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ABSTRACT 

Social media is becoming increasingly popular as a platform for sharing personal health-

related information. This information can be utilized for public health monitoring tasks 

such as pharmacovigilance via the use of Natural Language Processing (NLP) 

techniques.  One of the critical steps in information extraction pipelines is Named Entity 

Recognition (NER), where the mentions of entities such as diseases are located in text and 

their entity type are identified. However, the language in social media is highly informal, 

and user-expressed health-related concepts are often non-technical, descriptive, and 

challenging to extract. There has been limited progress in addressing these challenges, and 

advanced machine learning-based NLP techniques have been underutilized. This work 

explores the effectiveness of different machine learning techniques, and particularly deep 

learning, to address the challenges associated with extraction of health-related concepts 

from social media. Deep learning has recently attracted a lot of attention in machine 

learning research and has shown remarkable success in several applications particularly 

imaging and speech recognition. However, thus far, deep learning techniques are relatively 

unexplored for biomedical text mining and, in particular, this is the first attempt in applying 

deep learning for health information extraction from social media. 

This work presents ADRMine that uses a Conditional Random Field (CRF) sequence 

tagger for extraction of complex health-related concepts. It utilizes a large volume of 

unlabeled user posts for automatic learning of embedding cluster features, a novel 

application of deep learning in modeling the similarity between the tokens. ADRMine 

significantly improved the medical NER performance compared to the baseline systems. 
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This work also presents DeepHealthMiner, a deep learning pipeline for health-related 

concept extraction. Most of the machine learning methods require sophisticated task-

specific manual feature design which is a challenging step in processing the informal and 

noisy content of social media. DeepHealthMiner automatically learns classification 

features using neural networks and utilizing a large volume of unlabeled user posts. Using 

a relatively small labeled training set, DeepHealthMiner could accurately identify most of 

the concepts, including the consumer expressions that were not observed in the training 

data or in the standard medical lexicons outperforming the state-of-the-art baseline 

techniques. 
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1 INTRODUCTION 

The widespread use of social media has provided a platform for internet users to share 

experiences and opinions, and has turned social networking websites into valuable 

sources of information. The massive amount of user-generated content can be used for 

various tasks such as  measuring political sentiments [1], predicting stock market trends 

[2] or general sentiment analysis [3]. Similarly, social media can be used for tracking 

public health trends, since people tend to share information about events and details in 

their life such as their health status. Although knowing about a few individuals’ health 

may not seem interesting, millions of health-related messages can reveal important public 

health issues. For instance, the user posts can be used for tracking the spread of 

contagious diseases such as influenza [4–6], monitoring the time and geographical 

locations of diseases [7], studying the treatment outcomes [8], finding correlations 

between symptoms and treatment choices [9], and discovering the potential adverse or 

beneficial effects of medications [10,11]. Natural language processing techniques can be 

used to extract useful information from social media.  

Problem Statement 

One of the important and fundamental tasks in most language processing pipelines is the 

identification and extraction of relevant concepts (also referred to as named entity 

recognition (NER)). This dissertation focuses on health-related concepts, mentioned in 

social media postings, which is a relatively recent problem in social media analysis 

[9,10]. Some of the general challenges in extraction of health-related concepts from 

social media are listed as follows:  
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 Consumers do not always use technical terms for reporting health-related 

information and instead use alternative creative terms, explanations of the 

symptoms and idiomatic expressions. For example, consider “feel like I was in a 

fog” or “half awake-half asleep state” which are used in user reviews about drugs 

in reporting adverse effects. We refer to these creative and descriptive user 

expressions as “consumer expressions”. 

 The available dictionaries do not include all the possible variations of a concept 

(especially consumer expressions). 

 The consumer sentences are usually informal which do not follow grammatical 

rules, and include spelling and structural problems that could potentially cause 

poor performance of existing language processing tools such as part-of-speech 

taggers and parsers. 

 The concept extraction solutions which are mainly based on observed keywords 

in the sentences (specifically the lexicon-based methods or machine learning 

classifiers which use surface lexical features) are not successful in extracting 

complex concepts. For instance, a matched entry from the ADR lexicon in a user 

review is not necessarily an adverse effect, as it can be instead a mention of an 

indication (reason to use the drug) or a beneficial effect. Similarly, in disease 

surveillance studies based on social media, a flu mention in a tweet is not always 

reporting the disease infection, and can be about the concerns of the user about 

the flu. 
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Thus, extracting complex concepts (consumer expressions) from user-generated 

sentences is more difficult compared to named entity recognition in other corpora such as 

news or biomedical literature.  

Lexicon-based methods that primarily rely on string comparison techniques, usually 

perform well in targeting the names of people, geographical locations, genes and 

proteins, whereas, in social media health-related concepts are descriptive and complex to 

extract. To address some of the limitations of the lexicon-based methods, machine 

learning methods are generally applied [11–13]. We proposed and published a pattern-

mining approach [11] that automatically learns concept extraction patterns from the 

training data. We then used that patterns to extract mentions of adverse drug effects from 

user posts in health related websites.  The method could locate many of the challenging 

consumer expressions in the user reviews. However, there are some limitations associated 

with the pattern-based method that prevent it from being a stand-alone solution for this 

task. One of the main challenges is its dependence on the size of the training data, since it 

identifies an extraction pattern only if enough matching sentences are observed in the 

training data. This makes it difficult to locate concepts expressed in less frequent and 

more complex sentences such as user posts on Twitter. There has been limited progress in 

addressing these challenges, and thus far, advanced machine learning-based NLP 

techniques have been underutilized.  

Considering these limitations, using a supervised machine learning-based method such as 

Conditional Random Fields (CRF) [14], seems to be an effective solution for this task. In 

fact, CRF is the state-of-the-art method used for concept extraction from both formal 

[15,16] and informal text [13,17].  However, supervised methods are still dependent on 
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large volumes of labeled training data, and this dependency is aggravated when dealing 

with social media content due to its noisy and informal nature. Moreover, informal text 

affects one of the building blocks of machine learning methods which is feature 

engineering.  Most of the conventional machine learning methods require sophisticated 

task-specific manual feature design. Some of the features, such as capitalized words, are 

very reliable in NER methods for corpora such as news articles, which tend to follow 

orthographic and grammar rules more closely (are well-formatted), but are unreliable for 

social media. In addition, many of the classification features are usually calculated based 

on the output of other language processing tools such as part-of-speech taggers, shallow 

and deep grammar parsers which are trained on well-formatted corpora and their 

performance is usually weak for the noisy and informal text. 

Recently deep learning techniques, a new class of machine learning methods based on 

non-linear information processing, have shown remarkable success in automatic feature 

engineering and have revolutionized the methods for computer vision [18] and speech 

recognition [19]. Deep learning methods have also achieved near state of the art results  

in NLP tasks, including chunking and Named Entity Recognition (NER) in well-

formatted domains such as news or Wikipedia content [15,20]. However, thus far, deep 

learning techniques are relatively unexplored for biomedical text mining and, in 

particular, medical concept extraction from social media. 

The primary aim of this dissertation is to propose a novel natural language processing 

solution that address most of the abovementioned challenges in extraction of medical 

concepts from user posts in social media. As a case study, we focus on adverse drug 

reaction (ADR) mentions, however, the proposed techniques are general and can easily 
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be adopted for other concepts such as mentions of diseases, treatments or health 

outcomes, as well as concepts in other domains.  

Hypothesis and Contributions 

Our first aim is to evaluate the effectiveness of incorporating unsupervised learned 

features on the performance of a supervised machine learning system for extraction of 

health-related concepts from social media. We hypothesized that adding unsupervised 

learned features to an existing supervised system improves the concept extraction 

performance. We present ADRMine, a machine learning sequence tagger for concept 

extraction from social media. We explore the effectiveness of various contextual, 

lexicon-based, sentiment, grammar and semantic features. We propose “embedding 

cluster features”, a novel application of deep learning in modeling the similarity between 

the tokens in the NER systems. These features are based on word clusters generated from 

pre-trained word representation vectors (also referred to as word embeddings [15]), that 

are learned from more than 3.5 million unlabeled user sentences, using a deep learning 

technique. 

Our second aim is to propose a deep learning system to evaluate the effectiveness of 

automatic feature learning for health-related concept extraction from social media. We 

introduce DeepHealthMiner, a deep learning pipeline that uses a feedforward neural 

network for the extraction task. The neural network classifier automatically learns 

classification features and does not require manual feature engineering. Considering the 

noisy and informal nature of the user posts that intensifies the challenge of the manual 

feature design, we hypothesized that DeepHealthMiner, with automatic feature learning 
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would address many of the abovementioned challenges associated with social media data, 

and would accurately identify most of the ADR mentions, including the consumer 

expressions that are not observed in the training data or in the standard ADR lexicons. 

We expect that the proposed methods improve the performance of medical concept 

extraction compared to state-of-the-art CRF classifiers.  

Furthermore, we hypothesized that ADRMine and DeepHealthMiner that both apply deep 

learning techniques and utilize the unsupervised learned word embeddings would 

diminish the need for large amounts of labeled data, which are generally required to train 

supervised machine learning classifiers.  

This dissertation is organized as follows. Chapter 2 provides the background and 

fundamentals, and includes the related literature. Information about the data collection 

and annotation is provided in Chapter 3 and is followed by a detailed explanation of the 

proposed methods in Chapter 4. The results are reported and discussed in Chapter 5 

followed by the conclusions in Chapter 6. 
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2 BACKGROUND 

Social Media and Public Health 

The increasing popularity of internet-based media consumption has changed many 

aspects of the human life including communications and the way that people share or 

seek information. People tend to use the social media to share information about the 

events or the details of their personal life including their health.  In a survey in 2012, Fox 

and Duggan [21] demonstrated that 72% of internet users have looked online for health 

information in the past year including searches related to serious conditions, general 

information, and minor health problems. The valuable health-related content accessible 

from tweets [9], online search query logs [22] or the user posts in the forums can be used 

for several purposes including measurement of patients’ satisfaction of services [24], 

infectious disease surveillance [4–6], health outcome measurement [8] and drug adverse 

reaction detection [10,11]. 

Adverse Drug Reactions and Pharmacovigilance 

An adverse drug reaction is defined as unwanted or harmful reaction experienced after 

using a drug under normal conditions of use and suspected to be related to the drug [23].  

ADRs are a major public health concern and are among the top causes of morbidity and 

mortality [24]. According to a systematic review of twenty-five prospective observational 

studies including 106,586 patients who were hospitalized, approximately 5.3% of all 

hospital admissions are associated with adverse drug reactions, with higher rates (a 

median of 10.7%) reported for elderly patients [25]. If ADRs were ranked as a disease by 

cause of death, it would be the fifth leading cause of death in the United States [26]—



 

 

8 
 

 

ahead of pulmonary disease, diabetes, AIDS, pneumonia, accidents, and automobile 

deaths. The economic impact of ADRs is also important: approximately $136 billion is 

spent annually on treating ADRs in the U.S., with other nations facing similar difficulties 

[27,28].  

Some of the adverse effects are discovered during Phase III trials, however, there are 

some that are only revealed after a long time use or at the end of treatments. New ADRs 

also appear when the drug is used by groups of patients not included in the trial (for 

example, children, pregnant women, elderly or patients with chronic diseases).  

Post-market drug safety surveillance is therefore required to identify potential adverse 

reactions in the larger population to minimize unnecessary, and sometimes fatal, harm to 

patients.  

Post Market Drug Safety Surveillance 

Most of the drug safety monitoring activities are based on reports by clinicians. However, 

there are studies that demonstrate the potential contribution of consumers’ reports in 

discovering adverse effects [10,29–31]. For instance, Egberts et al. [30] performed a 

retrospective study to reveal the value of consumer reports.  The authors assessed data 

gathered from a Dutch phone call service that allowed patients to consult with a 

pharmacist regarding the side effects of drugs. The time at which the first report of 

previously unrecognized adverse reactions was received from a patient was compared 

with the time of receipt from the first health-professional report to the regulatory 

authority database of the same reaction. On average, the first professional report was 

received nine months later than the report by a patient [30]. 
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Spontaneous reporting systems (SRS) are surveillance mechanisms supported by 

regulatory agencies such as the Food and Drug Administration (FDA) in the U.S., which 

enable providers and patients to directly submit reports of suspected ADRs. When 

compared to reports from other providers, patients’ reports have been found to contain 

different drug-ADR pairs, contain more detailed and temporal information, increase 

statistical signals used to detect ADRs, and increase the discovery of previously unknown 

ADRs [32–35]. However, under-reporting limits the effectiveness of SRS. It is estimated 

that over 90% of ADRs are under-reported [36].  

To augment the current systems, there are new ways to conduct pharmacovigilance using 

expanded data sources — including data available on social media sites, such as Twitter 

[37,38], or health-related social networks, such as DailyStrength [39]. While a few 

individuals’ experiences may not be clinically useful, thousands of drug-related posts can 

potentially reveal serious and unknown ADRs. Figure 1 shows examples of ADR-

relevant user postings from Twitter (a) and DailyStrength (b), with labeled mentions. 

 

Figure 1: Examples of user posts about drugs in Twitter (a) and DailyStrength (b). 

Pharmacovigilance from Social Media  

Much research is dedicated to text mining approaches for identification of ADRs from 

clinical documents such as electronic health records [40–42] and medical case reports 

[43,44]. Harpaz et al. [45] provided a through survey on the techniques for 
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pharmacovigilance, utilizing various resources such as electronic records, spontaneous 

adverse drug reporting systems and biomedical literature. There are relatively fewer 

studies that investigate the language processing techniques for extraction of drug effect 

mentions from user comments in social media. In our previous study [46], we performed 

a methodical review to characterize the different approaches to ADR detection/extraction 

from social media, and their applicability to pharmacovigilance.  

Leaman et al. [10] and Nikfarjam et al. [11] were the first to propose text mining methods 

for pharmacovigilance. Using a lexicon-based approach, Leaman et al. [10] studied the 

potential value of social media postings and demonstrated that user comments contain 

extractable information relevant to pharmacovigilance. Alternatively, we proposed a 

pattern-based approach to address some of the limitations of the lexicon-based method by 

capturing the underlying syntactic and semantic patterns from user reviews [11]. 

Chee et al. [47] classified user posts on health forums to predict the candidate FDA (U.S. 

Food and Drug Administration) watchlist drugs for further investigation with regards to 

drug safety. The authors classified the drugs as watchlist using a machine learning 

method which classified the drugs based on the whole content about the drug; however, 

they did not extract the ADR mentions from the user posts. A study by Wicks et al. [48] 

in the research center of PatientsLikeMe website suggested that data provided by patient 

communities over the internet can be useful in speeding up the clinical discoveries about 

the drugs for rare diseases. 

Most of the previous text mining solutions [49–52] for adverse effect extraction from 

social media are based on dictionary lookup, whereby words in sentences are compared 

to a lexicon of adverse effects. Yates and Goharian [50] used  a custom ADR dictionary 



 

 

11 
 

 

and limited lexical patterns for analysing the patient comments on a list of popular cancer 

drugs from three different health websites: askapatient.com, drugs.com and 

drugratingz.com. Authors evaluated the extracted ADRs for a drug with SIDER database 

[53] information,  to see if the extracted ADR was known or unknown. 

There are studies [50,52,54] that have explored patient discussions for extraction of 

useful drug safety information. Yang et al. [55] used the user discussions on MedHelp1 

website and utilized a dictionary lookup approach to locate ADRs from a lexicon. 

Sampathkumar et al. [54] proposed a similar lexical approach for recognizing the drugs 

and the ADR mentions from user messages on Medications.com. These lexicon-based 

methods [54], [55]  simply considered any matched phrase as an adverse effect and did 

not propose any solutions for distinguishing the matched lexicon entries that are not ADR 

concepts (and instead could be indications). The studies that work on patient discussions 

require to use a relationship extraction technique to map the ADRs to the related drugs. 

However, in this dissertation, we only focus on concept extraction techniques since we 

are dealing with short messages such as user tweets.  Also, DailyStrength website 

provides a page for each drug, and all the related comments for the drug are added in that 

page. Similarly, we target the tweets based on keyword search and only analyze the 

tweets that include the drug names. Therefore, we do not need to extract the drug names 

for this task. However, our proposed system can be used as an independent concept 

extraction module in other processing pipelines including relationship extraction systems. 

                                                           
1 http://www.medhelp.org/ 
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Name Entity Recognition Techniques 

The methods for named entity recognition can be divided into three main categories [56]: 

dictionary based, rule based, and machine learning techniques. 

The dictionary approaches, typically use a large list of entity names including instances 

of different entity types and locate the entities of interest in natural language text. The 

main advantage of dictionary methods is that the extracted mentions are also normalized 

to their corresponding concept ID in the dictionary. However, the entity names in the 

dictionaries are limited and they can never include all possible variations of one entity, 

particularly when considering the creative and complex mentions of medical concepts 

found in user posts. In addition, these techniques perform poorly in identifying the 

mention entity types for the cases where one dictionary entry belongs to more than one 

entity type (e.g. ADR and Indication). Despite these limitations, the dictionary methods 

are very commonly used in biomedical domain, particularly for information extraction 

tasks from social media. 

The rule based methods apply a set of patterns, often using regular expressions, to extract 

the entities. The primary advantage of a rule based technique is  that it does not require a 

long list of entity names. The second advantage of this method is that the system 

decisions for extracting a concept can easily be justified; the rule that was triggered can 

be shown to users, explaining why the entity was extracted [57]. On the other hand, it has 

the disadvantage of not generalizing well. Although the rules usually result in high 

precisions, they can only cover  limited instances. In addition, tuning the parameters and 

manually modifying the rules to achieve higher performance is very time consuming and 

usually result in very specific rules with low recall. 
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Machine learning based methods have long been used in NER systems for general 

domain. They have also successfully been applied in biomedical NER systems [16]. The 

machine learning methods for NER fall into three main categories: supervised, semi-

supervised and unsupervised learning methods [58]. Supervised machine learning 

methods are commonly used for this task and typically require a large annotated data set 

to build a classification model. The system learns to extract entities using a set of positive 

and negative examples. The examples are represented to the system using a set of 

features. Early methods used instance classifiers such as Naive Bayes or support vector 

machine to classify the tokens [57]. Later systems used sequence tagging classifiers 

including hidden Markov models (HMMs), and maximum entropy Markov models 

(MEMMs). The success of the most machine learning methods depends on the 

representation of the features. Machine learning developers usually define a set of hand 

crafted features for every specific task. The system learns to extract based on these 

features and usually generalize much better compared to rule based methods. However 

the main drawback of supervised learning methods is the dependency to large number of 

annotated instances, while annotation in general is a labor-intensive and costly 

process.  In addition, the process of feature engineering is usually challenging particularly 

for biomedical extraction task that require some levels of domain knowledge. Also every 

task usually requires specific feature engineering.  Deep learning is a new class  of 

machine learning methods that aims at automatic feature learning methods and address 

some of the above mentioned challenges [59]. Deep learning techniques are very recent 

and are relatively unexplored in the biomedical domain. More details about deep learning 

methods is presented in Deep Learning Overview section. 
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Concept Extraction From Social Media 

The type of text in our concept extraction task is very similar to user posts in other social 

media such as Twitter. With increasing popularity of micro-blogging, the research 

interest in automatic analysis and entity (concept) extraction from tweets and similar 

content has increased. As mentioned earlier, this type of text is informal and noisy in 

nature, therefore, the traditional entity recognition methods that are developed for 

analyzing documents such as news perform poorly for social media content [13,60,61].  

To address part of the challenges in social media, unsupervised concept extraction 

solutions using web-based resources such as Wikipedia is becoming very popular. 

Michelson and Macskassy [60] proposed a novel approach for discovering users' topics 

of interest from Tweets. The method requires named entity recognition in the first step. 

The authors simply took any capitalized, non-stop word as a possible entity and used a 

novel disambiguation approach to find a mapping for the entity in Wikipedia. Similarly, 

Li et al. [61] used an unsupervised approach for NER utilizing Wikipedia and the web N-

gram corpus [62] to find the candidate named entities and then disambiguated the 

candidates based on a scoring function which considers the context in the tweet, 

Wikipedia and the web N-gram corpus for calculating the score. Furthermore, there are 

supervised entity extraction approaches that are tailored for social media characteristics 

[13,63]. Ritter et al. [13] demonstrated that existing language processing tools for POS 

tagging, chunking and NER do not perform well when applied to tweets. The authors 

proposed a new NLP pipeline, including tools specifically trained for Twitter. The NER 

module identifies companies, products, movies and other entity types, using conditional 

random fields and utilizes several engineered features such as contextual, orthographic 
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and dictionaries, plus the outputs of the Twitter-specific POS tagger and the chunker. The 

authors showed that the proposed NER system outperformed the existing systems around 

50% in F-measure [13]. However, training the system required manual annotation of POS 

tags in 800 tweets; furthermore, the success of the proposed method is largely dependent 

to the available dictionaries and Wikipedia page titles. Given the earlier mentioned 

characteristics of the complex entities in our task, even if we assume that the Twitter-

specific POS tagger and the chunker perform well on the drug review corpus, the 

dependency of the Ritter’s method to the existing Wikipedia page titles and other online 

dictionaries, make it impractical for our concept extraction task. 

Deep Learning Overview 

Artificial Neural Networks 

Artificial Neural networks (NN) are parallel computing systems that were designed for 

solving complex problems such as pattern recognition and optimization by mimicking the 

neural networks of the human brain. A biological neuron, as shown in Figure 2,  is 

composed of a cell body and two tree-like branches, axon and dendrites. The neuron 

receives signals from other neurons through dendrites and transmits the generated signal 

to another set of neurons through the terminal branches.  Inspired by the natural neural 

networks, the artificial neural network was introduced by McCulloch and Pitts [64]. As 

Figure 2 illustrates, it has a set of inputs, a processing unit, a binary threshold unit and a 

binary output. The weighted sum of the inputs is calculated, and then passed into a 

threshold unit such as a sigmoid function to generate the binary output (0 or 1) based on 

the sum value. The formal notation is shown in Equation 1, where xi is the ith input, wi is 
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associated weight and h is an activation function such as sigmoid function that turns 1 if 

the input is larger than a threshold (e.g. >0.5) and 0 otherwise. 

 

Figure 2:  Schematic comparison between a biological neuron and an artificial neuron.2 

𝑦 = ℎ (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

) 

Equation 1: The activation function of a neuron. 

A neural network is a layered network of these individual neurons, as shown in Figure 3, 

and usually consists of an input layer, an output layer and one or more hidden layers 

which transform the inputs into a more complex and abstract representation. The neurons 

of every layer are connected through weighted edges to the neurons of the next layer. 

These weights are the parameters of the network which are adjusted during the learning 

process. 

                                                           
2 http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html 
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One of the main structures of neural networks is feedforward neural networks. In the 

feedforward networks the layers are connected in one direction without any loop in the 

network. 

 

 

Learning Process in Neural Networks 

One of the characteristics of the intelligent systems is the ability to learn. Learning in 

NNs can be viewed as updating the connection weights between the nodes so that the 

network can optimally perform a specific task.  One of the most common algorithms for 

NN training is the stochastic gradient descent which is a learning algorithm based on 

error derivatives. For learning the parameters of the model, a cost function is defined, 

which typically is the sum of the squared errors for all the training examples. The error 

for each training example is the difference between the desired value (d), and the 

generated output (y) by the network (d – y). During the learning process, the parameters 

of the model, the weights of the NN, get updated using gradient descent that works by 

calculating the partial derivatives of the cost function. The errors are back-propagated, 

and the individual weights are updated accordingly. More details about the neural 

networks and the learning process can be found in [65–67]. 

W11 

Wjk 

Hidden layers 

Output layer 

Input layer 

Figure 3: Example of a deep neural network. 
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Deep Learning for Natural Language Processing 

One of the main barriers in taking full advantage of processing capacities of computers in 

language processing is the difficulty of encoding the meaning of human language. When 

using machine learning methods in different classification tasks, one usually defines 

many manually engineered features which are speculated to be useful for representing the 

meaning (semantic) of words, phrases, sentences or documents. Representation learning 

is a set of methods that automatically discover features from raw data. Deep learning 

methods are representation learning methods with multiple levels of representation [59]. 

Deep learning methods typically use neural networks to transform the input with each 

hidden layers of the network, creating a more abstract representation of the input [68].  

The idea of using neural networks for sequence prediction dates back to 1990 [69]. 

However, the first serious attempt in using NNs for the task of language modeling was 

proposed by Bengio [70] in 2001. Several other neural network-based models then were 

proposed [71,72], but much research was on theories and did not work on the practical 

problems when using those complicated models. At that time, the computational 

complexity of the neural networks was too high for the real problems. Bengio reported 

that training a neural net language model in 2001, took a week using 40 CPUs for a single 

training epoch, while 10 to 20 epochs were needed to be completed [73]. Since then, most 

of the research have been focusing on reducing the complexities of such models for 

practical purposes [74,75]. 
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Word Embeddings 

Most of the machine learning systems used for language processing tasks, regard words 

as atomic symbols represented with a vector. The size of the vector is very large (for 

example 500K or even 13M), usually equal to the size of the vocabulary in the corpus, 

while only one-dimension value in that space is “1” (the index of the word in the 

dictionary) and the rest of the values are “0”. This way of representing the words is called 

“one-hot” or “one-of-V” representation (e.g. [0 0 1 0 … 0]). One of the major problems 

with one-hot representation is that it doesn’t represent the similarity between the words. 

Therefore, if a word in the test sentence is not seen in the training set, although the 

similar words are present in the training data, the machine does not consider this 

similarity. Therefore, providing a dense representation that considers the similarity 

between the words has been an ongoing research in machine learning, and several 

solutions have been proposed such as latent semantic analysis (LSA) [76], Latent 

Dirichlet Allocation (LDA) [77], and recently neural network language models [78,79]. 

In all of the solutions, the goal is to find a dense and meaningful representation (e.g. 

[0.79, −0.17… 0.10, 0.34]). The dense representation vector of a word or phrase is also 

referred to as word embeddings [15]. 

Word embeddings are vector representations, with configurable dimensionality (usually 

150 to 500), of words that are obtained as a side result of training an auxiliary task that is 

building a language model [80,81]. For training the language model, every word (w) in a 

sentence is considered as a training instance. Two common model architectures for 

learning distributed representations of words are CBOW (Continuous Bag-of-Words) and 

Skip-gram [75]. Both architectures use neural networks for training a language model. In 
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the CBOW architecture, the neural network learns to predict a word given its context in 

the sentence, while in the Skip-gram architecture (Figure 4), the neural network learns to 

predict the context of the given word. The context is typically defined as a few preceding 

and following words in a sentence. The input word is usually represented with one-hot 

encoding. The network learns the input word’s embeddings by observing the context 

window of the word in several different sentences. Every context word is also represented 

using a one-hot vector. The network estimates the probability distribution of a number of 

previous and next words, located in a window of configurable size (equals to 8, in this 

study) around w (Figure 4). Word2vec [75]  is a neural network classifier that can be 

trained to compute the word embeddings by learning the auxiliary task of language 

modeling. It first constructs a vocabulary from the input corpus. Training the language 

model is completely unsupervised and does not require any labeled examples.  

 

Figure 4: Neural network language model for learning word embeddings [75]. 

Using this architecture, the similar words that share the same neighbor word probability 

distribution (in the output layer) will be projected into similar vectors by the projection 

(hidden) layer of the network. In fact, the point in using the hidden layer is to do this 
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transformation and represent the similar words, with close vectors in the embedding 

space. It has been shown that both syntactic and semantic similarities can be modeled by 

using this approach in training the embeddings [82]. The similarities between the 

generated embedding vectors can be measured using vector similarity metrics such as 

cosine similarity score. More information about generating the embeddings can be found 

in the related papers [15,70,75]. 

Deep Learning techniques for NER 

Here we briefly explain the neural network computations used in a typical classification 

problem.  A named entity recognition problem can also be formulated as a classification 

problems, where every token is considered a classification candidate. The architecture of 

a simplified feedforward neural network is demonstrated in Figure 5. The simplified 

network architecture and notation is inspired by the approach used in [78,83]. 

 

Figure 5: A simple feedforward neural network with one hidden layer. 

 

The network has an input, a hidden and an output layer. The nodes in the input layer are 

fully connected to the hidden layer through the weighted edges (W). Similarly the nodes 

x 

h 

y 

W U 
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in the hidden layer are connected to the output nodes with weighted edges (U). A training 

candidate is a pair denoted as (𝑥, 𝑦), where  𝑥 is a vector representing the input and  𝑦 

represents the class of 𝑥.  

The hidden layer activation is defined as follows: 

ℎ =  σ(𝑊𝑥 +  𝑏1) 

Equation 2: the activation function  of the hidden layer [83]. 

Where: 

 W ∈  ℝ𝑚 ×𝑛 is the weight matrix that connects the nodes in the input layer (𝑥 ∈

 𝑅𝑚 ) to the hidden layer, 

  𝑏1  ∈  ℝ𝑚  is a vector of biases in the input layer, 

 and  ℎ ∈  ℝ𝑛  is a vector of activation unit outputs corresponding to the nodes in 

the hidden layer. Typically, the activation function can be sigmoid or a hyperbolic 

tangent (tanh) or rectified linear unit (ReLU) [59]. If the input of an activation 

function is larger than a threshold the output value would be 1 and 0 otherwise. 

The output layer is a softmax function defined as follows: 

𝑦 ̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑈 +  𝑏2) 

Equation 3: The predictions in the neural network output layer [83]. 

 U ∈  ℝ𝑛 ×𝐾 is the weight matrix that connects the hidden layer to the output 

softmax layer; n is the number of hidden nodes and k is the number of nodes in 

the output layer, 

 and 𝑏2  ∈  ℝ𝑛  is a vector of biases in the hidden layer, 

 The softmax function normalized the vector of output layer score to be in the 

range of (0,1) and add up to 1. 
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During training, for every training candidate the cross entropy loss is calculated. The goal 

of the neural network during is to minimize the cross entropy loss (Equation 4). 

𝐶𝐸(𝑦, �̂�) = − ∑ 𝑦𝑖 log �̂�𝑖

𝑘

𝑖=1

 

Equation 4: the cross entropy loss function. 

where: 

 k is the number of possible classes (number of output nodes), 

 y is the expected outcome, 

 �̂� is the predicted outcome. 

The learning process is typically based on stochastic gradient dissent which was briefly 

explained in the previous section and more details can be found in [20,59].  

Collobert and Weston [20] demonstrated the effectiveness of using deep neural networks 

for automatic feature learning for a number of natural language processing tasks such as 

POS tagging, chunking, and NER on well-formatted text such as news corpora. They 

trained a feedforward neural network for identifying named entities such as names of 

people, companies, and locations. They used the word embeddings learned from 

Wikipedia (Collobert-Weston embeddings), for representing the words. The authors 

demonstrated that, without adding any engineered features, a simple neural network NER 

system, similar to the abovementioned network, can reach the performance near the state-

of-the-art. However, the effectiveness of deep learning is not studied for extraction of 

complex medical concepts from the informal and noisy content in the social media.  

In summary, this chapter provided the background information about social media and 

health with a focus on pharmacovigilance from social media. We surveyed the named 
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entity recognition techniques and summarized the related research on health information 

extraction from social media. Finally the fundamentals about deep learning for NLP was 

presented. 
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3 DATA COLLECTION AND ANNOTATION 

We collected user posts about drugs from two different social media resources: 

DailyStrength (DS) and Twitter. In this study 81 drugs were used (the drug list is 

available for download [84]. A pharmacology expert selected the drugs mainly based on 

widespread use in the U.S. market. The set also includes relatively newer drugs which 

were released between 2007 and 2010; this provided a time cushion for market growth 

and helped to ensure that we could find patient discussions on social media. Major 

categories include, but not limited to, drugs for the central nervous system and mental 

health conditions such as Alzheimer’s disease and schizophrenia. Treatments for age-

related diseases such as diabetes, cardiovascular diseases, urinary dysfunction, and 

musculoskeletal disorders also met the criteria for potential widespread use, considering 

increased life expectancy. For more information about the data, and the collection process 

please refer to prior publications using Twitter data or DS [11,37].  

Data Collection 

This section provides a summary of the data collection methods from DailyStrength and 

Twitter that we published in our earlier works [37,38,85].  

In DailyStrength every drug has a page with general information about the drug. DS 

provides the platform for patients or care-givers to share their experiences with others 

and write reviews about their medications. The reviews for a drug are all listed in the 

drug web page. We developed a web crawler to collect the user posts about our target 

drugs. 
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However Twitter data collection required more processing steps. We used an extended 

drug list as keywords to monitor the tweets. Besides generic and brand names of drugs, 

the list also included the misspelled drug names. This was critical to obtaining relevant 

tweets, as drug names are often misspelled in social media. We generated the 

misspellings through a phonetic spelling filter [85]. This gave preference to variants that 

reflect the phonemes of the correct spelling. For example consider the drug name 

“Seroquel” and the tweets with misspelled drug name: 

 @PsychoIogicaI HA! Not if you're on # Seroquil . EXTREMELY vivid dreams 

that stay in conscious memory. Very # Freaky ! Any idea why? 

 Gone from 50mg to 150mg of Serequel last night. Could barely wake up this 

morning and I feel like my body is made of lead 

Initially, the tool generated a large number of misspellings, out of which 18% were added 

to the list of drug names.  This percentage was experimentally determined to maximize 

the tweet coverage while minimizing the number of terms needed to query Twitter. This 

is important because currently Twitter API allows only 400 keywords per application 

key. This technique allowed us to capture an estimated 50 to 56% of tweets mentioning 

the drug. 

In Table 1, we provide examples of the drug spelling variants in our Twitter API search. 
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Table 1:Examples of drug spelling variants. 

Drug Name Generated Variants 

Prozac prozaac, prozax, prozaxc 

Paxil paxl, pxil, paxol 

Seroquel seroquels, seroqul, seroqual  

Olanzapine olanzapin, olanzapoine, olanzaoine  

 

We used the publicly available Twitter API to access the tweets that contained the drug 

names in our list. We could obtain matching tweets up to a volume equal to the streaming 

cap (~1% of all public tweets), restricted to 1,000 requests per day3.   

Next, we balanced the dataset to select a set of tweets for manual annotation. This helped 

prevent dominance of some drugs over other drugs, as some drugs are much more 

popular than others and have a large number of tweets. We randomly selected a 

maximum of 300-500 tweets per drug, for a total of 10,822 tweets. All twitter datasets 

were stored and retrieved for later use using a Mongo database [86].   

Corpus Annotation 

A team of two expert annotators independently annotated the user posts under the 

supervision of the expert pharmacologist. The annotations include mentions of medical 

signs and symptoms with the following semantic types:   

 adverse drug reaction – a drug reaction that the user considered negative;  

 beneficial effect – an unexpected positive reaction to the drug; 

                                                           
3 https://dev.twitter.com/discussions/4120 

 

https://dev.twitter.com/discussions/4120
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 indication – the condition for which the patient is taking the drug; and 

 other – any other mention of signs or symptoms.  

Every annotation includes the span of the mention (start/end position offsets), the entity 

type, the related drug name, and the corresponding UMLS CUI (Concept Unique 

Identifier) — assigned by manually selecting concepts in the ADR lexicon (see next 

section).  

Annotation of the tweets comprised two steps. First the annotators annotated the user 

posts for binary presence of ADRs. Following that, the tweets with ADRs were separated 

for full annotation. To have a balanced corpus, the full annotations also included a 

random set of tweets tagged as not having ADR, and were annotated for other existing 

mentions (e.g. Indications). 

Annotators held weekly meetings to discuss the annotated tweets, correctness of concept 

labels, and develop annotation guidelines.  The two annotators had medical or biological 

science background. Some meetings also included the full project team (one biomedical 

informatics student with a computer science background, two computer science students, 

and a pharmacology doctor).   

The annotators annotated a total of 10,822 tweets, utilizing the following general 

principles for the concept annotation:   

 Location boundaries of every mention should be minimized but the boundaries must 

also capture the entire concept 

 Every annotation should be normalized to a UMLS CUI that most closely matches the 

meaning 

 For indirect matches, the most general ID should be used. 
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For instance, “weight gain,” “gained 20 pounds,” “put on too much weight,” or “fat fat 

fat” would all be annotated to a general concept ID for “weight gain.”  Instances that 

caused confusion in selecting the most general term were discussed during meetings.  For 

more information on the annotation process, please refer to the annotation guideline [87]. 

To measure the inter-annotator agreement, we used Cohen’s kappa approach [88]. The 

calculated kappa value for approximate matching of the concepts is 0.85 for DS and 0.81 

for Twitter, which can be considered high agreement [89]. Finally, we generated the gold 

standard by including only the user posts with complete inter-annotator agreement. From 

the DS corpus, we randomly selected 4,720 reviews for training (DS train set) and 1,559 

for testing (DS test set). The Twitter corpus contains 1,340 tweets for training (Twitter 

train set) and 444 test tweets (Twitter test set). The Twitter annotated corpus is made 

available for download [90]. 

For unsupervised learning, we collected an additional DS user reviews, associated with 

the most-reviewed drugs in DS, and drug related tweets for a total of more than 3 million 

sentences. This unlabeled set (Unlabeled_DS_Twitter set), excludes the sentences in DS 

test and Twitter test sets. 

ADR Lexicon 

We compiled an exhaustive list of ADR concepts and their corresponding UMLS CUIs. 

The lexicon, expanded from the earlier work by Robert Leaman [10], and currently 

includes concepts from COSTART (Coding Symbols for a Thesaurus of Adverse 

Reaction Terms), SIDER (Side Effect Resource, containing known ADRs) [53,91]  and a 

subset of CHV  (Consumer Health Vocabulary, containing consumer alternatives for 
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medical concepts) [92]. The CHV lexicon contains around 50,000 entries that many of 

them are not a sign or symptom (possible adverse effect mention), and instead are other 

health related concepts such as diseases or medical procedures. In order to compile a list 

of only ADRs, we filtered the CHV phrases by excluding the concepts with UMLS CUIs 

that were not listed in SIDER. For example, we did not add “West Nile virus” since the 

related UMLS CUI (C0043125) was not listed in SIDER. The final lexicon contains over 

13,591 phrases, with 7,432 unique UMLS CUIs. In addition, we compiled a list of top 

136 frequent ADRs tagged by the annotators in the training data. We did not use this 

additional list during annotation; we only used it in our automatic extraction techniques. 

The ADR lexicon has been made publicly available [93]. 

In summary, this chapter presented the details about the collection of user posts from 

DailyStrength and Twitter. We discussed the challenges and the applied methods in 

targeting and collecting the tweets about drugs. The information about annotation process 

and creating the gold standard also presented in this chapter. Finally we explained the 

details of ADR lexicon which is used during annotation and later for automated concept 

extraction.  
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4 METHODS 

This section describes our proposed NER systems, ADRMine and DeepHealthMiner, that 

both utilize deep learning techniques to address the challenges associated with medical 

concept extraction from social media. The proposed approaches are compared with 

several baseline extraction techniques including MetaMap, pattern-based concept 

extraction and a strong baseline lexicon-based approach. The lexicon-based method uses 

an advanced information retrieval approach for finding candidate lexicon entries in the 

given text and then utilizes a Support Vector Machine (SVM) classifier to differentiate 

the possible entity types. 

We first explain the details about generating the word embeddings in the following 

section. ADRMine is presented in Section 4.2 followed by details about 

DeepHealthMiner in Section 4.3. The baseline techniques are described in Section 4.4. 

Section 4.1 Learning the Word Embeddings 

One of the main challenges in analyzing social media content is the variety of phrases 

and sentence structures that people use to express the same or similar meanings. Even if 

we have a very large training set, there are still many new and creative phrases that are 

not observed in the training data. Although this is not specific to social media content, it 

is aggravated in the health domain and for this type of informal text. The conventional 

NLP systems may struggle with unseen or rarely occurring tokens. This motivated us to 

utilize the large volume of available unlabeled user posts, by training the word 

embeddings (see Word Embeddings Section). We used the word embeddings for 

representing the similarity between the words in our proposed methods. Therefore, in the 
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case of unseen or rare words, the related classifier could still generalize well, since it was 

trained on similar words, and the similarity was effectively modeled in the system.  For 

the NER task, we used the word embeddings originally or define classification features 

based on them (see Embedding cluster features).  

We generated 150-dimensional vectors using the word2vec tool [94]. To train the 

language model, word2vec requires a large input text corpus. We utilized more than 3.5 

million user sentences including posts in DailyStrength and Twitter 

(Unlabeled_DS_Twitter set) to train the word embeddings. In order to choose the 

embedding’s dimension (=150), we performed preliminarily extrinsic evaluations, by 

measuring the F-measure of the extraction system. 

For preprocessing, we split the sentences in every user post, lemmatized all the tokens, 

and lowercased them for generalization. Furthermore, all user IDs in tweets replaced with 

the keyword “username” and the digits replaced with letter “d”. More details about 

generating the word embeddings explained in Word Embeddings section. 

Characteristics of Health Related Word Embeddings 

The generated word embeddings represent interesting semantic characteristics of the 

words from the input user sentences about drugs. We selected some example words 

including signs/symptoms, diseases and drugs that were commonly observed in the user 

posts, and then listed the top similar words to the target word in the embedding space 

(Table 2). The closeness calculated based on vector cosine similarity scores provided 

based on Word2vec.  
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For Instance, from Table 2, consider “Metformin” which is a drug used to treat type 2 

diabetes. The top similar word to metformin is “Avandia” which is also used for type 2 

diabetes treatment.  The second top similar word is “pcos” (Polycystic Ovary Syndrome) 

which is a disease that Metformin is commonly used to treat that. Similar to Avandia, 

Glyburide and Glucophage are all antidiabetic drugs and they all have the closest vector 

to “Metformin”. While the top similar words to “Prozac” (which is commonly used for 

treating depression) are all antidepressant drugs. 
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Table 2: Example words from user posts and the top similar words based on unsupervised 

learned word embeddings. The similarity rankings are based on word2vec cosine similarity 

scores. From the top ten closest words to the target word, those with similarity higher that 

0.65 are listed. The words in the list are lemmatized and also include misspellings. 

Metformin Prozac Pain Diabetes Depression Nausea 

avandia 

(0.70) 

zoloft 

(0.89) 

spasticity 

(0.68) 

diabetic      

(0.73) 

depressive 

(0.77) 

dizziness 

(0.85) 

pcos     

(0.69) 

paxil 

(0.87) 

neurapathy 

(0.67) 

typed            

(0.69) 

ocd           

(0.74) 

fatigue      

(0.76) 

glyburide 

(0.68) 

lexapro 

(0.87) 

stiffnes 

(0.67) 

diabeti          

(0.68) 

anxiety   

(0.74) 

light-

headednes 

(0.74) 

glucophage 

(0.68) 

celexa 

(0.87) 

paresthesia 

(0.65) 

gestational 

(0.67) 

bipolar    

(0.71) 

dizzine     

(0.74) 

clomid 

(0.68) 

effexor 

(0.86) 

numbness/ 

tingling 

(0.65) 

mellitus   

(0.67) 

o.c.d.       

(0.71) 

diahreah  

(0.73) 

ovulate 

(0.67) 

wellbutrin 

(0.84) 

ciatica 

(0.65) 

insipidus 

(0.65) 

dysthymia 

(0.70) 

diarrhea  

(0.73) 

follistim 

(0.67) 

cymbalta 

(0.82) 

spasum 

(0.65) 

 post-partum 

(0.70) 

vomit       

(0.72) 

synthroid 

(0.67) 

lithium 

(0.75) 

  zoloft      

(0.69) 

hyperhidrosis 

(0.72) 

conceive 

(0.66) 

aropax 

(0.757) 

  hypocondria 

(0.69) 

nausa        

(0.71) 

cytomel 

(0.65) 

   depress  (0.69) headache 

(0.71) 

 

Section 4.2 ADRMine: Sequence Labeling using Word Embedding Clusters 

In this section, we explain ADRMine, a machine learning sequence tagger for concept 

extraction from social media that we introduced in our prior publication [95]. The 
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effectiveness of various contextual, syntactic and semantic features are explored. We 

introduce a novel semantic feature based on word clusters, generated from pre-trained 

word embeddings explained in the previous section. 

Model Training 

ADRMine uses a supervised sequence labeling CRF classifier for entity tagging in text. 

CRF is a well-established, high performing classifier for sequence labeling tasks 

[13,15,16]. We used CRFsuite, the implementation provided by Okazaki [96], as it is fast 

and provides a simple interface for training/modifying the input features [15,96]. 

Generating the input CRFsuite train and test files with calculated features for 88,565 

tokens in DS train/test sets took about 40 minutes, while building the CRF model and 

assigning labels for test sentences took about 2 minutes on a PC with a dual core CPU 

and 10 GB of RAM running Ubuntu operating system. 

The CRF classifier attempts to classify individual tokens in sentences. It was trained on 

labeled mentions of ADRs and indications. Although the focus was to identify the ADR 

mentions, our preliminary empirical results showed that including indication labels in the 

model improves the performance of ADR extraction. We also considered the mentions of 

beneficial effects as indications, since there were limited number of annotated beneficial 

effects in the corpus, and they are similar to indications. For encoding the concepts’ 

boundaries in ADRMine, we used the IOB (Inside, Outside, Beginning) scheme — where 

every token can be the beginning, inside, or outside of an entity type. Therefore, it 

learned to distinguish 5 different labels: B-ADR, I-ADR, B-Indication, I-Indication and 

Out. 
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CRF Features 

To represent the classification candidates (the individual tokens), we explored the 

effectiveness of several features. Here we explain the features that we used in training the 

machine learning system. We introduce novel semantic features based on word 

embeddings and also evaluate the effectiveness of contextual sentiment features. 

Baseline Features 

 Context features: Context is defined with seven features including the current 

token (ti), the three preceding (ti-3, ti-2, ti-1), and three following tokens (ti+1, ti+2, 

ti+3) in the sentence. The preprocessed token strings are values of these features. 

Preprocessing includes spelling correction and lemmatization. For spelling 

correction, we utilized Apache Lucene [97] spell checker library which suggests 

the correct spelling based on an index of English words. The index was generated 

using the ADR lexicon and a list of common English words from SCOWL (Spell 

Checker Oriented Word Lists) [98]. For lemmatization, we used the Dragon 

toolkit [99] lemmatizer which returns the WordNet [100] root of the input word. 

 ADR Lexicon: A binary feature that shows whether the current token exists in the 

ADR lexicon or not.   

 POS: Part of speech of the token, which was generated using Stanford parser 

[101].  

 Negation: This feature indicates whether the token is negated or not. We 

identified the negations by considering grammatical dependency relations 

between negation words (e.g., no, not, any, cannot and less) and the target token. 
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We used Stanford parser to generate the grammatical dependencies [101]. The 

dependencies represent the grammatical relationships with arguments of a relation 

being the words. The offset of the word in the sentence is also attached to the 

word in the relation . For instance consider the sentence: “This drug had no 

improving effect” with the following dependency relations: 

det(drug-2, This-1) 

nsubj(had-3, drug-2) 

root(ROOT-0, had-3) 

neg(effect-6, no-4) 

amod(effect-6, improving-5) 

dobj(had-3, effect-6) 

Effect is considered as negated since there is a dependency relation that indicates 

negation between effect and no (neg(effect-6, no-4)). We also considered a token 

negated if it occured in a window of two tokens after a negation word. For 

instance, improving in the example sentence is also considered negated [102,103]. 

Embedding cluster features 

One potential problem with the abovementioned features is that the classifier may 

struggle with unseen or rarely occurring tokens. To address this issue, we incorporated a 

set of semantic similarity-based features in the system. As explained in Section 4.1 we 

model the similarity between words by utilizing the unlabeled user posts and training the 

word embeddings. We then compute clusters of similar words. 
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We computed the word clusters using Word2vec, performing K-means clustering on the 

word embeddings. We grouped the words in the corpus into n (=150) different clusters, 

where n is a configurable integer number. In Table 3, we provide examples of generated 

clusters with a subset of words in each cluster. We defined seven features based on the 

generated clusters. The features include the cluster number for the current token, three 

preceding and three following tokens. These features add a higher level abstraction to the 

feature space by assigning the same cluster number to similar tokens. For instance, as  

Table 3 illustrates, the drug names “abilify” and “adderall are assigned to the same 

cluster, which includes only drug names. We selected the value of n and the embedding 

vectors’ dimension based on preliminary experiments targeted at optimizing CRF 

performance for values of n between 50 and 500. The generated word embeddings and 

clusters are made available for download [84]. In Table 4, we show examples of 

classification candidates and calculated features. 
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Table 3: Examples of the unsupervised learned clusters with the subsets of the words in 

each cluster. ci is an integer between 0 to 149. The “Semantic category” titles are 

manually assigned and are not used in the system. 

Cluster# Semantic 

Category 

Examples of clustered words 

c1 Drug abilify, adderall, ambien, ativan, aspirin, citalopram, 

effexor, paxil, … 

c2 Signs/Sympto

ms 

hangover, headache, rash, hive, … 

c3 Signs/Sympto

ms 

anxiety, depression, disorder, ocd, mania, stabilizer, … 

c4 Drug dosage 1000mg, 100mg, .10, 10mg, 600mg, 0.25, .05, ... 

c5 Treatment anti-depressant, antidepressant, drug, med, medication, 

medicine, treat, … 

c6 Family 

member 

brother, dad, daughter, father, husband, mom, mother, son, 

wife, … 

c7 Date 1992, 2011, 23rd, 8th, april, aug, august, december, … 

 

Table 4: Calculated features for representing examples of CRF classification instances.  

Sentence: I had the side effect of a bloody noseADR and hated it. 

Token CRF Features Class 

bloody ti-3=effect; ti-2=of; ti-1=a; ti=bloody; ti+1=nose; ti+2=and; ti+3=hate; 

clusteri-3=77; clusteri-2=49; clusteri-1=49; clusteri=147; 

clusteri+1=116; clusteri+2=43; clusteri+3=51; is_negated=0; 

is_in_lexicon=1; POS=JJ (Adjective) 

B-ADR 

nose ti-3=of; ti-2=a; ti-1= bloody; ti=nose; ti+1=and; ti+2=hate; ti+3=it; 

clusteri-3=49; clusteri-2=49; clusteri-1=147; clusteri=116; 

clusteri+1=43; clusteri+2=51; clusteri+3=85; is_negated=0; 

is_in_lexicon=1; POS=NN (Noun) 

I-ADR 

and ti-3=a; ti-2=bloody; ti-1= nose; ti=and; ti+1=hate; ti+2=it; ti+3=.; clusteri-

3=49; clusteri-2=147; clusteri-1=116; clusteri=43; clusteri+1=51; 

clusteri+2=85; clusteri+3=101; is_negated=0; is_in_lexicon=0; 

POS=CC (Coordinating conjunction) 

Out 
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Choosing the Optimal Configurations for Embedding Features 

There is no established approach in the literature for identifying the embedding vector 

size that can be chosen for a specific corpus. Researchers that are currently working with 

neural networks often choose the configuration settings based on trial and error. We 

performed extrinsic evaluation of different vector and cluster sizes. We changed the 

values between 50 to 500 and evaluated the ADR extraction performance. Although the 

performance did not vary to a large extent, we found that 150 for both vector size and 

cluster size generated the highest performance. We also repeated part of these 

experiments by changing the cluster size for Twitter and keeping the embeddings vector 

size at 150. Figure 6 illustrates the ADR extraction F-measure variations when changing 

the cluster size. We achieved to the same conclusion that 150 is the best cluster size for 

our extraction task.  

 

Figure 6: The impact of cluster size on ADR extraction F-measure. 
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Sentiment Analysis Features 

Considering the user posts about drugs, it is easy to see that patients or caregivers usually 

report the adverse effects with a negative tone, while they report the beneficial and 

indications in a positive or neutral tone. However capturing the sentiment of the 

sentences in user posts, and in particular health-related domain introduce some challenges 

that need to be addressed.  

One of the challenges of sentiment analysis in general is that the contextual polarity of 

the words can be very different with the prior polarities. For example, consider the 

sentence “This drug prevents anxiety symptoms”, which can be considered a positive 

sentence; however, the sentence only contains one polar word (anxiety) which its prior 

polarity is negative based on the affect lexicons. Therefore, the existing sentiment 

analysis methods [104] that are based on the prior polarities do not address the challenges 

in this task. 

Furthermore, a sentence can contain both positive and negative clauses and the contextual 

polarity can be switched with “Contrastive conjunctions” (“but”, “however”, “in 

contrast”, “on the contrary”, “instead”, “nevertheless”, “yet”, “still”, “even so”, 

“neither … nor”). For instance, consider the importance of contrastive conjunctions in 

switching the contextual polarity in the  following sentences: 

1) [Wonderful]+ but [stopped taking it because of weight gain]-. 

2)  [Made me forget things]- but [slept like a rock which was great when manic]+. 

To model the contextual polarity of a token, we defined two sentiment-related features: 

token contextual polarity and sentence polarity. The sentence polarity feature is the 
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overall polarity of the sentence and can have three possible values: positive, negative and 

neutral. Similarly, token contextual polarity feature can have three possible values.  For 

calculating the value of this feature , our method does not consider the tokens in isolation 

and instead considers the sequence of tokens in the sentence. For example, if the token is 

preceded by a contrastive conjunction, or if it is negated, its polarity may be switched 

from positive to negative or vice versa. We used Stanford CoreNLP (version 3.3.0) to 

parse a given sentence and assign sentiment to the subtrees in the sentence parse tree 

[105]. The tool calculates the polarity values based on a deep learning recursive neural 

network that is trained to assign phrase-level polarity scores in a sentence. It considers 

the sequence  of words and the composed phrases to assign sentiment values. The tool 

assigns sentiment to each node in parse tree of a given sentence. Therefore, it is possible 

to get the sentiment of tokens and phrases at several levels in the parse tree.  

To get the contextual polarity for a token, our method first identified the token’s related 

clause based on the parse tree. To identify the related clause of a token (a leaf node in a 

parse tree), for every leaf node, our technique recursively visited the ancestors until it 

reached a node with clause level labels (e.g. S ( simple declarative clause) or SBAR 

(Clause introduced by a subordinating conjunction)) [106]. We then used the sentiment of 

the related clause as the value of the token contextual polarity feature. 

Section 4.3 DeepHealthMiner: Deep Learning for Health Information Extraction 

In this section we present DeepHealthMiner, a deep learning based pipeline for extraction 

of health-related concepts. The system learns both the mentions’ spans (the start and the 
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end tokens) and the entity types. Figure 7 shows DeepHealthMiner processing pipeline 

that incorporates three main steps: 

1. Learning the word embeddings 

2. Concept extraction 

3. Concept normalization 

The system used around 3 million unlabeled user sentences for generating the word 

embeddings using unsupervised learning (see Section 4.1 Learning the Word 

Embeddings). It utilized these embeddings for representing the individual tokens for the 

main task of concept extraction. The concept extraction module used a feedforward 

neural network to learn to tag the medical concepts in the input sentences. In the next 

section, we explain the neural network sequence classifier structure. 
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Figure 7: DeepHealthMiner Pipeline. 

Deep Neural Network Sequence Classifier 

We designed a feedforward neural network classifier (Figure 8) to learn the token labels. 

The target entities in the training data are medical sign and symptoms found in user posts 
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indications. Every mention can contain one or multiple tokens.  Similar to ADRMine, to 

represent the annotation boundaries to the sequence classifier, we chose the IOB scheme. 

As a result, there were five possible classes for every token (B-ADR, I-ADR, B-

Indication, I-Indication and O). The outside tag (O) used for the tokens that did not 

represent a named entity. Following is an example of an annotated sentence using IOB 

encoding: 

Gave me electric shocks and caused me t o gain Almost 9 POUNDS in 3 WEEKS 

O O B-ADR I-ADR O O O O B-ADR I-ADR I-ADR I -ADR O O O 

The network architecture is similar to SENNA, the general purpose neural network 

suggested by Collobert et al [20] that has shown successful when applied for a number 

NLP tasks. We used DeepNL [107] a user-friendly implementation of SENNA that can 

be trained on a given annotated corpus. As illustrated in Figure 8, the network has an 

embedding look up layer, an input, a hidden and an output layer. It is a fully connected 

NN, meaning that every node in a layer is connected to all the nodes in the next layer.  

As Figure 8 illustrates, the input tokens are represented as one-hot first and the look up 

table retrieves the pre-trained word embeddings for every token. DeepHealthMiner uses a 

window approach [20] in which it concatenates the input embedding vectors and pass to 

the input nodes. Therefore, the size of the input layer equals the embedding dimension 

(here is set to 150) times the window size (here is set to 7).   
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Figure 8: Neural network sequence classifier architecture. 

A training candidate is a pair denoted as (𝑥(𝑡), 𝑦(𝑡)), where  𝑥(𝑡) is the target token and 

the context tokens around it, and  𝑦(𝑡) represents the label for the target token. For 

instance, Equation 5 models the input to the network for a token, 𝑥𝑡, with a context 

window of 5: 

𝑥(𝑡) = [𝑥𝑡−2𝐿, 𝑥𝑡−1𝐿, 𝑥𝑡𝐿, 𝑥𝑡+1𝐿, 𝑥𝑡+2𝐿 ] 

Equation 5: The  context window including target token and the neighbor tokens. 
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Where: 

 𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1, 𝑥𝑡+2 are one-hot vectors of size |𝑉| equal to the vocabulary 

size. The index of the word in the vocabulary is set to one and the rest of 

dimensions are 0.  

𝐿 ∈  𝑅|𝑉|×𝑑 is the embedding matrix with rows containing the embedding vectors for 

words in the vocabulary. The ith row in L is an embedding vector corresponding to the ith 

word in the vocabulary. d is the embedding dimensionality which is set to 150 in this 

study. 

For a sentence with n tokens, we have n separate training examples corresponding to 

every token. In the training data, if a single token is labeled as ADR, the expected output 

for that instance is B-ADR, and the output node that represents B-ADR is set to “1” and 

the rest of the outputs are set to “0”. This is represented as (1,0,0,0,0), while if the token 

is labeled as indication (B-IND), it is represented as (0,0,1,0,0). 

The NN adjusts the weights connecting the input-to-hidden and hidden-to-output weights. 

Hidden layer generates a higher level representation of the input in a way that it makes 

the classification task easier for the output layer. The hidden layer contains sigmoid 

neurons which use hyperbolic tangent function to add non-linearity to the weighted sum 

of inputs (see Equation 2). 

The goal of the network is to adjust the internal parameters in a way that the right label is 

assigned to each word. Similar to other neural network-based classification tasks [20,81], 

the network is trained using standard backpropagation to maximize the probability of the 

class (yt) of the input word (xt): 
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𝑦𝑡 = arg max 𝑝(𝑦𝑡|𝑥𝑡−2 … 𝑥𝑡+2) 

Equation 6: Predicted label for xt. 

Following the convention [20,75], the network uses cross entropy  (Equation 4) as the 

loss function during training. After training, the output represents the probability 

distribution of the class of the input word, given the context of the word. The output is a 

softmax layer that is typically used for classification tasks (see Deep Learning techniques 

for NER). 

Network Parameter Selection 

Neural networks can automatically extract classification features, but to achieve the 

optimal performance of the networks we have to first choose the neural network 

architecture and also set several hyper-parameters of the neural network. For instance, the 

input window size, the number of hidden layers, number of hidden nodes at each hidden 

layer, and the learning rate are examples of the parameters that should be selected.  

To choose the network parameters, we changed one parameter at a time while keeping 

others constant. Based on empirical results we designed a single hidden layer NN 

classifier with an input window size of 7 (including the target token, three preceding and 

three following tokens) and an output softmax layer with five nodes (see 

DeepHealthMiner Parameter Selection section).   

The Impact of Deep Learning on Required Train Set Size 

One of the challenges for training supervised machine learning systems is the need to 

manually annotate training instances. The annotation effort is very costly and 

cumbersome. The annotation of health-related user posts in social media, and in 
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particular Twitter, is even more challenging since the user posts are more informal which 

leads in dealing with more ambiguity (in deciding about the mention span, semantic type 

or mapping UMLS concept IDs) during annotations. 

To systematically test the impact of deep learning on the size of the training data, we 

trained the system on smaller data sets while keeping the test set intact. First we 

randomly selected 10% of the train set, trained ADRMine, DeepHealthMiner and the 

baseline CRF and compared the results by testing them on the whole test set. Next we 

increased the train set size to 25% and 50% of the size of the training set and compared 

the results accordingly. Since we have a relatively smaller corpus on Twitter, we only 

compared 50% of the Twitter corpus with the whole train set. 

Normalization 

After extracting the medical entities and the entity types, we mapped the extracted 

concepts to the concept IDs using UMLS. In Table 5, we list some example mentions and 

the associated UMLS CUIs from our annotated corpus. For instance, the normalization 

system should map “nightmare” to C0028084; Considering the associated UMLS concept 

name, which is the same as the extracted mention (nightmares), the normalization task 

for this example is relatively easy. However, normalization of mentions that do not share 

tokens with the associated UMLS concept names is more  
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Table 5: Examples of annotated mentions and the normalized UMLS CUIs. 

Sentence Entity 

Type 

UMLS 

CUI 

UMLS 

Concept Name 

I swear this [DRUG_NAME] is causing 

me to have horrible nightmare! 

ADR C0028084 

 

nightmares 

@[username] I take [DRUG_NAME] and 

have a permanent dry mouth what can I 

do to help it? 

ADR C0043352 

 

mouth dryness 

stops me from crying most of the time, 

blocks most of my feelings  

 

ADR C0233469 

 

emotional 

indifference 

 

YES, one of the best things to help with 

my mood stabilization.  

 

Indication C0085633 mood swings 

 

challenging. For example, “blocks most of my feelings” should be mapped to C0233469 

(emotional indifference).  

Here we present a preliminary approach that used the ADR Lexicon for normalization. 

The method is similar to our baseline technique (see Lexicon-based Concept Extraction). 

The system first indexes all the lexicon entries, including the UMLS CUIs, using Lucene 

[97]. Each lexicon entry is indexed as a Lucene document that can be retrieved later.  

To normalize the extracted entities, the method generates a query using the extracted span 

of text and it retrieves a ranked list of all the lexicon entries that contain full or part of the 

included tokens in the query. It then selects the top ranked UMLS CUI based on a chosen 

threshold. In the Lexicon-based Concept Extraction section we provide more details. 
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Section 4.4 Baseline Extraction Techniques 

Lexicon-based Concept Extraction 

To locate the ADR lexicon concepts in user sentences, we used an information retrieval 

approach based on Lucene, which is similar to those applied for ontology mapping 

[108,109] and entity normalization [110]. We built a Lucene index from the ADR lexicon 

entries. For each concept in the lexicon, we added the content and the associated UMLS 

CUI to the index. Before indexing, the concepts were preprocessed by removing the stop 

words and lemmatization. 

To find the concepts presented in a given sentence, we generated a Lucene search query 

after preprocessing and tokenizing the sentence. The retrieval engine returns a ranked list 

of all the lexicon concepts that contain a subset of the tokens presented in the input query. 

We considered a retrieved concept present in the sentence if all of the concept’s tokens 

are present in the sentence. We then used string comparison via regular expressions to 

identify the span of the mentions in the sentence. This technique is flexible enough to 

identify both single and multi-token concepts, regardless of the order or the presence of 

other tokens in between them. For example, the sentence “… I gained an excessive 

amount of weight during six months.” is correctly matched with the lexicon concept 

“weight gain”. We applied two constraints before accepting the presence of a retrieved 

lexicon concept: the distance between the first and the last included token should be equal 

or less than a configurable size (= 5), and there should not be any punctuation or 

connectors like ‘but’ or ‘and’ in between the tokens.  
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Figure 9: Lexicon-based concept extraction method pipeline. 
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Figure 10: Entity type classification pipeline. 

 

SVM Entity Type Classifier 

Since not all mentions that match with the lexicon are adverse reactions, we trained a 

multiclass SVM classifier to identify the entity types of the candidate phrases. Every 

SVM classification candidate is a phrase (may include more than one token) that is 

already matched with the ADR lexicon. The possible entity types for a candidate phrase 
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are ADR, Indication or Other. We chose SVM because it has been shown to perform very 

well in text classification problems [111]. We used SVMlight [112] to build the SVM 

model. The SVM features for representing the candidate phrases are similar to CRF 

features and include: the phrase tokens, three preceding and three following tokens 

around the phrase neighbor tokens), the negation feature, and the embedding cluster 

number for the phrase tokens and the neighbor tokens. 

Pattern Mining for ADR Extraction 

In this section we introduce a new method to automatically extracting ADRs from user 

comments using natural language processing techniques that go beyond lexicon 

matching. We applied association rule mining, a supervised learning method, to extract 

mentions of ADRs in user reviews about drugs in social media. The hypothesis that 

drives our method is that even if the language used in social media is highly informal, 

people write their comments using some converging patterns that can be identified to 

facilitate the extraction of interesting pieces of information in those comments. 

Association Rule Mining 

The idea of association rule mining originated from the “shopping cart” problem, where 

the challenge is to identify which set of items are more likely to be bought together. 

Supermarkets use this information in positioning the items in the shelves and controlling 

the way customers traverse in the supermarket.  Association rules are represented as a set 

of expressions of the form {X1,X2,X3,..Xn} => Y, which indicates that if we find 

X1,X2,X3,… Xn in a shopping cart (a transaction), the probability of finding another 

product Y in that transaction will be high. This probability is called the confidence of the 
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rule, and usually one seeks the rules with confidence above a defined threshold. In 

addition, the number of transactions that include all the items X1... Xn and Y together is 

called the support of the rule. A frequent itemset is a set of items which have the support 

and confidence higher than a defined threshold. The Apriori algorithm [113] is an 

influential algorithm in mining frequent association rules. It iteratively traverses 

transactions to find itemsets with cardinality from 1 to K (K-items) [114]. The dominant 

rule behind Apriori method is that if S is a frequent itemset, every subset of S should be 

frequent also. Once the frequent itemsets are found, they are used to generate the rules.  

Mining patterns in the free text can be modeled as an association rule mining problem in 

which every sentence is considered a transaction and the words in the sentence are 

considered as items in the transaction. 

Concept Extraction with Association Pattern Mining 

The proposed pattern-based concept extraction technique [11] is based on three main steps: 

1. Term Sequence Generation, 2. Frequent Rule Identification and 3. Frequent Pattern 

Generation. In Figure 11, we illustrate the main steps in processing the user posts. 
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Step 1: Term Sequence Generation 

First, we created a collection of sequences of words that appeared in sentences with an 

ADR mention, and stored them in a “Term-Sequence” file. Each line of this file is thus 

representative of a sentence with an ADR mention. Either a generic part of speech or the 

original words in the sentence constitute the sequence elements which we refer to as 
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Figure 11: Overall architecture of the pattern-based concept extraction system. 
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terms. To generate the representative Term-Sequences for a labeled sentence in the 

training data , we selected a few terms from a window around each side of the ADR 

mention. We used part of speech as representatives for all words except for connectors 

(such as “and”, ”but”) and a few manually selected verbs such as (make, cause, give). 

Step 2: Frequent Rule Identification 

At this step, we extracted a set of rules that tell us which combination of terms are more 

likely to be present in a sentence with a mention of an ADR. The Term-Sequence file 

generated in the previous step is the input to this module. We applied Apriori algorithm 

for association rule mining [113], using the Borgelt's implementation [115]. For instance, 

consider the following extracted rule: “make PRP RB CC => ADR” which means that the 

combination of the verb (“make”), a preposition (PRP), adverb (RB), and a connector 

(CC) often occurs with an ADR (in no particular order). This allows us to infer that if the 

combination in the condition is present in the test sentence, a mention of an ADR is likely 

to be present, as well. 

Step 3: Frequent Pattern Generation 

We generated the sets of frequent terms using the rules from the previous step; however, 

the order of these terms should be identified to generate the patterns. We used the Term-

Sequence file, which includes all the possible sequences, to find the orders. ADR 

keywords in the sequence are replaced with a placeholder that catches the term(s) 

presented in that position in the test sentence. In Table 6, we present an example of the 

way that the rule is converted to some of the possible patterns.  
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             Table 6: Converting a rule to possible patterns 

Rule Possible Sequence Patterns  

PRP and make -> 

ADR 

make PRP ADR and make PRP (.*) and 

and make PRP ADR and make PRP (.*) 

make PRP JJ and 

ADR 

make PRP 

(?:[^ ]* )*and (.*) 

VB RB and -> ADR VB ADR RB and VB  (.*)  RB and 

RB ADR and VB RB (.*)  and VB 

Testing Phase: Extracting ADRs from unseen comments  

We generalized every test sentence and generated the representative sequence, following 

the same approach explained in step1 (Term-Sequence generation). Note that, for testing, 

we do not have an ADR keyword in the representative term sequence, and the goal is to 

extract them by applying the patterns. We applied all the patterns generated in Step3 to the 

test sentences to extract adverse effect mentions. In Table 7, we show a pattern and 

examples of matched sentences. 

Table 7: Example of test sentences that match with a given pattern 

pattern Example sentences Extracted ADR 

cause PRP (.*) It works, but swell too much and get heart 

murmurs 

swell too much 

I think it actually causes me have more 

headaches 

have more 

headaches 

 

MetaMap Baselines 

We used MetaMap to identify the UMLS concept IDs and entity types in the user 

reviews, and add two baselines to evaluate the performance of MetaMap on this type of 

data. In the first baseline (MetaMapADR_LEXICON), all identified mentions by MetaMap that 

their assigned UMLS CUIs are in our lexicon are considered to be ADRs. In the second 
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baseline (MetaMapSEMANTIC_TYPE), all concepts belonging to specific UMLS semantic 

types are considered to be ADRs. The selected semantic types include: injury or 

poisoning, pathologic function, cell or molecular dysfunction, disease or syndrome, 

experimental model of disease, finding, mental or behavioral dysfunction, neoplastic 

process, signs or symptoms, mental process.  

This chapter presented the proposed methods for medical concept extraction from social 

media. The details about learning the word embeddings from unlabeled user posts and the 

characteristics of the learned embeddings presented in the first section. It then was 

followed by a section about ADRMine – the CRF sequence tagger- and the prosed 

embedding cluster features. We then presented DeepHealthMiner, our deep learning 

pipeline for concept extraction. Finally the information about baseline NER techniques 

were presented in detail. Next, we present the evaluation results and compare the 

performance of several concept extraction techniques. 
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5 EVALUATION AND RESULTS 

We evaluated the performance of the extraction techniques using precision (p), recall (r) 

and F-measure (f): 

𝑝 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
  𝑟 =  

𝑡𝑝

𝑡𝑝+𝑓𝑛
  𝑓 =

2∗𝑝∗𝑟

𝑝+𝑟
 

We calculated true positives (tp), false positives (fp) and false negatives (fn) by 

comparing the systems’ extracted concepts with the manually tagged concepts  in the 

gold standard via approximate matching [116]. To evaluate the effectiveness of the 

proposed techniques we used two different corpora: DailyStrength (DS) and Twitter. In 

Table 8, we present the details about the sentences and the number of annotated concepts 

in each corpus. The annotated Twitter data set is available for download [90].  

We also used the data released for PSB 2016 Social Media Mining Shared Task [117] to 

evaluate the performance of ADRMine and DeepHealthMiner. We have made this data 

set accessible for download which can be helpful to the future research. 

Table 8: Number of user posts and annotation details in train/test sets. 

Data Set # of user 

posts 

# of 

sentences 

# of 

tokens 

# of ADR 

mentions 

# of 

Indication 

mentions 

DS train set 4,720 6,676 66,728 2,193 1,532 

DS test set 1,559 2,166 22,147 750 454 

Twitter train set 1,340 2,434 28,706 845 117 

Twitter test set 444 813 9,526 277 41 

PSB train set 1784 3247 38232 1122 158 

PSB test set 476 995 11266 574 275 
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Section 5.1 ADRMine Evaluation 

In Table 9, we compare the performance of ADRMine with the baseline techniques. We 

found that ADRMine significantly outperforms all baseline approaches (p-value < 0.05). 

Furthermore, the utility of different techniques in concept extraction is consistent 

between the two tested corpora. We computed the statistical significance (p-value) by 

using the model proposed by Yeh [118] and implemented by Pado [119]. 

Table 9: Comparison of ADRMine and the baseline methods. The ADR extraction 

precision (P), recall (R) and F-measure (F) are compared using two different corpora: DS 

and Twitter. 

 

Method 

DS Twitter 

P R F P R F 

MetaMapADR_LEXICON 0.470 0.392 0.428 0.394 0.309 0.347 

MetaMapSEMANTIC_TYPE 0.289 0.484 0.362 0.230 0.403 0.293 

Pattern Mining 0.775 0.475 0.589 0.546 0.126 0.205 

Lexicon-based 0.577 0.724 0.642 0.561 0.610 0.585 

SVM 0.869 0.671 0.760 0.778 0.495 0.605 

Baseline CRF 0.874 0.723 0.791 0.788 0.549 0.647 

ADRMine 0.860 0.784 0.821 0.765 0.682 0.721 

Evaluation of CRF Features 

To investigate the contribution of each feature set in ADRMine, we performed leave-one-

out feature experiments (Table 10). We found that the most contributing groups of 

features are the context (see Baseline Features) and the embedding clusters. The 
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combination of both is sufficient to achieve the highest result for DS. In Table 11, we 

report the evaluation of sentiment features when added to ADRMine.  

Table 10: The effectiveness of different CRF feature groups. All feature set (All) 

includes: context, lexicon, POS, negation and embedding clusters (cluster). Statistically 

significant changes (p<0.05), when compared with All feature set, are marked with *. 

CRF Features 
 DS   Twitter  

P R F P R F 

All 0.856 0.776 0.814 0.765 0.682 0.721 

All – lexicon 0.852 0.781 0.815 0.765 0.646 0.701 

All – POS 0.853 0.776 0.812 0.754 0.653 0.700 

All – negation 0.854 0.769 0.810 0.752 0.646 0.695* 

All – context 0.811 0.665 0.731* 0.624 0.498 0.554* 

All – cluster 0.851 0.745 0.794* 0.788 0.549 0.647* 

context + cluster 0.860 0.784 0.821* 0.746 0.628 0.682* 

 

Table 11: Evaluation of sentiment features. ADRMine for DS includes context and 

embedding cluster features, and for Twitter includes context, lexicon, POS, negation and 

embedding cluster features. 

Features DS Twitter 

 P R F P R F 

ADRMine 0.860 0.784 0.821 0.765 0.682 0.721 

ADRMine + sentiment 0.861 0.803 0.831 0.759 0.650 0.700 

 

To further investigate the power of the embedding clusters, we performed several 

experiments for comparing them with baseline features. These experiments were only 

performed on DS as we had a relatively larger set of training data available. We varied 
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the size of the training data while keeping the test set unchanged. Starting with 20% (944 

reviews) of the original DS training set, we increased its size by 20% each time via 

random sampling without replacement. Figure 12 shows that adding the cluster features 

(context + clusters) constantly improves F-measure (Figure 12-b), gives significant rise to 

the recall (Figure 12-a), but slightly decreases the precision. 

 

Figure 12: The impact of embedding clusters on precision, recall (a) and F-measure (b). 

The CRF trained on variable training set sizes and tested on the same test set. 

 

Discussion 

We found that ADRMine is capable of extracting complex medical concepts even those 

that were not seen in the training data or found in the medical lexicons. In Figure 13, we 

show examples of successfully extracted ADRs and indications using ADRMine.  The 

results indicate that when we have a large unlabeled corpus for generating the embedding 

clusters, ADRMine can learn from a relatively small labeled data set. The utilized 

features are general and independent of the entity types or the domain, therefore the 
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system can easily be trained to extract other types of concepts in medical or other 

domains. 

 

Figure 13: Examples of successfully extracted concepts using ADRMine. 

The Effectiveness of Classification Features 

Feature evaluations (Table 10) indicated that lexicon, POS, and negation features added 

no significant contribution to the results when CRF was trained on comparatively larger 

number of training instances (DS train set), while they could still make small 

contributions to the performance when less data was available (Twitter train set or DS 

with less number of training instances).  

However, for both corpora, the context features were fundamental for achieving both 

high precision and recall; and the embedding cluster features were critical in improving 

the recall which resulted in a significant boost in F-measure. Examples of ADRs that 

were extracted after adding the cluster features are starred (*) in Figure 14. 

 
Figure 14: Examples of concepts that could only be extracted after adding the embedding 

cluster features to ADRMine. These concepts are starred and other extracted concepts are 

just highlighted. 

As Figure 12-b illustrates, the system that used the word embedding cluster features 

constantly achieved remarkably higher F-measure compared to the system that only used 



 

 

65 
 

 

the baseline features. Interestingly, the F-measure of the CRF with cluster features when 

using 40% of the training data is even higher than the F-measure when using 100% of the 

training data but without cluster features (Figure 12-b). Therefore, these features can be 

more advantageous in situations where less annotated data is available. As shown in 

Table 9, the contribution of the cluster features in improving the F-measure was 

substantially higher for the Twitter corpus which also confirms this finding. 

We initially anticipated that sentiment analysis would improve the performance of 

concept extraction. Although adding the sentiment features improved the performance on 

DailyStrength, surprisingly, they slightly worsen the ADRMine performance on Twitter 

corpus. The possible reason is related to the nature of tweets which are short and very 

noisy that heavily deviate from grammatical rules. As a result, the utilized sentiment 

analysis tool that is trained on movie reviews and is not specifically trained on health-

related user posts on Twitter, possibly generates erroneous parse trees on tweets. 

Furthermore, although movie reviews and user posts about drugs share common 

characteristics in expressing  positive and negative views in general, but health-related 

posts are more challenging for sentiment analysis. For instance, consider the prior 

example “This drug prevents anxiety symptoms”; The polarity of the sentence is positive 

considering the meaning of “prevent” in health domain. However, the Stanford sentiment 

score that is based on a model trained on movie reviews classifies this sentence as 

neutral. It is anticipated that training the sentiment classifier on a health-related corpus, 

annotated for phrase level sentiments, may improve the quality of the assigned sentiment 

scores and consequently the concept extraction performance.  
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ADRMine Error Analysis 

For error analysis, we randomly selected 50 false positive and 50 false negative ADR 

mentions from DS test set and categorized the likely sources of errors.  In Figure 15, we 

provide a summary of this evaluation, with example false positive/negative concepts 

shown within brackets. The majority of false positive errors were caused by mentions that 

were confused with indications or non-ADR clinical mentions. We believe that 

incorporating more context (e.g., a longer window) will diminish such errors in future. 

Twenty eight percent of false negative ADRs were expressed in long, descriptive phrases, 

which rarely included any technical terms. Sentence simplification techniques might be 

effective in extracting such false negatives [120]. Irrelevant immediate context or the lack 

of context in too short, incomplete sentences, made it difficult for ADRMine to 

generalize, and contributed to 26% of false negatives. Other false negatives were related 

to specific rules in the annotation guideline, mentions expressed with complex idiomatic 

expressions, or uncorrected spelling errors.  Future research is needed to identify an 

optimized set of features that could potentially minimize these errors.  
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Figure 15: Analysis of ADRMine false positive and false negatives. 
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Section 5.2 DeepHealthMiner Evaluation 

DeepHealthMiner achieved the F-measure of 0.84 on DS and 0.73 on Twitter corpus, 

outperforming ADRMine and other baseline methods (Table 12). The good performance 

of DeepHealthMiner is mainly attributed to improving the recall compared to ADRMine 

and other extraction methods (Table 12). We also evaluated DeepHealthMiner and 

ADRMine on the PSB shared task 2016 data set and similarly they both significantly 

outperformed the baseline CRF (Table 13). 

Table 12:Comparison of DeepHealthMiner with baseline extraction methods. 

 

Method 

DS Twitter  

P R F P R F 

MetaMapADR_LEXICON 0.470 0.392 0.428 0.394 0.309 0.347 

MetaMapSEMANTIC_TYPE 0.289 0.484 0.362 0.230 0.403 0.293 

Pattern Mining 0.775 0.475 0.589 0.546 0.126 0.205 

Lexicon-based 0.577 0.724 0.642 0.561 0.610 0.585 

Lexicon-based + SVM 0.869 0.671 0.760 0.778 0.495 0.605 

Baseline CRF 0.874 0.723 0.791 0.788 0.549 0.647 

ADRMine 0.860 0.784 0.821 0.765 0.682 0.721 

DeepHealthMiner 0.866 0.809 0.837 0.768 0.704 0.734 
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 Table 13: PSB shared task 2016 evaluation results. 

 

Method 

PSB Twitter Data Set 

P R F 

Baseline CRF 0.770 0.462 0.577 

ADRMine 0.756 0.545 0.634 

DeepHealthMiner 0.718 0.604 0.656 

 

 

 

 

Figure 16: Impact of training set size on performance (precision (P), recall (R) and F-

measure (F)) of different extraction methods (DS corpus). 

 

P R F P R F P R F

DS 10%(472) DS 25%(1118) DS 50%(2360)

Baseline CRF 0.854 0.405 0.55 0.884 0.538 0.669 0.836 0.721 0.774

ADRMine 0.818 0.589 0.685 0.842 0.675 0.749 0.843 0.751 0.794

DeepHealthMiner 0.781 0.712 0.745 0.791 0.76 0.775 0.819 0.791 0.805
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Figure 17: Impact of training set size on performance (precision (P), recall (R) and F-

measure (F)) of different extraction methods (Twitter corpus). 

 

In Figure 16, we illustrate the results of evaluating different models when they are trained 

on portions of the train set (10, 25 and 50 percent of DS), selected via random sampling 

without replacement, and tested on the whole test set. Similarly in Figure 17, we show the 

impact of training set size on different methods for Twitter corpus. Considering that our 

labeled DS corpus was relatively larger than labeled Twitter corpus, we could evaluate 

our extraction methods on smaller percentage of the DS training data (10, 25, 50 percent). 

However, for Twitter, we compared the performance of the system when trained on 50 

percent of the labeled tweets, and compared the results with a system trained on the 

whole labeled tweets. 

The general observed trend is that deep learning always remarkably increases the recall 

and the F-measure, with a cost of a relatively smaller decrease in precision. Interestingly, 

when less training data is available (e.g. 10% of DS train set in Figure 16, or 50% of 

P R F P R F

Baseline CRF 0.807 0.437 0.567 0.788 0.549 0.647

ADRMine 0.719 0.537 0.616 0.765 0.682 0.721

DeepHealthMiner 0.684 0.603 0.641 0.768 0.704 0.734

50% of training Data 100% of training Data 
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Twitter train set in Figure 17), we get a much larger improvement on recall and 

consequently the F-measure. 

DeepHealthMiner Parameter Selection 

The best results for the Twitter corpus achieved when we set the input window to include 

7 tokens (including the target token). As illustrated in Figure 18, DeepHealthMiner 

achieved the highest F-measure on Twitter corpus when we set the number of hidden 

nodes to 200. We fixed the learning rate to 0.01 which is a value conventionally used in 

the similar NLP tasks in other domains. In Figure 20, we show the results of evaluation of 

hidden layer size for DS corpus. We varied the  number of hidden nodes from 30 to 400 

and found that 100 hidden nodes resulted in the best performance for DS. 

 

Figure 18: The impact of hidden layer size (# of nodes) on DeepHealthMiner extraction 

performance for Twitter corpus (context window size = 7, learning rate = 0.01). 
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Figure 19: The impact of context window size on DeepHealthMiner extraction 

performance for Twitter corpus (size of the hidden nodes = 200, learning rate = 0.01). 

 

 

 

Figure 20: The impact of hidden layer size (# of nodes) on DeepHealthMiner extraction 

performance for DS corpus (context window size = 7, learning rate = 0.01). 
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Discussion 

We found that the best performance in extracting health-related concepts from user posts 

in social media can be achieved by training a deep neural network classifier. 

DeepHealthMiner outperformed the strong baseline extraction techniques (Table 12).  

We found that deep learning methods can remarkably reduce the need to use large 

volumes of labeled training data (Figure 16). When we trained the systems on training 

sets with different sizes, DeepHealthMiner performance was consistently higher than the 

baseline systems. This improvement was much noticeable for smaller training data (e.g. 

10%). Interestingly when we only used 10% of the DS training set, DeepHealthMiner 

achieved a recall of 0.71 which is very close to the recall of the baseline CRF (0.72) 

when we used  the whole train set (Figure 16 and Table 12). 

 By using deep learning compared to the conventional CRF, we achieved a larger F-

measure improvement for the Twitter data compared with DS data. This can be justified 

by considering the type of sentences in Twitter. The twitter content, compared to DS, is 

shorter, less focused on health, and generally more informal. There are more irregularities 

in terms of sentence structures and expressed word. This makes the feature engineering 

more challenging for Twitter. It also affects the quality and correctness of the calculated 

features. On the other hand, deep learning automatically learns the classification features. 

Since a large volume of unlabeled user posts are available, the neural network 

automatically learns the best representation of user posts and achieves the highest recall 

and F-measure among other baseline methods.  
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Comparison of the Concept Extraction Methods 

Lexicon-based Extraction 

The MetaMap baselines performed poorly for this problem. Although MetaMap is the 

state-of-the-art concept extraction system from biomedical text [121], the results show 

the vulnerability of MetaMap when applied to informal text in social media. 

Evaluation of the baseline lexicon-based technique (Table 12) demonstrated that 

compared to MetaMap, it could extract ADR mentions with relatively high recall. The 

recall is anticipated to even further improve in future by augmenting the ADR lexicon 

with a larger subset of MedDRA entries and a more comprehensive list of common 

consumer expressions for ADRs. This relatively high recall indicates that the utilized 

lexicon-based techniques were effective in handling term variability in the user sentences. 

However, the method precision was relatively low which was mainly due to the matched 

mentions with entity types other than ADRs. When we used SVM to distinguish the 

entity types, the precision markedly increased, while the recall decreased but the overall 

extraction performance improved (Table 12). We utilized our proposed lexicon-based 

method for our preliminary experiment in normalizing the extracted medical concepts to 

the UMLS CUIs. One of the limitations of this normalization technique is that only 

mentions with overlapping tokens with the concept entries in the source lexicon can be 

normalized. Future research may evaluate the effectiveness of query expansion for 

normalization. The keyword tokens in the extracted mentions can be expanded by adding 

semantically similar tokens based on the context in the sentence before submitting the 

query to the indexed lexicon. 
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Patten-based Extraction 

Using association pattern mining we could extract converging patterns in reporting ADRs 

in social media. The patterns were then used to extract ADR mentions from the test 

sentences. The performance of this technique is highly dependent to the richness of the 

training data, and the chance that the test set will include sentences that match the 

generated patterns.  

There are several parameters that are important in the quality of the generated patterns. 

For instance, in generating the representative item sequences, one can use the token itself, 

the stemmed token or POS. We have the option of removing stop words or normalizing 

dates and numbers. Other parameters that can be set are the number of included previous 

and next words in the context and also the support and confidence values of the 

association rules. In this study we used DS train set for generating the patterns and 

applied them for both DS and Twitter. The performance of the patterns for tweets were 

relatively poor that can be explained by considering the noisy nature of the tweets. In our 

preliminary study [11] and showed that it is possible to partially address the limitations of 

the lexicon-based methods for extraction of ADRs from social media. Although we could 

extract complex ADRs using patterns, it required a lot of time and effort to improve the 

patterns’ performance. However, these limitations could be addressed more efficiently, 

by using more advanced machine learning systems. Also, the current pattern mining 

approach automatically learns extraction patterns from the context and ignores the entity 

content itself. However, we could addressed this limitation by training more advanced 

systems such as ADRMine or DeepHealthMiner that are capable of training more 

complex models for concept extraction. 
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ADRMine and DeepHealthMiner 

ADRMine and DeepHealthMiner both significantly outperformed the baseline CRF and 

other explored extraction methods. Since both proposed methods applied deep learning 

techniques and utilized the pre-trained word embeddings, the information from the large 

volume of unbaled data markedly improved the recall and F-measure. DeepHealthMiner 

improvement on the recall was consistently the highest among other methods. Although, 

ADRMine precision was generally higher than DeepHealthMiner particularly for smaller 

train set sizes, DeepHealthMiner F-measure was the highest in all experiments (Table 12, 

Table 13). Overall, we can conclude that DeepHealthMiner outperforms ADRMine 

particularly when the data is noisier and less labeled examples are available for training 

the system. Also, since DeepHealthMiner does not require feature calculation, the 

computational time is less than ADRMine. 

Twitter vs. DailyStrength Corpus 

As it is shown in Table 12, the extraction performance for DS is much higher than 

Twitter. This is partially related to the fact that there was less annotated data available for 

Twitter. In general, however, compared to DailyStrength extracting ADR information 

from Twitter poses a more challenging problem. Whereas DailyStrength is a health-

focused site that fosters discussion from patients about their personal experiences with a 

drug, Twitter is a general networking site where users may be inclined to mention a 

particular drug and its side effects for any number of reasons. Some may include personal 

experiences, but others may tweet about side effects they heard about, be sharing of a 

news report, or a sarcastic remark. These nuances may be difficult for even annotators to 
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detect as the limited length of the tweets can make it more challenging for the annotator 

to ascertain the context of the mention. For instance, in this tweet: “Hey not sleeping. 

#hotflashes #menopause #effexor”, it is difficult to determine whether the patient is 

taking the drug for their problem or if they are reporting ADRs. 
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6 CONCLUSION  

User posts in social media are noisy and informal and medical concepts are often non-

technical, descriptive, and complex to extract. This makes the concept extraction more 

challenging for social media compared to newswire, biomedical literature or clinical 

notes. This work proposed Natural language processing solutions for extraction of health-

related concepts from user-generated content in social media. The proposed methods 

have been successful in addressing most of the challenges associated with medical NER 

from social media.  

This work is the first attempt in applying deep learning for health information extraction 

from social media. We proposed ADRMine and DeepHealthMiner, two deep learning 

based methods for medical concept extraction. We also explored the effectiveness of 

several possible extraction techniques including lexicon-based, pattern-based and other 

machine learning based (support vector machine) methods.  

The lexicon-based approach requires a list of medical concepts with associated UMLS 

concept IDs. Evaluation results for ADR extraction showed that this approach could 

achieve a relatively high recall but low precision. The low precision is primarily due to 

lack of a mechanism for distinguishing the entity types (e.g. ADRs vs indication) of the 

extracted mentions. To distinguish the types, we trained a multiclass SVM to learn to 

classify the entity type of the extracted mentions. This markedly improved the extraction 

performance. 

The lexicon-based method has the advantage of providing immediate normalization of 

medical concepts since the extracted concepts were indexed along with UMLS CUIs. It 

also has the advantage of not requiring annotated training data.  However, it has the 
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disadvantage of being limited to the concepts listed in the lexicon and complex consumer 

expressions remain undetected.  

The pattern-based approach used association rule mining to identify the frequent patterns 

in expressing ADRs in user posts. It automatically learns extraction patterns from the 

labeled training sentences and then uses regular expressions to extract new mentions. 

This method has the advantage of not requiring a lexicon and enables extracting medical 

mentions that are not seen in the training data or listed in the lexicon. However, although 

the patterns extract mentions with high precision, they were limited to only very 

frequently observed items in the context, and resulted in a low recall.   

ADRMine, the proposed machine learning based sequence tagger, achieved an F-measure 

of 0.82 for DailyStrength, and 0.72 for Twitter corpus, outperforming the baseline 

techniques. The effectiveness of various classification features explored in training the 

CRF model. We found that context and embedding clusters were the most contributing 

features. We utilized a large volume of unlabeled user posts for unsupervised learning of 

the embedding clusters, which enabled similarity modeling between the tokens, and gave 

a significant rise to the recall and the overall performance.  

We explored the effectiveness of automatic feature learning for the task of health-related 

NER by introducing DeepHealthMiner, a deep learning pipeline for concept extraction. 

DeepHealthMiner employs a feedforward neural network sequence tagger for the NER 

task. For each token, the system receives a window of raw text including the target token 

and the context tokens, plus the corresponding embedding vectors. It then automatically 

learns more abstract features that are important for discriminating the possible tags.  The 

results showed that the neural network classifier performed very well and remarkably 
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outperformed the baseline CRF classifier that uses standard NER features, and it even 

outperformed ADRMine, the state-of-the-art CRF sequence tagger that uses carefully 

engineered features including the embedding cluster features. 

The deep learning sequence tagger that utilized large amounts of unlabeled data (around 

3M sentences from user posts) and automatically learned word representation features 

was the most successful solution for the task of health-related concept extraction from 

social media. The postposed solutions are domain independent and potentially can be 

applied to other information extraction tasks if a large unlabeled data set, for training the 

word embeddings, and a relatively small labeled train set is available for the supervised 

learning.  

The related resources including Twitter datasets and extraction software are made 

available at: http://diego.asu.edu/Publications/ADRMine.html. 

Conclusions and Future Work 

The proposed techniques and evaluations have shown that automatically generated word 

representations from unlabeled natural language text using deep learning have been very 

successful for the task of health information extraction from social media. When these 

word representations modeled as features in a state-of-the-art CRF classifier, the concept 

extraction performance significantly was improved compared to the baseline features. 

The system (ADRMine) outperformed several alternative extraction methods including a 

strong lexicon-based system. Interestingly, the performance even further improved, when 

a feedforward neural network that automatically learned classification features was 

employed for the task. We showed that both proposed deep learning solutions, 
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diminished the dependency on the size of the annotated data. The automatic feature 

learning  of the neural network has been very successful in capturing discriminative 

features for extraction of new and creative consumer expressions from social media. 

Considering the rapidly increasing volume of user posts, and the fact that we generally 

have a comparatively small number of annotated sentences, deep learning based 

information extraction methods are anticipated to be very useful in future. Overall, the 

findings may largely facilitate the biomedical NLP research, given the difficulty of 

generating annotated corpora and considering that unlabeled data is often abundantly 

available. Moreover, we believe that the proposed extraction techniques are generalizable 

and can easily be applied to other entity types in health or other domains. 

In this dissertation, we focused on concept extraction and only proposed preliminary 

solutions for the task of normalization that includes mapping an extracted mention to the 

corresponding concept in standard ontologies, such as UMLS and MedDRA. 

Normalization of medical concept in social media is relatively unexplored and future 

research should examine advanced machine learning and deep learning normalization 

techniques.  

This work is the first step toward the next generation of deep learning NLP systems for 

analyzing health related information from social media. There are several potentially  

interesting studies on heath information extraction that can greatly benefit from the 

proposed concept extraction methods in this work. The future research may analyze user 

posts in social media to measure patient outcomes or drug effectiveness. In addition, 

information about drug off-label use and associated ADRs can be extracted from social 

media patient posts. Also future studies may investigate the medication effectiveness or 
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possible adverse reactions in patients who were excluded from drug clinical trials such as 

pregnant women,  elderly or patients with comorbidities. Moreover, the extracted heath-

related information in social media can be summarized to be used in automated question 

answering systems.  Given that social media provides a different perspective over patient 

data that is different from clinical records, it is possible that unknown and new health-

related information be extracted from it. This can then lead to new clinical hypothesis and 

studies that can validate the findings from social media.   
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