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ABSTRACT 

When manufacturing large or complex parts, often a rough operation such as 

casting is used to create the majority of the part geometry. Due to the highly variable 

nature of the casting process, for mechanical components that require precision surfaces 

for functionality or assembly with others, some of the important features are machined to 

specification. Depending on the relative locations of as-cast to-be-machined features and 

the amount of material at each, the part may be positioned or ‘set up’ on a fixture in a 

configuration that will ensure that the pre-specified machining operations will 

successfully clean up the rough surfaces and produce a part that conforms to any assigned 

tolerances. For a particular part whose features incur excessive deviation in the casting 

process, it may be that no setup would yield an acceptable final part. The proposed Setup-

Map (S-Map) describes the positions and orientations of a part that will allow for it to be 

successfully machined, and will be able to determine if a particular part cannot be made 

to specification. 

The Setup Map is a point space in six dimensions where each of the six 

orthogonal coordinates corresponds to one of the rigid-body displacements in three 

dimensional space: three rotations and three translations. Any point within the boundaries 

of the Setup-Map (S-Map) corresponds to a small displacement of the part that satisfies 

the condition that each feature will lie within its associated tolerance zone after 

machining. The process for creating the S-Map involves the representation of constraints 

imposed by the tolerances in simple coordinate systems for each to-be-machined feature. 

Constraints are then transformed to a single coordinate system where the intersection 

reveals the common allowable ‘setup’ points. Should an intersection of the six-
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dimensional constraints exist, an optimization scheme is used to choose a single setup 

that gives the best chance for machining to be completed successfully. Should no 

intersection exist, the particular part cannot be machined to specification or must be re-

worked with weld metal added to specific locations.  
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CHAPTER 1 INTRODUCTION 

 Background and Motivation 1.1

Large, mechanical components are often made by the process of casting, or by 

welding smaller discrete pieces into one large weldment. While they are economical for 

creating intricate parts, these processes are plagued by low geometric and dimensional 

accuracy, often requiring further material removal through machining operations to create 

functional surfaces with higher dimensional accuracy. Often, the bulk of the material is 

left un-machined in its initial, as-fabricated state while only a select few surfaces are 

machined. Machined surfaces are typically ones that will mate with other parts in the 

overall assembly, or have some other functional necessity for dimensional accuracy. For 

simplicity and succinctness, I will refer to surfaces that are not machined as “as-cast” 

features. Surfaces that require machining or “cleanup” will be referred to as “to-be-

machined” or “TBM” features in their as-cast state, and “machined” or “finished” 

features after machining has occurred. 

 The problem of low dimensional accuracy in castings and weldments applies to 

size, form, position and orientation of as-cast features. For this reason, when a casting is 

“set up” or “configured” on a fixture for machining, a significant amount of adjustment 

must be undertaken to ensure that cleanup operations will create acceptable finished 

features. Typically, the machinist will start by aligning the part so that one machining 

operation will be performed successfully, then successively align others feature, 

considering the locations of pairs of TBM features one at a time, until all are lined up. 

For large parts with few TBM features, the time taken to configure may exceed that of 

the machining operations. For increasingly complex parts, the machinist must ensure that 
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all TBM features will be positioned properly with respect to the machining tool cutters 

and tool paths. For large castings, setup takes place at the machine tool so that time spent 

adjusting the part is time that the machine sits idle. 

Additionally, to account for complex parts with many TBM features, 

manufacturers may cast these features with an excess of material, called “machine stock”, 

to ensure that all machined features are created successfully. Conversely, for parts that 

are cast with insufficient machine stock or with large feature deviations, there may not be 

a set-up configuration that allows machining to successfully create a part to specification. 

For the purposes stated above, a computational tool is needed to find an 

adjustment that: (a) locates a part such that all TBM features are positioned in a manner 

that each will be cleaned up by its corresponding machining operation; (b) splits the 

difference of allowable adjustment between TBM features; and (c) satisfies any specified 

tolerances. The tool must also identify the case in which no adjustment will allow the 

creation of an acceptable part due to excessive feature variations from the initial 

fabrication process. Such a tool is not specific to castings and weldments, and as such, 

can be used for any fabrication process that requires cleanup. 

 Problem Statement 1.2

 The computational tool must describe the allowable or necessary small 

displacements of each individual TBM feature based on its actual location in order for the 

machining operation to create an acceptable finished feature. Displacements must be 

described in the six kinematic degrees of freedom of 3D space—three rotations and three 

translations—to capture all acceptable configurations of a given part. The tool must then 

find a single small displacement of the entire part body that satisfies the small 
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displacement requirements at each TBM feature and splits the difference of deviation 

allowance between TBM features. 

 Approach 1.3

The principles for implementing a computational tool that can position a casting 

for cleanup machining are: 

 The final cleaned up surfaces lie somewhere within the rough, as-cast body just 

below the surface of the machining stock. Acceptable setups will position the 

entire casting such that prescribed machining operations will trace out finished 

features that lie within tolerance zones.  

 For ensuring the complete machining of any given feature, when more material is 

present at the TBM features, the model gives more latitude for positioning the 

feature with respect to the machining operation boundaries. 

An analogous model, as shown in Figure 1.1 is that of clearance between parts in 

an assembly. Previous models have been created to determine the clearance of pin-hole 

assemblies. These models can be adapted to represent the machinability of parts with 

excess material. The goal then is to represent the machinability condition as an 

assemblability problem between then as-cast part (larger, red boundaries) and a virtual 

part corresponding to the machining operations (smaller, green boundaries). The expected 

finished feature must “fit” within the as-cast workpiece feature. 
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Figure 1.1 The Analogous Interpretation of the Machinability Problem to that of 

Assemblability Between Two Parts. 

The proposed tool exploits geometry in six dimensions corresponding to the 

components of a small displacement. Each TBM feature imposes geometric constraints to 

a 6-D space. In the case when part cleanup is feasible, the intersection of all constraints 

will yield a set of points that satisfy all constraints. From this set, one “setup point” is 

chosen. 

The following assumptions are made: 

 Deviations are on the order of tolerances which are typically one or more orders 

of magnitude smaller than feature dimensions; therefore, small displacements are 

an acceptable representation of feature deviations and part adjustments. 

 The exact machining processes used (milling, drilling, boring, etc.), the machine 

tools and tool paths are decided by the designer and machinist, and are assumed to 

be satisfactory for achieving all tolerances specified in the engineering drawing 

when the part is setup properly. 
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 One setup is used to machine all TBM features. Serial setups for specific 

machining operations are not considered, though the methods described would 

still be applicable for assessing the casting.  
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CHAPTER 2 RECONCILING T-MAPS AND DEVIATION SPACES 

In order to represent the allowable deviations of features, I will bring attention to 

two existing models, created to represent the deviations of features within their tolerance 

zones. Devised for differing reasons, the two have converged on the geometrical 

representation for various tolerances as polytopes, though their methods leave a gap in 

understanding their interrelationship. In this chapter, I will describe the relationships 

between two prominent models for describing GD&T: the Tolerance-Map (T-Map) and 

the Deviation Space. From these two models, I will illuminate the necessity for a hybrid 

model to make them consistent. 

Many similar models have been constructed to represent variations of surfaces 

that are allowable within their respective tolerance zones. Two joint papers by the various 

teams [2,3] describe the most prominent three: T-Maps©, Deviation Domains, and 

Technologically and Topologically Related Surfaces (TTRS). The two most alike are 

T-Maps and Deviation Domains. These two models differ in two major aspects: choice of 

coordinates, and their methods of construction and representation. They both represent 

convex spaces of points that correspond to a unique deviation of a feature, but out of the 

different contexts in which they were built, they each have significant advantages for 

representing feature deviations for tolerance analysis. 

 T-Maps 2.1

T-Maps were created to model the tolerance types consistent with the ASME 

Y14.5-2009 standard for GD&T ([4]). T-Maps are represented as convex shapes in an 

affine point-space. Simply, this means that the T-Map volume is represented as a 

continuous set of points in a space with similarity operations that preserve ratios of length 
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in parallel line segments (such as shearing, rotating, translating and scaling). Also, the 

space is metric and therefore Euclidean because the coordinates have consistent units. An 

operation on the space can be represented as an operation on the set of points. Each point 

in the space corresponds to a set of feature coordinates that uniquely describe the location 

of deviated feature. If the point lies within the T-Map, the feature described lies within its 

tolerance zone. 

 Construction The T-Map space is an affine space defined by areal 2.1.1

coordinates. A set of basis points (σi) correspond to basis features which are those that 

represent maximally deviated features within the tolerance zone including displaced 

features, and features that vary in size. A set of weights (λi) are used as coordinates to 

describe the location any particular feature, defined as point ‘σ’ in the affine space. The 

equation describing a point in the affine space is: 

 𝜎 = ∑𝜆𝑖𝜎𝑖, such that ∑𝜆𝑖 = 1. (2.1) 

The benefit of using areal coordinates with basis features is that they allow 

specification of constraints regardless of a choice of coordinate frame in which the 

features are represented. They are invariant, just as the distance between two points does 

not depend on a defined coordinate system. When specifying basis points, T-Maps use 

coordinates that correspond to the coefficients of the equations that define the feature e.g. 

a plane or the axis of a cylinder.  

 Feature Coordinates To define the basis points of a T-Map, the 2.1.2

coefficients of the feature are used. For example, in [5] and [6], planar features are 

described using the equation of a plane when the coordinate system Oxyz is located at the 

center of the nominal planar face with the z direction parallel to the plane normal (the 
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“canonical”, or most simple frame), as illustrated in Figure 2.1(a). The equation of the 

plane is: 

 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 + 𝑠 = 0 (2.2) 

 

 

Figure 2.1  The Tolerance Zone of a Planar Feature and its Corresponding T-Map. 

When coefficients p, q, and r are normalized so that √𝑝2 + 𝑞2 + 𝑟2 = 1, they 

represent the unitless direction cosines of the plane normal, and s is the distance from the 

plane to the origin. Because the plane will experience only small variations, the 

assumption is that r = 1, and p and q are small values. Therefore, a unique plane with 

small deviations can be specified with the triad: (p, q, s). However, for defining a metric 

space of points, all coordinates for T-Maps must have consistent dimensions. The 

dimensionless coefficients p and q are multiplied by a length corresponding to half the 
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largest size dimension of the planar feature—dy  in Figure 2.1(a). This value is known as 

the “characteristic length”. The primed notation variables (p′ and q′) have dimension 

[length], and the volume or content of the T-Map represents a quantity corresponding to 

the amount of variation allowed by the specified tolerance. The characteristic length 

scales the variables that correspond to angular deviations. 

Feature coordinates have the advantage that they directly correlate with the 

feature and describe a mathematical surface. Their disadvantage comes when comparing 

the common deviation of different surfaces. For example, The T-Map for an axis, as 

explained in chapter 4.3, may be described with four independent coefficients for 

defining the line in a canonical reference frame (L′, M′, P, Q). When comparing the 

deviation of a plane attached to a part with respect to an axis attached to the same part, 

one must first associate the line coordinates of the axis with the plane coordinates to 

describe the relative position and orientation. It is possible, but not without tedious 

manipulation of variables first. 

However, the use of feature coordinates allows the T-Map model to extend its 

reach to size variations as well. For example, in [7], when describing clearance between a 

pin and a hole, as the pin gets smaller, the T-Map indicates that there is more clearance. 

Allowing other dimensions to enter the model allows greater representation of the effects 

of standard tolerances. 

 Deviation Spaces, Clearance Spaces, and Small Displacement Coordinates 2.2

Deviation spaces and Clearance spaces are models that seek to quantify the 

amounts of deviation in assemblies and stack-ups. The deviation domain is used for the 
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same purposes as T-Maps, but it is unique in its choice of coordinates, and its 

construction. 

 Deviation Spaces and Clearance Spaces The defining feature of 2.2.1

Deviation Spaces and Clearance Spaces are the small displacement coordinates used to 

describe deviation of the feature relative to the part. Furthermore, a distinction is made in 

[8]: the deviation space represents allowable feature deviations in a tolerance-zone, while 

clearance spaces represent the possible displacements of parts that arise in assemblies 

with part clearance. 

 Small Displacement Coordinates To describe the displacements of a 2.2.2

feature within a tolerance zone, or the available freedom in an assembly pair, Deviation 

and Clearance Spaces employ the small displacement “torsor.” As explained in [9], 

torsors acknowledge that a small displacement is not dependent on location of the 

coordinate system. The torsor notation represents a mathematical interrelationship of 

features established by tolerances without explicating the intricacies of computing actual 

deviations. For this reason, torsors are useful for explaining connectivity with relative 

position vectors, but are less useful when computing actual displacements. Unlike the 

areal coordinates defined in T-Maps, the method requires the choice of a coordinate 

reference frame. In [9], the authors assign an origin (Oxyz) to the space at the time of 

displacement calculation. Once a coordinate frame is established, the displacement is 

described with up to six dimensions corresponding to three independent rotations and 

three independent translations. While the authors of [9] use other symbols to describe this 

displacement, for the sake of keep notation straight, I will call the three rotational 

components φ, ψ, θ for small rotation variables about x, y, and z axes, respectively; and 
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the three translations will be Δx, Δy, and Δz. The small displacement of a frame attached 

to a deviated feature from its nominal frame will be represented in the vector notation: 

[𝜙, 𝜓, 𝜃, Δ𝑥, Δ𝑦, Δ𝑧]𝑂  

In this notation, the pre-superscript symbol corresponds to the coordinate frame in which 

the displacement is measured. 

The small displacement coordinates have the advantage of describing the small 

relative movement of any feature in a uniform way, whether it is a plane, axis, cylinder, 

or any other feature. When a feature displaces from its nominal position, it is described 

by the rotation and translation of the perfect form feature in coordinates that are not 

dependent of the feature itself. In addition, small displacement coordinates can describe 

displacements that do not change the values of feature coordinates. For example, if a 

planar feature is shifted in a direction parallel to its surface, feature coordinates will 

indicate no change. Similarly, if a cylinder is rotated about or translated along its axis, the 

coordinates of the axis-line will not change. With small displacements, one can compare 

the displacements of planes, cylinders, and any other feature with common coordinates. 

For further discussion, see Appendix A on how feature coordinates and small 

displacement coordinates are related. An equally valid method would be to use small 

displacement screws, however the small displacement coordinates cleanly separate 

rotations and translations of a feature or body with respect to the chosen coordinate 

system. 

The disadvantage to using purely small displacement coordinates for representing 

tolerances is that it ignores the influence of other variations such as feature size. In [8], 

the author acknowledges that feature size impacts the amount of allowable variation, but 
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denies that the polytope representation can be extended to higher dimensions that 

represent other feature variables. In addition, small displacement coordinates do not have 

consistent variables. Three of the coordinates represent angles, and are therefore unitless, 

while the other three have dimension [length]. Because of this, the volume of the 

bounded space does not have the same interpretable nature as T-Maps. 

 Deviation Space Construction As best explained in [9] and [10], the 2.2.3

approach for constructing deviation spaces is to compute the linear inequalities that arise 

due to tolerance specifications. Each point on a surface will contribute a pair of half-

spaces that bound the six-dimension space in one direction. As it turns out, only those 

points that lie on the convex hull of the surface will contribute to the final shape of the 

deviation space polyhedron. A coordinate system is chosen, and all half-spaces are 

computed for all features of interest in this one reference frame. There is no guarantee of 

a completely bounded 6D space, and in most cases, the deviation space polyhedron for a 

single feature will be open ended for unconstrained directions of the surface.  

In order to handle the possibility of open-ended polyhedra, Homri et al. [11] 

suggest the use of “cap half-spaces” to create a fully consistent computational tool that 

can handle polytope operations for all possible operand polyhedra. In this method, 

polytopes are represented by the set of half-spaces and vertices at the intersections of 

half-spaces, called the “HV-description”. For tolerance analysis methods, this full 

description is necessary for computing the Minkowski sums of polytopes—a useful 

operation for tolerance stack-up calculations; however, as will be demonstrated later, 

only the half-spaces are necessary for computing intersections and optimal casting 

positions. 
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 Comparing Coordinates 2.3

It is apparent that T-Maps and Deviation Spaces are quite alike. Both arrive at a 

polytope representation of a set of points that correspond to feature deviations. However, 

neither those creating Deviation Spaces nor those creating T-Maps have previously  

shown the connection of T-Map and small displacement coordinates, not even in [2] or 

[3]. Feature coordinates, specific to the type of feature (plane, axis, etc.) can be 

transformed to small displacement coordinates, or vice versa. For example, the plane 𝜎 in 

Figure 2.1 is represented by feature coordinates (p, q, s). The projection of the unit 

normal onto the x-axis of the coordinate system gives p. Assuming small rotations, when 

the plane is rotated about the y-axis in the right-handed sense by angle ψ in radians, the 

value of p increases by the same value. 

 𝑝 = sin(𝜓) ≈ 𝜓 (2.3) 

In contrast, when the plane in Figure 2.1(a) is rotated about the x-axis by an angle 𝜙 in 

radians in the right-handed sense, the projection of the unit normal onto to the y-axis, 

labelled q, decreases by the same value. 

 𝑞 = − sin(𝜙) ≈  −𝜙 (2.4) 

And finally, when the plane is displaced in the positive z-direction, the value of s 

decreases by the same value. 

 𝑠 =  −Δ𝑧 (2.5) 

As mentioned before, T-Maps use consistent units. The final conversion is to 

multiply the p and q values by the characteristic length ℓc (dy in Figure 2.1) to give p′ and 

q′. In matrix notation, the transformation and the inverse transformation take the forms in 

Table 2.1 when there is no displacement along invariant directions (translations in the 
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plane, rotation about the normal). The polytope in Figure 2.1(b) includes both the 

coordinate systems for feature coordinates and the small displacement coordinates to 

show their correlation. The primed 𝜙′  and 𝜓′  indicate that the angular small 

displacements were scaled by a characteristic length other than 1.0 as well. 

 

Table 2.1 Relating T-Map and Small Displacement Coordinates for a Plane 

Small Displacements to Plane Coordinates Plane Coordinates to Small Displacements 

[
 𝑝′

𝑞′
𝑠

] = [
0 ℓ𝑐 0

−ℓ𝑐 0 0
0 0 −1

] [
𝜙
𝜓
𝑒𝑧

] (2.6) [
𝜙
𝜓
Δ𝑧

] = [
0 −1/ℓ𝑐 0

1/ℓ𝑐 0 0
0 0 −1

] [
𝑝′

𝑞′
𝑠

] (2.7) 

  

 A similar process can be undertaken with the T-Map for an axis. The explanation 

for how the transformations were created can be found in Appendix A. The resulting 

transformations are shown in Table 2.2 for the case when there is no displacement along 

invariant directions. Appendix A also explains the full matrix representation for 

transformation between coordinates when there may exist displacement along invariant 

directions. Table 2.2 shows the transformations for line coordinates to small 

displacements for a cylinder represented in its canonical coordinate system. 

 

Table 2.2 Relating T-Map and Small Displacement Coordinates for an Axis 

Small Displacements to Axis Coordinates Axis Coordinates to Small Displacements 

[

𝐿′
𝑀′
𝑃
𝑄

] = [

0 ℓ𝑐 0 0
−ℓ𝑐 0 0 0
0 0 0 1
0 0 −1 0

] [

𝜙
𝜓
𝑒𝑥

𝑒𝑦

] (2.8) [

𝜙
𝜓
𝑒𝑥

𝑒𝑦

] = [

0 −1/ℓ𝑐 0 0
1/ℓ𝑐 0 0 0
0 0 0 −1
0 0 1 0

] [

𝐿′
𝑀′
𝑃
𝑄

] (2.9) 

 

 Setup-Maps: A Hybrid Model for Casting Position 2.4
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Returning to the problem of positioning castings for cleanup machining, it is 

apparent that neither the T-Map nor the Deviation Space models can satisfactorily be 

used without adaptation. The proposed model will incorporate elements of both models. 

The model will map the setup configurations of a part to points in a higher-dimension 

space, and will therefore be called the Setup-Map, or S-Map. 

 Coordinate Selection A simple way to represent a unique setup of a 2.4.1

casting is by the small displacement with respect to a reference coordinate system 

corresponding to its initial fixtured position. For comparing the allowable deviations of 

TBM features of different geometry, small displacement coordinates are a unifying 

choice. In addition to small displacement coordinates, because feature sizes will influence 

the amount of allowable position variation, their contribution must be included. For these 

reasons, the six small displacement coordinates combined with any number of feature-

size coordinates will be used to describe the allowable positions of castings in the Setup-

Map (S-Map) model. It is convenient to remember that S-Maps use Small displacement 

and feature Size coordinates. 

 Setup-Map Representation There are many challenges in finding the 2.4.2

intersection of higher-dimensional objects, and many models approach the problem in 

various ways. One possibility would be to discretize the higher dimensional space. Sets 

of ‘voxels’ or ‘volumetric pixels’ could be used for performing basic set algebra 

inclusion or exclusion operations. This has the problem of resolution and oversized 

models. The number of elements needed to span the working portion of six or greater 

dimension space increases quickly as dimension increases. For this reason, a continuous 

method is preferred. A boundary representation (B-Rep)[12] is useful for intersecting 
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generally shaped objects, but requires the association of topological boundary elements 

for each higher dimension element in the model—each line is bounded by two points; 

each plane is bounded by lines; each volume is bounded by planes; each  n-

‘hyper’volume is bounded by (n-1)-‘hyper’planes; ad infinitum. Even in 3-D, we run into 

difficult problems with topology connectivity for intersecting shapes with reentrant 

angles. However, as will be shown, the S-Map will represent a convex space. As shown 

in [13], a convex space can be represented as the intersection of a set of half-spaces, 

known as a ‘polytope’. This simplifies the process and allows the use of standard 

algorithms for intersection as defined in [13]. 

In implementation, the S-Maps will use collections of half-spaces for representing 

the allowable adjustment at each feature to create a polyhedron. Intersection of multiple 

polytopes is then performed by collecting all half-spaces of each polytope and computing 

the new intersection polytope. This process will be described in more detail in chapter 4. 

The essential operation for S-Maps is the transformation between coordinate systems. 

Like T-Maps, S-Maps will be created in canonical coordinate systems, and then 

transformed to be represented in an alternate coordinate system. Points in S-Map space 

are transformed from the j-frame to the i-frame using the screw transformation described 

in equation 4.52 of [1], repeated here with small displacement coordinates: 

 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

𝑖

= [
[𝑅𝑖𝑗] ∅3×3

[𝑋][𝑅𝑖𝑗] [𝑅𝑖𝑗]
]

𝑖

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

𝑗

 where  [𝑋] = [

0 −𝑧𝑗 𝑦𝑗

𝑧𝑗 0 −𝑥𝑗

−𝑦𝑗 𝑥𝑗 0
]

𝑖

 (2.10) 



17 

and [Rij] is the 3x3 rotation matrix whose three rows are the (x, y, z) components of unit 

vectors corresponding to the x-, y- and z- coordinate axes of the j-frame represented in the 

i-frame. Each unique small displacement of the cast part is represented as a point in a 

continuous six-dimensional space. In order to represent the continuum of points, the 

constraints that define valid points are imposed as inequalities. To simplify computer 

implementation, linear inequalities will be used—the equivalent geometric interpretations 

of these entities are called ‘half-spaces’. In a higher-dimension Euclidean space, linear 

half-spaces (H) are represented as all of the points 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)  to one side of a 

‘hyper’plane and those in the hyperplane itself. I have chosen to use half-spaces that 

represent points “below” the hyper-plane, denoted the “left half-space” in [13]. 

Algebraically, this is denoted as: 

 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯+ 𝑎𝑛𝑥𝑛 + 𝑏 ≤ 0 (2.11) 

Geometrically, the vector (𝑎1, 𝑎2, … , 𝑎𝑛)  will represent the outward normal of the 

hyperplane, and 𝑏 √∑𝑎𝑖
2⁄  is the signed distance from the hyperplane to the origin of 

coordinates along the normal. For half-spaces that contain the origin of coordinates, b is 

negative. The equation for the hyperplane is normalized so that ∑𝑎𝑖
2 = 1 and b is the 

distance from the plane to the origin which will be useful for the algorithms discussed 

later in chapter 5.  

Small displacement coordinates represented in the 3-D spatial j-frame 

(𝜙, 𝜓, 𝜃, Δ𝑥, Δ𝑦, Δ𝑧)
𝑗

 describe points in a 6-D space. To be conformable with a metric 

space, and for subsequent algorithmic operations, the angular coordinates (ϕ, ψ, θ) have 

an implicit characteristic length of 1 unit (in., mm, etc.). This value will not interfere with 
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the screw transformation mathematics where the angular displacement value in radians 

will be equal to the metric value in the consistent 6-D space. Care must be taken when 

using the screw transformation—the matrix applies to angular values in radians, so scaled 

angular values must be divided by their characteristic length before transformation. The 

homogeneous representation of a point includes an extra coordinate that denotes the scale 

of the coordinate system. The homogeneous representation of a point in small 

displacement coordinates is: (𝜙, 𝜓, 𝜃, Δ𝑥, Δ𝑦, Δ𝑧, 1)
𝑗

. The equation of the half-space for 

small displacements is: 

 𝑎𝜙𝜙 + 𝑎𝜓𝜓 + 𝑎𝜃𝜃 + 𝑎Δ𝑥Δ𝑥 + 𝑎Δ𝑦Δ𝑦 + 𝑎Δ𝑧Δ𝑧 + 𝑏 ≤ 0 (2.12) 

or: 

 [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏][𝜙  𝜓  𝜃  Δ𝑥  Δ𝑦  Δ𝑧  1]𝑇 ≤ 0 (2.13) 

where (𝑎𝜙, 𝑎𝜓, 𝑎𝜃, 𝑎Δ𝑥 , 𝑎Δ𝑦, 𝑎Δ𝑧, 𝑏)  are the coefficients of the hyperplane in small 

displacement space. As derived in Appendix B, the transformation to represent the half-

space constraints for small displacements in a new 3-D spatial coordinate system is: 

 

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑖

= [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑗

[
 
 
 
 
 
 

0
[𝑅]𝑇 ∅3×3 0

0
0

[𝑅]𝑇[𝑋]𝑇 [𝑅]𝑇 0

0
0 0 0 0 0 0 1]

 
 
 
 
 
 

 

(2.14) 

Note that because this corresponds to a shearing operation it does not preserve the 

normalization of the coordinates representing each half-space, and therefore the 



19 

(𝑎𝜙, 𝑎𝜓, 𝑎𝜃, 𝑎Δ𝑥, 𝑎Δ𝑦, 𝑎Δ𝑧, 𝑏)
𝑖

 coordinates must be re-normalized after applying this 

transformation for the algorithms described in Chapter 5. 

Now that the S-Map coordinates representing small body displacements and 

feature sizes have been chosen, and the fundamental transformations have been 

described, the next step is to describe which small displacements are considered 

acceptable. The next chapter will illustrate the principles for deciding how constraints are 

chosen. The following will describe the process for building the constraints that 

ultimately intersect to create the S-Map. 
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CHAPTER 3 PRINCIPIA SETUP-MAPICA 

The Setup-Map (S-Map) for a part is a description of all the allowable or 

necessary small displacements of the cast part that achieve two basic objectives: 

1. All surfaces are to be machined completely, and 

2. Any specified tolerances will be satisfied by the machining operations when 

performed in the chosen setup. 

The S-Map for a part is generated by intersecting S-Map primitives each of which 

represents the allowable adjustments of the casting to obtain complete machining of the 

feature. For surfaces with geometric tolerances in addition to size boundaries, multiple S-

Maps may be used to describe the allowable adjustment. It is useful to maintain the 

separation of the multiple S-Map primitives for a single feature to be able to discern 

which specific S-Map primitives limit the amount of acceptable adjustment the most in 

the final S-Map. In this section, I will explain the principles for creating S-Map 

primitives that describe the limits on adjusting the entire part imposed by a single feature. 

 S-Maps for Machinability 3.1

The first criterion for qualifying and positioning castings answers the question: Is 

there enough material in the right spot to complete the machining operations? When a 

casting is disqualified, it is due to a lack of material where the intended machining 

operations will take place. The trivial solution is to always include an excessive amount 

of machining stock on all features that are to be machined. So, why not start with a large 

block of material with a size greater than the bounding box on the part, machine the 

entire part from it, and forget the work in this thesis entirely? Well, before jumping to 

such extremes, there are valuable reasons for casting a part that is as close to the final 



21 

product as possible. Including excessive machining stock is not cost effective for 

manufacturing—more material will be turned to scrap, it will drive up the time taken to 

machine the parts, reduce the working life of cutting tools, and possibly adversely affect 

the dimensional accuracy of the as-cast part during the cooling process via a buildup of 

residual stresses. This does, however raise a valuable principle for creating the S-Map 

primitive of a feature: when more material is present at a feature, there is a larger amount 

of acceptable position variation when considering the machinability for the individual 

feature. 

 Casting and Machining Process Design Expectations The first step 3.1.1

taken by the process designer is to determine where machining stock will be added, and 

where cleanup machining will take place. For the purposes of S-Maps, the extra 

information that must be included in addition to the CAD model and GD&T is this 

specification of which features are marked for finishing machining. As shown in Figure 

3.1, a hypothetical nominal part is used to determine a machining plan and the intended 

as-cast part with machining stock. It is assumed that if a perfect part were placed on the 

machining tool, the cutting tool would trace the surfaces—not cutting material, nor losing 

contact. 



22 

 

Figure 3.1 Deriving the Machining and Casting Plan from the Nominal Part 

 S-Maps for Machinability and the Analogy to Assemblability As 3.1.2

demonstrated in Figure 3.2(a), if a cast part with some deviation were to be placed on the 

fixture from Figure 3.1 with no adjustment, it is uncertain that the pre-specified 

machining operations would yield acceptable cleaned up features. If the fixture is 

adjusted, it may be possible to align the part with respect to the machining operations to 

create acceptable finished features, as shown in Figure 3.2(b). 

 

Figure 3.2 Adjusting a Part into the Machining Region 

It is made apparent by Figure 3.2 that the goal of machinability is to fit the 

machining operation boundary, represented as the red boundary line of the cross-hatched 
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zone, within the material that is present. We can think of the problem of machinability as 

one of trying to assemble an analog part corresponding to the machining operation 

boundaries within another analog part corresponding to the material boundaries. 

Reversing the boundaries as shown in Figure 3.3, we can reframe the problem in terms of 

clearance in an assembly, which is discussed in both [7] and [8]. As demonstrated in 

Figure 3.3(a), when there is enough machining stock on the part on the left, the analog 

assembly to the right has clearance between the parts, indicating that the two can be 

assembled. This is in contrast with Figure 3.3(b) where not enough material is present on 

the left part for the prescribed machining operations to complete successfully. In this 

case, the analog assembly shows part interference, indicating an infeasible assembly, and 

therefore an infeasible casting.  

 

 

Figure 3.3 Equivocating the Machinability Problem with Assemblability 
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 Minimum Material Envelope When determining the actual material 3.1.3

boundaries of a surface, points are measured on the surface of the TBM features. For real 

parts, the actual points will not lie on perfect geometrical features. Rather, they will lie on 

the imperfect surfaces generated from the casting process. In order to compare with the 

theoretically perfect nominal features used to create the tool paths, the point cloud is 

reduced to a geometric feature. While there exist a handful of fit types (least squares fit, 

one sided, constrained or unconstrained, the proper fit for TBM features should describe 

the “unrelated actual minimum material envelope, described in [4] as “a similar perfect 

feature counterpart contracted about an internal feature or expanded within an external 

feature, and not constrained to any datum reference frame.” If we perform a machining 

operation on one of the features in Figure 3.4, the operation that leaves the most material 

but completely removes any surface defects will trace the minimum material envelope. 

Therefore, any material outside of the minimum material envelope is ignored. The point 

cloud is then reduced to a single geometric feature, the minimum material envelope, that 

will be used for S-Map calculations. 
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Figure 3.4 The Unrelated Actual Minimum Material Envelope for a Plane, and Feature of 

Size 

 Building in Allowance for Fixturing and Machining In Figure 3.1, I 3.1.4

assumed that the machining operations and the setup by the machine operator would be 

performed perfectly. In real scenarios, it is not likely that either of these assumptions will 

remain valid, and it may be important to account for some amount of error in both setup 

and machining. If the measured minimum material envelope of a feature of size, such as a 

cylinder, were at its smallest limit, known as the least material condition (LMC), the 

machinist would be required to set up and execute the machining operation perfectly to 

create cleaned up features—any deviation would yield an unacceptable feature with 

defects. At the LMC size, the corresponding S-Map primitive is a single feasible point 

indicating that machining can be performed, but there is no allowance for errors. 

However, since at least some material must be removed, it is next to impossible to 

perform the operation when the feature is at its LMC size, it may be necessary to use a 

boundary further into the material for creating the S-Map. Depending on one’s tolerance 

to accept some levels of risk in the machining process, one may choose to assume that the 
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maximum material condition (MMC) size corresponds to the size at which no deviation is 

allowable. This gives the machinist some allowance for misaligning the feature with 

respect to the machine tool while still being able to create an acceptable feature; however, 

this may falsely disqualify some castings that might have been salvageable. Some other 

size may be used—perhaps one might set a fixed amount of allowance representing an 

offset from the LMC size for all features. This is entirely up to the designer’s willingness 

to accept risk for accidentally removing too much material, or not fully machining a 

surface.  

Figure 3.5 shows the tradeoff for assuming that the machining will happen at 

either (a) the LMC boundary of the tolerance zone, (b) the nominal feature, or (c) the 

MMC boundary of the tolerance zone. Three parts with different amounts of machine 

stock at the two opposite surfaces, whose minimum material envelopes of the planar 

features fit exactly at (1) the LMC tolerance-zone boundary, (2) the nominal features, (3) 

the MMC tolerance-zone boundary. Figure 3.5(a) shows the case of assuming that the 

machining operation will be performed at the LMC boundary for all features. Parts made 

at the LMC size, case (1), are accepted, though perfect, read as impossible, alignment and 

tool operation is required to completely the two surfaces on the left and right sides. This 

case accepts the most number of castings, but it will likely yield bad parts. Figure 3.5(b) 

is the case that assumes that the machining operation is performed at the nominal feature. 

This is a valid assumption, given that tool paths are intended to create features as close to 

the nominal as possible. For as-cast features measured as being equivalent to the nominal 

size, given that the tool path will trace the nominal boundaries, the part must also be 

setup perfectly to avoid defects. Therefore, I will assume that a feature must be at its 
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toleranced MMC size or greater for it to be accepted, the case shown in Figure 3.5(c). 

This gives the machinist some allowance when trying to create nominal features, with the 

trade-off that it rejects as-cast parts with features that are larger than the LMC boundary. 

 

Figure 3.5 Trade-Off for Choosing an Assumed Machining Size 

 S-Maps for Satisfying Tolerances 3.2

In qualifying castings, it would also be helpful to ensure that the finished surface 

can be made in locations such that they satisfy any tolerances specified by the designer. 

While tolerance stack-ups usually involve tedious algorithms, for S-Maps, a few 

assumptions greatly simplify the task. 
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Consider a datum feature that is to be machined, and another TBM feature that 

has tolerances that relate its position or orientation to the datum feature. Because the 

machining operation boundaries are based on the nominal features, it is assumed that the 

machining operations will satisfy the tolerances between two machined surfaces when 

only one setup is used. By positioning each feature for machinability, the tolerances are 

automatically satisfied. Figure 3.6(a) shows that, because the machining plan is derived 

from nominal CAD, tolerances between machined features are automatically satisfied. It 

is up to the designer and machinist to decide which operations to use in order to achieve 

the specified tolerances. In a similar sense, tolerances of form are not considered because 

they do not represent relative positioning of a TBM feature to a datum. The assumption is 

that form tolerances are satisfied by choice of machining operation as well. 

 

Figure 3.6 Tolerances With Respect to Machined or Un-Machined Features 

 

What about the case when a datum is not machined? When the target feature is 

machined, it is created in a nominal position with respect to the machine tool coordinate 
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system. Because tolerances are relative, the datum must be positioned in a location that 

would satisfy the tolerance. Figure 3.6(b) shows the restriction imposed on the 

adjustment of the part based on the location of the new finished feature and the as-cast 

datum. Tolerances are directional in that a tolerance value is applied to the target feature 

with respect to the datum, and not the other way around. For this reason, care must be 

taken in the representation of allowable adjustment of the datum feature. The size and 

shape of the T-Map will be derived from the shape and type (plane segment, cylinder, 

etc.) of the target feature, but the shift amount will be based on the actual location of the 

datum reference frame instead of the location of the minimum material envelope of the 

feature. The details of implementation will be discussed in the next chapter. 
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CHAPTER 4 S-MAP FORMULATION 

The approach I’ve taken for creating T-Maps and S-Maps seeks intuition through 

construction. The goal is to create and intersect S-Map primitives for multiple features in 

a single ‘global’ coordinate system. Because the global coordinate system can be 

generally placed on the part, it is not an easy choice for constructing the initial constraints 

at the features. Instead, the S-Map constraints are built in a coordinate system local to the 

TBM feature. A similar process is used for first representing the half-spaces that make up 

the local feature T-Map whereby the half-spaces are generated in coordinate systems 

related to the vertices of a feature, then transformed to the local coordinate system. The 

final defining characteristic of the S-Map is that each primitive is “shifted” or translated 

in S-Map space by amounts corresponding to the deviation of its corresponding measured 

TBM feature on the cast part from its nominal location and size. The final shifted S-Map 

primitive represents allowable displacements of the part based on the constraints imposed 

by the actual feature with respect to its corresponding machining boundary or tolerance 

zone.  

 Coordinate Systems of the Part 4.1

 The various coordinate systems used in building up the S-Map primitive will be 

denoted as such: 

Global Coordinate System (GCS): The reference frame in which features on the part are 

nominally dimensioned and positioned and in which as-cast features are measured. In 

implementation, this could be the implicit coordinate system defined in the CAD model. 

For simplicity the GCS will often coincide with the Fixture Coordinate System. 
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Fixture Coordinate System (FxCS): This reference frame represents the coordinate axes 

and ‘zero’-position of the machining tool. This will likely coincide with the GCS, though 

it is possible to identify an alternate coordinate system in which the fixture is represented. 

The FxCS is located nominally with respect to the GCS. 

Local/Feature Coordinate System (LCS): Each feature will have a coordinate system 

aligned with its defining geometry for determining allowable small displacements at the 

feature. The LCS is located nominally with respect to the GCS, and does not correspond 

to the measured feature. 

Vertex Coordinate System (VCS): points or vertices that define the geometry of a locally 

represented feature will have their own coordinate systems. The axes of these coordinate 

systems are parallel to the LCS and located by vectors that describe their relative 

positions in the LCS. Each VCS is located nominally with respect to the LCS, and thus 

they are located nominally to the GCS. 

 

Figure 4.1 A Part with the Various Coordinate Systems for Constructing S-Maps shown. 
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 Creating T-Maps and S-Maps for Planar Surfaces 4.2

T-Maps and S-Maps describe the allowable locations for perfect form features 

based on a set of boundaries that no point on the feature must cross. For T-Maps, the 

boundaries are the tolerance zone boundaries of the feature, and for S-Maps, as discussed 

in §3.1.4, the feature, or some offset to it, traced by the machining operation is the one-

sided boundary. Here, the scheme for creating the T-Map or S-Map in small displacement 

coordinates for a general planar shape is presented. 

 Representing allowable deviations for generally shaped plane 4.2.1

segments. The acceptable zone for a planar feature is represented as a single plane for S-

Maps or pair of perfect planes for T-Maps which no point of the feature must deviate 

beyond. In order to determine which combinations of rotations and translations of a plane 

are acceptable, the geometry of the planar segment must be taken into account. While [5] 

and [6] describe the method for creating T-Maps for circular and rectangular planar faces 

using basis points, the described method below will allow creation of a T-Map for a 

generally shaped plane.  

First, a few definitions: the planar feature is referred to as a planar segment, 

signifying that it is only a portion of the plane; a plane is a flat geometric entity that 

extends across Euclidean space indefinitely. The planar segment exists in the plane and is 

bounded by the outlines of the feature. The planar segment may have internal boundaries, 

or it may be a collection of disjointed planar segments. Small displacement coordinates 

are used to describe the displacement of the plane in which the planar segment lies. The 

tolerance zone boundary is given as a pair of planes parallel to the nominal plane, each 

displaced by half of the tolerance amount in the case of symmetric tolerancing. These 
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planes bound a zone that acceptable planar segments will lie within. The local coordinate 

system (LCS) of the plane is set up so that the x- and y-axes lie in the nominal plane, and 

the z-axis is the outward-pointing normal. No one location for locating the LCS is better 

than the other, but the result will exhibit more symmetry by choosing the barycenter. I 

will show how the T-Map is made to represent the tolerance zone, and then by extension 

I will show the formulation of the S-Map. 

 

Figure 4.2 The Tolerance Zone for a Hexagonal Planar Feature 

 

Since no point of the planar segment may lie outside of the tolerance zone, 

represented by the dashed lines in Figure 4.2, I will start by describing the constraint at a 

general point in the planar segment, P(x,y). While a general point is not necessarily a 

vertex of the planar segment, for sake of convention I will call the coordinate system 

established at the point the ‘VCS’ (vertex coordinate system). Vector �⃑�  describes the 

location of P(x,y) relative to the LCS, ℓxyz. In the VCS, the displacement of the point is 

only limited in the z-direction by the tolerance zone boundaries. As shown in Figure 
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4.3(a), no rotation or displacement in the x- and y-directions will move the point P 

beyond the tolerance zone, but point P provides no constraint to rotation about either the 

P
x- or 

P
y-axes. The T-Map “primitive” is a space bounded by two parallel planes 

perpendicular to the 
P
Δz coordinate of small displacement space, as depicted by the 

dashed lines in Figure 4.3(b). The two bounding half-spaces in 6-D spaces may then be 

represented by their coefficients of the 6-D hyperplane, in the notation discussed at the 

end of §2.4.2, as the vectors: 

 (𝑎𝜙, 𝑎𝜓, 𝑎𝜃 , 𝑎Δ𝑥, 𝑎Δ𝑦, 𝑎Δ𝑧 , 𝑏)
𝑃

= {
(0, 0, 0, 0, 0, 1, −

𝑡

2
) (𝑏𝑜𝑡𝑡𝑜𝑚)

(0, 0, 0, 0, 0, −1, −
𝑡

2
) (𝑡𝑜𝑝)

. (4.1) 

 

Figure 4.3 The Tolerance Zone and Primitive T-Map for a point P in the planar segment. 

 

 The next step is to transform the T-Map primitive from the VCS to the LCS. For 

this, we can use the specialized small displacement transformation and the corresponding 

half-space transformation, Equation 4.2 derived in Appendix B.3, to transform the half-

spaces of the primitive T-Map represented in the VCS in Equations 4.1 to the LCS, in 

Equations 4.3: 

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ = [±1 −
𝑡

2
] [

𝑐𝑦 −𝑐𝑥 0 0 0 1 0

0 0 0 0 0 0 1
] (4.2) 
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 (𝑎𝜙, 𝑎𝜓, 𝑎𝜃, 𝑎Δ𝑥, 𝑎Δ𝑦, 𝑎Δ𝑧, 𝑏)
ℓ

= {
(𝑐𝑦, −𝑐𝑥, 0, 0, 0, 1, −

𝑡

2
) (𝑏𝑜𝑡𝑡𝑜𝑚)

(−𝑐𝑦, 𝑐𝑥, 0, 0, 0, −1,−
𝑡

2
) (𝑡𝑜𝑝)

 (4.3) 

 This transformation between coordinates shears the T-Map space. The resulting 

half-spaces tilt, each according to the position vector �⃑�  of the VCS, as shown in the 3-D 

cross-sections of Table 4.1 

It is apparent from the transformation matrix in Equation B.3.4 that the amount of 

shearing corresponds to the magnitude of vector �⃑� . In any given direction, from an 

interior point of the plane segment, the magnitude is always the biggest for points on the 

convex hull. For this reason, only the points that correspond to vertices of the convex hull 

of the planar segment are needed to construct the local T-Map for the planar segment. 

Points that are on the convex hull of the planar segment are the limiting points because a 

rotation of the planar segment will intersect the tolerance zone at these points before any 

point further in the interior. Intersecting the six T-Map primitives for the hexagonal plane 

in Figure 4.2 gives the resulting local T-Map in Figure 4.4. For comparison, the feature 

coordinates for the plane (p, q, s) are overlain along with the small displacement 

coordinates (
ℓ
ϕ, 

ℓ
ψ, 

ℓ
Δz). The lightly shaded planes show that the primitive generated 

using the depicted location of point P in Figure 4.2 do not contribute to the final 

boundaries of the T-Map.  



36 

 

Figure 4.4 The 3-D cross-section of the T-Map for the Hexagonal Planar Segment 
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Table 4.1 Sheared T-Map Primitives 

 

 

�⃑� (𝒄𝒙, 𝒄𝒚) = (+,+) (P1 in Figure. 4.2) 𝑐 = (+,−) (P6) 

 

 

�⃑� = (−,+) (P3) 𝑐 = (−,−) (P4) 
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The 3-D shape in Figure 4.4 is a cross-section of the 6-D T-Map representing all 

of the viable small displacement coordinates for the plane-segment in Figure 4.2. To get 

an idea of what the full 6-D T-Map is like, one can imagine extruding the 3-D T-Map 

along the coordinate axes of three additional higher dimensions, just as one would 

extrude a circle out of its 2-D space to get a 3-D circular cylinder. It is triply open in 

higher dimensions, corresponding to the lack of constraint in rotation about the z-axis and 

translations along the x- and y-axes of the LCS (Figure 4.2). Finally, in order to arrive at 

the T-Map in its traditional feature coordinates, the coordinate transformation, Equation 

A.1 described in Appendix A may be applied. 

 The resulting T-Map represents the allowable small displacements of the 

nominal planar segment within the boundaries of a fixed tolerance zone. However, as 

mentioned in Chapter 3, S-Maps for machinability should describe the condition that the 

minimum material envelope of the measured part should lie in the region where the 

machine tool will remove material—a one-sided boundary. Assuming that the machining 

operation is set to cut the material along the nominal feature as measured from the 

fixturing frame, the machinist is given the rest of the tolerance zone as allowance for 

setup and machining error. Thus the S-Map is created with the intention that material 

must lie beyond the MMC boundary of the tolerance zone, as shown in Figure 4.5. The 

procedure for creating the T-Map for a planar segment is followed, but with only one 

half-space representing the allowable adjustment at each vertex of the convex hull: 

 (𝑎𝜙, 𝑎𝜓, 𝑎𝜃, 𝑎Δ𝑥, 𝑎Δ𝑦, 𝑎Δ𝑧, 𝑏)
ℓ

= (𝑐𝑦, − 𝑐𝑥, 0, 0, 0, 1,
𝑡

2
) (4.4) 
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The resulting intersection has half the number of half-spaces of the T-Map, and is open, 

as shown in Figure 4.6. This is because any adjustment that moves the measured planar 

feature further into the machining zone will still produce a completely machined feature. 

 

Figure 4.5 The S-Map Half-Space in the VCS Corresponding to the Machining Boundary 

 

 

Figure 4.6 S-Map for Machinability for the Hexagonal Planar Face Before Shifting 

 

 Shifting the S-Map Primitive The local S-Map primitive is initially 4.2.2

generated based on the location of the nominal feature in the CAD model, but the goal is 

to represent the allowable adjustments of the actual measured feature. In its unshifted 

location in small displacement space, the S-Map primitive represents the adjustments for 

a feature whose minimum material envelope corresponds with the nominal feature from 
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the CAD model. In this case, the S-Map primitive does not contain the origin of the S-

Map space, as shown in Figure 4.7(a), because in order to give the machinist some 

allowance one would have to move the TBM planar feature (and the rest of the part) 

further into the machining region so that it passes the MMC tolerance zone boundary (the 

new assumed machining boundary). The location of the minimum material boundary of 

the as-cast part is determined from point-cloud reduction, and then it is compared with 

the location of nominal feature. From this, we can determine the deviation in 

displacement coordinates that relate the position of the actual feature with respect to the 

nominal feature. This deviation corresponds to a shifting (translation) transformation in 

the S-Map space. In order to represent which displacements of the part will return the 

feature to an acceptable configuration for machining, the S-Map is then shifted in the 

opposite direction. For another part with a different deviation, as in Figure 4.7(b), notice 

that the corresponding S-Map primitive now includes the origin of the S-Map space 

because this instance of the feature lies in an acceptable configuration and does not 

require any further adjustment for complete machining. For a third instance of the part, 

such as in Figure 4.7(c), the feature of interest has an induced rotational deviation in a 

negative sense (clockwise) in addition to the translational deviation exhibited in the part 

from Figure 4.7(b). The S-Map is shifted in the positive sense because a positive rotation 

(counter-clockwise) would return the feature to an acceptable configuration.  
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Figure 4.7 Shifting the S-Map Primitive for Different Material Boundaries on Separate 

Parts 

 

To shift an S-Map primitive, the calculated shift (to account for the deviation of 

the minimum material boundary from the nominal feature) is added to each point in the 

space. In shifting half-spaces, the hyperplane normal vector does not change, only the 

distance value to the origin changed. To shift the half-spaces, Appendix B.5 demonstrates 

that for a shift vector in small displacement space, 𝛿, the new b value is calculated as: 

 𝑏 =𝑖 𝑏
𝑗

− 𝛿𝜙𝑎𝜙 − 𝛿𝜓𝑎𝜓 − 𝛿𝜃𝑎𝜃 − 𝛿Δ𝑥𝑎Δ𝑥 − 𝛿Δ𝑦𝑎Δ𝑦 − 𝛿Δ𝑧𝑎Δ𝑧 (4.5) 

 Generating T-Maps and S-Map Primitives for Cylindrical Surfaces 4.3

The process for creating T-Maps and S-Maps for a cylindrical feature follows the 

methods used in the case of the planar feature. However, unlike the planar feature, a 

cylinder is a feature of size. The variations in size of the as-cast cylindrical features will 

permit greater or lesser amounts of allowable adjustment of the casting in its fixture. 

 The T-Map and the S-Map Primitive for an Axis I will start by creating 4.3.1

the T-Map for an axis by the new method of intersecting T-Map primitives; this method 
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is an alternative to the intuitive method described in [14]. The tolerance zone for an axis 

is a narrow bounding cylinder with its diameter equal the tolerance value, as depicted in 

Figure 4.8(a). The LCS ℓxyz is oriented so that the z-axis is along the axis of the cylinder. 

The x- and y-axes point in orthogonal directions to the cylinder axis. For convention, the 

point in the center of the cylinder segment is chosen as the origin. To satisfy the 

tolerances applied, no point of the axis may lie beyond its cylindrical tolerance zone—

Figure 4.8(b) shows an acceptable location for the axis. Like the case of the plane, the 

points furthest from the origin will limit the feature the most. For the cylinder, the two 

endpoints are the only two vertices for which a VCS will be created because they make 

up the 1-D convex hull. The VCS is parallel to the LCS and located at an endpoint of the 

axis of the cylindrical feature, e.g. as shown in Figure 4.8(a). 

 

Figure 4.8 The Tolerance Zone of the Cylinder Axis 

 

An endpoint of the axis, labelled V in Figure 4.8(a) and then isolated in Figure 

4.9(a), represented in the VCS, is limited in translation in the 
V
x- and 

V
y- directions by the 
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axis tolerance zone, but it is unlimited in all rotations and in translation along the z-axis. 

Therefore, the primitive for the single vertex is the open-ended 6-D shape, shown in 

Figure 4.9(b) where the four dimensions that lack constraint (
V
ϕ, 

V
ψ, 

V
θ, 

V
Δz) are shown 

on a single axis, but are actually four separate mutually perpendicular axes in 6-D. In 

order to represent this T-Map primitive with linear half-spaces, several are encircled 

tangent to the circular boundary of the S-Map primitive as an approximation, so that their 

normal vectors only have non-zero components 
V
(𝑎𝜙, … , 𝑎Δ𝑧 ) in the 

V
Δx and 

V
Δy 

directions, as shown in Figure 4.9(c). 

 

Figure 4.9 Creating the T-Map Primitive for a Point on the Axis of a Cylinder. 

 

 While the method of using tangent half-spaces slightly over-estimates the region, 

the numerical representation is simple. For a half-space that contacts the circle at a point 

along a radial line at angle α from the Δx coordinate axis as shown in Figure 4.9(c), the 

vector representation is: 

 (𝑎𝜙, 𝑎𝜓, 𝑎𝜃 , 𝑎Δ𝑥, 𝑎Δ𝑦, 𝑎Δ𝑧, 𝑏)
𝑉

= (0, 0, 0, cos(𝛼) , sin(𝛼) , 0, −
𝑡

2
) (4.6) 
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The simplified transformation back to the LCS derived in Appendix B is: 

 

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ

= [cos(𝛼) sin(𝛼)
𝑡

2
]

𝑉

[
0 𝑐𝑧 0 1 0 0 0

−𝑐𝑧 0 0 0 1 0 0
0 0 0 0 0 0 1

] 

(4.7) 

and gives the local half-spaces defined as: 

 

(𝑎𝜙, 𝑎𝜓, 𝑎𝜃, 𝑎Δ𝑥, 𝑎Δ𝑦, 𝑎Δ𝑧, 𝑏)
ℓ

= (−𝑐𝑧 sin(𝛼) , 𝑐𝑧 cos(𝛼) , 0, cos(𝛼) , sin(𝛼) , 0, −
𝑡

2
) 

(4.8) 

This transformation shears the T-Map primitives so that the two intersect as shown in 

Figure 4.10(a)—in this case, the characteristic length is 1.0 length units. However, if a 

different characteristic length, such as for comparison with [14] where the angular 

dimensions are scaled by half the length of the cylinder, we arrive at the T-Map in Figure 

4.10(b). 

 

Figure 4.10 3-D Cross Section of the T-Map for an Axis 

 

 Now that a method is established for representing the allowable deviations of an 

axis within a cylindrical zone, the size of which corresponds to the assigned tolerance, an 
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extension is made to creating the S-Map primitive shape. The S-Map primitive will 

describe the allowable positions of the axis of the cylindrical feature within a zone 

defined by the amount of material present for machining. For an external cylinder, such 

as a pin, the amount of allowance depends on the size of the as-cast feature. As shown in 

Figure 4.11(a), a larger as-cast feature allows the fixed machining boundary to be 

positioned within the material. Once again, depending on one’s tolerance for risk, the 

machining boundary size, denoted as ‘Fm’, may be chosen as the size of the tolerance 

zone LMC or MMC boundary, or some other intermediate size—I will use the MMC size 

to give the most setup deviation allowance to the machinist. For parts with a larger 

measured feature size, denoted as ‘F’, there is a greater amount of positional variation 

allowed. We can establish an equivalent ‘tolerance’ that describes the size of the zone in 

which the axis of the cylinder may move about. For external features, the zone size is the 

equivalent tolerance, teq, calculated as: 

 𝑡𝑒𝑞 = 𝐹 − 𝐹𝑚. (4.9) 

Then, the local S-Map primitive for the machinability of a cylindrical feature is 

constructed in the same manner as the T-Map. Note that teq is negative for features that 

are smaller than the machining size. When half-spaces are intersected to create the S-Map 

primitive, no change to the computational process is necessary. The half-spaces will 

outline a circle of diameter |teq|, but all half-spaces will point outward, yielding no 

intersection. However, for the techniques described in chapter 5, it may still be valuable 

to represent this “negative” S-Map primitive. 
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Figure 4.11 The Equivalent Tolerance for the S-Map of an External Cylinder 

 

 For an internal cylinder, such as any cylindrical hole, the amount of allowable 

displacement depends on the opposite relationship between the machining boundary size 

and the actual measured size of the feature. For parts cast with a larger hole, there is less 

available adjustment at the as-cast feature, as shown in Figure 4.12(a). However, a 

noticeable difference is that when no hole is cast into the part, there is no constraint on 

where the part must be positioned with respect to the non-existent feature—feature size is 

necessarily positive, or zero. The relationship between feature size ‘F’ and equivalent 

tolerance for creating the S-Map primitive shape can be calculated as: 

 𝑡𝑒𝑞 = {
𝐹𝑚 − 𝐹

∞
   
 if   𝐹 > 0 
if   𝐹 = 0

. 
(4.10) 

Again, I will let teq take a negative value for creating the S-Map primitive shape when F 

exceeds the machined feature size, Fm.  
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Figure 4.12 The Equivalent Tolerance for the S-Map of an Internal Cylinder 

 

 Shifting the S-Map Primitive Like the S-Map primitive for the plane, the 4.3.2

S-Map primitive shape generated is then shifted by the opposite of the deviation 

measured from its nominal position. This opposite value represents the displacement of 

the entire casting that returns the minimum material envelope that represents the actual 

feature to the nominal location. 

 S-Map Primitives for Tolerances 4.4

 The S-Map primitive for achieving geometric tolerances starts as a T-Map that 

describes allowable positions of the target feature within the tolerance zone. Like the S-

Map for machinability, the T-Map is then shifted. However, instead of using the small 

displacement of the measured target feature, the T-Map is shifted by the displacement of 

the measured datum reference frame from its nominal position and orientation, again in 

the opposite direction. If the datums are not in their nominal locations, neither are the 

tolerance zones that are defined with respect to the datum reference frame. Therefore, the 
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S-Map describes adjustments that reposition the datums so that the machining operation 

will create a feature that lies within the tolerance zones established by the datum 

reference frame.  

The measured datum reference frame is constructed based on point cloud data. 

During machining and inspection, datums are typically simulated by placing the part in 

contact with a gage surface. To simulate this from the point cloud data, the datum 

reference frame is created using the maximum material envelope of the points for each 

datum separately. The final datum reference frame is constructed using the new datums, 

respecting datum precedence as described in Section 4 of ASME Y14.5-2009 [3].  

 Conclusion 4.5

 This chapter has described the standard method that will be used to create S-Map 

primitives (S-Maps for individual features) for planar and cylindrical features. The 

methods described deconstruct the process for generating the Tolerance-Map of any 

feature based on the available displacements of points in the tolerance zone. This process 

was then extended to S-Map generation by using the principles outlined in the previous 

chapter. The process described in this chapter should be extensible to features other than 

cylinders and planar faces. In this chapter, all S-Map primitives were created and shifted 

in their local coordinate systems (LCS) under the assumption that the feature data would 

be present for timely calculation. What was not explained is the method by which the 

data were brought to the LCS and how the interrelationship between features is 

maintained. The next step is to transform the S-Map primitives to be represented in the 

global coordinate system (GCS), and intersect them to find the common small 

displacements that satisfy the conditions imposed by each S-Map primitive. In the next 
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chapter, I will suggest an order of operations for creating the final S-Map for an actual 

part. Based on how the measurements are made, I will explain the necessary 

transformations between local and global coordinate systems, and avoid unnecessary 

calculation steps.  
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CHAPTER 5 S-MAP OPERATIONS 

In the previous chapter, I demonstrated the process for creating the S-Map 

primitive to describe the allowable deviation of a single feature from its nominal size and 

position when represented in its local coordinate system (LCS). Then, based on the 

displacement of the actual measured feature from the nominal, the S-Map was shifted in 

the opposite direction to represent small displacements that return the feature to its 

nominal position. At this state, the S-Map is a set of half-spaces represented in a Local 

Coordinate System (LCS) that have been shifted by a small displacement corresponding 

to the deviation of the feature represented in the LCS. However, this process may not 

correspond with the available information at the time of creating the S-Maps. In this 

chapter, I will suggest that there are equivalent methods for performing the calculations 

through to the final intersection in the Global Coordinate System (GCS). This allows the 

order of operations to be flexible so that operations are performed at the time when 

information is present. The hope is to avoid unnecessary transformations to and from 

coordinate systems. 

 Equivalent Transformation and Shift Operations: 5.1

 The LCS is useful for creating the S-Map primitive shape in the fewest necessary 

dimensions, however it was not necessary to choose the coordinate system over any 

other. The coordinate system is an artificial construct that is used to establish a center of 

rotation, a position reference frame and directions from which the values of allowable 

rotation and translation are represented. When the S-Map primitive is transformed to a 

new coordinate system, it describes the same allowable displacements with a new center 

of rotation, and different coordinate axis directions. For this reason, the S-Map shape can 
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be created in one coordinate system, transformed to a new coordinate system, and then 

shifted there. This is useful for performing operations where the data is present without 

unnecessary manipulation. 

 To illustrate this concept, it is useful to think of a model where no coordinate 

system is defined, where an actual part and nominal part are locked in relative position 

with their fixturing surfaces aligned. The S-Map primitive for a given feature is the set of 

small displacements, {s}, that represents the allowable adjustments of the part for 

complete machining of the nominal feature, {sn}, plus the shift that represents 

displacement of the part that returns the measured minimum material envelope to the 

nominal, δ. This can be represented as the formula: 

 𝑠 = 𝑠𝑛 + 𝛿 (5.1) 

The displacement (shift) for the machinability condition is calculated as the opposite of 

the displacement of measured feature, f, from its nominal or theoretical location, fn: 

 𝛿𝑚 = −(𝑓 − 𝑓𝑛) = (𝑓𝑛 − 𝑓) (5.2) 

where the minus sign between two features is meant to represent the calculation of the 

relative small displacement from the subtrahend feature to the minuend feature. 

For tolerances with respect to un-machined datums, the nominal tolerance zone of 

a feature is displaced by the small displacement that would return the datum reference 

frame created by the measured features, D, to its nominal location, Dn. D is constructed 

with the maximum material envelopes of the point clouds that represent the as-cast 

datums, and by following the datum precedence specified in the tolerance control frame, 

as explained in [4]. The displacement of the actual datum reference from its nominal 

location, δt, is shown notionally in Equation 5.3. 
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 𝛿𝑡 = −(𝐷 − 𝐷𝑛) = (𝐷𝑛 − 𝐷) (5.3) 

 The only restriction for performing the three operations listed above is that the 

features and displacements must be represented in the same coordinate system at 

calculation time. In order to transform between 3-D coordinate frames, small 

displacements are transformed with the screw transformation matrix, $$𝑖𝑗 , defined in 

equation 4.52 of [1], and features are transformed with the appropriate transformation 

that I will generally call 𝑇𝑖𝑗, which may transform position vectors, direction vectors, or 

any other feature coordinates. For a list of the transformations used, see Appendix B. 

These two transformations, in the given notation, take a small displacement or feature 

represented in the j-frame, and represents it in the i-frame. 

 The S-Map Generation Process for Implementation 5.2

It would be beneficial to perform the minimum amount of calculations that will 

represent an S-Map in the GCS in a robust manner. I mention robustness only to aid 

implementation of the shift (δ) calculations. For this calculation, it is preferred to 

represent the nominal and measured features in their LCS, where the number of invariant 

coordinates is a maximum. For our hypothetical part, I will make a temporary assumption 

that the unadjusted fixture is the body that establishes the GCS, and this is used to make 

measurements of the TBM features, and datum features on the part, giving 
G
f and 

G
D. In 

addition, the CAD model communicates the nominal features so that they are represented 

in the GCS, giving 
G
fn. 

 The goal is to calculate the S-Map primitive represented in the GCS in the fewest 

steps. The full expansion of the formulae can be found in Appendix C. With the above 
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notation, and using the pre-superscripts G, ℓ, and d to denote the GCS, TBM feature LCS 

and datum reference frame respectively, the formulae can be written as follows. 

For the machinability S-Map primitives: 

 𝑠𝐺 = $$𝐺ℓ ( 𝑠𝑛
ℓ + ( 𝑓𝑛 − 𝑇ℓ𝐺 𝑓𝐺ℓ )), (5.4) 

and for the tolerance zone S-Map primitives: 

 𝑠𝐺 = $$𝐺ℓ 𝑠𝑛
ℓ + $$𝐺𝑑( 𝐷𝑛

𝑑 − 𝑇𝑑𝐺 𝐷𝐺 ) (5.5) 

 

For machinability, the measured TBM feature in the GCS is transformed to the LCS 

where it is compared with the nominal feature to get the shift value. The S-Map primitive 

shape for the machinability is created in the LCS, the shift is applied, and then it is 

transformed to the GCS. 

For satisfying tolerances, the T-Map for the tolerance zone of the nominal target 

feature is created in the LCS and transformed to the GCS. The datum features represented 

in the GCS are transformed to the nominal datum reference frame where they are 

compared with the nominal DRF to get the local shift value. This shift is transformed 

back to the GCS where it is applied to the T-Map, giving the S-Map primitive for the 

specified tolerance. 

The pseudo-code for performing the operations on a single part with the results of 

each step is as follows: 
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START 

Measure the part in GCS, or transform the measured features to the GCS: 
G
f, 

G
D 

For each TBM feature: 

Calculate the feature transformation from the GCS to LCS: TℓG 

Calculate the screw transformation from the LCS to GCS: $$Gℓ 

Calculate the S-Map primitive for the TBM feature in the LCS: 
ℓ
sn 

Transform feature measured in GCS to LCS: 𝑓ℓ = 𝑇ℓ𝐺 𝑓𝐺  

Calculate the shift in the LCS: 𝛿 =ℓ − ( 𝑓ℓ − 𝑓𝑛
ℓ ) 

Shift the S-Map primitive in the LCS: 𝑠ℓ = 𝑠ℓ 𝑛 + 𝛿ℓ  

Transform the shifted S-Map primitive to the GCS: 𝑠𝐺 = $$𝐺ℓ 𝑠ℓ  

For each geometric tolerance applied to a TBM feature from an un-machined datum: 

Calculate the transformation from the GCS to the datum LCS: TdG 

Calculate the screw transformation from the datum LCS to the GCS: $$Gd 

Calculate the screw transformation from the target feature LCS to GCS: $$Gℓ 

Calculate the S-Map primitive shape for the target feature in the feature LCS: 
ℓ
sn 

Transform datums measured in GCS to LCS: 𝐷𝑑 = 𝑇𝑑𝐺 𝐷𝐺  

Calculate the shift in the datum LCS: 𝛿 =𝑑 − ( 𝐷𝑑 − 𝐷𝑛
𝑑 ) 

Transform the shift vector from the datum LCS to the GCS: 𝛿 =𝐺 $$𝐺𝑑 𝛿𝑑  

Transform the local S-Map primitive to the GCS: 𝑠𝑛
𝐺 = $$𝐺ℓ 𝑠𝑛

ℓ  

Shift the S-Map primitive in the GCS: 𝑠𝐺 = 𝑠𝑛
𝐺 + 𝛿𝐺  

Intersect all S-Map primitives, and find the ‘setup point’ 

END  
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Of course this is the representation of the transformations of points intended to 

show the logical order of operations. Where necessary, the half-space transformations 

may be substituted. With all S-Map primitives created and represented in the GCS, we 

may use the term “small body displacement”, or its foreshortened, SBD, to signify that 

the S-Map primitives truly describe the displacement of the part and all of its features as 

one entity. The set of common SBDs that exist in all of the S-Map primitives make up the 

S-Map. To calculate the common set of SBDs, the intersection operation is performed 

over all S-Map primitives, and from this, a single point is chosen as the ‘setup point’. 

 S-Map Primitive Intersection and Setup Point Selection 5.3

 The intersection is performed through a half-space intersection scheme 

implemented in the open-source software, Qhull [15], and its methods are described in 

chapter 7 of [13]. At this point, the S-Map is represented as a set of half-spaces, with 

likely many redundant half-space hyperplanes that will not contribute to the final 

intersection shape. Given a single point that exists in all half-spaces in the set, the 

intersection process and filtering of redundant half-spaces are performed with Qhull. 

However, finding this point is not trivial—had the point been known a priori, there 

would have been no reason to create the S-Map as this point corresponds to a viable 

machining setup. As the equations of half-spaces are formulated as feasibility regions of 

points in 6-D space, I will solve for the setup-point as an optimization problem using 

linear programming where the objective is to find a point that is furthest into the feasible 

interior of the 6-D S-Map shape. 

 Linear Programming to Find the Setup Point The setup point is the 5.3.1

single 6-D SBD point that is ultimately chosen from the S-Map shape. Because the half-
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spaces that limit the final intersected shape will represent setups that position a casting 

with at least one feature in a maximally displaced location, an algorithm to find the setup 

point should pick one that is distant from all the boundary faces of the S-Map—one that 

is well within the interior. As a diagnostic for cast parts with excessive deviation, where 

no S-Map intersection exists, there will not exist a point that lies within all half-spaces. 

The method for finding the setup-point may be framed as an optimization problem. For 

the set of points in the S-Map, I will choose a point whose minimum distance to any half-

space is maximal. In n fully bounded dimensions, this point will be located a distance dO 

away from a minimum of n+1 boundaries that define a simplex for non-degenerate cases. 

A 2-D example is depicted in Figure 5.1(a).  

 

Figure 5.1 Method for Calculating the Setup Point 

 There are a few interpretations of the method used to find the setup point. When it 

was devised, the goal was to find the point that is furthest from the hyperplanes that 

define the shell of the S-Map. In order to find this point, as depicted in Figure 5.1(b), all 

the boundaries are moved inward at equal normal rates. As the shape decreases in size, in 

general it also decreases in number of faces. In the n-dimensional case, the shape 

becomes an n+1-sided simplex (in Figure 5.1, a triangle) before collapsing into a single 

point. The mathematics and support for the method are described as follows:  
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A feasible region is the set of points that exist within all of the constraining half-

spaces. A point x(xi) is feasible if it satisfies the linear inequalities for all half-spaces that 

define the region. For an initially feasible region, to find the optimal point, equally shift 

the half-spaces in the opposite direction of the outward normal until there exists only one 

feasible point. The half-space is defined as the points that satisfy the inequality: 

 ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏 ≤ 0. (5.6) 

The absolute value of b is the distance between the origin and the bounding hyperplane of 

a half-space when √∑ 𝑎𝑖
2𝑛

𝑖=1 = 1 . For each half-space that contains the origin, b is 

negative. Therefore, the hyperplane shifts a positive distance d towards the origin as b 

increases. The shifted hyperplane has the form: 

 ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏′ ≤ 0 where 𝑏′ = 𝑏 + 𝑑. (5.7) 

Consider a feasible region defined by a set of N half-spaces that bound the space. The 

point x(xi) is feasible if it satisfies each of the j = 1, …, N half-space inequalities:  

 ∑ 𝑎𝑖𝑗𝑥𝑖
𝑛
𝑖=1 + 𝑏𝑗

′ ≤ 0, or ∑ 𝑎𝑖𝑗𝑥𝑖
𝑛
𝑖=1 + 𝑏𝑗 + 𝑑 ≤ 0. (5.8) 

Thus the optimization problem is as follows:  

 

maximize 𝑓(𝑥, 𝑑) = 𝑑 

subject to:  𝑎𝑗
𝐓𝑥 + 𝑏𝑗 + 𝑑 ≤0, 𝑗 = 1,… ,𝑁 

(5.9) 

(5.10) 

In the case of setup point selection, the variable 𝑥 ∈ 𝐑𝑛 is the 6-D vector of small 

displacement variables, (𝜙, 𝜓, 𝜃, Δ𝑥, Δ𝑦, Δ𝑧) and 𝑑 ∈ 𝐑 is the hyperplane shift distance. 

Each 𝑎𝑗 is a vector of the normalized half-space hyperplane outward normal vector 

components (𝑎𝜙, 𝑎𝜓, 𝑎𝜃, 𝑎Δ𝑥, 𝑎Δ𝑦, 𝑎Δ𝑧)
𝐺

 with a corresponding scalar 𝑏𝑗  that is the initial 

distance from the hyperplane to the origin. 
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 One can imagine the problem in the (n+1)-dimension space, as depicted in the 

3-D space of Figure 5.1(c). The point that is chosen corresponds to the apex of the 

pyramidal shape that is created. The slanted constraint surfaces all rise at an angle of 45° 

from the base because as d increases, the corresponding n-D half-spaces move inward by 

distance d along their normal vector direction. As final confirmation of their similarity, 

we can equate Figure 5.1(b) and (c). Just as a cartographer depicts mountainous regions 

in a topographic map, Figure 5.1(b) can be interpreted to show the equal-elevation 

contours of the n-dimensional mountain, shown in 3-D in Figure 5.1(c). All imaginations 

of scaling higher-dimension mountains aside, this diagram shows the promise of the 

technique. 

 There are other benefits of representing the problem as the linear programming 

model. If no feasible region exists for the initial set of half-spaces, the linear 

programming method will return a negative value for d, indicating that the half-spaces 

must be moved outward for a feasible point to emerge. The half-spaces that define the 

simplex of half-spaces that ultimately limit the optimal point may be retraced to their 

corresponding S-Map primitives to identify which features and constraints limit the 

possible SBDs most. The distance value d, may also be interpreted as a metric for the 

volume of the S-Map, and therefore the amount of displacement available.  

 However, there are a few limitations where unfavorable, though correct, results 

may arise. If the initial n-dimension space is not entirely bounded, an unusable point at 

infinity may arise. To handle this, I include artificial constraints that limit the maximum 

and minimum of the xi to values that are an order of magnitude or two greater than the 

tolerance values. In a similar issue, for a fully bounded feasible region with a pair of 
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parallel constraints that are significantly closer together than the rest, a degenerate case 

appears where there exists more than one point with the same optimal value. An easy to 

imagine example is a rectangular region in which a line segment of points are equally 

optimal. This degenerate case can take on the form of a 2-flat (a line) segment up to an 

(n-1)-flat (a hyperplane) segment of points whose minimum distance to a constraint is 

equally maximal, and therefore equally optimal. In these cases, the simplex method will 

end at a vertex of the degenerate shape. To avoid this, ‘interior point’ methods based on 

partial derivatives of the constraints are used to estimate a point that is furthest between 

all constraints. This method is beyond the scope of explanation for this thesis, but the 

open source code CLP (COIN-OR Linear Programming) [16], provides the required 

functionality. 

 Thus, the setup point is found by equalizing the distance to the closest, or most 

critical, S-Map half-spaces. 

 Half-Space Intersection The methods for performing half-space 5.3.2

intersection are fully described in detail in chapter 7 of [13] and implemented in the open 

source code Qhull [15]. Once a feasible point is identified, half-spaces are transformed 

into their dual representation as homogeneous points. The convex hull of the dual points 

is created which eliminates interior points that correspond to redundant half-spaces. Dual 

points of the convex hull are transformed back to their primal half-spaces, and the 

generated dual facets are transformed back to vertices in the primal model. This 

establishes the HV-representation (half-spaces and vertices) of the S-Map. 

 Using the Small Body Displacement for Setting up the Part 5.4
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It is handy to assume that the measurements were all made in the GCS with the 

fixturing features aligned with their respective feature simulators. However, this may not 

necessarily be a practical assumption for companies that would like to measure the part in 

one geographical location and machine it in another. First, I will describe the in-situ 

methods that may be used for making adjustments when the part is measured in the exact 

location that it will also be machined. Then, I will describe the necessary steps to 

simulate the fixturing coordinate system (FxCS) so that parts may be measured offsite, 

then placed on the machining tool bed with the adjustments already made. 

 In-situ Measurement For production facilities that have an integrated 5.4.1

tooling platform and coordinate measurement machine, it may be possible to have the 

part sitting on an adaptive fixture that can provide small adjustments. Calibration should 

first synchronize the CMM to the GCS of the machining tool. When the part is roughly 

aligned on the fixture and then measured, the S-Map will generate the SBD that will align 

the part to the GCS of the machine tool. The benefit of this method is that successive 

measurements may be made to verify part alignment. The downside is that the 

measurement time is extra time that the machining tool is sitting idle. 

 Offsite Measurement In order to perform offsite measurement, the 5.4.2

Fixturing Coordinate System (FxCS) must be recreated from the specific measured 

features that correspond to the surfaces in which the fixture will make contact with the 

part. The transformation that aligns the FxCS features is applied to all features of the part. 

Then, the features are transformed to be represented in the GCS by the nominal 

difference between the FxCS and the GCS if the two coordinate systems do not coincide. 

This is because the nominal feature information from CAD will relate all features in the 
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GCS. The S-Map is then used to calculate the setup point in the GCS. The fixture data 

must also be communicated to calculate the adjustments that will create the displacement 

of the part. For this process, there must be a standard calibration of the fixture that ‘zeros’ 

the adjustors before the adjustments are made. A gage part with special alignment 

features might be used to accomplish this. The benefit of this method is that the 

adjustments can be calculated while the part is not sitting on the tool bed. The downside 

is that no validation of part alignment can be performed before executing the machining 

operation. In addition, the accuracy of alignment depends on the accuracy of the gage 

part and the ability of the operator to calibrate the fixture. 

 

 Adjusting the As-Cast Part 5.5

The final step is to convert the SBD of the setup point into adjustments of the 

fixture. In order to automate this, one must know the geometry of the fixture, the 

directions of action of each adjustor, and the types of displacements possible with the 

types of adjustors specified. The full scope of such an endeavor is beyond that of this 

thesis, but I will highlight the important aspects for implementation and further study. 

The trivial case is the fixture where no adjustment can be made to the fixing 

features. This corresponds with a fixture that is locked in place with respect to the 

machining tool. The cast part is set down in a fixed location so that its fixing features are 

forced into contact with the surfaces, and then the machining operation is executed. This 

type of fixture is very efficient when the casting process is well-studied with most 

variations accounted for at other stages of the process. In this case, the S-Map is only 

useful as a diagnostic for feasibility. If the S-Map contains the zero-displacement SBD, 
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machining can be performed successfully. However, even the simplest fixtures that are 

commonly used in machine shops can do better. 

For example, adding the ability to translate the tool bed in three perpendicular 

directions with respect to the machine tool affords the use a subset of the S-Map 

corresponding to the condition that the values of the angular coordinates of the SBD must 

be equal to 0. The S-Map space is collapsed to a 3-D cross-section in Δx, Δy, Δz 

coordinates. For example, a typical standup milling machine with a rigid fixture attached 

to its tool bed will allow x-, y- and z- adjustment of the part with respect to the mill axis. 

By adding shims to the fixing surfaces, even small rotations are producible, and the 

restriction on the S-Map dimension may be lifted. It may even be possible to create an 

adaptive fixture for lathe turning operations. The process for this will involve aligning the 

displaced axis with the lathe’s axis of rotation, and choosing a new zero relative location 

for the axial coordinate. There are fixtures that will depend on the sizes of fixing features 

such as V-blocks for positioning cylindrical features or positioning pins for locating 

cylindrical holes. Thus, the process for automating such a process of determining the 

adjustments is very involved. 

It is worth mentioning that for every adjustment of the part with respect to the 

machine tool, there is an equivalent adjustment of the tool with respect to the part that 

will requires the opposite direction of adjustment. For example, a multi-axis CNC mill 

with a fixed tool bed may be re-zeroed to correspond with the new displaced coordinate 

system by displacing its coordinate system by the opposite of the small body 

displacement of the chosen setup point. In this case, the equivalent of the standup milling 
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machine tool bed is a 3-axis gantry-arm type CNC milling machine whose coordinate 

axes may be redefined to that of the translationally displaced coordinate system. 

 An Adaptive Fixture for Castings I would like to highlight an example 5.5.1

of an adaptive fixture that affords the use of all six displacement components of the SBD 

and that incorporates principles of standard casting practice. The assumption for such a 

fixture is that the part is moved with respect to the fixed machining operations. As 

described in [17], castings are sometimes made with location points that are used to align 

a part with a fixed coordinate system. The location points follow the “3-2-1” principle 

where the first fixturing datum plane, F, is created with three points, the second datum 

plane , G,  is defined with the perpendicular to the first plane and two points in the plane, 

and the third datum, H, is perpendicular to both the first and second datums and located 

with one point. At each of these location points, we can assign a ball-ended adjustor that 

will move in a perpendicular direction to the datum plane it helps define. 
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Figure 5.2 An Adaptive Fixture for Manipulating TBM Parts 

 

At setup, the casting is forced into contact with all six adjustors. As the adjustors 

are moved, the ball end in contact with a planar feature allows sliding, but for modeling, 

the assumption is that the points of contact on the adjustor and the part will remain fixed 

together. Because the part will only be displaced by a small amount, I will only consider 

the instantaneous motion of each contact point when a SBD is applied. This may be 

modeled using the robotics notation for a robot with parallel actuators, as described in 

chapter 8 of [1] where the input is a twist corresponding to displacements instead of 

velocities, and the outputs are the linear actuator displacements instead of speeds. The 

part will rest on location points F1, F2, F3, G1, G2, and H with nominal locations in the 

FxCS: 
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 𝐹1(𝑥, 𝑦, 𝑧) = (𝑓1𝑥, 𝑓1𝑦, 0) 

𝐹2(𝑥, 𝑦, 𝑧) = (𝑓2𝑥, 𝑓2𝑦, 0)

𝐹3(𝑥, 𝑦, 𝑧) = (𝑓3𝑥, 𝑓3𝑦, 0)

 𝐺1(𝑥, 𝑦, 𝑧) = (𝑔1𝑥 , 0, 𝑔1𝑧)

 𝐺2(𝑥, 𝑦, 𝑧) = (𝑔2𝑥 , 0, 𝑔2𝑧)

𝐻(𝑥, 𝑦, 𝑧) = (0, ℎ𝑦, ℎ𝑧)

 (5.11) 

From their locations and directions of action, the screws ($i) that define the 

actuators can be expressed in normalized Plücker line coordinates (L,M,N;P,Q,R) such 

that L
2 + M

2 + N
2 = 1. 

 

$𝐹1 = (0,0,1; 𝑓1𝑦, −𝑓1𝑥, 0) 

$𝐹2 = (0,0,1; 𝑓2𝑦 , −𝑓2𝑥, 0)

$𝐹3 = (0,0,1; 𝑓3𝑦 , −𝑓3𝑥, 0)

$𝐺1 = (0,1,0;−𝑔1𝑧 , 0, 𝑔1𝑥)

$𝐺2 = (0,1,0;−𝑔2𝑧 , 0, 𝑔2𝑥)

$𝐻  = (1,0,0; 0, ℎ𝑧 , −ℎ𝑦)

 (5.12) 

Then, in order to calculate the adjustments, we build the Jacobian matrix J represented in 

the FxCS with the screws ($i) as row vectors, re-ordered as (P,Q,R;L,M,N). 

 [J] =

[
 
 
 
 
 
 

𝑓1𝑦 −𝑓1𝑥 0 0 0 1

𝑓2𝑦 −𝑓2𝑦 0 0 0 1

𝑓3𝑦 −𝑓3𝑦 0 0 0 1

−𝑔1𝑧 0 𝑔1𝑥 0 1 0
−𝑔2𝑧 0 𝑔2𝑥 0 1 0

0 ℎ𝑧 −ℎ𝑦 1 0 0]
 
 
 
 
 
 

 (5.13) 

Then, the calculation is: 

 

[
 
 
 
 
 
Δ𝐹1
Δ𝐹2
Δ𝐹3
Δ𝐺1
Δ𝐺2
Δ𝐻 ]

 
 
 
 
 

=

[
 
 
 
 
 
 

𝑓1𝑦 −𝑓1𝑥 0 0 0 1

𝑓2𝑦 −𝑓2𝑦 0 0 0 1

𝑓3𝑦 −𝑓3𝑦 0 0 0 1

−𝑔1𝑧 0 𝑔1𝑥 0 1 0
−𝑔2𝑧 0 𝑔2𝑥 0 1 0

0 ℎ𝑧 −ℎ𝑦 1 0 0]
 
 
 
 
 
 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

 (5.14) 
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The matrix multiplication of the line coordinates as row vectors with the small 

body displacement in Equation 5.13 gives the component of the displacement of 3-D 

space along each actuator line, which is equivalent to the adjustment at each actuator. 

Thus, given a small body displacement represented in the GCS, it can be 

transformed to the FxCS and then converted into adjustment values. The benefit of 

performing the operation as such is that the fixture is defined in its local coordinate 

system, which simplifies its representation. 
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CHAPTER 6 SOFTWARE IMPLEMENTATION 

 The processes described in this thesis have been implemented in C++ class 

structures that may be used for calculation and 3D visualization. The benefit of using 

C++ is its object-oriented nature which simplifies operation through abstraction of data 

types. Two main classes were implemented in order to support operations up through 

small body displacement calculation: local geometry (‘LocalGeom’ base class), and T-

Maps (‘TMap’ base class). The optimization and intersection schemes were implemented 

with the use of open source C++ code from both Qhull [15], and COIN-OR Linear 

Programming (CLP) [16]. 

 Class Structures: 6.1

 Because intersection is the only necessary operation, only the half-space 

description of the S-Maps and T-Maps is stored in the TMap class. Half-spaces are 

represented as an array of 7 characters representing the ordered set for a 6-D half-space in 

the ‘halfspace6’ class. This class also includes a method for normalization. 

 

Table 6.1 The halfspace6 Class Structure 

Class: halfspace6 (6-d half-space) 

Variables 

coeff The ordered coefficients for halfspaces in 6-D. 

(𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏)  

Methods 

normalize Divides each coefficient by the length of the normal vector  
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 The structure of the data was designed to try to group common functionality into 

base classes from which the specific derived classes are created. The LocalGeom class is 

the base class for representing geometry in its local coordinate system (LCS) it contains 

information about the relative position vector and rotation matrix from the GCS. The 

TMap base class encapsulates the main T-Map functionality, and allows for the storage of 

half-spaces.  The LocalPlnTMap class creates either open or closed S-Maps for a plane, 

represented in its LCS. It inherits traits from both the TMap class and the PlnSeg (plane 

segment) class (which inherits the LocalGeom class) to create an object that has the T-

Map structure combined with the structure of the local geometry to perform the 

generation of a local T-Map and to transform it to the GCS. Table 6.2 and Table 6.3 show 

the relevant variables and methods in for the LocalGeom and TMap classes. The class 

structures of the derived LocalGeom and TMap classes, shown in Figure 6.1, can be 

found in Appendix D. Note that arrows in Figure 6.1 can be thought of as “inherits” or “is 

a” e.g. “LocalPlnTMap is a TMap and inherits PlnSeg.” 
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Table 6.2 The Variables and Methods of the LocalGeom Base Class 

Base Class: LocalGeom 

Variables 

R Container for the rotation matrix from the GCS to the LCS 

Cx, Cy, Cz Containers for the relative position vector from the GCS to 

the LCS 

X The cross product matrix for screw transformations 

  

Methods 

setCvect Sets the values of Cx, Cy, Cz, and populates the X matrix 

get/setRmat Gets/sets the R matrix 
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Table 6.3 The Variables and Methods of the TMap Base Class 

Base Class: TMap 

Variables 

hspacelist 

List of halfspace6 objects that make up the boundaries of 

the T-Map 

TMapQhull A Qhull object for computing and storing the intersection  

optpoint The central point of the intersection shape 

  

Methods 

addHalfspace Adds a halfspace6  to hspacelist  

addTMap 

Adds the hspacelist of another TMap object to the stored 

hspacelist 

calcInteralPoint 

Calculates the central point of the TMap and stores it in 

optpoint 

scaleAngular 

Scales the angular dimensions by a value (characteristic 

length) 

createOpt3Dsection 

Creates a 3-D cross section of the 6-D T-Map with 3 

coordinates set to their optimal value 

createZero3Dsection 

Creates a 3-D cross section of the 6-D T-Map with 3 

coordinates set to zero 
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Figure 6.1 The Class Structures for 'TMap' and 'LocalGeom' objects 
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  Computational Geometry Algorithms Implementation 6.2

The following open source programs were used in creating the intersection of S-

Maps: 

 Setup Point selection with CLP: The Computational Infrastructure for 6.2.1

Operations Research (COIN-OR) is an open-source software bank that provides open-

source code for the operations research community [16]. The goal of the project is to 

provide version control to maintain working distributions of optimization code. The 

COIN-OR Linear Programming (CLP) open-source code includes a simplex algorithm 

and a barrier method interior point method for solving linear programming. The interior 

point method was chosen for its ability to handle the degenerate cases discussed in 

chapter 5. It works by traversing the interior of the “feasible space” [18], rather than 

traversing the facets of the convex boundary shape as the simplex algorithm does. The 

algorithms implemented for setup point selection work for n-dimensional problems, as 

described in chapter 5.  

 Intersection with Qhull Qhull[15] is the open-source code that can create 6.2.2

convex hulls, half-space intersections, and other geometric algorithms with an n-

dimensional algorithm. Its developers do not recommend its use above 8-D because the 

size of the output for the convex hull for number of points n in dimension d is estimated 

at 𝑛⌊𝑑/2⌋  facets [15]. In order to perform half-space intersection, the Qhull algorithm 

dictates that an internal point must first be specified. Therefore, output from the CLP 

code feeds into the Qhull algorithm for intersection. The main use of Qhull is to trim 

redundant half-spaces—ones that do not contribute to the final intersection—from the 

final S-Map. It is also useful for visualizing 3-D cross-sections. By taking a 3-D cross 
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section of the 6-D space, Qhull can then find the 3-D vertices and facets which can be 

plotted in other software, as shown in Figure 6.2. 

 

Figure 6.2 The Qhull-Generated T-Map for an Axis in Small Displacement Coordinates 
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CHAPTER 7 TESTING THE SETUP-MAP 

To show the workings of the S-Map, the model of a hypothetical engine block 

with three in-line cylinders, shown in Figure 7.1, will be used for demonstration. Red 

surfaces in the depiction are the to-be-machined features. Seven geometric tolerances are 

specified and listed in Table 7.1 since the tolerance applied to the cylinders is replicated 

twice. The part would be placed on an adaptive fixture, such as the one shown in Figure 

5.2 from Chapter 5, and then machined. Two hypothetical parts will demonstrate the 

ability of the software to choose a setup point that will align each as necessary. In a 

limited demonstration, I will then show that when the displacement is applied to the part, 

there is a significant reduction in the amount of additional adjustment necessary. 

 

Figure 7.1 The Model and GD&T of the Engine Block Example 
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  Setting up the Problem 7.1

The six machined faces (four holes, two circular faces) will each be the source for 

an S-Map primitive for machinability. The tolerances will contribute another six S-Map 

primitives. Though there are seven specified, the perpendicularity tolerance is referenced 

to datum ‘D’, the top-face TBM feature, so per discussion in §3.2 it does not contribute to 

the final S-Map and can be excluded. Therefore, six T-Maps for the six contributing 

tolerances and six S-Maps for the six TBM faces are to be created. The tolerance data is 

shown in Table 7.1, as extracted from the CAD model, shown in Figure 7.1. 

Table 7.1 

Relevant Tolerances Specified on the In-Line Engine Example 

Tolerance Type Value 

Target 

Feature 

Primary 

Datum 

Secondary 

Datum 

Tertiary 

Datum 

Profile 0.02 Top Face A B -- 

Profile 0.02 Shaft Face A B C 

Position 0.07 Ⓛ 
3x Cylinder 

Bores 

A B C 

Position 0.05 Ⓜ Shaft Hole A B C 

Perpendicularity 0.01 

3× Cylinder 

Bores 

D -- -- 
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The machinability S-Map primitives are created based on the amount of material 

at each feature. The machining stock and sizes used for the example are listed in Table 

7.2. The teq for the cylinders are calculated as the MMC size minus the actual size.  

Table 7.2  

Machining Stock for TBM Features on the Engine Block Example 

TBM Feature As-Cast Size/Machining Stock 

Top Face +0.015” stock  added to shift 

Shaft Face +0.015” stock  added to shift 

3x Cylinder Bores ⌀4.90”  teq = 0.09” 

Shaft Hole ⌀1.90”  teq = 0.09” 

 

The GCS is defined by datums A (the mid-plane of the width of the part), B (the 

bottom face) and C (the single location point on the shaft side). The FxCS axes are 

nominally parallel to those of the GCS, with the fixing points of datum F replacing A as 

the primary datum. The location points F1, F2, F3 and C are raised by 0.1” from their 

respective rectangular planar surfaces on which they are positioned, while the B1 and B2 

locations are recessed by 0.1”. 

The LCS locations are obtained in the GCS, and summarized in Table 7.3. The 

vectors from the GCS to the LCS are calculated using the recessed locations of datum 

targets B1 and B2, and the raised location of datum target C. As an example, for the three 

parallel piston cylinders, each have a depth of 5” so their LCS locations at the center of 

the cylinders are 2.5” below the top face; with the recessed datum targets B1 and B2, the 
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actual distance from datum B to the top face is 11.9”; therefore, the y-coordinates of the 

cylinder bore LCSs are all 11.9” - 2.5” = 9.4” from the GCS, as shown in Table 7.3.  

There are two necessary rotation matrices: one for the LCS of the top face and the 

three cylinder bores, and one for the LCS of the side shaft face and shaft hole. 

𝑅𝐺ℓ,𝑡𝑜𝑝 = [
0 1 0
0 0 1
1 0 0

] ,   𝑅𝐺ℓ,𝑠𝑖𝑑𝑒 = [
0 0 −1
0 1 0
1 0 0

] 

 

Table 7.3 

LCS to GCS Information for the Engine Block Example 

TBM Feature �⃑� (𝒄𝒙, 𝒄𝒚, 𝒄𝒛) Global to Local Vector Rotation Matrix 

Top Face (10.1, 11.9, 0) Rtop 

Cylinder Bore 1 (3.85, 9.4, 0) Rtop 

Cylinder Bore 2 (10.1, 9.4, 0) Rtop 

Cylinder Bore 3 (16.35, 9.4, 0) Rtop 

Shaft Face (0, 3.9, 0) Rside 

Shaft Hole (0.55, 3.9, 0) Rside 

FxCS* (0, 0, -4.1) Identity 

*defined for conversion of the setup point to fixture adjustments  

 The fixture is defined as in Chapter 5, with location datums F, B, and C. The 

points where the fixture will make contact, as represented in the FxCS are listed in Table 

7.4.  
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Table 7.4 

Definition of the Location Points in the FxCS 

F1(x,y,z) F2(x,y,z) F3(x,y,z) B1(x,y,z) B2(x,y,z) C(x,y,z) 

(18, 10, 0) (2, 10, 0) (10, 1.5, 0) (0.5, 0, 4.1) (19.5, 0, 4.1) (0, 11, 4.1) 

  

  The Six T-Maps for the Specified Tolerances 7.2

For the example part in Figure 7.1, there is only one critical datum reference 

frame specified from which all tolerances are referenced. As an assumption for 

simplification, for all test cases, the unmachined datum features are considered to have 

been made with minimal deviation from the nominal geometry, while the to-be-machined 

features will have considerable deviation. This means that the FxCS (datums F, B, and C) 

and the GCS (datums A, B, and C) are located nominally relative to one another. Because 

there is no deviation of the datums, there will be no shift applied to the T-Maps for the 

six tolerances for any of the test cases. Therefore the T-Maps intersection can be made 

once and used for all test cases.  

Tolerance values were chosen assuming that the features would be made to their 

MMC sizes. For the 0.05” position tolerance on shaft hole, with the MMC material 

modifier, no bonus tolerance is assigned, and therefore the tolerance value for creating 

the T-Map is 0.05”. For the three cylindrical bores, the 0.07” position tolerance is 

specified with the LMC material modifier. Assuming that the holes are made at their 

MMC condition (4.99”), the bonus tolerance is 5.01” – 4.99” = 0.02”, so the combined 

tolerance value for creating the T-Map is 0.09”. 
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The resulting intersection in Figure 7.2 describes the allowable positions of the 

casting that are permitted by the locations of the datums. Adjustment beyond the 

boundaries of the solid red shape will yield features that do not meet tolerances with 

respect to the datums after machining. Figure 7.2 shows the Δx, Δy, Δz cross section (ϕ, 

ψ, θ = 0) being limited by the S-Map Primitives from the two profile tolerances and the 

position tolerance of the shaft hole. 

 

 

Figure 7.2 A 3-D Cross Section of the Intersection of the Tolerance Constraints for the 

Engine Block Example 
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 Test Cases 7.3

The following test cases will be demonstrated: (A) A part with no translation or 

rotation deviation of any feature, (b) simple translational deviations of features that 

predictably cause infeasibility. (c) A general case to test convergence of the algorithms. 

 Test Case (A) Test Case (A) is the part with no translation or rotation 7.3.1

deviations of the TBM features from their nominal locations. For this part, there should 

be little to no suggested adjustment on the order of the tolerances specified. As shown in 

Figure 7.3, in the translation dimensions, the resulting S-Map is centered on the origin. 

The constraints for machinability do not limit the final intersection shape. The shape of 

the S-Map intersection for machinability is two right cylinders intersecting one another. 

This constraint arises is from the cylinder bores and the shaft hole. Each cylinder has the 

same size due to the choice of values (teq is the same).  

The values for adjustment from the first case are listed in Table 7.5. The values 

are an order of magnitude smaller than the smallest tolerance value (0.02”), though not as 

small as first expected. The selected optimal point is verifiably inside the intersection 

shape and is therefore a good choice for positioning the part for machining. 
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Table 7.5 Results from Test Case (A) 

Small Displacement Coordinates 

𝝓 (rad/deg) 𝜓 (rad/deg) 𝜃 (rad/deg) Δ𝑥 (inches) Δ𝑦 (inches) Δ𝑧 (inches) 

-3.3E-9 -0.0004/0.02° -0.0001/0.005° 0.0006 0.0023 -0.0025 

Adjustments (inches) 

F1 F2 F3 B1 B2 C 

0.0045 -0.0017 0.0013 0.0022 0.0045 0.0003 

 

 

Figure 7.3 The Intersection of the Tolerance Constraints with the Machining Constraints 

for Test Case (A) 
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 Test Case (B) The second test will try to get a close to infeasible result by 7.3.2

first guessing the deviation of an object that will create a predictable value. The shaft hole 

has a 0.05” position tolerance (assigned at MMC, which is the assumed machining size). 

In the red intersection shape shown in Figure 7.2, the constraint on the curved ends of the 

long, rectangular prism shape are due to the shaft hole tolerance. The equivalent tolerance 

of the S-Map primitive for the shaft hole is 0.09” from Table 7.2. The maximum 

deviation of the minimum material envelope in the Δz direction is obtained by combining 

these to tolerances and dividing by two to get the allowable radial displacement of 

(0.05”+0.09”)/2 = 0.07 inches. Because small displacements are already limited by the 

T-Map intersection, the predicted value for Δz should be no greater than 0.05”/2 = 0.025” 

if no angular deviation occurs. The schematic of the test is shown in Figure 7.4 where the 

small red arrow shows the direction of adjustment that would bring the center of the 

4.90” as-cast red, dashed hole to the intended center of the 4.99” black hole where it 

could be completely machined and fit within is tolerance zone with respect to the datum 

reference frame. 

 

Figure 7.4 The Schematic of Test Case B 
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The part was infeasible with an input shift of -0.070”. The shift was reduced 

to -0.069”, and rerun. The part was feasible at this value. As shown in Table 7.6, the Δz 

value exceeded the predicted value; however a small positive ϕ rotation has occurred in 

addition. Figure 7.5 shows that the intersection that occurred is quite small, as predicted.  

 

Table 7.6 

Results from Test Case (B) 

Small Displacement Coordinates 

𝝓 (rad/deg) 𝜓 (rad/deg) 𝜃 (rad/deg) Δ𝑥 (inches) Δ𝑦 (inches) Δ𝑧 (inches) 

0.00067/0.038° 9.6E-6 0.00017/0.01° 0.0025 -0.0013 -0.027 

Adjustments (inches) 

F1 F2 F3 B1 B2 C 

-0.0206 -0.0205 -0.0262 -0.0039 -0.0074 0.0006 

 

 

Figure 7.5 The Intersection from Test Case (B) 
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 Test Case (C) The final test case attempts to show convergence of the 7.3.3

optimization algorithm, described in §5.3.1. For the test case C, the S-Map primitives 

were each given an initial arbitrary 6-D shift not in excess of 0.02”—the shift values are 

reported in Table E.1 in Appendix E. The setup point was then calculated. The entire S-

Map was then shifted in the opposite direction to locate the calculated setup point on the 

origin of the coordinate system to simulate an adjustment of the part to the desired 

location for machining. This process of calculating the setup point using the optimization 

algorithm and shifting was then repeated for a total of five iterations. The goal was to see 

if the S-Map point selection algorithm returned the same point each time within an 

acceptable amount of computational error. For graphing the results, the angular variables 

were multiplied by a characteristic length of 10 inches, or half the longest dimension on 

the part; however, a characteristic length of 1.0 inch was used during computation and 

intersection. Figure 7.6 shows that small displacement values that were initially larger on 

the first setup point calculation (ϕ, ψ, and Δz) seemed to converge to zero and require no 

further adjustment on subsequent calculations. The three other variables seemed to 

oscillate about the zero mark. This may indicate that the part represented by this S-Map is 

loosely constrained in the θ′-, Δx-, and Δy-directions. The successive setup point 

coordinates are shown in Table E.2 in Appendix E. Tvo views of the 3-D ϕ, ψ, and Δz 

cross section of the first S-Map intersection with coordinate values θ′ = -0.000012E-5”, 

Δx = 0.00061”, Δy = 0.0000243” are shown in two views in Figure 7.7. 
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Figure 7.6 Shifting the S-Map Successively to Analyze Convergence of the Optimization 

Algorithm 

 

Figure 7.7 Cross Sections of the S-Map for Test Case (C)  
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

This thesis discusses a computational tool for use by manufacturers to aid in the 

process of setting up large and complex parts for machining. The hope is that such a tool 

will allow manufacturers of smaller production volume parts to save money by reducing 

setup times and the amount of parts scrapped. The contributions of this research and 

future works are discussed in the following sections. 

 Original Contributions 8.1

The theories for making S-Maps in this thesis formalize the definitions of the 

constraints for positioning each as-fabricated part with respect to its intended location. 

Ultimately, S-Maps solve a non-trivial extension of the problem of assemblability. This 

was done through an amalgamation of vector-space models for tolerances (T-Maps and 

Deviation Spaces), computer-aided geometry tools, optimization techniques, and the 

kinematics of parallel-actuated robotics. By outlining the process, and creating the 

algorithmic and computational foundation for solving this type of problem, I have 

demonstrated the generalized method for approaching this problem. 

The basis of the solution is to find a space of allowable adjustments, and choose 

one that splits the difference between the constraints. This is not so far from what a 

skilled operator does in practice; however, instead of only being able to balance the 

constraints of a few features at a time, a computer can consider them all at once. The 

process for S-Map generation seeks an intuitive approach by considering the allowance of 

each feature, one at a time, and then combining them to represent the allowance of the 

entire part. 
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Initial tests of the computational tool seem to satisfy intuition about how it should 

behave in simple cases. It is foreseeable that the tool will be able to exceed the abilities of 

a skilled person in both time and accuracy if further developed. 

 Future Work 8.2

While the framework for representing an S-Map of any type has been developed, 

there are many implementation steps that must be done to make a seamless tool. Simple 

future tasks involve creating the algorithms for specifying the S-Maps of other types of 

features and tolerances that may arise. This will involve finding the equivalence of the 

plentiful T-Map types in small displacement coordinates, and then implementing the 

methods as functions for generating the set of half-spaces. A slightly more challenging 

variation to this task is to implement the constraints of tolerances with respect to 

incomplete sets of datums, where more degrees of freedom may exist, but this too falls 

under the simple task of determining which half-spaces to create. 

More challenging issues such as data-transfer must be solved to create an 

automated tool. While there are data formats that are intended to communicate standard 

part and tolerance information, there are very few standard formats. Incorporating more 

explicit models such as ASU’s Constraint Tolerance and Feature (CTF) Graph would be 

useful for the task of automating the S-Map generation process. 

And finally, an open algorithmic problem is how to model the S-Maps for a part 

that is to be machined in multiple stages with multiple setups. It may be that the solution 

is not far from what has already been done, but it will require additional thinkering. 
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APPENDIX A  

NUANCES IN CONVERTING T-MAPS TO SMALL DISPLACEMENT 

COORDINATES  
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The transformation of T-Map coordinates to small displacement coordinates 

follows the process: perform a small displacement, and note the effects on the T-Map 

coordinates. As explained in chapter 2, in Figure A.1, by rotating the plane about the y-

axis in the positive-counterclockwise convention, the value of p increases, and 

conversely, rotating about the x-axis results in a decrease in q. Also, Δz is the opposite of 

s. There are three kinematic degrees of freedom that will not change the equation of the 

plane geometry, and will therefore not change the values of p, q, r, and s. In the canonical 

coordinate system, these correspond to the Δx, Δy, and θ small displacements. These 

directions are also unconstrained by the tolerance-zone in Figure A.1. 

 

Figure A.1 Projections of the Unit Normal of a Rotated Plane 
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 Therefore, there is a one way mapping of small-displacements to T-Map 

coordinates. The matrix multiplication in Equation A.1 assumes that the plane is oriented 

with the z-axis as its normal, and the nominal plane is at the center of the tolerance zone: 

 [
𝑝
𝑞
𝑠
] = [

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1

]

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

 (A.1) 

 The small displacement coordinate to T-Map (feature) coordinate transformation 

is therefore a surjective function, but not an injective one—there is a many-to-one 

relationship. The reverse is true of the other operation. The following transformation in 

Equation A.2 is injective but not surjective because a one-to-many operation is needed in 

order to return the small displacements back to their original plentiful state.  

 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

=

[
 
 
 
 
 
0 1 0

−1 0 0
0 0 0
0 0 0
0 0 0
0 0 −1]

 
 
 
 
 

[
𝑝
𝑞
𝑠
] (A.2) 

In order to compensate for this, the unconstrained degrees of freedom that are 

represented in small displacements must be accounted for. When the T-Map coordinates 

are transformed into small displacement coordinates, they must be “extruded” in the 

unconstrained dimensions to values that are larger than the tolerances. The extrusion 

reverses the collapsing of a 6-D space to a 3-D one that occurs in Equation A.1. 

 This is true for the axis as well. The unconstrained displacements for an axis 

representing a cylinder in its “canonical” coordinate system are Δz and θ, as can be 

observed in Figure A.2(b). An axis for a cylinder is unlimited in z-translations and z-
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rotations within its cylindrical tolerance zone. T-Maps use the Plücker line coordinates 

[1] to represent displaced axes. As shown in Figure A.2(c), L and M represent the 

direction of the axis. They behave like p and q from the T-Map for the plane. P and Q 

represent the components of the moment created about the origin when a unit force acts 

along the line. For the intents of this paper, P represents the displacement of the line 

along the y-direction, and Q is the opposite of the displacement in the x-direction, as 

shown in Figure A.2(b). 

 

Figure A.2 The Tolerance Zone for an Axis 

 



94 

The matrix representation of the transformation is similar to that of the plane case. 

For the T-Maps of lines, the θ and Δz small displacements are collapsed by the 

transformation in Equation A.3, reducing the dimension of the space from six to four. 

 [

𝐿
𝑀
𝑃
𝑄

] = [

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0

]

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

 (A.3) 

Because of this, the inverse transformation (Equation A.4) is not complete. 

 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

=

[
 
 
 
 
 
0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0
0 0 0 0]

 
 
 
 
 

[

𝐿
𝑀
𝑃
𝑄

] (A.4) 

 In order to restore the small displacements model, one can perform the 

“extrusion” operation in the θ and Δz directions to reverse the collapsing that occurs in 

Equation A.3.  
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APPENDIX B  

TRANSFORMATIONS 
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B.1 Transforming Geometric Entities 

Given the 3-by-3 rotation matrix 𝑅𝑖𝑗  and translation vector 𝑐 (𝑐𝑥, 𝑐𝑦, 𝑐𝑧)  that 

represents the location and orientation of the j-frame in the i-frame, using the passive 

description from [1], the transformations of various entities are: 

Free Vector 𝐯(𝑣𝑥, 𝑣𝑦, 𝑣𝑧): 

 𝐯𝑖 = [𝑅𝑖𝑗] [

𝑣𝑥

𝑣𝑦

𝑣𝑧

]

𝑗

 (B.1.1) 

Homogeneous Point 𝐩(𝑥, 𝑦, 𝑧, 1): 

 𝐩𝑖 =

[
 
 
 

𝑐𝑥

[𝑅] 𝑐𝑦

𝑐𝑧

0 0 0 1 ]
 
 
 

[

𝑥
𝑦
𝑧
1

]

𝑗

⇒ 𝐩𝑖 = [𝑇𝑖𝑗] 𝐩
𝑗

 (B.1.2) 

Lines, Small Displacements, Screws $(𝐿,𝑀,𝑁; 𝑃∗, 𝑄∗, 𝑅∗) (Eq. 4.52 in [1]) 

 

[
 
 
 
 
 
𝐿
𝑀
𝑁
𝑃∗

𝑄∗

𝑅∗]
 
 
 
 
 

𝑖

= [
[𝑅𝑖𝑗] [03]

[𝑋][𝑅𝑖𝑗] [𝑅𝑖𝑗]
]

𝑖

[
 
 
 
 
 
𝐿
𝑀
𝑁
𝑃∗

𝑄∗

𝑅∗]
 
 
 
 
 

𝑗

 𝑤ℎ𝑒𝑟𝑒 [𝑋] = [

0 −𝑐𝑧 𝑐𝑦

𝑐𝑧 0 −𝑐𝑥

−𝑐𝑦 𝑐𝑥 0
] 

$
𝑖

= $$𝑖𝑗 $
𝑗

 

(B.1.3) 

Its inverse is a vector in the i-frame that locates origin Oj relative to Oi: 

 

[
 
 
 
 
 
𝐿
𝑀
𝑁
𝑃∗

𝑄∗

𝑅∗]
 
 
 
 
 

𝑗

= [
[𝑅]T [03]

[[𝑋][𝑅]]
T

[𝑅]T
]

[
 
 
 
 
 
𝐿
𝑀
𝑁
𝑃∗

𝑄∗

𝑅∗]
 
 
 
 
 

𝑖

⟹ $
𝑗

= [$$𝑖𝑗]
−1

$
𝑖

 (B.1.4) 
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B.2 Deriving the Transformation for Half-Spaces 

While the small displacement transformation in Appendix B.1 is useful for 

transforming points in the S-Map, It is necessary to transform the half-spaces, or the 

coefficients of the underlying hyperplane. The transformation follows from the 

transformation of planes and points in 3D. The equation of a 3-D plane is the dot product 

of the coefficients with a homogenous point. If T transforms a point, then T 
-1

 transforms 

a plane when pre-multiplied by the coefficients of the plane. In 3-D, this is verifiable 

from Eq. 4.49 from [1]. 

 [𝑝 𝑞 𝑟 𝑠][𝑇]−1[𝑇][𝑥 𝑦 𝑧 1]T = 𝑑 (B.2.1) 

Given the normalized homogeneous coordinates of a hyperplane and a 

homogenous point in the 6-D small displacement space, the equation for the hyperplane 

is: 

 [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏][𝜙 𝜓 𝜃 Δ𝑥 Δ𝑦 Δ𝑧 1]𝑇 = 0 (B.2.2) 

where 𝑏/√∑𝑎𝑖
2 is the signed distance along the hyperplane normal vector to the origin 

and corresponds to s in 3-D (Equation B.2.1). 

Considering a small displacement as a point in 6-D space and making the 

appropriate changes to the homogeneous representation, as discussed in Chapter 3.5 of 

[1], gives: 
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 [$$] =

[
 
 
 
 
 
 

0
[𝑅] [03] 0

0
0

[𝑋][𝑅] [𝑅] 0

0
0 0 0 0 0 0 1]

 
 
 
 
 
 

 (B.2.3) 

Then, we apply the transformation to points, and the inverse for the hyperplane: 

 [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏][$$𝑖𝑗]
−1

[$$𝑖𝑗][𝜙 𝜓 𝜃 Δ𝑥 Δ𝑦 Δ𝑧 1]𝑇 = 0 (B.2.4) 

Giving the transformation for the hyperplane of a half-space as: 

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑖 =

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑗

[
 
 
 
 
 
 
 

0
[𝑅]T [03] 0

0
0

[[𝑋][𝑅]]
T

[𝑅]T 0

0
0 0 0 0 0 0 1]

 
 
 
 
 
 
 

. 

(B.2.5) 
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B.3 Specialization of the Screw Transformation for Plane Primitives 

 

Figure B.1 The Tolerance Zone for a General Plane (repeated from Chapter 4.2) 

 

For T-Map primitives of the plane, such as the hexagonal plane in Figure B.1, the 

coordinate axes of the LCS and VCS are parallel, and the VCS is displaced by vector 𝑐  

with non-zero x- and y-components. The transformation for small displacement points in 

the T-Map primitive is specialized to: 

 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

ℓ

=

[
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 𝑐𝑦 1 0 0

0 0 −𝑐𝑥 0 1 0
−𝑐𝑦 𝑐𝑥 0 0 0 1]

 
 
 
 
 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

𝑃

 (B.3.1) 

And, for half-spaces, using equation B.2.3, the transformation is: 
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[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ

= [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑃

[
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 −𝑐𝑦 1 0 0 0

0 0 𝑐𝑥 0 1 0 0
𝑐𝑦 −𝑐𝑥 0 0 0 1 0

0 0 0 0 0 0 1]
 
 
 
 
 
 

 

(B.3.2) 

All half-spaces in the T-Map primitives for points in the plane have their sole 

vector component in the Δz-direction: 

 [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑃 = [0 0 0 0 0 ±1
𝑡

2
] (B.3.3) 

Multiplying through by the zeros in the hyperplane row vector, the operation reduces to: 

 [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ = [±1
𝑡

2
] [

𝑐𝑦 −𝑐𝑥 0 0 0 1 0

0 0 0 0 0 0 1
] (B.3.4) 

And finally, the half-spaces for the primitive T-Map for the in the local feature frame, ℓ, 

are: 

 [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ = [±𝑐𝑦 ∓𝑐𝑥 0 0 0 ±1
𝑡

2
] (B.3.4) 
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B.4 Specialization of the Transformation For Cylinder Primitives 

 

Figure B.3 The Tolerance Zone for the Axis of a Cylinder (repeated from Figure 4.8) 

  

For T-Map primitives of the cylinder, the coordinate axes of the LCS and VCS 

are parallel, and the VCS is displaced by vector 𝑐  with only a non-zero z-component. The 

transformation for small displacement points in the T-Map for each of the limiting circles 

of the tolerance zone is thus specialized to: 

 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

ℓ

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −𝑐𝑧 0 1 0 0
𝑐𝑧 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

[
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧]

 
 
 
 
 

𝑃

 (B.4.1) 

For the linear half-spaces that encircle the T-Map primitive boundaries, using equation 

B.2.3, the transformation is: 
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[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ

= [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑉

[
 
 
 
 
 
 

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 𝑐𝑧 0 1 0 0 0

−𝑐𝑧 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 

 

(B.4.2) 

The linear half-spaces that encircle the boundaries of the T-Map primitives for the 

ends, each with a unique angle α that positions the tangent hyperplane around the 

boundary of the primitive (Figure 4.9(c)), will have the form: 

 [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑉 = [0 0 0 cos(𝛼) sin(𝛼) 0
𝑡

2
] (B.4.3) 

Multiplying through by the zeros in the hyperplane row vector, the operation reduces to: 

 

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ

= [cos(𝛼) sin(𝛼)
𝑡

2
]

𝑉

[
0 𝑐𝑧 0 1 0 0 0

−𝑐𝑧 0 0 0 1 0 0
0 0 0 0 0 0 1

] 

(B.4.5) 

And finally, the half-spaces for the primitive T-Map in the LCS, ℓxyz, are: 

 

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]ℓ

= [−cz sin(𝛼) 𝑐𝑧 cos(𝛼) 0 cos(𝛼) sin(𝛼) 0 𝑏] 

(B.4.6) 

B.5 Shifting Half-Spaces 

Shifting the S-Map is performed by affine transformation of points: 
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[
 
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧
1 ]

 
 
 
 
 
 

𝑖

=

[
 
 
 
 
 
 
1 0 0 0 0 0 𝛿𝜙
0 1 0 0 0 0 𝛿𝜓
0 0 1 0 0 0 𝛿𝜃
0 0 0 1 0 0 𝛿Δ𝑥
0 0 0 0 1 0 𝛿Δ𝑦
0 0 0 0 0 1 𝛿Δ𝑧
0 0 0 0 0 0 1 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝜙
𝜓
𝜃
Δ𝑥
Δ𝑦
Δ𝑧
1 ]

 
 
 
 
 
 

𝑗

 (B.5.1) 

Or for half-spaces: 

 

[𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑖

= [𝑎𝜙 𝑎𝜓 𝑎𝜃 𝑎Δ𝑥 𝑎Δ𝑦 𝑎Δ𝑧 𝑏]𝑗

[
 
 
 
 
 
 
 
1 0 0 0 0 0 −𝛿𝜙

0 1 0 0 0 0 −𝛿𝜓

0 0 1 0 0 0 −𝛿𝜃

0 0 0 1 0 0 −𝛿Δ𝑥

0 0 0 0 1 0 −𝛿Δ𝑦

0 0 0 0 0 1 −𝛿Δ𝑧

0 0 0 0 0 0 1 ]
 
 
 
 
 
 
 

 

(B.5.2) 

Multiplying through, and simplifying: 

 {
𝑏 =𝑖 𝑏

𝑗
− 𝛿𝜙𝑎𝜙 − 𝛿𝜓𝑎𝜓 − 𝛿𝜃𝑎𝜃 − 𝛿Δ𝑥𝑎Δ𝑥 − 𝛿Δ𝑦𝑎Δ𝑦 − 𝛿Δ𝑧𝑎Δ𝑧

𝑎𝑥
𝑖 = 𝑎𝑥

𝑗
 (B.5.3) 
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APPENDIX C 

ORDER OF S-MAP OPERATIONS 
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Using the notation from Chapter 5, the equations generated for representing the 

process of creating the S-Maps are verified. 

For Machinability: 

𝑠𝐺 = 𝑠𝐺
𝑛
+ 𝛿𝐺

 

Transforming to LCS: 

𝑠𝐺 = $$𝐺ℓ( 𝑠ℓ
𝑛
) + $$𝐺ℓ ( 𝛿ℓ )  

Collecting Terms: 

𝑠𝐺 = $$𝐺ℓ ( 𝑠ℓ
𝑛
+ 𝛿ℓ ) 

Expanding  

𝑠𝐺 = $$𝐺ℓ ( 𝑠ℓ
𝑛
+ ( 𝑓𝑛

ℓ − 𝑓ℓ )) 

𝑠𝐺 = $$𝐺ℓ ( 𝑠ℓ
𝑛
+ ( 𝑓𝑛

ℓ − 𝑇ℓ𝐺 𝑓𝐺
))  

For Tolerances with Respect to Datums: 

𝑠𝐺 = 𝑠𝐺
𝑛
+ 𝛿𝐺

 

Transforming to LCS: 

𝑠𝐺 = $$𝐺ℓ( 𝑠ℓ
𝑛
) + $$𝐺𝑑 ( 𝛿𝑑 ) 

Expanding: 

𝑠𝐺 = $$𝐺ℓ( 𝑠ℓ
𝑛
) + $$𝐺𝑑 ( 𝐷𝑛

𝑑 − 𝐷𝑑 ) 

𝑠𝐺 = $$𝐺ℓ( 𝑠ℓ
𝑛
) + $$𝐺𝑑 ( 𝐷𝑛

𝑑 − 𝑇𝑑𝐺 𝐷𝐺
)  

Thus, the final transformed and shifted S-Map primitive points ( 𝑠𝐺 ) are made 

from: the local unshifted S-Map points ( 𝑠ℓ 𝑛 ), measured part data ( 𝑓𝐺
, 𝐷𝐺

), and 

transformations that are calculable from CAD geometry (𝑇ℓ𝐺, 𝑇𝑑𝐺 , $$𝐺ℓ, $$𝐺𝑑)  
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APPENDIX D 

RELEVANT DATA STRUCTURES IMPLEMENTED IN C++  
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Table D.1 

LocalGeom Base Class Structure 

Base Class: LocalGeom 

Variables 

R Container for the rotation matrix from the GCS to the LCS 

Cx, Cy, Cz Containers for the relative position vector from the GCS to 

the LCS 

X The cross product matrix for screw transformations 

Methods 

setCvect Sets the values of Cx, Cy, Cz, and populates the X matrix 

get/setRmat Gets/sets the R matrix 

 

  



108 

Table D.2 

PlnSeg Derived Class Structure 

Derived Class: PlnSeg (Plane Segment) 

Inherits: LocalGeom 

Variables 

P List of 2-D points on the boundary of the plane segment 

Methods 

addPoint Adds a 2-D point to the list of points on the boundaries 

 

 

Table D.3 

CylSeg Derived Class Structure 

Derived Class: CylSeg (Cylinder Segment) 

Inherits: LocalGeom 

Variables 

end1 The distance to the first end point of the cylinder from the 

LCS 

end2 The distance to the second end point of the cylinder from the 

LCS 

Methods 

addPoint Adds a 2-D point to the list of points on the boundaries 
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Table D.4 

TMap Base Class Structure 

Base Class: TMap 

Variables 

hspacelist List of halfspace6 objects that make up the boundaries of 

the T-Map 

TMapQhull A Qhull object for computing and storing the intersection  

optpoint The central point of the intersection shape 

Methods 

addHalfspace Adds a halfspace6  to hspacelist  

addTMap Adds the hspacelist of another TMap object to the stored 

hspacelist 

calcInteralPoint Calculates the central point of the TMap and stores it in 

optpoint 

scaleAngular Scales the angular dimensions by a value (characteristic 

length) 

createOpt3Dsection Creates a 3-D cross section of the 6-D T-Map with 3 

coordinates set to their optimal value 

createZero3Dsection Creates a 3-D cross section of the 6-D T-Map with 3 

coordinates set to zero 
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Table D.5 

LocalPlnTMap Derived Class Structure 

Derived Class: LocalPlnTMap (Local Plane T-Map) 

Inherits: TMap and PlnSeg 

Variables 

halfTMap Logical value. Set to true to represent the open ended S-Map 

tol Tolerance value for the size of the tolerance zone 

Methods 

sethalfTMap Set the logical value of halfTMap 

get/setTol Gets/Sets the tolerance value 

genLocalTMap Generates the half-spaces for the plane segment with the 

specified tolerance 
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Table D.6 

LocalCylTMap Derived Class Structure 

Derived Class: LocalCylTMap (Local Cylinder T-Map) 

Inherits: TMap and CylSeg 

Variables 

tol Tolerance value for the size of the tolerance zone 

Methods 

get/setTol Gets/Sets the tolerance value 

genLocalTMap Generates the half-spaces for the cylinder segment with the 

specified tolerance 

 

Table D.7 

GlobalTMap Derived Class Structure 

Derived Class: GlobalTMap (Global T-Map) 

Inherits: TMap 

Methods 

Overloaded 

Constructors 

Inputs either a LocalPlnTMap or LocalCylTMap and stores 

the transformed T-Map 
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Table D.8 

SMapPrim Derived Class Structure 

Derived Class: SMapPrim (Global S-Map Primitive) 

Inherits: TMap 

Variables 

LMCshift Stores the 6-D shift vector for shifting the S-Map primitive 

Methods 

setshift Sets the LMCshift vector 

shiftSMap Shifts the halfspaces by the LMCshift vector. Sets LMCshift 

to zero vector 

 

Table D.9 

SMap Derived Class Structure 

Derived Class: SMap (Global S-Map) 

Inherits: TMap 

Variables 

PrimList A list of pointers to SMapPrim objects for intersection 

Methods 

addSMapPrim Adds the half-spaces of an SMapPrim and adds the pointer 

to the SMapPrim to the PrimList 

intersect Performs the intersection of all SMapPrim objects and trims 

the redundant half-spaces 
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APPENDIX E 

SUPPLEMENTARY DATA FOR CHAPTER 6 TEST CASE (C) 
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Table E.1 

The Initial Shift Values of the S-Map Primitives Represented in the GCS 

TBM Feature 𝛿𝜙 𝛿𝜓 𝛿𝜃 𝛿Δ𝑥 𝛿Δ𝑦 𝛿Δ𝑧 

Top Face 0.005 0 0 0 0.01 0 

Shaft Face 0 0.001 0 0.1 0 0 

Shaft Hole 0 0 0 0 0.02 0 

3x Cyl Bore (together) 0.001 0 0 0 0 0.01 

 

Table E.2 

Coordinates for Each Successively Calculated Setup Point 

Iteration 𝜙 × 10" 𝜓 × 10" 𝜃 × 10" Δ𝑥 Δ𝑦 Δ𝑧 

1 0.0053 -0.0063 -1.2E-05 0.00061 2.43E-5 0.02064 

2 2.47E-07 -2.1E-07 -0.00093 0.00091 0.00187 -4.46E-7 

3 -3E-07 7.56E-08 0.000837 -0.00097 -0.00017 4.39E-7 

4 3.69E-08 6.99E-08 0.000296 0.00014 -0.00059 -7.03E-9 

5 2.27E-07 -1.5E-07 0.0011 0.00086 0.00215 -3.87e-7 

 


