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ABSTRACT 
 

 This dissertation reports three studies of students’ and teachers’ meanings for 

quotient, fraction, measure, rate, and rate of change functions. Each study investigated 

individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual 

analysis of what constitutes strong meanings for fraction, measure, and rate of change is 

critical for each study. In particular, each study distinguishes additive and multiplicative 

meanings for fraction and rate of change. 

 The first paper reports an investigation of 251 high school mathematics teachers’ 

meanings for slope, measurement, and rate of change. Most teachers conveyed primarily 

additive and formulaic meanings for slope and rate of change on written items. Few 

teachers conveyed that a rate of change compares the relative sizes of changes in two 

quantities. Teachers’ weak measurement schemes were associated with limited meanings 

for rate of change. Overall, the data suggests that rate of change should be a topics of 

targeted professional development. 

 The second paper reports the quantitative part of a mixed method study of 153 

calculus students at a large public university. The majority of calculus students not only 

have weak meanings for fraction, measure, and constant rates but that having weak 

meanings is predictive of lower scores on a test about rate of change functions. 

Regression is used to determine the variation in student success on questions about rate of 

change functions (derivatives) associated with variation in success on fraction, measure, 

rate, and covariation items.  

 The third paper investigates the implications of two students’ fraction schemes for 

their understanding of rate of change functions. Students’ weak measurement schemes 
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obstructed their ability to construct a rate of change function given the graph of an 

original function. The two students did not coordinate three levels of units, and struggled 

to relate partitioning and iterating in a way that would help them reason about fractions, 

rate of change, and rate of change functions. 

 Taken as a whole the studies show that the majority of secondary teachers and 

calculus students’ studied have weak meanings for foundational ideas and that these 

weaknesses cause them problems in making sense of more applications of rate of change. 
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INTRODUCTION 

Mathematics is a powerful tool for describing relationships between quantities 

and variables. In fields as varied as economics, medicine, physics, geology, chemistry, 

biology and politics it is of central interest to understand how quantities change together. 

Comparing quantities’ measures multiplicatively often is essential when exploring and 

characterizing relationships and trends in these contexts (P. W. Thompson, Carlson, 

Byerley, & Hatfield, 2014). Multiplicative comparisons of relative size are at the heart of 

many topics in secondary mathematics. From a mathematical perspective it seems critical 

to understand fractions and quotient before making sense of rate and rate of change 

functions. In addition, understanding radian measure, trigonometric functions, rational 

functions, and linearity entails imagining comparing two quantities multiplicatively (e.g. 

(Moore, 2013).  

However, we do not know as a research community how calculus students struggle with 

measure, fraction and rate. We also do not know how this impacts their success in 

calculus. I hypothesize that students’ issues with foundational mathematics may be one 

reason for the lack of success of the calculus reform movement. 

Despite the millions of dollars spent on reforming calculus instruction there has 

been shockingly little evidence of the existence of classes of calculus students where the 

majority of the students learn the major concepts of calculus (See paper two for details). 

This study intends to contribute to improving calculus instruction by documenting an 

often overlooked source of difficulty that partially explains these discouraging results: 

calculus students’ meanings for fractions and measure. I hypothesize that so many well-

intentioned interventions have not worked as well as hoped, in part, because the students’ 
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did not have meanings for the foundational topics they needed to make sense of 

conceptual calculus instruction on derivatives. 

The first study of secondary teachers’ meanings for rate of change could also shed 

light on why calculus reforms might have failed. The high school teachers might not have 

the meanings that high school students will need to succeed when they take calculus. 

Thus the high school students do not learn the ideas they need before coming to the 

university. By the time they are at the university and enrolled in calculus, it is typically 

assumed that prior experiences in middle school and high school provided the students 

with useful understanding of concepts related to fraction and measure. The studies of 

teachers’ and students’ meanings taken together could help us understand one source of 

students’ problematic mathematical meanings in calculus.  

My fundamental research questions that span all three papers are: 

• What meanings do students and teachers hold for fraction, measure, and rate of 

change? 

• Are the problematic meanings documented in small qualitative studies present in 

larger samples? 

• In the case of calculus students, how do their fundamental meanings for fraction, 

measure, quotient and rate impact their success in learning about rate of change 

functions? 

All these studies shed light into our mathematical culture surrounding 

multiplicative comparisons. Study one made use of prior qualitative research on teachers’ 

meanings for rate of change to design items intended to categorize teachers’ meanings (P. 

W. Thompson, 2015). Earlier research noted that small groups of teachers had 
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unproductive meanings for measure and rate of change (Coe, 2007). Study one 

contributes to the field in an important way by showing that the problematic meanings 

observed in small groups of teachers are present in a majority of the 251 secondary 

mathematics teachers we sampled.  

Study two was similar, in the sense that it built on small sample studies of 

calculus students’ meanings for quotient and fraction to investigate the meanings of a 

larger sample of students. Study two showed that the majority of calculus students in two 

sections of Calculus 1 at a large public university have weak meanings for fraction, 

measure, and constant rate. Because we have larger samples of both calculus students and 

secondary teachers, I can make stronger claims about the lack of preparation students 

receive in high school for success at the university. Study two used statistical methods to 

investigate the relationship between success on fraction, measure, and constant rate items 

and success on a test on rate of change functions. The statistical study does not explain 

how students’ fundamental meanings are related to their construction of rate of change 

functions. Making the connection between trends in population statics and why what is 

actually occurring in student thinking requires qualitative study, and thus an additional 

interview-based study was conducted in the same class for study three. 

The qualitative methodology of study three investigates how weak meanings for 

foundational topics negatively impact students’ abilities to construct rate of change 

functions. The qualitative study also paints a picture of how a student who earned a 

particular score on the pre-test is likely to reason. The third study showed that for many 

students who had low scores on the fraction and measure items, their difficulties were 

deep-seated, hard to resolve, and caused them many problems in calculus. 



 

4 

 

PAPER ONE: SECONDARY TEACHERS’ MEANINGS FOR RATE OF CHANGE 

 It is critical to understand teachers’ meanings for rate of change to see if the 

teachers’ meanings will support students in making sense of a variety of important 

quantitative situations. Prior studies of secondary teachers’ meanings for slope, rate of 

change, and quotient typically focused on small numbers of teachers to model their 

meanings or to characterize their proficiency with these ideas (Ball, 1990; Coe, 2007; 

Fisher, 1988; McDiarmid & Wilson, 1991; Stump, 1999, 2001a; P. W. Thompson, 

1994b; P. W. Thompson & Thompson, 1994). Large scale investigations of mathematical 

knowledge for secondary teaching, such as the TEDS-M study of mathematical 

knowledge and pedagogical content knowledge did not release any items related to 

quotient, rate of change, fraction or measurement (Tatto et al., 2012). Studies of 

elementary teachers have demonstrated that teachers’ scores on assessments of 

Mathematical Knowledge for Teachers are related to improvement in their students’ 

performance (Hill, Ball, Blunk, Goffney, & Rowan, 2007). Developing a valid instrument 

to measure teachers’ knowledge was critical to understanding the link between teachers’ 

knowledge and their students’ opportunities to learn. 

Since little is known about secondary teachers’ meanings for the content they 

teach, we developed a diagnostic instrument, Mathematical Meanings for Teaching 

secondary mathematics (MMTsm), to help researchers and professional development 

leaders diagnose secondary teachers’ mathematical meanings (P. W. Thompson, 2015). 

Our aim was to help professional development leaders to design interventions that would 

address weaknesses in teachers’ meanings. At the same time, while the aim of the 
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MMTsm is diagnostic, using it on a large scale allows us to examine the prevalence of 

particular meanings in larger populations of teachers. 

 Our development of the rate of change items on the MMTsm was guided by 

qualitative work that characterized students’ and teachers’ thinking about rate of change, 

quotient, and slope (Coe, 2007; Lobato & Thanheiser, 2002; Martínez-Planell, Gaisman, 

& McGee, 2015; Nagle, Moore-Russo, Viglietti, & Martin, 2013b; Planinic, Milin-Sipus, 

Katic, Susac, & Ivanjek, 2012; Stump, 1999, 2001a; P. W. Thompson, 1994a, 1994b; P. 

W. Thompson et al., 2014; P. W. Thompson & Saldanha, 2003; P. W. Thompson & 

Thompson, 1994; Walter & Gerson, 2007; Zaslavsky, Sela, & Leron, 2002). Construction 

of quality items and rubrics required articulating productive meanings for rate of change 

that are useful in many contexts such as calculus, science and economics. We also needed 

specific descriptions of common unproductive meanings for rate of change. In addition, 

other studies provided evidence that secondary teachers’ meanings for quotient is weak 

and suggested that investigation of teachers’ meanings for “elementary” ideas is 

important (Ball, 1990; McDiarmid & Wilson, 1991).  

This paper reports 251 teachers’ responses to MMTsm items that focused on high 

school teachers’ meanings for slope and rate of change. We were interested in whether 

teachers’ meanings for rate of change were additive or multiplicative or both. We 

recorded if teachers were able to differentiate between situations best modeled with 

subtraction versus division. 

We also were interested in the extent to which teachers’ meanings for rate of 

change appeared to be connected to meanings for quotient as a measure of relative size.  
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LITERATURE REVIEW 

 A. Thompson and P. Thompson (1996) used the phrase Mathematical Knowledge 

for Teaching (MKT) to describe teachers’ schemes for ideas they teach and which they 

hold at a reflected level. They described teachers’ reflected schemes as guides for 

teachers’ interactions with students whom they hope will develop the meanings and ways 

of thinking that the teacher intends. Silverman and Thompson (2008) expanded this 

scheme-based meaning of MKT by examining how teachers might create what they 

called Key Pedagogical Understandings from a basis of their personal, well-formed 

schemes-schemes which Simon (2006) called Key Developmental Understandings. A 

Key Pedagogical Understanding is a mini-theory a teacher holds regarding how to help 

students create the schemes that the teacher intends. In other words, A. Thompson, P. 

Thompson, and Silverman used “knowledge” in the sense of Piaget and von 

Glasersfeld—as schemes and ways of coordinating them that enable people to function 

adaptively in light of their goals and experienced situations. We see teachers’ schemes as 

more than a set of declarative facts that the teachers learned about students and 

mathematics. An example of a declarative fact is “when students square a binomial they 

often distribute the exponents and forget the middle term.” We want to model teachers’ 

more general scheme for rate of change that would allow us to predict how teachers’ 

might respond in a large variety of situations and not just in a specific context such as 

teaching the procedure to square binomials. 

Ball, Hill and colleagues (Ball & Bass, 2002; Hill et al., 2007; Hill, Schilling, & 

Ball, 2004) used the phrase MKT quite differently than did A. Thompson, P. Thompson, 

and Silverman. Although Ball, Hill et al. have not said what they mean by “knowledge”, 
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they explained their motivation for the phrase “mathematical knowledge for teaching” as 

being rooted in their quest to understand the mathematical knowledge that supports 

teachers in their work of teaching mathematics. 

We began a close examination of the actual work of 
teaching elementary school mathematics, noting all of the 
challenges in this work that draw on mathematical 
resources, and then we analyzed the nature of such 
mathematical knowledge and skills and how they are held 
and used in the work of teaching. From this we derived a 
practice-based portrait of what we call “mathematical 
knowledge for teaching”—a kind of professional 
knowledge of mathematics different from that demanded 
by other mathematically intensive occupations, such as 
engineering, physics, accounting, or carpentry. (Ball, Hill, 
& Bass, 2005, pp. 16-17) 

Although A. Thompson, P. Thompson, and Silverman agreed with Hill et al. that teaching 

a mathematical idea requires more mathematical sophistication than a basic mastery of 

that idea, differences in underlying theoretical perspectives led to different methods of 

studying teachers’ thinking (Byerley et al., 2015). In 2013, P. Thompson began to use the 

phrase mathematical meanings for teaching instead of the phrase mathematical 

knowledge for teaching, for three reasons: (1) readers often failed to understand that he 

was using “knowledge” in the sense of Piaget and Glasersfeld and not in the sense of Ball 

and colleagues (P. W. Thompson, 2013, p. 85); (2) to Piaget, knowledge and meaning 

were largely synonymous and both were imbued with the idea of scheme (Montangero & 

Maurice-Naville, 1997), and (3) readers understood easily that “meaning” connotes 

something personal and that a person’s meanings are intertwined, whereas “knowledge” 

seemed less personal and more declarative, standing apart from the knower. We used the 

term meanings instead of knowledge because we did not want readers to think our 
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diagnostic instrument was designed to measure whether or not teachers had mastered a 

set of declarative facts related to teaching mathematics.  

 In light of the above, we named our instrument Mathematical Meanings for 

Teaching secondary mathematics (MMTsm) because we wanted to measure the meanings 

a teacher holds for the mathematics they teach. We hasten to say that we intend 

mathematical meanings for teaching to be understood as a teacher-centric construct, not a 

normative construct. Put another way, every teacher has meanings for the mathematics 

they teach. An individual teacher’s meanings might be incoherent, superficial, coherent, 

or productive, but they are her meanings for the mathematics she teaches. We define 

“productive mathematical meanings” to be meanings that a teacher holds which would be 

productive for students’ long-term mathematical learning were they to hold them also. 

We acknowledge immediately two concerns: (1) whether a meaning is actually 

productive for students’ learning depends on schemes available to the students at the 

moment of instruction, and (2) determining whether or not a meaning is productive for 

students requires collecting empirical evidence from students. A particular meaning may 

seem more productive from the perspective of a more advanced knower, but there may be 

unforeseen consequences when attempting to teach this meaning to someone first 

experiencing the idea. 

Schemes and Meaning 

 We do not have space to delve deeply into our meaning for scheme. See (Derry, 

1996; P. W. Thompson, 2013; P. W. Thompson et al., 2014) for explanations of the idea 

of scheme and its relationship to meaning, understanding, assimilation, and 
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accommodation. For our purposes here we will use the definition offered by Thompson et 

al. (2014): 

 We define a scheme as an organization of actions, operations, images, or 
schemes—which can have many entry points that trigger action—and 
anticipations of outcomes of the organization’s activity. (p. 11) 
 

 For example, Thompson and Saldanha (2003) described students’ well-formed 

fraction schemes as emerging through a progressive coordination and integration of 

schemes for measurement, multiplication, division, and relationships of relative size. 

Similarly, Thompson and colleagues described students’ well-formed rate of change 

schemes as emerging through the progressive coordination and integration of schemes for 

quantity, variation, covariation, change, accumulation, and proportionality (Silverman & 

Thompson, 2008; A. G. Thompson & Thompson, 1996; P. W. Thompson, 1994b; P. W. 

Thompson, Byerley, & Hatfield, 2013; P. W. Thompson & Thompson, 1994). Unlike 

“knowledge” which people often understand to mean knowing something that is agreed 

upon to be true, a teachers’ scheme can be productive or unproductive. For example, a 

pre-service teacher inappropriately applied her part-whole scheme for fractions in a 

variety of situations. She drew a stick of length four inches and cut it into two equal 

pieces of length two inches. She described each piece as “one fourth” because she had 

one “part” out of the “whole” of four inches (Byerley & Hatfield, 2013). 

The MMTsm includes several items that address contexts that we see as involving 

slope or rate of change. Our meanings for rate of change and slope, discussed shortly, 

served as a basis for our analysis of teachers’ meanings. Our theory of meanings predicts 

that, for a teacher who has disconnected meanings for slope and rate of change, different 

contexts that involve slope or rate would trigger different schemes. Our theory also 
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predicts that, for a teacher who has a coherent system of meanings for slope and rate of 

change, these same contexts would trigger different aspects of one scheme. For example, 

a teacher who understands the slope of a graph as a depiction of the relative size of 

changes in two quantities could connect a graph of rate of change of a car and a verbal 

description of a car’s distance traveled, time elapsed, and the values on the car’s 

speedometer. In contrast, some teachers understood slope to only describe real-world 

situations with horizontal and vertical components such as the steepness of a roof. These 

teachers do not connect the slope of a graph to more general rate of change situations 

such as the speedometer of a car even after instruction (Stump, 2001a). 

 Some teachers’ conveyed dramatically different meanings in different contexts 

that we (and our consultants and advisory board) took as involving the same central idea. 

For example, some teachers computed average rate of change using an arithmetic mean 

of rates in one item and by using the formula ∆y/∆x in another item. We inferred that 

each of these teachers had more than one meaning for average rate of change. Each of 

these teachers’ responses suggested that they had at least two schemes associated with the 

phrase “average rate of change”, one that was sensitive to “average” as referring to a 

discrete collection of numbers and one that was sensitive to what they took as involving 

two continuous changes. Other teachers appeared to have a more comprehensive and 

coherent meaning for average rate of change because they employed the same meaning 

for average rate of change across contexts. Their responses conveyed that the average rate 

of change of a function on an interval of the independent quantity is a hypothetical 

constant rate of change of one quantity with respect to another that would produce the 

same change in the dependent quantity on that interval as was achieved by the function. 
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 Our theory of meanings has strong implications for issues of reliability and 

validity of assessments and their items. If teachers conveyed similar meanings on 

multiple items intended to measure meanings for rate of change, the set of items would be 

considered to have internal consistency reliability. An assessment that validly assesses 

subjects’ meanings with regard to ideas for which the population of subjects has a wide 

variety of disconnected meanings will likely have low internal consistency reliability. 

Subjects will respond differently to items that the assessment’s writers see as tapping the 

same idea. This is exactly the case reported by Carlson, Oehrtman, and Engelke (2010). 

They conducted hundreds of interviews to establish the validity of their instrument’s 

items with regard to their interpretations of students’ answers, but most students 

answered some items that targeted a key idea correctly and other items targeting the same 

idea incorrectly—they had disconnected, and sometimes unproductive, ways of thinking 

about different contexts that (to Carlson et al., 2010) involved the same idea. To 

understand teachers’ meanings it is critical to look at their responses to multiple rate of 

change items because we predict that their responses to one item will not be a strong 

predictor of their responses to other similar items unless they have strongly connected 

meanings for slope and rate of change. 

Meanings for Quotient, Fraction, Magnitude, Variation and Covariation, and Rate 

of Change 

  In line with our stance that all meanings are personal, we attempt to convey the 

meanings of quotient, fraction, magnitude, covariation, and rate of change that we used in 

this study. We also explain why these particular meanings are productive and coherent 

for student learning and why it is important to understand high school mathematics 
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teachers’ meanings regarding quotient, fraction, magnitude, covariation, and rate of 

change. The meanings that we summarize here are described in greater detail in (P. W. 

Thompson, 1994a, 1994b; P. W. Thompson & Carlson, 2016; P. W. Thompson et al., 

2014; P. W. Thompson & Saldanha, 2003). 

Quotient. A multiplicative comparison of two quantities is the mental operation 

of comparing them with the intention of determining their relative size. Determining the 

relative size of two quantities means thinking of and expressing the magnitude of one 

quantity in terms of a multiple of the magnitude of another. For example, by using the 

height of one bean sprout to measure another bean sprout’s height we can compare their 

relative heights. After measuring we could say “this bean sprout is one and three fourths 

times as tall as that bean sprout.” A quantitative quotient is the value of a multiplicative 

comparison of quantities. The numerical value of a quotient need not be the result of 

division. When the value of a rate is provided as information about a situation, a person 

who understands the rate’s value as a quotient understands that it gives the relative size of 

changes in one quantity with changes in another. Many students and teachers understand 

quotient (without knowing the word) only as the numerical result of division, without 

having an affiliated sense that they have determined a relative size. Other students and 

teachers understand the word quotient only as the name of a figural configuration that 

involves a vinculum—a horizontal division bar. Finally, many studies show that school 

students’, future teachers’, and teachers’ meanings of division are non-quantitative and 

have little to do with ideas of relative size (Ball, 1990; Byerley & Hatfield, 2013; Byerley, 

Hatfield, & Thompson, 2012; McDiarmid & Wilson, 1991; M. Simon, 1993). 
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Fraction. In line with Thompson and Saldanha (2003), our meaning of fraction is 

that it is a scheme that emerges from the coordination of schemes for measurement, 

multiplication, division, and relative size. To say that A is 3/4 times as large as B means 

that A is three times as large as 1/4 of B, and that a part of A being 1/4 times as large as B 

means that B is four times as large as that part of A. Also, to say that A is 3/4 times as 

large as B implies the reciprocal relationship that B is 4/3 times as large as A. Moreover, 

the meaning of fraction is not necessarily bound to specific ways of inscribing one. To us, 

the statement “A is 3/4 as large as B” points to the same scheme as “A is 75 percent as 

large as B.” The two statements indeed entail inscriptional schemes, but, in the end, they 

do not change the meaning of fraction. It should be clear that this meaning of fraction 

plays a large role in understanding quotient as a measure of relative size. The literature on 

students’ and teachers’ understanding of fractions is that, to many of them, a fraction 

connotes that if A is some fraction of B, that A is a subset of B. For a discussion of 

research on the limitations on students’ part-whole meanings of fraction see Norton and 

Hackenberg (2010). Other students and teachers think that the mathematical meaning of a 

fraction is entirely bound to the context in which it is used, such as “3/4” being the slope 

of a line means “up 3 and over 4” (Stump, 2001a). 

 Magnitude. The common idea of magnitude is about size. We follow Thompson 

et al. (2014) by distinguishing among six meanings of magnitude: gross perception of 

size, size as measure being a count of a specific unit, size as measure relative to a specific 

unit (Steffe Magnitude), size as independent of specific units (Wildi Magnitude), relative 

size of measures in specific units, and relative size independent of units (Relative 

Magnitude). The last four meanings of magnitude (Steffe Magnitude, Wildi Magnitude, 
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and two forms of Relative Magnitude) are all based in multiplicative comparisons of 

quantities’ measures. The last three meanings involve the understanding that the size of 

the measured quantity is invariant across changes in unit. We claim that school 

instruction emphasizes the first three meanings of magnitude, whereas it is Wildi 

Magnitude and Relative Magnitude schemes that are foundational for mature 

understandings of rate of change and applying rate of change in science. 

 Variational and Covariational Reasoning. Both Confrey and colleagues and 

Thompson and colleagues have written extensively about the covariation construct 

(Confrey & Smith, 1995; Saldanha & Thompson, 1998). In this study, we use 

Thompson’s meaning of covariation, expanded as in Thompson and Carlson’s (P. W. 

Thompson & Carlson, 2016) framework for describing different levels of variational and 

covariational reasoning. This expanded framework includes a distinction introduced by 

Castillo-Garsow (C. Castillo-Garsow, Johnson, & Moore, 2013; 2012) between what he 

called “chunky continuous reasoning” and “smooth reasoning”. A person reasons about a 

quantity or variable varying in “continuous chunks” by thinking that it attains a next 

value, that intermediate values exist, but without thinking that the quantity or variable 

actually attained any of those values. Thinking with smooth continuous variation is 

defined as, 

The person thinks of variation of a quantity’s or variable’s 
value as increasing or decreasing by intervals while 
anticipating that within each interval the variable’s value 
varies smoothly and continuously.(P. W. Thompson & 
Carlson, 2016) 
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Thompson and Carlson (in press) then defined smooth continuous covariation as a person 

conceptualizing the values of two quantities varying simultaneously, while also having 

conceived of the quantities values varying smoothly and continuously. 

 The distinction between chunky and smooth continuous reasoning helps us 

distinguish between meanings that students and teachers have for slope and rate of 

change. A person who thinks in terms of chunky continuous variation is likely to think of 

a slope of ¾ as “up three and over four.” Given one point on a line, some teachers find 

another point on a line with a slope of ¾ by moving over three and up four. However, 

they have difficulty reasoning about the values of the points in between the two points at 

either end of the “chunk.” P. W. Thompson (2013) gave an example of a teacher who 

could not find the values of points on a line in between the two points she produced by 

moving up and over in chunks on a graph (p. 81). For this teacher, “division did not 

produce a quotient that has the meaning that the dividend is so many times as large as the 

divisor—3/4 as a slope was not a number that gave a rate of change. It gave a ‘slantiness’” 

(P. W. Thompson, 2013, p. 81). A person who thinks in terms of smooth continuous 

variation is more like to think of slope as “changes in y are 3/4 times as large as changes 

in x.” This meaning allows them to anticipate that the line takes on infinitely many points 

between any two points and allows them to find coordinates for these points if they need 

to. We believe that it is important to note if teachers or students meanings for covariation 

are chunky or smooth to understand differences in their meanings of rate of change.  

 Rate of Change. A mature meaning for rate of change involves imagining 

covariation of quantities as well as a relative size or relative magnitude scheme. This is 

consistent with Thompson and Carlson’s (P. W. Thompson & Carlson, 2016) argument 
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that “for students to conceptualize rates of change requires that they reason 

covariationally, but it also requires conceptualizations that go beyond covariational 

reasoning, such as conceptualizations of ratio, quotient, accumulation, and 

proportionality”. Norton and Hackenberg (2010) provided evidence collected in teaching 

experiments with students that the development of productive meanings for rate of 

change and proportion are dependent on strong meanings for fractions. Understanding 

constant rate of change entails imagining two quantities covarying such that an 

accumulation of changes in one quantity is proportional to the associated accumulation of 

changes in the other quantity (P. W. Thompson, 1994b). A person’s meaning for 

proportional may vary from a cue to cross multiply to a complex scheme built on images 

of comparing the measures of two quantities (Lobato, Orrill, Druken, & Jacobson, 2011). 

A student might use a Steffe Magnitude scheme to understand that the associated changes 

in the two quantities maintain a constant measure of relative size when the measure of 

one quantity is measured in terms of the other. A more advanced understanding of rate of 

change entails understanding a rate of change with a Relative Magnitude scheme. This 

would entail understanding that the relative magnitude of associated changes in the two 

quantities’ values remains invariant even when one changes the unit in which either 

quantity is measured. 

Qualitative Studies With Examples of Teachers’ Meanings for Slope, Proportion, 

Rate of Change, and Quotient 

 Prior studies give examples of a variety of ways of thinking about slope, rate of 

change, and quotient that prove useful for interpreting teachers written responses to 

MMTsm items. The ways of thinking we will highlight from this literature are additive 
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meanings, thinking about slope as an index of slantiness, the disconnect between slope 

and division, and difficulty in creating a quantitative image of division by a fraction.  

  Teachers’ meanings for proportion. Fisher (1988) discussed secondary 

teachers’ ability to help students transition between additive and multiplicative meanings 

for proportion. She described common informal additive methods for proportional 

situations that rely on halving or doubling. For example, if two batches of cookies takes 

1.5 cups of sugar then four batches of cookies takes three cups of sugar. The number of 

batches of cookies increases in discrete amounts instead of continuously. Using Castillo-

Garsow’s (2012) language, we would say that the students imagine the batches of cookies 

varying in chunks of size two. Reasoning about quantities varying in chunks does not 

require the multiplicative understanding that the number of batches of cookies that can be 

made is always (2/1.5) times as large as the number of cups of sugar. Fisher (1988) found 

that the twenty teachers in her study were not likely to help students transition from 

additive to multiplicative ways of thinking about quantities changing proportionally. The 

teachers in her study did not talk about the connections between additive and 

multiplicative meanings for proportionality, and instead discussed procedures associated 

with proportions such as cross multiplication. In their solutions for four proportion 

problems, they were unlikely to use multiplicative proportional reasoning (Problem 1: 1 

of 20 responses involve proportional reasoning, Problem 2: 1 of 20, Problem 3: 2 of 20, 

Problem 4: 4 of 20). Fisher’s (1988) results show that teachers commonly use algebra to 

deal with situations that involve multiplicative comparisons from our point of view, but 

the teachers do not speak explicitly about these relationships.  
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 Chunky meanings for slope. Coe (2007) and Stump (2001) interviewed in-

service and pre-service secondary teachers who conveyed a chunky meaning for slope. 

While teaching a lesson on slope, Joe defined slope as, “‘vertical change/horizontal 

change,’ and presented a graph of the line passing through the points (0,0) and (3,2). He 

emphasized that the slope as a fraction, 2/3, up 2, over 3” (Stump, 2001, p. 216). Joe 

conveyed a chunky, non-multiplicative meaning for slope and never said for any size 

change in x the change in y is 2/3 as large. We believe his language in interviews and 

teaching would convey to a student that the division bar (vinculum) serves to separate 

numbers that tell us how to move in horizontal and vertical directions. This meaning is 

limited to Cartesian coordinate systems and can not be applied to polar coordinate 

systems. One consequence of the meaning for slope Joe conveyed was that a student in 

his class did not understand that “the two fractions 5/-6 and -5/6 could both represent the 

same slope” (Stump, 2001, p. 216). Joe noted in a post-teaching interview, “‘They think 

you are describing a movement as opposed to you describing a number, a measurement’” 

(Stump, 2001, p. 216).  

 The three experienced secondary mathematics teachers whom Coe (2007) studied 

also conveyed chunky meanings for slope. For example, when Becky interpreted the 

slope -98/5 “she saw it as (-98) for every (5)” as opposed to that the change in 𝑦 is -98/5 

times as large as an associated change in 𝑥 (Coe, 2007, p. 104). Peggy was asked “why 

do we use division to calculate slope?” and she replied that she didn’t know because “she 

never really thought of it as the division operation” (Coe, 2007, p. 207). Peggy 

understood slope as directions on how to move up and over on a graph and did not 

imagine comparing the relative size of numerator and denominator.  
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 Slope as an index of steepness. We believe most teachers’ meanings for the idea 

of slope are multi-faceted and vary based on the situation they encounter. A chunky 

meaning for slope is useful for plotting lines. Coe (2007) and Stump (2001) found that 

teachers also employed a meaning for slope as an index of slantiness to various degrees 

of success. A teachers’ sense of slantiness does not have to involve comparing changes in 

x and changes in y, but simply associating particular numerical values with particular 

graphs based on repeated exposure to graphs of lines. One limitation of remembering 

what a particular slope “looks like” is the dependence on the graphs being displayed in a 

rectangular coordinate system whose axes are in the same scale. Other limitations will 

become apparent in discussions of data that we present later. 

 Two pre-service teachers in Stump’s (2001) study described slope as an index of 

slantiness. Natalie said, “Slope is a term used to associate the incline of a line with a 

numerical value” (Stump, 2001, p. 217) and Tracie said “assigning a number to a ‘slant’ 

is something that students just learning about slope are not accustomed to” (Stump, 2001, 

p. 217). Despite the methods instructors’ emphasis on the connection between slope and 

real world comparisons of changing quantities such as distance and time Natalie choose 

to focus on steepness, inclined plane examples and developing “rise over run” as a 

measure of steepness (Stump, 2001, p. 221). Natalie was “resistant to including the 

notion of slope as a measure of rate of change in her work” (Stump, 2001, p. 221). The 

physical situations Natalie used in instruction included real-world examples such as 

inclined planes and ski slopes where steepness was visually apparent in the situation. She 

did not help students understand that slope could be thought of as the rate of change of 

any two quantities. 
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 Coe’s (2007) study complements Stump’s work by showing the constraints of 

operating with a primary meaning for slope as a measure of steepness. Mary, described 

slope as “how steep a line is” (Coe, 2007, p. 115). Mary was unable to use her meaning 

for slope as a measure of steepness to make sense of multiple questions involving basic 

applications of slope. Coe asked Mary to answer the question in  

Figure 1. 

  

Figure 1. Task from Coe (2007). 

 Mary said she “Did this on the test the other day… Okay this is decreasing at a 

decreasing rate [pointing to given question] because as you come down here [right end of 

curve], tangent line has a smaller slope than this one [pointing to tangent sketched on left 

end of curve]” (Coe, 2007, p. 129). Mary graded student tests incorrectly because of her 

meaning of slope as an index of steepness. She did not consider that the changes in y in 

the graph are negative, and simply looked at how steep the graph appeared, as if it were a 

hill. A slope of negative two is smaller than a slope of negative one because -2 < -1. 

However, a slope of negative two appears steeper from the perspective of thinking about 

the slantiness of a hill. 
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 Teachers’ meanings for quotient. All three studies we found that investigated 

secondary teachers’ meanings for quotient showed that teachers had significant 

difficulties with the idea (Ball, 1990; Byerley & Hatfield, 2013; McDiarmid & Wilson, 

1991). We hypothesize that teachers with weak meanings for quotient are less likely to 

think of rate of change and slope multiplicatively, and more likely to resort to chunky or 

‘index of steepness’ meanings.  

 McDiarmid and Wilson (1991) presented 55 alternatively certified secondary 

teachers with four story problems that prompted them to choose which story problem 

could be solved by dividing by ½. Only 33% were able to identify a quantitative situation 

that involved division by a fraction. In interviews, some teachers in their study could see 

no real world application for division by fractions.  

We can’t really relate it to what does this mean to divide something by a half. 
What does that really mean? I know what it means to divide something by two. 
You’re dividing it into two equal portions and then we start thinking about that 
becomes a half. But to divide something by a half, that’s very abstract-you have to 
really push. What does that really mean and do I ever really use something like 
that? I mean, am I ever doing something like that? (McDiarmid & Wilson, 1991, 
p.99). 
 

This teacher quoted above did not display a meaning for quotient as a relationship of 

relative size. Instead, he displayed a meaning that division means to cut something into a 

number of pieces. One of many situations the teacher could have used to explain division 

by fractions is in cooking. Suppose one has 1 ¾ cups of flour and each recipe called for ½ 

cup of flour. How many recipes could he make?  

 Ball (1989) asked prospective teachers  “to develop a representation—a story, a 

model, a picture, a real-world situation—of the division statement 1 !
!
÷ !

!
” (p. 21). Five 

out of nine prospective secondary teachers and zero out of nine elementary teachers 



 

22 

responded appropriately (p. 22). Byerley and Hatfield (2013) asked 17 pre-service 

secondary teachers who were taking an upper division teaching methods course to draw a 

picture representing a division problem (See Figure 2). The results supported the 

hypothesis that many secondary teachers do not have strong quantitative meanings of 

quotient as a measure of relative size. Two said “I don’t know.” Seven out of 17 gave 

computational explanations without drawing a picture. For example, “20.15 times .39 is 

7.86”. Two pre-service teachers drew a picture to remind them of computations (See 

Figure 2).  

 

Figure 2. Pre-service Mathematics Teacher Drew Picture of Computations. Item Adapted 
from Byerley, Hatfield & Thompson (2012).  
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Six out of 17 represented the relative size of 7.86 and .39 in an image to explain the 

meaning of a quotient (Byerley & Hatfield, 2013). See Figure 3 for an example. 

 

Figure 3. Diagram Depicting Relationship Between Numbers in Division Problem. 

  Only one of the seventeen pre-service teachers in the study was able to explain 

why division was used to calculate slope. We hypothesized that without an image of 

quotient as a measure of relative size, and an image that values of y and x varied together, 

it was hard for them to employ a meaning for slope as a measure of the relative size of a 

change in x and the corresponding change in y. We should note that it is possible for a 

teacher to understand quotient as a measure of relative size and have a chunky or 

indexical meaning for slope. The teacher must not only have a strong image of quotient, 

but must also have reflected on why division is used in the slope formula. 

 Teachers’ meanings for measure. Two previously reported MMTsm items 

provide information about teachers’ meanings for measurement (Byerley & Thompson, 

2014; P. W. Thompson et al., 2014). One item asked teachers to convert between liters 

and gallons given a conversion factor.  
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Figure 4. MMTsm Item Gallons to Liters. © 2014 Arizona Board of Regents. Used with 
Permission. 
 
The second item asked teachers to convert between measures in the imaginary units 

“Nerds” and “Raps” given a conversion factor (Figure 5).  

Figure 5. Item Nerds and Raps. © 2014 Arizona Board of Regents. Used with Permission.  
 

As of 2014 we had collected 100 secondary teachers’ responses during the MMTsm’s 

development phase. Only 24% of secondary mathematics teachers were able to convert 

between liters and gallons (Byerley & Thompson, 2014). Fifty out of 100 teachers were 

able to convert between the imaginary units Nerds and Raps. Only 17% of the 100 

teachers solved both measurement problems correctly. Both items are similar to middle 

school level Common Core measurement items and the problematic responses 

demonstrate that teachers lacked strong measurement schemes. In particular, they did not 

imagine that since a gallon is larger than a liter, the number of gallons in a container must 

be smaller than the number of liters in the same container. Quantitative measurement 

meanings are critical for developing the ability to conceive of the change in one quantity 
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measured in terms of the change in the other, so the weak performance on measurement 

items suggests that the teachers may also lack meanings for slope and rate based on 

measuring the change in y in terms of the change in x. Teachers’ responses also suggest 

that many do not reason about the quantities in the situation. Other researchers have also 

found that students’ and teachers’ difficulties with multiplicative situations are due to a 

lack of orientation to reason about the measures of the quantities in the problem (Lobato 

& Siebert, 2002; M. Simon & Blume, 1994a, 1994b).  

 The responses in Figure 6 and Figure 7 demonstrate that two teachers’ difficulties 

were not just due to an oversight or answering the problem too quickly. These responses 

also demonstrate the teachers’ difficulties with reasoning about the measures of quantities. 
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Figure 6. Example Where Teacher Wrote Meaning of m Explicitly. 

 

Figure 7. Teacher Needed to Know Shape of Container to Use Appropriate Volume 

Formula. 

The teachers in Figures 8 and 9 wrote in complete sentences and appeared to fully 

consider the problem and yet were unable to compare a container’s measure in two 

different units. The response in Figure 7 shows that the teacher’s meaning for a measure 

of volume was dominated by the formulas he had learned. His reasoning was not 

constrained by an understanding that converting one measure of volume to another does 

not require a volume formula for a particular shape. 

 Teachers’ meanings for rate of change. At least four studies have investigated 

secondary teachers’ meanings for rate of change (Bowers & Doerr, 2001; Coe, 2007; 

Person, Berenson, & Greenspon, 2004; P. W. Thompson, 1994b). Data from each study 

supported the claim that many secondary teachers have meanings for rate that are chunky 

and additive. However, teachers’ chunky, additive rate of change schemes actually work 

for them in much of school mathematics. 

 Person, Berenson and Greenspon (2004) investigated a secondary preservice 

teachers’ “lesson plans on rate of change and right triangle trigonometry in light of his 

beliefs of ratios and fractions” (p. 17). Brian described rate of change as “the amount 

something changes in a given time” (Person et al., 2004, p. 21). Using Castillo-Garsow’s 
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language we notice Brian’s description conveys an image of competed chunks of change. 

Brian conveys that a rate of change is an amount of change. He doesn’t convey 

comparing a measure of an amount of change with a measure of amount of time. Time 

does pass in the background, but Brian’s meaning for rate of change was not about 

multiplicative comparisons of two amounts. Brian also describes rate of change as 

“something per something” as in miles per hour (Person et al., 2004, p. 21).  This 

suggests that the word “per” cued Brian to think of rate of change. At first Brian’s 

descriptions of a graph of a function that had a constant rate of change did not make use 

of the idea of proportionality, ratio, or comparisons of relative size. Brian described a 

constant speed with the idea of cruise control. Building on observations made by Stroud 

(2010), we notice that Brian conveyed the idea of speed as the number to which a 

speedometer points instead of as a relationship of relative size between number of miles 

traveled and number of hours elapsed.  

 Bowers and Doerr (2001) investigated 26 secondary teachers’ thinking about the 

“mathematics of change” in two university technology based mathematics classes. They 

designed the first two instructional sequences to help the participants understand the 

Fundamental Theorem of Calculus by exploring relationships between linked velocity 

and position graphs (Bowers & Doerr, 2001, p. 120). Given a non-constant velocity 

versus time graph, over half of the fifteen teachers at the first university found the total 

distance traveled by simply multiplying time elapsed by the velocity at the end of the 

time interval by inappropriately applying the formula d=rt (Bowers & Doerr, 2001, p. 

124).  
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 Thompson (1994b) reported a classroom teaching experiment designed to help 

nineteen senior and graduate mathematics education students understand connections 

between rate of change functions and accumulation functions. Thompson (1994b) 

reported that students had difficulties understanding the rate of change of a cone’s 

volume with respect to its height partially because they confused “changing” with “rate 

of change” and “amount and change in amount” (1994b, p. 257). Thompson wanted 

students to understand why the function giving rate of change of the cone’s volume with 

respect to its height was identical to the function of cross sectional area of the top of the 

cone in terms of the height of the cone. One student, Adam, struggled to explain the 

relationship because he identified the idea of “rate” with the idea of “change” (P. W. 

Thompson, 1994b, p. 261). Adam understood that the volume of the cone got larger as 

the surface area of the cross section at the top of the cone increased. He did not connect 

the amount of change in volume to the amount of change of cross sectional area (P. W. 

Thompson, 1994b, p. 261).  

Connections between literature review and our methodology 

  The literature review reported multiple conceptual analyses of productive 

meanings for rate of change, fraction, quotient, and slope. We used prior conceptual 

analyses of productive mathematical meanings to design items and identify high level 

responses for the MMTsm. While designing the diagnostic instrument we focused on 

teachers’ meanings because the word meaning conveys that we are interested in more 

than what a teacher can do or what facts they recall (P. W. Thompson, 2015). We want to 

build models of teachers’ schemes. In our methods section, we will describe how we used 
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rubrics to categorize teachers’ responses according to the meanings the response might 

convey to a student instead of scoring a response as correct or incorrect. 

 Our conceptual analysis of productive meanings for rate of change focuses not 

only on making multiplicative comparisons of changes in quantities, but also on how the 

quantities covary. We noted that quantities can be imagined to covary smoothly or in 

chunks (C. W. Castillo-Garsow, 2012). We stayed attuned to this distinction when 

analyzing teachers’ responses and attempted to create items that would give us insight 

into the teachers’ images of covariation. 

 The teachers’ meanings for slope and rate of change described in the qualitative 

studies in the literature review helped us categorize teachers’ written responses on the 

MMTsm. A summary of the most important constructs is in Table 1 

Table 1. Examples of Evidence of Various Types of Reasoning about Slope, Quotient, 
and Rate of Change. 
Construct: Example of evidence of this type of reasoning 
Chunky covariational reasoning A slope of three means that every time x changes 

by 1, y changes by 3. 
Smooth continuous covariational 
reasoning 

A slope of three means that as x and y covary, for 
any sized change in x the associated change in y is 
three times as large.  

Slope is an index of steepness/rate 
is an index of fastness 

Slope is a number we assign to a slant to describe 
how steep it looks. 

Formulaic meaning for slope/rate 
of change 

∆y/∆x, rise/run, d=rt, etc. 

Quotient is the result of division When I use long division and follow the steps I get 
a quotient. 

Quotient is a measure of relative 
size 

I can estimate the quotient (A/B) by comparing the 
measure of quantity A to the measure of quantity B.  

 

In prior qualitative studies teachers often spoke additively about rate of change and slope. 

For example in both rate of change and slope contexts teachers spoke about changes 
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occurring in chunks and did not talk about comparing the relative magnitude of the 

measures of changes (Coe, 2007; Stump, 2001a). Teachers’ also spoke about slope as an 

indication of how slanty a line is without a focus on the underlying comparison of 

changes in x and changes in y. Teachers’ tendency to speak of slope and rate of change 

without a focus on multiplicative comparisons may be because their weak meanings for 

quotient noted in multiple studies (Ball, 1990; McDiarmid & Wilson, 1991) do not 

support more productive multiplicative reasoning. Related to their additive meanings for 

slope, were issues such as confusing rate of change with amount of change (P. W. 

Thompson, 1994b). Teachers were also reported to use rate of change formulas 

inappropriately because of a lack of focus on the meanings for constant rate of change 

(Bowers & Doerr, 2001). The majority of these qualitative studies relied on interviews or 

teaching experiments in which the researchers used multiple sources of evidence to infer 

a teachers’ meaning for slope or rate of change. We drew upon these descriptions of 

teacher thinking, in addition to our own teacher interviews, to help us infer a teachers’ 

potential meanings based on their sometimes terse written responses. 

 

METHOD: THE DEVELOPMENT AND ADMINISTRATION OF THE MMTSM 

 This section describes the methods used during the four-year project Aspire to 

design and validate the MMTsm diagnostic instrument. We also explain how our 

instrument development built upon findings of prior qualitative studies and our theory of 

meanings. The motivation for Project Aspire was to develop a diagnostic instrument that 

would identify weaknesses and strengths in teachers’ meanings in a way that would be 

useful for designing and evaluating professional development. The instrument is designed 
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to be useful to give information about the common ways of thinking about mathematical 

ideas in a group of teachers and to determine if professional development had a positive 

impact on a group of teachers’ mathematical meanings. It is not intended to evaluate 

teachers for purposes of employment or do create diagnostic models of individuals. 

Because of the purpose of the instrument we will not report all psychometric properties 

that would be necessary to establish reliability and validity for an instrument designed to 

diagnose individuals.  

Item Development 

 One of the primary goals for the items was to give the teacher the opportunity to 

convey the sense they made of an item, which then gave us grounds to discern meanings 

they employed in making that sense. The relationship between our theory of meanings 

and the methods are discussed in greater detail in Thompson (2015). It was important that 

teachers could interpret a question in their own way, and that the question would prompt 

them to display their meanings explicitly enough that we could interpret and categorize 

them confidently. We also had to create items that prompted teachers to use higher-level 

meanings if they were able to do so. For example, if we wanted to determine whether a 

teacher could think about slope as the relative size of the change in y and the change in x, 

we could not ask a question that could be solved by routinely using the slope formula.  

 Thompson (2015) summarized the process of creating items and rubrics for the 

MMTsm. We followed typical instrument construction guidelines such as making many 

revisions to items based on interviews with teachers and pilot administration of the 

instrument. Feedback from our advisory board and other experts was also essential to 
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item development. Once we created rubrics for items, we made more edits to the items to 

improve the ease of scoring.   

 
Rubric Development 

 In Summer 2012 administered the draft versions of the slope and rate of change 

items discussed in the results sections to secondary mathematics teachers voluntarily 

participating in Math Science Partnership professional development programs. We 

categorized the thinking revealed in 144 teachers’ responses to items using a modified 

grounded-theory approach (Corbin & Strauss, 2007).  The modification was that we 

began our data analysis with the conceptual analysis magnitudes and rates of change 

described in the literature review, as well as multiple descriptions of teachers’ meanings 

from prior qualitative studies.  

 We developed rubrics by grouping grounded codes into levels based on the 

quality of the mathematical meanings expressed. By reading a teacher’s written response 

to an item we do not believe it is possible to model their meanings with the same level of 

assurance as if we interviewed the teacher. However, we did interview a subset of 

teachers to check whether the meanings we attributed to their written comments were 

consistent with the meanings they expressed later to us. Further, we hypothesize that 

teachers’ use the same meanings and mathematical resources to respond to written items 

about teaching as they use while teaching. This is not to say that their written responses 

will exactly reflect what they say in classroom, only that their written and spoken 

descriptions of mathematics will be based on their meanings in either context.  
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 When scoring responses we did not attempt to determine the depth of the teachers’ 

understanding of mathematics that they left unarticulated. Instead, we read the teacher’s 

response literally and asked, “If this is what they said to a class, what meanings for the 

mathematical idea might students’ construct?” During team discussions of rubrics and 

responses, we continually asked ourselves. “How productive would this response be for a 

student if this is what the teacher said while teaching?” We are aware that some people 

who describe slope as “rise over run” might have more advanced and productive 

meanings, but we scored their responses as written and did not attribute additional 

unexpressed understandings to teachers without evidence. We relied heavily on prior 

research on student thinking to make determinations about the ways of thinking about 

particular ideas that would be more or less productive for students. For example, we 

pointed to Coe (2007) to warrant our concern with responses that conveyed a primary 

meaning for slope as an index of steepness. 

 At multiple stages in rubric construction and refinement we asked researchers 

internal and external to the project to score randomly selected subsets of teacher 

responses after participating in sessions focused on using the rubrics. Scorers had a 

variety of areas of expertise and included one or more statisticians, mathematicians, high 

school math teachers, and math education researchers. The scoring team included 

researchers from various institutions who learned secondary mathematics in a variety of 

foreign countries. 

Sample and Scoring 

 We administered the MMTsm to 251 high school teachers in two different states 

in Summer 2013 and 2014. The teachers were participating in Math Science Partnership 
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professional development programs (NSF or state funded). The sample had 63 teachers 

with at least a mathematics BA, 81 teachers with at least a mathematics education BA, 

and 107 with a BA in another subject. Many of these teachers also had masters degrees in 

a variety of fields. The number of years they had taught high school math varied from 

one year to over fifteen years. 

 The Aspire project team, which includes the first and second author, scored all 

teacher responses. To estimate interrater reliability (IRR) an outside collaborator scored 

50 overlapping responses for each item and an Aspire team member scored all of the 

responses separately. Note this was the final round of many rounds of IRR for Aspire 

team members but it was the first time the outside collaborator had used the rubrics. Non-

perfect agreement was scored as disagreement. Items with complex responses had lower 

IRR than items with simple or numerical responses. For example, when teachers 

explained how they would teach slope they often did not use complete sentences and used 

pronouns with unclear referents, so it often was difficult to determine whether or not a 

student could make sense of the teacher’s explanation. The following table summarizes 

the interrater reliability scores for all items reported in the results section.  

Table 2. Interrater Reliability Scores for MMTsm Items. 

Item Name Number of 
responses scored by 
two scorers 

Percent 
Agreement 

Cohen’s Kappa 

Gallons to Liters 50 .94 .917 

Nerds to Raps 50 .94 .905 

Meaning of Slope Part A 50 .84 .773 

Meaning of Slope Part B 50 .72 .621 
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Meaning of Over 
Part A 

50 .86 .814 

Meaning of Over  
Part B 

50 .9 .849 

Slope from Blank Graph  
Part A 

31 .968 .957 

Slope from Blank Graph  
Part B 

31 .903 .847 

Increasing or Decreasing 
from Rate Part B 

49 .959 .926 

 

Table 2 shows that most items have a high level of agreement in each rater’s score. The 

interrater reliability is strong enough to support inferences about what types of meanings 

we could expect to find in a group of teachers. Percent agreement scores of less than 90 

are insufficient to use the item to diagnose the meanings of a particular teacher. The 

MMTsm is not designed to evaluate a particular teacher’s meanings for any high stakes 

reason, such as employment or teacher evaluation. Rather, the MMTsm is designed to 

give researchers and professional development leaders information about groups of 

teachers that will be useful for planning professional development projects. 

RESULTS 

We present each item, the scoring rubric, and the distribution of teachers’ 

responses on that item. After presenting all of the items and results we examine what the 

responses to the set of items convey about teachers meanings for slope and rate of change.  

The Item Meaning of Slope 

We designed the item in Figure 8 to reveal teachers’ meanings for slope. We 

designed Part B to reveal teachers’ ability to use constant rate of change to determine the 

change in dependent variable for any change in the independent quantity. We wanted to 
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see if teachers could move beyond thinking of slope in terms of chunky, one-unit changes 

in x.  

 

Figure 8. The Item Meaning of Slope was Designed to Reveal Meanings for Slope. 
©2014 Arizona Board of Regents. Used with Permission. 
 

 Rubric and results Part A on Meaning of Slope. The summary rubric for 

Meaning of Slope Part A is given in Table 3.  

Table 3. Rubric for Part A of Meaning of Slope. © 2014 Arizona Board of Regents. Used 
with Permission. 
Level A3 
Response: 

The teacher conveyed that x can change by any amount and that y 
changes by 3.04 times the change in x. 

Level A2a 
Response: 

Any of following: 
− The teacher wrote that for every change of 1 in x, there is a 

change of 3.04 in y. 
− The teacher wrote that for every change of 2.7 in x, there is a 

change of 8.2 in y.  
− The teacher wrote that a difference in x values is compared to a 

difference in y values. 
Level 
A2b 
Response: 

The teacher conveyed in words or graphically that the slope gives 
information about how to move horizontally and vertically. For 
example: 
− If x moves to the right 1 space, y moves up by 3.04. 
− If x runs by 2.7, y rises by 8.2. 
− The slope tells us to move horizontally by one and vertically by 
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3.04. 

Level A1 
Response: 

Any of following: 
−	 The teacher conveyed that 3.04 is the result of a calculation. 
−	 The teacher used a phrase such as “average rate of change”, 

“constant rate of change” or “slantiness” without addressing the 
question of how 3.04 relates changes in x and changes in y. 

−	 The teacher simply stated the idiom “rise over run” without 
describing the changes. 

 

Level A3 responses convey a multiplicative meaning for slope. A multiplicative 

meaning for slope builds on the meaning for quotient as a measure of relative size. Level 

A2a and level A2b responses convey an additive or chunky meaning for slope. Level A2a 

responses are considered slightly more productive for students than A2b responses 

because the meaning of slope in Level A2a responses is not constrained to horizontal and 

vertical motion on a Cartesian graph, but could be used productively in concrete 

situations. Level A1 responses on our rubric represented more than one possible meaning 

for slope, but each of these meanings are similar in the sense that they convey that the 

meaning of slope is something to memorize. While scoring we kept track of teachers’ 

mathematical errors separately from their meaning of slope, so some responses scored at 

A1 have incorrect formulas such as ∆x/∆y or y/x. We scored responses that did not fit any 

other category at level A0. In cases where one teacher responded with multiple meanings 

for slope we categorized the responses by focusing on the highest level meaning. 

The most common meaning conveyed in our sample was a chunky, additive meaning 

for slope (See Table 4). 

Table 4. Responses to Part A Meaning of Slope. 

Response Math 
Majors 

Math Ed 
Majors 

Other Majors Total 
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A3-relative size 3 3 4 10 
A2a-chunky 27 18 37 82 
A2b-chunky graphical 24 47 41 112 
A1-memorized 7 12 19 38 
A0-other/ IDK 1 1 2 4 
No response 1 0 3 4 
Total 63 81 107 250 
* We included 250 teachers instead of 251 because one teacher did not state his 
major. 

 

Only ten teachers out of 250  conveyed a multiplicative meaning for quotient in 

explanations of slope in Part A. Approximately 78% of teachers showed a chunky or 

additive meaning for slope. About 81% of teachers who majored in mathematics and 80% 

of teachers who majored in mathematics education conveyed a chunky, additive meaning. 

There is no evidence that there is a statistically significant relationship between degree 

type and the teachers’ description of slope ( χ 2 (6,n = 242) = 10.71, p = 0.097 ). The eight 

teachers who did not give a response or gave an other response were excluded from the 

chi squared analysis. In all tables the designation “IDK” means that the teacher stated that 

they did not know how to answer the problem. 

 Rubrics and results Part B on Meaning of Slope. Part B gave teachers an 

additional opportunity to convey a multiplicative meaning for slope. In Part B, it was still 

uncommon for teachers to express the multiplicative relationship between corresponding 

changes. 

Figure 9. Multiplicative Response to Meaning of Slope. 

 Figure 9 displays an example of a response that conveys a strong multiplicative meaning 

in Part B.  
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Figure 9. Multiplicative Response to Meaning of Slope. 

A response is consistent with additive reasoning if the teacher imagines adding one so 

many times and adding 3.04 the same number of times. Figure 10 shows an example of 

an additive response to Part B.  

 

Figure 10. Part B Response to Meaning of Slope that Conveys Additive Reasoning. 

The teacher appears to use a meaning of multiplication as repeated addition to 

compute the change in y given the change in x of 2. We did not take use of the operation 

of multiplication in the response to necessarily convey multiplicative reasoning to a 

student. The response in Figure 10 is consistent with imagining x varying in chunks of 

size one and y varying in chunks of size three. In our rubric we did not ask scorers to 

determine whether or not a response conveyed multiplicative or additive reasoning 

because this is difficult for a number of reasons. Instead we listed statements teachers 

actually made in their responses in the rubric and then drew inferences about whether or 

not these statements were consistent with additive or multiplicative reasoning.  

The Aspire team categorized the responses to Part B using the rubric in Table 5. 
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Table 5. Rubric for Meaning of Slope Part B. © 2014 Arizona Board of Regents. Used 
with Permission. 
Level B4 
Response: 

All of following: 
+ The response answered the question “what does 3.04 mean?” 

and did more than explain how to find the change in y given 
an arbitrary change in x.  

+ The teacher conveyed the meaning of 3.04 as that the change 
in y will be 3.04 times as large as any change in x. 

Level B3 
Response 

All of following: 
+ The teacher gave a mathematically reasonable explanation of 

what 3.04 means (e.g. constant of proportionality, ratio of 
changes, ratio, multiplication factor, multiplier, etc.) 

+ The teacher did not convey that 3.04 means that the change in 
y will be 3.04 times as large as the change in x.  

Level B2a 
Response 

All of following: 
+ The teacher gave clear and explicit instructions describing 

how to find the change in y given an arbitrary change in x.  
+ The response conveys clearly that to find the change in y, the 

change in x should be multiplied by 3.04.  
+ The response did not convey what 3.04 means beyond a 

number that is used to compute a change in y. 
Level B2b 
Response: 

All of following: 
+ The teacher’s explanation, in essence, amounts to giving one 

or more specific examples of how to find the change in y 
given a new change in x.  

+ The teacher did not state a general relationship between 
changes in y and changes in x. 

Level B1 
Response: 

The response appears to answer the question “how do you find the 
change in y?” but does so without explicitly mentioning the change in 
y. For example: 

− The teacher might say “multiply it by 3.04” without 
mentioning the change in y. 

− The teacher might say the change in y is proportional to the 
change in x without also saying what this means. 

 

The data for Meaning of Slope suggests that it was hard for many teachers to 

make sense of Part B as intended without a strong multiplicative meaning for slope. 

Rubric levels B4 and B3 correspond to responses that answered the question “what does 

3.04 mean?” and levels B1, B2a and B2b correspond to responses that answered the 

question “how do you find the change in y if x changes by something other than 1?” 
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Table 6 only has 155 teachers because while all 251 teachers saw the same Part A, only 

the 155 teachers from Summer 2014 answered a version of Part B that was improved 

after Summer 2013 pilot testing.  

Table 6. Responses to Parts A and B of Meaning of Slope. 

Response B4 
“∆y 
3.04 
time
s as 
large 
as 
∆x” 

B3 
Multiplie
r (vague) 

B2a 
Explai
n how 
to find 
∆y 

B2b 
Exampl
e of 
finding 
∆y 

B1 
“multipl
y it by 
3.04” 

B0 NR/ 
IDK 

Total 

A3-
multiplicativ
e 

1 0 1 1 0 0 0 3 

A2a-chunky 6 7 5 6 7 10 0 41 
A2b-chunky 4 13 13 7 11 31 0 79 
A1-
memorized 

0 2 4 4 6 8 4 28 

A0-other 1 1 0 0 1 0 1 4 
No response 0 0 0 0 0 0 0 0 
Total 12 23 23 18 25 49 5 155 

 

Ten (8.3%) of 120 teachers who gave chunky (level 2a/2b) responses to part A conveyed 

multiplicative meanings for slope in Part B. Table 6 suggests that it was much more 

common for teachers who conveyed chunky meanings on Part A to continue to convey 

chunky computational meanings on Part B. Also, 41 (34.2%) of the 120 teachers who 

conveyed a chunky meaning on Part A gave a level 0 response to Part B. Although level 

0 responses are widely varied, they all failed to deal with the Part B prompt coherently. 

This suggests that having a chunky meaning for slope is insufficient to deal meaningfully 

with situations where the input variable changes by something other than one. 
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 We emphasize that we ignored mathematical errors when we categorized 

responses to both parts. We attempted to categorize responses by the overall meaning 

conveyed. For example, on Part B many teachers confounded the change in y with y and 

wrote y =3.04x. Fifty-nine (59; 23.5%) of the 251 responses to Part A contained a 

mathematical error of some kind, and 73 (47.1%) of 155 Part B responses contained an 

error of some kind. We suspect that errors were more common on Part B because 

teachers were asked to cope with a situation that, from their perspective, was unusual, 

while on Part A they expressed what they would say customarily.  

The Item Relative Rates 

 Although additive meanings for slope and rate are productive in certain settings, 

these meanings can lead to invalid models of physical situations. The response to the item 

Relative Rates (Figure 11) shows one consequence of thinking of a rate of change 

additively. We first discussed this item in Byerley and Thompson (2014). This paper 

includes responses from 150 more teachers than the first report.  

 

Figure 11. Item Called Relative Rates. © 2014 Arizona Board of Regents. Used with 
Permission. 
 
We suspect that thinking of rate of change additively makes it more difficult to identify 

situations that are modeled with quotients. The responses to the item Relative Rates 
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demonstrate that many teachers used an additive interpretation in a rate of change 

situation when a multiplicative interpretation was appropriate. We conducted interviews 

to understand the reasoning behind the choice of the highest level answer, j/s times. One 

teacher responded j/s and noted that the quantity j-s tells us how much father Julie travels 

in one second instead of in any amount of time. His explanation was: 

I selected (e) because we have proportional quantities here. In four seconds she 
travels 4j and he travels 4s. I assume she is traveling farther but it doesn’t actually 
matter. She will always travel, since they are both traveling the same distances 
each second she will always travel some constant value some value that is a 
constant times greater than his, like k times greater than his distance traveled.  
 

Some teachers selected (c) or (e) after giving j and s values such as 4 and 3, and then 

making a table of values to determine the answer.  

 Choice j-s corresponds with thinking about constant rate of change additively. In 

one interview the teacher highlighted the word “any” while reading the statement. She 

explained the choice of j-s by saying she cares “about distance traveled so time doesn’t 

make any difference.” There are multiple ways of thinking about the problem that result 

in choice (a), so there is no way to determine precisely what type of thinking a teacher 

engaged in to pick (a). Despite the variety of potential solution paths the interview data 

suggests that teachers who picked (a) were thinking about the situation additively. For 

example, some teachers thought of “j” as a changing quantity that represents Julie’s 

distance for any given amount of time. With j representing a changing quantity instead of 

the value of a fixed unknown rate, the additive response j-s made sense to these teachers. 

Another teacher drew a velocity versus time graph and thought of the total distance 

traveled as the area under the curve. They named the areas “j” and “s” so that the distance 
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between them was equal to “j-s”. Some teachers appear to solve the problem for one 

second intervals of time (see Figure 12).  

 

Figure 12. A Teacher's Response to Relative Rates. © 2014 Arizona Board of Regents. 
Used with Permission. 
 
 Figure 12 shows one consequence of having an additive meaning for rate of 

change (“1 unit of distance for each 1 unit of time”). For those with an additive meaning, 

speed is the distance travelled in a 1-unit interval (i.e. chunk) of time as opposed to the 

relative size of the measure of distance travelled and the measure of elapsed time to travel 

that distance. In teacher responses to other items, interviews, and in the literature, we also 

noticed teachers using the formula d = rt without considering quantitative relationships 

that this formula entails, and therefore expected to see a product as part of the answer 

(Bowers & Doerr, 2001). Table 7 Presents the Results for Relative Rates by Major. 

Table 7. Responses to Item Relative Rates. 

Response Math Majors Math Ed Majors Other Majors Total 
j/s times (e) 18 21 30 69 
j/s more (c) 4 8 8 20 
j-s (a) 36 44 56 136 
j*s (b or d) 2 6 9 17 
Other 2 2 3 7 
 No response 1 0 0 1 
Total 63 81 107 250 
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The majority of the 250 teachers (54%) inappropriately use an additive model (j-s) of a 

situation that requires a multiplicative comparison. Moreover, only 27% of teachers gave 

the highest-level response that used multiplicative language as well as a multiplicative 

comparison. Teachers with math or math education degrees were not more likely to give 

a high level response. There is no evidence of a relationship between response and degree 

type ( χ 2 (8,n = 249) = 2.63, p = 0.955) . The teacher without a response to Relative Rates 

was excluded from the Chi-square analysis.  

The Item Meaning of Over 

 One way of coping with an underdeveloped meaning of rate of change is to make 

use of key words. The word “over” often refers to division and cues the use of slope or 

rate of change formulas. These patterns in usage allow teachers to choose the operation of 

division and solve many problems correctly without conceptualizing rate of change as a 

multiplicative relationship between changes in two quantities. The responses to the item 

Meaning of Over reveal teachers’ tendencies to be cued by the word “over” to 

inappropriately model an additive situation with division instead of subtraction (See 

Figure 13). 
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Figure 13. The Item Meaning of Over. © 2014 Arizona Board of Regents. Used with 
Permission. 
 

 Thompson (2015) first presented results to this item to illustrate our methodology 

for writing items that reveal teachers’ meanings. Here, we use it to demonstrate that most 

teachers’ meanings for rate did not allow them to write an additive model instead of 

multiplicative model for the statement. This article reports additional teacher responses 

not presented in Thompson (2015), additional interview data, scores based on a refined 

rubric, and new examples of teacher work. 

 Rubric Part A for Meaning of Over. The Aspire team scored responses using a 

rubric designed to distinguish between the meanings of “over” as during and as divide 

(See Table 8). The highest level response to Part A was “during” or a response that 

referred to the passage of time. We scored responses that conveyed the meaning of over 

as “elapsed time” or “amount of time” at level A2. Responses at level A1 conveyed that 

“over” meant division. Responses conveyed this meaning in a variety of ways including 

words such as ratio or using mathematical symbols for division. We scored some 

responses at Level A0 because the teacher did not write a meaning for the word “over.”  
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Table 8. Rubric for Part A of Meaning of Over. © 2014 Arizona Board of Regents. Used 
with Permission. 
Level A3 
Response: 

The response conveys that “over” means “during,” or otherwise 
refers to the passage of time while the culture’s mass is changing.  

Level A2 
Response: 

The response conveys the meaning of “over” as the equivalent of 
“elapsed time” or “amount of time”. 

Level A1 
Response: 

The response conveys that “over” means division, i.e. “a over b” 
means “divide a by b”. 

 

 Rubric Part B for Meaning of Over. Part B asked teachers to rewrite the 

sentence in mathematical notation. The scoring rubric focused on whether the teacher 

wrote a difference or a quotient (See Table 9).  

Table 9. Rubric for Part B Meaning of Over. © 2014 Arizona Board of Regents. Used 
with Permission. 

The highest-level responses represented a difference and took into account the passage of 

time in some way (See Figure 14).  

Level B3 
Response: 

Any of the following: 
− The teacher represented the difference of 4 grams in the 

culture’s mass at beginning and end of a time period. If the 
response contains a variable other than m or y to stand for mass, 
it must be defined. 

− The teacher presented a graph whose symbolic equivalent would 
fit the first bullet. 

Level B2 
Response: 

Any of the following: 
− The teacher represented a change in the culture’s mass, but does 

not refer to the passage of time. 
− The teacher wrote a quotient that is equivalent to representing a 

change in mass (e.g., ∆m /∆x =4/∆x or m/∆t = 4/∆t). 
Level B1 
Response: 

The response does not fit Level B2 and contains a quotient or an 
algebraically equivalent statement (e.g.,   m Δx = 4,    m = 4Δx ).  
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Figure 14. Two High-level Responses to Meaning of Over. 

 Some teachers did not incorporate the passage of time into their responses and 

gave answers like ∆m = 4 grams. These responses were scored at level B2 and 

considered to be mathematically acceptable, but less productive for a student than level 

B3 responses. 

 We scored the response 
Δmass
Δx

= 4  at level B1.  There were many variations of 

this response that included additional mathematical errors such as responding “mass/time” 

The response in Figure 15 was considered B1 with a mathematical error because the 

response confounded mass with change in mass and used function notation 

inappropriately. 

 

Figure 15. Part B Response to Meaning of Over Scored at B1. 

 Some responses included division as well as a level B2 answer (See Figure 16).  
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Figure 16. Example of Part B Response to Meaning of Over that Fits Both Levels B1 and 
B2. 
We scored responses that fit multiple levels at the lower level because students would be 

confused if the teacher represented the same statement with and without division. The 

teacher who gave the response in Figure 16 did not appear to be perturbed by the 

contradictory equations. We scored responses such as f(x) = 4 at Level B0 because they 

were neither mathematically acceptable nor described by another level.  

 Results for Meaning of Over.  

Table 10 shows the distribution of responses to Part A and Part B. One hundred thirteen 

(113) out of 251 teachers (45%) gave the high-level response of “during” or equivalent.  

Table 10. Responses to Part A and Part B for Meaning of Over 1 

Response B3 
“subtraction” 

B2 
∆m=4 

B1 
“divide” 

B0 
“Other” 

NR/IDK Total 

A3 
“during” 

12 6 46 40 9 113 

A2 1 1 14 15 2 33 
A1 
“divide” 

0 4 67 0 0 71 

A0 1 1 6 5  13 
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NR/IDK 1 0 0 0 20 21 
Total 15 12 133 60 31 251 

 

Table 10 also shows that 71 of 251 teachers (28.3%) said that “over” means division. 

This is not surprising, because “over” frequently means division in textbooks. However, 

it is surprising that only 18 of 113 teachers (15.9%) who said that “over” means during 

also represented a change in mass, and that 46 of 113 teachers (40.7%) who said that 

“over” means during used division to represent the statement symbolically. The latter 

teachers’ meanings for quotient did not contradict their notion of duration even though 

one concept is multiplicative and the other is not. We interpret this to mean that these 

teachers’ meaning for quotient is not multiplicative, but instead is a symbol used to 

separate two numbers that happen in connection with each other. For them, the concept of 

“duration” did not conflict with their non-multiplicative meaning for quotient. 

Furthermore, 40 out of 113 teachers (35.3%) who appropriately described over as 

meaning “during” gave a mathematically unacceptable, level zero response when they 

attempted to represent the sentence symbolically.  

 Many responses to the item Meaning of Over conveyed that the vinculum in r = 

d/t was loosely connected to the idea of comparing the relative size of two quantities in 

the teachers’ mind. The response from the teacher Naneh in Figure 17 conveyed that the 

word “over” was part of the definition of slope, “change in y over change in x,” and thus 

meant division. Naneh’s work suggests that she translated each aspect of the sentence to 

mathematical symbols using key words. For example she seems to have written “∆x=4” 

as a direct translation of the last four words of the sentence. This translation does not take 
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into account that, in the context of the complete sentence, ∆x refers to an unspecified 

interval of time. 

 

Figure 17. Response to Meaning of Over which Conveys "Over" is a Key Word 
Indicating Division. 
 

The marks Naneh made suggest strongly that she parsed the statement as (The change in) 

(the culture’s mass over the time period ∆x) (is 4 grams). Other teachers parsed it as (The 

change in the culture’s mass) divided by (the time period ∆x) is 4 grams. The only way 

for a teacher to avoid either reading is to constrain himself by the fact that the result is 

four grams, and not four grams per time unit.  

 Notice that in Part B of Figure 17, the teacher’s symbolic expression equates a 

quotient of two extensive quantities with four grams. We interviewed more than one 

teacher who had mismatched units and some were bothered by the mismatch and some 

were not. When a teacher’s meaning for slope is primarily focused on the change in y, it 

allows room for him to understand the statement “∆mass / ∆time = 4 grams” 



 

52 

unproblematically. To teachers like this, the vinculum does not mean a measure of 

relative size of changes. Rather, the vinculum means that mass changed and time changed. 

 There is no evidence that having a math or math education degree made it 

significantly more likely that teachers represented the textbook’s statement appropriately

. 

The Item Slope from Blank Graph  

It is possible to know the formula for slope and be unable to estimate a slope from 

a blank graph with same-scaled axes. If a student or teachers’ meaning for slope is the 

numerical change in y in relation to a change of one in x, they will need numbered axes to 

determine the changes in y and x. The Aspire team designed the item, Slope from Blank 

Graph in Figure 18 to see whether teachers could use a meaning of slope as a relative 

size of changes in y and changes in x to estimate a numerical value of slope given a graph 

without labeled axis. We believe that if a teacher “understands the quotient ∆y/∆x as the 

measure of ∆y in units of ∆x, then [he or she] can decide to estimate the numerical value 

of m simply by physically measuring ∆y using ∆x as a unit” (P. W. Thompson, 2015, p. 

443). 

(χ 2 (8,n = 250) = 9.756, p = .282)
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Part A. There are two quantities P and Q whose values vary. The measure of P is y and 
the measure of Q is x. y and x are related so that y = mx + b. The graph of their 
relationship is given below, with x and y in the same scale. What is the numerical value 
of m?  
 

 
Part B. What would be the numerical value of m if the y-axis were stretched so that the 
distance between 0 and 1 is 2 times as large as the original? 
Figure 18. Item Named Slope from Blank Graph. Diagram is Larger in Actual Item. © 
2014 Arizona Board of Regents. Used with Permission. 
 

Thompson (2015) designed Part B to reveal teachers who compared the relative 

lengths of the sides of a triangle without thinking about the quantities that those lengths 

represent. Rescaling the y-axis would not change the relationship between the measures 

of the quantities P and Q and so the slope would remain unchanged even though the 

vertical leg on the triangle would be longer. The relative magnitude of the legs of the 

triangle would be unchanged because when the distance between 0 and 1 on the y axis is 

twice as large, the graphical unit of measure in the y-direction becomes twice as large as 

well, so the actual measure of the change in y remains constant. 

Thompson (2015) reported 96 teacher responses to this item from a pilot sample. 

52% of the teachers in his sample gave an approximation of slope between two and three. 

Thompson noted that 90% of the teachers who gave a reasonable estimate in Part A of the 

relative size of ∆y and ∆x answered “half” or “double” in Part B. He concluded that “this 

suggests that though they understood slope to be about relative size, they compared side-

lengths of a triangle and not what those lengths represented” (Thompson, 2015, p. 444). 
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This paper provides additional teacher responses as well as a discussion of a similar item 

administered to calculus students.  

 Rubric and results Parts A and B Slope from Blank Graph. The Aspire team 

scored the responses to Part A using the rubric in Table 11. 

Table 11. Rubric for Part A Slope from Blank Graph. © 2014 Arizona Board of Regents. 
Used with Permission. 

If a teacher said the slope was y/x instead of ∆y/∆x the response was marked as 

“confounding y with ∆y” in an additional scoring column and the mistake was ignored in 

the assignment of rubric level for Part A. We considered the distinction between y and  

∆y important because Thompson (1994b) observed that his students who failed to make 

this distinction struggled to understand the relationship between accumulation and rate of 

change. Teachers who gave estimates outside of the range two to three provided a variety 

of reasons; their reasons were generally mathematically invalid. We scored responses to 

Part B using the rubric in Table 12. 

Table 12. Rubric for Part B of Slope from Blank Graph. © 2014 Arizona Board of 
Regents. Used with Permission. 
Level B3 
Response:  

Any of following: 
− The teacher wrote that the value of m is the same as in Part A 

without explanation. 

Level A3 
Response: 

Any of the following: 
− The teacher estimated a value between 2 and 3 (i.e. gave a number in 

the closed interval [2, 3]). 
− The teacher gave an explanation that includes a meaning of slope 

beyond a formula, such as “the change in y is 2.5 times as large as the 
change in x.” 

Level A2 
Response: 

Any of the following: 
− The teacher solved for m in y = mx + b, getting m =  (y–b)/x. 
− The teacher wrote a mathematically valid formula that could be used to 

determine the value of the graph’s slope and did not estimate the 
slope’s value. 

Level A1 
Response: 

The teacher gave an estimate for the slope smaller than 2 or larger than 3. 
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− The teacher’s response suggests that he or she thought that the 
relative magnitude of changes in y and changes in x does not 
change.  

Level B2 
Response: 

The teacher did not know whether the question meant that the y-axis only 
is rescaled or the y-axis and the triangle are both rescaled. 

Level B1 
Response: 

Any of the following: 
− The teacher wrote that the slope would be half of the value in part 

A.  
− The teacher wrote that the slope would be double the value in 

part A. 
− The response explains that the triangle, as a geometric object, did 

not change. 
 

Note that is possible to give a high level response to Part B and a low level 

response to Part A. For example, a teacher might say that the slope is “m” in Part A and 

say the slope is still “m” in Part B. This teacher is unlikely to understand that the relative 

magnitude of changes in y and changes in x is invariant when the graph is stretched. Thus, 

responses to Part A and Part B must be considered together to identify teachers’ 

meanings (See Table 13).  

Table 13. Results on Parts A and B of Slope from Blank Graph. 

Response B3 
“same” 

B2 B1 
“half/double” 

B0/IDK No 
Response 

Total 

A3 “2 to 3” 6 2 24 1 0 33 
A2 
“formula” 

10 1 47 13 0 71 

A1 0 0 4 1 0 5 
B0/ IDK 2 0 4 9 0 15 
No Response 0 0 0 0 32 32 
Total 18 3 79 12 32 158 

Thirty-three out of 158 the high school teachers estimated a value of the slope 

between two and three. We only have 158 responses to this version because we modified 

the item to clarify Part B after Summer 2015 pilot testing. Consistent with findings 

reported by Coe (2007) and Stump (2001) is not surprising that almost half (71 out of 



 

56 

158) of the teachers provided a symbolic formula for slope. In addition to categorizing 

responses with the rubric we also noted whether the teachers’ formula on Part A was of 

the form ∆y/∆x or y/x. We found that 39 out of 158 high school mathematics teachers 

confounded the change in a quantity’s value with the quantity’s value on Part A. The 

prevalence of this mistake across items suggests that many teachers’ quantitative 

meanings for slope do not involve the comparison of changes.  

Seventy-two percent (72%) of teachers who indicated a value of slope between 

two and three said that the slope would be either halved or doubled when the graph was 

resized. These teachers were able to compare the relative sizes of the legs of the triangle 

in Part A. In line with Thompson’s (2015b) hypothesis, teachers’ Part B responses 

suggest they were not thinking about the quantities those lengths represented and how a 

change in the graph would (or would not) affect the measures of those quantities 

 Item validation for Slope from Blank Graph. It is possible that some of the 71 

teachers who gave a formulaic response (Level A2) to Part A would have been able to 

estimate the slope had they been pressed to do so by an interviewer. However, even when 

asked for a numerical value for slope their tendency was to give a formula. We 

considered rewriting the item to make it clearer we were asking for a numerical value, but 

we wanted teachers to be free to express the meanings they might convey in teaching. In 

six item interviews we asked teachers and calculus students what “numerical value” 

meant and everyone we asked responded that we meant a number, not a formula. For 

example, one calculus student said the question asked her “To actually find a number, but 

I don’t know how I’m going to do that right now.” 
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 As further evidence that estimating slope is truly problematic, calculus students 

were asked to “estimate a numerical value of slope” on a course test, after their 

instructors discussed in class how to estimate slope given a graph with blank axes scaled 

identically.  

 

Figure 19. Item Given in a 2014 Calculus Test. © 2014 Arizona Board of Regents. Used 
with Permission. 
 

Only 96 of 170 students answered the item correctly after explicit instruction on 

the topic. Fifty-nine picked choice (a). In this item on the calculus test, the answer 

choices clearly show what a numerical value means. The student version of the item used 

the word “estimate” explicitly which suggests students truly do not think slope can be 

estimated without numerical values. Our data on Slope from Blank Graph leads us to 

suspect that these students’ secondary teachers had a propensity to convey formulaic 
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meanings for slope instead of measurement meanings, which then contribute to the 

calculus students’ difficulties with their version of this item. 

The calculus students’ most common incorrect response was (a). Choice (a) said 

that “it is impossible to estimate the slope without numbers, and that m is decreasing.” 

The statement “m is decreasing” is mathematically incorrect. We added this statement to 

the distractor “it is not possible to determine the slope” so that students with a productive 

meaning for slope would not be tempted to pick choice (a) because it is not possible to 

precisely estimate slope from an unlabeled graph. The statement “m is decreasing” 

confounds the values of y decreasing with the slope decreasing. Not noticing the problem 

with “m is decreasing” is consistent with an additive meaning for slope that is related to 

the change in y values.  

The Item Increasing or Decreasing from Rate  

The Aspire team designed the item Increasing or Decreasing from Rate to require 

teachers to differentiate between the idea of an increasing rate of change and an 
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increasing mass (See Figure 20). 

 

Figure 20. Item Named Increasing or Decreasing from Rate. © 2014 Arizona Board of 
Regents. Used with Permission. 
 

The purpose of Parts B and C, displayed on the page after Part A , were to 

minimize the possibility that teachers picked the incorrect choice (a) just because they did 

not realize the graph was a rate of change function, or fell into the trap of thinking that an 

increasing graph corresponded to an increasing mass. For example, some pre-service 

teachers we interviewed initially answered (a) then switched their answers fairly quickly 

after seeing part (b). Although the concrete context of mass and time was quite similar to 

the item Meaning of Over the use of a graphical context led to different types of 

problematic responses. One obvious mistake that we expected some teachers to make was 
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to treat an increasing rate of change of mass with respect to time as the same idea as an 

increasing mass. 

In interviews some teachers showed a persistent difficulty with the item due to 

their meanings for rate of change. If someone considers slope to be the change in y, it is 

more difficult to differentiate between an increasing bacteria count and an increasing rate 

of change of bacteria. In some teachers’ mind the rate of change of bacteria and the 

amount of bacteria are both extensive quantities directly tied to the number of bacteria. 

The secondary teacher Annie identified the function as a rate of change function but still 

lapsed into thinking about the graph as if it were a mass versus time graph in the middle 

of the explanation. (See Excerpt 1). 

Excerpt 1. Annie's Explanation of Increasing or Decreasing from Rate. 

[The teacher reads problem aloud, emphasizes grams/hour.] 
We interpret increasing .. umm…let’s see the function gives the rate of change in 
grams per hour… and so  umm…what we are going to look at I would look at the 
rate of change being positive or negative, if we have a positive rate of change the 
grams per hour the mass is increasing per hour, is getting larger, so I look at 
where I have a positive rate of change, and I try to identify where I have no rate of 
change [highlights maximum where the rate of change is a approximately positive 
5, but the acceleration is zero], this is telling me where the mass is staying the 
same, and then I have a negative slope so mass is getting small down to a zero 
rate of change so I’m not getting any smaller or larger… 
[Teacher determines the intervals from choice (a)] 
 
Interviewer: So just a little bit ago you said on the interval from 0 to 1.25 you said 
the change in the rate of change was positive.  
 
Annie: Positive, right. 
 
I: So the change in the rate of change of the bacterial culture’s mass was 
increasing, so that meant that the mass was increasing as well? 
 
A: Right, right. 
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I: What is this a graph of again? 
 
A: This is a graph of the rate of change of the culture’s mass as time progresses. 
 
I: So what would, so here we have a clear point. [teacher interrupts interviewer] 
 
A: So think calculus here… my rate of change is positive…oh geez, I can’t 
believe I did that, you are making me think here. The change in the rate of change 
is positive, because again what I’m seeing is grams per hour, so from 0 to 3 
[mutters, geez, I can’t believe I did that ] my rate of change is positive, even 
though it looks like it is decreasing, well, it is decreasing but it is still positive. 
From 0 to 3 I have a positive grams per hour, from 3 to 7 I have a negative grams 
per hour, and then I have a positive grams per hour again.  
 

Annie was not the only teacher who brought in the notion of the change of the rate of 

change into the discussion and ended up having difficulties interpreting the graph.  

 Table 14 shows the results on Increasing or Decreasing from Rate.  

Table 14. Results for Part A and Part C on Increasing or Decreasing from Rate. 

 Response to Part A 
 
 
 
 
 
 
Response 
to Part C 

 Chose 
(c) on 
Part A 
 

Chose (a) 
on Part A 

Chose 
(b) on 
Part A 

Other/ 
IDK 

Blank  Total 

Chose (c) on 
Part C 

86 35 0 3 0 124 

Chose (a) on 
Part C 

1 77 0 1 0 79 

Chose (b) on 
Part C 

0 3 11 1 0 15 

Other/IDK 0 2 0 17 1 18 
Blank  0 0 0 0 1 1 
Total 87 117 11 22 2 239 

Eighty-seven out of 239 (36.4%) teachers chose the highest level answer, (c) on 

Part A. After being prompted to examine the meaning of a point on the graph 

approximately half (51.8%) of teachers chose the highest level answer. 
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Table 15 shows that there were 25 out of 239 (10.4%) teachers who were able to 

correctly interpret the meaning of a point on the rate of change graph who did not select 

(c) for a final answer. This suggests that although they were aware of the axes labels their 

meaning for graphs and rate of change was insufficient to select (c). Additionally, 29 

teachers struggled to explain the meaning of a point, but were still able to choose (c).  

Table 15. Responses to Part B and Part C on Increasing or Decreasing from Rate. 

  Response to Part B 
  Correct 

Meaning 
of Point 

Incorrect 
Meaning of 
Point 

Blank 
/IDK 

Total 

 
 
Response to 
Part C 

Chose (c) on 
Part C 

95 29 0 124 

Chose (a) on 
Part C 

16 60 3 79 

Chose (b) on 
Part C 

5 10 0 15 

Other/ IDK 4 13 3 20 
Blank  0 0 1 1 
Total 120 112 7 239 

 

Descriptions of teachers’ thinking from qualitative studies helps us hypothesize 

reasons for the teachers’ difficulties (Coe, 2007; P. W. Thompson, 1994b). Teachers who 

consider slope as an index of slantiness and not as a comparison of two changes could 

relate the word “increasing” with a graph that is slanted up. Understanding the distinction 

between the rate of change of bacteria and the amount of bacteria makes this problem 

sensible. The tendency to speak of slope additively makes it more difficult to distinguish 

between a rate of change and an amount of change. Confounding an amount of change of 

a quantity with an amount of the quantity was common among the teachers in our study. 

Taken together, these fuzzy ways of thinking about rate as an amount of change, and of 
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an amount of change as an amount, makes it difficult to understand the relationship 

between a rate of change graph and an amount graph. The graphical context of the item 

also could lead many teachers to consider the shape of the graph instead of the quantities 

that covaried to make it (Moore & Thompson, 2015).  

LOOKING ACROSS ITEMS 

 In this section we look across items for consistencies and inconsistencies in 

teachers’ meanings and ways of thinking about slope and rate of change. We used tables 

of values, interviews, and teachers’ written work to understand their multi-faceted 

meanings for rate of change. We remind the reader that a teachers’ responses might 

convey a stable meaning that they use across items, or, different meanings if they have 

multiple ways of thinking about (what we take as) related items. The high level meanings 

on each rubric are related to an image of rate of change as multiplicative comparison of 

associated changes in two quantities. The lower levels of the rubric arose from grounded 

coding of teachers responses and are not necessarily consistent across rubrics. For 

example, a teacher might make sense of one item about a bacteria culture’s mass by using 

a key word and another item about a bacterial culture’s mass by focusing on the shape of 

the graph.  

Relationship between Measurement Responses and Rate of Change Responses 

 Coe’s (2007) interviews suggested that teachers’ meanings for rate of change are 

not tightly linked to their measurement schemes. This section investigates the hypothesis 

that teachers with weak measurement schemes will have difficulty constructing 

multiplicative meanings for slope and rate—meanings that are based on each as a 

measure of the relative size of a change in one quantity and a change in another.  
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We use teachers’ responses to Gallons to Liters and Nerds to Raps (Figure 4 and 

Figure 5) as a way to quantify the strength of their measurement schemes. These items 

required teachers to convert between two units given a conversion factor. Our earlier 

analyses separated low level responses into multiple levels to attribute meanings to 

various types of response. In this analysis we will group all low level responses to 

Gallons to Liters and Nerds and Raps into one category to simplify our tables. Ten of the 

251 teachers left Gallons to Liters blank but answered Nerds to Raps. We replaced their 

score of “No response” with a zero (low-level) because teachers had ample time to 

complete the test so missing data was rarely related to time constraints. We know this 

because teachers were instructed to write “no time” on their test if they ran out of time for 

a question.  

 Relative Rates versus measurement responses. Table 16 shows the relationships 

between teachers’ success on two measurement items and the item Relative Rates. The 

responses to Relative Rates are ordered so that the highest level meaning is at the top of 

the column. 

Table 16. Response to Relative Rates Versus Number of Measurement Items Correct. 

 Number of Correct Responses to Two Measure Items 
 2 Correct 

Responses 
1 Correct 
Response 

0 Correct 
Responses 

Total 

j/s times (e) 20 24 25 69 
j/s more (c) 2 7 11 20 
j-s (a) 29 55 53 137 
Other 2 2 20 24 
 No response 0 0 1 1 
Total 53 88 110 251 
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Thirty-eight percent (20/53) of teachers who answered two measurement items correctly 

score at the highest level on Relative Rates. Twenty-three percent of teachers who 

answered zero measurement items correctly score at the highest level of Relative Rates. 

There is a statistically significant association between the number of correct answers to 

measurement problems and responses to Relative Rates (Spearman’s Rho = 0.16). 

Responses to these two simple measurement questions are more strongly associated with 

response to the rate of change item than with whether or not the person has a math degree 

or a random degree.  

 Slope from Blank Graph versus measurement responses. Table 17 compares 

teachers’ tendency to measure a change in y in terms of a change in x to their success on 

two measurement items. 

Table 17. Responses to Slope from Blank Graph Part A Compared to Number of 
Measurement Items Answered Correctly. 
 

 Number of Correct Responses to Two 
Measure Items 

2 Correct 
Responses 

1 Correct 
Response 

0 Correct 
Responses 

Total 

Estimate “2 
to 3” 

14 11 8 33 

A2 
“formula” 

16 22 33 71 

A1/A0/IDK 2 4 16 22 
No Response 7 12 13 32 
Total 39 49 70 158 

 

Scanning the columns of Table 17, we see that 35% (14/39) of teachers who answered 

two measurement items correctly estimated an appropriate numerical value for slope 

between two and three. Only 5% (7/39) of teachers who answered two measurement 
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items correctly said something incoherent on Slope from Blank Graph (Levels 

A1/A0/IDK). In contrast, only 11.4% (8/70) of teachers who answered both measurement 

questions incorrectly estimated the slope of a line by measuring ∆y in units of ∆x. 

Although some teachers with two incorrect responses on the measure items provided 

acceptable formulas for slope without a numerical estimate, 22.9% (16/70) said 

something mathematically incoherent about the slope of the line. The association between 

responses to Slope from Blank Graph and responses to the two measurement items is 

statistically significant (Spearman’s Rho = 0.19). This result is consistent with the 

hypothesis that being able to imagine a measurement process was a key idea for 

estimating slope from a graph with blank axis.  

 Increasing and Decreasing from Rate versus measurement responses. Table 18 

compares teachers’ success on two measurement items with the strength of their 

interpretations of a rate of change function. There are only 239 teachers in this table 

because one group took a shorter version of the MMTsm that did not include Increasing 

or Decreasing from Rate.  

Table 18. Comparison of Response to Part A of Increasing and Decreasing from Rate to 
Number of Measurement Items Answered Correctly. 

 Number of Correct Response to Two 
Measure Items 

2 Correct 
Responses 

1 Correct 
Response 

0 Correct 
Responses 

Total 

Choice (c) on 
Part A 

30 34 23 87 

Choice (a) on 
Part A 

19 42 56 117 

Choice 
(b)/Other/IDK 

4 9 21 34 

Blank  0 0 0 0 
Total 53 85 101 239 
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Fifty-seven percent of teachers who answered two measurement items correctly 

interpreted the rate of change function and its relationship to the amount function on the 

first try (choice c). Twenty-three percent of teachers who answered zero measurement 

items correctly gave the highest-level answer on their first try. There is a statistically 

significant association between number of measurement items correct and responses to 

Increasing or Decreasing from Rate (Spearman’s Rho = 0.28) 

 Meaning of Over versus measurement responses. The hypothesis that strong 

measurement meanings are associated with differentiating between additive and 

multiplicative situations is consistent with the results of Meaning of Over. Table 19 

shows the relationship between responses that model the textbooks’ statement as a 

difference and the number of correct responses to measurement items. 

Table 19. Meaning of Over Responses Versus Number of Correct Responses to Measure 

Items. 

 Number of Correct Response to Two Measure Items 
 2 Correct 

Responses 
1 Correct 
Response 

0 Correct 
Responses 

Total 

B3: difference 7 5 3 15 
B2: ∆m = 4 2 5 5 12 
B1: divide 32 49 52 133 
B0/IDK 9 23 39 71 
No response 3 6 11 20 
Total 53 88 110 251 

 

Thirteen percent of teachers with two correct measurement responses interpreted the 

textbook’s statement appropriately using a difference. Only three percent of teachers with 

zero correct measure responses appropriately interpreted the textbook’s statement.  
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There is a statistically significant association between number of measurement items 

correct and high-level responses to Meaning of Over (Spearman’s Rho = 0.19).  

 Responses that suggest teachers did not imagine measures of quantities, are 

associated with responses that indicate incoherence in their rate of change schemes. 

Understanding rate of change as a measure of the relative magnitudes of two quantities 

can be used in many contexts. Other meanings for rate of change are productive in 

limited contexts. Teachers who do not apply foundational measurement meanings to 

understand rate of change are more likely to address varied rate of change situations with 

various unproductive meanings.  

 Conclusions about measure and rate of change items. By comparing teachers’ 

responses to measurement items and rate of change and slope items we determined that 

stronger responses to measurement items are correlated with stronger responses to slope 

and rate of change items. Correlations support the hypothesis that meanings for 

measurement ideas are foundational for productive rate of change meanings. It should be 

noted that an observational study cannot show that teachers developed more productive 

rate of change meanings because they had stronger measurement schemes. It is 

interesting that teachers’ responses to two middle school items was more predictive of 

their rate of change meanings than holding a degree in mathematics or mathematics 

education. 

Limitations of Chunky, Additive Meanings for Slope and Rate of Change 

Interviews and in-depth analysis of individual teachers’ responses illuminated 

ways in which chunky, additive meanings for rate and slope proved problematic for them. 

For example, only 25% of teachers who conveyed chunky meanings for slope on 
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Meaning of Slope estimated the relative size of changes on Slope from Blank Graph. 

Three of the 28 teachers who gave a memorized meaning for slope on Meaning of Slope 

estimated a numerical value for slope. Even though computational and chunky meanings 

for slope can work in many settings that demand no greater understandings, these 

meanings disabled most teachers from estimating a numerical value of slope on a blank 

graph. 

 Slope is the change in y. Teachers often expressed similar ways of thinking on 

more than one item. On Meaning of Slope some teachers confounded ∆y with slope. 

Kristen’s Part A response in Figure 21 is consistent with thinking that slope gives 

information about how to move vertically and horizontally on a graph. Kristen conveyed 

a chunky meaning for slope because the changes occur in chunks of one and 3.04.  

 

Figure 21. Kristen’s Chunky Response to Part A (Left) and Part B (Right) of Meaning of 
Slope. 
 

The Part B response in Figure 21 provides confirmation that, for Kristen, 3.04 is more 

strongly associated with the change in y than with a comparison of the relative size of 

corresponding changes in y and x. The response in Figure 21 foregrounded the change in 

y and kept the change in x in the background. We suspect that some chunky thinkers 
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understood the difference between ∆y and ∆y/∆x, while some confounded the two 

concepts. 

 Martha’s Part A response in Figure 22 was scored at level A1 because it is formulaic 

and conveys slope as an index of steepness. Martha’s Part B response conveys that the 

slope is strongly associated with the change in y instead of the relative size of associated 

changes—Martha focused on how y would change, not on the meaning of 3.04. This is 

similar to Castillo-Garsow’s (2012) observations about a student who focused on the 

change in output while time passed in the background. 

 

Figure 22. Martha’s Response to Part A and Associated Chunky Part B Response to 
Meaning of Slope. 
  
 Bren’s response (Figure 23) provides yet another illustration that thinking of slope 

as the change in y with respect to a change of one in x makes it difficult to estimate slope 

numerically. Labeling the change in y as m conveys that slope is not a comparison of two 
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changes, but rather the change in y that is associated with a one unit change in x. 

 

Figure 23. Bren’s Response that Conveys that Slope is the Change in y. 

On Part B Bren did not appear to answer the question. He appeared to associate the 

straight line with a constant slope. It appears that Bren understood that for any change of 

x of 1, the length of m (∆y) stayed the same. The slope of the line does not change as x 

varies. However, “slope is constant” does not make sense as an explanation for why m 

does not change when the axis are stretched.  

 Inability to estimate slope is one of the potential consequences of teaching the 

additive or formulaic meanings for slope that were frequently conveyed in the item 

Meaning of Slope. Estimating slope is extremely useful in a variety of situations such as 

checking answers or drawing graphs of a derivative given the graph of the original 

function. 

 Slope is the distance between two points. Chunky thinking leads to a variety of 

problems beyond confounding ∆y with ∆y/∆x. Nari’s chunky responses conveyed that the 

only points on the line that “mattered” were the points obtained by the process of moving 



 

72 

over and up in fixed chunks (see Figure 24). Nari’s response is inconsistent with 

imagining that between any two points on the line there are infinitely many points.  

 

Figure 24. Nari’s Chunky Response to Meaning of Slope Conveys that the Points on the 
Line Only Occur at Fixed Intervals.  
 

There are a variety of consequences of thinking that points on the line only occur 

at fixed intervals. If points only occur at fixed intervals it is possible to conceptualize 

slope as the distance between two points on a line. Andy explicitly said that the slope is a 

distance between two points (see Figure 25). 

  

Figure 25. Andy’s Additive Response to Meaning of Slope Conveys that Slope is a 
Distance Between Two Points. 
 

The response in Figure 25 conveys that slope gives directions on how to get from 

one point to the next and that 3.04 is a distance. Unfortunately, Andy’s meaning for slope 
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as distance overpowered the visually obvious fact that the hypotenuse of the triangle is 

longer than either leg. We suspect that Andy’s meaning for slope as distance is stable 

because he had taught algebra 1 five times, algebra 2 twice, and geometry three times. 

Andy had explained slope hundreds of times without realizing the inconsistency in his 

meanings. 

 The tendency to disconnect the meaning of slope from a quantitative meaning for 

division, reported by Coe (2007), is a potential explanation for viewing slope as a 

distance. For example, Daniel, a university calculus student we interviewed on Meaning 

of Slope as part of its rubric’s validation, explained his meaning for quotient using a 

diagram that shows two segments whose lengths were labeled A and B. He explained that 

“A divided by B” means “the amount of A’s that would fit into B” and “B divided by A” 

means “the amount of B’s that would fit into A”. Daniel then responded to Part A of 

Meaning of Slope by writing   y2 − y1( ) x2 − x1( ) . Excerpt 2 contains Daniel’s explanation 

of the meaning of 3.04.  

Excerpt 2. Daniel Explained his Meaning for Slope of 3.04. 

Daniel: So the 3.04 is the slope between these two. So that is basically the change 
between the two. 
 
Interviewer: When you say the change between the two, what are the two things 
you are talking about? 
 
D: The two different points. The points. [Daniel and interviewer clarify that the 
student computing the slope had two points, but that they are not given in the 
problem but we can imagine them.] 
 
I: When you say the change between the two are you talking about the length 
between the two points on this piece of paper? 
 
D: Yeah. It would be the length between these two [Daniel highlights 
hypotenuse.] 
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I: So the slope is the length between the two points.  
 
D: Right.  
 
I: Okay. So why do you divide the change in y and the change in x to get a length? 
D: Because, it’s… you’ve got the one x here and the other one here and so you are 
trying to find the way which they both get to each other basically. That’s… 
 
I: Okay. [Daniel laughs] Is that at all related to seeing how many B’s fit into A or 
is that like a separate thing in your brain? 
 
D: If you are doing the slope it’s different, I guess, I’m seeing it different in my 
brain, I guess it is because of the word slope gave this a different meaning.  
 
I: What does the bar in between them mean to you? 
 
D: I just… divide [laughs] 
 
I: Alright. It’s just that you were not using the how many times B fits into A 
language at all when describing the slope so that is why I was asking. 
 
D: Yeah. No, not with slope.  
 

Daniel realized that length is not a good description of slope when the interviewer drew 

multiple triangles of different sizes on the same line. The slope of the hypotenuse of each 

triangle was the same, but the lengths of the hypotenuses differed. Daniel quickly 

connected slope and division after subsequent instruction, but the meaning he carried 

from secondary school into calculus was that the meaning of division in the slope formula 

differed from the meaning of division he learned in school. A teacher who conveys an 

additive, chunky meaning for slope allows students to assimilate the teacher’s instruction 

without connecting the idea of slope of a line to the idea of a quotient of changes. They 

do not see “m/n” as a multiplicative comparison of numerator and denominator. Instead, 

they think that the numerator gives the number of steps to take in one direction and the 
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denominator gives the number of steps to take in another directions, and the vinculum 

merely separates them.  

 Teachers’ slope and rate meanings are tied weakly to quotient. Other 

interviews confirm that some teachers did not connect their meaning of the vinculum in 

formulas for slope or average rate of change with their meaning of division. We asked 

Ross, a high school math teacher, “Why do you divide to calculate the slope of the line?” 

Ross first repeated the definition of slope to himself and then explained:  

Excerpt 3. Ross's Explanation of the use of Division in the Slope Formula. 

The division can be used because we talk about the slope being the average rate of 
change and “average” is the total [taps fingers] uhh… the total of the observations 
divided by the number of observations. And then of course we have to make a 
distinction of what is… what we interpret the total observations and the number 
of observations, so if I want to talk about… i.e., for example, total distance 
traveled by some total time during the travel so umm…total distance traveled 
would be delta distance over delta time but we can also see this also as a ratio of 
the two differences.  
 

Ross thought of arithmetic mean and distance divided by time as the same idea. He made 

the common mistake of thinking that average rate of change is computed using an 

arithmetic mean (Yoon, Byerley, & Thompson, 2015). Ross made other inappropriate 

connections in a variety of situations that involve division, connecting topics superficially 

based on the appearance of the division operation. The interviewer pressed Ross to 

explain his meaning for ratio to better understand how he connected the idea of arithmetic 

mean and his inappropriate formula “total distance traveled would be delta distance over 

delta time.”  

Excerpt 4. Ross's Explanation of his Meaning for the Word "Ratio." 

The problem I’m (pause) unfortunately from the different stuff I’ve been looking 
at now, we can unfortunately use the word ratio unfortunately to mean both a 



 

76 

comparison of two different units to each other but also the terminology as a 
fraction a part to whole, there is this way we use ratio and fraction together, but 
the idea is you know, I’m just trying to get at the idea of what slope is, it is this 
ratio, for every change in this I do the change in this. The reason I don’t want to 
use the word fraction for this is because again we think of a fraction having the 
same units. You know, one fourth of a pie, two thirds of a gallon. But when I talk 
of a ratio of distance to time those are two different units. And so it’s for every 
change of this element I have a change in the other element. For every one hour, 
change of one hour I drive down the road I go an additional 65 miles down the 
road, so it is not a fractional concept like we normally think of it, it’s part to 
whole, because unfortunately when we see division you can also interpret that as 
fraction. But the fact is because we don’t have the same two units, it doesn’t fit as 
neatly with some of those notions we’ve been taught about the differences 
between fractions and ratios.  

  

Ross had been taught common meanings for ratio such as “comparison of two quantities 

with different units” and fraction such as “part out of whole.” Ross’s meanings seemed to 

hinder Ross from being able to make sense of the use of division in the slope formula as 

producing a quotient—a measure of the relative size of changes. It is possible to compare 

the associated changes in two quantities measured in different units by comparing the 

measure of one quantity and the measure of another quantity. Ross did not express an 

overarching meaning for fraction and ratio as a comparison of the relative size of two 

quantities, or the value of one quantity measured in terms of another. His meaning for 

ratio in the context of driving was chunky: “For every one hour, change of one hour I 

drive down the road I go an additional 65 miles down the road.” He talked about two 

changes happening in tandem but did not compare the relative sizes of the measures. The 

interviewer gave Ross another chance to revise his thinking about the problematic 

connection between arithmetic mean and his “delta distance over delta time” formula. 

Ross was unable to clarify his thinking and concluded, “So maybe it is kinda a mish-

mash. Maybe I put things together that might confuse the kids at times.” Although Ross 
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seemed aware of the incoherence of his responses, he did not know how to revise them. 

We believe that his foundational meanings for ratio and quotient were focused on 

tangential issues such as the comparison of two quantities with unlike units and his 

meanings did not allow him to build more complex multiplicative ideas on foundational 

ideas of measure.  

 Both Ross and Daniel struggled to connect their meanings for quotient to their 

idea of slope. Daniel thought of slope as “the change between two points” and that the 

vinculum in a slope formula served to separate vertical and horizontal changes and did 

not cue his meanings for division. Some teachers’ responses to Meaning of Over 

illustrated how Daniel and Ross might have used slope hundreds of times without 

connecting it to their meaning for quotient. The response in Figure 26 conveys that the 

vinculum in a rate of change formula merely separates the numbers that tell the teacher 

how to move on a graph.  

 

Figure 26. Response to Meaning of Over Where the Vinculum Merely Separates Two 
Numbers that Tell how Far to Move Horizontally and Vertically. 
  

Some responses conveyed that “over” meant “above” or that the word “over” referred to 

a spatial arrangement of symbols (See Figure 27).  
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Figure 27. Response to Meaning of Over that Conveys "Over" Means "Above."  

Teachers’ and students’ tendency to use non-multiplicative meanings for slope that 

downplayed the role of the quotient contributed to a variety of mathematical 

inconsistencies in their mathematical models.  

Use of Key Words for “Over” 

 One problem with the disassociation of the idea of slope and quotient is that it 

allowed teachers to comfortably model one situation in two inconsistent ways. Many 

teachers understood that the word “over” could mean duration in some contexts but still 

believed the word over should always be converted to over in symbolic contexts. Figure 

28 shows a teacher who recognized that “over” meant “during” in Part A, but who then 

apparently read “over” as meaning division when representing the statement symbolically.  
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Figure 28. Response to Meaning of Over that Conveys “Over” Means both Division and 
During. 
 

We interviewed, James, who taught algebra II, geometry, and precalculus two times each 

to better understand why someone would say over meant both during and divide in the 

same statement. First the interviewer asked James to respond to a blank version of the 

item and then asked James to analyze his initial response (See Figure 29).  
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Figure 29. James’ Initial Response to Meaning of Over. 

The Aspire team conducted the interview shown in Excerpt 5 six months after James took 

the MMTsm.  

Excerpt 5. James Discussed his Responses to Meaning of Over. 

James: [Reads question carefully aloud.] [Over means] during or duration. 
You could also think of it as a ratio, so change in mass over, yeah so 
during or duration, so in your math class when they say “something over 
something,” they always mean a divide sign so a ratio.  
 
I: Do you think they are both saying the same thing? 
 
J: Well, yeah, I think that. Well yeah, they are saying. I think the during or 
duration is more saying conceptually what is going on, and the divided by 
or over I see the reason behind that, I think I’m more pointing out 
mathematically what we mean when we say over with no explanations as 
to why, it is just the way it is.  
 
I: So is the mass, the change in mass divided by the change in time, is that 
how you write the idea of duration? 
 
J: Can you repeat the question? 
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I: Is the “delta mass divided by delta x” a mathematical way of saying 
duration? 
 
J: I want to say the change in x is the way of saying duration. I want to say 
the change in x is representing duration. But maybe we could include the 
division sign. So no, I would not say that “delta mass over delta x” is a 
way of saying duration. So this is funny.  
 
I: Okay, I think it is funny because “over” sometimes means divide and 
sometimes not. 
 
J: [James read Part B. James looked at his old answers from when he took 
the MMTsm six months earlier, found them all problematic and crossed 
them out and explained he used function notation incorrectly.] 
 
I: What would you say today? 
 
J: I like the idea of the function. I would keep the function.  
 
I: You can work it out on a paper. 
 
J: Yeah, just give me a second. The change in the culture’s mass…[pause] 
 
J: Change in mass over [divided by] change in x equals 4. That would be 
my new thing.  
 
I: Four what? 
 
J: Four grams. [James showed no discomfort with a quotient being equal 
to 4 grams.]  
 

James accepted that “over” could mean both divide and during in the same situation by 

saying that “during” is the conceptual meaning and “divide” is the mathematical meaning. 

Even though James realized that divide and duration are not expressed in the same way 

mathematically, and the interviewer confirmed that “over” only sometimes means divide 

he still used division in his symbolic representation of the statement. James did not say 

that a quotient being equal to four grams was problematic, even when the interviewer 

called attention to the units. James’s understanding that “over” always means divide 
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(because “that is just the way it is”) was so prominent he kept the division sign despite 

the inconsistencies he noticed and discussed with the interviewer. A combination of 

James’ strong association of over and division, and his lack of multiplicative meaning for 

quotient allowed him to inappropriately model an additive situation with division. 

Despite the interviewer’s interventions to help him notice the problems with his 

representation of the statement he remained confident with his response.  

 Another teacher, Samuel, recognized that his units in Part B of Meaning of Over 

did not make sense during his interview. Samuel wanted to change the textbook’s 

statement to be about rate of change by changing the units on four grams to four grams 

per unit of time. 

Excerpt 6. Samuel's Response to Mismatched Units in his Answer to Meaning of Over. 

The change in culture’s mass is 4 over the time period delta x is four grams. So 
I’m a little bothered by this right now. Yeah unless it is a mistake. [Sighs.] 
Umm… [pause] Yeah I don’t think that… I’m going to pick on the college 
science textbook, but I would say four grams per time frame is what I would 
claim that to be. 
 

Samuel concluded that either he was confused or the textbook’s statement was incorrect. 

Although dimensional analysis did perturb Samuel enough to rethink the problem, his 

conclusion was the conclusion the textbook’s statement did not make sense. He felt that 

over must represent divide and that therefore the units must be changed. 

 Taken as a whole, these teachers’ responses to multiple rate of change questions 

show that the commonly presented meanings for slope and rate of change can contribute 

to serious inconsistencies in their applications of ideas. We’ll now use tables to 

understand inconsistencies in responses across our entire sample of teachers.  
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Responses Across Rate of Change Items 

 Because most teachers approached different rate of change contexts with different 

unproductive meanings there were no strong associations between one teacher’s response 

to different rate of change items. For example Table 20 shows that many of the teachers 

who appropriately distinguished between additive and multiplicative models in Meaning 

of Over did not do so in Relative Rates and vice versa. 

Table 20. Responses to Meaning of Over Compared to Responses to Relative Rates. 

 Response to Relative Rates 
 High level 

(j/s) 
Additive (j-s) Other Total 

B3: difference 5 10 0 15 
B2: ∆m = 4 4 7 1 12 
B1: divide 45 75 13 133 
B0/IDK 26 36 9 71 
No response 9 9 2 20 
Total 89 137 25 251 

 

Forty-five of the 133 teachers (34%) who were overpowered by the word “over” in 

Meaning of Over, chose a multiplicative comparison appropriately in Relative Rates. It 

may be that the key word “over” was so strongly associated with division that they did 

not make use of the scheme that allowed them to make sense of Relative Rates. Only nine 

out of 27 (33%) of the teachers who appropriately modeled the situation in Meaning of 

Over chose the appropriate multiplicative response in Relative Rates..  

 Even though the items Meaning of Over and Increasing and Decreasing from 

Rate both involved interpretation of a situation involving the growth of a bacterial 

culture’s mass, differences the two items resulted in widely different responses from the 

same teacher. Meaning of Over had a key word commonly associated with division that 
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strongly included responses. Relative Rates had a distractor that was attractive to chunky 

thinkers. We view the responses across items show the complexity of teachers’ thinking 

and how it varies by context. The group of rate of change items does not measure their 

understanding of one aspect of rate of change, but models how they use their meanings in 

a variety of rate of change contexts. 

Table 21. Response to Increasing and Decreasing from Rate Compared to Response to 
Meaning of Over. 

 Response to Increasing or Decreasing from Rate 
 High level 

Part A (c)  
Part A, Choice 
(a) 

Other Total 

B3: difference 8 5 2 15 
B2: ∆m = 4 6 5 0 11 
B1: divide 54 57 17 128 
B0/IDK 12 40 13 65 
No response 7 10 3 20 
Total 87 117 35 239 

 

The uppermost left table entry shows that 53% of teachers who appropriately represented 

the statement in Meaning of Over properly interpreted the rate of change graph in 

Increasing or Decreasing from Rate. Similarly 42% of teachers who inappropriately 

translated “over” into division properly interpreted the rate of change graph. This shows 

that despite having difficulties determining when the key word “over” does and does not 

mean division in a situation about bacterial growth, they did properly interpret rate of 

change graphs.  

CONCLUSION 

 Taken as a whole, the responses to the rate of change items in this paper are 

alarming. On Meaning of Slope four percent of teachers described slope as involving 

multiplicative comparisons between two changes. While the many teachers who gave 
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chunky (77.6%) and formulaic (15.2%) descriptions of slope were not incorrect, we 

found substantial qualitative and quantitative evidence in our study that these additive 

and computational meanings were typically not productive in a variety of situations. 

Furthermore we found that some students and teachers with chunky and or formulaic 

meanings for slope also developed problematic meanings for slope such as that slope is 

the distance between two points on line. 

 The data demonstrates that many teachers have substantial difficulty in coping 

with rate of change and slope situations that are highly related to the secondary 

mathematics standards they are teaching. Only 20.8% of teachers estimated the slope of a 

blank graph with equally spaced axis when asked to find a numerical value of slope. 

Approximately half of teachers determined where the amount of bacteria was increasing 

given a rate of change of bacteria with respect to time graph. Ten percent of teachers used 

subtraction to model a change in mass. There is strong evidence that the teachers who 

used division instead of subtraction to model a difference were distracted by the use of 

the word over to mean during. Twenty-one percent of secondary mathematics teachers 

correctly converted between units of measure on both measurement problems. 

Furthermore there was evidence that weak understanding of measurement was correlated 

with problematic responses on all of the rate of change items. Much of the qualitative 

work done by us and other researchers suggests that secondary teachers have weakly 

developed meanings for quotient and that their meanings for rate of change and slope are 

not strongly tied to their meanings for quotient. Given the utility of comparing the 

relative size of two quantities multiplicatively in mathematics, science, medicine and 

business, we find this evidence alarming.  
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 Our sample of 251 high school mathematics teachers was a convenience sample. 

It was not selected randomly from their states or from the United States. We therefore 

cannot claim that it is representative of any specific population. However, the sample is 

large for an educational study and the teachers in it were from many regions in their 

states. We therefore feel that there is a distinct possibility that the meanings we found are 

common within the United States, and therefore that it is probable that an alarmingly high 

percentage of high school mathematics teachers, even teachers with mathematics and 

mathematics education degrees, are likely to convey problematic meanings for slope and 

rate of change that will hinder their students’ efforts to learn science and mathematics. 

We suspect that, like their teachers, students will learn to model additive situations with 

quotients and multiplicative situations with differences. We believe many students will 

develop problematic meanings such as that slope is the same idea as the change in y. We 

acknowledge immediately that these suspicions beg future research. 

 The results of our study, if they apply broadly, demonstrate a serious problem 

with U.S. high school mathematics teachers’ meanings for slope and rate of change. 

Results regarding other areas assessed by the MMTsm show that the problem is much 

broader than meanings for slope and rate of change (Musgrave & Thompson, 2014; P. W. 

Thompson et al., 2015; P. W. Thompson, Hatfield, Byerley, & Carlson, 2013; Yoon et al., 

2015). However, we urge readers not to view these results as a condemnation of teachers’ 

capabilities, but rather as pointing to a systemic, cultural problem within U. S. 

mathematics education. Our cautionary note is in line with Stigler and Hiebert (1999), 

who saw the results of their video study as providing insights into cultures of teaching 

rather than as a critique of individual teachers.  
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We interacted with many of the teachers who responded to our instrument. They 

all were highly motivated to improve their mathematics teaching, which was their reason 

for participating voluntarily in NSF Math/Science Partnership professional development 

programs (neither designed nor conducted by us). They wanted to talk about mathematics, 

and many teachers were disturbed that the questions we asked made them aware that their 

meanings were not sufficient to provide satisfactory (to them) answers. They also agreed 

that the meanings emphasized in the MMTsm are important for their students to develop. 

We therefore do not see our results as pointing to teachers’ individual failings. 

The reason we believe that our results point to a systemic, cultural problem in U.S. 

mathematics is that the meanings we probed are not taught in undergraduate mathematics 

programs. Rather, they are meanings that teachers developed as school students and 

became reinforced by their experiences in teaching from mathematics textbooks that 

support, directly or inadvertently, the same meanings as the textbooks they used as 

students. Put another way, we believe our results are related to what Lortie (1975) 

described as the cultural regeneration of schools. Lortie claimed that school students who 

identified positively with their schooling and with their teachers were most likely to enter 

teaching, thus regenerating for future students the schooling experiences they internalized. 

While our data says nothing about why teachers enter teaching, it gives another 

perspective on the issue of cultural regeneration. It seems quite plausible to us that a 

process like the following regenerates the problem of mathematical meaning in U.S. 

school mathematics: 

• Many students leave high school with poorly formed meanings for ideas of the 

middle- and secondary-school mathematics curriculum. 
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• Students take mathematics courses in college that are designed with the 

presumption that students have basic mathematical meanings they in fact do 

not have. 

• Instructors of these college mathematics courses presume, or do not care about 

whether, students have basic mathematical meanings they in fact do not have. 

• Students apply coping mechanisms (e.g., memorization) in college 

mathematics that allowed them to succeed in high school. 

• Students return to high schools to teach ideas they understood poorly, rarely 

revisited, and for which they still have poorly-formed meanings. 

The process of cultural regeneration that we described is somewhat reminiscent of 

Felix Klein’s (1932) description of the “double discontinuity” experience by students 

who become teachers. 

The young university student found himself, at the outset, 
confronted with problems that did not suggest, in any 
particular [way], the things with which he had been 
concerned at school. Naturally he forgot these things 
quickly and thoroughly. When, after finishing his course of 
study, he became a teacher, he suddenly found himself 
expected to teach the traditional elementary mathematics in 
the old pedantic way; and, since he was scarcely able, 
unaided, to discern any connection between this task and 
his university mathematics, he soon fell in with the time 
honored way of teaching, and his university studies 
remained only a more or less pleasant memory which had 
no influence upon his teaching. (Quoted in Buchholtz et al., 
2012, p. 107) 

The difference between cultural regeneration as we described it and Klein’s double 

discontinuity is that Klein presumed that the “young university student” of which he 

spoke had unproblematic mathematical meanings for secondary mathematics. Klein was 
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mostly concerned with helping students connect those (presumably well-formed) 

meanings to university-level mathematics—to relearn elementary mathematics in terms 

of higher mathematics (e.g., different geometries being characterized by different groups 

of symmetries). Klein believed that his program’s success depended upon educating 

future teachers regarding the connections between school and higher mathematics.  

It is beyond the scope of this paper to address the systemic problem we’ve 

described. Thompson (2013) outlines one research and political agenda that addresses 

this issue partially. However, we must say here that we are not advocating a return to 

Klein’s program of Elementary Mathematics from an Advanced Standpoint. Rather, our 

argument is that the cultural regeneration cycle can only be broken with sustained, 

intensive professional development for current mathematics teachers to support them in 

developing productive meanings for students’ mathematical learning, a parallel effort in 

the redesign of high school mathematics pre-service teacher preparation programs. The 

professional development effort, in our opinion, must also focus on helping teachers 

select curriculum materials that cohere with their effort to re-conceptualize their 

mathematics in terms of supporting students’ construction of coherent mathematical 

meanings. 
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PAPER TWO: CALCULUS STUDENTS’ UNDERSTANDINGS OF FRACTION, 

CONSTANT RATE, AND MEASUREMENT AND THE ASSOCIATION WITH 

THEIR UNDERSTANDINGS OF RATE OF CHANGE FUNCTIONS  

 

While many studies have focused on calculus students’ understandings of rate of 

change and derivative (Asiala, Dubinsky, Cottrill, & Schwingendorf, 1997; Carlson, 

Jacobs, Coe, Larsen, & Hsu, 2002; Habre & Abboud, 2006; Orton, 1983), few studies 

have investigated calculus students’ understanding of the mathematical ideas 

foundational to rate of change and derivative. Strong meanings for quotient, fraction, and 

measure could support students’ meanings for rate of change and derivatives. Conversely, 

weak meanings for fraction, quotient, and measure might hinder students’ understandings. 

Although multiple researchers have noted the importance of understanding rate and ratio 

for learning calculus (Orton, 1983; P. W. Thompson, 1994b; Zandieh, 2000), we know 

little about how calculus students’ foundational meanings for fraction, quotient, and 

measure inhibit or enable them to develop a meaning for rate of change that is useful in 

calculus. The small-sample studies that have been conducted revealed that calculus 

students’ meanings for fraction and quotient are not sufficient to help them make sense of 

rate of change and derivatives (Byerley & Hatfield, 2013; Byerley et al., 2012).  

This study uses primarily quantitative methods to investigate 153 calculus 

students’ success on fraction, measurement, and rate of change items. If their meanings 

for elementary ideas are extremely weak it would provide one explanation for why so 

many interventions designed to teach calculus conceptually have not been successful. The 
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study also investigates the statistical association between students’ results on a Pretest 

and their success on a test on rate of change functions in a conceptual calculus course.  

THEORETICAL FOUNDATION 

 This section describes the meanings for rate of change function (derivative 

function), constant rate of change, and fraction that were foundational for this study. The 

value of a rate of change function at any value in its domain gives the rate of change of 

another function with respect to the other function’s input at the same value in its domain. 

The rate of change of a function f at a certain value can be imagined in multiple ways. 

Here is one way: Suppose we want to know the rate of change of a function at x = a. First 

imagine a tiny change in x from the value x = a to x = a +∆x. Then measure the 

associated change in f(x) in terms of the tiny change in x. For sufficiently small values of 

∆x this average rate of change, , is approximately equal to the rate of 

change of the function at x = a (P. W. Thompson, Byerley, et al., 2013).   

 This meaning for rate of change function is consistent with Zandieh’s (2000) 

conceptual analysis of the concept of derivative that focused on ratio, limit, and function 

as the major organizing ideas (p. 107). The meaning for function used in this description 

of rate of change function is a relationship between two covarying quantities (P. W. 

Thompson & Carlson, 2016). Imagining two quantities varying together is critical for 

developing a productive meaning for rate of change. Imagining a quantity involves 

imagining some attribute of an object and a means to measure that attribute (P. W. 

Thompson, 2011). Conceiving of a rate of change of one quantity with respect to another 

involves comparing the measures of two changes in quantities (P. W. Thompson, 1994a). 

f (a +∆ x)− f (a)
a
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For example, making a multiplicative comparison of a measure of distance traveled to a 

measure of time elapsed produces the new quantity speed.  

 Different people hold different meanings for fractions, quotients, and measure, 

but not all are equally useful. A person’s meaning for an idea is that person’s scheme for 

that idea. I use Thompson’s definition of scheme: 

“We define a scheme as an organization of actions, operations, images, or 

schemes—which can have many entry points that trigger action—and 

anticipations of outcomes of the organization’s activity (Thompson et al., 2014, p. 

11). 

This definition for scheme allows for complicated schemes for fractions that entail many 

ideas and procedures that are triggered in a variety of situations. Mature fraction schemes 

allow someone to imagine a variety of different situations as being modeled by the same 

underlying idea of a multiplicative comparison of two quantities. A person with a weak 

fraction scheme might be triggered to use various fraction procedures in different 

situations without seeing the fundamental similarities across situations. 

  Conceptual analysis and empirical studies inform us that some meanings for 

fractions are more productive for proportional reasoning and making sense of rate of 

change (Nabors, 2003; Norton & Hackenberg, 2010; P. W. Thompson & Saldanha, 2003). 

For example, Thompson and Saldanha’s (2003) meaning for fractions as reciprocal 

relationships of relative size is easily linked to a meaning for rate of change as a 

multiplicative comparison of two changes. This meaning for fractions entails imagining 

that A/B gives a measure of the relative size of A and B. By measuring a quantity of size 

A in terms of a quantity of size B, they show that A is A/B times as large as B. 
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Reciprocally, B is B/A times as large as A (Thompson & Saldanha, 2003, p. 32). To 

understand the prior statements requires coordinating meanings for multiplication, 

quotient, and measure to imagine measuring one quantity in terms of another. Being able 

to imagine comparing two quantities multiplicatively by both partitioning and iterating 

the two quantities is critical to their discussion. 

 Thompson and Saldanha (2003) list some of the many problems with only 

understanding A/B as A is a subset of B, or as A parts out of the whole that has B parts. (p. 

2). In constant rate of change situations, it would not make sense to describe the fractions 

(10 miles / 2 hours) as ten miles out of two hours. One calculus student’s understanding 

of fractions as parts of wholes caused her significant problems in many situations. For 

example, she drew a line of length four and cut it into two equal pieces while trying to 

explain her meaning for four divided by two. She described the size of the two pieces as 

one fourth because there were four parts in the “whole” and one piece in the “part” 

(Byerley & Hatfield, 2013).  

LITERATURE REVIEW 

 This literature review first examines the many failed attempts at calculus reform. 

It then examines the little the field knows about calculus students’ understanding of 

fraction and quotient. I conjecture that the limited evidence we have for calculus students’ 

weak meanings for fraction and quotient is a partial explanation of the well documented 

difficulty calculus students have with rate of change and derivative. The research on 

calculus students’ meanings for rate of change and derivative suggest their meanings do 

not entail envisioning multiplicative comparisons of relative sizes of changes. The review 

concludes with a few studies that have demonstrated that students meaning for fractions 
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could explain their success or failure in understanding more advanced mathematical 

topics.  

Studies of Calculus Reform 

 There have been many interventions in calculus class that promote active learning, 

use of technology, multiple representations of functions, etc. (Code, Piccolo, Kohler, & 

MacLean, 2014; Garner & Garner, 2001; Habre & Abboud, 2006; P. W. Thompson & 

Dreyfus, in press; White & Mitchelmore, 1996). While some of the interventions 

provided solid evidence that students learned more in the reformed class than a traditional 

class, I was unable to locate a report of an intervention that resulted in the majority of the 

class learning over 70% of the ideas the instructors intended to teach. In my attempt to 

locate evidence of a successful intervention I read multiple literature reviews on the state 

of calculus research, many individual studies on calculus interventions, and examined 

data collected from many courses using the Calculus Concept Inventory.  

 Larsen, Marrongelle, Bressoud, and Graham (in press), Rasmussen, Marrongelle, 

and Borba (2014), and Speer and Robert (2001) each conducted extensive reviews of the 

research on teaching and learning calculus. The three reviews did not give an example of 

a successful calculus class intervention. Speer and Robert cited 55 papers, Rassmussen et. 

al. cited 69 papers and Larsen et. al. cited 108 papers. The reviewers stressed the 

importance of doing applied research on reformed calculus classes so it seems likely that 

if they had known about a successful example of this research they would have reported 

it. They did mention cases where researchers helped students learn particular concepts 

successfully (Rasmussen et al., 2014, p. 510) and promising studies that had encouraging 

initial results (P. W. Thompson & Dreyfus, in press). Both Larsen et. al. (in press) and 
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Speer and Robert noted that the multiple calculus reform projects of the 1990’s were not 

well-researched so the field did not fully understand how the reform projects impacted 

student learning. Although there were some comparative studies of student success in 

reform and traditional classes “the reported research provides very little information 

regarding the extent to which (and how) the innovations were informed by research, and 

very little information regarding how students and teachers engaged with the innovation” 

(Larsen et. al., in press, p. 28).  

 Many of the comparative studies found evidence that the interventions resulted in 

a statistically significant impact on student performance. Even though some students 

performed better in the reform classes, they still showed substantial difficulties on the 

major ideas their instructors wanted to teach. Here are a few examples. Garner and 

Garner (2001) studied courses taught using a popular reformed calculus textbook. They 

concluded that test scores were so low seven months after the students took calculus that 

it did not matter what type of course they taught: the students would not remember it. 

They wrote “although the comparisons between the two groups showed statistical 

significance, there was no evidence of educational significance: both reform and 

traditional students forgot most of what they supposedly had learned” (p. 108). Other 

studies are similarly pessimistic. Habre and Abboud (2006) designed a new calculus 

course that included use of technology and in-class discussion and contrasted student 

success with a course that mainly lectured and did not use any technology for 

visualization. Although some of the more advanced students liked the reformed class and 

learned more they found that, “in the end, the one thing that is most striking is the large 

percentage of dropouts (33 students out of 89) and failures (12 of the remaining 56 
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students) in the observed sections” (p. 67). They hypothesized that one of the reasons 

their approach failed was the prior knowledge of the students and decided not to try the 

experiment again. At the end of their intervention study White and Mitchelmore (1996) 

concluded “almost the only detectable result of 24 hours of instruction intended to make 

the concept of rate of change more meaningful was an increase of manipulation-focus 

errors in symbolizing a derivative” (p. 93). They did not think that a conceptual approach 

to calculus would work if students lacked foundational understandings of variables before 

arriving in class.  

 The final approach I used to locate an example of a successful calculus class was 

based on the data collected by Epstein (2013) as part of the development of the Calculus 

Concept Inventory. A panel of expert faculty with decades of experience drafted the first 

version of the CCI to measure a small set of basic constructs essential to calculus. In the 

piloting of the test at six institutions they realized that students’ scores were at the 

“random-guess level” at the beginning of the semester and that there was “no gain 

anywhere” at any institution after a semester of calculus (Epstein, 2013, p. 1021). This 

was a shock to them and they decided the items were too hard. Their department chair 

agreed that the items should be easier and he said the items “needed to be at a level of 

‘point to your foot’” and the students will still struggle to answer correctly. After 

extensive piloting the item writers concluded that the “items needed to be at a level where 

most faculty would believe the items were utterly trivial” (Epstein, 2013, p. 1021). The 

easier version of the CCI has now been given in many U.S. universities and about a 

dozen other countries and the author gets a request to use it almost every week. Despite 

the huge number of instructors using the test the highest gain score he found was 0.44 in 
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a reform course that used interactive engagement. This means that the students learned 

how to answer 44% of the “utterly trivial” items they could not answer at the beginning 

of the semester. Epstein reported that gains this high are very rare even in reform courses. 

Even famous mathematics educators such as Uri Treisman who are well known for their 

successful interventions (Fullilove & Triesman, 1990) had gain scores of 0.3. In contrast, 

gain scores of 0.7 are reported in the physics education literature on the Force Concept 

Inventory (Epstein, 2013, p. 1021).  

Calculus Students’ Understandings of Fractions and Quotients 

Despite the vast research on students’ understandings of fractions and quotients 

there is little research on how calculus students understand fractions or quotients. After 

extensive searching using numerous techniques I did not locate any articles focused on 

calculus students’ understanding of fractions or quotients. In addition to key word 

searches I made use of other literature reviews. For example, Pinilla (2007) reviewed 

approximately 250 articles on learning fractions and none of her summaries or the titles 

of cited articles mentioned that the students’ studied were in calculus. We do know that a 

small sample of calculus students displayed considerable confusion when trying to 

explain how the number 29.66 related to 0.236 when given the statement 7÷ 0.236 =

29.66 (Byerley, Hatfield, & Thompson, 2012). In this study, Hatfield, Thompson and I 

(2012) found many calculus students were unable to give a situation in which one would 

divide by a fraction or explain why division was used in the slope formula. We found that 

the constructs such as “part-whole fraction scheme” used by Steffe and Olive (2010) to 

describe elementary students’ thinking also described calculus students’ thinking. Many 

calculus students had a primary meaning for fractions as “parts of wholes” and these 
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meanings limited them in circumstances that required relative size meanings for fractions 

(Byerley, Hatfield, & Thompson, 2012; Byerley & Hatfield, 2013). 

 Some evidence suggests that there is a difference in the understanding of students 

correlated to their academic achievement. Schneider and Siegler (2010) found that 66 

elite students with high SAT scores at Carnegie Mellon were able to compare the size of 

29 different fractions to 3/5 with a mean error rate of 6% and a standard deviation of 5 (p. 

1230). They found that the mean error rate (29%, SD = 20.8) on the same task was much 

higher at College of Allegheny County, a junior college with minimal entrance 

requirements. Even though fractions are an important part of the developmental 

mathematics curriculum at community colleges, “surprisingly, an extensive search of the 

literature revealed we know almost nothing about [community college students’ 

mathematics knowledge and understanding]” (Stigler, Givvin, & Thompson, 2009, p. 5). 

They noted that even though placement tests are widely administered the results are 

rarely released. To fill this gap in knowledge Stigler et. al’s (2009) study used 5830 Santa 

Barbara Community College placement test results to investigate what students’ 

understood about the mathematics they had been taught in middle and high school. They 

found “several of the most common errors involved working with fractions” (Stigler et al., 

2009, p. 13). For example, students simplified fractions incorrectly, added numerators 

and denominators to add fractions, and struggled to determine whether or not one fraction 

was larger than another (p. 11). This limited data suggests that college students’ 

understandings of fractions range from incredibly weak to reasonably strong and is 

correlated to the admission requirements to the university. It is unknown how calculus 

students in particular might have fared on the tasks in these studies. Also, the placement 
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tests’ items that Stigler et al. surveyed were performance items. They were not designed 

to reveal what students understood about fractions. 

We can infer some information about calculus students’ fraction and measurement 

knowledge by examining the results of the National Assessment of Educational Progress 

(National Assessment of Educational Progress, Mathematics Assessment) of national 

sample of 12th graders. The following item from the 1996 test can be answered by 

comparing the relative size of cherry syrup and water in two situations and comparing the 

quotients: 

Luis mixed 6 ounces of cherry syrup with 53 ounces of water to make a cherry-
flavored drink. Martin mixed 5 ounces of the same cherry syrup with 42 ounces of 
water. Who made the drink with the stronger cherry flavor? 

  
 Give mathematical evidence to justify your answer.  
 
In 1996 only 23% of 12th grade students gave a correct answer, and 26% gave a partially 

correct answer.  

 In 2009 62% of 12th grade students answered the following question about 

measurement correctly.  

Which of the following containers has the greatest liquid capacity? 
(1 gallon=4 quarts= 8 pints = 128 ounces) 
A. A 64-ounce orange juice container 
B. A 16-pint water jug 
C. A 5-quart bowl 
D. A 2-quart cola bottle 
E. A 1-gallon milk bottle.  
 

In 1990, 46% of a nationally representative sample of 26,000 12th grade students showed 

“a consistent grasp of seventh grade material (decimals, percent, fractions, simple 

algebra)” (Mullis, Dossey, Owen, Phillips, 1991). We cannot assume that the population 

of students enrolled in calculus have the same results on the NAEP items as a random 
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sample of 12th graders, as students with more mathematical coursework tend to do better 

on division, fraction, and proportion tasks (Lawton, 1993; Mullis, Dossey, Owen, & 

Phillips, 1991; Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2010). Taken 

as a whole, these studies suggest that although university calculus students may have 

stronger meanings for fractions and quotients than elementary and secondary students we 

should not assume that these ideas are unproblematic for them. Given the limited 

evidence suggesting that fractions and quotients could be a major source of difficulty for 

calculus students it is important to investigate the question explicitly. Many millions of 

dollars are allotted to improve calculus instruction and if students’ middle school 

mathematics meanings are holding them back from success this issue should be addressed 

directly. Right now, the research does not exist to decide if fraction, measurement, and 

quotient interventions would be useful in calculus courses. 

Calculus Students’ Meanings for Rate of Change 

 A number of studies have documented calculus students’ difficulties with the idea 

of rate of change (Carlson et al., 2002; Gravemeijer & Doorman, 1999; Hackworth, 1994; 

Herbert, 2013; Orton, 1983). Orton (1983) noticed that calculus students had unexpected 

difficulty with the basic calculation of a rate of change from a graph. In Orton’s study, 

students struggled to apply the rule for dividing the difference in 𝑦 by the difference in 𝑥 

to obtain a rate. He wrote, “it has been suggested already that one of the problems of 

learning about rate of change is that the ideas are basically concerned with ratio and 

proportion” (Orton, 1983, p. 243). Another possibility is that they had difficulty with the 

idea of change or with representing it. 
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 Much of the research on secondary and calculus students’ meanings for rates of 

change suggests that students’ images of rate are not based on a multiplicative 

comparison of relative size, nor based on an image that entails a comparison of changes. 

The literature on secondary and calculus students’ meanings for rate of change will be 

organized around the following points: 

1. Many calculus students might be able to coordinate changes in two quantities 
without explicitly comparing the relative size of two changes.  

2. Rate of change and slope are often considered to be one quantity that is a 
measure of steepness or fastness and not a comparison of two changes. 

3. Some students’ conceptions of rate of change are “chunky” meaning that they 
prefer to consider rate of change on integer-sized intervals of change. 

4.  Some students confound amount of change in an interval with a rate of change. 

 Point 1. Coordinate changes but not relative size of changes.  Both Carlson et 

al. (2002) and Johnson (2010, 2012) investigated university and secondary students’ 

abilities to coordinate the covariation of two quantities in a variety of contexts. For 

example, Carlson investigated student’s understanding of the covariation of the amount 

of water and the height of water when water was poured into a bottle. Both found that 

students could coordinate the direction of change of one quantity with the direction of 

change of the other quantity. However, the majority of students in Carlson et al.’s (2002) 

and Johnson’s (2010, 2012) studies did not compare the relative size of changes in two 

quantities even though this comparison would have helped them address the interviewers’ 

various requests for descriptions of how the two quantities changed together. 

 Point 2. Rate of change and slope or single quantities. Despite students’ ability 

to loosely coordinate changes in two quantities, many students convey a dominant 

meaning for slope and rate of change that does not involve comparing changes in two 
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quantities. Instead students developed indexical meanings such as slope as an index of 

steepness or rate as an index of fastness. Stump (2001b) found advanced secondary 

students are more likely to think of slope as an angle measure. Nagle, Moore-Russo, 

Viglietti & Martin (2013a) found that 71% of 65 calculus students described slope as a 

behavior indicator in at least one of five questions about slope. To those students, 

steepness indicates how fast a function is increasing or decreasing. Although many 

students knew that slope formula involved changes in x and y, researchers found “little 

evidence that students actually considered a relationship between the variables x and y” 

(p. 1506). Thompson (1994b) noticed that students “who experienced difficulty [with 

interpreting a rate of change function] seemed to want to think of the difference quotient 

as ‘the derivative’ and interpret it as ‘how fast it [the function] is changing,’ without 

interpreting the details of the expression as an amount of change in one quantity in 

relation to a change in another” (p. 142). Nagel et. al’s (2013) supports Thompson’s 

observations. They reported, “in order to grasp the concept of the derivative, students 

need a conceptual understanding of slope beyond what was evidenced in the majority of 

their responses” (p. 1508).  

 Points 3 and 4. Change is chunky, and confuse amount with change in 

amount. It is possible to make sense of some rate of change situations without 

understanding fractions as reciprocal relationships of relative size. Rate of change can be 

considered the amount added to one quantity for a given change in another quantity. 

Many high school teachers employed this meaning when explaining a slope of three as “y 

changes by three when x changes by one (Byerley, Yoon, & Thompson, 2016). This 

meaning for slope conveys that the two quantities vary in chunks. A person with a 
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chunky image of covariation considers two quantities varying in chunks as opposed to 

continuously (C. W. Castillo-Garsow, 2010, 2012).  

 A chunky meaning for rate of change is useful in some situations but can also lead 

to difficulties. Many teachers who expressed a slope of three as “up three and over one” 

struggled to imagine situations where the independent variable did not change by one. 

Some teachers with this chunky meaning also referred to the slope as the change in y, 

reasoning that the change in y and the slope were both three (Byerley et al., 2016).  

 Chunky meanings for slope do not depend on imagining multiplicative 

comparisons. I hypothesize that with this weak understanding it is hard to imagine that 

two quantities in a rate vary smoothly together. To do so would require the students to 

see a constant multiplicative relationship. To understand the definition of the derivative 

 it is important to imagine ∆x becoming infinitely small while the 

change in the function also varies as ∆x decreases. For those who think of rate as a 

multiplicative comparison of changes in two quantities it does not matter the size of ∆x. 

Chunky meanings for slope and rate depend on the size of the “chunk” of change in x to 

remain constant and do not cohere well with images of ∆x smoothly decreasing in size.   

Calculus Students’ Understanding of the Derivative 

Given the difficulties many calculus students have with the idea of rate of change, 

it is not surprising that research also finds that students struggle with the concept of 

derivative. Many students are unable to create graphical representations of the rate of 

change function from a given function (Tall, 1986; Ubuz, 2007). Students in the Ubuz 

study often focused on computing derivatives without considering a connection to the 

lim
∆ x→0

f (x +∆ x)− f (x)
∆ x
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rate of change of the function. Unsurprisingly, they failed at constructing a derivative 

function by imagining the rates of change at a number of points in the domain (Ubuz, 

2007, p. 611).  

Meanings for One Topic Impact the Learning of Another Topic 

 Researchers have used both qualitative and quantitative methods to understand 

how students’ prerequisite knowledge impacts their understandings of topics that build on 

that knowledge.  

 Nabors (2003) studied the relationship between seventh graders’ meanings for 

fractions and their development of proportional reasoning. Students first worked on a 

variety of fraction items with Nabors so that she could build models of their fraction 

understandings. Nabors then asked students to solve challenging proportion and rate of 

change problems to understand how their meanings for fractions impacted their reasoning. 

Nabors found that students who demonstrated more advanced meanings for fractions in 

the first part of the experiment were better able to make sense of rate situations in the 

second. She used Steffe and Olive (2010) constructs to categorize the students’ fraction 

schemes. The use of teaching experiment methodology, as described by Steffe and 

Thompson (2000), allowed Nabors to make explicit connections between students’ 

fraction schemes and proportionality schemes. She found that the mental operations of 

partitioning, iterating, and thinking flexibly about units and relationships among units 

were essential to make sense of fractions and proportions maturely. This conclusion 

agrees with the findings of other researchers, as summarized by Norton and Hackenberg 

(2010, p. 343), that students with only a part-whole meaning for fractions have trouble 

extending their understanding to more advanced topics such as proportional reasoning.   
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 Torbeyns, Schneider, Xin & Siegler (2014) found that “despite country-specific 

differences in absolute level of fraction knowledge, 6th and 8th graders’ fraction 

magnitude understanding was positively related to their general mathematical 

achievement in all countries, and this relation remained significant after controlling for 

fraction arithmetic knowledge in almost all combinations of country and age group” (p. 

1). In a similar study Siegler et al. (2012) found that fraction knowledge at age 10 was the 

strongest of five predictors of age 16 algebra knowledge and mathematics achievement (p. 

693). Furthermore, the predictive relations for early knowledge of both fractions and 

division was stronger than other mathematical skills in the U.S. and the U.K. Siegler et al. 

(2012) concluded that mastery of fractions and division is needed if substantial 

improvements in understanding of algebra and other aspects of high school mathematics 

is to be achieved” (p. 696). 

 Statistical studies could not address how understanding one idea contributed to 

learning another idea. However, the statistical studies provided evidence that difficulty on 

fraction items predicted difficulty on other mathematical items. Together the qualitative 

and quantities studies suggest students’ fractional reasoning impacts the sense they make 

of more advanced mathematics.  

Relationship between Literature, Conceptual Analysis and Methods 

 The literature review and conceptual analysis of fraction and rate of change 

strongly informed the selection of items and the analysis of results. The conceptual 

analysis of rate of change functions suggested that additive or computational meanings 

for fractions and measure were likely insufficient to build productive meanings for rate of 

change functions. The models of student thinking produced in prior research were used to 
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create items that would be difficult for students limited to unproductive meanings for a 

topic. For example, if a student’s primary meaning for slope as a formula and an index of 

steepness, they would be likely to struggle to estimate slope from a graph with equally 

spaced but unlabeled axis. Students with a part whole meaning for fractions would likely 

struggle with the item Fraction of Cloth, discussed in methods (See Figure 30). A 

measurement item involving conversion from gallons to liters was included because a 

national study showed 12th graders struggle with measurement, and the conceptual 

analysis shows that measuring one change in terms of another is a productive way of 

making sense of rate of change. Torbeyns et al. (2014) motivated the inclusion of an item 

asking students to place fractions on a number line that included fractions larger than one. 

METHOD 

Participants 

 One hundred fifty-three (153) students taking a redesigned introductory calculus 

course in Spring, 2015 at a large Southwestern university consented to have their test 

scores used in this study. These students had a variety of backgrounds including prior 

coursework in conceptual precalculus or calculus at the same university, precalculus or 

calculus at a community college, and precalculus or calculus in high school. Twelve 

students did not give consent for their responses to be used in the study. The course, 

taught by two experienced instructors, met 150 minutes per week for one semester. The 

students also attended one recitation session a week taught by a graduate teaching 

assistant. To enroll in calculus students needed an adequate score on an un-proctored 

online placement test or credit for precalculus from a regionally accredited college or 

university.  
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Redesigned Calculus Course 

Thompson designed a new approach to calculus that was built upon his 

conceptual analysis of the Fundamental Theorem of Calculus (P. W. Thompson, Byerley, 

et al., 2013). His goals for the course are “address two fundamental situations: (a) you 

know how fast a quantity is changing and you want to know how much of it there is, and 

(b) you know how much of a quantity there is and you want to know how fast it is 

changing” (1994b). In this class, derivative functions were usually called “rate of change 

functions” to remind students of a productive meaning for a derivative function.   

I conducted the study in the context of the redesigned course because the 

instructors discussed quotient and constant rate in class and assigned homework and test 

problems on these topics. Furthermore, the instructors included a large number of 

conceptual items on rate of change questions on Test 3 that were difficult for students to 

solve if they had only learned to recall and apply procedures. 

Item Selection and Improvement 

 The students answered questions about fractions and rate of change on a Pretest 

and on Test 1 that occurred after a month of instruction. They answered questions about 

rate of change functions on their Test 3 that occurred two weeks before the final exam.  

In Fall, 2014 I used qualitative and quantitative methods to develop and improve items 

for the three tests used in the Spring 2015 study. Using interview data, I clarified item 

stems that were unnecessarily confusing. I also added items about rate of change, 

magnitude, and function from Project Aspire to Test 1. Project Aspire was an NSF 

funded project to develop an instrument to diagnose teachers meanings for rate of change, 

function, magnitude and other topics. I used Aspire items because they were validated 
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with interviews with content experts, calculus students, and secondary teachers (P. W. 

Thompson, 2015). Project Aspire items were designed to be sensitive to and detect 

reasoning abilities noted in the literature review to be critical for learning calculus. Some 

of these reasoning abilities and understandings are covariational and quantitative 

reasoning, measurement schemes, chunky meanings for rate of change, and additive 

versus multiplicative meanings for rate of change. 

 Pretest Items 

 Fraction and Quotient Items 

 Fraction of Cloth. Bradshaw, Izsák, Templin, and Jacobson (2014) designed 

Fraction of Cloth (Figure 30) to measure middle school teachers’ mathematical 

knowledge for teaching fractions.  
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Figure 30. The Item Fraction of Cloth Designed by Izsák et.al (2014). 

 
Each distractor reflects a particular problematic way of thinking. For example, choice (c), 

reflects subtracting 1/8th of 1/5th from 4/5ths instead of subtracting 1/8th of one meter from 

4/5ths.  

 Liters to Gallons. Project Aspire designed the item Liters to Gallons, shown in 

Figure 31, to see whether teachers would think about a unit conversion situation 

algorithmically or would take quantitative relationships of relative size into consideration 

(Byerley & Thompson, 2014; P. W. Thompson et al., 2014). When using a larger unit of 

measure (e.g. gallons instead of liters), the numerical value of the measure of the 

container’s volume will decrease.  
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Figure 31. The Item Liters to Gallons. © 2014 Arizona Board of Regents. Used with 
Permission. 
 

I made the Aspire item multiple choice for the Pretest by adding the four choices, 

. These options were given as answers by many teachers on 

the Aspire assessment.
 

 Fractions on Number Line. I designed the item in Figure 32 based on the studies 

that found relationships between students’ ability to place fractions on number lines and 

their mathematical success (Torbeyns et al., 2014).  

 

Figure 32. The Item Fractions on a Number Line. 

The item Fractions on a Number Line was scored as correct if the student put the mark in 

the correct “bin.” The number ½ would be scored as correct because it is in the “bin” 

between 2/5 and 3/5.  
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 Slope and Constant Rate of Change Items. The Pretest included two items that 

Project Aspire designed to reveal the extent to which teachers’ meanings for slope were 

based on multiplicative relationships.  

Slope from Blank Graph.  The item Slope from Blank Graph determines if 

teachers use a meaning of slope as a relative size of changes in x and changes in y to 

estimate a value of slope given a graph (P. W. Thompson et al., 2014). The open-ended 

version was on the Pretest and a similar multiple choice version was on Test 1 (Figure 

33).  

 

Figure 33.The Item Slope from Blank Graph. © Arizona Board of Regents 2015. Used 
with Permission. 

In interviews, teachers and students with a primarily computational meaning for 

slope struggled to see how they could estimate a slope without being given points to put 

into the formula.  
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Meaning of Slope. The Pretest included a slightly modified version of the Aspire 

item, Meaning of Slope, shown in Figure 34. 

 

Figure 34. Modified Aspire item Meaning of Slope. © 2014 Arizona Board of Regents. 
Used with Permission. 
 

I scored the calculus students’ responses with the rubric developed by the Project Aspire 

team (Byerley et al., 2016). Responses scored at the highest level conveyed that slope is a 

measure of the relative size of changes in input and changes in output. Mid-level 

responses conveyed a chunky meaning for slope.  Lower-level responses conveyed a 

memorized or computational meaning for slope, such as slope formulas and the 

mnemonic rise/run. Responses that did not fit any of these three descriptions, were scored 

at level zero. 

 Constant Rate of Three. I designed the item Constant Rate of Three in Figure 35 

in order to see if students understood the relationship between a change in R, a change in 

S, and the rate of change of R with respect to S.  

 

Figure 35. The Item Constant Rate of Three Designed for Pretest. 

 Rate of Change on Graph Items. The Pretest included items that involved the 

ideas of rate of change depicted graphically. I wanted to know if items that involved rate 
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of change or quotient embedded into contexts with functions, covariation, and graphs 

would be more predictive of student success than items that isolated the idea of fraction 

or constant rate. 

Covariation and Change. The Aspire item Covariation and Change (Figure 36) 

involves covariation, graphical representations, frames of reference, and rate of change 

(Joshua, Musgrave, Hatfield, & Thompson, 2015). 

 

Figure 36. Item Covariation and Change. © Arizona Board of Regents 2014. Used with 
Permission.  
 

Individuals who focus on the absolute value of changes often respond that the changes 

are negative and decreasing. Part B (not shown) asked “Is this sequence increasing or 

decreasing?  -10, -9.5, -9, -8.5, …” to prompt people to focus on the idea that a sequence 

of negative numbers approaching zero are increasing. After this prompt the second page 
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asks people if they want to change their answer. Answer choice (b) reflects thinking 

about the values of the function instead of the changes in values.  

The Bottle Problem.  The Precalculus Concept Assessment (PCA) is a validated 

multiple choice instrument that includes items related to function, covariation, and rate of 

change (Carlson, Oehrtman, & Engelke, 2010). The Pretest included the PCA item The 

Bottle Problem. This item that asks students to match the shape of a bottle to a graph 

showing the relationship between the volume of water in the bottle and the height of the 

water from the bottom of the bottle.  

Test 1 Items 

 Fertilizer Function. The Test 1 item, Fertilizer Function (Figure 37), involved 

both the idea of relative size and function. 

 

Figure 37. The Item Fertilizer Function. This Item Taken From Test One From 
Precalculus Pathways (Carlson, Oehrtman, & Moore, 2010). 
 

Students should notice that the number of square feet that can be fertilized is greater than 

the number of ounces of fertilizer. They also needs to interpret the quantities A, h(A), n 

and k(n) and understand a function as representing a relationship between varying 

quantities. There were other Test 1 items involving rate of change used in this study (See 

Appendix B). One item asked students to determine the distance a woman traveled given 
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a graph of her rate of change versus time. Other items asked about the definition of 

constant rate of change. One item, Relative Rates, asked students to use information 

about rates of change to compare the distances two people traveled (Byerley & 

Thompson, 2014). 

Test 3 Items 

 Student responses on Test 3 items were used as a measure of their understanding 

of rate of change functions. Test 3 occurred after a unit in which students created rate of 

change functions given initial accumulation functions. The instructors agreed to modify 

multiple-choice distractors on Test 3 that were not popular and replace them with 

distractors based on ways of thinking that had been noted in qualitative studies.  

 The graph in Figure 38 was the basis for six questions about rate of change. 

 

Figure 38. Graph Given on Test 3 for Questions One to Six. 

The questions asked students to differentiate between an increasing amount and an 

increasing rate of change as well as between a positive rate of change and an increasing 

rate of change. Three of the questions asked about Figure 38 are shown in Figure 39. 
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Figure 39. Three Questions on Test 3 Associated with Graph in Figure 38. 

 Questions seven to twelve involved answering questions about an accumulation 

function given the graph of its rate of change function.  

 Other questions on Test 3 involved interpreting the meaning of rate of change 

expressions. For example, see Figure 40. 

 

Figure 40. Item on Test 3 about Rate of Change Functions. 

The question shown in Figure 41 asked students to relate the rate of change of 

temperature to the temperature of an oven in an expression. 



 

123 

 

Figure 41. Question on Test 3 Relating Rate of Change and Accumulation. 

Five additional items used in the study were related rates or optimization problems.  

Pretest Administration and Scoring 

 The calculus instructors required students to take the Pretest in the first week of 

class and gave students credit for taking it. Students’ scratch work suggested that they 

took the Pretest seriously. The majority of Pretest responses were scored correct or 

incorrect. Minor computational errors were ignored if it was clear from a student’s work 

that the student understood the question. I scored open-ended Aspire items using Aspire 

rubrics (Byerley et al., 2016; P. W. Thompson, 2015).  

Multiple Linear Regression Model 

 Student answers to the Pretest and Test 1 items were used as predictor variables in 

a multiple linear regression model. The number of correct answers on the 21 Test 3 items 

about rate of change functions was used as the outcome variable in the regression model. 

Examinations of assumptions required to use multiple linear regression found no serious 

departures from the necessary assumptions. (See Appendix D.) 

 There were very few missing data points. No students skipped any questions on 

Test 1 or Test 3. Sixteen of 1495 student item responses on the Pretest were missing. 
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Because students had enough time to complete the Pretest, I hypothesized they skipped 

questions they did not understand and replaced the missing scores with zeros. 

Validation of Items with Qualitative Interviews 

Using data from the Pretest, I recruited six students with a range of low and 

medium understandings of quotient, measurement, and rate. I conducted two clinical 

interviews with each of the six students and asked them to explain their thinking test 

items. The interview data was analyzed in more detail as part of a qualitative study 

investigating the relationship between students’ fraction meanings and their 

understanding of rate of change (Byerley & Thompson, submitted). However, some of 

interview data is reported here to help explain why students picked particular answers. 

RESULTS: PRETEST AND TEST 1 

 Although these results do not generalize beyond the university in which they were 

collected, they do indicate that, at this university, students have substantial difficulty with 

ideas of quotient, fraction, constant rate of change, covariation, and graphically 

interpreting rates of change. 



 

125 

 In the results, I report the scores of students who stayed in the class until at least 

Test 3 separately from the students who dropped the class before Test 3. I refer to the 

former students as persisters and the latter students as droppers. The study is primarily 

focused on persisters because those students showed substantial commitment to trying to 

learn calculus. See Figure 42 for a distribution of persisters’ scores on the Pretest. 

  

Figure 42. Distribution of 115 Persisters’ Scores on the Pretest that had 15 Possible 

Points. 

 The six students interviewed in Spring 2015 had Pretest scores ranging from two 

to seven, making them fairly representative of the weaker 59% of class. 

Fraction Item Results 

 Fraction of Cloth. Forty-one of 153 (26.7%) students who took the Pretest 

answered the question correctly. Thirty-three of 115 (28.6%) persisters and 21.5% of 38 

droppers answered this item correctly. Student interviews on this item revealed 

substantial difficulties reasoning about fraction diagrams and understanding the meaning 
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of statements like 1/5 of 1/8. Five of the six students interviewed on this item took over 

ten minutes to solve the problem even with numerous hints. During their attempts to 

solve the problem these five students made a number of statements indicating a lack of a 

basic understanding of fractions Table 22.  

 Interviews on Fraction of Cloth. All six students interviewed described fractions 

as parts of wholes. This meaning disabled the five students from identifying the size of a 

piece when the interviewer pointed to 1/40 of a meter on the diagram and asked them to 

identify its size with respect to a meter. The “baby piece” of size 1/40 of one meter is 

shown in Figure 43. 

 

Figure 43. Correct Representation of 4/5-1/8 in Fraction of Cloth. 

With the interviewer’s help, these five students eventually identified the “baby piece” in 

answer choice (b) as 1/40 of a meter and this helped them find the correct representation 

for 27/40. The same five students initially inappropriately described 1/8 of 1/5 of one 

meter as 1/8 of one meter. They were not bothered that the line they labeled 1/5 of a 

meter was eight times as large as the line they labeled 1/8 of a meter. Table 22 

summarizes the results of the six interviews. 

I called 1/40 of one meter "a baby piece."
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Table 22. Summary of Student Interviews on Fraction of Cloth. 

Time 
used to 
solve 
problem 
during 
intervie
w 

Describe
d 
fractions 
as parts 
of 
wholes? 

Struggled 
to 
identify a 
piece 
sized 1/40 
of a meter 
when 
asked 
directly?  

Identifie
d 1/40 of 
one 
meter as 
1/8 of 
one 
meter? 

Made major fraction mistake? 

Janet 
12 min 

Yes. Yes. Yes. Yes. Many. 
Computed (1/5-1/8) to find 1/8 of 1/5. 
Could not find one half of seven. 
 

Kristina 
37 min. 

Yes. Yes. Yes. Yes. Many. 

Thought 1/5 was smaller than 1/8. 
 
Drew 1/40 of a meter by breaking 1/10 
of a meter into two equal pieces.  
 
Struggled to divide line segment into 8 
equal parts because she did not think of 
1/8 as ½ of ½ of ½. 
 

Daniel 
16 min 

Yes. Yes. Yes. Yes. 
Identified 1/8 of one meter as 
drastically smaller than 1/5 of one 
meter and did not notice problem. 
 
Said one eighth of one fifth is one 
thirteenth because eight plus five is 
thirteen. 

Alex 
11.5 min 

Yes. Yes. Yes. Yes.  Tried to identify 2.7 fifths on the 
diagram in effort to find 27/40. 

Emma 
4.5 min 

Yes. No. No. No. She missed the problem because 
she didn’t think of identifying the size 
of the 1/40 piece to solve the problem.  

Hannah 
17.5 min 

Yes. Yes. Yes. Yes. She made true statement that 40 
copies of a “baby piece” fits into one 
meter. She did not know if this meant 
the “baby piece” was 1/8 of a meter or 
1/40 of a meter. 
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All six of the students eventually found a correct representation with interviewer 

prompting, but it took one student 37 minutes of focused conversation to make sense of 

the diagrams. During the conversations five of the six students made multiple incorrect 

statements about fractions some of which are shown in Table 22.  

 Excerpt 7 gives a representative example of the difficulties students experienced 

when trying to determine the size of a “baby piece”. The interviewer used the word “baby 

piece” in the interview because she wanted to indicate a length of size one fortieth 

without giving away the name of the fraction. At first Janet thought that a “baby piece” is 

one eighth of one meter and then decided that this did not make sense. The interviewer 

helped her see that a “baby piece” is one eighth of one fifth of one meter but Janet did not 

know how to find one eighth of one fifth. Excerpt 7 shows a small portion of the long 

discussion about the size of the “baby piece.” 

Excerpt 7. Discussion with Janet about the Size of a “Baby Piece” on Fraction of Cloth. 

Interviewer: This little piece is some fraction of a meter. Right? 
 
Janet: Right. 
 
I: But you don’t know how to use one eighth of one fifth to figure out which 

fraction of a meter the little “baby piece” is? 
 
J: Right. Wouldn’t that be…it would be subtraction, right? So it is one eighth of 

one fifth. You have one fifth so you’d have to subtract one eighth 
from that.  

Janet struggled to figure out that forty “baby pieces” fit into one meter and that this meant 

a baby piece was one fortieth of one meter. Seeing that forty “baby pieces” fit into one 

meter involves imaging each fifth cut up into eight equal pieces. Imagining a partition of 

a partition is one way to understand that eight-fortieths is equivalent to one-fifth. During 

our interactions there was numerous instances where Janet struggled with partitioning. 



 

129 

Byerley (submitted) includes evidence that Janet struggled to cut a circle into five equal 

pieces and coordinate the number of cuts with the number of pieces resulting. Excerpt 8 

gives evidence that Janet did not imagine partitioning a partition to decide that 4/5 was 

equivalent to 28/35. Overall, five out of six students interviewed did not try to find the 

size of a “baby piece”, and once prompted to do so struggled to coordinate multiple 

partitions of one meter to determine that it 1/40 of one meter. 

 Fractions on a number line. Students answered the fractions on a number line 

question without a calculator. Some responses had significant scratch work showing long 

division. Based on the interviews, it appears that many students’ low scores on this item 

reflected difficulty coming up with a way to compare a number of sevenths to a number 

of fifths. Table 23 shows the responses of all students who took the Pretest, droppers and 

persisters. 

Table 23. Number of Fractions Placed Correctly on the Number Line. 

 Number of Fractions Placed in the Correct “Bin” 

 
4 3 2 1 

 
0 

Persisters 62 (53.9%) 18 (15.6%) 20 (17.4%) 10(8.7%) 5(4.3%) 
Droppers 18 (47.7%) 3 (7.9%) 8 (21.1%) 4 (10.5%) 5 (13.2%) 
All students  80 (52.2%) 21 (13.7%) 28 (18.3%) 14 (9.2%) 10 (6.5%) 

 

Half of the students who placed zero fractions correctly dropped the course by Test 3. In 

contrast, 22.5% of students who placed all four fractions correctly dropped the course by 

Test 3.  

 Although students did know procedures for finding common denominators, they 

did not always think to express two fractions with a common denominator to decide 
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which was larger. Janet tried to draw pictures of 4/5 and 5/7 to determine which fraction 

was larger but her pictures were not accurate enough to help her. I suggested that she 

repartition the slices of “pie” in her picture and that was enough of a hint for her to find 

common denominators. She was unsure if the procedures she learned for adding and 

subtracting fractions would still work in the context of trying to decide if 4/5 or 5/7 was 

larger. 

Excerpt 8. Janet Discussed if 4/5 or 5/7 is Larger. 

Janet: Oh, I see what you are doing, the common denominator… wouldn’t it just 
be thirty-five? I guess I can’t. I don’t remember how to get a 
common denominator with a multiplication problem. Usually you 
do it with subtraction.  

 
Interviewer: This isn’t a multiplication problem. We are trying to decide which of 

two fractions is bigger.  
 
J: so we …[writes down 28/35 and 25/35, two fractions equivalent to 4/5 and 5/7] 

Okay. So then four fifths is bigger. I multiplied them both by umm 
…what would give me the same denominator. 

 
I: Okay. 
 
J: So, four fifths I divided by seven (I’m sorry multiplied) and twenty five over… 

I multiplied that one by five. I guess that wouldn’t make them the 
same thing because I didn’t multiply them by the same thing. I 
guess that wouldn’t work. 

 
I: You are worried that because you multiplied one fraction by five and the other 

fraction by seven you messed something up? 
 
J: Yeah.  
 
There are a few important exchanges in Excerpt 8. First, Janet confuses the 

procedure for finding common denominators with the oft-heard maxim “do the same 

thing to both sides.” Second, Janet, like other students interviewed, did not think to 

repartition the one fifth and one seventh intervals by cutting a fifth into sevenths and a 
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seventh into fifths without the interviewer’s suggestion. Eventually she was able to 

reorganize her thinking and come to her own conclusion as to why she can multiply any 

fraction by one (in this case 5/5 and 7/7).  

Like Janet, the students who placed fractions on a number line incorrectly in their 

interview also revealed substantial and difficult-to-resolve issues with fractions.  

 Gallons to Liters. Responses to Gallons to Liters revealed major difficulties with 

fourth and fifth grade Common Core measurement standards (National Governors 

Association Center for Best Practices, 2010).  

Table 24. Responses to Gallons to Liters. 

 

High-level 
answer 189/50 m 

Used cubic 
term (a or c) Total 

Persisters 17 (15%) 62 (54%) 36 (31%) 115 
Droppers 6 (18.7%)  14 (43.8%) 12 (37.5%) 32 
All students  23 (15.6%) 76 (51%) 48 (32.6%) 147 

 

Many students associated converting between two measures of volume with the 

appearance of a cubic term. This data is consistent with Dorko’s research showing that 

elementary volume formulas were not well-understood by calculus students (Dorko, 

2012; Dorko & Speer, 2014). The results suggest most students did not reflect on the 

relationship that the smaller the unit of measure used, the larger the measure of a given 

container.  

 Fertilizer Function. The Fertilizer Function item on Test 1 required a similar 

ability to relate the measure of two quantities-in that case the number of ounces of 

fertilizer and the number of square feet in the garden. Sixty-eight percent of the persisters 

answered Fertilizer Function correctly on Test 1.  
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Results of Rate of Change Items 

 Covariation and Change. Unsurprisingly, students struggled on a set of more 

complex items that involved the concepts of function, graphs, and rate of change. The 

results for the item Covariation and Change are shown in Table 25. 

Table 25. Students' Final Answer Choice on Covariation and Change. 

 

Choice C: 
Correct 

description of 
changes 

Choice D: 
Describes 

absolute value of 
changes 

Choice A, B 
or E Total 

Persisters 23 (20%) 14 (12.2%) 78 (67.8%) 115 
Droppers 6 (15.8%) 11 (28.9%) 21 (55.2%) 38 
All students  29 (19%) 25 (16.3%) 99 (64.7%) 153 

 

The calculus students’ responses are similar to secondary teachers with mathematics or 

mathematics education degrees. Only 23 of 146 (15.8%) of secondary teachers with 

mathematics or mathematics education degrees gave a correct answer to this question 

(Joshua and Thompson, in preparation).  

 Bottle Problem. Carlson et al. (2002) reported that high performing calculus 

students struggled to coordinate changes in volume and height in a spherical bottle filling 

with water. The calculus students’ responses from this study confirm her observations 

(1998; 2002) in a different sample of students. Only sixty-three of the 115 persisters 

(54.7%) answered the Bottle Problem correctly.  

 Constant Rate of Three. Only 62 of 115 persisters (54%) correctly answered 

Constant Rate of Three (Figure 35). In interviews, students displayed difficulty in 

explaining the relationship between changes, differentiating change in amount from 

amount, and interpreting the phrase “with respect to.” One student, Daniel, said that 
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whenever he encountered the phrase “with respect to” in a problem he knew he would 

probably answer incorrectly.  

 Estimating Slope from a Blank Graph. Students were asked to estimate the 

value of slope from a blank graph on the Pretest and Test 1. Results from the Test 1 

version of Slope from Blank Graph (Figure 33) are reported because the instructors 

showed students that it was possible to estimate the slope on a blank graph in class. 

Sixty-four of 115 persisters (56%) answered the item in Figure 33 correctly on Test 1 

after the instructors discussed this very issue in class.  

A Comment on Generalizability 

 Despite the lack of statistical generalizability, this is the first study that studied 

this many calculus students’ meanings for fractions and measure, and strongly suggests 

that a nationally representative sample of calculus students would also struggle with the 

items. The proportions of correct answers on each item would be the same in a national 

sample as this isolated sample, but this study demonstrates that it is likely a random 

sample of calculus students would struggle with these middle school ideas and the area is 

worthy of future study.  

Building a Regression Model to Predict Test 3 Responses  

Multiple linear regression can be used to determine which items are predictive of 

student success on rate of change function items. Regression models can help build a case 

that students’ meanings for foundational topics are relevant to their understanding of a 

conceptual calculus class. 

 An ordinary least squares approach shows that three of the twenty-two items are 

statistically significant predictors of success on Test 3 items ( ). The statistically α = 0.05
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significant items on the Pretest are Gallons to Liters ( ,t(113) = 2.49, p = 0.015), 

The Bottle Problem ( , t(113) = 2.15, p = 0.034) , and Covariation and Change 

( ,t(113) = 2.10, p = 0.038). Using a stepwise elimination approach the previous 

three items are still statistically significant. The two additional statistically significant 

predictors from Test 1 are Fertilizer Function ( F(118) = 11.96, p = 0.0007) and 

Slope from Blank Graph ( , F(118) = 6.62, p = 0.01). All five items were 

individually significant predictors when used to predict variation in Test 3 rate of change 

item scores.  

It is best to make a model using fewer predictors with greater degrees of freedom 

to avoid over-fitting. The model with the five statistically significant predictors explains 

30.9% of the variation in the number of rate of change questions answered correctly on 

Test 3. The adjusted R squared, which takes into account that the R squared value 

increases monotonically with the number of predictors, is 27.7%.  

Table 26 shows a relationship between students’ scores on the five predictor items 

and their success on test three rate of change items. Two of the five predictor items were 

scored on a 0, 1, 2 scale so the total points possible on the five predictor items is seven.  

Table 26. Score on Predictor Items Versus Performance on Test Three Rate of Change 

Items. 

  Score on Five Predictor Items (Percent Students with 
Score) 

  0 
(1%) 

 

1 
(12%

) 

2 
(22%

) 

3 
(29%

) 

4 
(23%

) 

5 
(9%) 

6 
(4%) 

Te
st

 
Sc

or
e 4th quartile 0% 14% 8% 21% 41% 80% 80% 

3rd 
quartile 

0% 7% 24% 39% 15% 10% 0% 

β = 2.81

β = 2.12

β = 1.29

β = 3.25

β = 2.22
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2nd 
quartile 

100% 29% 44% 27% 33% 10% 20% 

1st quartile 0% 50% 24% 12% 11% 0% 0% 
 

Table 26 shows that the majority of students (74%) scored two, three, or four on 

the predictor items. Students who scored four, five, or six on the predictor items are 

substantially more likely to be in the top quartile on Test 3. Half of the students with only 

one point on the predictor items are in the lowest quartile on Test 3. Table 26 is 

consistent with the regression model showing that variation in the responses to the five 

predictors is associated with variation in Test 3 scores.  

 Two of the fraction items, Fractions on a Number Line, and Fraction of Cloth 

were not statistically predictive of student success on Test 3. Interviews suggested that 

students’ responses on these items were related to their meanings for fraction and that 

their meanings for fractions were associated with their ability to make sense of rate of 

change functions. There are multiple reasons why the qualitative and quantitative data are 

not consistent. One, many factors impacted student success on Test 3 so even if there is a 

relationship between responses to an item and Test 3 scores it might not be strong enough 

to be significant. Two, interviews suggested students were able to “guesstimate” the 

correct location of fractions without being able to explain the placement. Three, it may be 

that even if students who have relatively strong meanings for fraction, quotient, and 

measure, do not apply those meanings to making sense of calculus. Daniel’s interview 

provided evidence for the third hypothesis. 

  Daniel’s interview on Meaning of Slope showed that he had not connected his 

meanings of quotient to his meaning for the slope formula. He explained that “A divided 
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by B” means “the amount of A’s that would fit into B” and “B divided by A” means “the 

amount of B’s that would fit into A”. Daniel responded to Part A of Meaning of Slope by 

writing . Excerpt 2 contains Daniel’s explanation of the meaning of 

3.04.  

Excerpt 9. Daniel Explained his Meaning for Slope of 3.04. 
 

Daniel: So the 3.04 is the slope between these two. So that is basically the change 
between the two. 

 
[We clarify that he is imagining a line connecting two points.]  
 
Interviewer: When you say the change between the two are you talking about the 

length between the two points on this piece of paper? 
 
I: Yeah. It would be the length between these two [Daniel highlights hypotenuse.] 
 
I: So the slope is the length between the two points? 
 
D: Right.  
 
I: Okay. So why do you divide the change in y and the change in x to get a length? 
 
D: Because, it’s… you’ve got the one x here and the other one here and so you are 

trying to find the way which they both get to each other basically. 
That’s… 

 
I: Okay. [Daniel laughs.] Is that at all related to seeing how many B’s fit into A or 

is that like a separate thing in your brain? 
 
D: If you are doing the slope it’s different, I guess, I’m seeing it different in my 

brain, I guess it is because of the word slope gave this a different 
meaning.  

 
I: What does the bar in between them mean to you? 
 
D: I just… divide [laughs] 
 
I: Alright. It’s just that you were not using the how many times B fits into A 

language at all when describing the slope so that is why I was 
asking. 

  y2 − y1( ) x2 − x1( )



 

137 

 
D: Yeah. No, not with slope.  
 

Daniel realized that length is not a good description of slope when the interviewer drew 

multiple triangles of different sizes on the same line. The slope of the hypotenuse of each 

triangle was the same, but the lengths of the hypotenuses differed. Daniel’s meaning for 

quotient allowed him to construct a stronger meaning for slope, but only once the 

interviewer asked him to connect his meaning for quotient to his understanding of the 

slope formula. 

 

DISCUSSION 

 Only 1 of the 115 persisters correctly placed four fractions on a number line, 

converted from gallons to liters, and represented 4/5 minus 1/8 with a diagram. Fifty-nine 

percent of persisters scored less than 50% on the Pretest. Five out of six students 

interviewed struggled to find 1/5 of 1/8 which explains why the success on Fraction of 

Cloth was barely above a random-guess level. Half of persisters placed four fractions in 

approximately correct places on a number line, but when interviewed some of these 

students could not explain their placements. Only 15% of students correctly converted 

from Gallons to Liters given a conversion factor and four multiple choice responses. As a 

whole the students approach to the problem was substantially less effective than random 

guesses between four choices. None of these fraction and measurement items on the 

Pretest involved ideas beyond middle school mathematics.  

 The results of individual fraction and measure items suggest that most students’ 

meanings for fractions and measure are not strong enough to support their learning about 
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rate of change functions. The evidence for this statement comes from three different 

sources. One, my conceptual analysis explains how a productive meaning for rate of 

change functions is built on productive meanings for measuring the change in y in terms 

of the change in x. Two, the six interviews, analyzed in Byerley & Thompson (submitted), 

showed numerous instances where weak meanings for fraction and measure caused 

significant difficulties as students tried to understand rate of change functions. Further, 

the students’ responses on Gallons to Liters were statistically significant predictors of 

success on Test 3. This provides evidence that students’ measurement schemes are 

related to what they can make sense of in calculus.  

 Students difficulties with fractions and measurement may explain the reason that 

so many studies documented that students’ and teachers’ meanings for rate of change are 

indexical, chunky, or computational and not based on the multiplicative comparison of 

two changes (C. W. Castillo-Garsow, 2012; Coe, 2007; Stump, 2001a; P. W. Thompson, 

1994b). Students develop ways to cope with rate of change situations without having to 

rely strongly on their meanings for fraction. 

 The rate of change items show that students have many difficulties with 

interpretation of rate of change functions above and beyond their meanings for fractions. 

For example, most of the 115 persisters did not differentiate between the value of a 

function and a change in the value of a function (see Table 25). Forty-six percent 

struggled to appropriately use a graph to represent the covariation in two quantities (see 

Bottle Problem discussion). Forty-six percent struggled to find a change in y for a given 

constant rate of change and a change in x (see Constant Rate of Three discussion). This 

basic computation is critical for making approximations of an amount a quantity has 
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accumulated over an interval. Forty-four percent of persisters were not able to estimate a 

slope given a graph without numerical values on the axis (see Slope from Blank Graph). 

This skill is critical for drawing a rate of change function given an original function and 

deciding if answers to many questions are reasonable. If students struggle to imagine the 

changing slope of a function as x changes, they will struggle to understand the 

relationships between the function and the graph of its derivative. 

 Overall, this data suggests that there are many reasons it is difficult for students to 

understand conceptual instruction on rate of change functions, including but not limited 

to their understanding of measurement, variable, graph, function, fraction and covariation.  

IMPLICATIONS AND CONCLUSIONS 

 The results of this study suggest that one of the reasons for the general lack of 

success of calculus reform is that students’ foundational knowledge of measure, fraction 

and constant rate do not support students’ construction of useful meanings for rate of 

change functions. This data also suggests an explanation for the many students who 

report disliking conceptual instruction (Habre & Abboud, 2006). For students to engage 

meaningfully in conceptually-oriented instruction, they must have schemes for ideas that 

ground classroom discussions that are sufficiently well-developed that they can think 

about implications of those ideas. 

It is worth noting that students who lack the foundational meanings they need to 

understand a conceptual calculus lesson on rate of change functions can learn derivative 

rules without understanding them. Many students in the Spring 2015 class who had 

exceptionally weak fraction meanings scored above 90% on the course’s derivatives 

mastery test.  
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 My research is focused on students’ understanding of fraction, quotient and 

measure instead of students’ conception of variable, but there is a parallelism between 

this study and White and Mitchelmore (1996). They found that students’ conception of 

variable was not strong enough for them to make sense of their conceptual calculus 

intervention. They determined that there was not enough time in the calculus curriculum 

to provide the remediation students needed. Adding to the difficulties already 

documented, my study shows that most of this sample of calculus students did not have 

the meanings for fraction, measure and quotient that would be useful to understand 

conceptual calculus instruction on rate of change functions. White and Mitchelmore 

(1996) suggested, “either entrance requirements for calculus courses should be more 

stringent in terms of variable understanding, or an appropriate precalculus course should 

be offered at the university level” (p. 93). Educators who are aware  of this studies data 

have suggested that most of the students in this study should have been placed in 

precalculus. While it seems reasonable to expect calculus students to understand middle 

school mathematics, there are at least two issues with addressing calculus students’ weak 

foundational knowledge by placing them into a lower class. First, it is unclear that a 

precalculus course will address students’ weak meanings in measure, quotient, fraction, 

and rate of change that hinder students so severely in calculus. Second, many students in 

calculus have already passed college level precalculus and cannot be required to repeat it. 

Instead, we would need to turn back time so that students could learn these middle-school 

concepts when they should have and ensure that those who take precalculus are provided 

support in developing these meanings. 

 Even though many ideas from precalculus are critical for calculus, completing 
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college precalculus with its current focus on developing procedural knowledge does not 

increase students’ chances of eventually passing calculus (Sonnert & Sadler, 2014). 

Sonnert and Sadler (2014) pointed to a variety of studies showing that “traditional 

approaches that did not work in high school are simply repeated anew in college 

precalculus” (p. 1204). Precalculus curricula rarely focuses on the meanings of 

measurement, fraction, quotient and constant rate of change. Some curricula, such as 

Pathways Precalculus, are making adaptations in light of students’ weak meanings for 

quotient and measure and incorporating these ideas explicitly into the student and teacher 

materials (Carlson, Oehrtman, & Moore, 2010). It would be interesting to research the 

impact of the research-based modifications to the curriculum on students understanding 

of these fundamental ideas. My experiences teaching pre-service teachers who learned 

from the Pathways curriculum indicate that at the very least they are more likely to notice 

the broad use of quotients in higher mathematics and they describe quotient as a measure 

of relative size frequently.  

 There is no reason to think that placing students to classes before Precalculus will 

help them earn a STEM degree. Very few students who take non-college-credit courses, 

such as developmental mathematics, complete a STEM degree (Stigler et al., 2009). 

Moreover, community college students often learn fractions in the same ineffective way 

they learned them in elementary and secondary school (Stigler et al., 2009). Even if 

community college teachers were well prepared to discuss fractions meaningfully, it may 

be that students would have a difficult time developing a new way of thinking about 

something they had already learned meaninglessly. Mathematics educators have tried to 

help teachers develop strong meanings for fractions and they found it “challenging at best 
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and impossible at worst” to encourage teachers to think in more meaningful ways about 

computations they had been using for many years (Armstrong & Bezuk, 1995). 

 Placing students with weak meanings for fractions into precalculus or another 

remedial class is not even possible when the students have already passed precalculus at a 

university. Two of the students interviewed, Janet and Kristina, had very weak meanings 

for fractions and they had passed a university precalculus course with an A and a B 

respectively. They were able to pass prior classes because they both worked hard, 

completed all of their homework, and were fairly good at recalling and applying 

procedures for tests. Their former teachers cannot be “blamed” for passing them. Janet 

and Kristina both figured out ways to pass tests that the university math department 

intended to assess understanding, but which Janet and Kristina had learned to answer 

without the understanding that the writers presumed would underlie correct performance.  

  Calculus instructors must eventually teach calculus to students who arrive with 

meanings for fraction and measure that cannot support them in understanding calculus 

ideas. It is unreasonable, however, to expect calculus instructors to rescue students who 

are so woefully unprepared to learn calculus meaningfully. We must redouble efforts to 

support middle school and high school teachers in promoting strong meanings for 

measure, fraction, quotient, and constant rate.  

In line with Larsen et. al.’s (in press) call for more applied research on the design 

of effective calculus courses, the field would benefit from taking seriously the long-term 

impediments to students later learning that are created by their failure to learn 

fundamental mathematical ideas in middle school. The field must also help mathematics 

departments change their thinking about what it means to succeed in college mathematics 



 

143 

courses. We must consciously attend to the problem that our concept of success allows 

many students to “succeed” without learning much about what we think is being taught.  
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PAPER THREE: TWO CALCULUS STUDENTS’ FRACTION AND MEASURE 

SCHEMES AND THEIR UNDERSTANDING OF RATE OF CHANGE FUNCTIONS 

 This paper focuses on the mathematical meanings and ways of thinking that 

students bring with them to their study of university-level calculus. As Speer and Robert 

(2001) noted:  

It is accepted in much of the educational research community that students’ 
understanding of one concept influences their learning and understanding of 
related concepts. Research has revealed that what may appear to be weaknesses in 
students’ understanding of calculus concepts can really be just manifestations of 
their preexisting understandings of a related concept (Speer & Robert, 2001, p. 
296).  

The intervention study by White and Mitchelmore (1996) is one example of that research. 

They found that students’ meanings for variable prevented them from learning from 24 

hours of focused conceptual instruction on derivatives. White and Mitchelmore argued 

that while most existing research on calculus students’ thinking is on topics such as 

function, tangent, and limits that are particular to calculus, “another aspect that needs to 

be considered is the question of what other concepts are involved in applying calculus 

knowledge” (1996, p. 79). Twenty years later research on students’ calculus learning is 

still thin on how students’ foundational knowledge impacts the way they can make sense 

of conceptual calculus curriculums.  

 There is evidence that many calculus students struggle with fraction, measure, 

constant rate of change, and interpreting a graph (Byerley, submitted). As a research 

community, we do not actually know what students are capable of understanding about 

conceptual calculus instruction when their middle school mathematics knowledge is 

constituted by unproductive and often inaccurate meanings for fundamental ideas.  
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 To investigate how students’ foundational knowledge impacts them in calculus, 

this paper discusses two students who were participating in a conceptual calculus class 

designed by P. W. Thompson, Byerley, et al. (2013). The research question guiding the 

study was: 

How do students’ meanings for quotient, rate of change, fraction, and measure 

impact their understandings of rate of change functions in a redesigned calculus 

course? 

It seems obvious that “the thinking subject has no alternative but to construct what he or 

she knows on the basis of his or her own experience” (Glasersfeld, 1995a, p. 1). It is 

much less obvious how a student with problematic meanings for foundational 

mathematics understands conceptual calculus instruction.  

LITERATURE REVIEW   

 There is recent research documenting that students having well-formed fraction 

and measure schemes is essential for their development of algebraic and quantitative 

reasoning (Nabors, 2003; Pekkan, 2008; Steffe, 2013; Torbeyns et al., 2014). In addition, 

Steffe and colleagues have made many arguments about how fraction and measure 

schemes develop from students’ counting and unit-coordination schemes (Ellis, 2007; 

Hackenberg, 2007; Steffe, 2002, 2003, 2004; Steffe & Olive, 2010). Thus, long before 

students are ready for calculus they must develop the ability to coordinate multiple levels 

of units to support robust fraction and measure schemes. Steffe and colleagues’ extensive 

teaching experiments show that students usually progress to a higher-level scheme by 

reorganizing a lower-level scheme. Much evidence suggests that students who struggle 

with basic fraction situations do not make sense of higher level fraction situations until 
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they develop strong foundational schemes (Steffe & Olive, 2010). This literature review 

will focus on what we know about calculus students’ foundational measure, fraction, and 

rate schemes. 

Calculus Students’ Understanding of Measure 

 Byerley (submitted) and Dorko and Speer (Dorko, 2012; Dorko & Speer, 2014) 

reported that many calculus students have difficulties with the idea of measure. Dorko 

(2012) investigated calculus students’ abilities to answer basic questions about areas and 

volumes of a variety of shapes to better understand students’ thinking when they try to 

use integration to find volumes of solids created by revolving a curve around an axis. She 

conjectured,  

It is plausible that the difficulty understanding these calculus concepts are, at least 

in part, due to a lack of understanding of more basic concepts. Though area and 

volume understanding has been investigated in elementary school students, it has 

not been studied in calculus students (Dorko, 2012, p. 4). 

Dorko and Speer (2014) reported that 26.9% of 169 students who answered all tasks had 

correct units in all of their responses. Using interviews, Dorko (2012) “found that the 

student thinking behind length units used for other spatial computations appears to be that 

the units of the answer are the same units in which the shape was initially measured” (p. 

5). Thus if the sides of a square were measured in centimeters, the students believed the 

area of that square should also be measured in centimeters (not centimeters squared). 

Dorko and Speer’s study suggests many calculus students use computational instead of 

quantitative reasoning in measurement situations. By computational, I mean that students 

abstracted a rule from prior experience and use the rule without imagining how the 
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quantities in the situation are measured. If the students had imagined the measures of area 

they would have been more likely to realize that centimeters are not appropriate measures 

of area. 

 

 Dorko and Speer’s (2014) findings are consistent with the results of the National 

Assessment of Educational Progress, which tested a nationally representative sample of 

12th graders (National Assessment of Educational Progress, Mathematics Assessment). 

Only 55% of twelfth graders in 1990 correctly answered “volume” in response to the item 

in Figure 44.  

 

Figure 44. 1990 NAEP Item Given to National Sample of 12th Graders. 

The fact that almost half of high school seniors did not associate cubic inches with a 

measure of volume strongly suggests that they do not have a strong meaning for cubic 

inches. This could explain Dorko’s (2012) finding that calculus students choose which 

unit of measure based on the units given in the problem and not based on a quantitative 

understanding of the situation. Additionally only 49% of a nationally representative 

sample of 12th graders solved the item in Figure 45 correctly. The students were told that 

one gallon equals four quarts and one quart equals two pints in the problem, so the 

difficulty was not due to forgetting the conversion factors.  
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Figure 45. 1992 NAEP Item Given to 12th Graders. 

 Calculus students also struggle to convert between measures of volume, even 

when given a conversion factor. Byerley (submitted) reported that only 15% of 147 

Calculus I students at a large public university correctly converted between gallons and 

liters given that a gallon is 189/50 times as large as a liter. Consistent with students’ lack 

of meaning for the measures of volume, 37% of the students unnecessarily cubed the 

conversion factor between liters and gallon. This means they chose the answer that said m 

liters is equal to m gallons. Students’ success on converting gallons to liters 

was a statistically significant predictor of success on a test that assessed their 

understandings of rate of change functions. Calculus students’ measurement schemes are 

a promising and little studied research topic that might shed light on their difficulties in 

calculus.  

Calculus Students’ Understanding of Fractions 

 Byerley and Hatfield (2013) and Byerley, Hatfield, and Thompson (2012) 

reported that many calculus students also had significant difficulty reasoning about basic 

fraction situations in interviews and teaching experiments. Students commonly displayed 

part-whole meanings for fractions that disabled them from making sense of situations 

requiring multiplicative fraction schemes. Byerley (submitted) reported that only 52% of 

(189 / 50)3
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147 calculus students placed four given fractions appropriately on the number line. Only 

27% of calculus students chose a correct representation of 4/5 – 1/8, given five options. 

Both items, Fractions on a Number Line and Fraction of Cloth, were used in interviews 

and are discussed later in this paper. 

Calculus Students’ Understanding of Rate of Change 

 There are a number of studies documenting calculus students’ difficulties with the 

idea of rate of change (Carlson et al., 2002; Gravemeijer & Doorman, 1999; Hackworth, 

1994; Herbert, 2013; 1983; P. W. Thompson, 1994b).  For example Hackworth (1994) 

found, “most of the students currently entering first semester calculus have a weak 

understanding of rate of change, and this university’s calculus classes do not improve it” 

(1994, p. 161). It might be that studying derivatives did not improve calculus students’ 

understanding of rate of change because they did not have the foundational meanings 

they needed to make sense of instruction on derivatives. P. W. Thompson (1994b) found 

that students’ images of rate substantially impeded their progress in making sense of the 

Fundamental Theorem of Calculus. 

 Rate of change as index of fastness. Many students have a dominant meaning 

for slope and rate of change that does not involve changes in two quantities. Stump 

(2001b) found advanced secondary students are more likely to think of slope as an angle 

measure rather than a comparison of sizes of the changes in two quantities. Stroud (2010) 

reported that students think of rate as the number a speedometer points to or an index of 

fastness. Given the difficulty many calculus students have with fraction and measure, it 

makes sense that they would develop a meaning for slope and rate of change that does not 

require them to compare quantities multiplicatively.  
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 Rate of change as amount of change. Teachers frequently talk about a slope of 

m as meaning “as x changes by 1, y changes by m” (Byerley et al., 2016). The rate of 

change and amount of change are both m so some teachers lose track of the change of x 

of one and think of a rate of change as an amount of change (Byerley et al., 2016). 

Another consequence of these chunky meanings (C. W. Castillo-Garsow, 2010) for rate 

of change is students’ difficulty dealing with changes in x that are not equal to one. Their 

meaning for rate of change does not entail a proportional correspondence between 

changes in x of any size and associated changes in y (C. W. Castillo-Garsow, 2012).   

THEORETICAL FOUNDATIONS 

 I view learning as the process by which students make sense of new ideas by 

using and modifying their earlier schemes. When a student carries out an activity 

associated with a situation and cannot assimilate the result into their current expectation 

they will experience a perturbation. If the student is able to accommodate the unexpected 

result by modifying his or her schemes the perturbation will be eliminated (Glasersfeld, 

1996, p. 68). In the language of Glasersfeld, this study investigates how two calculus 

students are able to modify their current schemes in their attempts to make sense of new 

calculus ideas.  

 In this study I use Thompson, Carlson, Byerley & Hatfield’s (2014) definition for 

scheme: 

“We define a scheme as an organization of actions, operations, images, or 
schemes—which can have many entry points that trigger action—and 
anticipations of outcomes of the organization’s activity (Thompson et al., 2014, p. 
11). 
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This definition is broad enough to describe complex schemes, such as the one students’ 

develop for rate of change functions. A well-formed scheme for rate of change function 

entails schemes for measure (and hence proportionality), function (and hence variable), 

graph, variation, and covariation. The conceptual analysis in this section details how 

students’ images of rate of change functions could develop over many years from 

foundational measurement schemes.  

Measurement Schemes are Critical for Quantitative Reasoning. 

 Thompson described the importance of researching students’ quantitative 

reasoning (P. W. Thompson, 1993, 2011; P. W. Thompson et al., 2014). Following 

Thompson, many others have demonstrated the importance of reasoning quantitatively 

for making sense of algebra, precalculus, and calculus (Ellis, 2007; Johnson, 2010; 

Lobato & Siebert, 2002; Moore & Thompson, 2015). For an individual to quantify an 

object they must imagine a measure of the object: 

Quantification is the process of conceptualizing an object and an attribute of it so 
that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship (linear, bilinear, or multi-linear) with its unit (P. W. 
Thompson, 2011, p. 37). 
 

Steffe (2013) investigated the foundational mental operations that are entailed in 

developing the images of measurement necessary to reason quantitatively. This 

conceptual analysis will focus on how students’ ability to coordinate three levels of units 

is essential for the development of a multiplicative fraction scheme and a mature 

measurement scheme. Finally, it will discuss the importance of a measurement scheme 

for the construction of a rate of change function.  
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Development of Fraction and Measurement Schemes 

 Steffe & Olive (2010) analyzed thirty years of teaching experiments with 

elementary students to understand how students developed increasingly sophisticated 

fraction schemes. During these experiments they found extensive evidence that students 

developed their fraction schemes as modifications of their counting schemes. The ability 

to imagine number sequences as comprised of composite units, such as seeing ten as five 

copies of two, helped students develop the images of partitioning and iterating they 

needed to construct fraction schemes.  

 Counting schemes and unit coordination. When children are able to construct  

permanent objects-meaning they can imagine the object and its location even when they 

cannot see it, they become able to reflect on a sequence of identical objects. The 

awareness of a group of objects can motivate the desire to count the objects. Some 

students cannot count a group of objects that have been described to them but hidden 

from their view because “they need perceptual unit items in their visual field to carry out 

the activity” (Steffe, 2013, p. 18). As students develop mathematically they are able to 

imagine objects and processes more easily in their mind and reflect on these objects to 

develop more advanced reasoning. Steffe (2013) outlined a number of developmental 

steps that children progress through as they develop more advanced counting schemes.  

 Eventually children are not only able to hold one object in mind and operate on it, 

but to hold a collection of objects in mind and operate on that composite unit. For 

example, one student Johanna could think of nineteen as the sum of the composite units 

nine and ten and she operated with those composite units. 
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Johanna was asked to take twelve blocks. The interviewer took some more and 
told Johanna that together they had nineteen and asked how many he took. After 
sitting silently for about 20 seconds, Johanna said “seven” and explained, “Well, 
ten plus nine is nineteen; and I take away two-I mean, ten plus two is twelve, and 
nine take away two is seven” (Steffe 1992, p. 291). Johanna disembedded ten and 
nine from nineteen and then operated on the two numbers until she transformed 
them into twelve and another number that when added to twelve, would make 
nineteen. (Steffe, 2013, p. 26) 
 

Johanna’s reasoning shows how students develop the ability to work with composite units 

in the service of counting goals. 

 The construction of a robust measurement scheme requires that students construct 

iterable composite units. Constructing an image of a composite unit made up of iterable 

units is critical for making sense of fractions: 

When it is a goal of a child who has constructed the partitive fraction scheme to 
mark off a unit part of a continuous whole, the child can disembed the part from 
the whole and iterate it to produce another partitioned continuous whole to 
compare with the original continuous whole in a test to find if the part is a fair 
part (Steffe, 2013, p. 36). 
 

A student who has constructed a partitive fraction scheme can estimate one-tenth of a 

whole and then make ten copies of the one-tenth piece to determine if it is a fair share. 

The process of determining if a part is a fair share also produces a measure of the whole.  

It is in this sense “that children’s fraction schemes can be used as measuring schemes in a 

way that is analogous to the claim that children’ number sequences can be used as 

discrete quantitative measurement schemes” (Steffe, 2013, p. 35). To measure a 

continuous quantity students must project length units onto the quantity that they intend 

to measure (Steffe, 2013, p. 38). It is non-trivial to subdivide a quantity equally because 

the students must have conceptual structures in place to allow them to imagine a partition 
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before acting. To develop more mature measurement schemes, the students must develop 

more than a partitive fraction scheme. 

 Multiplicative fraction schemes. Steffe (2013) explained why it is necessary to 

reason with three levels of units to construct a fraction as a multiplicative concept and 

why this is important for developing a mature measurement scheme (p. 37). Constructing 

an improper fraction as a multiple of its unit fraction involves thinking of a fraction as a 

multiplicative object. 

  Consider the fraction that is eight-sevenths of some original unit. First partition 

the original unit into seven equal pieces. The original unit and the one-seventh pieces are 

both units. Disembed one-seventh from the original unit and iterate it eight times to 

construct eight-sevenths. As Thompson & Saldanha (2003) elaborated, eight-sevenths, 

then, is eight one-sevenths, and one-seventh is one-seventh of 1 because 1 is 7 times as 

large as one-seventh of 1. In other words, to have a mature measurement scheme, one 

must understand fractions as entailing a reciprocal relationship of relative size between a 

unit fraction and the unit that one takes as 1. See Figure 46. 

  

Figure 46. Seeing Eighth-sevenths as a Unit of Units of Units. Eight-sevenths is Eight 
One-sevenths, and One-seventh is in a Proportional Relationship with One. 
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It is common for students to interpret the resulting figure as eight-eighths, because 

they no longer hold in mind the original unit. The idea of a unit that is one, and remains 

one even after operating, is not in their thinking. To comprehend the new figure as eight-

sevenths requires coordinating three levels of units-the original whole, eight-sevenths, 

and one-seventh. Figure 46 uses different colors to represent each of the three units that 

must be held in mind to understand the fraction eight-sevenths multiplicatively.  

 Reasoning with three levels of units and measurement schemes. Steffe argued 

that “a measurement of what an observer would consider as an extensive quantity is a 

multiplicative object in the same sense that a fractional number is a multiplicative object” 

(p. 37). By this, I understand Steffe to mean that the mental operations that are involved 

in constructing a multiplicative fraction scheme are the same as the mental operations 

involved in constructing a measurement scheme. In both cases a unit is iterated to make a 

whole; in measure, the iteration of a unit is what produces the measure. 

 It is important to be able to reason with three levels of units to understand the 

relationships of relative size in one system of units. Steffe (2013) gives three examples of 

why reasoning with three levels of units is important for the development of a mature 

measurement scheme. First, to understand 3/12 of one foot as equivalent to 1/4 of a foot 

“would entail establishing a composite unit containing four composite units each of 

which contains three units of 1/12 foot” (p. 39). The student would have to imagine a 

partition of a partition and keep in mind both partitions at once to establish 3/12 as 

equivalent to 1/4 of a foot. Second, to construct five feet as 60 iterations of 1/12 of a foot 

requires reasoning with three levels of units for the same reason imagining 8/7 requires 

reasoning with three levels of units. Finally, to imagine measuring one quantity measured 
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by two units at the same time requires “constructing composite units as iterable units” (p. 

39). To imagine measuring five feet as both 5/3 yards and 60 inches requires thinking of 

a yard as three feet and an inch as 1/12 of a foot.  

Measurement and Calculus 

 Students’ ability to take three levels of units as given is essential for the 

development of a robust meaning for measurement and, in turn, conceptualizing a 

measure of a quantity is critical for quantitative reasoning. Imagining quantities and their 

measures is foundational for understanding the intended overarching ideas of 

Thompson’s redesigned calculus course: a course that examines how the measures of 

quantities co-vary. In particular, strong measurement schemes are critical for students’ 

construction of rate of change functions. I acknowledge that students’ images of variation 

and covariation are also critical for understanding rate of change functions, but will 

remain focused on measurement schemes in this paper. For more information on the 

relevance of students’ images of variation see White and Mitchelmore (1996), P. W. 

Thompson and Carlson (2016), and P. W. Thompson, Byerley, et al. (2013). 

 A differentiable function with a non-constant rate of change can be approximated 

to any degree of precision over a small interval with a linear function. The constant rate 

of change of the linear function is equivalent to the average rate of change of the original 

function on the small interval under consideration (P. W. Thompson, 1994a, p. 23). The 

constant rate of change of the linear function is a measure of the relative size of a change 

in output and a change in input.  

 Graphs are frequently used in conceptual calculus courses to convey the 

relationship between functions and their rate of change functions. For the sake of this 



 

163 

analysis, let us assume that students understand a graph as a representation of the 

covariation of two quantities’ measures and not as a static shape (Moore & Thompson, 

2015). Constructing a graph of a rate of change function entails being able to imagine 

how a rate of change of the original function varies as the value of x varies. The student 

must be able to visualize a sequence of representations of changes in x and associated 

changes in y. They must imagine how the quotient ∆y/∆x varies by comparing the relative 

sizes of ∆y and ∆x. Being able to anticipate the measurement process is useful in deciding 

how small ∆x intervals must be to produce linear approximations of the original function 

that have a desired accuracy. Holding a strong image of measure in mind also allows 

students to compare the relative sizes of two changes when they appear to them to be so 

small that it is not possible to carry out the measurement process physically. Thompson’s 

(1994b) conceptual analysis of the Fundamental Theorem of Calculus was the inspiration 

for this analysis of what it means to understand a rate of change function. 

 Relative magnitude schemes. The measurement and fraction schemes described 

above are necessary but insufficient for making sense of calculus. P. W. Thompson et al. 

(2014) described five levels of reasoning with magnitudes that are critical for a mature 

understanding of rate of change.  A person with a relative magnitude scheme can 

coordinate the comparison of two extensive quantities into an intensive quantity as well 

as the changes of units of measure for each extensive quantity (Thompson et al., 2014, p. 

6). An important part of the relative magnitude scheme is that a person anticipates that 

the relationships between the two extensive quantities remains invariant even if the unit 

used to measure each quantity changes. In other words, 60 miles per hour represents the 

same relationship between distance and time as 88 feet per second. A student who 
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understands the equivalence of 60 miles per hour and 88 feet per second understands that 

a mile is 5280 times as large as a foot and one hour as 3600 times as large as a second. 

Since one second is 1/3600th of an hour, an object will travel 1/3600th of 60 miles in one 

second. The student coordinated both the relative size of hours and seconds as well as the 

proportional relationship between distance traveled and time elapsed. Since one mile is 

5280 times as large as one foot the number of feet traveled in a given amount of time is 

5280 times as large as the number of miles traveled in that time period. If an object 

travels 1/3600th of 60 miles per second it travels  feet in one second.  

 A relative magnitude scheme requires at a minimum coordinating three levels of 

units. Students must imagine one foot as the result of partitioning one mile and one 

second as the result of partitioning one hour. They must also understand that if they go 

some portion of the time they go the same portion of the distance. The two students 

discussed in this study did not have relative magnitude schemes, but it is important to 

show the schemes they operated with in relation to mature schemes I hypothesize would 

support well-formed understandings of rate of change functions. 

Summary 

 It is critical for researchers to understand how students’ foundational schemes 

impact new ideas they are able to understand. Students’ measure schemes are 

foundational to their ability to reason quantitatively-a critical way of reasoning for 

making sense of the redesigned calculus course the students in the study were taking. 

Reasoning with three levels of units is critical for constructing multiplicative meanings 

for fractions and robust measurement schemes. Strong meanings for improper fractions 

 5280 1/ 3600 of 60( )
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and measure are critical in many areas of calculus including making sense of rate of 

change functions.  

 This theoretical perspective describes not only the advanced ways of reasoning 

about measurement but the development of these ways of thinking from elementary 

counting schemes. I decided to include descriptions of Steffe’s research on the 

development of students’ basic measurement schemes as modifications of their counting 

schemes after collecting the data on the two calculus students described in the results 

section. These two students did not reason with the multiplicative measurement schemes 

the conceptual analysis hypothesized were necessary for productive meanings for rate of 

change functions. Their reasoning was better explained by focusing on their basic images 

of partitioning and by using constructs describing earlier stages of development of 

measure schemes.  

METHOD 

Reform Calculus Class 

 Thompson designed a new approach to calculus that was built upon his 

conceptual analysis of the Fundamental Theorem of Calculus (P. W. Thompson, 1994b; P. 

W. Thompson, Byerley, et al., 2013; P. W. Thompson & Silverman, 2008). He designed 

the class to “address two fundamental situations: (a) you know how fast a quantity is 

changing and you want to know how much of it there is, and (b) you know how much of 

a quantity there is and you want to know how fast it is changing” (P. W. Thompson, 

Byerley, et al., 2013, p. 125). Janet, and Kristina, the two students described in this paper 

were enrolled in this redesigned course.  
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Overview of Mixed-Methods Calculus Study 

 The two students described in this paper were two of many students participating 

in a mixed-methods study designed to understand how students’ fraction schemes 

impacted their understanding of calculus. In Fall 2014 I tutored five students weekly in 

individual sessions to develop a broad sense of how their understanding of fractions 

impacted their success in the course as well as to identify other relevant variables 

impacting success. In Spring 2015 I collected responses from 153 calculus students on a 

Pretest, Test One, and Test Three to understand how successful the students were on 

fraction and measure items and whether or not success on these items was predictive of 

success on rate of change function test questions (Byerley, submitted). In Spring, 2015 I 

also interviewed six students three times each to better understand their item responses 

and to understand how their fraction and measure meanings supported or hindered their 

understanding of the rate of change of a sine function.  

 I decided to focus on Janet and Kristina because they both worked hard in the 

class and completed all of the homework. Their difficulties could not be attributed to lack 

of attendance or effort unlike some of the other students I interviewed. Janet and Kristina 

earned an A and a B respectively from a college level precalculus course so under no 

typical placement system would they be denied entrance to calculus. It cannot be argued 

that they should simply be placed in a lower class to deal with the lack of foundational 

mathematical knowledge revealed in the study. In addition to these factors, I focused on 

Janet and Kristina because they both demonstrated substantial difficulties with basic 

fraction, measure and partitioning schemes.  
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 Tutoring Kristina. The Fall, 2014 tutoring sessions with Kristina occurred once 

a week for the entire semester. I allowed her to ask for help with anything she was 

confused about in the class so I might develop a broad understanding of her experiences 

in the course. Because I paid her a small stipend for participation she also agreed to 

answer particular questions about fractions and rate of change functions and to be 

interviewed about her test responses. I tutored Kristina nine times in Fall, 2014 and 

recorded the important sessions to understand her experiences in calculus.  

 Interviewing Janet. The purpose of the first clinical interview in Spring 2015 

was to model Janet’s meanings for fraction, quotient, slope, measure, and rate of change. 

The first interview was based on her responses to the Pretest given in Spring 2015 

(Byerley, submitted). The interviews analyzed in this paper concerned the items Fraction 

of Cloth and Fractions on a Number Line (described in results). Bradshaw et al. (2014) 

designed Fraction of Cloth as part of a national assessment of teachers’ mathematical 

knowledge for teaching fractions. The item Fractions on a Number Line was inspired by 

Torbeyns et al. (2014). Torbeyns et al. (2014) found that student’s ability to appropriately 

place fractions on number lines was highly predictive of their success in mathematics.  

 The second interview took place after the course instructor introduced the idea of 

creating a rate of change function given an accumulation function, but before Janet 

learned about derivative shortcuts. The goal of the exploratory teaching interview was to 

help students construct and understand a graph of the rate of change of the sine function. 

The discussion of the sine function was inspired by Precalculus Pathways curriculum 

(Carlson, Oehrtman, & Moore, 2010) and Moore’s dissertation study (Moore, 2013). The 

output of the sine function is measure of a vertical length in terms of the radius. This 
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mathematical context provided an additional opportunity to understand students’ abilities 

to make multiplicative comparisons of varying quantities.  

 The third interview took place after Janet took her third exam (Test 3). Test 3 

addressed students’ understandings of rate of change functions. The interviews focused 

on the Test 3 problems that Janet answered incorrectly. Byerley (submitted) discussed 

Test 3 at length.  

 Exploratory teaching interviews. Both Janet and Kristina’s sessions involved 

asking them questions and trying to help them understand a topic if they were confused. I 

spent more time helping Kristina with various issues because I was tutoring her, but in 

both cases I was open to helping either student construct new ideas. I wanted to 

“experience, firsthand, students’ mathematical learning and reasoning” (Steffe & 

Thompson, 2000, p. 267) and not be constrained by a strict interview protocol if the 

student made an interesting comment or mistake. If students had difficulty with a 

particular task, I attempted to orientate them in a way that allowed them to continue their 

solution. The strength of this method is that it reveals the boundaries of students’ 

understandings and the nature of those boundaries. A student who reaches an impasse in 

thinking about a problem, but can profit from a slight suggestion about another way to 

think about it has different understandings than a student who cannot overcome an 

impasse no matter the help given. 

Analysis of Interviews  

 I made Pencast recordings of sessions with an Echo-Pen and transcribed them. I 

used open coding (Charmaz, 2006) to analyze the Pencasts. In the first pass of coding I 

identified instances that gave insight into students’ meanings for fraction, quotient, 
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measure, rate of change, or rate of change functions. I also identified places where their 

meanings for foundational topics impacted the sense they made of rate of change 

functions. This first pass of coding resulted in transcript of interviews that were 

highlighted in four colors. One color represented sections that gave insight into students’ 

meanings for fraction, quotient, measure or rate. One color represented when their 

meanings supported them, and another represented when their meanings disabled them. A 

fourth color represented students meanings for rate of change functions. These color 

coded transcripts also included comments that described my initial hypotheses about how 

to describe the students’ thinking. After this rough coding, I tried to connect the students’ 

words to descriptions of student thinking provided in earlier studies. For example, I 

compared students’ words to decide if their meaning for rate conveyed in an excerpt was 

consistent with thinking of rate as an index of fastness. 

 After the first pass of coding, I noticed that students’ struggled to reason about a 

partition of a partition in the Fractions of Cloth item. As a result I looked for instances 

that shed light on students’ abilities to coordinate three level of units and their use of 

measurement schemes. I reexamined the sections color-coded as about fractions to see if 

students appeared to be reasoning with two or three levels of units. I paid explicit 

attention to any circumstance where the students drew a partition or failed to use 

partitioning when it would have been useful. As a final pass of coding I used Tzur’s 

(2014) summary of Steffe’s research on levels of fractions schemes to organize the 

descriptions of Janet and Kristina. I looked for evidence that students did or did not 

reason at each level specified by Steffe (2010). See the discussion section for the table 

and evidence. The strength of this method is that by showing that students struggled to 



 

170 

reason at stages hypothesized to precede multiplicative understanding of fraction and 

measure, I provided further support that they lacked mature fraction and measure 

schemes.  

 Other documents produced were summaries of students’ performance on tests and 

quizzes and summaries of sessions with students. I often wrote the summaries of students’ 

test responses before interviews and tutoring and the summaries included hypotheses 

about areas of weakness I might expect to see in a tutoring session or an interview. 

RESULTS: THE CASE OF KRISTINA 

 This results section is the first of two. The first section is about Kristina. It gives a 

detailed example of what it means for a calculus student to fail to coordinate three levels 

of units. This is important because Steffe (2013) hypothesized that without being able to 

coordinate three levels of units the student would struggle to develop robust measure and 

rate schemes.  At the end of Kristina’s section I briefly describe the many ways her 

meanings for fractions caused Kristina problems in her study of calculus.  

Who is Kristina?  

 Kristina was a hard working chemistry major, who earned a B in Pathways 

Precalculus from an experienced teacher at the same university. She had below average 

scores on three of the four tests in calculus and did not pass the class despite doing all of 

the homework and receiving extra tutoring at least once a week.  

 Two pizzas. As part of our tutoring sessions, I drew two pizzas as shown in 

Figure 47. I asked Kristina “what fraction of the two pizzas is shaded?”  
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Figure 47. Kristina Tried to Determine what Fraction of the Two Pizzas is Shaded. 

Although she could identify that 1/4 of one pizza and 1/2 of another pizza was shaded, 

she could not determine that 3/8 of two pizzas was shaded. She did not see 1/4 of one 

pizza as the equivalent to 1/8 of two pizzas. Reasoning about 1/4 of 1/2 of the total 

amount of pizza was difficult for Kristina, which suggests that coordinating three levels 

of units was a challenge for her.  

 Fraction of Cloth Item. Kristina and I spent 47 minutes discussing the item 

Fraction of Cloth (Figure 48).  

 

Figure 48. The Item Fraction of Cloth Designed by Bradshaw et al. (2014). 
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Initially we discussed that the horizontal lengths were partitioned into five equal pieces 

and why choice (d) did not make sense. Kristina saw the entire length as one meter and 

choice (d) showed more than 4/5 of one meter. Next Kristina drew a segment on the 

diagram that she called “1/8 meter” but her 1/8 meter was longer than 1/5 of the entire 

partitioned segment. I asked her to discuss her meaning for 1/8 to help her recognize her 

mistake. She explained 1/8 meant, “… how many times one-eighth goes into one meter. 

That doesn’t make sense. I really don’t know. I really don’t like fractions. This is really 

hard.” To help her visualize 1/8 I drew a line segment for Kristina and asked her to cut it 

up into eight equal pieces (Figure 49).  

 

Figure 49. Kristina Struggled to Partition a Line into Eight Equal Pieces. 

 Instead of cutting the line into half, and then half again to help her find equal 

sized pieces Kristina created the segments one by one from left to right. I asked her to try 

again and to make the pieces all the same size and again she struggled and repeated the 

partition in the same way. Kristina knew the pieces should be equally sized, but did not 

have a good strategy to create equally sized pieces. I showed her how to make eight equal 

pieces by thinking of 1/8 as 1/2 of 1/2 of 1/2. She said, “that is a good way to think about 

it, but I never would of thought of it as more fractions of more fractions. But starting at 

one half and then reasoning half of that, half of that, that makes sense.” Although Kristina 

was able to cut segments into one half repeatedly when prompted, she did not anticipate 

how partitioning a partition could serve her goals of equi-partitioning a segment into 

eight pieces.  
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 I repeatedly asked Kristina what 1/5 of 1/8 of a meter was. She was unable to 

answer even after numerous prompts. Eventually, I asked her to show me 1/40 on one of 

the diagrams. She immediately recognized that 40 was divisible by 5 and 8. I am 

including the majority of our lengthy discussion about 1/40 of one meter to convey how 

truly difficult it was for Kristina to coordinate her multiplication facts with her 

partitioning schemes and to reason with three levels of units. 

Excerpt 10. Kristina Tried to Draw 1/40 of One Meter. 

Interviewer: We are trying to figure out the size of a piece where 40 copies of it 
would make one meter. 

 
Kristina: [long pause] Umm…I don’t know. I don’t know how to do that. 
 
I: Could you draw a tenth of one meter? 
 
K: A tenth of a meter. 
I: So draw a piece so that ten copies of it would make one meter. 
 
K: So you would just draw ten pieces.[Kristina draws 1/10 of 1/5 below. Note that 

Kristina labeled the entire diagram “1 meter.”] 

 
I: So that little piece you drew. If you made ten copies how much would you get.  
 
K: Uhh. One fifth of ten. 
 
I: Uhh… so this little piece. It is one tenth of something because you cut 

something into ten equal pieces. If you made ten copies of it like 
you did, what is it equal to, what is this whole? 

 
K: One fifth. 
 
I: It is one tenth of one fifth. I want you to draw one tenth of one meter. You drew 

one tenth of one fifth of one meter. 
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Excerpt 10 shows that Kristina was unsure about how to draw 1/40 of a meter, even 

though we had just had numerous conversations about the meaning of a fraction and drew 

1/8 of a line segment and identified 1/5 of a meter. I asked her to draw 1/10 of a meter 

and she ignored the size of the whole and used a part-whole meaning to focus exclusively 

on the ten objects she cut up 1/5 into and not the size of the whole. Kristina’s way of 

operating is consistent with her descriptions of one-tenth as one out of ten things. In 

Excerpt 10 I tried to help her construct a meaning of 1/10 of a meter as the size of a piece 

that when iterated 10 times makes a meter. Excerpt 11 continues the conversation from 

Excerpt 10.  

Excerpt 11. Kristina Tried to Draw 1/10 of a Meter Again. 

Kristina: Okay. This is already five, so if I just break it down like that [cuts each 
fifth into two pieces]… is it in ten things now? 

 
Interviewer: Good job! How did you know how to break it up like that? 
 
K: Because it is already five. Because if I add… I don’t know. I just knew. 
 
I: Does it have to do with five times two?  
 
K: Yeah.  
 
I: Like, if every fifth was in half you would end up with ten pieces overall. You 

are kind of using multiplication facts inside your brain. Like over 
here [I point to our attempts to draw 1/8], when I was thinking of 
drawing one eighth, an eighth is one fourth of one half. Four times 
two is eight. I was using my multiplication facts in my brain to 
make my pretty drawing over here.  

 
K: Yeah. 
 
I: Now this one is harder, but you can still use multiplication facts. We are kind of 

running out of things to draw on! [laugh] One fortieth of one meter. 
Try to draw one fortieth of one meter.  

 
K: [Cuts the tenths into halves to make 1/20 of a meter.] 
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I: You are breaking the tenths into halves. 
 
K: Yeah. 
 
I: So the little piece you just drew [I point to 1/20 of a meter.]. What fraction of 

the whole is that little piece? 
 
K: One fortieth. Or…. 
 
I: If it was one fortieth and you counted them up how many would you find? 
 
K: [She pauses to count the twenty pieces.] Oh, that is only twenty. 
 

In Excerpt 11 Kristina figured out that if she partitioned 1/5 of one meter into two equal 

pieces she made 1/10 of a meter. She could not explain her reasoning so I tried to help 

her connect her partitioning activity to her knowledge of multiplication, namely, that ten 

is fives copies of size two. Additionally, I gave a second example of how I coordinated 

my multiplication facts with partitioning by reminding her to think of 1/8 as 1/2 of 1/2 of 

1/2. Despite this, Kristina still believed that 1/2 of 1/10 is 1/40. She had to physically 

count 20 pieces to determine that 1/2 of 1/10 is 1/20. Her physical counting suggests she 

doesn’t easily imagine cutting ten objects in half. I share the remainder of the 

conversation about drawing 1/40 of a meter in Excerpt 12 as evidence of how truly 

difficult it was for Kristina to coordinate her multiplication knowledge with her 

partitioning schemes. 

Excerpt 12. Kristina Continued to Struggle to Draw 1/40 of One Meter. 

Interviewer: So say you have ten cookies for a party and you cut them all in half. 
How many servings of cookies would you have now? 

 
Kristina: Five. You have ten in half?  
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I: You have ten cookies. And then some more people come. More than ten. You 
want to have an equal amount for all of them so you decide to cut 
each cookie in half. How many pieces do you have?  

 
K: Twenty. 
 
I: So if you cut your ten equal pieces in half, how many pieces would you have? 
 
K: Twenty. 
 
I: And that is how many pieces you counted right? 
 
K: Yeah.  
 
I: So one twentieth is closer to one fortieth. But I still want you to show me what 

one fortieth of one meter looks like.  
 
K: I don’t know how to break it down any more. [pause] I could like cut this one 

in half. 
 
I: If you cut each one of your twentieths in half, how many pieces would you end 

up with? 
 
K: Forty? 
 
I: If you took this little piece and made forty copies of it how much would you 

get? 
 
K: One.  
 
I: One meter. 

 

Finally, Kristina, is able to recognize 1/40 of a meter on the diagram but she has yet to 

construct 1/40 as equivalent to 1/8 of 1/5. The conversation continues for some time with 

many more issues until we eventually decide how to model 4/5-1/8 on the diagram. 

Kristina’s difficulties with fractions on this item, and in many other tutoring interactions, 

suggest that her partitioning schemes were weakly connected to her knowledge of 

multiplication and counting. Kristina showed no sign throughout our tutoring sessions of 
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having developed the ability to reason with three levels of units despite my extensive 

attempts to help her do so.  

Kristina’s Experiences in Calculus  

 Kristina’s difficulties with fraction, measure, and rate and her tendency to reason 

computationally instead of quantitatively substantially impacted her understanding of 

calculus. The following is an abbreviated list of rate of change situations that Kristina 

struggled to understand because of her fraction knowledge.  

• She did not understand that if a car travels at a constant rate it travels 1/4 of its 

total distance in 1/4 of its total time. This meaning for constant rate of change 

requires imagining proportional partitions of two quantities. 

• She thought that if A and B both approach zero the quotient A/B must approach 

zero. Her image for quotient did not entail comparisons of relative size and this 

caused problems when she considered tiny changes in x and y.  

• Kristina’s difficulty simplifying expressions made her much more likely to use 

the quotient rule when it was unnecessary (e.g. f (x) =
100x
20

), which led to even 

more complicated expressions. Her weak images of partitioning made 

simplification slow and difficult. For example, she needed a ruler to enact a 

physical measurement process to decide how many copies of two make five. It 

took her 13 seconds to decide that there are 5 copies of 20 in 100. Despite these 

difficulties she earned an A on a derivative rule mastery test that did not require 

students to simplify answers.  
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• Even though Kristina could easily recite procedures for optimization and related 

rates problems, it was difficult for Kristina to imagine how the quantities changed 

together which made it difficult for her to envision and model situations that 

involved rates of change or related rates. She tried to solve a “bucket problem” 

that involved imagining a bucket filling with water and imagining the relationship 

between the volume of water and the height of the water. On a bucket problem 

she could tell the height of water increased when the volume of water increased. 

However she could not imagine the values of the changes in volume or height. 

She struggled to use a table to help her understand the situation because of issues 

with finding the numerical values in the table. For example I told her that in 1/2 

minute they would add half of 2.5 gallons to a bucket but she could not visualize 

1/2 of 2.5 on a number line or produce the numerical value.  

• She said repeatedly that if the amount of something is increasing, then the rate of 

change of that amount is increasing as well. I used examples of graphs and actual 

physical motion to help her see that an increasing amount did not imply an 

increasing rate of change. However, on tests and quizzes she reverted to her 

original incorrect assumption. 

• When Kristina took derivatives of functions such as f (x) = π 6  she used the 

power rule to get f '(x) = 6π 5 . I graphed f (x) = π 6 and she said she could not 

find the rate of change of that constant function. When I asked her for her 

meaning of rate of change she wrote down “rate of change is distance something 

traveled in set amount of time” but this “distance something traveled” meaning 
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did not help her see the rate of change of a constant function is zero because she 

did not focus on the zero change in f(x) for any change in x.  

• She tried to differentiate a function then integrate the result to check that she had 

carried out the procedures appropriately. She could not determine whether the 

following two expressions were equivalent: 3
2
x1.5

1.5
+C = x

3
2 + 4 . She could not 

compute 3/2 divided by 1.5 or place 3/2 on a number line.  

Taken together these instances demonstrate Kristina’s weak fraction schemes were one of 

the many reasons she struggled to construct graphs of rate of change functions, apply 

derivatives to solves problems, and carry out procedures involving differentiation and 

integration. Kristina’s procedural orientation to mathematics, including her procedural 

orientation to fractions was a significant obstacle in this conceptual calculus class. 

Further her understanding of graphs made it very hard for Kristina to even draw an 

appropriate representation of ∆x and ∆y to enact a measurement process to estimate the 

rate of change of a graph. The case of Kristina demonstrates that weak fraction schemes 

can prevent students from making sense of calculus, but also that weak fraction schemes 

probably also come along with a host of other problems that are also relevant. 

RESULTS: THE CASE OF JANET 

 This results section focuses on Janet’s fraction reasoning and its implications for 

Janet’s difficulties in calculus as she attempted to make sense of the rate of change of a 

sine function. This section is important because it shows how a student who has a weak 

understanding of fractions struggles when trying to make sense of a conceptual lesson on 

rate of change. 
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Who is Janet? 

 Janet was a curious and motivated student. At the time of the interviews she 

wanted to triple major in anthropology, biology, and psychology. She took calculus 

because she had heard that calculus was crucial for being able to model the social and 

political world quantitatively. She said, “I wanted to get into math to model these large 

scale behaviors.” For example, she was interested in the relationship between the amount 

of parental investment in childrearing and the gender differential of people in power. 

Unlike some students who wanted to learn traditionally, Janet liked Dr. M’s conceptual 

approach to teaching calculus. She realized during the course that in prior math classes 

she often memorized procedures without understanding, and that calculus would not help 

her model the real world unless she understood the concepts.  

 Janet was the only student out of 153 who asked to come to my office and discuss 

her results on the Pretest to find out how to improve. In our first discussion we realized 

that her algorithm for long division was incorrect and she was astonished that her 

mathematics teachers had not noticed that she did not know how to divide. She also 

realized that she did not understand trigonometry even though she earned an A in 

precalculus and she agreed to work on areas of weakness by reviewing the Pathways 

Precalculus curriculum (Carlson, Oehrtman, & Moore, 2010). 

 One of the most notable aspects of Janet’s interviews was her ability to reflect on 

her own thinking. She was curious about how people learned and presented a poster 

entitled “The Role of Introspection in Children’s Theory of Mind Development” at a 

national Cognitive Development Conference. She wanted to know how Piaget’s ideas had 

been applied to mathematics education. She was confident in her thinking overall, but 
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knew she had struggled more in mathematics classes than other subjects. Janet laughed 

about the anguish she felt when interviewed about what she described as second-grade 

math. “It is the worst! I’m doing well on the tests and I am doing well in the class but if 

you slightly lift up the veil it literally is terrible. How am I able to get A’s and really high 

B’s on these tests when I fundamentally don’t understand what a fraction is? [laughs] 

That blows my mind.” Her scores of 82% on both Test 1 and Test 2 were substantially 

above the class averages of 64% and 54% respectively and were curved to be an A and a 

high B. 

  Janet described her mathematical thinking as disastrous. The interviews helped 

her realize that her small mistakes actually were symptoms of profound difficulties with 

fundamental mathematical issues. She said, “I hate it when I do something and think it is 

[just] a stupid mistake, and then it unveils this whole hidden problem.” She came to 

realize that there were giant gaps in her elementary mathematical knowledge and that it 

was indicative of a major cultural problem that she had passed so many mathematics 

classes with no one noticing them.  

Janet’s Meanings for Fractions 

 Janet’s feelings about fractions. Janet arrived in calculus knowing that fractions 

had caused her problems in prior math courses. She recalled “thinking that fractions were 

not a big deal, but then so many times I heard that fractions were scary and that we need 

to get rid of them, that I became scared.” I suspect her teachers “got rid of fractions” by 

either converting them to decimals or by multiplying both sides of an equation by the 

least common multiple of numbers in the fractions’ denominators. She did not feel that 

her high school mathematics experiences helped her improve her meanings for fractions 
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because “the standard thing was that teachers gave us fractions and the first step was to 

get rid of them so we didn’t have to think about them.” She explained that when she 

looks at a fraction she “literally just see[s] those as symbols. It is literally not representing 

anything.”  

 Placing fractions on a number line. Janet’s original Pretest response to 

Fractions on a Number Line is shown in Figure 50. She discussed the item with me 

informally the week after the Pretest. She agreed to be part of the study and we recorded 

our second conversation about the Pretest a few weeks after the first. I was concerned that 

since we had already discussed her mistakes in depth, the second discussion would not 

capture her difficulties with fractions but this was not the case. 

 

 

Figure 50. Janet's Pretest Response to Fractions on a Number Line. She Found that 9/7 
was not Equal to 18/14 because of Misrepresenting the Remainder as a Decimal. 
  

 Janet noted that seven was bigger than five so 5/7 should be less than one but 

struggled to find a more precise estimate. With my help Janet saw she needed to decide 

whether 4/5 or 5/7 was larger to make a better estimate. Her intuition was that 5/7 is 
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smaller than 4/5 but she did not know why. Janet decided to draw an image of 4/5 to help 

her justify her reasoning (Figure 51).  

 

 

Figure 51. Janet's Pie to Show 4/5. (The Squiggle Marks Show that she Eventually 
Crossed Out her Image.) 
 

Janet partitioned the pie into six pieces instead of five. Based on her repeated difficulties 

coordinating the number of cuts made and the number of pieces it was probably not a 

coincidence that her pie had the wrong number of pieces. Further, if Janet had had a 

strong image of five when she started drawing partitions it is unlikely that she would 

have ended up with six pieces. Her difficulty drawing equal sized pieces was not due to 

carelessness; she explained that she tried to draw the parts equally in Excerpt 13. 

Excerpt 13. Discussing Janet’s Picture of 4/5 of a Pie. 

Interviewer: What is the problem with the pie? How come that isn’t working for 
you? 

 
Janet: Because I can’t draw it equally. It is hard for me to visualize it. Cause it is 

like, you know what I mean? 
 
I: You have a drawing limitation. 
  
J: Right, not uh… yeah.  
 
I: What you’d like is to draw four-fifths perfectly and five-sevenths perfectly.  
 
J: And then be able to visualize.  
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I: But they are too close to each other to be able to tell from the imperfect drawing.  
 
J: Yes. Right. That is exactly it. 
 

Janet also did not think of repartitioning the pieces into thirty-fifths so that she could 

compare the sizes of the two fractions until I suggested this explicitly.  

Excerpt 14. Janet Tried to Decide if 4/5 or 5/7 is Larger using a Common Denominator 
Approach. 
 

Interviewer: [I suggested that she try multiplying the fractions by “one” to 
compare their sizes. I gave the example that 2/2 and 3/3 were 
equivalent to one.] 

 
Janet: Oh, I see what you are doing, the common denominator… wouldn’t it just 

be thirty five? I guess I can’t. I don’t remember how to get a 
common denominator with a multiplication problem. Usually you 
do it with subtraction.  

 
I: This isn’t a multiplication problem. We are trying to decide which of two 

fractions is bigger.  
 
J: So we…[writes down 28/35 and 25/35.] Okay. So then four fifths is bigger. I 

multiplied them both by umm …what would give me the same 
denominator. 

 
I: Okay. 
 
J: So,  four-fifths I divided by seven (I’m sorry multiplied) and twenty five over… 

I multiplied that one by five. I guess that wouldn’t make them the 
same thing because I didn’t multiply them by the same thing. I 
guess that wouldn’t work. 

 
I: You are worried that because you multiplied one fraction by five and the other 

fraction by seven you messed something up.  
 
J: Yeah.  
 

Had Janet had a mature partitioning scheme, it would have occurred to her to find 

common denominators by repartitioning the fractions. Further, when I suggested she 
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multiply fractions by one, she did so, then doubted herself because she did not understand 

the connection between multiplying by 5/5 and partitioning a partition. She did not focus 

on the difference between multiplying by 5/5 and 7/7 rather than 5 and 7. She described 

multiplying by 5 instead of 5/5 and was not bothered when the interviewer intentionally  

mimicked her language multiple times. It is clear she did not understand the reasoning 

behind this procedure because she thought she did something wrong because she did not 

“do the same thing to both sides.”  

 What is 1/8 of 1/5? The discussion of Fraction of Cloth showed Janet’s 

difficulties with coordinating three levels of units in service of a goal. As part of the 

interview (Excerpt 15) I directed Janet’s attention to the size of a “baby piece.” A “baby 

piece” was 1/5 of 1/8 of a meter (see Figure 48). 

Excerpt 15. Janet Tried to Identify the Size of a "Baby Piece" that is 1/40 of a Meter. 
 

Janet: It would be one-eighth, right? One of these mini-pieces. 
 
Interviewer: One-eighth of what? 
 
J: [pause] One-eighth of one meter?… I guess?  
 
I: You don’t seem happy.  
 
J: I don’t…  
 
I: You don’t like a baby piece to be one-eighth of one meter.  
 
J: No. Is that right? I guess I shouldn’t ask if it is right.  
 
I: It’s all good.  
 
I: So we are trying to decide on a name for this little guy. One possibility is one-

eighth of one meter. What does one-eighth mean to you? 
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J: I don’t think it is one-eighth because one-eighth of one meter that’s saying this 
thing [points to 1/5 of one meter] is a meter and it is not.  

 
J: Right. 
 
I: But you don’t know how to use one-eighth of one-fifth to figure out which 

fraction of a meter the little baby piece is? 
 
J: Right. Wouldn’t that be…it would be subtraction, right? So it is one-eighth of 

one-fifth. You have one-fifth so you’d have to subtract one-eighth 
from that.  

 
Janet did not realize that there would be forty “baby pieces” in the entire diagram of 

choice (b), which would imply that the baby piece was 1/40 of one meter. Janet also 

struggled to find solutions to three problems of the form “find 1/A of 1/B” during our 

three interviews.  

Janet’s Difficulties with Measure.  

 In addition to difficulties with fractions, Janet did not distinguish a measure of 

length from a measure of volume. For example, one Test 3 problem would have been 

easy for her to answer had she noticed that cubic meters was a measure of volume. The 

question asked whether dV/dt or dh/dt was an appropriate representation of the rate of 

change of oil pouring into a tank at M cubic meters per second. V was defined as volume 

and h as height. 

Excerpt 16. Janet Discussed her Meaning for Cubic Meters. 

Janet: So what we wanted was the volume with respect to time? Is that correct? M 
was height. M represents height. 

 
Interviewer: I don’t think M represents height. It is a constant rate of M cubic 

meters per second.  
 
J: I spent a long time on this one too, logically trying to sort through it.  
 
I: what does cubic meters per second mean to you? 
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J: I don’t know what that means. I know that is bad. I don’t know what a cubic 

meter means versus meters per second.  
 
I: So the phrase cubic meters per second did not help you at all. 
 
J: No.  
 
C: When it says oil pours into circular top of tank… 
 
J: I knew it would have to do with volume because of what I’ve done in the past. 
 

After I explained the difference between meters and cubic meters, Janet reported having 

no memory of learning the distinction between cubic units and linear units in school.  

Janet’s Construction of the Rate of Change of the Sine Function 

 Janet’s difficulties with fractions and measure substantially impeded her ability to 

make sense of the sine function and the rate of change of the sine function. I report other 

mathematical issues that also caused problems briefly to bolster the point that many 

schemes come into play when students are trying to make sense of something as 

complicated as the rate of change of the sine function.  

 To begin the interview, I acted out the situation in Figure 52 with a ball on a 

string as well as showing Janet an animated version of the diagram.   
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Figure 52. Image Given to Janet in Exploratory Teaching Interview. 

 Fraction meanings impede Janet’s construction of sine function. Before we 

were able to discuss rate of change functions, Janet’s meanings for fractions substantially 

impeded her progress in making sense of the sine function. As a first step Janet wanted to 

label the unit circle. Her struggle to label angles revealed the difficulties caused by her 

unit coordination schemes. 

Excerpt 17. Janet Tried to Determine an Angle having a Measure of  Radians. 

Interviewer: The entire circle is  radians. One-quarter of  is .  

Janet: This one is two-thirds  right? [Janet points to 3/4 of .] 

3π
2

2π 2π π
2

π 2π
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I: Three-fourths of .  

J: [Writes .] 

I: No, three-fourths of . So it’s three-fourths times . 
 J: So sixth-eighths?[pause] It wouldn’t be times right, cause… it would be 

three-eighths. 
 

After 4 minutes and 40 seconds of discussion Janet determined that three-fourths of is 

equal to . She did not know multiplication was an appropriate operation to find 3/4 of 

2π. Once I told her that multiplication was appropriate she did not know how to simplify 

6π/4 to 3π/2. Janet did not think of six-fourths as equivalent to three-halves. This 

suggests that she did not have an image of how both fractions referred to the same 

measure. One such image is in Figure 53. 

 

Figure 53. One way of Seeing Six-fourths as Equivalent to Two-thirds. 

I suspect Janet’s difficulty with seeing 3/2 and 6/4 as equivalent was that it involved 

coordinating three levels of units. On other problems she was able to reason with a 

partition of an object and seemed comfortable reasoning with two levels of units.  

 Next we discussed the covariation of the angle’s measure of openness and the 

ratio AC/AB. The prompt was “as the angle’s measure increases from 0 radians to π/2 

radians, how does the quotient AC/AB change?” Janet’s first instinct was to measure the 

longer segment in terms of the shorter segment and incorrectly estimated that AC/AB 

2π
3π
4

2π 2π
2π
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was greater than one. With redirection and substantial support she appropriately 

estimated AC/AB for several values of θ. Because she did not efficiently estimate ratios, 

Janet spent 19 minutes creating an image of how the ratio changed as θ varied from zero 

to . Janet’s difficulty reasoning with improper fractions and problems with unit 

coordination is consistent with Steffe’s hypothesis that coordinating three levels of units 

is necessary for constructing an improper fraction scheme.  

 After a discussion about the use of negative signs, Janet described the ratio 

changing from zero to one to zero to negative one to zero as θ varied from zero to . 

Her initial drawing of the changes in ratio as  θ varied is in Figure 54.  

 

Figure 54. Janet's Initial Image of the Relationship Between the Ratio AC/AB and θ. 

Janet’s initial coordination of the angle measure with ratio was insufficient to see that the 

rate of change of ratio with respect to angle measure was not constant.  

 Finding the average rate of change of sine. The next question in the protocol 

was “estimate the rate of change of the ratio AC/AB with respect to the angle measure θ 

for various values of θ. What could we type into graphing calculator to help us make our 

estimates?” At this point in the interview I told Janet the function was named sine so she 

π
2

2π
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could use Graphing Calculator to estimate values she wanted. Janet’s first response 

focused on comparing the values of outputs of the sine function with subtraction. 

 Janet: f(x) = sin (x). Use this to compare various θ ratio outputs to determine rate 

of change between different θ angles.  

To find the rate of change of the ratio AC/AB with respect to θ she typed  

into the graphing calculator. In Excerpt 18 I confirmed her meaning for a rate of change 

was amount of change. 

Excerpt 18. Is the Average Rate of Change of the Sine Function ? 
 

 Interviewer: We found the difference, how much the ratio changed between 0 and 
/8. We found out how much the ratio changed by. Is that what 

rate of change of ratio with respect to angle measure means to you? 
 
 Janet: That is what I’m thinking.  
 
 I: So the rate of change of the quantity is how much it changed.  
 
 J: Right.  

 

Janet’s meaning for rate of change as amount of change is consistent with the hypothesis 

that students without multiplicative meanings for fractions cope by using additive 

meanings for rate of change. Janet nevertheless used her additive meaning to determine 

that the rate of change of sine was not constant, but she did not attend to the need to use 

equally sized intervals to draw this conclusion.  

 I told Janet she could not use differences in output to decide if the rate of change 

is constant because we also needed to consider the changes in input. Janet decided to 

make equally spaced intervals of angle measure. 

sin(π
8
)− sin(0)

sin(π
8
)− sin(0)

π
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Excerpt 19. Janet Tried to make Equally Spaced Fractions. 

 Janet: Right, after we go to we go to , and then to .  

 Interviewer: Are you trying to make the intervals the same? 
 J: Yeah.  
 I: [I write down the fractions in Figure 55] So the differences between all these 

fractions is the same? 
 
 J: Yeah.  

 

 
Figure 55. Janet's Attempt to Make Equal Sized Changes in Angle Measure. 

After I drew two diagrams of fractions for Janet, she understood that her intervals were 

not equally sized. Later Janet explained that she was only focused on the denominator of 

the fraction and the pattern of adding two to the denominator. This data is consistent with 

the hypothesis that Janet did not think of a fraction as a multiplicative object and tended 

to reason additively in fraction situations. The combination of failing to make equally 

spaced intervals and using an “amount added” meaning for rate of change made it almost 

impossible for Janet to decide where the rate of change increased. 

 Estimating average rate of change. Next, I suggested to Janet that she divide the 

change in ratio by the change in angle measure so that she would not have to find equally 

spaced intervals. She made use of the lines we had already drawn together in Figure 56 to 

represent changes in the inputs and outputs of the function. 
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Figure 56. Janet Attempted to Estimate the Average Rate of Change of the Sine Function 
on Two Intervals. 
 

At first Janet estimated ∆y/∆x by assuming that both axes had the same scales. She 

estimated the rate of change between 0 and to be three, and the rate of change between 

and to be two. These estimates were appropriate given the false assumption that the 

axes were equally scaled and could have help helped her see that the rate of change of the 

sine function decreased as θ varied from zero to . However, for reasons that she did 

not explain, she crossed out two and three and measured ∆x in terms of ∆y to arrive at the 

estimates of one-third and one-half.  
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Excerpt 20. Janet Attempted to Estimate the Average Rate of Change of the Sine 
Function. 
 

 Janet: So the rate of change is more like one third, because y2 is measured by x. 
 
 Interviewer: Okay. 
 
 J: This one is more like one half. And then his one would be like a little, I can’t 

tell if they are the same or if the are… again just because we drew 
them on there. 

 

Even though Janet had adopted the measurement meaning for quotient that her professor 

used, she was not able to estimate slope in a way that helped her understand how the rate 

of change varied. She measured ∆x in terms of ∆y, meaning she estimated ∆x/∆y. She did 

not notice that the changes in y were smaller for subsequent equally sized changes in x. 

She appeared to rely on the accuracy of her drawing and was unable to mentally visualize 

the changes in y becoming smaller for equally sized changes in x on the concave down 

graph.   

 Later in the interview Janet again measured ∆x in terms of ∆y, meaning she 

estimated ∆x/∆y when she wanted to estimate the quotient ∆y/∆x. Janet knew she 

frequently measured the longer change in terms of the shorter change and disregarded 

that by convention ∆y is in the numerator and ∆x in the denominator (see Excerpt 21). 

                                                
 

2 As a sidenote on Excerpt 20, many students said y when ∆y was appropriate and 
although I did not investigate the issue in this study, I believe students’ reasoning about 
frames of reference as introduced by Joshua et al. (2015) is also relevant for their 
construction of rate of change functions.  
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Excerpt 21. Janet Reflected on Measuring ∆x in Terms of ∆y when Trying to Find ∆y/∆x. 

Janet: I keep mixing up…[In context meaning she estimates ∆x/∆y instead of 
∆y/∆x.] 

 
 Interviewer: You mix up which direction you are going.  
 
 J: I do.  
 
 I: Usually you try to fit the smaller one into the bigger one. 
 
 J: That is exactly what it is. 
 

Whether or not Janet produced an estimate of ∆y/∆x or ∆x/∆y often depdended if ∆y or 

∆x was larger because she strongly preferred measuring a larger change in terms of a 

smaller one. As in our discussion about the sine function outputs, Janet was more 

comfortable with fractions where the numerator was smaller than the denominator. Janet 

was so preoccupied with deciding how to measure that she struggled to make sense of 

how the measures changed as x increased.  

 
 Computing average rate of change. We tried to cope with Janet’s estimation 

difficulties by using the graphing calculator to find the average rate of change over the 

interval 0 to . Janet typed  into the graphing calculator even 

though we had already defined f(x) = sin(x). Difficulties with understanding “sin” as the 

name of a function prevented her from coping with her weak measurement schemes by 

using a calculator. 

 I pointed out her mistake and showed her how to compute the average rate of 

change. We discussed the meaning of each part of the rate of change function 

 where f(x) = sin(x). Her instructor frequently used “r” to define a 

π
8 f (sin(π 8)) sin(

π
8)

rf (x) =
f (x + h)− f (x)

h
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rate of change function to remind students of the meaning of derivative. Janet explained 

that h represented a change in x values. She saw f(x+h) as the final value of y after the x 

values changed by h. She saw f(x) as an initial value of y, and f(x+h)-f(x) as the change in 

the value of y. Janet estimated values of the rate of change of the function on the graph 

and compared her estimates to the computed outputs of the rate of change function.  We 

used the calculator to check many of Janet’s estimates of average rate of change. She 

appeared to be making appropriate estimates of  at various values of x so we moved 

on to the next task: graphing the function y = .  

 Janet’s dislike for small intervals. Even though Janet had just successfully 

estimated the rate of change of sine on a small interval around  she forgot the estimate 

when she tried to graph y = . Her new estimate was . It was not visually 

obvious to Janet that the value of  is essentially zero on a small interval around

.  

  

Figure 57. The Calculus Triangle Janet used to Estimate the Rate of Change of Sine at 

 . 
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Janet used a large interval to estimate the rate of change and again treated the x and y axis 

as if they were identically scaled.  

 Excerpt 22. Janet did not Like Small Intervals. 

 Interviewer: You said before you did not like small intervals.   
 
 Janet: Yeah. [We laugh.] 
 
 I: Is that stressing you out right now? 
 
 J: Uhh... I think it just makes it hard for me to conceptualize.  
 
 I: What is it about the small intervals that…? Can you articulate what you don’t 

like about them? Maybe if you could articulate it you would like 
them! 

 
 J: [we laugh] It is that I… I can’t … I can’t visually create them. Because they 

are so small. By definition they shouldn’t really be large enough 
that I can actually draw them. Does that make sense? 

 
 I: So…are the intervals we made right here for h, do those bug you? [I  point to 

small, but visible intervals.] 
 
 J: No… but I don’t know what they are I guess. They don’t have values assigned, 

so I can’t…so if you ask me to compute…We are saying that this 
is similar to the size of these intervals. I don’t know what these are 
[points to ∆x intervals], so I don’t know the size of this [points to 
associated ∆y intervals]. 

 

Janet was able to measure one length in terms of another if she could physically carry out 

the measurement process. Her images for measurement were not strong enough to 

support measurement when the lengths were too small to easily compare visually. I took 

this as evidence that her measurement scheme was not stable enough for her to carry it 

out in her mind without carrying out the activity of measurement. In Steffe’s (2010) 

studies he also attributed more mature schemes to students who could carry out 

mathematical activities even if the objects they were counting were not in the visual field.   
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 Impact of Janet’s fraction schemes on her construction rate of change of sine. 

At the end of an hour and a half discussing the sine function, Janet had finally 

constructed a reasonable graph of the rate of change of sine and reflected on how the 

graph was related to the original rotating ball on a string situation. I suspect that without 

my frequent interventions to address her difficulties with fraction, measure, and rate, 

Janet would not have produced a graph of the rate of change of sine that day. To 

summarize, these are difficulties that Janet faced in envisioning the sine function and the 

rate of change of the sine function. I did not discuss evidence for points 4, 10, and 11 in 

this paper. 

 1. Finding 3/4 of .  

 2. Visualizing how the sine ratio changed as θ increased.  

 3. Estimating a rate of change with a difference instead of a quotient. 

 4. Estimating rate of change by comparing two changes in y.  

 5. Trying and failing to make equally sized changes in x because she did not know 

how to write a sequence of equally spaced fractions.  

 6. Estimating a rate of change by finding ∆x/∆y instead of ∆y/∆x. 

 7. Struggling to see that a concave down function has a decreasing rate of change.  

 8. Inappropriate use of function notation to compute an average rate of change. 

 9. Estimating the rate of change of sine at π/2 as one because she drew too large of 

an interval. 

 10. Not differentiating between negative and positive changes.  

 11. Thinking that if two slopes appear to have the same steepness they are the same 

slope, even if one is negative and the other positive.  

2π
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The evidence suggests the many foundational issues Janet faced en route to constructing 

the sine function made it much harder for her to focus on the meaning of a rate of change 

function. This is consistent with her poor performance on rate of change function items 

on Test 3. 

DISCUSSION  

 I will use Tzur’s (2014) discussion of Steffe’s fraction constructs to organize the 

discussion of Janet’s and Kristina’s fraction schemes. Tzur (2014) summarized eight of 

the fraction schemes identified in Steffe’s research and ordered them based on children’s 

typical development. For example, a student learns to equally partition a line segment 

before they learn to partition a line and iterate the unit produced by the partition. Table 27 

shows Tzur’s (2014) summary of four of the eight levels of fraction schemes and the 

evidence that suggests Janet and Kristina struggled to operate at that level.  

Table 27. Janet and Kristina’s Fraction Reasoning and Steffe’s Fraction Schemes.  

Fraction Schemes (Tzur, 2014) Evidence concerning Janet and 
Kristina’s reasoning with each 
fraction scheme. 

1. Equi-Partitioning: Using her concept of 
number as a template for a partitioning 
operation, a child can disembed a part and 
may anticipate that iterating that part would 
confirm if it is (or not) an equal share for N 
people (2-level unit coordination).  
 

Janet: Struggled to cut a circle into 
five equal pieces and complained that 
it was difficult. 
 
Initially thought 1/8 of 1/5 of a meter 
was 1/8 of a meter, but was troubled 
by the fact that 8 copies of the piece 
did not make a meter. 
 
Kristina: Struggled to cut a line 
segment into eight equal pieces.  
 
Tried to make a piece such that ten 
copies of it would make one meter. 
She cut 1/5 of a meter into ten equal 
pieces producing 1/50 instead of 1/10 
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and did not notice the problem. 
 

4. Iterative Fraction: Iterable unit fraction 
(e.g. 1/7) resulting from partitioning is 
‘freed’ from the whole; it can be 
disembedded and iterated as a ‘thing’. 
When coupled with operations that produce 
three levels of unit coordination, the child 
can anticipate composing it with the whole 
(e.g. 7/7) to produce, say, 8/7 or 12/7 or 
14/7 as two wholes. The child is aware the 
composed unit is also a potential result of 
iterating the unit fraction so many times 
(i.e., 8/7 = 8*1/7). For the child, then, any 
fraction m/n is an anticipated result of 
interating m units of 1/n. This 3 level unit 
coordination in regards to 1/n allows using 
the Iterative Fractions Scheme (IFS) to 
operate on an extensive quantitative 
unknown, but not yet on an extensive 
quantitative variable.  
 

Janet: When estimating ∆y/∆x Janet 
typically measured the larger quantity 
in terms of the smaller quantity, 
instead of measuring the numerator in 
terms of the denominator. She seemed 
to make mistakes while 
subconsciously avoiding improper 
fractions.  
 
Kristina: In the “Two Pizza” situation 
Kristina did not see two pizzas as 8 
copies of 1/4 of one pizza. She did not 
see 1/4 of one pizza as 1/8 of two 
pizzas.  
 

5. Recursive Partitioning: Operating 
mentally to partition a unit fraction (e.g. 1/4 
of 1/7) allows the child to anticipate its 
result as if the second partitioning would 
have been applied (without/before enacting) 
to each and every part of the first partition 
(e.g., 1/4 of a single 1/7 would be as if each 
1/7 is partitioned into 4/4 parts and thus 
could potentially result and thus could 
potentially result in partitioning the original 
7/7 whole into 28/28 segments, making the 
1/4 of a part (1/7) to be 1/28 of the whole 
(which marks this scheme as an anticipatory 
3-level unit coordination that is 
multiplicative. 
 
 

Janet: She computes 1/5-1/8 to find 
1/8 of 1/5.  
 
Kristina: She did not anticipate that 
cutting a length in half three times 
produces 1/8 of the whole.  
 
She did not anticipate that cutting 1/5 
into 8 equal pieces would produce 
1/40 even though she knew 5 times 8 
equals 40.  
 
She thought that 1/2 of 1/10 was 1/40. 
She had to physically cut all ten copies 
of 1/10 into two parts and then count 
the 20 parts to determine that 1/2 of 
1/10 is 1/20.  

8. Any Fraction Composition: Recursive 
partitioning (e.g., find 1/7 of …) can be 
applied, in anticipation, to a composed 
fractional unit ( e.g. 5/9). The child’s 
situation includes reversing the iterative 

Janet: She doesn’t see 6/8 as 
equivalent to 3/4. Understanding the 
equivalence would involve 
partitioning each 1/4 in 3/4 into two 
equal pieces to see 6/8 of the whole.  
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fraction scheme for composing 5*1/9 and 
disembedding these 5 pieces, then splitting 
each of them into the given number of mini-
parts (e.g. 1/7 of each 1/9) and then 
composing the sought after result by 
integrating/iterating these (1/63rds) five 
times. 
 
 

 Janet did not think to repartition 5/7 
and 4/5 into thirty-fifths to decide 
which fraction was bigger.  
 
Kristina: We did not discuss fraction 
situations this difficult because 
Kristina had not constructed this 
fraction scheme. 

 

The evidence in Table 27 shows that it is unlikely either Janet or Kristina had developed 

multiplicative fraction or measure schemes or learned to reason with three levels of units 

by the time they enrolled in calculus. I initially hypothesized that students with primarily 

additive, part-whole meanings for fractions would struggle to understand rate of change 

functions. In particular, I hypothesized that constructing a rate of change function given 

the graph of an original function would be difficult without the ability to estimate rates of 

change from a graph. These hypotheses were confirmed in Janet and Kristina’s sessions, 

but the discussions also demonstrated that their difficulties for fractions caused a wide 

variety of other problems that I had not anticipated. Kristina’s problems were so deep-

seated and hard to resolve that even with intensive effort on her part, on my part, and on 

her teacher’s part she failed the redesigned calculus course. It is highly possible based on 

her A on the derivative shortcut test and ability to recall and apply procedures that she 

would have passed the majority of calculus courses in the country that primarily test 

students’ ability to recall and apply procedures(Tallman, Carlson, Bressoud, & Pearson, 

2016). 

 Janet’s issues with fractions caused frustrated her greatly, but did not keep her 

from passing the redesigned calculus. One of the reasons Janet’s grades on the first two 
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tests were so far above the class averages was that she was good at remembering 

conceptual explanations for ideas. Even though she was struggling to deeply understand 

constant rate of change she read the course notes carefully and learned to appropriately 

use verbal descriptions of major concepts on tests that focused on both computations and 

verbal descriptions of the meanings of various mathematical concepts. Janet’s 

construction of a sine function and its rate of change function was frustratingly slow 

because she was frequently held back by her limited ability to anticipate a measure of ∆y 

in terms of ∆x. She needed to see representations of ∆y and ∆x on a graph that were large 

enough for her to physically carrying out a measurement process. This led to difficulty 

coordinating multiple measures in the construction of a rate of change of sine function. 

She was restricted to operating on changes represented visually on the graph and it was 

non-trivial for her to draw appropriate representations of changes or draw appropriately-

sized intervals. It appeared that her measurement schemes were not strong enough to 

imagine any two quantities, especially small quantities, being compared multiplicatively. 

The time it took her to estimate a ratio made it difficult for her to coordinate the values of 

a multitude of ratios with changes in the input variable. This prevented her from 

efficiently relating a function to its rate of change function.  

 Janet demonstrated many times that she could measure two lengths given two line 

segments, but that she did not always anticipate how a measure would be useful without 

prompting. Tzur (2014) argued that the strength of a student’s scheme is partially 

determined by the degree to which the student can anticipate the need for the outcome of 

a scheme before acting. Tzur (2014) quoted Piaget: “success is not preceded by trial-and-

error and is not a matter of luck but is assured by operational anticipation” (Piaget, 
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Inhelder, & Szeminska, 1960, p. 319). Being able to anticipate the need to measure to 

solve a problem is a necessary to reason successfully about the relationship between a 

function and the graph of its rate of change function. Tzur (2014) noted first students 

learn to anticipate that certain effects will ensue after they carry about a goal-directed 

behavior. However for some time the student will not be able to predict the effect of 

carrying out the scheme without executing the activity (p. 176).  

 Tzur (2014) also pointed out that some students can carry out a scheme when 

prompted to by someone such as a teacher, but they do not independently anticipate the 

need to use a particular scheme (p. 178). For example, it did not occur to Janet to find a 

common denominator by repartitioning a fraction when trying to decide if 4/5 or 5/7 was 

larger. Kristina did not think of 1/8 as 1/2 of 1/2 of 1/2 but could see it that way after I 

prompted her. Both Kristina’s and Janet’s struggles to draw equally sized pieces suggests 

they lack a vision for a partition of a whole. I believe their difficulty imagining a partition 

without carrying it out made it less likely for them to spontaneously partition a partition 

in service of a goal. 

  Tzur (2014) said schemes can progress to a stable anticipatory stage, “in which a 

learner consistently calls upon and meaningfully uses the new scheme without prompting” 

(p. 177). Janet and Kristina did not “call upon and meaningfully use” their fraction and 

measure schemes to make sense of rate of change functions. I hypothesize that one of the 

reasons Janet passed and Kristina failed is that with extensive prompting Janet did make 

use of the measurement schemes she had available to make sense of rate of change 

functions. With my prompting and support, Janet was able to produce a collection of 

measures for different values of x and eventually construct a graph of the rate of change 
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of sine. I believe that because Janet’s measurement and fraction schemes did not allow 

her to anticipate how she would use them in service of a complex goal; she needed my 

support to make progress.  

CONCLUSION 

 The results of the quantitative study of Janet’s Spring 2015 calculus class 

(Byerley, submitted) strongly suggest that Janet’s difficulties should not be dismissed as 

isolated issues only impacting a few calculus students. It is clear that many students’ 

meanings for fraction, measure, and rate of change are weak enough to impede them from 

making sense of rate of change functions. Janet was one of the 153 students who took the 

Pretest for the quantitative study conducted in two Spring, 2015 calculus courses 

(Byerley, submitted). Her Pretest score was at the 34th percentile of the 115 students who 

stayed in calculus the entire semester. Her scores on the first two tests were above the 

class average and her scores on the last two were slightly below the class average.  

Table 28. Janet and Kristina's Test Scores 

 Pretest Test 1 Test 2 Test 3 Final 

Janet 33% 82% 82% 50% 65% 

Kristina Not given in  
Fall 2014 

53% 74% 36% 44% 

Spring 2015 
Mean Score 

45% 64% 54% 60% 59% 

 

Kristina did not take the Pretest and her test scores suggest that she is a below average 

calculus student. However, with a B in college-level precalculus Kristina is significantly 

more mathematically successful than many college mathematics students and her extreme 



 

205 

issues with coordinating three levels of units might reflect common difficulties in 

students who are struggling to pass remedial mathematics, precalculus, and calculus.  

Byerley (submitted) reported results for 153 students on Fraction of Cloth that 

suggest many students struggled to reason about a partition of a partition. Forty-one of 

153 (26.7%) students who took the Pretest answered the question Fraction of Cloth 

correctly. Five out of six students interviewed about this item struggled to find 1/5 of 1/8 

(Byerley, submitted). Although one item cannot be used to assess students’ ability to 

coordinate multiple levels of units reliably, the dismal scores suggest calculus students’ 

unit coordination schemes are worthy of attention. If future research reveals that a 

substantial portion of calculus students struggle to coordinate three levels of units, it will 

have profound implications for what meanings they are prepared to construct when they 

enter calculus.  

 The calculus students in (Byerley, submitted) also showed weak measurement 

schemes in addition to problems with partitioning. Fifty-six percent of students who 

remained in calculus until the end correctly estimated the slope of a linear function from 

a blank graph with equally spaced axis. They were given four possible values of the slope 

and only one was remotely reasonable. Repeated failed attempts to teach Kristina to 

estimate slope shed some light on why the item was so difficult for students even though 

the instructors discussed this very issue in class. Estimating ∆y/∆x from a graph was a 

statistically significant predictor of success on tests about rate of change functions 

(Byerley, submitted). This is consistent with the interviews that showed that difficulty 

producing these estimates substantially impeded Janet and Kristina’s understanding of 

rate of change functions. And as noted in the literature review, students’ ability to convert 
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gallons to liters given a conversion factor was shown to be a statistically significant 

predictor of success on rate of change function items (Byerley, submitted).  

 There is no simple solution to deal with calculus students’ difficulties with 

coordinating three levels of units and weak measurement schemes. Steffe (2014) reported 

that the large number of fourth graders who do not coordinate three levels of units when 

they are asked to learn multiplicative fraction and measurement schemes poses an 

enormous unsolved problem in elementary mathematics education. He did not know how 

to efficiently help elementary students learn to coordinate three levels of units, and as a 

result, struggled to help many students construct multiplicative fraction schemes in his 

two to three year teaching experiments (Steffe, 2014, p. 38). After decades of study Steffe 

found no method that worked reliably to help another person imagine a partition of a 

partition and use this scheme to achieve a goal.  

 These observations about the deep-roots of calculus students’ difficulties have 

implications for the move towards teaching calculus conceptually. Understanding 

calculus conceptually is incredibly useful for many students because they are able to see 

how mathematics is used to describe the world. However, the many students who dislike 

conceptual instruction may dislike it in part because to them it does not make calculus 

useful or sensible. Their roadblocks to understanding calculus are so deep-seated that 

they are unable to construct meaningful mathematical understandings even when their 

instructors design a lesson with this goal. Many students would rather memorize that the 

derivative of the three letters “sin” is the three letters “cos” than struggle through a 

frustrating hour and a half of analysis of a sine function graph like Janet did. I should be 

clear that I am not suggesting we teach calculus by rote. Although Kristina earned an A 
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on her test of taking the derivatives of complex functions, there is overwhelming 

evidence that she had no idea what the computations meant or how to apply derivatives to 

model the world. I am suggesting that it is not enough to encourage teachers to use 

technology, multiple representations of functions and inquiry methods. Calculus teachers 

must also understand student thinking and how students’ schemes impact the sense they 

make of instruction. 

 Further, to increase the chances of students making sense of rate of change 

functions in calculus, I believe it is critical to focus attention on their experiences in 

elementary and middle school. Tall’s (in press) observations about students’ difficulties 

with algebra might apply even more strongly to students’ difficulties with calculus:   

 Problematic ideas in algebra may have their origins in early arithmetic and 

accumulate though successive experiences over the years. If the problematic 

aspects remain unresolved, the spectrum of difficulties may become so 

complicated that it may no longer be easy to resolve problems arising in a 

particular topic because their origins are so deeply embedded in he subconscious 

mind of the learner (p. 4). 

If Tall’s observations are accurate then the best time to deal with calculus students’ 

fraction and measure schemes is long before they arrive in calculus.  

 Elementary and secondary teachers have the best chance of helping students 

develop their fraction and measure schemes. Unfortunately, there is significant evidence 

that a nationally representative sample middle school teachers do not have the mature 

fraction and measurement schemes that we want students to develop (Bradshaw et al., 

2014). Bradshaw et. al. investigated teachers’ mastery of fraction ideas shown to be 
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critical in many research studies: referent units, partitioning and iterating, multiplicative 

comparisons, and using multiplication and division appropriately. Only 31% had 

mastered referent units and 55-63% mastered the other three attributes (Bradshaw, et al., 

2014, p. 9). Further, a majority of secondary mathematics teachers with mathematics or 

mathematics education degrees were unable to convert between gallons and liters given a 

conversion factor (Byerley & Thompson, 2014). Many of the teachers’ striving to prepare 

students for college, do not have the foundational meanings the students’ need to be 

successful.  

 One critical step in helping more students understand calculus is to help 

elementary and secondary teachers develop the mathematical meanings for fractions and 

measure we find to be critical for calculus. It is not enough to fix calculus by reducing 

class sizes, using group work, incorporating technology, changing curriculums, opening 

tutoring centers, or any other strategy for improvement. Although these strategies may 

help students, to truly make sense of calculus students need the opportunity to learn the 

ideas calculus is built on first.   
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CONCLUSION: REFLECTING ON THE THREE STUDIES 

 In this conclusion I am not going to rehash the academic conclusions of the three 

papers. Each of the three papers clearly show that there are serious and hard to resolve 

issues with teachers’ and students’ meanings for ideas foundational for secondary and 

tertiary mathematics. Instead, I’m going to discuss what these results mean to me from 

the perspective of my experiences as a mathematics teacher. This conclusion has my 

opinions as a teacher-not scientific results from a study. I think is important to not only 

consider these results from a scientific perspective, but an emotional one. Teachers’ and 

students’ emotions are hugely influential in their decision making processes. It is not my 

goal here to study affect – only to tell a few stories to help my committee understand 

from a human perspective just how troubling my studies are to me as a teacher.   

 Every time I have been emotionally distressed because of the horrific things 

teachers and calculus students say about fractions, Pat gives me the same advice. To 

maintain my sanity he suggests I look at the interviews and item responses as “just data”. 

While I wrote the three papers, I put on my researcher hat and calmly reported results like 

“this high school teacher thinks slope is a distance” or “the majority of math majors 

studied have not mastered 4th grade measurement standards.” With proper academic 

distance I stated the fact that only one in 115 calculus students answered four questions 

about fractions correctly. For people trying to teach calculus meaningfully and students 

wanting to pass calculus, the quantitative studies are depressing. Still, with those studies 

hope remained that if students reviewed fractions, measure, and rate in calculus it might 

help them pass.  
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 It was the interviews I found to be the most discouraging. What was most 

disheartening was not that Kristina and Janet did not know how to reason with fractions; 

rather it was that even as a person writing a dissertation on fractional reasoning, I could 

not help them improve over many hours of tutoring. Their problems were too deep-seated 

and too many layers underneath the content they were currently focused on. From the 

prospective of a researcher, I am glad I identified that neither student appeared to reason 

with three levels of units. Steffe has done extensive work on the importance of a student’s 

ability to coordinate three levels of units in order to construct multiplicative fraction and 

measure schemes. By noticing that Janet and Kristina did not coordinate three levels of 

units, it gave me a solid hypothesis to explain why repeated attempts at tutoring did not 

change their meanings for fraction and measure. From the prospective of a teacher, I was 

not at all happy to notice Janet and Kristina’s issues with unit coordination. There is a 

fairly good chance that Steffe’s conclusions about children’s fraction schemes being 

critical to the development of their algebraic qualitative reasoning schemes are correct. I 

felt hopeless to help some students learn calculus as I understood it.  

 We need to consider how findings of these studies and others like them inform 

reform movements to teach calculus conceptually. There is overwhelming evidence that 

most students do not learn the major ideas of calculus in traditional classrooms. It is clear 

efforts to reform calculus must continue, however there is a real danger to making 

modifications to calculus without proper attention to student thinking. A hallmark of 

Thompson’s course that distinguishes it from many calculus reforms is that the teachers 

explicitly discussed critical ideas of middle school mathematics and assigned related 

homework. Some students flourished in Thompson’s redesigned calculus. They felt that 
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math finally made sense and that they could understand it. However, the time available to 

reteach middle school math in calculus is scant and was insufficient for many students. 

Students who succeeded at the redesigned class were able to convey much stronger 

meanings for derivative and integral in Thompson’s pilot study. However, failure and 

drop out rates were similar for the Thompson curriculum as traditional courses. Because 

the course was different than traditional calculus, some people found it was easier to 

incorrectly blame the redesign for those that did fail the course.  

 Given the central role of calculus for so many students, it is critical to think about 

the ethical dilemmas of asking so many students to understand ideas they may not be 

prepared to understand. The problem is not the clarity of ideas presented in the reform 

course – the issue is that 12 years of reasoning computationally means that not all 

students have the foundational schemes they need to make sense of the class. Through 

frequent discussions with students, I saw the high cost of failure. Some lost scholarships, 

others were at risk of being sent back to their war-torn home countries if their GPA was 

too low. Others had to take out thousands of dollars of additional student loans to spend a 

fifth year trying to graduate. Some needed a certain grade to study abroad, continue with 

their major of choice, or apply for a leadership role in their campus organization. The 

students who were aware of the high costs of failure worked hard, but they were rarely 

able to diagnose their difficulties s issues with foundational math and locate appropriate 

resources.  It is clear that the solution to this issue must involve better support to 

elementary and secondary teachers. 

 It is also critical that reform calculus courses attend to issues of student thinking 

instead of just making changes to the format of instruction. I think that student-centered 
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instructional techniques are useful. If you ask a student to respond to a clicker question , 

to use a whiteboard, or to discuss their ideas in a group, it increases the chances that the 

teacher notices that the student is misunderstanding the ideas. (Of course, this 

presupposes that the teacher understands the ideas in the first place.) However, if you ask 

a teacher to use student-centered instructional techniques as if the technique itself is the 

solution to the problem, these efforts are doomed to fail. Janet and Kristina were 

discussing animated visualizations, using hands-on representations, justifying their 

answers, drawing diagrams, yet still their foundational mathematical meanings held them 

back from success. Putting Janet and Kristina into discussion groups with whiteboards in 

calculus class is not going to solve their problems. Showing them representations of rates 

of change graphically, numerically and algebraically did not work in part because they 

didn’t understand fractions and measure.  

 We also need to take seriously what we are asking high school math teachers to 

do from the perspective of the teachers’ emotions. To help their students understand high 

school mathematics they also have to teach students foundational middle school math 

ideas-many of which the teachers themselves do not understand or are not prepared to 

teach. Teach for America told me that if I cared enough and worked hard enough and had 

enough innate teaching skill, my students could successfully learn grade level standards. 

As a new teacher I utterly failed to help my algebra students understand grade level 

standards, despite working so hard that I became sick from stress. To me it was an issue 

of my personal and moral worth to understand what it was possible for my students to do, 

given what they knew when they got to my class. Teach for America told us that if we set 

big goals and followed their vision of transformational teaching we could change the 
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students’ lives. They gave me almost no training on how students understand 

mathematics and in hindsight the lack of attention to student thinking made it impossible 

to set realistic and feasible goals.  

 My masters program in secondary mathematics education talked repeatedly about 

issues of execution: group work, technology, and think-pair-share. I have no recollection 

of discussing how students’ conceptual understandings developed from foundational 

schemes and the state of the typical high school students’ foundational schemes. At no 

point during my masters program did anyone check that I understood the mathematics I 

was teaching.  

When we ask secondary teachers to teach mathematics conceptually and tell them that it 

will help their students understand more, we are putting them at financial and emotional 

risk if we do not also teach them about student thinking. Teachers need to understand the 

consequences of trying to help people make sense of ideas that they are not prepared to 

learn conceptually so they can actively address the issues that come up.  

 The gaps in my understanding of student thinking also caused me problems 

teaching calculus at my second high school. About half of the class was successful with 

my conceptual instruction because they had the foundational ideas they needed to make 

sense of it. In hindsight, I think that the other half of the class hated my conceptual 

instruction because they did not understand the basic ideas of rate of change, function, 

and algebra they needed to be successful in calculus.  

 When I tried to teach conceptual calculus at the prestigious private school, I made 

mistakes partly because of the conceptual calculus curriculum I used. Per instructions, I 

used the reform textbook that I had no reason not to trust: Hughes-Hallett Calculus. This 
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textbook was filled with interesting problems, but never once mentioned that the teacher 

should check if the calculus students understood fractions or constant rate or try to 

investigate if that would hold them back from understanding calculus. In fact, the review 

chapter was filled with exponential and polynomial functions and other ideas that were 

important but much more advanced than what my students actually needed to review (or 

learn for the first time). Further, the second chapter included extensive coverage of 

epsilon-delta limit definition proofs. I still remember being observed struggling to teach a 

conceptually-based lesson on the definition of an epsilon-delta limit. The administrator’s 

response to the lesson was that it looked like I tried hard but was not able to communicate 

with the students and I got in trouble. For teachers like me, who really cared and tried 

hard, it was heartbreaking to fail and be criticized over and over again. It is critical 

reform textbooks base the revisions on extensive research on student thinking and 

experience teaching. I believe one of the reasons teachers decide not to teach 

conceptually is because of the emotional suffering that frequently occurs when they try it 

and are not prepared to do it well. 

 Teachers are not omniscient creatures; they are a product of the educational 

system and have no way of knowing what they do not know if all of their experiences – 

including teacher preparation programs – fail to talk about mathematical ideas and only 

focus on the most outward and visible classroom activity techniques. This system of 

refusing to train the teacher and then blaming the teacher only means that the ones that 

really care burn out an leave, truly perplexed as to why they did everything they were 

asked to do and still failed at the “reasonable” goals that administrations and politicians 

set for them. Meanwhile, you are left with the teachers that either do not care, or learned 
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– nay, were taught to – not care, in order to survive and continue to provide financially 

for their families in the only way they know how.  

 If we don’t want calculus to be a filter keeping students out of STEM fields, the 

issues in these three studies need to be addressed. We need to address the issues by 

incorporating research on student thinking into calculus curriculums and interventions as 

well as by providing more attention to the support of elementary and high school teachers.  
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APPENDIX A 

PRETEST ITEMS 
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2. The constant rate of change of quantity R with respect to quantity S is 3.  
If S changes by 1.7 how much does R change by? 

 

 

3. Place the following fractions as carefully as possible on the number line below. (The 

fraction ½ has been placed as an example.) 

 

5/7  18/14   27/13   9/7 

 

 

 

 

 

 

 
4. Your friend is learning about the idea of slope. In his homework he divided 8.2 by 2.7 

to calculate the slope of a line, getting 3.04. 
 

Explain to your friend what 3.04 means.  
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5. Ms. Roland gave her students the following problem to solve: 
Candice has 4/5 of a meter of cloth. She uses 1/8 of a meter for a project. How 
much cloth does she have left after the project? 

Ms. Roland had students use the number line so that they could draw lengths. Which 
of the following diagrams shows the solution? Assume all intervals are subdivided 
equally.  

 

 

6. Some amount, call it B, is partitioned into n equal parts.  

 
a) How large is B compared to the size of each part?  

 

 

      b.) How large is each part in relation to B? 
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7. The values of function f give the rate of change (in grams/hr) of a bacterial culture’s 
mass t hours after measurements began. 

 

 
 

Over what intervals within the first 8 hours is the culture’s mass increasing? Explain. 

 

a)  

b)  
c)  

d) None of the above. My answer is ____________________________ 

 

 

 

 

 

  0 < t ≤1.5 and 5.5< t ≤ 8

  0 < t < 8

  0 < t < 3 and 7 < t ≤ 8
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Part B. The graph from the prior page is repeated below. Highlight the point       
(2.5, 2.25) on the graph of f. What does this point represent? 

 

 

 

Part C.  

Would you like to change your answer to the question on the prior page? 

___________________ 

a)  

b)  
c)  

d) None of the above. My answer is ____________________________ 

 

 

 

  0 < t ≤1.5 and 5.5< t ≤ 8

  0 < t < 8

  0 < t < 3 and 7 < t ≤ 8
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8. Using the graph below, explain the behavior of function f on the interval from 

x = 5 to x = 12. 

 

 

a) Increasing at an increasing rate. 

b) Increasing at a decreasing rate. 

c) Increasing at a constant rate. 

d) Decreasing at a decreasing rate. 

e) Decreasing at an increasing rate.  

 

9. The following graph represents the height of water as a function of volume as 

water is poured into a container. Which container is represented by this graph? 
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12. The graph below is of a function f over the interval [0,5]. 

 

For small equal increases of the value of x starting at x = 1 and ending at x = 2, the 

corresponding changes in the value of f are…. 

a) positive and increasing 

b) positive and decreasing 

c) negative and increasing 

d) negative and decreasing 

e) I cannot tell 

 
  



 

240 

Part B. Is this sequence increasing or decreasing?  -10, -9.5, -9, -8.5, …  

___________________ 

 

Would you like to change your answer to the question on the prior page? 

___________________ 

 

a) positive and increasing 

b) positive and decreasing 

c) negative and increasing 

d) negative and decreasing 
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13. The given graph represents speed vs. time for two cars. (Assume the cars start from 
the same position and are traveling in the same direction.) Use this information and 
the graph below to answer item 8. 

 

 

What is the relationship between the position of car A and car B at t = 1 hour? 

a) Car A and car B are colliding. 

b) Car A is ahead of car B. 

c) Car B is ahead of car A. 

d) Car B is passing car A. 

e) The cars are at the same position. 
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14. A container has a volume of m liters. One gallon is  times as large as one liter. 

What is the container’s volume in gallons? Explain.  

a.   

 

b.  

 

c.   

 

d. 
 

 

15.  There are two quantities P and Q whose values vary. The measure of P is y and 
the measure of Q is x. y and x are related so that y = mx + b. The graph of their 
relationship is given below, with x and y in the same scale. What is the numerical value 
of m?  
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APPENDIX B 

TEST 1 ITEMS 
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APPENDIX C 

TEST 3 ITEMS 
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1. – 6. At right is 
the graph of an 
accumulation 
function g over the 
interval from x = -
6 to x = 12. Use 
this graph to 
answer questions 
1-6. 
 
 
Correct answers to 
questions 1-3 
include all x-
values between x = 
-6 and x =12 that 
meet the given 
criteria.  
 
1.  Determine all x-values where the accumulation function is increasing. 

(The notation (a, b) means the interval a < x < b) 
a)      b)        c)       d)     e)  

 
2.  Determine all x-values where the rate of change of g is negative. 
 

a)     b)  c)      d)    e)  a & d 
 
3. Determine all x-values where the rate of change of g is increasing. 
 
a)      b)      c)         d)          e)  
   
4.  At what value of x does the rate of change of g switch from positive to negative? 

a)  x = -4 b) x = -3 c) x = -0.5 d) x = 4 e) x = 8 
 
5.  Which of the following is true?  The rate of change of g switches…. 
 

a) …from increasing to decreasing at x = -4 
b) …from decreasing to increasing at x = -0.5 
c) …from increasing to decreasing at x = 4 
d) …from increasing to decreasing at x = 8 
e)  Two of the above are true 

 
6.  Which is closest to ?  (Use the scales on the axes in finding your estimate.) 
 
 a) -1.5   b)  0      c)  0.5  d)  1  e) 2  
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7. – 12. At right is the rate of change function rh for an accumulation function h over the 
interval from x = -6 to x = 12.  
 
 
Use this graph to answer 
questions 7-12.  
 
 
 
 
 
 
 
7.  Determine all x-values 
where  is increasing.   
 

a)   b)  c)  d)  e)  
 
8. Which must be true about the accumulation function  at x = 0?  … 
 

a) is increasing b) is decreasing c) has a negative value 
 
      d) pauses and has a relative minimum       e) Two of the above must be true 

 
9. Where does  have a relative maximum? 
 

a) x = -6     b) x = -4           c) x = 8   
 

d) x= -4 and x = 8   e) Nowhere from x = -6 to 12  
   
10. Which generally shows the graph of h for a small interval around x = 8? 
 

a)    b)    c)   d)   e)  
 

11. Which is closest to the value of , i.e. the accumulation at x = -5?  
 

a) 2  b) 3  c) -3  d) -1/3  e) Not enough information 
 

12. On what interval does the graph of h have this general shape:    
 

a)       b)    c)   
 

 d) Nowhere from x = -6 to 12       e) Not enough information  

(0,4) (0,8)
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13. – 15. A 10 ft x 4 ft 
piece of wood is being used 
to build an open-top box. 
The box is formed by 
making equal-sized square 
cutouts from two corners of 
the wood at the ends of a 
10-foot side. After these 
squares are discarded, three 
more cuts are made (at the 
dashed lines on figure) and 
these pieces are “folded up” 
and secured to create three 
of the four vertical sides. 
When the open side is 
placed against a wall, the 
open-top box is formed. 
Ignore the thickness of the 
wood when answering 
these questions. 
       
 
13. Which quantities must you imagine as varying to determine which size cutout 
maximizes the volume of the box? 

 
a) The length of the base of the box 
b) The width of the original wood piece  
c) The height of the box 
d) The area of the base of the box 
e) I imagine three of the above as varying quantities 

 
 
14.  If the variable x represents the length of a side of the square cutouts, what are the 
possible values of x that result in a box with positive volume?   
 
a)  0 < x < 2  b) 0 < x < 4 c)  0 < x < 5  d) 0 < x < 10 e) None of these  
 
15.  Which of the following represents the volume of the box as a function of the length 
of a side of the square cutout? 
 
a) V(x) = (x – 10)(x – 4)(2x)       b)  V(x) = (2x – 10)(2x – 4)(x)  c) V(x) = (10 – 2x)(4 – x)(x)  

d) V(x) = (10 – x)(4 – 2x)(2x)   e) V(x) = (10 – 2x)(4 – 2x)(x) 
 
 
 



 

251 

 
16.  The number of traffic accidents in a year, A, is related to the population of a city, p, 
by the equation:    
 
If the population is growing at a rate of 500 people per year, find the rate at which traffic 
accidents will be rising, in accidents per year, when the population is 40,000 people.  
Choose the closest answer. 
 

a) 50  b) 100  c) 200  d) 300  e) 500 
 
 
 
17.  A farmer needs a rectangular pasture of 3000 square meters in a place where a river 
makes a right-angle turn, such that the river 
will form the south and west barriers of the 
pasture. The north side will be a wire fence 
that costs $15/meter and the east side will be 
a wood fence which costs $30/meter. What 
is the minimum cost for creating the 
pasture? Choose the closest answer from the 
options provided. 
 
 

a)  $1600 b) $2400 c) $3200 d) $3800 e) $4200 
 
18. If f is an accumulation function, and , which must be true? 
 

a)  f has a relative maximum or minimum at x = c  
b)  f changes concavity at x = c  
c)  The accumulation has a value of 0 at x = c  
d)  For a small change in x from c, the change in f(x) is essentially 0 
e)  Two of the above must be true 
 

 
19.  At 5 minutes after turning off the oven, the temperature inside the oven is T(5) 
degrees Fahrenheit, and the rate of change of the temperature is T’(5) degrees Fahrenheit 
per minute. Which expression gives the approximate temperature in the oven 6 seconds 
later, that is 5 minutes and 6 seconds after the oven is turned off? 
 

500,25002/3 =− Ap

′f (c) = 0



 

252 

20.  The radius of a spherical balloon is measured in meters. The function f gives the 

balloon’s volume as a function of its radius. What does the expression  

represent? 
 

a) The change in volume of the balloon as the radius changes from 3 to 3 + h  
b) The approximate constant rate of change of the balloon’s volume as the radius  
     changes from 3 to 3 + h 
c) The instantaneous rate of change of the balloon’s volume when the radius is 3 
meters  
d) The slope of the tangent line to the curve y = f(x) at x = h 
e) The slope of the tangent line to the curve y = f(x) at x = 3 

 

f (3+h)− f (3)
h
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APPENDIX D 

CHECKING REGRESSION ASSUMPTIONS 
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 Before doing hypothesis testing with a regression model it is important to make 

sure the assumptions are satisfied. This section shows that there are no major departures 

from the assumptions I made to make the regression model.  

 The following are departures from the regression model that can be studied with 

residuals.  

1. The regression function is not linear. 

2. The error terms do not have constant variance.  

3. The error terms are not independent. 

4. The model fits all but one or a few outlier observations.  

5. The error terms are not normally distributed.  

6. One or several important predictor variables have been omitted from the model.  

(Kutner, Nachtsheim, Neter, Li, 2005, p. 103).  

I will address each of these issues with residual plots then address the issue of 

multicollinearity that is unique to multivariate models. 

1. Regression function is linear 

 The residual versus predicted plot in Figure 58 does not show any obvious 

patterns. The predictor variables are responses to all relevant Pretest and Test 1 question. 

The predicted variable is number of correct rate of change questions on Test 3. 
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Figure 58. Residuals Versus Predicted Plot.  
 

Students who are predicted to have high scores on the rate of change questions on 

Test 3 have similar residuals as students who are predicted to have low scores. This 

suggests the model doesn’t systemically over or under predict for students with high or 

low scores. This suggests that a linear model is appropriate and that we do not need to 

transform our predictor variables.  Figure 59 shows that the residuals for the model 

containing five predictors also looks like a randomly scattered cloud. This suggests a 

linear model is appropriate for the reduced model as well. 
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Figure 59. Residuals Versus Fitted Values for Model with Five Predictor Items. 

2. Constant Variance of Error Terms   

 If there was not constant variance of error terms the residual versus fitted values 

plots  in Figure 58 and Figure 59 might have a discernable shape, such as a “megaphone 

shape”. These residuals do not show a pattern.  The Brown-Forsythe test is used to 

formally test whether or not the “mean of the absolute deviations for one variable for one 

group differs significantly from the mean absolute deviation in the second group” (Kutner, 

et. al, 2005, p. 116). Using JMP we find, Brown Forsyth F ratio equals 0.19 ( df_n = 1, 

df_d = 113, p=.66). We should not reject the null hypothesis that there is constant 

variance of error terms for different values of predictors.  

3. Error terms are not independent 

 Error terms may not be independent if the data was collected over time. All data 

was collected in the first week of class in this study so we should not worry about time-

series effects.  
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4. Presence of outliers 

 The box plot of residuals showed no obvious outliers. An outlier would be a 

student whose actual Test 3 score was extremely different from the score we predicted 

the student would receive. A Mahalanobis plot Figure 60 is a way to detect outliers in 

multivariate regression models. A point with a high Mahalanobis distance is an outlier on 

the model and should be checked. The plot does not show any outliers that may violate 

the assumptions of the regression model. 

 

Figure 60. Mahalanobis Distances to Detect Outliers. 

5. Error terms normally distributed 

 One way to tell if residuals are normally distributed is to plot the residuals and 

check that they form a bell shaped curve. Another way is to make a normal quantile plot 

and check to make sure it is approximately a straight line. If the normal quantile plot is 

not approximately linear it means there are many more large or small residuals than we 

would expect if we had a normal distribution. Figure 61 does not show any major 

departures from our assumption of normal distribution of residuals.  
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Figure 61. Plot of Residuals and Normal Probability Plot to Check that Residuals are 
Normally Distributed. 

 

6. Predictor variables omitted from model 

 When creating the study I was aware that I was omitting predictor variables such 

as students’ former GPA that should be predictive of success in calculus. However, I did 

include a variety of items concerning students understanding of measure, fraction, graph, 
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covariation, and rate of change because I hypothesized that all of these issues could be 

relevant to instruction.  

Check for Multicollinearity 

 If two or more of the predictor variables are highly correlated it can lead to 

artificial inflation of the r-squared value associated with the regression model. 

Considering that many of the items used were specifically designed to measure the same 

idea multicollinearity could be a major problem. Variance inflation factors are a widely 

used method of detecting the presence of multicollinearity (Kutner, et. al., 2015, p. 408). 

The variation inflation factor is a measure of how much the R squared value is inflated 

because of multicollinearity of predictors. Typically a value of 10 for the variation 

inflation factor means that the multicollinearity is severe and undulling inflating R 

squared. The values in Figure 62 or Figure 63 for the variation inflation factor (VIF) do 

not reveal problems with multicollinearity.  

 

Figure 62. Test for Multicollinearity of Reduced Model. 
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Figure 63. Multicollinearity Test for Full Model. 
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APPENDIX E 

IRB APPROVAL 
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EXEMPTION 
GRANTED 

 
Patrick Thompson 
Mathematics and Statistical Sciences, School of 
480/965-2891 
Pat.Thompson@asu.edu 

 
Dear Patrick Thompson: 

 
On 8/6/2014 the ASU IRB reviewed the following protocol: 

 
Type of Review: Initial Study 

Title: Investigating the relationship between students' 
meanings for magnitude and their understanding of 
rate of change functions in Calculus. 

Investigator: Patrick Thompson 
IRB ID: STUDY00001334 

Funding: None 
Grant Title: None 

Grant ID: None 
Documents Reviewed: • Consent Form Study Part A, Fall 2014, Category: 

Consent Form; 
• Consent Form Study Part B, Spring 2015, Category: 
Consent Form; 
• Social Behavioral IRB application Thompson, 
Category: IRB Protocol; 
• Spring 2014 Sample Interview, Category: Measures 
(Survey questions/Interview questions /interview 
guides/focus group questions); 
• Spring 2014 Sample Tutoring Items, Category: 
Measures (Survey questions/Interview questions 
/interview guides/focus group questions); 
• Sample Test Form Spring 2015, Category: Measures 
(Survey questions/Interview questions /interview 
guides/focus group questions); 
• Sample Interview Items Spring 2015, Category: 
Measures (Survey questions/Interview questions 
/interview guides/focus group questions); 
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• Oral Recruitment-Byerley Spring 2015, 
Category: Recruitment Materials; 
• Oral Recruitment-Byerley-Fall 2014, 
Category: Recruitment Materials; 

 
 
The IRB determined that the protocol is considered exempt pursuant to Federal 
Regulations 45CFR46 (1) Educational settings on 8/6/2014. 

 
In conducting this protocol you are required to follow the requirements listed in the 
INVESTIGATOR MANUAL (HRP-

103). Sincerely, 

 
 
IRB Administrator 

 
cc: Cameron 

Byerley Patrick 
Thompson 
Cameron 
Byerley Owen 
Davis 
Stacy Musgrave 
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APPENDIX F 

 PERMISSIONS 
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Pat Thompson and Marilyn Carlson gave permission for me to use items from the 

Mathematical Meanings for Teaching Secondary Mathematics diagnostic instrument in 

the Pre-Calculus Concept Assessment.  

 

Pat Thompson, second author on paper one gave permission to use it as dissertation 

chapter.  

 
 


