity analyses in this study came to the conclusion that while the 

temperature time series for this region has displayed non-stationarity over the last 80 

years, the precipitation series is stationary.  There have been periodic variations around 

the long-term mean, perhaps in part a function of decadal climate variability, but there is 

no persistent precipitation trend and no case can be made from research to date that one 

will emerge within the rest of this century.  The guidance from forecasting science for 

this situation is clear: if no trend can be established, none should be forecasted.  

Otherwise, forecast error can be expected to increase significantly.  Therefore 

precipitation variability has been treated in a sensitivity analysis coming to the finding 

that it is the primary independent variable influencing runoff with sufficient effect to 

obscure runoff impairments from increasing temperature.  So, if future periods of 

temperature increase are accompanied by precipitation variability, it will be difficult to 

differentiate their effects just as it has been in the historical realization. 

Derivations of the hydrologic sensitivity functions in this study show that an 

increase in winter temperature has essentially no effect on runoff and net basin water 

supply.  However, important temperature impairments are present in summer, both on the 

watersheds and at the reservoirs with highly nonlinear effects that have now been 

quantified.  Precipitation elasticity of runoff is also highly nonlinear in both the winter 
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and summer seasons.  The hydrologic response functions differ between seasons and 

between watersheds and are a function of the precipitation and runoff level analyzed.  

The over-simplifications or inaccurate parameterization of hydrologic response by other 

studies are at the center of the Rogers and Fiering observation noted above. 

As would be expected, the chosen forecast of future climate change influences the 

outcome of an analysis, primarily for net basin supply and to a lesser degree for system 

impacts.  A large set of scenarios could be taken from the uncertain range of projections 

prepared for the region.  However, none appear to have been endorsed thus far by the 

water management community.  Many are inconsistent with current observational data, 

which motivated this investigation to develop a multi-decadal temperature forecast using 

empirical statistical methods.  The approach incorporates current understanding of 

anthropogenic warming and circulation dynamics in the coupled ocean-atmosphere 

system, reconciles the observational record, dissipates the uncertainties of climate model 

projections, is validated against 40
+
 years of the historical record, and provides a simple 

but clarifying representation of the future grounded in forecasting principles.  The result 

indicates the current warming slowdown will continue for another two decades followed 

by an accelerated warming period towards another hiatus in 2065-2095.  The temperature 

differential between that timeframe and the present (approximately 1.5
o
C) was used as 

the most likely temperature change forecasted for this study.  This is about half what is 

inferred for the Salt-Verde region by the IPCC AR5 mean global temperature change 

scaled by observed climate sensitivity.  The results forced by these temperature changes 

were found to be statistically significant in all key dependent variables; but, as discussed 

above, changes must be assessed relative to current system risks.  Others may consider 
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whether these forecasts and their implications are a reasonable set of assumptions to 

utilize, or whether other alternatives should be considered. 

This research was undertaken with the goal that results be interpretable within the 

context of decision-making for drought planning and adaptation, building long-lasting 

knowledge to manage water resources through extreme drought periods, and bringing a 

clearer meaning of climate change projections for the region.  This work is an important 

and unique contribution to climate change adaptation.  It stands in sharp contrast to ever 

more detailed but ever more uncertain fine-scale simulations of water resource systems 

under downscaled hydroclimatology.  From a theoretical perspective, general suggestions 

of this approach have been touched upon in the climate adaptation community but 

without clear articulation to date.  Perhaps this is because development of the complete 

methodology necessitated incorporation of disparate tool sets from climatology, 

hydrology, systems analysis, probability and statistics, forecasting science, and water 

management.  This integration of multidisciplinary methods for assessing vulnerability of 

a system to forthcoming change is a new contribution to climate change science, standing 

apart from top-down hydroclimatic modeling.  It is anticipated that the impact of this 

research will be long-lasting, particularly for SRP.  Its transferable example serves as an 

approach for water planners in other regions facing similar needs for specific 

vulnerability assessments and decision support for drought and climate change adaptation 

planning. 
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5.1 Possible Future Analyses 

 During the course of this research a number of avenues for further investigation 

were revealed.  Some are given below, with the expectation that they can be addressed in 

the future with the tools developed for this research. 

 A couple drought examples were examined in Section 4.4.1, but other variations 

are available for detailed analysis, and assessments of their impacts could be useful for 

drought planning purposes. 

 Some variables must be held constant in a study such as this.  But the implications 

of water deliveries both larger and smaller than the modeled 900,000 acre-feet/year are 

clearly significant.  Impact analyses across a range of delivery levels can provide 

management with important information on the full capabilities and limitations of the 

SRP system. 

 The benefit of the Roosevelt Lake storage capacity expansion in 1996 became 

clear during this study.  Without it, system risks would have been larger than has been 

characterized and in that way it was a wise investment.  While the possibility of further 

reservoir storage additions to the SRP system might appear remote at this time, the risk-

reduction benefits in certain future system scenarios are worthy of consideration. 

 The tools developed for this investigation can perform an assessment of near-term 

risks conditional upon reservoir system storage levels at a point in time.  This could aid 

decision making situations that water management might confront in the future. 

The effect on groundwater pumping requirements under two climate change 

scenarios was reported in Chapter 4.  To address the safe yield imperative of Arizona 
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groundwater management more detailed assessments under other scenarios may help 

inform long-term water banking and withdrawal plans. 

There is a probability of winter season water spillage from the system that has a 

number of downstream consequences, both positive and potentially negative.  Further 

analysis of those instances could be conducted to determine their implications. 

The historical record of the summer season on the Verde River watershed has 

displayed anomalous behavior in streamflow and in temperature.  Perhaps there have 

been some manner of water diversions; the watershed-season has the highest climate 

sensitivity of those examined; and possible interactions of these are unclear.  While this 

was not of major consequence to research findings, it could portend further change on the 

watershed that should be investigated. 

The Four Forest Restoration Initiative, an effort to restore forest ecosystems in the 

Coconino, Kaibab, Apache-Sitgreaves, and Tonto National Forests with tree thinning is 

expected to soon be underway.  The effect on runoff in the Salt and Verde watersheds is 

speculative at this time, but could potentially increase streamflow in the timeframe at 

which climate change impairments may occur. 

 

5.2 Postscript – The Hubris of the Climate Model 

The scientific method relies upon challenges from alternative theories.  The 

confrontation of criticisms and rigors of reconciliation should be welcomed in climate 

science despite numerous vested political, economic, commercial, and career interests.  

Unfortunately the facts and the science are often overshadowed in the ensuing political 

debate without periodic reappraisal of underlying assumptions, especially as new 
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information comes to light.  From the time this author embarked upon the program of 

which this dissertation is the final requirement, important new information has emerged.  

This is sufficient to place in question many of the assertions of eight years ago.  For 

example: hiatus – there is one; role of natural variability – larger than assumed; climate 

sensitivity – smaller than expected.  One can expect more in the future.  Some might say 

that discoveries were not forecastable (possible response: think harder, don’t discount 

alternatives until investigated).  But, what was forecastable and will continue to be so is 

that exaggerated claims will eventually be found out.  Unfortunately climate science is 

rife with them at this time, and there is little sign of any sobriety which is so urgently 

needed. 

One of the literature references for this study is titled “Are climate models ‘ready 

for prime time’ in water resources management applications, or is more research 

needed?” (Kundzewicz and Stakhiv 2010).  Quite simply, an unbiased review of the 

current state of climate modeling comes to the conclusion that they are not ready.  To 

expect very complex models to be capable of uncertainty reduction when their 

completeness is not established (Trenberth 2010; Vano et al. 2014) and accuracy of their 

formulations have not be demonstrated (Koutsoyiannis et al. 2008; Anagnostopoulos at 

al. 2010; Beven 2011; Fildes and Kourentzes 2011; Suckling and Smith 2013; Frigg et al. 

2015; Privalsky and Yushkov 2015) is sufficient to conclude that climate model 

ambiguity remains a fundamental limit to that expectation. 

Weather models took decades to develop to a level that can reasonably inform us 

about the 10-day weather forecast.  Likewise, it will be many years before climate models 

can make reliable forecasts of the climate decades ahead.  At present it is questionable 
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even whether their hindcasts capture key variables in a manner satisfactory to desired 

objectives.  Despite calls for progress measurement criteria (Pielke 2008), none have 

been defined.  This is indicative of an immature discipline.  Until then, and as counseled 

by those who teach us these topics, the models are best suited for gaining insight by 

sensitivity analyses and not as policy-informing tools, as they have no skill for 

forecasting-prediction-prognostication.  Many in the modeling community indicate such 

unnoticed reservations deep within unread portions of assessment reports.  The resistance 

to presenting model output as a forecast, but rather as nothing more than one possible 

projection, is a sufficient basis for setting them aside and awaiting their eventual 

maturation a few decades hence. 

Some of the reactions in response to alternative contributions that bring scientific 

rigor to bear or come to differing indications of the future have demonstrated a surprising 

degree of hostility considering the supposedly cherished emphasis on interdisciplinary 

science.  The personal experiences of rejection recounted by several prominent leaders in 

the decades-old field of forecasting science suggest that much progress has yet to be 

made for incorporating fundamental and valuable ideas from other disciplines.  

Forecasters know by parallel experiences in other applications that when climatologists 

assert “this situation is different” and outside advice may be ignored, at some point the 

folly of such assertions will become evident.  But by then those at fault will have slipped 

into retirement or obscurity with their cloak of invincibility forgotten and never revisited 

but casting a long shadow over the profession.  A one-note science risks the loss of public 

credibility for science-based policy when its weaknesses are eventually exposed and 

viable alternatives were ignored. 
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ABBREVIATIONS 
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ACF  Autocorrelation Function 

AGU  American Geophysical Union 

AGW  Anthropogenic Global Warming 

AMO  Atlantic Multidecadal Oscillation 

AMOC Atlantic Meridional Overturning Circulation 

AMS  American Meteorological Society 

AR4, AR5 4
th
, 5

th
 Assessment Report (of the IPCC) 

CAP  Central Arizona Project 

CMIP  Coupled Model Intercomparison Project 

CO2  Carbon Dioxide 

CRB  Colorado River Basin 

CRU  Climate Research Unit 

CumProb Cumulative Probability 

ECR  Effective Climate Response 

ENSO  El Niño Southern Oscillation 

ET  Evapotranspiration 

GCM  General Circulation Model, a.k.a. Global Climate Model 

GHG  Greenhouse Gas 

HK  Hurst-Kolmogorov 

i.i.d.  independent and identically distributed 

IPCC  Intergovernmental Panel on Climate Change 

ISF  International Symposium on Forecasting 

LCRB  Lower Colorado River Basin 
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LTDPM Long-Term Drought Planning Model 

LSHM  Land Surface Hydrology Model 

ML  Miscellaneous Loss 

NBS  Net Basin Supply (of water, NBS=RO-ML) 

NOAA  National Oceanic and Atmospheric Administration  

NWIS  National Water Information System 

pdf  (p.d.f.) probability distribution (density) function 

PDO  Pacific Decadal Oscillation 

PE  Potential Evapotranspiration 

PRISM  Parameter-elevation Regressions on Independent Slopes Model 

RCM  Regional Climate Model 

RCP  Representative Concentration Pathway 

ResSim Reservoir System Operations Simulation Model 

RO  Runoff 

SRP  Salt River Project 

SST  Sea Surface Temperature 

SWNA  Southwest North America 

UCRB  Upper Colorado River Basin 

USGS  United States Geological Survey 

VIC  Variable Infiltration Capacity 

WMO  World Meteorological Organization 

WUCA Water Utility Climate Alliance 
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APPENDIX B 

WATERSHED MAPS 
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Figure B1.  Map of Salt River Watershed.  

Map courtesy of SRP 
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Figure B2.  Map of Upper Verde River Watershed. 

Map courtesy of SRP 
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Figure B3.  Map of Middle Verde River Watershed. 

Map courtesy of SRP 
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Figure B4.  Map of Lower Verde River Watershed. 

 

Map courtesy of SRP 
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APPENDIX C 

STOCHASTIC SIMULATION PROCESS AND ALGORITHMS 
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RANDOM NUMBER GENERATION OF OUTCOMES - - OVERALL PROCESS

Some probability function terminology:

D(per pdf)  = Discrete probability distribution, per a p.d.f. which defines a probability for each discrete value

in a continuous range, with a defined maximum and minimum.

Can be derived by best-fit to a historical data set.

N(mean, stddev)  = Normal probability distribution having the defined mean and standard deviation.

The mean will usually be zero in what follows below.

ABS[N(0, stddev)]  = The Absolute Value of a random selection from a Normal probability distribution having Mean=0.

U(lo , hi)  = Uniform probability distribution within the high and low values identified.

A random number is usually generated from within the range of 0 to 1, 

 but is modifiable by simple mathematical scaling to any desired range.

B(1, p)  = Binomial probability distribution where the outcome is one of two possible values,

 one of which has probability, p.

In what follows the outcome will be either 0 or 1, with equal probabilities, p=0.5.

E(lambda)  = Exponential probability distribution, which is used to generate a Discrete p.d.f.

The parameter, lambda, is the inverse of both the mean and the standard deviation,

from which it is estimated.

Four series of SaltTonto and Verde in Winter and Summer are generated by:

I) Generate long (10,000) random values for Salt-Winter from Discrete pdf, Sw.  Assign ID# per the sequence generated.

IIa) Generate long (10,000) paired values for Salt-Summer, Ss1, from correlation algorithms with Salt-Winter, Sw.

IIb) Generate long (10,000) random values for Salt-Summer, Ss2, from Discrete pdf, Ss.

III) Reconciliation process for the two series, Ss1 & Ss2:

i) Sort the generated paired series from I (Sw) & IIa (Ss1) by Ss1, ascending, along with ID#.

ii) Sort the generated series Ss2 from (IIb) by Ss2, ascending.

iii) Substitute Ss2 values for Ss1 values, by position in sequence.

iv) Sort paired Sw & Ss by ID#, ascending, returning series to original sequence.

IVa) Generate long (10,000) paired values for Verde-Winter, Vw1, from correlation algorithms with Salt-Winter, Sw.

IVb) Generate long (10,000) random values for Verde-Winter, Vw2, from Discrete pdf, Vw.

V) Reconciliation process for the two series, Vw1 & Vw2:

i) Sort the generated paired series from I (Sw) & III (Ss) & IVa (Vw1) by Vw1, ascending, along with ID#.

ii) Sort the generated series Vw2 from (IVb) by Vw2, ascending.

iii) Substitute Vw2 values for Vw1 values, by position in sequence.

iv) Sort paired Sw-Ss-Vw by ID#, ascending, returning series to original sequence.

VIa) Generate long (10,000) paired values for Verde-Summer, Vs1, from correlation algorithms with Salt-Summer, Ss.

VIb) Generate long (10,000) random values for Verde-Summer, Vs2, from Discrete pdf, Vs.

VII) Reconciliation process for the two series, Vs1 & Vs2:

i) Sort the generated paired series from I (Sw) & III (Ss) & V (Vw) & VIa (Vs1) by Vs1, ascending, along with ID#.

ii) Sort the generated series Vs2 from (VIb) by Vs2, ascending.

iii) Substitute Vs2 values for Vs1 values, by position in sequence.

iv) Sort paired Sw-Ss-Vw-Vs by ID#, ascending, returning series to original sequence.

VIII) i) Calculate all key statistics among resulting 4 series.

ii) Examine correlations and modify where needed by correlation adjustment method (see NOTES),

iii) Examine season-to-season correlations and introduce correlations where needed by resequencing process.

esp: Salt Summer-to-Winter
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RANDOM NUMBER GENERATION OF OUTCOMES - - WINTER SEASON RO-ML

Each pair of SaltTonto and Verde winter season outcomes is generated by:

I) Generate SaltTonto-Winter value from Sw = D(per pdf),

a random selection from the SaltTonto-Winter p.d.f., the details empirically defined elsewhere.

By definition of p.d.f. developed July 2015,  Sw >=35,000 and <=2,995,000.

II) Generate Verde-Winter value, Vw1, correlated with the SaltTonto winter value, Sw, of step (I):

A) If SaltTonto value, Sw >= 900,000 then

i) Calculate Vt = 0.55500*Sw + 66746

ii) Generate value, Vr, from N(0, 186372)

Vr = Vr - 10061

iii)  V = Vt + Vr

iv) Is V >80000 ?

 - if yes, use V as the Verde value, Vw1

 - if no, re-run (iii) thru (v)

B) If SaltTonto value, Sw < 900,000 but >= 500,000 then

i) Calculate Vt = 0.55500*Sw + 66746

ii) Generate a value from B(1, 0.5)

iii) If value from (ii) = 0 then

StdDev = 0.1671*Sw + 4085

Generate value, Vr, from ABS[N(0, StdDev)]

Vr = -Vr - 10061

If value from (ii) = 1 then

Generate value, Vr, from ABS[N(0, 186372)]

Vr = Vr - 10061

iv)  V = Vt + Vr

v) Is V >80000 ?

 - if yes, use V as the Verde value, Vw1

 - if no, re-run (iii) thru (v)

C) If SaltTonto value, Sw < 500,000 then

i) Calculate Vt = 0.55500*Sw + 66746

ii) Generate a value from B(1, 0.5)

iii) If value from (ii) = 0 and Sw<100,000 then

StdDev = 0.2971*Sw - 8913

If value from (ii) = 0 and Sw>=100,000 then

StdDev = 0.1671*Sw + 4085

Generate value, Vr, from ABS[N(0, StdDev)]

Vr = -Vr - 10061

If value from (ii) = 1 then

StdDev = 0.3291*Sw + 16288

Generate value, Vr, from ABS[N(0, StdDev)]

Vr = Vr - 10061

iv)  V = Vt + Vr

v) Is V >80000 ?

 - if yes, use V as the Verde value, Vw1

 - if no, re-run (iv) thru (vi)

III) Generate Verde-Winter value, Vw2, from D(per pdf),

a random selection from the Verde-Winter p.d.f., the details empirically defined elsewhere.

By definition of p.d.f. developed Oct'11,  Vw >=85,000 and <=2,295,000.

IV) Reconcile dual Verde-Winter Vw1 & Vw2 series per process detailed elsewhere.
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RANDOM NUMBER GENERATION OF OUTCOMES - - SUMMER SEASON RO-ML

Each pair of SaltTonto and Verde summer season outcomes is generated by:

I) Generate Salt-Summer value, = Ss1, correlated with a SaltWinter value, Sw, from WINTER step-I (previous sheet):

i) Calculate St = 0.11355*Sw + 89670

ii) Generate a value from B(1, 0.5)

iii) If value from (ii) = 0 then

Generate value, Sr, from ABS[N(0, 55343)]

Sr = -Sr - 16389

If value from (ii) = 1 then

Generate value, Sr, from D[E(1/75578)]

Sr = Sr - 16389

iv)  S = St + Sr

v) Is S >10000 ?

 - if yes, use S as the Salt-Summer value, Ss1

 - if no, re-run (iii) thru (v)

II) Generate Salt-Summer value from Ss2 = D(per pdf),

a random selection from the SaltTonto-Summer p.d.f., the details empirically defined elsewhere.

By definition of p.d.f. developed July 2015,  Ss >= 11,000 and <= 599,000.

III) Reconcile Salt-Summer Ss1 & Ss2 series per process detailed elsewhere.

IV) Generate Verde-Summer value, = Vs1, correlated with the Salt-Summer value, Ss, from step (III):

i) Calculate Vt = 0.16327*Ss + 40690

ii) Generate a value from B(1, 0.5)

iii) If value from (ii) = 0 then

Generate value, Vr, from ABS[N(0, 14109)]

Vr = -Vr - 2757

If value from (ii) = 1 then

Generate value, Vr, from Vr = D(per pdf) = E(1/16393)

Vr = Vr - 2757

iv)  V = Vt + Vr

v) Is V >25000 ?

 - if yes, use V as the Verde value, Vs1

 - if no, re-run (iii) thru (v)

V) Generate Verde-Summer value, Vs2, from D(per pdf),

a random selection from the Verde-Summer p.d.f., the details empirically defined elsewhere.

By definition of p.d.f. developed July2015,  Vs >=25,500 and <=149,500.

VI) Reconcile Verde-Summer Vs1 & Vs2 series per process detailed elsewhere.
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NOTES:

1) Parameter Estimates

The slopes, intercepts, standard deviations, etc for the generating

 processes have been estimated based upon the historical data record.

As additional years of evidence are added in the future, the

 parameters should be re-estimated.

2) Correlation Adjustment Method

After data series have been generated based upon the documented

 processes, correlations should be checked to examine how close

 they are to the targeted values seen in the historical record.

Minor adjustments can be made by modification of the trend

components in the generating algorithms -- the slope and intercepts

in the St or Vt equations.

The mid-points (means) of the distribution fits should be held

 constant while slope and intercept are jointly adjusted, which

 modifies the resulting correlation amongst generated values.
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APPENDIX D 

HYDROLOGIC SENSITIVITY ALGORITHMS 
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Temperature Sensitivity, ST 

Watershed-Season Range (units: acre-feet) Temperature Sensitivity, ST  

Salt Winter  NBS: full range    0 %/
o
C 

Verde Winter  NBS ≤ 182,000   -3 %/
o
C 

NBS > 182,000    0 %/
o
C 

So, for winter:  ΔNBS = (1 - [1+ ST ]ΔT ) NBS 

Salt Summer  RO = 0.87085 NBS + 35,082 

   RO < 74,000      -2 %/
o
C 

74,000 ≤ RO < 112,000 0.28184 – 4.07895E-06 RO  (%/
o
C) 

112,000 ≤ RO ≤ 180,000 2.57353E-06 RO – 0.46324  (%/
o
C) 

RO > 180,000       0 %/
o
C 

 And,  ΔML / ΔTres = 10,000 (acre-feet/
o
C),  assessed at reservoirs 

Verde Summer RO = 0.77826 NBS + 16,524 

   RO < 37,000      -3 %/
o
C 

37,000 ≤ RO < 48,300 0.313805 – 9.29204E-06 RO  (%/
o
C) 

48,300 ≤ RO ≤ 138,400 1.15050E-06 RO – 0.190794  (%/
o
C) 

RO > 138,400      -3 %/
o
C 

And,  ΔML / ΔTres = 3405.43 – 1.16763E-02 NBS (acre-feet/
o
C), 

assessed at reservoirs 

So, for summer:  ΔNBS = (1 - [1+ ST ]ΔT ) RO + ΔML 

 

* Temperature sensitivities are applied multiplicatively to RO (as [1+ ST ]ΔT ) and 

separately for RO & ML in summer due to watershed vs reservoir response differences. 
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Precipitation Elasticity, εp 

δ = ΔP/P,  and is assumed equally applied to reservoirs as to watersheds 

   Estimated Baseflow, BF 

   (acre-feet/season) 

Salt Winter  74,000 

Salt Summer  74,000 

Verde Winter  83,000 

Verde Summer 37,000 

 

Watershed-Season Range (units: acre-feet)  Precipitation Elasticity, εp  

Salt Winter  NBS ≤ 570,000 

   ROʹ = 0.96076 NBS + 27,171 - BF    

NBS > 570,000    

   ROʹ = 0.81126 NBS + 141,903 - BF    

   ROʹ ≤ 30,656       1.0 

30,656 < ROʹ ≤ 199,663  1.00623E-05 ROʹ + 0.69153 

199,663 < ROʹ ≤ 2,837,756  2.82930 – 6.44629E-07 ROʹ 

ROʹ > 2,837,756     1.0 

 And,  NBS ≤ 400,000 ΔML = 0 

NBS > 400,000  ΔML = -0.1604092 (NBS + 899,646) δ 

 (acre-feet) 

 

Verde Winter  NBS ≤ 385,000 

   ROʹ = 1.05444 NBS - 6385 - BF    

NBS > 385,000    

   ROʹ = 0.87798 NBS + 62,102 - BF    

   ROʹ ≤ 7587       1.0 

7587 < ROʹ ≤ 126,400   1.47652E-05 ROʹ + 0.88797 

126,400 < ROʹ ≤ 2,004,790  2.87256 – 9.34043E-07 ROʹ 

ROʹ > 2,004,790     1.0 
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 And,  NBS ≤ 200,000 ΔML = 0 

NBS > 200,000  ΔML = -0.1183025 (NBS + 600,793) δ 

 (acre-feet) 

 

Watershed-Season Range (units: acre-feet)  Precipitation Elasticity, εp  

Salt Summer  ROʹ = 0.87085 NBS + 35,082 - BF 

   ROʹ ≤ 1393       1.0 

1393 < ROʹ ≤ 24,405   4.21542E-05 ROʹ + 0.94126 

24,405 < ROʹ ≤ 76,251  2.42662 – 1.87095E-05 ROʹ 

ROʹ > 76,251      1.0 

 And,  NBS ≤ 165,000 ΔML = 0 

NBS > 165,000  ΔML = -0.52774 (NBS - 46651) δ 

 (acre-feet) 

 

Verde Summer ROʹ = 0.77826 NBS + 16,524 - BF 

0 < ROʹ ≤ 10,019   1.17074E-04 ROʹ + 1.10385 

10,019 < ROʹ ≤ 75,419  2.47248 – 1.95238E-05 ROʹ 

ROʹ > 75,419      1.0 

And,  NBS: full range ΔML = -6.15223E-02 (NBS - 16030) δ 

 (acre-feet) 

 

So,  ΔNBS = δ εp ROʹ + ΔML 
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APPENDIX E 

WATERSHED-SEASON AND RESERVOIR-SEASON 

TEMPERATURE FORECASTS 
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Figure E1.  Temperature Change Forecast, Verde Watershed in Winter. 

 
Figure E2.  Temperature Change Forecast, Salt Watershed in Winter. 
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Figure E3.  Temperature Change Forecast, Verde Watershed in Summer. 

 
Figure E4.  Temperature Change Forecast, Salt Watershed in Summer. 
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Figure E5.  Temperature Change Forecast, Verde Reservoirs in Winter. 

 
Figure E6.  Temperature Change Forecast, Salt Reservoirs in Winter. 
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Figure E7.  Temperature Change Forecast, Verde Reservoirs in Summer. 

 
Figure E8.  Temperature Change Forecast, Salt Reservoirs in Summer. 
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Figure E9.  All Watershed-Season Temperature Change Forecasts. 

 
Figure E10.  All Reservoir-Season Temperature Change Forecasts. 
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APPENDIX F 

RESSIM MODEL DETAILS AND FLOW CHARTS 
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Figure F1.  History of SRP Water Deliveries.  The ResSim model was built per the 

      2003-2011 average delivery (900,000 acre-feet/year).  (data courtesy of SRP) 

 

Table F1.  Standard Customer Water Demand Schedule for 900,000 acre-feet/year 

Annual Delivery (courtesy of SRP). 

 

Month Demand

Winter Oct 78,000

Winter Nov 48,000

Winter Dec 38,000

Winter Jan 34,000

Winter Feb 39,000

Winter Mar 51,000 Winter Total winter average

Winter Apr 79,000 367,000 52,429 per month

Summer May 103,000

Summer Jun 112,000

Summer Jul 116,000

Summer Aug 110,000 Summer Total summer average

Summer Sep 92,000 533,000 106,600 per month

Water-Year Total: 900,000 75,000 average per month

(acre-feet)
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Table F2.  Groundwater Pumping Algorithm, as a Function of Total Remaining Reservoir 

Storage. 

 
 

Reservoirs Input-Output 

 

Total Reservoirs

Storage Level (acre-feet) Annual Pumping Rate Algorithm Winter Season Summer Season

1,700,000 to 2,400,000 50,000 (212.25/365.25) 153/365.25

1,300,000 to 1,700,000 150,000-0.25*(S-1,300,000) of annual of annual

1,200,000 to 1,300,000 177,000-0.27*(S-1,200,000)  "  "

1,100,000 to 1,200,000 210,000-0.33*(S-1,100,000)  "  "

1,000,000 to 1,100,000 245,000-0.35*(S-1,000,000)  "  "

793,548 to 1,000,000 325,000-0.3875*(S-793,548)  "  "

0 to 793,548 325,000  "  "

 i = season start point (Oct 1 or May 1) C = customer demand satisfied from any of

Salt = Cs

SALT Reservoirs Si Si + season Verde = Cv

Groundwater = CG, or just G

Rs Roosevelt, Sr

Horse Mesa, Sm

Mormon Flat, Sf

Stewart Mtn, Sn

Ds = Cs + spillage (Ps)

Ls

VERDE Reservoirs Si Si + season

Rv Bartlett, Sb

Horseshoe, Sh

Dv = Cv + spillage (Pv)

Lv

Cs + Cv + G = C

G is groundwater pumping

1) When SUM(Si + season, all reservoirs) < 600,000 ,  Then C series is cut to 2/3rds.

2) When SUM(Si + season, all reservoirs) < 50,000 ,  Then return message "Reservoirs Depleted" 

and [STOP] unless model is unabled for recovery.
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Reservoir Status Change Algorithms 

 

CAPACITIES

% of Grand total Key reservoir thresholds used in decision rules:

Roosevelt 1,653,043 71.46% 100% is 95% is 75% is 40% is 15% is 5% is 55% is

Horse Mesa (Apache Lake) 245,138 10.60% Roosevelt 1,653,043 1,239,782 247,956 82,652

Mormon Flat (Canyon Lake) 57,852 2.50% Horse Mesa 245,138 232,881

Stewart Mtn (Saguaro Lake) 69,765 3.02% Mormon Flat 57,852 54,959

Salt Sub-Total 2,025,798 87.58% Stewart Mtn 69,765 66,277

Bartlett 178,186 7.70% Bartlett 178,186 71,274 98,002

Horseshoe 109,217 4.72% Horseshoe 109,217

Verde Sub-Total 287,403 12.42%

GRAND TOTAL 2,313,201 All units in acre-feet of water

VERDE RESERVOIRS, general rules

Horseshoe is the first reservoir to be drawn down at beginning of summer season, completely if needed, starting by May1.

So, first summer season draw rule would make available all of Horseshoe, applied to first months of summer demand.

When it refills it does so proportionately with refill of Bartlett.

Bartlett is tapped in the summer season after Horseshoe is depleted.

It is drawn up and down for up to 60% of its capacity proportionately with Roosevelt (when Roosevelt in range of 75-100% of capacity).

When Bartlett is in range of 40-100% capacity, it is drawn down proportionately with Roosevelt, but not below the 40% level.

Further overall draw-downs are switched over to Roosevelt, with Bartlett held at 40%.

After Sept 30th, if not already at 40%, it is reduced at beginning of new water-year to 40% capacity in preparation for winter runoff.

SALT RESERVOIRS, general rules

Three smaller Salt reservoirs besides Roosevelt are typically left at ~95% of their capacity to facilitate backpumping.

So, if they're filled more than that, then the excess above 95% becomes available for the first release from Salt system.

Otherwise, they're left at 95% level and Roosevelt is drawn down to <15% of its capacity,

at which point all remaining storage (Bartlett & all Salt reservoirs) will be reduced proportionately.

Roosevelt is drawn down in 3 stages: 75-100% proportionately with Bartlett

15-75% as the major reservoir source

0-15% proportionately with all reservoirs (except Horseshoe, which would already be empty)

(SRP states that Roosevelt could, in principle, be drained to 18.000 acre-feet, which is 1.1%)

(SRP also indicates that as the system approaches depletion, the Salt reservoirs would be emptied in series,

from Roosevelt down to Stewart Mtn; not important for the model solutions)

JOINT SALT&VERDE RESERVOIR SYSTEM, general rules to address spillage situations

One side of the system should not spill while there is remaining capacity that could be filled in the other side.

Avoidance (or, reversal by our algorithm) of spillage only occurs if there is spillage on either the Salt or the Verde, but not on the other side of the system.

The amount of the spillage that can be avoided (reversed) is the lesser of:

 (1) Pv or Ps     (Pv or Ps > 0 indicates the reservoirs were full to overflowing on one side but not the other side of the system),

 (2) what was released for customer demand on the non-spill side of the system during the course of the winter season, although the monthly

winter demand schedule is such that only ~75% of this can be operationally managed (reversed),

 or  (3) open storage on the opposing set of reservoirs from where spillage occurs.

After the amount that can be reversed is calculated, it is applied to open reservoir storage and there is a recalculation of Cv, Cs, Ps or Pv, Ds, Dv.

Although there is the (very small) possibility of a Summer season with enough net runoff (R-L) to create spillage on one side of the system or the other, 

from discussions with SRP it appears that they do not manage the system during summer with the expectation of gains sufficient for a spillage situation.

Therefore, the "Spill Check" algorithm is only applied to the Winter season and not the Summer season.

So, there are 4 General Operating Storage Ranges above the depleted condition - - -

  (although in seasonal transitions these can vary somewhat)

1)  Very High Levels  (which is > ~95% total capacity utilization)

Horseshoe > 0

&/or 3 smaller Salt reservoirs > 95%

with Bartlett approaching 100%

with Roosevelt approaching 100%

2)  Mid-High Range Level

Horseshoe @ 0

3 smaller Salt reservoirs @ 95% approx Draw-Proportions or -

Bartlett in range of 40-100% Bartlett = 0.60x178,186 = 106,912 0.206  = (Sb-40%level) / [(Sb-40%level) + (Sr-75%level)]

Roosevelt in range of 75-100% Roosevelt = 0.25x1,653,043 = 413,261 0.794  = (Sr-75%level) / [(Sb-40%level) + (Sr-75%level)]

3)  Mid-Low Range Level

Horseshoe @ 0

3 smaller Salt reservoirs @ 95%

Bartlett at 40% Draw-Proportions

Roosevelt in range of 15-75% 1.000

4)  Low-Range Level  (which is < ~20% total capacity utilization)

Horseshoe @ 0 approx Draw-Proportions or -

Bartlett in range of 0-40% Bartlett = 0.40x178,186 = 71,274 0.106  =Sb/(Sb+Sm+Sf+Sn+Sr)

HorseMesa in range of 0-95% HorseMesa = 0.95x245,138 = 232,881 0.346  =Sm/(Sb+Sm+Sf+Sn+Sr)

MormonFlat in range of 0-95% MormonFlat = 0.95x57,852 = 54,959 0.082  =Sf/(Sb+Sm+Sf+Sn+Sr)

StewartMtn in range of 0-95% StewartMtn = 0.95x69,765 = 66,277 0.098  =Sn/(Sb+Sm+Sf+Sn+Sr)

Roosevelt in range of 0-15% Roosevelt = 0.15x1,653,043 = 247,956 0.368  =Sr/(Sb+Sm+Sf+Sn+Sr)
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To identify algorithms for filling in Reservoir System Status matrix - - -

First, regardless of the season, preliminary calculations and checks -

Algorithm for calculation of groundwater pumping, G, is defined on other page per S of Total System and Season (either W or S).

 Es = Rs - Ls if Es positive then Salt has inflow excess (condition identifier: 1)

Es negative -- Salt has inflow deficit (condition identifier: 0), found to not happen in the historical record - an invalid condition

Ev = Rv - Lv if Ev positive then Verde has inflow excess (condition identifier: 1)

Ev negative -- Verde has inflow deficit (condition identifier: 0), found to not happen in the historical record - an invalid condition

* Check each reservoir system's runoff to assure that it exceeds misc losses and: * Check Total System Storage and:

If Rs-Ls<0, message is returned: If  S, Total System >600,000  then C,adjusted = C,demand

"Invalid Salt Data, Misc Loss Exceeds Runoff" If S,TotalSystem >50,000 and <600,000 then C,adjusted =2/3rds of C,demand

If Rv-Lv<0, message is returned: and message is returned:  "Customers on Allocation"

"Invalid Verde Data, Misc Loss Exceeds Runoff" If S,TotalSystem <50,000 then message is returned "Reservoirs Depleted" and

if DepletedShutdownSwitch =1, then [STOP]

else, if DepletedShutdownSwitch = 0, then

RecoveryModeSwitch=1 until S,TotalSystem >600,000 and S,SaltSystem >450,000

DepletedShutdownSwitch (DSS) is a user-defined option for either:  1 = terminate program if reservoirs reach depleted criteria

or:  0 = continue to run program if reservoirs reach depleted criteria, allowing recovery/replenishment

RecoveryModeSwitch (RMS) is a criteria-induced condition triggered by the program for either:  0 = program runs in normal mode

or:  1 = program ceases to allow reservoir releases,

 so that system replenishes to operable conditions before returning to normal mode

Second, identify total net flow condition to know which set of algorithms to use.

TS = Rs + Rv - Ls - Lv - (Cadj - G) if TS positive then Total System has a net flow excess (condition identifier: 1),

and there is a net storage gain for the system.

if TS negative then Total System has a net flow deficit (condition identifier: 0),

and there is a net storage loss for the system.

Season = Winter Season = Summer

Ev 1 0 Ev 1 0 Ev 1 0 Ev 1 0

1 W 1 ZZ 1 W 0 ZZ 1 S 1 ZZ 1 S 0 ZZ

0 ZZ XX 0 ZZ ZZ 0 ZZ XX 0 ZZ ZZ

XX cases don't exist because Es and Ev have been shown to always be positive, 

 Es&Ev<0 and finite C requires that TS<0 so ZZ cases don't exist in actuality (see graph below)

So, there are just 2 possible flow conditions for the Winter season (W1 & W0), and 2 possible flow conditions for the Summer season (S1 & S0).

Storage change algorithms are defined below per the flow conditions and status of the reservoirs.

TS: 1 TS: 0 TS: 1 TS: 0

Es Es Es Es

 
Assessment of Reservoir In-Flows Net of Misc Losses (R-L)
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All data positive.

Closest to negative is Salt in Summer'09 at 13,587 acre-feet,

  which was a weak monsoon season.

Lowest Verde was in 2002 at 26,157 acre-feet. 

So, can conclude that R-L >0 for all history, and by examination of sensitivity

 that will also be the case even with increases in Temperature and  decreases in Precipitation.
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NOTE:  Simulation model needs to track cumulative increments in each variable, as is clear by the rules below.

W 1  SEQUENCE OF RULES FOR - WINTER and TS: 1 TS is positive, so total reservoir system storage will increase.

Assumption --  Bartlett must release any water in excess of 40% of its capacity at the beginning of the Winter Season to prepare for

 winter inflows on the Verde, whether or not they come.

Rules for Verde --

a) If Bartlett above 40% of its capacity (71,274), it releases down to 40% level, with the water applied to Cv.

Cv = Bartlett40%release + Cvextra

b) Calculate Cvextra and Cs according to Ev & Es values; that is, proportional to the net inflows that the watersheds deliver.

Cvextra = Ev/(Es+Ev)  x  (Cadj - G - Bartlett40%release)

and

Cs = Es/(Es+Ev)  x  (Cadj - G - Bartlett40%release)

c) Calculate Verde storage change subsequent to Bartlett release from:   (Rv - Lv - Cvextra).

This storage change is applied to Horseshoe and Bartlett in proportion to their open volume capacities,

 with Bartlett often having 60% open since it just dumped to the 40% level, but Horseshoe could be at any level (altho often very low).

d) Account for the water changes, check against total Bartlett & Horseshoe capacities,

and if end up with excess water -- spill it as Pv.

Then, Cv = Bartlett40%release + Cvextra          and change of Storages according to calc'ns in (c).

and Dv = Cv + Pv

Rules for Salt --

Calculate  Es - Cs  (= Rs - Ls - Cs)  and distribute it in the order of - -

e) Bring 3 small Salt reservoirs up to 95% capacity, in order of  (1) Stewart Mtn,  (2) Mormon Flat,  (3) Horse Mesa

f) Once the 3 small reservoirs are at 95%, fill Roosevelt to 100%.

g) If still have water, fill 3 small reservoirs to 100%.

h) If still have excess water, spill it as  Ps.

Then, change of Storages according to above calc'ns.

and Ds = Cs + Ps

Spill Check -- If Pv & Ps =0, skip spill adjustment and proceed to final calculations for the season (D, S, etc).

If Pv>0 & Ps>0, skip spill adjustment and proceed to final calculations for the season (D, S, etc).

If Ps>0 and Pv =0, then -

Calculate amount of spillage to be reversed, which is the minimum of :

1) Ps

2) Cv - Bartlett40%release  (40%release would've happened before action could be taken on potential spillage)

     if Cv-B40 meets the minimum criteria, then reverse only 75% of it

or 3) BartlettCapacity - Sb + HorseshoeCapacity - Sh   (remaining open storage in Verde reservoirs)

Fill Verde reservoirs with amount reversed in the order of (1) Bartlett, (2) Horseshoe;  which can result in new Sb & Sh.

Recalculate: Cv = Cv - AmtReversed Sv = Sb + Sh

Cs = Cs + AmtReversed Ss = same, no change

Ps = Ps - AmtReversed Dv = Cv + Pv(which=0)

Ds = Cs + Ps

If Pv>0 and Ps =0, then -

Calculate amount of spillage to be reversed, which is the minimum of :

1) Pv

2) Cs

     if Cs meets the minimum criteria, then reverse only 75% of it

or 3) StewartMtnCapacity - Sn + MormonFlatCapacity - Sf + HorseMesaCapacity - Sm + RooseveltCapacity - Sr

   (remaining open storage in Salt reservoirs)

Fill Salt reservoirs with amount reversed in the order of (1) Roosevelt, (2) StewartMtn, (3) MormonFlat, (4) HorseMesa;

 which can result in new Sn, Sf, Sm, Sr.

Recalculate: Cs = Cs - AmtReversed Ss = Sn + Sf + Sm + Sr

Cv = Cv + AmtReversed Sv = same, no change

Pv = Pv - AmtReversed Dv = Cv + Pv

Ds = Cs + Ps(which=0)

D (total reservoirs discharge, Dv + Ds) must never be <  (Cadj - G)

In other words, have to release water from Salt & Verde reservoirs to satisfy customer demand allocation not satisfied by groundwater.

          This is a validity check after the season's calculations are completed.
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W 0  SEQUENCE OF RULES FOR - WINTER and TS: 0 TS is negative so total reservoir system storage will decrease.

   (but in a particular circumstance, due to Bartlett Oct 1st draw-down,

reservoirs refill after that draw-down)

Assumption --  Bartlett must release any water in excess of 40% of its capacity at the beginning of the Winter Season to prepare for

 winter inflows on the Verde, whether or not they come.

Rules --

a) If Bartlett above 40% of its capacity (71,274), it releases down to 40% level, with the water applied to Cv.

Cv = Bartlett40%release + Cvextra

b) Test for  (Cadj - G - Bartlett40%release) > (Es + Ev)

i) If yes, then apply all Es to Cs  and  apply all Ev to Cvextra,  and continue with (c) below.

ii) If no, then return message: "Bartlett fall release allows winter reservoir refills" ,  and then

  apply a portion of Es to Cs & a portion of Ev to Cvextra, according to:

portion to Cs:  Es/(Es+Ev)  x  (Cadj - G - Bartlett40%release)

and

portion to Cvextra:  Ev/(Es+Ev)  x  (Cadj - G - Bartlett40%release)

And, any surplus Ev is applied to Horseshoe and Barlett in proportion to their open volume capacities.

Check against total Bartlett & Horseshoe capacities, and if exceed them, spill excess water as Pv.

And, any surplus Es is distributed in the order of -

1) Bring 3 small Salt reservoirs up to 95% capacity, in order of  (1) Stewart Mtn,  (2) Mormon Flat,  (3) Horse Mesa

2) Once the 3 small reservoirs are at 95%, fill Roosevelt to 100%.

3) If still have water, fill 3 small reservoirs to 100%.

4) If there is any further excess water, spill it as Ps.

Spill Check --

If Pv & Ps =0, skip spill adjustment and proceed to final calculations for the season (D, S, etc).

If Pv>0 & Ps>0, skip spill adjustment and proceed to final calculations for the season (D, S, etc).

If Ps>0 and Pv =0, then -

Calculate amount of spillage to be reversed, which is the minimum of :

1) Ps

2) Cv - Bartlett40%release  (40%release would've happened before action could be taken on potential spillage)

     if Cv-B40 meets the minimum criteria, then reverse only 75% of it

or 3) BartlettCapacity - Sb + HorseshoeCapacity - Sh   (remaining open storage in Verde reservoirs)

Fill Verde reservoirs with amount reversed in the order of (1) Bartlett, (2) Horseshoe;  which can result in new Sb & Sh.

Recalculate: Cv = Cv - AmtReversed Sv = Sb + Sh

Cs = Cs + AmtReversed Ss = same, no change

Ps = Ps - AmtReversed Dv = Cv + Pv(which=0)

Ds = Cs + Ps

If Pv>0 and Ps =0, then -

Calculate amount of spillage to be reversed, which is the minimum of :

1) Pv

2) Cs

     if Cs meets the minimum criteria, then reverse only 75% of it

or 3) StewartMtnCapacity - Sn + MormonFlatCapacity - Sf + HorseMesaCapacity - Sm + RooseveltCapacity - Sr

   (remaining open storage in Salt reservoirs)

Fill Salt reservoirs with amount reversed in the order of (1) Roosevelt, (2) StewartMtn, (3) MormonFlat, (4) HorseMesa;

 which can result in new Sn, Sf, Sm, Sr.

Recalculate: Cs = Cs - AmtReversed Ss = Sn + Sf + Sm + Sr

Cv = Cv + AmtReversed Sv = same, no change

Pv = Pv - AmtReversed Dv = Cv + Pv

Ds = Cs + Ps(which=0)

Skip step ( c).

c) Allocate from reservoirs for the remaining demand, to Cs & Cvextra, in the order of -

1) Horseshoe, taking as much as needed down to its zero level. allocate to Cvextra)

2) If any of the 3 small Salt reservoirs are at >95%, take them each down to 95%

 in the order of (1) Horse Mesa,  (2) Mormon Flat,  (3) Stewart Mtn. (allocate to Cs)

3) Test for Roosevelt >5% capacity

i) If yes, then draw from Roosevelt until the needs are filled or it's at 5%. (allocate to Cs)

ii) If no, or still need to draw more water after Roosevelt has been reduced to 5%,

   then use the Low Range proportions:

Bartlett  = Sb/(Sb+Sm+Sf+Sn+Sr) (allocate to Cvextra)

HorseMesa  = Sm/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

MormonFlat  = Sf/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

StewartMtn  = Sn/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

Roosevelt  = Sr/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

The reservoirs approach zero together by this calculation.

If reservoirs are all reduced to zero (or below),

then [STOP] and message is returned "Reservoirs Depleted"

Then, change of Storages according to above calc'ns.

and Ds = Cs + Ps ,  and   Dv = Cv + Pv  = Bartlett40%release + Cvextra + Pv

D (total reservoirs discharge) must never be < C,adjusted less G

In other words, have to release water from Salt & Verde reservoirs to satisfy customer demand allocation not satisfied by groundwater.

          This is a validity check after the season's calculations are completed.
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S 1  SEQUENCE OF RULES FOR - SUMMER and TS:1 TS is positive, so total reservoir system storage will increase.

a) Calculate Cv and Cs according to Ev & Es values; that is, proportional to the net inflows that the watersheds delivered.

Cv = Ev/(Es+Ev)  x  (Cadj - G)

and

Cs = Es/(Es+Ev)  x  (Cadj - G)

Rules for Verde --

b) Calculate Verde storage change from net inflow less customer release:   Ev - Cv = Rv - Lv - Cv

This storage change is applied to Horseshoe and Bartlett in proportion to their open volume capacities at the start of summer.

c) Account for the water changes and check against total Bartlett & Horseshoe capacities,

and if end up with excess water -- spill it as Pv.

Then, change of Storages according to calc'ns in (c).

and Dv = Cv + Pv

Rules for Salt -- Calculate  Es - Cs  (= Rs - Ls - Cs)  and distribute it in the order of - -

d) Bring 3 small Salt reservoirs up to 95% capacity, in order of  (1) Stewart Mtn,  (2) Mormon Flat,  (3) Horse Mesa

e) Once the 3 small reservoirs are at 95%, fill Roosevelt to 100%.

f) If still have water, fill 3 small reservoirs to 100%.

g) If still have excess water, spill it as  Ps.

Then, change of Storages according to above calc'ns.

and Ds = Cs + Ps

D (total reservoirs discharge) must never be < C,adjusted less G

In other words, have to release water from Salt & Verde reservoirs to satisfy customer demand allocation not satisfied by groundwater.

          This is a validity check after the season's calculations are completed.

S 0  SEQUENCE OF RULES FOR - SUMMER and TS:0 TS is negative so total reservoir system storage will decrease.

Demand,  Cadj - G = Cs + Cv 

Rules -- Allocate from inflows and reservoirs to Cs and Cv in the following order, stopping when demand is filled:

a) Apply all Es to Cs,  and  apply all Ev to Cv.

b) From Horseshoe, take as much as needed down to its zero level. (allocate to Cv)

c) If any of the 3 small Salt reservoirs are at >95%, take them down to 95%

 in the order of (1) Horse Mesa,  (2) Mormon Flat,  (3) Stewart Mtn. (allocate to Cs)

d) Test for Bartlett >40% capacity   and   Test for Roosevelt >75% capacity

i) If no (Bartlett) & no (Roosevelt), go to next step.

ii) If no (Bartlett) & yes (Roosevelt) -

draw from Roosevelt, but only until it is reduced to 75% of its capacity    (allocate to Cs)

iii) If yes (Bartlett) & no (Roosevelt) -

draw from Bartlett until it is reduced to 40% of its capacity    (allocate to Cv)

iv) If yes (Bartlett) & yes (Roosevelt) -

   draw per the Mid-High Range proportions:

Bartlett  = (Sb-40%level) / [(Sb-40%level) + (Sr-75%level)]    (allocate to Cv)

Roosevelt  = (Sr-75%level) / [(Sb-40%level) + (Sr-75%level)]    (allocate to Cs)

maximum Bartlett draw of (storage level - 40%capacity)

maximum Roosevelt draw of (storage level - 75%capacity)

e) Test for Roosevelt >5% capacity

i) If yes, then draw from Roosevelt until the needs are filled or it's at 5%.   (allocate to Cs)

ii) If no, or still need to draw more water after Roosevelt has been reduced to 5%,

   then use the Low Range proportions:

Bartlett  = Sb/(Sb+Sm+Sf+Sn+Sr) (allocate to Cv)

HorseMesa  = Sm/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

MormonFlat  = Sf/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

StewartMtn  = Sn/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

Roosevelt  = Sr/(Sb+Sm+Sf+Sn+Sr) (allocate to Cs)

The reservoirs approach zero together by this calculation.

If reservoirs are all reduced to zero (or below),

then [STOP] and message is returned "Reservoirs Depleted"

Then, change of Storages according to above calc'ns.

and Ds = Cs   and   Dv = Cv

D (total reservoirs discharge) must never be < C,adjusted less G

In other words, have to release water from Salt & Verde reservoirs to satisfy customer demand allocation not satisfied by groundwater.

          This is a validity check after the season's calculations are completed.
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 - watershed T, P, RO to seasons
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 (or calculated per regressions to watershed climate)
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,

C=0, Cadj=0, G=0, 

and

each reservoir at 100% 

If S,TotalSystem >600,000: 

then Cadj = C;

otherwise Cadj = 2/3 x C

and message returned 

"Customers on Allocation"

Calculate G per 

Groundwater Pumping Algorithm

f(Season, Total System Storage at 

end of previous season)

Start calculations for

Year-Season: 01-W
Returning for

Next Record 

(next table row)

If  Rv-Lv < 0: message returned:

"Invalid Verde data, L > R" ;

and go to END

If  Rs-Ls < 0:   message returned 

"Invalid Salt data, L > R" ;

and go to END

Sum,  R = Rs + Rv

Sum,  L = Ls + Lv

If S,TotalSystem < 50,000:  

message returned 

"Reservoirs Depleted";

and is DSS =1 ?

Calculate:

Cadj - G = Cs + Cv

Is Season = 

Go to 

SUMMER 

TS:0

rules

Is  Rs+Rv-Ls-Lv-Cadj+G > 0 
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ii) Depleted Shutdown 
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"System in Recover Mode"

Calculate G per 

Groundwater Pumping Algorithm
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Cadj = G

If RMS = 1

and S,TotalSystem >600,000

and S,SaltSystem >450,000

then RMS = 0
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Starts with reservoir levels from end of the last season.

Reservoirs are being incrementally increased or drained as step through the flowchart.

Cs and Cv are also being progressively added to in sequential steps. to next page
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No

No

No

No

No
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No
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to the sum of S, next page

B40 = Sb(lastseason) - 71,274
Is B40 > 0 ?

Σ B40 to Cv

B40 = 0

Sb = Sb(lastseason) - B40

Sh = Sh(lastseason)

Cxv = (Rv-Lv)/(Rv-Lv+Rs-Ls) x (Cadj - G - B40)

Σ Cxv to Cv
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Cs = (Rs-Ls)/(Rv-Lv+Rs-Ls) x (Cadj - G - B40)

Σ Cs to Cs

Xv = Rv - Lv - Cvx

Xs = Rs - Ls - Cs

OpenB = 178,186 -

OpenH = 109,217 -
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Σ OpenB  to Sb Σ Xv*OpenB/(OpenB+OpenH) to Sb
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Σ OpenH  to Sh Σ Xv*OpenH/(OpenB+OpenH) to Sh

Pv = Xv - OpenB - OpenH

Dv = Cv + Pv

Sv = Sb + Sh

Sm = Sm(lastseason)

WINTER

TS:1

rules

Cs = 0 ; Cv = 0 ; Ps = 0 ; Pv 
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Next Record 

(next table row)

Is D >= 

Return message: "Error in Go to Spill 
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Starts with reservoir levels from end of the last season.

Reservoirs are being incrementally increased or drained as step through the flowchart.

Cs and Cv are also being progressively added to in sequential steps.

Yes

No

No

Yes

No

Yes

Yes Yes

No No

Yes Yes

No No

Yes Yes

No No

Yes Yes

No No

Yes

No

B40 = Sb(lastseason) - Σ B40 to Cv

B40 = 0

Sb = Sb(lastseason) - B40

Sh = Sh(lastseason)

Σ (Rs-Ls) to Cs

Sr = Sr(lastseason)

Sf = Sf(lastseason)

Sn = Sn(lastseason)

Σ (Rv-Lv) to Cv

Is Sm > 232881 

Σ (Sm - 232881) to Cs

Is

Σ (Cadj - G - Cs - Cv) to Cs

S = Ss + Sv

Sm = Sm(lastseason)

WINTER

TS:0

rules

Is

Σ Sh to Cv

Sh = 0

Σ (Cadj - G - Cs - Cv) to Cv

Sh = Sh - (Cadj - G - Cs -

Is Sf > 54959 ?

Is Sn > 66277 ?

Is Sr > 247956 ?

Is Sm - 232881 >= (Cadj - G - Cs -

Sm = Sm - (Cadj - G - Cs -
Sm = 232881

Is Sf - 54959 >= (Cadj - G - Cs - Cv) ? Σ (Cadj - G - Cs - Cv) to Cs

Σ (Cadj - G - Cs - Cv) to Cs

Σ (Cadj - G - Cs - Cv) to Cs

Is Sn - 66277 >= (Cadj - G - Cs - Cv) 

Is Sr - 247956 >= (Cadj - G - Cs - Cv) 

Sf = 54959

Sn = 66277

Sr = 247956

Σ (Sf - 54959) to Cs

Σ (Sn - 66277) to Cs

Σ (Sr - 247956) to Cs

Sf = Sf - (Cadj - G - Cs - Cv)

Sn = Sn - (Cadj - G - Cs - Cv)

Sr = Sr - (Cadj - G - Cs - Cv)

Σ [Sb/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to 

Σ [Sm/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to 

Σ [Sf/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to Cs

Σ [Sn/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to 

Σ [Sr/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to Cs Sr = Sr - [Sr/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sn = Sn - [Sn/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sf = Sf - [Sf/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sm = Sm - [Sm/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sb = Sb - [Sb/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -
If Sh & Sb & Sr & Sm & Sf & 

Sn 
<= 0,

then return message "Reservoirs 
Depleted" and go to END

Ds = Cs + Ps Dv = Cv + Pv

Ps = Pv = 0

Ss = Sn + Sf + Sm + Sr Sv = Sb + Sh

D = Ds +

Go to

Next Record 

(next table 

Return Message:

"Bartlett fall release allows 

winter reservoir refills"

Cs = 0 ; Cv = 0 ; Ps = 0 ; Pv 

Is D >= 

Return message: "Error in 
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Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes

Yes Yes

No

No

No

Yes Yes

No

No

Yes

No

Yes

No

Is

OpenN (=66277-Sn) 

Is

OpenF (54959-Sf) >0 

Is

OpenM (=232881-Sm) 

Is

OpenR (1653043-Sr) 

Is

OpenN (=69765-Sn) 

Is

OpenF (=57852-Sf) 

Is

OpenM (=245138-Sm) 

Ps = Xs

Ds = Cs + Ps

Ss = Sn + Sf + Sm + Sr

S = Ss + Sv D = Ds + Dv

Is OpenN >= Xs Sn = Sn + Xs

Xs = Xs - OpenNSn = 66277

Is OpenF >= Xs 

Xs = Xs - OpenFSf = 54959

Sf = Sf + Xs

Is OpenM >= Xs Sm = Sm + Xs

Xs = Xs - OpenMSm = 232881

Is OpenR >= Xs ? Sr = Sr + Xs

Xs = Xs - OpenRSr = 1653043

Is OpenN >= Xs Sn = Sn + Xs

Xs = Xs - OpenNSn = 69765

Is OpenF >= Xs Sf = Sf + Xs

Xs = Xs - OpenFSf = 57852

Is OpenM >= Xs Sm = Sm + Xs

Xs = Xs - OpenMSm = 245138

Go to

Next Record 

(next table row)then return message "Reservoirs 

Cs = (Rs-Ls)/(Rs-Ls+Rv-Lv) x (Cadj - G - B40)

Cxv = (Rv-Lv)/(Rs-Ls+Rv-Lv) x (Cadj - G - B40)

Xs = Rs - Ls - Cs

Xv = Rv - Lv - Cxv

Σ Cs  to Cs

Σ Cxv  to Cv

OpenB = 178,186 -

OpenH = 109,217 -

Is
Xv * 

OpenB/(OpenB+OpenH)

Is
Xv * 

OpenH/(OpenB+OpenH)

Σ OpenB  to SbΣ Xv*OpenB/(OpenB+OpenH) to Sb

Σ OpenH  to Sh Σ Xv*OpenH/(OpenB+OpenH) to Sh

Pv = Xv - OpenB - OpenH

Dv = Cv + Pv

Sv = Sb + Sh

Return message: "Error in 

Is D >= Go to Spill 



309 
 

 
 

 

 

Starts with reservoir levels from end of the last season.

Reservoirs are being incrementally increased or drained as step through the flowchart.

Cs and Cv are also being progressively added to in sequential steps.

No

No

No

Yes

No

Yes

No

Sb = Sb(lastseason)

Sh = Sh(lastseason)

Cv = (Rv-Lv)/(Rv-Lv+Rs-Ls) x (Cadj - G)

Σ Cv to Cv

Sr = Sr(lastseason)

Sf = Sf(lastseason)

Sn = Sn(lastseason)

Cs = (Rs-Ls)/(Rv-Lv+Rs-Ls) x (Cadj - G)

Σ Cs to Cs

Xv = Rv - Lv - Cv Xs = Rs - Ls - Cs

OpenB = 178,186 - Sb

OpenH = 109,217 -

Is

Xv * OpenB/(OpenB+OpenH) > 

Σ OpenB  to Sb Σ Xv*OpenB/(OpenB+OpenH) to Sb

Is

Xv * OpenH/(OpenB+OpenH) > 

Σ OpenH  to Sh Σ Xv*OpenH/(OpenB+OpenH) to Sh

Pv = Xv - OpenB - OpenH

Dv = Cv + Pv

Sv = Sb + Sh

Sm = Sm(lastseason)

SUMMER

TS:1

rules

Cs = 0 ; Cv = 0 ; Ps = 0 ; Pv =0
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Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes Yes

No

No

Yes

No

Is

OpenN (=66277-Sn) >0 

Is
OpenF (54959-Sf) >0 ?

Is

OpenM (=232881-Sm) 

Is

OpenR (1653043-Sr) >0 

Is

OpenN (=69765-Sn) >0 

Is

OpenF (=57852-Sf) >0 

Is

OpenM (=245138-Sm) 

Ps = Xs

Ds = Cs + Ps

Ss = Sn + Sf + Sm + Sr S = Ss + Sv D = Ds + Dv

Is OpenN >= Xs Sn = Sn + Xs

Xs = Xs - OpenNSn = 66277

Is OpenF >= Xs 

Xs = Xs - OpenFSf = 54959

Sf = Sf + Xs

Is OpenM >= Xs Sm = Sm + Xs

Xs = Xs - OpenMSm = 232881

Is OpenR >= Xs ? Sr = Sr + Xs

Xs = Xs - OpenRSr = 1653043

Is OpenN >= Xs Sn = Sn + Xs

Xs = Xs - OpenNSn = 69765

Is OpenF >= Xs Sf = Sf + Xs

Xs = Xs - OpenFSf = 57852

Is OpenM >= Xs Sm = Sm + Xs

Xs = Xs - OpenMSm = 245138

Go to

Next Record 

(next table row)

Is D >= 

Return message: "Error in 

Total Discharge", and go to 
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Starts with reservoir levels from end of the last season.

Reservoirs are being incrementally increased or drained as step through the flowchart.

Cs and Cv are also being progressively added to in sequential steps.

No

Yes

Yes Yes

No No

Yes Yes

No No

Yes Yes

No No

Yes No

No Yes Yes

Yes

No

No

Yes

No

Yes

No

Yes Yes

No

No

Yes

No

Sb = Sb(lastseason)

Sh = Sh(lastseason)

Σ (Rs-Ls) to Cs

Sr = Sr(lastseason)

Sf = Sf(lastseason)

Sn = Sn(lastseason)

Σ (Rv-Lv) to Cv

Is Sm > 232881 

Σ (Sm - 232881) to Cs

Is

Σ (Cadj - G - Cs - Cv) to Cs

S = Ss + Sv

Sm = Sm(lastseason)

SUMMER

TS:0

rules

Σ Sh to Cv

Sh = 0

Σ (Cadj - G - Cs - Cv) to Cv

Sh = Sh - (Cadj - G - Cs -

Is Sf > 54959 ?

Is Sn > 66277 ?

Is Sr > 247956 ?

Is Sm - 232881 >= (Cadj - G - Cs -

Sm = Sm - (Cadj - G - Cs -
Sm = 232881

Is Sf - 54959 >= (Cadj - G - Cs - Cv) ? Σ (Cadj - G - Cs - Cv) to Cs

Σ (Cadj - G - Cs - Cv) to Cs

Σ (Cadj - G - Cs - Cv) to Cs

Is Sn - 66277 >= (Cadj - G - Cs - Cv) 

Is Sr - 247956 >= (Cadj - G - Cs - Cv) 

Sf = 54959

Sn = 66277

Sr = 247956

Σ (Sf - 54959) to Cs

Σ (Sn - 66277) to Cs

Σ (Sr - 247956) to Cs

Sf = Sf - (Cadj - G - Cs - Cv)

Sn = Sn - (Cadj - G - Cs - Cv)

Sr = Sr - (Cadj - G - Cs - Cv)

Σ [Sb/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to 

Σ [Sm/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to 

Σ [Sf/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to Cs

Σ [Sn/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to 

Σ [Sr/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs - Cv)] to Sr = Sr - Sr/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sn = Sn - Sn/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sf = Sf - Sf/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sm = Sm - Sm/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

Sb = Sb - Sb/(Sb+Sm+Sf+Sn+Sr) x (Cadj - G - Cs -

If Sh & Sb & Sr & Sm & Sf & 
Sn 

<= 0,
then return message "Reservoirs 

Depleted" and go to END

Ds = Cs + Ps Dv = Cv + Pv

Ps = Pv = 0

Ss = Sn + Sf + Sm + Sr Sv = Sb + Sh

D = Ds +

Go to

Next Record 

(next table 

Cs = 0 ; Cv = 0 ; Ps = 0 ; Pv 

Is Sr > 1239782 Is Sb > 71274 ?

Is Sb > 71274 ?

Is Sr - 1239782 >= (Cadj - G - Cs -

Is Sb - 71274 >= (Cadj - G - Cs - Cv) 

Σ (Cadj - G - Cs - Cv) to Cs

Sr = Sr - (Cadj - G - Cs - Cv)

Σ (Sn - 1239782) to CsSr = 1239782

Sb = 71274 Σ (Sb - 71274) to Cv

Σ (Cadj - G - Cs - Cv) to Cv

Sb = Sb - (Cadj - G - Cs - Cv)

Is (Sr-1239782+Sb-71274) >= (Cadj - G - Cs -

Σ  (Cadj - G - Cs - Cv) x [(Sr-1239782)/(Sr-1239782+Sb-71274)] to Cs

Σ (Sb - 71274) to CvSb = 71274

Sr = 1239782 Σ (Sr - 1239782) to Cs

Σ  (Cadj-G-Cs-Cv) x [(Sb-71274)/(Sr-1239782+Sb-71274)] to Cv

Sr = Sr - (Cadj - G - Cs - Cv) x [(Sr-1239782)/(Sr-1239782+Sb-71274)]

Sb = Sb - (Cadj - G - Cs - Cv) x [(Sb-71274)/(Sr-1239782+Sb-71274)] 

Is D >= 

Return message: "Error in 
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Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

SPILL 
CHECK

Is Pv=0 and Ps=0 ?

Is Pv>0 and Ps>0 ?

Is Ps>0 and Pv=0 ?

Then,  Pv>0 and Ps=0

Return to season 

completion

OpenB = 178186- OpenH = 109217-

AmtRev = Minimum(Ps, Cv-B40, OpenB+OpenH)

Is OpenB >= AmtRev 

Sb = 178186

Xr = AmtRev - OpenB

Sh = Sh + Xr

Cv = Cv - AmtRev

Cs = Cs + AmtRev

Ps = Ps - AmtRev

Sv = Sb + Sh

Dv = Cv

Ds = Cs + Ps

OpenN = 69765-Sn

OpenF = 57852-Sf

OpenM = 245138-

OpenR = 1653043-

AmtRev = Minimum(Pv, Cs, 
OpenR+OpenN+OpenF+OpenM)

Is OpenR >= AmtRev 

Is OpenN >= Xr ?

Is OpenF >= Xr ?

Sr = 1653043

Xr = AmtRev - OpenR

Sb = Sb + AmtRev

Sr = Sr + AmtRev

Sn = Sn + Xr

Sn = 69765

Xr = Xr - OpenN

Sf = 57852

Xr = Xr - OpenF

Sf = Sf + Xr

Sm = Sm + Xr

Cs = Cs - AmtRev

Cv = Cv + AmtRev

Pv = Pv - AmtRev

Ss = Sr + Sn + Sf + Sm

Dv = Cv + Pv

Ds = Cs

If AmtRev = Cv-B40, then AmtRev = 

If AmtRev = Cs, then AmtRev = 0.75*AmtRev
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APPENDIX G 

HYPOTHESIS TEST STATISTICS, CLIMATE CHANGE IMPACTS 
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Table G1.  Hypothesis Tests Statistics for Temperature Change Impact to Net Basin 

Supply. 

 

 
The changes in NBS distribution parameters between temperature projections are all 

statistically significant to >95% confidence, as the number of simulated years is very 

large (120,000). 

  

Annual Net Basin Supply (acre-feet)

Current Most Likely IPCC AR5

System Forecast Projection

10th percentile 341,500 296,100 245,125

25th percentile 486,500 442,061 393,984

95% Confidence Interval, Median - Lo 844,500 803,967 761,166

Median 849,500 809,140 766,429

95% Confidence Interval, Median - Hi 855,500 813,844 772,086

95% Confidence Interval, Mean - Lo 1,158,580 1,118,752 1,076,653

Mean 1,164,010 1,124,206 1,082,138

95% Confidence Interval, Mean - Hi 1,169,441 1,129,660 1,087,622

75th percentile 1,488,500 1,451,382 1,412,391

90th percentile 2,416,500 2,386,068 2,352,526

Std Dev 959,751 963,907 969,368

95% Confidence Interval, StdDev - Hi 963,607 967,779 973,262

95% Confidence Interval, StdDev - Lo 955,927 960,066 965,505

Std Dev of Mean 2,771 2,783 2,798
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Table G2.  Hypothesis Tests for Difference in Number of Droughts for Climate Change 

Forecasts. 
 

 

Drought Duration (years): ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 ≥11 ≥12 ≥13 ≥14 ≥15 ≥16

Most Likely Forecast vs Current System

calculated t-statistic: 6.287 6.140 5.116 4.051 3.098 2.687 1.686 1.930 1.923 1.558 1.131 1.254 0.484 0.000

p-value: <0.5% <0.5% <0.5% <0.5% <0.5% <1% <5% <5%

IPCC AR5 vs Current System

calculated t-statistic: 13.068 13.359 10.545 8.299 6.573 5.669 4.176 4.235 3.309 2.926 2.200 2.000 1.483 1.076

p-value: <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <2.5% <5%

IPCC AR5 vs Most Likely Forecast

calculated t-statistic: 6.593 6.889 5.802 4.352 3.490 3.064 2.591 2.286 1.664 1.655 1.165 0.886 1.067 1.076

p-value: <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <1% <2.5%

each sequence is a 10,000-year simulation values in matrices are number of drought events

CURRENT SYSTEM ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 ≥11 ≥12 ≥13 ≥14 ≥15 ≥16

Sequence A 624 308 155 80 39 18 11 5 2 1 1 0 0 0

Sequence B 659 335 182 100 64 37 25 12 6 2 1 1 1 1

Sequence C 643 310 148 68 34 17 10 4 0 0 0 0 0 0

Sequence D 627 305 138 74 37 18 13 10 5 4 3 1 0 0

Sequence E 646 320 166 86 43 26 11 4 1 1 1 0 0 0

Sequence F 583 304 154 62 33 14 7 2 1 1 1 0 0 0

Sequence G 653 318 161 86 43 22 10 6 4 1 0 0 0 0

Sequence H 652 314 146 67 26 9 4 3 3 0 0 0 0 0

Sequence I 630 294 146 74 34 17 8 3 2 1 0 0 0 0

Sequence J 634 343 182 76 39 17 8 5 5 0 0 0 0 0

Sequence K 614 299 151 77 37 17 12 7 3 1 1 1 0 0

Sequence L 625 322 170 88 33 19 7 3 2 1 1 1 1 0

Mean: 632.5 314.3 158.3 78.2 38.5 19.3 10.5 5.3 2.8 1.1 0.8 0.3 0.2 0.1

StdDev: 20.79 14.32 14.24 10.57 9.31 6.90 5.21 3.03 1.85 1.08 0.87 0.49 0.39 0.29

StdDev of Mean: 6.002 4.133 4.110 3.052 2.687 1.993 1.505 0.873 0.534 0.313 0.250 0.142 0.112 0.083

MOST LIKELY FORECAST ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 ≥11 ≥12 ≥13 ≥14 ≥15 ≥16

Sequence A 671 337 192 97 47 26 14 7 5 3 1 0 0 0

Sequence B 711 378 208 118 70 41 26 15 8 3 2 1 1 1

Sequence C 698 353 182 89 45 24 13 5 0 0 0 0 0 0

Sequence D 682 353 174 92 51 25 16 11 5 4 3 1 0 0

Sequence E 690 356 185 95 53 30 12 5 2 1 1 0 0 0

Sequence F 640 338 177 75 44 20 13 6 4 1 1 0 0 0

Sequence G 703 351 184 107 58 31 16 10 5 2 0 0 0 0

Sequence H 712 353 172 83 34 16 6 4 4 2 2 2 1 0

Sequence I 689 333 178 94 45 26 12 7 4 2 1 1 0 0

Sequence J 689 388 214 99 53 24 10 6 6 0 0 0 0 0

Sequence K 667 341 184 101 54 24 15 9 5 3 2 2 0 0

Sequence L 674 351 189 105 46 31 14 8 4 1 1 1 1 0

Mean: 685.5 352.7 186.6 96.3 50.0 26.5 13.9 7.8 4.3 1.8 1.2 0.7 0.3 0.1

StdDev: 20.51 16.21 12.86 11.28 8.87 6.30 4.70 3.11 1.97 1.27 0.94 0.78 0.45 0.29

StdDev of Mean: 5.921 4.680 3.712 3.257 2.561 1.820 1.357 0.897 0.569 0.366 0.271 0.225 0.131 0.083

IPCC AR5 PROJECTION ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 ≥11 ≥12 ≥13 ≥14 ≥15 ≥16

Sequence A 715 378 216 114 59 35 22 13 9 5 2 0 0 0

Sequence B 757 425 239 141 79 47 28 15 7 3 1 0 0 0

Sequence C 734 404 220 117 61 33 18 8 1 0 0 0 0 0

Sequence D 735 391 201 106 60 31 22 16 10 7 4 1 0 0

Sequence E 752 410 221 118 64 39 16 8 3 1 1 1 1 1

Sequence F 709 388 204 99 58 31 18 8 5 2 2 0 0 0

Sequence G 757 411 223 131 69 37 21 11 7 4 2 2 1 1

Sequence H 772 397 200 100 45 23 10 5 4 2 2 2 1 0

Sequence I 744 387 209 111 55 32 15 11 6 3 1 1 0 0

Sequence J 738 426 242 125 70 30 17 11 9 2 0 0 0 0

Sequence K 717 377 217 120 65 33 20 12 5 4 3 3 1 0

Sequence L 734 391 219 127 63 39 18 10 5 2 2 2 2 1

Mean: 738.7 398.8 217.6 117.4 62.3 34.2 18.8 10.7 5.9 2.9 1.7 1.0 0.5 0.3

StdDev: 18.97 16.56 13.31 12.52 8.44 5.95 4.43 3.14 2.64 1.88 1.15 1.04 0.67 0.45

StdDev of Mean: 5.475 4.780 3.842 3.613 2.435 1.718 1.280 0.907 0.763 0.543 0.333 0.302 0.195 0.131
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Table G3.  Hypothesis Tests for Temperature Change Impact to Drought Intensity & 

Depth. 

 
Differences of means between temperature projections are all statistically significant. 

Duration (years): 3 4 5 6 7 8 9 10 ≥11

Current System

Maximum 833,167 812,000 752,700 710,833 687,929 657,625 651,167 636,100 640,864

Mean 506,713 505,266 510,288 507,350 511,481 505,612 504,799 502,697 505,907

Median 503,833 505,250 511,300 506,833 512,357 506,250 508,000 491,300 509,860

Minimum 241,167 279,750 314,300 337,833 343,929 375,375 387,500 414,400 381,577

Std Deviation 96,841 87,778 73,793 65,876 64,079 62,241 69,589 55,190 50,817

count 3,818 1,873 961 476 231 105 62 30 34

StdDev of Mean 1,567 2,028 2,380 3,019 4,216 6,074 8,838 10,076 8,715

Most Likely Forecast

Maximum 816,597 806,016 757,778 731,489 706,873 699,851 611,953 626,396 590,017

Mean 478,316 476,771 481,354 477,209 482,011 486,990 478,696 471,868 468,694

Median 474,435 475,704 481,037 477,567 480,080 487,721 483,246 459,105 468,237

Minimum 206,688 241,361 275,084 295,334 304,531 331,122 342,202 368,382 332,036

Std Deviation 103,597 93,158 78,795 69,555 67,839 69,968 70,189 59,150 50,237

count 3,994 1,993 1,084 555 282 151 74 41 52

StdDev of Mean 1,639 2,087 2,393 2,952 4,040 5,694 8,159 9,238 6,967

test statistic, Mean,                                              

vs Current System 12.521 9.792 8.572 7.137 5.047 2.237 2.170 2.255 3.335

IPCC AR5 Projection

Maximum 818,310 768,416 710,690 690,210 648,142 682,447 656,248 580,323 608,208

Mean 447,539 446,523 448,140 444,816 450,971 449,996 446,735 444,705 440,362

Median 442,612 443,825 445,804 448,258 446,863 448,023 451,863 436,812 436,483

Minimum 165,594 192,450 225,717 248,449 259,695 281,496 292,084 317,461 278,166

Std Deviation 111,435 100,584 84,221 75,162 70,636 73,306 75,428 65,976 60,563

count 4,079 2,174 1,202 661 338 185 97 57 72

StdDev of Mean 1,745 2,157 2,429 2,923 3,842 5,390 7,659 8,739 7,137

test statistic, Mean,                                              

vs Most Likely Forecast 12.856 10.078 9.740 7.796 5.568 4.719 2.856 2.136 2.841

Duration (years): 3 4 5 6 7 8 9 10 ≥11

Current System

Maximum 805,500 741,500 669,500 602,500 524,500 491,500 404,500 363,500 361,500

Mean 363,772 335,827 320,288 306,941 302,223 285,948 283,597 273,367 274,353

Median 345,500 321,500 307,500 293,500 298,500 279,500 275,000 266,500 275,500

Minimum 167,500 164,500 175,500 168,500 176,500 175,500 176,500 201,500 188,500

Std Deviation 99,654 88,532 74,222 65,993 63,630 56,955 51,448 43,215 44,496

count 3,818 1,873 961 476 231 105 62 30 34

StdDev of Mean 1,613 2,046 2,394 3,025 4,187 5,558 6,534 7,890 7,631

Most Likely Forecast

Maximum 800,068 758,201 670,847 587,091 474,202 457,320 363,013 360,654 315,726

Mean 325,788 297,704 282,958 266,728 262,288 254,304 245,142 233,588 233,452

Median 304,221 278,043 266,494 251,805 249,608 243,417 234,482 222,206 225,232

Minimum 140,689 137,055 146,698 142,532 151,287 142,846 167,524 171,781 152,327

Std Deviation 103,672 89,249 75,311 64,606 59,264 58,822 47,157 41,489 41,080

count 3,994 1,993 1,084 555 282 151 74 41 52

StdDev of Mean 1,640 1,999 2,287 2,742 3,529 4,787 5,482 6,479 5,697

test statistic, Mean,                                              

vs Current System 16.512 13.328 11.273 9.849 7.293 4.314 4.509 3.896 4.295

IPCC AR5 Projection

Maximum 786,423 704,255 631,287 554,333 489,146 419,272 351,480 363,378 360,373

Mean 283,878 255,646 237,164 221,745 219,032 202,957 201,622 194,574 191,171

Median 257,134 232,899 219,449 207,016 206,297 191,359 189,933 174,195 179,470

Minimum 105,855 103,863 114,731 109,480 119,183 107,190 137,741 134,024 120,788

Std Deviation 109,421 91,068 74,704 63,757 60,754 54,234 41,201 52,227 41,423

count 4,079 2,174 1,202 661 338 185 97 57 72

StdDev of Mean 1,713 1,953 2,155 2,480 3,305 3,987 4,183 6,918 4,882

test statistic, Mean,                                              

vs Most Likely Forecast 17.669 15.048 14.573 12.166 8.947 8.242 6.311 4.116 5.636

DROUGHT INTENSITY

DROUGHT DEPTH
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Table G4.  Hypothesis Tests for Temperature Change Impact to Reduced Water 

Allocation Occurrences and Time On Allocation. 
 

 
 

 

mean mean mean mean mean mean

% of time # occurrences % of time # occurrences % of time # occurrences

on allocation per century on allocation per century on allocation per century

Sequence-A 1.98% 0.72 3.61% 1.24 6.33% 2.14

Sequence-B 2.35% 0.76 4.33% 1.45 7.09% 2.24

Sequence-C 1.53% 0.62 3.25% 1.29 6.08% 2.29

Sequence-D 1.83% 0.62 3.51% 1.19 6.34% 2.08

Sequence-E 1.60% 0.60 3.39% 1.31 6.27% 2.30

Sequence-F 1.74% 0.66 3.44% 1.26 6.22% 2.19

Sequence-G 1.94% 0.77 3.89% 1.41 6.97% 2.42

Sequence-H 1.27% 0.53 3.14% 1.26 5.75% 2.17

Sequence-I 1.81% 0.59 3.10% 1.06 5.87% 2.00

Sequence-J 1.54% 0.63 3.17% 1.24 5.95% 2.25

Sequence-K 1.55% 0.65 3.40% 1.24 6.43% 2.23

Sequence-L 1.80% 0.69 3.95% 1.41 7.24% 2.40

Overall Mean 1.74% 0.65 3.51% 1.28 6.38% 2.23

Std Dev 0.28% 0.07 0.38% 0.11 0.48% 0.12

 +1.96 StdDev: 2.29% 0.79 4.25% 1.49

 -1.96 StdDev: 2.78% 1.07 5.43% 1.99

Current System Most Likely Forecast IPCC AR5 Projection

confidence intervals do not overlap, cases are statistically different


