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ABSTRACT  

   

Recent new experiments showed that wide-field imaging at millimeter scale is capable of 

recording hundreds of neurons in behaving mice brain. Monitoring hundreds of 

individual neurons at a high frame rate provides a promising tool for discovering 

spatiotemporal features of large neural networks. However, processing the massive data 

sets is impossible without automated procedures. Thus, this thesis aims at developing a 

new tool to automatically segment and track individual neuron cells. The new method 

used in this study employs two major ideas including feature extraction based on power 

spectral density of single neuron temporal activity and clustering tree to separate 

overlapping cells. To address issues associated with high-resolution imaging of a large 

recording area, focused areas and out-of-focus areas were analyzed separately. A static 

segmentation with a fixed PSD thresholding method is applied to within focus visual 

field. A dynamic segmentation by comparing maximum PSD with surrounding pixels is 

applied to out-of-focus area. Both approaches helped remove irrelevant pixels in the 

background. After detection of potential single cells, some of which appeared in groups 

due to overlapping cells in the image, a hierarchical clustering algorithm is applied to 

separate them. The hierarchical clustering uses correlation coefficient as a distance 

measurement to group similar pixels into single cells. As such, overlapping cells can be 

separated. We tested the entire algorithm using two real recordings with the respective 

truth carefully determined by manual inspections. The results show high accuracy on 

tested datasets while false positive error is controlled within an acceptable range. 

Furthermore, results indicate robustness of the algorithm when applied to different image 

sequences.  
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CHAPTER 1 

INTRODUCTION  

Fluorescent imaging is a promising tool for extracellular recording of neuronal activity. It 

is capable of providing high resolution recording both spatially and temporally as rapidly 

responsive fluorescent protein and optical imaging technology improves (Chen et al., 

2013; Sun et al., 2013).  As a result, two photon imaging is becoming very popular in 

neuroscience field since laser excitation greatly reduces background noise and bring an 

ultra-high spatial resolution. However, the laser scanning mechanism also limits its frame 

rate to about 4 frames/second due to its mechanical limitation (Tian et al., 2009). Wide-

field imaging is another useful technique of fluorescent imaging (Mohammed, Gritton, 

Tseng, Bucklin, & Yao, 2016). The use of LED excitation makes high frame rate 

recording possible. However, high recording rate requires short exposure time and fast 

shutter speed of the camera, which usually lowers the signal to noise ratio. Also, imaging 

quality can be affected by light shadows since the wavelength of the light source is in the 

visible light range, which brings significant challenges to cell segmentation. 

Cell segmentation techniques have been developed for imaging studies of biological 

systems in laboratory studies of blood cells, lymphocytes cells and stem cells (Liu, 

Jurrus, Seyedhosseini, Ellisman, & Tasdizen, 2012)(Meijering, 2012). Most of the 

algorithms, for example the watershed algorithm, are histogram and morphology based, 

which rely on intensity thresholding. These algorithms perform well for images with 

uniform background.  In reality, due to physical limitations such as focus area and light 

scattering, wide-field imaging rarely provides a uniform background. 
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Overlapping cells in an image is a very common problem in wide-field imaging even 

though it is a non-issue for two photon imaging because of its limited imaging area. 

However, wide-field imaging records hundreds of cells in each frame during each 

recording session and a significant portion of an image frame contains overlapping cells. 

Feature detection is a popular approach to solving the overlapping cell segmentation 

problem, which uses a filter template. But it assumes that the shape of a cell is invariant. 

Trace clustering is another solution for overlapping segmentation. Previous research 

showed that k-means clustering could be used in this case (Wu & Barbat, 1996). 

As shown in the above, uniform illuminance condition, uniform and invariant cell shape 

are usually assumed when segmenting individual neuron cells recorded by wide-field 

imaging even though these conditions rarely hold true (Wu & Barbat, 1996). Therefore, 

this thesis provides a new method for neuron segmentation based on wide-field imaging 

to directly address unstable background and cell overlapping issues. This method uses 

frequency domain features for detection and clustering tree for individual cell 

identification. 
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CHAPTER 2 

ALGORITHM 

 

Figure 1. Flow Chart of Algorithm  

Image preprocessing 

The raw image sequence was recorded and stored in TIFF format (Mohammed et al., 

2016). Each file contains 2,048 frames with a 1,024×1,024 pixel resolution. Image 

registration is first performed to compensate for frame movement due to physical 

movement of the animal caused by respiration, blood flow, and muscle movement. 

Motion correction has been proven necessary to reduce these motion artifacts. Previous 

research (Mohammed et al., 2016) has provided a reliable solution to this problem. An 

artificially created frame, named maximum image frame, is first obtained by collapsing 
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all image frames together with each pixel represented by the largest intensity value for 

each pixel. 

 

Figure 2.  Power Spectral Density of Background and Cell 
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Segmentation 

 Definition 

𝒊, 𝒋 Coordinates of a pixel 

𝒙𝒊,𝒋 A trace or a vector of intensity values of 

pixel  (𝒊, 𝒋) 

𝑻𝑺 Threshold for static segmentation 

𝑻𝑫 Threshold for dynamic segmentation 

𝑷(𝒊, 𝒋) Maximum power spectral density of the 

intensity trace of a pixel at (𝒊, 𝒋) 

�̅�(𝒊, 𝒋) Mean of 𝑷(𝒎, 𝒏) where 𝒎 = [𝐢 − 𝟏𝟎,
𝐢 + 𝟏𝟎], 𝒏 = [𝐣 − 𝟏𝟎, 𝐣 + 𝟏𝟎] 

𝑹𝒑(𝒊, 𝒋) A pixel power ratio calculated by
𝑷(𝒊,𝒋)

�̅�(𝒊,𝒋)
, 

used for dynamic segmentation 

thresholding 

𝑻𝑪 Cut-off value for adaptive clustering tree 

𝑩𝒖, 𝑩𝒍 Lower bound 𝑩𝒍  and upper bound 𝑩𝒖 for 

cell size, respectively 

Table 1. List of Variables 

Since image pixel background intensity varies sequence by sequence, a simple intensity 

thresholding does not provide sufficient segmentation of all cells from different 

background conditions. Therefore, activities in a full sequence would be a better 

measurement when performing segmentation. To achieve this, an intensity trace  

𝑥𝒊,𝒋 is extracted for each pixel along the entire sequence. Then fast Fourier transform was 

performed on each pixel trace to obtain their frequency spectrum. As Figure 2 shows, a 

background pixel presumably carries noise information and therefore, its spectrum 
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distribution is a typical white noise. In contrast, a neuron cell pixel would fire several 

times during a recording session so that its power spectrum exhibits a peak in a certain 

low frequency range. By using this property represented in power spectrum density 

(PSD) of an image trace, cell pixels can be segmented. 

 

Figure 3. A Typical Connected Cell Area  
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Figure 4. Signal After Filtering and Normalization Shows Different Firing Patterns that 

Can be Used for Clustering 

Another problem is caused by high power magnification during imaging and thus some 

areas of an image frame goes out of focus. This is quite visible in an image frame. This 

also conceals the illuminance of a cell near the edge of the out-of-focus area. Meanwhile, 

the brain surface is slightly curved, and thus the imaging area is not placed flat on the 

same plane. The recording cannula usually can’t touch the imaging plane tightly in this 

case. Out-of-focus area is typically associated with blurred cells and darker than those 

cells in the imaging plane. This makes it difficult to detect by the above algorithm. 

𝑹𝒑(𝒊, 𝒋) =
𝑷(𝒊,𝒋)

�̅�(𝒊,𝒋)
   ( 1 ) 

Thus, a dynamic process was introduced. A pixel power ratio 𝑹𝒑(𝒊, 𝒋) which is defined as 

the ratio between 𝑷(𝒊, 𝒋) and �̅�(𝒊, 𝒋) is calculated in Equation (1). If 𝑹𝒑(𝒊, 𝒋) is higher 

than the threshold 𝑇𝐷, the pixel will be counted as a cell pixel. This dynamic process can 

properly identify out-of-focus cell even if they don’t have enough intensity change. 

However, high density of cell in focus area will limit its performance because so many 
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cells exist within a10 pixels range which significantly raise the average spectral power. 

Therefore, this two processes will work in parallel and complement each other. PSD 

thresholding is responsible for areas in focus and dynamic process take care of the pixels 

out of focus. 

After picking out the cell pixels and removing the background pixels, a set of size bound, 

lower bound 𝐵𝑙  and upper bound 𝐵𝑢, is set in order to eliminate isolated noisy spots. Any 

cell smaller than 𝐵𝑙 will be removed. Prior to clustering process, low pass filtering is used 

to remove high frequency noise and all pixels are properly grouped based on whether 

they are connected or not. This step will reduce the computing consumption in the 

following clustering step. 

Clustering: 

 
Figure 5. Flow Chart of Clustering  

 

Practically, a single connected area possibly contains a single cell or multiple cells, 

sometimes even overlapping cells. A clustering process on the z-score of the original 
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traces was designed to split multiple (overlapping) cells. As Figure 4 shows, pixels that 

belong to the same cell has a similar signal trace while those belong to different cells are 

quite different. Therefore, we can use the correlation coefficient between two pixel traces 

as the distance measure for clustering or overlapping cell separation. The hierarchical 

clustering algorithm was performed by built-in MATLAB function pdist, linkage and 

clusterdata.  

The initial cutoff value 𝑇𝐶 was set as 0.25, which is empirical and determined by trial and 

error. In principal, this value can be set higher because we use an adaptive 𝑇𝐶 in the next 

step. But higher value results in more computation. So setting initial value as 0.25 is a 

trade-off between performance and computing cost.  The separated cells after initial 

clustering are defined as candidate cells. A complication can negatively impact the 

clustering outcome. That is synchronized firing of cells, which was observed in all the 

sequences, for example, trace E and F in Figure 4. In another word, they present very 

similar traces and the initial 𝑇𝐶 is not able to split them. An adaptive process was 

introduced to solve this problem. After initial clustering, if the area of a cell is larger than 

an upper bound 𝐵𝑢, 𝑇𝐶  will keep decreasing by 0.01 until the cell being separated or 𝑇𝐶 

reached 0.05, which is considered as an oversized single cell. Figure 7 shows the result of 

this adaptive process. Cells E and F are eventually separated after adaptive process.  This 

adaptive process is independent among cell candidates thus each cell candidate will have 

a unique 𝑇𝐶 and become an identified cell. 
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Figure 6. Without Adaptive Cut-off, Most Cells are Isolated. But Cells with Similar 

Firing Patterns Remain Connected  

During this adaptive process, some smaller area will be split off, usually less than 25% of 

the original cell. Two possible explanations could be made. First, this area belongs to an 

overlapping area between two cells so it contains signal from both of them. Algorithm 

will automatically search its neighbor cells and compare correlation coefficient of the two 

traces. If it reaches a criterion, usually set as 0.6, it will be considered as overlapping area 

and to be a part of both cells. If not, the second explanation is applied, which considers 

this area as the shadow of a cell. In this situation, it has a similar trace to the cell body but 
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actually is not a part of them and will be discarded.

 

Figure 7. With Adaptive Cut-off, Two Cells Having Similar Firing Patterns are Separated  
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CHAPTER 3 

RESULT 

Two datasets were tested in this study. Each has 2,048 frames with 1,024×1,024 pixel 

resolution and recorded at 20 frames/second. Two experts independently inspected these 

two datasets to carefully establish the ground truth, which was used for testing. During 

visual inspection, we found it difficult to identify individual cells in those out-of-focus 

areas because cells show less activity and the background is darker than the focused area. 

Besides, cells within the focused areas are possibly covered by the shadow of neighbor 

cells due to high cell density. Thus, after we manually inspect each possible cell, 731 and 

392 cells were positively selected for Ali22 and Ali26 dataset, respectively. 

 Definition 

False positive cells detected by algorithm but do not belong to the 

truth set 

False negative cells that the algorithm missed 

True positive cells successfully detected by algorithm 

Sensitivity true positive / (true positive + false negative) 

False negative rate false negative/ (true positive + false negative) 

Accuracy true positive / (true positive + false positive) 

False positive rate  false positive / (true positive + false positive) 

Table 2. Definition of Key Terms 

Table 2 is a summary of the terms used in this study. Generally, false negative is 

acceptable when we have already recorded hundreds of cells. But false positives should 

be controlled as tightly as possible to reduce its adverse impact on further neuron science 
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study because it may provide erroneous information and therefore interfere with the true 

neural network under study.  

 

Figure 8. Ali22 Sensitivity vs False Positive Rate 

 

Figure 9. Ali22 Accuracy vs False Negative Rate 
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Figure 10. Ali22 Sensitivity vs Accuracy 

As Figure 10 shows, accuracy drops if we try to increase the number of identified cells. 

In Ali22 dataset, Sensitivity can reach above 75% while we maintain accuracy at about 

90%, which means a quarter of cells will be missed out if we keep false positive rate low. 

The explanation of error will be stated in Discussion. Figure 14 shows the result of Ali26 

dataset. It has a similar result to Ali22 which can reach about 73% accuracy while keep 

false positive rate under 10%. But we also can notice that these two data sets show 

different features. Ali26 has much tighter curves while 𝑇𝐷 changes. Thus, dynamic 

segmentation contributes less than static segmentation in Ali 26 possibly due to cells are 

more concentrated in central area rather than out-of-focus area.  
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Figure 11. Ali22 Output: Parameter from Left to Right (𝑇𝑠 = 80, 𝑇𝐷= 1.4; 𝑇𝑠 = 120, 𝑇𝐷 

=1.5; 𝑇𝑠= 160, 𝑇𝐷= 1.5) 

Figure 11 shows how the segmentation results change if some key parameters change in 

the segmentation algorithm.  𝑇𝑠 controls the PSD threshold in static segmentation while   

𝑇𝐷 controls dynamic segmentation. Although two segmentation processes were simply 

overlapped to obtain the final segmentation result, it is obviously that two parameters 

take charge in the focused area and out-of-focus area independently. Static segmentation 

is more efficient in the focused area since it focuses on absolute PSD level while dynamic 

segmentation is influenced by high density cell activities. In out-of-focus area, 

conversely, dynamic segmentation is dominant because of its high sensitivity on sparse 

low PSD cell.   
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Figure 12. Ali26 Sensitivity vs False Positive Rate 

 

Figure 13 Ali26 Accuracy vs False Negative Rate 
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Figure 14 Ali26 Sensitivity vs Accuracy 
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CHAPTER 4 

DISCUSSION 

This thesis centers on the development of a frequency based individual neuron cell 

segmentation algorithm. The overall goal of the algorithm was to achieve fully automated 

procedure for individual cell segmentation from wide-field fluorescent imaging. This 

algorithm improves the accuracy of cell identification and provides a promising tool for 

further neuroscientific studies of the neural network under investigation. Below, we 

analyze the possible improvement for current errors including false positive error, false 

negative error and under-/over-segmentation. 

There are two possible explanations for false positive error. First, we assume background 

noise is white but it can be not. Although system noise is the main noise source, which is 

usually white, additional experimental confounding factors due to various movement 

from the recording mice also introduce significant noise. Together, this introduces 

artifacts into recording. If the sensitivity of the dynamic segmentation is set too high, 

these artifacts would be regarded as cell pixel. Another explanation is that we could miss 

out some cells when we manually inspect the truth. During the inspection, images were 

rescaled to computer’s gray range which could make people miss out cells has a low 

luminance. If so, this algorithm can discover more information than we did. 

False negative error, which is also called missing rate, is another measurement to judge 

the performance of an algorithm. In this study, cells with infrequent firing activity would 

be falsely classified as background noise. Increasing sensitivity of dynamic segmentation 

could correct some of this error, but in the meantime, it may increase the false positive 

error as described above. Including additional image frames to expand the dataset and 
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increase more firing evidence can be another solution since longer sequence will rise the 

opportunity of cell firing, which improves the accuracy of the algorithm based on PSD.  

Although adaptive clustering can potentially improve problems associated with under- 

and over-segmentation, it is still challenging in areas with high cell density since the 

boundaries of overlapping cells are vague. It is easy to observe that some cells group 

together and fire synchronously. In this case, two cells show very similar intensity traces 

which make it hard to separate in clustering tree and cause under-segmentation. In other 

extreme case, one targeted cell is tightly surround by a group of cells and they have a 

strong influence to this cell. For an instance, the halo of neighbor cells on the left side 

will effect left side of targeted cell only. Vice versa, so the targeted cell will be identified 

as two cells right in the middle because two side of this cell shows different traces. This 

is a typical situation that cause over-segmentation. Since our algorithm does not consider 

any morphological features such as cell shape and texture, combining pattern detection or 

morphology techniques with our algorithm could be a potential approach to reducing 

under- and over-segmentation. Besides, refining optical instruments with improved 

spatial resolution will also help reduce segmentation errors. 
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CHAPTER 5 

CONCLUSION 

A new algorithm is introduced in this study to segment individual neurons based on 

frequency domain features. This automatic procedure relies on power spectrum density 

(PSD) for potential cell detection and hierarchical clustering for cell separation. The 

method is built on first collecting an intensity trace 𝒙𝒊,𝒋 for each pixel in order for 

frequency domain analysis. After a fast Fourier transform, two PSD thresholding 

processes (static and dynamic, respectively) were used to detect cells within focus and 

out-of-focus, respectively. For separating cells from a detected group of potential cells, 

an adaptive clustering tree with correlation coefficient as distance measurement was used 

to segment individual cells. 

Two real datasets recorded from mice hippocampus were tested for this study. Results 

show that 75% accuracy can be reached while keeping false positive rate under 10%. 

This result proved that the algorithm is feasible for automatically segmenting large 

number of cells in a single image frame even when some of the cells overlap. This 

algorithm can therefore be a candidate for future neuroscience studies where mega scale 

datasets are generated during each experiment.   
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