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ABSTRACT 

 

The technological advances in the past few decades have made possible creation and 

consumption of digital visual content at an explosive rate. Consequently, there is a need 

for efficient quality monitoring systems to ensure minimal degradation of images and 

videos during various processing operations like compression, transmission, storage etc. 

Objective Image Quality Assessment (IQA) algorithms have been developed that predict 

quality scores which match well with human subjective quality assessment. However, a 

lot of research still remains to be done before IQA algorithms can be deployed in real 

world systems. Long runtimes for one frame of image is a major hurdle. Graphics 

Processing Units (GPUs), equipped with massive number of computational cores, provide 

an opportunity to accelerate IQA algorithms by performing computations in parallel. 

Indeed, General Purpose Graphics Processing Units (GPGPU) techniques have been 

applied to a few Full Reference IQA algorithms which fall under the. We present a 

GPGPU implementation of Blind Image Integrity Notator using DCT Statistics 

(BLIINDS-II), which falls under the No Reference IQA algorithm paradigm. We have 

been able to achieve a speedup of over 30x over the previous CPU version of this 

algorithm. We test our implementation using various distorted images from the CSIQ 

database and present the performance trends observed. We achieve a very consistent 

performance of around 9 milliseconds per distorted image, which made possible the 

execution of over 100 images per second (100 fps).  
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Chapter 1. INTRODUCTION 

Image Quality Assessment (IQA) refers to the quantification of the visual quality of an 

image subject to be viewed or used by a human. The first difficulty with that is the fact 

that image quality is a very subjective topic and the quality of the same image maybe 

perceived differently by different individuals. Surveys and studies have been conducted 

over large databases of images with representative human pools to draw out some 

empirical correlations between images and their quality as perceived by humans. The 

response of human subjects is averaged after certain adjustments and reported as Mean 

Opinion Scores (MOS) or Differential Mean Opinion Scores (DMOS). These scores 

provide the means to compare the perceived quality prediction accuracy of any IQA 

algorithm (Chandler 2013). A well performing IQA algorithm is expected to predict the 

correct MOS or the DMOS value of the distorted images in any image quality database. 

The performance of IQA algorithms are compared based on: (1) Prediction accuracy, (2) 

Prediction monotonicity and (3) Prediction consistency as recommended by Video 

Quality Experts Group (VQEG 2003). 

Based upon the availability of a reference image, IQA algorithms can typically be 

classified into a) Full Reference (FR), b) No Reference (NR), and c) Reduced Reference 

(RR). Full reference IQA algorithms require both the undistorted and the distorted image 

as input. A simple and computationally easy FR-IQA algorithm calculates the mean 

squared error (MSE) between the two images using the error value at each pixel location. 

No reference IQA algorithms on the other hand do not require an undistorted source 

image at all, which makes it all the more difficult to design such an algorithm. But it is 

also closer to many real life applications where the undistorted image may not always be 
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available. Reduced Reference IQA algorithms lie somewhere in between in the sense that 

they do not use the entire undistorted image, but rather they require some features 

extracted from the original image and use that to make comparisons with the distorted 

image. Blind Image Integrity Notator using DCT coefficients, BLIINDS-II (Saad, Bovik 

and Charrier) is one such algorithm which falls under the no reference IQA paradigm and 

has been shown to correlate highly with subjective human judgment of image quality. 

Several studies have quantified the relationship between the physical attributes of an 

image with their psychological and neurophysiological effects on humans (Ahumeda 

1996, Ramos and Hemami 2001, Chandler and Hemami 2002, Wang and Simoncelli 

2004, Chandler, Lim and Hemami 2006). They help us understand the Human Visual 

System (HVS) better and model IQA algorithms based on this knowledge. It has been 

shown (Chandler 2013) that better HVS modeling can lead to development of IQA 

algorithms with a higher quality prediction accuracy and greater robustness for changing 

visual signals.  

One of the most important issues holding IQA algorithms back from practical widespread 

application is their poor computational performance. The best performing IQA 

algorithms (Phan et al. 2014) in literature require execution time of the order of seconds 

for a single image smaller than one megapixel. They have been designed with a focus on 

better quality score prediction, rather than their computational efficiency, which is also 

equally important for their real world application. Incorporating a better model of the 

HVS in new IQA algorithms will definitely result in an increase in the computational 
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complexity. So we have an even stronger case for analyzing and improving the 

computational efficiency of existing IQA algorithms.  

Most image processing algorithms (including IQA algorithms) exhibit high data level 

parallelism, as they all perform many computational operations repeated over blocks of 

pixels. This property of IQA algorithms makes them ideal candidates for a General 

Purpose Graphics Processing Unit (GPGPU) implementation. A GPU with its massively 

parallel architecture is capable of performing the same computational operation on 

multiple data simultaneously (SIMD), thereby reducing the run time through clever 

management of compute and memory resources.  
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Chapter 2. RELATED WORK 

In this chapter, we talk about the achievements made in recent years to accelerate the run 

time performance of IQA algorithms. Three possible ways to attain this are: a) algorithm 

modification, b) reducing computational complexity, and c) hardware resource conscious 

optimizations. We look into the various works related to IQA acceleration and discuss 

their technique used, results obtained and contributions made. 

Yang (2008) have presented positive perform gains by implementing traditional image 

processing algorithms like histogram equalization, edge detection, DCT etc. by using 

NVidia’s CUDA (Compute Unified Device Architecture) technology for GPGPU 

computations. The massive data parallel cores on a GPU showed great promise for image 

processing algorithms. 

Gordon et al. (2010) have tried to accelerate the execution of PSNR algorithm by 

exploring GPGPU implementations using both CUDA and OpenGL.  

Chen and Bovik (2013) presented Fast SSIM and Fast MS-SSIM and demonstrated 

impressive speed up in the run time for SSIM and MS-SSIM (Wang et al. 2003) by 

applying algorithm level modifications while preserving the predictive performance for 

both the algorithms. They reported seedups of 2.7x and 10x for SSIM and MS-SSIM just 

by implementing their modifications. They further reported speed ups of 5x and 14x 

using Intel SSE2 (SIMD) instructions to compute contrast and structure components. 

Adding parallelization via multithreading brought their final speed up to 17x and 50x for 

Fast SSIM and Fast MS-SSIM respectively. 
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A GPGPU based implementation of SSIM, MS-SSIM and CVQM (Okarma 2010) was 

presented by Okarma and Mazurek (2011) and reported an execution time reduction by 

150x and 35x for SSIM and MS-SSIM respectively. They handled the GPU and CPU 

memory bandwidth bottleneck by utilizing GPU registers to store computed data locally 

on the GPU, thereby minimizing the number of data transfers back and forth. 

In 2012 Phan et al. presented an optimization for Most Apparent Distortion (MAD) 

(Larson and Chandler 2013) algorithm. They proposed four techniques including the use 

of integral images for local statistical computations and the use of GPGPU for calculating 

the required forty log-Gabor filters. An acceleration of 47x was reported in the run time 

of MAD after all the four suggested optimizations were implemented. 

Phan et al. (2014) further performed a micro architectural analysis of four Full Reference 

IQA algorithms (MAD, MS-SSIM, VIF and VSNR) and two No Reference IQA 

algorithms (BLIINDS and BRISQUE) on an Intel based general purpose computing 

platform. All the algorithms follow similar main stages of filtering (transforming) and 

further statistical operations. They reported the various kinds of memory and 

computational bottlenecks encountered for the different algorithms for various kinds of 

distortions of an image and proposed various platform specific code optimizations to 

overcome the observed bottlenecks. Based on their analysis they also proposed a custom 

IQA engine framework to efficiently handle the common IQA algorithm bottlenecks. 

Josh (2015) presented a GPGPU implementation and its analysis for MAD. He reported a 

24.6x speedup over the CPU implementation. Additionally, he presented an 

implementation with multiple GPUs by executing independent task sequences on three 
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different GPUs. The multi GPU approach fetched another 1.74x speedup over the single 

GPU implementation, which was reported to be lesser than expected. Splitting the task 

over multiple GPUs necessitated transfer of data between the GPUs and the CPU across 

PCIe bus, which resulted in a lower than expected speedup. 
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Chapter 3. BLIINDS-II ALGORITHM 

The BLIINDS algorithm takes in only the distorted image as input and processes it to 

arrive at a final quality score corresponding to it. This is according to the philosophy of 

No Reference Image Quality Assessment algorithm (NR-IQA) to process only a distorted 

image without ‘referring’ to any pure, clean version of it. Figure 1 gives a broad 

overview of the flow of BLIINDS-II algorithm.  

  

Figure 1. High-Level Overview of the BLIINDS-II Framework. 

The algorithm runs on three different spatial scales of the image, in accordance with the 

HVS property of spatial local decomposition of visual stimulus as has been shown in 

(Blake and Sekuler 2006). The flow of BLIINDS-II can be classified into four distinct 

steps.  

First, the input image is padded with zeros and then partitioned into equally sized blocks 

of 5x5 pixels, called local image patches. Local 2-D DCT is then computed for each of 

these local patches to find block DCT coefficients in order to mimic the Human Visual 

System’s (HVS) property of local spatial visual processing.  
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The second step of the BLIINDS pipeline applies a univariate generalized Gaussian 

density model to the non-DC coefficients of each block. The generalized Gaussian 

density model is given by 

 .(/|�, �, �) = �34(5|647|)8
 (3.1) 

 

where � is the mean, � is the shape parameter, � and � are the normalizing and the scale 

parameters given by- 

 � = ��2Γ(1/�) 
(3.2) 

 � = 1= >Γ(3/�)Γ(1/�) 

(3.3) 

  

Where = is the standard deviation and Γ denotes the gamma function given by 

  Γ(?) = @ AB4CD
E 34�F? 

(3.4) 

This Gaussian model is also applied to specific partitions within each block of local DCT 

coefficients across different orientations. These orientations are discussed in more detail 

later. A generalized Gaussian fit is obtained for each of the orientations and radial sub 

regions.  

The third step of the algorithm consists of extracting the required features from the 

Gaussian model parameters developed in the previous step. Eight features are extracted in 

this way from the input distorted image at the original scale. Further, sixteen more 

features are extracted from the image by down sampling the image once and pushing it 
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through the BLIINDS-II pipeline to extract eight more features and down sampling again 

to extract another eight features.  

In the final step of the algorithm, a simple Bayesian inference approach is used to predict 

the image quality score from the extracted features. The Bayesian approach essentially 

maximizes the probability that the distorted image has a certain quality score given the 

model-based features. This step is discussed in more detail in a later section. 

The entire run of the algorithm is represented below step by step. Understanding these 

steps is crucial to understand our GPU implementation details, its analyses and 

optimizations. For a better understanding of the underlying theoretical concepts and 

experimental results of the BLIINDS-II algorithm, the reader should refer to (Saad 2012). 

The focus of our work is on the acceleration of this high performing NR-IQA algorithm 

by studying its interaction with the implementing hardware to aid the deployment of IQA 

techniques in real-world time-sensitive applications. 

In the next sections, we provide the working details of the BLIINDS-II algorithm and 

then move on to discuss operations/routines in the algorithm that are deserve a deeper 

discussion. 

3.1 BLIINDS-II algorithm steps 

Here, we provide a description of the computational and mathematical operations in each 

stage of the BLIINDS-II algorithm. The algorithm proceeds as follows- 

1) Read the input image as ���� and let the size of it be 	 × �. 
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2) Pad image with zeros as shown in Figure 2.  

The size of the padded image is (	 + 5) × (� + 5). The 5 × 5 pixel blocks used in 

the algorithm have been designed to have 1-pixel width of overlap on each side. We 

refer to this width as GH3IJKL MNFAℎ. As can be seen in Figure 2, the pad width on 

the left and the top of the image is equal to the GH3IJKL MNFAℎ in 5 × 5 pixel block. 

The crop window is explained in the next step. On the right and the bottom of the 

image, the pad width is (5 − GH3IJKL MNFAℎ). It should be noted that 5 is equal to 

the width or height of 5 × 5 pixel block. 

���� → ���� 
 

3) Crop the padded image in blocks of 5 × 5 with an overlap of one pixel on each side. 

A cropped block is represented by ��. The 5 × 5 crop window proceeds in the manner 

shown in Figure 4. Let ����� represent a vector of all such cropped blocks. 

Therefore,  

����� =  R��C, ��S, ��T, … , ��V�TWCX×VYT WCXZ 

4) Compute 2D 5 × 5 DCT of each cropped block as shown in Figure 5. Let a 5 × 5 

DCT block of coefficients be represented by ��  and the vector containing all such 

DCT blocks be �����. Therefore, 
����� =  R��C, �� S, �� T, … , �� V�TWCX×VYT WCXZ 

5) Apply univariate generalized Gaussian density model to the obtained DCT 

coefficients of each block. The Gaussian density model is also applied to two specific 

partition schemes within each block. This partitioning is aimed at capturing the 
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orientation data in the image. A total of four model parameters are obtained for each 

block of DCT coefficients. The model parameters are represented by, 

GGD Model Shape Parameter (�), 

� � = R�C, �S, �T, … , �V�TWCX×VYT WCXZ 

Coefficient of Frequency Variation Parameter (�), 

� � = R�C, �S, �T, … , �V�TWCX×VYT WCXZ 

Energy Subband Ratio Parameter (��), 

 ! " = R��C, ��S, ��T, … , ��V�TWCX×VYT WCXZ 

Orientation Model based Parameter (#$), 

%& " = R#$C, #$S, #$T, … , #$V�TWCX×VYT WCXZ 

A more detailed explanation for calculating each of the four parameters will be 

provided later. 

6) Sort, in ascending order, each of the vectors containing the model parameters for the 

input image. 

� � '(��[\] � � '(��)� 

� � '(��[\] � � '(��)� 

 ! " '(��[\]  ! " '(��)� 

%& " '(��[\] %& " '(��)� 

7) Calculate the mean of first 10% of all the values in the sorted parameter vectors. Also 

calculate the mean of all the values for each parameter vector. Store all these eight 
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values as features (-�) extracted from the image. 

-� = ^�Y_CE  �Y_CEE  �Y_CE  �Y_CE  ��Y_CE  ��Y_CEE  #$Y_CE  #$Y_CEE` 
where, the subscript �_10 denotes the mean of top 10 percentile values and �_100 

denotes the mean of the top 100 percentile of the vector. 

8) Apply the 3 × 3 Gaussian kernel (*�), to the input image ����. 

*� = b0.0113 0.0838 0.01130.0838 0.6193 0.08380.0113 0.0838 0.0113g 

���(�, =  ���� × *� 

9) Subsample the convoluted image ���(�, by a factor of 2 to obtain a downsampled 

image of size (	/2) × (	/2). 

10) Repeat steps 2-6 again for the downsampled image. Add eight more features to the 

original features vector for the input image at this scale. 

11) Subsample the downsampled image and perform step 10 for it. We now obtain a 

features vector of size 24. 

-� = h�YCEi   �YCEEi   �YCEi   �YCEEi   ��YCEi   ��YCEEi   #$YCEi   #$YCEEi�YCEj   �YCEEj   �YCEj   �YCEEj   ��YCEj   ��YCEEj   #$YCEj   #$YCEEj�YCEk   �YCEEk   �YCEk   �YCEEk   ��YCEk   ��YCEEk   #$YCEk   #$YCEEk
l 

12) Compute the posterior probability given the set of derived features for all quality 

scores from 0 to 100 in increments of 0.5. This step is explained further in the section 

on the Prediction Model. 

13) Find the quality score with the maximum posterior probability and return that as the 

BLIINDS quality score. 

 



13 

 

Figure 2. Padded Image. 

3.2 Statistical operations on DCT coefficients 

Now we discuss each of the four statistical operations on each 5 × 5 block of DCT 

coefficients for obtaining the model parameters is required for understanding the issues 

associated with their GPU implementation. For statistical modeling of the DCT 

coefficients, the random variable used is represented by X. The values of the random 

variables are the 24 non-DC values from the DCT coefficients. 
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Figure 3. Local m × m Block of Pixels. 

 

Figure 4. Overlapping Local 5x5 Blocks. 
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Figure 5. Apply Discrete Cosine Transform to Obtain Block of DCT Coefficients. 

3.2.1 Gaussian Shape Parameter (γ) 

In equation 5.1, the generalized Gaussian density model can be parametrized by β (scale 

parameter), µ (mean) and γ (shape parameter). The relationship used to calculate γ is 

given by 

  Γ(1/�)Γ(3/�)ΓS(2/�) = =nS�|n|S  
(3.5) 

We compute the quantity on the right and then estimate the shape parameter, γ. 

3.2.2 Coefficient of frequency variation (ζ) 

This quantity is calculated from the following relation for each of the 5 × 5 DCT 

coefficient block. 

 ζ = =|n|�|n| 
(3.6) 

Where =|n| is the standard deviation of the absolute values of the random variable X and 

�|n| is the mean of the absolute values of the random variable X. 

3.2.3 Subband energy ratio (SE) 
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The DCT coefficients are divided into three radial bands as shown in Figure 6. This 

statistical operation measures the relative energy stored in each of the radial band. Let Ω� 

represent the set of DCT coefficients in band 	, where 	 = 1, 2, 3. The energy �� in Ω� 

is given by 

 �� =  =�S (3.7) 

Where =� is the standard deviation of the values in Ω�. 

Next we compute the quantity $�, which has been defined as the ratio of difference 

between energy contained in the radial frequency band Ω� and the average energy 

contained in radial frequency bands up to Ω� to the sum of these two quantities. This 

ratio is given by 

 $� = |�� −  1	 − 1 ∑ �r|rs�
�� +  1	 − 1 ∑ �rrs�

 =�S (3.8) 

As can be seen from the equation, the quantity $� is defined only for 	 = 2, 3. The 

values $S and $T are calculated and their mean is recorded as the subband energy ratio 

parameter of the statistical model for each 5 × 5 block of DCT coefficients. 

 

Figure 6. DCT Coefficients Grouped into Radial Subbands of Energy. 
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3.2.4 Oriented model parameter (OR) 

The coefficient of frequency variation, ζ is calculated for each of the oriented set as 

shown in Figure 7. The variance of these three ζ values is stored as oriented model 

parameter for each 5 × 5 block of DCT coefficients. 

 

Figure 7. DCT Coefficients Grouped along three Orientations. 

3.3 Prediction Model: 

The prediction model maps from the feature space to image quality score space. 

Therefore, before computing the BLIINDS-II score, each of the four statistical model 

parameters discussed in the previous section is pooled in two ways: a) lowest 10th 

percentile average, and b) 100th percentile average or mean. Performing this operation at 

each spatial scale gives us 24 features for the distorted image. 

Let - � =  t/C, /S, … , /Suv be the vector of extracted features. We next calculate the 

probability the quality score is w corresponding to the features vector -� . Mathematically, 

this can be represented by x(w|-) and read as the probability of quality score being w, 

given the features vector -. We calculate this probability for each possible quality score 

 w, ranging from 0 to 100 in increments of 0.5. The quality score �, in this range from 0 to 
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100, with the highest computed probability is returned as the BLIINDS image quality 

score. 

Next, we will like to discuss the computation of the quantity x(w|-). For this, we append 

w to the vector -�  as its 25th value, such that - � =  t/C, /S, … , /Su, wv. Further, this new 

vector is plugged in to equation 3.9 and the obtained number is the required probability 

x(w|-). The quantities �, �, �, � and Σ have been obtained by Support Vector 

Regression (SVR). 

 .(/|�, �, �) = �34V5(z47){|}i(z47)X8
 

(3.9) 
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Chapter 4. CUDA Implementation of BLIINDS-II 

4.1 Introduction 

In this section we describe the specific approach we took to implement each step of the 

BLIINDS-II pipeline. Each of the intermediate step is implemented as either a CPU 

function or a GPU kernel. We have designed our CUDA implementation such that the 

distorted image is first cast as a linear array of floats on the CPU and then copied across 

to the GPU via PCIe bus. The GPU then performs the DCT model based feature 

extraction and copies the features array back to the CPU. It should be noted that the 

extracted features are an array of 24 floats. From there on the CPU computes the 

BLIINDS quality score from the obtained features. 

We also present a comparative description on different versions of each GPU kernel we 

implemented. Each of these versions were analyzed for their run time performance. 

4.2 CUDA implementation 

A detailed flowchart describing our CUDA implementation of BLIINDS-II has been 

shown in Figure 9. The flow is divided into three main parts:  

a) CPU: Distorted image is read and cast as float. 

b) GPU: The DCT and statistical modeling is performed across the image on three 

spatial scales. 

c) CPU: Using the features array populated by the GPU, the BLIINDS quality score 

is calculated. 

As can be seen, we have tried to minimize the number of transactions across the PCIe 

bus, which is a known source of potential bottleneck. 
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In the following subsections, we describe each of these in detail. The description of the 

GPU part of the code is split in two subsections; the first subsection describes the kernels 

for computing the model based features at a particular spatial scale, the second subsection 

describes the implementation of the downsample kernels on the GPU. 

GPGPU Implementation details: 

4.2.1 Image read on CPU 

The input distorted image is first read on the CPU as a 2D array of 8-bit unsigned char 

using OpenCV and then is converted into a 1D array (linearization) of floats (typecasting 

from unsigned char to float). This 1D array of floats is then transferred to the GPU’s 

DRAM across the PCIe bus as can be seen in Figure 7. For a single channel input image 

size of 512x512, this transfer across the PCIe bus is 1MB. 

 

Figure 8. Preprocessing the Distorted Image on the CPU. 
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4.2.2 Feature extraction at original spatial scale 

The computations on the GPU are divided into three sections, one for each scale level of 

the image. Figure 8 above shows the flow and size of data in various kernels.  

4.2.2.1 padWithZero() 

This kernel pads the input image with zeros as shown in Figure 2. The image array adds a 

width and a height of 5 elements each. This kernel is called with a grid size of 	 + 5 and a 

block size of � + 5, where 	 × � is the size of image. We add 5 because it is equal to the 

size of local square DCT blocks used in the algorithm. The kernel employs a thread index 

based condition to determine if it copies data from the input image or copies a 0 for the 

padding. This if statement is expected to lend some amount of thread divergence in the 

kernel. 

4.2.2.2 rearrangeImage() 

This kernel rearranges the linear array of image in order to place elements within the 

same 5x5 block to fall in contiguous memory locations. In other words, the kernel first 

forms a linear array of 25 elements within a 5x5 block, and then stores all such 25 

element sequentially in global memory.  

The image was rearranged according to 5x5 blocks of pixels. This was done to coalesce 

global memory reads for each thread in a warp as described in NVidia blog page (Harris 

2013). Both the transform and the statistical operations on the distorted image are 

confined to local 5x5 blocks, so this new rearranged image array could be used by the 

ensuing kernels. It should be noted that this results in duplication of image data in the 



23 

rearranged, but aligns global memory reads within a warp perfectly. This duplication of 

data increases the size of image array (512x512) by a factor of 115. 

 

Figure 10. Reorient the Image Array to align Memory Accesses by each Warp on 

the GPU. 
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Figure 11. DCT and Statistical Operations at Original Scale (level 1) of Image. 

4.2.2.3 Dct_55() 

This kernel applies 2D 5x5 DCT to each of the individual 5x5 blocks, stored in contiguous 

memory by the previous kernel. We implemented two versions of local DCT computation, 

first using cuFFT library and the second using DCT matrix multiplication. 

4.2.2.3.1 DCT version 1 
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Figure 12. Computation of 2D DCT using two 1D FFTs. 

The first method makes use of DFT to compute a DCT. We chose this path because CUDA 

provides a bundled library in the form of cuFFT to fast computation of DFT, while a tailor 

made API for DCT is not available. To compute a 2D DCT we proceed in the following 

manner: 

1) Calculate row wise FFT in the 5 × 5 block. The row array is mirrored to produce a 

10 element array. A 10 point FFT is performed over this modified row array. 

2) Pick only the first 5 elements from the 10 point FFT and multiply the appropriate 

twiddle factor to map the FFT coefficient to DCT. 

3) Repeat the steps 1 and 2 column wise instead of row wise. 

4.2.2.3.1 DCT version 2 

For the second method, we decided to obtain the DCT coefficient matrix by using matrix 

multiplication method. We obtained the DCT matrix from MATLAB using the command 

dctmtx() as shown below. It should be pointed out that using double precision for the 
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matrix multiplication is essential. Using single precision in matrix multiplication leads to 

inaccurate results. 

Table 1. DCT Matrix for Matrix Multiplication Method. 

0.4472 0.4472 0.4472 0.4472 0.4472 

0.6015 0.3717 0 -0.3717 -0.6015 

0.5117 -0.1954 -0.6325 -0.1954 0.5117 

0.3717 -0.6015 0 0.6015 -0.3717 

0.1954 -0.5117 0.6325 -0.5117 0.1954 

 

4.2.2.4 Rho_dct() 

 This kernel models each of set of 5x5 DCT coefficients to univariate generalized 

Gaussian density given in equation (3.1). The kernel computes the quantity 
~|�|7|�| 

(coefficient of frequency variation) for each 5x5 DCT coefficient block and � represents 

all the non-DC coefficients. The � value computed for each block of DCT coefficient is 

stored sequentially in an array represented by �. 

We have implemented this kernel to use shared memory to store local DCT coefficients. 

For the launch of the kernel, one warp is dedicated to each 5 × 5 block of DCT 

coefficients. This ensures that the coefficients are always copied in parallel from the 

global memory. Further summation of the values for calculating �|�| and =|�| is 

implemented as sequential summation in a for loop. We have used the compiler directive 

#pragma unroll to unroll the loop which has to run only 24 iterations. We made sure to 

use only floating point multiplications and divisions, as there are three times more the 
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number of the single precision cores as compared to the double precision cores on our 

test GPU. 

4.2.2.5 Gamma_dct() 

The gama_dct function in baseline C++ implementation proceeds in the following 

manner: 

• Calculates rho = mean / (variance + 0.000001) 

• Linearly searches through a lookup table containing values of rho 

• Returns the gama value from another lookup table corresponding to the rho value 

obtained in previous search. 

• Both the lookup tables are 1D arrays of 9971 floats each. 

CUDA implementations: 

4.2.2.5.1 gama_dct using only global memory 

The first naïve implementation of this kernel read each value from the look up table 

stored in global memory. 

4.2.2.5.2 gama_dct using shared memory for lookup 

The second implementation made use of shared memory by copying the look up table for 

rho in it. The low latency of shared memory reads resulted in a significant speed up over 

the previous version. 

4.2.2.5.3 gama_dct using constant memory 
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In this version, we split gama_dct kernel into three smaller steps. The first kernel 

calculates the rho value corresponding to each block of DCT coefficients and stores them 

as an array of floats in global memory. We then sort this array containing rho values. The 

final kernel reads in the sorted rho array and employs binary search while traversing the 

look up table for rho. 

4.2.2.6 Subband_energy_dct() 

It computes ratios of energy stored in radial frequency bands. The block DCT coefficients 

are divided into three bands of radial frequencies (low, middle and high) as shown in 

Figure 9. The kernel stores the mean of $S and $T (explained in section 3.2.3) for each 

block of DCT coefficients in a contiguous array of floats,  !. 

We design this kernel such that one warp of threads is dedicated to each 5 × 5 block of 

DCT coefficients. All the computations of �� for each of the three radial bands are done 

sequentially. 

4.2.2.7 Ori_dct: It computes the orientation model parameter, #$ for each DCT 

coefficient block as described in section 3.2.4. The computed values for each block are 

stored in an array of floats, %&.  

We implement two different versions of this kernel 

4.2.2.7.1 Individual kernel for each orient 

We call three different kernels, one each for each orient of the DCT coefficients block as 

shown in Figure 7. For each orient we calculate the � value just like it was calculated in 

section 4.2.2.4 above. We write these values in three different arrays stored in global 
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memory. These three kernels are followed by the ori_dct_final() kernel. This fourth 

kernel calculates the variance of the � value for each orient. 

4.2.2.7.2 Merge as one kernel 

We merge the four kernels in to one kernel. This obviates the need for writing the 

intermediate results to global memory. First we calculate the � value for each orient and 

then the variance in computed. 

4.2.2.8 Thrust::sort(): Thrust library sort function is used to sort each array of model 

parameters (�, �,  !, %&). It sorts the respective arrays using radix sort, and writes them 

back to the same memory location. 

4.2.2.9 Mean10percentile() and mean100percentile(): Both of these functions are 

implemented using thrust::reduce(). After the arrays are sorted, thrust::reduce on 10% of 

the array length returns the sum of the lowest 10% values in the array. This number is 

then divided by 10% of the array size. Similarly, the mean of 100 percentiles is also 

calculated. 

4.2.3 Down sample image to lower spatial scales 

Further, the implementation proceeds with calculations at the second spatial scale, that is 

with a downdsampled image. 
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Figure 13. Convolution with GaussFilter Followed by downsampling for Level 2. 

Convolve(): The input image at original scale is convolved with a 3x3 Gaussian filter. 

Since the Gaussian filter is separable, it has been implemented as two one dimensional 

filters of length 3. This had to be separated into two kernels, one for row-wise 

convolution and the other for column-wise convolution because the second convolution 

can start only after the first one completes, but there is no way to achieve a device wide 

synchronization. Both the row-wise convolution and the column-wise convolution are 

gather operations. 

downSampleBy2(): This kernel copies over the filtered image as shown in Figure 12. 

Further all the computations described in level 1 are repeated for this new downsampled 

image to obtain next eight features at the new spatial scale. Another downsampling and 

feature extraction operation is performed for level 3 computations. 

4.2.4 Compute BLIINDS quality score 

All the 24 features are sent across the PCIe over to the CPU’s RAM. This has been 
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Figure 8. Image Convolution and Downsampling. 

designed so because thrust::reduce() returns the result of reduction on GPU arrays to 

CPU. Further BLIINDSscorePredict() function is called to arrive at BLIINDS quality 

score from the extracted set of features. 
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Figure 15. BLIINDS-II Quality Score Prediction Function on the CPU. 

BLIINDSscorePredict(): This CPU function calculates the posterior probability of the 

quality score being a certain value given the set of extracted features. This probability is 

calculated for each quality score from 0 to 100 in steps of 0.5. To do this, the quality 

score is appended to the end of the array - and plugged into equation (3.9). The value of 

the parameters �, �, � and Σ are pre-determined from training. The score corresponding 

to the maximum posterior probability is returned as the BLIINDS-II image quality score. 

4.2.5 Miscellaneous implementation details 

We make use of the compiler flags -use_fast_math which uses a fewer number of 

instructions for multiply, divide and other more complex math operations like sqrt(), 

sin(), log() etc. In turn we sacrifice some of the precision in the single precision 

computations. This flag affects only single precision calculations and not the double 

precision units. 

We also make use of the compiler option below: 

-arch=compute_35,sm_35 
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This produces CUDA binaries specifically tuned the architecture NVidia GPUs with 

compute capability 3.5, while the default is set for compute capability 2.0 in a new 

CUDA project. 
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Chapter 5. EXPERIMENTAL SETUP 

We used an NVidia Tesla K40 GPU with Kepler GK110 microarchitecture. The relevant 

technical specifications about this GPU is mentioned in Table 2. The overall system used 

for our experiments had a configuration as described in Table 3.  

For our tests, we picked distorted images of two different scenes from CSIQ database 

(Larson and Chandler 2010). We choose images with three kinds of distortions (AWGN, 

JPEG and BLUR) at two levels (high and low). Our choice is based on the choices made 

by Phan et al. (2014) which presents an efficient C++ implementation of BLIINDS-II 

algorithm and provides us with a baseline for performance comparison of our 

implementation. The colored distorted images in the database were converted to 

greyscale and then processed by the BLIINDS quality assessment function. 

We use CUDA 7.5 for our implementation and use NVidia profiler (nvprof), the 

command line profiler and NVidia Visual Profiler (nvvp) for performance evaluations 

and collecting various performance metrics. 

Table 2. Kepler GK110 Specifications. 

Kepler GK110 Base Core Clock-Rate 889 MHz 

Number of Cores 2,880 

Computational  

Throughput 

4290 GFLOPS Single Precision 

1430 GFLOPS Double Precision 

Memory Clock (Transfer) Rate 7000 Gbps 

Memory Bus Support PCIe 3.0 x16 

Memory Bus Width 384 bits 

Memory Size 12 GB 

Memory Interface GDDR5 

Global Device DRAM Bandwidth 336 GB/s 

Memory Controllers 64-bit (Quantity 6) 

Streaming Multiprocessors (SM) 15 (192 Cores per SM) 

L1-Cache (per SM) 64 KB 
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L2-Cache 1.5 MB 

32-bit Registers (per SM) 65,536 

Maximum Registers per Thread 255 

Threads per Warp 32 

Maximum Warps (per SM) 64 

Maximum Thread Blocks (per SM) 16 

Maximum Threads (per SM) 2,048 

Maximum Threads per Thread Block 1,024 

Pixel Fill-Rate 42.7 (GP/s)2 

Texture Fill-Rate 213 (GT/s)2 

 

Table 3. Test System Specifications. 

CPU Intel Xeon E5 1620 v2 @3.70 GHz  

Microarchitecture Ivy Bridge 

No of Cores 4 

No of Threads 8 

L1 Cache 64 KB per core 

L2 Cache 256 KB per core 

L3 Cache 10 MB shared 

Host RAM 24 GB GDDR3 

Operating System Windows 7 (64-bit) 

Compiler Visual Studio 2013, CUDA 7.5 

GPU NVidia Tesla K40 
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Chapter 6. PERFORMANCE EVALUATION 

The previous C++ implementation of the BLIINDS-II algorithm was reported to take 

almost 8.0 seconds for 30 iterations of one 512x512 image. This average run time was 

reported across images of various different natural scenes and across multiple distortion 

types with varying levels of distortion. 

The performance of the GPU version of the algorithm as captured by NVidia Visual 

Profiler can be seen in Figure 12. The timeline has been zoomed in so as to focus on the 

execution on one iteration of the input distorted image. 

 

Figure 16. Kernel Execution Timeline as Captured by NVidia Visual Profiler 

(nvvp). 

As seen in the Table 4 from the performance evaluation of C++ version of BLIINDS-II, 

the two most time consuming functions are local 5x5 DCT computation and gamma_dct. 

Our CUDA implementation also has similar trends but both of these functions have been 

modified to some extent, while preserving their output. 

Table 4. Performance Comparison of C++ and CUDA Implementations of the 

BLIINDS-II Algorithm. 

Implementation C++ CUDA 

 Time (ms) % time Time (ms) % time 

All 8032 100 266.31 100 

DCT 3811 47.44 8.15 3.06 

Gama_dct 1882 23.44 6.53 2.45 

Rho_dct 297 3.69 4.38 1.64 

Convolve 292 3.64 1.97 0.74 
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Sort 265 3.31 117.72 44.21 

Other 1485 18.48 127.56 47.90 

 

Table 5. Performance Evaluation of CUDA Implementation of BLIINDS-II. 

 Execution time (ms) % of total time 

Program time 266.31 100 

GPU kernel execution 156.79 58.87 

CPU execution 109.52 39.38 

PCIe memory 

transfer 

4.65 1.75 

Predict Score 8.17 3.07 

 

Next we proceed to present other kernel specific optimization strategies and their results. 

6.1 CuFFT vs matrix multiplication 

For the local 2D DCT computation, we compared the performance of two proposed 

methods as described below: 

The timing comparison between the two DCT methods can be seen in Table 4. 

Table 6. Performance Comparison of DCT Computation using cuFFT (Method 1) 

and DCT Matrix Multiplication (Method 2). 

 CPU Matrix Multiply DCT DCT method 1 DCT method 2 

Time (ms) 3811 25.36 8.15 

 

This difference in execution time can clearly be explained by the following: 

1. More number of global synchronization points (each arrow in Figure 15) causing 

data flow to and fro from global memory. Transactions to and from the global 

memory are the most expensive ones on a GPU. 
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2. Method 2 uses just one kernel for matrix multiplication as opposed to four kernel 

calls in method 1. 

6.2 Merge Rearrange and DCT kernels 

Table 7. Performance Comparison of RearrangeAndDCT. 
 Rearrange kernel DCT kernel RearrangeAndDCT 

Run time (ms) 3.42 7.62 8.15 

 

As can be seen from the timings, the combined kernel doesn’t take an execution time 

equivalent to the sum of the individual Rearrange and DCT kernel runtimes. This was an 

expected result because it avoids writing the rearranged image values to global memory 

first and then copying those same values back to CUDA cores for the DCT kernel. We 

assemble the image in rearranged form in shared memory and perform DCT matrix 

multiplication. 

6.3 gama_dct 

 

Table 8. Performance Comparison of gama_dct Computation Methods. 

CUDA gama_dct Method 1 

(Global Memory) 

Method 2 

(Shared Memory) 

Method 3 

(Split in three kernels) 

Run time (ms) 9215.73 781.84 14.67 

 

Discussion on method 3 and use of constant memory: 

We use constant memory to store our look up table for rho. Constant memory is only 

48KB in size and is useful when – 



39 

1. stored data will not change during the execution. 

2. threads in a warp access the same element in constant memory. The constant 

memory can serve 4B of data to one warp in one cycle. Accesses to different 

elements from one warp will serialize the operation. 

Our implementation is conscious of both these conditions. The look up table for rho is 

constant and never changes. The array of rho values was sorted before accessing the look 

up table to ensure minimize the number of reads from different location in constant 

memory. 

We also noted that the look up table for rho is arranged in a decreasing order. This 

enabled us to use binary search for look up instead of linear search, thereby reducing our 

look up time further. 

As a consequence of sorting the array of rho values, the array of gamma value for each 

block is obtained as a sorted array. This fact obviates the need for sorting to compute the 

mean of lowest 10 percentiles. Hence, while reporting the execution time for method 3 

for gama_dct, we have not included the time spent in sorting the intermediate array 

because we would anyway have to sort the final array of gamma values to compute the 

mean of lowest 10 percentiles. 

6.4 Oriented_dct 

Table 9. Performance Comparison of oriented_dct kernels. 

oriented_dct Method 1 

(For individual orient) 

Method 2 

(Merged kernel) 

Run time (ms) 8.59 3.72 
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Merging the individual orient kernels into one results in a decrease in the runtime, just as 

expected, because the data transfer from the global memory of the GPU is minimized. 

This result is very similar to what we saw in section 6.2. 
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Chapter 7. DISCUSSIONS AND CONCLUSION  

 

We have demonstrated a promising GPGPU implementation of BLIINDS-II NR-IQA 

algorithm using NVidia Tesla K40 that is capable of processing a real time feed of video. 

The average processing time for one 512x512 image is estimated to be around 9 ms, 

which means the implementation can handle a video feed of more than 100 fps. 

That said, the performance analysis showed that even though the implementation is 

capable of running at video speeds, its spends most of its execution time in sorting the 

statistical model parameters. The second biggest hotspot function was reduce operation 

(sum) used to compute mean of lowest 10 percentiles and 100 percentiles. Both of these 

are functions from the NVidia Thrust library. It is noteworthy that the bottlenecks 

functions have changed in the CUDA code, but still each individual function’s 

performance on the GPU is faster than the corresponding performance on the CPU 

version of the algorithm. The slowest GPU kernel of sort is still 2.3x faster than sort on 

CPU. 

We implemented GPU architecture conscious code optimizations and illustrated how they 

compare with naive versions. In general, for the GPU, data reuse in kernels is highly 

likely to result in performance gains. The core idea behind this approach is to minimize 

data load from and store to the off chip global memory by continuing to perform the next 

step in BLIINDS-II pipeline on the same cores that computed the previous step. These 

cores have the access to the required data either in shared memory or in registers and can 

start executing the next step computations on the data right away. This result can be seen 

as an extension of the idea of minimizing data transfers across PCIe bus between the 
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CPU and the GPU, only that now we are arguing to minimize the data transfer across off 

chip memory on the GPU.  

The advantage of the approach described is clearly seen in the performance evaluation of 

merged Rearrange and DCT kernels and the merged kernel for orientation parameter. We 

further argue that merging the entire flow of the algorithm into as few kernels as possible 

will result in further performance acceleration. Merging the flow can of BLIINDS-II can 

be realized by extending the RearrangeAndDCT kernel to perform the functions of the 

statistical modeling. Though in the case of gamma_dct kernel, we observed that breaking 

down the kernel into smaller units helped us attain performance gains. We can conclude 

that look up tables should mostly be avoided on GPUs, and with the high number of 

compute resources, we should be more inclined towards compute. 

In order to efficiently exploit the parallelism in the BLIINDS-II algorithm, we rearranged 

the input distorted image which led to an increase in the image size from 1 MB to 

approximately 115 MB (for a 512 × 512 image). This rearrangement of the image array 

laid out the each of the 25 elements in a 5 × 5 pixel block in contiguous memory. This in 

turn allowed us to launch further kernels for statistical modeling of each 5 × 5 pixel 

block in parallel. Any other approach to implement this will result in serialization of the 

statistical modeling step. Although, if the merging technique, as describe in the previous 

paragraph, is implemented, the need to store the rearranged image array may be 

eliminated. Such an implementation would directly proceed to compute the statistical 

model for each 5 × 5 pixel block on the same warp that first computed the DCT 

coefficients of the pixel block. Therefore, another benefit of merging kernels is found in 



43 

the fact that it will lead to a reduction in the memory signature required by the CUDA 

BLIINDS-II implementation. 

Gamma_dct() function posed a major challenge in the GPGPU implementation because it 

uses a look up table to arrive at the gamma model parameter. In general using look up 

tables on the GPU is not preferred. We have managed to present gamma_dct on the GPU 

which is comparable in run time with the other statistical modeling kernels. This high 

performance for gamma_dct was achieved by breaking it into three separate kernels as 

described in the implementation section. The look up table itself was stored in constant 

memory, which is located off chip. The second kernel in this sequence for gamma_dct 

was to sort the array obtained after the kernel. This was done to attain maximum data 

access speed in constant memory and has been described in the chapter on 

implementation details. It should also be pointed out that the constant memory size on 

NVidia Tesla K40 is 64 KB and our look up table size is just short of 40 KB because it is 

stored as an array of floats instead of as an array of doubles. If it was stored as doubles, 

constant memory would have been insufficient to store this table. We have ensured that 

the accuracy of our GPU implementation is intact even with the use of single precision. 

We have also employed binary search for traversal of the look up table as against the 

linear search employed by the C++ and Matlab version of BLIINDS-II. This is an 

example of reducing the computational complexity in a part of the code and is a 

significant optimization as this traversal through the look up table was initially the most 

time consuming part of the CUDA implementation. 
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Another important conclusion we have that in GPGPU applications involving matrix 

multiplication of floats, it is likely that one may arrive at inaccurate results if double 

precision is not used for these operations. One must test the accuracy rigorously in case a 

matrix multiplication is implemented with single precision. We observed that both the 

convolve and the DCT matrix multiplication required use of double precision cores. 
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Chapter 8. FUTURE WORK 

For further optimizations in the code, the most obvious first step is to look at the 

alternative sort functions one could employ. ArrayFire and CUB libraries have been 

reported in literature for having a better performance for sort as compared to Thrust. Sort 

kernels from these libraries should be implemented and compared with the existing 

CUDA version of BLIINDS-II. 

Another area to be looked into is adding CPU multithreading to the existing BLIINDS-II 

CUDA application. Currently we have the code set up so that the CPU handles the task of 

casting the image from unsigned character to float, and then predicting the BLIINDS 

quality score after it receives the features array from the GPU. The GPU remains idle 

while the CPU is busy in these tasks. This situation can be set up so that these CPU tasks 

are handled by one CPU thread while another CPU thread controls the kernel launches on 

the GPU. This way, some of the latency between the CPU and the GPU can be hidden. 

The possibility of merging smaller kernels should be explored further. However, not 

much significant gain is expected from this unless the high amount of time spent on sort 

is dealt with. 

BLIINDS-II VQA algorithm should be considered next for a CUDA implementation, and 

that might provide a high performing real time No Reference video quality assessment. 

Development of such a system will be a huge boost to quality in video streaming 

applications. 
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